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Abstract

Experimental and numerical investigations have been conducted in order to evaluate

the accuracy of the Mixture Model, a depth-resolved and time-averaged multiphase

numerical model, in predicting the behaviour of dilute surge-type turbidity currents.

The effects of turbulent dispersion and turbulence modulation upon sediment

transport within turbidity currents are directly modelled via their incorporation into

the Mixture Model. Modelled predictions of flow front propagation and deposit

density are compared against both experimental data and refined two-fluids model

from previous studies. When modelled using the formulation of Chen & Wood

(1985), turbulence modulation does not affect on the propagation of dilute turbidity

currents significantly. Turbulent dispersion can be modelled by incorporating the

formulation of Simonin (1991) into the slip equation of the Mixture Model. Its effect

is strongest in dilute flows carrying fine particles and diminishes when either grain

size or flow concentration increases. Modelled turbulent dispersion effects are too

strong in simulations of flows carrying silicon carbide particles; Mixture Model

simulations agree poorly with both experimental data or refined two-fluids model

results of the deposit mass profile. Yet turbulent dispersion is essential to ensure that

model predictions of flows carrying glass beads compare well with experimental

data. The reasons for the discrepancy between modelling approaches best suited to

each of these flow types remains poorly understood.

A new analytical approach is developed to evaluate the effect of the lift force on

particles of small, intermediate and large particle Reynolds number immersed in

two-dimensional shear flows. The lift force always reduces the magnitude of the

particle settling velocity and may push particles forward or backward, depending on

the sign of both the lift coefficient and the flow vorticity. Given plausible velocity

profiles within natural turbidity currents, the effect of lift force on the sand-like

particles immersed in such turbidity currents is negligible. It may become significant

when the ratio of the particle density to the flow density approaches unity.

New experiments are presented for flows over the flow concentration range 0.25 –

5% and grain size range 58 - 115µm. The data are used to facilitate a more

complete validation of the Mixture Model, based on flow front propagation rates,

deposit mass density and deposit grain characteristics. Modelling results for first two

variables are in good agreement with the experimental data, when turbulent

dispersion effects are incorporated. For reasons which remain unclear, the model

cannot simulate the unexpected experimental result that deposit grain size is largely

unfractionated if the standard deviation of the source material is less than 11 but

significantly fractionated if it exceeds 18. This discrepancy requires further work.
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Chapter 1

Introduction

1.1 Research Rationale

Turbidity currents and their deposits have been a subject of research interest to

academia and industry for well over 60 years (e.g., Meiburg and Kneller, 2010 and

references therein). They are academically important because they are complex

multiphase phenomena that play a major role in sculpting the continental margins.

They are commercially important because their deposits (turbidites) may host

significant hydrocarbon reserves (Weimer and Slatt, 2007). Therefore, developing a

better understanding the flow processes of turbidity currents can significantly aid

accurate prediction regarding the location and structure of turbidites, with important

consequences for understanding the development of an important class of land form,

and for cost reduction in hydrocarbon extraction.

Three kinds of approach are generally employed to study the behaviour of turbidity

currents, viz. field observation, laboratory experiments and theoretical approaches.

From a cost perspective, field observation is restrictive because the natural

phenomenon is generally both rare and destructive. Laboratory experiments allow

scaled-down versions of turbidity currents to be modelled under controlled boundary

conditions. With modern instrumentation, high resolution information on the flow

behaviour (velocity and concentration) can be acquired (e..g, Keevil, 2005). The

disadvantage of physical modelling arises in scaling the flows. It has been argued

before that the dynamics of laboratory flows cannot be scaled straightforwardly such

that they capture the dynamics of natural flows (Peakall et al., 1996). Theoretical

modelling represents another approach to understanding the dynamics of turbidity

currents. An advantage of theoretical models is that they can be scaled-up to predict

the behaviours of natural turbidity currents. A range of approaches can be followed.

Simple models describe macroscopic behaviour of the turbidity currents such as the

evolution of the shape of flows (e.g., Box Models such as those of Dade & Huppert,
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1995). More complex models describe the internal dynamics of the flows

(multiphase models) at varying degrees of complexity. Theoretical models

constantly evolve as our understanding of flow dynamics improves. Measurement

data from laboratory flows are generally used to verify the accuracy of the

prediction from theoretical models. Comparing the prediction from theoretical

models against detailed and accurate experimental measurement can reveal what

essential physical mechanisms should be incorporated into the models. Thus

theoretical and experimental approaches can work well in parallel to achieve a better

understanding of the dynamics of turbidity currents.

Natural turbidity currents occur in a range of complex settings, i.e. confined to

unconfined, with different bed slopes, roughness and where channelised,

experiencing varying degrees of sinuosity in the channel, different channel widths

and heights, etc.; additionally they may carry a wide range of different grain sizes at

different concentrations (Meiburg & Kneller, 2010). Because of this diversity in the

natural setting and the multitude of physical interactions that may be invoked within

the flows, it can be posited that the interplay between the various key mechanisms

within turbidity currents is best studied via numerical modelling. Yet any numerical

model must also be simple, robust, and practical enough for it to be employed to

describe large-scale flows. In the past, depth-averaged numerical models have been

favoured because of their computational efficiency. However, such models do not

take into account gradients in flow properties with the flows, a restriction which

significantly affects their accuracy. With advances in computer power, it is now

feasible to resolve internal flow variation within turbidity currents. However,

resolving turbulence of the flow is still computationally expensive. Therefore a key

challenge is to understand the role that turbulence plays in the different physical

mechanisms such as particle entrainment and flow-particle interaction so that its

effect upon flow averaged quantities can be modelled.

1.2 Aims of Thesis

The aims of this thesis are to:

i. Build a practical numerical model for predicting the behaviour of surge-type

turbidity currents.
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ii. Identify the key physical mechanisms governing the settling motion of

particles within turbidity currents.

1.3 Thesis Structure

Chapter 2 reviews current understanding of the behaviour of turbidity currents. The

detail of the theoretical model here employed (the Mixture Model) and the important

fluid-particle interactions that are the subject of analysis within this thesis are

discussed. A review is also given on the type of theoretical models that have been

employed in the past to investigate turbidity currents.

Chapter 3 presents the two-dimensional modelling results of the Mixture Model in

simulating lock-release dilute turbidity currents of various concentration and grain

size. The numerical predictions on the propagation and the deposit mass profile of

flows are compared against experimental and direct numerical simulations results

produced by other workers. The effects of turbulence dispersion in turbidity currents

are investigated by comparing the prediction on the evolution on the concentration

distribution within flows from the Mixture Model with or without a turbulence

dispersion model. The effect of turbulence modulations in the flows is also

investigated.

Chapter 4 presents the derivations of simple analytical expressions for the lift force

on particles suspended within shear flows based on the force balance equation.

Simple expressions are derived for small, intermediate and large particle Reynolds

number. The expressions are evaluated to determine the effect of the lift force on the

particle settling characteristics in turbidity currents.

Chapter 5 presents a combined physical and numerical experimental investigation of

lock release turbidity currents. The propagation, deposit mass profile and grain size

characteristics of a total 15 flows of different concentration and grain sizes are

presented and discussed. These flows are simulated using the Mixture Model and the

results are compared against experimental prediction. The effect of turbulent

dispersion in these flows is compared with that of the flows investigated in Chapter

3.

Chapter 6 summarises the key findings in each chapter and provide an overall

conclusions to the thesis. Suggestions are given for possible future work.
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Chapter 2

Literature Review

2.1 Introduction

The aim of this chapter is to give a brief review of turbidity currents, the important

physics within them and the numerical models that have been used to study them.

2.2 Origins of Turbidity Currents

Turbidity currents are a type of subaqueous particulate gravity currents that are

responsible for transporting sediment from the shallow water settings, depositing it

in the deep sea ocean. In physics, it is known as a dilute form of gravity current (or

density current) whose motion is induced by the pressure difference, or the excess

density which is provided by the sediment suspended within the flows. Other forms

of gravity currents that are commonly observed in nature are atmospheric fronts

which flow due to temperature-induced density differences, katabatic winds

(temperature), dense gas dispersion from chimnies (gaseous density) and watery

discharging from factories (solute density). In these examples, the motion of the

flows are instigated by the either temperature difference or the difference in the

solution density. Full-scale turbidity currents have rarely been observed since they

are inaccessible to direct observation and are destructive enough to destroy any

deployed observation equipment. The concept of turbidity currents was expanded by

Kuenen & Menard (1952) who produced laboratory turbidity currents and observed

that the deposit from such flows grade throughout their entire thickness from

relatively coarse-grained at the bottom to fine-grained at the top, which resembles

that of natural graded sandstones. Another classic example piece of evidence for

turbidity currents is the sequence in which transatlantic undersea cables were

destroyed during the Grand Banks earthquake that occurred in 1929. Heezen &

Ewing (1952) studied these cables and postulated that the earthquake had triggered

an underwater slide that transformed into turbidity currents which travelled for

hundreds of kilometres and destroyed the cables in sequence along their path. Since
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then, numerous researches have conducted investigations on the mechanics of the

sediment transport of turbidity currents and its relationship with the formation or

structure of turbidites (deposits of turbidity currents).

Generally speaking, there are two types of turbidity currents which are known to

result in different types of turbidites, namely a surged-typed turbidity current and a

sustained turbidity current. In deep sea, the former is postulated to be triggered by

the catastrophic sediment failures on the slope which results in a submarine

landslide or slump or debris flow that transforms into a turbidity current through

dilution by mixing with seawater (Normark & Piper, 1991). Hence, the former has a

fixed volume of suspension and relatively short life if erosion does not occur. As a

result, such a flow is unsteady (the structure within the flows constantly changes)

and deposits thin and graded turbidites. On the other hand, sustained turbidity

currents typically are postulated to originate from hyperpycnal flows (highly

concentrated sediment underflows in a fluvial system) that travel from the rivers into

the ocean and transforms into turbidity currents. Hence, a current can have a very

long life if it continues to be fed with sediment from the rivers. As a result, the

current may possess a uniform and quasi-steady body (the flow does not change

significantly in a short time) and is likely to deposit a large amount of ungraded

turbidites.

2.3 Laboratory Turbidity Currents

Since it is expensive or problematical to conduct a direct observation on natural

turbidity currents, researchers resort to re-produce them at a smaller-scale in a

laboratory and to run the flow with simple boundary conditions such as straight and

smooth channels and without an erodible bed in order to study the basic behaviour

of the turbidity currents. Clearly the way the turbidity currents are initiated in the

natural system are complex and it is difficult to emulate in the laboratory. Therefore,

simple configurations for producing turbidity currents have been proposed in the

past. We can review some of the configurations used in the past. The commonly

used configuration to produce a surged-type turbidity current is called the Lock-

Release system. In this configuration, a box containing a suspension mixture (called

the lock box) is prepared at one of end of a flume and the suspension is separated

from the flume by inserting a lock gate between, see Fig. 2.1(a). A surge-typed

turbidity current is triggered by removing the lock gate from the flume. Once the



6

lock gate is released, a flow exchange occurs whereby the heavier mixture

propagates into the lower half of the main flume by virtue of the excess density

whereas the lighter ambient fluid from the main flume propagates into the upper half

of the lockbox. The heavy mixture quickly develops into a turbidity current and

propagates until all sediments have settled on the bed of the flume. Without a

significant slope or additional input of sediment from the erosion or the source, a

fixed volume current dies out relatively quick. Therefore, researchers had designed a

configuration that produce a surge-typed turbidity currents that sustains for a longer

period of time. The configuration is to feed the mixture suspension from an external

tank into the flume through a pipe at an adjustable rate as shown in Fig. 2.1(b). The

speed, size and duration of the flows can thus be controlled by adjusting the feed

rate. However, it should be noted that the mixture first enters the flume as a jet flow.

Through turbulent mixing and dispersion, the flow expands quickly and hence loses

the momentum it inherited from the initial condition. At some distance from the inlet

where the mixture enters the flume, the mixture starts to flow as a turbidity current.

Such a configuration allows a longer duration and hence a more accurate

measurement on the internal structure of the flow and thus has been used to study

velocity, concentration and turbulence profiles.

In addition, there is a kind of configuration devised specifically for studying the only

dynamics of the head of the turbidity currents. The idea of this configuration is to

create a stationary and steady turbidity current with respect to the observer so that a

longer duration of measurement can be taken on the flow. Such flows can be

achieved by injecting the ambient fluid and the mixture from two opposite sides of a

flume. At the bottom of the flume, a conveyor belt is fitted onto the bottom of the

flume in order to create a moving bed. Figure 2.1(c) shows an example of a setup

used to produce steady and stationary saline flows (Simpson & Britter (1979)). A

limitation of this setup is that can only be employed for saline gravity currents.

(a)
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(b)

(c)

Figure 2.1 Schematic diagram showing (a) a lock box configuration for producing a fixed

volume turbidity currents employed in Gladstone et al. (1998), (b) a configuration for

producing a quasi-steady turbidity current employed in Garcia (1994), and (c) a

configuration for producing a stationary head of a turbidity current employed in

Simpson & Britter (1979).

Table 2.1 Measurements performed on the ‘sustained’ surged-typed particulate density

currents conducted in the past.

Authors Excess Density Measurement

Altinakar et al. (1996) Particulate Velocity and concentration profile

Garcia (1994) Particulate Velocity and concentration profile

McCaffrey et al. (2003) Particulate Velocity, concentration, grain size and
turbulence stresses distribution

Leeder et al. (2005) Particulate Velocity, concentration, grain size and
turbulence profile

Hosseini et al. (2006) Particulate Velocity and concentration profile

Sequeiros et al. (2010) Particulate Velocity and concentration profile

Many experimental investigations have been performed on both surge-typed and

sustained turbidity currents in order to understand the propagation, the flow structure

and the deposit characteristics of a turbidity current. Tables 2.1 and 2.2 lists several
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examples of experimental investigations on sustained and surge-typed turbidity

currents conducted in the past and the type of measurements that were performed in

each investigation.

Table 2.2 Measurements performed on the ‘lock-release’ surge-typed saline or particulate

density currents conducted in the past.

Author Excess Density Measurement

Huppert & Simpson (1980) Saline Front Propagation

Laval et al. (1988) Particulate Deposit Thickness

Bonnecaze et al. (1993) Particulate Front Propagation, Deposit Thickness

Hacker et al. (1995) Saline Concentration distribution

Middleton & Neal (1989) Particulate Deposit Thickness and Grain size

Gladstone et al. (1998) Particulate Front Propagation, Deposit Thickness

Kneller et al. (1999) Saline Velocity and turbulence profile

Rooij & Dalziel (2001) Particulate Deposit Thickness

Gladstone & Woods (2000) Particulate Front Propagation

Choux et al. (2002) Particulate
Front Propagation, deposit thickness and
Grain size

Gladstone & Pritchard
(2010)

Particulate Deposit Thickness

Hodson & Alexander (2010) Particulate
Front Propagation, Deposit Thickness,
Velocity and Turbulence Profile

2.4 Dynamics of Turbidity Currents

2.4.1 General Description

A turbidity current is described to possess a characteristic longitudinal anatomy of

head, neck, body and tail as illustrated in Figure 2.2 (here a saline gravity current is

used because it shows each part of the flow clearly). The head has a clear ‘nose’ as a

result of the no-slip condition at the lower boundary and frictional resistance or

shear at the upper boundary. The head constantly displaces the ambient fluid,

overrides the ambient fluid near the bottom boundary and at the same time ingests

some ambient fluid into the body of the flows. This complex interaction results in

the formation of the lobe and cleft features (see Figure 2.3) at the base of the head of
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the current. Simpson (1972) studied in detail the structure of lobes and clefts and

postulated that they are formed from the convective instability produced by the light

liquid which has been overrun by the denser liquid in the gravity current. This study

also suggested that the lower boundary plays an essential role in determining the

substructure of the head. More recently, Härtel et al. (2000) have investigated the

structure of the lobe and cleft by simulating a saline gravity current using a Direct

Numerical Simulations as shown in Fig. 2.3. A series of billows, known as the

Kelvin-Helmholtz vortices, can be observed near the upper boundary of the head.

This instability is due to the velocity difference across the interface, or the shear

between the saline currents and the ambient fluids. The vortices or billows are the

dense fluid being detraining out from the back of the head. Therefore intense mixing

between the current and the ambient fluid occurs along this interface.

(a)

(b)

Figure 2.2 Photograph showing (a) the structure of a compositional gravity current,

reproduced from Simpson and Britter (1979), and (b) a turbidity currents, reproduced

from Gladstone & Woods (2000). Both flows are produced using the lock-release

configuration.

Figure 2.3 A Direct Numerical Simulation

of a lock-release generated saline

gravity current showing the structure

of lobe breakdown and cleft

formation at an advancing gravity

current head, reproduced from H

Härtel et al. (2000).
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2.4.2 Front Propagation

Benjamin (1968) drew an analogy between the propagation of a steady gravity

current and an empty cavity advancing along the upper boundary of a liquid.

Assuming no energy loss, Benjamin (1968) showed that the Bernoulli principle can

be applied and this leads to the following equation:

ே
ᇱ

where is the Froude number and has a value of , is the flow height, and ' is

the reduced gravitational acceleration. Huppert & Simpson (1980) showed that Fr =

1.19 for flows propagating in very deep water, i.e., for , where is the

height of the ambient fluid. The derivation of equation (2.1) has a significant

discovery since it indicates that the propagation of the flow depends only on the

concentration of the flow and the flow height. Expression (2.1) can be easily

extended to include the effect of the slope. Equation (2.1) is valid for a steady–state

flow. For a surge-typed turbidity current, the speed of the flow reduces due to the

decrease in concentration and the turbulence. The effect of the concentration and

particle deposition on the propagation was studied by Riddell (1969).

2.4.3 Velocity Profiles

Experimental investigations on sustained turbidity currents (Altinakar et al., 1996;

Sequeiros et al., 2010) shows that the velocity profile of a body of a turbidity current

is characteristically similar to that of saline gravity currents (Kneller et al, 1999,

Hosseini et al., 2006). Essentially the body of a sustained turbidity current possess a

maximum velocity which is located at about one third of the height of the flow and

hence separates the velocity profile into two parts: a region below the velocity

maximum is known as the wall region and a region above the maximum velocity

which is known as the jet region. The wall region can be described using the

logarithmic relation which is defined as follows:

௨

௨ഓ

ଵ

఑

௬

௬బ
(2.2)

where is the von Karman constant, ఛ is the shear velocity, y is the vertical

coordinate (or the flow height), and ௦ denotes a bed roughness length. For



hydraulically smooth flows,

and
௨ഓ௬బ

ఔ

Alternatively, it can be described using an empirical power relation (Altinakar et al.,

1996):

௨

௨೘

௬

௛

It should be noted that this expression is normalized, or made dimensionless, by

dividing the velocity by the maximum velocity and

where the maximum velocity is located

the power

flows,

profile in the jet region (

as follows:

௨

௨೘

where
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A velocity profile may vary depending on the regime that a flow falls into, which is

either subcritical or supercritical. The parameter that decides the regime of the flow

is the Froude number which is defined as follows:

௎

ඥ௚ ∆ఘ/ఘ೘ ௛
(2.5)

The flow is subcritical if or otherwise the flow is supercritical. Here is the

depth-averaged velocity, is the depth averaged flow height, is the density

difference between the flow and the ambient, ௠ is the density of the flow. From

equation (2.5), we can deduce that a subcritical flow, in general, corresponds to

lower slopes, thicker flows and lower than velocities in supercritical flows.

In addition, the condition of the bed has an effect on the velocity profile.

Experimental investigations conducted by Sequeiros et al. (2010) have shown that a

turbidity current flowing on a smooth plane bed tends to have a greater maximum

velocity and it is located at a lower height as shown in Fig. 2.5. The details of how

the roughness and the characteristics of the bed form influences the velocity profile

of the flows is beyond the scope of this work and therefore is not further discussed.

Figure 2.5 Dimensionless velocity profile of

a turbidity currents flowing on different

beds (reproduced from Sequeiros et al.,

2010).

2.4.4 Concentrations Profiles

For a depositing sustained turbidity current flowing in a smooth channel, the

experimental investigations performed by Altinakar et al. (1996) have shown that

the concentration profile in the body of such flows can be described using a Rouse

relation in the wall region and a Gaussian relation in the jet region where the Rouse

relation is defined as follows:
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஼

஼್

௛೘ ೌೣି௬

௬

௕

௛೘ ೌೣି௕

ఎ
(2.6)

where ௦ ఛ is the Rouse exponent, ௕ is the reference concentration at a

distance ௧ from the bed, is a constant and ఛ is a shear velocity. In the

jet-region, the concentration profile can be described using an exponential function

defined as follows:

஼

஼೘
௖

௬ି௛೘

௛ି௛೘

ఉ೎
(2.7)

where ௖ and ௖ are constant values, ௠ is the concentration where the maximum

velocity is located, and ௠ is the height where the maximum velocity is located.

Figure 2.6 shows the data that they obtained from their experiment and the equations

(2.5 – 2.6) that are fitted onto the data. It can observed that their experimental data

has significant amount of scattering in the jet region and this increases the

uncertainty in the accuracy of their data. On the other hand, more consistent

experimental data were obtained by Garcia (1994) in a separate experimental

investigation as shown in Fig. 2.6(a). Their concentration profile fitted well with an

exponential function in similar form as equation (2.7), and this suggests an

exponential function is sufficient to completely describe the concentration profile of

the body of the turbidity current. In a more recent experimental investigation

performed by Sequeiros et al. (2010), sustained turbidity currents propagating in a

smooth plane exhibit Gaussian-like concentration profiles as shown in Fig 2.6(b).

Also shown in Fig. 2.6(b) are the concentrations of a turbidity current flowing on a

rough bed which exhibit markedly different kind of profile, i.e. the concentration

becomes a constant instead of continually increasing as it approaches the bottom

boundary.

The discussion so far has been on the body of a sustained turbidity currents. The

concentration distribution of a surge-typed turbidity current may deviate from that of

a sustained turbidity current. McCaffrey et al. (2003), Choux et al. (2004) recorded

snapshots of the concentration field of surged-typed turbidity currents at different

downstream locations. They observed that the head is thicker and has a greater

concentration than the body of the flows as shown in Figure 2.7 (the thickness of the

flows gradually decreases towards the rear of the flows). However, the head exhibits

equally strong concentration stratification as the body of the flows and this indicates
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that the concentration profile of the head of the flow can be estimated using a

Gaussian relation. Similar kinds of concentration distributions were predicted in the

two-dimensional numerical simulation performed by Felix (2002) as shown in Fig.

2.8.

(a) (b)

Figure 2.6 Experimental predictions on the concentration profile of a turbidity current flow

in (a) flat bed, reproduced from Garcia (1994), and (b) different bed roughness,

reproduced from Sequeiros et al. (2010).

Figure 2.7 A measurement on the concentration distribution within a turbidity current at

five different downstream locations, for flows with a 14% initial concentration,

reproduced from Choux et al. (2004).

Figure 2.8 Numerical

predictions on the

concentration

distribution of

gravity currents

carrying (a) salt, (b)

silt, (c) fine sand, and

(d) coarse sand,

reproduced from

Felix (2002).
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2.4.5 Flow Turbulence

The turbulence structure is an important feature in turbidity currents as it influences

the suspension of the grains it carries as well as the movement of the current itself.

Kneller et al. (1997, 1999) presented the turbulence structure of a turbulent and sub

critical saline gravity current. It was observed that the instantaneous velocities can

exceed the mean downstream velocities by up to 50%. In addition, the maximum

Reynolds stress was found to occur within the head which also has the highest

turbulence intensities. Large Reynolds stresses were found at the top of the head and

beneath the nose of the current due to the shear along the boundary of the current.

Figure 2.9(a) shows that the arrival of the head is immediately preceded by a rapid

increase in the displaced ambient fluid, followed by a large fluctuation in the

velocities due to the large eddies flowing inside the current. Negative vertical

(a)

(b)

Figure 2.9 (a) Measurements on the time-series downstream and vertical velocities of a

lock-release saline gravity currents at downstream 800mm and height 7mm. (b)

Streamwise and vertical components of the turbulent kinetic energy per unit mass as a

function of height within the current, reproduced from Kneller et al. (1997).
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velocities were observed due to the intense mixing of the current with the ambient

fluid and the downwards motion of the mixed flow. Kneller et al. (1999) showed

both vertical and horizontal components of turbulent kinetic energy of density

currents are minima around the level of the downstream velocity maximum and

maximum at the top and bottom boundary due to the high shear rate (see Figure

2.9(b)).

2.4.6 Deposit Characteristics

The deposit characteristics of a turbidity current represents the thickness and the

length of the deposit and the grain structure within it. The initial and the boundary

conditions play an important role in influencing the deposit characteristics. The

sediment concentrations, the grain characteristics (size, density and shape, and the

initial volume of the flows, can affect the deposit characteristics. In addition, the

boundary condition such as the channel slope, and the surface condition (type of

sediment that overlain the surface and the surface roughness) can affect deposition.

Generally, it is difficult to gain a full understanding of the relation of these

parameters and the final deposit characteristics, since these parameters are

correlated. Changing one parameter can affect the dynamics of the flow, e.g. for a

flow with a fixed concentration travelling down a slope. Hence, the best way is to

start with flow with the simplest dynamics and then slowly increase the complexity

of the problem. Alternatively, research may be divided into studying a specific

dynamics by changing just one specific parameter. Here a brief review is given on

the important findings from the previous investigations in order to gain some

understanding on how the initial conditions can affect the bed characteristics.

Middleton & Neal (1989) investigated the effect of the flow initial concentration,

initial suspension volume and grain size lock release flow on the bed thickness and

length. They showed that flows with high concentration (40%), low settling velocity

(fine particles), and large volume of suspension (large lock volume in the

experiment) tend to exhibit uniform bed thickness and only in distal parts is there a

rapid decrease in the bed thickness. On the other hand, flows with a low

concentration (20%) and large settling particles (coarser particles) tend to exhibit a

wedged shaped deposit thickness. Using dimensional analysis, Middleton & Neal

(1989) derived the following functional relationship:
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௧

(ு௅)బ.ఱ

௨ೞ

௨೑
(2.8a)

where ௙ is the speed of the front of the flow, ௦ is the settling velocity of the

particle, and and are the height and the length, respectively, of the mixture in

the lock box. Middleton & Neal (1989) plotted ௦ ௙ vs ଴.ହ and

showed that the data for a concentration of 20% can be fitted by the line:

௨ೞ

௨೑

௧

(ு௅)బ.ఱ (2.8b)

This equation is useful for estimating the velocity of the head of the current ( ௙)

from observable properties of the bed, if an assumption is made about the

concentration of the suspension. Further, Gladstone et al. (1998) showed that the

run-out distance of surged typed flows is significantly extended if a small amount of

fine material is added into the flow. They show that the fine particles have a low

particle settling velocity and hence have lower rate of sedimentation.

2.5 Physics within Turbidity Currents

In a clear flow, the motion of a fluid is governed by the Navier-Stokes equations

which comprises of a set of equations that expresses the conservation of mass and

momentum as follows in Cartesian coordinates:

డఘ

డ௧

డఘ௨೔

డ௫೔
(2.9)

డ

డ௧ ௞
డ

డ௫೔
௜ ௞ ௜௞

డ௣

డ௫ೖ
௞ (2.10)

where and ௜ denote the density and velocity fields, and ௜௝ denotes the viscous

stress tensor, and and ௞ denote the pressure and volumetric body forces,

respectively. Since particles and fluid co-exist in turbidity currents, it is necessary to

describe the physics of the particle motions as well as the interaction between the

fluid and the particles. If the Knudsen number is close to or greater than unity, the

mean free path of a molecule is comparable to the length scale of the problem under

investigation and therefore the continuum assumption of fluid mechanics is no

longer a good approximation. For flows with small Knudsen number, it is

convenient to treat the particle phase as a continuum which can be described using

another set of transport equations that has similar form to equation (2.9) (e.g. see

Drew (1983)). Thus, the particle phase has its own density, velocity and pressure
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fields but shares the same pressure field with the fluid phase. To distinguish the

particle from that of the fluid, we denote the fluid phase by the subscript f and the

particle phase by p.

In turbulent flow, the turbulence causes the flow to fluctuate with time, which means

that the instantaneous quantities of the flows such as velocity, concentration and

pressure fields, randomly deviate from their average values. In order to determine

the effect of the turbulence on the flow, it is necessary to apply an averaging

procedure on the governing equations (2.9) & (2.10). The possible choices for the

averaging procedure can be either ensemble-, time- or space-averaging. Applying

either of these averaging procedures on equations (2.9) & (2.10) leads to the phase

averaged equations for the fluid phase which takes the following form:

డ

డ௧

డ

డ௫೔
௙ ௙ ௙௜ (2.11)

డ

డ௧ ௙ ௙ ௙௞
డ

డ௫೔
௙ ௙ ௙௜ ௙௞ ௙௜௞ ௙௜௞

௧

௙
డ௉

డ௫ೖ
௙ ௞ ௙ ௙௞ (2.12)

Here a new variable which denotes the volume fraction of the fluid appears in

both equations. Two new terms ௙௜௞
௧ and ௙௞ appear in equation (2.12) and these

denote Reynolds stresses and the interfacial forces acting on the fluid phase due to

the presence of the particle phases, respectively. The interfacial forces for a particle

generally consist of drag, lift, virtual forces etc. The detail of these forces is

discussed in section 2.4.1. The phase averaged equations for the particle phase has a

similar form to those given in equations (2.11) & (2.12).

In the literature for multiphase flow, it is common practice to apply a second

averaging procedure on the governing equations (2.11) & (2.12) in order to achieve

a more physically intuitive model of the turbulent multiphase phenomena (see

Bernard & Harlow, 1988; Burns et al. 2004). Such averaging procedures can be

either time-averaging or Favre-averaging. Generally the latter is favoured because it

entails no extra term in equation (2.11) whereas the latter leads to an extra term

appearing in this equation. As for equation (2.11), both averaging procedures entail

an extra term that is known as turbulent dispersion, which describes the effects of
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the fluid turbulence on the particle phase. The details of this term are further

discussed in section 2.4.3.

In the continuum theory of mixtures, the constituents of a mixture may be modelled

as the superimposed continua, so that each point in the mixture may be

simultaneously occupied by a material point of each constituent. The transport

equations for the Mixture phase can be derived by summing the transport equations

for the particles and the fluid which take the form (e.g. Manninen et al. 1995):

డ

డ௧ ௠
డ

డ௫೔
௠ ௠ ௜ (2.13)

డ

డ௧ ௠ ௠ ௞
డ

డ௫೔
௠ ௠ ௜ ௠ ௞ ௠ ௜௞ ௠ ௜௞

௧ డ

డ௫೔
஽௜௞

డ௉

డ௫ೖ
௠ ௞ ௠ ௠ ௞ (2.14)

Here the mixture phase is denoted by the subscript m to distinguish the variables

from the fluid and particle phases. The mixture density ௠ is defined as ௠

௙ ௙ ௣ ௣ and the mixture velocity is defined as ௠ ௜ ௠ ௙ ௙ ௠ ௜

௣ ௣ ௣௜ . Turbidity currents may carry more than one type of particle and thus the

mixture phase represents the summation of the fluid and all the particles carried by

the flows. The definition of the convection term of the mixture momentum equation

(2.14) is defined as follows:

డ

డ௫೔
௠ ௠ ௜ ௠ ௞

డ

డ௫೔
௙ ௙ ௙௜ ௣ ௣ ௣௜

డ

డ௫೔
௙ ௙ ெ ௜ ெ ௜

௣ ௣ ெ ௜ ெ ௜ (2.15)

where ெ ௜ is the diffusion velocity which represents the velocity of each phase

relative to the mixture velocity, i.e. ெ ௜ ௙௜ ௠ ௜ for the fluid phase and

ெ ௜ ௣௜ ௠ ௜ for the particle phase. Note that a new stress tensor ஽௜௞ appears

in equation (2.14) which is the diffusion stress due to the phase slip and it is defined

as

஽௜௞ ௙ ௙ ெ ௜ ெ ௜ ௣ ௣ ெ ௜ ெ ௜ (2.16)

The mixture viscous stress tensor is defined as ௠ ௜௞ ௙ ௙௜௞ ௣ ௣௜௞ and the

Reynold stress-like stress tensor is defined as ௠ ௜௞
௧

௙ ௙௜௞
௧

௣ ௣௜௞
௧ . Further,

௠ ௞ represents the summation of the interfacial forces ௠ ௞ ௙௞ ௣௞.
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2.5.1 Particle Interfacial Forces

2.5.1.1 Drag Force

For a solid particle immersed in a fluid, the primary interfacial force is the balance

of the drag force and gravity. If the density of the particle ௣ is greater than that of

the fluid ௙, the particle is pulled downwards by the gravity force and is resisted by

the drag force that arises from the pressure and viscous stresses applied on the

particle surface. Consequently, there is a difference between the velocity of the

particle and that of the ambient fluid and this difference is known as the relative

velocity ௥, which is also known as the slip velocity in some literature. For

consistency, the former term is adopted in this thesis. If the particle is settling in a

quiescent flow (ambient fluid has zero velocity), the terminal velocity of the particle

is generally known as the particle settling velocity and is denoted by ௦ here. The

general interest is the theory that is used to determine the magnitude of the particle

settling velocity. For a spherical particle, an analytical solution for ௦ is only

available when the convection of the flow is assumed to be zero and this solution

was first derived by Stokes (1851). Stokes determined that the drag force on a

particle in such a limit is given by:

஽ ,ௌ௧௢௞௘ ௣ ௙ ௥ (2.17)

where ௣ is the particle diameter, and ௙ is fluid dynamic viscosity. This expression

can be expressed in a more general form as follows:

஽
ଵ

ଶ ௣ ௙ ஽ ௥ ௥ (2.18)

Here ௣ is the surface area of the particle ( ௣
ଶ ), ஽ is the aerodynamic

drag coefficient and takes a value of ௦, and ௦ is the particle Reynolds

number that is defined as

௦
ௗ|௨ሬሬ⃗ೝ|

ఔ೑
(2.19)

Equating equation (2.17) to the gravity force results in an expression for the Stokes

settling velocity that is widely used in the sedimentology literature:
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(2.20)

However, the assumption that convection is negligible limits equation (2.17) to very

small particle Reynolds number ( ௦ ). For ௦ greater than about 1, the flow

structure around the particle changes and the assumption of negligible convection no

longer holds. Thus, there is no analytical solution available to describe the drag on a

particle in this regime and either numerical simulations or experiments are used to

determine the drag force. It should be noted that the drag force expression (2.18) is

unchanged but the drag coefficient changes with different values of ௦. For a

sphere, with a particle Reynolds number less than 800, the drag coefficient can be

accurately estimated using the correlation suggested by Schiller & Naumann (1935)

which is defined as

஽
ଶସ

ோ௘ೞ
௦
଴.଺଼଻ (2.21)

Equation (2.21) describes a decrease in ஽ with an increase in the value of ௦. At

௦ = 800, the value of ஽ has dropped to about 0.44 and changes remarkably little

for 800 < ௦ < 3.5 x 105. This regime is known as the Newton regime whereas the

regime where ஽ is decreasing is known as the intermediate regime.

2.5.1.2 Lift Force

When a particle is immersed in a shear flow, it experiences an additional force that

acts on the particle, and this is known as the shear-induced lift force. The shear flow

results in a velocity difference around the surface of the particle which consequently

results in a pressure difference around the particle. Since a higher velocity results in

a lower pressure and vice versa, a particle immersed in a shear flow experiences a

push away from the low-velocity region. Early theoretical predictions on the lift

force on a particle immersed in a shear flow was derived by Saffman (1964).

However, his analysis is restricted to only small Particle Reynolds number ( ௣ <<

1) and small shear Reynolds number ( ఠ << 1) (see Chapter 4 for the definition).

McLaughlin (1991) extended the analysis of Saffman to higher particle and shear

Reynolds number ( ௣ 1). For ௣ , accurate results can be obtained via

experimental or numerical studies and these studies generally expresses the

prediction on the lift force in terms of the lift coefficient ௅. (Kurose & Kumari,
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1999; Bagchi & Balachandar, 2002; Kim, 2006). It should be noted that the lift on a

stationary particle in a shear flow and that on a particle is allowed to rotate freely in

a shear flow are different. According to Bagchi & Balanchandar, the latter has a

lower value of lift coefficient. Furthermore, it is possible for a particle to experience

a lift force in the absence of shear. This occurs on a rotating particle with a

significant slip between the fluid and the particle rotational velocity. Such a lift force

is known as the rotation-induced lift force. The physic behind such a lift force has

similarities with that of the shear-induced lift force, i.e. the rotational slip results in a

velocity difference and hence a pressure difference across the particle.

The significance of the lift force is known in many industrial applications. For

instance, the distribution of the bubbles flowing up a pipe is influenced by both the

shear in the flow and the physical characteristics (size and shape) of the bubbles

(e.g. Frank et al. (2004, 2008). In vertical pipe flow, small bubbles tend to drift

towards the wall, whilst larger bubbles drift towards the axis of the pipe. For

particles flowing in an air duct, the shear-induced lift force has been postulated to be

responsible for the lifting of particles that have deposited on the surface of the duct

back into the main flow (e.g. Zeng & Michaelides, 2002). In a centrifugate (a

process that involves the use of the centrifugal force for the sedimentation of

mixtures within a centrifuge) where particle rotation is significance, the rotation-

induced lift force is important for an accurate prediction on the particle distribution

within the flows. In the laboratory, the shear-induced lift force can be observed on

spherical particles suspended in a Poiseuille flow (Segre & Silberberg, 1962).

2.5.2 Turbulence

2.5.2.1 Single-phase flow

A flow experiences random fluctuations in the velocity and fields when the

Reynolds number of the flow reaches a value in order of magnitude O(105)).

Consequently, time-averaging the transport equation of the fluids, namely equations

(2.9) and (2.10) give raises to an extra unknown in the equations which is commonly

known as the Reynolds-stresses tensor (denoted as ௜ ௝ ). The appearance of the

new unknown results in a so-called closure problem because the number of

unknowns in the transport equations exceeds the number of equations available to be

solved. To overcome such limitations, the Reynolds stresses have to be modelled.
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The commonly accepted assumption is the Boussinesq approximation which

assumes that Reynolds stresses can be treated in the same way as the viscous shear

stress based on the fact that they both have the same mathematical form. Using the

Boussinesq approximation, the Reynolds stresses take the form (e.g. Wilcox, 1993):

௜ ௝ ௜௝ ௧ ௜௝
ଶ

ଷ ௜௝ (2.22)

Here ௧ is the eddy viscosity, ௜௝ is the mean strain rate tensor, ௜௝ is kronecker delta

and is the turbulent kinetic energy. The key to successfully modelling the

turbulence is the accurate prescription on the value of ௧which describes the state of

the turbulence. How ௧ is determined is not straightforward because further

assumptions have to be made (see below) and the accuracy of the predictions on the

value of ௧ relies on the validity of these assumptions. The approach or assumptions

taken on predicting ௧ is commonly known as the RANS turbulence model. In the

past, numerous turbulence models have been proposed for resolving ௧. Some

investigations have built model specifically tailored to specific applications. For

instance, Mellor & Yamada (1982) developed a multi-level turbulence closure

model for a Geophysical Fluid Model and the turbulence model of Spalart &

Allmaras (1992) is built in predicting aerodynamic flows. On the other hand, there

are general purpose turbulence models that are built without tailoring to any type of

flows. The widely used models are the turbulence model suggested by Jones

& Launder (1972) and the turbulence model suggested by Wilcox (1993). In

the model, the ௧ is computed as follows:

௧ ఓ
ଶ (2.23)

Here is the rate of dissipation of turbulence and ఓ . A transport equation

for the each turbulent kinetic energy and the rate of dissipation of turbulence is

derived from the RANS transport equation. These are given as follows:

డ(ఘ௞)

డ௧

డ൫ఘ௨೔௞൯

డ௫ೕ
డ

డ௫ೕ ௞ ௘௙௙
డ௞

డ௫೔ ௞ (2.24)

డ(ఘఢ)

డ௧

డ൫ఘ௨೔ఢ൯

డ௫ೕ
డ

డ௫ೕ ఢ ௘௙௙
డఢ

డ௫೔ ଵఢ
ఢ

௞ ௞ ଶఢ
ఢమ

௞
(2.25)

Here there are the usual time derivative and the convective terms on the left hand

side of the equations. The symbol ௘௙௙ is the combination of the molecular viscosity
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and the eddy viscosity ௘௙௙ ௙ ௧. The first term on the right hand side of the

equations describes the diffusion of either the turbulent kinetic energy or the rate of

dissipation of turbulence. ௞ represents the production of the turbulence due to

shear, and the closure coefficients are ଵఢ and ଶఢ = 1.92. The quantities ௞

and ఢ represent the inverse effective Prandtl numbers, which have a value of 1.393

in the high-Reynolds number limit. It should be noted that these quantities are the

consequence of the k- model that is derived using a rigorous statistical technique

called the Renormalization Group Theory and hence they do not appear in the

standard k- model.

2.5.2.2 Multiphase flow

The modelling of turbulence in multiphase flows is more complex than for single

phase flows because both the fluid and the particle turbulence and the interactions

between them need to be taken into account. Three kinds of treatment, which vary in

complexity, have been suggested in the literature (e.g. FLUENT, 2009). The

simplest approach is known as the mixture turbulence models which treat the

turbulence of the particle and the fluid together as a single phase. In this approach,

the turbulence of the mixture is modelled using a RANS turbulence model that is

extended from the single-phase model. The mixture turbulence model is only

suitable for flows where the fluid and particles are very well mixed and their density

ratio is close to unity. In these cases, the turbulence characteristics of the fluid and

particles are almost the same and hence can be accurately represented by the mixture

turbulence. In the second and more advanced approach called dispersed phase

turbulence, the turbulence of the continuous phase and that of the dispersed phase

are treated separately. The former is modelled using a modified RANS turbulence

model whereas the latter is modelled using an algebraic model (e.g. Simonin 1991).

The algebraic model predicts the turbulence of the particle based on the turbulence

characteristics of the fluid phase. The interaction between the turbulence of the fluid

and that of the particle is also taken into account. The dispersed phase turbulence

approach is applicable for flows where the turbulence characteristics of the particles

are distinctively different from that of the fluid. In the most advanced approach

which is known as the dispersed RANS model, the turbulence of each phase is

resolved using the RANS turbulence model.
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The choice on the approach depends on the type of the flows. Ideally, the dispersed

RANS model is suitable for solving any kind of multiphase flow. However, the

model is more complex and may achieve greater difficulty in achieving solution

convergence due to the need to resolve two additional transport equations. Thus, it is

prudent to opt for a simpler approach if it is possible. In turbidity currents, where the

particles are well mixed within the flows and the particles settle slowly in the flows

(particles are strongly coupled with the fluid flow), it is safe to use the mixture

turbulence model approach.

The Mixture turbulence model is derived in a similar way as that for the single

phase model. Deriving from the mixture momentum equation (2.14), the

transport equations for take the form:

డ(ఘ௞೘ )

డ௧

డ(ఘ௨೘ ೔௞೘ )

డ௫ೕ

డ

డ௫ೕ
௞ ௘௙௙

డ௞೘

డ௫೔
௞௠ ௕௠ ௠ ௠ ௠ ௠ (2.26)

డ(ఘ೘ ఢ೘ )

డ௧

డ(ఘ೘ ௨೘ ೔ఢ೘ )

డ௫ೕ
డ

డ௫ೕ ఢ ௘௙௙
డఢ೘

డ௫೔ ଵఢ
ఢ೘

௞೘
௞ ଷఢ ௕ ௠

ଶఢ
ఢమ

௞
(2.27)

Here each symbol is denoted with a subscript m to indicate that the phase is mixture,

and ௠ and ௠ are the mixture turbulent kinetic energy and rate of dissipation. Note

that two additional terms ௕ and ௠ appear in both equations, and these terms are

known as the turbulence buoyancy and turbulence modulation, respectively. The

turbulence buoyancy is modelled using the standard Boussinesq gradient diffusion

approach:

௕
ఓ೟೘

ఙ೟ఘ೘
௜
డఘ೘

డ௫೔
(2.28)

Here ௧ is a constant and typically takes a value between 0.75 and 1. A stable

stratification (negative concentration gradient) reduces the strength of the mixture

turbulence while an unstable stratification (positive concentration gradient) enhances

the mixture turbulence. The flux Richardson number is generally used to quantify

the extent to which the turbulent mixing is damped by the turbulent buoyancy. It is

defined as the ratio of the turbulent buoyancy (damp turbulence) to the turbulent

shear production (generate turbulence), namely,
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௙
ீ್

ீೖ
(2.29)

For ௙ 0.25, the flow is dynamically stable (suppression of turbulence by stable

stratification overcomes production by shear). Further, for ௙ 0.25, the flow is

dynamically unstable (turbulent). Neglecting the downstream component of the

flows, Smith & McLean (1977) derived an analytical expression that directly

expresses the effect of stable density stratification on the eddy viscosity of the flow

which is as follows:

௧
ఓ೟೘

ଵାଵ଴ெ
(2.30)

where is related to the Richardson number as follows:

ଵ.ଷହோ௜೑

ଵିଵଷ.ହோ௜೑
(2.31)

Equation (2.28) can also be expressed in terms of the particle volume fraction ௣ as

follows:

௕ ఘ ௙
ఓ೟೘

ఙ೟ఘ೘
௜
డఈ೛

డ௫೔
(2.32)

where ఘ ௦ ௙ ௙. The constant ଷఢ in equation (2.27) controls the degree of

the effect of ௕ on ௠ . Rodi (1980) has suggested the values of the coefficient ଷఢ

to be close to 1 in vertical boundary layers and close to 0 in horizontal boundary

layers. Henkes et al. (1991) suggested the following expression for ଷఢ that satisfies

both limits, namely

ଷఢ
௩೘

௨೘
(2.33)

where ௠ is the component of the flow velocity parallel to the gravitational vector

and ௠ is the component of the flow velocity perpendicular to the gravitational

vector. Thus ଷఢ is 1 if the main flow direction is aligned with the direction of

gravity. For buoyant shear layers that are perpendicular to the gravitational vector,

ଷఢ is zero. Equation (2.32) have been employed in many previous studies (e.g. Jha

& Bombardelli, 2009) for predicting the velocity and concentration profiles of

sediment laden, open channel flows using two-equations turbulence models. The

significance of the turbulence buoyancy in an open channel was demonstrated in the
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numerical results of Toorman (2003). The results show that the flux Richardson

number for open channel flows carrying small particles (low settling velocity) tend

to reach an asymptotic value of 0.25, which is the critical value for transition from

laminar to turbulent flow in non-buoyant stratified flow. Recently, Bahari and

Hejazi (2009) simulated a stratified gravity current using the k- turbulence model

and showed that the flows are largely inclined to a stable stratified situation. They

also compared equation (2.29) with the Algebraic Stress Model of Davidson (1990)

(which considers the additional non-isotropic turbulent stress in the production term)

and showed that the former tends to predict a higher value of eddy viscosity at the

current head and consequently a slightly greater spreading rate. However, no

experimental data was employed to validate the accuracy of either model.

Turbulent modulations describe the reduction or enhancement of the fluid turbulent

kinetic energy due to the presence of the particles in the fluid. The known

mechanism responsible for the reduction of the fluid turbulent kinetic energy is the

acceleration of the particles whereas the mechanism responsible for the

enhancement of the fluid turbulent kinetic energy is the flow velocity disturbance

created by the wake or the vortices shed from the particles. Clear evidence of

turbulence modulation was first demonstrated by Gore & Crowe (1989) who

synthesized data from various sources that investigated the change of flow

turbulence intensity due to the presence of the particles in the flow. Gore & Crowe

(1989) successfully categorized the turbulence modification into reduction and

enhancement by proposing an intuitive parameter, ௣ ௘, which is the ratio of the

particle diameter to a characteristic size of the large eddies. They noted that ௣ ௘ =

0.1 represents a demarcation point where at larger values of ௣ ௙
௧the addition of

particles will increase the carrier phase turbulent intensity and at lower values cause

a decrease as shown in Fig. 2.10. However, there is a concern on the generality of

this classification given that most of the results are based on gas-solid/gas-liquid

flows and whose dynamics are different from that liquid-solid flows. More recently

Tanaka & Eaton (2008) have improved the classification of turbulence modulation,

as introduced by Gore & Crowe (1989) by taking into account the mass loading of

the particles (ratio of the total mass flow rate of the particles to the total mass flow

rate of the fluid phase) or the particle Reynolds number, which are important factors

in controlling the magnitude of the turbulence modulation. Performing a
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dimensional analysis on the particle-laden Navier-Stokes equations, they derived a

new dimensionless parameter so-called the “particle momentum number” which

effectively separates the cases into enhancement and reduction groups as shown in

Fig 2.11. Particles with large values of result in turbulence enhancement while

particles with a smaller value of decrease the turbulence. However, the

classification is not monotonic because the range of for turbulence enhancement

in gas-solid flows and liquid-solid flow is not similar and this suggests that the

mechanics behind turbulence modulations for gas-solid and liquid-solid flows are

characteristically different. However, the actual reason is not clear and further analysis is

needed to understand it.

Figure 2.10 Percentage change in

turbulent intensity of flows carrying

particles as function of the ratio o the

particle size to eddy length scale,

reproduced from Gore & Crowe

(1989).

Figure 2.11 Plot of ௅ as a function of

(reproduced from Tanaka & Eaton,

2008).

We have illustrated that turbulence modulation may be important in a solid-fluid

flow. In the following, we present the approach proposed in the past for modelling

turbulence modulation. Chen & Wood (1985) were among the earliest to

successfully implement the turbulent modulation (reduction only) function into the

turbulence model. They demonstrated that the turbulent modulation function

is given by
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௠ ஽ ௣
' ఈ೛ఘ೛

௧೛
௙
'

௣
'

௣
'

௣
' (2.34)

where ௣
' is the fluctuating component of the particle velocity, ஽ is the

hydrodynamic drag force and it is given by the Stokes law for small particle, i.e.

஽ ௣ ௣ ௣ ௙ ௣, and ௣ is the Stoke particle relaxation time. The unknown

௙
'

௣
' needs to be modelled and Chen & Wood modelled it as follows:

௙
'

௣
'

௙
଴.଴଼ଶହ௧೛

௧೑
೟ (2.35)

This equation was suggested by Chen and Woods (1985) to model the fluid velocity

fluctuation-particle velocity fluctuation cross-correlation for a gas-solid flow.

Alternative models are those of Tu & Fletcher (1994), Mostafa & Mongia (1988)

and Lightsone & Hodgson (2004). Lightstone & Hodgson (2004) compared the

predictions of the aforementioned models against the experimental predictions of

gas-solid flows of Tsuji et al. (1984) and concluded that these models are effectively

predictors for cases where the particles affect the gas-phase turbulence mainly

through the drag force. Their observations verified that the models are applicable for

gas-solid flows and therefore their validity in liquid-solid flows is not known. Due to

the lack of experimental data on measuring the reduction of turbulence in liquid-

solid flows, a new experimental investigation is required, but this is outside of the

scope of this thesis. For this reason, equation (2.35) is assumed to be valid for the

class of problems investigated in this thesis. A more detailed description on the

mathematical forms of the turbulence modulation in turbulence model is given

in appendix A1.

2.5.3 Turbulent Dispersion

As discussed in section 2.3, double averaging the multiphase transport equation of

momentum results in an additional term ்஽ known as the turbulent dispersion. The

following equation show that Favre-averaging the interfacial force ௣ of the particle

transport equation results in two terms, the original interfacial force term and the

turbulent dispersion term ்஽ which contains the fluctuating component of the

interfacial force (Burns et al., 2004):

௣ ௣ ௣
்஽ (2.36)
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The overbar denotes the Favre-averaging procedure. Physically, this term represents

the particle acceleration due to the interaction between the continuous phase velocity

fluctuations and the interphase momentum transfer. If only drag force is considered

in the interfacial term, the modelled form of the turbulent dispersion is given by

(Burns et al., 2004):

௣
்஽

௣
ఔ೟

ఙ೟

∇ఈ೛

ఈ೛

∇ఈ೑

ఈ೑
(2.37)

Where ௣
ଵ

଼ ஽ ௣ ௙ ௣ ௙ , ௧is the fluid kinematic eddy viscosity, ௣ is the

gradient of the particle volume fraction and ௙ is the gradient of the fluid

concentration. In the limit of very small particle, particle has zero volume fraction

௣ = 1 and ௣ , which reduces equation (2.37) to be equivalent to Fick’s law of

diffusion.

An alternative way to model the turbulence dispersion was suggested by Simonin

(1991) who derived several models in the general framework of the probability

density function (PDF) approach, each of which uses a different level of

sophistication to capture the various mechanisms of interaction between particles

and the gas-flow turbulence, and hence to determine the fluctuating motions of the

particles. His most basic model is based on the turbulence theory of Tchen (1947),

which describes the behaviour of particles in a steady, homogeneous turbulent flow.

The model relies on an algebraic formulation to relate the particle and fluid-particle

quantities via inertial drag expressions to the fluid flow turbulence. Thus no

transport equation is needed to model the turbulence of the particle and the particle-

fluid correlation. The model is applicable to dilute flows of particles with low inertia

(or particle having small Stoke number). For particle with large Stoke number,

higher order closure models will be needed in order for the prediction to be accurate.

The model has similar form of equation to equation (2.37) but instead of fluid eddy

viscosity, it is computed using the following diffusivity function:

௧
ଵ

ଷ ௙
'

௣
'

௙௣
௧ (2.38)

where ௙
'

௣
' is the particle-fluid fluctuating velocity correlation and ௙௣

௧ is the eddy-

particle interaction time and they are modelled as follows



31

௙
'

௣
'

ଶ௧೑೛
೟

௧೛ା௧೑೛
೟ ௙ (2.39)

௙௣
௧ ௧೑

೟

ఙ೅ವ
೟ ఉ

ଶ ି
భ

మ (2.40)

The term in the bracket term of Equation (2.40) was first developed by Csanady

(1963), and accounts for the cross-trajectory effect when large droplets pass through

eddy due to their high relative inertia. Constant ்஽
௧ is a coefficient used to ensure

that the gas-droplet coefficient ௧ approaches the value for the diffusive transport of

a scalar as the particle relaxation time approaches zero with respect to the eddy-

droplet interaction time. In such a limiting case, the gas-droplet velocity correlation

௙
'

௣
' approaches the values of the fluid’s turbulent KE 2 ௙, and the eddy-droplet

interaction time ௙௣
௧ approaches ௙

௧
்஽
௧ .

The turbulent time scale ௙
௧ is computed using the following equation:

௙
௧ ଷ

ଶ ఓ
௞೑

ఢ೑
(2.41)

Where ఓ is a turbulence model constant and has a value of 0.09, is turbulent

kinetic energy and is the turbulence dissipation rate. The particle relaxation time is

determined using the following equation

௣
ସ

ଷ

ఘ೛

ఘ೑

ௗ೛

஼ವ |௨ೝ|
(2.42)

Where ஽ is the particle aerodynamic drag coefficient, and ௥ is the magnitude of

the slip velocity.

The cross trajectory effect arises in the dispersion of large particles in a turbulent

flow field because large particles do not follow the fluid motion due to their inertia.

Large particles possess the velocity non-equilibrium characteristic which enables

these particles to interact with several turbulent eddies. This results in a reduction in

the particle residence time in each eddy and mitigates the influence of the eddy on

the particle trajectory. The effect of cross-trajectories is taken into account in the

Simonin model through the parameter ఉ . Further, LES simulations performed by

Deutsch & Simonin (1991) have showed that ఉ takes a value of 0.45 in the

direction parallel to the mean relative velocity and 1.8 in the orthogonal direction. In
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FLUENT, ఉ is modelled by the expression ఉ
ଶ where

௩ሬ⃗೛೜∙௩ሬ⃗೛

ห௩ሬ⃗೛೜หห௩ሬ⃗೛ห
.

The parameter is defined as

|௨ೝ|

ට
మ

య
௞೑

(2.43)

Therefore, equation (2.38) can be expressed as follows:

௧,ௌ௜௠
ఊ

ଵାఊ ఉ
ଶ ି଴.ହ

௧ (2.44)

where is the ratio between the time scale of the energetic turbulent eddies affected

by the crossing-trajectories effect ௙௣ and the particle relaxation time ௣, ௙௣ ௣.

௧ controls the rate of the diffusivity of the sediment. In turbulent solute flow, it is

equivalent to the fluid eddy viscosity ௧ (e.g. Fick’s law of diffusion). In sediment

laden flows, its value could be different from that of fluid eddy viscosity. Generally,

the different is taken into account by multiplying the ௧ by an additional modifying

term ்஽ as follows:

௧ ௧ ்஽ (2.45)

In some of the Bousinesq-based models, it is treated as a constant (e.g. Choi et al.

(2002)), which is a crude approximation. However, the value of ௧ may vary

depending on the characteristics of the particle and the flows. Hence, in a more

generalised ்஽ should be treated as a non-constant. In the Simonin model, ்஽ is

equivalent to

்஽ ௧,ௌ௜௠ ௧ (2.46)

2.5.4 Mixture Model and Slip Equation

Manninen et al. (1995) introduced a major simplification to the multiphase transport

equation which significantly improves the robustness of the model in numerical

calculating. Manninen et al. derived the so-called ‘slip equation’ which replace the

original particle momentum transport equation in determining the particle velocity

field. The advantage of the slip equation is that it is de-coupled from the multiphase
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transport equations. Hence using it instead of the original transport equations

reduces one transport equation in the numerical solver. The limitation of this

equation is that it assumes the particle phase velocity reaches an equilibrium level

with the mixture phase instantaneously. In order to satisfy this assumption, the

particle must be strongly coupled with the fluid flow, which also means that the

particle must be small enough to only need short period of time to fully respond to

the flow.

The slip equation can be derived by subtracting the mixture momentum equation

from the particle transport equation, which results in the following expression:

௣௞ ௣ ௣
డ௎ಾ ೛ೖ

డ௧ ௣ ௠
డ௎೘ ೖ

డ௧ ௣ ௣ ௣௜ ௣௞ ௠ ௠ ௜

௠ ௞ ௣ ௣௜௞ ௣௜௞
௧

௣ ௠ ௜௞ ௠ ௜௞
௧

஽௜௞ ௣ ௣ ௠ ௜

(2.44)

Further, the following assumptions have been made:

(i) The particle phase instantaneously reaches an equilibrium state with the

mixture phase, i.e.
డ௎ಾ ೛

డ௧
. This assumption limits the equation to only

strongly-coupled flows where the dispersed and the continuous phases

reach an equilibrium state in a short time scale.

(ii) The dispersed phase convection term is equal to the mixture convection

term, i.e ௣ ௣ ௠ ௠ .

(iii) The viscous stress ( ௠ ௜௞ ௣௜௞) and the diffusion stress ( ஽௜௞) are neglected

since they are small in comparison to the other effects.

Further, it should be noted that the particle ( ௣௜௞
௧ ) and mixture turbulent stresses

( ௠ ௜௞
௧ ) cannot be neglected. The assumptions (i), (ii), and (iii) result in the following

equation, which is known as the slip equation (Manninen et al., 1995):

௦௜
൫ఘ೛ିఘ೘ ൯ௗ೛

మ

ଵ଼ఓ೑஼ವ

డ௎೘ ೔

డ௧ ௠ ௝
డ௎೘ ೔

డ௫ೕ
௜ ௣௜

ᇱ (2.47)

where the term ௣௜
ᇱ represents the effect of the turbulence on the particle slip

velocity and the approach adopted for determining this value is explained in Section

2.4.3. It should be noted that the slip equation takes into account only the drag force,

but it can be easily modified to take into account additional forces, such as the lift
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force into account. The mixture transport equations (2.13) & (2.14), together with

the particle volume fraction equation, the particle slip equation given above, and the

mixture RANS turbulence model equations (2.26 – 2.27) form a complete model

which is commonly known as the Mixture Model. Also the particle volume fraction

is slightly more complex than the Mixture continuity equation as it contains an extra

term that arises due to the diffusion velocity as follows (see equation (2.15) for the

definition of the diffusion velocity)

డ

డ௧ ௣ ௣
డ

డ௫೔
௣ ௣ ௠ ௜

డ

డ௫೔
௣ ௣ ெ ௜ (2.48)

2.5.5 Near Wall Dynamics

The flow near the wall is retarded by the presence of the wall. Towards the wall, the

velocity of the flow progressively decreases until it has zero velocity at the wall.

Such a condition is known as the ‘no-slip’ condition. The region where the flow

experiences an effect due to the presence of the wall is known as the boundary layer.

For a clear-water flow, a sound understanding on the dynamics of the flow within

the boundary layer has been achieved after several years of research. A concise

description on the boundary layer of clear fluid can be found in the textbook by

Nezu (1993) and brief description is presented here. We start from the flow closest

to the wall where the flow turbulence is absent and only the fluid viscous stresses

are present. In this case, the fluid velocity increases linearly with the flow height.

This region is known as the viscous sublayer. The equation for the velocity in this

region can be expressed, in general, in the following form:

ା ା for ା (2.49)

where ା
ఛ and ା

ఛ. Further away than the viscous sublayer ( ା>

30), there exists a region with constant shear stress and negligible viscous effects

and the velocity can be expressed as follows:

ା ଵ

఑
ା ା (2.50)

Equation (2.50) is also known as the “law of the wall” and the region where this

equation is applicable is called the ‘log-law’ region. The value of the constant and

ା are determined by fitting equation (2.50) against experimental predictions. For

smooth wall, is 0.4 and ା is 5.5. The law of the wall is applicable up to 20% of
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the height of the flow from the wall. Between the viscous sublayer and the log wall

region (5 < ା < 30), the viscous stresses and the turbulence are equally important.

Van Driest (1956)’s mixing length model is commonly used to predict the flow

behaviour in this region because it fits well with the experimental observations.

In a solid-fluid flow, the dynamics within the boundary layer is considerably more

complex due to the presence of the particles which influences the behaviour of the

fluid flow. Thus the boundary layer theory of clear fluids needs to be

modified/extended in order to accurately describe the physics. It should be noted

that the behaviour of the fluid flow and the particle in the boundary layer is

different, and hence they need to be modelled separately. For convenience, the

problem is treated at the mixture level. Consequently, the theory of boundary layers

of clear fluids is retained, except that all the variables are replaced by the mixture

variables. The value of the mixture viscosity coefficient ௠ depends on the

concentration of the flows and it can be accurately determined using a power-law

expression derived by Ishii & Mashima (1984) which takes the form:

௠ ௙
ఈ೛

ఈ೛೘

ିଶ.ହఈ೛೘

(2.51)

where ௣௠ is the maximum packing limit of the solid particles (there are always

void spaces between the particles). If the particle concentration is very high within

the flows, then the particle-particle collisions become more important. However, the

mechanics behind these phenomena not well understood and hence further detail is

not given here in this thesis. For dilute flows, it is likely that the particle

concentration is very high only in the viscous sub-layer and therefore ignoring this

mechanism should not significantly affect the accuracy of the models proposed in

this thesis.

There are two kinds of treatment of the boundary condition for a turbulent flow that

is employed in the model. The first approach does not resolve the boundary

layer profile but instead predicts only the mean velocity in the log layer using the

following law-of-the-wall equation:

∗ ଵ

఑
∗ (2.52)

where
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∗
௣ ఓ

଴.ଶହ (2.53)

Using this approach, the mesh near the boundary must have an acceptable value of

௣ so that the parameter ∗ falls in the range 30< ∗<300. This approach was known

as the Standard Wall Function approach and was first introduced by Launder &

Spalding (1974) and it is known as the Wall Function. However, the wall function is

inaccurate and requires modification.

The second approach resolves both the viscosity-affected region and the fully

turbulent region. This approach is known as the Enhanced Wall Function. The

demarcation of these two regions is determined by a wall-distance-based Reynolds

number that is defined as follows:

௬ (2.54)

where is the wall-normal distance. When ௬ < 200, the region is viscosity-

affected and the one-equation model of Wolfstein (1969) model is employed.

The linear and logarithmic laws-of-the-wall are blended using the following

function, as suggested by Kader (1981):

ௗ௨శ

ௗ௬శ
௰ ௗ௨೗ೌ ೘

శ

ௗ௬శ

భ

೨
ௗ௨೟ೠೝ್

శ

ௗ௬శ
(2.55)

where Γ is a blending function and is given by:

௔൫௬శ൯
ర

ଵା௕௬శ
(2.56)

Where = 0.01 and = 5. This formula guarantees the correct asymptotic behaviour

for large and small values ା and reasonable representation of velocity profiles in

the cases where ା falls inside the wall buffer region (3 < ା < 10). The laminar

law-of-the wall is determined from the following expressions:-
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For turbulent fluid flows travelling on a bed of particles, the flow may entrain (or

‘pick up’) the particles from the bed and suspended them into the main flow. This

phenomenon is known as “particle entrainment” (or particle re-suspension). In order
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to predict this phenomenon, a great deal of research has been invested into the

understanding of how particles are entrained into a flow and how the physics vary

with different particle characteristics and flow conditions. The subject is complex

because the interactions between the flow and a bed of particles could cause a

formation of bed forms or topography on the surface of the particle bed, and

different bed forms may affect the rate of particle entrainment in a flow. However,

bed form is not discussed in this work because the flow in the current research is a

small scale flow that does not develop any well-defined bed forms. Here a

discussion is given on some of the theories that have been developed on explaining

particle entrainment in sediment-laden, open channel flows. It should be noted that

particle entrainment is a common process in gas-solid flows, e.g. aerosol particles in

turbulent duct flows (Zhang and Ahmadi, 2000), and has been a subject of much

research. Basically, there are two kinds of theories that have been developed on

particle entrainment. The more detailed one relies on statistical methods in order to

understand the instantaneous characteristics of the turbulence of the flow near the

bed (known as the coherent structure of the flow) and its relation with particle

entrainment. Basically, a turbulent flow near a boundary is characterized by four

different events, i.e. the sweep event, ejection event, outward interaction event and

inward interaction event. These four bursting events have different effects on the

mode and rate of sediment transport (Bridge & Bennett, 1992). The second approach

is a macroscopic approach that is based on the concept that particle entrainment is

initiated by a threshold bed shear stress. Shields (1936) was among the earliest

researchers to suggest this concept.

In order to predict this phenomenon, a great deal of research has been invested into

the understanding of how particles are entrained into a flow and how the physics

vary with different particle characteristics. In the early investigations, it was

postulated that the shear in the boundary layer is responsible for initiating the

particle entrainment. Large shear leads to greater pressure differences across the

particle and hence a greater upwards force to be exerted on the particle and a greater

likelihood for the particle to be entrained. For particle immersed within the viscous

sublayer of the boundary layer, the mechanism is equivalent to the lift force exerted

on particles immersed in an unbounded shear flow which has been discussed in

detail in Section 2.4.1.2 although the effect of the wall must be taken into account in

the latter (e.g. Leighton & Acrivos, 1985). For particles with a size greater than the
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thickness of the viscous sublayer, the lifting of the particle is postulated to be due to

a local, high instantaneous value of the Reynolds stress (e.g. Robinson, 1991; Niño

et al., 2003).

In a steady flow (e.g. open channel flows), the shear in the boundary layer is

generally described by the shear velocity or the boundary shear stress since they can

be conveniently related to the velocity of the main flow through the following

relationship:

௕ ௙ ௙ ௙
ଶ

and ఛ ௕ ௙ (2.60)

Where ௙ is a Darcy friction factor which is a dimensionless coefficient describing

the roughness of the bed. The value of the shear velocity can be determined

experimentally and hence the experimental prediction has been used to verify

equation (2.48). The minimum value of ௕ needed to initiate a particle entrainment

is known as the critical boundary shear stress ௖. A key to a successful prediction on

particle entrainment is obtaining the correct value of ௖ for particles of any kind.

One of the earliest, and widely used, prediction for ௖ was the Shield diagram as

proposed by Shields (1936). The diagram shows the value of ௖ required for a wide

range of particle Reynolds number ௣. Van Rijn (1984) re-investigated the

problem and suggested that ௖ is not a single value but rather is a range. More

recently, Niño et al. (2003) proposed an alternative criterion based on their

experimental observations. Figure 2.12 illustrates a comparison between the

predictions of Shields (1936), Van Rijn (1984) and Niño et al. (2003) taken from

Niño et al. (2003).

In most numerical modelling of turbidity currents, it is often too computationally

demanding and complex to simulate the exact mechanisms that initiate particle

entrainment, which requires the modelling of the physical appearance of a sediment

bed as well as the fluid flow that passes through the bed. Hence, in most numerical

investigations, particle entrainment is modelled using particle entrainment criteria.

The criterion is also useful for assessing the likelihood for particle entrainment to

occur. In numerical modelling, particle entrainment is often used in conjunction with

the Exner equation in order to model a decrease in the bed elevation due to the loss

of the sediment through particle entrainment or an increase in bed elevation due to

the particle deposition from the flow (the Exner equation is a transport equation that
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expresses the conservation of mass between sediment in the bed and sediment that is

being transported). The Exner equation can be defined as follows:

డ௛೟

డ௧

ଵ

ଵିఒ೛
௦ (2.61)

where ௧ the bed elevation, ௦ is the sediment flux, and ௣ is the bed porosity.

Figure 2.12 Plot of ∗ as a function of the particle Reynolds number ௣ with experimental

data (circle) and the criteria proposed by Shields (1936), Van Rijn (1984), and

Bagnold (1966), reproduced from Niño et al. (2003).

Close to the bed (the actual height of the region is not well defined), particles may

moves by rolling, sliding, or saltating (hopping) along the bed. Collectively, these

sorts of motion are known as the bed load. Rolling and sliding particles are

postulated to be dragged by the fluid flow while saltating has been linked to the

turbulence coherent structure near the bottom boundary of the bed (Garcia et al.,

1996; Nezu & Nakagawa, 1993). However, since understanding these sorts of

physical process is still poor, the modelling of it is not discussed further here.

2.6 Theoretical Model for Turbidity Currents

Numerous numerical investigations on turbidity currents have been performed in the

past and many different models have developed or used. Here a review is given on

the types of the models and their advantages and limitations.

2.6.1 Integral Box Models

Huppert & Simpson (1980) introduced box models to reproduce the spreading of a

fixed volume two dimensional saline gravity surges released using a classical lock-
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release configuration. The basis assumption of the model is that the shape of the

currents evolves in a series of equal-area rectangles which is an observation made in

experiments on the lock-release saline gravity currents. Furthermore, the Box model

utilizes the relationship of the front propagation with the concentration and height of

the flow established by Benjamin (1968). Using these two assumptions, Huppert &

Simpson derived the length and time scale of the flows in inertia-buoyancy and

viscous-buoyancy regimes which agree well with the experimental predictions on

the rate of propagation of the front of the flows. Later, Dade & Huppert (1995)

extended the Box models to suspension-driven gravity currents. They modified the

models so that flow loses its concentration through deposition during its

propagation. The model achieves good comparison with the experimental data on

the rate of propagation of the front of the flows and the deposit thickness profile.

The attractive feature of the Box model is its simplicity. It shows that the physics of

a lock release flow is governed either by the balance of inertia force and the flow

buoyancy or the balance of the viscous force and the flow buoyancy at late stage of

the flow. It also provides quick estimates on key characteristics of a flow such as the

run-out distance and the deposit thickness and grain size characteristics. The

limitation of the Box model is its rigidity. How well the theory of the model can be

extended to other kind of boundary condition, such as the flow propagating

downslope and particle resuspension, is not clear. Furthermore, the model still relies

on empiricism to achieve good comparison with the experimental data which

question its general validity.

2.6.2 Shallow Water Model

The Shallow Water Model (SWM) is based on the shallow water equations first

derived by Saint-Venant (1871). The shallow water equations are derived from

depth-integrating the Navier-Stokes equations assuming that the horizontal length

scale of the flow is much greater than the vertical length scale. This assumption

implies that the vertical pressure gradients in the flow are nearly hydrostatic which

means that the horizontal velocity field and concentration is constant throughout the

depth of the flow. In addition, the model only allows very small vertical velocities.

Rottman & Simpson (1983) were the first to use the shallow water equations to

investigate some aspects of the compositional/saline gravity currents generated by



41

means of lock-release configuration. Bonnecaze et al. (1993) later extended the

models to particle-driven gravity currents by solving the models along with an

equation describing the conservation of particle mass. They discovered that, for the

case of a deep ambient, the motion of the overlying fluid can be neglected and the

so-called single-layer shallow water equations hold. For shallow ambient, it is

necessary to extend this approach by formulating a two-layer system that accounts

for the dynamics of the overlying fluid layer. While the shallow water equations are

typically integrated numerically, Harris et al. (2001) generalized the similarity

solution for homogeneous currents to particle-driven currents and this permits the

derivation of analytical solutions to the governing equations. Their solutions show

that both the box model and shallow-water model produce propagation equations

that are mathematically very similar, and this explains why the box model produces

surprisingly good results when compared with experimental data. Harris et al.

(2002) extended their analysis to polydisperse-driven gravity currents. The shallow

water equations have also been employed to study many variants of gravity currents,

such as axisymmetric particle driven currents and rotating particle-driven gravity

currents (e.g. Hogg et al., 2001), and dam-break flows (Hogg, 2005). More

examples of the use of the shallow-water equations in the context of gravity currents

can be found in the textbook by Ungarish (2009).

Comparing SWM with the Box Model, they both assume a uniform velocity and

concentration in the flows and rely on the equation (2.1) to dictate the propagation

of the flows. The key difference between SWM and the Box Model is that SWM

does not assume a constant in the flow thickness and horizontal gradient of the

velocity and concentration field. Therefore, SWM has an advantage over the Box

Model because it does not refined to geometric assumption on the shape of the flow

and it is more theoretically sound than the Box Model since it is based on the

Navier-Stokes equations. Therefore, SWM is more flexible than the Box model and

can be used to investigate more diverse kind of flows in different boundary

conditions. The limitation of the model is that it is restricted by its assumption that

the length of the flow must significantly greater than the thickness of the flow. This

ultimately restricts the model to describing a fully developed quasi-steady turbidity

currents with a quasi-uniform vertical concentration. For a rapid-evolving turbidity

currents and sediment-entraining flow propagating down a steep flow, concentration

and velocity vertical gradient become important and the accuracy of the model may
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suffer. Nonetheless, SWM remains a popular tool among researchers because the

form of the governing equations are more amenable to analytical solution that are

useful for providing estimation on the behaviour of the turbidity currents such run-

out distance and deposit characteristics.

2.6.3 Depth-Resolved Model

Depth-resolved models remove the restriction imposed by the Box Model and

Shallow Water Models on the velocity and concentration gradient within the flows

and fully resolves the dynamics of the particle and fluid interaction within the flows

including the structure of the turbulence within the flows. Generally depth-resolved

model can be further classified according to the approach taken to resolve the flow

turbulence which profoundly influences the form of the governing equation, the

technique required to solve the equations and the form of the solution. The choice is

either to model or resolve the structure of the turbulence. The first choice is known

as RANS turbulence model (or RANS in general) and the second choice is known as

Direct Numerical Simulation (DNS). An example of RANS has been given in

Section 2.4. In section 2.4, we see the need to apply averaging procedure to separate

the averaged quantities and the additional quantities induced by turbulence. The

additional turbulence term is then modelled using turbulence closure scheme. In

DNS, such procedures are not required. Instead, the original governing equations are

numerically discretised and then resolved using high degree of spatial and time

resolution in order to capture the entire length scale and time scale of the turbulence,

which means DNS is computationally expensive and restricted to low Reynolds

number flow since the computational costs increases with greater Reynolds number.

The attractive feature of DNS is that its solution (after being averaged) can be used

to validate RANS and understanding the physics of the problem which is valuable

for improving simpler model such as RANS. It is worth mentioning that, between

RANS and DNS, there exists an approach which utilizes both RANS and DNS to

solve the turbulence. This approach is known as Large Eddy Simulation (LES). The

principal operation in LES is low-pass filtering and this operation is applied to the

Navier-Stokes equations to eliminate the need to resolve the small eddies in the

flow. Therefore, in LES, the large eddies are resolved directly while the small eddies

are modelled. LES is becoming increasingly popular among the modellers who are

interested to understand the physics and detail of a problem without being limited by
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flows Reynolds number. However, LES is still considerably more expensive than

RANS and, similar to DNS, considered to be more of a research tool for studying

the physics of a particular phenomenon in order to improve the existing theoretical

model.

Early works done by Eidsvik and Brors (1989) and Brors and Eidsvik (1992)

showed the prediction of the vertical turbulent structure of turbidity currents using

k and Reynolds stress turbulence models compared well with experimental data.

Interestingly, some features predicted by these models, such as low turbulent kinetic

energy at the level of the velocity maximum, were deemed to be unrealistic by the

authors but have since been observed in laboratory experiments (Kneller et al.,

1999). More recently, validations have been performed on the multiphase model and

RANS in predicting turbidity currents. For instance, Choi and Garcia (2002) studied

the validity of RANS in predicting the water entrainment in a density currents on a

slope. Huang et al. (2005) compared RANS model prediction on the turbidity

currents vertical concentration profile with experimental data and attempted to

improve the comparison by adjusting one of the model constants. Imran et al. (2004)

modelled a turbidity current propagating in a three-dimensional channel using

RANS model. Huang et al. (2008) further validate their RANS model in predicting

the deposition of a lock release turbidity currents. Felix (2001) had adapted the

Mellor-Yamada level 2.5 closure models (Mellor and Yamada, 1982) and used his

model to predict the deposition of a historical flow (Grand Banks).

It should be noted that there exists a depth-resolved RANS model that is different

from the Mixture Model. This model utilises the Boussinesq approximation in order

to simplify the mathematical form of the governing equations. Assuming the density

difference between the flow density and the ambient fluid density is sufficiently

small, the effect of the particle on the flows can be taken into account by modifying

only the gravitational term in the time-averaged momentum equation. An additional

equation is prescribed in order to model the transport of the particle within the flow.

This additional equation generally takes the following form:
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The second term in the bracketed term at the right hand side describes a turbulent

dispersion on particles, and ௧ is a constant value for the turbulent dispersion. The
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appealing feature of the Boussinesq-approximation model is that it is mathematically

simpler than the Mixture Model because it has one less equation to be solved (the

additional equation in the Mixture Model is the Algebraic Slip Equation). The

drawback of this approach is that it is limited only to dilute flows whereas the

Mixture Model does not suffer such limitation. The use of the Boussinesq-

approximation model in predicting turbidity currents can be found in the works of

Huang et al. (2005; 2008).

2.7 Conclusion

In this chapter, a short review is given on the current understanding on the dynamics

of a turbidity current. The physics within turbidity currents are described using the

turbulence-averaged mathematical models. The pros and cons of various kind of

numerical models that have been employed in studying turbidity currents are

discussed.
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Chapter 3

Modelling 2D Particle-Laden Lock-Release

Flows

3.1 Introduction

In Chapter 2, a review was given on the current understanding of the fluid dynamics

within turbidity currents, which shows that turbidity currents can exhibit a very

complex velocity, concentration and turbulence fields that can strongly influence the

deposit characteristics. In order to predict the complex flow structure of turbidity

currents, the physics that govern the motion of the flows must be properly

prescribed. For instance, the settling motion of the particle, fluid turbulence, and the

interaction between the flows and the bottom boundary must be accurately

described. The details of this physics are described in Section 2.4. The class of

numerical models that can incorporate such physics are known as depth-resolved

models. As outlined in Section 2.5, there exists simpler models, such as the the Box

Model, and Shallow Water Model which do not resolve the internal flow variations.

Such models rely on empiricism to incorporate the effect of the flow variation on the

macroscopic behaviour of the flow, such as the depth-averaged velocity and

concentration. For instance, shape functions are commonly used to estimate velocity

and concentration profiles of a turbidity current without needing to resolve the

physics that is responsible for them. Therefore these models produce accurate

predictions if they are applied in well-validated situations but are dubious when they

are employed to study unfamiliar problems. Therefore, in order to have a

generalized model that is unrestricted by the boundary conditions of the problem,

the model must be depth-resolved and based on sound physics.

As discussed in Section 2.6, a depth resolved model can be further categorized into

RANS-based and DNS-based models. The latter yields a prediction that resembles

more closely the actual turbulence since they resolve all scales of turbulence eddies

in the flow whereas the former yield a time-averaged solution and rely on a closure
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scheme to predict the effect of the turbulence on the averaged quantity. Therefore

naturally a DNS-based model is more accurate than a RANS-based model but also it

requires a considerably larger amount of computational power which leaves it

impractical for simulating many flows of natural scale. For this reason, RANS-based

models remain both the most practical approach (they are unrestricted by the flow

Reynolds number) and generalized approach (they can be applied to arbitrary

boundary condition with confidence) for the foreseeable future. Within the RANS-

based model, there exist two types of Eulerian multiphase solvers that differ in

simplicity and generality, namely a Boussinesq-based model and an Eulerian-

Eulerian model. The former employs the Boussinesq approximation which states

that the density different in a buoyancy-driven flows is sufficiently small to be

neglected, except where it appears in terms which multiply the gravitational

acceleration. The consequence of this assumption is that the original form of the

momentum equation for the fluid phase can be retained, except for the gravitational

acceleration term which is replaced by the reduced gravity , and the volume of the

particles is neglected (the particle is assumed to co-exist with the fluid phase).

Particle transport is modelled using a modified species transport equation (see

equation 2.50), an equation commonly used for solving the transport of the chemical

species, except that it is modified to take into account the effect of the particle

settling. The Boussinesq approximation breaks down when the ratio of the density

difference between the flow density and the fluid density to the fluid density is close

to unity, which is usually the case when the concentration of the flow is very high.

The Eulerian-Eulerian model removes the limitation faced in the Boussinesq based

model by taking into account the volume of the particle, but this is at a cost in the

increased complexity in the model equations because an additional pair of transport

equations (continuity and momentum equations) is needed for the particle phase.

The Mixture Model simplifies the Eulerian-Eulerian model by replacing the

momentum equation for the particle phase with an algebraic equation, known as the

Algebraic Slip Model, based on the assumption that the particle phase is strongly

coupled with the fluid phase.

Most of the previous numerical investigations on the turbidity currents have been

based on the Boussinesq-based model since it is simpler to resolve numerically than

the Eulerian-Eulerian model (e.g. Choi et al., 2002, Huang et al., 2005 and Huang et

al., 2007). Only a few numerical studies have been based on the Eulerian-Eulerian
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model, e.g. Felix (2002) who investigated the flow behaviour and the deposit of

natural-scale turbidity currents using this approach. A more detail review on the past

numerical investigations is given in Section 2.6.4. We postulate that it is best to

work with an Eulerian-Eulerian approach since it is not limited by the concentration

of the flows, as is the Boussinesq model. It is known that turbidity currents are

closely related to highly-concentrated flows, such as debris and pyroclastic flows.

For instance, a debris flow in deep sea has an ability to transform into a turbidity

current when it is being diluted by seawater. In this thesis, the focus is placed on the

Mixture Model, which is a simplified version of an Eulerian-Eulerian model. Since

the major dispersed components of the majority of marine underflows of interest are

fine materials, such as mud, silts and sand, the limitation of the Mixture Model, in

which the flows must be strongly-coupled, is valid within these flows.

In this chapter, a validation is performed on the Mixture Model in predicting flow

development and deposition from surge-type turbidity currents with a wide range of

concentrations and sediment size. The Mixture Model prediction on the propagation

of the front of the flows and the deposit characteristics is compared with

experimental data. A discussion is given on the model prediction on the internal

structure of the flows.

3.2 Mixture Model

The Mixture Model assumes that all the flow phases exist as interpenetrating

continua that interact on their boundaries. Each phase has its own mass and

momentum conservation equations and an interfacial term is used to compute the

interactions. The interfacial forces that commonly exist in a multiphase flow are the

drag force, lift force, virtual added mass force etc. As outlined in Section 2.5.1, the

drag force is the primary force for solid particles and it always exists whenever there

is a relative density difference between the fluid and the particle. Other forces such

as the lift force and the virtual mass force may be important in certain situations, but

here are neglected in the first validation runs. Summation of the governing equations

for each phase results in equations which describe the bulk flow properties, known

as the Mixture equations (see equation (2.13 – 2.14) in Section 2.5). By assuming

that the particle phase instantaneously reaches the equilibrium state with the mixture

phase, an algebraic slip equation for calculating the particle velocity can be derived

(see equation (2.44)) hence negating the need to resolve the momentum transport
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equation for the particle phase. The turbulence in the flow is modelled using a

modified RANS turbulence model. The chosen turbulence model is RNG

which is an improved version of the standard model (see FLUENT, 2009;

Orszag et al., 1993). Near the wall, the enhanced wall functions (see FLUENT,

2009) are employed in order to resolve the entire flow boundary layer profiles at the

wall boundary. The interaction between particles and the fluid turbulence is

described through incorporation of turbulence buoyancy and turbulence modulation

into the turbulence model and turbulent dispersion into the algebraic slip equation

(see section 2.5). However, whereas turbulence buoyancy and turbulent dispersion

are almost always important in any multiphase flow and should be included in the

model in principle, turbulence modulation is important only in certain situations and

can often be neglected. For this reason, turbulence modulation is not considered in

the first run of simulations. In this chapter, a key focus is the role of turbulent

dispersion in turbidity currents. The significance of turbulent dispersion is evaluated

by comparing the solutions from the models which include, or exclude, the

appropriate term in the algebraic slip equation.

3.3 Validation Data

Experimental data are required in order to validate the Mixture Model’s

performance in predicting turbidity currents. The choice of the validation data

depends on the initial conditions in the problem, the type of the measurements taken

and the quality of the measurement data. The initial conditions, or experimental

setup, varies significantly depending on the type of flow that it is intended to

produce. As explained in Section 2.2, there are two types of turbidity currents that

are frequently studied, i.e. sustained turbidity or surge-type currents. The former

possesses a quasi-steady body and have been frequently modelled in order to

understand the internal structure of the flow, i.e., the velocity, concentration and

turbulence profiles of the flows. On the other hand, the latter is unsteady (changes

with time) and has been used more for the understanding of the relation between the

initial or boundary conditions on the flows and the characteristics of the resultant

deposits. In this thesis, fixed-volume surge-typed turbidity currents are investigated

since such flows have relatively simple initial conditions. A list of the previous

experimental investigations performed on lock-release flows was given in Table 2.2

and the details of the initial conditions for these experiments is given in Table 3.1.
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Table 3.1 Experiments on the lock-release generated turbidity currents.

Authors Suspension Vol. Concentration Mass Size (Density)

m3 % g µm (kg/m3)

Middleton & Neal (1989)
0.0078, 0.0117 20, 40 4000 180 (2450)

Bonnecaze et al. (1993) 0.0117 0.2, 1, 2 100-800 9, 23, 37, 53 (3217)

Gladstone et al. (1998) 0.016 0.35 180 25, 69 (3217)

Rooij & Dalziel (2001) 0.0067 0.275 60 37 (3217)

Gladstone & Prichard (2009) 0.0015 2 96 13, 37 (3217)

Hodson & Alexander (2010) 0.018 0.8, 1 450-580 70

Among these experiments, Middleton & Neal (1989) employed an initial condition

that is distinctively different from those used in the rest of the experimental

investigations. The relative concentration plus the grain size used in their

experiments is greater than those used in the other experiments. As a result, their

flows deposit quicker than in the other flows. The rest of the flows employed lower

densities and have particle smaller than 100µm. Furthermore, it should be noted that

the concentration of the suspension depends on both the initial mass of the particles

and the initial volume of the suspension. The greater the volume then the greater

mass needed to maintain a concentration. For instance, the flows of Gladstone &

Pritchard (2010) have a greater concentration than do the flows of Gladstone et al.

(1998) despite having lower initial mass. This shows that the initial volume

suspension plays an equally important role as the initial concentration in the

dynamics of the flow. Clearly it is unrealistic to simulate all the flows in Table 3.1.

Therefore in this thesis, focus is given to flows that carry a low initial mass in order

to avoid the complex physics that arises in concentrated flows. The details of each

individual flow from these experiments used to validate the Mixture Model are

given in Table 3.2. The formulae used to predict some parameters in Table 3.2 are

given in Table 3.3 Another reason that some of these data (i.e. G69, G25 and D37) is

chosen is because refined two-fluid model has been performed on these flows (see

the references in Table 3.2) and these results can be used to validate the solution

obtained using the Mixture Model. These flows cover a reasonable range of particle

sizes (12.8 to 69µm), suspension volumes (0.0015 to 0.016) and initial masses (60 –
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180g) and hence cover an appropriate range of types of dilute turbidity currents,

from slow moving, highly depositional flows (G69, D37) to fast moving, slowly

depositing flows (G13). Simulating these flows should not only validate the general

accuracy of the Mixture Model in predicting the turbidity currents but allows us to

study how the flow structure varies with the initial conditions of the flows.

Table 3.2 Experimental flows used in this thesis for validating the Mixture Model.

aGladstone et al. (1998), bGladstone & Pritchard (2009), cRooij & Dalziel (2001)

Table 3.3 Formulae for parameters used in this thesis

Term Formulae

Mixture density ௠ ௠ ௣ ௙ ௣ ௣

Excess density ௠ ௙ ௙

Reduced gravity ᇱ ᇱ

Buoyancy velocity ௕ ௕
ᇱ

Reynolds number ௙ ௙ ௠ ௕ ௙

Stokes settling velocity ௦ ௦ ௣ ௙ ௣
ଶ

௙

Unit G69a G25a B1b G37b G13c D37c

Concentration, % 0.35 2 0.275

Total Particle Mass gram 180 96.51 60

Suspension Vol. m3 0.016 0.0015 0.006731

Reduced gravity ' - 0.076 0.44 0.06

Initial mixture density ௠ kgm-3 1007.8 1044.4 1006.1

௙ - 0.00775 0.04434 0.0061

Particle density, ௣ kgm-3 3217

Grain size, ௣ µm 69 25 69,25 36.5 12.8 37

Stokes Settling
Velocity, ௦

ms-1 0.0057 0.00075 - 0.0016 0.0002 0.0016

Buoyancy velocity, ௕ ms-1 0.123 0.209 0.089

Reynolds number, ௙ - 24,500 20,640 11,750

Initial Mixture Viscosity,

௠

Ns m-

2 0.001012 0.001055 0.001003

Refined-two fluids model
result

- Hoyes (2008) -
Necker et al.

(2002)
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3.4 Numerical Approach

The governing equations for the Mixture Model are highly nonlinear and coupled

which makes them difficult to resolve analytically. Hence, in order to obtain a

solution for the equations, they have to be treated numerically. In the past, the finite

volume method (FVM) has been proved to be a robust and reliable numerical

technique for obtaining accurate solutions of the governing equations of fluid-flow.

The FVM numerically integrates the governing partial differential equations over a

control volume into a discrete set of algebraic equations that expresses the

conservation laws on a control volume basis. Values of all unknown variables are

calculated at discrete points on a meshed geometry. Finite volume refers to the small

volume surrounding each point on a mesh. In this thesis, a commercial FVM code,

called FLUENT, is employed to resolve the governing equations in the Mixture

Model. The following algorithm is chosen in FLUENT:

1. Segregated pressure-based solver, employing the extended SIMPLE

algorithm (Patankar 1980) whereby the velocity and pressure are updated

sequentially to enforce the conservation equations, and this is followed by

sequential updates of the other scalar conserved quantities.

2. Second-order accurate discretisation schemes are chosen in order to achieve

accurate solutions. The second-order implicit scheme was selected to

discretise the transient terms and the linear second-order upwind scheme was

selected to discretise the spatial advection terms (see Table A2.1 in the

appendix section).

In the iterative scheme, all the equations are solved iteratively for a given time-step

Δt until the convergence criteria are met before the solution advances to the next

time step.

While the algorithm of the FVM is robust, the accuracy of the solution from the

FVM is subject to the prescription of the time step Δt and the mesh size Δx.

However, there are no predetermined guidelines on how to choose the ‘correct’

values for the time-step and the mesh size since they largely depend on the nature of

the problems under investigation. In general, it is accepted that the smaller is the

time step and the mesh size then the more accurate is the numerical solution.

However, there exists a threshold to the values of the time step and the mesh size
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beyond which further reduction in its length should yield only a very small

improvement or change in the results obtained. Such a threshold can be regarded as

the correct value of the time step and mesh size for the particular problem and can

be determined by performing a series of simulations with decreasing values of the

time step and mesh size until the perceived quality of the result no longer improves.

The mesh size and time step for the current problem is addressed in Section 3.7.

3.5 Boundary Conditions

The numerical treatment of the boundary conditions for the lock-release problem is

described in this section. First and foremost, the flow is treated as a two-dimensional

flow which evolves only along the downstream direction (flow across the width of

the channel is neglected). The reason for such a simplification is to reduce

unnecessary computational costs. Although the flow in the experiment develops in a

three-dimensional manner, the lateral variation of the flows is much smaller than

those in the horizontal and vertical directions and therefore to neglect of the lateral

variation can be a valid approximation. In addition, the effect of the side wall of the

flume on the flow is neglected in the numerical simulations. This assumption is

made based on the fact that the flow is turbulent and possesses only a thin boundary

layer on the vertical wall of the channel. Therefore, away from the wall of the flume,

large portions of the flow are not influenced by the presence of the wall. The

following list details the numerical treatment on the boundary conditions on the flow

and their potential errors:

(i) Sediment size and shape. In the numerical model, the sediment is assumed to

possess a discrete particle size. In fact all sediments possess a continuous size

distribution. However, it is postulated here that the dynamics of the sediment can be

represented by the average size of the particles. Therefore, the effect due to the

variation of the particle size is not taken into account in the current modelling. In

addition, all particles are assumed to be spherical in shape. In fact, the particles

employed in these experiments (silica carbide) are irregular in shape and highly

angular. Halleimeier (1981) reported that only large non-spherical particles (size of

the order of 1mm) experience a reduction in the settling velocity due to shape

anisotropy. Based on this conclusion, we rule out the importance of this variable.
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(ii) The initial velocity and the turbulence of the suspension. Before the release of

the lock-gate in the experiment, a very high swirl is generally introduced to the

mixture in order to keep the sediment in suspension. Clearly, the velocity field is

non-zero during the release of the flow. However, it is postulated that such a

velocity field will quickly dissipate and thus its effect on the initial motion of the

flow is negligible. Indeed, Hoyes (2008) observed that introducing a random

perturbation to the initial velocity field of the suspension does not yield significant

changes to refined-two fluids model simulations of the behaviour of the flow.

Therefore, in the current numerical model, the actual swirling motion in the lock

gate is not modelled and the initial flow before its release is assumed to be

stationary.

(iii) Removal of the lockgate. In the experiment, the lock gate has finite thickness,

takes a finite time (1-2s) to be completely removed from the flume, and has a

frictional effect on the surrounding fluid when it is being removed. However, all

these mechanisms are considered to have a negligible effect on the motion of the

flows and thus they are not considered in the model (c.f., Giorgio-Serchi et al.,

2012).

(iv) The free surface of the ambient flow. The free surface of the ambient fluid does

not allow any flow exchange across the boundary. Therefore, it is a valid assumption

to model any flow parameter to have zero gradients across it. This is the assumption

that is employed in the current numerical model. In addition, for simplicity, the free-

surface is assumed to be horizontal and stationary at all times. However, it should be

noted that once the lock-gate is removed from the flume, the free surface is

perturbed by the motion of the lockgate and this generates surface waves. The

magnitude of the surface waves depends on the speed of the release of the lock gate.

A fast release leads to large waves which have undesirable effects on the flow

(Giorgio-Serchi et al., 2012). It is assumed here that the removal of the lockgate in

these experiments has created only insignificant surface waves that have a negligible

effect on the behaviour of the flow. For this reason, the surface waves are not

modelled in the current investigation.

(v) Deposition from the flows. Particles that fall out from the flow accumulate on

the bottom of the flume and form a sediment bed. The thickness of the bed depends

on the rate of sediment deposition from the flows as well as the concentration of the
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flows. A high concentration and a quickly depositing flow results in a locally thick

bed and vice versa. However, in the model, the bed thickness is neglected by

extracting particles from the computational domain once they have reached the

bottom of the flume. This is a valid assumption provided that the flows investigated

are all dilute and only leave a thin bed behind. In addition, the particle re-suspension

is not allowed. It is assumed here that the flow has insufficient turbulence strength to

re-suspend particle that have fallen out from the flows.

(v) The wall of the flume. The condition on the wall of the flume influences the

flow very near to the boundary. In this case, the surface of the flume is smooth

enough to be approximated as a wall with zero roughness. However, it should be

noted that while the front of the flows along a smooth wall, the body of the flow

travels on the sediment bed deposited by the front of the flows. Thus the former

propagates on a surface whose roughness is a function of the size of the particles

being carried by the flows. A good estimate on the significant of the roughness of

the surface of the deposit is the ratio of the particle size to the flow is the ratio of the

particle size to the flow height. Taking the coarsest particle size and the flow height,

this ratio is 7e-4, which is very small. Thus the surface of the deposit may be

considered hydraulically smooth.

3.6 Simulation Setup

The computational domain (or mesh) is created using a meshing software called

GAMBIT. A quadrilateral mesh of uniform size is created in the main computational

domain and a dense mesh of small size is employed near the boundary in order to

resolve the boundary layers in the flows. The flows are modelled using FLUENT,

which is a commercial FVM code for solving the Mixture Model. Within FLUENT,

additional programs (i.e., user-defined functions, UDFs) are provided in order to

incorporate some additional desired features that are unavailable in the original

code. These features are the turbulence buoyancy production of the turbulence

model and the mass sink that is added to the particle volume fraction transport

equation at the bottom cell in order to simulate the extraction of the deposited

particle. Furthermore, if turbulence modulation is to be included in the model, a

UDF also has to be used. On the other hand, the turbulent dispersion function of

Simonin (1991) is available in the original code and can, at choice, be incorporated

into the Mixture Model.
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3.7 Numerical Accuracy

An investigation was carried to determine a suitable value of the mesh size and time

step for the current problem, based upon simulations of flows G69 and G37. The

mesh size and the time step are investigated independently. Thus if the mesh size is

varied, the time step is kept constant and vice versa. The assumption made here is

that the effect of changing one variable (the mesh size or time step) does not

significantly vary when another variable is changed. Similar numerical schemes and

convergence criteria for the calculations were chosen for all simulations. It is

assumed here that no significant change will be observed if more accurate numerical

schemes and tighter convergence criteria are employed.

Table 3.4 Details of the mesh used to simulate the flows of (a) Gladstone et al. (1998)

(Domain length = 8m, domain height = 0.4m), and (b) Gladstone & Pritchard (2009)

(Domain length = 6m, domain height = 0.2)

(a)

Name Main Domain Cell Size (m) Total No. Cell in the domain

400 x 20 0.02 x 0.02 17,200

800 x 40 0.01 x 0.01 48,000

1200 x 60 0.00666 x 0.00666 93,600

1600 x 80 0.005 x 0.005 153,600

(b)

Name Main Domain Cell Size (m) Total No. Cell in the domain

600 x 20 0.01 x 0.01 24,000

900 x 30 0.005 x 0.005 43,200

1200 x 40 0.004 x 0.004 67,200

1500 x 50 0.00333 x 0.00333 97,500

Figure 3.1(a) shows the prediction of the Mixture Model on the deposit mass profile

of flow G69 based on four different meshes given in Table 3.4(a). It can be observed

that increasing the number of cells from 400 x 20 to 800 x 40 increases the height of

the peak located approximately at downstream distance x = 0.6m. Further increasing

the number of cells in the domain to either 1200 x 60 or 1600 x 80 does not result in

any significant change to the solution. Thus, it can be concluded that mesh 800 x 40

is fine enough to produce an accurate numerical solution. Mesh 800 x 40 is then

used to perform further four simulations with time steps of 0.005s, 0.01s, 0.02 and
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0.05. All simulations predict almost identical results as shown in Fig. 3.2(a), which

suggests that even the longest time step considered here is short enough to predict

the evolution of the flows.

Figure 3.1 Mixture Model prediction on the final deposit mass density as a function of the

downstream distance of flows (a) G69, and (b) G37 based on different mesh sizes.

See Table 3.1 & 3.2 for the detail of the mesh. The employed time step is 0.01s.

Figure 3.2 Mixture Model prediction on the final deposit mass density as a function of the

downstream distance of flows (a) G69, and (b) G37 based on different time steps

(0.05s, 0.02s, 0.01s, 0.005s).

Figure 3.1(b) shows the prediction of the Mixture Model on the deposit mass profile

of flows G37 based on four different meshes given in Table 3.3(b). Increasing the

number of cells in the domain from 600 x 20 to 900 x 30 increases the deposit mass

at the approximate downstream distance x = 1m. Further increasing the number of

cells in the domain to 1200 x 40 yields only slight changes to the solution. Refining
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the mesh to 1500 x 50 results in some small oscillations at the peak located at

downstream distance x = 1m. Despite the appearance of the small oscillations, the

overall changes in the solution when the mesh is refined from 1200 x 40 to 1500 x

50 are small compared to those when the mesh is increased from 600 x 20 to 900 x

30. Therefore, we conclude that mesh 1200 x 40 should be fine enough to models

flows such as G37. The prediction of the Mixture Model on the mass density profile

of flows G37 using different value of time step (0.05s, 0.02s, 0.01s, 0.005s) is

shown in Fig. 3.2(b). Decreasing the value of time step from 0.05s to 0.02s results

in an increase in the deposit mass density at the peak located at x = 1m. Further

decreasing the time step to 0.02s, 0.01s, and 0.005s does not result in any significant

change to the solution. Therefore it is concluded that the time step 0.02s or smaller

can be employed to produce a temporally accurate solution.

Validation on the effect of mesh size and time step on flows G69 and G25 is not

performed. It is assumed that the validation performed for G69 and G25 holds for

flows G25 and G13, respectively.

3.8 Simulation Results and Discussion

Simulations are performed on flows G69, G25, G37, G13 and D37 using the

Mixture Model both with and without the turbulent dispersion (denoted as TD

hereafter). In this section, the numerical results are discussed, with a focus given on

the comparison between the numerical solution with and without turbulent

dispersion, and a comparison between both the numerical solutions and the

experimental data. A discussion is given on the comparison between the numerical

results and the refined-two fluids model solution where the comparison is available.

The evolution of the concentration fields of the flows is discussed.

3.8.1 Temporal Flow Evolution

Similarly to lock-release - generated saline gravity currents, turbidity currents

undergo three distinct phases before they terminate. The first phase (slumping

phase) is characterized by a rapid collapse of the suspension in which the current

propagates at a constant velocity. A backward propagating current is thereby

generated due to the displacement of the ambient fluid by the collapsing suspension.

The current continues to remain in this phase until the depth ratio of the current to
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the ambient fluid is reduced to less than 0.075 (for saline turbidity currents, see

Huppert and Simpson, 1980), followed by the inertia-buoyancy phase wherein the

buoyancy force of the current is balanced by the inertial force. The inertia-buoyancy

regime continues until the viscous effects dominate (Simpson 1997).

Figure 3.3(a & b) shows the prediction from the Mixture Model, with and without

TD, on the temporal evolution of the volume fraction contours for mono-disperse

flows bearing coarse particles (G69) at t = 0, 5, 10, 15 and 20s. It can be observed

that including the effect of TD results in a distinctive change in the concentration

fields. Without TD, the currents have an almost uniform particle concentration with

thin layers of abrupt decrease of volume fraction surrounding the current core.

Including TD, the currents exhibit strong vertical concentration stratification along

their entire length and have a greater flow thickness. Such behaviours characterise

the entire duration of the flow. For instance, at t = 15s, where the length of the flows

G69 is elongated and the thickness is decreased, the model without TD still predicts

a relatively uniform concentration within the flow whereas the model with TD

predicts a flow that has developed a strong horizontal stratification in the

concentration. Clearly the effect of TD is significant but whether the effect is an

accurate representation of the actual flows can only be determined by comparing it

with the experimental data, or refined-two fluids model, where available.

Unfortunately the experimental observation on the concentration distribution is

unavailable and hence a conclusion on the accuracy of the numerical predictions can

only be inferred from the comparison of the model’s prediction and the experimental

data on the flows deposit thickness.

The concentration distributions of flows G25, G37, G13 and D37 exhibit

characteristics similar to those of flow G69. The model with TD predicts larger

flows, initially with a strong vertical stratification in the concentration but later

develops a strong horizontal concentration stratification. On the other hand, the

Mixture Model without TD predicts a uniform distribution of concentration within

the flows which later develop into flows with a large head but small body and tail.

Furthermore, flows predicted by the Model with TD appear to dissipate slower than

the flows predicted by the model without TD (see Figs. 3.3 – 3.7 for the flows at the

later stages). While the TD flows exhibit similar characteristics in the concentration

distributions, they are different in terms of their size and duration. Flows with a
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large initial suspension volume, and carrying fine particles become larger and

propagate further than those with a small initial volume and carrying coarser

particles.

Figure 3.3 Prediction from the Mixture Model without TD (left), and the Mixture Model

with TD (right), on the concentration field of flows G69 at t = 0, 5, 10, 15, and 20s.

Figure 3.4 Prediction from the Mixture Model without TD (top), and (b) the Mixture Model

with TD (bottom), on the concentration field of flows G25 at t = 0, 20, 40, 60, and

80s.
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Figure 3.5 Prediction from the (a) the Mixture Model without TD, and (b) the Mixture

Model with TD, on the concentration field of flows G37 at t = 0, 5, 10, 15, and 20s.

Figure 3.6 Prediction from the (a) the Mixture Model without TD, and (b) the Mixture

Model with TD, on the concentration field of flows G13at t = 0, 10, 20, 30, and 40s.
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Figure 3.7 Prediction from the Mixture Model without TD (top), and (b) the Mixture Model

with TD (bottom), on the concentration field of flows D37 at t = 0, 5.5, 10.5, 15.5,

and 20.5s.
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indicating that the effect of TD on the propagation of the flow is insignificant. On

the other hand, a comparison between the models on the percentage mass in

suspension is less good. The model with TD predicts a slower decrease in the

suspended mass over time, thus indicating that the TD has decreased the rate of the

deposition from the flow, which is consistent with the observations on the

concentration fields shown in the previous section which shows TD dispersing the

sediment upwards and causing the sediment to migrate away from the bottom

boundary. As a result, the model with TD predicts the flow to have a longer duration

of propagation and a further run-out distance. The results can be further synthesized

to show how the effect of TD on the rate of the deposition of the flows varies with

the initial condition. Figure 3.9 shows that the difference between the percentage

mass in the suspension predicted by the model without and with TD as a function of

time for the flows G69, G25, G37, G13 and D37. It appears that the finer the grain

carried by the flows, the greater is the effect of TD on reducing the rate of

deposition from the flow. For instance, G13, G25 have significantly greater

differences (a maximum difference of 35% and 25%, respectively) than does G69 (a

maximum difference of 10%). In addition, flow speed has an effect on the

effectiveness of TD. Slow-moving flows experience a greater effect of TD than the

fast-moving flows do. For instance, flows D37 experience a maximum difference

close to 50% whereas G37 only experience a maximum difference close to 30%

despite both having a similar particle size. In all flows, the magnitude of the

difference first increases greatly in short period of time but gradually decreases over

time, which implies the effect of TD decreasing over time, possibly due to the

dissipation in the strength of the turbulence in the flows.

Due to lack of experimental data on the flows G37, G13 and D37, validation on the

accuracy of the numerical prediction regarding the propagation of the front of the

flows can only be performed for flows G69, and G25 (see Fig. 3.8a & b). In these

cases, both the numerical results compare well with the experimental data.

Furthermore, it is interesting to observe how the front propagation of the flows may

vary with the initial condition. Fig. 3.10 shows the prediction from the Mixture

Model without TD on the front propagation of flows G69, G25, G37, G13 and D37.

It can be observed that the effect of the particle size on the run-out distance and the

duration of the flow is significantly more pronounced than those due to

concentration and suspension volume. For instance, the suspension volume of G69
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Figure 3.8 Prediction from the Mixture

Model without () and with TD ()

on the total percentage mass in the

suspension (left axis) and the rate of

propagation of the front (right axis) of

the flows (a) G69, (b) G25, (c) G37,

(d) G13, and (e) D37. The symbols in

(a – b) refer to data from Gladstone et

al. (1998).

is ten times of that of G37 and G13 but has much shorter run-out distance due to its

coarse size. Furthermore, G69 and G25 have equal initial concentration and volume

but the latter has run-out distance twice longer than the former has because of its

fine particle. The effect of the concentration on the duration of the flow is not

significant. For instance, G37 and D37 have almost similar duration of propagation
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but the run-out distance of the former is twice longer because its concentration is

greater (about seven times greater than the latter).

Figure 3.9 The difference between the prediction of the Mixture Model without and that

with TD on the total for flows G69 (black), G25 (red), G37 (blue), G13 (green) and

D37 (purple).

Figure 3.10 Combined plot of the prediction of the Mixture Model without TD on the front

of propagation of flows G69 (black), G25 (red), G37 (blue), G13 (green) and D37

(purple).

3.8.3 Depositional patterns

In this section, the effect of TD on the deposit thickness profile of turbidity currents

is discussed, and a comparison between the numerical predictions and the
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3.11(a – e) shows the prediction from the Mixture Model without and with TD on

the final deposit mass areal density (which corresponds to the deposit thickness) of

the flows G69, G25, G37, G13 and D37. We observe that the model with TD

predicts a distinctively lower deposit mass upstream than does the model without

TD. This indicates that TD reduces the rate of deposition from the flow, and hence

allows the flow to propagate to a further distance and deposit at a distance further

away from the lockbox. It should be noted that this observation is consistent with the

prediction of both models on the total mass in suspension as a function of time, see

the previous section. Also, the finer the particle the greater the amount of sediment

transported and deposited downstream. For instance, when TD is included into the

model, G69 experiences about a 30% decrease in the deposit mass at the upstream

location x = 0 to 1m whereas G25 experiences close to a 50% decrease in the deposit

mass in the upstream location x = 0 to 3m. Another interesting difference in the

predictions from both these models lies in the characteristics of the deposit profile.

The Mixture Model with TD almost always predicts either a decreasing profile

(G69, D37) or a smooth bell shaped-like profile (G25, G37 and G13). The latter

actually has less sediment upstream. It appears that the finer the particle carried by

the flows, the more likely it is that the flows develop a bell-shaped-like deposit. On

the other hand, the deposit profile predicted by the Mixture Model without TD is

rather irregular in shape. For instance, the deposit profile of G69 upstream has a

sharp peak that is not seen in other flows; the deposit profile of all three G25, G13

and D37 has a sharp increase at the lockgate, and deposit of G37 dips at the

lockgate. In addition, the deposit of G25 and G37 has multiple small, sharp

perturbations all along the profile. The irregularities in the results obtained for the

model without TD suggest that the result is unstable. The results with TD do not

appear to be so irregular, and it may be that this approach incorporates some

essential mechanics required for the model to produce a stable solution.

Also plotted in Fig. 3.11 are the experimental data for the purpose of validating the

numerical predictions. Although the inclusion of TD results in a stable solution, its

prediction compares poorly with the experimental data. Without TD, the comparison

of the prediction of the Mixture Model with the experimental data improves

significantly for the cases G69, G25, G37 and G13. It is not immediately clear as to

why the result change substantially when TD is included in the model. Possible

reasons are (i) the inaccurate prediction on the particle dispersion behaviour in a
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gravity current when using the Simonin TD model, (ii) the inaccurate prediction on

the turbulence characteristics when using the k- turbulence model (since the

particle dispersion also relies on the eddy viscosity fed from the turbulence model to

predict the dispersion of the particles, over-predicting of the strength on the

turbulence may result in the particle dispersion being exaggerated), (iii) the angular

shape of the silica carbide may induce a faster rate of particle settling (speculation),

(iv) the cross-stream flows (which are not considered in the current model) may

have a significant influence on the downstream characteristics of the flow, and (v)

the assumptions in the mixture models may not be appropriate for these types of

flows. Also plotted in Fig. 3.11(a & b) are the refined-two fluids model results of

Hoyes (2008) for the cases G69 and G25, respectively which serve to provide a

validation on the accuracy of the experimental data. It can be observed that the

refined-two fluids model results agree well with the experimental data, which

affirms their accuracy. A more detailed comparison between the refined-two fluids

model solution and the prediction from both Mixture Models on the flows G69 and

G25 can be performed by comparing all three solutions at different times, as shown

in Fig. 3.12(a & b), respectively. Here the spatial and temporal variables have been

non-dimensionalized using the following equation

→x/(h0/2), →/(h0/2), →tg0
'/(h0/2)1/2, and ௗ௘௣→ mdep/(αpρ0h0/2) (3.1)

so that the Mixture Model solutions can be compared with the refined-two fluids

model solution. It can be observed that the prediction from the Mixture Model

without TD on the build-up of the deposit of G69 at a dimensionless time = 4, 8,

12, 16 and 32 (which looks like a series of advancing trapezoids) all agree well with

the refined-two fluids model solutions. The Mixture Model with TD, which predicts

a lesser amount of deposit, achieves a less satisfying comparison with the refined-

two fluids model solution. On the other hand, for the flows G25, neither model fully

agrees with the refined-two fluids model solution. In the vicinity of the lock box,

although the prediction from the Mixture Model without TD on the final deposit

mass agrees well with the refined-two fluids model solution, its prediction on the

build-up of the deposit does not agree well. The Mixture Model predicts that the

final deposit at the lock-gate is achieved at early dimensionless time ( = 24)

whereas the refined-two fluids model predicts a more gradual accumulation of the

deposit mass and the final deposit mass is only achieved at dimensionless time =
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80. This indicates that refined-two fluids model predicts a lower rate of deposit from

the flow and greater sediment dispersion in the flows than the Mixture Model

without TD does. Therefore, the good match in the final upstream deposit mass is

coincidental. It is important that a model also is able to accurately predict the build-

up of the deposits for the model. Naturally, we would expect that adding TD to the

Mixture Model could bring the result closer to the refined-two fluids model solution.

However, at any time, the Mixture Model with TD under-predicts the deposit mass

and predict a much slower accumulation of the deposit which clearly implies the

dispersion is over-predicted. These results bring the accuracy or generality of the

Mixture Model without TD into question, despite having a good comparison with

the refined-two fluids model solution for the case G69. In addition, it should be

noted that there are discrepancies in the comparisons between the results of Mixture

Model without TD and the experimental data. For instance, the predictions for G98

have a marked perturbation at the experimental data. The prediction for G25 has a

lack of mass between x = 2 to 4m and predictions on both G37 and G13 have a lack

of mass between x = 0 and 1m, and x = 0 and 2m, respectively.

Clearly these differences suggest that the model itself is still incomplete or perhaps

missing some essential physics. We can postulate that TD remains an essential

mechanism but there must exist an extra mechanism to counter the extra dispersive

effect given by TD. Turbulence modulation is a strong candidate. The detail of this

mechanism is given in Section 2.5.2. It essentially describes the increase, or

decrease, in the flow turbulence due to the presence of the particles in the flow. In

this case, it is the fine particles that decrease the turbulence in the flows. The model

of Chen & Wood (1985) is employed in order to simulate the effects of the

turbulence modulation (denoted as TM). It is incorporated into the Mixture Model

via a user-defined function (UDF). Flows G69 and G25 are both re-simulated with

the Mixture Model with TD and TM. The results obtained are presented on Figs.

3.11(a & b), respectively. However, it can be observed the inclusion of TM into the

model yields only as small change in the solution which suggests that TM is

probably insignificant in dilute turbidity currents presumably due to the low

concentration of particles in the flow.
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Figure 3.11 Predictions from the Mixture

Model without (), and with TD () on the

final deposit mass density profiles of flows

(a) G69, (b) G25, (c) G37, (d) G13, (e) D37

and (f) B1. The blues lines () in (a – b) are

the prediction from the Mixture Model with

TD (turbulent dispersion) and TM

(turbulence modulation). The circles in (a –

e) and the purple dashed-lines (- -) in (f) are

the experimental data as listed in Table 3.1.

The green lines in (a – c) and (f) are the refined two-fluids model predictions from Hoyes

(2008), and Necker et al. (2003), respectively. The figures in the legends of each figure

represent the percentage of the total mass under each curve relative to the initial mass.
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For case D37 (see Fig. 3.11(e)), the deviation of the predictions from the Mixture

Model with TD from the experimental data appears to be less substantial than that in

other flows. In fact, its comparison with the experimental data agrees better with the

experimental data than that for the model without TD. This is because the latter

predicts an excessive amount of deposit mass near the lockbox. However, it is

uncertain as to whether the deposited mass at the vicinity of the lockgate is under-

predicted because a mass conservation check on the experimental data shows that

the total mass in the deposit is slightly less than the mass initially employed in the

lockbox. The ‘missing’ mass in the experimental data could correspond to the excess

deposited mass predicted by the model without TD. In addition to the final deposit,

the authors of the experimental data D37 also measured the build up of the deposit

and these data can be used for a more complete comparison between the numerical

predictions and the experimental data. Fig. 3.13 shows the prediction as obtained

using the Mixture Model without and with TD, compared with the experimental data

on the deposited mass at t = 6, 12, 18, 24, 30, 36, 42, and 48s. It can be observed

that the Mixture Model with TD agrees well with the experimental data at x = 0 to

0.5m but the comparison becomes poor beyond x = 0.5m (the decrease in the deposit
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(b)

downstream distance (m)

Figure 3.12 Predictions from the Mixture Model without TD (), and with TD () on the

temporal deposit mass density of flows (a) G69 at = 4, 8, 12, 16, and 32, and (b)

G25 at = 8, 16, 24, 32, and 80. The green lines represent the refined two-fluids

model solution of Hoyes (2008). Both the downstream distance and the deposit mass

density are made dimensionless using equation (3.1).

predicted by the experiment is much steeper than that predicted by the model with

TD). Also, the model with TD fails to predict the peak at x = 1m which is predicted

in the experimental data. On the other hand, although the model without TD

predicts an excess deposit mass before x = 0.5m, the model prediction on the

deposit profile beyond x = 0.5m agrees well with the experimental observations.

For this reason, we conclude that the model without TD is more accurate than the

model with TD in this case.

The prediction obtained using the Mixture Model with and without TD on the

deposit mass density of the coarse fraction and the fine fractions of the bi-disperse

suspension currents (B1) at dimensionless time = 8, 16, 24, and 80 are shown in

Fig. 3.14(a & b), respectively and are compared with the experimental data of

Gladstone et al. (1998) (denoted by hollow circle) and the refined two-fluids model
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Figure 3.13 Predictions from the Mixture Model without TD (), and with TD () on the

temporal deposit mass density of flows D37 at = 6, 12, 18, 24, 30, and 48s. The purple

dashed-lines represent the experimental data of Rooij & Dalziel (2001).

solution of Hoyes (2008). Here the data are made dimensionless using equation

(3.1). On Fig. 3.14(a), it can be observed that both the Mixture Model and the

refined two-fluids model simulations under-predict the final coarse fraction

deposition but over-predict the fine fraction deposition. However, an inconsistency

was noted by Hoyes (2008) and Huang et al. (2008) in the test data of Gladstone et

al. (1998). If the numerical integration is performed on the latter to check for mass

conservation, the mass of the coarse-grained deposit exceeds that in the initial

sediment mix (Hoyes, 2008). The mass conservation of G69 and G25 also were

checked and it was found that both are within 5% (see the legends of Fig. 3.11(a &

b), respectively). Furthermore, the apparent excess mass in the coarse particle

fraction compensates for the deficiency in the fine fraction deposition, so that the

combined mass of both particle classes is therefore conserved. These data

inconsistencies could arise from a systematic error in the sampling equipment.

Alternatively, fine particles may have become agglomerated when the samples were

dried for mass analysis, and thus have distorted the size analysis if they were not

broken up during re-hydration prior to sizing. Nonetheless, we found that the errors
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in the data were consistent so that a constant can be multiplied to the fine grain data

to achieve mass conservation. Therefore, the experimental data can be used to

compare against the numerical result after they are adjusted accordingly to match the

initial mass. The adjusted experimental data are plotted as filled black circles on

both Fig. 3.14(a & b). All models predict similar depositional profiles as the mono-

disperse coarse (G69) particle currents, indicating that the coarse particle fraction

deposition profile is almost independent of the fine particles in the bi-disperse flows.

Both the Mixture Model without TD and refined two-fluids model match reasonably

with the adjusted test data while the Mixture Model with TD under-predicts the

proximal deposit. Such good comparison also re-affirms the validity of the

adjustment applied to the experimental data. For the fine grain fraction deposition

(see Fig. 3.14(b)), the predicted deposition profiles from the refined two-fluids

model and the Mixture Models are distinctively different from those on the mono-

disperse flows (G25). Both refined two-fluids model and the Mixture Model without

TD predict oscillating profiles proximally reflecting dependency on the coarse

fraction buoyancy (the deposition profile of the coarse particle in the B1 is similar to

that of G25 but the deposition of the fine particle in the B1 is distinctly different

from that of G25). However, the simulation results do not compare well with the

adjusted test data which predict a bell-shaped profile. refined two-fluids model

solution and the Mixture Model without TD over-predict the proximal deposit

whereas the Mixture Model with TD under-predicts the peak located at the middle

of the deposit (x = 14). It is unclear whether the discrepancy is due to either the

adjustment that is applied on the experiment being wrong or that the numerical

models are missing key physics that occur in these flows. The former is likely to be

the reason because it is unlikely that refined two-fluids model is able to predict both

G69 and G25 accurately but unable to accurately predict a flow of similar

concentration but different proportion of coarse to fine particles. Similar to the

mono-disperse case G25, we observe that although the Mixture Model without TD

and refined two-fluids model agrees on the final deposit mass profile of the fine-

fraction, they disagree on the build-up of the deposit profile.

All simulations discussed above are based on turbulence model . It has been

argued before that the standard d model may perform poorly in predicting low

Reynolds number flows such as those near the wall (Wilcox, 1993). On the other

hands, turbulence model is found to perform better in low-Reynolds number



73

flows. In order to circumvent the weakness in turbulence model , Menter

(1994) introduced an approach called SST (shear stress transport) that blends

and into a single model (see the model equations in FLUENT, 2009).

Flow near the wall region is solved using whereas flows away from wall is

solved using . Given that the advantage of SST over the model, it

is desirable to determine whether any improvement in the solutions can be achieved

if SST model is employed. Unfortunately, turbulent dispersion is not

implemented in FLUENT version 12 when the SST model is employed. For

this reason, it cannot be used to verify whether the excessive dispersion effect in the

solution when the Simonin (1991) model is employed is due to an incorrect

prediction of the value of the eddy viscosity by the turbulence model near the

wall. Nevertheless, the SST model can be employed to verify the solution of

model for the case without the turbulent dispersion. Simulations on flows
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(b)

Figure 3.14 Prediction on the development of the dimensionless deposit mass density

profile of the (a) coarse fraction and (b) fine fraction, of flows B1. The circles are the

experimental data from Gladstone et al. (1998). Symbols () represent the original

data and ()the adjusted data.

G69, G37, G13 and D37 were repeated with the Mixture Model and the SST

turbulence model. Other settings in the simulations are kept constant. It should be

noted that the form of turbulence buoyancy in the transport equation is slightly

different from that in the equation (see equation A(2.9) in the Appendix). Figure

3.15(a – d) shows the prediction of the deposit mass density profile of flows G69,

G37, G13 and D37 from the Mixture Models with SST. It can be observed

that the solution from SST model compares well with that from the

model. For flows G37 and G13, the former predicts a slightly lower deposit mass at
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the peak of the deposit (around x = 1m for flows G37 and before = 2m for flows

G13). Despite this slight difference, when compared with the experimental data, the

SST model similarly under-predicts the upstream deposit mass (before

downstream distance = 1m in both flows). For flows D37, the SST model

similarly predicts a large peak at = 0.5m. However, predicts a sharp

decrease after the peak which makes the solution compare better with the

experimental data between = 0.5m and 1m than the solution from . Overall

(considering all flows), the solutions from the two turbulence models are not

significantly different from each other. Therefore, we conclude that the

turbulence model is sufficiently accurate (or at least, it works as it is intended to). If

the excessive dispersion in the solution is caused by an over-prediction of the eddy

viscosity by the turbulence model, the error could be due to an inherent assumption

employed in all two-equations models, namely, that the time and length-scale

turbulence is isotropic in all directions. Whether this is the case can only be known

by repeating simulations which employ models that resolve anisotropic turbulence,

such as Reynolds Stresses Models and the Large Eddy Simulations (LES). It follows

that the cross-stream components of the flows may also have a significant effect on

the flows even though their magnitude is relatively small compared to the vertical

and (especially) the downstream components of the flows. This speculation could be

tested by carrying out three-dimensional simulations and comparing them with the

two-dimensional case.
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Figure 3.15 Prediction on the deposit mass density profile of flows (a) G69, (b) G37, (c)

G13, and (d) D37 from the Mixture Model. The black, red and blue lines represent the

solutions from the turbulence model , with turbulent dispersion, and

SST, respectively. The circles and the purple dashed line represent

experimental data.

A conclusion can be drawn from the above discussion is that the Mixture Model

without TD generally achieves a better comparison with both the experimental data

and the refined two-fluids model solution than the Mixture Model with TD in

predicting the final deposit of turbidity currents. However, in flows carrying fine

particles, TD becomes important. The current employed TD model of Simonin

(1991) over-predicts the dispersive force in turbidity currents, with the consequence

that the Mixture Model under-predicts the deposit mass of turbidity currents

proximally. The reason why the TD model is inaccurate is unclear. It can be

speculated that two-equation turbulence model may have over-predicted the strength

of the turbulence. Also cross-stream components of the flows could be significant.

3.8.4 Vertical structure

In this section, a comparison is given between the predictions from the Mixture

Model without TD and with TD on the vertical structure of flows G69 and G25.

Although the deposit profile predicted by the latter does not compare well with the
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velocity and turbulence profile of the flows in order to understand the drawbacks of
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3.16 and 3.17 show the vertical structure of the flows bearing coarse and fine

particle, respectively, in terms of the downstream velocity, particle concentration

and turbulence intensity during the slumping ( = 4, 8), inertia-buoyancy ( = 12)

and viscous-buoyancy ( = 40) stages. The downstream velocity and the

concentration (volume fraction) are scaled using the maximum velocity and the

maximum concentration respectively. The height and time is made dimensionless

using equation (3.1).

Overall, the vertical downstream velocity of both currents can be divided into two

regions: an inner region characterized by a steep gradient of increasing velocity from

the bottom to the velocity maximum occurring relatively close to the lower

boundary, and an outer region above the velocity maximum characterized by a

negative velocity gradient and a negative velocity value at the flow-ambient

interface. Negative velocities at the upper boundary are due to the shearing action

and mixing between the density currents and the ambient fluid arising from the

counter flow of the ambient into the lock box. Negative velocities are at a maximum

above the current heads as they travel at greater speed. Also, negative velocities

reduce over time because current speed eventually diminishes. Notable differences

between the velocity profile of the head and the body are their velocity maximum

height from the bottom, in which is greater in the current body than the current head

(compare G69 and G25 head and body velocity profiles at = 12). In addition, the

height of the velocity maximum decreases as the currents progress from the inertia-

buoyancy to viscous-buoyancy regimes (compare the G69 body and head velocity

profiles at = 12 and 40). Experimental observations indicate that the height of the

velocity maximum of a gravity currents body is about one third of the total current

depth (e.g. Garcia 1994, Kneller and Buckee 2000 or Peakall et al. 1999). Note that

the velocity profiles of both the coarse and fine particle currents at = 12 compare

well with observations, and between the Mixture Model without and with TD.

Overall, they produce similar velocity profiles except in the later flow stages, in

which the model with TD predicts a higher velocity maximum due to the dispersion

effect. Vertical concentration profiles differ between the head and the body of the

currents, and also evolve in time (Fig. 3.16(b) and Fig 3.17(b)). Thus current bodies

exhibit a progressive downward concentration increase from the top boundary

profile while the currents head at early time = 4 or 8 exhibit a stepped profile. The

body profile is comparable to low-concentration, weakly depositional flows
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observed in the tests of Altinakar et al. (1996). The comparison indicates that the

model with TD predicts a thicker and more stratified concentration profile due to the

dispersion effect. The thickness of flow in the prediction of the model with TD

increases slightly with time while that in the solution of the Mixture Model without

TD decreases with time. It is anticipated that fixed-volume turbidity currents should

spread to become thinner after they collapse into the light ambient fluid, indicating

that the sediment dispersion by turbulence is excessive in the Mixture Model with

TD.

Figure 3.16 Dimensionless

Downstream velocity,

sediment concentration and

turbulence intensity of flow

G69, (a) head, and (b) body,

from (black lines) Mixture

Model without TD and (red

lines) Mixture Model with TD,

respectively, at (solid lines) t =

4 and (dashed lines) t = 12.

The height y is made

dimensionless using equation

(3.1).

At times = 4 to 12, the turbulence intensity profiles of currents of both particle

sizes are characterised by a steep increase from the bottom, followed by a gradual

increase until reaching a peak and eventually a decease abruptly to the ambient

condition. The peak occurs at ≈ 0.4 for G69 (head only) and ≈ 0.5 for G25 (both
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head and body), corresponding to the upper interface of the density currents with the

ambient fluid. The peaks result from the shearing action between the forward

moving currents and the ambient counter-flow. The steep turbulence increase from

the bottom at the lower part of the currents is also due to the shearing action between

the currents and the no-slip wall. Both modelled features (high turbulence near the

upper boundary and the lower portion of the currents) qualitatively resemble test

data of Best et al. (2001). However, the modelled curves do not exhibit a turbulence

minimum at the velocity maximum which is also another common feature observed,

although the G69 body turbulence profile at = 12 exhibits two peaks with a

noticeable dip in between. It is unclear why this feature is not captured well in the

modelling. The cause may be due to the empirical assumptions and lack of

Figure 3.17 Downstream

velocity, sediment

concentration and turbulence

intensity of flow G25, (a) head,

and (b) body, from (black

lines)Mixture Model without

TD and (red lines)Mixture

Model with TD, respectively,

at t = 8 (solid lines), 12 (dotted

lines), (dashed lines) 40. The

height y is made dimensionless

using equation (3.1).
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turbulence contribution arising from the multiphase interaction in the turbulence

model. Gore and Crowe (1989) demonstrated that the turbulent intensity is

modulated by the particles, even at a low volume concentration. Thus this effect

might be significant in density currents. The result shows that Mixture Model with

TD predicts much lower turbulence intensity, because the fluid turbulence is being

expended to disperse the sediment to the surrounding ambient fluid.

3.9 Conclusions

In this chapter, five mono-disperse flows and one bi-modal flow with different

initial conditions are simulated using the Mixture Model both with and without the

turbulent dispersion. The numerical results have yielded some intriguing findings:

(a) The Mixture Model without turbulent dispersion predicted well the deposit

mass profile for the flows carrying coarse particles (G69), but over-predicted

these for the flows carrying fine particles (G25, G37 and G13). It also over-

predicted the initial deposit mass for the flows D37.

(b) The Mixture Model with turbulent dispersion increased the transportability

of each flow and hence causes a poorer comparison with the experimental

data.

These results suggest that changes in the Mixture Model are necessary in order to

improve its comparison with the experimental data. High resolution results from the

previous studies (Hoyes, 2008; Necker et al., 2003) are employed here to assist in

the determination of the problem in the Mixture Model. All three high resolution

results (G69, G25 and D37) show good comparisons with the experimental data,

which suggests that the treatment on the turbulence of the flows in the Mixture

Model maybe inaccurate. The following two adjustments have been incorporated

into the models in an attempt to modify the prediction of the flow turbulence:

(a) It was speculated that turbulent modulation could play an important role in

reducing the strength of the turbulence in the flow and hence reduce the

particle dispersion. The turbulent modulation model of Chen & Wood (1985)

was incorporated into the Mixture Model via the use of an UDF and flows

G69 and G25 were re-simulated. However, no significant improvement in

the results obtained was observed.
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(b) It was further speculated that the model may have exaggerated the

eddy viscosity of the flow and hence an alternative two-equation turbulence

model, namely the k- , which effectively blends the and

together, was employed and each mono-disperse flow was re-simulated.

However, again, no significant improvements were observed in the obtained

result.

With the above two adjustments failing to provide any satisfying explanation, a

decisive conclusion on the accuracy of the Mixture Model cannot be drawn at this

point. However, following speculations on the possible reasons responsible for the

poor comparison of the Mixture Model with the experimental data are drawn:

(a) The cross-stream flow, albeit that it has a magnitude much smaller than that

of the downstream and vertical flow, could have a significant effect on the

downstream flow. A way to validate this is by comparing the current 2D

solution with the 3D solution with a similar model setup.

(b) The two-equation turbulence model maybe inaccurate in this case. The

prediction of k should be validated using experimental data.

(c) The shape of the particle (silica carbide is highly angular) may influence the

motion of the particles in the flow. Therefore the assumption of spherical

particles in the model may not be reasonable.

(d) The physics of the turbidity currents have not been fully described by the

Mixture Model. In particular, we suspect that the shear within the turbidity

currents may induce a significant lift force on the particles suspended within

the flows. This is investigated in the next chapter.
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Chapter 4

The influence of the lift force on the settling

velocities of rotating particles in two-

dimensional shear flow

4.1 Introduction

In Chapter 3, a numerical investigation was performed to determine the effect of

turbulent dispersion (TD) in laboratory turbidity currents. In that investigation, the

Simonin (1991) model was employed to simulate the effect of the turbulent

dispersion. The results show that turbulent dispersion causes a significant reduction

in the rate of deposition from the flows, which results in greater sediment mass

being transported downstream. However, the prediction of deposit mass profile by

the model incorporating turbulent dispersion does not agree well with the

experimental data. On the other hand, the model without TD produces a result that

agrees quite well with the experimental data, albeit some discrepancies. In the cases

where the particles carried by the flows are fine grained, the model still under-

predicts the deposit at the upstream. It was speculated that anisotropic turbulence or

the secondary motions in the flows might cause the excessive dispersion in the

solution of model with TD. It is also possible that over predicts turbulence

levels and hence exaggerates the effect of TD. In addition to these factors, it is also

possible that drag is not the only important force in the particle-fluid interactions. In

this chapter, an investigation is carried out the effect of the lift force on the particle

transport within turbidity currents and its importance relative to the drag force.

In many multiphase modelling applications, especially those in the field of

hydraulics, such as open channel flow and gravity currents, the motion of particles

in the fluid flow is assumed to be adequately described by a balance of the drag,

gravity and turbulence dispersion forces. The lift force is generally neglected, unless

the shear of the flow is strong, or the rotation of the immersed particle is significant.
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On the other hand, recent work in other areas of multiphase flows, notably bubbly

flows, has highlighted the importance of considering the influence of other

interfacial forces. In particular, the balance between the lift force, near wall forces,

and turbulence dispersion has been shown to have a decisive influence on the void

fraction distribution in vertical bubbly pipe flow (Lahey et al. (1993), Burns et al.

(2004)), and vertical fluid-solid pipe flow (Alajbegovic et al. (1994)). Moreover, an

important phenomenon has been identified, whereby the shear-induced lift force

changes sign as bubbles increase in size, and consequently change shape from

spheres through ellipsoids to spherical caps (Tomiyama et al. (1995, 1998)). An

important consequence of this is that small bubbles tend to drift towards the wall in

vertical bubbly pipe flow, whilst larger bubbles drift towards the centre. This has

been shown to have an important influence in predicting transition from bubbly flow

to slug flow (Frank et al. (2004, 2008)).

The influence of non-drag interfacial forces on bubbly flows comes as no great

surprise, in view of the fact that bubbles have almost negligible inertia relative to the

carrier fluid. The influence of non-drag forces in liquid-solid flows is not expected

to be as great, since in this case the dispersed-to-continuous phase density ratio is of

order one. Nevertheless, the recent work on lift forces in bubbly flows naturally

raises the question of whether or not similar interesting and unexpected phenomena

may occur in liquid-solid flows. In particular, it is intriguing to ask whether or not

the influence of differences in particle size and shape on the lift force has important

consequences on particle fractionation phenomena. As a first step towards

attempting to answer this question, it is be useful to estimate the significance of the

lift force on an isolated particle in a flow with a given magnitude of shear.

Accordingly, in this chapter, we derive simple expressions for the effect of the lift

force on the equilibrium settling velocities of particles of different sizes immersed in

a shear flow, based on the force balance equation,. The resulting analysis is used to

estimate the effect of the lift force on sediment transport in turbidity currents and the

entrainment of small particles embedded in the viscous sublayer of a shear flow.

4.2 Literature Review

A particle experiences lateral migration in the streamwise direction when it is

immersed in a shear flow. This was first noted by Segre & Silberberg (1962) when

they investigated the motion of a rigid sphere being transported in a Poiseuille flow
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(a laminar flow with a pressure drop in a long cylindrical pipe). They observed that a

sphere is transported to a certain equilibrium position at about 0.6 tube radii from

the axis of the tube, irrespective of the radial position at which the sphere first

entered the tube. Their observation has inspired theoreticians to better understand

this phenomenon. The analytical expression for the lift on a sphere in a slow shear

flow was first derived by Saffman (1965, 1968) using linearized theory. Saffman

showed that a spherical particle of diameter ௣ moving with velocity ௣ through a

fluid of velocity ௙ and uniform shear experiences a lift force of magnitude:

௅ ௙
ௗ೛
మ

ସ ௥ ௙ ௙
ଵଵ

଺ସ ௙ ௥ ௙ ௣
ଷ గ

଼ ௙ ௥ ௣ ௣
ଷ (4.2.1)

where ௙, ௙ are the fluid density and kinematic viscosity, ௥ ௣ ௙ is the

relative velocity of the particle with respect to the fluid (the slip velocity), ௙ is the

magnitude of the fluid vorticity, and ௣ is the magnitude of the particle angular

velocity. Equation (4.2.1) was derived under the assumptions:

௦ , ఠ and ௦ ఠ i.e. ௦ ఠ ௦ (4.2.2a)

where ௦ ௥ ௣ ௙ is the particle Reynolds number, and ఠ ௙ ௣
ଶ

௙ is

the vorticity Reynolds number. The direction of the lift force depends on the sign of

the flow shear. In a linear shear flow, it always acts towards the side of the sphere

with the higher velocity. The first and second terms on the right side of equation

(4.2.1) are the lift force due to the fluid shear and the third term takes into account

the rotation of the sphere. For a freely rotating particle ௣ ௙ , the second and

third terms are smaller than the first term by an order of magnitude under the

assumptions stated above, and thus are neglected (Saffman 1965). It is worth

mentioning that the third term of equation (4.2.1) has a similar form to the lift force

on a particle that has a small Reynolds number, rotating with an imposed angular

velocity ௣ in a uniform flow (Rubinow & Keller 1961).

Saffman’s analysis was generalised by many researchers, for instance to include the

effect of a wall (Leighton & Acrivos, 1985), to relax the restrictions (4.2.2a) so that

௦ ఠ (McLaughlin, 1991), and to predict the lift on bubbles (Legendre &

Magnaudet 1997, 1998). The Saffman theory generally only describes the lift on a

particle due to the shear. However, for particles immersed in a high shear flow, the
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lift due to particle rotation becomes important and should to be taken into account.

This effect can be observed in recent experimental and numerical investigations on

the lift of a cylinder immersed in shear flows (Bluemink et al. 2008 and Bagchi &

Balachandar 2002).

The leading order term in Saffman’s equation (4.2.1) may be expressed in terms of

the aerodynamic lift coefficient ௅஺ ௅
ଵ

ଶ ௙ ௣
ଶ

௥
ଶ as follows:

௅஺
ଶ஼ಽ

ᇲ

గ ௦ (4.2.3)

where ௅
ᇱ , and ௦ is the parameter defined in (4.2.2). The restriction to

௦ in (4.2.2) was removed by McLaughlin (1991), who obtained a more

general formula for the lift coefficient that multiplies Saffman’s lift by a function of

௦ that tends rapidly to zero as ௦ . Dandy and Dwyer (1990) performed

numerical computations of the shear-induced lift force for finite particle Reynold’s

numbers ௦ and finite dimensionless shear rate:

௦
௥೛ఠ೑

|௨ሬሬ⃗ೝ|

ଵ

ଶ ௦ ௦
ଶ ଵ

ଶ

ோ௘ഘ

ோ௘ೞ
(4.2.4)

in the range . At ௦ = 0.1, Saffman's prediction for the shear lift

force was verified for ௦ as small as 0.447 (or ௦ ). At ( ௦

), Saffman's result is slightly larger than the numerical result. At higher ௦,

Dandy and Dwyer found that the lift coefficient decreases, levelling off around

௦ , after which it increases linearly with ௦instead of ௦.

Based on the numerical results of Dandy and Dwyer, Mei (1992) proposed an

approximate correlation for the shear-induced lift force on a solid sphere that is valid

for ௦ . Mei’s formula may be expressed as follows:

஼ಽಲ

஼ಽಲ ,ೄೌ೑೑೘ ೌ೙

௦ ఠ ௦

௦ ௦
ଵ/ଶ

௦

(4.2.5a)

where ௅஺,ௌ௔௙௙௠ ௔௡ is the aerodynamic lift coefficient according to Saffman,

equation (4.2.3) and the function ௦ ఠ is given by:

௦ ఠ ௦
ଵ/ଶ ି଴.ଵோ௘೛

௦
ଵ/ଶ

(4.2.5b)
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Substituting (4.2.3) into (4.2.5a), gives the aerodynamic lift coefficient in the range

௦ :

௅஺
஼ಽ
ᇲ

గ

ோ௘ഘ

ோ௘ೞ
௦ (4.2.6)

It is convenient to express the first and third terms in equation (4.2.1) in the

following vectorial form (Auton 1987, Drew and Lahey 1987, 1990):

௅ௌ ௅ ௙ ௣ ௙ ௥ (4.2.7)

௅ோ ோ ௙ ௣ ௣ ௥ (4.2.8)

where ௅ and ோ denote non-dimensional lift coefficients for the shear-induced and

the Magnus lift forces respectively, and ௣ is the particle volume. Note that ௅ is not

the same quantity as the aerodynamic lift coefficient ௅஺. Hence, we call it the

shear-induced lift coefficient, and note that it is related to ௅஺ as follows:

௅
ଷ

ସ ௅஺
ோ௘ೞ

ோ௘ഘ
(4.2.9)

In this thesis, we work with the shear-induced lift coefficient. Substituting (4.2.3)

into (4.2.9), we find that, within this framework, Saffman’s formula correlates the

shear-induced lift coefficient in terms of the vorticity Reynolds number as follows:

௅,ௌ௔௙௙௠ ௔௡
஼ಽೄ

ඥோ௘ഘ
, => ௅ௌ

ଷ

ଶగ ௅
ᇱ (4.2.10)

Similarly, substituting (4.2.6) into (4.2.9) gives the shear-induced lift coefficient

corresponding to Mei’s correlation as follows:

௅,ெ ௘௜ ௅஺
஼ಽ
ᇲ

గ ௦ (4.2.11)

Thus, the large Reynolds number range of Mei’s correlation is equivalent to a

constant shear-induced lift coefficient ௅ெ ௅ௌ . The full range of

Mei’s correlation (4.2.5) may be expressed as:

௅,ெ ௘௜
௦ ఠ ௅஺,ௌ௔௙௙௠ ௔௡ ௦

௅ெ ௦

(4.2.12)

Most work on the lift force at higher Reynolds numbers has used the formulation

(4.2.7) and (4.2.8) for the shear-induced and Magnus lift forces. For inviscid flow
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around a sphere, Auton (1987) and Drew and Lahey (1987, 1990) computed the

value ௅ Naturally, these calculations did not take wake effects into account.

For fully developed bubbly flow in a vertical pipe, experimental data yield a much

lower value ௅ , with ௅ fitting most of the data (Wang et al.

1986, Lahey et al. 1993). Similar results were observed by Alajbegovic et al. (1994)

for solid-fluid up flow in a pipe. On the other hand, Bel Fdhila (1991) showed that

in order to fit his experimental data of bubbly flow in a vertical pipe with a sudden

expansion ௅ would have to be negative. Note that the experimental and numerical

comparisons referred to above are for turbulent bubbly flows, with turbulence

modelled by RANS turbulence models. Hence, the values of ௅ successfully fitted to

experimental data are the result of ensemble-averaging. Moraga et al. (1999)

proposed an explanation of the reduction and possible reversal of sign of the lift

force in terms of the effects of asymmetric vortex shedding above the critical

particle Reynolds number (around 300) for transition from a steady to an unsteady

wake behind the sphere. When vortex shedding occurs in a background flow with a

mean velocity gradient, the vortices are shed asymmetrically. Numerical

calculations of Jordan and Fromm (1972) and Alajbegovic et al. (1998) indicate that

the time averaged influence of the asymmetric vortex shedding produces an

additional contribution to the shear-induced lift force which acts in the opposite

direction to the lift force induced at low Reynolds numbers. This observation was

further supported by the theoretical and experimental analysis of Moraga et al.

(1999). Hence, it provides a convincing explanation of the observed reduction of ௅

from its inviscid value of 0.5, possibly to negative values. Other researchers have

observed negative values of the lift coefficient for large values of ௦ (e.g. Kurose

& Kumori (1999), Bagchi and Balachandar (2002) but other researchers did not

observe the phenomenon (e.g. Bluemink et al. (2008)). Hence there is no general

agreement on whether the lift coefficient of spherical particles is negative or not at

high values of ௦.

On the other hand, the existence of negative lift coefficients for non-spherical

particles is well established. Hölzer and Sommerfeld (2009) performed numerical

computations of drag, lift and torque for flow around a variety of differently shaped

solid particles, for particle Reynolds numbers between 0.3 and 240, under a variety

of flow conditions. Drag, lift and torque coefficients were determined as functions of
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௦ and the angle of incidence . For spheroidal particles, the shear induced lift

coefficient is observed to change sign both with increasing ௦, and variation of .

For bubbly flow, it is well established that the shear-induced lift force changes sign

with increasing bubble size, due to associated distortion of the bubble shape from

spherical to distorted ellipsoidal shapes (Tomiyama et al. (1995, 1998)). Tomiyama

et al. proposed an expression for the shear-induced lift force that changes sign with

increasing mean bubble diameter. For bubbly upflow in a vertical pipe, this causes

small bubbles with ௅ to migrate towards the pipe wall, and larger bubbles with

௅ to migrate towards the pipe axis. This phenomenon is found to play an

important part in the transition from bubbly flow to slug flow with increasing gas

flow rates in the pipe. Small bubbles migrate towards the wall, where, at sufficiently

high concentrations they coalesce to form larger bubbles above the critical size for

reversal of the lift coefficient. These larger bubbles then migrate towards the pipe

centre, where they coalesce further to form large slug bubbles. The correlation of

Tomiyama et al. was employed in numerical computations by Burns et al. (2004)

and Frank et al. (2004), in combination with a suitable RANS turbulence model, and

correlations for drag, turbulence dispersion and near wall forces. Good agreement

was obtained with experiment for predictions of void fraction distribution for mono-

dispersed bubbly upflow in a vertical pipe. This model was later employed to

compare predictions with experiment for poly-dispersed bubbly upflow in a vertical

pipe (Frank et al. 2008). Good agreement was obtained when the relative volume

fractions of different bubble size groups were prescribed from the experimental

results. Less good agreement was obtained when the bubble size distribution was

predicted from empirically based coalescence and breakup models.

When the particle Reynolds number is greater than unity, i.e. ௦ , the lift force

due to the particle rotation for a freely-rotating sphere in a shear flow is no longer

negligible. Bagchi & Balachandar (2002) and later Bluemink et al. (2008) showed

that the lift force arising due to the rotation of the particle in a shear flow is about

half of that derived by Rubinow & Keller (1961). Thus they concluded that the lift

force on a rotating particle in a shear flow is the combination of equations (4.2.7)

and (4.2.8), i.e.

௅ ௦ ௣ ௅ ௦ ௣ ௅ ௦ ௣ (4.2.13)



Table 4.1 Previous investigations on the lift force on a particle immersed in a linear shear or parabolic flow

Authors Particle-Type Flow Type Type Scope of Study/Limitation*

Segre & Silberberg (1961; 1962) Rigid sphere Parabolic flow Experiment

Saffman (1965; 1968) Rigid sphere Linear Shear Theoretical (Analytic) ௦ , ఠ and ௦ ఠ

Bagnold (1974) Rigid sphere Linear Shear Experiment

Vasseur & Cox (1976) Rigid sphere Parabolic flow Theoretical (Analytic)

Auton (1987) Rigid sphere Shear flow Theoretical (Analytic) Inviscid flow

Schonberg & Hinch (1989) Rigid sphere Parabolic flow Theoretical (Analytic) ௦ 1500

Dandy & Dwyer (1990) Rigid sphere Linear shear Theoretical (Numeric) ௦ , ௦

Ye & Roco (1991) Rigid sphere Linear shear Experiment ௦ = 4,6, 6.8, 9.2 x 104

McLaughlin (1991) Rigid sphere Linear shear Theoretical ௦

Legendre & Magnaudet (1998) Spherical bubble Linear shear Theoretical (Numeric) ௦ ,

Cherukat et al. (1999) Rigid sphere Linear shear Theoretical (Numeric) ௦

Kurose & Kumari (1999) Rigid sphere Linear shear Theoretical (Numeric) ௦

Bagchi & Balachandar (2002) Rigid sphere Linear shear Theoretical (Numeric) ௦

Tomiyama et al. (2002) Bubbles Linear shear Experiment

Asmolov (2002) Rigid sphere Parabolic Flow Theoretical (Analytical) ௦

Joseph & Ocando (2002) Rigid sphere Parabolic flow Theoretical (Numeric)

Adoua et al. (2009) Oblate spheroid Linear shear Theoretical (Numeric)

Bluemink et al. (2008; 2010) Rigid sphere Linear shear Exp./Theoretical (Numeric) ௦

*some are left blank as they are not explicitly given by the authors
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where the first term on the right hand side of equation (4.2.13) describes the lift on a

stationary particle in a shear flow with a velocity gradient and the second term

describes the lift on a spinning particle in a uniform flow.

The lift coefficient for the lift force on a spinning sphere in a uniform flow was

derived by Rubinow & Keller (1961) who found that ோ . For the lift on a

spinning sphere, Bagchi & Balachandar (2002) showed that the lift due to the

rotation of the particle in a linear shear flow is about 50% of that derived by

Rubinow & Keller (1961), that is ோ .

Table 4.1 lists some experimental and numerical investigations performed in the past

to study the lift force on particle immersed in shear flows.

4.3 Balance of the drag and lift forces with gravity

4.3.1 Drag Force Analysis

We briefly review the classical analysis that determines the settling velocity of a

particle that is subject to gravitational and drag forces only. This is done in order to

establish notation and preliminary concepts prior to our generalisation of this

analysis to include lift forces. We assume that the drag force ஽ is correlated in

terms of a non-dimensional drag coefficient ஽ , namely

஽ ஽
ଵ

ଶ ௙ ௣ ௥ ௥ (4.3.1)

where ௣ is the projected area of the particle in the direction of relative flow

velocity. For incompressible flow, ஽ may be correlated in terms of the particle

Reynolds number ௣ ௣ ௣ ௙, and the drag curve ஽ ௣ is a function of

particle shape. The motion of the particle is governed by a balance between drag and

gravitational forces.

௣ ௣
ௗ௨ሬሬ⃗೛

ௗ௧ ௣ ஽
ଵ

ଶ ௙ ௣ ௥ ௥ ௣ ௙ (4.3.2)

For a spherical particle, ௣ ௣
ଷ , ௣ ௣

ଶ , and (4.3.2) may be rewritten as:

ఘ೛

ఘ೑

ௗ௨ሬሬ⃗೛

ௗ௧ ோ
ଷ

ସ

஼ವ

ௗ೛
௥ ௥, ோ

௱ఘ

ఘ೑
reduced gravity (4.3.3)
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Note that (4.3.3) is also valid for non-spherical particles, provided that the drag

coefficient is defined with respect to an assumed orientation, and with respect to the

projected area of a volume-equivalent sphere. For a positively buoyant particle

settling under gravity in a stationary fluid ( ௙ ), we may assume that

and ௥ ௣ , so (4.3.3) reduces to a one-dimensional equation:

ఘ೛

ఘ೑

ௗห௨ሬሬ⃗೛ห

ௗ௧ ோ
ଷ

ସ

஼ವ

ௗ೛
௣
ଶ

(4.3.4)

Finally, as ஽ is defined as a function of the particle Reynolds number, it is

convenient to express (4.3.4) in non-dimensional form in terms of the particle

Reynolds number ୮ and a non-dimensional time scale relative to the viscous time

scale, ᇱ
௩௜௦, where ௩௜௦ ௣

ଶ
௙. This gives:

ఘ೛

ఘ೑

ௗோ௘೛

ௗ௧ᇲ
ଷ

ସ ஽ ௣
ଶ (4.3.5)

where ோ ௣
ଷ

௙
ଶ is the Galileo Number. The settling velocity ௣ ஶ is

achieved when the right hand side of equation (4.3.5) is zero. This gives the classical

formula for the particle settling Reynolds number ஶ ஶ ௣ ௙:

஽
∗

ஶ (4.3.6)

where ஽
∗

௣
ଷ

ସ ஽ ௣
ଶ is the non-dimensional drag force. For a general drag

curve, and a given value of Galileo number, the settling Reynolds number may be

determined by numerically inverting (4.3.6), and the result is unique provided that

஽
∗ is a monotonically increasing function of particle Reynolds number.

For certain special forms of the drag curve, (4.3.6) can be inverted analytically to

give an explicit formula for the settling Reynolds number. For example, in the limit

of low particle Reynolds numbers, the drag curve for both spherical and non-

spherical particles obeys the Stokes’ law, ஽ ஽ௌ ௣, where ஽ௌ is the Stokes

coefficient, equal to for spherical particles. In this case, (4.3.6) is a linear

equation, with solution:

ஶ
ସ

ଷ

ீ௔

஼ವೄ
ஶ

ସ

ଷ

௚ೃሬሬሬሬሬ⃗

஼ವೄ

ௗ೛
మ

ఔ೑
(4.3.7)
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In the limit of high particle Reynolds number, the drag coefficient is independent of

particle Reynolds number, so ஽ ே where ே is the Newton coefficient, equal

to 0.44 for spherical particles. In this case, (4.3.6) is a quadratic equation, with

solution:

ஶ
ସ

ଷ

ீ௔

஼ವಿ
ஶ

ସ

ଷ

௚ೃሬሬሬሬሬ⃗ௗ೛

஼ವಿ
(4.3.8)

Equations (4.3.7) and (4.3.8) state the classical result that ‘small’ particles settle at

velocities proportional to the square of their diameters, whilst ‘large’ particles settle

at velocities proportional to the square root of their diameters. Here, particles are

regarded as ‘small’ if they settle at particle Reynolds numbers which are sufficiently

small that the Stokes law approximation to the drag curve is valid. Particles are

regarded as ‘large’ if they settle at particle Reynolds numbers for which the Newton

approximation to the drag curve is valid. In order to quantify this definition, it is

useful to have a formula for the settling velocity which is valid for the full range of

particle Reynolds numbers between these two limits.

The simplest drag curve which has the correct asymptotic behaviour for low and

high Reynolds numbers is the two-parameter Stokes-Newton drag curve:

஽
஼ವೄ

ோ௘೛
஽ே (4.3.9)

Note that this functional form of the drag curve may also be used to extend the

Stokes regime of the drag curve to slightly higher Reynolds numbers, for which the

Oseen correction is applicable:

஽
஼ವೄ

ோ௘ೞ
஽ை ௦

஼ವೄ

ோ௘ೞ
஽ௌ ஽ை (4.3.10)

where ஽ை for spheres (Clift et al., 1978). In this case, ஽ே in equation

(4.3.9) should be replaced by the product of the Stokes and Oseen coefficients

஽ௌ ஽ை for spheres.

For the Stokes-Newton form of the drag curve, (4.3.6) is a quadratic equation in

ஶ , with unique positive solution:

ஶ

ට஼ೄ
మା

భల

య
ீ௔஼ಿ ି ஼ೄ

ଶ஼ಿ
(4.3.11)
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In practise, a better fit to the drag curve between the Stokes and Newton limits may

be obtained with the three-parameter Power-Law Stokes-Newton drag curve (Cheng,

1997):

஽
஼ೄ

ோ௘೛

௣

ே
௣
ଵ/௣

(4.3.12)

For this case, (4.3.6) can be expressed as a quadratic equation in ஶ
௣

, with unique

positive solution:

ஶ
௣

ට஼ೄ
మ೛
ାସቀ

ర

య
ீ௔஼ಿቁ

೛
ି஼ೄ

೛

ଶ஼ಿ
೛ (4.3.13)

The spherical particle drag curve may be approximated with (Dallavalle

1948). Moreover, Camenen (2007) showed that the drag curves over a wide range of

non-spherical particle shapes could be correlated in the form (4.3.12). Thus, (4.3.13)

is potentially a very useful tool in analysing fractionation of sedimentary particles

taking into account both particle size distribution and particle shape anisotropies.

4.3.2 Combined Drag and Lift Force Analysis

In this section, we aim to investigate to what extent the analysis reviewed in section

4.2 can be generalised to take account of the effect of shear induced and Magnus lift

forces on particles settling under gravity. In particular, we establish simple explicit

formulae analogous to equations (4.3.7) and (4.3.8) in the low and high Reynolds

number limits, and we establish simple analytical procedures to examine the

behaviour of the settling velocity over wider ranges of particles Reynolds numbers

for which explicit formulae cannot be established. When shear –induced and

Magnus lift forces of the form of equations (4.2.7) and (4.2.8) are included, the

motion of the particle is governed by the equation:

௣ ௣
ௗ௨ሬሬ⃗೛

ௗ௧ ௣ ஽
ଵ

ଶ ௙ ௣ ௥ ௥ ௅ ௙ ௣ ௙ ௥ ௙ ௣ ௣ ௥ (4.4.1)

Following the same manipulations as those for equation (4.1.3), this simplifies to:

ఘ೛

ఘ೑

ௗ௨ሬሬ⃗೛

ௗ௧ ோ
ଷ

ସ

஼ವ

ௗ೛
௥ ௥ ௅ ௙ ோ ௣ ௥ (4.4.2)
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In this case, the equation does not reduce to a one-dimensional equation, so it is

convenient to non-dimensionalise with respect to the following vector Reynolds

numbers:

௣ ௣ ௣ ௙, ௦ ௥ ௣ ௙, ఠ ௙ ௣
ଶ

௙, ோ ௣ ௣
ଶ

௙ (4.4.3)

We obtain:

ఘ೛

ఘ೑

ௗோ௘ሬሬሬሬሬ⃗೛

ௗ௧ᇲ
ଷ

ସ ஽ ௦ ௦ ௅ ఠ ோ ோ ௦ (4.4.4)

where ோ ௣
ଷ

௙ the vector Galileo Number. Hence, the condition for the

equilibrium state is given by:

ଷ

ସ ஽ ௦ ௦ ௅ ఠ ோ ோ ௦ (4.4.5)

For two dimensional shear flows, ௥ ௥ ௥ , and ௙ ௙ , where ௙

డ௩ೝ

డ௫

డ௨ೝ

డ௬
, so:

௦ ఠ ఠ ௫ ௬ (4.4.6a)

௦ ோ ோ ௫ ௬ (4.4.6b)

where ௫ ௥ ௣ ௙, ௬ ௥ ௣ ௙, ఠ ௙ ௣
ଶ

௙ and ோ ௣ ௣
ଶ

௙

Therefore, equation (4.4.5) can be expressed as

ଷ

ସ ஽ ௦ ௫ ௬ ௅ ఠ ோ ோ ௬ ௫ (4.4.7)

Note that ௫ , ௬, ఠ and ோ may all take positive or negative signs, according

to the signs of ௥, ௥ , ௙ and ௣ respectively.

Let ௫ ௦ , and ௬ ௦ where is the angle between the

particle trajectory and that derived from the balance of drag and gravity as shown in

Figure 4.2. The x and y-component of equation (4.4.7) becomes

ଷ

ସ ஽ ௦
ଶ

௅ ఠ ோ ோ ௦ (4.4.8a)

ଷ

ସ ஽ ௦
ଶ

௅ ఠ ோ ோ ௦ (4.4.8b)
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Using Trigonometric identities ଶ ଶ , the lift term can be eliminated

to yield the following expression for the drag force:

஽
∗ (4.4.9a)

where ஽
∗ ଷ

ସ ஽ ௦
ଶ is the non-dimensional drag force, as defined in equation

(4.3.6). Similarly, the drag term can be eliminated to give the following expression

for the lift force:

௅
∗ (4.4.9b)

where ௅
∗

௅ ఠ ோ ோ ௦ is a non-dimensional lift force. Clearly,

equations (4.4.9a,b) are the appropriate generalisations of equation (4.3.6) when lift

force is included in the analysis. For fixed values of , ఠ , and ோ, they may be

used to determine ௦ and , and hence the magnitude and the direction of the

equilibrium slip velocity. This process is facilitated by summing the squares of

equations (4.4.9a,b), and dividing (4.4.9a) by equation (4.4.9b), to obtain two

equivalent simultaneous equations:

஽
∗ଶ

௅
∗ଶ ଶ (4.4.10a)

ிಽ
∗

ிವ
∗ (4.4.10b)

The advantage of the form of the equation (4.4.10a) is that the angle has been

eliminated. For fixed values of ோ, ఠ and , equation (4.4.10a) is a nonlinear

equation for ௦ only, which can be inverted numerically. The result obtained for

௦ may then be substituted into equation (4.4.7b) to obtain the angle . In the

absence of lift force ( ௅
∗ ), and ஽

∗ . It is informative to express the

solutions of (4.4.10a,b) in terms of modifications to the solution ஶ of equation

(4.3.6) where only drag force is considered. This obeys the equation ஽ஶ

ଷ

ସ ஽ ஶ
ଶ , so (4.4.10a) may be expressed as:

஽
∗ଶ

௅
∗ଶ

஽ஶ
∗ଶ (4.4.11a)

On dividing by ஽ஶ
ଶ :

஽
∗ ଶ

௅
∗ଶ (4.4.11b)
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where ஽
∗

஽
∗

஽ஶ
∗ is the ratio of the modified non-dimensional drag force to the

unmodified non-dimensional drag force, and ௅
∗

௅
∗

஽ஶ
∗ is the ratio of the total

lift force to the unmodified drag force. Provided that ௅
∗ , equation (4.4.11b) has

a solution

஽
∗

௅
∗ଶ (4.4.12)

which indicates that ஽
∗

஽ஶ
∗ . So, if ஽

∗ is a monotonically increasing function of

௦ (as it is in all examples considered in section 4.1), we can conclude that

௦ ஶ i.e. the magnitude of the settling velocity is always reduced by the lift

force. For values of lift force that are sufficiently large that ௅
∗ , no stable

solution exists.

Equation (4.4.10b) indicates that the sign of the deflection angle depends on the sign

of the non-dimensional lift force defined in equation (4.4.9b). In the absence of

particle spin, the angle of defection has the same sign as the fluid vorticity for

positive values of the shear-induced lift coefficient, and the opposite sign to that of

the fluid vorticity for negative values of the shear-induced lift coefficient, as

illustrated in Fig. 4.1.

Given correlations for drag, shear induced and rotation induced lift forces, the

solution procedure above may be employed to determine the equilibrium particle

settling velocity and angular deflection for fixed values of the three free parameters,

, ఠ , and ோ, or interchangeably, ஶ , ఠ , and ோ. However, if the

rotational motion of the sphere reaches steady state more quickly than the

translational motion, then the angular velocity of the sphere can be taken to be equal

to the torque-free angular velocity, thus reducing the number of independent

variables to two. Bagchi & Balachandar (2002) performed detailed direct numerical

simulations to study the effects of free rotation and translation on a solid sphere in

an unbounded shear flow. They concluded that, for small values of particle Reynolds

number, the time scale to achieve rotational equilibrium was much less than that for

translational equilibrium. At higher particle Reynolds numbers, the rotational time

scale increases significantly, until the two time scales become of the same order of

magnitude. They also found that the equilibrium angular velocity was less than the
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ambient fluid vorticity, with their ratio correlated with particle Reynolds number

according to the formula:

௣ ௙ ௦
଴.ଽହ for ௦ (4.4.13a)

௣ ௙ ௦
଴.ସହହହ for ௦ (4.4.13b)

On the other hand, Bluemink et al. (2008) performed experiments and numerical

simulations that indicated that the equilibrium angular velocity of a sphere in a

uniformly rotating or shearing flow was greater than the ambient fluid vorticity, and

was related to particle Reynolds number as follows:

ோ ఠ ௦ (4.4.14)

Bluemink et al. (2008) observed that their result was at variance with that of Bagchi

and Balachandar (2002), and stated that, at the time of writing, the discrepancy was

unexplained. In view of this uncertainty, we present our results based on the

assumption that ఠ and ோ are independent free parameters. We then use these to

present results for the zero spin case. A brief discussion is given in section 4.3.6 of

the relative effects of the results of Bagchi and Balachandar (2002) and Bluemink et

al (2008) in the case of intermediate particle Reynolds numbers.

Figure 4.1 Schematic diagram illustrating the direction of the lift ( ௅
∗), drag ( ஽

∗) and

gravitational force ( ) on a sphere rotating with an angular velocity ௣ in a positive

(left) or negative (right) shear flow. The bold line is the settling direction of the

sphere and represents the angle between the settling direction of the sphere and the

gravitational force. The particle pushed forward ( ௦) in a positive shear flow and

pushed backward ( ௦) in a negative shear shear flow.
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4.3.3 Small Particle Reynolds Number Limit

As for the case of small particle Reynolds numbers, it is straightforward to derive

explicit formulae which generalise equation (4.3.7) for the settling velocity of

particles in the Stokes drag limit. We assume Stokes’ law for the drag force:

஽ ,ௌ௧௢௞௘௦ ஽ௌ ௦ and we assume a generalisation of Saffman’s correlation for

the shear-induced lift force defined in equation (4.2.10), ௅,ௌ௔௙௙௠ ௔௡ ௅ௌ ఠ .

However, we work in terms of general Stokes and Saffman coefficients in order to

facilitate application to non-spherical particles. We also assume a constant

coefficient ோ for the Magnus lift force.

Based on these assumptions for the drag and lift coefficients, both the non-

dimensional drag and lift forces are linear in ௦, hence their ratio is independent of

௦. In view of its subsequent importance, we will refer to this non-dimensional

quantity ௌ as the Stokes Regime Lift Number.

ிಽ
∗

ிವ
∗ ௌ

ସ

ଷ

ଵ

஼ವೄ
௅ௌ ఠ ఠ ோ ோ (4.5.1)

where ఠ

(4.4.11a) relates the ratio of the modified to unmodified settling Reynolds numbers

to ௌ as follows:

ோ௘ೞ

ோ௘ಮ

ଵ

ටଵା௸ೞ
మ

(4.5.2a)

and equation (4.4.8b) relates the deflection angle to ௌ as follows:

ௌ
ଵ

ටଵା௸ೞ
మ

௸ೄ

ටଵା௸ೞ
మ

(4.5.2b)

Note that (4.5.2a) represents the reduction of the magnitude of the settling velocity

Reynolds number due to the lift force. Its decompositions into vertical and

horizontal components are given by:

ோ௘೤

ோ௘ಮ

ோ௘ೞ

ோ௘ಮ

ିଵ

ଵା௸ೞ
మ (4.5.3a)

ோ௘ೣ

ோ௘ಮ

ோ௘ೞ

ோ௘ಮ

௸ೄ

ଵା௸ೞ
మ (4.5.3b)



99

Thus, there is a further reduction in the magnitude of the vertical settling velocity,

and there is an induced horizontal drift that is not present in the absence of the lift

force. It is of interest to see how these results scale in terms of particle diameter. In

the absence of particle spin, we have:

ௌ
ସ

ଷ

஼ಽೄ

஼ವೄ
ఠ ఠ

ସ

ଷ

஼ಽೄ

஼ವೄ
ఠ

|ఠ |

ఔ೑
௣ (4.5.4)

Thus, the Stokes Lift Number ௌ is proportional to the particle diameter. Performing

a Taylor Series expansion of (4.5.2a,b) to lowest order in ௌ gives:

ோ௘ೞ

ோ௘ಮ

௸ೞ
మ

ଶ ௦
ସ

ௌ ௦
ଷ (4.5.5)

Hence, for small particle diameters, the deflection angle depends linearly on the

particle diameter, and the magnitude of the settling velocity is reduced by a factor

that differs from unity by a quantity that is proportional to the square of the particle

diameter. As the unmodified slip velocity is proportional to the square of the particle

diameter, this gives a lift-induced correction to the slip velocity which is

proportional to ௣
ସ.

Similarly, (4.5.3a,b) gives the modifications to vertical and horizontal settling

velocities to lowest order in ௌ:

ோ௘೤

ோ௘ಮ
௦
ଶ

௦
ସ ோ௘ೣ

ோ௘ಮ
ௌ ௦

ଷ (4.5.6)

So, the vertical component of settling velocity is also reduced by a factor that differs

from unity by a quantity that is proportional to the square of the particle diameter,

and the reduction is double that of the settling velocity magnitude. On the other

hand, the induced horizontal drift velocity is related to the unmodified settling

velocity by a factor that directly proportional to the particle diameter, hence it is

proportional to ௣
ଷ.

4.3.4 High Particle Reynolds Number Limit

Another simple analysis can be made in the limit of large particle Reynolds number

௦ . In this case, we assume that the drag coefficient is constant, ஽ ஽ே ,

where ஽ே for a spherical particle. We also assume that the shear-induced

lift coefficient is constant, ௅ ௅ே . As in the low particle Reynolds number
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analysis, we work with general values of ஽ே and ௅ே in order to facilitate

generalisation to non-spherical particles. Due to a lack of investigations of the lift

coefficient over the full range of particle Reynolds numbers, the assumption of

constant ௅ requires careful interpretation. As discussed in section 4.20, the

correlation of Mei (1992) gives a constant value ௅ெ equation (4.2.11) for

the shear-induced lift coefficient for solid spherical particles in the range

ୱ , which is well below the threshold for vortex shedding past the sphere.

This range of Reynolds numbers is also below the Newton regime of the spherical

particle drag curve, and hence is not applicable to this section. It is discussed in

detail in the following sections 4.3.5 and 4.3.6. For particle Reynolds numbers

above the threshold for vortex shedding, and within the Newton regime of the drag

curve, good comparisons with experimental results can only be achieved using a

much smaller constant lift coefficient ௅ ௅ே (Wang et al 1986,

Lahey et al. 1993, Alajbegovic et al 1994, Moraga et al. 1999). Because these results

are obtained for high Reynolds number flows, it is necessary to interpret them in a

time-averaged sense (Moraga et al. 1999).

As in the Stokes flow limit, the governing equations (4.4.10a,b) can be expressed in

terms of a single non-dimensional parameter ே , defined in terms of known

quantities, which we will refer to as the Newton Regime Lift Number ࡺ :

ோ௘ೞ
ర

ோ௘ಮ
ర ே

ଶ ோ௘ೞ
మ

ோ௘ಮ
మ (4.6.1a)

ிಽ
∗

ிವ
∗ ே

ோ௘ಮ

ோ௘ೞ
(4.6.1b)

where:

ே
஼ಽಿோ௘ഘ ା஼ೃோ௘ೃ

య

ర
஼ವಿோ௘ಮ

(4.6.1c)

Note that this is similar to, though not identical to, the Stokes Regime Lift Number

defined in equation (4.5.1). Unlike the Stokes Regime Lift Number, it depends on

ஶ , and it is not identical to ௅
∗

஽
∗. Equation (4.6.1a) is quadratic in ௦

ଶ
ஶ
ଶ ,

and has the unique positive solution:

ோ௘ೞ
మ

ோ௘ಮ
మ

௸ಿ
ర

ସ

௸ಿ
మ

ଶ

௸ಿ
మ

ଶ ே
ସ (4.6.2)
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Equations (4.4.10a,b) and (4.6.1b) give trigonometric formulae for the angle of

deflection:

ோ௘ೞ
మ

ோ௘ಮ
మ

௸ಿ
ర

ସ

௸ಿ
మ

ଶ
(4.6.3a)

ே
ோ௘ೞ

ோ௘ಮ
ே

௸ಿ
ర

ସ

௸ಿ
మ

ଶ
(4.6.3b)

ே
ோ௘ಮ

ோ௘ೞ
ே

௸ಿ
ర

ସ

௸ಿ
మ

ଶ
(4.6.3c)

We can now deduce the settling Reynolds numbers in the vertical and horizontal

directions:

ோ௘೤

ோ௘ಮ

ோ௘ೞ

ோ௘ಮ

௸ಿ
ర

ସ

௸ಿ
మ

ଶ

ଷ/ଶ

(4.6.4a)

ோ௘ೣ

ோ௘ಮ

ோ௘ೞ

ோ௘ಮ
ே

௸ಿ
ర

ସ

௸ಿ
మ

ଶ
(4.6.4b)

Finally, let us deduce the dependence of these results on the particle diameter. In the

absence of particle spin, we have:

ே
஼ಽಿோ௘ഘ
య

ర
஼ವಿோ௘ಮ

(4.6.4c)

In dimensional form, ୒ is proportional to the square root of the particle diameter,

as follows:

ே
ସ

ଷ

஼ಽಿ
మ

஼ವಿ

ఠ మௗ೛

௚ᇲ
(4.6.4d)

Expanding equations (4.6.3b) to lowest order in ே gives:

ே ே
ଷ (4.6.5)

Thus, the deflection angle is proportional to the square root of the particle diameter.

Similarly, expanding (4.6.2) and (4.6.4a,b) to lowest order in ே gives:

ோ௘ೞ

ோ௘ಮ

௸ಿ
మ

ସ ே
ସ (4.6.6a)
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ோ௘೤

ோ௘ಮ

ଷ௸ಿ
మ

ସ ே
ସ (4.6.6b)

ோ௘ೣ

ோ௘ಮ
ே ே

ଷ (4.6.6c)

Hence, both the settling velocity magnitude and vertical component are reduced by a

factor that differs from unity by a quantity that is directly proportional to the particle

diameter. The induced horizontal drift velocity is related to the unmodified settling

velocity by a factor that is proportional to the square root of particle diameter, so it

is directly proportional to the particle diameter, as follows:

௥
ସ

ଷ

஼ಽಿ

஼ವಿ
௣ ே

ଶ (4.6.7)

4.3.5 Intermediate Particle Reynolds Numbers (Semi-Analytical)

The previous two sections provide simple analytical formulae for the modification

of settling velocity by lift forces in the Stokes Regime and Newton Regime limits of

the drag force. In this section, we examine to what extent these results can be

generalised to cover the full range of the drag curve between the Stokes and Newton

limits. In particular, we wish to see to what extent the formula (4.3.13) can be

generalised for the settling velocities of particles for which the Cheng (1997) Power-

Law Stokes-Newton drag curve (4.3.12) is a reasonable approximation. This gives

the following equation for the ratio of modified to unmodified particle Reynolds

numbers, ோ௘ ௦ ஶ :

஽
∗ ிವ

∗

ிವಮ
∗

௥ೃ೐

஼ವಮ

஼ವೄ
೛

ோ௘ಮ
೛ ஽ே

௣
ோ௘
௣

ଵ/௣

(4.7.1)

Substituting (4.7.1) into (4.4.11b) gives a non-linear equation for ோ௘:

௥ೃ೐
మ

஼ವಮ
మ

஼ವೄ
೛

ோ௘ಮ
೛ ஽ே

௣
ோ௘
௣

ଶ/௣

ோ௘
ଶ (4.7.2)

where the lift number is given by:

஼ಽோ௘ഘ ା஼ೃோ௘ೃ
య

ర
஼ವಮ ோ௘ಮ

(4.7.3)
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Note that is equal to the Stokes lift number ௌ (equation 4.5.1) and the Newton lift

number ே (equation 4.6.1), in the appropriate limits as ஶ and ஶ

respectively. Thus, it unifies both of these quantities into a single non-dimensional

quantity.

In the special case of Stokes-Newton drag ( , (4.7.2) is a quartic equation for

ோ௘, provided that ௅ (and hence ) is independent of ௦. For spherical particles,

this is the case at low particles Reynolds numbers where Saffman’s correlation

applies, and for particle Reynolds numbers between 40 and 100, for which the Mei

correlation gives a constant ௅ . Hence, within these Reynolds number

limits, exact expressions may be obtained by solving the quartic equation (4.7.2) for

ோ௘. However, our experience indicates that the resulting expressions are too

complex to be instructive. For full information on ோ௘, it is better to solve (4.7.2)

numerically, as outlined in section 4.3.2.

On the other hand, (4.7.2) may be used to provide a useful exact expression for to

first-order in for any form of the Power-Law Stokes-Newton Drag Law. (4.7.2)

has a unique solution for ோ௘ between the values of zero and unity, given by the

intersection of a monotonically increasing function of ோ௘ and a monotonically

decreasing function of :

஽
∗

ோ௘
ଶ ௥ೃ೐

మ

஼ವಮ
మ

஼ವೄ
೛

ோ௘ಮ
೛ ஽ே

௣
ோ௘
௣

ଶ/௣

ோ௘
ଶ (4.7.4)

The solution to first-order in can be found by approximating ஽
∗

ோ௘
ଶ by its

tangent at ோ௘ , and finding the point of intersection with the curve ோ௘
ଶ.

Figure 4.2 A sketch illustrates the

intersection of curves ஽ and

ଶ.

Let ஽ ஽
∗ ଶ, we have

஽
௣ ௥మ೛

஼ವಮ
మ೛

஼ವೄ
೛

ோ௘ಮ
೛ ஽ே

௣ ௣
ଶ

, and ஽
∗ ௣ ௥೛

஼ವಮ
೛

஼ವೄ
೛

ோ௘ಮ
೛ ஽ே

௣ ௣ (4.7.5)
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(to keep the symbols neat, is used instead of ோா in equations (4.7.5 to 4.7.13))

The derivative of ஽ is

஽
ᇱ

஽
∗

஽
∗ (4.7.6)

The right hand side of the equation can be expanded to

஽
௣ିଵ

஽
ᇱ ௣௥೛షభ

஼ವಮ
೛

஼ೞ
೛

ோ௘ಮ
೛ ஽ே

௣ ௣ ௥೛

஼ವಮ
೛ ஽ே

௣ ௣ିଵ ௣௥೛షభ

஼ವಮ
೛

஼ೞ
೛

ோ௘ಮ
೛ ஽ே

௣

(4.7.7)

The ஽ at becomes

஽
ᇱ ଶ

஼ವಮ
೛

஼ೞ
೛

ோ௘ಮ
೛ ஽ே

௣ ஼ವಿ
೛

஼ವಮ
೛ (4.7.8)

Equation of the tangent for ஽ at is

஽ ஽ ஽
ᇱ (4.7.9)

Equating (4.7.9) to the right hand side of (4.7.4) gives the following quadratic

equation

஽
ᇱ ଶ ଶ (4.7.10)

The solution of (4.7.10) is

ିௌವ
ᇲ±ටௌವ

ᇲమାସௌವ
ᇲ௸మ

ଶ௸మ
=>

ௌವ
ᇲ

ଶ௸మ
ସ௸మ

ௌವ
ᇲ (4.7.11)

Expressing the first term in the bracketed term on the right hand side of (4.7.11)

using the Taylor series expansion gives

ௌವ
ᇲ

ଶ௸మ
ଶ௸మ

ௌವ
ᇲ

ଵ

଼

ସ௸మ

ௌವ
ᇲ

ଶ
ௌವ
ᇲ

ଶ௸మ
ଶ௸మ

ௌವ
ᇲ

ଶ௸ర

ௌವ
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Therefore,
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This result generalises the results (4.5.5) and (4.6.6) which apply in the Stokes and

Newton limits respectively. We see that the leading coefficient of ଶ decreases

continuously from in the Stokes Regime to 1/4 in the Newton Regime.

Equation (4.7.13) is useful for spherical particles in the range ௦

where the Mei correlation yields a constant lift coefficient ௅ . This range

of Reynolds numbers is in the transitional region of the drag curve, and can be

approximated by the Power-Law Stokes-Newton Drag Curve with ஽ௌ ,

஽ே , and (Dallavalle 1948). In addition (4.7.5) may be used to

extend the Stokes Regime result to slightly higher particle Reynolds numbers where

the Oseen drag law (4.3.10) applies. In this case, should be taken to be unity, and

the Newton coefficient should be replaced by the product of the Stokes coefficient

஽ௌ and the Oseen coefficient ஽ை .

4.3.6 Intermediate Particle Reynolds Numbers (Numerical)

For spherical particles, the semi-analytical analysis of the previous section was applicable

for small particle Reynolds numbers within the range of validity of the Stokes-Oseen

approximation (4.3.10) to the drag curve, and for higher particle Reynolds numbers

in the range 40 to 100. For intermediate particle Reynolds numbers, the Mei

correlation for the lift coefficient is too complex to yield to an analytical solution.

Hence, we employ the numerical methodology outlined in section 4.3.2. For this

purpose, we use the Mei (1992) correlation for lift in conjunction with the well-

known Schiller-Naumann correlation for the spherical particle drag coefficient:

஽
ଶସ

ோ௘ೞ
௦
଴.଺଼଻ (4.8.1)

Equations (4.8.1) are solved using Matlab for fixed values of the vorticity Reynolds

number ఠ and the unmodified particle Reynolds number ஶ (the latter may be

used interchangeably with the Galileo number). In order to investigate the effect of

the shear-induced lift force on a stationary particle and Magnus lift-force separately,

we present the solutions of the shear-induced lift force both without and with the

Magnus lift force. Since there is no general agreement on the correlation for the

freely rotating particle spin in a torque-free state, we present both solutions that are

based on a particle spin correlation of either Bagchi & Balachandar (2002) or

Bluemink et al. (2008) (denoted as BB and BL, respectively). In the following, we
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present and discuss the result showing the effect of the lift force on r and the

trajectories of the particle over a wide range of values of ஶ and ఠ .

Figure 4.3(a) shows the percentage change in the ratio of the particle Reynolds

number to the unmodified particle Reynolds number by the lift ோ௘ (which also

represents the ratio of the settling velocity of the particle influenced by the lift force

to that without lift force) as a function of ஶ , when ఠ is fixed at values of 2, 5

and 10. This figure shows that ோ௘ decreases for any values of ఠ and ஶ and

decreases the most when ஶ is small ( ஶ ). As ஶ increases, the decrease

in ோ௘ becomes increasingly smaller and the rate of decrease become steeper with

larger value of ఠ . The addition of the Magnus lift force further reduces the value

of ோ௘, and this effect appear to be more significant for higher value of ఠ . It can

be noted that results based on the particle spin correlation of BB do not vary

significantly from those of BL. When ஶ > 10, the effect of the lift force on r is

virtually negligible (less than 2%) and this applies to both solutions with and

without the Magnus-like lift force. The effect of ఠ on ோ௘ in this range of ஶ

appears to be insignificant since only little change is observed when the value of

ఠ is increased from 2 to 10.

The angle of deflection that corresponds to the case in Figure 4.3(a) is presented in

Figure 4.3(b). This figure shows that is at its maximum value when ஶ is the

smallest, i.e. ஶ and decreases as ஶ increases. It appears that starts to

decrease drastically at values of ஶ ~ 1 irrespective of the value of ఠ . At large

values of ஶ , decreases to a very small value. Increases in ఠ increase but at

a much lower rate compared to that at small values of ஶ . Including the Magnus-

like lift force slightly increases the values of . The change in the profile of

around ஶ = 40 is due to the change in the shear lift coefficient from a decreasing

value to a constant value The results based on BB or BL agree at low values of ஶ

but less well at large value of ஶ where the latter predicts a slightly larger value of

than the former does.

It is interesting to see how ோ௘ and change with ఠ when ஶ is at a fixed value.

Figure 4.4(a) shows the percentage change in r as a function of ఠ when ஶ is

fixed at values of 0.1, 1 and 10. It can be observed that ோ௘ decreases as ஶ

increases. The trend in the decrease of r varies for different values of ஶ . Small
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ஶ experiences a more gradual decrease and starts at smaller values of ఠ

whereas larger values of ஶ experiences a steeper decrease that starts at larger

values of ఠ . Also plotted on the figure are the solutions in the Stokes regime for

comparison with the numerical solution at low values of ஶ , and both solutions

match well. Including the Magnus-like lift force does not result in much change to

the solution at low values of ఠ but the effect becomes increasingly more

pronounced with the increase of ఠ . For instance, for ஶ = 1 and ఠ = 100, the

Magnus-like lift force further reduces ோ௘ by 15%. The corresponding values of is

shown in Figure 4.4(b). It can be seen that the effect of the lift force on is similar

to its effect on ோ௘. Thus increases exponentially with an increase in ఠ and the

rate of such an increase increases with larger values of ஶ .

It is worth summarising the above discussion on how ோ௘ and vary with the

parameters ఠ and ஶ by plotting them in contour form, as shown in Figure

4.5(a) and (b). These figures clearly show how ோ௘ and increase as ఠ increases

but decreases as ఠ increases.

Figure 4.3 (a) Percentage change in ோ௘, and (b) angle of deflection , as a function of ஶ

when ఠ= 2, 5 and 10. The solid lines represent solutions with only shear-induced

lift force. The dashed lines ( ) represent solutions with both shear-induced and

rotation-induced lift force based on Bagchi & Balanchandar (BB) correlation whereas

the dot-lines (···) are those based on Bluemink et al. correlation (BL)).
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Figure 4.4 (a) Percentage change in ோ௘, and (b) angle of deflection , as a function of ఠ

when ஶ = 0.1, 1, 10. The bold solid lines represent the Stokes solution ( ஶ =

0.1). The other notation is as in Figure 4.3.

Figure 4.5 (a) Percentage change in ோ௘, and (b) angle of deflection , as a function of ఠ

and ஶ . The blacks lines represent solutions with only shear-induced lift force. The

blue lines represent solutions with both shear-induced and rotation-induced lift force

based on BB correlation whereas the red lines are those based on BL.

4.4 Implications

The analysis above may be used to estimate the effect of lift on a particle immersed

in a fluid where the shear is significant. In this section, we apply our analysis to

determine under what situations the lift force may have a significant effect on the

particle settling velocity and trajectory. In subsequent sections, we apply this

analysis to turbidity currents and particle entrainment as examples of the usefulness

of the theory.
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4.4.1 General Considerations

In section 4.3, simple expressions were obtained for determining the particle slip

Reynolds number ௦ and the angle of deflection of a freely-rotating sphere in a

2D shear flow. Exact expressions have been obtained in the Stokes and Newton

Regime limits, and approximate expressions have been obtained for intermediate

particle Reynolds numbers. It was found that the particle slip Reynolds number was

always reduced by the lift force. The reduction in magnitude of the slip velocity,

ோ௘ ௦ ஶ and the angular deflection both depend on a single non-

dimensional quantity , the lift number, which is defined by:

஼ಽோ௘ഘ ା஼ೃோ௘ೃ
య

ర
஼ವಮ ோ௘ಮ

(4.9.1)

Thus, the effects of the lift force are large when the lift number is large. In the

Stokes flow limit, is independent of ஶ . Outside this range, is a decreasing

function of ஶ . Thus, the effects of the lift force are large when ఠ and/or ோ

are large, and decrease gradually with increasing ஶ . The magnitude of the angular

deflection is directly proportional to the value of . The sign of depends on the

direction of the shear. A positive shear pushes the particle forward and hence results

in a positive and vice versa (see Figure 4.1). For example, for sediment-laden

open channel flow, the vorticity is negative below the free surface. Hence, the

settling velocities of particles with positive lift coefficient will be deflected

backwards, and those with negative lift coefficient will be deflected forwards. This

velocity lag phenomenon has been observed in a limited number of experiments

which are reviewed in Cheng (2004). Cheng also observed that the lag velocity is a

function of the shear Reynolds number. Cheng presented a theoretical analysis of

this phenomenon based purely on the balance between gravity and hindered settling

drag laws for high concentrations of particles. However, the fact that the velocity lag

increases with the shear Reynolds number strongly suggests that it is a direct

consequence of the lift force. Comparisons with experimental results based on this

assumption should be performed in future work.

4.4.2 Turbidity Currents

Turbidity currents are dilute subaqueous particulate gravity currents. They are

known to have a shear-layered velocity profile. Indeed laboratory (e.g. Kneller et al.,
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1999) and field (Xu, 2010) observations have concluded that the maximum velocity

occurs at approximately one third of the depth of the flows. The velocity profile

below this point approximately follows a logarithmic relation whereas the velocity

profile above follows a Gaussian relation (Kneller et al., 1999, Xu, 2010). The lift

force is generally neglected in the modelling of turbidity currents but the strong

velocity gradient within the bulk flows suggests it could be significant. Using

existing understanding of the mechanics and properties of turbidity currents, the

shear within the bulk flow can be estimated and typical particle characteristic can be

inferred from field studies on turbidity currents. On this basis, the effect of the lift

(change in slip velocity and angle of deflection ) can be evaluated using the

analysis outlined in the previous section.

Figure 4.6 A typical velocity profile of a

turbidity currents. The upper part of

the flow has positive vorticity and the

lower part has negative vorticity.

The shear above and below the maximum velocity are different in magnitude and

sign. The former has positive sign and acts to push the sediment forward whereas

the latter is negative in sign and acts to push the sediment backward (see Figure.

4.6). Since the maximum velocity is closer to the bottom boundary, the shear below

the maximum velocity is greater than that above the maximum velocity and can be

estimated as follows:

డ௨

డ௬

ఠ೑

ଶ

௨ಿ

௛೘ ೌೣ
(4.9.2)

where ே is the velocity of the front of the flows and ௠ ௔௫ is the height where the

maximum velocity occurs, i.e. ௠ ௔௫ . The front velocity of the gravity current

can be deduced from the following simple formula (Benjamin, 1968) :

ே
ᇱ ଵ/ଶ (4.9.3)
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where ᇱ is the reduced gravity which is defined as ᇱ
௠ ௙ ௙, ௠ is the

mixture density, Fr is the Froude number, and is the flow height. Huppert &

Simpson (1980) showed that Fr = 1.19 for flows propagating in very deep water, i.e.,

for , where is the height of the ambient fluid. The range of natural

flow heights is not well constrained, but it has been reported that natural flows have

a maximum flow height of about 300-400m (Meiburg & Kneller, 2009). Equations

(4.9.2) & (4.9.3) yield the relationship between the shear and the front velocity as

follows:

௙
ி௥మ௚ᇲ

௨ಿ
(4.9.4)

This equation indicates that the flow shear decreases with an increase in the flow

velocity. Substituting equation (4.9.3) into equation (4.9.4) for ே shows that the

shear decreases with increasing flow height, ௙
ି଴.ହ.

Xu et al. (2002) reported that the settling velocity of the particle in a natural system

is in the range of 0.001 to 1cm/s and the density of the particle is approximately

2500 kg/m3. The concentration of the flows vary with the flow height but takes a

value of 5% on the average (Xu et al. 2002), which results in the reduced gravity

acceleration ᇱbeing about 0.74.

Using the information described above, ஶ and ఠ are evaluated and equation

(4.7.1) is solved numerically to yield r and for a range of flow front velocities and

particle settling velocities. Figures 4.7(a) and (b) show the percentage change in the

values of ோ௘ and as a function of the flow front velocity ே for four different

particle settling velocity ( ௦ = 0.001, 0.01, 0.1 and 1cm/s). The figures show that the

larger particle settling velocity experiences a greater decrease in the values of r and

. However, as the scale of the flow increases, ோ௘ and decrease because the shear

decreases with an increase in velocity ே . The maximum effect of the lift force on r

for the range of particle settling velocity considered in this study is within 2%,

implying that the effect of the lift force on the magnitude of the settling velocity of

the particle is practically negligible in any scale of the flow. On the other hand, the

value of reaches values as high as 12o when ே is the lowest, which implies that

particle still experience a significant deflection in small-scale turbidity current. In

addition, because the different particle settling velocity experiences different values
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of , flows carrying polydisperse material will experience a horizontal fractionation

with the heaviest particle being deflected the most.

Figure 4.7 (a) Percentage change in ோ௘, and (b) angle of deflection , as a function of the

front velocity ୒ of a gravity current travelling in deep water carrying particle with

settling velocity of 0.001, 0.01, 0.1 and 1cm/s, assuming the reduced gravity

acceleration ᇱ= 0.74, Fr = 1.19 and particle-fluid density ratio ௣ ௙ . The

corresponding particle diameter ௣ for each aforementioned settling velocity are 11,

49, 160, and 520 m, respectively. The solid lines and the dashed lines represent the

solution using BB and BL correlations, respectively.

4.4.3 Particle Entrainment

Stationary small particles that are embedded within the viscous sublayer of a

turbulent boundary layer are subject to a shear-induced lift force that may cause the

particle to re-suspend into the flow. For a particle to be lifted into the flow, the lift

force needs to be greater than the net weight of the particle. Such a lift force is often

parameterized as the critical shear stress. Experiments have been performed in the

past to establish a criterion for particle entrainment by determining the flow critical

shear stress required to entrain particles of different size.

The analysis presented here can be applied to provide another perspective on how

particles are entrained from the bed, i.e. the amount of deflection experienced by

particles when they are entrained into the fluid flow. To achieve this, we have used

the experimental observations of Niño et al. (2003) on entrainment of particle in an

open channel flow. The method we have used to estimate the deflection of the

particle is described as follows. The shear within the viscous sublayer can be readily

-2

-1

0

0.1 1 10

(r
R

e-
1

)*
1

00
(%

)

uN (m/s)

(a)

us = 0.001, 0.01,
0.1, 1cm/s

0

2

4

6

8

10

12

14

0.1 1 10

(o
)

uN (m/s)

(b)

us = 0.001,
0.01, 0.1, 1cm/s



113

deduced using the law of the wall function and the shear velocity ఛ of the flow

given by the experiments. The shear can be estimated as follows:

ௗ௨

ௗ௬ ௧

ఠ

ଶ

௨೟

௛೟
(4.9.5)

where ௧ is the thickness of the viscous sublayer which is about 5, ା , where

ା
௧ ఛ ௙, and ୲ is the velocity at the edge of the viscous sublayer, which is

given by ௧ ఛ since ା ା , where ା
ఛ. Having deduced the shear of

the flow, the particle Reynolds number ஶ can be easily determined based on the

particle size given by the experiment. Equation (4.7.1) is then solved to yield the

deflection based on the values of ఠ and ஶ determined from experiment.

Since the particles lying on the bed are stationary, the particle has zero rotation and

equation (4.7.1) is solved with ோ . The result is plotted as a contour plot of

that varies with ఠ and ஶ as shown in Figure 4.8. The observations of Niño et

al. (2003) comprise four different values of ஶ . Each value of ஶ is applied with

increasingly larger values of ఠ until resuspension occurs (denoted by the circular

symbol in the figure). It can be observed that increasingly higher values of are

needed for particle of higher values of ஶ to be entrained, e.g. a particle with

ஶ = 8 entrains at = 20o, whereas a particle with ஶ = 0.04 entrains at only =

5o. This suggests that the larger particles will entrain upwards into the flows whereas

the entrained smaller particles are likely to hover near the bottom boundary. It

should be noted that this conclusion is only valid for small particles immersed in a

viscous flow and where the flow turbulence is negligible. The effect of the

turbulence needs to be taken into account for the entrainment of particles larger than

the size of the viscous sublayer.

Figure 4.8 Contour plot of the prediction

on the angle of deflection as a function of

ஶ and ఠ for particle entrainment. The

experimental data of Niño et al. (2003) is

included where the cross  represents

where no entrainment occurs and the circle

 represents where entrainment occurs.

The red dashed-line shows the lowest value

of ఠ and for an entrainment to occur.
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4.5 Conclusions

Simple expressions have been obtained for determining the particle slip Reynolds

number ௦ and the angle of deflection of a freely-rotating sphere in a 2D shear

flow. The expressions are valid over a wide range of values of ௦. The expressions

depend on a single non-dimensional quantity , the lift number, which is defined by:

௅ ఠ ோ ோ

஽ஶ ஶ

We have found that, for fixed values of ఠ and ோ, the slip velocity is always

reduced by the lift force and this effect increases with an increase in the particle

Reynolds number ஶ . The angle of deflection is the highest when ஶ is small

and decreases with an increase in ஶ . The particle maybe pushed backward or

forward, depending on the sign of the vorticity of the flows and the lift coefficient.

The results of the analyses are applied to turbidity currents and particle entrainment

to study the effect of the lift force on the sediment transport in each case. In gravity

currents, it is predicted that the larger particle sizes experience the greater angles of

deflection than do small particles. This potentially could affect how the particles of

different size fractionate within the turbidity currents. For particle entrainment, it is

predicted that as the particle size increases then the particle is re-entrained at a larger

angles to the main flow direction. It would be of interest to investigation this

prediction experimentally.
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Chapter 5

Physical and Numerical Modelling of Lock-

Release Turbidity Currents

5.1 Introduction

In Chapter 3, the experiments of Gladstone et al. (1998), Gladstone & Pritchard

(2009), and Rooij & Dalziel (2000) were modelled using the Mixture model with the

inclusion of the turbulent dispersion term (TD) to the algebraic slip equation.

However, the numerical results do not agree well with the experimental data. The

model predicts an excessive dispersion that substantially decreases a flow’s

sedimentation rate and hence results in a greater amount of sediment being predicted

in the distal deposit than observed in the experiment. This is consistently predicted

for flows carrying different concentrations, grain size and flume geometry but the

discrepancy is significantly greater for flows carrying finer grains. On the other

hand, on excluding TD from the model, then the agreement of the CFD predictions

with the experimental data improves significantly. This observation leads us to the

following speculations, (i) turbulent dispersion (TD) is not important in this scenario

so the term actually can be excluded from the model, or, (ii) essential physics are

still missing in the model that acts to counter the dispersive effect manifested by TD,

or (iii) the TD model is not appropriate in this scenario. It was though that point (ii)

was the cause of the discrepancy and therefore, in Chapter 3, the discrepancy was

further investigated by incorporating additional physics, i.e. the effect of turbulence

modulation (TM) into the model. TM describes the suppression/enhancement of

flow turbulence due to the presence of the particles in the flow. Small particles lead

to a suppression of turbulence whereas large particles lead to an enhancement of

turbulence. TM yields insignificant changes to the result and this prompts the

conclusion that TM is not the important missing physics. It was then postulated that

the particle lift force could be a major factor in influencing the particle settling

characteristics, since gravity currents have a non-uniform vertical velocity profile. In

Chapter 4, an analysis based on the force balance equation is carried out to
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determine the relative significance of the lift force to the drag force in turbidity

currents and it was found that the lift force only slightly reduces the magnitude of

the particle settling velocity, but it also changes the particle settling trajectories.

Very large particles in turbidity currents are likely to experience a maximum 2%

reduction in its settling velocity and a maximum 10 degree change to the particle

settling trajectories. For this reason, it is concluded that the lift force is not

significant in turbidity currents.

The investigations carried out so far have been based on low volumetric

concentration (0 – 2%) flows carrying fine sediment (12 – 70µm). While it is

possible to continue to increase the level of sophistication in the model in order to

determine the cause of the discrepancy, it may also be interesting to investigate the

performance of the model at predicting the behaviour of the flows of higher

volumetric concentrations (2 – 5%), carrying coarser material (>70µm). A literature

search shows that there is a lack of documented experiments that investigate lock

release configured turbidity currents in this regime. In addition to those referred to in

Chapter 2, which mostly are low-concentration flows carrying fine grains, there are

studies by Bonnecaze et al. (1993) and Hodson & Alexander (2010). The former

reported two deposit profiles of flows of concentration (0.26%, 1%) and particle size

(23, 53µm). The latter investigated the effect of flows carrying particles with

different density (the flows they studied has 1% concentration and particle average

diameter of 70 µm). For this reason, experimental investigations have been

performed to study the effects of flows carrying mono-disperse suspension over a

wide range of concentrations (0.25 – 5%) and grain size range (58 - 115µm) in order

to validate the Mixture model over a wider range of initial conditions.

5.2 Objectives

The objective of this chapter is to perform a series of lock-release configured

experiments to determine the front propagation and deposit characteristics of flows

over a wide range of grain sizes and concentrations. The experimental data are then

used to validate the Mixture model.

5.3 Experimental Technique

The experiments were carried out in the Sorby laboratory at the University of Leeds

in a flume 5m long, 0.2m wide and 0.3m high (see Fig. 5.1(b)) and was made



entirely of plexiglass, as shown in Fig. 5.1(a), allowing direct observations of the

flow from the sides and through the bottom. The top of the flume is open.

Figure 5.1

mechanical stirrer that is installed inside the lock box, and (b) a schematic diagram

showing the dimensions of the flume and flume width is 0.2m.

The entire flume is supported by multiple stands made of steel that are attached

vertical wall next to the flume. At one end of the flume (25cm from the end wall),

the flume has vertical guides with a gap of 0.5cm for securing a lockgate. If the

lockgate is inserted into the flume, a lock

is attached to the other end of the flume for collecting the over

experiment as well as draining out the water and sediment from the flume after the

experiment is finished. A mechanical stirrer is placed inside the lock box to produce

a uniform sediment suspension. The shaft of the stirrer has a diameter of 0.5cm and

a propeller of diameter 3cm is attached at its end. The rotational speed of the stirrer

is adjustable up to a maximum value of 2000 RPM (revolutions per minute). Using

the mechani

is undesirable because it produces a large eddies that are characterised by the size of

lock-box. In order to reduce this effect, a thin plate is attached to end walls of the

lock box to break down the large circulation into a smaller irregular flow. Most of

the experiments that have been conducted in the past (e.g. Gladstone et al. (1998))

employed a manual removal of the lockgate which gives rise to inconsistencies in

the speed at

by Giorgio

the size can profoundly affect the propagation of the flows. Waves are generated at

the free surface w
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acceleration and deceleration in under-running turbidity currents. Slower moving

lock-gate release causes waves of larger amplitude to form and hence larger

perturbations of the velocity of the flows to develop. Thus, to avoid such

complications, the lock gate is removed in a consistent and rapid manner for every

run of the experiment to reduce variability and improve the repeatability of the

experiments. For this purpose, a weight-driven pulley system is installed for

removing the lock gate at a consistent speed.

5.3.1 Material Size

The material that is used in this experiment for creating a sediment suspension is

glass beads (also known as Vaquasheen) acquired from the Wheelabrator Group Ltd.

The glass beads have bulk density of 2650kg/ m3 and can be described as reasonably

spherical (Figure 5.2).

Figure 5.2 A microscopic image of a

sample of the glass beads employed in the

experimental investigation. Eighty % of the

beads are spherical.

Three different size grades of glass beads (Grade 0-100, Grade 53-105, and Grade

75-150) were acquired from the supplier. The size distribution of each grade was

determined using a Malvern Mastersizer 2000E grain sizer, which can measure

materials within the size range of 0.1 to 1000 µm with a high degree of accuracy

(±1% on the mean size). The Malvern Mastersizer is a laser diffraction system,

which is a technique that has been widely accepted across a wide range of

applications as a means of obtaining rapid, robust particle size data.

It should be pointed out that the Malvern still relies on its user to provide

information on the nature of the sample (monodisperse or bidisperse) in order for it

to accurately convert the light scattering data into the particle size distribution. The

Malvern contains three mathematical models for calculating three different types of

samples. The default model is called the General Purpose model, which is suitable
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for calculating natural sediments which are generally coarser than those in

laboratory flows (particle diameter greater than about 300 m). The second model is

called the Single-Narrow model which is appropriate only for measuring a fine

mono-disperse sample (particle diameter less than about 300 m). The last model is

called the Multiple Narrow model which is intended for measuring samples that

have more than a single peak in the size distribution (e.g. bi-modal materials). A

study was carried out to determine the sensitivity of the results obtained in the

different models. Figure 5.3(a) shows the measurements for the cumulative size

distribution of Grade 0-100 and 53-100 using the General Purpose and the single-

mode Narrow models. Indeed the latter model predicts a significantly narrower size

range which is in better agreement with the information obtained from the supplier.

Therefore our subsequent measurements are all performed using only the single-

mode Narrow model. Also we found that only the Multi-Narrow model is able to

determine bi-modal distributions. Thus, for cases where the nature of the distribution

is not known, the Multiple Narrow model is preferred.

Figure 5.3 Cumulative volumetric percentage of (a) Grade 0-100 (black) and Grade 53-105

(red), that is calculated using the General Purpose model (solid line) or the Narrow

model (dashed line), and (b) Grade 0-100 (2) taken from three different sub-samples,

calculated based on the Narrow Model.

The size distribution of the three grades (0-100, 53-105, and 75-100) of glass beads

were determined using the Malvern. Since two bags of Grade 0-100 were acquired,

separate measurements were performed on each bag of glass beads. We have found

that they have significantly different size distributions (their mean grain size differ

by 10µm). Thus, the material from the second bag is named as Grade 0-100(2).
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Figure 5.4(a) shows the cumulative size distributions of each grade. Although there

are overlaps in the size range of different grade, all grades have a distinctive average

size, standard deviation and mean settling velocity (see Table 5.1). The material

from each bag is decanted into multiple smaller containers prior to use. As a result,

there is a possibility that each container has a different size distribution due to size

fractionation in the bag. To verify this possibility, separate measurements were

performed on a grade of glass beads from different containers. Fig. 5.3(b) shows

three measurements performed on Grade 0-100(2) from three separate containers;

they all have similar size distributions. Thus this implies that the fractionation

effects within the bag are unlikely to be significant.

Table 5.1 The size and hydraulic characteristics of each material investigated

Name

Mean
diameter

࢖

Standard
deviation

Mean
diameter’s

settling

velocity, ࢙

Mean settling
velocity*, =࢛ / us

(µm) (µm) (mm/s) (mm/s) -

Grade 0-100 64.6 18.4 3.67 4.12 1.09

Grade 0-100 (2) 74.6 15.4 4.84 5.17 1.07

Grade 53-105 86.1 13.4 6.06 6.41 1.04

Grade 75-150 109 16.4 10.41 10.98 1.02

Sieved 45-63 57.9 7.9 2.92 3.07 1.02

Sieved 63-75 71.1 10.5 4.42 4.65 1.02

Sieved 75-100 86.7 9.6 6.6 6.86 1.01

Sieved 105-125 115.2 10.8 11.5 11.98 1.01

* ௦ where is particle volume.

It is worth commenting on the accuracy of the Malvern measurements. As

mentioned above, the measurement obtained using the Malvern is accurate, given

that the particles are all approximately spherical. Unfortunately, 20% of the material

in this case is non-spherical and varies in shape (from slightly deformed to rod-like

particle), which slightly alters the measured size distribution. While it difficult to

determine the exact error incurred by the non-spherical particles (which requires

knowing the size distribution of the non-round material), it is possible to assess the

consistency of the error by repeating the measurement on any grade of glass beads.

We have shown in Figure 5.3(b) that all the measurements from the three separate

samples of Grade 0-100 (2) match well, and this implies that the error is consistent.
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In addition, the results obtained from Malvern agree well with the information

provided by the supplier, except for Grade 0-100(2), which are taken to indicate that

the Malvern measurement is reliable.

Figure 5.4 Cumulative volumetric percentage of the (a) original material (Grade 0-100,

Grade 0-100(2) Grade 53-105, Grade 75-150), (b) the material sieved from the Grade

0-100 (sieved 45-63, 63-75 and 75-100), and (c) the material sieved from Grade 75-

150 (sieved 106-125), as a function of the grain sizes, determined using the Malvern

Mastersizer 2000E. The vertical dashed-lines represent the sieve sizes.

In order to obtain more material with different mean sizes, the original materials

were sieved through different interval sizes. Grade 0-100 was sieved through grid

sizes 75, 63 and 45 µm (first 75µm, followed by 63µm and finally 45µm) to create

three sub-distributions of different sizes, collected on the 75µm, 63µm, and 45µm

sieves respectively. For convenience, they are named according to their sieve sizes,

namely Sieved 75-100, Sieved 63-75 and Sieved 45-63, respectively. Grade 75-150
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was sieved through a 125µm sieve, and then a 106 µm sieve to create a relatively

coarse material. The material collected on the sieve 106 is named as Sieved 106-

125. All sieving was performed manually. It worth mentioning that in this case

manual sieving is found to be significantly more effective than sieving via a shaker

(which is a more convenient method) because the glass beads are prone to become

trapped in the sieve mesh and thus block any smaller material that still remains in

the sieve from passing through thus resulting in the sieving being ineffective unless

the trapped sediment is cleared. An effective sieving can only be achieved by

constantly clearing the trapped sediment from the sieve, and it is more convenient to

do this by manual sieving than in the shaker which requires the unloading and

reloading of the sieve back into the shaker.

All the sieved materials were analysed using the Malvern Mastersizer to determine

their size distribution. Figure 5.4 (b & c) shows the cumulative size distribution of

the Sieved 45-63, 63-75, 75-100 and 106-125. It can be seen that the Sieved 45-63,

75-100 and 106-125 have 10-20% of sediment that falls outside of the upper and

lower sieve size domain. This indicates that some of the materials that are finer or

coarser than the size of the sieve are still present in the sieved material. This is likely

to be due to the combination of the incomplete sieving and the slightly inaccurate

representation of the actual size distribution of the particles due to the fact that the

material has non-spherical particles. In addition, it is surprising to find that the

sieved 63-75 has more than 30% of sediments that falls outside of its upper and

lower sieve size and this means that there is only about 40% of the material that has

a size within the sieve size range. Nonetheless, sieving results in a smaller size

standard deviation and the ratio of the settling velocity of the material to that of its

average diameter (see Table 5.1).

5.3.2 Experimental Procedure

Designing the experimental procedure largely depends on the kind of measurements

that need to be taken during the experiment. In this work, three types of

measurements are taken, namely the propagation of the front of the flows, the

deposit thickness profile of the flows and the deposit grain size characteristics.

The measurement of the propagation of the front of the flow is relatively simple.

The only equipment needed is a video camera, which is placed on an arm that is
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according to the speed of the flows. A length scale which is placed on the surface of
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procedure is performed at multiple downstream distances and the extracted mass is

stored in separate pots. Then the pots, which contains the wet sediment, are left to

dry in the oven before their weight is determined. The advantage of this approach is

that it is accurate since only small amount of the sediment is lost during the

extraction. The disadvantage of this technique is that it is somewhat laborious if

there are many locations to be measured. More recently, Rooij & Dalziel (2001)

have devised a more sophiscated method based on electrical resistance that not only

measures the deposit thickness but also the rate of the deposition during the

development of the flows. While this method is clearly more superior to the

extraction method, its setup is complicated and expensive and it has not been

employed in this work.

To determine the grain size of the deposit, we resort to analysing the size

distribution of the extracted deposit using the Malvern Mastersizer. The procedure in

using the Malvern has been discussed in the previous section. The important step

that needs to be taken note of is that the dried sediment needs to be rehydrated

before it can be analysed using the Malvern Mastersizer. The purpose of doing this

is to break up any particle agglomeration that occurs when the particles are dried and

thus returning the sample to its original state of condition. An alternative approach

for determining the size distribution was employed by Barker (2005) where he

extracted a solidified deposit and then analyse its structure through a scanning

electron microscope. However, this approach is considerably more complex and

time consuming and therefore it has not considered in this thesis.

It is important to outline the details of the exact sequential steps taken during the

experiment and these are described as follows:

i. Flume Cleaning and Water Filling. First, the flume is flushed with water to

remove any dirt from the flume. After that, the flume is filled with tap water to a

depth of 0.2m.

ii. Video camera, material and lock-gate. The video camera is switched on. The

amount of material needed for the experiment is determined using a scale. The

lock gate is inserted into the flume and the weight connected to the lock-gate is

locked and suspended to prevent it from pulling the lock-gate up.

iii. Stirrer, mixture suspension, lock-gate release, video-recording. The stirrer is

switched on and the speed is adjusted to 1500 RPM. The sediment is then poured
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into the lock box and is allowed to be stirred for a duration of 20 to 30 seconds.

After that, the stirrer is switched off and without any delay, the weight is release

to pull the lock gate out from the flume. Then the camera is manually moved to

record the advancement of the head of the flow. The recording is performed until

the flows have terminated.

iv. Bed thickness sampling. After the recording has been completed, the flume is

left untouched for 5-10 minutes to allow all fine materials that are still

suspended in the ambient water to completely settle. After that, the pipe at the

weir is opened to partially drain the water out from the flume. Then the bed is

ready to be sampled. The sediment is extracted from the bed for every 10cm

downstream locations along the central plane of the bed, from the inside of the

lock box to the termination point of the flow. The extracted sediment is

transferred to a separate pot. The pots with wet sediments are placed in the oven

for drying. After the sediments are dry, they are weighed to determine the mass

of the sediment.

v. Bed grain size measurements. The dried sediment is rehydrated with tap water

and stirred vigorously for a few minutes. The mixture is then analysed using the

Malvern Mastersizer 2000E to determine the size distribution.

5.3.3 Measurement Technique Verification

It is important that verification is carried out to ensure that the initial conditions for

the experiment are well-constrained and the adopted measurement techniques are

reliable and accurate. One important aspect of the initial conditions that needs to be

verified is the concentration of the mixture in the lockbox. It is assumed that the

mixture is in a uniform suspension before it is released. Hence, the stirring operation

confirm to produce a uniform suspension in the lock box. We carry out this

verification by employing the highest mass concentration (5%) and the coarsest

particle (168µm) and a mixing speed of 1500RPM. If a uniform concentration can

be attained with the coarse material, then it is reasonable to assume that a similar

uniform mixture can be achieved with lighter particles and flows with smaller

concentrations. After the mixture is prepared, some mixture in the lock box is

extracted at intervals of 2cm from the bottom to the top of the lock box using a

syringe. The extracted mixture is then transferred into separate pots and weighed.

The clear water in each pot is drained out and the wet sediment left in the pot is left
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for flow G69. In addition, the concentration of the flows in Series C is considerably

low, which is equivalent to the two lowest concentrations considered in Series B.

Table 5.2 Series A Experiments

Flow Material Measurement* Run-out distance (m)

UNS64 Grade 0-100 P, DM, DS 3.85

UNS74 Grade 0-100 (2) P, DM 3.05

UNS83 Grade 53-105 P, DM 2.35

UNS109 Grade 75-150 P, DM 1.95

S58 Sieved 45-63 P, DM, DS 4.05

S71 Sieved 63-75 P, DM, DS 3.25

S87 Sieved 75-100 P, DM, DS 2.55

S115 Sieved 106-125 P, DM, DS 1.85

*P = front propagation, DM = deposit mass areal density, DS = deposit grain size

Table 5.3 Series B Experiments. Each flow used Grade 0-100(2)), but in differing initial
concentrations.

Flow Volume, % (mass,g) Measurement* Run-out distance (m)

C025 0.25 (70g) P, DM 1.25

C050 0.5 (130g) P, DM, DS 1.55

C100 1 (260g) P, DM, DS 1.95

C150 1.5 (390g) P, DM 2.2

C200 2 (540) P, DM 2.55

C280 2 (750) P, DM 3.05

C380 3.8 (1000g) P, DM 3.2

C500 5 (1300g) P, DM 3.55

Table 5.4 Series C Experiments.

Flow
Concentration, %

(mass, g)

Particle mean size,

µm
Reference

G69 0.35 (180) 69 Gladstone et al. (1998)

G25 0.35 (180) 25 Gladstone et al. (1998)

G37 2 (96.5) 37 Gladstone & Pritchard (2009)

G13 2 (96.5) 13 Gladstone & Pritchard (2009)

D37 0.275 (60) 37 DeRooij & Dalziel (2000)
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Figure 5.8b The Stoke settling velocity

of the particles used in Series A (red

circle) and Series C (black circle) as a

function of the particle sizes.

5.5 Experimental Result and Discussion

5.5.1 Flow Images

The difference in the appearance of the flows at different concentrations and

carrying different grain sizes is discussed in this section. Figure 5.9 shows a

photograph of the head and the body of the Series A flow S58 at t = 10, 20, 30 and

40s. At t = 10s, the head of the flow is characterized as having a sharp tip that is

located very close to the lower boundary, and behind the tip, the thickness of the

flows gradually increases. Further, the surface of the flow consists of multiple

billows that appear due to the turbulent shear between the rapidly advancing flow

and the quiescent ambient fluid. These billows are known as the Kelvin-Helmholtz

instabilities. It can be seen that the colour of the flow is uniformly white, which

suggests that the flow everywhere exceeds the necessary concentration threshold.

This also suggests that the sediment is well-mixed within the flow and this is

presumably due to the strong turbulence and swirl within the flow. At t = 20s, the

size of the billows on the surface of the flows has increased, and the number of

billows is reduced. This indicates that the intensity of the Kelvin-Helmholtz

instabilities has reduced, and this is possibly due to the decrease in the turbulence

within the flow and also the decrease in the speed of the flow. In addition, the

intensity of the colour at the back of the flows has reduced and this indicates that

concentration stratification maybe significant. At t = 30s, the number of the billows

on the top of the flows has decreased, and this may indicate a further dissipation in

the turbulence. Also, the intensity of the colour is further reduced, indicating that the
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flows have lost a significant amount of sediment through deposition. The reduction

in the colour intensity with the increase in the flow height strongly suggests that

sediment stratification has developed at this stage. This is possibly because the

turbulence intensity in the upper part of the flows has became lower than that in the

lower part of the flow, and consequently the upper part of the flows has lesser

capacity to keep the sediment in suspension than that in lower part of the flow.

Further, the sediment stratification could possibly be due to turbulent diffusion,

which is a mechanism that acts to disperse the sediment away towards a lower

concentration region, analogous to the turbulent diffusion observed in substrate

flows. At t = 40s, the tip of the flows have became blunt and a thin layer of low

concentration flow has appeared at the top of the flows. As a result, the flow

concentration stratification in the body of the flow is also thought to have increased.

The flow carrying coarser material (S115) evolves in a similar manner as that

described above but its transformation from the turbulent-mixing stage to the

diffusion stage appears faster than that of the flow S58 which is assumed to be due

to its higher rate of deposition. As depicted on Figure 5.10, the flows are turbulent at

t = 5s and 10s but appear to have experienced significant diffusion at t = 15s. This

shows that the decay in the turbulence in this flow is significantly faster than that in

flows S58. By the time t = 20s, the flow has already lost most of its sediment and it

is close to its termination. Other flows from Series A, which have particle sizes

between that of S58 and S115, exhibit characteristics that lie between the extreme

shown by the results of S58 and S115.

The flow of low-concentration C050 of Series B, contrary to the above description,

apparently already exhibits strong turbulent diffusion at early times as shown in

Figure 5.11 (t = 10s). This is thought to be because this flow is relatively slow and

hence results in the turbulence mixing being ineffective. Without mixing, the slow

expansion of the size of the flows may be enhanced by the molecular diffusion. As

the time elapses, the turbulence decays and the size of the flows also reduces (see t =

20, 30 and 40s in Figure 5.11).

In summary, any surged-typed fixed volume turbidity currents may go through the

following three phases:



132

i. A rapid elongation of the flow accompanied with vigorous turbulent mixing

or swirl within the flows, which results in a uniform concentration within the

flow. Highly irregular surface features (Kelvin Helmholtz instabilities)

appear on the upper boundary of the flow and is caused by the intense

shearing between the rapidly advancing flows and the quiescent ambient

flows.

ii. A decrease in the number of billows at the top of the flows which implies a

decrease in Kelvin Helmholtz instabilities, and the onset of the sediment

stratification, is possibly due to the decrease in the flow turbulence intensity.

iii. The overall flow concentration decreases due to the sediment deposit.

Stronger concentration stratification develops, possibly because the

turbulence in the upper part of the flows has significantly decreased, and also

turbulence diffusion may be responsible for increasing the migration of the

sediment towards lower concentration region.

The grain size and concentration may affect the duration of each phase. Turbulent

mixing is less effective in low-concentration flow due to the low velocity or flows

carrying coarse grain due to the large particle settling velocity.

Figure 5.9 Photographs showing the flow of S58 from Series A at t = 10, 20, 30 and 40s

(top left, top right, bottom left, bottom right, respectively).
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Figure 5.10 Photographs showing the flow of S115 from Series A at t = 5, 10, 15 and 20s

(top left, top right, bottom left, bottom right, respectively).

Figure 5.11 Photographs showing the flow of C050 from Series B at t = 10, 20, 30 and 40s

(top left, top right, bottom left, bottom right, respectively).

Figure 5.12 Photographs showing the flow of C500 from Series B at t = 5, 12, 23, 58 (top

left, top right, bottom left, bottom right, respectively).

5.5.2 Front Propagation

Figure 5.13(a) shows the rate of the propagation of the front of the flows of Series

A. All flows initially have a similar propagation speed, which is not surprising since
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all flows have similar concentration and the initial velocity of the flows is

determined by the initial buoyancy force of the flows. It has been established that

the initial velocity of the front of a gravity current ௙ is described by the relation

(e.g. Benjamin, 1968): ே
ᇱ ଴.ହ where is the Froude number, h is the

flow height and is the reduced gravitational acceleration (see equation 2.1). As

the flows propagate forward, the front of the flows lose the buoyancy force through

sedimentation but more material is continuously being fed from the body of the

flows to replenish the loss. At one point, when the flow has lost most of its

sediment, such that the loss of the sediment at the front of the flow exceeds the

feeding rate from the body of the flows, the speed of the flows starts to decrease.

This is the moment that the effect of grain size on the speed of the flows is

manifested. Clearly, the coarser material the flow carries, the earlier a flow

experiences a decrease in speed. As shown in Fig 5.13(a), flows S115 and UNS109

are the first to experience a divergence from (i.e., their speed becomes slower than)

the rest of the flows at t = 15s. This is followed by UNS83, S87, UNS74, S71,

UNS64 and S58, which carries the finest material and has the largest propagation

distance in Experiment A. In addition, the decrease in the speed of the flows

becomes more gradual for flows carrying finer material. As shown in Fig 5.13(a),

flow S115 comes to an abrupt end, whereas flows UNS64 decrease slowly. This

reflects the important role of the turbulent diffusion has on flows carrying fine

material. Turbulent diffusion disperses the fine materials upwards, reduces the flow

sedimentation rate and extends the propagation of the flows.

An interesting characteristic was noted in the propagation profile of S58. It gains

speed at t = 20s which makes it propagate significantly further than UNS64 despite

its average size being only slightly smaller than that of UNS64, although S58 has a

smaller size range. The reason for this phenomenon is unclear and can only be

speculated about. It is possible that some of the deposited material has been re-

entrained into the flows which give the flow an additional buoyancy force to

propagate further. In addition, it is possible that the turbulent diffusion has dispersed

some sediment upwards and thus reduces the rate of deposition from the flow once

turbulent mixing ceases to be effective.

The effect of the concentration on the rate of the front propagation profile of the

flows is shown in Figure 5.13(b). As expected, the discrepancy between the flows in
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Figure 5.13 The rate of propagation of the front of the flows from (a) Series A, and (b)

Series B.

5.5.3 Deposit Mass Density

Fig. 5.14 (a & b) show the deposit mass density profile of the flows from Series A.

All flows exhibit a longitudinal profile of decreasing mass, except for the deposit

inside the lock box where an initial increase in mass is shown by some flows. As a

flow propagates downstream, it loses its mass and its rate of deposition also

decreases. Thus it is not surprising that the mass density decreases downstream.

Also, since gravity currents evolution approximates to a series in of rectangular

shapes in a horizontal channel of greater length and lower height, the duration of the

flows upstream is longer than that at the downstream. Therefore naturally the flow

deposits more mass at the upstream than it does at the downstream. On the other

hand, the reason why the deposited mass inside the lock box initially increases is

less obvious, because the flow inside the lock box is influenced by the removal of

the lock gate and the initial conditions and these effects may vary with flows

carrying different grain sizes. The reason may well be because some deposited

materials are entrained back into the flows. The difference between the flows in

Series A is clear. Flows carrying coarse material have a large deposit mass upstream

but low deposit mass downstream whereas the flows carrying fine material exhibit

the opposite effect. The reason for this is because the coarse particles have a large

settling velocity. A difference can be noted between the deposit profile of the flows

carrying coarse material and that of fine material. The profile of the former is almost
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Figure 5.14 The deposit mass density as a function of the downstream distance from the

end wall from (a & b) Series A, and (c) Series B. The blue lines are the

approximations to the deposit of flows

the flows experience an abrupt decrease in the deposit mass.
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Figure 5.15 The distance from the lock gate for the 25th, 50th, 75th, 95th and 99th percentile of

the deposit mass distribution as a function of (a) the mean size of the material carried

by the flows from Series A, and (b) the initial volumetric concentration of the flows

from Series B.

are drawn on the profile for the flows of 5% concentration and the trend in the

results suggests that the effect could be yet more pronounced in flows with

concentration greater than 5%. The implication that can be drawn from this

observation is that as the concentration of the flows increases, a greater proportion

of material will be deposited upstream.

It is possible to synthesise the results of Experiments A and B into a more

meaningful result. To better illustrate the influence of the particle size and

concentration on the deposition, the positions of the 25th, 50th, 75th, and 99th

percentile of the deposit mass density of the flows (denoted as P25, P50, P75 and

P99 hereafter) from Experiments A and B are plotted as a function of the particle

average size and the particle concentration, as shown in Fig. 5.15 (a & b),

respectively. It can be observed that the P25, P50, P75 and P99 decrease with an

increase in particle size, linearly for P25 and P50, but exponentially for P75 and

P99. This result implies that the run-out distance increases exponentially as the grain

size decreases. On the other hand, increasing the concentration of the flow increases

P25, P50, P75 and P99, linearly for P25 and P50 and convexly for P75 and P99. The

results suggest that there is a threshold where increasing the concentration no longer

increases run-out distance of the flows.

0

1

2

3

4

5

50 70 90 110

do
w

ns
tr

ea
m

di
st

an
ce

(m
)

mean grain size, d50 (µm)

25th
50th
75th
95th
99th

(a)

0

1

2

3

4

0 2 4 6

do
w

ns
tr

ea
m

di
st

an
ce

(m
)

concentration (%)

25th
50th
75th
95th
99th

(b)



140

5.5.4 Deposit Grain Size Distribution

In this section, we describe the deposit grain size distribution of several flows from

Series A. The left hand side of Fig. 5.16(a – e) shows the actual grain size

distribution in the deposit of the flows UNS64, S58, S71, S87 and S115,

respectively, at multiple selected downstream distances. It can be observed that only

flows UNS64 exhibit a grain size distribution that change significantly downstream

(the grain size becomes increasingly coarser and the size range also increases). On

the other hand, flows S58, S71, S87 and S115 all only exhibit slight changes in the

grain size distribution. Only approaching the distal deposit, these flows show

noticeable changes in the grain size distribution. For instance, a drastic decrease in

the volume of the mean grain size in the deposit of flows S71 from downstream

distance x = 2.8 to 3.1m. Note that the deposit mass at this distance has already

diminished significantly, which makes the change in the grain size relatively

unimportant.

The change in the grain size distribution with downstream distance in the deposit of

these flows can be better studied from the plots of the D20, D50 and D80

distribution in the deposit, where D20, D50 and D80 represents the value of the

grain size at the 20, 50 and 80 percent of the actual grain size distribution as shown

in the right hand side of Fig. 5.16 (f – j). All flows exhibit only a slight decrease in

D20, D50 and D80 from upstream to the downstream, except for flows UNS64

which show a significant decrease in its grain size. Numerically, the maximum

decrease in D20, D50 and D80 for flows S58, S71, S87 and S115 is within 5µm,

whereas that of flow UNS64 drops as much as 40µm. Clearly there is a stark

contrast between the results obtained for UNS64 and the rest of the flows and this

begs the question as to why. The reason can only be determined by seeking the

difference in the initial conditions of the flows since this consequently changes the

dynamics of the sediment transport. In this regard, aside from the value of the

average grain size, which is not possibly the reason since the size of UNS64 does

not differ significantly from the sizes of the rest of the flows, the grain size range is

the only initial condition UNS64 does not have in common with the rest of the

flows. Clearly UNS64 has a greater particle size range than the rest of the flows

presented in this thesis. As shown in Table 5.1, UNS64 has a standard deviation of

18.4 whereas the rest of the sieved flows have a standard deviation less than 11.
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Figure 5.16 (Left figure; a-e) The deposit’s grain size distribution at multiple selected

downstream locations. (Right figure; f-j) The 20th (O), 50th () and 80th (+) in the

deposit’s grain size distribution as a function of the downstream distance from flows

(a) UNS64, (b) S58, (c) S71, (d) S87, and (e) S115. In each figure, the deposit mass

density distribution (red diamond) is plotted to correlate it with the deposit size

distribution.

Another useful plot is to correlate the percentage change of D25, D50, D75 and D99

(relative to the initial size) to the standard deviation of the size of the material as

shown in Fig. 5.18. If the standard deviation is smaller than about 11, the change of

all the cases D25, D50, D75 and D99 is negligible. When the standard deviation is

18, a significant change is observed. However, the figure is somewhat incomplete

without more data being available between the standard deviations of 11 and 18,

which can only be accomplished in the future investigations due to the time

constraint imposed on the current work.

Figure 5.17 The

percentage ratio of

the mean grain size
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Figure 5.18 The

percentage ratio of the

mean grain size to the

initial mean grain size as

a function of the

standard deviation of the

initial size distribution

of the glass beads

carried by the flows

S58, S71, S87, S115

and UNS64.

5.6 Numerical Modelling

Further investigations using the Mixture Model have been performed with the aim of

resolving the following issues:

(i) We have not found why the Mixture Model predicts an excessive dispersive

effect in all the flows (G69, G25, G37, G25 and D37) in Series C, as shown in

Fig. 3.11(a – e) in Chapter 3. In terms of the initial conditions, the flows for

Series C have finer particles and lower initial concentrations than the flows

considered in Series A and B. The question is, how does the prediction of the

Mixture Model, both without and with turbulent dispersion (TD), compare

with the experimental data in this case? Answering this question should give

us an assessment of the performance of the Mixture Model in predicting

turbidity current behaviour over a wide range of initial conditions. In turn, this

should then allow us to be able to effectively identify the source of any error

within the model.

(ii) The grain size distributions in the deposits of the flows carrying the sieved

materials S58, S71, S87 and S115 are intriguing. Granted that the Mixture

Model is able to accurately predict the deposit mass density distribution of the

flow, does it predict the same grain size distribution in the deposit of the

aforementioned flows? If so, can the Mixture Model explain the subdued

changes in the deposit grain size distribution in terms of the dynamics of the

sediment transport?
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5.7 Model Details and Assumptions

The details of the governing equations of the Mixture Model and the treatment of the

boundary conditions are described in Chapter 3 and are not repeated here. However,

the treatment on the particle size in the numerical modelling is slightly different.

Instead of considering only the mean size of the particle, the particle size

distribution is divided into five non-overlapping size ranges of equivalent volume

(i.e., 20% for each size range) and the mean value of each size range is considered in

the model. While this approach results in an increase in the computational costs, it is

more accurate and also takes into account particle fractionation within the flows.

Furthermore, a round of validation on the mesh size and time step needs to be

performed for the flows in question before the numerical results can be further

analysed. This is discussed further in the next section.

5.8 Simulation Validation

An investigation was performed to determine a suitable value of the mesh size and

time step for the current problem. Simulations with different mesh sizes and time

steps were performed. Since it is time consuming to investigate the sensitivity of the

mesh size and time step to all the initial conditions of the flows, the test was only

performed on flows C500. Because the behaviour of the flows does not vary

significantly, the mesh size and time step that works for flows C5 is expected to

work for other flows as well.

The mesh sizes considered here are 800 x 20, 1200 x 30, 1600 x 40, 2000 x 50, and

2400 x 60 (the number of cells along the horizontal axis of the domain times the

number of cell along the vertical axis of the domain) (see Table 5.5). The

aforementioned numbers represent the mesh size in the internal domain. Near to the

wall, in order to resolve the boundary layer profile of the flows, very small mesh

sizes are employed. Figure 5.19 shows an example of the mesh size distribution in

the domain. All four meshes were used to simulate C500 using FLUENT. The time-

step was kept constant at 0.01s. It is assumed here that the choice of the time-step

would not affect the rate of convergence of the calculation in any mesh considered

above. (How the results from each mesh size change with different prescriptions of

the time-step is investigated below). Figure 5.20 shows the numerical prediction on

the deposition of mass from flow C500 using different mesh sizes. It is observed that
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decreasing the mesh size from 800 x 20 to 1600 x 40 slightly changes the prediction

on the deposit mass between x = 1 and 2m, where the smaller mesh size predicts a

slightly higher value of deposit mass. The changes in this region become negligible

when the mesh size is further decreased to 2000 x 50 or 2400 x 60. On the other

hand, between x = 0 and 1m, we can observe an increase in the oscillations in the

deposit mass profile when the mesh size is decreased (one, two and three oscillations

are predicted in the results of simulation using mesh 1600 x 40, 2000 x 50, 2400 x

60). It is uncertain whether further decrease in the mesh size would increase the

number of oscillations beyond three. It is postulated here that the choice of the value

of time step may influence the occurrence of the oscillations. Nonetheless, it is

found that the overall change in the solution becomes relatively small when the

mesh size is decreased further from 1600 x 40. Hence it can be concluded here that

the 1600 x 40 is maybe the most efficient mesh size in this case.

Table 5.5 Detail of different mesh used in this study

Name Main Domain Cell Size (m) Total No. Cell in the domain

800 x 20 0.01 x 0.01 32,000

1200 x 30 0.006667 x 0.006667 56,400

1600 x 40 0.005 x 0.005 80,000

2000 x 50 0.004 x 0.004 130,000

2400 x 60 0.00333 x 0.00333 177,600

Figure 5.19 Schematic diagram showing the mesh distribution in the main domain and the

boundary layers.
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Figure 5.20 Prediction on the final mass density profile of flows C500 from simulations

using mesh size 1200 x 20, 1600 x 40, 2000 x 60, and 2400 x 80 and experiments

(circle). The time step value is 0.01s.

Using the mesh size 1600 x 40, further simulations are performed using different

time steps in order to investigate whether the value of time step has an influence on

the characteristics of the oscillations predicted in the proximal deposit mass when

small mesh size is used. The value of the time step used in the simulation in the

previous investigation (0.01s) was both decreased and increased. A value of the time

step as large as 0.05s and as small as 0.0005s was considered. Generally it is

expected that the solution should become increasingly inaccurate with an increase in

the size of the time step, whereas it should converge into a final solution with a

decrease in the time step. Figure 5.21 shows the prediction on the final deposit

profile of flows C500 using Δt = 0.05, 0.04, 0.025, 0.015, 0.01, 0.002 and 0.0005s,

compared with the experimental data. It is observed that increasing Δt from 0.01s to

0.04s does not result in significant changes to the solution. Some mild oscillations

are predicted in the upstream region when a large time step is used (Δt = 0.025s and

0.04s) but they are still very close to each other, in general. Further increasing Δt to

0.05 causes a convergence difficulty in the calculation and this subsequently results

in the solution deviating significantly from the experimental result. Thus we

conclude that 0.04 is the limit of the largest value of the time step where accurate

solutions can be obtained in this case. On the other hand, decreasing the value of Δt

to 0.002s yields an unexpected observation. Instead of improving the solution, the

model under-predicts the deposit mass density inside the lock-box. Away from the

lock-box, the mild oscillations that appear in the solution with a large time step
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becomes significantly large, which is not observed in the experiments. On further

decreasing the time step to 0.0005s the magnitude of the oscillations increases and

thus reduces the accuracy of the solution. These observations suggest that the model

experiences a numerical instability if very small time steps are employed and the

instability increases with a decrease in the time step. The exact cause for the

numerical instability is not clear but it can be speculated that it is likely due to a

correlation between the mesh size and the time step. In order for the solution to be

accurate, the mesh size must be small enough to predict the spatial change in the

solution that occurs at a small time step. If the change in the solution is smaller than

the mesh size, the model may over-predicted or under-predict the solution. In short,

there is a lower limit to the value of the time step for a specific mesh size in a

specific problem in order to obtain realistic solutions. In this case, an estimation of

the change in the flow to the mesh size can be made by comparing the mesh size ௠

to the distance the flows propagates within the time step ௙ (the velocity of the flows

multiplied by the time step). The condition is that ௠ must be smaller than ௙ in

order for the mesh to be able to accurately describe the change in the flow. The

above speculation can be validated by performing another round of simulations with

different values of the time step but on a coarse mesh size 1200 x 20. In this case,

the model should predict a numerical instability at a time step greater than 0.002s. A

series of simulations of the flows C500 have been carried out on the mesh 1200 x 20

using time steps ranging from 0.05 to 0.0005s and the results obtained are plotted in

Fig. 5.23. It can be observed that a numerical instability is predicted when a time

value as large as 0.01 is employed. Thus we conclude that a small mesh size must be

used if a small time step is prescribed in order to obtain a stable solution. For a fixed

mesh size, there exists a range of time steps where the solution is stable and

accurate. Employing a time step that is too large results in convergence difficulties

in the calculations, whereas employing too small a value for the time step induces

numerical instabilities. This suggests a multi-variate approach in mesh size and time

step is needed to optimise the modelling setup.
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Figure 5.21 Prediction on the final deposit mass density of flows C5 from the Mixture

Model using mesh size 1600 x 40 and time step = 0.0005, 0.002, 0.005, 0.01, 0.015,

0.025, 0.04 and 0.05s, and experiment (circle).

Figure 5.22 Prediction on the final deposit mass density of flows C5 from the Mixture

model using the mesh size 800 x 20 and time step = 0.002s, 0.005s, 0.01s, 0.02s, 0.04

and 0.05s.

5.9 Simulation Result

Having established the appropriate mesh size and the time step for the model,

simulations can be performed for the rest of the flows representing Experiment A

and B using similar mesh sizes and time steps. As mentioned before in Section 5.6,

the numerical investigations are carried out with two aims,
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(i) To verify the accuracy of the Mixture Model incorporating turbulent

dispersion in predicting the behaviour turbidity currents with relatively high

concentration (2 to 5%) and carrying coarse particles, and then compare the

results obtained with modelling the Series C flows.

(ii) To seek an explanation for the seemingly unfractionated grain size distribution

in the deposit observed in some experiments.

To achieve aim (i), the numerical results from models both without and with TD, for

flows from Series A and B are acquired in a similar manner as the results obtained

for the flows from Series C. Both the numerical prediction on both the deposit mass

density profile and the propagation of the front of the flows are then compared with

the experimental data and discussed (see sections 5.9.1 & 5.9.3). A parameter λ is

devised to quantitatively describe the goodness of the fit between the experimental

data and the numerical data on the deposit mass density profile. Using all the results

from Series A, B and C, we are able to plot λ from the numerical results in both

models for a range of particle size and flow concentrations. This analysis allows us

to assess the performance of the Mixture Model over a wide range of initial

conditions. To further understand the effect of TD in the flows with different initial

conditions, the internal structure of the flows (the distribution of the concentration,

turbulence structure and TD inside the flow) is discussed (see sections 5.9.4 to

5.9.8).

To achieve aim (ii), the numerical prediction of the deposit mass profile for each

size class is compared with the experimental data and the discrepancies in the

comparison are discussed (see section 5.9.2).

5.9.1 Deposit Total Mass Density

Fig. 5.23 (a – h) shows the prediction of the Mixture Model (black and red lines) and

the experiments (circle) on the deposit mass density profile of the flows from Series

A, where the black lines represent the numerical solution without TD and the red

lines represent the numerical solution with TD, respectively. Firstly, we discuss the

numerical results obtained from the Mixture Model without TD (black lines). The

model predicts oscillations in the profiles of all flows for Series A (mostly in the

upstream or first half of the profile). The first oscillation has the greatest magnitude

and the magnitude declines with distance downstream. The magnitude of the
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oscillation increases with an increase in particle size. The oscillation is clearly a

numerical artefact and is thought to occur due to an inappropriate prescription of the

value of the time step (Δt = 0.002s), as discussed in the previous section. Time steps

larger than 0.002s must be prescribed. This shows that the numerical instabilities

vary with the flows of different initial conditions and in this case a larger time step

size should be used for flows carrying coarse particle in order to eliminate the

oscillation. Regarding the comparison between the numerical results and the

experimental data, the simulations always over-predict the deposit mass upstream

and under-predict deposition downstream with the discrepancy larger for flows

carrying finer material.

The numerical results obtained using the model with TD (red lines) can now be

discussed. Contrary to the model without TD, the model predicts little to no

oscillations in the deposit mass profile. Thus no oscillations are predicted for flows

carrying the fine particles whereas slight oscillations are predicted for flows carrying

coarse particles. Regarding the comparison between the numerical results and the

experimental data, a significant improvement is achieved. This shows that the TD

has pushed the numerical results closer to the experimental data and may be an

essential mechanism that should be incorporated in the model. TD increases the

sediment diffusion in the flow, and this decreases the rate of sedimentation and thus

causes more sediment to be deposited downstream. Clearly, this conclusion is

inconsistent with the observations made on the flows of Series C, which had low

initial mass and carried fine particles (see Figure 3.11 in Chapter 3). At this point,

we can only conclude that the TD is essential for flows of higher initial mass and

carrying coarse particles but it induces a numerical error if it is used for predicting

flows with a low initial mass and carrying fine particles.

Although the numerical results are significantly improved by including the effect of

TD in the model, there are slight discrepancies between the numerical results and the

experimental data. The numerical model still always predicts more deposit mass in

the upstream regions and less deposit in the downstream regions than do the

experimental data. Experimental error may contribute slightly to this discrepancy.

For instance, in flows S58 and UNS83, the measured deposit mass is 6-7% less than

the original mass; this is thought to be due to human error. However, we are still

inclined to postulate that there are physical mechanisms that are responsible for
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these discrepancies. These could include particle re-suspension and bed-load

transport.
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Figure 5.23 Comparisons between the numerical and experimental predictions on the

deposit mass density as a function of the downstream distance of the flows for Series

A, (a) S58, (b) UNS64, (c) S71, (d) UNS74, (e) S87, (f) UNS83 (g) S115 and (h)

UNS109. The black lines represent the simulation using the k- turbulence model

with the addition of the turbulence buoyancy force. The red lines represent the

simulations with the further addition of turbulence dispersion. The legend in each

figure represents the percentage of the total mass in the deposit relative to the initial

mass.

The predictions of the Mixture Model (black and red lines) on the deposit mass

density profile and the experimental data (circle) of Series B flows are shown in Fig.

5.24. In this figure, we study how the comparison between the numerical model both

without TD and with TD and the experimental data varies with different flow

concentrations. Both models yield rather similar predictions on the deposit mass

profile for flows with low concentrations (C027, C050 and C100) see Fig. 5.24 (a –

c), and compare very well with the experimental data. This shows that TD yields

little effect on the deposit profile of the flows for flows with low concentration.

Again this is in contrast with the observations made on flow with low concentration

but carrying finer particles from the Experiment C. Therefore we rule out

concentration as a factor that could results in TD predicting excessive dispersion.

The remaining factor is the particle size (or the settling velocity). For flows with

high concentrations (e.g., 1% - 5%), the results obtained from both models disagree

with each other. The model without TD predicts multiple oscillations in the deposit

profile in the upstream region whereas the model with TD predicts a smooth profile

and the latter agrees better with the experimental data. This shows that TD has a
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better modelling outcome and the effect is more pronounced for flows of high

concentration.
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Figure 5.24 Comparisons between the numerical and experimental prediction on the deposit

mass density as a function of the downstream distance of the flows for Series B, (a)

C027, (b) C050, (c) C100, (d) C150 (e) C200, (f) C288 (g) C388 and (h) C500. The

black lines represent the simulation using the k-e turbulence model with the addition

of the turbulence buoyancy force. The red lines represent the simulations with the

further addition of turbulence dispersion.

While graphical representative of the deposit mass distribution such as Figs. 5.23 &

5.24 allows us to qualitatively compare numerical and experimental results and

assess the nature of any discrepancies in the comparison, it is difficult to evaluate

from these figures relatively how well different simulations compare (which is

essential for assessing the accuracy of model changes across a range of parameters

such as concentration and particle size). Therefore a method was introduced which

allows the discrepancy between the numerical and the exprimental result to be

quantified in the form of a single value parameter (known as λ). To determine the

value of λ, both numerical and experiment results are expressed in the form of

cumulative mass percentage (which is made dimensionless by dividing it by the

initial mass) as a function of the downstream distance and then the absolute

difference between the numerical and experimental results at every 10th of the run-

out distance are calculated and summed up. The smaller the value of λ the closer is

the numerical prediction to the experimental data and hence the more accurate a

numerical result is, assuming there is no error in the experimental data.The

weakness of λ is that it does not describe the nature of the discrepancy, for instance,

whether the model over-predict or under-predict the mass of the deposit and the

locations of the discrepancy. It simply quantifies the total discrepancy between the

experiment and the numerical result on the deposit mass distribution.
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Table 5.6 shows the values of λ for the Mixture Model with and without TD for

flows of Series A, B and C. It can be observed that the Mixture Model with TD has

two biggest value of λ, 3.03 (G13) and 2.1 (G25), indicating the comparison of the

model prediction with the experimental data are the worst in these two cases. This is

consistent with the graphical observation shown in Fig. 3.11 (Chapter 3) which

shows that the Mixture Model with TD significantly underpredicts the deposit mass.

The two lowest values of the λ are also belongs to the Mixture Model with TD,

namely flows Series A UNS65 (0.19) and Series C flows G69 (0.27). The values of

λ from both models lie in the range of 0.4 to 2. The two largest difference in the

values of λ from both models are Series C flows G25 (1.29), and G13 (1.47), which

shows that the effect of TD is less strong for Series A & B flows.

A more meaningful analysis was achieved by plotting the values of λ graphically as

a function of grain size, concentration and initial mass as shown in Figure 5.25(a -

c). It can be observed most of the values of λ of the Mixture Model with TD at large

grain size (greater than 50µm), large concentration (greater than 2%) and large

initial mass (greatert than 300g) are lower than those from the Mixture Model

without TD, which means that the Mixture Model with TD is a better model in these

ranges of parameters. Outside the aforementioned range of parameters, the Mixture

Model without TD has lower values when the grain size is less than 50µm. On the

other hand, there is no distinctive difference between the values from both models

for low concentration (less than 2%) and low initial mass (less than 400g) flows.

These observation quantitatively reinforce the earlier conclusion that the accuracy of

TD most likely only depends on the particle size. In high concentration flows with

coarse particle, TD actually becomes essential for achieving an accurate solution.

A further investigation has been performed to determine the possibility of particle

re-suspension in the flows, which could explain the small discrepancy between the

numerical results (red lines) and the experimental result. Since it is difficult to

physically monitor particle re-suspension in the experimental investigation, an easy

way to determine whether particle re-suspension could be important or not is by

using the numerical solution and the re-suspension criterion suggested by, for

example, Niño et al. (2003) who proposed the following criterion based on their

experimental investigation:
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Table 5.6 The value of λ of flows of Experiments A, B and C for the Mixture Model both

with and without TD.

Series Flow
Particle

Size

Concentratio

n

λ (KE +

TB)

λ (KE + TB +

TD)

C

G69 69 0.35 0.27 0.44

G25 25 0.35 0.81 2.10

G37 37 2 1.00 1.45

G13 13 2 1.56 3.03

D37 35 0.275 0.27

A

S58 58 2.88 0.70 0.71

UNS64 64 2.88 0.24 0.19

S71 71 2.88 0.76 0.42

S87 87 2.88 0.42 0.42

UNS83 84 2.88 0.68 0.58

UNS109 109 2.88 1.19 1.02

S115 115 2.88 1.52 0.67

B

C027 74 0.27 1.64 1.68

C050 74 0.5 1.20 1.09

C100 74 1 0.90 0.64

C150 74 1.5 1.60 1.20

C200 74 2 0.84 0.59

C288 74 2.88 1.95 0.63

C388 74 3.88 1.08 0.79

C500 74 5 1.12 0.72
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Figure 5.25 The value of λ of Series A,B 

and C as a function of (a) particle size

carried by the flows (µm), (b) flow initial

concentration, and (c) initial mass. The red

circle represents the solution of the Mixture

Model with TD whereas the black square

represents the solution of the Mixture

Model without TD.
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ఘ೑
, ௦ is the particle

settling velocity and ∗ is the shear velocity. Thus, from equation (5.1), the

parameters governing the particle re-suspension are the shear velocity ∗ and the

characteristics of the particle (density and size) which are expressed as the particle

Reynolds number and settling velocity. The shear velocity describes the flow

condition near the wall and its value is determined from the viscous sublayer of the

boundary layer through the following formula:

∗ ௪ ௙ (5.2)

where ௪ is the wall shear stress which is predicted numerically. The accuracy of

the prediction on the wall shear stress depends on the density of the mesh near the

wall. The mesh must be sufficiently dense so that the model is able to predict ା

(dimensionless wall velocity) to have a value less than 1 inside the the viscous

sublayer of the boundary layer.

Turbidity currents have a non uniform wall shear stress profile at the boundary

which also evolves with time. In general, the front of the flows at early times have

the greatest shear stress since this is when and where the velocity is at its greatest

(the shear stress is directly proportional to the velocity gradient). For this reason, we

choose the wall shear stress at t = 3s because this is the time when the flow has just

becomes a turbidity currents. Fig. 5.26 (a – b) shows the numerical prediction
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(model with turbulent dispersion) on the wall shear stress profile at time t = 3s for

flows from Series A and B, respectively. It can be observed that the wall shear stress

is the greatest within the body of the flows (x = 0.25m). Flows carrying coarser

particles have slightly higher wall shear stress than those flows carrying finer

particles. On the other hand, the wall shear stresses beneath flows with different

concentrations vary significantly. Flows with higher concentrations have a greater

wall shear stress. This is not surprising since the flows with higher concentrations

propagate faster.

Figure 5.26 The numerical prediction on the wall shear stress profile at t = 3s for flows of

(a) Series A, and (b) Series B.

The prediction of the maximum shear velocity to the particle settling velocity

௠ ௔௫
∗

௦ of the flows for Series A and B, and the re-suspension threshold of Niño et

al. (2003), is shown in figure 5.27 (a & b), respectively. It can be observed that

value of the ratio is well below the threshold for the re-suspension suggested by

Niño et al. (2003) for any type of flow. Therefore we can conclude that the particle

re-suspension is unlikely to be important in the flows considered in this

investigation. The discrepancy between the numerical and experimental data

therefore remains an open question.

5.9.3 Individual Grain Size Deposit Mass Density

Another important characteristic of a turbidity current deposit is the individual mass

density of each particle size which represents the internal structure of the deposit. In

the numerical modelling, (and based on the grain size distribution of the material

determined from the Malvern equipment), the particles are divided into 5 groups of
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Figure 5.27 The numerical prediction of the ratio of the maximum shear velocity to the

particle settling velocity at t = 3s for flows from (a) Series A, and (b) Series B,

(circles) and the threshold for the particle re-suspension to occur based on Niño et al.

(2003) (dashed lines). The particle size is assumed to be equal to the average size of

the material.

different size ranges with equivalent mass or volume. Each group is modelled with

its average size. In other words, the 10th, 30th, 50th, 70th and 90th percentile sizes in

the actual particle size distribution are used in the numerical model. In order to

compare the experimental and the numerical results, the experimental data must be

expressed in a similar format to that of the numerical result. This is achieved by

adding all the volume of the particle within the size range considered initially. Five

flows from Series A (S58, UNS64, S71, S87 and S115) are investigated in this way

and the five grain size ranges employed for these flows are given in Table 5.7.

Figure 5.28 (a – e) shows the experimental results on the mass density of the five

size ranges of the flows S58, UNS64, S71, S87 and S115, respectively at the left

hand side of the figures and the corresponding comparison between the numerical

predictions and the experimental results at the right hand side of the figures. The

experiments show that all size ranges decrease essentially monotonically from

upstream to downstream in all flows, except for the flow S71 which has a non-linear

curve profile. The characteristics of the difference between the different size ranges

vary for the different flows. For flows S58, S87, and S115, there are differences

between the different size ranges at the source and these differences diminish with

downstream distance. On the other hand, the flow UNS64 exhibits the opposite

characteristics, namely, small differences between the different size ranges at the
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source but the differences become larger downstream. In addition, flow S71 exhibits

an entirely different behaviour, the difference between the size ranges is greater than

those observed in the other flows, appearing to slightly increase, then decrease.

It is important to discuss the relative differences between the mass density profiles

for fine coarse grains. Again we observe no consistent trend in all the flows. Ideally,

the fine grains (black lines) should possess a lower mass density at the source but

greater mass density further downstream than do the coarse grains (purple lines),

based on the rationale that the fine grains settle slower than do the coarse grains and

hence are able to remain in the suspension longer and ultimately prompt the flow to

travel further. The flows UNS64 and S87 exhibit such behaviour. S58 and S115

exhibits similar behaviour upstream but, downstream, the mass of the fine grain

converge with the mass of the coarse grain. Clearly such results are unlikely to be

accurate as they suggest that that the total mass of the fine grains in the deposit is

less than that of coarse grain (each size range has equal initial mass). This raises a

concern on the accuracy of the results. For this reason, a further investigation is

needed to re-run the experiments to verify the accuracy of the results. Among these

five flows, only the result of flows UNS64 has been verified for its consistency (see

Fig. 5.7(c)). The good match was obtained between the measurements from three

separate runs which suggest that the adopted methodology is robust. The results on

the individual grain size deposit mass profile also suggests the total mass is

conserved (coarse particle has greater upstream mass and lower downstream mass.

In a comparison between the numerical and experimental results, we observe that

the numerical results (Mixture Model with TD) do not agree well with the

experimental data. At the proximal deposit, the numerical model consistently

predicts that the fine grains have a lower mass density than that of coarse grains.

Downstream, the deposits mass of all grain sizes are converging towards each other

until they all have similar or approximately similar deposit mass density at about the

mid point of the longitudinal deposit range (the “intersection point”). Beyond the

intersection point, the deposit of all grain sizes diverges; the deposit mass of coarse

particle decreases at a greater rate than the fine particles. In addition, the Mixture

Model with TD predicts the difference between the deposit mass of each grain size

of flows UNS64 is greater than those of flows S58, S71, S87 and S115, which is an

observation consistent with the values of the particle size standard deviation in these
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flows. However, these differences are still significant enough to indicate that the

particle size does fractionate in the flows, in contrast to the experimental

observations (see Section 5.5.4), especially for flows S58 and S71. Therefore, the

Mixture Model with TD fails to provide an explanation on the why the experiments

show a lack of particle size fractionation in flows carrying sieved particles. None of

the numerical results agree completely with the experimental data. The best

comparison is for UNS64 where a good agreement is seen between the numerical

and experimental data at the distal part of the deposit. At the proximal part, the

comparison is still poor. Based on the numerical results, further important

observations can be made as follows:

i. There is a link between the particles size range and the existence of an

intersection point. It appears that the larger the size range (UNS64, S71) the less

well defined is the intersection point.

ii. The particle size has an effect on the characteristics of fractionation. Flows with

predominantly fine particle may exhibit an increasing deposit mass downstream

(S58, UNS64, S71) whereas the coarse particle exhibit a decreasing mass

profile (S87, S115).

Although the numerical results are insightful, their accuracy needs to be better

validated against experimental data. In this case, inconsistencies noted in the

experimental data casts doubts on the accuracy of the data. Therefore the

experiments for the flows carrying sieved particles may need to be repeated in order

to verify the existing experimental data.

Table 5.7 Size ranges and the mean size of the particle in the flows for Experiment A. The

mean size is listed in the brackets.

Flow
name

Size range 1 Size range 2 Size range 3 Size range 4 Size range 5

S58 38 – 50 (47) 51 – 55 (53) 56 – 59 (57) 60 – 64 (62) 65 – 85 (68)

UNS64 25 – 49 (42) 50 – 59 (55) 60 – 69 (65) 70 – 81 (75) 82 – 122 (91)

S71 50 – 62 (58) 63 – 68 (65) 69 – 74 (72) 75 – 82 (78) 83 – 100 (88)

S87 59 – 78 (75) 79 – 83 (81) 84 – 88 (85) 89 – 94 (91)
95 – 115
(101)

S115
81 – 105
(101)

106 – 111
(108)

112 – 117
(114)

118 – 123
(120)

124 – 156
(128)
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Figure 5.28
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nd the trendlines drawn based on the experimental data.

Total Mass in Suspension

The propagation profile of the front of the flow is another important characteristic

that is useful for validating the numerical predictions. Plo

h) is the comparison between the Mixture Model results (black lines

represents the result without TD and the red line represents results with turbulent

dispersion) and the experimental data on the propagation of the

Experiment A (flows S58,UNS64, S71, UNS74, S87, UNS83, S115 and UNS109).

Plotted on the left axis of the figures is the corresponding numerical prediction on

the percentage of the total mass in suspension as a function of time. Whil

no experimental data to ascertain the accuracy of the numerical results on the change

of the total mass in suspension, it is still useful to correlate it with the propagation of

Firstly, we comment on the differences between the nu

Mixture Model with and without TD. Both models agree well on the propagation of

the front of the flows except that the model with the TD predicts that the flows to

out distance. On the other hand, both the model p

(Figures on the left hand side) Experimental measurement (circles) on the mass

deposit profile of the five size ranges of flows (a) S58, (b) UNS64, (c) S71, (d) S87,

and (e) S115, and trendlines (solid lines) drawn to approximate each profile. The

size class has black colour, followed by the red, green, blue, and purple colour.

(Figures on the right hand side) Comparison between the corresponding numerical

predictions (dashed lines) on the mass deposit profile for the five size ranges of the

nd the trendlines drawn based on the experimental data.

Total Mass in Suspension

The propagation profile of the front of the flow is another important characteristic

that is useful for validating the numerical predictions. Plotted

h) is the comparison between the Mixture Model results (black lines

represents the result without TD and the red line represents results with turbulent

dispersion) and the experimental data on the propagation of the front of the flows for

Experiment A (flows S58,UNS64, S71, UNS74, S87, UNS83, S115 and UNS109).

Plotted on the left axis of the figures is the corresponding numerical prediction on

the percentage of the total mass in suspension as a function of time. Whil

no experimental data to ascertain the accuracy of the numerical results on the change

of the total mass in suspension, it is still useful to correlate it with the propagation of

Firstly, we comment on the differences between the numerical results from the

Mixture Model with and without TD. Both models agree well on the propagation of

the front of the flows except that the model with the TD predicts that the flows to

out distance. On the other hand, both the model p

(Figures on the left hand side) Experimental measurement (circles) on the mass

deposit profile of the five size ranges of flows (a) S58, (b) UNS64, (c) S71, (d) S87,
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evolution of the total mass in suspensions agree less well for the flows carrying the

fine grains (a – f), but they agree well for the flows carrying the coarse grains (g &

h). For the former, it can be observed that the model with TD predicts a lower rate of

deposition from the flows after the total mass has decreased to about 75%. In

summary, the results obtained imply that TD is only significant in the flows which

carry finer grains. The grain sizes used in the cases (g) & (h) represents the threshold

of the grain size where TD has only a small effect on the propagation of the flows.

For a comparison between the numerical model with the TD and the experimental

data on the propagation, both agree well in all cases for most of the duration of the

flows, except in the later stages of the flows where the numerical model under-

predicts the speed of the flows. This is not surprising given that the discrepancy

between the results only becomes significant at the later stages of the flows where

most of the particles have already been deposited from the suspension (less than

10% of the initial total mass, as indicated by the evolution of the total mass). Since

the flows contain a small amount of particles that are finer than those employed in

the numerical model, these particles persist in the flows longer and thus cause the

flow to propagate further. In addition, the lack of turbulence in the flows may also

results in inaccurate predictions when employing the turbulence model. In some

cases (b, d & f), surprisingly good agreement is achieved between the numerical

results and the experimental data, and this is likely to be just coincidence.

It is worth commenting on how the change in the total mass with time varies for

flows that carry particles of different sizes. Clearly the flow carrying the coarser

particles has a larger sedimentation rate and hence the total mass decreases faster.

The interesting feature is the bend in the curve just before it terminates and this

substantially lengthens the duration taken to deposit all the particles from the flow.

The bend is small and abrupt for flows carrying the coarse grains (g – h) and

becomes increasingly smooth and gradual for flows carrying the finer grains.

Next we discuss the results obtained for Series B, which comprises eight flows with

different initial concentrations. Plotted on the right axis of figures 5.30 (a – h) are

the numerical prediction (black and red lines, which represents the models without

and with TD, respectively) and experimental result (circle) on the propagation of the

front of the flow of experiment B (0.27%, 0.5%, 1%, 1.5%, 2%, 2.8%, 3.8% and

5%). Plotted on the left hand side of the figures are the corresponding numerical
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predictions on the percentage total mass in suspension as a function of time.

Comparing the results from both models, we observe that both models predict

almost similar results, except for low concentrated flow (0.27% & 0.5%) where the

model with the TD (red lines) predicts a slower flow. This, again, reinforces the

conclusion that the TD has little effect on the propagation of the flow for any size

(58 – 120µm) and concentration within 1 – 5%. On the other hand, TD has a non-

negligible effect on the evolution of the total mass in suspension. The model with

TD predicts a lower rate of deposition in flows with any concentration. This reflects

the important role played by TD in accurately predicting depositional structure.

For a comparison between the experimental data and the numerical results, both

results agree well for flows of concentration 1% - 5% (b – h) but there is a slight

disagreement for the flows of concentration 0.5% and the models agree poorly for

flows at the lowest concentration 0.27%. This suggests that the TD does not work

well for low concentrated flows.
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Figure 5.29 The prediction on the percentage total mass in suspension as a function of time

(left axis, dashed-lines) and the propagation of the front (right axis, solid lines) of the

flows for Series A, (a) S58, (b) UNS64, (c) S71, (d) UNS74, (e) S87, (f) UNS83 (g)

S115 and (h) UNS109. The circles (O) represent the experimental data, the black

lines represent the solution of the Mixture Model without TD and red lines represent

the solution of the Mixture Model with TD.
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Figure 5.30 The prediction on the percentage total mass in suspension as a function of time

(left axis, dashed lines) and the propagation of the front (right axis, solid lines) of the

flows for Experiment B, (a) C027, (b) C050, (c) C100, (d) C150, (e) C200, (f) C288

(g) C388 and (h) C500. The circles (O) represent the experimental data, the black

lines represent the numerical solution without turbulent dispersion and red lines

represent the numerical solution with turbulent dispersion.
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5.9.4 Concentration Field

In section 5.9.1, we have noticed two major trends in the results that contradict the

observations that we made in Chapter 3, i.e.

i. the prediction of the Mixture Model with TD on the deposit mass compares

better with the experimental data than the Mixture Model without TD, and

ii. the differences between the numerical results of the Mixture Model with and

without TD are not as great as that observed for the cases studied in Chapter 3

(Series C).

These two observations lead to a question regarding the differences between the

predictions of both models on the concentration fields, for the A and B Series of

experiment, and also for the Series C data. In addition, we observe that the

influence of TD on the deposition becomes increasingly less pronounced with

increases in particle size, and when the flow concentration is low; these effect might

be explained from the studying the concentration distribution of the flows. Despite

having no experimental data on the concentration field for comparing with the

numerical prediction, it is still worthwhile to present the numerical prediction on the

concentration fields to evaluate the effect of turbulent dispersion.

The concentration fields of flows S58, S71 and S115 of Series A, and flows C050,

C200, and C500 of Series B from the predictions of the Mixture Model without and

with TD are presented here and compared. These flows represent the extremes in the

range of particle size or concentration employed in the current investigations. The

behaviour of the rest of the flows is thought to lie between the selected flows and

hence they are not presented here.

Figures 5.31 – 5.36 shows the prediction from the Mixture Model both without (top)

and with (bottom) TD on the evolution of the concentration fields of flows S58, S71,

S115, C050, C200 and C500, respectively. From these figures, the following

observations can be made:

(i) Similarly to the prediction of the flows of Series C (see Figures 3.3 – 3.7),

solutions from model with TD shows a strong concentration stratification

within the flows and the size of the flows is bigger than those predicted by

model without TD as a result of sediment dispersal (see flows S58 and S71).
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On the other hand, the flows without TD predict the concentration to be rather

uniform within the flows and the flows dissipate much more quickly than

those predicted by models with TD. These results convince us that TD acts

consistently in the flows from Series A, B and C in a way that accords with the

purpose of TD algorithm.

(ii) The effect of TD is significantly diminished in flows carrying coarse particles,

e.g., S115, where we can observe only a small difference between the

solutions from both models with and without TD at t =5s and 10s. This implies

that the effect of TD decreases with an increase in the particle size and there is

a threshold to the grain size for a specific flows speed where TD ceases to be

effective. In this case, the grain size employed in flows S115 appears to be

coarse enough to resist the effect of TD in the flow.

(iii) The effect of TD increases with decreasing flow concentration. It can be

observed that very strong and thick concentration stratification is developed in

the low concentration flow C050 and this effect decreases with an increase in

the flow concentration. For instance, only a small difference between the

concentrations of flows C500 from both models with and without TD is

observed, which clearly suggests the effect of TD has been suppressed. What

is surprising here is that the prediction of the model with and without TD on

the final deposit mass profile of low concentration flows C050 matches well.

This could be coincidental but may also show that different concentration

distributions could result in a similar final deposit thickness profile.

We showed that the models with and without TD yield a consistent prediction in

flows of all Series A, B and C. Also, we demonstrated the effect of particle size and

concentration on the effect of TD in a flow. However, comparing the concentration

fields does not reveal why TD model works better in flows of Series A and B but

poorly in flows of Series C.
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Figure 5.31 Prediction from the Mixture Model (above) without TD and (bottom) with TD

on the concentration distribution of flows S58 at t = 5, 10, 15, 20, 25, and 30s.

Figure 5.32 Prediction from the Mixture Model (above) without TD and (bottom) with TD

on the concentration distribution of flows S71 at t = t = 5, 10, 15 and 20s.
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Figure 5.33 Prediction from the Mixture Model (above) without TD and (bottom) with TD

on the concentration distribution of flows S115 at t = 5, 10, 15 and 20s.

Figure 5.34 Prediction from the Mixture Model (left) without TD and (right) with TD on

the concentration distribution of flows C050 at t = 5, 10, 15, 20 and 30s.
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Figure 5.35 Prediction from the Mixture Model (above) without TD and (bottom) with TD

on the concentration distribution of flows C002 at t = 5, 10, 15 and 20s.

Figure 5.36 Prediction from the Mixture Model (above) without TD and (bottom) with TD

on the concentration distribution of flows C005 at t = 5, 10, 15, 20 and 25s.
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5.9.5 TD Distribution

Comparison of modelled concentrations fields only allows a qualitative evaluation

of the effect of TD in the flows. A quantitative evaluation is needed in order to

better assess how significance of TD varies in flows from Series A, B and C. This

can be achieved by plotting the ratio of TD to the particle slip velocity, namely (see

section 2.4.3)

்஽

ฬି
ವ೟
഑೟

൬
∇ഀ೛

ഀ೛
ି
∇ഀ೑

೑
൰ฬ

|௎ೞ|
(5.3)

If the values of ்஽ > 1, TD is greater than the particle downward velocity and

particles are then pushed upward by TD if the concentration gradient is negative.

Figures 5.37 shows the distribution of ்஽ within flows G69, G25, G37 and G13

(Series C) at t = 10s (top), flows S58, S71 and S115 (Series A) at t = 5s, and flows

C050, C100, C200 and C500 (Series A) at t = 10, 8, 5, and 3s, respectively (Series

B). It can be observed that, aside from the flows C050, the values of ்஽ in flows

from Series A and B are all, in overall, significantly smaller than those in flows G25,

G37 and G13 from Series C. The former has values about 0.5 in the bulk flow

whereas the latter has 2 or greater. This implies the effect of TD in flows from

Series C is four or more times greater than those investigated here. Clearly from

these figures, it can be seen that the strength of TD is increased by many-fold when

the particle grain size is decreased to below 40 µm or concentration less than 0.5%.

This raises a question on whether the accuracy of TD only breaks down in flows

carrying fine particles and low concentration flows. However, it should be noted that

G69 from Series C has valued of ்஽ close to those from Series A and B. Therefore

it is still surprising that TD yield accurate results for Series A and B but not for

Series C.

A question that remains to be answered is whether it is the over-prediction of the

turbulence (characterised by eddy viscosity ௧) in the flow or a fault in Simonin

model that causes the apparently contradictory results. We recall that the Simonin

model adjusts the strength of TD by multiplying the eddy viscosity with ்஽ (see

equation (2.41), whose value ranges between 0 and 1. If ்஽ has a value of 1, TD is

at the maximum strength. Large particles decrease the value of ்஽ and vice versa.

Therefore, comparing the distribution of ்஽ in flows from Series A, B and C can
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partially indicate whether it is ்஽ or the eddy viscosity ௧ that results in the large

changes in the values of TD in different flows. Figure 5.38 shows the distribution of

்஽ within the flows represented in Fig. 5.37. It can be observed that ்஽ is about 1

in flows G25, G37 and G13 and varies from 0.7 to 1 in flows G69. On the other

hands, ்஽ in flows from Series C is about 0.4 to 0.8. The values of ்஽ vary more

significantly within the various flows of Series A, i.e. it varies between 0.5 and 1 in

flows S58, is more or less 0.5 in flows S71, and only about 0.1 in flows S115.

Clearly, ்஽ is only significantly reduced when the particle size is very coarse ( ௣ =

115 m). The value of ்஽ decreases from 1 to about 0.5 or more when the particle

size is increased from range 13-37 m to range 58-74 m. This small change suggests

that ்஽ (hence the Simonin model) is unlikely to be the reason ்஽ varies so

significantly in these flows.
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Figure 5.37 Contours plot of the ratio of the TD to the magnitude of the particle slip

velocity from the prediction of the Mixture Model with TD on flows investigated in

Chapter 3 (top), selected flows from Series A (middle) and B (bottom). See each

figure for the name and the time of each flow. The values are clipped to range 0 to 2.
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Figure 5.38 Contours plot of the parameter ୘ୈ of Simonin model (see equation (3)) from

the prediction of the Mixture Model with TD on flows investigated in Chapter 3 (top),

selected flows from Series A (middle) and B (bottom). See each figure for the name

and the time of each flow.

5.10 Conclusions

This work comprises two parts, namely:

i. an experimental investigation performed in order to extend the validation data

(propagation and deposit characteristics of the flows) of surge-type lock-release

flows to a greater range of concentration and grain size,

ii. numerical investigation of the experiment flows conducted herein in order to

further assess the performance or accuracy of the Mixture Model in simulating

turbidity currents of a wide range of concentration and grain size.

The experimental investigation was successfully conducted. The accuracy and

robustness of the measuring technique employed in the experiment was successfully

verified. The experimental data agree well with the previous investigations, namely

flows carrying coarse particle leave greater mass in the proximal deposit and

terminate earlier than those carrying fine particles. Despite conventional results

being achieved for the rate of propagation and the deposit mass profile, a surprising

result has been observed for the grain size characteristics of the deposit. It was found

that the grain size in the deposit from the flows carrying sieved materials changes

relatively little from upstream to down-stream, compared that from the flows

carrying unsieved materials. The change in the mean grain size in the deposit with

respect to that of the original material of flows S58, S71, S87 and S115 (flows

carrying sieved material) is within 10% from proximal to distal, whereas that of
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UNS64 (flows carrying unsieved material) drops from +10% at the lock box to -50%

at the distal part of the deposit. Such observation suggests that there is a lack of

grain size fractionation in the flows carrying sieved material and there is a threshold

in the grain size range (characterized by grain size standard deviation) of the original

material carried by the flows below which little to no grain size fractionation occurs

in the flows. In this case, we observed threshold is in between the grain size standard

deviation of 11 and 18 (see Fig 5.18).

All flows investigated in this study have been simulated using a modelling

approach similar to that employed in Chapter 3 and the results are compared with

experimental prediction. The following key observations and conclusions can be

drawn from the comparison between the experimental data and the numerical result:

i. In contrast to its poor agreement with the experimental data and the refined two-

fluids model prediction on the deposit mass profile in Chapter 3, the Mixture

Model with TD agrees better with the experimental data than the Mixture Model

without TD, for the flows investigated in this chapter. In particular, the Mixture

Model without TD predicts predict multiple oscillations in the proximal deposit.

These oscillations are smoothed out when TD is incorporated into the model.

ii. The prediction from the Mixture Model with TD on the grain size

characteristics does not agree well with the experimental data. The Mixture

Model always predicts the coarse particle to have a greater relative mass than

the fine particle at the proximal deposit and to have lesser relative mass in the

distal deposit. On the other hand, the experiment prediction does not produce a

consistent trend of observation. In most cases, the differences between the

deposit mass profiles of different size classes are relatively small compared to

those predicted by the Mixture Model. In other words, the Mixture Model is

unable to explain the apparently unfractionated grain size in the deposit.

Nevertheless, an inconsistency was noted in the experimental data which

suggests the particle mass may not be conserved. Therefore it would be

advisable to obtain a new set of data to verify the accuracy of the present data in

any follow-on work.

A comparison was carried out on the distribution of the ratio of the TD to the

particle slip equation ்஽ in the flows from Series A, B and C. It was found that that
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்஽ in flows carrying fine particle (13-37 m) or of low concentration (0.5%) has

values of ்஽ 2-3 times greater than those in flows carrying (>58 m).

A comparison on the distribution of ்஽ in flow from from Series A, B and C was

performed in order to determine whether a fault in Simonin model contributes to the

large variation of ்஽ in flows from Series A, B and C. It was found that the value of

்஽ varies mostly between 0.5 to 1; this small change suggests that it is not the case.
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Chapter 6

Concluding Remarks

6.1 Thesis Summary

This thesis comprises of a series of investigations performed in order to: (i) better

understand the physics governing the transport of particles within turbidity currents,

and (ii) build a simple mathematical model for predicting the behaviour of turbidity

currents, in particular the propagation of the flow and the sedimentation patterns.

The chosen mathematical model is a depth-resolved and time-averaged multiphase

model called the Mixture Model, which is suitable for modelling a wide range of

multi-phase flows. To improve the robustness of the model, the Mixture Model

employs an algebraic slip equation derived by Manninen et al. (1995) in order to

algebraically calculate particle velocities. The Mixture Model is solved via a

commercial CFD code called FLUENT (FLUENT, 2009).

Chapter 2 outlines in detail the governing equations of the model, the assumptions

made in its development, how the model treats flow near the walls, the physics

governing the settling motion of particles and the methods used to resolve the

turbulence of the flow. Furthermore, a brief review is conducted on the types of

mathematical models that have been used to model turbidity currents in the past,

including their advantages and limitations, linked to a discussion regarding why the

Mixture Model was chosen over other possible approaches. A review is also given

on the current understanding of turbidity current mechanics.

Chapter 3 details the validation of the Mixture Model in simulating lock-release

flows of low concentration. A total six lock-release flows chosen from three separate

authors (Gladstone et al. 1998; Gladstone & Pritchard 2010; Rooij & Dalziel, 2001)

have been used to validate the accuracy of the Mixture Model. Refined two-fluids

model solutions (Hoyes 2008; Necker et al. 2002) are also available for some of the

chosen flows, and provide a further validation. A focus was the role that turbulent

dispersion (TD) plays in turbidity currents. The chosen turbulent dispersion
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formulation incorporated into the model is that derived by Simonin (1991).

Evaluation of turbulent dispersion was performed by comparing the numerical

solutions both with and without this phenomenon. In the modelled scenarios it was

found that turbulent dispersion induces excessive dispersion, resulting in very low

deposit mass being predicted upstream. Mixture Model predictions of deposit mass

profile made without turbulent dispersion compare significantly better with both

experimental data and the refined two-fluids model solution than those with

turbulent dispersion. Turbulence modulation was incorporated into the Mixture

Model with TD in order to dampen the excessive dispersion in the solution, but its

effects were found to be insignificant, and this is probably due to the low mass

loading within the flows. A firm conclusion cannot be drawn on whether the

formulation of turbulent dispersion is faulty or there are unknown important physics

that have yet to be taken into account that counteract the modelled dispersion effect.

The accuracy of the turbulence model RNG was verified by comparing the

results with those from turbulence model SST.

In Chapter 4, the significance of the lift force on a particle due to flow shear and

particle rotation is investigated. Using the force balance equation, simple

expressions are derived for evaluating the effects of the lift force on particles of

small ( ௣ < 0.1) and large ( ௣ > 1000) particle Reynolds number. For fixed

values of ఠ and ோ, the slip velocity is always reduced by the lift force and this

effect increases with an increase in the particle Reynolds number. A non-

dimensional quantity expressing the ratio of the lift force to the drag force was

derived and is defined by

௅ ఠ ோ ோ

஽ஶ ஶ

The quantity is known as the lift number. The value of the lift number can be

evaluated for fixed values of ఠ and ோ. If is greater than 1, it implies that the

lift force is greater than the drag force and vice versa. The lift force may act to push

the particle forward or backward depends on the sign of the shear. The derived

analytical expressions are used to evaluate the effect of the lift force on particles

immersed in turbidity currents. The lift force has little effect on the magnitude of the

settling velocity of the sand sized particles commonly carried by turbidity currents,

but may slightly deflect the settling direction of large particles in small-scale flows.
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It was concluded that it is unlikely that the lift force could be important for surge-

type turbidity currents that predominantly carry sand. The lift force may be

significant if turbidity currents can achieve a velocity significantly higher than that

governed by equation (4.9.3) (i.e. ே
ᇱ ଵ/ଶ) which describes the front

propagation of turbidity currents.

Chapter 5 describes new experimental investigations performed on lock-release

flows of a wide range of concentration and grain size in order to provide data for a

more comprehensive validation of the Mixture Model. Three different kinds of

measurements were performed, to characterise flow front propagation, and the axial

variation in deposit mass distribution and grain size characteristics. The

experimental data agree well with previous investigations (e.g., Gladstone et al.

1998), confirming that flows carrying coarse particles have relatively greater mass in

the proximal deposit and terminate earlier than those carrying fine particles. On the

other hand, an unexpected result has been observed for the grain size characteristics

of some deposits. It was found that the grain size in the deposits from flows carrying

particles whose grain size range was reduced, following sieving, change relatively

little from upstream to downstream compared with that from the flows carrying

unsieved materials. This observation suggests that there is a lack of grain size

fractionation in the flows carrying sieved material and there is a threshold in the

grain size range (i.e., the standard deviation) of the original material carried by the

flows, below which little or no grain size fractionation occurs in the flows. In this

case, we observed that the threshold is between the grain size standard deviation

values of 11 and 18.

All the flows investigated in this work were simulated using a modelling approach

similar to that employed in Chapter 3 and the results are compared with the

experimental data. Output from the Mixture Model with TD agrees better with the

experimental data than the Mixture Model without TD, in contrast to its poor

agreement with the experimental data and the refined two-fluids model prediction on

the deposit mass profile in Chapter 3. A firm conclusion cannot be drawn on

whether it is a fault within the turbulence model of Simonin (1991) or an extra

unknown turbulent mechanism that is missing in the model that results in the

inaccurate prediction of the Mixture Model on the deposit mass profile of flows
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carrying low concentrations of silicon carbide (i.e., all the flows investigated in

Chapter 3).

The prediction from the Mixture Model with TD on the grain size characteristics

does not agree well with the experimental data. The Mixture Model always predicts

the coarse particles to have a greater mass than the fine particles in the proximal

deposit and the opposite in the distal deposit.

6.2 Key Conclusions

The aims of the thesis were to

(i) Build a robust and practical numerical model for predicting natural turbidity

currents.

(ii) Investigate the key physics governing sediment transport within turbidity

currents.

6.2.1 The Accuracy of the Mixture Model in Predicting the

Turbidity Currents

The accuracy of the Mixture Model has been partially verified in these studies. The

major problem lies with the excessive dispersion exhibited in the simulations of the

flows carrying silicon carbides. Whether the cause is due to a fault within the

turbulent dispersion model itself or in the inaccurate prediction on the eddy viscosity

of the flow is not resolved in this study. On the other hand, incorporation of

turbulent dispersion effects has been found to be essential to ensure accurate

predictions of flows carrying glass beads, such as those investigated in Chapter 5.

Nevertheless, it is difficult to argue that the experimental data on flows carrying

silicon carbide particles are inaccurate since three sets of refined two-fluids model

solutions from previous authors all agree well with these data. Clearly further

investigation is needed in order to shed light on these contradictory points. If

refined two-fluids model solutions and the experimental data on flows carrying

silicon carbide particles are deemed to be accurate, the problem could lie within the

capacity of the Mixture Model to solve the turbulence of the flows or the three

dimensional affects that are neglected in the simulations in this studies. Other

possible reasons are particle entrainment, particle shape and possibly the turbulent

dispersion model. If the experimental data of flows carrying glass beads and the
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Mixture Models are deemed accurate, further experimental investigation on flows

carrying glass beads should be conducted in order to further validate the accuracy of

the Mixture Models in predicting flows carrying particles of different density. It is

also important to mention that it is rather counter-intuitive that the numerical

instabilities in the solution of the simulations increase when an increasingly smaller

time-step is employed and the precise reason for this is still not known, although a

stable solution does exist for a range of value of time steps which gives us

confidence on the accuracy of the solution.

6.2.2 Physical controls on the settling motion of particles suspended

in turbidity currents

We have investigated the effects of several commonly known particle-flow

interaction forces on the settling motion of particles in turbidity current. They are the

drag force, the shear-induced lift force, turbulent dispersion and turbulent

modulation. The effects of turbulent modulations are concluded to be generally

insignificant, probably due to the low particle mass loading in the flows investigated

in these studies. However, the extent of its significance in high concentration flows

is not investigated here.

The shear-induced lift force is found to always reduce the magnitude of the settling

velocity of particles and additionally changes the direction in which the particles

settle. Particles maybe pushed forward or backward depending on the sign of the

shear in the flow. However, in turbidity currents, it was estimated that the effect of

lift force on sand particles is unlikely to be significant. The lift force is only likely to

be significant if the flows have significantly high velocity (hence high shear) or

when the ratio of particle to fluid density approaches unity.

Turbulent dispersion is greatest for small particles carried in low concentration

flows. For instance, the ratio of the turbulent dispersion velocity to the magnitude of

the particle slip velocity decreases from a value greater than 1 to less 0.5 when the

concentration is increased from 0.5% to 5%. The significance of turbulent

dispersion in flows is also influenced by the ratio of the particle size to the flow

velocity. The smaller the ratio, the greater is the turbulent dispersion effect.

It can be concluded that the drag force and turbulent dispersion are the key physical

mechanisms governing the settling motion of particles suspended in low
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concentration turbidity currents. The significant of turbulent dispersion decreases

with an increase in the particle size. Therefore, there is a threshold in particle size

above which only the drag force is important.

6.3 Future work

The reason for the discrepancy between the experimental data and the Mixture

Model prediction on the deposit thickness of flows carrying silica carbide particles

has not been determined in this thesis. However, it may be due to the effect of

particle shape. This can be ascertained by comparing the Mixture Model prediction

with the experimental data for flows carrying silica carbide particles or glass beads

with all the other initial conditions being fixed (same flow concentrations, flume

geometry and particle settling velocities). Since the Mixture Model already achieves

a good comparison with the flows carrying glass beads, we only need to conduct

experiments on flows similar to those carrying fine silicon carbide particles, as

studied in Chapter 3, but using glass bead particles, using similar flow

concentrations and particle settling velocities. Then the consistency of the Mixture

Model in predicting the flows carrying glass beads or silica carbide particles can be

determined by comparing how well it predicts the mass deposit profile of these

flows. In addition, it should be noted that particle concentration profiles of the flows

play an important role in influencing the accumulated deposit thickness; adding

turbulent dispersion to the model significantly changes the concentration distribution

which subsequently changes the accumulated deposit thickness. Therefore, it would

be beneficial to obtain experimental measurements on the flow concentration so that

a comparison with the numerical prediction can be performed and the accuracy of

the Mixture Model can be further ascertained. If the Mixture Model cannot

accurately predict these flows (carrying silica carbide particles in new experimental

conditions) well, it is almost certain that the effect of shape is important and

therefore it is worth investigating the interaction of particle shape with the flow

turbulence in turbidity currents, etc. If the Mixture Model predicts these flows well,

then this indicates that the effect of particle shape is not the cause of the

discrepancy, and it appears that the Mixture Model could be inconsistent in

predicting flows of different flume geometry. On the other hand, it was shown that

the Mixture Model does not agree well with the predictions of refined two fluids

model. Given that the Mixture Model is a simplified model which employs
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numerous assumptions, it is worthwhile assessing how these assumptions potentially

could affect the prediction on the flows. The following is the list of the assumptions

and the possible further work that could be performed on them:

(a) In addition to the treatment of the turbulence, one major difference between

the refined two phase model and the Mixture Model is that the latter is a

three-dimensional simulation whilst the former is a two-dimensional

simulation. Therefore, it would be advantageous to conduct a three-

dimensional simulation using the Mixture Model in order to assess the three-

dimensionality effect (e.g. cross-stream flow) on the sediment dispersion

within the flows.

(b) Again, a possible reason that the refined two phase model performs better

than the Mixture Model is because the former resolves the structure of the

turbulence. Therefore, it will be beneficial to compare the prediction on the

turbulence characteristics from a model, such as the LES against those

obtained from a two-equation model in order to ascertain their differences

and the possible effects that these differences have on the deposition

characteristics of turbidity currents.

(c) While the accuracy of the turbulent dispersion model of Simonin (1991) has

been validated in gas-solid flows, its accuracy in solid-liquid flows has yet to

be validated. It would be worth comparing the Simonin model against the

turbulent dispersion model that is more conventionally employed in the

modelling of sediment-laden water channel flows (e.g. Huang et al., 2005).

(d) In the derivation of the algebraic slip equation, a number of the

simplifications have been made. The terms that have been dropped can be

rewritten as follows:

௣ ௣ ௣
ெ ௣௞

ெ ௣௜ ெ ௣௞

௣ ௣ ௠ ௜ ெ ௣௞ ெ ௣௜ ௠ ௞

௣ ௠ ௜௞ ஽௜௞ ௣ ௣௜௞

Essentially these simplifications are only valid if (i) ெ ௣ , which means

that the particle phase instantaneously reaches the equilibrium state with the

mixture phase, and (ii) the flow is highly turbulent such that the turbulent

stresses are much larger than the diffusion stresses ( ௠ ௜௞, ஽௜௞, and ௣௜௞). In

the future work, condition (i) should be checked by comparing the particle
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relaxation time against the mixture characteristic time scale which can be

estimated using the expression (Manninen et al., 1995):

௠
௠ ௞

௠ ௞
௠ ௜ ௠ ௞

Further, condition (ii) should be checked by computing the ratio of the

diffusion terms to the turbulent stresses. In addition, it would be insightful to

compare the Mixture Model against the full Eulerian-Eulerian multiphase

model which models the complete particle momentum equation.

(e) The turbulence modulation model of Chen and Wood (1985) has been well-

validated in the application of gas-solid flows but it is untested in liquid-solid

flows. It may be advantageous to compare the model prediction against

experimental data on the turbulence modulation in the liquid-solid flows in

order to ascertain its accuracy.

It is interesting to note that when the grain size standard deviation (SD) is

decreased to 11µm or less, the reduction in the grain size from the upstream to

the downstream deposit is significantly inhibited; the mean grain size only

decreases by as much as 5% in the distal deposit (compared to the initial

condition). This implies reducing the grain size range may impede the grain size

fractionation within the flows. Given the strong implications of such a

conclusion on the sedimentary studies, it would be worthwhile to further

investigate these aspects. In the future, it would be interesting to investigate the

grain size in the deposit of flows carrying grain sizes with SD greater than about

18µm and those between 11µm and 18µm in order to gain more complete

understanding on the influence of SD on the particle fractionation. In addition,

varying the flows concentration but fixing the particle grain size could be

valuable for determining the influence of the flow concentration on the decrease

in the deposit grain size. Also the influence of the grain size standard deviation

on the run-out distance and the deposit thickness profile is not explicitly studied

in this paper and therefore it would also be interesting to carry out further

investigations in order to study those aspects.
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Appendix

A1. Turbulence Modulation

For the turbulence model-based approach, the turbulence modulation appears an

additional dissipation term due to a hydrodynamic interaction force between the two

phases in the two-equation turbulence model:

డ

డ௧ ௞ (A1.1)

డ

డ௧ ఌ (A1.2)

The sink term appearing in the turbulent kinetic energy of the fluid phase ௞௙is

given by

௞௙ ௣
ᇱ
௙
ᇱ (A1.3)

Where ௣ is the momentum exchange between the two phases and is given by the

௣
ఘ෥

௧೛
௣ ௙ (A1.4)

where is the concentration of the particle defined as the mass of particles per unit

volume ( ௣) and ௣ is the Stokes particle relaxation time is

௣
ௗ೛
మఘ೛

ଵ଼ఓ೑
(A1.5)

where ௣ is the material density of the particle and is the dynamic viscosity of the

fluid. The fluctuating momentum exchange term is

௣
' ఘ෥'

௧೛
௣
'

௙
' (A1.6)

Hence, equation (A1.3) becomes

௣
ᇱ
௙
ᇱ ଵ

௧೛
௣ ௙

'
௙
'

௙
'

௣
'

௙
'

௙
' '

௙
'

௣
'

௙
' (A1.7)

Neglecting the contributions due to the fluctuating concentration ' (Chen & Wood,

1985), equation (A1.7) is simplified to the form as follows
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௣
ᇱ
௙
ᇱ ఘ෥

௧೛
௙
'

௣
'

௙
'

௙
' (A1.8)

The correlation ௙
'

௙
' is the turbulent kinetic energy ( ௙

'
௙
'

௙ but the value of

the correlation ௙
'

௣
' is not known and therefore needs to be modelled. The simplest

model for determining the correlation ௙
'

௣
' is to assume dispersed phase velocity

fluctuations are proportional to continuous phase velocity fluctuations.

௣ ௙
'

௣
'

௙
'

௙ (A1.9)

Substitute equation (A1.9) into equation (A1.

௞௙
ఘ෥

௧೛
௙ (A1.10)

where is a function of turbulent Stokes number and has range

. has a value of 1 for very small particles and value of zero for very large

particles. Therefore the turbulence modulation has maximum value for very large

particle. Equation (A1.20) also indicates that the greater the particle volume

fraction/particle density, the greater the turbulence modulation. The smaller the

particle relaxation time is the greater the turbulence modulation is.

The sink term appearing in turbulent kinetic energy equation of the particle phase is

given as

௞௣ ௣
ᇱ
௣
ᇱ ఘ෥

௧೛
௙
'

௣
'

௣
'

௣
' (A1.11)

Here ௣
'

௣
' is the particle turbulent kinetic energy ( ௣). If model (A1.9) is used, the

following relation can be achieved,

௣
'

௣
' ଶ

௙
' ଶ => ௣

'
௣
'

௣
ଶ

௙ (A1.12)

Substitute (A1.9) & (A1.12) into (A1.11) gives

௣
ᇱ
௣
ᇱ ఈ೛

௧೛
௙ (A1.13)

The Mixture turbulence KE is the combination of the flow turbulence KE and the

particle turbulence KE as follows

௠ ௠ ௙ ௙ ௙ ௣ ௣ ௣ (A1.14)
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Therefore, the turbulence modulation for a mixture turbulence model is the

combination of equations (A1.8) and (A1.9) which is

௞௠
ఈ೛

௧೛
௙
'

௣
'

௙
'

௙
'

௣
'

௣
'

௖ௗ ௙
'

௣
' ଶ

(A1.16)

Using relation (A1.9), equation (A1.16) becomes

௞௠
ఘ෥

௧೛
௙

ఘ෥

௧೛

ଶ
௙

ఘ෥

௧೛

ଶ
௙

(A1.17)

Equation (A1.17) implies a reduction in mixture turbulence when > 0.

Replacing ௣ in (A1.14) by equation (A1.12) to express ௙ in terms of ௠ as

follows

௠ ௠ ௙ ௙ ௣ ௣
ଶ

௙ => ௙
ఘ೘

൫ఈ೑ఘ೑ାఈ೛ఘ೛஼(ௌ௧)మ൯ ௠ (A1.18)

Replacing ௙ in equation (A1.15) by equation (A1.16) gives

௞௠
ఘ෥

௧೛

ଶ ఘ೘

൫ఈ೑ఘ೑ାఈ೛ఘ೛஼(ௌ௧)మ൯ ௠
ఘ෥

௧೛

ଶ
௠ (A1.19)

The turbulent modulation in the turbulent dissipation rate of the fluid phase and

the particle phase are defined as follows (Chen & Wood, 1985):

ఢ௙

డ௨೑
'

డ௫ೖ

డி೛
'

డ௫ೖ
(A1.20)

ఢ௣
డ௨೛

'

డ௫ೖ

డி೛
'

డ௫ೖ
(A1.21)

Substituting equation (A1.6) into equations (A1.20 – A1.21) and the dominant terms

in the resulting expressions are

ఢ௙
ఘ෥

௧೛
௙

డ௨೑
'

డ௫ೖ

డ௨೑
'

డ௫ೖ

డ௨೛
'

డ௫ೖ
(A1.22)

ఢ௣
ఘ෥

௧೛
௣

డ௨೛
'

డ௫ೖ

డ௨೛
'

డ௫ೖ

డ௨೑
'

డ௫ೖ
(A1.23)

If relation (A1.9) is used onto (A1.22) and (A1.23), the following expressions are

obtained
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ఢ௙
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௧೛

డ௨೑
'

డ௫ೖ

డ௨೑
'

డ௫ೖ

ఘ෥

௧೛
௙ (A1.24)

ఢ௣
ఘ෥

௧೛

డ௨೛
'

డ௫ೖ

డ௨೛
'

డ௫ೖ

ఘ෥

௧೛
௣ (A1.25)

Since ௠ ௠ ௙ ௙ ௙ ௣ ௣ ௣, we have

௠ ௠ ௙ ௙ ௣ ௣
ଶ

௙ (A1.26)

Adding equations (A1.24) and (A1.25) yields the turbulence modulation term for the

Mixture rate of turbulent dissipation equation

ఢ௠
ఘ෥

௧೛

ଶ ఘ೘

൫ఈ೑ఘ೑ାఈ೛ఘ೛஼(ௌ௧)మ൯ ௠
ఘ෥

௧೛

ଶ
௠ (A1.27)

Relation (A1.9) is a crude approach for modelling the fluid-particle

correlation ௙
'

௣
' . A more accurate approach is to model ௙

'
௣
' as a function of the

fluid turbulent kinetic energy as follows

௙
ᇱ

௣
ᇱ

௙
ᇱ

௙
ᇱ (A1.28)

௣
ᇱ

௣
ᇱ

௙
ᇱ

௙
ᇱ (A1.29)

where and are empirical parameters. Substituting (A1.27 – A1.28) into equations

(A1.8), (A1.11) and (A1.16) gives

௞௙
ఘ෥

௧೛
௙
ᇱ

௙
ᇱ (A1.29)

௞௣
ఘ෥

௧೛
௙
ᇱ

௙
ᇱ (A1.30)

௞௠
ఘ෥

௧೛
௙
ᇱ

௙
ᇱ (A1.31)

For small Stoke number models, ଶ. Therefore,

௠
ଶ

௙
ᇱ

௙
ᇱ (A1.32)

Parameter can be expressed using a Taylor series as follows

௞
஻ೖ
మ

ଶ!
ଶ ଷ (A1.33)
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Substituting the first order term of (A1.33) into equation (A1.31) yield

௞௠
ଶఘ෥ೞ

௧೛
௞
ଶ

௠ (A1.34)

Equation (A1.34) shows that the turbulence modulation is proportional to the

particle Stoke number.

Analysis above neglects the lower order terms of the turbulence modulation

equation. If the lower order terms are included as well, equation (9) becomes

௞௠ ௙
ᇱ
௣
ᇱ

௣
ᇱ

௣
ᇱ (A1.35)

Expanding (A1.35), we eventually arrived at the following expression:

௞௠
ఘ෥ೞ

௧∗

ఘ೘

ఘ෥೑ାఋఘ෥ೞ
௣௜ ௙௜ ௧௠

ଶఘ෥ೞ

௧∗

ఘ೘

ఘ෥೑ାఋఘ෥ೞ
௠

(A1.36)

The second term on the right hand side of equation (A1.36) is the equivalent to

equation (A1.31). The first term on the right hand side is the additional term that is

neglected by Chen and Wood (1985). It describes a diffusion-like effect that

depends on the concentration gradient. The corresponding turbulence modulation

sink term in the turbulence rate of dissipation equation is

ఢ௠ ௠
ଶ

௠ (A1.37)

Chen and Wood (1985) modelled to be an exponential function of particle Stoke

number St:

௞
௨೎
ᇲ௨೛

ᇲതതതതതതത

௨೎
ᇲ௨೎

ᇲതതതതതതത
ି஻ೖௌ௧ (A1.38)

ఢ
ି஻ചௌ௧ (A1.39)

where ௞ = 0.0825 and ௣ ௙
௧ is the particle Stoke number, defined as the ratio

of the particle relaxation time to the eddy turnover time scale. The ௙
௧ is modelled as

௙
௧ ଴.ଵ଺ହ௞೘

ఌ೘
(A1.40)

Tu & Fletcher (1994) suggested a modification to the constant ௞ in order take into

account the effects of the mass loading. The constant ௞ is divided by a parameter
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௡ where is the mass loading and is a constant equal to 1 when > 1 and 0

when < 1.

Following Chen & Woods (1985), parameter is modelled as a function of particle

Stoke number

ଵ

ଵାௌ௧
(A1.41)

A2. Simulations Detail

Numerical Scheme

Table A2.1 Numerical schemes employed for each simulation

Items Methods

Pressure-Velocity Coupling SIMPLE (Patankar, 1980)

Spatial Discretization

Gradient

Pressure

Momentum

Volume fraction

Turbulent kinetic energy

Turbulent dissipation rate

Least Squares Cell Based

PRESTO!

Second Order Upwind

QUICK

Second Order Upwind

Second Order Upwind

Transient Formulation Second Order Implicit

Table A2.2 Convergence criteria

Equations Absolute Criteria

Continuity 1e-5

x-velocity 1e-5

y-velocity 1e-5

k 1e-5

Epsilon 1e-5

Volume fraction 1e-5

UDF
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(i) Solid viscosity. The mixture viscosity deviates from the fluid viscosity at high

concentration. The power law of Ishii and Mashima (1984) is employed to

calculate the mixture viscosity of high concentration flow accurately.

௠ ௙
ఈ೛

ఈ೛೘

ିଶ.ହఈ೛೘

(A2.1)

Where ௙ is the fluid viscosity, ௣ is the particle volume fraction ௣௠ is the

value of maximum packing number. Since ௠ ௞ ௞
௡
௞ୀଵ ௙ ௙ ௣ ௣,

equation (A1.1) can be re-expressed as solid viscosity as follows:

௣
ఓ೑

ఈ೛

ఈ೛

ఈ೛೘

ିଶ.ହఈ೛೘

௙ (A2.2)

(ii) Particle mass sink. A mass sink term is incorporated into the particle volume

fraction equation at the bottom cell of the computational domain in order to

model the particle deposition. The particle volume fraction equation is defined

as (see equation (2.45) in the main text):

డ

డ௧ ௣ ௣
డ

డ௫೔
௣ ௣ ௠ ௜

డ

డ௫೔
௣ ௣ ெ ௜ ௠ ௔௦௦ (A2.3)

The mass sink term ௠ ௔௦௦ is defined here as ௠ ௔௦௦ ௣ ௣ ௣ ௖௘௟௟, where ௣

is the particle vertical velocity and ௖௘௟௟ is the height of computational cell at

the bottom.

(iii) Turbulence buoyancy production. A standard Boussinesq gradient diffusion

is employed to describe this process. For turbulence model, the term is

defined as (see equation (2.29) in the text):

௕௞ ఘ ௙
ఓ೟೘

ఙ೟ఘ೘
௜
డఈ೛

డ௬
(A2.4)

The turbulent buoyancy in the turbulent rate of dissipation equation is

௕ఢ ଵఢ
ఢ

௞ ଷఢ ௕ (A2.5)

The degree to which is affected by the buoyancy is determined by the

constant ଷఢ. Henkes (1991) postulated that

ଷఢ
௏೘

௎೘
(A2.6)

If turbulence model is used, the turbulence dissipation is modelled

using a transport equation for the specific rate of dissipation defined as
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డ௫ೕ
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ଶ (A2.7)

where is defined as
భ

మ ௧ . Since ௧,

஽ఠ

஽௧

஽

஽௧

ఢ

௞

ଵ

௞

஽ఢ

஽௧

ఠ

௞

஽௞

஽௧
(A2.8)

Using this relation, the buoyancy term in the -equation can be shown to have

the form of

௕ఠ
ଵ

௞

஽ఢ

஽௧

ఠ

௞

஽௞

஽௧ ఢଷ
ఠ

௞ ௕ (A2.9)

(iv) Turbulence modulation. The Chen & Wood (1985) model is employed.

Equations (A1.36) and (A1.37) outlined in the section A.1 are incorporated

into turbulence model in FLUENT.

List of Simulations

Table A2.3 Simulations on flows investigated in Chapter 3

Folder Name Flow Mesh
Time

step (s)
Turbulent
Dispersion

Turbulent
Modulation

Turbulent
Model

G69_M1 G69 400 x 20 0.01 No No
G69_M2 G69 800 x 40 0.01 No No
G69_M3 G69 1200 x 60 0.01 No No
G69_M4 G69 1600 x 80 0.01 No No
G69_T005 G69 800 x 40 0.005 No No
G69_T020 G69 800 x 40 0.02 No No
G69_T050 G69 800 x 40 0.05 No No
G69_TD G69 800 x 40 0.01 Yes No
G69_TM G69 800 x 40 0.01 Yes Yes
G69_KW G69 800 x 40 0.01 No No
G25 G25 800 x 40 0.01 No No
G25_TD G25 800 x 40 0.01 Yes No
G25_TM G25 800 x 40 0.01 Yes Yes
G37_M1 G37 600 x 20 0.01 No No
G37_M2 G37 900 x 30 0.01 No No
G37_M3 G37 1200 x 40 0.01 No No
G37_M4 G37 1500 x 50 0.01 No No
G37_T005 G37 1200 x 40 0.005 No No
G37_T020 G37 1200 x 40 0.02 No No
G37_T050 G37 1200 x 40 0.05 No No
G37_TD G37 1200 x 40 0.01 Yes No
G37_KW G37 1200 x 40 0.01 No No
G13 G13 1200 x 40 0.01 No No
G13_TD G13 1200 x 40 0.01 Yes No
G13_KW G13 1200 x 40 0.01 No No
D37 D37 960 x 64 0.01 No No
D37_TD D37 960 x 64 0.01 Yes No
D37_KW D37 960 x 64 0.01 No No
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Table A2.4 Simulations on flows investigated in Chapter 5

Folder Name Flow Mesh Time step (s)
Turbulent
Dispersion

C500_M1 C500 800 x 20 0.01 Yes
C500_M2 C500 1200 x 30 0.01 Yes
C500_M3 C500 1600 x 40 0.01 Yes
C500_M4 C500 2000 x 50 0.01 Yes
C500_M5 C500 2400 x 60 0.01 Yes
C500_TS0005 C500 1600 x 40 0.0005 Yes
C500_TS0020 C500 1600 x 40 0.002 Yes
C500_TS0100 C500 1600 x 40 0.01 Yes
C500_TS0150 C500 1600 x 40 0.015 Yes
C500_TS0250 C500 1600 x 40 0.025 Yes
C500_TS0400 C500 1600 x 40 0.04 Yes
C500_TS0500 C500 1600 x 40 0.05 Yes
C500_TS0020(2) C500 800 x 20 0.002 Yes
C500_TS0100(2) C500 800 x 20 0.01 Yes
C500_TS0150(2) C500 800 x 20 0.015 Yes
C500_TS0250(2) C500 800 x 20 0.025 Yes
C500_TS0400(2) C500 800 x 20 0.04 Yes
C500_TS0500(2) C500 800 x 20 0.05 Yes
C027 C027 1600 x 40 0.005 No
C027_TD C027 1600 x 40 0.01 Yes
C050 C050 1600 x 40 0.005 No
C050_TD C050 1600 x 40 0.01 Yes
C100 C100 1600 x 40 0.005 No
C100_TD C100 1600 x 40 0.01 Yes
C150 C150 1600 x 40 0.005 No
C150_TD C150 1600 x 40 0.01 Yes
C200 C200 1600 x 40 0.005 No
C200_TD C200 1600 x 40 0.01 Yes
C288 C288 1600 x 40 0.01 No
C288_TD C288 1600 x 40 0.01 Yes
C388 C388 1600 x 40 0.01 No
C388_TD C388 1600 x 40 0.01 Yes
C500 C500 1600 x 40 0.01 No
C500_TD C500 1600 x 40 0.01 Yes
S58 S58 1600 x 40 0.01 No
S58_TD S58 1600 x 40 0.01 Yes
UNS64 UNS64 1600 x 40 0.01 No
UNS64_TD UNS64 1600 x 40 0.01 Yes
S71 S71 1600 x 40 0.01 No
S71_TD S71 1600 x 40 0.01 Yes
S87 S87 1600 x 40 0.01 No
S87_TD S87 1600 x 40 0.01 Yes
UNS84 UNS84 1600 x 40 0.01 No
UNS84_TD UNS84 1600 x 40 0.01 Yes
S115 S115 1600 x 40 0.01 No
S115_TD S115 1600 x 40 0.01 Yes
UNS109 UNS109 1600 x 40 0.01 No
UNS109_TD UNS109 1600 x 40 0.01 Yes
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A3. Flows Carrying Non-spherical Particles

Introduction

An investigation has been performed in order to investigate the effect of shape anisotropy

on the sediment deposition of the lock-release - generated turbidity currents. Simple

symmetrical non-spherical shapes such as oblate and problate spheroids are considered here.

The deposit mass profile of flows carrying spheroid of different aspect is compared with

that of flows carrying spheres alone. It was found that the effect of the spheroid on the

deposition correspond well with the trend of settling velocity ratio as function of aspect

ratio.

Theory

Spheroids are classified as oblate ( < 1) or problate ( > 1) – see below for the formulation

of E. The shape of an oblate or problate spheroid is visualised in Figure A3.1. The size of a

spheroid can be expressed using the particle diameter of a sphere with a volume equivalent

to the spheroid in question (known as equivalent diameter ௘). The aspect ratio of a

spheroid is defined as

ௗ∥

ௗ఼
(A3.1)

where ∥ is the axial dimension of the particle and ୄ is the maximum dimension normal to

the axis of symmetry. The volume of a spheroid is proportional to the product of the

diameters of the three major axes, therefore the equivalent diameter is given by

௘ ୄ

భ

య ∥
ି
మ

య (A3.2)

The Stokes correction for a spheroid is defined as the ratio of the Stokes spheroid drag

force to the Stoke sphere drag force for a fixed volume equivalent diameter, i.e.

ிವ ,ೞ೛೓೐ೝ೚೔೏

ிವ ,ೄ೟೚ೖ೐
(A3.3)

Figure A3.1 Schematic diagram of spheroid oblate (left) and problate (right).
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Clift et al. (1978) give the formulae for analytical expressions derived by Oberbeck (1876)

for the Stokes corrections for both oblate and problate spheroid - parallel (axial Stokes

correction ∥ and spheroid - normal (normal Stokes correction ୄ) to the particle axis

symmetry, as follows

∥,௢௕௟௔௧௘

ቀ
ర

య
ቁா

ష
భ
య(ଵିாమ)

ாା
൫భషమಶమ൯೎೚ೞషభಶ

ඥభషಶమ

; ୄ,௢௕௟௔௧௘

ቀ
ఴ

య
ቁா

ష
భ
య(ாమିଵ)

ாି
൫యషమಶమ൯೎೚ೞషభಶ

ඥభషಶమ

(A3.4)

∥,௣௥௢௕௟௔௧௘
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(A3.5)

If random orientation is considered, the Stokes corrections are

௢௕௟௔௧௘
√ଵିாమ

௖௢௦షభா

ି
భ

య (A3.6)

௣௥௢௕௟௔௧௘
√ாమିଵ

௟௡൫ாା√ாమିଵ൯

ି
భ

య (A3.7)

Figure A3.2 shows the plot of Stoke drag correction of oblate and problate spheroid based

on equations (A3.4 – A3.7) as a function of aspect ratio. Reducing the aspect ratio lower

than one (oblate spheroid) increases the axial Stokes correction ∥ exponentially but

decreases the value of the normal Stokes correction ୄ below one for aspect ratios between

0.7 and 1, and then increases ୄ exponentially for aspect ratio smaller than 0.7. The value of

the random Stokes correction lies between that of axial and normal Stokes corrections.

Increasing the spheroid aspect ratio beyond one (prolate spheroid) slightly decreases the

axial Stokes correction below one but slightly increases normal and random Stokes

corrections.

Equations (A3.4 – A3.7) can be used to evaluate the ratio of the Stokes settling velocity of a

spheroid to that of sphere with the same equivalent diameter. Figure A3.3 shows the plot of

such ratio as a function of the spheroid aspect ratio for a spheroid falling axially, normally

or randomly. Axial oblate spheroids experience a significant reduction in settling velocity

(by almost 50% when = 0.1). On the other hand, axial problate experiences a slight

enhancement to the settling velocity. Randomly-oriented spheroids or normal oblate or

normal problate spheroids all exhibits a settling velocity lower than that of a volume-

equivalent sphere. Therefore, it can be concluded that aside from axial prolate spheroids, all

spheroids settle slower than a sphere of equivalent volume.
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Figure A3.2 Plot of Stoke drag correction as function of aspect ratio E for spheroid

Figure A3.3 Plot of settling velocity as a function of spheroid aspect ratio

Simulations Results

The equations A(3.4 – 3.7) are incorporated into the FLUENT via UDF and two simulations

were performed to model the effect of spheroids with aspect ratio = 0.5 and = 0.01

using the Mixture Model. The initial conditions of flows G37 (see Table 3.1 in the main

text) were adopted. The results are compared against the simulations that assume all

particles are spheres and the experimental data from Gladstone & Pritchard (2010).

Figure A3.4 shows that flows carrying oblate spheroids with aspect ratio = 0.5 experience

an increase in the upstream deposition whereas flows carrying oblate spheroids with aspect
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ratio = 0.01 experience a decrease in upstream deposition. These changes show that the

effects of particle shape could be important in turbidity currents. Also, assuming that silicon

carbide particles are spheres could be a poor approximation since the results agree better

with the experiment when particle has a shape of an oblate spheroid with aspect ratio = 0.5.

Figure A3.4 The Mixture Model prediction on the final deposit density of flows G37

carrying either sphere (black line), oblate spheroid with = 0.5 (blue line) or oblate

spheroid with = 0.01 (green line). The circles are experimental data of Gladstone &

Pritchard (2009).
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