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Abstract

This thesis presents, explains and analyses a novel design of a locomotion

mechanism for a miniature robot envisaged for assisting surgeons during

minimally invasive procedures in abdominal surgery. Minimally invasive

procedures have proved to be beneficial for hospitals and patients and are

currently applied successfully in many surgical operations. Robotic arms

mounted outside the body are currently used in order to move the surgical

tools inside the body and some research prototypes move fully inside the

abdomen. In order to fully realise the potential of minimally invasive robotic

surgery, the robotic assistant should operate at a distance from intense

surgical activity and attach to tissue, moving stably within the abdomen.

This thesis presents the conceptual design of a miniature robot which uses

four adhesive pads to attach to the surface of the abdominal wall, a vantage

point within the abdominal cavity. The adhesive pads use a micro-structured

surface inspired by tree frogs in order to obtain smooth and repeatable

attachment to biological tissue and enable the robot to move in inverted

locomotion. The design of the locomotion mechanism of the robot also takes

inspiration from tree frogs and geckoes in the way the pads are peeled off

the tissue in order to detach them. Inspired by amoeboid locomotion, the

robot detaches one pad at a time and changes the shape of the locomotion

mechanism in the horizontal plane in order to move the pads across the

tissue.

The implementation and testing of the robot resulted in a proof-of-concept

prototype, able to move consistently using magnetic pads with an adhesion

force similar to the bio-mimetic pads. The robot also managed to attach and

move the pads while attached to tissue with the bio-mimetic pads. The

analysis of the locomotion mechanism resulted in the definition of a peeling

model for the adhesive pad, and a stability criterion and control strategies for

adhesion-reliant robots.
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Chapter 1
Introduction

1.1 Background

Machines and robots have contributed to the well-being of society by

facilitating the development of human activity in many fields, from industrial

production to healthcare. Robots can enhance the skills of human beings

and extend them beyond the limits of their capability, for example, into the

fields of space exploration or nano-manipulation. In an era where technology

is becoming omnipresent and society more reliant on it, it is an important

and often difficult task to set the limits and purpose of this rapidly advancing

technology. Human-centred technology seeks to enhance human relations

within society and with the environment rather than substitute these

relations. In this way, human-centred technology provides a frame of

reference in which robots can help humans and share their space in

harmony with nature. The role of robotic assistants in Medicine [1] is a

perfect example of the significant potential of human-robot interaction.

Nature has always been a great source of inspiration for humans in artistic

and scientific expression. Over the last decade, copying nature has evolved

from a trend in engineering design to an established methodology to provide

solutions to technological challenges [2, 3]. The natural world gives ideas for

engineering solutions in challenging environments like inside the human

body. One field that requires innovative solutions due to the characteristics

of its environment and application and therefore can greatly benefit from bio-

inspiration is laparoscopic surgery.

1.1.1 Laparoscopic Surgery

In conventional surgery, the surgeon cuts an incision and clamps it open in

order to expose the surgical area. The surgeon then uses conventional tools

(scalpel, clamp, scissors) to perform the operation and, when the operation

is finished, sutures the incision to close it. In this type of intervention the

surgeon can directly see the operating area and can freely manoeuvre the

tools around it.

A different way of performing a surgical operation is laparoscopic surgery.

Laparoscopic surgery is performed through small incisions in the abdominal

wall. The abdomen is filled with carbon dioxide to create an operating space
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and the tools are long and thin to fit through the small incisions and reach

the organs in the abdomen. A camera, or laparoscope, is also inserted in the

abdomen to guide the operation.

Prof David G. Jayne explains the benefits of reducing the size of the surgical

incision: “The bigger the surgical incision the more trauma is caused to the

skin and tissue of the patient. In clinical practice this is evident in the pain

experienced by patients following conventional open surgery as compared to

laparoscopic surgery. Reduction in the size of the surgical access wound

also has benefits in terms of reduction in wound complications; the incidence

of wound infection and incisional herniation are much reduced following

laparoscopic surgery as compared to open surgery. This translates into

enhanced recovery for the patient and reduced costs for healthcare

providers in treating wound complications.”

Figure 1 compares the set-up of a laparoscopic procedure (Figure 1a) to a

conventional one (Figure 1b). In Figure 1a, the laparoscope is inserted

through the umbilicum in order to provide visual feedback of the abdominal

cavity and the tools are inserted through the ports placed around the surgical

target. Figure 1b shows the open incision exposing the surgical target used

in conventional surgery. Figure 1c illustrates the operation of the tools and

laparoscope inside the insufflated abdomen. In Figure 1c, the operation is

performed through three small incisions. The laparoscope is inserted

through one of the incisions and the tools manipulate the organs through the

other two incisions.

Figure 1. (a) Top view of a laparoscopic procedure compared to (b) a traditional open
procedure [4]. (c) Side view of a laparoscopic operation, adapted from [5].

1.1.2 Advantages and challenges of laparoscopic surgery

Laparoscopic surgery is increasingly becoming a standard approach in

modern surgical interventions because it has clear advantages for patients
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and hospitals. Smaller incisions mean less trauma, better cosmesis, quicker

recovery and less post-operative pain [6, 7]. In the words of Prof David G.

Jayne: “As a result [of laparoscopic surgery], patients benefit from a quicker

return to normal function. In addition, there are cost-savings to healthcare

providers through shorter hospital stays and efficiency savings through a

higher throughput of patients.”

Again, Prof David G. Jayne explains the evolution of minimally invasive

surgery: “The logical evolution of laparoscopic surgery is to try and maximize

its benefits through a further reduction of the surgical trauma inflicted on the

patient. One attempt at this has been Single Port Laparoscopy (SPL),

otherwise known as Single Incision Laparoscopic Surgery (SILS). In SPL the

multi-port laparoscopic approach to the abdominal cavity is replaced by a

single, centrally located port through which a laparoscopic camera and

instruments are passed to effect the operation. Whilst this reduces

abdominal access to a single 2 – 3cm incision, it introduces other

complexities. “Crowding” of the camera and instruments through one port,

leads to impaired surgical dexterity and often the surgeon has to resort to

crossing of the instruments to gain the necessary triangulation to perform

operative manoeuvres. This makes the procedure technically more

challenging and leads to increased operative times. In addition, to date there

has been no evidence that SPL results in improved patient outcomes as

compared to multi-port laparoscopy, except perhaps for marginally improved

cosmesis. As a consequence, SPL has been slow to gain clinical

acceptance as a technique for routine application.

A further attempt to reduce surgical access trauma has been the

development of natural orifice trans-luminal endoscopic surgery (NOTES). In

NOTES, an abdominal wall incision is avoided with surgical access gained

by passing a laparoscopic camera and instruments through a natural orifice

e.g. the stomach, rectum, vagina, or bladder. In this manner, truly scarless

surgery is possible. However, the procedures become increasingly more

difficult to perform as the access becomes more restricted and there are

legitimate concerns about the safety of access and closure techniques

through internal, often contaminated, body cavities. Although an interesting

and innovative concept, NOTES is still mainly restricted to the research

environment due mainly to technique problems with inadequate instruments

that can work effectively under such demanding conditions.

The application of robotic-assistance to surgery in the 1990’s offered to

overcome some of the technical limitations of conventional laparoscopic
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instrumentation enabling surgeons to perform complex laparoscopic

interventions with more dexterity and precision. Currently, there is still only

one commercially available robotic surgical system, the Da Vinci® robot

(Intuitive Surgical Inc. Sunnyvale, California). Initially aimed at cardiothoracic

surgery, it has found its niche predominantly in urology (radical

prostatectomy), gynaecological oncology (radical hysterectomy), and

colorectal (rectal cancer) surgery; all procedures performed in the confines

of the bony pelvis that necessitate precision operating. Despite its

technological advantages, which include intuitive instrument handling, 3-

dimensional operative field of vision, Endowrist® instrumentation with 7-

degrees of freedom of movement, and digital compensation (image

magnification, tremor elimination etc.), the da Vinci has failed to show

marked benefit in terms of improved patient outcomes, and at a cost-price of

around £1.5M it is unlikely to demonstrate cost-effectiveness. In addition, the

da Vinci is still a multi-port laparoscopic device, so there are no gains

derived from reduced access trauma as compared to conventional

laparoscopy.”

1.2 Motivation

Prof David G. Jayne explains the clinical motivation of the project: “The

above approaches [laparoscopic surgery, SPL, NOTES, robotic surgery] all

have their theoretical advantages but each suffers its own limitations, either

from a lack of suitably advanced instrumentation (SPL and NOTES) or from

a failure to reduce surgical access trauma (da Vinci® robot). A possible

solution is to amalgamate the best features of each of these approaches and

to develop a device for laparoscopic surgery that can function through

reduced abdominal access (SPL or NOTES) with the benefits of robotic-

assistance to overcome the limitations of inadequate instrumentation. Based

on this premise, the concept for a miniaturized intra-abdominal surgical robot

was proposed, which can be deployed through a small abdominal incision,

manouvre around the abdominal cavity, and undertake surgical procedures

with robotic precision.”

The research carried out in this project focuses on the development of a

robot for a SPL or NOTES procedure. The development of the locomotion

mechanism of the robot seeks to enable more precise and convenient

exploration of the abdomen and access to the surgical target for the

surgeon. A more convenient and precise procedure for the surgeon

ultimately benefits the patient.
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The vision of this project if that the ultimate solution to make an SPL/NOTES

procedure more convenient for the surgeon would be a miniature intra-body

robot able to move along the surfaces inside the abdominal cavity. This

robot would integrate all the functionality of current surgical robots in one

small portable device, initially carrying a camera for visualization of the

abdominal cavity and eventually carrying tools.

This miniature robot for a SPL/NOTES procedure moving freely on all the

surfaces of the abdomen would enable a panoramic view of the abdominal

organs and easier access around the surgical target by operating from a

vantage point. Within the insufflated abdomen, this vantage point could be

the internal wall of the abdomen (the peritoneum), situated at about 5 to 6

cm above the abdominal organs.

Working towards the implementation of such a miniature robot for

SPL/NOTES, the motivation for this project is to develop a miniature

locomotion mechanism able to move along the peritoneum. In order to hang

from the abdominal wall and move along the peritoneum, the locomotion of

the robot will resist the pull of gravity using adhesive pads. This type of

locomotion will be referred to in this thesis as “inverted adhesion-reliant

locomotion” or simply “inverted locomotion”.

Inverted adhesion-reliant locomotion enables motion along the wall of the

abdomen using an attachment method that, compared to magnets or suction

cups, does not require any external equipment in order to be activated.

However, this type of locomotion makes the design of the robot significantly

challenging as it poses the question of how to ensure the robot can stably

move along the peritoneum without falling.

The adhesive pads for the robot have been developed in the larger project

this thesis is part of. This larger project (NIHR NEAT L066) is concerned with

providing adhesion between the robot and the peritoneum so that the robot

can hang from the abdominal wall. This adhesion is provided through a bio-

mimetic surface developed at the University of Leeds [8-10]. These adhesive

pads have a micro-structured surface which follows a pattern inspired by the

toes of tree frogs which allows strong and repeatable adhesion to wet

surfaces. This is particularly suitable for attachment to biological tissue like

the internal walls of the human body which are covered in a layer of fluid.

Details on these bio-mimetic pads will be given later in Section 2.3.7.
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1.3 Research methodology

This thesis proposes and develops a new robotic approach for motion inside

the body: inverted adhesion-reliant locomotion along a biological surface.

The robot moves along a surface that is difficult to model and test because

of its biological nature. Biological tissue is visco-elastic [11] and becomes

stiffer the drier the tissue sample. The tree frog pads used by the robot are

also a new development within the field of bio-mimetic adhesives. Extensive

work has been carried out in studying and mimicking the attachment

mechanism of geckoes for dry surfaces [12-15], which is similar to tree frogs,

but not specifically on tree frogs for wet surfaces.

Aware of the novelty of the type of locomotion and adhesive pads, as well as

the challenge posed by motion along the peritoneum, the research

methodology of this project was mainly empirical and followed these steps:

1. Design of a prototype of the robot based on previous knowledge

about mobile and climbing robots, incorporating bio-inspiration into

the design given the bio-mimetic nature of the adhesive pads. This

part of the research can be found in Chapters 3 and 4.

2. Testing of the prototype, noticing the difficulties of the environment

and application and learning how to overcome them through

experience. This part of the research relates to Chapter 5.

3. Analysis of the locomotion mechanism in order to provide a critical

assessment of the prototype that feeds into the overall conclusions

and discussion surrounding further work. Chapters 6, 7 and 8 contain

these theoretical analyses of the robot.

1.4 Aims and objectives

The aims and objectives of this thesis are defined as follows:

1.4.1 Aims

1. Design, build and test a miniature robot to move in inverted

locomotion in an intra-abdominal environment, using micro-structured

adhesive surfaces to interact with biological tissue.

2. Investigate and define control strategies to enhance the stability of the

locomotion mechanism of the robot.

1.4.2 Objectives

1. Review existing literature on robotic surgery, robotic intra-body
devices and miniature climbing robots using bio-inspired adhesives.
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2. Design a miniature mechanism for the robot to apply a controllable

set of forces to the adhesive pads.

3. Identify suitable actuation and sensor technologies along with

manufacturing techniques to develop a controllable miniature

locomotion mechanism for the robot.

4. Analyse the kinematics and dynamics of the locomotion mechanism

relevant to the motion of the robot and its interaction with the tissue.

5. Implement a miniature robot following the previous conceptual design

and using the identified actuation and sensor technologies and an

appropriate locomotion strategy.

6. Create engineering models of the mechanical and adhesive

interaction of the locomotion mechanism of the robot and the tissue.

7. Define the main parameters involved in the control of adhesion and

develop strategies for stable motion of the robot.

8. Test and evaluate the developed prototype of the robot.

1.5 Contributions of the thesis

The novel contributions of this thesis can be summarised as:

1. Development of a bio-inspired design methodology for adhesion-

reliant robots interacting with living tissue.

2. Proposing and development of a novel design for a surgical intra-

body robot walking in inverted locomotion inside the insufflated

abdomen.

3. Definition of a peeling model for the detachment of the adhesive pads

of the robot and a stability criterion for inverted adhesion-reliant

locomotion.

4. Proposal of control strategies to enhance the stability of the robot.

Part of the research carried out for this thesis has been presented in

international conferences. The list of published papers and extended

abstracts can be found in Appendix A.

1.6 Organisation of the thesis

This thesis is divided into nine chapters including this introduction. The first

five chapters present the background (Chapter 1), context (Chapter 2),

design (Chapters 3 and 4) and the implementation and performance

(Chapter 5) of the robot. The following three chapters (Chapters 6, 7 and 8)

present the theoretical work and analysis carried out after testing and
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evaluation of the prototype. The last chapter presents the conclusions of the

thesis and suggestions for future work.

Specifically, Chapter 2 presents the literature review carried out to identify

the gaps of knowledge and development of current intra-body robots. The

first focus of this review is small-size climbing robots using gecko-inspired

attachment. The design and development of these robots is important for the

intra-abdominal robot because its locomotion is inverted and relies on

adhesion. The second focus of this literature review is the evolution of

surgical robots from the first camera holders to the latest miniature robots. In

this way, the advantages and disadvantages each robot represents are

explained in relation to the development of an intra-abdominal mobile robot.

Chapter 3 presents the conceptual design of the robot, following the

specifications of operation inside the insufflated abdomen. In this chapter the

environment of the robot (the human abdomen) is presented. The

advantages and challenges of operation from a vantage point (the

abdominal wall) are explained together with the principles to follow for a

successful design. Accordingly, the type of locomotion for the intra-

abdominal robot is selected and its method of locomotion defined.

In Chapter 4, the conceptual design of the robot is analysed. The kinematics

and dynamics involved in the motion of the adhesive pads are presented.

The chapter also characterises the robot as a walker, explaining the way the

gait sequence of the robot is generated and how its design can adapt to

uneven terrain.

Chapter 5 presents the process of implementation and testing of the robot.

The selection of miniature motors, construction of the mechanism and

testing of the assembly for one pad are presented as the first step in the

implementation of the robot. Then the performance of the first prototype is

presented together with the improvements that led to the second prototype.

To control the motion of the prototype open-loop and closed-loop controllers

were implemented and evaluated. The performance and enhancements of

the second prototype are also discussed for locomotion of the robot with

magnetic pads on a steel surface, and with the bio-mimetic pads on

biological tissue in vitro.

After testing the prototype of the robot, research focused on analysing the

interaction between the locomotion mechanism and the tissue supporting the

motion of the robot. Better understanding of this interaction provides the

basis of control strategies for the adhesion-reliant intra-abdominal robot.
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Thus, in Chapter 6 a mathematical model is proposed in an attempt to

explain how the pad peels off when actuated by the locomotion mechanism.

This model considers the bending on the pad together with the energy

required to peel the pad. In this way, the model enables calculation of the

maximum value of force or moment to peel the pad. This maximum value is

used for the definition of a stability criterion for adhesion-reliant walking

robots presented in the next chapter.

Chapter 7 reviews the stability criteria used in the literature for walking

robots and defines a new criterion specifically suitable for adhesion-reliant

robots. This new criterion considers how close each adhesive pad is to

detachment and how many pads are required to support the gait sequence.

This chapter also illustrates how the criterion can be applied to the gait

sequence of the developed robot.

The penultimate chapter, Chapter 8, looks into the ways the locomotion

mechanism can be constructed, controlled and actuated in order to enhance

the stability of the robot. Enhancement of stability is based on the stability

margin defined for the previous stability criterion for adhesion-reliant robots.

Firstly, a model of the soft pad is presented and then used in order to

analyse the forces and moments that detachment of one pad causes on a

robot with two pads. Building up on this two-padded configuration, the effect

of adding a third pad in line with the other two and forming a triangle is

analysed. This chapter also shows how the increase in stability margin

achievable with these two three-padded configurations can be combined in a

robot with four pads.

A summary of the achievements of the research work carried out for this

thesis, along with the conclusions and future work are presented in the last

chapter, Chapter 9.



- 10 -

Chapter 2
Literature review

2.1 Introduction

The literature review for the development of the intra-abdominal robot

encompasses the fields of miniaturisation and locomotion for robotic

systems as well as robotic systems in surgical applications. In the first place,

this chapter discusses robotic systems according to their size, focusing on

the actuation and manufacturing challenges of miniature robotic systems.

After this, locomotion strategies for miniature robotic systems are reviewed

with an emphasis on climbing robots and biological inspiration due to the use

of tree frogs pads in inverted adhesion-reliant locomotion for the intra-

abdominal robot. Next, robotic systems developed for surgery are reviewed,

focusing on the advantages these systems bring to laparoscopy and how

they can be further improved. Robotic systems for surgery range from floor-

mounted robotic arms to intra-body miniature devices. Then, these surgical

robots are discussed, identifying the gap of knowledge and implementation

in intra-body robots. Lastly, a summary of the reviewed technologies is

presented.

2.2 Miniature robotic systems

2.2.1 The size of robotic systems

The size of a robotic system determines the precision of its motion and the

force the robot can generate. Thus, the size of the robot determines the

actuation and sensing technology required for its operation and control as

well as the manufacturing technique employed for its fabrication. With

respect to size, robotic systems can be classified into conventional or macro-

robots, miniature or meso-scale robots, micro-scale robots and nano-robots

[16].

Table 1 summarises the typical dimensions, force range and applications of

robotic systems according to their size.
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Table 1. Typical dimensions, force range and applications of macro-robots, miniature
robots, micro-robots and nano-robots, adapted from [16].

Size of the

robotic system

Typical

dimensions

Typical

force range

Examples

Macro-robots

> 10 cm > 1 N

Robots for

transportation

Industrial manipulation

robots

Miniature

robots
1 mm - 10 cm 1 mN - 1 N Robotic colonoscopes

Micro-robots 1 μm - 1 mm 

< 1 mN

Drug delivery robots

Nano-robots
100 nm - 1 μm 

Cell manipulation robots

Nano-scale assembly

robots

Conventional robots of a size similar to humans or larger and use

conventional mechanical actuators like DC motors and hydraulic pistons.

Miniature robots are conventional robotic systems scaled down to a volume

of a few cubic centimetres [16]. Another name for miniature robots is meso-

scale robots because their dimensions are in-between conventional robots

and microscopic robots (meso is Greek for middle). The dimensions of

miniature robots range from 1 mm to 10 cm [16]. Miniature robots use the

same actuation technology and mechanical components as larger robots but

scaled down to fit in a few cubic centimetres [16]. Miniature robots are used

for research in sensor networks and distributed robotics [17-19], swarm

robotics [20-22] and robots whose design is inspired by biological systems

[23-25]. Miniature robots can move and operate in constrained spaces which

are too small for humans or larger robots. For example, miniature robots can

be used in search and rescue operations to look amongst the rubble of

collapsed buildings [19, 21] and in medical applications for exploration of

body cavities [26-29]. Miniature robots use smaller versions of conventional

actuators, for instance DC mini-motors and miniature piezo-electric

actuators, which are explained in the next section, Section 2.2.2.

Micro-robots require the use of a microscope to be seen. Forces such as

surface tension or electrostatic forces that can be neglected at the macro-

scale become important at the micro-scale [16]. Nano-robots are the size of

biological cells and use electro-chemical forces. The actuation technology

used for micro-robots and nano-robots is especially developed to generate

forces of the range and nature required at the micro-scale and nano-scale.
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Figure 2a shows an example of a macro-scale robot: the humanoid iCub,

Figure 2b shows an example of a miniature flying robot and Figure 2c shows

an example of a swimming micro-robot.

Figure 2. (a) Robotic system in the macro-scale: the iCub humanoid robot, (b)
miniature robotic system: a bio-inspired flying robot [23] and (c) robotic system in the

micro-scale: bacteria-inspired swimming micro-robot [30].

2.2.2 Actuation technologies for miniature robots

Miniature robots require small and compact motors able to generate the type

of motion and range of force required for the application of the robot.

Miniature robots are usually required to generate forces between 1 mN and

1 N. In a miniature climbing robot using adhesion to attach to the surface of

support, another important specification is the weight of the actuators. The

weight of the actuators will largely determine the weight of the robot which

will be limited by how much load the adhesive pads can hold.

An actuation force between 1mN and 1N can be obtained through several

technologies: DC mini-motors, piezo-electric miniature motors, electro-active

polymers, like Ionic Polymer Metal Composites (IPMCs), and Shape Memory

Alloys (SMAs).

DC mini-motors are a long established technology for robotic applications

and can be purchased as ready-to-use motors. For a miniature robot,

sufficient force and displacement can be obtained with DC mini-motors. In

terms of the size, rotary DC mini-motors can be found in the market in very

small sizes: Ø2.4mm and 8.5mm length [31], but linear DC mini-motors are
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usually much larger: 47.5x21.5x15 mm3 [32]. If a linear motor of a smaller

size than found in the market is required for the mechanism of the miniature

robot, a DC mini-motor can be integrated into a lead screw. However, the

previous option would require the manufacturing of a miniature lead screw

suitable for the mini-motor which can be challenging given the miniature size

and would increase the size of the overall actuation system.

Piezo-actuators are also a long-established technology are they are usually

employed in mechatronic applications that require precise positioning. Piezo-

actuators can generate forces of up to 1N, but their displacement is about

0.2% of the total length of the actuator. Rotary piezo-motors in the market

are larger than DC-minimotors: Ø17mm and 33.5mm length, however, there

are a few linear off-the-shelf piezo-electric motors of a compact size [33-35].

The size of the smallest of these linear piezo-motors is 6x6x3 mm3 with a

12mm shaft and weighs 0.160 grammes [35], that is, it is a 20% lighter than

the smallest rotary DC mini-motor found [31] and 94 times lighter than the

smallest linear DC mini-motor found [32].

SMAs can be found in two forms: as wires and as springs. Both forms can

deliver sufficient force for a miniature robot: up to 35N for SMA wire and up

to 5N for SMA springs. For a standard length of 1cm, suitable for a miniature

robot, the achievable displacement for SMA wire is small, up to 0.8 mm, but

SMA springs can obtain up to 2cm of displacement. Due to their

thermodynamic response, SMA actuators are slower than the other

actuation technologies considered. SMAs are not as mature a technology as

DC mini-motors or piezo-electric motors and their availability as ready-to-use

motors for robotic applications is limited. Nonetheless, linear and rotary

motors built with SMAs are commercially available, their dimensions and

weight being: 35x6.3x5.3 mm3 and 1.1 grammes for the linear SMA motor

[36]; 50x11x7.5 mm3 and 5.5 grammes for the housing of the rotary SMA

motor [37].

IPMCs are commercially found in the form of sheets and require integration

into a mechanism to be used as a motor for a robotic application. The force

they can generate is low compared to other actuation technologies, typically

10mN, and the displacement they can deliver is also low compared to the

other options considered, typically a few millimetres. Actuation of IPMCs is

famously difficult to control amongst robotic researchers, making IPMCs not

the ideal candidate for a robot compared to the other available actuation

technologies.
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The features of these technologies are summarised and compared in Table

2 using data from [16, 31-34, 36-47].

Table 2. Actuation technologies for miniature robotics.

Actuator

Typical force
Typical

voltage

Size of the smallest

commercial motor

Typical

displacement

Typical

current

Weight of the smallest

commercial motor

DC mini-

motors

3-10 N 1-3 V
Rotary: Ø2.4mm x 8.5mm

Linear: 47.5x21.5x15 mm3

20-120 mm

(for a linear

motor)

>32 mA
Rotary: 0.19g

Linear: 15g

Piezo-

actuators

10 mN-1 N 2.5-200 V
Rotary: Ø17mm x 33.5mm

Linear: 12x3x3 mm3

9 mm

(for a linear

motor)

15 mA
Rotary: 35g

Linear: 0.16g

SMA wire

70 mN-35 N 2-5 V
Rotary: 50x11x7.5 mm3

Linear: 35x6.3x5.3 mm3

0.1-0.8 mm

(for a 1cm-long

actuator)

50-200mA

Rotary: 5.5g

Linear: 1.1g
SMA

spring

1-5 N 2-5V

0.2-2 cm

(for a 1cm-long

actuator)

100 mA-3A

IPMC

10 mN 3-10V

No motors found in the

market

1mm

(for a 1cm-long

actuator)

100 mA



- 15 -

The smallest and lightest rotary motor found in the market is a DC mini-

motor: SBL02-06, Namiki Precision Jewel Co., a linear piezo-motor of similar

size and slightly lighter weight can also be found commercially: SQL-RV-1.8,

New Scale Technologies Inc.

In terms of safety inside the body, all the previous technologies can use low

current: from 15mA in piezo-electric actuators up to 200mA in SMA wire,

although some SMA springs consume up to 3A. Another risk of SMAs for

operation inside the body is the fact that SMAs can reach a high temperature

of up to 60ºC during operation [48]. If a powered part of the actuator was to

come into contact with human tissue, and considering the impedance of the

tissue determines the current circulating through the tissue, all the previous

actuators can work with low voltage (1-10 V). Piezo-actuators usually require

a very high voltage, up to 200V, however, the piezo-motor SQL-RV-1.8 is

specifically designed to use low voltage and operates within a range of 2.5-

5V.

The four actuation technologies for miniature robots considered have been

used for medical and surgical applications. Brushless DC mini-motors have

been used for a number of medical applications: implantable blood pumps

[49, 50], the actuation mechanism of an intra-abdominal camera [51, 52] and

intra-body robots. In intra-body robots, DC mini-motors have been used to

provide locomotion to endoscopes using legs [53-55] and wheeled robots

moving in the abdominal cavity [56, 57]. As an example of the use of DC

mini-motors in medical applications, Figure 3 a shows an actuated camera

that is placed on the surface of the abdominal organs for visualisation of the

abdominal cavity. A DC mini-motor is used in this intra-abdominal camera to

obtain a pan and tilt motion of the camera. Figure 3 b shows the assembled

prototype of the camera.

Figure 3. (a) Components of an intra-abdominal camera using DC mini-motors and (b)
assembled prototype of the device [56].
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Miniature piezo-electric motors have been used for the motion of surgical

tools [58] and intra-body robots [27]. For example, miniature linear piezo-

electric motors are used for the inchworm locomotion of a robot that crawls

over the surface of the heart in order to deliver drug [59]. Figure 4 a shows

the miniature linear piezo-electric motor used by the crawling robot shown in

Figure 4 b.

Figure 4. (a) Miniature linear piezo-electric motor and (b) prototype of an intra-body
robot using piezo-electric motors to move on the surface of the heart [59].

SMAs have been used in the design of actuated endoscopes that crawl

inside the colon [29, 60] and for the stop mechanism of capsule endoscopes

[61, 62]. Some robotic endoscopes for the colon use inch-worm locomotion

and SMA wires and springs are used to provide the extension and

contraction that provides locomotion of the robot. Figure 5 a shows the

components of a robotic endoscope using SMA wires. Figure 5 b shows the

prototype of a robotic endoscope.

Figure 5. (a) Components of an SMA-actuated robotic endoscope and (b) the
assembled robot [60].

IPMCs have been used to build implantable micro-pumps [63, 64]. In an

IPMC micro-pump, the pumping motion of the fluid is obtained through the

expansion and contraction of the IPMC material. Figure 6a shows the
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components and an implantable micro-pump; one of these components is a

layer of IPMC material. Figure 6b shows the prototype of the micro-pump.

Figure 6. (a) Layers of an IPMC micro-pump and (b) photograph of the micro-pump
[64].

DC mini-motors (SBL02-06, Namiki Precision Jewel Co.) [31], piezo-electric

motors (SQL-RV-1.8, New Scale Technologies Inc.) [35], SMA wire

(SmartFlex©, SAES Getters S.p.A.) [48] and SMA springs (BioMetal Helix,

Toki Corporation) [65] were acquired and tested for the project in order to

fully realise the potential of using each technology for the locomotion

mechanism of the robot.

The ideal characteristics of an actuator for a miniature climbing robot inside

the abdomen are: compact size, low weight, low voltage and current and

available as a ready-to-use motor. After consideration of these

characteristics, the DC rotary mini-motor SBL02-06 and the linear piezo-

motor SQL-RV-1.8 were deemed the most suitable actuators for the

locomotion mechanism, depending on whether rotary or linear motion is

required.

2.2.3 Manufacturing challenges for miniature robots

The manufacturing challenges for the components of a miniature robotic

system are linked to the size and the material required for the application of

the robot. The dimensions of the mechanical components of a miniature

mechanism are usually a few millimetres. For dimensions of a few

millimetres, the manufacturing tolerances for typical mechanical fits, for

example a sliding fit, are a few microns. These tight tolerances required for

miniature components make the manufacturing of miniature robots

especially challenging. In miniature climbing robots the weight of the robot

limits the load that the adhesive pads can hold and therefore lightweight

materials are preferable. These lightweight materials are usually light metals

like aluminium or plastics like Nylon or ABS.
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The most widely-used manufacturing technique for small plastic pieces is

injection moulding. For injection moulding liquid plastic is injected into a

metallic mould with the shape of the piece to be manufactured. With injection

moulding, high detail and tight tolerances of the pieces can be obtained.

However, precision injection moulding requires precise machining of the

mould which can be costly. Injection moulding is only cost-effective if a high

volume of pieces is manufactured because a large amount of pieces to

manufacture compensates for the cost of machining the mould.

CNC micro-machining can be used to manufacture pieces for miniature

robots in metal or hard plastics. CNC micro-machining uses traditional CNC

tools like drills and cutters in miniature size. The positioning of the tools in

CNC micro-machining stations is precisely controlled in order to obtain tight

tolerances. In order to make CNC micro-machining cost-effective, a high

volume of the pieces to be manufactured is usually required because of the

high cost of setting up the machine. CNC machining of plastics to very tight

tolerances also requires specialised staff given that, compared to metals,

plastics have lower stiffness and they are more sensitive to temperature and

pressure during the manufacturing process.

A number of rapid prototyping techniques have been developed in recent

years. Rapid prototyping machines generate solid objects by stacking layers

of material that follow the shape of the piece to be manufactured. In general,

the materials used in rapid prototyping are metals and thermoplastics. There

are several rapid prototyping techniques; the most widely available are:

Fused Deposition Modelling, Selective Laser Sintering and Stereolitography.

The difference between these three rapid prototyping techniques is the way

the layers of material are formed. In Fused Deposition Modelling the material

is initially solid and it is melted and extruded from a nozzle that deposits the

material on the layer. In Selective Laser Sintering the material is initially dust

and is melted by a laser beam to form the layers. In Stereolitography the

material is initially liquid and solidified with a laser beam to form the layers.

Generally, Selective Laser Sintering achieves better finishing of the pieces

than Fused Deposition Modelling and Stereolitography achieves better

finishing than the other two techniques.

For the manufacturing of the prototype of a miniature robot, Precision

Injection Moulding and CNC Micro-machining offer high manufacturing

precision but are only cost-effective for a high volume of pieces. Rapid

prototyping techniques are envisaged for industrial and domestic use and

are generally less expensive than other manufacturing techniques for low
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manufacturing volumes. However, the manufacturing tolerances achievable

with Rapid Prototyping are lower than with the other two techniques.

Table 3 summarises the features of Precision Injection Moulding, CNC

Micro-machining and Rapid Prototyping, along with the drawbacks of using

these techniques to manufacture the prototype of a miniature robot. The

features of Table 3 are based on the machines and manufacturing

companies available to this project which are mentioned in Chapter 5.

Table 3. Features and drawbacks of the manufacturing techniques used for miniature
robots.

Manufacturing

technique

Features Drawbacks

Precision Injection

Moulding

 Plastics

 High precision

 Industrial use

Only cost-effective for

high volume

CNC Micro-machining  Hard plastics and

metals

 High precision

 Industrial use

Costly for low volume

Rapid Prototyping  Plastics and

metals

 Fast

 Inexpensive

 Industrial and

domestic use

Lower precision

2.3 Locomotion strategies for miniature robots

The simplest and most common locomotion strategy for robots is the wheel

but designers have gradually introduced more complex systems generally

inspired by biological systems, like legged and snake-like robots. This

variety of locomotion strategies enables the use of robotic systems in

multiple environments and applications as explained in this section.

2.3.1 Wheels and tracks

Wheels are the locomotion system most often used for robots because of

their simple design and control. In wheeled robots motors are usually

connected, either directly or through gears, to the wheels. Wheeled robots

are typically controlled open-loop or with a PID controller in order to control
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the motion of the wheels more precisely. Wheeled robots present the

following control and navigation issues [66, 67]:

 The controllable degrees of freedom in a wheeled robot are usually

fewer than the actual degrees of freedom of the robot (non-holomonic

robots).

 The wheels of a wheeled robot might slip if there is insufficient friction

between the wheels and the ground or when the robot is turning.

 Wheeled robots are often considered unable to climb over obstacles

taller than half of the wheel radius [68].

These control and navigation issues of wheeled robots can be tackled with a

more complex mechanical and/or control system.

Tracked robots are also simple to build and control and can overcome higher

obstacles than wheeled robots. However, they are less often used than

wheeled robots because of their higher cost and because they can only turn

by allowing slippage on the ground causing the threads to wear quickly [66].

Wheeled and tracked robots perform best on flat terrain with few obstacles.

Figure 7a shows an example of a pair of wheeled miniature robots and

Figure 7b shows an example of a tracked miniature climbing robot.

Figure 7. (a) The wheeled miniature robots Alice [20] and (b) a tracked miniature
climbing robot [69].

For inverted adhesion-reliant locomotion, wheels and tracks offer the

advantage of a simple and compact mechanism requiring only a few motors.

However, the potential skidding of the wheels and tracks when turning can

make a robot in inverted adhesion-reliant locomotion lose adhesion and fall

off. Also, having more degrees of freedom in the robot can help to move the

adhesive pads more precisely enhancing the stability of the locomotion.
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2.3.2 Legs

Robots have been built with two legs inspired by human locomotion; four

legs inspired by the locomotion of quadrupeds; and with six and eight legs

inspired by insects [66]. On even terrain wheels are usually faster than legs,

however, on uneven ground, legs adapt better to terrain irregularities and

can achieve higher average speed than wheels [67, 70, 71]. Legs can cause

less environmental damage than wheels because wheels can slip and leave

a continuous track on the ground [67]. Legged robots usually have a high

number of degrees of freedom and require a control system more complex

than wheeled robots in order to coordinate the motion of the joints and the

legs. Figure 8a shows the commercially available miniature biped BRAT

(Lynxmotion) and Figure 8b shows the educational miniature hexapod

Stiquito®.

Figure 8. (a) The miniature biped BRAT [72] and the educational miniature hexapod
Stiquito [73].

For inverted adhesion-reliant locomotion, a legged design with each leg

moving an adhesive pad enables to move the pads individually, keeping as

many pads in contact with the tissue as required to ensure stability of the

robot. However, in a tight space like the insufflated abdomen, the motion of

the legs might interfere with the walls of the abdomen or the organs. Also, in

order to control the motion legs, 2-3 degrees of freedom are required per leg

which might unnecessarily increase the complexity of the mechanism and its

implementation. Ideally, the motion of the legs should be kept as close to the

peritoneum as possible and the number of degrees of freedom should be

kept to the minimum required to ensure stability of the robot. This minimum

of degrees of freedom cannot be determined a priori and will be dictated by

the experience and testing of the adhesive pads within the locomotion

mechanism.
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2.3.3 Hybrid solutions

The features of wheels, tracks and legs can be combined providing a robotic

system with several types of locomotion. Hybrid locomotion systems seek to

enhance the simple design and control of a wheeled robot with the

advantages of having legs. A remarkable example of these hybrid solutions

is the robot AZIMUT [74]. This robot features four legs with a thread along

the edge of each leg. The orientation of the legs with respect to the body of

the robot can change in order to use the thread on the edge of the legs as

wheels or tracks. Figure 9 shows the different locomotion modes of the

hybrid robot AZIMUT.

Figure 9. (a) The robot AZIMUT combines wheel, legs and tracks and can (b) climb
stairs, (c) stand on four legs and (d) move along an inclined surface [74].

Whegs, or wheel-legs, are another important combination of locomotion

features. Whegs combine wheels and legs resulting in a number of spokes

rotating around an axle controlled by a motor. Whegs have the advantage of

being simple to move and control like wheels and, at the same time, being

able to walk over obstacles like legs. The robot Mini-whegsTM is a good

example of a robot using whegs for locomotion on an inclined surface [75].

Mini-whegsTM is shown in Figure 10 climbing the surface of several materials

with different designs for the whegs.
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Figure 10. Mini-whegs
TM

with different types of wheel-legs climbs glass (a),
polysterene (b) and concrete (c) [75].

A combination of features from different locomotion systems seems an

appropriate design methodology for a challenging application like inverted

adhesion-reliant locomotion. However, for a miniature robot moving along

the peritoneum there is no clear advantage to implementing a hybrid

mechanism like in the AZIMUT robot because there is no change of terrain

that justifies a change of locomotion type. In inverted adhesion-reliant

locomotion along the peritoneum, whegs present the same risk of skidding

as wheels and along the peritoneum there are no obstacles that the whegs

could help clear.

2.3.4 Inchworm and earthworm locomotion

Inchworms move by clamping one end of their tubular body to the ground

and elongating their body to push the free end of the body forward. There is

always part of the body of an inchworm attached to the surface along which

they are travelling, while the other part of the body reaches for a new

position. Inchworm locomotion has been implemented in miniature medical

robots travelling along the gastro-intestinal tract [60, 76]. The sequence of

steps followed by an inchworm robotic colonoscope is illustrated in Figure

11a. In Figure 11a, the robot detaches the trailing part of the robot’s body

first and contracts the body bringing the trailing part close to the leading part.

Then the robot detaches the leading part of its body and extends the body

making the entire mechanism travel a distance. Figure 11b shows a series of

stills of the prototype of the robotic colonoscope moving a distance of 5mm

approximately, following the previous sequence.
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Figure 11. (a) Sketch of inchworm locomotion in a robotic colonoscope and (b)
prototype of the robotic colonoscope moving in an inchworm fashion, both images
from [60].

Earthworms move using peristaltic locomotion which is very similar to the

mechanism employed by the human intestine to move food. The body of an

earthworm is formed of a succession of rings that can contract or relax. The

outside of these rings are covered in bristles which anchor the rings to the

ground when the rings are relaxed; the contracted rings stretch out

advancing the body of the earthworm. Worms can change their direction of

motion by bending their flexible body towards the new direction. This type of

locomotion is illustrated in the sketch of Figure 12a and Figure 12b shows a

robot built in order to move following peristaltic locomotion. The rotary motor

at one end of the robot in Figure 12b pulls several wires connected to the

mesh that forms the body of the robot, making the segments of the mesh

contract and expand. The locomotion control system used by worms has

also been studied and implemented in robotic systems envisaged for search

and rescue in collapsed buildings [77, 78].

Stability of a robot in inverted adhesion-reliant locomotion depends upon

losing as little adhesion on the adhesive pads as possible with each motion

of the mechanism. For inverted adhesion-reliant locomotion, the idea of

keeping part of the body solidly in contact with the surface while the rest of

the robot moves, like in inchworm and peristaltic locomotion, is promising.

This is so because it means that the surface where adhesion takes place

can be divided and each part controlled independently, enhancing the

stability of the robot. The motion in worm-like locomotion happens mainly in

the direction of motion, that is, there are no extremities wiggling around the
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space along which the robot moves. This is an advantage for an application

in a tight space like inside the human abdomen, making worm-like

locomotion very relevant for the choice of locomotion mechanism of the

robot. Ideally, the body of the robot should extend over an area, rather than

stretch along a line like in worm-like locomotion, in order to maximise contact

and therefore adhesion with the peritoneum.

Figure 12. (a) Sketch of earthworm peristaltic locomotion (
©
Pearson Education, Inc.)

and (b) prototype of a robot using peristaltic locomotion [77].

2.3.5 Serpentine locomotion

Snake-like robots mimic the snake skeleton and are made up of a number of

segments connected together. These segments are moved following a

wave-like pattern to obtain locomotion [79, 80]. Snake-like robots can be

especially useful to crawl over rubble in search and rescue applications [81].

By way of example of this kind of robots, Figure 13a shows the snake-like

robot Slim Slime which can perform a variety of movements by elongating

and bending its body [79]. For medical applications, snake-like mechanisms

have been built to provide flexible steering of endoscopes in SILS and

NOTES applications [82]. Figure 13b shows a schematic showing the seven

degrees of freedom of a flexible endoscope whose mechanism is inspired by
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snake-like locomotion. Figure 13c demonstrates the use of the flexible

endoscope inside a simulated abdomen.

Figure 13. (a) Schematic illustrating a flexible endoscope with seven degrees of
freedom, (b) demonstration of the flexibility of the endoscope when exploring a

simulated abdomen, both images are taken from [83], and (c) the snake-like robot
Slim Slime [79].

For inverted adhesion-reliant locomotion of a miniature robot a snake-like

mechanism seems a rather complex mechanism compared to other options

like wheels or inchworm. In addition to that, the sliding motion of the

segments in a snake-like robot can make the robot lose contact with the

peritoneum putting its stability at risk.

2.3.6 Amoeboid locomotion

Unicellular organisms use three main systems of locomotion: flagella, cilia or

pseudopods [84]. A flagellum is a tail that the cell moves to propel itself, cilia

are small hairs around the edge of the cell which the cell can use to swim or

crawl and pseudopods are extensions of the body of the cell similar to feet

(pseudo is Greek for fake and pod is Greek for foot). Amoebas are able to

adhere to a surface and use the latter unicellular locomotion system,

pseudopods, in order to move along the surface [85]. To obtain locomotion

over a solid surface an amoeba extends an exploratory pseudopod first

which does not stick to the surface. From this central exploratory pseudopod

smaller pseudopods are formed which stick to the surface supporting the
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amoeba. The amoeba then moves by changing the shape of its body and,

eventually, those supporting pseudopods are detached and incorporated into

the part of the body that is moving [85]. Figure 14 a-c shows three moments

of the locomotion of an amoeba along a surface. Note the deformation of the

body and the expansion of the pseudopods circled in Figure 14a. The motion

of amoebas has been used as inspiration for the locomotion of robotic

systems, focusing on the use of the surface of the skin of the robot to obtain

traction forces [86].

Figure 14. (a-c) Three moments of the motion of an amoeba extending the
pseudopods circled in (a) changing the shape of its central body, the three images

are
©
Dr. R. Wagner.

For a miniature robot, inspiration from the locomotion of a unicellular

organism can only be at a conceptual level given the very different scale of

the two systems: amoebas are approximately 300μm long (see Figure 14) 

and a miniature robot is a few centimetres long. In an intra-body application

the space for locomotion is tight and the mechanism of a robot working in it

needs to be compact. For inverted adhesion-reliant locomotion, amoeboid

locomotion is relevant because it uses adhesion and enables the organism

to move along the surface of attachment without extremities interfering with

the space underneath. Ideally, the motion of the robot should interfere as

little as possible with the space underneath it and the fluidity of amoeboid

locomotion enables the robot to constraint its movement to the surface of

attachment. This idea is explained in more detail and illustrated in Chapter 4,

Section 4.3.2, where it is shown that the workspace of the robot is mainly

constrained to an area on the surface of the peritoneum.

Despite the obvious biological differences and purely from the point of view

of robotic locomotion, amoeboid locomotion can be regarded as two-

dimensional inchworm locomotion. This is so because amoeboid locomotion

alternates the attachment of different parts of the body and extends the

detached part of the body while the attached part of the body supports the
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motion. However, the body of an amoeba extends over a surface rather than

along a line like in worms. In worm-like locomotion, if the robot wants to

change direction of motion it needs to bend the body towards the new

direction. If the body of the robot extends over a surface, it can change

direction of motion without bending the body, simply starting to move the

part of the body closer to the new position the robot is required to go. This is

illustrated later in Chapters 3 and 4, Sections 3.9 and 4.5 , where the

locomotion sequence of the robot is explained.

2.3.7 Climbing robots and bio-inspired attachment

Climbing robots move against gravity and therefore require attachment to

the surface on which they are moving. The most challenging situation for a

climbing robot is a totally inverted surface. The previous locomotion

strategies: wheels, tracks, legs, whegs, worm-like and snake-like, can be

used for climbing a surface with the added challenge of providing attachment

between the robot and the locomotion terrain. The most usual attachment

methods for climbing robots are suction cups for non-metallic surfaces and

for ferrous surfaces: electro-magnets, permanent magnets or a hybrid of the

two. Robots using suction cups and magnets have been developed for

applications such as window-cleaning, inspection of large structures and

welding of ships [87-89]. Figure 15a shows a climbing robot using electro-

magnets and Figure 15b shows a window-cleaning climbing robot using

suction pads.

Figure 15. (a) Soldering climbing robot using magnets for attachment and (b) a wall
climbing robot using suction pads.
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Using magnets or suction pads for a climbing robot requires a vacuum pump

to obtain suction force on the pads and electro-magnets require extra

equipment in order to energise them. For an intra-body application using

suction pads [27, 60], in order to make the design of the robot as compact as

possible, the vacuum pump needs to be external to the body. If the intra-

body robot uses magnets, an external metallic surface is required in order to

keep the robot attached to the surface of the tissue [90]. An alternative to

using suction pads and magnets for a climbing robot inside the body is bio-

inspired adhesives. Using bio-inspired adhesives, attachment is obtained by

pressing them onto the surface of attachment without the need of external

equipment to maintain adhesion. Bio-inspired adhesive are the attachment

method considered for this project.

Bio-inspired adhesives have been developed recently and used in order to

provide attachment to climbing robots [91, 92]. The development of bio-

inspired adhesive surfaces began with the discovery of the micro-structure

present on the toes of geckoes [93] and the legs of insects [94] and other

animals. Geckoes are the animal whose adhesive microstructure has been

most extensively researched and studied [95, 96]. On the toes of the gecko,

a hierarchical structure of tiny hair-like fibres increases the contact area

between the foot and the surface of support [12, 95, 96]. Each tiny fibre

creates a weak molecular link, called Van der Waals link, with the surface of

support. These weak links between each tiny hair and the support surface

result in strong attachment because of the high number of hairs in contact

with the surface [93]. As a result, geckoes are capable of supporting the

weight of their body with just one of their toes [97]. Figure 16 shows the

adhesive structure on the foot of the gecko. Figure 16a shows the forces

taking place in the climbing motion of the gecko. Figure 16b shows a detail

of the posterior side of the gecko’s foot, where the adhesive micro-structure

is found. Figure 16c-e shows the structure of the tiny hairs found in the toes,

called setae, and the even smaller fibres composing these hairs, called

spatulae.
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Figure 16. Gecko adhesive hierarchical structures [96].

The ability of geckoes to climb a variety of surfaces is due to the way

geckoes control attachment and detachment as well as to the micro-

structure on their toes [15]. The forces geckoes apply to their feet are

parallel to the surface of support (shear force), and perpendicular to the

surface of support (pull force) that result in fast and efficient attachment and

detachment [15, 96]. These forces are applied to the toes during the

locomotion sequence of the gecko. Geckoes unfold their toes, preloading the

micro-structured area on their toes by pushing them into the surface of

attachment in order to ensure good contact and obtain attachment. When

geckoes require to detach their feet, they peel off their toes by curling up

their fingers. This way of peeling off the toes makes detachment fast and

efficient because a lower value of force is required to detach the adhesive

micro-structure when peeling off than when pulling. The foot of the gecko

unfolding its toes in order to attach to the surface is shown in Figure 17a and

detachment of the gecko curling up its toes is shown in Figure 17b.
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Figure 17. (a )Snapshots of gecko attachment and (b) snapshots of gecko detachment
from a glass ceiling [98].

These micro-structured surfaces enable smooth and repeatable attachment

to all kinds of dry surfaces and have been replicated for small climbing

robots using a tracked design, legs and whegs [99-101]. The robot Stickybot

was developed in order to replicate the attachment and detachment

mechanism of geckoes [92, 100]. The design of Stickybot uses gecko-

inspired adhesives on its toes and actuated cables to curl up and peel off its

toes [92, 100]. Stickybot was able to climb a variety of dry surfaces: glass,

ceramic tile and acrylic with a maximum speed of 4 cm/s [100]. Figure 18

shows the prototype and the main features of Stickybot.

Figure 18. Stickybot uses gecko-inspired adhesive pads and mimics the locomotion
mechanism of geckoes [100].

Several types of micro-structured surfaces have been fabricated and applied

to other small climbing robots [91, 99, 101-103]. For instance, the robot

Tankbot uses a tracks with gecko-inspired adhesive treads on its two belts.

Tankbot can move at a maximum speed of 12 cm/s and steer, climb steep

slopes, climb inverted surfaces and go over obstacles [99, 103]. The
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prototype of Tankbot is shown in Figure 19a. Another example is the robot

Waalbot which uses whegs to obtain locomotion. Waalbot uses two whegs

with three footpads each; each footpad has a gecko-inspired adhesive

surface [91, 101, 104]. Waalbot integrates on-board power and wireless

communication and is able to climb 90º slopes at 6 cm/s. The locomotion of

the latest prototype of Waalbot is enhanced by including force sensors on its

two tails. This latest prototype of Waalbot rocks the pads in order to recover

adhesion when the force sensors on the two tails of Waalbot sense

insufficient attachment force [101, 104]. The latest prototype of Waalbot is

shown in Figure 19b.

Figure 19. The climbing robot Tankbot uses tracks with gecko-inspired adhesive belts
[99] and (b) Waalbot uses whegs with gecko-inspired adhesive pads [104].

These adhesion-reliant miniature robots demonstrate the potential of using

biologically inspired adhesion and control for climbing robots moving on a

dry surface. For a wet surface like the peritoneum inside the abdomen,

inspiration for the development of adhesive micro-structures can be taken

from the toes of the tree frog. The micro-structure of tiny hair-like fibres

found on the toes of the gecko can also be found in tree frogs [105]. The

micro-structure on the toes of the tree frog is adapted to wet environments.

The micro-structured surface on the toes of the tree frogs uses weak

molecular links and capillary forces to provide strong adhesion to wet

surfaces [106-108]. Figure 20a shows a tree frog, the microstructure on the

toes of the tree frog consists of a hexagonal array of cells separated by

channels as shown in Figure 20b. These cells have finer micro-pillars and a

smaller-scale channel structure between the pillars, the scale of these pillars

and channels is shown in Figure 20c. These micro-pillars provide the first

contact with the attachment surface that causes adhesion [105, 106]. This

structure of micro-pillars has been replicated on the surface of a bio-

compatible polymer to provide attachment to biological tissue [8, 9]. The

channel structure found on the tree frog’s toes was not replicated because

the channels do not provide adhesion by themselves but by means of the
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fluid secreted from glands into the channels [106]. Therefore, the adhesion

of the replicated micro-structure on the adhesive pads for the robot comes

exclusively from the contact and the capillary forces between the pillars and

the wet surface of support. Figure 20d shows the micro-structured surface

fabricated for the adhesive pads of the intra-abdominal robot.

Figure 20. (a) Tree frog adhesion: (b) structure found on the toes of the tree frog, (c)
micro-pillars forming the structure of the toes [106] and (d) replicated micro-pillars to

obtain wet adhesion [9].

In order to control a robot in inverted adhesion-reliant locomotion, it is

important to understand the attachment and detachment process of the pads

when force from the actuators of the robot is applied to the adhesive pads.

This control of the attachment and detachment process requires a model of

how the force from the actuators of the locomotion mechanism affect the

adhesion of the pads. This model would consider the mechanical actions at

the macroscopic scale, that is, it would look into how the detachment force of

an adhesive pad changes depending on the horizontal and vertical forces

applied to it. Such a model would not require modelling of the microscopic

contacts between the individual fibres of the adhesive micro-structure and

the surface of support. Given the parameters of adhesion of the adhesive

pads: preload, detachment force and work of adhesion, a model of adhesion

on the macro-scale would determine the value of force applied by the robot

that makes the pads detach.

To the best of the author’s knowledge, a macro-scale model of an adhesive

pad interacting with the locomotion mechanism of a climbing robot has not
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been developed to date. Micro-scale models of gecko fibres and the fibres of

other animals have been developed mainly in order to understand and

improve the fabrication of bio-mimetic adhesives [14, 95, 96, 109-113].

However, no micro-scale models of the tree frog fibres have been found in

the literature. Having a model of how the adhesion force changes according

to the forces applied by the robot enables to define the stability of the robot,

that is, how close the robot is to falling. From this definition of stability,

control strategies can be determined so that the locomotion mechanism of

the robot enhances attachment or detachment of the pads as required by the

locomotion sequence. A model of how the adhesion force from the tree-frog

pads responds to the force from the locomotion mechanism of the robot is

developed in Chapter 6, explaining the relevant theoretical principles behind

the model. This adhesion model is used in Chapter 7 in order to define a

stability criterion for inverse adhesion-reliant locomotion. This stability

criterion enables the definition of control strategies of different configurations

of the locomotion mechanism presented in Chapter 8.

2.4 Robotic systems in surgical applications

Minimally invasive surgery is a significant advancement of modern surgery

because it bring benefits to patients and hospitals by reducing the number or

scars and trauma and shortening recovery times [6, 7, 114, 115]. In these

procedures, the surgeon inserts and manoeuvres the tools through small

incisions with the visual feedback of a camera, inserted in the body in the

same way.

However beneficial these procedures are for the patient, the surgeon loses

the direct contact of an open procedure and, therefore, the precision and

sensorial feedback enabled by direct access to the surgical target. In

conventional laparoscopy, the motion of the surgical tools is counterintuitive

as the tools are manoeuvred through holes and rotate around the point of

insertion. Moving the tool through a hole makes the motion of the hand of

the surgeon in one direction translate into a motion of the tool in the opposite

direction (fulcrum effect). The point of insertion of the tools is fixed and

cannot be easily repositioned along the operating area of the body. In

addition to that, the surgeon has to see the surgical cavity on a screen,

losing the three dimensional quality of the real image. Furthermore, the

surgeon can no longer use their hands to palpate the tissues and organs

they are operating on.
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Specialised training of surgeon is provided and the insertion ports for the

tools are carefully planned before the operation in order to benefit from the

advantages of laparoscopic surgery and overcome its disadvantages. Three

dimensional cameras are used in the latest laparoscopic systems and tools

integrating haptic feedback are under development and likely to become

widely available in the near future.

New technology has been developed over the last decades to make

minimally invasive operations more precise and comfortable for the surgeon.

The first improvement to laparoscopic operations is the use of robotic arms

in order to control the surgical tools inserted in the body. More recently, the

idea of miniaturising the surgical system, making the robot operate from

inside the body, has posed the challenge of intra-body locomotion [1].

The robotic systems for surgery presented next are divided into two groups:

 Surgical systems with robotic arms operating from outside the body

and

 Intra-body robots moving and operating inside the body.

2.4.1 Surgical systems with robotic arms external to the

body

One solution proposed to improve the precision and usability of laparoscopic

tools is the use of robotic arms to manoeuvre them inside the body. These

robotic arms are floor-mounted or mounted on the operation table and

controlled by the surgeon from a console in a master-slave fashion. The use

of robotic arms makes the motion of the tools more intuitive (no fulcrum

effect) and smoother, removing the lack of precision that may arise from the

tiredness of the surgeon or the trembling of the hand. This kind of robotic

systems have been extensively used with very successful results [114, 115]

and can currently perform a wide range of operations in abdominal, spinal,

cardiac, bone and brain surgery. The range of exploratory and operating

tools they can handle includes cameras, scissors, needles and drills.

Surgical systems with robotic arms external to the body can be divided into

four groups:

 Robotic holders of the laparoscope,

 Surgical robotic operators,

 Needle guiding robots and

 Miniature and flexible surgical tools and cameras.
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The main difference between these four groups of surgical robotic systems

is the degree of interaction of the system with the tissue and the organs of

the patient.

Robotic holders of the laparoscope hold the camera for the laparoscopic

operation, something that had been done traditionally by a member of the

surgical team. Thus, the motion of this type of surgical robots requires very

little interaction with the tissue.

Surgical robotic operators include more arms than the robotic holders of the

laparoscope in order to control not only the camera but also the tools for the

operation. The tools moved by the robotic arms and controlled by the

surgeon manipulate the tissue. Therefore, this group of robots has a higher

degree of interaction with the tissue than the robotic holder of the

laparoscope.

Needle-guiding robots typically use one arm only but interact with the tissue

very intensely as they have to make a surgical needle follow a specific path

through the soft tissue.

Robotic holders of the laparoscope, robotic operators and needle-guiding

robots are composed of floor-mounted robotic arms bearing tools inserted in

the body through small incisions. The set-up of these robots is probably

inspired by the surgeon standing by the patient and using their arms and

hands to operate the tools. These robotic systems occupy a significant

portion of the space around the operating table and their big dimensions and

heavy weight mean that they are cumbersome, difficult to move and hinder

access to the patient. Economically speaking, they require a large capital

cost.

In order to reduce the unwieldiness of the surgical tools moved by big,

external robotic arms, the surgical tools and camera have been miniaturised

and made more flexible. Miniature and flexible tools and cameras have to

interact with the tissue in the same way as the robotic holders of the

laparoscope and the robotic operators. These miniature tools and cameras

are attached to the surgical ports or the surface of the tissue.

2.4.1.1 Robotic holders of the laparoscope

Robotic holders of the laparoscope replace the surgical assistant that

traditionally holds the camera (called laparoscope) during a laparoscopic

operation. These robots are able to move the camera around the point of

insertion following the surgeon’s commands and enabling them to see the

abdominal cavity. Commercial versions of these robots exist and are widely
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available and used. A good example of this type of robots is Freehand®,

featuring several joints to move the laparoscope like an industrial robot

[116]. Freehand® is actuated by the head movements of the surgeon if the

surgeon is pressing a pedal at the same time. Freehand® is a further

development of EndoAssist [117, 118]; other robots of this kind include the

voice-controlled AESOP® system [119, 120]. Figure 21 shows the Freehand

and AESOP® laparoscope holders.

Figure 21. (a) The laparoscopic camera holder AESOP
®

and (b) Freehand
®

.

2.4.1.2 Surgical robotic operators

Robotic operators for surgery are composed of several arms placed around

the patient and remotely controlled by the surgeon. The surgeon controls the

operation from a console where the image from the laparoscope is shown.

Commercial robotic operators for surgery are available, the da Vinci® system

being the most popular of these robots. In the latest development of the da

Vinci® system the image from the camera is high definition 3D and the tools

to operate include small graspers which replicate the movement of a human

wrist [121]. Other robotic operators of this kind are the Polish Robin Heart

system for cardiac surgery [122] and MiroSurge, from the German

Aerospace Centre (DLR) [123, 124]. The MiroSurge robotic system uses the

industrial robot KUKA, a robotic arm designed for interaction with humans

[125]. Figure 22 shows the surgical robotic operators Robin Heart and

MiroSurge.
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Figure 22. (a) The Robin Heart system for cardiac surgery [122] and (b) the MiroSurge
system for laparoscopic surgery (b) [123].

2.4.1.3 Needle-guiding robots

A large number of minimally invasive interventions, like biopsy, placing

therapeutic agents or stone removal, involve needle driving [126]. Several

needle-guiding robots have been developed in order to increase the

precision of reaching the target with the needle and minimise collateral

damage. For example, the robot Pathfinder for neurosurgery scans the brain

of the patient, computing a safe trajectory for the needle to reach the target

[127, 128]. Figure 23 illustrates the application of the robot Pathfinder in

neurosurgery.

Figure 23. The Pathfinder needle guiding robot for neurosurgery[127].

2.4.1.4 Miniature and flexible surgical tools and cameras

Smaller tools and cameras enable the use of fewer and smaller incisions for

a laparoscopic operation and take less space inside the body cavity and

around the operating table. For instance, a miniature camera that can be

placed on the surface of the abdominal organs has been built and tested [51,

52]. This intra-abdominal miniature camera has several degrees of freedom,

providing a view of the entire abdominal cavity [51, 52].

More flexible surgical tools can improve the precision of a laparoscopic

procedure enhancing the dexterity of the surgeon controlling the tools. One
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way to make laparoscopic tools more dexterous is to include miniature joints,

or more degrees of freedom, in the design of conventional laparoscopic

tools. For example, tools that are able to closely mimic the motion of the

human hand are commercially available [129]. Another example of flexible

laparoscopic tools is a robotic system with two miniature arms inserted

through a single laparoscopic port [130]. Figure 24 a shows an articulated

laparoscopic tool and Figure 24 b shows a robotic system for laparoscopic

surgery with miniature robotic arms and cameras.

Figure 24. (a) An articulated laparoscopic instrument (EndoWrist, Intuitive Surgical
Inc.) and (b) robotic system with miniature arms for laparoscopy [130].

Snake-like motion is a promising technology to develop flexible endoscopes.

A robotic device that follows this design paradigm is the i-Snake® robot

which combines multiple articulated segments to steer an endoscope

inserted through its hollow centre [82]. More recently, a miniature robotic

platform has been developed with flexible arms holding instruments and a

head with lights and a camera [131]. This miniature robotic platform is

inserted through a standard port in the abdomen [131]. Figure 25a-d shows

a miniature robotic platform with flexible arms and a camera operating on the

abdominal organs.

Miniature and flexible tools are fixed to a specific location and can enhance

the manoeuvrability of the surgical tools and the access to the organs

around that location. However, the range of motion of the tools is still limited

by the surgical port through which they are inserted because they lack

mobility to relocate inside the surgical cavity.
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Figure 25. (a-d) Robotic platform with flexible arms and camera operating in the
abdomen [131].

Magnetic technology has been used in order to move devices along the

abdominal wall. A system with two miniature robotic arms that can be

magnetically anchored to the abdominal wall has been developed [132]. A

small device, magnetically fixed to the abdominal wall and able to change

the tilt angle of an onboard camera has also been developed [90].

Commercial applications using magnets to manoeuvre a laparoscopic

camera on the surface of the abdominal wall are available [133]. Figure 26

shows a miniature surgical robot mounted on the abdominal wall and an

endoscope using magnets to attach to the abdominal wall.

Figure 26. (left, a-d) Photos of a miniature in vivo robot operating from the abdominal
wall [134] (right, a-d) endoscope using magnetic levitation [90].

Magnetic anchoring for robots inside the body extends the use of a well-

known attachment technology to intra-corporeal mobility but requires

external equipment to generate the magnetic field and handle the camera.
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These magnetic devices drag the camera and tools using equipment outside

the body and therefore they are not provided with autonomous mobility.

A different approach from making the tools more flexible or dragging them

with magnets is to build a robotic device able to move around the surgical

cavity carrying the tools. There are trends in current research to provide

miniature surgical systems with a locomotion mechanism that enables these

systems to move freely inside the body cavities.

2.4.2 Intra-body robots

Intra-body robots are miniature devices able to fit inside a body cavity and

perform an operation offering functionality akin to robotic holders of the

laparoscope or robotic operators. For example, a mobile intra-body robot

could carry a camera and the tools necessary for a surgical operation,

moving fully inside the body cavity of interest. Using an intra-body robot

further reduces the number of incisions as the robot could carry everything

required for the operation and would need only one surgical port to get

inside the cavity.

Not only does an intra-body robot have to operate on the organs, it also has

to move on their surface. Locomotion on the surface of the organs means a

higher degree of interaction with the tissue than robotic operators.

Interaction with the tissue is more intense in an intra-body robot than in a

robotic operator because the motion of an intra-body robot no longer relies

on an external, solid frame of reference. Instead of having a solid frame of

reference like in robotic operators, the motion of an intra-body robot depends

on the interaction between the robot and the biological tissue.

The environment of an intra-body robot is the body cavity where it has to

perform an operation. Body cavities have different shapes and impose a

variety of design constraints depending on where in the body the procedure

takes place and what type of intervention it is. For instance, in laparoscopic

surgery, the environment is created by inflating the abdomen and results in a

fairly open space. In minimally invasive cardiac surgery, however, the space

around the heart is very tight. Accordingly, an intra-body robot to move

around the heart needs to incorporate features to separate the pericardium

from the surface of the heart.
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Intra-body robots can be classified according to the body cavity where they

operate. The body cavities where an intra-body moves can be classified into

two groups:

 Tubular (or luminal) cavities like the gastro-intestinal (GI) tract,

 Non-tubular cavities like the insufflated abdomen and the tight space

around the heart.

Tubular cavities are meant to be hollow as part of the human anatomy and

belong to the digestive system (gastro-intestinal tract) from the mouth to the

rectum.

Non-tubular cavities are not meant to be hollow as part of the human

anatomy and therefore need to be created for the surgical intervention. For

instance, these cavities are created by inflating the abdomen in the case of

laparoscopy or separating the tissue around the heart for minimally invasive

cardiac surgery.

2.4.2.1 Robots for the GI tract

Robotic devices for tubular organs have been developed over the last

decades [76, 135-137]. These devices are mainly designed for exploration of

the colon (colonoscopy). These robotic devices move using inchworm

locomotion and reduce the pain and the risk of tissue damage traditionally

caused by manual steering of the colonoscope. They are a few centimetres

wide, to fit the lumen comfortably, and carry lights and a camera on their

head to provide an image of the internal walls of the colon. Commercial

applications of these robotic systems are available [138, 139]. Figure 27

shows the components of a robotic system for colonoscopy: the workstation

of the colonoscope with the screen where the images of the colon are shown

(Figure 27a) and the probe to be inserted in the colon (Figure 27b).

Figure 27. (a) Workstation and (b) probe of a robotic system for colonoscopy [136].
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Pills that incorporate a camera to explore the GI tract are also available in

the market of medical devices [140]. These pills are swallowed by the patient

and take pictures as they travel through the GI tract, sending them to a

computer where the doctor can check them. The pills move with the natural

motion of the GI tract (peristalsis).

The commercially available versions of these pills have no capability to stop

at a specific location along the GI tract. If these pills could be stopped at a

specific location, they would allow more detailed exploration of specific areas

of the GI tract, enabling better diagnosis of the condition. For this reason,

several stop mechanisms for these pills have been developed [60, 62, 141,

142]. These mechanisms are miniaturised in order not to increase the

volume of the pill significantly and some of them use bio-inspired adhesion

technology to grip to the walls of the GI tract [62, 141].

Figure 28a shows one of the commercially available pill cameras for the GI

tract. Figure 28b and c show a stop mechanism for this type of pills using

beetle-inspired adhesive surfaces like those discussed in Section 2.3.7.

Figure 28. (a) Pill with a camera for exploration of the gastro-intestinal tract and (b
and c) stop mechanism for this kind of pills: (b) with the legs folded and (c) with the

legs unfolded [62].

The motion of a miniature robotic system inside a luminal organ is facilitated

by the shape of the organ because there is only one direction to follow,

forward or backward along the lumen. The design challenges of this type of

locomotion focus on negotiating the intricate bends of the gastro-intestinal

tract and obtaining enough grip to move along the walls of the tubular organ.

In a non-tubular cavity, the locomotion mechanism of the robotic system has

to enable motion of the robot in all directions of the surface of support.

The next two robots move in non-tubular cavities: around the heart and

along the abdominal organs, and are the most relevant robots to the intra-

abdominal robot of all the robotic systems reviewed in this chapter.
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2.4.2.2 The HeartLander robot for cardiac surgery

The Heart Lander robot was developed in order to crawl over the surface of

the beating heart and deliver drug to the location previously specified to its

navigation algorithm [27, 59]. For the locomotion of this robot, two vacuum

suction cups alternate attachment of the head and tail of the robot to the

surface of the heart in an inchworm fashion. The main issue with this system

is to ensure the seal around the cups has been formed for the suction force

to be effective [27].

The locomotion mechanism of the robot is remotely actuated with a set of

motors pulling and pushing a pair of cables to obtain separation between the

head and tail of the robot. The mechanism can also bend the head of the

robot to enable it to steer. Figure 29a shows the boxes of motors and

controls of the HeartLander robotic system and Figure 29b shows the

prototype of the robot.

Figure 29. (a) Instrumentation boxes (left), vacuum pump (upper right), and tethered
crawling robot (lower right) of the HeartLander robotic system [59] and (b) the latest

prototype of the robot [143].

The external transmission of force through remote actuation makes the

control of the robot stiff, that is, lacking in precision, and to tackle this the

newest prototype includes on-board motors [143]. The size of the latests

prototype is 76 x 15.5 x 9 mm (L x W x H). The HeartLander robot is

designed to navigate and position on the beating heart and a series of

porcine trials showed its feasibility in vivo [27]. In those tests the robot

reached the target within 97s on average, the total relative positioning

accuracy being 1.7 mm. The locomotion efficiency was 40% because of

slippage; the robot designers expect to improve locomotion efficiency by

synchronising the robot’s motion with respiration and heartbeat [27].
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2.4.2.3 The Nebraska wheeled robot for abdominal surgery

The Nebraska wheeled robot is designed to move around the abdominal

organs with two metallic wheels driven by two independent DC motors [56].

Power to the motors of the prototype is supplied through a tether, although a

wireless prototype has also been tested [56]. The robot can carry a camera

and biopsy tweezers [28, 144].

Several profiles of the wheels of the robot were tested experimentally on

bovine liver. The helical profile was able to provide the best traction and was

chosen for the prototype of the robot. During in vivo tests, the robot was able

to achieve a maximum speed of 2 cm/s with sufficient manoeuvrability

around the abdominal organs [57, 145-147]. The wheels have an outer

diameter of 15 mm to fit through a trocar port, the length of the robot is 75

mm and its mass is 50 grammes [56].

The use of micro-patterned treads on the wheels, instead of a metallic

profile, has been recently investigated by the authors. The in vivo

performance of a smooth and a micro-patterned wheel were compared and

the micro-patterned wheel outperformed the smooth one [148].

The prototype of the Nebraska wheeled robot with a camera and biopsy

tweezers is shown in Figure 30a. Figure 30b shows the Nebraska wheeled

robot moving on the surface of the abdominal organs.

Figure 30. (a) The Nebraska wheeled robot with a camera and biopsy tweezers and (b)
the robot moving around the abdominal organs [145].

The aluminium wheels of the Nebraska robot provide traction on visco-

elastic tissue but are unable to attach to the surface of the organs and climb

internal walls. The steadiness of the motion of the robot is limited by the

wheels of the robot having to follow the hilly surface of the abdominal

organs.
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The development of these intra-body robots prove the potential of carrying

out exploratory and surgical procedures with a mobile robotic platform inside

the body. The design of these miniature robots adapts to the specific

requirements of the environment in which they operate. To obtain intra-body

locomotion, these robots, use a combination of miniature actuators and

technology to move efficiently in a soft and wet environment. In this way,

robots inside the colon adopt a tubular shape and their actuation mechanism

follows the walls of the lumen. The hardware of the Heart Lander robot is

specially designed to compensate for the motion of the heart and move

between the surface of the heart and the layer of tissue covering he heart.

The profile on the wheels of the Nebraska robot is optimised to move over

highly compliant abdominal organs. In conclusion, for intra-body mobility it is

crucial to provide the robotic system with a mechanism able to obtain

locomotion on the surface of biological tissue.

2.5 Discussion of surgical robotic systems

Compared to manual laparoscopy, robotic surgical systems improve the

precision of the procedure, making it more comfortable for the surgeon. In

externally actuated robotic systems, floor-mounted robotic arms move the

tools inside the patient while the surgeon controls the tools from a console

with a high definition image of the abdominal cavity. These systems are

successfully used and commercialised but they are cumbersome and costly.

Like in the manual procedure, the tools in an externally actuated surgical

robot cannot be repositioned along the abdominal wall and can only move

around the point of insertion.

Commercial applications and research prototypes of smaller and bendable

laparoscopic cameras and tools are currently available. Some of these

systems make use of miniature robots inserted in the abdominal cavity and

fixed to the abdominal wall through a single port. These robots reduce the

unwieldiness of the robotic system and the number of incisions required to

insert the tools. Their flexible actuation makes access to the organs and

manipulation easier but they are fixed to a position on the abdominal wall.

Other small and flexible robots use magnetic technology to fix and move the

tools and camera along the wall of the abdomen. These systems enable re-

positioning of the tools and camera along the abdominal wall but they

require external equipment to generate the magnetic field that provides

attachment to the abdominal wall.
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A different approach to make operation of the tools and camera more flexible

is to build a small robot able to fit through an incision and move inside the

cavity of interest. Following this approach, a crawling robot using suction

cups and remote actuation has been developed to deliver drug to the

surface of the beating heart. This robot is able to inject drug at a specific

position on the heart but remote actuation makes control of the robot stiff

and its performance is hindered by slippage. In addition to that, suction cups

are difficult to seal around tissue and require an external vacuum circuit.

Also, a wheeled robot has also been implemented and tested moving on the

surface of the abdominal organs. This robot is able to carry a camera and

small tools. However, this robot cannot attach to tissue, it does not operate

at a vantage point and the control of the robot is hindered by the irregular

surface of the abdominal organs.

With respect to power requirements, all intra-body robots developed to date

are tethered given the difficulties of integrating a power source within the

mechanism of the robot without significantly increasing their size and/or

weight. A wireless prototype of the Nebraska wheeled robot was tested ex

vivo and in vivo; the wireless version was larger and required a larger tail in

order to match the performance of the tethered prototype [56]. Some

miniature climbing robots using bio-inspired adhesives, such as Waalbot

[101], carry the batteries to power their motors but their size is significantly

larger than required for an intra-body application: Waalbot is 10cm long.

Taking into account these considerations, the prototype of the intra-

abdominal robot will be tethered for the sake of simplifying the power system

of the robot and in order to keep its mechanism as lightweight and compact

as possible. Future development of the robot could be wireless as smaller

and lighter batteries become available for intra-body applications.

Table 4 summarises the advantages and disadvantages of current surgical

robotic systems, including externally actuated robots and intra-body robots.

The table also includes miniature climbing robots whose size, locomotion

and attachment mechanism is relevant for the design of an intra-abdominal

miniature robot.
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Table 4. Robotic systems reviewed for the design and implementation of an intra-abdominal miniature robot.

Technology Type of Robot Type of locomotion Attachment Stage of

development

Advantages for inverted

adhesion-reliant locomotion

Disadvantages for inverted

adhesion-reliant locomotion

E
x
te

rn
a
ll
y

A
c
tu

a
te

d

R
o

b
o

ti
c

S
y

s
te

m
s

Camera holders Set of actuators on

rigid frame

External, floor-

mounted

Commercial Precision of motion

Unaffected by tiredness

Camera fixed to insertion

point

Operators and

needle-guiding

Set of robotic arms External, floor-

mounted

Commercial Precision of motion

Unaffected by tiredness

Camera and tools fixed to

insertion point

Miniature and

flexible tools and

cameras

Articulated links or

moved with external

magnets

Incision-mounted or

fixed to magnet

Research and

Commercial

Better access

Better manoeuvrability

Fixed to insertion point or

external magnet

In
tr

a
-b

o
d

y

R
o

b
o

ts

Intra-luminal

(inside GI tract)

Worm-like (follows the

lumen)

To the walls of the

lumen (pressure,

adhesion)

Research and

Commercial

Better access

Reduced pain

Only for one-directional

environment

HeartLander Inch-worm (polar

walker)

To the heart with

suction cups

Research Precise positioning on the

beating heart

Requires vacuum pump

Vacuum suction

inefficient on tissue

Remote, stiff actuation

Nebraska

Wheeled Robot

Wheels (metallic or

micro-threaded)

Moves on the organs

with profile on metallic

wheels or micro-threads

Research Repositioning of camera

and tools on the surface of

the abdominal organs

No operation from a

vantage point

Uncontrolled locomotion

on unstructured terrain
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Technology Type of robot Type of locomotion Attachment
Stage of

development

Advantages for inverted

adhesion-reliant

locomotion

Disadvantages for

inverted adhesion-reliant

locomotion

A
d

h
e
s
io

n
-r

e
li

a
n

t

M
in

ia
tu

re
R

o
b

o
ts

Gecko-shaped Legs Bio-inspired

adhesion

Research Strong attachment

Controllable adhesion

Complex design

Slow

No adhesion to wet

surfaces

Tank-like Tracks Bio-inspired

adhesion

Research Strong attachment

Simple design

Fast

No adhesion to wet

surfaces

Wheel-leg Wheel-legs Adhesion (some

bio-inspired)

Research Strong attachment

Simple design

Fast

Adhesion recovery

No adhesion to wet

surfaces
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The surgical robot of the future will combine the advantages of the

technologies and improvements for laparoscopic surgery reviewed in this

chapter and summed up in Table 4.

Such a robot will have autonomous locomotion inside the cavity while being

comfortably controlled by the surgeon from a console. This future robot will

also carry flexible tools, using controllable adhesion to climb the wall of the

abdomen and move in inverted locomotion. In addition to that, the robot

could also include magnets as a back-up attachment system.

In order to develop a robot with all these features, intra-body robots require

autonomous motion, operating from the wall of the abdomen without any

external equipment to keep them attached. A locomotion mechanism able to

control adhesion to the surface of the peritoneum would be a significant

contribution to the development of this surgical robot of the future.

2.6 Summary

Robots have been developed in conventional, miniature, micro and nano

dimensions. In order to provide locomotion to robots a number of strategies

have been used: wheels, tracks, legs, wheel-legs, worm-like and snake-like

locomotion. Robot also use different attachment methods, like magnets,

suction pads or adhesion, in order to climb a surface and move in inverted

locomotion.

Miniature robots are conventional robots scaled-down to a few cubic

centimetres. The main challenges of a miniature robot are: manufacturing in

a small scale and actuation for low forces. Current actuation technologies for

miniature robots include DC mini-motors, piezo-electric motors, SMA

actuators and IPMCs. Current manufacturing techniques for miniature robots

include injection moulding, CNC micro-machining and rapid prototyping.

Miniature climbing robots using bio-inspired adhesion have been developed

using a variety of locomotion strategies: legs, tracks and whegs.

Inspiration from nature has been used to improve the performance of robotic

systems and can be useful to resolve the challenges posed by intra-body

locomotion. Three particular features found in nature are relevant to inverted

adhesion-reliant locomotion for an intra-abdominal robot: control of

attachment in geckoes, adhesion to wet surfaces in tree-frogs and amoeboid

locomotion. Geckoes obtain strong attachment through tiny hairs on their

toes and can control adhesion by preloading and peeling off their toes. Tree

frogs have a micro-structured pattern on their toes that enables them to
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attach strongly to wet surfaces. Amoebas move along a plane changing the

shape of their body and alternating locomotion between different parts of

their body.

Laparoscopic surgery is beneficial for patients and hospitals but makes the

operation more difficult for surgeons because they have to operate with long

tools inserted through incisions, watching the organs on a screen. Robotic

systems with robotic arms moving the laparoscopic tools make the

procedure more precise and comfortable for the surgeon. These systems

are actuated from outside the body and include camera holders, robotic

operators and needle guiding robots.

Miniature and flexible tools and cameras have been developed in order to

make surgical robots less cumbersome and further reduce the number of

incisions used in laparoscopy. Miniature cameras can be mounted on the

abdominal organs or attached with magnets to the abdominal wall. Flexible

tools use snake-like mechanisms to improve manoeuvrability and access

inside the abdomen.

Fully internalised mobile robots have also been developed in order to further

reduce the size of surgical robots and enhance their mobility inside the body.

These intra-body robots are used for exploration of the digestive system and

for operation on the heart and inside the abdomen. Colonoscopy robots use

inch-worm locomotion in order to reduce the pain caused by the manual

procedure. Stop mechanisms for pill endoscopes use gecko-inspired

adhesion and enable the doctor to stop the pill at a specific location. The

HeartLander robot uses inch-worm locomotion to crawl over the surface of

the beating heart with suction pads, delivering drug to a specific location on

the surface of the heart. The Nebraska wheeled robot uses two wheels with

a profile or micro-treads that enable motion on the surface of the abdominal

organs, carrying a camera and small surgical tools.
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Chapter 3
Specifications and conceptual design of the robot

3.1 Introduction

The literature review on miniature robots for intra-body operation showed the

great potential of internalising the operation of robotic assistants for surgery.

Alongside with this, it also made clear that a new paradigm of intra-

abdominal operation and locomotion is required to advance the development

of technology for minimally invasive surgery. Accordingly, a novel design for

an intra-body robot is presented in this chapter. In order to understand the

constraints imposed by the environment on the design of the intra-abdominal

robot, a brief description of the abdominal cavity is given in the first place.

After this, the advantages of using a robot hanging from the top of the

abdominal cavity are explained together with the challenges of intra-

abdominal operation in inverted locomotion. Several design principles are

drawn from the considerations of the environment and the application of the

robot and the type of locomotion is selected accordingly. The design of the

locomotion mechanism and the locomotion sequence of the robot are

explained in the last sections before summarising the contents of the

chapter.

3.2 The environment of the robot: the insufflated
abdomen

In laparoscopic surgery, the space for the surgical operation is created by

insufflating the abdomen. The insufflated abdomen provides space for the

surgeon to insert and manoeuvre the tools and see the abdominal organs

with the help of a camera and lights. This section first explains what the

abdomen is and then describes the surface on which the robot moves: the

inside wall of the abdomen or peritoneum. Lastly, the section summarises

the geometrical aspects of the abdomen and the surface properties of the

peritoneum relevant to the motion of the robot.

3.2.1 The human abdomen

The abdomen is the part of the body between the chest and the pelvis,

where most of the gastro-intestinal organs are placed. The main organs of

interest for surgery in this part of the body are: the stomach, the liver, the



- 53 -

small bowel, the gall bladder, the colon and the sexual organs. In Figure 31a

the muscular layer of the abdominal area is shown. Figure 31b shows the

complexity and uneven surface of the abdominal organs.

Figure 31. (a) Muscles of the human abdomen and (b) organs in the abdominal cavity
[149].

Inside the abdomen, the abdominal organs are covered by a layer of fat. The

inside wall of the abdomen, the peritoneum, is situated above the abdominal

organs. Figure 32a shows a view of the peritoneum and the abdominal

organs covered by the layer of fat (the yellow substance) from a

laparoscopic camera. Figure 32b shows a view of the colon and liver from a

laparoscopic camera.

Figure 32. (a) View of the peritoneum and abdominal organs from a laparoscopic
camera and (b) view from a laparoscopic camera showing the liver and the colon.

The surgical tools and endoscopic camera are inserted into the abdominal

cavity through the abdominal wall and peritoneum. During the operation, the

surgeon uses the laparoscopic tools in order to move the layer of fat out of

the way and gain access to the organs. Using the laparoscopic tools, the

surgeon moves the organs around in order to find the surgical target. Figure
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33a and Figure 33b show the aspect of the abdominal cavity during a

laparoscopic operation.

a) b)

tools

tools

Figure 33. (a-b) Stills from a laparoscopic camera of the abdominal cavity during an
operation.

The abdominal wall is the surface that will be used by the intra-abdominal

robot to support itself and is described in detail next.

3.2.2 The abdominal wall

The abdominal wall is composed of skin, a layer of fat, a layer of muscle and

the peritoneum, the peritoneum being the most internal layer. The proposed

intra-abdominal robot will attach to the inside wall of the abdomen in order to

operate from a vantage point inside the insufflated abdomen. Figure 34a

shows the position of the robot inside the abdominal cavity and Figure 34b

shows the layers that compose the abdominal wall.

Figure 34. (a) Position of the robot inside the abdominal cavity and (b) composition of
the abdominal wall, adapted from [8].

The peritoneum is composed of a thin layer of cells that forms the internal

surface lining of the abdominal wall and covers the surface of the abdominal

organs. The peritoneum is covered by a thin layer of fluid which is secreted

continuously from specialised cells, ensuring that the peritoneum remains

wet at all times and lubricates the organs [150]. The presence of this fluid

will be exploited by the adhesive pads used for the intra-abdominal robot

because these pads use capillary forces to enhance the attachment of the
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robot to the peritoneum. Dehydration damages the peritoneal tissue and

lowers the weight that the adhesive pads can support [10].

Mouse peritoneum is very similar to human peritoneum; the topography of

mouse peritoneum has been investigated and shown to be a relatively flat

surface [8]. An image of mouse peritoneum obtained in this investigation is

shown in Figure 35.

Figure 35. Topography of the surface of mouse peritoneum [8].

The intra-abdominal robot operates inside the abdominal cavity, attached to

the peritoneum. The geometry of the insufflated abdomen as the

environment for the intra-abdominal robot is explained next.

3.2.3 The geometry of the insufflated abdomen

The peritoneum surface is held up, away from the abdominal organs, by the

pressure of the carbon dioxide used to insufflate the abdomen, which causes

the peritoneum to be slightly vaulted. Inside the insufflated abdomen, the

space between the raised peritoneum and the surface of the abdominal

organs is 5-6 cm. The maximum inclination between the horizontal and the

curvature of the peritoneum is about 60º. The maximum length of the

transversal section (from the left to the right side) of the human abdomen is

approximately 30 cm. For this project, based on the experience of the

surgical team, the area of interest for the operation of the robot is considered

a square of 10cm x 10cm at the centre of the abdomen. Drawing from the

experience of Prof David G. Jayne: “Preliminary observations undertaken

during laparoscopic surgery showed that a working range of 10cm x 10cm

was seen to provide sufficient intra-abdominal coverage to enable most

surgical procedures to be performed”. Figure 36 illustrates the geometry of

the insufflated abdomen and the position of the robot within it.
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Figure 36. Geometry of the insufflated abdomen (not to scale).

As shown in Figure 36, the robot will move on the surface of the peritoneum

at a distance from the abdominal organs.

3.3 Advantages of an adhesion-reliant robot moving on
the surface of the peritoneum

An adhesion-reliant robot moving on the abdominal wall could potentially

carry a laparoscopic camera and tools. The advantages of having an

adhesion-reliant robot moving on the surface of the peritoneum are:

 Repositioning of the camera or tools carried by the robot along the

surface of the peritoneum, which means:

 Better view of the organs from the camera carried by the robot

and

 More convenient interaction with the surgical target from the

tools carried by the robot.

 Enhanced manoeuvrability around the surgical target.

 No external equipment required for the attachment system.
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The camera and tools carried by the robot can be repositioned along the

peritoneum because the motion of the robot is not limited to the insertion

port. A completely internalized device could work at any location and

orientation within the abdominal cavity, moving out of the way of other

operating instruments. Thus, an intra-abdominal robot could obtain a better

view of the organs by changing the position of the camera on the

peritoneum. Likewise, an intra-abdominal robot carrying surgical tools

enables the tools to reach the surgical target and interact with it more

comfortably because the position of the robot on the peritoneum can be

adjusted. This is an advantage over current surgical robotic systems where

the tools and camera are inserted through a fixed port and moved by

actuators outside the body cavity [121, 123, 131]. Robotic systems operating

through a fixed port enable vision and manipulation within a defined area,

but the motion of the laparoscope and tools is limited to an arc around the

point of insertion [151]. This limitation of surgical robotic systems with

actuation external to the abdomen is illustrated in Figure 37.

Figure 37. Sketch of a surgical tool inserted into the abdominal cavity through a fixed
port.

Compared to motion on the surface of the abdominal organs, from a vantage

point within the abdominal cavity like the peritoneum, it is easier to move to a

position where a better view and clearer access to the surgical target is

obtained. The peritoneum is a smooth surface so mobility on the peritoneum

is not hindered by the roughness of the surface. This is an advantage over

intra-abdominal robots that move on the surface of abdominal organs [56,

57] (see Figure 38) because the surface of the abdominal organs is highly

unstructured as shown earlier in Figure 33. Therefore, it is difficult to control

the motion of a miniature robot on the surface of the abdominal organs.

Figure 38 shows a sketch of a miniature mobile robot moving on the surface

of the abdominal organs.
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Figure 38. Sketch of an intra-abdominal robot moving on the surface of the abdominal
organs.

Unlike other attachment technologies, bio-inspired adhesive pads do not

require any additional components to ensure the pads are attached and

detached. This is an advantage over other intra-abdominal devices that use

suction pads or electromagnets to attach to tissue [27, 90, 133, 134, 152].

For example, for a robot using suction cups, a vacuum circuit is required to

attach and detach the robot to the tissue. For electro-magnetic attachment,

an external magnetic field generator is required to control the attachment

and detachment of the robot to the tissue. No external equipment is required

for the bio-mimetic adhesive pads because the locomotion mechanism of the

robot can be used in order to preload the pads to attach and peel them off to

detach.

A mobile robot operating from the peritoneum can focus on and reach

virtually every place inside the abdominal cavity, moving on a smooth and

stable surface. A sketch of an intra-abdominal robot operating from the

peritoneum is shown in Figure 39.

Figure 39. Sketch of an intra-abdominal robot moving on the surface of the
peritoneum.

3.4 Challenges of intra-abdominal inverted adhesion-
reliant locomotion

The challenges of intra-abdominal locomotion on the surface of the

peritoneum are set by the environment (the human abdomen), the inverted

adhesion-reliant locomotion and the requirements to make operation of the

robot medically safe:
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 The environment (the human abdomen):

 Miniature size of the robot,

 Compact motion of the robot,

 Inverted adhesion-reliant locomotion:

 Weight of the robot,

 Control of the adhesion of the pads,

 Medical safety:

 Minimal tissue damage,

 Safe temperature of operation,

 Low voltage of operation,

 Sterilisation of the robot,

 Bio-compatibility.

The robot would be inserted into the abdomen through one of the incisions

used for the laparoscopic procedure. Laparoscopic ports range from less

than 12 mm to up to 2 cm in diameter [153]. For Single Incision

Laparoscopic Surgery (SILS) ports can be up to 3 cm in diameter because

they are used for the extraction of the surgical specimen. The robotic device

has to fit through a SILS port and therefore the maximum width of the robot

should be 3 cm. The distance between the abdominal wall and the

abdominal organs is 5-6 cm (see Figure 36) so the robot should be able to fit

and manoeuvre comfortably within that space. The robot should occupy as

little volume as possible during locomotion, so that the mechanism of the

robot does not interfere with the tools and tissue around the robot.

An area of 1 cm2 of the tree frog adhesive pads used to support the robot

against gravity (see Section 2.3.7) can hold a weight of 8-14 grammes [10].

The weight of the robot should be lower than the total weight the pads of the

robot can support. The adhesive pads need a preload force of around 10 mN

[10] to attach to the tissue and can be detached by applying their maximum

load or by peeling them off. The design of the robot requires a locomotion

mechanism able to apply sufficient force on the pads to attach and detach

them.

In medical terms, the locomotion of the robot inside the abdomen should

cause as little tissue damage as possible. The robot should not cause

harmful friction or pressure on the tissue. The temperature of the parts of the

robot touching the tissue must be within the range of temperature tolerable

by the tissue; the normal temperature of the body is 36.9ºC and up to 45ºC
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can be tolerated for up to one minute [154]. The parts of the robot touching

tissue must be electrically insulated. The materials of the robot in contact

with human tissue must be free from harmful chemicals and bio-compatible.

The robot should undergo some sterilization procedure before and the parts

of the robot in contact with tissue should be ideally disposable.

The material used for the pads is a bio-compatible soft elastomer:

MacDermid Autotype™ [10]. The mechanism of the robot can be designed

so that the pads are the only part of the robot in contact with the tissue and

can be disposed of after each intervention. The mechanism of the robot can

be insulated and protected with a case of a bio-compatible material that can

also be disposable.

3.5 Design principles of a locomotion mechanism for an
intra-abdominal adhesion-reliant robot

Considering the previous challenges of the application and environment of

the robot, what design principles should be followed?

The first design principle to follow is simplicity of the design; this is true of

any engineering system and it is especially important in a robot where the

size and weight are critical factors to determine its functionality. Too big a

size of the robot would make it impossible to fit inside the abdomen and too

heavy a weight cannot be withstood by the adhesive pads and would make

the robot fall down.

A locomotion mechanism with as few components as possible is required to

obtain a compact design of the robot. The addition of mechanical

components, like links and joints, and control components, like sensors and

actuators, is only justified if these additional components offer a clear

qualitative or quantitative advantage over a simpler design. For instance, if

the addition of a pad enables the robot to carry a higher payload, this would

be an important quantitative improvement and the addition of the pad would

be justified. An example of a relevant qualitative improvement would be if the

addition of a pad changes the distribution of moments on the pads of the

robot in a way that benefits the stability of the robot. More details on how the

different configurations of the pads can affect the stability of the robot are

given in Chapter 8. In terms of the power supplied to the robot and the

communication between the robot and the surgeon, the weight and size of

the robot can be kept to a minimum by using a tethered design. This tether

will carry the power for the motors of the mechansim as well as the control
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signal for the motors. This control signal will follow the commands of the

surgeon who monitors and decides on the motion of the robot from a

computer console. In this way, the batteries and drivers of the robot can be

kept off-board, reducing the size and weight of the robot.

The design of the robot can be more compact if the number of actuators is

reduced by using the same motor for different purposes within the

locomotion mechanism. For example, a rotary motor can apply a moment to

the pad in order to peel off the adhesive pad but cannot control the

separation between the pad and the tissue. A linear motor can apply a force

to peel the pad off and can also control the separation between the pad and

the tissue. Therefore, in this case, a linear motor is preferable to a rotary

motor because the linear motor can control the distance between the pad

and the tissue, which is a desirable feature of the mechanism. As explained

in Section 2.2.2., another reason to prefer linear motors over rotary motors is

that the smallest and lightest linear motors found in the market are more

compact and lightweight than the smallest commercial rotary motors.

Symmetry of motion makes the design of the robot more robust by

simplifying the locomotion mechanism as well as the implementation and

control of the robot. Symmetry of motion means that all the pads of the robot

are detached, attached, moved and supported during motion in exactly the

same way. Symmetry of motion involves geometrical symmetry of the

locomotion mechanism as well as identical support conditions for each pad.

The theory behind this design principle of motion symmetry is further

explored in Chapter 8.

The second design principle regards the stress that the robot can apply to

the tissue. Locomotion on the surface of the peritoneum should be smooth in

order to ensure minimal tissue damage. Smooth locomotion on the surface

of the peritoneum means diminishing the rubbing between the adhesive

pads and the tissue that may cause damage. For instance, shearing or

twisting the pad in order to detach it makes the adhesive surface rub against

the tissue, causing a more intense contact than peeling the pad off.

Therefore, in this case, peeling the pads off is preferable to other

detachment methods in order to minimise tissue damage. Peeling off the

adhesive pads also requires less detachment force than other methods.

The third design principle is concerned with the stability of the robot, that is,

how much control the locomotion mechanism can have on the pads in order

to prevent a fall. Attachment and detachment of the adhesive pads should

be controllable in order to prevent the robot from falling from the peritoneum.
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Control of the adhesion of the pads diminishes tissue damage because it

enables control of the preloading and peeling forces applied on the tissue.

Locomotion is more efficient with control of adhesion because the

locomotion controller knows whether the pads are detached and can move

or whether the pads are attached and can support the robot.

In all, the design principles for the locomotion mechanism are:

 Simplicity. The complexity, size and weight of the mechanism and

control system must be kept to a minimum by:

 Using as few mechanical and control components as possible,

 Using the actuators for different purposes within the locomotion

sequence of the robot,

 Making the motion of the robot symmetrical for all directions of

locomotion and

 Supplying the power and control signal of the motors via a

tether, tele-operating the robot from a computer console.

 Minimal tissue damage. Locomotion over the surface of the

peritoneum must be as smooth as possible,

 Stability. Attachment and detachment of the adhesive pads must be

controllable and repeatable.

3.6 Selection of a locomotion strategy for an intra-
abdominal adhesion-reliant robot

Of the locomotion strategies considered in Section 2.3 the simplest to

implement are wheels, tracks and inchworm locomotion. However, legs offer

the advantage over wheels and tracks of more controllable mobility and

interaction with the environment at the cost of higher complexity and a

significantly lower speed [67]. Wheels and tracks leave a continuous mark

on the surface which can cause more tissue damage than the individual

steps of a walking robot. Wheels and tracks also damage the tissue when

turning because they rub the surface of the tissue. Legs do not leave a

continuous mark and can turn without rubbing the tissue, although they exert

higher local pressure. A wheel is a remarkably simple mechanism but lacks

the versatility of legs when it comes to changing the direction of motion and

negotiating irregularities or obstacles. Wheels can slip when turning to

change the direction of motion and are more likely to jam into the tissue than
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legs. Lower achievable speed is not considered an important impediment to

the performance of the robot because the robot is not expected to change

location within the abdomen frequently. During operation inside the

abdomen the robot is expected to reach the position of the surgical target

and stay there for most of the operation. Figure 40 shows the sketch of a

legged walking robot (Figure 40a), a wheeled robot (Figure 40b) and a

tracked robot (Figure 40c).

Figure 40. (a) Sketch of a legged walking robot, (b) sketch of a wheeled robot and (c)
sketch of a tracked robot moving in inverted adhesion-reliant locomotion on the

surface of tissue.

Inchworm locomotion offers the same advantages of legs over wheels and

tracks in terms of controllability and tissue damage but can be implemented

with a mechanism simpler than a legged robot. Inchworm locomotion can be

implemented following a polar walker configuration or a Cartesian walker

configuration. A inchworm polar walker can be implemented using rotary and

linear motors and an inchworm Cartesian walker can be implemented using

linear motors only. In a polar walker with two pads, positioning of the pads

along the surface of the tissue is obtained by rotating one pad around the

other and increasing or decreasing the distance between the pads. Figure

41a shows a sketch of the polar walker with the degrees of freedom to

position the pads along a surface: the distance between the pads and

rotation of the pads with respect to each other. In a Cartesian walker with
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two pads, positioning of the pads along the surface of the tissue is obtained

by increasing or decreasing the horizontal distance and the vertical distance

between the pads. Figure 41b shows the sketch of a Cartesian walker with

the degrees of freedom to position the pads along a surface: the vertical

distance between the pads and the horizontal distance between the pads.



Figure 41. (a) Sketch of a Cartesian walker and (b) sketch of a polar walker for
adhesion-reliant inchworm locomotion. The Cartesian walker positions the adhesive
pads along X and Y coordinates; the polar walker positions the pads along r and θ

coordinates.

In an inchworm polar walker with two pads, when one pad detaches, the

other pad withstands the twist of the rotary motor at the attached pad in

order to rotate the detached pad. This twist on the supporting pad can cause

movement between the pad and the surface of the tissue and damage the

tissue. The twist on the supporting pad can also cause sudden detachment

of the pad. A rotary motor on the supporting pad enables rotation of the

detached pad, however, a rotary motor on the detached pad does not enable

control of the distance between the pad and the tissue. The distance

between the pad and the tissue can be controlled with a linear motor. In a

Cartesian walker with two pads, when one pad is detached, the other pad

withstands a force parallel to the surface of the pad in order to move the pad

along the surface of the tissue. Linear motors can be used in order to

change the vertical and horizontal distance between the pads as well as to

peel off the pads and control the separation between the pads and the

tissue.

The preferred actuator for the robot is a linear motor: Squiggle® RV motor as

explained in Section 2.2.2. This Squiggle® RV is very compact and

lightweight and its position can be controlled with a linear encoder which is

also very compact and lightweight and will be presented in Chapter 5

Section 5.2. Thus, an inchworm Cartesian walker is preferred over a polar
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inchworm walker because the first can be built with linear motors only. A

Cartesian inchworm walker can be implemented with only two pads. For the

intra-abdominal robot, using two tree frog adhesive pads means that the

robot should weigh between 8 and 12 grammes because that is the weight

each pad can support [10]. A weight of the robot of 30 grammes was

estimated at the beginning of the project and, therefore, more pads can be

considered in an inchworm Cartesian walker design. With three pads the

robot can weigh between 16 and 24 grammes, a value closer to the

estimated weight of the robot. However, when one of the pads is detached

the two remaining pads feel a moment from the detached pad that can peel

them off easily; this also happens in the two-padded robot when one pad is

detached. With four pads, the weight of the robot can be between 24 and 36

grammes and the peeling-off moment on the three remaining pads when one

pad is detached can be cancelled. Thus, with four pads a strong base of

three pads attached to the tissue can be kept while each pad moves to a

new position. These configurations of two, three and four pads were tested

prior to the construction of the robot with a mock-up structure of the

locomotion mechanism. This test with the mock-up structure verified the

beneficial effect of the fourth pad in cancelling the peeling-off moment on the

attached pads when one pad is detached. Chapter 8 analyses these two,

three and four pads configurations showing the force and moment applied to

the pads for each configuration.

In all, based on the actuators available in the market and design principles

defined in the previous section, the selected locomotion system is an

inchworm Cartesian walker with four adhesive pads using linear motors

exclusively. How can all these requisites be combined in a compact

locomotion mechanism able to move in all directions of the abdominal wall?

How can the number of degrees of freedom (motors) be kept to a minimum

while ensuring sufficient controllability of the robot? The answer to these

questions can be found in one of the biological locomotion systems reviewed

in Section 2.2.2: amoeboid locomotion.

Amoebas alternate adhesion between different parts of their body and only

the part of the body that is detached moves while the rest of the body stays

attached to the surface. The intra-abdominal robot can move one pad at a

time while the rest of the pads support the weight of the robot. If only one

pad moves at a time, two adjacent pads can share the same actuator for the

same degree of freedom of both pads. For example, for one linear motor

between two pads, when the first pad is attached the linear motor moves the
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second pad and, when the second pad is attached, the same linear motor

moves the first pad. The detached part of the body of an amoeba is moved

to a new position by changing the shape of the body of the amoeba. Inspired

by this aspect of amoeboid locomotion, the actuators of the robot can

connect the four adhesive pads forming a quadrilateral, the body of the

robot. When the motors between the pads are actuated, the shape of the

robot changes moving the detached pad to a new position.

The number of degrees of freedom depends on the degree of controllability

required for the robot to minimise tissue damage and maximise stability.

Ideally, the fewer motors the better in order to keep size, weight and the

complexity of the design to a minimum. On the other hand, the more

degrees of freedom the better in terms of controllability because both

horizontal and vertical forces can be applied to the adhesive pads mimicking

the adhesion control observed in geckoes (see Section 2.3.7). A trade-off

solution will be required between having few degrees of freedom to keep the

design simple and having a sufficient number of degrees of freedom to move

and apply force to the pads in different directions. Nonetheless, a very

compact actuator like the Squiggle® RV motor (0.16grammes and 3x3x12

mm3) enables the use of several actuators within the locomotion mechanism

without significantly increasing the size or weight of the robot. Inspired by

amoeboid locomotion, the robot can move one of the four pads at a time and

have the four pads interconnected in a central quadrilateral that changes

shape during locomotion. Thus, the same motor can be used for the same

direction of motion of the two pads sharing the motor and, therefore, some

actuators can be saved without reducing the number of degrees of freedom

of each individual pad. This concept of shared degrees of freedom is further

explained in Section 3.8 when talking about the conceptual design of the

robot. The idea of amoeba-inspired locomotion is further explained in

Section 4.3 when talking about the workspace of the robot.
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3.7 Design specifications for the intra-abdominal
adhesion-reliant robot

Table 5. Design specifications for the intra-abdominal adhesion-reliant robot.

Intra-abdominal adhesion-reliant miniature robot for laparoscopic surgery

Description:

A miniature robot is to be designed, fabricated

and tested using bio-mimetic adhesive pads in

order to move in inverted locomotion on the

surface of peritoneal tissue.

Size:

The robot is required to fit through an incision of

2-3cm and move comfortably within a volume of

10cm x 10cm x 5cm.

Weight:

The maximum weight of the robot is determined

by the maximum adhesion force provided by the

bio-mimetic pads: each pad can hold a weight of

8-12 grammes [10]. The robot should be

manufactured in lightweight materials.

Actuators and sensors:

The actuators of the robot are required to be very

compact and their motion should be controllable

integrating sensors in the locomotion mechanism.

The actuators are required to operate at low

voltage and at a temperature between 36.9ºC and

45ºC in order not to damage the tissue.

Locomotion strategy:

The locomotion strategy of the robot should

ensure repeatable and stable motion of the robot

against gravity with minimal tissue damage. A

Cartesian walker has been identified as an

appropriate choice for the locomotion strategy.

Power: The robot will be powered off-board via a tether.

Control:

The robot will be tele-operated by the surgeon

through a computer console. The drivers of the

locomotion mechanism will be connected to the

robot with a tether which will carry the control

signal for the motors.
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3.8 Conceptual design of the intra-abdominal adhesion-
reliant robot

For the design of the intra-abdominal robot, a Cartesian walker is chosen.

The locomotion mechanism of the Cartesian walker for the intra-abdominal

robot uses four adhesive pads interconnected by linear motors. One pad is

moved at a time, providing a strong base of support of three pads for the

motion of each pad. The linear motors between the pads increase and

decrease the distance between the pads in the horizontal plane, parallel to

the surface of the tissue. The linear motors in the horizontal plane are

connected with rotary joints forming a quadrilateral; the adhesive pads are

situated at the corners of the quadrilateral formed by the horizontal motors.

In addition to the horizontal motors, each pad has a linear motor for vertical

motion towards and away from the tissue, controlling the separation between

the pads and the tissue.

Figure 42 illustrates the arrangement of the pads and motors in the design of

the robot for the horizontal plane (XY) and the vertical direction (Z).
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Figure 42. Arrangement of the pads and motors in a Cartesian walker with four
adhesive pads.

In the locomotion mechanism of the robot in Figure 42, when one pad is

detached and supported by the other three, the detached pad has three

degrees of freedom:
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 Motion along the X direction in the horizontal plane defined by the

variables ଶଷݔ and ଵସݔ for the four pads in Figure 42.

 Motion along the Y direction in the horizontal plane defined by the

variables ଵଶݕ and ଷସݕ for the four pads in Figure 42.

 Motion along the vertical direction Z defined by the variables ,ଵݖ ,ଶݖ ଷݖ

and ସݖ in Figure 42.

Each degree of freedom in the robot is controlled by a linear motor. Only four

motors are required to control the motion of the four pads in the horizontal

plane (XY) because the pads are moved one at a time, alternating their role

of moving and supporting pads. Thus, the motors in the horizontal plane are

shared between adjacent pads. For this design of the robot, the required

number of actuators is:

݊௧௨௧௦ = ݊ௗ௦ ∙ ௗ݊ − ௗ݊
௦ௗ

( 1 )

Where ݊௧௨௧௦ is the number of actuators, ݊ௗ௦ is the number of pads,

ௗ݊ is the number of degrees of freedom for each pad and ௗ݊
௦ௗ is the

number of degrees of freedom shared by adjacent pads.

For the intra-abdominal robot with four pads, three degrees of freedom are

required for each pad and there are four pairs of adjacent pads in the

horizontal plane (see Figure 42). Therefore, according to Equation ( 1 ), the

number of motors for the intra-abdominal robot is: ݊௧௨௧௦= 4 ∙ 3 − 4 = 8.

The locomotion mechanism of the robot should avoid detachment of the pad

when the pad is supporting and favour detachment of the pad when the pad

is required to move. Keeping a base of three pads supporting the motion of

each pad enables the locomotion mechanism to detach the pads when

required, avoiding detachment of the supporting pads.

3.9 Locomotion sequence of the intra-abdominal
adhesion-reliant robot

The locomotion sequence of the robot is the same for all directions of the

horizontal plane. The four pads are arranged symmetrically in the locomotion

mechanism and the four pads are moved and supported by the mechanism

in the same way. Figure 43 shows the locomotion sequence of the robot in

the X direction of the horizontal plane following these steps:

a) Initially, the four pads are attached to the surface of the tissue (Figure

43 a),
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b) The vertical motor of the first pad detaches the first pad (Figure 43 b),

c) The first pad is moved to a new position by actuating the two

horizontal motors joined at the first pad (Figure 43 c),

d) The vertical motor of the first pad re-attaches the first pad and the

vertical motor of the second pad detaches the second pad (Figure 43

d),

e) The second pad is moved to a new position actuating the two

horizontal motors joined at the second pad (Figure 43 e),

f) The vertical motor of the second pad re-attaches the second pad and

the vertical motor of the third pad detaches the third pad (Figure 43 f),

g) The third pad is moved to a new position actuating the two horizontal

motors joined at the third pad (Figure 43 g),

h) The vertical motor of the third pad re-attaches the third pad and the

vertical motor of the fourth pad detaches the fourth pad (Figure 43 h),

i) The fourth pad is moved to a new position actuating the two

horizontal motors joined at the fourth pad. The vertical motor of the

fourth pad re-attaches the fourth pad completing a step of the robot

(Figure 43 i).

The locomotion sequence of Figure 43 results in motion of the robot along

the positive direction of the X axis. The robot can move along the negative

direction of the X axis or along the Y direction following the same locomotion

sequence but moving the pads in a different order.

The motion of the detached pad requires the combined actuation of the two

horizontal motors joined at the pad. This combined motion of the horizontal

motors can move the detached pad to a new position along the X direction,

the Y direction or diagonally.
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Figure 43. Locomotion sequence of the intra-abdominal robot using adhesive pads.

3.10 Summary

The intra-abdominal robot moves in inverted locomotion inside the

insufflated abdomen, attaching to the surface of the abdominal wall

(peritoneum). Inside the insufflated abdomen, the peritoneum is a vantage

point, raised several centimetres above the abdominal organs.

Motion on the surface of the peritoneum should provide a good view of the

organs if the robot is carrying a camera and comfortable interaction with the

organs if the robot is carrying tools. Operation from the peritoneum

enhances manoeuvrability around the surgical target and no external

equipment is required for the bio-mimetic adhesive pads of the robot.

The constrained space inside the insufflated abdomen requires the robot to

be very small and move in a compact way. The weight of the robot should be

low and the locomotion mechanism should control the adhesion of the pads

in order to enable the robot to move in inverted locomotion. The robot
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shouldn’t cause tissue damage to the peritoneum, should operate at a safe

temperature and voltage and should be sterilisable and bio-compatible.

For the robot to fit in the abdomen and move safely on the peritoneum, the

locomotion mechanism of the robot should be simple and the interaction with

the tissue should be smooth and controllable.

For the motion of the intra-abdominal robot, legged locomotion is preferable

to wheeled locomotion because of the controllability and minimal tissue

damage achievable with legs. The locomotion strategy chosen for the robot

is a Cartesian walker with a compact locomotion mechanism inspired by

amoebas in which the adhesive pads are interconnected and moved one at

a time.

For the design of the robot, four adhesive pads are arranged forming a

quadrilateral, interconnected by four motors in the horizontal plane and with

another four motors providing vertical motion to the pads (see Figure 42).

The locomotion sequence of the robot is the same for all directions in the

horizontal plane and follows a series of steps detaching, moving and re-

attaching the pads one by one (see Figure 43).
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Chapter 4
Design and analysis of the robot

4.1 Introduction

The previous chapter showed the conceptual design of the intra-abdominal

robot: a Cartesian walker featuring four adhesive pads interconnected with

linear motors. This chapter presents the design and analysis of the

locomotion mechanism. Thus, the kinematic design of the robot is presented

first, explaining the kinematic joints and links of the robot. Then, the

workspace of the robot is presented, analysing the positioning of the pads

within the horizontal plane. After that, a dynamic model of the pad attached

to the tissue and also moving freely is explained for motion in the vertical

direction and along the horizontal plane.

The locomotion sequence of the robot, moving one pad at a time, was

shown in Figure 43. This chapter explains how the locomotion sequence is

generated in order to move the robot in any direction of the horizontal plane.

Then, the chapter shows how the locomotion mechanism can adapt to the

surface of the tissue and to the inclination of the abdominal wall. After that,

the last section presents a summary of the chapter.

4.2 Kinematic design of the locomotion mechanism

The locomotion mechanism uses four adhesive pads to attach to the tissue

and moves the pads in the two directions of the horizontal plane parallel to

the surface of the tissue, and the vertical direction perpendicular to the

surface of the tissue. Figure 44a shows the four motors in the horizontal

plane of the locomotion mechanism forming a quadrilateral. Figure 44b

shows the rotary joint linking the horizontal motors.

In order to move the pads in the two directions of the horizontal plane, the

locomotion mechanism uses four linear motors. Each motor in the horizontal

plane controls the motion of a prismatic joint. The four horizontal motors

form a quadrilateral and are connected to each other with rotary joints. The

pads are placed at the corners of the quadrilateral formed by the horizontal

motors.
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Figure 44. (a) Locomotion mechanism with four pads and four motors in the
horizontal plane and (b) rotary joint linking the horizontal motors.

As shown in Figure 44a, the locomotion mechanism in the horizontal plane is

an articulated quadrilateral. In this articulated quadrilateral, there is a linear

motor on each side of the quadrilateral and they are linked to each other with

the rotary joint shown in Figure 44b. This articulated quadrilateral has

extensible sides because the motors can change the length of each side of

the quadrilateral, thus changing the shape of the locomotion mechanism.

The adhesive pads are placed at each corner of the quadrilateral, therefore,

the position of the corners of the mechanism is fixed when the pads are

attached. When three pads are attached and one pad is detached, the

position of the detached pad is controlled by the combined motion of the two

linear motors joined at the pad.

In order to move the pads in the vertical direction, perpendicular to the

tissue, the locomotion mechanism uses another four motors. Each motor in

the vertical direction controls the motion of a prismatic joint. The vertical

motors are placed at each corner of the quadrilateral formed by the

horizontal motors. The pads are connected to these vertical motors. Figure

45a shows the locomotion mechanism in the horizontal plane and Figure

45b shows the view of one side of the locomotion mechanism with two

vertical motors connected to the pads.
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Figure 45. (a) Locomotion mechanism in the horizontal plane and (b) side view of the
mechanism showing the vertical motors connected to the pads.

There are two possibilities for the connection between the vertical motors

and the horizontal motors:

 a hinge between each vertical motor and each corner of the

quadrilateral formed by the horizontal motors, or

 a rigid connection between each vertical motor and each horizontal

link.

Figure 46a shows the kinematic joints of the locomotion mechanism with

four hinges connecting the vertical motors to the horizontal motors and

Figure 46b shows a detail of a hinge. Figure 46c shows the kinematic joints

of the locomotion mechanism with rigid connections between the vertical

motors and the horizontal motors and Figure 46d shows a detail of a rigid

connection.

In Figure 46a, the pads supporting the detached pad are isolated from the

horizontal motion of the detached pad by the hinges, because there is no

moment transmitted from the horizontal motors to the pads. The hinges

enable the horizontal motors to rotate freely around the supporting pads

without causing any twist on the supporting pads. However, when the pads

are detached the hinges enable the pads to rotate freely because the motion

of the hinges is not controlled. This uncontrolled motion can interfere with

the locomotion mechanism, hindering the walking performance of the robot.

In order to avoid this interference, springs can be fitted at the hinges to

constrain their motion.

In Figure 46c, a rigid connection between the vertical link and the horizontal

links prevents the detached pad from rotating freely. Thus, rigid connections

prevent the detach pad from interfering with the locomotion mechanism.
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Rigidly connecting the vertical and the horizontal motors is simpler than

using springs to control the motion of the hinges. However, it means that the

horizontal motors cause a twist on the supporting pads when the horizontal

motors are moving the detached pad. This twist on the supporting pads can

be diminished with a soft backing layer on the adhesive surface. A soft

backing layer on the pads also favours contact between the adhesive

surface and the tissue.

Figure 46. (a) Kinematic joints of the locomotion mechanism with hinges connecting
the vertical motors to the horizontal motors, (b) detail of a hinge, (c) kinematic joints

of the mechanism with rigid connections between the vertical motors and the
horizontal motors, and (d) detail of a rigid connection.
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When the robot is not attached to tissue the shape of the robot can change

to make the width of the robot narrower. Figure 47 shows the shape of the

robot with a narrower width.

Figure 47. Narrowing of the width of the robot enabled by the passive rotary joints.

In Figure 47, narrowing of the locomotion mechanism is possible because

the rotary joints between the horizontal motors are passive. Making the width

of the robot narrower is beneficial for an intra-body application because it

makes the robot fit through the surgical incision more comfortably. Once the

robot is inside the abdominal cavity, the locomotion mechanism can be

reshaped.

The drawback of having passive rotary joints between the horizontal motors

is that the supporting pads might drift apart during locomotion of the robot. In

this case, rotary encoders can be used at the rotary joints in order to

measure the separation of the supporting pads. Alternatively, springs

between non-adjacent pads can be used in order to help reshape the

mechanism.

The kinematic joints determine the dexterity of the locomotion mechanism

and the area the pads can cover from a specific position. The area the pads

can cover defines the workspace of the individual pads and the workspace

of the whole robot.

4.3 Workspace of the individual pads and the robot

When one pad of the robot is detached and three pads of the robot are

attached, supporting the motion of the detached pad, the robot can be

considered a manipulator. The detached pad would be the end-effector of

the manipulator. The end-effector, the detached pad, is moved by the
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vertical motor that control the distance between the pad and the tissue and

the two horizontal motors that connect the detached pad to the rest of the

mechanism. Following this analogy with a robotic manipulator, the term

‘workspace’ is defined and explained in this section and applied to the pads

of the robot.

The workspace of a robot is the region of space made up of all the points the

robot can reach. This region is defined by the limit of motion of all the joints

in the mechanism of the robot. The workspace of the intra-abdominal robot

is the region of space where the robot can position the adhesive pads.

Figure 48a shows the initial position of the locomotion mechanism where all

the horizontal motors are at the position of minimum extension. From this

initial position, the locomotion mechanism can move the pads to the regions

of space shown in Figure 48b.

Figure 48. (a) Locomotion mechanism in the horizontal plane and (b) workspace of
the robot defined by the workspace of the pads.

The workspace of the robot is made up of the workspace of the individual

pads.

4.3.1 Workspace of the individual pads

The workspace of the individual pads in the horizontal plane is defined by

the motion of the horizontal links. The pads are moved one at a time,

supported by the other three pads. Two horizontal motors move

simultaneously in order to position the pads in the region of the horizontal

plane shown in Figure 48b. These two horizontal motors are the motors

joined at the corner of the moving pad. Figure 50 shows pad 1 moving to a

new position ,(ଵݕ,ଵݔ) supported by pads 2, 3 and 4. In Figure 50 the
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horizontal links moving pad 1 are the links between pads 1 and 2, and

between pads 1 and 4.

),( 11 yx

Figure 49. The locomotion mechanism moving pad 1 to a new position, supported by
the other three pads.

The motion of the two horizontal links joined at the corner of the moving pad

defines the workspace of the pad. The relation between the length of these

two horizontal links defines the position of the pad in the horizontal plane

and thus, the workspace of the pad. Figure 50 shows the geometrical

parameters used in order to calculate the workspace of the pad.
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Figure 50. Geometrical parameters used in order to calculate the workspace of the
pad.
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According to the parameters in Figure 50, the following equations define the

relation between the length of the two horizontal links:

ଵ݈ସ ∙ cos(ߙ) + ଵ݈ଶ ∙ cos(ߚ) = ଶ݀ସ ( 2 )

ଵ݈ସ ∙ sin(ߙ) = ଵ݈ଶ ∙ sin(ߚ) ( 3 )

Where:

 ଵ݈ସ is the length of the horizontal link between pads 1 and 4,

 ଵ݈ଶ is the length of the horizontal link between pads 1 and 2,

 ߙ is the angle between the line joining pads 2 and 4 and the

horizontal link between pads 1 and 4,

 ߚ is the angle between the line joining pads 2 and 4 and the

horizontal link between pads 1 and 2,

 ଶ݀ସ is the distance between pads 2 and 4, the two pads adjacent to

the moving pad (pad 1).

The upper and lower limits of the angles ߙ and ߚ will be determined by the

construction of the locomotion mechanism.

The previous parameters: ( ଵ݈ସ, ଵ݈ଶ,ߚ,ߙ, ଶ݀ସ) determine the position of the

moving pad. The new position of pad 1 with respect to the system of

coordinates (ܺସ, ସܻ) at the position of pad 4 (see Figure 50), is given by the

following equations:

ଵݔ = ଵ݈ସ ∙ cos(ߙ) = ଶ݀ସ− ଵ݈ଶ ∙ cos(ߚ) ( 4 )

ଵݕ = ଵ݈ସ ∙ sin(ߙ) = ଵ݈ଶ ∙ sin(ߚ) ( 5 )

Where (ଵݕ,ଵݔ) are the coordinates of the new position of the pad as

indicated in Figure 50.

The distance ଶ݀ସ can be directly measured on the locomotion mechanism or

it can be measured initially and its variation calculated as the robot moves.

The length of the horizontal links: ଵ݈ସ and ଵ݈ଶ, can be measured with a linear

encoder. Therefore, (ଵݕ,ଵݔ) and ଶ݀ସ are known and the unknowns are the

lengths: ଵ݈ସ and ଵ݈ଶ, and the angles: ߙ and .ߚ
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The relation between the lengths of the horizontal links moving the pad: ଵ݈ସ

and ଵ݈ଶ, can be obtained by solving the system of equations formed by

Equations ( 2 )-( 5 ) for each position of the pad .(ଵݕ,ଵݔ) Thus, the value of

the angles ߙ and ߚ is obtained by dividing Equation ( 3 ) by Equation ( 2 ):

ߙ = atan൬
ଵݕ
ଵݔ
൰

( 6 )

β = atan൬
ଵݕ

ଶ݀ସ− ଵݔ
൰

( 7 )

With the value of the angles ߙ and ,ߚ the length of the links ଵ݈ସ and ଵ݈ଶ are:

ଵ݈ସ =
ଵݕ

sin(ߙ)
=

ଵݔ
cos(ߙ) ( 8 )

ଵ݈ଶ =
ଵݕ

sin(ߚ)
=

ଶ݀ସ− ଵݔ
cos(ߚ) ( 9 )

When all the horizontal links are at minimum extension, for any given

position of three pads, the workspace of the fourth pad is the area within the

intersection of the four arcs shown in Figure 51.

MAXl ,14

MINl ,14

MINl ,12

MAXl ,12

),( 44 yx

),( 22 yx

Figure 51. Workspace of pad 1 moving in the horizontal plane.

The four arcs marking out the workspace of the pad in Figure 51 are defined

as follows:

1. The centre of arc A1 is at rotary joint 2 and the radius of arc A1 is the

minimum length of the link between pads 1 and 2. Rotary joint 2 is

one of the two rotary joints adjacent to the moving pad.
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2. The centre of arc A2 is at rotary joint 2 and the radius of arc A2 is the

maximum length of the link between pads 1 and 2.

3. The centre of arc A3 is at rotary joint 4 and the radius of arc A3 is the

minimum length of the link between pads 1 and 4. Rotary joint 4 is the

other rotary joint adjacent to the moving pad.

4. The centre of arc A4 is at rotary joint 4 and the radius of arc A4 is the

maximum length of the link between pads 1 and 4.

The workspace of pad 1 represented in Figure 51 can be mathematically

expressed as:

ܹ ଵ: (ݕ,ݔ) ∈ ଵܣ}
ଵ ∩ ଵܣ

ଶ∩ ଵܣ
ଷ∩ ଵܣ

ସ} ( 10 )

ଵܣ
ଵ: −ݔ) ସ)ଶݔ + −ݕ) ସ)ଶݕ ≥ ଵ݈ସ,ெ ூே ( 11 )

ଵܣ
ଶ: −ݔ) ସ)ଶݔ + −ݕ) ସ)ଶݕ ≤ ଵ݈ସ,ெ  ( 12 )

ଵܣ
ଷ: −ݔ) ଶ)ଶݔ + −ݕ) ଶ)ଶݕ ≥ ଵ݈ଶ,ெ ூே ( 13 )

ଵܣ
ସ: −ݔ) ଶ)ଶݔ + −ݕ) ଶ)ଶݕ ≤ ଵ݈ଶ,ெ  ( 14 )

Where Equation ( 10 ) defines the workspace ܹ ଵ of the pad 1 (ݕ,ݔ) as the

intersection of the four regions of the horizontal plane ଵܣ
ଵ, ଵܣ

ଶ, ଵܣ
ଷ and ଵܣ

ସ

defined in Equations ( 11 )-( 14 ).

In Equations ( 11 ) and ( 12 ):

 (ସݕ,ସݔ) are the coordinates of rotary joint 4,

 ଵ݈ସ,ெ ூே is the minimum length of the link between pads 1 and 4, and

 ଵ݈ସ,ெ  is the maximum length of the link between pads 1 and 4.

Similarly, in Equations ( 13 ) and ( 14 ):

 (ଶݕ,ଶݔ) are the coordinates of rotary joint 2,

 ଵ݈ଶ,ெ ூே is the minimum length of the link between pads 1 and 2, and

 ଵ݈ଶ,ெ  is the maximum length of the link between pads 1 and 2.

Following similar calculations, the workspace of the other three pads can be

calculated, obtaining the workspace of the whole robot.

4.3.2 Workspace of the robot

The workspace of the robot is defined by the workspace of the four pads in

the locomotion mechanism. From a position where all the horizontal links are

at minimum extension, the workspace of the four pads is shown in Figure 52.
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The workspace of the robot is mathematically expressed as:

ܹ ௧: (ݕ,ݔ) ∈ {ܹ ଵ∪ ܹ ଶ∪ ܹ ଷ∪ ܹସ} ( 15 )

ܹ ଵ: (ݕ,ݔ) ∈ ଵܣ}
ଵ ∩ ଵܣ

ଶ∩ ଵܣ
ଷ∩ ଵܣ

ସ} ( 16 )

ܹ ଶ: (ݕ,ݔ) ∈ ଶܣ}
ହ ∩ ଶܣ

 ∩ ଶܣ
 ∩ ଶܣ

଼} ( 17 )

ܹ ଷ: (ݕ,ݔ) ∈ ଷܣ}
ଽ ∩ ଷܣ

ଵ ∩ ଷܣ
ଵଵ ∩ ଷܣ

ଵଶ}
( 18 )

ܹସ: (ݕ,ݔ) ∈ ସܣ}
ଵଷ∩ ସܣ

ଵସ ∩ ସܣ
ଵହ ∩ ସܣ

ଵ}
( 19 )

ܣ

: −ݔ) ݔ )ଶ + −ݕ) ݕ )ଶ ≥ ݈ ,ெ ூே ( 20 )

ܣ
: −ݔ) ݔ )ଶ + −ݕ) ݕ )ଶ ≤ ݈ ,ெ  ( 21 )

Where Equation ( 15 ) defines the workspace of the robot: ܹ ௧ as the

union of the workspace of each individual pad: ܹ ଵ, ܹ ଶ, ܹ ଷ and ܹସ.

),( 44 yx ),( 11 yx

),( 33 yx ),( 22 yx

Figure 52. Workspace of the robot defined by the workspace of the four pads.

The workspace of each pad is defined in Equations ( 16 )-( 19 ) as the

intersection of the four regions of the horizontal plane: ଵܣ
ଵ,ܣଵ

ଶ…ܣସ
ଵ.

Equations ( 20 ) and ( 21 ) define these regions of the horizontal plane,

where the indexes ,݅ ,݆ ݇ and ݉ take the following values depending on the

pad:

 For pad 1: ݅= 1, ݆= 1, 2, ݇= 3, 4, ݉ = 2, 4.

 For pad 2: ݅= 2, ݆= 5, 6, ݇= 7, 8, ݉ = 1, 3.
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 For pad 3: ݅= 3, ݆= 9, 10, ݇= 11, 12, ݉ = 2,4.

 For pad 4: ݅= 4, ݆= 13, 14, ݇= 15, 16, ݉ = 1, 3.

Thus, ݅ is the moving pad and ݉ is the number of pad adjacent to the

moving pad. The index ݆is the number of arc with radius the minimum length

of the horizontal link between pad ݅and ݉ . Similarly, ݇ is the number of arc

with radius the maximum length of the horizontal link between pad ݅and ݉ .

The minimum and maximum length of each horizontal link is the minimum

and maximum extension of the prismatic joint in each horizontal link. The

range of motion of the linear motors determine the minimum and maximum

extension of the prismatic joints. The length of each horizontal link has an

upper and a lower limit:

݈ ,ெ ூே ≤ ݈ ≤ ݈ ,ெ  ( 22 )

Where ݅ is the moving pad and ݉ is the number of pad adjacent to pad .݅

The length of the link between pads ݅and ݉ is ݈ and the minimum and

maximum limits of ݈ are ݈ ,ெ ூே and ݈ ,ெ  respectively.

From an initial position of the pads, each pad can move to any point within

the workspace of that initial position as long as the length between the

moving pad and the adjacent pads is within the limits defined by Equation (

22 ). The workspace of the whole robot defines the area within reach of the

pads and also defines the shape of the locomotion mechanism. The shape

of the locomotion mechanism can change as illustrated in Figure 52. This

type of locomotion resembles amoeboid locomotion: the adhesive pads are

positioned within their surrounding area in the horizontal plane, changing the

shape of the locomotion mechanism. The locomotion mechanism also

enables the robot to steer, changing the orientation of the robot in the

horizontal plane. In order to steer the pads can move to a position within

their workspace that makes the robot rotate about the vertical axis. This

change of orientation of the locomotion mechanism can be seen in Figure

52.

The vertical motors detach and attach the pads, changing the part of the

mechanism attached to the tissue, and the horizontal motors move the pads

one by one until the whole robot is at a new position. The pads can also be

positioned in the vertical direction. Thus, the pads can move within a volume

defined by the workspace of the pads in the horizontal plane and the motion

range of the vertical motors. In order to obtain the volume within which the

pads can move, the workspace in the horizontal plane can be extruded

along the vertical direction a depth equal to the motion range of the vertical
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motor. Figure 53 shows the three-dimensional workspace of the pad of the

robot.

Figure 53. Three-dimensional workspace of the pad of the robot.

4.4 Dynamics of the pad moved by the locomotion
mechanism

In order to move the pad to a new position, the locomotion mechanism

applies force on the adhesive pad, actuating the vertical and horizontal

motors in this order:

 The vertical motor pulls the pad in order to detach it from the tissue,

 The horizontal motors apply a force parallel to the tissue in order to

move the pad across the surface of the tissue,

 The vertical motor pushes the pad back on the surface of the tissue in

order to re-attach the pad at the new position.

Therefore, the pad can be moved by one motor in the vertical direction and

by one or two motors in the horizontal plane. The dynamics of the system

change depending on whether the pad is attached to the tissue or detached.

This section presents a simple model of the dynamics of the robot by way of

introduction to the forces present in the interaction between the robot and its

environment. Chapters 6, 7 and 8 analyse in detail the forces and moments

present during locomotion of the robot on the surface of tissue and elaborate

on the dynamic models presented here.



- 86 -

4.4.1 Dynamic model of the vertical motion of the pad

The vertical motors in the locomotion mechanism pull the pad in order to

peel it off when the pad is attached to the tissue. In this case the vertical pad

pulls the soft surface of the tissue and the pad and the motor has to

overcome the adhesion force between pad and tissue in order to separate

them.

When the pad is detached, the vertical motors can increase the separation

between the tissue and the pad or move the pad towards the tissue in order

to re-attach it. In this case, the horizontal motors are moving a free load

when the pad is detached or pushing the pad against the soft surface of the

tissue in order to re-attach the pad.

4.4.1.1 Dynamic model of the pad attached to the tissue

The dynamic model of the vertical motor pulling the pad to detach it is shown

in Figure 54. In Figure 54, the four pads are attached to the tissue through

the stiffness of the pad: ௗܭ and the stiffness of the tissue: .௧௦௦௨ܭ The

vertical motor at pad 1 is moving the pad a distance ݖ∆ in order to detach it

from the tissue.

z
vertical
motor

X

Y

Z

Kpad 4

Ktissue

Ktissue

Ktissue

Kpad 3

Kpad 2

Kpad 1

Ktissue

Figure 54. Dynamic model of the locomotion mechanism in the vertical direction
when pad 1 is attached to the tissue.

The vertical motor pulling pad 1 is supported by the other three pads

attached to the tissue. Therefore, the force applied by the vertical motor on

pad 1 in order to detach it is also felt by the three supporting pads.



- 87 -

Considering as the reference of motion the quadrilateral formed by the

horizontal links, pad 1 in Figure 54 moves towards this quadrilateral when

the vertical motor below pad 1 is detaching it. In this case, the force from the

vertical motor below pad 1 while the pad is attached to the tissue is:

ܨ ௧ = (௧௦௦௨ାௗଵܭ) ∙ ௗଵݖ∆ ( 23 )

Where:

 ܨ ௧ is the force applied by the vertical motor,

 ௧௦௦௨ାௗଵܭ is the stiffness of the tissue: ௧௦௦௨ܭ in series with the

stiffness of pad 1: ,ௗଵܭ and

 ௗଵݖ∆ is the vertical displacement of pad 1 relative to the

quadrilateral formed by the horizontal links; this displacement is

caused by the motor.

The expression of force is the same when the vertical motor is pushing the

pad against the tissue in order to re-attach the pad. The vertical

displacement ௗଵݖ∆ can be positive or negative depending on the direction

of motion of the vertical motor.

Considering the pad attached to tissue as the motion reference, when the

vertical motor is detaching the pad, the quadrilateral formed by the horizontal

links moves towards the tissue. In this case, the force from the motor on the

three supporting pads (pads 2, 3 and 4) is:

ܨ ௧ = ௧௦௦௨ାௗଶܭ) + ௧௦௦௨ାௗଷܭ + (௧௦௦௨ାௗସܭ ∙ ௗ௦ଶ,ଷ,ସݖ∆ ( 24 )

Where:

 ܨ ௧ is the force applied by the vertical motor,

 ௧௦௦௨ାௗଶܭ is the stiffness of the tissue: ௧௦௦௨ܭ in series with the

stiffness of pad 2: ,ௗଶܭ

 ௧௦௦௨ାௗଷܭ is the stiffness of the tissue: ௧௦௦௨ܭ in series with the

stiffness of pad 3: ,ௗଷܭ and

 ௧௦௦௨ାௗସܭ is the stiffness of the tissue: ௧௦௦௨ܭ in series with the

stiffness of pad 4: ,ௗସܭ and

 ௗ௦ଶ,ଷ,ସݖ∆ is the vertical compression of pads 2, 3 and 4 against the

tissue caused by the motion of the vertical motor. This vertical

displacement is considered the same for the three supporting pads:

pads 2, 3 and 4 and is relative to the surface of the tissue.

The expression of force is the same when the vertical motor is pushing the

pad against the tissue in order to re-attach the pad. The vertical
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displacement ௗ௦ଶ,ଷ,ସݖ∆ can be positive or negative depending on the

direction of motion of the vertical motor.

When the vertical motor at pad 1 is pulling the pad, pad1 and the

quadrilateral formed by the horizontal links move closer to each other. In the

vertical direction, for pad 1 to detach, the stretch of pad 1 towards the

horizontal links must be greater than the compression of the horizontal links

pushing against the tissue. Mathematically expressed, pad 1 detaches if:

ௗଵݖ∆ > ௗ௦ଶ,ଷ,ସݖ∆ ( 25 )

Where ௗଵݖ∆ is the vertical displacement of pad 1, relative to the

quadrilateral formed by the horizontal links, and ௗ௦ଶ,ଷ,ସݖ∆ is the vertical

displacement of pads 2, 3 and 4 caused by the motor, relative to the surface

of the tissue.

The force from the vertical motor is the same in Equation ( 23 ) and Equation

( 24 ).Therefore, the condition of detachment of the pad in Equation ( 25 )

can be expressed in terms of the stiffness of the pads:

௧௦௦௨ାௗଶܭ + ௧௦௦௨ାௗଷܭ + ௧௦௦௨ାௗସܭ > ௧௦௦௨ାௗଵܭ ( 26 )

Where ,௧௦௦௨ାௗଶܭ ,௧௦௦௨ାௗଷܭ ௧௦௦௨ାௗସܭ and ௧௦௦௨ାௗଵܭ are the

stiffness of the tissue and pad 2, 3, 4 and 1 respectively.

Each of the supporting pads will have a stiffness constant similar to the

moving pad. The supporting pads are in parallel and therefore the equivalent

stiffness is the addition of their individual stiffness constant. Thus, Equation (

25 ) is satisfied, as there are three supporting pads and their equivalent

stiffness is three times that of the moving pad.

4.4.1.2 Dynamic model of the detached pad

When the pad is detached from the tissue and can move freely, the motor

moves the mass of the pad along the vertical direction. Figure 55 shows the

dynamic model of the vertical motor moving the mass of the detached pad

(݉ ௗଵ).



- 89 -

z

Figure 55. Dynamic model of the locomotion mechanism in the vertical direction
when pad 1 is detached.

The vertical motor moves the pad, supported by the other three pads but

without any connection between the moving pad and the tissue. In this case,

the force applied by the vertical motor on the moving pad is:

ௗଵܨ = ݉ ௗଵ ∙ ܽௗଵ ( 27 )

Where ௗଵܨ is the force applied on the detached pad, ݉ ௗଵ is the mass of

the detached pad and ܽௗଵ is the acceleration of the pad controlled by the

motor, including gravity.

4.4.2 Dynamic model of the pad in the horizontal plane

On the horizontal plane, the detached pad is moved by the combined

actuation of the two motors adjacent to the pad. Figure 56a shows the

dynamic model of detached pad 1 in the horizontal plane. Figure 56b shows

a detail of the dynamic model with pad 1 moved by two motors in the

horizontal plane.
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Figure 56. (a) Dynamic model of the locomotion mechanism in the horizontal plane
when pad 1 is detached and (b) detail of the two motors moving pad 1 in the

horizontal plane.

The force applied on the detached pad is the addition of the two force

vectors from the horizontal motors moving the pad:

ௗଵܨ⃗ = ܨ⃗ ௧ଵ + ܨ⃗ ௧ଶ = ݉ ௗଵ ∙ (ܽ⃗ଵ + ܽ⃗ଶ) ( 28 )

Where:

 ௗଵܨ⃗ is the total force applied on the detached pad,

 ܨ⃗ ௧�ଵ is the force from horizontal motor 1,

 ܨ⃗ ௧�ଶ is the force from horizontal motor 2,

 ݉ ௗଵ is the mass of pad 1, including the mass of the mechanism

surrounding pad 1,

 Ԧܽଵ is the acceleration of the pad caused by horizontal motor 1 (see

Figure 56b), and

 Ԧܽଶ is the acceleration of the pad caused by horizontal motor 2 (see

Figure 56b).

This dynamic model considers that the pads are detached and re-attached

only with the vertical motors, without using the horizontal motors in order to

help peel off or preload the pads. A more detailed model and analysis of the

force and moment applied by the locomotion mechanism to the pads is

presented in Chapters 6, 7 and 8.

4.5 Generation of the locomotion sequence

From an initial position where all the pads are attached to the tissue, the

locomotion mechanism moves the pads one by one, keeping three pads
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attached to the tissue at all times. In this way, the locomotion mechanism

detaches one pad first, moves it to a new position and re-attaches the pad to

the tissue. Figure 57a shows a side view of the locomotion mechanism

moving one pad in the X direction of the vertical plane and Figure 57b shows

the locomotion sequence of one pad in the horizontal plane.

Figure 57. (a 1-4) Locomotion sequence of pad 1 in the vertical direction and (b 1-4)
locomotion sequence of pad 1 in the horizontal plane.

The locomotion mechanism then repeats the process with the other pads

until the whole robot reaches a new position. In this way, the vertical motors

are used for detachment and re-attachment to the tissue and the horizontal

motors move the pads across the surface of the tissue.

The locomotion sequence is generated by timing and coordinating the

actuation of the vertical and horizontal motors. The time diagram in Figure

58 indicates when the vertical motors detach and re-attach the pads and

shows the change in position of the horizontal motors in order to move the

pads across the tissue. In Figure 58, the horizontal motors 1 and 3 move

from a position of minimum extension to a position of maximum extension of

the prismatic joint the motors control.
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Figure 58. Sequence of detachment, motion and re-attachment of the four pads of the
robot in order for the robot to take a step forward.

The diagram in Figure 58 shows the locomotion sequence to make the robot

take one step in the direction of the arrow shown in the sketch of the robot at

the top of the diagram. The diagram in Figure 58 considers that the speed of

the horizontal motors is constant.

The sequence starts detaching pad 1 with a vertical motor and then pushing

the pad with horizontal motor 1 up to the new position of the pad. During the

time horizontal motor 1 moves the pad, horizontal motor 2 moves as well in

order to enable straight motion of the pad. The relation between the motion

of the horizontal motor 1 and horizontal motor 2 is given by the Equations ( 2

)-( 5 ) explained earlier. This relation between the motion of the horizontal

motors determines the direction of motion of the pad along the surface of the

tissue.

Once pad 1 is at a new position, the vertical motor re-attaches pad 1 and the

next pad to move, pad 2, is detached. Then, pad 2 is moved forward with

horizontal motor 3 and horizontal motor 2 moves along, returning to the
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position of minimum extension. In this way, the two leading pads in the

locomotion mechanism reach a new position in the direction of motion. For

the two trailing pads, the actions of the motors are repeated until all the pads

are at the new position and the robot is ready to move another step.

The symmetry of the locomotion mechanism enables the robot to take a step

to the side by changing the order of actuation of the motors in the locomotion

sequence. For instance, in Figure 58, to make the robot move to the right the

horizontal motor 2 can be actuated first and then the horizontal motor 4. The

locomotion mechanism can also steer as illustrated earlier in Section 4.3.2,

Figure 52.

4.6 Adaptability of the locomotion mechanism to the
surface of tissue

The locomotion mechanism of the robot can adapt to the inclination and

minor irregularities of the tissue in the two following ways:

 using soft pads that mould to the curvature and irregularities of the

tissue and

 changing the distance between the tissue and the horizontal links with

the vertical motors in order to keep the horizontal links parallel with

the horizontal.

Figure 59 shows a side view of the locomotion mechanism where the soft

pads are moulding to the irregularities of the tissue (Figure 59a) and

moulding to the inclination of the surface (Figure 59b). Figure 59c shows

how the vertical motors can move the pads to different heights in order to

keep the horizontal links parallel to the horizontal.

Soft pads mould to the curvature of the abdominal wall and the irregularities

of the surface, enabling full contact between the adhesive pads and the

tissue. Full contact between the pads and the tissue favours adhesion,

enabling stronger attachment of the robot to the tissue.
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Figure 59. (a) Soft pad moulding to the irregularities of the tissue, (b) soft pad
moulding to the inclination of the tissue and (c) the vertical motors move the pads to
different heights. The rotation of the sketched pads is due to the passive twist of the

pads in contact with an irregularity (in a) and an inclined surface (in b).

The vertical motors can control the distance between the corners of the

quadrilateral formed by the horizontal links and the tissue. If the surface of

the tissue is curved, the vertical motors can move the pads to different

heights, adapting to the inclination of the tissue and keeps the quadrilateral

formed by the horizontal links parallel to the ground. If the distance between

the quadrilateral and the tissue could not be controlled the vertical motor

could end up pushing the pads too far into the tissue and making the pads

twist and peel off. The quadrilateral formed by the horizontal links in the

locomotion mechanism is where the tools and camera of the robot would be

mounted. Therefore, it is desirable to keep the quadrilateral formed by the

horizontal links parallel to the surface of the abdominal organs.

In order to adapt to the surface of the tissue successfully, the robot should

sense the contact with the tissue and should measure the force applied to

the tissue. Sensing contact enables the robot to control detachment and

attachment of the pads in order to follow the locomotion sequence. Sensing

the force between the pads and the tissue enables the robot to control the

peel off force and the preload applied to the pads. When the pad is required

to move, the vertical motor applies a force to peel off the pad until the pad

loses contact with the tissue, without detaching the supporting pads in the

process. When contact with the tissue is sensed, the robot can apply a

preload force to attach the pad and stop before pushing further into the

tissue and causing the supporting pads to peel off.

Contact can be sensed directly with a force sensor, or indirectly with a

position sensor or an accelerometer. Force between the pads and the tissue
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can be measured directly with a force sensor. This force can also be

measured indirectly when the pad is in contact with the tissue using a

position sensor and a mathematical model of how the force changes with the

position of the motor.

4.7 Summary

The kinematic joints of the locomotion mechanism are: four prismatic joints

forming a quadrilateral parallel to the surface of the tissue, and one prismatic

joint at each corner of the quadrilateral, perpendicular to the tissue. The

extension of each prismatic joint is controlled by a linear motor and the four

adhesive pads are connected to the vertical prismatic joints.

The workspace of the pads in the horizontal plane is an area around the

corners of the quadrilateral formed by the horizontal links. The pad can be

positioned within a volume defined by the workspace of the pads in the

horizontal plane and the range of motion of the vertical motors. Positioning

the four pads within their workspace enables the robot to move along any

direction of the horizontal plane and change the orientation and shape of the

quadrilateral formed by the horizontal links.

In the vertical direction, the pad attached to the tissue can be modelled as

the stiffness of the pad in series with the stiffness of the tissue, being the

stiffness of the three supporting pads in parallel. When the pad is detached,

the motor simply pulls or pushes the mass of the pad.

When the pad is detached, the motion of the two horizontal motors adjacent

to the pad is coordinated in order to move the pad along the horizontal

plane. The horizontal motion of the pad can be modelled dynamically as two

horizontal motors joined at the pad, pushing or pulling the mass of the pad in

conjunction.

The locomotion sequence is generated by timing the motion of the motors so

that the pads are detached, moved and re-attached one by one until the

whole robot has moved to a new position.

The robot can adapt to the surface of the tissue using soft pads that mould

to the irregularities and curvature of the tissue, thus favouring contact

between the pads and the tissue. In order to adapt to the inclination of the

tissue, the vertical motors can control the distance between the tissue and

the quadrilateral formed by the horizontal links keeping this quadrilateral

parallel with the ground.
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Chapter 5
Implementation and testing of the robot

5.1 Introduction

The previous chapter presented the conceptual design of the robot,

explaining the kinematic links, workspace and dynamic model of the

locomotion mechanism moving the adhesive pads. This chapter presents the

implementation of the locomotion mechanism, presenting the motors used

for the mechanism first and then explaining how the joints of the mechanism

are built, assembled and tested. After that, the chapter presents the

implementation and testing of the two robot prototypes.

The previous chapter also explained how the locomotion sequence is

generated and how the pads and the mechanism adapt to the surface of the

tissue. This chapter presents the preliminary tests carried out with the

assembly of two prismatic joints attaching and detaching one adhesive pad.

After that, the chapter shows the walking performance of the robot,

explaining the different improvements made to the hardware and the

controller used in order to generate the locomotion sequence.

The chapter closes with a section illustrating the bio-inspired features of the

locomotion mechanism and the summary of the chapter.

5.2 Miniature linear motors for the locomotion
mechanism

As explained in Sections 2.2.2, 3.5 and 3.6, the miniature linear motor

selected for the locomotion mechanism is the piezo-electric motor Squiggle®

RV (New Scale Technologies, Inc.). The Squiggle® motor is composed of a

housing and a threaded shaft (screw); the housing contains four piezo-

electric plates and a nut. Figure 60 shows the components and dimensions

of the Squiggle® motor: Figure 60a shows the front view of the motor, Figure

60b shows the top view of the motor and Figure 60c shows an isometric

view of the motor.
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Figure 60. (a) Front view, (b) top view and (c) 3D view of the Squiggle
®

motor [35].

The main characteristics of the Squiggle® motor are [35]:

 very low weight: 0.16 grammes per unit,

 very compact size: the dimensions of the housing are 2.8mm x2.8mm

x 6mm and the shaft is 12mm long, providing a maximum travel of

9mm.

 high force for its size: the stall force at 4.5V is 500 mN,

 high speed: typically 10 mm/s at 15 grammes load and

 the motor can be integrated in a robotic system using linear encoders

specially developed for the Squiggle® motor.

The main drawback of using piezo-electric motors inside the body is the high

voltage they usually require. The maximum voltage of the Squiggle® RV

motor is 5.5V, making it more suitable for intra-body operation than other

piezo-motors because, with reduced voltage, a lower current will circulate

through the tissue if a powered part of the actuator touches it. Another

important feature of the Squiggle® motor for inverted locomotion is that the

motor holds the position when the power is off, preventing the robot from

falling in the event of power disruption.

The Squiggle® motor is composed of four piezo-electric plates bonded to the

faces of a nut that hosts a screw. Figure 61 shows the four piezo-electric

plates of the motor attached to the nut, with the screw inside the nut.
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Figure 61. The piezo-electric (PZT) plates, nut and screw of the Squiggle
®

motor.

The driver of the motor applies a voltage to the piezo-electric plates at their

bending resonant frequency, causing amplified strain on the plates [155].

The voltage signal applied to the piezo-electric plates causes a vibration on

the nut, turning the screw inside the nut and making it move forward or

backward [155]. Figure 62a shows the voltage signal applied to the piezo-

electric plates and Figure 62b shows the vibration that causes the screw to

move linearly.

Figure 62. (a) Voltage signal sent to the four piezo-electric plates of the Squiggle
®

motor and (b) vibration caused by the voltage signal on the nut [155].

The magnetic linear encoder Tracker® NS-5310, manufactured by Austria

Micro-systems, is used in order to detect the position of the Squiggle® motor.

This encoder uses a multi-pole linear magnetic strip and a micro-chip in

order to measure the position of the motor. The magnetic strip is attached to

the part of the mechanism moved by the screw of the motor and the micro-

chip is attached to the part of the mechanism connected to the nut. The

micro-chip detects the change in magnetic field caused by the movement of

the magnetic strip, thus tracking the position of the part of the mechanism

attached to the magnetic strip. Figure 63a shows the top view of the

Tracker® encoder with the magnetic strip positioned above the micro-chip

and Figure 63b shows an isometric view of the Tracker® encoder.
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Figure 63. (a) Top view and (b) 3D view of the linear magnetic encoder Tracker
®

[156].

The Squiggle® motor and the Tracker® encoder are used in order to move

the pads, controlling the extension of the prismatic joints in the locomotion

mechanism.

5.3 Mechanical design and construction of the
locomotion mechanism

The locomotion mechanism of the robot has four adhesive pads. In the

horizontal plane, these adhesive pads are moved by four prismatic joints

controlled by linear motors. These prismatic joints form a quadrilateral in the

horizontal plane and are connected to each other with passive rotary joints.

Figure 64 shows a top view of the CAD model of the robot with four adhesive

pads and the four prismatic joints of the locomotion mechanism used in the

horizontal plane.

Figure 64. Top view of the CAD model of the robot.
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In order to move the adhesive pads vertically, the locomotion mechanism

has four prismatic joints attached to the corners of the quadrilateral formed

by the horizontal prismatic joints. Figure 65a shows the CAD model of the

robot held by a model hand for scale. Figure 65b shows a detail of the

corner of the robot with the adhesive pad attached to a vertical prismatic

joint.

Figure 65. (a) CAD model of the robot and (b) detail of one corner of the locomotion
mechanism.

The dimensions of the robot are 6 cm x 6 cm x 3 cm (length x width x

height). The ideal width of the robot is 2 to 3 cm, so the designed prototype

is a double-scale prototype. The motors occupy less than 1% of the total

volume of the robot. Thus, the size of the robot is mostly determined by the

size of the piece where the housing of the motor is mounted (mounting

platform) and the size of the piece supporting the ends of the motor shaft

(ends supporter).

The total mass of the prototype manufactured in a plastic like Nylon 6 or

ABS is around 20 grammes. The mass of the robot is largely determined by

the weight of the mounting platform and the ends supporter because the

mass of the eight motors in the robot is only 5% of the total mass.
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5.3.1 Design and assembly of the components for the

locomotion mechanism

The locomotion mechanism of the robot is a series of prismatic joints moved

by linear motors and interlinked with passive rotary joints. Figure 66a shows

the prismatic and rotary joints of the locomotion mechanism. Figure 66b

shows a sketch of the housing and shaft of the linear motor controlling the

motion of a prismatic joint, and therefore controlling the motion of the

adhesive pad attached to the prismatic joint.

Figure 66. (a) Prismatic and rotary joints of the locomotion mechanism and (b)
housing and shaft of the linear motor in a prismatic joint moving a pad.

The components of the mechanism of a prismatic joint are:

 one linear motor, composed of one shaft or screw and one housing or
nut,

 one ends supporter: the shaft of the motor pushes against this ends
supporter,

 one adhesive pad, fixed to the ends supporter,
 one mounting platform: the housing of the motor is fixed to this

mounting platform, and
 two guiding rods, connecting the ends supporter and the mounting

platform together.

Figure 68a shows a sketch of the components of the prismatic joint and

Figure 68b shows the CAD model of the prismatic joint, indicating the

components used in order to build the prismatic joint controlled by the motor.
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Figure 67. (a) Sketch of a prismatic joint and (b) CAD model of a prismatic joint.

The housing of the motor is fixed to the mounting platform and the adhesive

pad is fixed to the ends supporter. The ends supporter is connected to the

mounting platform with two guiding rods. The guiding rods are fixed to the

ends supporter and slide into two holes on the mounting platform. In order to

control the position of the pad, the magnetic strip of the linear encoder is

fixed to the ends supporter and the micro-chip of the linear encoder is fixed

to the mounting platform. Figure 68a shows the housing of the motor fixed to

the mounting platform and Figure 68b shows the adhesive pad and the

magnetic strip fixed to the ends supporter. Figure 68c shows the mounting

platform and the ends supporter connected with the guiding rods and the

micro-chip of the linear encoder attached to the mounting platform.

Figure 68. (a) CAD model of the mounting platform of the prismatic joint controlled by
the motor, (b) ends supporter of the prismatic joint and (c) assembly of the prismatic

joint.

The assembly shown in Figure 68c is for a vertical prismatic joint used in

order to move the adhesive pad in the vertical direction. The prismatic joints

in the horizontal plane also have one motor, one ends supporter, one

mounting platform and two guiding rods. These components are assembled

in the same way as shown in Figure 68c in order to obtain the horizontal
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prismatic joints. A steel pin is used to build a rotary joint and connect the

horizontal prismatic joints to one another. Figure 69a shows the vertical

prismatic joint connected to the horizontal prismatic joint and the steel pin to

connect this assembly to another horizontal prismatic joint. Figure 69b

shows two horizontal prismatic joints and one vertical prismatic joint

connected together, enabling motion of the pad in the horizontal plane and

vertical direction.

Figure 69. (a) Vertical prismatic joint connected to a horizontal prismatic joint and (b)
assembly of two horizontal prismatic joints and one vertical prismatic joint.

5.3.2 Integration of the linear motor into the locomotion

mechanism

These are the design practices to consider in order to integrate the

Squiggle® motor into the locomotion mechanism [157]:

 the screw of the motor should not be side-loaded,
 a small return force opposite to the direction of motion should be

constantly applied to the screw,
 the motor should not run into a hard stop and
 the friction of the mechanism connecting the motor to the load should

be minimal.

The screw of the motor moves linearly because the vibration caused by the

piezo-electric plates on the nut makes the screw turn inside the nut.

Therefore, if the screw of the motor is side-loaded, the screw does not

engage with the nut properly and this can prevent the screw from moving. A

return force on the screw ensures that the nut and the screw engage

properly when the motor changes direction. The motor should not run into a

hard stop because this can damage the threads on the screw. The maximum

load the motor can move is reduced if there is friction on the mechanism

connecting the motor and the load.
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In the locomotion mechanism of the robot, the load the motor has to move is

the adhesive pad attached to the ends supporter. The adhesive pad cannot

be directly coupled to the screw of the motor because this would prevent the

screw from turning inside the nut, thus stopping the linear motion of the

motor. The motion of the pad requires a mechanism that connects the motor

to the adhesive pad without side-loading the screw of the motor. This

mechanism to connect the motor to the pad is the prismatic joint and it

should move with very little friction in order not to stall the motor.

Considering the previous design practices, these are the features of the

locomotion mechanism designed in order to integrate the motor:

 the surface of the ends supporter in contact with the tip of the screw is
low friction,

 the angle between the ends supporter and the screw of the motor is
90º,

 compression springs can be fitted between the mounting platform and
the ends supporter in order to apply a return force to the screw of the
motor, and

 contact between the surface of the holes in the mounting platform and
the guiding rods is low friction.

Side-loading of the screw can prevent the screw from engaging with the nut

and therefore can stop the motion of the screw. In order to prevent side-

loading of the screw, the surface of the ends supporter in contact with the tip

of the screw is low friction and the angle between this surface and the screw

is 90º. Figure 70a shows the contact between the tip of the screw and the

ends supporter and Figure 70b shows the 90º angle between the screw and

the surface of the ends supporter.

Figure 70. (a) Contact between the shaft of the motor and the ends supporter and (b)
angle between the shaft and the ends supporter.
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The guiding rods connecting the mounting platform and the ends supporter

slide into the holes of the mounting platform in order to obtain the prismatic

joint. Friction between the surface of the holes in the mounting platform and

the guiding rods diminishes the load the motor can move. Thus, the contact

between the surface of the holes in the mounting platform and the guiding

rods is low friction. Figure 71 shows the contact between the surface of the

holes in the mounting platform and the guiding rods.

Figure 71. Contact between the surface of the holes in the mounting platform and the
guiding rods.

A return force can be applied to the screw of the motor by fitting

compression springs on the guiding rods, between the mounting platform

and the ends supporter. A set of four springs on the rods between the

mounting platform and the ends supporter ensures a return force is

constantly applied to the screw whether the motor is moving forward or

backward. Four springs, two on each of the two guiding rods, cancel the tilt

that the return force causes on the ends supporter. Figure 72 shows the

position of the four springs between the mounting platform and the ends

supporter.
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Figure 72. Position of the springs for the return force on the shaft of the motor within
the assembly of the prismatic joint.

5.4 Preliminary tests with the assembly of one prismatic
joint and two prismatic joints

In order to test the motion of one adhesive pad in the horizontal plane and

the vertical direction, the following prismatic joints of the locomotion

mechanism were tested:

 a vertical prismatic joint, measuring the force able to be applied to the
pad,

 a vertical prismatic joint connected to a horizontal prismatic joint,
testing the attachment and detachment of the pad.

5.4.1 Implementation of a vertical prismatic joint

The assembly of a vertical prismatic joint is made up of: one motor, one

ends supporter, one mounting platform and two guiding rods and follows the

design explained earlier. However, this design includes an extension of the

mounting platform with a slot in order to attach the mounting platform to a

load cell and measure the force applied by the prismatic joint. Figure 73

shows the CAD model of the vertical prismatic joint with the slot to attach the

assembly to a load cell.
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Figure 73. CAD model of the vertical prismatic joint with a slot to attach the assembly
to a load cell.

The linear motor is a Squiggle® motor and the guiding rods are hardened

stainless steel (SS 303) of 1 mm diameter and h6 tolerance. The ends

supporter and mounting platform are manufactured in low friction, hard

plastic.

5.4.1.1 Manufacturing of the components for the prismatic joint

Three sets of the ends supporter (ES) and the mounting platform (MP) were

manufactured using the following manufacturing techniques and materials:

 conventional CNC machining in Teflon®,
 precision CNC machining in Teflon® (able to machine tolerances of

microns for dimensions smaller than 3mm) and
 precision CNC machining in Delrin® 500 AF, a type of Acetal® resin

with a percentage of Teflon®.

Figure 74a shows a picture of the ends supporter and the mounting platform

manufactured in Teflon® using conventional CNC machining. Figure 74b

shows a picture of the ends supporter and the mounting platform

manufactured in Teflon® using precision CNC machining. Figure 74c shows

a picture of the ends supporter and the mounting platform manufactured in

Delrin® 500 AF using precision CNC machining.
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Figure 74. (a) Ends supporter (ES) and mounting platform (MP) manufactured in
Teflon

®
with conventional CNC machining, (b) ES and MP manufactured in Teflon

®

with precision CNC machining and (c) ES and MP manufactured in Delrin
®

with
precision CNC machining.

These three sets of components for the prismatic joint were manufactured in

order to investigate the most suitable material and manufacturing technique

available to the budget of the intra-abdominal robot. In order to check the

friction of the prismatic joint and the play between the components of the

assembly, each assembly was tested with the motor, and the dimensions of

the components were validated. The achievable tolerances for the

manufactured components of the prismatic joint depend on the machine

used for manufacturing, the material and the skill of the technician operating

the machine.

The first set of components for the prismatic joint was manufactured in

Teflon® using conventional CNC machining. Figure 75 shows the

dimensions and tolerances of the mounting platform of this first set of

components. The critical dimensions of the mounting platform are marked on

Figure 75 with the circled numbers 1-4.
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Figure 75. Drawing of the mounting platform manufactured using conventional CNC
machining. The tolerances shown in the drawing were determined using an ISO table

of tolerances for the type of fit required for each part of the mechanism.

The critical dimensions of the mounting platform are:

1. the distance between the base of the motor’s housing and the holes

for the guiding rods in the mounting platform (see
1

in Figure 75),
2. the distance between the holes in the mounting platform where the

guiding rods are inserted (see
2

in Figure 75),

3. the width of the gap to fit the motor’s housing (see
3

in Figure 75),
and

4. the diameter of the holes in the mounting platform in order to insert

the guiding rods with a sliding fit (see
4

in Figure 75).

The distance between the base of the motor’s housing and the holes for the

guiding rods ensures that the two guiding rods and the screw of the motor

are all at the same height.

The distance between the holes in the mounting platform corresponds to the

distance between the holes at both ends of the ends supporter. The

tolerance for this distance ensures that the holes for the guiding rods in the

mounting platform are aligned with the holes in the ends supporter.

The width of the gap to fit the motor’s housing determines how parallel the

screw of the motor and the two guiding rods are.

The sliding fit between the holes in the mounting platform and the guiding

rods ensures that the fit is not too tight or too loose. If the fit between the

holes and the guiding rods is too tight it causes interference between the
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guiding rods and the mounting platform when the motor is moving. If the fit

between the holes and the guiding rods is too loose, the angle between the

screw of the motor and the ends supporter changes when the motor is

moving.

Figure 76 shows the critical dimensions of the mounting platform on the CAD

model of the mounting platform and the motor.

1

2
3

4

Figure 76. Critical dimensions of the mounting platform.

Figure 77 shows the dimensions and tolerances of the ends supporter

manufactured in Teflon® using conventional CNC machining. The critical

dimensions of the ends supporter are marked on Figure 77 with the circled

numbers 5-7.

Figure 77. Drawing of the ends supporter manufactured using conventional CNC
machining. The tolerances shown in the drawing were determined using an ISO table

of tolerances for the type of fit required for each part of the mechanism.

The critical dimensions of the ends supporter are:
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5. the position of the holes in the ends supporter in order to fix the

guiding rods to both ends of the ends supporter (see
5

in Figure
77),

6. the diameter of the holes in the ends supporter in order to insert the

guiding rods with an interference fit (see
6

in Figure 77),
7. the distance between the holes in the ends supporter where the

guiding rods are inserted (see
7

in Figure 77).

The position of the holes in the ends supporter determines how parallel the

guiding rods are to each other when the guiding rods are fixed to the ends

supporter.

The interference fit between the guiding rods and the holes in the ends

supporter ensures that the rods are fixed at both ends of the ends supporter.

The distance between the holes in the ends supporter and the holes in the

mounting platform should be the same in order to ensure that the guiding

rods are parallel to each other in the assembly.

Figure 78a shows the critical dimensions of the ends supporter on the CAD

model of the ends supporter. Figure 78b shows the critical dimensions

affecting the alignment of the guiding rods within the assembly of the

mounting platform and the ends supporter.

5

6

7

5 71 2

Figure 78. (a) Critical dimensions of the ends supporter and (b) critical dimensions of
the mounting platform and the ends supporter affecting the alignment of the guiding

rods within the assembly.

The tolerances of the three sets of components for a prismatic joint were

validated in order to investigate the most suitable manufacturer available to

the project. A precision profile projector was used to validate the dimensions

and tolerances of the mounting platform and the ends supporter. In a

precision profile projector the profile of the manufactured component is

projected and amplified on a screen. The dimensions of the component are
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measured on the projected image using an electronic micrometer. The error

of the measurements due to manual positioning was estimated to be ±3

microns, this error was estimated by repeating several measurements and

calculating the maximum variation between these measurements. Table 6

and Table 7 show the measurements of the critical dimensions of the

mounting platform and ends supporter, indicating whether they are in or out

of tolerance. Table 6 shows the measurements for the front side of the

mounting platform and ends supporter and Table 7 shows the

measurements for the back side.

Table 6. Tolerance validation of the front side of the mounting platform and ends
supporter manufactured in Teflon

®
with a conventional CNC machine.

Critical dimension Measurement
In or out of

tolerance

Mounting

Platform

1

1.39 ± 0.05

RIGHT
1.365 OUT

1.39 ± 0.05 LEFT 1.428 OUT

2 9 ± 0.01 8.902 OUT

3 2.85 + 0.05 2.639 OUT

4
Ø1+ 0.010 RIGHT 1.097 OUT

Ø 1+ 0.010 LEFT 1.076 OUT

Ends

Supporter

5

2 ± 0.005 RIGHT

WEST
1.938 OUT

2 ± 0.005 RIGHT

SOUTH
1.993 OUT

2 ± 0.005 LEFT

EAST
1.996 IN

2 ± 0.005 LEFT

SOUTH
1.978 OUT

6

1 - 0.006 -0.016

RIGHT
1.193 OUT

1 - 0.006 -0.016

LEFT
1.996 OUT

7 9 ± 0.01 8.995 IN
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Table 7. Tolerance validation of the back side of the mounting platform and ends
supporter manufactured in Teflon

®
with a conventional CNC machine.

Critical dimension Measurement
In or out of

tolerance

Mounting

Platform

1

1.39 ± 0.05

RIGHT
1.361 OUT

1.39 ± 0.05 LEFT 1.328 OUT

2 9 ± 0.01 8.959 OUT

3 2.85 + 0.05 2.521 OUT

4

Ø1+ 0.010

RIGHT
1.130 OUT

Ø 1+ 0.010 LEFT 1.082 OUT

Ends

Supporter

5

2 ± 0.005 RIGHT

WEST
1.996 IN

2 ± 0.005 RIGHT

SOUTH
2.085 OUT

2 ± 0.005 LEFT

EAST
1.965 OUT

2 ± 0.005 LEFT

SOUTH
1.931 OUT

6

1 - 0.006 -0.016

RIGHT
1.157 OUT

1 - 0.006 -0.016

LEFT
1.965 OUT

7 9 ± 0.01 8.954 OUT

For the mounting platform of the first set of components, 100% of the critical

dimensions were out of tolerance. For the ends supporter, 79% of the critical

dimensions were out of tolerance.

The linear motor was tested within the assembly of this first set of

components. Motion of the prismatic joint was obtained but the fit between

the mounting platform and the guiding rods was loose. This loose fit caused

the angle between the screw of the motor and the ends supporter to change

significantly during motion, thus causing side-loading of the screw and
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stalling the motor. The guiding rods mounted on the ends supporter were not

parallel, increasing the interference between the guiding rods and the

mounting platform and further causing the motor to stall.

The second set of components for the prismatic joint was manufactured in

Teflon® using precision CNC machining. The size of the components of this

second set is smaller than the size of the first set, however, the critical

dimensions are the same. Figure 79 shows the dimensions and tolerances

of the mounting platform of this second set of components. The critical

dimensions of the mounting platform are marked on Figure 79 with the

circled numbers 1-4.

Figure 79. Drawing of the mounting platform manufactured using precision CNC
machining. The tolerances shown in the drawing were determined using an ISO table

of tolerances for the type of fit required for each part of the mechanism.

Figure 80 shows the dimensions and tolerances of the ends supporter

manufactured in Teflon® using precision CNC machining. The critical

dimensions of the ends supporter are marked on Figure 80 with the circled

numbers 5-7 and are the same as the first ends supporter.
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Figure 80. Drawing of the ends supporter manufactured using precision CNC
machining. The tolerances shown in the drawing were determined using an ISO table

of tolerances for the type of fit required for each part of the mechanism.

The linear motor could not move within the assembly of this second set of

components because the fit between the guiding rods and the holes of the

mounting platform was too tight.

The third set of components for the prismatic joint was manufactured in

Delrin ® using precision CNC machining. The dimensions and tolerances of

this third set of components are the same as the second set: see Figure 79

for the specifications of the mounting platform and Figure 80 for the

specifications of the ends supporter. For this set of components, the

technical specifications of the components was supplied to the

manufacturers together with an explanation of how the mechanism is

assembled and how it is designed to work. The critical dimensions of this

third set of components were measured with the precision profile projector

and are shown in Table 8 for the front side of the mounting platform and

ends supporter and Table 9 for the back side.

.
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Table 8. Tolerance validation of the front side of the mounting platform and ends
supported manufactured in Delrin

®
with a precision CNC machine.

Critical dimension

(see Figure 79 and

Figure 80)

Measurement
In or out of

tolerance

Mounting

Platform

1

1.39 ± 0.05

RIGHT
1.362 IN

1.39 ± 0.05 LEFT 1.370 IN

2 6 ± 0.01 5.998 IN

3 2.85 + 0.05 2.907 OUT

4

Ø1+ 0.010

RIGHT
1.057 OUT

Ø 1+ 0.010 LEFT 1.083 OUT

Ends

Supporter

5

2 ± 0.005 RIGHT

WEST
1.939 OUT

2 ± 0.005 RIGHT

SOUTH
2.058 OUT

2 ± 0.005 LEFT

EAST
1.997 IN

2 ± 0.005 LEFT

SOUTH
1.959 OUT

6

1 - 0.006 -0.016

RIGHT
1.031 OUT

1 - 0.006 -0.016

LEFT
1.043 OUT

7 6 ± 0.01 6.077 OUT



- 117 -

Table 9. Tolerance validation of the back side of the mounting platform and ends
supported manufactured in Delrin

®
with a precision CNC machine.

Critical dimension

(see Figure 79 and

Figure 80)

Measurement
In or out of

tolerance

Mounting

Platform

1

1.39 ± 0.05

RIGHT
1.387 IN

1.39 ± 0.05 LEFT 1.332 OUT

2 6 ± 0.01 5.953 OUT

3 2.85 + 0.05 2.912 OUT

4

Ø1+ 0.010

RIGHT
1.096 OUT

Ø 1+ 0.010 LEFT 1.109 OUT

Ends

Supporter

5

2 ± 0.005 RIGHT

WEST
2.014 OUT

2 ± 0.005 RIGHT

SOUTH
2.001 OUT

2 ± 0.005 LEFT

EAST
2.013 IN

2 ± 0.005 LEFT

SOUTH
1.954 OUT

6

1 - 0.006 -0.016

RIGHT
0.980 OUT

1 - 0.006 -0.016

LEFT
1.021 OUT

7 6 ± 0.01 6.003 IN

For the mounting platform of the third set of components, 86% of the critical

dimensions were out of tolerance. For the ends supporter, 79% of the critical

dimensions were out of tolerance.

The linear motor was tested within the assembly of this third set of

components. The motion of the prismatic joint with the third set of

components was smoother than with the first and the second because of the
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expertise of the manufacturers in adjusting miniature mechanisms machined

in plastic.

5.4.1.2 Miniature springs in order to provide a return force to the

screw of the motor

A force of 50 mN constantly applied to the screw of the motor ensures that

the threads of the screw are engaged with the nut and prevent the motor

from stalling or working intermittently [157]. Providing a return force to the

screw of the motor is especially important when the motor has stopped and

starts moving again in a different direction. In order to provide this force to

the screw, four springs can be fitted around the guiding rods, in the space

between the mounting platform and the ends supporter of the prismatic joint.

Figure 81 shows the position of the compression springs in the vertical and

prismatic joint of the locomotion mechanism.

Figure 81. Position of the compression springs within the prismatic joint in order to
apply a return force to the screw of the motor.

The specifications of the compression springs in order to provide a return

force to the screw of the motor are:

 length of a few millimetres: 1-5 mm,
 inner diameter greater than 1 mm in order to fit loosely around the

guiding rods, and
 a stiffness constant so that the return force applied to the screw is

around 50 mN for the whole range of motion of the motor.

Commercially available springs for the size and the stiffness required are

difficult to find. Off-the-shelf compression springs with constant force are

much larger than the size required for the prismatic joints of the locomotion

mechanism.
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In terms of the size, the most suitable compression spring found off-the-shelf

has a free length of 2 mm, an outer diameter of 1.2 mm, a wire diameter of

0.2 mm and a spring constant of 4.09N/mm (Ondrives Ltd., UK). The

dimensions of this spring are suitable for the design of the prismatic joint but

the return force this spring provides is much higher than the force required.

For these springs, 1mm of compression applies a force on the screw 14

times greater than the maximum force that stalls the motor (300 mN) and 82

times the return force recommended by the manufacturers (50 mN).

In terms of the stiffness, the most suitable one found in the market has a free

length of 12 mm, an outer diameter of 1.7 mm and wire diameter of 0.15 mm

(Muelles Ros, Spain). This spring uses music wire and has a stiffness

constant of 0.1 N/mm, providing a force twice the return force recommended

by the manufacturers for 1mm of compression. However, the spring has to

be cut to a shorter length because the free length of the spring is twice the

length of the motor’s housing. If the spring is cut to a more suitable size, like

2 mm, the spring constant increases 4.5-fold up to 0.45N/mm. For a free

length of 2 mm, the return force on the screw for 1 mm of compression of

this spring is 1.5 times the stall force of the motor and 9 times the

recommended return force.

The Ondrives spring and the Mulles Ros spring cut to a free length of 2 mm

were tested in the mechanism of the prismatic joint. The springs prevented

the motor from stalling when the springs were compressed slightly at the end

of the travel range. However, for further compression, a higher return force

from the springs caused the motor to stall frequently. In addition to that, the

length of the springs on each side of the motor is slightly different because

they are cut manually. This difference of return force applied on each side of

the motor changes the angle between the guiding rods and the ends

supporter, side-loading the screw of the motor.

For the vertical motors, there is always a return force applied to the motor

during locomotion. This is so because if the pad is detached, the motor

pushes against the weight of the pad and if the pad is attached, the motor

pulls against the adhesion force. For this reason and because of the lack of

availability of suitable springs, compression springs to provide a return force

to the screw were not included in the final design.

5.4.2 Force measurements from a vertical prismatic joint

In order to check the performance of the prismatic joint, the motor was

tested measuring the force the motor applies to the ends supporter when the
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motion of the prismatic joint is blocked. The components used for this test

were the mounting platform and ends supporter manufactured in Delrin ®

using precision CNC machining. Figure 82 shows the experimental set-up

for this blocked force test, which includes the following components:

 one mounting platform fixed to an aluminium structure,
 one linear motor,
 one ends supporter touching the load cell through a piece of foam in

order to ensure full contact,
 one magnetic strip fixed to the ends supporter and
 one magnetic encoder fixed to the aluminium structure.

motor

magnet

encoder

mounting platform

ends supporter

foam

load cell

X

Y

Z

Figure 82. Experimental set-up for the blocked force test of the prismatic joint.

In order to simulate the prismatic joint detaching or attaching the adhesive

pad, the motion of the motor within the prismatic joint is blocked with an

initial load of 150 ± 15�݉ ܰ . This initial load ensures contact between the

motor and the load cell. The force is measured with a GSO 100 grammes

load cell manufactured by Transducer Techniques, Inc. The force delivered

by the motor when the motion of the prismatic joint is blocked should be

greater than the adhesion force of the pad in order to detach the pad.

The force from the motor depends on the voltage input to the drivers and the

speed setting, which determine the power produced by the motor for a

certain load [35]. For constant voltage and constant load on the motor, the

force the motor is able to produce decreases with a lower speed setting. For

this force test, the voltage is set at 3.3 V and the speed setting is 70% of the

maximum.

The force delivered by the motor is checked at 12 points along the screw of

the motor in order to measure how uniform the performance of the motor is

along its travel range. The length of the screw is 12 mm and each point
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considered for the test is at 500 ± 200 μm of distance between the housing

and the tip of the screw. This distance between the housing and the tip of

the screw is measured with the Tracker® linear magnetic encoder.

These are the steps followed to measure the force of the prismatic joint at

each point along the length of the screw:

 the driving voltage is set at 3.3 V and the speed is set at 70% of the
maximum,

 the motor is moved to the initial position along the length of the screw,
 the motion of the prismatic joint is blocked applying the default load of

150 ± 15�݉ ܰ and
 the driving signal is sent to the motor, measuring the force applied to

the load cell.

Figure 83 shows the graph of force applied by the prismatic joint for each

point along the length of the screw. The increment of force shown in Figure

83 is the increment of force obtained from the initial load applied to the

prismatic joint in order to block it.

Figure 83. Blocked force obtained from the prismatic joint for twelve points along the
screw of the motor. The top figure shows the increment of force obtained when

voltage is applied to the motor while the motor is blocked (blocked force) for the first
six points along the screw of the motor. The figure at the bottom shows the blocked

force obtained for the last six points along the screw of the motor.
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Table 10 shows the value of blocked force obtained from the prismatic joint
for the 12 points considered along the screw of the motor.

Table 10. Blocked force obtained along the screw of the motor.

Point

along the

screw

Initial

load

(mN)

Force

increment

(mN)

Point

along the

screw

Initial

load

(mN)

Force

increment

(mN)

1 141.16 518.19 7 155.79 432.33

2 150.54 500.39 8 164.53 429.95

3 148.47 429.63 9 153.88 310.06

4 146.41 411.98 10 154.67 281.12

5 139.25 378.43 11 148.95 340.27

6 155.95 403.87 12 144.66 373.02

Looking at the values in Table 10 the force seems to diminish for the later

points along the screw; this is probably due to minor deficiencies in the

mechanical assembly of the prismatic joint and experimental set-up. For the

bio-mimetic pads, the maximum adhesive force measured for a preload of

10 mN is 140 mN [10]. Therefore, in order to detach the adhesive pad, the

prismatic joint needs to apply a block force greater than 140 mN.

The minimum force obtained from the prismatic joint is 280 mN

approximately and the maximum is 520 mN depending on the point of

operation along the screw. The average force obtained from the prismatic

joint is 400.8 mN which is approximately 3 times the maximum adhesion

force of the pad. The variability of the blocked force for the points considered

along the screw is ±70.1 mN, that is 17.5% of the average blocked force.

This value of force is sufficient to apply a preload of 10 mN and a

detachment force of 140 mN, enabling the intra-abdominal robot to control

the adhesion of the pad and follow the locomotion sequence.

The prismatic joint manufactured in Delrin® using precision CNC machining

can deliver sufficient force and moves the adhesive pad smoothly. However,

precision CNC machining of the whole robot was beyond the project’s

budget and rapid prototyping was used instead in order to manufacture the

rest of the components for the locomotion mechanism.
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5.4.3 Force measurements from a vertical and a horizontal

prismatic joint attaching and detaching the adhesive pad

In order to check the performance of the locomotion mechanism moving the

pad, the vertical and horizontal prismatic joints were tested attaching and

detaching the adhesive pad on tissue. Figure 84 shows the experimental

set-up for this test, which includes the following components:

 one load cell connected to the mounting platform of the horizontal
prismatic joint,

 one load cell above the ends supporter of the vertical prismatic joint,
holding the sample of tissue,

 one assembly of a vertical and horizontal prismatic joint, including the
adhesive pad backed by a layer of foam, and

 one sample of rat peritoneum.

Figure 84. CAD model of the set-up to test the vertical and horizontal prismatic joints
attaching and detaching the adhesive pad.

The load cell to measure the vertical force is a GSO 100 grammes load cell

and to measure the horizontal force, a GSO 50 grammes load cell is used,

both manufactured by Transducer Techniques, Inc. The stem of the load cell

for vertical force is aligned with the screw of the vertical motor, applying the

vertical force to the centre of the adhesive pad.

The components of the vertical and horizontal prismatic joints were rapid-

prototyped in ABS plastic with a 3D printer (HP Designjet 3D Printer

CQ656A). The adhesive pad is attached to the ends supporter of the vertical

prismatic joint. The adhesive pad is a square of 100 mm2, connected to the

ends supporter of the vertical prismatic joint through a 3.5mm-thick layer of

Tempur® memory shape foam.

Rat peritoneum is used for the tissue sample because it resembles human

peritoneum [10]. The force applied on the tissue by the vertical and

horizontal prismatic joints was measured in the following two tests:
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 preload test: a series of values of preload were applied to the
adhesive pad in order to attach it and then the pad was detached in
order to measure the adhesive force,

 horizontal force test: the pad was attached with the vertical motor, a
force was applied with the horizontal motor and then the pad was
detached with the vertical motor.

5.4.3.1 Preload test with the vertical prismatic joint

The preload test shows the ability of the vertical prismatic joint to apply

different values of preload, thus controlling the adhesion of the pad. These

are the steps followed to measure the adhesive force for different values of

preload:

 the preload is applied to the pad, ensuring attachment to the tissue;
this is registered as compression force by the load cell,

 a few seconds are waited in order to enable the foam backing of the
pad to comply to the pressure applied on the pad,

 a pull force is applied to the attached pad, bringing it back to the initial
position and obtaining the value of adhesive force; this is registered
as tension force by the load cell.

These steps are shown in Figure 85 on the graph of force obtained during

the process of preloading and detaching the adhesive pad. The negative

value of force in Figure 85 corresponds to compression force, obtained when

preloading the pad. The positive value of force in Figure 85 corresponds to

tension force, obtained when detaching the pad. The adhesive force is the

maximum positive force recorded during the test.

Figure 85. Force applied by the vertical prismatic joint to the adhesive pad in order to
test different values of preload.

Following the previous steps, the pad was preloaded and detached from the

tissue for five consecutive times for values of preload between 10 and 100
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mN. The graph in Figure 86 shows the average and standard deviation of

the adhesion force recorded for preload values between 10 and 100 mN.

Figure 86. Effect of preload on the adhesion force between the adhesive pad and the
tissue.

Adhesion force increases by an average of 25% for each 80% average

increment of preload force applied to the pad. This direct proportionality

between preload and adhesion force is true until a value of 70 mN of preload

is reached. This maximum value of preload suggests that pressure on the

pad favours the formation of links between the pad and the tissue until

excessive force starts breaking them. Therefore, preload force between 10

and 70 mN can be used in order to control the adhesion of the pad when the

pad is in contact with the tissue.

In previous research, a preload between 5 and 30 mN was tested on the

adhesive pad, concluding that there is no significant increase in adhesion

force for a preload between 10 and 30 mN [10]. The results of the test

presented here confirms the conclusions of previous research for a preload

of 10 and 30 mN and complements those results by testing values of preload

up to 100 mN.

5.4.3.2 Horizontal force test with the vertical and horizontal

prismatic joints

The horizontal force test shows the ability of the prismatic joints to use a

horizontal force in order to control the adhesion of the pad. These are the

steps followed to show the effect of a horizontal force on the adhesive force

of the pad:

 the pad is attached with a preload and detached, measuring the
adhesion force when no horizontal force is applied to the pad;
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 the pad is re-attached to the tissue with the same value of preload as
before,

 a horizontal force is applied to the pad with the horizontal prismatic
joint,

 the pad is detached with the vertical prismatic joint, measuring the
adhesion force when a horizontal force is applied to the pad.

The value of adhesion force obtained when no horizontal force is applied on

the pad is used as a reference in order to compare the effect of applying a

horizontal force. Figure 87 shows two consecutive tests following the

previous steps. The first attachment and detachment cycle in order to obtain

the reference adhesion force is not shown in Figure 87. In Figure 87a, a

horizontal force of the same order of magnitude as the adhesion force is

applied to the pad. In Figure 87b a horizontal force several times higher than

the adhesion force is applied to the pad. The top plot in Figure 87 shows the

vertical force and the bottom plot in Figure 87 shows the horizontal force

recorded during the tests.

attachment attachment

adhesion with horizontal
force = 54 mN

a) b)

adhesion without
horizontal force = 55 mN

adhesion without
horizontal force = 60 mN

horizontal force
= 60 mN

horizontal force
= 230 mN

adhesion with horizontal
force = 72 mN

Effect of shearing force on the adhesive pad

Figure 87. Force applied by the vertical and horizontal prismatic joints on the
adhesive pad in order to test the effect of applying a horizontal force.

In Figure 87, for a value of horizontal force the same order of magnitude as

the adhesion force, the adhesion force of the pad increases by 30%. For a

value of horizontal force four times higher than the adhesion force, the
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adhesion force of the pad decreases by 10%. This increase and decrease in

the adhesion force of the pad with horizontal force is mainly caused by the

compliance of the foam backing of the pad; some of this variation is probably

due to the adhesion force decreasing over cycles. When a low horizontal

force is applied to the pad, adhesion force increases because more intimate

contact between the pad and the tissue is obtained. However, a high

horizontal force can cause shearing on the surface, thus favouring

detachment. A horizontal force on the pad similar to the adhesion force

enhances attachment, while detachment is more effective when a horizontal

force several times higher than the adhesion force is applied to the pad.

These tests show that the adhesion of the bio-mimetic pad is enhanced and

diminished depending on the vertical and horizontal force applied on the

pad. Controlling adhesion is useful for the locomotion of the robot because it

enables to recover the adhesion force of the pad and can make detachment

more efficient.

5.5 First prototype of the robot

The first prototype of the robot was rapid-prototyped in ABS plastic with a 3D

printer (HP Designjet 3D Printer CQ656A). Figure 88a shows the first

prototype of the robot composed of eight prismatic joints. Figure 88b shows

a detail of the horizontal prismatic joint, indicating the position of the

magnetic strip and the encoder within the mechanism. Figure 88c shows a

detail of the vertical prismatic joint.

Figure 88. (a) First prototype of the robot manufactured in ABS plastic with a 3D
printer, (b) detail of the horizontal prismatic joint and (c) detail of the vertical

prismatic joint.
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The dimensions of the prototype are 6 cm x 6 cm x 3 cm (L x W x H) when

the horizontal prismatic joints are fully contracted and 6.6 cm x 6.6 cm x 3

cm when the horizontal prismatic joints are fully extended. The mass of the

first prototype including motors and encoders is approximately 21 grammes.

The components required significant adjustment in order to obtain the sliding

fit at the prismatic joints and at the passive rotary joints connecting the

horizontal prismatic joints to the vertical prismatic joints. This adjustment of

the components was required because of the rough finishing of the surfaces

in the components obtained with the 3D printer. The adjustment of the

components involved filing and drilling the holes in the mounting platform

and the rotary joints in order to reduce interference. In order to diminish the

friction between the screw and the ends supporter, a couple of small pieces

of Delrin® were fitted on the surface where the tip of the screw touches the

ends supporter.

5.5.1 Walking performance of the robot following an open-

loop locomotion sequence

In order to check the walking performance of the first prototype of the robot,

the locomotion sequence was programmed making the motors follow open-

loop commands. These open-loop commands move the motors for a length

of time at a speed sufficient to make the motor reach its end of travel. For

this locomotion sequence, magnetic pads and a steel surface were used

instead of adhesive pads and tissue in order to minimise the handling and

use of biological materials. The magnetic pads were custom made by

trimming down a magnetic sheet to the appropriate size to resemble the

adhesive pads. Each magnetic pad has the same area as the adhesive pad:

100 mm² and has an detachment force around 100 mN, resembling the

detachment force of the bio-inspired adhesive pad [10]. The magnetic pads

are flexible and backed by a 3.5mm-thick layer of Tempur® memory shape

foam. Figure 89 compares the force-displacement graph of an indentation

test for the adhesive pad against rat peritoneum to the same graph of the

magnetic pad against steel. In Figure 89, the peak force in the plot of the

adhesive pad is the adhesion force and the peak force in the plot of the

magnetic pad is the detachment force of the magnet.
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Figure 89. Comparison between the detachment force of the adhesive pad against rat
peritoneum and the magnetic pad against steel.

In the magnetic pad, the magnetic force takes effect before contact with the

surface and this makes attachment of the pad easier because no preload is

required. On the other hand, detachment with the magnetic pad is more

difficult than with the adhesive pad because the magnetic force is still

present when the two surfaces are separated. Another difference between

the magnetic pad and the adhesive pad is the work of the detachment force.

The work of the detachment force is the area between the line described by

the detachment force in Figure 89 and the horizontal line at zero value of

force. The work of the detachment force affects the way the pad detaches

and differs to some extent between the adhesive pad and the magnetic pad

as shown in the graph of Figure 89.

The motion of the motors is coordinated to follow the locomotion sequence

of detaching, moving and re-attaching one pad at a time. Figure 90 shows

the detachment and re-attachment sequence of the pads making the robot

move one step. The video of this step of the robot can be seen in [158].

The steps of the locomotion sequence shown in Figure 90 are:

a) initial position with the four pads attached to the surface, pad 1 is
commanded to move,

b) pad 1, the pad at the back, detaches after 233 ms,
c) pad 1 re-attaches to the surface 701 ms later,
d) pad 2, the pad on the left-hand side, detaches 134 ms later,
e) pad 2 re-attaches to the surface 700 ms later,
f) pad 3, the pad at the front, detaches 367 ms later,
g) pad3 re-attaches to the surface 534 ms later,
h) pad4, the pad on the right-hand side, detaches 200 ms later,
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i) pad 4 re-attaches to the surface 501 ms later, completing one step of
the robot.

The distance travelled by the pads is 5.5 mm, which is the range of motion of

the motor within the prismatic joint and thus, the length of the robot’s step.

Minor deficiencies in the assembly of the prismatic joints limit the range of

motion to 5.5 mm instead of the theoretical 6 mm. On average, each pad

takes 233.5 ms to detach and 842.5 ms to move to its final position within

the locomotion sequence. The speed of each pad is therefore 6.53 mm/s.

The robot takes 3.37s to cover 5.5 mm in a straight line and thus the overall

speed is 1.6 mm/s. Considering a distance of 10 cm from side to side of the

operating space on the abdominal wall, the robot would take just over one

minute to cross this operating space.

The robot required some trial steps until it managed to complete a step in a

repeatable way. The step of the robot showed in Figure 90 is representative

of four successful recorded steps that the robot was able to take. When the

robot failed to complete a step it was because the vertical prismatic joints

could not detach or re-attach the pads in the length of time the motors were

commanded to move. This happened because each motor requires a

different length of time to reach the end of its travel depending on how fast

and smooth the motor moves within the prismatic joint. The motor moves

more slowly or intermittently within the prismatic joint depending on the

friction of the mechanism and the side-loading on the screw of the motor.

This friction and side-loading in the mechanism of the prismatic joint depend

on the precision of the sliding fit between the guiding rods and the mounting

platform.
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Figure 90. (a-i) The first prototype of the robot walking one step, following an open-
loop locomotion sequence.

5.5.2 System architecture for closed-loop control of the robot

Closed-loop control of the robot ensures that the motors reach the desired

position by integrating the information from the encoders into the locomotion

sequence. The controller of the robot is the link between sensors and

actuators, translating inputs from the sensors into outputs of the motor’s

drivers. The controller receives the information available from the sensors

and processes it into locomotion commands.
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The architecture of the closed-loop control system of the robot is made up of

the following components:

 Three hierarchical levels of control:
 The Intelligent Controller, in charge of deciding the task of the

robot and how to carry out that task,
 The Gait Planner, in charge of translating the plan of the

Intelligent Controller into specific actions for the motors, and
 The Motors’ Driver, in charge of setting the parameters for the

drivers of the motors to follow the actions set by the Gait
Planner.

 Two communication buses between the control levels:
 The Trajectory parameters bus, which contains the steps the

robot needs to follow in order to complete a task, and
 The Step parameters bus, which contains the actions the

motors have to follow in order to complete a step of the
trajectory.

When the controller starts, the system is initialised first and then the

controller enters the first control level: the Intelligent Controller, followed by

the other two: the Gait Planner and the Motors’ Driver. The two

communication buses: the Trajectory parameters bus and the Steps

parameters bus enable communication between the three levels of the

controller. Figure 91 shows the closed-loop control system architecture of

the robot integrating the three levels of control and the two communication

buses.

Figure 91. Closed-loop control system architecture of the robot.

The first level of the closed-loop controller is the Intelligent Controller. The

Intelligent Controller supervises the entire locomotion mechanism,

integrating all the tasks the robot carries out. The Intelligent Controller

decides what the robot needs to do and how to do it. The algorithm of the

Intelligent Controller can include advanced control tasks such as trajectory

planning and stability calculations. Considering the information received from
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the sensors of the robot, the Intelligent Controller plans how the robot is

going to carry out a specific task and sends this plan to the second level.

The second level of the closed-loop controller is the Gait Planner. The Gait

Planner translates the plan of the Intelligent Controller into specific actions

for the motors and sends the information of these actions to the third level.

The third level of the closed-loop controller is the Motors’ Driver. The Motors’

Driver commands the drivers of the motors, talking directly to the motors and

setting their parameters of operation. In this way, the Motors Driver sets the

position reference to the PID controller of the motors. The Motors Driver also

includes any reactive actions of the controller aimed at improving the

performance of the motors, for instance, modifying the acceleration settings

when a motor stalls.

Usually, the task of the robot is to move to a specific location. In that case,

the Intelligent Controller decides how the robot moves to the new location:

following a straight line or taking an alternative route if there are any

obstacles in the way. Then, the Gait Planner commands the pads to follow a

specific path: depending on where the robot has to move, this path can be in

any direction of the horizontal plane. For the pads to reach the new position,

the Motors’ Driver sets the position reference of the motors.

The architecture of the controller reflects the hardware design of the

locomotion mechanism. In the locomotion mechanism of the robot, motion of

the robot is obtained coordinating the motion of the eight prismatic joints of

the robot. In the control system architecture, the Intelligent Controller

controls the motion of the whole robot. In the locomotion mechanism of the

robot, one pad is moved at a time. In the control system architecture, the

Gait Planner controls the pad moving at any one time. In the locomotion

mechanism of the robot, one vertical motor and two horizontal motors move

the pad. In the control system architecture, the Motors’ Driver controls the

motion of the motors connected to the pad.

The Trajectory parameters bus is set by the Intelligent Controller and is

made up of the steps the robot has to follow to complete a specific task. The

Gait Planner reads the steps in the Trajectory parameters bus and divides

these steps into actions to be followed by the Motors’ Driver. For example, if

the Intelligent Controller decides that the robot needs to move in order to

avoid a fall, the Intelligent Controller uploads this motion command to the

Trajectory parameters bus. The Gait Planner receives the command through

the Trajectory parameters bus and breaks it into a series of actions



- 134 -

specifying what pad needs to move where and when. These actions are

uploaded to the Step parameters bus and sent to the Motors’ Controller. The

Motors’ Controller sets the position reference and the motion parameters for

each motor. Once the motor commanded by the Motors’ Controller reaches

the reference position, the Motors’ Controller moves on to the next action in

the Step parameters bus. When the last action in the Step parameters bus

finishes, the Gait Planner uploads the next step to the Step Parameters bus.

When the last step in the Trajectory parameters bus finishes, the Intelligent

Controller uploads the next trajectory to the Trajectory Parameters bus and

the process starts over.

Figure 92 shows the data flow in the controller’s algorithm. The data flow

starts with the information received from the sensors and passes through the

three control levels until it reaches the actuators, using the communication

buses. In Figure 92, some of the tasks of each control level are indicated as

an example.

Figure 92. Data flow and communication between the three levels of the closed-loop
controller of the robot.
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The flow of information passing through the algorithm of the controller allows

for changes in the settings of the robot when required for stability or safety

reasons. The algorithm of the controller should detect priority actions,

focusing on specific information and blocking the parts of the algorithm

which are not required to carry out the priority actions. For instance, if the

algorithm detects that the robot is going to fall, the controller can temporarily

ignore the locomotion sequence and concentrate on preloading the pads in

order to recover adhesion. On the other hand, the controller can focus on

improving the performance of the locomotion sequence if the algorithm of

the controller predicts a stable situation. For example, if the robot is following

a familiar path the controller can focus on improving the speed of the robot.

5.5.3 Implementation of the closed-loop controller of the

robot

The closed-loop controller of the robot following the previous system

architecture was implemented in LabVIEW 2009. The algorithm of the

controller in LabVIEW is a state machine with one case for each level of the

controller and two arrays passing information through the levels of the

controller.

The algorithm of the controller programmed in LabVIEW starts by calibrating

the motors and setting the parameters of the sensors and motors. Then, the

algorithm executes the state machine starting with the highest level, the

Intelligent Controller, and restarting the cycle when the lowest level, the

Motors’ Driver, is executed. The three levels of the controller are executed

sequentially and the priority of control actions within the levels is set

depending on the inputs received from the sensors and the user interface.

The controller runs idly through the three levels of control if no action is

required from the robot.

The communication buses between the levels of the controller are

implemented in LabVIEW through two arrays of clusters. When the robot has

to move to a new location, the array of the Trajectory parameters bus

contains information about the direction of motion of the robot and the

number of steps in the trajectory. The array of the Step parameters bus

specifies which motor needs to move and the direction of motion of the

motor.

The closed-loop controller of the robot runs on a PC and communicates with

the controller board of the motors and sensors (MC-3300-RV by New Scale

Technologies Inc.) via a USB interface. Thus, there are two control loops
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integrated in the system: the closed-loop controller running on the PC and

the PID control of the motors running on the mother board of the motors and

sensors. Communication between these two control loops takes places at

the Motors’ Driver level of the closed-loop controller of the robot. At the

Motors’ Driver level, the position reference of the motors is set and the

status of the motors and encoders is read from the mother board. In order

for the control algorithm to talk to the mother board, the controller uses a

library of ActiveX functions supplied by the manufacturers of the motor.

Figure 93 shows a sketch of the two control loops in the closed-loop

controller of the robot and the way they communicate at the Motors’ Driver

level.

Mother board of the motors and sensors

Intelligent controller

Gait Planner

Motors’ Driver

Closed-loop controller

PID controller of the motors

Figure 93. The two control loops of the closed-loop controller of the robot
implemented in LabVIEW.

The user interface of the LabVIEW programme has four buttons to set the

direction of motion of the robot. The user interface offers the option of a

short step which is a single step of the robot of approximately 6mm, or a

long step which is three consecutive single steps. Figure 94 shows the user

interface of the controller including direction buttons, the length of step

button and a console showing messages about the status of the robot.
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Figure 94. User interface of the closed-loop controller of the robot programmed in
LabVIEW 2009.

5.5.4 Walking performance of the robot following a closed-

loop locomotion sequence

The walking performance of the robot with the closed-loop controller was

tested using the position sensors in order to detect when the motor reached

the desired position within the locomotion sequence. The position sensors

also enable to detect when the motor stalls so that some action can be

performed on the stalled motor to help it overcome friction and move again.

When the controller detects that the motor is stalled, it increases the speed

and acceleration settings of the motor or increases the proportional constant

of the PID control.

The robot was preliminary tested for 19 steps using magnetic pads on a

steel surface. The robot was able to complete 4 steps successfully (21%),

needed gentle prodding to complete 10 steps (53%) and fell down for 5

(26%) of these preliminary steps. After this, the robot was tested again using

magnetic pads on a steel surface, walking in a straight line for 60

consecutive steps. These 60 steps cover a distance of 30 cm which is

approximately the cross section of the abdomen and three times the length

of the operating area on the abdominal wall. The robot was able to complete

95% of the steps successfully, the unsuccessful steps took place mainly

over the first eight steps while the mechanism was adjusting to the motion of

the motor inside the prismatic joint. Figure 95 shows the prototype of the

robot and the steel surface, indicating the components of the locomotion

mechanism.
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Figure 95. Prototype of the robot tested with the closed-loop controller using
magnetic pads on a steel surface.

Videos of the robot taking several steps using the closed-loop controller

during the preliminary test can be seen in [159] and [160]. In the first video

(see [159]), the robot takes one step successfully and falls when attempting

to take a second step. During the first step, the front pad (marked number 3

in Figure 95) does not re-attach to the surface when the motor reaches the

end of its motion range. However, the pad re-attaches when lifted by the

motion of the next pad in the sequence, preventing the robot from falling.

The pad cannot re-attach because of the loose fit between the guiding rods

and the mounting platform and the loose fit at the rotary joints. The loose fit

at the guiding rods and rotary joints is due to the lack of precision of the 3D

printer used to manufacture the prototype and is also due to the manual

assembly process. This loose fit makes part of the mechanism come down

under its own weight when the pad detaches. This increases the distance

between the pad and the surface and thus prevents the pad from re-

attaching when the motor moves it back to the surface.

This issue of the loose fit in the mechanism preventing the pad from re-

attaching can be also observed in the second video (see [160]). Another

issue can be seen in this second video: on the second step of the robot, the

motor at the back stalls and the closed-loop controller is unable to make it

move again. A gentle prod is required to overcome the static friction in the

prismatic joint and resume motion of the motor, completing the step of the

robot.

The timing of the three levels of the controller was also checked during this

test. Figure 96 shows the timing of the three levels of the controller during

the walking experiment from the moment the robot is commanded to walk

until it completes one step. Figure 96 shows the average and standard
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deviation of the time the controller spent in each of the three levels during

the sixty steps of the test.

Figure 96. Timing of the three levels of the locomotion controller.

In Figure 96, the time spent in the Intelligent Controller includes the time

spent in order to upload the trajectory parameters. In Figure 96, the time

spent in the Gait Planner includes the time spent translating the trajectory

parameters into motor actions.

Once the robot is commanded to move, the Intelligent Controller takes 8.5

ms in order to upload the trajectory parameters and send them to the Gait

Planner. The Gait Planner then spends 1.5 ms in order to translate the

trajectory parameters into motor actions, upload these actions to the Step

parameters bus and send them to the Motors’ Driver. When the information

in the Step parameters bus reaches the Motors’ Driver, the Motors’ Driver

requires 17 s to complete one step of the robot.

The Intelligent Controller requires communication with the user interface and

this takes up most of the time spent in this level of the controller. The Gait

Planner takes approximately the minimum cycle time in a PC because its

only task is to convert the trajectory parameters from the Intelligent

Controller into motor actions for the Motors’ Driver. The Motors’ Driver takes

nearly all the time needed to move the robot because communication with

the mother board of the motors and encoders takes place at this level.

During the time the Motors’ Driver takes to complete one step, the Intelligent

Controller and Gait Planner are executed as shown in Figure 96. For this

test, once the robot is commanded to move there are no new control inputs

for the Intelligent Controller and therefore no new actions for the Gait

Planner to set for the Motors’ Driver. Thus the execution of the Intelligent

Controller and the Gait Planner takes much shorter while the Motors’ Driver

is completing the step and is not considered in the time calculations of
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Figure 96. The controller runs through the Intelligent Controller and Gait

Planner while the Motors’ Driver is completing the step, enabling

modifications on the control parameters if and whenever required. Closed-

loop positioning of the motors is not interrupted during this time because the

motors are directly controlled by the drivers of the mother board.

5.5.5 Future improvements to the closed-loop controller

In order to fully realise the potential of the closed-loop system architecture

and further enhance the walking performance of the robot, the two major

improvements for the closed-loop controller are:

 customised communication with the mother board and drivers of the
motors in order to enable direct control of the motors, also improving
the sampling of the encoders, and

 sensors to detect important events in the locomotion sequence like
pad detachment or re-attachment.

For the current version of the motors and encoders, communication with the

mother board is only possible via a USB connection through a series of pre-

programmed functions that command the micro-controller of the board. The

time delay between the moment a command is sent to the mother board and

the moment the response is received through the USB connection is

typically 200 ms. In order to control the position of the motor, the controller

needs to:

 query the position to the mother board, which takes 200 ms,
 wait until the reading of the position is received from the mother

board, which takes 200 ms,
 calculate the control action depending on the position reading

received, and
 send the control action to the mother board, which takes 200 ms.

Therefore, more than 600 ms are required in order to communicate a control

action from the controller of the robot to the mother board. This

communication system is too slow to register and control an event in the

locomotion sequence like the detachment of the pad which takes around 200

ms.

Position sensors in the robot can detect when the motor stalls and trigger

strategies like increasing acceleration, changing direction momentarily or

moving the other motors in order to release the stalled motor. The controller

can detect the end of the motion range of the motors with the position

sensors and implement a soft stop. With a position sensor, the range of

motion along which the motor does not stall can be found, preventing the

motor from getting into a position where it is likely to stall during locomotion.
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Force sensors can detect contact and detachment between the pad and the

surface and can also measure the preload applied by the prismatic joints on

the pad. Force sensors can also detect irregularities on the surface of the

tissue and can determine the zone of the tissue where adhesion is higher.

Unlike DC motors where the force from the motor can be inferred from the

current of the windings, in order to measure the force of the piezo-electric

motor an external force sensor is required.

Integration of force sensors within the locomotion mechanism was

investigated but no suitable force sensor was found in the market. The

requirements of the force sensor for the locomotion mechanism of the robot

are:

 very compact size in order to integrate it in the locomotion mechanism
without increasing the size of the robot significantly,

 lightweight, so that it does not overload the adhesive pads,
 able to detect a change of force of a few millinewtons in tension and

compression.

The force sensor integrated in the locomotion mechanism should occupy a

maximum volume of 10 mm x 10 mm x 5 mm and weight less than 2

grammes per unit. Each of the four pads of the robot should use an

individual force sensor.

The force sensing technologies reviewed for the locomotion mechanism of

the robot are:

 piezo-electric force sensors,
 pressure sensitive films,
 capacitive sensors,
 pressure sensitive polymers,
 strain gauges,
 quantum channelling composites (QTC) and
 force sensitive resistors (FSR).

Piezoelectric force sensors are very accurate and can be very compact but

for the size required for the locomotion mechanism of the robot they would

have to be custom-made for a very high cost.

Pressure sensitive films are found in force sensing plates for bio-mechanic

measurements of a much bigger size than the robot. The pressure sensitive

film alone is not commercially available and in order to use it for the robot

bespoke electronics and calibration are required.

Capacitive sensors, like Flexiforce® sensors, are compact and low cost but

cannot measure force continuously within the required range: 1-150 mN.
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Pressure sensitive polymers, commercially known as Polypower®, can be

made to the specifications of force and size required for the robot but the

cost is very high for the low volume required.

Strain gauges are widely available, relatively low cost and very accurate for

low ranges of force. Strain gauges can be found commercially in load cells

and are also sold on their own. Integration of strain gauges in the robot

would involve the development of a conditioning circuit specific to the

application. This is especially challenging because the strain gauges would

have to be mounted on a deformable surface like plastic. Using strain

gauges on plastic requires careful mounting of the sensing surface and

filtering of the noise obtained in the signal because of the deformable

surface. In fact, the manufacturers of strain gauges recommend against

using strain gauges on plastic due to their difficult integration.

Quantum channelling composites (Peratech’s QTC pills) are very compact,

light and affordable but the manufacturers have stopped selling them

individually. A custom made sensor could be ordered from the

manufacturers but the price is beyond the budget of the project.

Force sensitive resistors (FSR) are compact, lightweight and inexpensive but

not sensitive enough within the desired range of force: 1-150 mN. These

sensors were tested and the activation force required for FSR sensors is

greater than the maximum force applied by the motor.

Table 11 summarises the features of the force sensing technologies

reviewed for the locomotion mechanism of the robot.

The use of accelerometers can be considered instead of force sensors,

detecting the attachment and detachment of the pad through the change of

acceleration caused on the pad. Inclinometers can be also useful in order to

measure the inclination of the pads with respect to the horizontal, inferring

how close the pads are to peeling off.
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Table 11. Suitability of force sensing technologies for the locomotion mechanism of
the robot.

Compact Lightweight Precision Resolution Easy to

integrate

Low

cost

Piezo-

electric
     

Pressure

sensitive

films

     

Capacitive      
Pressure

sensitive

polymers

     

Strain

gauges
     

QTC   - -  
FSR      

5.6 Second prototype of the robot

The second prototype of the robot was rapid-prototyped in a stronger

material: Duraform® Nylon 6, in order to make the locomotion mechanism

more robust and facilitate its assembly. A more precise rapid prototyping

technique was employed: Selective Laser Sintering with a Vanguard HS plus

HiQ machine from 3D Systems. Figure 97 shows a picture of the second

prototype, held by a hand for scale.
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Figure 97. Second prototype of the robot in Nylon 6, rapid-prototyped with an SLS
machine.

The dimensions of the prototype are 6.5 cm x 6.5 cm x 3 cm (L x W x H)

when the horizontal prismatic joints are fully contracted and 7.1 cm x 7.1 cm

x 3 cm when the horizontal prismatic joints are fully extended. The mass of

the second prototype including motors and encoders is approximately 25

grammes. These dimensions are bigger than the previous prototype

because thicker walls of the material used in this rapid prototyping machine

are required in order to have a strong enough prototype.

The purpose of building this prototype was to improve the performance of

the open-loop sequence given that closed-loop locomotion could not be

explored further given the lack of suitable force sensors for the robot. Thus,

the position sensors were removed from this prototype, focusing on

improving the performance of the motor within the mechanism. In this way,

the design of the components of the locomotion mechanism was enhanced

in order to improve the open-loop walking performance of the robot and

make it suitable for motion on the surface of tissue.

5.6.1 Enhancements to the components of the second

prototype

In order to make the mechanism more robust and improve the performance

of the motor within the mechanism, the following features were included in

the design of the components for the second prototype:

 slots on one side of the ends supporter in order to improve the
alignment of the guiding rods,

 open holes in the mounting platform in order to reduce interference
between the guiding rods and the mounting platform, and

 a soft backing layer with the same thickness for all the pads in order
to keep all the pads at the same height.



- 145 -

On one side of the ends supporter, a slot can be used instead of a hole in

order to enable self-alignment of the guiding rods during the assembly and

motion of the prismatic joint. By turning the holes on one side of the ends

supporter into slots, the guiding rods can align themselves with the screw of

the motor when the motor is moving. These slots in the ends supporter

decrease interference due to misalignments between the guiding rods but

increase the play of the guiding rods within the holes of the ends supporter.

Figure 98 shows the slots on one side of the ends supporter, the holes on

the other side of the ends supporter can also be appreciated in the figure.

Figure 98. Slots on one side of the ends supporter to enable self-alignment of the
guiding rods.

The holes in the mounting platform can be opened to the outside edge of the

mounting platform in order to reduce the interference between the guiding

rods and the mounting platform. This interference is diminished because the

contact area between the guiding rods and the holes is smaller and also

because with open holes the guiding rods can align themselves with each

other more easily. Figure 99a shows the open holes in the mounting

platform, Figure 99b shows the mounting platform integrated in the

horizontal prismatic joint and Figure 99c shows the mounting platform

integrated in the vertical prismatic joint.
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Figure 99. (a) Open holes in the mounting platform and (b) mounting platform with
open holes in a horizontal prismatic joint.

The same thickness of the soft backing layer for all the pads ensures that

there is no difference in height between the pads when in contact with the

tissue. If the height of the pads is different when the pads are in contact with

the tissue, the pads can twist causing the adhesive surface to come off

unexpectedly.

In the first prototype, the soft backing layer of the pad was cut manually from

a memory foam billet and this did not guarantee the same thickness for all

the pads. In the second prototype, the soft backing layer for the pads are

made stacking layers cut from a foam sheet, making sure that all the pads

are the same thickness. Figure 100a shows the magnetic pad with the soft

backing layer of memory foam and Figure 100b shows the magnetic pad

with a soft backing layer made up of three layers of foam.

Figure 100. (a) Soft backing layer of the pad using memory foam and (b) soft backing
layer of the pad using three stacked layers of foam.

For the pad with three layers of foam shown in Figure 100b, the compliance

of the pad is determined by the area of the layer in the middle.
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5.6.2 Walking performance of the second prototype

The second prototype of the robot was tested walking with magnetic pads on

a steel surface. The magnetic pads were 1 cm2 using the soft backing layer

of three stacked layers of foam shown previously in Figure 100b. Each

magnetic pad provides an attachment force of 120 mN approximately. In

order to test the walking performance of the robot with magnetic pads, the

robot followed an open-loop locomotion sequence. The time spent for each

motion of the motors was recorded together with the number of times the

robot fell down and the number of times the locomotion mechanism required

assistance to complete a motion. Figure 101 shows the robot moving one

pad on a steel surface:

a) initial position of the robot with all the pads attached to the steel
surface (see Figure 101a),

b) the front pad of the robot is detached and moved across the steel
surface to the new position (see Figure 101b),

c) the front pad is at the new position (see Figure 101c), and
d) the front pad is re-attached to the steel surface at the new position

(see Figure 101d).

Figure 101. (a-d) Second prototype of the robot detaching, moving and re-attaching
one magnetic pad on a steel surface.

The second prototype of the robot moving with magnetic pads on a steel

surface and the issues experienced with the locomotion mechanism can be

seen in the video in [161].

The second prototype of the robot was also tested walking with the bio-

mimetic adhesive pads on the surface of porcine peritoneum. Porcine

peritoneum was used instead of rat peritoneum in order to test the whole

robot because it is more easily available and a bigger sample size can be

obtained. The adhesive pads were 1 cm2 using the soft backing layer of
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three stacked layers of foam. The robot followed an open-loop locomotion

sequence, recording the time spent for each motion of the motor, how often

the robot fell and how often the robot required assistance to complete a

motion. Figure 102 shows the prototype of the robot hanging from pig

peritoneum during the walking test with the adhesive pads. In Figure 102,

one of the pads of the robot is detached so the weight of the robot is

supported by the other three adhesive pads.

Figure 102. The second prototype of the robot hanging from pig peritoneum using the
bio-mimetic adhesive pads. The tissue sample was glued to a steel plate and the

adhesive pads were mounted on top of the magnetic pads. The pads were tested in
order to check that the magnetic force had no effect through the peritoneum sample.

Table 12 summarises and compares the parameters of the walking

performance of the robot moving with magnetic pads on a steel surface and

moving with the adhesive pads on pig peritoneum. The parameters of the

walking performance shown in Table 12 are:

 the average speed of the robot,
 the time the robot takes in order to cross the 10cm-long operating

area on the abdominal wall,
 percentage of steps the robot could not complete because it fell

down, and
 percentage of motions the robot could not complete because the

motors failed to move the pads.
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Table 12. Comparison of the walking performance of the robot using magnetic pads
on a steel surface and using adhesive pads on pig peritoneum.

Type of

Pad

Support

surface

Number

of steps

Average

speed

(mm/s)

Time to

cross 10

cm

(min)

Falls

(%

steps)

Mechanism

failures

(% motions)

Magnetic Steel 30 0.24 7 17 32

Adhesive Peritoneum 20 0.11 15.7 40 45

When the robot is walking on tissue, the adhesive pads need a preload to

attach. Without force sensors, the robot cannot ensure that a preload has

been applied to the pads and thus, the robot cannot ensure attachment of

the pads to the tissue. This causes the robot walking with adhesive pads to

fall down more often than with magnetic pads.

The mechanism failures shown in Table 12 include the number of times the

motor stalls within the locomotion mechanism or is unable to bring the pad

back to the surface of the tissue. These failures are caused by the

imprecision of the mechanical fit of the components of the robot and the

friction of the prismatic joints.

Using commercially available sleeve bearings in order to reduce the friction

between the guiding rods and the mounting platform was considered.

However, in order to use sleeve bearings effectively within the locomotion

mechanism an assembly technique more accurate than manual assembly

should be employed and this was not available to the project. Mounting the

guiding rods on a couple of self-aligning bearings in order to correct the

misalignments of the guiding rods was also considered. However, in order to

integrate commercially available self-aligning bearings in the robot, the

dimensions of the robot have to increase significantly.

5.6.3 Issues of the second prototype

The Squiggle® motor used for the locomotion mechanism stalls and moves

intermittently if:

 there is friction between the tip of the screw of the motor and the load
pushed by the motor, preventing the screw from rotating,

 there is side load applied to the screw of the motor preventing the nut
to engage with the screw,

 there is friction in the prismatic joint moved by the motor, diminishing
the maximum load the motor can move.
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These three causes of intermittent operation are present in the locomotion

mechanism because the components of the mechanism require thorough

manual adjustment due to the poor finishing obtained with rapid-prototyping.

Rapid-prototyping and manual assembly of the locomotion mechanism were

the only manufacturing and assembly techniques for miniature components

available to the budget of the project.

The contact between the tip of the screw and the ends supporter was made

low friction by covering the ends supporter with a low friction material.

The friction in the prismatic joint and the side-loading of the screw are due to

the imprecision of the fit between the guiding rods and the mounting platform

and the friction between the two materials. During assembly, the holes of the

mounting platform are filed in order to reduce the friction of the prismatic

joint. However, this loosens the fit between the guiding rods and the

mounting platform, enabling sideways motion of the guiding rods inside the

holes. Sideways motion of the guiding rods inside the holes of the mounting

platform causes the 90º angle between the guiding rods and the ends

supporter to change, thus side-loading the screw. A balance between

reducing the friction of the prismatic joint by loosening the fit and reducing

sideways motion of the rods by tightening the fit is difficult to achieve with

manual adjustment.

A loose fit around the guiding rods also causes the mechanism to flop down

when the one of the pads is detached, preventing the pad from re-attaching.

The mechanism also flops down because of the loose fit at the passive

rotary joints of the quadrilateral formed by the horizontal prismatic joints; this

fit is also manually adjusted and assembled. When this happens, one way to

re-attach the pad is to move the vertical prismatic joints of the supporting

pads, lifting the quadrilateral formed by the horizontal prismatic joints and

thus lifting the detached pad. However, considering the previous issues with

the performance of the motors within the locomotion mechanism, it is difficult

to make the motors move all at the same rate without causing detachment of

the pads.

5.6.4 Further improvements to the second prototype

In order to further improve the open-loop walking performance of the robot,

the following improvements were designed for the hardware of the robot:

 brackets on the adhesive pads in order to support the pads better
during detachment,
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 curvature at the surface of the ends supporter touching the tip of the
screw in order to keep the angle between the screw and the ends
supporter as close to 90º as possible,

 slotted holes in the mounting platform of the vertical prismatic joint in
order to reduce interference with the guiding rods during detachment
of the pad,

 ends supporter separated into two pieces in order to improve the
alignment of the guiding rods during assembly,

 extra support at the passive rotary joints of the quadrilateral formed
by the horizontal prismatic joints of the locomotion mechanism, and

 memory foam soft backing layer for the pads.

The brackets on the adhesive pads reduce the twist that the weight of the

detached pad causes on the supporting pads. Figure 103a shows a side

view of the four brackets fitted around the edges of the adhesive pad and

Figure 103b shows a top view of the brackets.

Figure 103. (a) Side view of the brackets for extra support of the pads and (b) top view
of the brackets.

The brackets make contact with the support surface, supporting the pad and

reducing the twist cause on the supporting pads by the detaching pad.

However, the brackets interfered with the motion of the pads when tested in

the prototype and therefore were not included in the prototype.

A dent with a slight curvature at the surface of the ends supporter touching

the tip of the screw ensures a 90º angle between the tip of the screw and the

ends supporter at all times. The tip of the screw follows the curvature on the

surface of the ends supporter when the guiding rods move sideways inside

the holes of the mounting platform, keeping the screw perpendicular to the

ends supporter. However, the curvature of this dent on the ends supporter

was too subtle for the rapid prototyping machine to print it and therefore, this

feature was not included in the prototype.

The holes in the mounting platform of the vertical prismatic joint are slotted

in the direction of the twist caused by the motor on the pad. These slots

reduce the interference between the holes in the mounting platform and the
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guiding rods when the motor is pulling the pad in order to detach it. Figure

104 shows the slotted holes in the mounting platform of the vertical prismatic

joint.

slotted holes

cm

Figure 104. The slotted holes in the mounting platform.

These slotted holes were tested in the locomotion mechanism, resulting in

easier detachment of the pad by the motor. However, the play between the

slotted holes and the guiding rods causes motion of the ends supporter with

respect to the mounting platform when the pad detaches, hindering the

motion of the pad. Therefore, the slotted holes were not included in the

prototype.

The ends supporter was printed as two separate pieces in order to improve

the alignment of the guiding rods during assembly. During the assembly of

the mechanism, the two pieces are joined with the two guiding rods of the

prismatic joint and a third rod in order to make the assembly strong. Figure

105 shows the separate parts of the ends supporter, featuring slotted holes

for two of the three rods joining the two parts of the ends supporter.

Figure 105. (a) The two separate parts of the ends supporter, and (b) ends supporter
with two separate parts in a vertical prismatic joint.

For previous versions of the ends supporter, the ends supporter was

manufactured as one piece to obtain more accurate positioning of the holes
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in a CNC machine. When the manufacturing technique changed to rapid-

prototyping, the ends supporter was left as one piece in order to integrate

the magnet of the position sensor. This prototype of the robot runs on an

open-loop locomotion sequence and does not require the position sensor, so

the ends supporter can be split to facilitate the alignment of the rods with

respect to the mounting platform.

In order to make sure that the rods are as precisely aligned as possible, two

of the three holes in the ends supporter are slotted as shown in Figure 105.

The non-slotted hole is used as a reference to join the two parts and mount

them on one hole of the mounting platform. Then, the other two rods are

mounted, fixed at one end and free to move at the slotted end. A position of

the rods with little interference with the mounting platform is found by moving

the motor within the assembly and checking for friction along the motion

range of the motor. Once a position of low friction is found, the rods are fixed

at the slotted end. This way of assembling the ends supporter was found

helpful to improve the motion of the motors within the prismatic joint and thus

was included in the prototype for the vertical prismatic joints.

Extra material was added along the passive rotary joints of the quadrilateral

formed by the horizontal prismatic joints. This extra material provides

support to the mechanism when the pad is detached, preventing the

mechanism to flop down under the weight of the detached pad. This

improvement was proved to be beneficial for the performance of the robot

and therefore included in the prototype.

Memory foam pads were cut using a hot wire in order to obtain a more

uniform thickness. With uniform thickness the memory foam pads proved to

improve the performance of the robot over the pads with three stacked

layers of foam. This improvement is due to the memory effect of the material

which changes the stiffness of the pads when they are pulled or pressed

against the surface. This change of stiffness is beneficial because it

counteracts the stress caused on the pads by the imprecision of the

assembly and the irregularities on the surface. Memory foam pads were

therefore included in the improved second prototype of the robot.

5.6.5 Walking performance of the improved second prototype

The improved second prototype was tested walking with magnetic pads on a

steel surface, following an open-loop locomotion sequence and using a

5mm-thick memory foam backing layer for the pads. In this test, the robot

crossed a 9cm-long steel plate with the motors consistently detaching,
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moving and re-attaching the pads. The video showing this walking test can

be seen in [162].

Figure 106 shows a step of the improved second prototype of the robot

walking with magnetic pads on a steel surface:

 Figure 106a shows the initial position with all the pads attached to the
surface,

 Figure 106b-c show the detachment of pad 1 and also the motion of
pad 1 to the new position,

 Figure 106c-d show the re-attachment of pad 1 at the new position,
 Figure 106d-g show the detachment, motion and re-attachment of

pad 2,
 Figure 106g-j show the detachment, motion and re-attachment of pad

3
 Figure 106j-m show the detachment, motion and re-attachment of pad

4 completing one step of the robot.

The robot was tested for 49 steps in total, taking an average of 20.8 s to

complete each step at an average speed of 0.29 mm/s. More than three

quarters (77%) of the steps were completed successfully including the

twelve consecutive steps of Figure 106 shown in the video in [162]. The

majority of the unsuccessful steps (64%) happened during the first thirteen

steps; the locomotion mechanism failed to complete these steps because of

the issues previously experienced with the other prototypes.
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Figure 106. (a-m) Walking sequence of the improved second prototype using
magnetic pads on a steel plate.

Table 13 summarises the parameters of the walking performance of the

improved second prototype moving on a steel surface using magnetic pads.

The parameters of the walking performance are: average speed, time to

cross a 10cm-long operating area, falls and mechanism issues.

Table 13. Walking performance of the improved second prototype of the robot using
magnetic pads on a steel surface.

Type of

Pad

Support

surface

No. of

steps

Average

speed

(mm/s)

Time to cross

10 cm (min)

Falls

(% tests)

Mechanism

issues

(% motions)

Magnet Steel 49 0.29 5.7 8 14

Compared to the previous prototype, the percentage of falls is reduced to

half: from 17% with the previous prototype to 8% with the improved second

prototype for similar average speed of the robot. Similarly, the percentage of

mechanism issues is reduced from 32% with the previous prototype to 14%

with the improved second prototype.

The improved second prototype was also tested walking with the adhesive

pads on the surface of fresh porcine peritoneum. The sample of peritoneum

was used within the first ten minutes after being harvested. The robot

followed an open-loop locomotion sequence using a 5mm-thick memory
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foam backing layer for the pads. Figure 107 shows the robot detaching one

adhesive pad from pig peritoneum and moving the pad to a new position:

 Figure 107a shows the initial position of the robot with the four
adhesive pads attached to the sample of pig peritoneum; the
mechanism and electronics of the robot are protected with plastic film,

 Figure 107b shows pad 1 detached by the vertical motor,
 Figure 107c shows pad 1 moved to the new position by the horizontal

motor,
 Figure 107d shows pad 1 re-attached to the tissue sample by the

vertical motor,
 Figure 107e shows pad 2 ready to detach,
 Figure 107f shows pad 2 detached by the vertical motor,
 Figure 107g shows the robot falling down.

a) b)

c) d)

e) f)

g)

pad 1

X

Y

Z

pad 2

peritoneum

horizontal
motor

vertical
motor

Figure 107. (a-g) The improved second prototype of the robot detaching and moving
one adhesive pad on fresh pig peritoneum.

The video showing this walking test can be seen in [163]. In this test, the

robot detached and moved the pads but could not re-attach the pads to the

tissue because the robot could not detect if sufficient preload was applied to

the pads. This prevented the robot from completing a successful step. In

order to walk consistently on tissue, the robot requires a control system
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integrating sensors able to detect contact between the adhesive pad and the

tissue and the value of preload applied to the pad.

5.7 Bio-inspired features of the locomotion mechanism

This section shows a series of stills illustrating the peeling-off of the pad

inspired by tree frogs and geckoes, and the motion of the pad in the

horizontal plane inspired by amoeboid locomotion.

Figure 108 shows the locomotion mechanism of the robot peeling off a

magnetic pad from a steel surface. Initially, the pad is attached to the

surface, making full contact with the surface, and the motor is ready to peel

off the pad:

 Figure 108a shows the robot ready to detach the pad,
 Figure 108b shows a close-up of the vertical motor moving the pad,

and
 Figure 108c shows a close-up of the pad in contact with the surface.

From this initial position, the motor starts detaching the pad and the pad

starts to peel off from one edge:

 Figure 108d shows the robot detaching the pad,
 Figure 108e shows the close-up of the vertical motor pulling the pad

in order to peel it off, and
 Figure 108f shows one edge of the pad detached from the surface

while the other edge is still attached.

When the motor detaches the pad, the whole area of the pad comes off the

surface:

 Figure 108g shows the robot detaching the pad,
 Figure 108h shows the close-up of the vertical motor pulling the pad,

and
 Figure 108i shows the whole area of the pad coming off the surface.

Finally, the pad is fully separated from the surface and the motor reaches

the end of its motion range:

 Figure 108d shows the robot with the pad detached from the surface,
 Figure 108e shows the close-up of the vertical motor at the end of its

range of motion, and
 Figure 108f shows the pad at a distance from the tissue.
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Figure 108. (a-l) The locomotion mechanism detaching the magnetic pad by peeling it
off from a steel surface.

The stills of the locomotion mechanism peeling off the pad shown in Figure

108 were taken from a clip about the robot that featured in the BBC1

programme The One Show (see Appendix B).

Figure 109 shows the robot moving the pad in the horizontal plane by

changing the shape of the quadrilateral formed by the horizontal prismatic

joints of the locomotion mechanism. Figure 109a shows the initial position of

the detached pad with the horizontal prismatic joint fully contracted. In Figure

109b the motor in the horizontal prismatic joint has moved half of its travel

range, moving the pad accordingly. Figure 109c shows the final position of

the detached pad with the horizontal prismatic joint fully extended.
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Figure 109. (a-c) The locomotion mechanism moving the pad in the horizontal plane
by changing the shape of the quadrilateral formed by the horizontal prismatic joints.

5.8 Summary

The miniature piezo-electric motor Squiggle® is used for the implementation

of the locomotion mechanism. The miniature linear encoder Tracker® is used

in order to control the position of the motor. The prismatic joints of the robot

controlled by a linear motor are built with these components: one mounting

platform, one motor, one ends supporter and two guiding rods. In order to

build the prismatic joint, the ends supporter and the mounting platform are

connected through the guiding rods; the guiding rods are fixed to the ends

supporter and slide into two holes of the mounting platform. The housing of

the motor is attached to the mounting platform and the screw of the motor

moves the pad attached to the ends supporter. Three assemblies of a

prismatic joint were tested with the motor in order to determine the most

suitable manufacturing technique and material. The third assembly

manufactured with precision CNC machining in Delrin® proved to give the

best performance.
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The force of the Delrin® assembly was tested and the assembly proved to

produce sufficient force to move the adhesive pads. Manufacturing of the

whole robot using precision CNC machining was too expensive for the

budget of the project so rapid prototyping was used instead in order to

manufacture the locomotion mechanism. An assembly of one horizontal

prismatic joint and one vertical prismatic joint was tested attaching and

detaching the adhesive pad on tissue. The ability of the vertical prismatic

joint to control the attachment and detachment of the pad was proved by

applying different values of preload and obtaining different values of

adhesion force accordingly. An assembly of one vertical joint and one

horizontal joint was also tested showing the effect of using a horizontal force

in order to control the detachment of the pad. Using four assemblies of one

vertical prismatic joint and one horizontal prismatic joint, two prototypes of

the robot were implemented and tested.

The first prototype of the robot was tested walking on a steel surface with

magnetic pads of an attachment force similar to the adhesive pads. The

locomotion sequence was programmed open-loop and the robot was tested

walking several steps. A control system architecture was developed in order

to make the locomotion sequence closed-loop. Following this control system

architecture, a closed-loop controller was implemented in LabVIEW using

linear encoders to control the position of the motors. The closed-loop

controller was used in order to test the first prototype of the robot using

magnetic pads and walking several steps on a steel surface. Force sensors

are required in order to fully benefit from the closed-loop controller but no

suitable force sensing technology was found for the application and budget

of the robot.

A second prototype of the robot was built in order to tackle some issues

experienced with the locomotion mechanism and improve the open-loop

walking performance of the robot. The second prototype of the robot was

tested walking with magnetic pads on a steel surface and also walking with

the adhesive pads on tissue. Several issues were experienced with the

locomotion mechanism due to the imprecision of rapid prototyping and

manual assembly for the miniature size of the robot. In order to enhance the

walking performance of the robot, several modifications were made to the

hardware and an improved second prototype was implemented and tested.

The improved second prototype walked consistently with magnetic pads on

a steel surface and was able to detach and move the adhesive pad on

tissue.
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Chapter 6
Peeling model of the adhesive pad

6.1 Introduction

The previous chapter presented the development of the robot and showed

the robot detaching and moving the magnetic pads on a steel surface and

the bio-mimetic adhesive pads on tissue. While testing the prototype of the

robot, the pad was observed to bend and peel off under the vertical and

horizontal forces applied to the pads during the locomotion sequence and

the question on how to control this process arose. Based on the experience

gained with the implementation and testing of the robot, this chapter studies

the process of detaching the pads, defining a peeling model of the adhesive

pad. This peeling model determines the force and moment required to

detach the pad depending on the geometry, material and adhesion of the

pad. In Chapters 7 and 8, this peeling model enables the definition of the

parameters of stability of the robot and to determine locomotion strategies in

order to control the motion of the robot.

This chapter starts by explaining the premises of the peeling model and then

presents the formulation of the model, considering the force and moment

applied by the locomotion mechanism. The chapter presents the calculations

of force and moment for the bio-mimetic adhesive pad using the peeling

model and, after that, the last section summarises the contents of the

chapter.

6.2 Premises of the peeling model

Prior to the formulation of the peeling model, this section explains:

 the materials of the pad and the Young’s modulus considered for the

peeling model,

 the features in the application of the robot that make the pad peel off,

and

 how the pad bends during the detachment process.
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6.2.1 Young’s modulus of the adhesive pad attached to

tissue

In the locomotion mechanism of the robot, the adhesive pad is composed of:

 a layer of plastic material, less than 1mm-thick, with the bio-mimetic

adhesive pattern printed on its surface, and

 a layer of soft foam, 3 to 5 mm thick, backing the material with the

adhesive surface.

Figure 110a shows the prototype of the robot and Figure 110b shows the

adhesive pad and the layer of soft foam moved by a linear motor within a

vertical prismatic joint.

Figure 110. (a) Prototype of the robot and (b) adhesive pad and soft foam moved by a
linear motor within a vertical prismatic joint.

A layer of soft foam backing the adhesive surface is beneficial for the

application of the robot because:

 it favours contact between the adhesive pad and the tissue, and

 it help absorb any unwanted shearing force, pull (normal) force or

moment applied to the pads.

The tissue is also soft and when the pad is attached to the tissue, the

adhesive surface, the soft foam and the tissue form one block. In order to

determine the stiffness of this block, the greatest Young’s modulus of the

adhesive surface, foam and tissue is considered dominant. When force or

moment is applied to the pad, the dominant material determines how the

adhesive surface bends and the other materials mould to this bending.

In the robot, the adhesive surface is printed on MacDermid Autotex® polymer

which has a Young’s modulus of 187.5 MPa [164]. The soft foam backing
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the adhesive surface is made of Tempur® memory foam with a density of

0.085 g/cm3. Memory foam is made of polyurethane foam and the Young’s

modulus of polyurethane foam with a density of 0.09 g/cm3 is 0.08-0.93 MPa

[165]. The Young’s modulus of the abdominal wall varies between 19.9 and

51.5 kPa depending on the plane of measurement [166]. The dominant

Young’s modulus is therefore that of the adhesive surface because it is two

orders of magnitude greater than that of the soft foam and four orders of

magnitude greater than that of the tissue.

6.2.2 Peeling-off of the adhesive pad

When the locomotion mechanism of the robot applies force on the pad

attached to the tissue, the pad peels off the surface of the tissue because:

 the attachment between the pad and the tissue is not perfectly

uniform,

 the force applied by the locomotion mechanism to the pad is not

perfectly perpendicular to the surface of the tissue, and

 the locomotion mechanism can apply force close to the edge of the

pad and moment that cause peeling-off if the prismatic joint is

connected closer to one edge of the pad than to the opposite edge.

The attachment between the pad and the tissue is not perfectly uniform.

Thus, the adhesive pad is more strongly attached to the tissue in some

areas of the pad depending on the contact and adhesive properties of those

areas. In that case, when a pull force is applied to the pad, detachment

starts from the area of the pad where attachment is weakest and then

spreads to the rest of the pad.

The force applied by the locomotion mechanism to the adhesive pad is not

perfectly perpendicular to the surface of the tissue. This is due to the

inclination and curvature of the tissue and the fact that in the locomotion

mechanism the screw of the motor moving the pad is not perfectly

perpendicular to the adhesive surface. This causes detachment to start from

one edge of the pad and progress along the adhesive surface until the whole

pad is detached. In the peeling model, the angle between the force applied

by the vertical motors and the surface of the tissue is the angle α.

In the locomotion mechanism, if the centre of the pad is not aligned with the

screw of the motor, the motor applies a force close to the edge of the pad.

The locomotion mechanism can also apply a moment on the pad by

actuating the horizontal prismatic joints when the pad is attached to the

tissue. A pull force close to the edge of the pad and a moment applied on

the pad cause peeling-off of the pad.
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Figure 111 shows the vertical prismatic joint of the locomotion mechanism

pulling the pad and peeling it off. Figure 111a shows the vertical prismatic

joint ready to pull the pad and Figure 111b shows a close up of the pad. In

Figure 111c the vertical motor is pulling the pad and Figure 111d shows one

edge of the pad detached while the other edge is in contact with the surface.

Figure 111e and Figure 111f show the vertical prismatic joint and the pad at

the moment when the whole surface of the pad comes off.

Figure 111. (a-f) Locomotion mechanism of the robot peeling off the pad.

For the sake of simplicity, shearing forces applied to the pad are considered

to be fully absorbed by the soft foam and therefore have no effect on the

adhesion and peeling-off of the pads.

6.2.3 Bending of the adhesive pad

When a force or moment is applied to the adhesive pad, the pad is assumed

to bend following the laws of Euler-Bernoulli’s beam theory. The deformation

considered for the material of the pad is up to 10% of its length, so it is a

linear elastic material and follows Hooke’s law.

The pad is considered to bend like a cantilever when force or moment is

applied to the pad. Peeling starts at one edge of the pad and the detached

surface is supported by the area of the pad still in contact with the tissue.

The detached area of the pad is supported at the end where the pad is still

attached to the tissue. The deformation of the detached area of the pad is

determined by the force applied to the pad. The instant before detachment,
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the whole surface of the pad will be bent by the force applied to the pad.

Figure 112a shows the pad peeling off the surface. Figure 112b illustrates

the situation in the peeling process when the pad is supported by the edge

of the pad in contact with the tissue and the pad is bending like a cantilever.

Figure 112. (a) Pad detaching from the surface and (b) sketch of the pad peeling off
the surface and bending like a cantilever.

The instant before the adhesive surface comes off the tissue (see Figure

112), the force or moment causing the bending of the pad has worked

against the adhesion of the whole adhesive surface. This final situation at

the end of the peeling process is considered in the peeling model in order to

calculate the force or moment that causes the pad to peel off.

6.3 Formulation of the peeling model

The peeling model calculates the force and moment required from the

locomotion mechanism of the robot to peel off the pad. In order to find the

expression of peeling force and peeling moment, this model uses:

 Kendall’s peeling theory to calculate the energy of the pad and tissue

when the pad peels off [167],

 Euler-Bernoulli’s beam theory to calculate the bending of the pad

causing detachment [168].

Considering the energy of the pad and the tissue, Kendall’s equilibrium

theory of adhesion gives the condition of energy when the pad peels off.

This condition of energy depends on the peeling force and moment applied

to the pad by the locomotion mechanism and it also depends on the bending

moment present in the pad. The bending equations obtained with Euler-

Bernoulli’s beam theory determine the bending moment and thus enable to
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calculate the peeling force and moment from the energy condition of

Kendall’s theory.

6.3.1 Kendall’s peeling theory

Kendall’s theory considers the peeling of a thin film shown in Figure 113.

Figure 113. Kendall's peeling test [167].

According to Kendall’s peeling theory, equilibrium fracture on an adhesive

interface occurs when the variation of total potential energy with respect to

the length of the adhesive interface is minimal [167]. The mathematical

expression for Kendall’s condition of fracture on an adhesive interface is:

்ܷ = ܷௌ + ܷா + ܷ ( 29 )

்߲ܷ
߲ܽ

= 0 ( 30 )

For Equation ( 29 ):

 ்ܷ is the total energy of the system,

 ܷௌ is the surface energy, or the energy of adhesion,

 ܷா is the elastic energy, and

 ܷ is the potential energy of the applied force.

For Equation ( 30 ):

 ்ܷ is the total energy of the system given by Equation ( 29 ), and

 ܽ is the length of the film.

When Equation ( 30 ) is true: “the work done in breaking the adhesive joint is

exactly compensated by the gain in surface energy of the system” [167].

Fracture must proceed at a low rate under this condition of equilibrium, so

that no energy is lost in viscous processes [167].
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In Kendall’s peeling of thin films, a constant force is applied to the surface at

a certain angle (force ܲ in Figure 113). In Kendall’s model, the elastic energy

of the system (ܷா) is composed of two terms:

 the energy stored in the sharp bend of the film and

 the energy required to stretch the film.

The energy of the bend does not depend on the length of the film ( )ܽ. The

elastic term is negligible when compared to the work of adhesion and the

work of the force applied to peel the film (ܲ) [167].

6.3.2 Peeling theory applied to the adhesive pad

In the peeling model of the adhesive pad, a force and a moment are applied

to the pad. The force and moment cause bending of the material, working

against adhesion and peeling off the pad. In the adhesive pad peeling off the

tissue, the total energy of the system is:

்ܷ = ܷௌ + ܷ + ܷ ( 31 )

Where:

 ்ܷ is the total energy of the system,

 ܷௌ is the work of the adhesion force,

 ܷ is the work of the bending moment along the angle of deformation

caused on the pad, and

 ܷ is the work of the force or moment causing the bending of the pad.

The first term in Equation ( 31 ): ܷௌ is the work of adhesion along the surface

of the pad. The expression of ܷௌ is the same as in Kendall’s model [167]:

ܷௌ = −ܾ ∙ ݔ ∙ ܹ ௗ ( 32 )

Where ܾ is the width of the pad, ݔ is the length of the pad and ܹ ௗ is the

work of adhesion of the pad per unit area.

The second term in Equation ( 31 ): ܷ is the work of the bending moment of

the pad, causing the pad to bend an angle .ߠ The expression of ܷ is:

ܷ = න (ݔ)௭ܯ ∙ ߠ݀
( 33 )

Where (ݔ)௭ܯ is the bending moment caused by the force or moment applied

to the pad, and ߠ is the angle or slope along the length of the pad.

The third term in Equation ( 31 ): ܷ is the work of the force or moment

applied to the pad along the separation between the pad and the tissue. In

the locomotion mechanism of the robot, the force or moment applied on the

pad can be:
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 a force applied to the edge of the pad,

 a uniform load applied along the surface of the pad, and

 a moment applied to the pad.

A force can be applied to the edge of the pad, for instance, by attaching a

linear motor or a Shape Memory Alloy wire to one of the edges of the pad;

this actuator would peel off the pad by pulling from the edge of the pad the

actuator is attached to. In the locomotion mechanism of the robot, this can

be implemented by connecting the linear motor to the edge of the pad.

Figure 114 shows a vertical motor of the robot connected to the edge of the

pad and applying a force in order to peel off the pad.

c
m

F

Figure 114. Vertical motor of the robot applying a force to the edge of the adhesive
pad.

When a force is applied to the edge of the pad, ܷ in Equation ( 31 ) is:

ܷ
ி = න ܨ ∙ ݕ݀

( 34 )

Where ܨ is the force applied to the pad and ݕ is the distance between the

pad and the tissue, in the direction perpendicular to the surface of the tissue.

A uniform load can be applied along the surface of the pad by pulling the

whole surface of the pad with a linear motor. In the robot, this is the case

when the vertical linear motor applies a force on the whole surface of the

pad. In the robot, this is also the case when the pad is holding the weight of

the locomotion mechanism connected to the pad. Figure 115 shows a

vertical motor of the robot applying a uniform load along the surface of the

pad in order to peel off the pad.
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Figure 115. Vertical motor of the robot applying a uniform load to the adhesive pad.

When a uniform load is applied to the pad, ܷ in Equation ( 31 ) is:

ܷ
 = න (ݔ)ݍ ∙ ݕ݀

( 35 )

Where (ݔ)ݍ is the load distributed along the length of the pad, and ݕ is the

distance between the pad and the tissue, in the direction perpendicular to

the surface of the tissue.

A moment can be applied to the pad, for example, with a rotary motor

directly connected to the edge of the pad. This peels off the pad by directly

bending the pad and thus bending the adhesive surface. In the robot, this is

the case of the horizontal linear motor pushing or pulling the pad at a

distance from the pad. Figure 116 shows a horizontal motor of the robot

applying a moment to the pad in order to peel it off.

M

Figure 116. Horizontal motor of the robot applying a moment to the adhesive pad.

When a moment is applied to the pad, ܷ in Equation ( 31 ) is:

ܷ
ெ = න ܯ ∙ ߠ݀

( 36 )

Where ܯ is the moment applied to the pad, and ߠ is the angle or slope along

the length of the pad.
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A combination of force and moment can be applied to the adhesive pad in

order to peel it off. Figure 117 shows the vertical motor applying a uniform

load and the horizontal motor applying a moment to the pad.

M

q

Figure 117. Combination of a uniform load applied by the vertical motor and a
moment applied by the horizontal motor to the adhesive pad.

When a uniform load and a moment are applied to the pad, the total

potential energy ܷ in Equation ( 31 ) is:

ܷ = ܷ
 + ܷ

ெ
( 37 )

Where ܷ
 is the potential energy of the uniform load applied to the pad

defined by Equation ( 35 ) and ܷ
ெ is the potential energy of the moment

applied to the pad defined by Equation ( 36 ).

In Kendall’s peeling model for thin films: “peeling force is largely independent

of the elastic properties of both the adherent film and the substrate” [167].

However, in the peeling model of the pad, the peeling force and peeling

moment depend on the elastic properties of the material. This is the case in

the adhesive pad because the pad detaches due to the bending of the

material along with the force and moment applied to the pad.

6.3.3 Euler-Bernoulli’s bending equations for a cantilever

According to Euler-Bernoulli’s beam theory, the deformation, slope and

bending moment undergone by a beam depends on how the beam is

supported and the force and moment applied to the beam. For this peeling

model, the pad is considered to be supported as a cantilever and the force

and moment the locomotion mechanism can apply to the pad are:

 force at one edge of the adhesive pad,

 uniform load applied along the length of the adhesive pad, and

 moment on the adhesive pad.



- 171 -

The sketch of a cantilever with a force applied at the free end of the

cantilever is shown in Figure 118.

x

Figure 118. Force applied at the free end of a cantilever.

According to Euler-Bernoulli’s beam theory, when a force is applied to the

free end of a cantilever, the cantilever undergoes this deformation ,(ݔ)ிݖ

slope ,(ݔ)ிߠ and bending moment (ݔ)ிܯ [168]:

(ݔ)ிݖ = −
ܨ ∙ ଶݔ ∙ (3 ∙ −ܮ (ݔ

6 ∙ ܧ ∙ ܫ ( 38 )

(ݔ)ிߠ = −
ܨ ∙ (2 ∙ −ܮ (ݔ ∙ ݔ

2 ∙ ܧ ∙ ܫ ( 39 )

(ݔ)ிܯ = ܨ ∙ −ܮ) (ݔ
( 40 )

In Figure 118 and Equations ( 38 ), ( 39 ) and ( 40 ):

 ܨ is the force applied at the free end of the cantilever,

 ܮ is the total length of the cantilever,

 ݔ is the distance from the fixed end of the cantilever,

 ܧ is Young’s modulus of the material of the cantilever, and

 isܫ the area moment of inertia of the cantilever.

The sketch of a cantilever with a uniform load applied along the length of the

cantilever is shown in Figure 119.

x

Figure 119. Uniform load applied along the length of a cantilever.
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According to Euler-Bernoulli’s beam theory, when a uniform load is applied

along the length of a cantilever, the cantilever undergoes this deformation

,(ݔ)ݖ slope ,(ݔ)ߠ and bending moment (ݔ)ொܯ [168]:

(ݔ)ݖ = −
ݍ ∙ ଶݔ ∙ (6 ∙ −ଶܮ 4 ∙ ݔ ∙ +ܮ (ଶݔ

24 ∙ ܧ ∙ ܫ ( 41 )

(ݔ)ߠ = −
ݍ ∙ ݔ ∙ (3 ∙ −ଶܮ 3 ∙ ݔ ∙ +ܮ (ଶݔ

6 ∙ ܧ ∙ ܫ
( 42 )

(ݔ)ܯ =
ݍ ∙ −ܮ) ଶ(ݔ

2
( 43 )

In Figure 119 and Equations ( 41 ), ( 42 ) and ( 43 ):

 ݍ is the uniform load applied along the length of the cantilever,

 ܮ is the total length of the cantilever,

 ݔ is the distance from the fixed end of the cantilever,

 ܧ is Young’s modulus of the material of the cantilever, and

 isܫ the area moment of inertia of the cantilever.

The sketch of a cantilever with a moment applied at the free end of the

cantilever is shown in Figure 120.

x

Figure 120. Moment applied at the free end of a cantilever.

According to Euler-Bernoulli’s beam theory, when a moment is applied to the

free end of a cantilever, the cantilever undergoes this deformation ெݖ ,(ݔ)

slope ெߠ ,(ݔ) and bending moment ெܯ (ݔ) [168]:

ெݖ (ݔ) = −
ܯ ∙ ଶݔ

2 ∙ ܧ ∙ ܫ ( 44 )

ெߠ (ݔ) = −
ܯ ∙ ݔ

ܧ ∙ ܫ ( 45 )

ெܯ (ݔ) = ܯ
( 46 )

In Figure 120 and Equations ( 44 ), ( 45 ) and ( 46 ):

 ܯ is the moment applied at the free end of the cantilever,

 ݔ is the distance from the fixed end of the cantilever,

 ܧ is Young’s modulus of the material of the cantilever, and

 isܫ the area moment of inertia of the cantilever.
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6.3.4 Force to peel off the adhesive pad

Following Kendall’s peeling theory, in order to find the force to peel off the

pad, the total energy of the system (்ܷ
ி) is minimised with respect to the

distance from the supported end of the pad :(ݔ)

்߲ܷ
ி

ݔ߲
= 0 ( 47 )

The total energy of the system when a force is applied to the edge of the pad

is:

்ܷ
ி = ܷௌ

ி + ܷ
ி + ܷ

ி
( 48 )

The terms of the total energy in Equation ( 48 ) are:

 ܷௌ
ி is the work of adhesion along the surface of the pad:

ܷௌ
ி = −ܾ ∙ ݔ ∙ ܹ ௗ ( 49 )

where ܾ is the width of the pad, ݔ is the distance from the supported

end of the pad and ܹ ௗ is the work of adhesion of the pad per unit

area.
 ܷ

ி is the work of the bending moment of the pad, causing the pad to

bend an angle :(ݔ)ிߠ

ܷ
ி = න ௭ܯ

ி(ݔ) ∙ (ݔ)ிߠ݀
( 50 )

where ௭ܯ
ி(ݔ) is the bending moment defined by Euler-Bernoulli’s

beam theory in Equation ( 40 ) and (ݔ)ிߠ is the slope defined in

Equation ( 39 ).
 ܷ

ி is the work of the force applied to the pad along the distance

between the pad and the tissue:

ܷ
ி = න ܨ ∙ (ݔ)ிݖ݀

( 51 )

where ܨ is the peeling force and (ݔ)ிݖ is the distance between the

pad and the tissue defined by Equation ( 38 ).

Figure 121a shows the vertical motor of the robot applying a force to the

edge of the pad. Figure 121b shows a sketch of the pad peeling off the

surface when a force is applied to the edge of the pad. Figure 121a and

Figure 121b also show the parameters considered in order to obtain the

force that causes the pad to peel off.
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Figure 121. (a) Vertical motor of the robot applying a force to the edge of the pad and
(b) sketch of the pad peeling when a force is applied to the edge of the pad.

The force is applied at an angle ߙ from the vertical as shown in Figure 121.

Solving Equation ( 47 ), the resulting peeling force depends on the distance

from the supported end of the pad .(ݔ) The expression of the peeling force

is:

(ݔ)ܨ =

ට
2 ∙ ߩ
ி݈(ܮ,ݔ)

cos(α)

( 52 )

In Equation ( 52 ), ߩ is a constant that depends on:

 the geometry of the pad: specifically the area moment of inertia andܫ

the width ܾ of the pad,

 the elastic properties or Young’s modulus of the pad ,ܧ and

 the work of adhesion of the pad ܹ ௗ.

The constant ߩ is defined as:

=ߩ ܧ ∙ ∙ܫ ܹ ௗ ∙ ܾ ( 53 )

In Equation ( 52 ), the polynomial ݈ி(ܮ,ݔ) determines the way the peeling

force changes along the length of the pad. The expression of the polynomial

݈ி(ܮ,ݔ) is:

݈ி(ܮ,ݔ) = 3 ∙ −ଶܮ 4 ∙ ܮ ∙ +ݔ ଶݔ ( 54 )

Figure 122a shows a sketch of the pad supported at one end. For the length

of the pad of =ܮ 1�ܿ݉ , the value of the polynomial ݈ி(ݔ) is shown in Figure

122b with respect to the distance from the supported end of the pad .(ݔ)
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Figure 122. Variation of the polynomial (ࡸ,࢞)ࡲ along the length of the adhesive pad
for a total length of the pad of =ࡸ ࢉ� .

According to Equation ( 52 ), the value of peeling force is inversely

proportional to the value of ݈ி(ܮ,ݔ), thus the maximum value of peeling force

corresponds to the minimum value of ݈ி(ܮ,ݔ). Figure 122b shows that the

maximum force to peel the pad corresponds to the point of application of the

force, at =ݔ .ܮ Therefore, the value of force required to peel off the pad is:

ܨ =

ට
2 ∙ ߩ

ி݈(ݔ= (ܮ

cos(α)
=

ඥ2 ∙ ߩ

L ∙ cos(α)
( 55 )

Where ߩ is the constant defined in Equation ( 2 ), L is the total length of the

pad and α is the angle of inclination of the force.

The value of peeling force in Equation ( 55 ) increases with a greater angle

of inclination of the force (α) and decreases as the total length of the pad (ܮ)

increases. This is consistent with observation of the peeling process and the

tests carried out with the pads during the implementation of the robot.
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The peeling force in Equation ( 55 ) depends on the cross section of the pad

and the elastic properties of the pad through the constant ,ߩ see Equation ( 2

). As expected, the peeling force in Equation ( 55 ) increases with greater

adhesion force from the pad.

The peeling force in Equation ( 55 ) is more sensitive to variation in the

length of the pad and inclination angle: ܨ ∝
ଵ

∙ୡ୭ୱ�(ఈ)
, than to variation in work

of adhesion: ܨ ∝ ඥߩ.

6.3.5 Uniform load to peel off the adhesive pad

Following Kendall’s peeling theory, in order to find the uniform load to peel

off the pad, the total energy of the system (்ܷ
) is minimised with respect to

the distance from the supported end of the pad :(ݔ)

்߲ܷ


ݔ߲
= 0 ( 56 )

The total energy of the system when a uniform load is applied to the pad is:

்ܷ
 = ܷௌ

 + ܷ
 + ܷ


( 57 )

The terms of the total energy in Equation ( 57 ) are:

 ܷௌ
 is the work of adhesion along the surface of the pad:

ܷௌ
 = −ܾ ∙ ݔ ∙ ܹ ௗ ( 58 )

where ܾ is the width of the pad, ݔ is the distance from the supported

end of the pad and ܹ ௗ is the work of adhesion of the pad per unit

area.
 ܷ

 is the work of the bending moment of the pad, causing the pad to

bend an angle :(ݔ)ߠ

ܷ
 = න ௭ܯ

(ݔ) ∙ (ݔ)ߠ݀
( 59 )

where ௭ܯ
(ݔ) is the bending moment defined by Euler-Bernoulli’s

beam theory in Equation ( 43 ) and (ݔ)ߠ is the slope defined in

Equation ( 42 ).
 ܷ

 is the work of the uniform load applied to the pad along the

distance between the pad and the tissue:

ܷ
 = න (ݔ)ݍ ∙ (ݔ)ݖ݀

( 60 )

where (ݔ)ݍ is the peeling uniform load and (ݔ)ݖ is the distance between the

pad and the tissue defined by Equation ( 41 ).

Figure 123a shows the vertical motor of the robot applying a uniform load to

the pad. Figure 123b shows a sketch of the pad peeling off the surface when
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a uniform load is applied to the pad. Figure 123a and Figure 123b also show

the parameters considered in order to obtain the uniform load that causes

the pad to peel off.
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Figure 123. (a) Vertical motor of the robot applying a uniform load to the pad and (b)
sketch of the pad peeling when a uniform load is applied to the pad.

The uniform load is considered constant along the length of the pad and it is

applied at an angle ߙ from the vertical as shown in Figure 123. Solving

Equation ( 56 ), the resulting peeling uniform load depends on the distance

from the supported end of the pad .(ݔ) The expression of the peeling uniform

load per unit length is:

(ݔ)ݍ =
2 ∙ √3

cos(ߙ)
∙ ඨ

ߩ
݈(ܮ,ݔ)

( 61 )

Where ߩ is the constant defined in Equation ( 2 ) and the polynomial ݈(ܮ,ݔ)

determines the way the peeling uniform load changes along the length of the

pad. The expression of the polynomial ݈ி(ܮ,ݔ) is:

݈(ܮ,ݔ) = 3 ∙ −ସܮ 12 ∙ ଷܮ ∙ +ݔ 24 ∙ ଶܮ ∙ −ଶݔ 18 ∙ ܮ ∙ ଷݔ + 5 ∙ ସݔ ( 62 )

Figure 124a shows a sketch of the pad supported at one end. For the length

of the pad of =ܮ 1�ܿ݉ , the value of the polynomial ݈(ݔ) is shown in Figure

124b with respect to the distance from the supported end of the pad .(ݔ)
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Figure 124. Variation of (ࡸ,࢞) along the length of the pad for =ࡸ ࢉ� .

According to Equation ( 61 ), the value of peeling uniform load in inversely

proportional to the value of ݈(ܮ,ݔ), thus the maximum value of peeling force

corresponds to the minimum value of ݈(ܮ,ݔ). Figure 124b shows that the

maximum force to peel the pad corresponds to the point =ݔ
ଶ

ହ
.ܮ Therefore,

the value of uniform load required to peel off the pad is:

=ݍ
2 ∙ √3

cos(ߙ)
∙ ඨ

ߩ

݈(ݔ=
2
5
(ܮ

=
3.4

Lଶ ∙ cos(ߙ)
∙ ඥߩ

( 63 )

Where ߩ is the constant defined in Equation ( 2 ), ܮ is the total length of the

pad and α is the angle of inclination of the uniform load.

The peeling uniform load in Equation ( 63 ) decreases with the square of the

total length of the pad (Lଶ) because the uniform load is distributed along the

length of the pad.

The peeling uniform load in Equation ( 63 ) increases with a greater angle of

inclination of the uniform load .(ߙ) Thus, the less perpendicular the load is to
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the tissue, the more load is required to peel off the pad. This was also the

case with the force applied to the edge of the pad and is consistent with

observation of the peeling process in the robot.

The peeling uniform load in Equation ( 63 ) depends on the cross section

and elastic properties of the pad through the constant ,ߩ see Equation ( 2 ).

The peeling uniform load increases with greater adhesion force from the

pad.

6.3.6 Moment to peel off the adhesive pad

Following Kendall’s peeling theory, in order to find the moment to peel off the

pad, the total energy of the system (்ܷ
ெ ) is minimised with respect to the

distance from the supported end of the pad :(ݔ)

்߲ܷ
ெ

ݔ߲
= 0 ( 64 )

The total energy of the system when a moment is applied to the pad is:

்ܷ
ெ = ܷௌ

ெ + ܷெ
( 65 )

The terms of the total energy in Equation ( 65 ) are:

 ܷௌ
ெ is the work of adhesion along the surface of the pad:

ܷௌ
ெ = −ܾ ∙ ݔ ∙ ܹ ௗ ( 66 )

where ܾ is the width of the pad, ݔ is the distance from the supported

end of the pad and ܹ ௗ is the work of adhesion of the pad per unit

area.
 ܷெ is the work of the moment applied to the pad, causing the pad to

bend an angle ெߠ :(ݔ)

ܷ
ெ = න ܯ ∙ ெߠ݀ (ݔ)

( 67 )

where ܯ is the moment applied to the pad, which is also the bending

moment defined by Euler-Bernoulli’s beam theory in Equation ( 46 ),

and ெߠ (ݔ) is the slope defined in Equation ( 45 ).

Figure 125a shows the horizontal motor of the robot applying a moment to

the pad. Figure 125b shows a sketch of the pad peeling off the surface when

a moment is applied to the pad. Figure 125a and Figure 125b also show the

parameters considered in order to obtain the moment that causes the pad to

peel off.



- 180 -

x M

L

adhWIE ,,

L b

Figure 125. (a) Horizontal motor of the robot applying a moment to the pad and (b)
sketch of the pad peeling when a moment is applied to the pad.

Solving Equation ( 64 ), the expression of the peeling moment is:

ܯ = ܧ√ ∙ ∙ܫ ܹ ܽ݀ℎ ∙ ܾ= ඥߩ ( 68 )

Where ߩ is the constant defined in Equation ( 2 ).

The peeling moment in Equation ( 68 ) is constant along the length of the

pad. The peeling moment depends on the cross section and the elastic

properties of the pad through the constant ߩ and increases with greater

adhesion force.

6.3.7 Combination of uniform load and moment to peel off

the adhesive pad

The locomotion of the robot detaches the pad by applying force with the

vertical motor and can also apply force with the horizontal motor. When the

vertical motor is actuated, the force from the motor is applied along the area

of the pad and thus a uniform load is applied to the pad. The weight of the

robot is also a uniform load applied to the pad. When the horizontal motor is

actuated, the force from the motor is applied at a distance from the pad and

thus a moment is applied to the pad.

Following Kendall’s peeling theory, in order to find the combination of

uniform load and moment to peel off the pad, the total energy of the system

(்ܷ
,ெ ) is minimised with respect to the distance from the supported end of

the pad :(ݔ)

்߲ܷ
,ெ

ݔ߲
= 0

( 69 )

The total energy of the system when a combination of uniform load and

moment is applied to the pad is:
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்ܷ
,ெ = ܷௌ

,ெ + ܷ
,ெ + ܷ

,ெ
( 70 )

The terms of the total energy in Equation ( 70 ) are:

 ܷௌ
,ெ is the work of adhesion along the surface of the pad:

ܷௌ
,ெ = −ܾ ∙ ݔ ∙ ܹ ௗ ( 71 )

where ܾ is the width of the pad, ݔ is the distance from the supported

end of the pad and ܹ ௗ is the work of adhesion of the pad per unit

area.
 ܷ

 is the work of the bending moment of the pad, causing the pad to

bend an angle :(ݔ)ߠ

ܷ
 = න ௭ܯ

(ݔ) ∙ (ݔ)ߠ݀ + න ܯ ∙ ெߠ݀ (ݔ)
( 72 )

where ௭ܯ
(ݔ) is the bending moment defined by Euler-Bernoulli’s

beam theory in Equation ( 43 ), (ݔ)ߠ is the slope defined in Equation

( 42 ), ܯ is the moment applied to the pad, which is also the bending

moment defined by Euler-Bernoulli’s beam theory in Equation ( 46 ),

and ெߠ (ݔ) is the slope defined in Equation ( 45 ).

 ܷ
,ெ is the work done by the uniform load applied to the pad along the

distance between the pad and the tissue:

ܷ
,ெ = න (ݔ)ݍ ∙ (ݔ)ݖ݀

( 73 )

where (ݔ)ݍ is the peeling uniform load and (ݔ)ݖ is the distance

between the pad and the tissue defined by Equation ( 41 ).

Figure 126a shows the vertical motor and the horizontal motor of the robot

applying a combination of uniform load and moment to the pad. Figure 126b

shows a sketch of the pad peeling off the surface when a uniform load and a

moment are applied to the pad. Figure 126a and Figure 126b also show the

parameters considered in order to obtain the combination of uniform load

and moment that causes the pad to peel off.
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Figure 126. (a) Combination of uniform load and moment applied to the adhesive pad
and (b) sketch of the pad peeling when uniform load and moment are applied to the

pad.

The uniform load and moment are considered constant along the length of

the pad and the uniform load is applied at an angle ߙ from the vertical as

shown in Figure 126. Solving Equation ( 69 ), the expression of the peeling

uniform load and moment is:

ܯ (ݔ) = ඨߩ− ቆ
ݍ ∙ cos(ߙ)

2 ∙ √3
ቇ

ଶ

∙ ݈(ܮ,ݔ) ( 74 )

(ݔ)ݍ =
2 ∙ √3

cos(ߙ)
∙ ඨ

−ߩ ܯ ଶ

݈(ܮ,ݔ) ( 75 )

Where ߩ is the constant defined in Equation ( 2 ), α is the angle of inclination

of the uniform load and ܮ is the total length of the pad; ݔ is the distance from

the supported end of the pad and ݈(ܮ,ݔ) is the polynomial defined in

Equation ( 62 ).

The maximum moment in order to keep the solution of Equation ( 75 ) a real

number is:

ܯ = ඥߩ ( 76 )

The moment in Equation ( 76 ) is the peeling moment when only a moment

is applied to the pad, see Equation ( 68 ).

The maximum uniform load in order to keep the solution of Equation ( 74 ) a

real number is:

(ݔ)ݍ =
2 ∙ √3

cos(ߙ)
∙ ඨ

ߩ
݈(ܮ,ݔ) ( 77 )
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The moment in Equation ( 77 ) is the peeling uniform load when only a

uniform load is applied to the pad.

The value of ݈(ܮ,ݔ) to calculate the peeling uniform load of the pad was

shown in Figure 124 and corresponds to the point =ݔ
ଶ

ହ
.ܮ

Thus, the peeling moment is calculated using Equation ( 74 ) for a value of

uniform load between zero and the maximum load: ݍ ∈ [0,
ଶ∙√ଷ

ୡ୭ୱ�(ఈ)
∙ ට

ఘ

ಾ ಿ
 ].

Likewise, the peeling uniform load is calculated using Equation ( 75 ) for a

moment between zero and the maximum moment: ܯ ∈ [0,ඥߩ].

6.4 Calculations of peeling force, uniform load and
moment for the bio-mimetic adhesive pad

This section applies the equations of peeling force, peeling uniform load and

peeling moment to the bio-mimetic adhesive pad used for the robot to move

on tissue. The bio-mimetic pad is made of a bio-compatible soft elastomer:

MacDermid Autotex®, with Young’s modulus ܧ = ܽܲܯ�187.5 [164]. The

dimensions of the bio-mimetic pad are: ܮ ∙ ܾ ∙ =ݐ 1�ܿ݉ ∙ 1�ܿ݉ ∙ 0.1�ܿ݉ (length

x width x thickness) and thus, the area moment of inertia of the pad is

=ܫ
∙௧య

ଵଶ
= 8.3 ∙ 10ିଵଷ�݉ ସ.

In order to calculate the value of the constant :ߩ

=ߩ ܧ ∙ ∙ܫ ܹ ܽ݀ℎ ∙ ,ܾ the work of adhesion of the bio-mimetic pad on

peritoneum is required. The work of adhesion of the pad is calculated with

an indentation test on a sample of rat peritoneum.

6.4.1 Indentation test to calculate the work of adhesion of the

pad

An indentation test of the pad provides a force-distance graph of the pad

attaching and detaching from tissue. The work of adhesion is calculated from

this force-distance graph as the area between the force and the horizontal

axis of the graph representing the distance travelled by the pad during

detachment. Figure 127 shows the force-distance graph obtained with an

indentation test and the area of the plot corresponding to the work of

adhesion of the pad.
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Figure 127. Work of adhesion of the pad from the force-distance graph of an
indentation test taken from [8].

The indentation test is carried out with a Modular Universal Surface Tester

(MUST). The MUST rig drives two pieces of material into contact with a

predetermined value of preload and then separates them, measuring the

attachment force.

For the indentation test of the bio-mimetic pad on peritoneum in the MUST

rig, the pad is fixed to a plate that moves towards a force sensor. A piece of

tissue is fixed to the cantilever of the force sensor in order to measure the

force applied to the tissue. Figure 128 explains the indentation test showing

the events of the test on a force-displacement graph obtained for the

adhesive pad on peritoneum.
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Figure 128. (a-f) Events of an indentation test for the adhesive pad shown below a
force-displacement graph from [8].

In Figure 128, the events of an indentation test for the adhesive pad on

tissue are:

a) Initial position of the pad and the cantilever: the displacement of the

pad is zero and there is no force applied to the tissue.
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b) An attraction force appears between the pad and the tissue when the

pad is close to the tissue, this is registered by the force sensor as a

negative value of force. This attraction force is due to interfacial

forces between the surface of the pad and the surface of the tissue.

c) Contact happens between the pad and the tissue, the pad pushes

into the tissue in order to reach the preload.

d) Preload: the value of preload force is reached. The preload is set to

the programme of the MUST rig before the experiment starts and is

registered by the force sensor as a positive value of force. Once the

preload is reached, the motor moving the pad changes direction of

motion and starts retracting the pad from the tissue.

e) Adhesion force: the adhesion force is the maximum force registered

by the cantilever when the pad is retracting from the tissue. This is

registered by the force sensor as a negative value of force. After this

point, the pad and the tissue start separating.

f) Contact is lost between the pad and the tissue and the value of force

registered by the sensor returns to zero.

In this way, for a given value of preload (see Figure 128d), the value of

adhesion force (see Figure 128e) is obtained with an indentation experiment.

When tested on peritoneum, a bio-mimetic adhesive pad with an area of 113

mm2 provides a maximum adhesion force between 105 and 140 mN [10].

The work of adhesion of the bio-mimetic adhesive pad on peritoneum is

ܹ ௗ = 94�݉ ݉/ܬ ଶ and thus, the value of the constant ߩ for the pad is

=ߩ 1,444�݉ ܰଶܿ݉ ଶ.

6.4.2 Force, uniform load and moment to peel the pad

The peeling force is considered constant and applied to the edge of the pad

in a direction perpendicular to the surface of the pad: ߙ ≅ 0°. Applying

Equation ( 55 ) of the peeling model to the bio-mimetic adhesive pad, the

resulting peeling force is ܨ = 54�݉ ܰ . This means that hanging 5.4�݃ ݎܽ ݉ ݉ ݏ݁

of weight from the edge of the pad is sufficient to peel off the pad. The

density of the material of the pad (MacDermid Autotex®) is 1.4�݃ /ܿ݉ ଷ [164]

and thus the weight of the pad is 1.4�݉ ܰ , so the peeling force is

approximately 38 times the weight of the pad.

The peeling moment is considered constant and applied to the edge of the

pad. Applying Equation ( 63 ) of the peeling model to the bio-mimetic

adhesive pad, the resulting peeling moment is ܯ = 38�݉ ܰܿ݉ . In the

locomotion mechanism of the robot, the moment on the pad is applied by

actuating the horizontal motor at a distance of 2.5 − 2�ܿ݉ from the pad.

Thus, applying a horizontal force of 15 − 19�݉ ܰ at 2.5 − 2�ܿ݉ of distance

from the pad is sufficient to peel off the pad. Applying a peeling moment
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instead of a peeling force reduces the force required from the motor to peel

off the pad. The force required for the peeling moment is between 11 and 14

times the weight of the pad and approximately a third of the force required

when applying a peeling force from the edge of the pad.

The peeling uniform load is considered constant and applied along the

length of the pad in a direction perpendicular to the surface of the pad:

ߙ ≅ 0°. Applying Equation ( 68 ) of the peeling model to the bio-mimetic

adhesive pad, the resulting peeling uniform load along the length of the pad

is ݍ ∙ =ܮ 130�݉ ܰ . This means that a force of 130 mN applied to the pad, or a

mass of 13 grammes hanging from the pad, is sufficient to peel off the pad.

Therefore, the peeling uniform load is 93 times the weight of the pad and

more than twice the force required when applying a peeling force from the

edge of the pad.

Figure 129 summarises and compares the force required from the motors of

the locomotion mechanism in order to peel off the pad applying a force, a

moment and a uniform load.

Figure 129. Comparison of the force required in order to peel off the pad with a
uniform load (see configuration in Figure 123), a force at the edge of the pad (see

configuration in Figure 121) and a moment: force at 2cm from the pad (see
configuration in Figure 125). The weight of the pad is shown as a reference value, as

it is the minimum force the adhesive pad must support.

For these calculations, the material of the adhesive surface (MacDermid

Autotex®) is the only material considered for the bending of the pad. The

value of the peeling force, moment and uniform load is proportional to the

constant ,ߩ which depends on the material because ߩ is proportional to the

square root of the Young’s modulus of the pad: ∝ߩ .ܧ√ The constant ߩ is

sensitive to the thickness of the pad because ߩ is proportional to the square

130

54

19

1.4
0

20

40

60

80

100

120

140

Uniform load End force Force at 2 cm Weight of the pad

Fo
rc

e
(m

N
)

Type of load on the pad

Force



- 188 -

root of the area moment of inertia: ∝ߩ ,ܫ√ and the area moment of inertia is

proportional to the cube of the thickness of the pad: ∝ܫ .ଷݐ

Considering the material of the adhesive surface the only material bending in

the pad is a simplification of the peeling model because the pad is

composed of several layers of different materials. Thus, the thickness of the

pad affecting the area moment of inertia can be greater than the thickness of

the adhesive surface. Figure 130 shows the value of peeling uniform load for

several values of thickness considered for the pad. The calculations of

uniform load for Figure 130 only consider the Young’s modulus of the

adhesive surface for the whole thickness of the pad.

Figure 130. Uniform load to peel off the pad when only the adhesive surface is
bending for several values of thickness of the pad.

If the tissue is softer than the pad, the motors bend the tissue in order to

peel off the pad. In this case, the bending caused on the surface of the

tissue determines the peeling force, moment and uniform load. In order to

apply the peeling model to the locomotion of the robot on tissue, the peeling

model should consider both the properties of the materials of the pad and

the properties of the tissue. Figure 131 shows the value of peeling uniform

load when only the tissue is bending, considering several values of thickness

of the tissue.
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Figure 131. Uniform load to peel off the pad when only the tissue is bending for
several values of thickness of the tissue.

6.4.3 Combination of uniform load and moment to peel the

pad

In the locomotion mechanism of the robot, the vertical motor and the

horizontal motor can be actuated simultaneously applying a combination of

uniform load and moment to the bio-mimetic adhesive pad. This combination

of uniform load and moment is calculated with Equations ( 74 ) and ( 75 ) of

the peeling model. For a uniform load between 0 and 130 mN applied by the

vertical motor to the pad, a force between 0 and 19 mN can be applied from

the horizontal motor. In the locomotion mechanism of the robot, the

horizontal motor applies force at approximately 2 cm from the pad, causing a

peeling moment on the pad. Figure 132 illustrates the combination of force

from a vertical motor and a horizontal motor in order to peel off the pad by

applying a uniform load and a moment.

The graph in Figure 132 shows that for each increment of force from the

vertical motor, the force required from the horizontal motor in order to peel

off the pad decreases at a much slower rate. For a linear increment of

vertical force, the horizontal force follows a polynomial line. The value of

horizontal force is practically constant up to a vertical force of 50 mN as

shown in Figure 132 (combined actuation point number 5). Thus, for low

values of vertical force, practically the same horizontal force is required to

peel off the pad; for high values of vertical force, the horizontal force

required to peel off the pad diminishes accordingly.
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Figure 132. Combination of peeling uniform load and moment applied to the pad.

6.4.4 Comparison between the peeling model and

experimental results

When the pad is tested on rat peritoneum without a soft backing layer for the

pad, the force required from a linear actuator to detach the pad is between

105 and 140 mN [10]. If there is no soft backing layer for the pad, the pad

force from the actuator bends the tissue and the bending of the tissue

determines the peeling force.

According to the peeling model, a peeling uniform load between 105 and

140 is obtained for a thickness of the tissue between 10 and 20 mm (see

Figure 131). For a pad with a soft backing layer, a peeling uniform load

between 105 and 140 is obtained for a thickness of the adhesive surface

between 0.75 and 1.25 mm (see Figure 130).

As part of a project associated to the research of this thesis, experiments

were carried out in order to compare peeling-off of with a uniform load and

peeling-off with a force applied to the edge of the pad [169]. The

experiments of this associated project also investigated the effect of peeling

angle when a force is applied to the edge of the pad [169]. Figure 133a and

Figure 133b are taken from the work carried out in this associated project.

Figure 133a shows the force-displacement graph of an indentation test

comparing the uniform load required to peel off the pad and the peeling force

when a force is applied to the edge of the pad. Figure 133b shows the force-

displacement graph of an indentation test comparing the peeling force

required when the peeling angle is 0º and when the peeling angle is 45º.
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Figure 133. (a) Force-displacement graph comparing the peeling force and peeling
uniform load of the bio-mimetic adhesive pad, and (b) force-displacement graph

comparing the peeling force at 0º and 45º, adapted from [169].

In Figure 133a, the force required to detach the pad is reduced from 53 mN

to 18 mN when a peeling force is applied to the edge of the pad compared to

a peeling uniform load. Thus, the force required to detach the pad is reduced

by 3 when the force is applied to the edge of the pad according to

experimental data [169]. The peeling model predicts that the force to detach

the pad is reduced by 2.4 when the force is applied to the edge of the pad

(see Figure 129). The difference in value obtained between the experimental

data and the peeling model can be due to these sources of error:

 in the experimental set-up, the mechanism used in the MUST rig in

order to apply a force to the edge of the pad diminishes the force

required to detach the pad,
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 in the experimental set-up, when the pad and the tissue are in

contact, the weight of the pad causes a moment, reducing the value

of force required to detach the pad.

 in the peeling model, it is difficult to choose which material bends

when a force is applied to the pad and what thickness of the pad

should be considered.

In Figure 133b, when the peeling angle increases from 0º to 45º, the force to

detach the pad diminishes from 13.2 mN to 5.3 mN. However, the peeling

model predicts that the peeling force increases with the peeling angle, see

Equation ( 52 ). This discrepancy between experimental data and the

peeling model is because, for the sake of simplicity, the peeling model does

not consider the effect of shear force on the adhesive. Shear force can

indeed have a great effect on the adhesion of the pad as shown in Figure

133b and in previous experimental work [10], and a future development of

the peeling model should include this effect in its formulation.

6.5 Discussion and conclusion

The peeling model presented in this chapter enables calculation of the force

and moment required to peel off an adhesive pad and therefore sets the

base for controlling the attachment of the robot to the tissue. The premise of

the model, that the pads peel off when bent by the vertical and horizontal

forces applied to them, is based on the testing and observation of the

locomotion sequence of the robot. For the formulation of the model, it was

postulated that the peeling off of the pad could be explained with Kendall’s

theory and that the bending of the pad followed Euler-Bernoulli’s equations.

The value of peeling-off uniform load calculated with the model: 130 mN, is

consistent with the value of detachment force found out experimentally for

the pad: 105-140 mN. The model also predicts a ratio between the peeling

uniform load and the peeling force of 2.4 times, consistent with experimental

measurements: 3 times. This comparison between the predictions of the

model and the result of experimental work prove the suitability of the model

in postulating that Kendall’s and Euler-Bernoulli’s theories were applicable to

the observed peeling off and bending of the pad. Nonetheless, for the sake

of simplicity and in order to make the model easy to manage mathematically,

the effect of some variables present in the system have not been factored in.

These variables include the effect of a shearing force applied to the

adhesive surface and the thickness of the pad and tissue that is considered

to bend under the action of a force or moment. Notably, the effect of a

shearing force, the component of the force or uniform load parallel to the
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tissue, can be very effective in detaching the pad. Currently, this effect and

others are not considered in the peeling model and will need to be included

in further developments in order for the model to represent the variables

taking effect in the detachment process more accurately.

In any case, the comparison of the predictions of the model with

experimental results proves that an accurate enough description of the

detachment process is obtained with the model.

6.6 Summary

In this chapter, detachment of the pad in the locomotion mechanism of the

robot is mathematically modelled in order to calculate the force and moment

that causes the adhesive pad to detach. This model considers that the pad

bends causing the adhesive surface to peel off the tissue when a force or

moment is applied to the adhesive surface backed with a soft layer.

In order to calculate the peeling force and moment, the model applies

Kendall’s peeling theory to the adhesive pad attached to the tissue. The

force and moment that cause the pad to peel off are calculated applying

Kendall’s condition of minimal energy along the length of the pad when the

adhesive interface is broken.

In order to calculate the energy of the system, the moment causing the pad

to bend is required along with the work of the force and moment applied to

the pad. Considering that the pad bends like a cantilever, Euler-Bernoulli’s

beam theory is used in order to calculate the bending moment on the pad

and the work of the force and moment applied to the pad.

Using Kendall’s peeling theory and Euler-Bernoulli’s bending equations, the

expression of the force, uniform load and moment required to peel off the

adhesive pad are calculated. This expression of peeling force, peeling

uniform load and peeling moment depend on the geometry, material and

adhesion of the pad, and the angle of inclination of the force. The

combination of uniform load and moment required to peel off the pad is also

calculated with the peeling model. In the locomotion mechanism a

combination of uniform load and moment is applied to the pad when the

vertical motor and the horizontal motor are actuated.

The force, uniform load and moment to peel off the bio-mimetic adhesive

pad used for the robot were calculated using the equations of the peeling

model. The results of force, uniform load and moment obtained with the

peeling model were compared to experimental data obtained prior to the
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model. The results of the model are consistent with experimental data when

calculating the peeling force applied to the edge of the pad and the peeling

uniform load. The predictions of the peeling model can improve by

considering the bending of the tissue and the different materials composing

the pad as well as by including the effect of a shear force in the model.
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Chapter 7
Stability criterion for adhesion-reliant robots

7.1 Introduction

In the previous chapter, a peeling model of the adhesive pad was presented,

enabling to calculate the force and moment that cause the pads of the robot

to detach. This peeling model defined the maximum force and moment that

can be applied to the pads of the robot before detachment. Using this limit of

force and moment, this chapter defines a stability criterion for upside-down

locomotion of adhesion-reliant robots.

This chapter starts with a brief review of the stability criteria for walking

robots available in the literature. Then, the chapter defines a new stability

criterion for the locomotion of adhesion-reliant robots walking upside-down.

After that, the chapter analyses the design parameters of a two-padded

robot using the stability criterion. The stability criterion is also applied to the

stability analysis of a four-padded robot taking one step. The last section

summarises the contents of the chapter.

7.2 Stability criteria for walking robots

Stability for walking robots, especially hexapods, quadrupeds and bipeds,

has been extensively researched. Assessing the stability of a robot enables

the controller of the robot to avoid an unstable state that makes the robot fall

over. For walking robots, several stability criteria have been proposed [67,

170]; these criteria measure stability using a stability margin, which

calculates how close to an unstable state the robot is. Depending on how

fast the robot moves, stability criteria are divided into:

 static stability criteria: when the robot is walking slow enough to

consider its gait a sequence of static positions, and

 dynamic stability criteria: when dynamic effects are important for the

stability of the robot.

7.2.1 Static stability criteria for walking robots

Static stability criteria use the polygon of support of the walking robot in

order to define stability. The polygon of support of the robot is the polygon

formed by joining the position of the feet of the robot on the ground. For

static stability, an unstable state is: “[a state] in which the resultant vector of
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the gravitational and inertial forces meets the ground outside the base of

support” [70]. This definition was first proposed for a static situation on flat

terrain [171] and then extended to uneven terrain [172]. The static stability

margin is “the smallest of the distances from the centre of gravity (COG)

projection on the ground to the edges of the support polygon” [70]. Figure

134 shows a sketch of the support polygon and the stability margin of a

walking robot.

COG

projection of the
COG

support polygon

stability
margin

Figure 134. Sketch of the support polygon and stability margin of a walking robot
with one leg in the air.

Modifications to this static stability criterion have been proposed in order to

simplify the computation of the stability margin [173, 174] and guarantee

stability of the system in the event of leg failure [175].

Considering the energy of the robot, the energy stability margin is defined as

the minimum potential energy required to tip the robot over [176, 177].

Modifications to the energy static stability criterion consider compliant terrain

and the stabilizing effect of a leg in the air [178], as well as the power

consumption and joint torques of the actuators [179].

For wall climbing robots using magnetic feet, the stability margin has been

defined considering the slipping force of the leg [180, 181].

7.2.2 Dynamic stability criteria for walking robots

Considering the dynamic effects on the robot during locomotion, “a robot is

dynamically stable if the projection of the COG along the direction of the

resultant force acting on the COG lies inside the support polygon” [182]. The
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effective mass centre (EMC) is used in dynamic stability and is defined as

“the point on the support plane where the resultant moment due to terrain-

reaction forces and moments cancel one another” [183].

Considering the moment applied to the robot, the dynamic stability margin is

defined as “the smallest of all moments for every rotation axis in the support

polygon“ [184]. In a scenario where the robot is falling with one leg in the air,

the robot is dynamically stable if there is a foot in the direction of rotation of

the robot that prevents the fall [185, 186].

Other dynamic stability criteria define stability in terms of the angle of the

resultant force on the robot [187] and also in terms of the potential energy

and the external disturbances on the robot [188]. Performance criteria of the

walking robot have been defined in order to optimise either the energy of the

robot or the stability depending on the application of the walking robot [189].

A unified way to assess stability has been proposed with the concept of m-

stability [190].

The Zero Moment Point (ZMP) has been used extensively in order to define

the stability of bipeds [191, 192]. The ZMP is equivalent to the EMC and

corresponds to the point on the ground where the robot can step in order to

cancel the horizontal moment acting on the robot and avoid a fall. Based on

the ZMP some stability criteria have been defined for humanoids considering

the contact and friction of the feet and hands of the robot [193, 194] and also

considering the rotation of the foot [195].

7.3 Stability criterion for adhesion-reliant robots walking
upside-down

A climbing robot relies on the attachment between the feet of the robot and

the surface in order to prevent a fall. If the robot uses adhesive pads, the

force of adhesion prevents the robot from falling down and thus, the stability

analysis of an adhesion-reliant robot focuses on the adhesion force of the

pads. The force and moment affecting adhesion on the pads of the robot are

considered in order to measure the stability of an adhesion-reliant robot. The

force and moment applied to the pads of the robot determine how close to

detachment each pad is, enabling to measure how close to a fall the whole

robot is.

This section defines a stability criterion for adhesion-reliant robots walking

upside-down considering:

 the role of the adhesive pads during the locomotion sequence, and
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 the force and moment that cause the adhesive pad to peel off.

The role of the adhesive pads changes during the locomotion sequence of

the robot. Within the locomotion sequence of the robot, the pads can be

attached to the surface and therefore supporting the robot, or the pads can

be detached and moving to a new position.

The force and moment that cause the adhesive pad to peel off were defined

in the peeling model of the previous chapter. According to the peeling model,

the value of peeling force and moment depend on the geometry, material

and adhesion of the pad.

7.3.1 Supporting, moving and critical pads

When the intra-abdominal robot walks upside-down, three pads of the robot

resist the pull of gravity while one pad reaches a new position. When this

one pad reaches the new position, another pad detaches and starts moving

to a new position. In this way, the pads of the robot can be supporting the

motion of another pad or moving to a new position, supported by the other

pads. Figure 135 shows the supporting pads and the moving pad during the

motion of a pad within the locomotion sequence of the intra-abdominal robot.

Figure 135. Supporting pads and moving pad of the robot.

In theory, one pad with strong adhesion would be sufficient to keep the robot

attached to the surface. However, the robot has been experimentally proved

to require a minimum of three supporting pads in order to stay attached to

the surface and complete the locomotion sequence. The minimum number

of supporting pads required to hold the robot at any one time during the

locomotion sequence are the critical pads. If the critical pads detach, the

robot is unable to follow the locomotion sequence and reach a new position.

The robot is unable to follow the locomotion sequence when the robot falls

or when the locomotion mechanism cannot move the pads to the required

position. For instance, the weight of the moving pad can bend the supporting
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pads in such a way that it is not possible for the robot to re-attach the pad to

the surface.

The stability of an adhesion-reliant robot is determined by how close to

detachment the critical pads are depending on the force and moment

applied to the pads. At any one time during the locomotion sequence, the

stability margin of an adhesion-reliant robot can be measured by determining

which of the supporting pads are critical and calculating the forces and

moments applied to the critical pads.

7.3.2 Definition of the detachment margin of an adhesive pad

The force and moment applied to the pad can either detach or preload the

pad favouring adhesion, depending on the direction of the force and moment

applied by the motors of the robot. Therefore, the total force or moment

applied to the pad is:

ߪ = ௗߪ − ߪ ( 78 )

Where ߪ is the force or moment applied to the pad, ௗߪ is the total force or

moment that causes detachment and ߪ is the total force or moment that

preloads the pad.

Considering that the adhesive pad detaches when sufficient force or moment

are applied to the pad, the detachment margin of an individual pad of the

robot is:

ܦ∆ =
−ௗ௧ߪ ߪ

ߪ ( 79 )

Where:

 ܦ∆ is the detachment margin of the adhesive pad,

 ߪ is the force, moment or combination of force and moment applied to

the pad,

 ௗ௧ߪ is the value of ߪ that causes detachment of the pad, and

 ߪ is the default value of ߪ present in the system throughout the

detachment process, for instance the weight of the pad.

The detachment margin of the adhesive pad: ܦ∆ considers the force and

moment applied to the pad: ,ߪ and compares it to the value of force and

moment that peels off the pad: .ௗ௧ߪ

The stability margin of the adhesive pad is normalised with respect to the

default value of force or moment applied to the pad: .ߪ Normalising the

stability margin of the adhesive pad enables comparison of the stability
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margin amongst different pads. If there is no default value of ߪ in the system,

the stability margin of an individual pad of the robot is:

ܦ∆ = −ௗ௧ߪ ߪ ( 80 )

Where ܦ∆ is the detachment margin of the adhesive pad, ߪ is the force,

moment or combination of force and moment applied to the pad and ௗ௧ߪ is

the value of ߪ that detaches the pad.

Thus, a pad detaches when:

ܦ∆ = 0 ( 81 )

Where ܦ∆ is the detachment margin of the adhesive pad defined in

Equations ( 79 ) and ( 80 ).

The variables causing detachment of the pad can be dependent on each

other. In this case, one of the variables can be used for the calculation of the

detachment margin, considering the relation between ௗ௧ߪ and the other

variables causing detachment of the pad. For this case, the pad detaches

when:

ௗ௧ߪ)ܦ∆ = …ଶߜ,ଵߜ݂) ߜ ) ) = 0 ( 82 )

Where ܦ∆ is the detachment margin for the selected variable used for the

calculation of the detachment margin of the pad. The detachment value of

the selected variable: ௗ௧ߪ = ߜ�…ଶߜ,ଵߜ݂) ) is a function of the other

variables that cause detachment of the pad. In Equation ( 82 ), there are ݉

variables causing detachment of the pad: ߜ�…ଶߜ,ଵߜ .

If several variables cause detachment of the pads and these variables are

not related, one detachment margin can be calculated for each variable. In

this case, the pad detaches when:

ෑ ܦ∆



ୀଵ

= 0
( 83 )

Where ܦ∆ is the detachment margin of the pad for the variable ,݅ and ݊ is

the total number of variables causing detachment of the pads. The

detachment margin of the pad is defined as a product of the detachment

margin for each variable because the pad detaches as soon as any of those

variables reaches its detachment value.

The condition of detachment of the pad, Equation ( 81 ), is applied to the

critical pads of the robot in order to detect when the robot is in an unstable

state.
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7.3.3 Definition of the stability criterion for an adhesion-

reliant robot

The stability of an adhesion-reliant robot depends on how close to

detachment the critical pads of the robot are. The adhesion-reliant robot is in

an unstable state if one the critical pads detaches. Considering the

detachment margin of the critical pads of the robot, the stability margin of the

adhesion-reliant robot is:

∆ ܵ = ෑ ܦ∆



ୀଵ
( 84 )

Where ∆ ܵ is the stability margin of the adhesion-reliant robot, ܦ∆ is the

detachment margin of the critical pad number ,݅ and ݍ is the total number of

critical pads of the robot. The stability margin of the robot is defined as a

product of the detachment margin of the critical pads because the

locomotion of the robot becomes unstable as soon as one critical pad

detaches.

The locomotion of an adhesion-reliant robot is stable if all the critical pads

are attached at any one time during the locomotion sequence. An adhesion-

reliant robot is in an unstable state if one or more of the critical pads lose

contact with the surface. Thus, the adhesion-reliant robot is in an unstable

state when:

∆ ܵ = 0 ( 85 )

Where ∆ ܵ is the stability margin of the adhesion-reliant robot defined in

Equation ( 84 ).

For the intra-abdominal robot, the variable that determines detachment of

the pads: ߪ is a force, a moment or a combination of force and moment

under static or dynamic conditions. The stability criterion defined in Equation

( 85 ) can be applied to other variables, like energy, if those variables also

determine the detachment of the pad.

7.4 Stability analysis of a two-padded robot

This section considers a robot with two adhesive pads in order to illustrate

the stability analysis of an adhesion-reliant robot using the stability criterion

defined in Equation ( 85 ). Figure 136 shows the sketch of the two-padded

robot considered for this stability analysis.
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Figure 136. Sketch of a robot with two adhesive pads.

As shown in Figure 136, the parameters considered for the stability analysis

of the two-padded robot are:

 the length of the pads: ,ܮ

 the distance between the surface of attachment and the horizontal

linear motor between the two pads: ,ݖ and

 the distance between pads: .ଵଶݔ

The vertical linear motors are attached to the edge of the adhesive pads and

peel off the pads by pulling the adhesive surface from the edge of the pads.

The two-padded robot walks in inverted locomotion on a flat surface using

an inchworm locomotion sequence. Figure 137 shows the locomotion

sequence of the two-padded robot.

Figure 137. (a-g) Locomotion sequence of the two-padded robot.
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In Figure 137, the locomotion sequence of the two-padded robot is:

a) initial position with the two pads attached to the surface,

b) the vertical motor of the leading pad pulls the pad, peeling it off the

surface,

c) the horizontal motor moves the leading pad across the surface to a

new position,

d) the vertical motor of the leading pad pushes the pad and re-attaches

it to the surface,

e) the vertical motor of the trailing pad pulls the pad, peeling it off the

surface,

f) the horizontal motor moves the trailing pad across the surface to the

new position,

g) the vertical motor of the trailing pad pushes the pad and re-attaches it

to the surface, completing one step of the robot.

In the locomotion sequence of the two-padded robot, each pad of the robot

can be:

 detaching, because a vertical motor is peeling off the pad from the

surface,

 detached and hanging freely without contact with the surface,

 moving across the surface, because the horizontal motor is moving

the pad toward a new position,

 moving towards or away from the surface, following the motion of a

vertical motor, and

 attaching to the surface, because a vertical motor is preloading the

pad against the surface.

7.4.1 Stability when the pad is detaching from the surface

In this scenario, the pad is initially attached to the surface and the vertical

motor applies a force to the edge of the pad in order to detach it. Figure 138

shows this scenario in the locomotion sequence of the two-padded robot.
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Figure 138. Force and moment on the pads of the robot when one pad is detaching
from the surface. The force shown on the sketch is the force applied at the bottom of
the detaching pad by the right vertical motor. The moment shown on the sketch is the

moment felt at the top of the supporting pad.

Figure 138 shows the force applied by the vertical motor to the edge of the

moving pad and the resulting moment on the supporting pad. The supporting

pad of the robot is the only critical pad and it is considered that there is no

default moment applied to the supporting pad. In order to keep the

supporting pad attached to the surface, the stability margin of the robot is:

∆ ܵ = −ௗ௧ܯ ܯ > 0 ( 86 )

Where ܯ is the moment applied to the supporting pad and ௗ௧ܯ is the

peeling moment of the supporting pad.

The peeling moment of the supporting pad, obtained with the peeling model

of the pad (see Chapter 6 Equation ( 68 )), is:

ௗ௧ܯ = ඥߩ ( 87 )

The moment on the supporting pad caused by the force on the moving pad

is:

ܯ = ܨ ∙ ଵଶݔ ( 88 )

Where ܯ is the moment on the supporting pad, ܨ is the force from the

vertical motor, and ଵଶݔ is the separation between the pads of the robot.

The force from the vertical motor: ܨ is the force to peel off the pad and is

defined by the peeling model (see Chapter 6 Equation ( 55 )) as:

ܨ =
ඥ2 ∙ ߩ

ܮ ( 89 )

Where ܮ is the length of the pad and ߩ is defined by the peeling model as:

=ߩ ܧ ∙ ∙ܫ ܹ ௗ ∙ ܾ (see Chapter 6 Equation ( 53 )). The constant ߩ depends
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on the Young’s modulus of the pad: ,ܧ the area moment of inertia of the pad:

,ܫ the work of adhesion: ܹ ௗ and the cross section of the pad: .ܾ

Thus, in order to keep the supporting pad attached to the surface, this

condition is obtained:

ଵଶݔ <
ܮ

√2 ( 90 )

Where ଵଶݔ is the distance between the two pads of the robot and ܮ is the

length of the pad.

7.4.2 Stability when the pad is detached

In this scenario, the pad is fully detached from the surface and the

supporting pad withstands the moment caused by the weight of the

detached pad. Figure 139 shows this scenario in the locomotion sequence of

the two-padded robot.
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Figure 139. Force and moment on the pads of the robot when one pad is detached
from the surface.

In order to keep the supporting pad attached to the surface, the stability

margin of the robot is:

∆ ܵ = −ௗ௧ܯ ܯ > 0 ( 91 )

Where ܯ is the moment applied to the supporting pad and ௗ௧ܯ is the

peeling moment of the supporting pad.

The peeling moment of the supporting pad, obtained with the peeling model

of the pad, is:

ௗ௧ܯ = ඥߩ ( 92 )
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The moment on the supporting pad caused by the weight of the detached

pad is:

ܯ =
݉

2
∙ ݃ ∙ ଵଶݔ ( 93 )

Where ݉ is the total mass of the robot,


ଶ
∙ ݃ is the weight of the detached

pad, assuming even mass distribution, and ଵଶݔ is the distance between the

pads.

Thus, in order to keep the supporting pad attached to the surface, this

condition is obtained:

݉ <
2 ∙ ඥߩ

݃ ∙ ଵଶݔ
( 94 )

Where ݉ is the total mass of the robot and ଵଶݔ is the distance between the

pads of the robot.

7.4.3 Stability when the pad moves across the surface

In this scenario, the pad is detached and the horizontal motor is moving the

pad to a new position across the surface. The weight of the detached pad

and the motion of the pad across the surface cause a moment on the

supporting pad. Figure 140 shows this scenario in the locomotion sequence

of the two-padded robot.
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Figure 140. Force and moment on the pads of the robot when the horizontal motor is
moving the pad across the surface.

In order to keep the supporting pad attached to the surface, the stability

margin of the robot is:

∆ ܵ = −ௗ௧ܯ ܯ > 0 ( 95 )
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Where ܯ is the moment applied to the supporting pad and ௗ௧ܯ is the

peeling moment of the supporting pad.

The peeling moment of the supporting pad, obtained with the peeling model

of the pad, is:

ௗ௧ܯ = ඥߩ ( 96 )

In Figure 140, the moment on the supporting pad caused by the weight of

the pad and the horizontal motion of the pad is:

ܯ =
݉

2
∙ (݃ ∙ ଵଶݔ + ܽ ∙ (ݖ

( 97 )

Where ݉ is the total mass of the robot,


ଶ
∙ ݃ is the weight of the detached

pad and ଵଶݔ is the distance between the pads. The horizontal acceleration of

the pad caused by the horizontal motor is ܽ, and ݖ is the distance between

the surface and the horizontal motor.

The direction of the horizontal acceleration on the pad: ܽ and the

corresponding moment on the supporting pad: ܯ are determined by the

direction of motion of the horizontal motor. The horizontal motor can move

forward causing an acceleration: ܽ > 0 or backward, causing an

acceleration: ܽ < 0.

For forward motion of the pad: ܽ > 0, in order to keep the supporting pad

attached to the surface, this condition is obtained:

ܽ <
1

ݖ
∙ (

2 ∙ ඥߩ

݉
− ݃ ∙ (ଵଶݔ ( 98 )

For backward motion of the pad: ܽ < 0, in order to keep the supporting pad

attached to the surface, this condition is obtained:

ܽ >
1

ݖ
∙ (݃ ∙ −ଵଶݔ

2 ∙ ඥߩ

݉
) ( 99 )

In Equations ( 98 ) and ( 99 ): ܽ is the horizontal acceleration of the pad, ݖ

is the distance between the surface and the horizontal motor, ݉ is the total

mass of the robot and ଵଶݔ is the distance between the pads.

If the pad moves at a constant velocity: ܽ = 0, Equations ( 98 ) and ( 99 )

are equivalent to Equation ( 94 ), when the pad is detached from the surface

without moving.



- 208 -

7.4.4 Stability when the pad moves toward or away from the

surface

In this scenario, the pad is detached and the vertical motor is moving the

pad toward or away from the surface. The weight of the detached pad and

the vertical motion of the pad cause a moment on the supporting pad. The

vertical motor of the pad is either separating the pad from the surface after

detachment or moving the pad back to the surface when the pad has

reached the new position across the surface. Figure 141 shows this scenario

in the locomotion sequence when the pad moves toward or away from the

surface.
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Figure 141. Force and moment on the pads of the robot when the vertical motor is
moving the pad toward or away from the surface.

In order to keep the supporting pad attached to the surface, the stability

margin of the robot is:

∆ ܵ = −ௗ௧ܯ ܯ > 0 ( 100 )

Where ܯ is the moment applied to the supporting pad and ௗ௧ܯ is the

peeling moment of the supporting pad.

The peeling moment of the supporting pad, obtained with the peeling model

of the pad, is:

ௗ௧ܯ = ඥߩ ( 101 )

In Figure 140, the moment on the supporting pad caused by the weight of

the pad and the vertical motion of the pad is:

ܯ =
݉

2
∙ (݃+ ௩ܽ) ∙ ଵଶݔ ( 102 )
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Where ݉ is the total mass of the robot,


ଶ
∙ ݃ is the weight of the detached

pad, ଵଶݔ is the distance between the pads and the vertical acceleration of the

pad caused by the horizontal motor is ௩ܽ.

The direction of the vertical acceleration on the pad: ௩ܽ and the

corresponding moment on the supporting pad: ܯ are determined by the

direction of motion of the vertical motor. The vertical motor can move

upward, causing a vertical acceleration: ௩ܽ > 0 or downward, causing a

vertical acceleration: ௩ܽ < 0.

For upward motion of the pad: ௩ܽ > 0, in order to keep the supporting pad

attached to the surface, this condition is obtained:

௩ܽ <
2 ∙ ඥߩ

݉ ∙ ଵଶݔ
− ݃ ( 103 )

For downward motion of the pad: ௩ܽ < 0, in order to keep the supporting pad

attached to the surface, this condition is obtained:

௩ܽ > ݃−
2 ∙ ඥߩ

݉ ∙ ଵଶݔ
( 104 )

In Equations ( 103 ) and ( 104 ): ௩ܽ is the vertical acceleration of the pad, ݉

is the total mass of the robot and ଵଶݔ is the distance between the pads.

If the pad moves at a constant velocity: ௩ܽ = 0, Equations ( 103 ) and ( 104 )

are equivalent to Equation ( 94 ), when the pad is detached from the surface

without moving.

7.4.5 Stability when the pad is attaching to the surface

In this scenario, there is contact between the pad and the surface, and the

vertical motor is preloading the pad in order to re-attach it to the surface.

There is still no adhesion between the pad and the surface so the weight of

the pad causes a moment on the supporting pad. The preload applied by the

vertical motor, pushing the pad into the surface, also causes a moment on

the supporting pad. Figure 142 shows this scenario in the locomotion

sequence of the two-padded robot when the pad is attaching to the surface.
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Figure 142. Force and moment on the pads of the robot when the vertical motor is
preloading the pad in order to re-attach it to the surface.

In order to keep the supporting pad attached to the surface, the stability

margin of the robot is:

∆ ܵ = −ௗ௧ܯ ܯ > 0 ( 105 )

Where ܯ is the moment applied to the supporting pad and ௗ௧ܯ is the

peeling moment of the supporting pad.

The peeling moment of the supporting pad, obtained with the peeling model

of the pad, is:

ௗ௧ܯ = ඥߩ ( 106 )

In Figure 140, the moment on the supporting pad caused by the weight of

the pad and the preload is:

ܯ = (ܲ+
݉

2
∙ ݃) ∙ ଵଶݔ ( 107 )

Where ݉ is the total mass of the robot,


ଶ
∙ ݃ is the weight of the pad, ଵଶݔ is

the distance between the pads and ܲ is the preload.

Thus, in order to keep the supporting pad attached to the surface, this

condition is obtained:

݉ <
2

݃
∙ (
ඥߩ

ଵଶݔ
− ܲ) ( 108 )

If there is no preload: ܲ = 0, Equation ( 108 ) is equivalent to Equation ( 94 )

when the pad is detached. The upper limit of mass obtained with Equation (

108 ) is more restrictive than the upper limit of mass obtained with Equation (

94 ) when the pad is detached.
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Equation ( 108 ) also enables to determine the maximum preload that the

vertical motor can apply to the pad without detaching the supporting pad. In

order not to detach the supporting pad, the preload is:

ܲ <
ඥߩ

ଵଶݔ
( 109 )

Where ܲ is the preload applied to the pad and ଵଶݔ is the distance between

the pads.

7.4.6 Design parameters for stable locomotion of the two-

padded robot

The application of the stability criterion to the five scenarios in the

locomotion sequence of the two-padded robot results in this system of

inequalities:

ଵଶݔ <
ܮ

√2 ( 110 )

݉ <
2

݃
∙ (
ඥߩ

ଵଶݔ
− ܲ) ( 111 )

ܲ <
ඥߩ

ଵଶݔ
( 112 )

ܽ <
1

ݖ
∙ (

2 ∙ ඥߩ

݉
− ݃ ∙ (ଵଶݔ ( 113 )

ܽ >
1

ݖ
∙ (݃ ∙ −ଵଶݔ

2 ∙ ඥߩ

݉
) ( 114 )

௩ܽ <
2 ∙ ඥߩ

݉ ∙ ଵଶݔ
− ݃ ( 115 )

௩ܽ > ݃−
2 ∙ ඥߩ

݉ ∙ ଵଶݔ
( 116 )

This system of inequalities defines the limits of the design parameters of the

robot:

 the length of the pad: ,ܮ the distance between the pads of the robot:

ଵଶݔ and the distance between the surface and the horizontal motor: ,ݖ

 the mass of the robot: ݉ ,

 the horizontal acceleration that the motors can apply to the pad: ܽ,

 the vertical acceleration that the motors can apply to the pad: ௩ܽ, and

 the preload that the vertical motors can apply to the pad: ܲ.

The method to calculate the limits of the design parameters of a two-padded

robot is schematically shown in Figure 143.
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Figure 143. Calculation of the design parameters for a two-padded robot.

The calculation of the design parameters of the two-padded robot shown in

Figure 143 starts with the length of the pad: .ܮ The length of the pad: ܮ is

given by the size of the adhesive pad required to support the weight of the

robot. For a specific value of ,ܮ a value of the distance between the pads of

the robot: ଵଶݔ is chosen, within the limit given by Equation ( 110 ).

The value of distance between the pads determines the maximum mass of

the robot: ݉ , given by Equation ( 111 ). The value of preload: ܲ in Equation (

111 ) is known for a specific adhesive pad and should not exceed the

maximum given by Equation ( 112 ).

The distance between the surface and the horizontal link: ݖ is also chosen

for the specific design of the robot. Knowing the distance between the

surface and the horizontal link: ,ݖ the limits of the acceleration applied to the

pad by the motors can be calculated. Depending on the direction of motion,

the limits of horizontal and vertical acceleration: ܽ and ௩ܽ, are calculated

with Equations ( 113 )-( 116 ).

Most design parameters are fixed by the design and components of the

robot; these parameters are: the length of the pad: ,ܮ the mass of the robot:

݉ , the maximum acceleration of the motors: ܽ and ௩ܽ, and the preload of

the pad: ܲ.

However, some other design parameters can change within a range during

the motion of the robot; these parameters are the distance between the pads

of the robot: ଵଶݔ and the distance between the surface and the horizontal

motor: .ݖ The distance between the pads of the robot is controlled by the

horizontal motor, so Equation ( 110 ) determines the maximum separation of

the pads within the range of motion of the horizontal motor. The distance

between the surface and the horizontal motor is controlled by the vertical

motors. Thus, the value of ݖ chosen for Equation ( 113 ) is the maximum

vertical distance within the range of motion of the vertical motor. The value
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of ݖ chosen for Equation ( 114 ) is the minimum vertical distance within the

range of motion of the vertical motor.

During the locomotion sequence of the robot, perturbations can occur

applying unexpected force and moment to the pads. If the value of the

perturbations is measured, the previous equations can calculate the stability

margin of the robot considering the perturbations. If an unstable state is

detected, the controller of the robot can react against the perturbation

bringing the robot back to a stable state.

7.4.7 Design parameters of a two-padded robot using the bio-

mimetic adhesive pads

In this section, the previous method to calculate the design parameters of a

two-padded robot is applied to a robot using the bio-mimetic adhesive pads.

The calculations in this section give a sense of the order of magnitude of the

design parameters for a robot using the bio-mimetic adhesive pads.

The dimensions of the bio-mimetic pad are: ܮ ∙ ܾ ∙ =ݐ 1�ܿ݉ ∙ 1�ܿ݉ ∙ 0.1�ܿ݉

(Length x width x thickness) and the value of the constant ߩ is =ߩ

1,444�݉ ܰଶܿ݉ ଶ.

If the length of the bio-mimetic adhesive pad is =ܮ 1�ܿ݉ , the distance

between the pads is ଵଶݔ < 0.71�ܿ݉ . Choosing a distance between the

vertical motors of ଵଶݔ = 0.7�ܿ݉ , the preload of the pad is ܲ < 55�݉ ܰ .

Considering that a preload of ܲ = 10�݉ ܰ provides the maximum adhesion

force available from the pad [10], the total mass of the robot is ݉ <

9.2�݃ ݎܽ ݉ ݉ .ݏ݁ If no preload was required to attach the pad, the maximum

mass of the robot would increase 20%, up to ݉ < 11.1�݃ ݎܽ ݉ ݉ .ݏ݁ For a

mass of the robot of ݉ = 9�݃ ݎܽ ݉ ݉ ,ݏ݁ the weight of the robot is ௧ݓ =

90�݉ ܰ which is around 64 times the weight of the pad.

A distance between the surface and the horizontal motor of =ݖ 2�ܿ݉ is

chosen. Thus, the acceleration from the motors must be −0.8


௦మ
< ܽ <

0.8


௦మ
in the horizontal direction and −2



௦మ
< ௩ܽ < 2



௦మ
in the vertical

direction.
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In order to follow the locomotion sequence of the robot, the motors need to

exert a force of:

 ܨ =
ඥଶ∙ఘ


in order to detach the pad,

 ܨ = ݉ ∙ ܽ to move the pad horizontally,

 ܨ = ݉ ∙ ௩ܽ to move the pad vertically, and

 ܲ to preload the pad and re-attach it to the surface.

Therefore, the maximum of the previous forces determines the maximum

force required from the motors:

ܨ ௫ = max(
ඥ2 ∙ ߩ

ܮ
,
݉

2
∙ max(| ܽ|) ,

݉

2
∙ max(| ௩ܽ|) ,ܲ) ( 117 )

For the bio-mimetic adhesive pads, the value of maximum force required

form the motors is: ܨ ௫ = 54�݉ ܰ .

7.5 Stability analysis of a four-padded robot taking one
step

This section considers a robot with four adhesive pads in order to illustrate

the stability analysis during the locomotion sequence of the robot using the

stability criterion defined in Equation ( 85 ). Figure 144 shows the locomotion

sequence for one step of the four-padded robot considered for this stability

analysis.

Figure 144. (a-e) Locomotion sequence of a four-padded robot.

For the locomotion sequence in Figure 144, six regions of the surface are

considered: A1, A2, B1, B2, C1 and C2, each of these regions provide a
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different value of adhesion. In Figure 144, the steps of the locomotion

sequence are:

a) the four pads are initially attached to the surface: pad 1 is attached to

region B1, pad 2 is attached to region B2, pad 3 is attached to region

A2 and pad 4 is attached to region A1;

b) pad 1 moves to region C1;

c) pad 2 moves to region C2;

d) pad 3 moves to region B1;

e) pad 4 moves to region B2.

The motion of each pad in Figure 144 requires detaching the pad, moving

the pad across to the new region and re-attaching the pad to the new region.

The pads are detached by applying a force to the edge of the pad and it is

assumed that the force required to peel off the pads is known for each

region of the surface. For the sake of simplicity, it is also assumed that the

motion of one pad has no effect on the adhesion of the other pads. As

proved experimentally, the number of critical pads for this four-padded robot

is three, so the locomotion of the robot is unstable if more than one pad are

detached.

Figure 145 shows a time diagram of a theoretical simulation of the force

applied to the pads of the robot in order to follow the locomotion sequence.

Figure 145 also shows how the detachment margin of each pad and the

stability margin of the robot change during the locomotion sequence.

In Figure 145, the steps for moving one pad of the robot within the

locomotion sequence are:

a) initially the four pads are attached to the surface, there is no force

applied by the motors to the pads and the stability margin of the robot

(∆ ܵ௧) is at the “4 pads attached” level at the bottom diagram of

Figure 145;

b) the motor applies force to the pad in order to detach it, the force on

pad 1 increases from zero to above the detachment force: ,ௗ௧ଵܨ the

detachment margin of the pad (ௗଵܦ∆) decreases accordingly and

the stability margin of the robot drops from the “four pads attached”

level to the “3 pads attached” level;

c) the pad moves to the new position: when the pad detaches the force

applied on the pad drops to zero and stays at zero during the motion

of the pad, the stability margin of the robot stays at the “3 pads

attached level”;

d) the motor preloads the pad in order to re-attach it: the force applied to

the pad increases from zero to the value of preload: ଵܲ, the

detachment margin of the pad increases accordingly and the stability

margin of the robot returns to the “4 pads attached” level;
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e) waiting for the next pad: the controller of the robot waits for the next

pad in the locomotion sequence to be ready;

the previous sequence is repeated for the rest of the pads of the robot.
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3padF
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Figure 145. Theoretical simulation of the force applied to the pads, detachment
margin of the pads and the stability margin of the robot during the locomotion

sequence of the four-padded robot.

In the theoretical simulation of Figure 145, the stability margin of the robot

does not drop to the “2 pads attached” level and thus, the locomotion

sequence of the robot is stable. The stability margin of the robot follows the

detachment margin of the pads because, for the sake of simplicity,

detachment of each pad is considered to have no effect on the supporting

pads.
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However, in the locomotion mechanism of the robot, the motors apply force

and moment to the supporting pads when detaching, moving or re-attaching

one pad. Therefore, the stability margin of the robot changes during the

locomotion sequence depending on the force and moment applied to the

moving pad and the supporting pads. The motors of the supporting pads can

be actuated in order to cancel the force and moment on the supporting pads

and thus, increase the stability margin of the robot. The way the motors can

be actuated in order to control and enhance the stability of the robot is the

subject of study in Chapter 8.

7.6 Discussion and conclusion

After reviewing the stability criteria traditionally used for walking robots, this

chapter proposed a new approach to measuring the stability of a robot in

inverted adhesion-reliant locomotion based on observation of the locomotion

sequence of the prototype. The stability criterion proposes that for a robot

relying on a number of adhesive pads in order to stay attached to the

support surface, stability is determined by how close to detachment the

adhesive pads are.

The formulation of the model assumes that the value of force or moment that

causes detachment of the pad is known; this value of detachment force or

moment can be predicted using the peeling model proposed in Chapter 6.

The stability criterion compares this detachment value to the force or

moment applied to the pad by the robot in order to calculate the stability

margin of the individual pads and of the whole locomotion mechanism. The

usefulness of the proposed stability criterion is proved by observation of the

locomotion sequence of the robot, whose performance is determined by

whether a sufficient number of pads is attached to the surface and by the

strength of the adhesive force.

7.7 Summary

In this chapter, the stability criteria currently available for walking robots was

briefly reviewed showing the gap of knowledge in defining stability for

adhesion-reliant robots walking upside-down. Considering the context of the

intra-abdominal robot, this chapter proposes a new stability criterion for

adhesion-reliant robots walking upside-down. This new stability criterion is

based on the role of the adhesive pads within the locomotion sequence and

on how close to detachment the pads are. The peeling model presented in
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the previous chapter is used in order to determine how close to detachment

the pads are.

The pads of the robot can be either moving or supporting the motion of the

robot. The supporting pads of the robot are critical if the robot cannot carry

on walking when these pads detach. The detachment margin of the pad

measures the difference between the force and moment applied to the pad

and the force and moment required to peel off the pad. The stability margin

of the robot is defined as the product of the detachment margin of the critical

supporting pads. When one of the critical pads detaches, the detachment

margin of the pad becomes zero and the robot stops walking.

In order to illustrate the application of the stability criterion, the design

parameters of a two-padded robot are analysed by applying the stability

criterion to each scenario of the locomotion sequence of the robot. In this

way, the stability criterion enables to calculate: the limit of the size and mass

of the two-padded robot, the maximum preload of the pad and the limit of

acceleration from the motors. The equations of these design parameters are

applied to the bio-mimetic adhesive pad.

In order to illustrate the application of the stability criterion during locomotion,

the stability of a four-padded robot taking one step is analysed using the

stability criterion. This stability analysis shows how the detachment margin of

the pads and the stability margin of the robot changes when the pads are

detached and re-attached during the locomotion sequence of the robot.
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Chapter 8
Control strategies for adhesion-reliant robots

8.1 Introduction

In the previous chapter, a stability criterion for adhesion-reliant robots was

presented enabling the prediction and detection of an unstable state of the

robot during the locomotion sequence. This stability criterion was defined in

terms of how many pads the robot requires to follow the locomotion

sequence and how close to detachment those pads are. In the definition of

the stability margin of the robot, the peeling model presented in Chapter 6 is

used in order to determine how close to detachment the pads are.

This chapter defines control strategies for adhesion-reliant robots in order to

increase the stability margin of the robot by controlling the force and moment

that cause detachment of the pads. The chapter begins by defining a

stiffness model of the soft pad backing the adhesive surface of the robot.

Then, the forces and moments on the locomotion mechanism are analysed

when the vertical and horizontal motors of the robot are actuated in a

configuration with two and three pads. The chapter explains how the

analysis of a robot with three pads can be used in order to analyse the force

and moment in a robot with four pads. After that, the chapter suggests some

configurations of the robot with more than four pads and summarises the

contents of the chapter in the last section.

8.2 Stiffness model of the soft adhesive pad and the
tissue

This section presents a model of the soft pad used for the attachment of the

robot. The soft pad is composed of the adhesive surface, making contact

with the attachment surface, and a layer of soft material, backing the

adhesive surface.

8.2.1 Advantages of using a soft pad to attach to tissue

The use of a soft backing layer for the adhesive pad has proved to be

beneficial for the locomotion of the robot. The soft backing layer helps the

adhesive surface make full contact with the attachment surface and makes

detachment and re-attachment of the pads smoother.
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In the application of the intra-abdominal robot a soft pad causes less tissue

damage than a hard pad by moulding to the surface of the tissue. A hard

pad causes a deeper indentation on the tissue in order to make full contact

with the surface of the tissue. Figure 146a shows a sketch of the soft pad

making contact with tissue and Figure 146b shows a hard pad making

contact with tissue.

Figure 146. (a) Soft pad making contact with tissue and (b) hard pad making contact
with tissue.

The tissue is also soft and the force and moment applied by the motors

stretch and compress the pads in contact with tissue in order to detach or re-

attach the pads. The stiffness of the pads in contact with tissue determines

how the locomotion mechanism shifts with respect to the attachment

surface.

8.2.2 Reference surface for the stretch and compression of

the pad and tissue

In order to measure the shift caused by stretching and compressing the pad

and the tissue, the reference surface is the surface of the abdominal wall at

rest. This reference is equivalent to the surface of the cantilever used in

order to measure the adhesion force in an indentation experiment with a

MUST rig (see Chapter 6 Section 6.4.1). Figure 147 shows how the force

applied to the pad and tissue relates to the bending of the cantilever in an

indentation test and the stretching of the abdominal wall. Figure 147a shows

the force-displacement graph obtained in an indentation test of the adhesive

pad. Figure 147b shows the pad and tissue in the set-up for an indentation

test and Figure 147c shows the pad and tissue inside the abdominal cavity.
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Figure 147. (a) Force-displacement graph from an indentation test of the adhesive
pad, (b) pad and tissue on the force sensor for the indentation test, and (c) pad and

tissue on the abdominal wall.

8.2.3 Stiffness model of the pad attached to tissue in the

vertical direction and the horizontal plane

The pad attached to the tissue is modelled as a link element between the

robot and the reference surface at the abdominal wall. The model for this link

element is composed of:

 a linear spring, stretching or compressing along the vertical direction,

perpendicular to the surface of the tissue, and

 a torsion spring, bending along the two directions of the horizontal

plane, parallel to the surface of the tissue.

More complex models can be used in order to describe tissue mechanics

[11] and the mechanics of soft materials like the foam used for the pads. The

springs model presented here simplifies calculations whilst still allowing

relevant conclusions to be drawn. Figure 148 shows the model of the pad

and tissue together with the force and moment that the motors of the robot

apply to the pad. Figure 148a shows the linear spring modelling the stiffness

of the pad and tissue in the vertical direction. Figure 148b shows the torsion

springs modelling the stiffness of the pad in the horizontal plane.

The model of the soft pad and tissue assumes that there is no shearing force

applied on the pad (force in the X and Y direction in Figure 148a) and there

is no twisting moment applied to the pad (moment around the Z direction in

Figure 148b). The softness of the pad and tissue allows stretching along the

vertical direction and bending in the horizontal plane. As shown in Figure

148, the force and moment applied to the pad attached to tissue are:

௭ܨ = ௧ܭ ∙ ݖ∆ ( 118 )

௫ܯ = ܭ
்

௫ ∙ ௫ߠ∆ ( 119 )

௬ܯ = ܭ
்

௬
∙ ௬ߠ∆ ( 120 )
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In Equation ( 118 ), ௭ܨ is the vertical force applied to the pad, ௧ܭ is the

stiffness of the pad attached to tissue in the vertical direction (ܼ direction),

and ݖ∆ is the stretch (extension) of the pad. The stiffness of the pad and

tissue ௧ܭ can be tension or compression stiffness depending on the

direction of the force ,௭ܨ thus ݖ∆ can be a stretch or a compression of the

pad attached to tissue.

In Equation ( 119 ), ௫ܯ is the moment applied to the pad along the ܺ
direction of the horizontal plane , ܭ

்

௫ is the torsional stiffness of the pad

attached to tissue, and ௫ߠ∆ is the bending angle.

In Equation ( 120 ): ௬ܯ is the moment applied to the pad along the ܻ

direction of the horizontal plane, ܭ
்

௬
is the torsional stiffness of the pad and

tissue, and ௬ߠ∆ the bending angle.

Figure 148. (a) Model of the soft pad and tissue as a linear spring in the vertical
direction; Fz is the vertical force applied to the pad. (b) Model of the soft pad and
tissue as two torsion springs in the horizontal plane; Mx and My are the moments

applied around the two directions of the horizontal plane.

In Equations ( 118 ), ( 119 ) and ( 120 ), the stiffness of the soft pad attached
to tissue: ,௧ܭ ܭ

்

௫ and ܭ
்

௬
, are a combination of the stiffness of the pad and

the stiffness of the tissue. The stiffness of the soft pad is in series with the

stiffness of the tissue because they both feel the same force and the same

moment from the motors. Figure 149a shows the soft pad attached to the

tissue as well as the reference surface. Figure 149b shows two springs in

series modelling the stiffness of the soft pad in series with the stiffness of the

tissue along the vertical direction. Figure 149c shows two torsion springs in

series modelling the torsional stiffness of the soft pad in series with the

torsional stiffness of the tissue in the horizontal plane.
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Figure 149. (a) Soft pad attached to the tissue, (b) linear springs modelling the
stiffness of the pad and the tissue in the vertical direction, (c) torsion springs

modelling the stiffness of the pad and the tissue in the horizontal plane.

In the vertical direction, shown in Figure 149b, the equivalent stiffness of the

pad attached to the tissue is:

௧ܭ =
௧ܭ ∙ ܭ

+௧ܭ ܭ ( 121 )

Where ௧ܭ is the stiffness of the pad attached to tissue, ௧ܭ is the stiffness of

the tissue and ܭ is the stiffness of the pad. If the elastic properties of the

material of the pad and the tissue are known, the stiffness of the pad or the

tissue is:

௭ܭ =
ܧ ∙ ܣ

ℎ ( 122 )

Where ௭ܭ is the stiffness of the material (pad or tissue) along the vertical

direction (ܼ direction), ܧ is Young’s modulus of the material, ܣ is the cross

section and ℎ is the thickness.
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In the horizontal plane shown in Figure 149c, the equivalent torsional

stiffness of the pad attached to the tissue is:

ܭ
்

=
ܭ

்
∙ ܭ

்

ܭ
்

+ ܭ
்

( 123 )

Where ܭ
்

is the torsional stiffness of the pad attached to the tissue, ܭ
்

is

the torsional stiffness of the tissue and ܭ
்

is the torsional stiffness of the

pad. In Figure 149c, only the torsional stiffness along the Y direction in the

horizontal plane is shown; the torsional stiffness model along the X direction

is the same as along the Y direction.

8.3 Force and moment in the locomotion mechanism of a
two-padded robot

A robot with two pads is the simplest design for an adhesion-reliant walking

robot, using one pad to support the motion of the other pad and alternating

the motion of the two pads. Using the previous model of the soft pad

attached to tissue, this section analyses the force and moment in a two-

padded robot when the motors of the robot detach one pad.

8.3.1 Locomotion mechanism of a two-padded robot

The locomotion mechanism of a two-padded robot is composed of two pads

and three motors:

 one linear motor to move the first adhesive pad in the vertical

direction, controlling the distance between the first pad and the

reference surface;

 one linear motor to move the second adhesive pad in the vertical

direction, controlling the distance between the second pad and the

reference surface;

 one linear motor between the two pads, controlling the separation

between the pads.

Figure 150a shows a sketch of the locomotion mechanism of a two-padded

robot and the distance controlled by each motor. In Figure 150a: ଵݖ is the

distance controlled by the first vertical motor, ଶݖ is the distance controlled by

the second vertical motor and ଵଶݔ is the distance controlled by the horizontal

motor. Figure 150b shows the model of the soft pad attached to tissue in the

vertical direction and Figure 150c shows the model of the soft pad attached

to tissue in the horizontal plane.
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Figure 150. (a) Sketch of a two-padded robot, (b) model of the soft pad attached to
tissue in the vertical direction and (c) model of the soft pad attached to tissue in the

horizontal plane.

In Figure 150a and Figure 150b, the vertical motor causes an increment of

the distance between the pads and the reference surface: ଵݖ߂ and .ଶݖ߂ This

increment of distance: ଵݖ߂ and ଶݖ߂ is negative >ݖ∆) 0) when the motor is

stretching the pad, and positive <ݖ∆) 0) when the motor is pressing the pad

against the tissue. The direction of force applied to the pad corresponding to

the sign of ଵݖ߂ and ଶݖ߂ is also shown in Figure 150b.

In Figure 150a and Figure 150c, the horizontal motor causes an increment of

the angle between the vertical motors and the vertical: ଵߠ∆ and .ଶߠ∆ This

increment of angle with respect to the vertical: ߠ∆ is considered negative

ߠ∆) < 0) when the motor is separating the pads, and positive <ߠ∆) 0) when

the motor is pulling the pads together. The direction of moment applied to

the pad corresponding to the sign of ଵߠ∆ and ଶߠ∆ is also shown in Figure

150c.

8.3.2 Vertical force on the moving pad

When the vertical motor stretches the pad: >ݖ∆ 0, the distance between the

pad attached to the tissue and the reference is shortened and the supporting

pad feels this stretch as a compression force. When the vertical motor

compresses the pad: <ݖ∆ 0, the distance between the pad attached to the

tissue and the reference surface is lengthened and the supporting pad feels
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this compression as a pull force. The vertical force applied to the moving pad

causes force and moment on the supporting pad.

Figure 151a shows the force on the free body diagram of the moving pad

and the supporting pad when a detach force and a preload are applied to the

moving pad. Figure 151b shows the moment on the free body diagram of the

moving pad and the supporting pad when a detach force and a preload are

applied to the moving pad.
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Figure 151. (a) Free body diagram of the force on the supporting pad and the
detaching pad when vertical force is applied to the moving pad, and (b) free body

diagram of the moment on the supporting pad and the detaching pad when vertical
force is applied to the moving pad.

All the forces in Figure 151a are the same value, which is the force applied

by the motor on the pad:

ଶܨ = ௧ܭ ∙ ଶݖ∆ ( 124 )

Where ௧ܭ is the stiffness of the moving pad attached to the tissue and ଶݖ∆ is

the stretch of the moving pad caused by the motor. The stiffness of the pad

attached to the tissue: ௧ܭ can be tension or compression stiffness

depending on the sign of .ଶݖ∆
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All the moments in Figure 151b are the same value:

ଶܯ = ଶܨ ∙ ଵଶݔ ( 125 )

Where ଶܨ is the force applied by the motor and ଵଶݔ is the distance between

the pads.

If the torsional stiffness of the pad is known, the moment can also be

calculated as:

ଶܯ = ܭ
்
∙ ଶߠ∆ ( 126 )

Where ܭ
்

is the torsional stiffness of the pad attached to the tissue and ଶߠ∆

is the bending angle of the supporting pad caused by the force applied to the

moving pad.

The angle ଶߠ∆ is small because the stretch ଶݖ∆ is small and therefore:

ଶߠ∆ ≈
ଶݖ∆
ܴ ( 127 )

Where ଶߠ∆ is the bending angle of the supporting pad, ଶݖ∆ is the stretch of

the moving pad and ܴ is the distance between the supporting pad and the

vertical motor of the moving pad.

The distance ܴ is:

ܴ = ටݖଶ
ଶ + ଵଶଶݔ ( 128 )

Where ଶݖ is the distance from the reference surface to the vertical motor of

the supporting pad and ଵଶݔ the separation between the pads (see Figure

150).

8.3.3 Vertical force on the supporting pad

When the vertical motor of the supporting pad is actuated in the same

direction as the motor of the moving pad, peeling of the moving pad is

cancelled. In that case, the two vertical motors move simultaneously, moving

the horizontal motor between the pads upward or downward depending on

the direction of motion.

However, when the vertical motor of the supporting pad is actuated in the

direction opposite to the motor of the moving pad, the peeling or preloading

of the moving pad intensifies. Figure 152a shows the force on the free body

diagram of the moving pad and the supporting pad when the vertical motor

of the supporting pad is actuated. Figure 152b shows the moment on the

free body diagram of the moving pad and the supporting pad when the

vertical motor of the supporting pad is actuated.
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Figure 152. Free body diagram of the forces (a) and moments (b) in a two-padded
robot when the vertical motor of the supporting pad is actuated.

All the forces in Figure 152a are the same value, which is the force applied

by the vertical motor:

ଵܨ = ௧ܭ ∙ ଵݖ∆ ( 129 )

Where ௧ܭ is the stiffness of the supporting pad attached to the tissue and

ଵݖ∆ is the stretch of the supporting pad caused by the motor. The stiffness of

the pad attached to the tissue: ௧ܭ can be tension or compression stiffness

depending on the sign of .ଵݖ∆

All the moments in Figure 151b are the same value:

ଵܯ = ଵܨ ∙ ଵଶݔ ( 130 )

Where ܨ is the force applied by the motor and ଵଶݔ is the distance between

the pads.

8.3.4 Horizontal force between the pads

When the horizontal motor is actuated, the distance between the pads

increases or decreases, depending on the direction of actuation of the

motor, causing the pads to bend. This bend on the supporting and the

moving pad causes a moment on the pad which can help preloading or

detaching the adhesive surface of the pads.
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Figure 153a shows the two torsion springs modelling the supporting and the

moving pad in the horizontal plane. Figure 153a also shows the angle on the

torsion springs caused by the increment and decrement of distance between

the pads when the horizontal motor is actuated. Figure 153b shows the

moment on the free body diagram of the moving pad and the supporting pad

when the horizontal motor is actuated.
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Figure 153. (a) Torsion springs modelling the moving pad and the supporting pad and
(b) free body diagram of the moment on the supporting pad and the detaching pad

when the horizontal motor is actuated.

In Figure 153a, when the horizontal motor shortens the distance between

the pads: ଵଶݔ∆ < 0, the pads are pulled together; when the horizontal motor

lengthens the distance between the pads: ଵଶݔ∆ > 0, the pads are pushed

apart. The increment of distance between the pads is small and therefore

the bending angle of the pads is:

ଵߠ∆ = ଶߠ∆ =
ଵଶݔ∆

2 ∙ ଵଶݔ ( 131 )

Where ଵଶݔ∆ is the increment of distance between the pads caused by the

horizontal motor and ଵଶݔ is the initial separation between the pads.
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The moment caused by actuating the horizontal motor between the pads is:

ଵଶܯ = ଵଶܨ ∙ ଵଶݖ ( 132 )

Where ଵଶܨ is the force from the horizontal motor and ଵଶݖ is the vertical

distance from the reference surface to the horizontal motor.

8.3.5 Control strategies for a two-padded robot

Considering the previous analysis of force and moment in the two-padded

robot, when the vertical motor pulls the moving pad, a preload force and a

moment are applied to the supporting pad. When the vertical motor preloads

the moving pad, pushing the pad into the tissue, a peeling force and a

moment are applied to the supporting pad. Stability of the robot enhances

when the force and moment applied to the supporting pad are cancelled.

When detaching the moving pad, in order to cancel the force and moment on

the supporting pad and intensify detachment on the moving pad:

 the horizontal motor can increase the separation between the pads,

counteracting the peeling moment on the supporting pad and applying

a peeling moment on the moving pad;

 the vertical motor on the supporting pad can push the supporting pad

into the tissue, applying a peeling force and moment on the moving

pad.

When preloading the moving pad, in order to cancel the force and moment

on the supporting pad, and intensify the preload on the moving pad:

 the horizontal motor can decrease the separation between the pads,

counteracting the peeling moment on the supporting pad;

 the vertical motor on the supporting pad can pull the supporting pad,

applying a preload on the moving pad.

8.4 Links and joints for a third pad

Adding a third pad to the locomotion mechanism of the robot enables the

robot to carry a higher payload without changing the geometry or adhesion

of the pads. The third pad carries a proportion of the vertical force applied to

the moving pad, reducing the force and moment on the supporting pads. The

position of the third pad with respect to the other two and the connections

between the three pads determine the force and moment in the mechanism

of the three-padded robot.

The third pad can be positioned in line with the other two pads or forming a

triangle with the other two pads. Considering the moving pad in a two-
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padded configuration, in order to form a triangle, the third pad links to the

robot with these connections:

 a link between the third pad and the moving pad, called radial link; the

length of this link is controlled by a linear motor,

 a link between the third pad and the supporting pad, called perimetric

link, the length of this link is controlled by a linear motor, and

 a passive revolute joint at the connection between the link of the third

pad with the moving pad and the supporting pad.

Figure 154a shows the radial link, Figure 154b shows the perimetric link and

Figure 154c shows the revolute joints between the third pad and the moving

and supporting pad in a two-padded robot.

Figure 154. (a) Radial link between the third pad and the moving pad, (b) perimetric
link between the third pad and the supporting pad, and (c) revolute joint connecting

the links between the third pad and the moving and supporting pad.

8.5 Force and moment in the locomotion mechanism of a
robot with three pads in a line

A robot with three pads in a line uses two pads to support the motion of one

pad, reducing the force and moment applied on the supporting pads and

thus enhancing stability of the robot. A robot with three pads in a line can

move in a straight line alternating the motion of the three pads. Using the

previous model of the soft pad attached to tissue, this section analyses the

force and moment in a robot with three pads in a line.

8.5.1 Locomotion mechanism of a robot with three pads in a

line

The locomotion mechanism of a robot with three pads in a line is composed

of five linear motors: one vertical motor for each pad and two horizontal

motors to separate the pads. Figure 155a shows a sketch of the robot with

three pads in a line: pad 1 is the moving pad and pads 2 and 3 are the
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supporting pads. Figure 155a also shows the parameters considered for the

analysis of force and moment in the locomotion mechanism when pad 1 is

moving:

 the distance from the reference surface to each pad: ,ଵݖ ଶݖ and ,ଷݖ

and

 the horizontal distance between the three pads: ,ଵଶݔ ଵଷݔ and .ଶଷݔ

Figure 155b shows the three springs in parallel modelling the stiffness of the

three pads of the robot in the vertical direction. Figure 155c shows the three

torsion springs modelling the bending of the three pads of the robot in the

horizontal plane.
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Figure 155. (a) Sketch of the robot with three pads in a line, (b) three springs in
parallel modelling the three pads in the vertical direction, and (c) three torsion

springs modelling the bending of the pads in the horizontal plane.
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In Figure 155b, when the vertical motor on the detaching pad is actuated,

the stretch of the detaching pad and the supporting pads is the same: .ݖ∆

The springs modelling the stiffness of the supporting pads are in parallel and

the force applied by the vertical motor of the detaching pad splits between

the supporting pads. In general, if the detaching pad is connected to ݊

supporting pads, the force applied by the vertical motor of the detaching pad

to each supporting pad is:

=௦௨ܨ
ܨ

݊ ( 133 )

Where ܨ is the force from the vertical motor of the detaching pad (see

Equation ( 124 )), ݅= 1, 2 …݊ is the number of supporting pad and ݊ is the

total number of supporting pads. In a three-padded robot, the force on each

supporting pad is half the force applied to the detaching pad.

Figure 155c showed the torsion springs modelling the bending of the pads

when there is no stretch on the pads caused by the vertical motors. When

the vertical motor on the detaching pad is actuated, the detaching pad and

the supporting pads stretch ݖ∆ with respect to the reference surface. The

detaching pad does not bend when the vertical motor is actuated, but the

two supporting pads bend and further stretch. Figure 156a shows the stretch

caused on supporting pad 2 by the bend on supporting pad 1 when the

vertical motor of the detaching pad is actuated. Figure 156b shows the

stretch caused on supporting pad 1 by the bend on supporting pad 2 when

the vertical motor of the detaching pad is actuated.
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Figure 156. (a) Stretch caused on supporting pad 2 by the bend on supporting pad 1
when the vertical motor of the detaching pad is actuated and (b) stretch caused on
supporting pad 1 by the bend on supporting pad 2 when the vertical motor of the

detaching pad is actuated.

In Figure 156a, the bending angle of supporting pad 1: ଵߠ∆ causes a stretch

of supporting pad 2: ௦ଶݖ∆ and therefore applies a force to supporting pad 2.

Considering that the bending angle is small, the stretch on supporting pad 2

caused by the bending angle of supporting pad 1 is:

௦ଶݖ∆ = ଵߠ∆ ∙ ଵଶݔ = ∙ݖ∆
ଵଶݔ
ଶଷݔ ( 134 )

Where ଵߠ∆ is the bending angle of supporting pad 1, ଵଶݔ is the distance

between the two supporting pads, ݖ∆ is the stretch of the detaching pad and

ଶଷݔ is the distance between supporting pad 2 and the detaching pad.

In Figure 156b, the bending angle of supporting pad 2: ଶߠ∆ causes a stretch

of supporting pad 1: ௦ଵݖ∆ and therefore applies a force to supporting pad 1.

The stretch on supporting pad 1 caused by the bending angle of supporting

pad 2 is:

௦ଵݖ∆ = ଶߠ∆ ∙ ଵଷݔ = ∙ݖ∆
ଵଶݔ

ଶଷݔ + ଵଶݔ ( 135 )

Where ଶߠ∆ is the bending angle of supporting pad 2, ଵଷݔ is the distance

between supporting pad 1 and the detaching pad, ݖ∆ is the stretch of the

detaching pad. The distance between the two supporting pads is ଵଶݔ and ଶଷݔ

is the distance between supporting pad 2 and the detaching pad.

8.5.2 Vertical force on the detaching pad

When vertical force is applied to the moving pad, the stretch of the moving

pad applies causes the supporting pads to stretch and bend, applying a
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force and moment to the supporting pads. Figure 157a shows the force on

the free body diagram of the moving pad and the supporting pads when a

detach force and a preload are applied to the moving pad. Figure 157b

shows the moment on the free body diagram of the moving pad and the

supporting pad when a detach force and a preload are applied to the moving

pad. For the sake of clarity, Figure 157 does not show the force caused by

the supporting pads on each other.
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Figure 157. (a) Free body diagram of the force on the supporting pads and the
detaching pad when vertical force is applied to the moving pad, and (b) free body

diagram of the moment on the supporting pads and the detaching pad when vertical
force is applied to the moving pad.

The force and moment applied to the detaching pad and the supporting pads

by the vertical motor on the detaching pad are expressed in terms of:

 the stiffness of the pads in tension: ,௧ܭ and compression: ,ܭ

 the stretch caused by the vertical motor of the detaching pad: ,ݖ∆

 the distance between the pads: ,ଵଶݔ ଵଷݔ and ,ଶଷݔ and

 the total number of supporting pads: ,݊ in a three pads: ݊= 2.

Table 14 shows the equations of the force and moment applied to the pads

of the robot when force is applied to the detaching pad.
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Table 14. Force and moment on the pads of a robot with three pads in a line when the
vertical motor of the detaching pad is actuated.

Supp. pad 2 Supp. pad 1 Det. pad

Force

(Figure

158 a)

Detach:

>ݖ∆) 0)
௧ܭ ∙ ∙ݖ∆ (

ଵଶݔ
ଶଷݔ

−
1

݊
)

ܭ)− ∙
ଵଶݔ

ଶଷݔ + ଵଶݔ

+ ௧ܭ ∙
1

݊
) ∙ ݖ∆

௧ܭ ∙ ݖ∆

Preload:

<ݖ∆) 0)
ܭ ∙ ∙ݖ∆ (

1

݊
−
ଵଶݔ
ଶଷݔ

)
௧ܭ) ∙

ଵଶݔ
ଶଷݔ + ଵଶݔ

+ ܭ ∙
1

݊
) ∙ ݖ∆

ܭ− ∙ ݖ∆

Moment

(Figure

158 b)

Detach:

>ݖ∆) 0)

ቈܭ ∙ ൬
ଵଶݔ

ଶଷݔ + ଵଶݔ
൰
ଶ

− ௧ܭ

∙ ଶଷݔ) + (ଵଶݔ ∙ ݖ∆
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ଵଶݔ

ଶ

ଶଷଶݔ
− 1ቇ

∙ ଶଷݔ ∙ ݖ∆

.ௗ௧ܯ݊
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<ݖ∆) 0)

ቈܭ− ௧ܭ ∙ ൬
ଵଶݔ
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ଶ



∙ ଶଷݔ) + (ଵଶݔ ∙ ݖ∆
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ଵଶݔ

ଶ

ଶଷଶݔ
ቇ

∙ ଶଷݔ ∙ ݖ∆

.ௗ௧ܯ݊

Figure 158 shows the sketch of the force and moment summarised in Table

14 applied to the pads of the robot at the reference surface.

Figure 158a shows the force and Figure 158b shows moment caused by the

stretch of the detaching pad on the supporting pads and also the force and

moment caused by the bending of the supporting pads.
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Figure 158. (a) Force applied to the detaching pad and supporting pads when the
vertical motor of the detaching pad is actuated and (b) moment applied to the

detaching pad and supporting pads when the vertical motor of the detaching pad is
actuated.
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In Figure 158a and Figure 158b, the first row of force and moment is the

force and moment caused by the stretch of the detaching pad when the

vertical motor of the detaching pad is actuated. The second row of force and

moment in Figure 158a and Figure 158b is the force and moment caused by

the bend of the supporting pads.

The force applied by the vertical motor of the detaching pad is:

ܨ = ܭ ∙ ݖ∆ ( 136 )

Where ܭ = ௧ܭ is the stiffness of the pad in tension when >ݖ∆ 0, ܭ = ܭ is

the stiffness of the pad in compression when <ݖ∆ 0 ,ݖ and ݖ∆ is the stretch

of the detaching pad.

The force caused on supporting pad 1 by the bend on supporting pad 2 is:

௦ଵܨ = ܭ ∙ ௦ଵݖ∆
( 137 )

Where ௦ଵݖ∆ is the stretch of supporting pad 1 caused by the bending angle

on supporting pad 2 (see Equation ( 134 )).

The force caused on supporting pad 2 by the bend on supporting pad 1 is:

௦ଶܨ = ܭ ∙ ௦ଶݖ∆
( 138 )

Where ௦ଶݖ∆ is the stretch of supporting pad 2 caused by the bending angle

on supporting pad 1 (see Equation ( 135 )).

8.5.3 Vertical force on the supporting pads

The analysis of force and moment when vertical force is applied to

supporting pad 2, the supporting pad opposite to the detaching pad, is

identical to the analysis for the detaching pad. When vertical force is applied

to supporting pad 2, the force from the vertical motor is:

ଶܨ = ௦ଶܭ ∙ ଶݖ∆ ( 139 )

Where ௦ଶܭ is the stiffness of supporting pad 2 and ଶݖ∆ is the stretch of

supporting pad 2.

When the vertical motor on supporting pad 2 is actuated, the force caused

on the detaching pad by the bend on supporting pad 1 is:

ௗ௧,ଶܨ = ௦ଶܭ ∙ ௗ௧ݖ∆ = ௦ଶܭ ∙
ଶଷݔ
ଵଶݔ

∙ ଶݖ∆ ( 140 )

Where ௦ଶܭ is the stiffness of supporting pad 2, ௗ௧ݖ∆ is the stretch of the

detaching pad caused by the bending angle on supporting pad 1, ଶଷݔ is the

distance between supporting pad 2 and the detaching pad, ଵଶݔ is the
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distance between the supporting pads and ଶݖ∆ is the stretch of supporting

pad 2.

When the vertical motor on supporting pad 2 is actuated, the force caused

on supporting pad 1 by the bend on the detaching pad is:

௦ଵ,ଶܨ = ௦ଶܭ ∙ ௦ଵݖ∆ = ௦ଶܭ ∙
ଶଷݔ

ଵଶݔ + ଶଷݔ
∙ ଶݖ∆ ( 141 )

Where ௦ଶܭ is the stiffness of supporting pad 2, ௦ଵݖ∆ is the stretch of

supporting pad 1 caused by the bending angle on the detaching pad, ଶଷݔ is

the distance between supporting pad 2 and the detaching pad, ଵଶݔ is the

distance between the supporting pads and ଶݖ∆ is the stretch of supporting

pad 2.

For the analysis of force and moment when vertical force is applied to

supporting pad 1, the mechanism of the robot is considered the

superposition of:

 a two-padded robot composed of supporting pad 1 and the detaching

pad, and

 a two-padded robot composed of supporting pad 1 and supporting

pad 2.

When vertical force is applied to supporting pad 1, the force from the vertical

motor on supporting pad 1 is:

ଵܨ = ௦ଵܭ ∙ ଵݖ∆ ( 142 )

Where ௦ଵܭ is the stiffness of supporting pad 1 and ଵݖ∆ is the stretch of

supporting pad 1.

8.5.4 Force from the horizontal motor between the pads

When the horizontal motors between the pads are actuated, the force and

moment on the pads are calculated considering the mechanism of the robot

the superposition of:

 the actuation of the horizontal motor in a two-padded robot composed

of supporting pad 1 and the detaching pad, and

 the actuation of the horizontal motor in a two-padded robot composed

of supporting pad 2 and supporting pad 1.

The moment from the horizontal motor between supporting pad 1 and the

detaching pad is:

ଵଷܯ = ଵଷܨ ∙ ௦ଵݖ ( 143 )
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Where ଵଷܨ is the force from the horizontal motor between supporting pad 1

and the detaching pad and ௦ଵݖ is the distance between the reference

surface and the horizontal motor.

The moment from the horizontal motor between the supporting pads is:

ଵଶܯ = ଵଶܨ ∙ ௦ଶݖ ( 144 )

Where ଵଶܨ is the force from the horizontal motor between the supporting

pads and ௦ଶݖ is the distance between the reference surface and the

horizontal motor.

8.5.5 Control strategies for a robot with three pads in a line

In order to enhance the stability of the robot, the strategies considered in the

first place are the strategies that can be implemented with only one vertical

motor applying force to one pad. If the stability margin of the pads needs to

increase further, the vertical motors of the supporting pads and the

horizontal motors can also be actuated.

8.5.5.1 Strategies to reduce the force and moment on the

supporting pads when the vertical motor of the detaching

pad is actuated

Considering the previous analysis of force and moment in a robot with three

pads in a line, when the vertical motor on the detaching pad is actuated, the

force applied to supporting pad 2 is cancelled when:

ଵଶݔ =
ଶଷݔ
݊ ( 145 )

Thus, for three pads: ݊ = 2, the force on supporting pad 2 is cancelled when

the distance between the two supporting pads is half the distance between

supporting pad 1 and the detaching pad. The force applied to supporting pad

2 also diminishes with softer pads.

When the vertical motor on the detaching pad is actuated, the force applied

to supporting pad 1 cannot be cancelled but can be reduced:

 increasing ,݊ that is, adding more pads in line with the three pads of

the robot,

 with softer pads (lower value of the stiffness constant),

 increasing :ଶଷݔ the distance between supporting pad 2 and the

detaching pad.

When the vertical motor on the detaching pad is applying a force to detach

the pad, the moment on supporting pad 2 is cancelled when the relation

between the compression and tension stiffness of the pad is:
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ܭ = ௧ܭ ∙ ൬
ଵଶݔ

ଶଷݔ + ଵଶݔ
൰
ଶ

( 146 )

When the vertical motor on the detaching pad is preloading the pad, in order

to cancel the moment on supporting pad 2, the relation between the tension

and the compression stiffness of the pad is:

௧ܭ = ܭ ∙ ൬
ଵଶݔ

ଶଷݔ + ଵଶݔ
൰
ଶ

( 147 )

For a given ratio of the compression and tension stiffness ݎ) ), the relation

between the two distances: ଵଶݔ and ଶଷݔ in Equation ( 147 ) is:

ଵଶݔ =
಼ ±√಼

ଵି಼
∙ ଶଷݔ ( 148 )

Where the ratio of compression and tension stiffness is: ݎ =



when the

pad is detaching, and ݎ =



when the pad is preloading. This ratio of

stiffness: ݎ is smaller than 1.

When the vertical motor on the detaching pad is actuated, the moment on

supporting pad 1 is cancelled when:

ଵଶݔ = ଶଷݔ ( 149 )

Thus, according to ( 149 ), the moment on supporting pad 1 is cancelled by

keeping the detaching pad and supporting pad 2 at the same distance from

supporting pad 1. The moment on supporting pad 1 is also diminished by

reducing the stiffness of the pad.

8.5.5.2 Force and moment on the supporting pads when the

vertical and horizontal motors of the robot are actuated

The vertical motors on the supporting pads and the horizontal motors

between the pads can also be actuated in order to cancel or diminish the

force and moment on the supporting pads. When the vertical motors of the

supporting pads and the horizontal motors are actuated, the total force on

the detaching pad is:

 ா்ܨ = ܨ− +
ଶܨ
2
− ௗ௧,ଶܨ +

ଵܨ
2 ( 150 )

The total force on supporting pad 1 is:

 ௌଵܨ =
ܨ

2
+ ௦ଵܨ +

ଶܨ
2

+ −௦ଵ,ଶܨ ଵܨ ( 151 )

The total force on supporting pad 2 is:

 ௌଶܨ =
ܨ

2
− −௦ଶܨ ଶܨ +

ଵܨ
2 ( 152 )
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Actuating the vertical motors of the supporting pads and the horizontal

motors, the resulting moment on the detaching pad is:

 ா்ܯ = ଶܨ ∙ ଵଶݔ) + (ଶଷݔ − ௦ଵ,ଶܨ ∙ ଶଷݔ + ଵܨ ∙ ଶଷݔ + ଶଷܯ ( 153 )

The resulting moment on supporting pad 1 is:

 ௌଵܯ = ܨ− ∙ ଶଷݔ + ௦ଶܨ ∙ −ଵଶݔ ௗ௧ܨ ∙ ଶଷݔ + −ଵଶܯ ଶଷܯ ( 154 )

The resulting moment on supporting pad 2 is:

 ௌଶܯ = ܨ− ∙ ଶଷݔ) + (ଵଶݔ + ௦ଵܨ ∙ −ଵଶݔ ଵܨ ∙ −ଵଶݔ ଵଶܯ ( 155 )

In the previous Equations ( 150 )-( 155 ), the sign of the force considers that

the pad is detaching and thus the stretch of the pad is: >ݖ∆ 0. For

preloading of the pad: >ݖ∆ 0, the sign of each force in Equations ( 150 )- (

155 ) is the opposite.

Therefore, the force and moment on the supporting pads can be reduced

and cancelled by combining the actuation of all the motors in a robot with

three pads in a line. The stage in the locomotion sequence, the adhesion

between the pads and the tissue and the perturbations applied to the robot

determine when the actuation of the motors is required in order to enhance

stability.

8.6 Force and moment in the locomotion mechanism of a
robot with three pads in a triangle

A robot with three pads in a line can only follow a straight line but a robot

with three pads forming a triangle can steer, obtaining two-dimensional

motion in the horizontal plane. Using the previous model of the soft pad

attached to tissue, this section analyses the force and moment in a robot

with three pads forming a triangle.

8.6.1 Locomotion mechanism of a robot with three pads in a

triangle

The locomotion mechanism of a robot with three pads in a triangle is

composed of six linear motors: one vertical motor for each pad and three

horizontal motors to separate the pads. Figure 159a shows the sketch of a

robot with three pads in a triangle: pad 1 is the moving pad and pads 2 and 3

are the supporting pads. Figure 159a also shows the parameters considered

for the analysis of force and moment in the locomotion mechanism when

pad 1 is moving:
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 the distance from the reference surface to each pad: ,ଵݖ ଶݖ and ,ଷݖ

and

 the distance between the three pads: ଵ݀ଶ, ଵ݀ଷ and ଶ݀ଷ.

Figure 159b shows the two-padded mechanism formed by pads 1 and 3 of

the robot with three pads in a triangle. Figure 159c shows the two-padded

mechanism formed by pads 1 and 2. Figure 159d shows the two-padded

mechanism formed by pads 2 and 3.
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Figure 159. (a) Sketch of a robot with three pads in a triangle, (b) two-padded
mechanism formed by pads 1 and 3, (c) two-padded mechanism formed by pads 1

and 2 and (d) two-padded mechanism formed by pads 2 and 3.
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In Figure 159, the angles between the two horizontal links of the robot are:

ߙ = atan(
ଵଶݔ
ଵଶݕ

)
( 156 )

ߚ = atan(
ଵଷݔ
ଵଷݕ

)
( 157 )

=ߛ 180° − −ߙ ߚ
( 158 )

Where ଵଶݔ and ଵଶݕ are the distance from pad 2 to the detaching pad along

the X and Y axes respectively and, ଵଷݔ and ଵଷݕ are the distance from pad 3

to the detaching pad along the X and Y axes respectively.

Figure 160a shows the three springs in parallel modelling the stiffness of the

three pads of the robot in the vertical direction. Figure 160b shows the two

torsion springs modelling the bending of pad 1 and 3 in the horizontal plane.

Figure 160c shows the two torsion springs modelling the bending of pad 1

and 2 in the horizontal plane.

z
spleftTK

_ 12

z

dpKsprightK _spleftK _

z
sprightTK

_ 13

Figure 160. (a) Linear springs modelling the stiffness of the pads in the vertical
direction, (b) torsion spring modelling the bending of pad 3 and (c) torsion springs

modelling the bending of pad 2.

In Figure 160a, the two supporting pads of the robot feel the same stretch

from the detaching pad: .ݖ∆ Two pads of the robot support the detachment of

the pad and the force on each supporting pad is half the force applied to the

detaching pad.
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In Figure 160b, the bending angle of the right supporting pad (pad 3) is

considered small and calculated as:

ଵଷߠ∆ =
ݖ∆

ଵ݀ଷ
( 159 )

Where ݖ∆ is the stretch of the detaching pad and ଵ݀ଷ is the distance between

the detaching pad and the right supporting pad.

In Figure 160c, the bending angle of the left supporting pad (pad 2) is

considered small and calculated as:

ଵଶߠ∆ =
ݖ∆

ଵ݀ଶ
( 160 )

Where ݖ∆ is the stretch of the detaching pad and ଵ݀ଶ is the distance between

the detaching pad and the left supporting pad.

8.6.2 Vertical force on the detaching pad

When vertical force is applied to the moving pad, the supporting pads stretch

and bend, thus applying force and moment to the supporting pads. In a robot

with three pads in a triangle, the bending of each supporting pad causes the

other supporting pad to stretch and compress because of the link between

the two supporting pads. Figure 161 shows the force and moment

transmitted along the link between the two supporting pads of the robot.

Figure 161a shows the force on the free body diagram of the left supporting

pad and the right supporting pad when a detach force and a preload are

applied to the moving pad. Figure 157b shows the moment on the free body

diagram of the left supporting pad and the right supporting pad when a

detach force and a preload are applied to the moving pad.
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Figure 161. (a) Free body diagram of the force on the supporting pads when vertical
force is applied to the moving pad, and (b) free body diagram of the moment on the

supporting pads when vertical force is applied to the moving pad.

In Figure 161a, when vertical force is applied to the detaching pad, the link

between the supporting pads causes stretch on each supporting pad. The

stretch of the left supporting pad causes force on the right supporting pad:

.௧ܨ The stretch of the right supporting pad causes force on the left

supporting pad: .௧ܨ These forces: ௧ܨ and ௧ܨ cause the moment on

the supporting pads shown in Figure 161b. The value of ௧ܨ and ௧ܨ is:

௧ܨ = ܭ ∙ ௧ݖ∆ ( 161 )

௧ܨ = ܭ ∙ ௧ݖ∆ ( 162 )

Where ܭ = ܭ is the compression stiffness of the pad and tissue when

>ݖ∆ 0 and ܭ = ௧ܭ is the tension stiffness of the pad and tissue when <ݖ∆

0. The value of ௧ݖ∆ is the stretch of the left supporting pad that causes

causes ௧ܨ and ௧ݖ∆ is the stretch of the right supporting pad that

causes .௧ܨ

In terms of the stretch of the detaching pad, the distance between the pads

and the angle between the horizontal links, the stretch of the left supporting

pad is:
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௧ݖ∆ =
ݖ∆

ଵ݀ଶ
∙ cos(ߙ) ∙ ଶ݀ଷ ( 163 )

Where ݖ∆ is the stretch of the detaching pad, ଵ݀ଶ is the distance between the

detaching pad (pad 1) and the left supporting pad (pad 2), ߙ is the angle

between horizontal motor 2 and horizontal motor 3 (see Figure 159) and ଶ݀ଷ

is the distance between the supporting pads.

The stretch of the right supporting pad is:

௧ݖ∆ =
ݖ∆

ଵ݀ଷ
∙ cos(ߚ) ∙ ଶ݀ଷ ( 164 )

Where ݖ∆ is the stretch of the detaching pad, ଵ݀ଷ is the distance between the

detaching pad (pad 1) and the right supporting pad (pad 3), ߚ is the angle

between horizontal motor 1 and horizontal motor 2 (see Figure 159) and ଶ݀ଷ

is the distance between the supporting pads.

The force and moment applied to the detaching pad and the supporting pads

by the vertical motor on the detaching pad are expressed in terms of:

 the stiffness of the pads in tension: ,௧ܭ and compression: ,ܭ

 the stretch caused by the vertical motor of the detaching pad: ,ݖ∆

 the distance between the pads: ଵ݀ଶ, ଵ݀ଷ and ଶ݀ଷ,

 the angle between the horizontal links of the robot: ߙ and ,ߚ and

 the total number of supporting pads: ,݊ in a three pads: ݊= 2.

Table 15 shows the equations of the force and moment applied to the pads

of the robot when the vertical motor of the detaching pad is actuated.
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Table 15. Force and moment on the pads of a robot with three pads in a triangle when
the vertical motor of the detaching pad is actuated.

Figure 162 shows the sketch of the force and moment summarised in Table

15 applied to the pads of the robot at the reference surface. Figure 162

shows the force and moment caused by the stretch of the detaching pad on

the supporting pads. Figure 162 also shows the force and moment caused

by the stretch of the supporting pads transmitted through the link connecting

the supporting pads.
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Figure 162. (a) Force applied to the pads and when the vertical motor of the detaching
pad is actuated, (b) moment applied to the supporting pads in the X direction and (c)

moment applied to the supporting pads in the Y direction.

In Figure 162a, Figure 162b and Figure 162c, the first row of force and

moment is caused by the stretch of the detaching pad when the vertical

motor of the detaching pad is actuated: .ܨ In Figure 162a and Figure 162c,

the second row of force and moment is caused by the stretch of the

supporting pads through the link between the supporting pads: ௧ܨ and

.௧ܨ

8.6.3 Vertical force on the supporting pads

The analysis of force and moment when vertical force is applied to the left

supporting pad (pad 2) and the right supporting pad (pad 3), is identical to

the analysis for the detaching pad. When vertical force is applied to the left

supporting pad (pad 2), the force from the vertical motor is:

ଶܨ = ௦ଶܭ ∙ ଶݖ∆ ( 165 )
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Where ௦ଶܭ is the stiffness of the left supporting pad and ଶݖ∆ is the stretch of

the left supporting pad.

When the vertical motor of the left supporting pad is actuated, the forces that

the other two pads cause on each other are:

௧,ଶܨ = ௦ଶܭ ∙
ଵ݀ଷ

ଶ݀ଷ
∙ cos(ߚ) ∙ ଶݖ∆ ( 166 )

௧,ଶܨ = ௦ଶܭ ∙
ଵ݀ଷ

ଵ݀ଶ
∙ cos(ߛ) ∙ ଶݖ∆ ( 167 )

Where:

 ௦ଶܭ is the stiffness of the left supporting pad,

 ଵ݀ଷ is the distance between the detaching pad and the right

supporting pad,

 ଶ݀ଷ is the distance between the supporting pads,

 ଵ݀ଶ is the distance between the detaching pad and the left supporting

pad,

 ଶݖ∆ is the stretch of the left supporting pad,

 ߚ is the angle between horizontal motor 1 and horizontal motor 2 (see

Figure 159), and

 ߛ is the angle between horizontal motor 1 and horizontal motor 3 (see

Figure 159).

When vertical force is applied to the right supporting pad (pad 3), the force

from the vertical motor is:

ଷܨ = ௦ଷܭ ∙ ଷݖ∆ ( 168 )

Where ௦ଷܭ is the stiffness of the right supporting pad and ଷݖ∆ is the stretch

of the right supporting pad.

When the vertical motor of the right supporting pad is actuated, the forces

that the other two pads cause on each other are:

௧,ଷܨ = ௦ଷܭ ∙
ଵ݀ଶ

ଵ݀ଷ
∙ cos(ߙ) ∙ ଷݖ∆ ( 169 )

௧,ଷܨ = ௦ଷܭ ∙
ଵ݀ଶ

ଶ݀ଷ
∙ cos(ߛ) ∙ ଷݖ∆ ( 170 )

Where:

 ௦ଷܭ is the stiffness of the right supporting pad,

 ଵ݀ଷ is the distance between the detaching pad and the right

supporting pad,

 ଶ݀ଷ is the distance between the supporting pads,

 ଵ݀ଶ is the distance between the detaching pad and the left supporting

pad,
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 ଷݖ∆ is the stretch of the right supporting pad,

 ߙ is the angle between horizontal motor 2 and horizontal motor 3 (see

Figure 159), and

 ߛ is the angle between horizontal motor 1 and horizontal motor 3 (see

Figure 159).

8.6.4 Force from the horizontal motor between the pads

When the horizontal motors between the pads are actuated, the force and

moment on the pads are calculated considering the mechanism of the robot

the superposition of:

 the actuation of the horizontal motor in a two-padded robot composed

of the left supporting pad (pad 2) and the detaching pad,

 the actuation of the horizontal motor in a two-padded robot composed

of the left supporting pad (pad 2) and the right supporting pad (pad 3),

and

 the actuation of the horizontal motor in a two-padded robot composed

of the detaching pad and the right supporting pad (pad 3).

The moment from the horizontal motor between the detaching pad (pad 1)

and the left supporting pad (pad 2) is:

ଵଶܯ = ଵଶܨ ∙ ଵଶݖ ( 171 )

Where ଵଶܨ is the force from the horizontal motor 3 (see Figure 159) and ଵଶݖ

is the distance between the reference surface and the horizontal motor.

The moment from the horizontal motor between the left supporting pad (pad

2) and the right supporting pad (pad 3), is:

ଶଷܯ = ଶଷܨ ∙ ଶଷݖ ( 172 )

Where ଶଷܨ is the force from the horizontal motor 2 (see Figure 159) and ଶଷݖ

is the distance between the reference surface and the horizontal motor.

The moment from the horizontal motor between the detaching pad (pad 1)

and the right supporting pad (pad 3) is:

ଵଷܯ = ଵଷܨ ∙ ଵଷݖ ( 173 )

Where ଵଷܨ is the force from the horizontal motor 1 (see Figure 159) and ଵଷݖ

is the distance between the reference surface and the horizontal motor.

8.6.5 Control strategies for a robot with three pads in a

triangle

In order to enhance the stability of the robot, the strategies considered in the

first place are the strategies that can be implemented when only the vertical
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motor of the detaching pad is actuated. If the stability margin of the pads

needs to increase further, the vertical motors of the supporting pads and the

horizontal motors in the locomotion mechanism can also be actuated.

8.6.5.1 Strategies to reduce the force and moment on the

supporting pads when the vertical motor of the detaching

pad is actuated

Considering the previous analysis of force and moment in a robot with three

pads in a triangle, when the vertical motor on the detaching pad is actuated,

the force on the supporting pads cannot be cancelled.

When the vertical motor on the detaching pad is actuated, the force on the

supporting pads can be reduced by increasing the value of the angles ߚ and

.ߙ In order to increase :ߚ the distance ଵଷݔ can increase and the distance ଵଷݕ

can decrease; in order to increase :ߙ the distance ଵଶݔ can increase and the

distance ଵଶݕ can decrease.

The force on the supporting pads can also be reduced by decreasing the

distance .ଷଶݕ The value of ଵଷݔ and ଵଷݕ can be increased in order to increase

ଵ݀ଷ and therefore decrease the force on the left supporting pad. The value of

ଵଶݔ and ଵଶݕ can be increased in order to increase ଵ݀ଶ and therefore decrease

the force on the right supporting pad.

Increasing ଵଷݔ and ଵଶݔ is beneficial in order to increase the angles: ߚ and ߙ

and also the distances: ଵ݀ଷ and ଵ݀ଶ, thus reducing the force on the

supporting pads. When ଵଷݕ and ଵଶݕ increase, the force on the supporting

pads is reduced by increasing the distances: ଵ݀ଷ and ଵ݀ଶ. However,

increasing ଵଷݕ and ଵଶݕ also decrease the angles: ߚ and ,ߙ increasing the

force on the supporting pads.

When the vertical motor on the detaching pad is actuated, the moment along

the X direction of the horizontal plane cannot be cancelled with three pads in

a triangle. The moment along the X direction of the horizontal plane cancels

with three pads in a line as previously shown. The moment along the X

direction is not cancelled in a robot with three pads in a triangle because this

configuration lacks a supporting pad directly opposite to the detaching pad.

The moment along the X direction of the horizontal plane can be reduced:

 with softer pads,

 decreasing ଵ݀ଶ and ଵ݀ଷ, by reducing ଵଶݔ and ଵଶݕ on the left supporting

pad and reducing ଵଷݔ and ଵଷݕ on the right supporting pad,

 decreasing sin(ߙ) and sin(ߚ) by reducing ଵଶݔ and ,ଵଷݔ and also by

increasing ଵଶݕ and .ଵଷݕ
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When the vertical motor on the detaching pad is actuated, the moment along

the Y axis on the left supporting pad is cancelled when:

ଶ݀ଷ = ଵ݀ଶ ∙ ඥݎ ( 174 )

The moment along the Y axis on the right supporting pad is cancelled when:

ଶ݀ଷ = ଵ݀ଷ ∙ ඥݎ ( 175 )

In Equations ( 174 ) and ( 175 ): ݎ =



is the ratio of tension and

compression stiffness of the pad when the pad is detaching: >ݖ∆ 0, and

ݎ =



is the ration of compression and tension stiffness of the pad when

the motor is preloading the pad: <ݖ∆ 0.

If compression stiffness and the tension stiffness of the pad and tissue are

the same ܭ) = (௧ܭ the moment along the Y axis on both supporting pads is

cancelled when the distance between the pads is the same:

ଵ݀ଶ = ଶ݀ଷ = ଵ݀ଷ ( 176 )

The moment on the pads is also reduced if cos(ߙ) and cos(ߚ) diminish by

increasing ଵଶݔ and ,ଵଷݔ and decreasing ଵଶݕ and .ଵଷݕ

8.6.5.2 Force and moment on the supporting pads when the

vertical and horizontal motors of the robot are actuated

The vertical motors on the supporting pads and the horizontal motors

between the pads can also be actuated in order to cancel or diminish the

force and moment on the supporting pads. When the vertical motors of the

supporting pads and the horizontal motors are actuated, the total force on

the detaching pad is:

 ா்ܨ = ܨ− +
ଶܨ
2

+ ௧,ଶܨ +
ଷܨ
2

+ ௧,ଷܨ ( 177 )

The total force on the left supporting pad (pad 2) is:

 ாி்ܨ =
ܨ

2
+ −௧ܨ ଶܨ +

ଷܨ
2

+ ௧,ଷܨ ( 178 )

The total force on the right supporting pad (pad 3) is:

 ோூீܨ ு் =
ܨ

2
+ +௧ܨ

ଶܨ
2

+ −௧,ଶܨ ଷܨ ( 179 )

Actuating the vertical motors of the supporting pads and the horizontal

motors, the resulting moment on the detaching pad along the X direction of

the horizontal plane is:



- 253 -

 ா்ܯ
 = ଶܨ ∙ ଵ݀ଶ ∙ cଵ(ߛ,ߚ) − ௧,ଶܨ ∙ ଵ݀ଷ ∙ cos(ߚ) + ଷܨ ∙ ଵ݀ଷ ∙ cଶ(ߛ)

+ ௧,ଷܨ ∙ ଵ݀ଶ ∙ sinቀ
ߛ

2
ቁ− ଵଶܯ ∙ cos(ߙ) + ଵଷܯ ∙ cos(ߚ)

( 180 )

Where cଵ(ߛ,ߚ) and cଶ(ߛ) are geometrical functions which depend on the

angles ߚ and :ߛ cଵ(ߛ,ߚ) = cos(ߛ) ∙ sin(ߚ)− sin(ߛ) ∙ cos(ߚ), cଶ(ߛ) = cos(ߛ) ∙

cosቀ
ఊ

ଶ
ቁ− sin(ߛ) ∙ sinቀ

ఊ

ଶ
ቁ.

The resulting moment on the detaching pad along the Y direction of the

horizontal plane is:

 ா்ܯ
 = ଶܨ− ∙ ଵ݀ଶ ∙ cଷ(ߛ,ߚ) − ௧,ଶܨ ∙ ଵ݀ଷ ∙ sin(ߚ) + ଷܨ ∙ ଵ݀ଷ ∙ cସ(ߛ)

− ௧,ଷܨ ∙ ଵ݀ଶ ∙ cos(
ߛ

2
) − ଵଶܯ ∙ sin(ߙ) − ଵଷܯ ∙ sin(ߚ)

( 181 )

Where cଷ(ߛ,ߚ) and cସ(ߛ) are geometrical functions which depend on the

angles ߚ and :ߛ cଷ(ߛ,ߚ) = sin(ߛ) ∙ sin(ߚ) + cos(ߛ) ∙ cos(ߚ), cସ(ߛ) = cos(ߛ) ∙

cosቀ
ఊ

ଶ
ቁ+ cos(ߛ) ∙ sinቀ

ఊ

ଶ
ቁ.

Actuating the vertical motors of the supporting pads and the horizontal

motors, the resulting moment on the left supporting pad (pad 2) along the X

direction of the horizontal plane is:

 ாி்ܯ
 = ܨ ∙ ଵ݀ଶ ∙ sin(ߙ) − ௧ܨ ∙ ଶ݀ଷ− ଷܨ ∙ ଶ݀ଷ ∙ cହ(ߛ,ߙ)

− ௧,ଷܨ ∙ ଵ݀ଶ ∙ sinቀ
ߛ

2
ቁ+ ଶଷܯ + ଵଶܯ ∙ cos(ߙ)

( 182 )

Where cହ(ߛ,ߙ) is a geometrical function which depends on the angles ߙ and

:ߛ cହ(ߛ,ߙ) = sin(ߙ) ∙ sinቀ
ఊ

ଶ
ቁ) + cos(ߙ) ∙ cosቀ

ఊ

ଶ
ቁ.

The resulting moment on the left supporting pad (pad 2) along the Y

direction of the horizontal plane is:

 ாி்ܯ
 = ܨ− ∙ ଵ݀ଷ ∙ cos(ߙ) + ଷܨ ∙ ଶ݀ଷ ∙ c(ߛ,ߙ) + ௧,ଷܨ ∙ ଵ݀ଶ

∙ cosቀ
ߛ

2
ቁ+ ଵଶܯ ∙ sin(ߙ)

( 183 )

Where c(ߛ,ߙ) is a geometrical function which depends on the angles ߙ and

:ߛ c(ߛ,ߙ) = sin(ߙ) ∙ cosቀ
ఊ

ଶ
ቁ− cos(ߙ) ∙ sin(

ఊ

ଶ
).

Actuating the vertical motors of the supporting pads and the horizontal

motors, the resulting moment on the right supporting pad (pad 3) along the X

direction of the horizontal plane is:

 ோூீܯ ு்
 = ܨ ∙ ଵ݀ଷ ∙ sin(ߚ) + ௧ܨ ∙ ଶ݀ଷ− ଶܨ ∙ ଶ݀ଷ ∙ c(ߚ)

+ ௧,ଶܨ ∙ ଵ݀ଷ ∙ cos(ߚ) − −ଶଷܯ ଵଷܯ ∙ cos(ߚ)
( 184 )
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Where c(ߚ) is a geometrical function which depends on the angle

:ߚ c(ߚ) = 2 ∙ sin(ߚ) ∙ cos(ߚ).

The resulting moment on the right supporting pad (pad 3) along the Y

direction of the horizontal plane is:

 ோூீܯ ு்
 = ܨ ∙ ଵ݀ଷ ∙ cos(ߚ) − ଶܨ ∙ ଶ݀ଷ ∙ c଼(ߚ) + ௧,ଶܨ ∙ ଵ݀ଷ

∙ sin(ߚ) + ଵଷܯ ∙ sin(ߚ)
( 185 )

Where c଼(ߚ) is a geometrical function which depends on the angle

:ߚ c଼(ߚ) = −(ߚ)ଶ݊ݏ݅ .(ߚ)ଶݏܿ

The sign of the force in Equations ( 177 )-( 185 ) consider that the pad is

detaching and thus the stretch of the pad is: >ݖ∆ 0. For preloading of the

pad: >ݖ∆ 0, the sign of each force in Equations ( 177 )-( 185 ) is the

opposite.

In Equations ( 177 )-( 185 ), the sign of the moment depends on the sign of

the geometrical constants: cଵ to c଼, which depend on the value of the angles

between the horizontal links of the robot: ,ߙ ߚ and .ߛ The value of the angles

,ߙ ߚ and ߛ is considered between 0° and 90°.

Therefore, combining the actuation of all the motors in a robot with three

pads in a triangle can reduce and cancel the force and moment on the

supporting pads. The actuation of the motors required in order to enhance

stability depends on the stage in the locomotion sequence, the adhesion

between the pads and tissue and the perturbations on the robot.

8.7 An adhesion-reliant robot with four pads forming a
quadrilateral

The benefit of having three pads in a line and having three pads in a triangle

are combined by including a fourth pad in the locomotion mechanism of the

robot. In a robot with three pads in a line, the moment in the X direction of

the horizontal plane is cancelled for the supporting pad in the middle of the

mechanism. With three pads in a triangle, the robot can move in both

directions of the horizontal plane and the moment in the Y direction of the

horizontal plane is cancelled for the supporting pads. The cancellation of

moment on the supporting pads increases the stability margin of the robot by

reducing the moment that causes the pads to peel off.

In this way, a robot with four adhesive pads can be considered the

superposition of a locomotion mechanism with three pads in a line and a

locomotion mechanism with three pads forming a triangle. Figure 163 shows
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how the locomotion mechanism of a robot with four pads can be analysed as

a robot with three pads in a line and a robot with three pads in a triangle.

Figure 163. (a) Sketch of a robot with four pads, (b) a robot with four pads can be
analysed as a robot with three pads in a line and (c) a robot with four pads can be

analysed as a robot with three pads in a triangle.

Figure 163a shows the sketch of a robot with four pads arranged in a

quadrilateral like the intra-abdominal robot. A robot with four pads arranged

in a quadrilateral can be analysed as a robot with three pads in a line along

the diagonal of the quadrilateral formed by the four pads as shown in Figure

163b. Considering the horizontal motors joined at the fourth pad as a

horizontal link, a robot with four pads can be analysed as a robot with three

pads in a triangle as shown in Figure 163c. Therefore, the control strategies

for a robot with three pads can be combined in order to reduce and cancel

the force and moment on the supporting pads of a robot with four pads.

In the implementation of the intra-abdominal robot, a robot with four pads

proved to be a design able to obtain upside-down locomotion using adhesive

pads. For the intra-abdominal robot, a locomotion mechanism with two pads

and with three pads in a triangle were tested unsuccessfully. In these two-

padded and three-padded robots, the detaching force and weight of the

detached pad caused the supporting pads to peel off, making the robot to fall
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off. Figure 164 shows the prototype of a robot with two magnetic pads and

three motors. In Figure 164, the vertical motor of the detaching pad is

actuated causing the detaching pad to peel off but also causing the

supporting pad to peel off.

supporting pad detaching pad

cm

Figure 164. Prototype of a robot with two pads detaching one pad.

8.8 Alternative designs for an adhesion-reliant robot with
four adhesive pads forming a quadrilateral

Alternative designs of a robot with four pads can be produced by linking the

pads of the robot along the diagonals of the quadrilateral formed by the

horizontal motors. These links are extensible in order to enable locomotion

and the way these links are connected determines the transmission of

moment between the pads:

 if the diagonal links are unconnected at the centre of the quadrilateral,

the moment from the detaching pad is only transmitted to the

supporting pad connected to the detaching pad,

 if the diagonal links are connected at the centre of the quadrilateral,

the moment from the detaching pad is distributed amongst all the

supporting pads.

Figure 165a shows the sketch of a four-padded robot with diagonal links

unconnected at the centre of the quadrilateral. Figure 165b shows the sketch

of a four-padded robot with diagonal links connected at the centre of the

quadrilateral.
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Figure 165. (a) Sketch of a four-padded robot with diagonal links unconnected at the
centre of the quadrilateral, (b) four-padded robot with diagonal links connected at the
centre of the quadrilateral, (c) prismatic joint at the connection of the diagonal links,

and (d) prismatic and revolute joint at the connection of the diagonal links.

When the diagonal links are connected at the centre of the quadrilateral, the

way the moment is distributed amongst the pads depends on the type of

joint used for the connection between the links:

 a prismatic joint connecting the diagonal links enables extension of

the links and transmission of moment from the detaching pad to all

the supporting pads,

 a prismatic joint and a revolute joint connecting the diagonal links

enables extension of the links and transmission of moment between

the detaching pad and the supporting pad opposite to the detaching

pad.

Figure 165c above shows the prismatic joint at the connection of the

diagonal links, and Figure 165d above shows the prismatic and revolute joint

at the connection of the diagonal links.

Adding diagonal links to a four-padded robot can be beneficial to support the

detaching pad more firmly and further enhance the stability of the robot.

These diagonal links require precision manufacturing for the miniature size

and were not implemented for the intra-abdominal robot.
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8.9 An adhesion-reliant robot with more than four
adhesive pads

For the design of the intra-abdominal robot with four pads forming a

quadrilateral, and the addition of diagonal links to the locomotion

mechanism, these design principles were followed:

 symmetry of the configuration of the pads, so that the locomotion

sequence of the robot is the same for all directions of the horizontal

plane, and

 equal conditions of support and actuation for all the pads of the robot,

so that the pads are interchangeable for the controller of the robot.

Keeping symmetry and equal conditions of support and actuation for the

pads, more pads can be included in the design of the robot by adding pads

to the quadrilateral. In this way, a fifth pad can be added forming a

pentagon, a sixth pad can be added forming an hexagon and so on.

Diagonal links can also be included in these designs of the robot with more

than four pads. In order to illustrate these designs with more than four pads,

Figure 166a shows the sketch of a robot with five pads and Figure 166b

shows the sketch of a robot with six pads. Figure 166c shows the diagonal

links in a five-pads robot and Figure 166d shows the diagonal links in a six-

pads robot.

Figure 166. (a) Sketch of a robot with five pads, (b) sketch of a robot with six pads, (c)
diagonal links for a five-pads robot and (d) diagonal links for a six-pads robot.

Figure 166 shows how the complexity of the locomotion mechanism

increases when adding more pads and including diagonal links. If the design
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principle of symmetry and equal conditions of support and actuation is not

followed, the number of diagonal links can be reduced and pads in

alternative positions can be included in the locomotion mechanism. In order

to illustrate the variability of these alternative designs for the robot:

 Figure 167a shows the sketch of a six-pads robot with asymmetric

links,

 Figure 167b shows a four-padded robot with a central pad,

 Figure 167c shows a six-pads robot with satellite pads, and

 Figure 167d shows an eight-pads robot with an outer ring of four pads

and an inner ring of four pads.

Figure 167. (a) A robot with asymmetric diagonal links, (b) a robot with a pad in the
centre of the mechanism, (c) a robot with satellite pads and (d) a robot with

concentric rings of pads.

In the four-padded intra-abdominal robot, one pad moves at a time in the

locomotion sequence because the robot falls down when more than one pad

are detached. In a robot with more than four pads, if the robot is stable with

more than one pad detached, more than one pad can be moved at a time in

the locomotion sequence. In this way, the speed of a robot with more than

four pads can be increased.

8.9 Discussion and conclusions

The stability criterion defined in Chapter 7 showed how the stability of a

robot moving in inverted adhesion-reliant locomotion depends on the forces
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applied to the adhesive pads. In order to control the robot, the way forces

are transmitted through the locomotion mechanism and how those forces

are enhanced or diminished needs to be studied. Such study was carried out

in this chapter starting with the analysis of the most basic configuration: an

inchworm walker with two pads and two vertical linear motors joined by one

horizontal linear motor.

The two-padded configuration showed the way forces are transmitted

between a detaching and a supporting pad and set the base of the analysis

for more complex configurations. Following the analysis of a two-padded

robot, the configurations of three pads in a line and in a triangle were studied

because the mechanism of a four-padded robot can be analysed as the

superposition of those two three-padded configurations. As the analysis

showed, the combination of the two three-padded configurations, in a line

and in a triangle, diminishes the moment on the supporting pads, therefore

significantly increasing the stability margin of the robot.

This result of the analysis fully agrees with the testing of the robot, given that

during the building of the robot it was observed how only a four-padded

configuration was able to support the inverted locomotion of the prototype.

Four pads where required in the design of the locomotion mechanism in

order to keep a strong base of support of three pads while one of the pads

moved to the new position. The analysis in this chapter relates that “strong

base of support of three pads” to the diminishing of peeling moment taking

place in the supporting pads when the force from the motor detaching one

pad is transmitted through the mechanism. The chapter also defines control

strategies to enhance the stability margin of the pads as much as possible

with the actuators of the locomotion mechanism. Such control strategies can

be implemented in a further development of the locomotion controller in

order to obtain precise control of the attachment and detachment of the pads

of the robot.

8.10 Summary

In this chapter, the force and moment applied to the locomotion mechanism

of adhesion-reliant robots were analysed, defining control strategies for the

locomotion of the robot. The force and moment on the locomotion

mechanism of a robot with two pads were analysed first. This analysis

considered the actuation of the vertical motor on the detaching pad as well

as the actuation of the vertical motor on the supporting pad and the

horizontal motor between the pads. Control strategies were defined for the
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locomotion mechanism of the two-padded robot in order to reduce the force

and moment applied to the supporting pads and thus, increase the stability

margin of the robot.

Then, a robot with three pads was analysed for two configurations of the

pads: three pads in a line and three pads in a triangle. The analysis

considered the actuation of all the vertical motors and horizontal motors in

the locomotion mechanism, defining control strategies in order to reduce the

force and moment applied to the supporting pads. With the configuration of

three pads in a line, the moment in the X direction of the horizontal plane is

cancelled for the supporting pad in the middle. With the configuration of

three pads in a triangle, the moment in the Y direction of the horizontal plane

is cancelled for the supporting pads.

Adding a fourth pad to the robot combines the benefits of three pads in a line

and three pads in a triangle. The four pads can be arranged in a

quadrilateral and can include diagonal links between the pads. Robot with

more than four pads arranged symmetrically or asymmetrically, and moving

more than one pad at a time can also be considered.
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Chapter 9
Conclusions and future work

9.1 Assessment of the research objectives

The research aims and their corresponding objectives were defined in the

introductory chapter (Chapter 1). This section explains the extent to which

the research objectives have been achieved.

1. Review existing literature on robotic surgery, robotic intra-body

devices and miniature climbing robots using bio-inspired adhesives.

The literature review of Chapter 2 covered the field of robotic devices used

for surgery, from well established commercial applications to state-of-the-art

research robots. The review focused on the evolution from the paradigm of

floor-mounted robotic arms to the trend of miniaturization to build intra-body

robots, internalising their locomotion. In this way, the advantages and

desirable improvements to the different developments found in the literature

were pointed out. The selection of the design features of the intra-abdominal

robot was helped by this review of surgical robots as well as by reviewing

current miniature climbing robots using adhesion. This type of robots are

particularly relevant to the design of the intra-abdominal robot because they

are small and move in inverted locomotion with very similar attachment

technology. The chapter finally compared all the reviewed types of robots,

highlighting how their features could be considered for the design of the

intra-abdominal robot.

2. Design a miniature mechanism to apply a controllable set of forces to

the adhesive pads.

In Chapter 3, the environment of the robot was characterised and the safety

measures for intra-abdominal locomotion considered in order to define the

desirable features for the design of the robot. The advantages and

drawbacks of walkers and wheeled robots in this application were also

considered. In the light of these considerations and the conclusions of the

literature review (Chapter 2), a locomotion methodology of the robot was

chosen: a Cartesian walker with four inter-connected adhesive pads.

Chapter 4 covered the analysis of this conceptual design, defining the

kinematic joints of the mechanism, the workspace of the robot and the
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dynamics involved in moving the pads. This fourth chapter also showed how

the robot can generate gait and adapt to the environment.

3. Identify actuation and sensor technologies and manufacturing

techniques to develop a controllable miniature mechanism.

Actuation and sensing technologies available in the market for miniature size

were reviewed in Chapter 5. A linear piezo-electric motor and a linear

magnetic encoder were identified as the most suitable actuator and sensor

for the design of the robot. The commercial availability and access to

manufacturing techniques for the miniature size were explored considering

the limitations of a research project. Rapid prototyping was eventually

chosen as the manufacturing technique for the locomotion mechanism

integrating the motors and sensors previously selected. Chapter 5 also

discusses the issues encountered during the manufacturing and assembly of

the mechanism due to its miniature size.

4. Build and test a miniature mechanism following the conceptual design

of the robot and using the actuation and sensor technologies

previously identified.

Chapter 5 explained the whole implementation process, from the first one-

axis mechanism to the two prototypes of the robot that were developed. A

prismatic joint controlled by the miniature linear motor and encoder (one-axis

mechanism) was built in the first place. The mechanism was shown

controlling the adhesion of the bio-mimetic pad on rat peritoneum. Then, the

first prototype of the robot was built, and its walking performance was

preliminary tested using magnetic pads with similar attachment force to the

adhesive pads. In order to generate the locomotion sequence of the pads,

an open-loop controller and a closed-loop controller of the robot were

programmed and tested. Some issues related to the performance of the

motors within the mechanism were identified and in order to tackle them a

second prototype was built. The second prototype was built and tested using

the magnetic pads and the bio-mimetic adhesive pads on pig peritoneum. To

further enhance the performance of the robot, some modifications were

made to the mechanical design of the second prototype, testing the

prototype again. The enhanced second prototype showed a significant

improvement of its walking performance.
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5. Create engineering models of the mechanical and adhesive

interaction of the mechanism and the tissue.

The way the adhesive pad can be detached from the tissue using the

locomotion mechanism of the robot was analysed in Chapter 6. The peeling

model developed in this chapter combines Kendall’s theory of thin film

peeling with Euler-Bernouilli’s beam theory applied to the bending of the

pad. The model predicts the value of force and moment that makes the

adhesive pad detach. The prediction of the model is consistent with previous

work carried out on the value of force required when peeling the bio-mimetic

adhesive pad.

6. Define the main parameters involved in the control of adhesion and

develop strategies for stable motion of the robot.

Chapter 7 reviewed the different ways proposed in the literature to define the

stability of a walking robot. In the light of this review, this chapter proposed a

new stability criterion for adhesion-reliant robots. The stability margin defined

according to this criterion can be calculated using the value of detachment

force and moment from the peeling model in Chapter 6. The analysis of

Chapter 8 focused on the different ways the pads can be arranged and

actuated within the locomotion mechanism in order to enhance the stability

of the robot. This chapter analysed a configuration of two adhesive pads first

and then the arrangements of three pads in a line and three pads in a

triangle, showing the benefits of each of them to control adhesion. The

chapter showed that these benefits can be combined in a robot with four

pads, like the intra-abdominal robot developed throughout the thesis.

9.2 Discussion and conclusions

The development of the intra-abdominal robot presented in this thesis draws

on various strands of engineering science and a research methodology

driven by the empirical aspects of robotic design. This heterogeneous

approach led to a proof-of-concept prototype as well as to the development

of the theoretical background required to build a control system specifically

tailored to inverted adhesion-reliant locomotion.

In the first place, the locomotion system chosen for the robot is a

combination of inchworm locomotion, legged locomotion and amoeboid

locomotion. The locomotion system resembles inchworm locomotion

because part of the robot moves while part of the robot is anchored. The
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robot uses four pads, each of them independently moved by three motors,

which can be considered feet like in a walking robot. The design of the robot

also draws inspiration from amoeboid locomotion because part of the robot

sticks to the surface while part of the robot moves to the new position by

deforming the central body of the robot. Secondly, the robot uses a micro-

structured surface inspired by tree frogs in order to attach to a wet surface

like the peritoneum. The locomotion mechanism peels off the tree frog

adhesive pads, which is the method used by tree frogs and geckoes to make

detachment of the pads smooth and efficient. In addition to these bio-

inspired features, the choice of locomotion and the mechanical design of the

locomotion mechanism took into consideration the miniature motors

available in the market of a sufficiently small size and low weight. All these

elements were combined into the four-padded inchworm Cartesian walker

chosen for the final design and preference was given to the implementation

and testing of the prototype. The emphasis on building the robot and

learning from experimenting with it was decided on the basis of the novelty

of handling and controlling a complex miniature robot in inverted adhesion-

reliant locomotion. The difficulty of simulating the interaction of the robot with

a complex material like biological tissue reinforced the empirical approach to

the development of the robotic system.

A number of obstacles to the implementation of a miniature robot with a

research budget were experienced and had to be overcome accepting the

hindrance they represented to the performance of the robot. The trade-off

between a sufficiently accurate manufacturing technique and a cost-effective

one meant that the performance of the miniature motors within the

mechanism was not optimal. The lack of access to appropriate miniature

components for the mechanism, like sufficiently small springs with a

sufficiently low value of stiffness constant and bearings of a small enough

size, furthered hindered the performance of the motors within the

mechanism. Force sensing technologies of suitable specifications for

integration with the hardware and the controller of the robot were out of the

financial reach of the project’s budget. Apart from an open-loop sequence to

coordinate the motion of the motors and provide locomotion to the robot, a

control architecture for closed-loop operation was designed and

programmed using the information of the position of the linear motors.

However, a closed-loop controller could not be developed much further

because of the lack of access to appropriate force sensors. The motors

employed for the robot were quite a recent development and the options to
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integrated their drivers into a complex robotic system were quite limited; this

did not help either with the development of the closed-loop strategy.

It was then decided to focus the research efforts on improving the

performance of the robot in open loop by modifying the mechanical design of

the pieces composing the mechanism. Eventually, the prototype was able to

obtain consistent locomotion on a steel surface and stable attachment and

motion of the pads on peritoneum. The performance of the final prototype

proves the feasibility and suitability of the locomotion system developed for

the design of the robot. Nonetheless, the testing of the prototype showed

that the robot controller requires feedback on the force applied to the pads in

order to move consistently on tissue.

The improvements of the hardware, sensor system and electronics of the

robot that would improve the consistency of its locomotion on tissue are

commercially available and are therefore easily surmountable with a different

budget. However, in order to achieve precise and efficient control of the

robot in inverted adhesion-reliant locomotion, overcoming the previous

implementation issues is not sufficient. It is also crucial to understand the

mechanisms at work during the attachment and detachment cycle of the pad

and how the forces applied by the locomotion affect this. This is not a matter

of a more accommodating budget but a research question that requires

some insight into the interaction between the locomotion mechanism and the

adhesive surface in order to be answered. This was the aim of Chapter 6, 7

and 8 in which a peeling model, a stability criterion and control strategies

were proposed based on the experience gained with the construction and

testing of the prototype. To the best of the author’s knowledge this is the first

model, stability criterion and control analysis proposed for a robot and

environment of the kind studied in this thesis. This novelty is probably due to

the unusual combination of features in the locomotion system of the intra-

abdominal robot, the complexity of the mechanics of its environment,

biological tissue, and the difficulty of inverted adhesion-reliant locomotion.

The peeling model analyses the way the pads are detached under the action

of the actuators in the locomotion mechanism. The peeling model manages

to give quite an accurate prediction of the uniform load required to peel off

the pad and explains how the amount of required force is reduced when

applying a peeling force at the edge of the pad. This predictions prove that

the model works on premises that represent the interaction between the

robot’s mechanism and the adhesive pad sufficiently accurately. However,

the model falls short when predicting the effect of a force component parallel
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to the surface of the tissue (shearing force) and requires careful

consideration of the thickness parameter used for the model’s formulation.

These shortcomings of the model are due to the simplifications made about

the characteristics of the tissue in order to kept the mathematical formulation

of the model easily manageable.

Stability as traditionally defined for walking robots is not the most suitable

method to assess the stability of a robot in inverted adhesion-reliant

locomotion. This is because what matters most in this type of locomotion is

that there is a sufficient number of pads holding the robot as was observed

during testing of the prototype. The definition of the stability criterion in

Chapter 7 reflects this principle an enables a direct way to calculate the

stability margin of the robot if the force applied on the adhesive pads can be

measured.

After modelling the force that causes the pad to detach and using that force

to assess the stability margin of the robot, the next question was how can

the motors be actuated in order to avoid a fall (maximise the stability

margin)? The analysis in Chapter 8 answers this question by determining,

first of all, the way force is transmitted between a moving and a detaching

pad in a two-padded configuration. Then, the same force analysis is applied

to configuration with three pads in a line and in a triangle, showing that a

four-padded robot can be analysed as a superposition of those two three-

padded configurations. Thus, the stability benefits of the three-padded

configurations can be combined in a four-padded robot and the result is a

significant enhancement of the stability margin. This enhancement is the

result of diminishing the moment on the supporting pads with the

configuration of four pads forming a quadrilateral, which is not present in a

configuration with fewer pads. As reasoned and observed during the design

and implementation stages, the analysis in Chapter 8 shows that four is the

minimum number of pads to facilitate stable locomotion in inverted adhesion-

reliant locomotion with the locomotion system of the robot.

Drawing from different sources of inspiration and technologies, Chapters 3

and 4 of this thesis present the design of a compact locomotion mechanism

with the potential to move inside the human abdomen in inverted adhesion-

reliant locomotion. The challenges of implementing such a mechanism are

explained in Chapter 5, resulting in a prototype twice the size envisaged for

the final device, able to traverse consistently a steel surface and move the

pads stably on peritoneal tissue. The first requisite for the robot to operate

comfortably inside the abdomen as a surgical assistant is to further
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miniaturise the locomotion mechanism, gaining financial access to miniature

components and manufacturing techniques that guarantee optimal

performance of the motors. Once this is obtained, the controller of the robot

needs the appropriate tools to assess the stability of its locomotion

sequences and it also needs to know how the actions of the motors in the

mechanism are going to affect stability. These tools are derived from a

control theory for inverted adhesion-reliant locomotion, the foundations of

which are developed in Chapters 6, 7 and 8. These chapters pave the way

towards precise control of inverted adhesion-reliant locomotion through the

definition of a detachment model of the pad, a stability criterion that uses the

model and strategies to enhance the stability of the robot.

9.3 Future work

The current prototype of the robot is approximately twice the size that it

needs to be in order to fit comfortably through a 3cm-long SPL incision. The

size of the robot is mainly due to the dimensions required for the rapid-

prototyped components to keep the strength of the mechanism. The linear

motors and magnetic encoders occupy a small portion of the total volume of

the robot. The dimensions of the mechanism can be reduced with a

manufacturing technique that enables smaller and thinner dimensions, using

stronger materials. Rapid prototyping machines able to manufacture in

stronger materials with higher manufacturing precision are currently

available; some of these machines can manufacture a single piece out of

different materials. Micro-machining of hard plastic or metal is also a good

option for a smaller scale prototype. However, all these are highly

specialised techniques in industry and are difficult to access for a research

budget. A more precise manufacturing and assembly technique would also

bring the benefit of a smoother fit of the components in the mechanism. This

would reduce friction and make the motors move more efficiently, improving

their performance and ultimately enhancing the locomotion of the robot.

More components can be added to the actuation system in order to enhance

the detachment of the pads. A good example of how to improve the

actuation system is the peeling mechanism developed in the undergraduate

project mentioned in Chapter 5 [169].

The motion of the robot would also improve with bespoke communication

between the drivers of the motors and the robot controller. This would allow

better coordination of the motors to move the detached pad or to apply force

on the pads in a particular way. With a more flexible communication system,
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more sensorial information can be added to the control algorithm. Sensors to

detect the preload and the detachment force applied to the pads would

significantly enhance the control of adhesion and locomotion on the surface

of the peritoneum. These sensors need to be accurate for a low range of

forces and very compact to be integrated in the locomotion mechanism.

Low-force sensing technologies to build miniature on-board sensors are

available, but require bespoke integration or a significant investment for a

research project. With this sensorial information, the peeling model, stability

criterion and control strategies developed in the last chapters of the thesis

can be used in order to enhance the performance of the robot, especially on

tissue.

The emerging field of soft actuation for robots can be useful to further

enhance the performance of the robot. This area of research is currently

being explored in the field of bio-mimetics and therefore it agrees with the

methodology followed for the development of the intra-abdominal robot. The

design of the robot already incorporates a soft component, the backing layer

of the adhesive pad, which has proved to be advantageous. Improved

versions of the pads used by the robot where the micro-structure is printed

on softer materials are under development. Compliance could be a feature

of the actuation system as well. In this way, soft robotics can provide many

benefits to the operation of the intra-abdominal robot. With soft boundaries

of the robot’s mechanism the idea of amoeboid locomotion through

deformation of the body can be explored further. Compliance of the

actuators can also help the insertion of the robot through a small incision.

The change of stiffness achievable with soft actuators can be beneficial to

peel the pads and attach to the surface of the peritoneum more easily.

Actuators with variable stiffness are already used in robotics, for instance,

series elastic actuators where a load is moved with the combination of a

motor and a spring. However, they are not particularly compact for the

miniature scale and soft actuators offer a more elegant solution.

Electroactive polymers, for example dielectric elastomers, can be a good

future solution to substitute the current piezoelectric motors of the robot.

These actuators still need to become easy to control in order to be

integrated in a robotic application and they need to use a lower voltage to be

safe for intra-body operation.

The capability of the locomotion controller can be substantially enhanced

with information on how close the pads are from detachment, how adhesion

changes and under what circumstances. Along with the models and
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strategies developed in the thesis, navigation and optimisation algorithms

can be added to the locomotion controller. Force sensors on the pads can

register the adhesion force from every part of the peritoneum to which the

robot has attached and create a map of available adhesion. A navigation

algorithm could then compute the most stable and/or fastest way to reach a

target position. This intelligent controller could also check the changes in

available adhesion force and avoid certain areas when planning a path in

order to avoid a fall or minimise tissue damage. Learning algorithms and

optimisation techniques can be used to integrate the information from the

sensors and dynamically calculate the best way to move the pads and reach

the target of the robot. These further improvements would make the robot an

intelligent and efficient surgical assistant, able to enhance the skills of the

surgeon and taking them anywhere in the abdomen with minimal trauma to

the patient.

Beyond the improvements that can be made to the mechanism and control

algorithm of the robot, the significance of this thesis lies on the development

of a locomotion system and theory towards precise control of inverted

adhesion-reliant locomotion. Robots have been built for this type of

locomotion and some strategies to recover adhesion of the pads have been

developed [101]. The modelling and analysis work carried out in this thesis

goes one step further by mathematically representing the interaction

between robot and adhesive pad and analysing how the stability of the robot

can be monitored and enhanced. This can be the foundation for a general

theory on the locomotion of robots relying on adhesion to remain stably

attached to a surface. A thorough validation of the peeling model can identify

all the parameters relevant to different types of surfaces, biological and non-

biological, and these can be included in the formulation of the model.

Algorithms using the stability criterion and control strategies for inverted

adhesion-reliant locomotion can be programmed, tested and improved until

precise adhesion control is obtained.

The locomotion system of the robot developed in the thesis is not limited to

an inverted surface can be used for all types of terrain. Thus, the design of

the robot can be extended to one that can operate in every position: on the

ground, an inclined wall and an inverted surface. With the necessary

modifications, the application of the robot can also be expanded to make it

work in different types of tight and irregular environments, like other body

cavities (for instance the colon), amongst rubble, inside pipes and tanks.

Some modifications that can made to the robot to make it work in different
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environments are: a mechanism to ease transition from the ceiling or a wall

to the ground; another set of adhesive pads at the free end of the vertical

motors so that the robot can conveniently stick to the ground if required. For

the intra-abdominal application, these modifications could allow the robot to

move in all the surfaces of the abdominal cavity, transitioning from the

peritoneum to the surface of the abdominal organs and sticking to the

abdominal organs to stabilise its motion.

An interesting line of research that could be followed, apropos of the

biological context of the project, would be to investigate if there is any

relation between the stability criterion proposed in this thesis and animal

locomotion. Do animals climbing an inverted surface control their motion

using a similar stability criterion? Do they know which feet need to be

attached at any time during inverted locomotion and react when one too

many of these feet are losing adhesion? If the answer to these questions is

positive, the findings on how animals sense and react to loss of adhesion

can be fed into a further development of the control system for inverted

adhesion-reliant locomotion.

The design of the robot includes elements of amoeboid locomotion which

have not been explored before and can be further researched and exploited

for robotic locomotion. Some configurations of more pads in alternative

designs have been proposed in the thesis; these alternatives can be

implemented and tested expanding on how the different connections

between the pads affect stability. The amoeba-inspired concept of the

quadrilateral changing shape can be expanded to create new designs where

a network of adhesive pads are interconnected and coordinated in order to

intensify the fluidity and smoothness of motion observed in amoebas. Using

the models and control analysis proposed in this thesis, this robotic network

of adhesive pads can be used to develop a general theory on how to control

the motion and stability of a set of adhesive pads connected by any

combination of links and actuators.
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Papers 1 and 2 about the design and implementation of the robot contain

information from Chapters 2, 3, 4 and 5 of this thesis and correspond to

contributions 1 and 2 presented in Chapter 1.

Extended abstract 1 about the performance of the prototype contains

information from Chapters 2 and 5 of this thesis and corresponds to

contribution 2 presented in Chapter 1.

Extended abstract 2 about the adhesion control of the robot contains
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Extended abstract 5 about the bio-inspired features of the robot contains

information from Chapters 1, 2, 3, 4 and 5 and corresponds to contributions

1 and 2 presented in Chapter 1.

In all the previous papers and extended abstracts the author of this thesis

carried out the research and writing while the rest of the authors supervised

the work.
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submission of this thesis:

1. Design and implementation of a bio-inspired locomotion mechanism

for an intra-abdominal adhesion-reliant robot (from an engineering

perspective).

2. Development of the proof-of-concept prototype of a miniature intra-
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perspective).

3. Detachment control and stability analysis of adhesion-reliant robots

walking in inverted locomotion.
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Appendix B
The intra-abdominal robot in the media

The application and bio-inspired design of the intra-abdominal robot drew

the attention of the British media and the international media:

1. “Biomimicry: new thinking about design and engineering inspired by

nature. Biomimicry case 3: the gecko surgeon” at 3’46’’, webcast

funded by Hyundai, Smoking Pony Productions, Summer 2012.

Video available in this link: http://youtu.be/lNpi-QJljzM.

2. The One Show, Series 6, Designed by Nature, BBC1, Tigress

Productions, April 2013.

Video available in this link: http://youtu.be/XTrogpss6W0.

3. Slate.com, The Slate Group (The Washington Post Company), April

2013

Article available in this link (Accessed May 2013):

http://www.slate.com/blogs/future_tense/2013/04/23/surgical_robot_in

spired_by_a_frog_can_roam_around_inside_your_abdomen.html.

4. Yorkshire Evening Post, 2nd May 2013

Scanned image of the article:



- 293 -

“There is nothing too little for so little a creature as man. It is by
studying little things that we attain the great art of having as little

misery and as much happiness as possible.”

Samuel Johnson


