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Abstract

Constructive mathematics is mathematics with intuitionistic logic (to-
gether with some appropriate, predicative, foundation)—it is often
crudely characterised as mathematics without the law of excluded mid-
dle. The intuitionistic interpretation of the connectives and quantifiers
ensure that constructive proofs contain an inherent algorithm which re-
alises the computational content of the result it proves, and, in contrast
to results from computable mathematics, these inherent algorithms
come with fixed rates of convergence.

The value of a constructive proof lies in the vast array of models for
constructive mathematics. Realizability models and the interpretation
of constructive ZF set theory into Martin Löf type theory allows one
to view constructive mathematics as a high level programing language,
and programs have been extracted and implemented from constructive
proofs. Other models, including topological forcing models, of con-
structive set theory can be used to prove metamathematical results,
for example, guaranteeing the (local) continuity of functions or algo-
rithms. In this thesis we have highlighted any use of choice principles,
and those results which do not require any choice, in particular, are
valid in any topos.

This thesis looks at what can and cannot be done in the study of
the fundamental fixed point theorems from analysis, and gives some
applications to mathematical economics where value is given to com-
putability.
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Preface

As mathematicians we habitually rewrite the past, to write a paper reflect-
ing a true development of the results and proofs therein would typically
lead to a large garbled mass of ideas. I restrain myself from rewriting the
construction of this thesis, and apologise for any mess. I decided to begin
‘writing up’ upon returning to Leeds at the start of 2012, much earlier than I
had previously intended so I could (unsuccessfully) apply for my dream post
doc. Thus committed to finishing my PhD studies, I gathered together the
various work I had done over my time at Leeds and took the largest subset
(an admirably large one) to which I could apply a uniform subject—and so
we have ‘Constructing fixed points and economic equilibria’.

The work of Chapter 3, on fixed point theorems, was done almost entirely
during my first year. The section on the intermediate value theorem with-
out choice was the first piece of work I did when I arrived at Leeds and was
hurriedly written up as [55]; in the intervening time I have given it periodic
thought, and Section 3.1 gives a much better picture than that paper. At
Peter’s encouragement (which was prompted by a question of Andrea Can-
tini) I then worked on the fixed point theorems of Schauder and Kakutani,
which is contained in [56, 57], and though I stopped thinking about these
problems some time ago, I am still not entirely happy with the contents.

The work on constructing equilibria was started after reading [105], and
feeling the paper had little interest even to the constructive mathematician.
In response I quickly wrote and submitted [58] to the same journal, and
Section 4.2 is a carbon copy of this. I was encouraged to work on McKenzie’s
theorem on the existence of equilibria by Douglas Bridges, and Naz Miheisi’s
contribution to [59] was forcing me to sit down and work through the details
of the general proof outline I had formed. The work on demand functions
(Section 2.2), the most recent of the main content, had the original purpose
of making the thesis more self contained by developing the material borrowed
from [27], but ended up generalising Bridges’ results.

The first chapter represents the bulk of the work specifically devoted to
writing this thesis. Its dual purpose of justifying the study of mathemat-
ics from a constructive perspective and presenting a broad overview of the
mathematics and metamathematics which might interest and benefit the
practising constructivist1 (this one at least), received much help from my

1Anyone interested in constructive techniques, with or without a philosophical com-
mitment to constructivism.
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mathematical brothers and sisters (and here I include my mathematical half-
sister Mayra). In particular, the extension of the result of [63] to infinitary
systems was a goal set, and pursued, with Pedro Valencia to help us un-
derstand the details of Ishihara’s work. The work of Section 1.3 on models
of IZF was done independently after I learnt of Cohen’s weak forcing and
its relationship to Kripke models; after this I found that forcing models for
IZF are discussed in [73] (there is, however, in this paper a small error in
the soundness proof of set induction), and this was extended, in particular
to CZF, in Ray-Ming Chen’s thesis [38]. I am not aware of forcing seman-
tics for topological models being presented in the literature, but it is easily
derived from the more general presentation of Grayson [54] and others.

Most of the thesis is quite elementary and can be read alone. The first
chapter provides a relatively broad introduction to ‘aspects of constructive
mathematics and metamathematics’, particularly its purpose and formali-
sation. The second chapter provides a few results used in the later chapters;
these two later chapters represent the body of the thesis. Chapter three
first looks at the question ‘when can we construct (classically existing) fixed
points (without choice)?’, and then gives approximate constructive versions
of Brouwer’s fixed point theorem and its two main generalisations: first to
infinite dimensional spaces (Schauder’s fixed point theorem), and then to set
valued mappings (Kakutani’s fixed point theorem). Schauder’s fixed point
theorem is applied to give an approximate version of Peano’s theorem on
the existence of solutions to differential equations. The final chapter applies
the approximate fixed point theorems of chapter three to equilibrium prob-
lems from mathematical economics. We make comments throughout on the
constructive reverse mathematics of our results.

I hope that constructivists, both experienced and budding, will find the first
chapter interesting, although it could undoubtedly be greatly improved. The
latter chapters are perhaps of less general interest, but the work on questions
from mathematical economics should interest some in that field (and has
few prerequisites), and the work on the intermediate value theorem without
choice, though simple, might appeal more generally because it holds more
generally. Our treatment of the intermediate value theorem also highlights
some of the difficulties, and benefits, of working in an inuitionistic setting
without choice. After writing the first chapter, and after gaining an appre-
ciation for choice-free mathematics from Peter Schuster, I made an effort to
indicate the use of choice throughout the thesis—I hope that I have at least
overestimated the choice needed at each stage—and I have tried to indicate
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the prevalent use of choice in Bishop’s constructive mathematics, and some
of the drawbacks for its acceptance or rejection.

Leeds, September 2012 Matthew Hendtlass
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Chapter 1

Constructive mathematics

1 Constructive mathematics

This introduction is not really designed for this thesis. The contents of

this thesis are largely elementary, and consequently the only introduction it

requires is a brief note on the practice—and possibly philosophy—of con-

structive mathematics. In contrast this introduction, as much for myself

as any reader, will give a brief nontechnical introduction to aspects of logic

which may interest a practising (philosophical or pragmatic) constructivist.

In short, it is an attempt (i) to provide a simple introduction to what I

should have known or studied when I arrived at Leeds—assuming I had de-

cided to remain a student of constructive mathematics—and (ii) to turn the

writing of this thesis into more than mere farce (a job it did admirably).

Some results—none of which are by any means exciting—are original; no

effort is made to point these out or, more generally, to include any historical

commentary, but general references will be given.

This chapter consists of five sections. The first introduces constructive math-

ematics, in particular intuitionistic logic, informally and then discusses for-

mal intuitionistic logic and briefly mentions some related models of com-

putation. Section 1.2 gives background on the three main set theories for

constructive mathematics; and models of the strongest of these theories are

introduced in the next section. The fourth section takes up the argument,

begun in Section 1.1, that some aspects of constructive mathematics should

be of interest to a large class of classical mathematicians. The final section

introduces some of the fundamental definitions of constructive mathematics,

and outlines the programme of constructive reverse mathematics.
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1.1 What is constructive mathematics?

Constructive mathematics reinterprets the quantifier ‘there exists’ as ‘we

can construct’. As a result of this stronger interpretation of existence, a

constructive proof is algorithmic. If upon seeing a statement “there exists x

such that ϕ(x)”, you think “so what does x look like?,” then you should have

some small sympathy with constructive mathematics; constructive mathe-

maticians are not (necessarily) fostering a different notion of truth (they need

not reject Plato’s paradise), they just concern themselves with different ques-

tions (“can we construct?”, “is there an algorithmic process such that...?”,

etc.) in the appropriate framework for such questions—intuitionistic logic.

This distinction in logic, from that of the classical—that is traditional—

mathematician, is not important, it is merely a natural consequence of a

distinction in intent.

Mathematics based on intuitionistic logic was first put forward by Brouwer

as (part of) a philosophy of mathematics in opposition to Hilbert’s formal-

ism. Brouwer’s philosophy of intuitionism was plagued by mysticism and

received little help from the very public and demeaning controversy with

Hilbert (see [44] for an historical perspective on Brouwer and his intuition-

ism). From the mathematical perspective, there are two major criticisms of

Brouwer’s work on intuitionism:

(i) Brouwer’s system was inconsistent with classical mathematics, in par-

ticular in its assertion that all functions are continuous;

(ii) Brouwer focused heavily on what he considered false assertions of clas-

sical mathematics, showing that many fundamental theorems, for in-

stance his own fixed point theorem, implied principles which are prov-

ably false in intuitionism.

The second criticism led to the belief, still commonly held, that in the words

of Hilbert

“Taking the principle of excluded middle from the mathemati-

cian would be the same, say, as proscribing the telescope to the

astronomer or to the boxer the use of his fists.”
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Through the first halve of the 20th century these faults seemed terminal,

and constructive mathematics languished.2 It was not until 1967, with Er-

ret Bishop’s publication of ‘Foundations of constructive analysis’ [16], were

Hilbert’s accusations dismissed. Foundations of constructive analysis gave

an account of the core of modern mathematics on the basis of intuitionistic

logic, together with a minimal informal set theory and dependent choice.

Gone was the inconsistency with classical logic, and gone too were any se-

rious doubts of the strength of the constructive approach to mathematics.

Shortly after this Per Martin-Löf independently provided a firm philosoph-

ical foundation, with the introduction of his intuitionistic type theory [81]

in 1972, for constructive mathematics sufficient for the formalisation of the

work of Bishop. Mathematically strong, but proof theoretically weak, con-

structive set theories emerged soon after.

Intuitionistic logic will be introduced formally in the next section; but in

the practice of constructive mathematics, like classical mathematics, we are

guided by an understanding of what constitutes a proof, and not by any

formal system.3 In the constructive setting this understanding is expressed

by the Brouwer-Heyting-Kolmogorov (BHK) interpretation of the logical

connectives and quantifiers:

I P ∨Q: either we have a proof of P or we have a proof of Q;

I P ∧Q: we have both a proof of P and a proof of Q;

I P → Q: we can convert, in a systematic way, any proof of P into a

proof of Q;

I ¬P : we can derive a contradiction from P ;

I ∃x∈AP (x): we have an algorithm constructing an object x ∈ A to-

gether with a proof of P (x);

2Although Brouwer’s student Arend Heyting’s work legitimised the study of intuition-
istic systems within mathematical logic.

3Brouwer and Bishop each made clear their belief that mathematics is primary to logic,
but formal systems are needed for the metamathematics of intuitionistic systems if nothing
else.

3



I ∀x∈AP (x): we can convert an object x and a proof that x ∈ A, to a

proof that P (x) holds.

If we have a symbol ⊥ for absurdity, then the condition for ¬P is just the

special case of P → Q where Q = ⊥. We could also, for instance, define ⊥
as 0 = 1.

It is often suggested that, since intuitionistic logic gives non-classical mean-

ings to the connectives and quantifiers, we should use different symbols.4

But this full array of logical symbols really belongs to the constructive set-

ting: the logical symbols of classical mathematics are ¬,∧, ∀, the others

are merely convenient (and intuitive) notation (we, classically, write ∃xϕx
for ¬∀x¬ϕx, and so forth). Intuitionistic logic gives the same meaning to

these fundamental symbols, but gives a stronger, independent meaning to

∨,→,∃. This simple observation is the essence of the Gödel-Gentzen double-

negation translation (introduced below) of classical logic into intuitionistic

logic. Constructive mathematics gives a positive meaning to each of the

connectives and quantifiers, as opposed to classical mathematics which, as

witnessed by the double negation interpretation, gives negative definitions

to ∨,→,∃.

In practice the intent of constructive mathematics manifests itself most

prominently in the rejection of the law of excluded middle,5 or equivalently

proof by contradiction. Constructive mathematics is often, falsely, presented

as mathematics without the LEM, but if we are to conform to the BHK

interpretation of the connectives and quantifiers, then we must exclude weak

instances, or fragments, of the LEM. We list some of the commonly encoun-

tered fragments of the law of excluded middle, which we must be careful to

avoid; Bishop called these the principles of omniscience.

4This is done in proof decorating, which is a method for extracting computational
information from classical proofs [99].

5More accurately, constructive mathematics excludes LEM: since constructive math-
ematics is a subsystem of classical mathematics, constructive mathematics makes no as-
sertion on the truth of LEM.
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I The limited principle of omniscience (LPO): For any binary

sequence (an)n>1, either an = 0 for all n or there exists n such that

an = 1.

I The weak limited principle of omniscience (WLPO): For any

binary sequence (an)n>1, either an = 0 for all n or not an = 0 for all

n.

I The lesser limited principle of omniscience (LLPO): For any

binary sequence (an)n>1 with at most one non-zero term, either an = 0

for all even n or an = 0 for all odd n.

I Markov’s Principle (MP): For any binary sequence (an)n>1, if it is

impossible for an = 0 for all n, then there exists n such that an = 1.

LPO is the restriction of LEM to Π0
1 sentences; WLPO the restriction of

the weak law of excluded middle—for any proposition A, either A is false or

¬A is false—to Π0
1 sentences; LLPO is the restriction of De Morgan’s law—

¬(¬A∧B)↔ ¬(A∨¬B); and MP is an instance of proof by contradiction.

It is easily seen that the first three principles are ordered by (strictly) de-

creasing strength and that WLPO + MP is equivalent to LPO. We shall

meet other, more subtle, omniscience principles later. Although these prin-

ciples are rejected as inherently nonconstructive, they do sometimes play a

part in fully constructive proofs via Ishihara’s tricks [32, Section 3.2]; this is

related to the recent work of Mart́ın Escardó [50] showing that some initially

surprising instances of excluded middle are constructively valid.

Examples of propositions which are Π0
1 include Fermat’s last theorem, the

Riemann hypothesis, and the Goldbach conjecture. For instance, define a

binary sequence (an)n>1 such that

an = 0 ⇒ 2n is the sum of two primes;

an = 1 ⇒ the Goldbach conjecture fails for 2n.

Note that this binary sequence is constructively well defined since we can

decide for each n whether an = 0 or an = 1 (at least in theory—any cal-
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culations are left as an exercise for the reader). Applying WLPO to the

sequence (an)n>1 tells us whether Goldbach’s conjecture is true or false;

LPO goes one better by either asserting that Goldbach’s conjecture is true,

or by providing an explicit counterexample. Of course classically each of

these assertions is trivial, but with a constructive reading of the connec-

tive ∨, proving ‘the Goldbach conjecture is true or the Goldbach conjecture

is false’ is to decide the conjecture. In constructive mathematics we seek

(computational) proof rather than truth.

A very popular area of current research in the constructive community is the

classification of classical theorems by the fragment of the law of excluded

middle required, in addition to the techniques available to the constructivist,

in order to prove them. This research programme is dubbed constructive

reverse mathematics after the related branch of mathematical logic, reverse

mathematics, initiated by Harvey Friedman and Stephen Simpson in the

70’s. Any theorem which is consistent with constructive mathematics is

within the realm of constructive reverse mathematics, in particular clas-

sically false results from computable analysis and Brouwer’s intuitionism.

In section 1.5 we discuss constructive reverse mathematics in a little more

detail.

Reverse mathematics is so called because, in addition to proving a theorem ϕ

in the appropriate system T (forward mathematics), one must also show that

this system is the weakest sufficient to prove ϕ; that is, we must show that

ϕ implies the axioms of T (over an appropriate base theory)—this latter

task is the reversal. In the (informal) constructive setting, reversals date

back to Brouwer’s work, so called Brouwerian (counter)examples, showing

classical theorems to be constructively unprovable. We give a simple, but

fundamental, example: the statement

(*) ‘Every nonempty set has an element’

implies, and hence is equivalent to, the law of excluded middle. Fix a sen-
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tence ϕ, and define

S = {x : x = 0 ∧ ϕ} ∪ {x : x = 1 ∧ ϕ}.

If S were empty, then we would have ϕ ∧ ¬ϕ, which is absurd and hence S

is nonempty. But if x ∈ S, then either x > 0 or x < 1, allowing us to decide

whether ϕ or ¬ϕ holds. Hence (*) implies the law of excluded middle.

This Brouwerian example leads us to isolate the more positive notion of

being nonempty expressed by (*): a set S is inhabited if there exists x such

that x ∈ S. A slightly slicker, but less intuitive, proof of this Brouwerian

example uses the set

S = {x : x = 0 ∧ (ϕ ∨ ϕ)}.

There are also a number of so called ‘semi-constructive’ principles which

have been isolated in the literature, and which play a part in the construc-

tive reverse mathematics of computable analysis and Brouwer’s intuitionism.

Key among these are

(i) those introduced by Brouwer in order to prove that all real valued

functions on [0, 1] are uniformly continuous, and

(ii) those which characterise the Russian school of computable analysis.

The former principles are

I Brouwer’s continuity principles

BCP : (1) Any function from NN to N is continuous;

(2) If P ⊂ NN ×N, and for each a ∈ NN there exists n ∈ N

with (a, n) ∈ P, then there is a function f : NN → N such

that (a, f(a)) ∈ P for all a ∈ NN;

I the contrapositive of (weak) König’s lemma, Brouwer’s fan theorem

(FT): if every branch of a binary tree T is finite, then the tree is

finite.

7



Different variants of Brouwer’s fan theorem are formed by restricting the

complexity of (non)-membership in the tree. The appropriate notation and

definitions are introduced in Section 2.1.

The principles which characterise computable analysis are Markov’s princi-

ple together with

CPF: there is an enumeration of the set of partial functions from

N to N with countable domains.

CPF (which stands for countable partial functions) is a simple consequence

of the Church-Turing thesis—a function is computable if and only if it is

computable by a Turing machine—together with a focus on computable

functions.

Brouwer isolated the notion of the ‘creating subject’ which was central to

his philosophy of mathematics. In particular, the creating subject allowed

Brouwer to argue that Markov’s principle implies the law of excluded mid-

dle, his motivation being to prove Markov’s principle to be false. Myhill

introduced a principle, which he called Kripke’s schema, to formalise the

creating subject arguments of Brouwer. Kripke’s schema says

KS: For every proposition P , there exists a binary sequence

(an)n>1 such that if P is true, then there exists n such that

an = 1, and if P is false, then an = 0 for all n;

∃α∈2N(P ↔ ∃n∈Nα(n) = 1).

Although Kripke’s schema is not of great mathematical interest, Peter Schus-

ter has shown it to have a few mathematically interesting equivalents [79, 98].

We will often refer to: constructive mathematics with dependent choice as

BISH in honour of Erret Bishop; constructive mathematics augmented by

Brouwer’s continuity principles and fan theorem as INT; and constructive

mathematics augmented by CPF and Markov’s principle as RUSS. To-

gether with classical mathematics CLASS (BISH plus LEM and the full
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axiom of choice), INT and RUSS are the historically important extensions

of constructive mathematics. See [23], from which we have borrowed this

notation, for an introduction to these systems and there interrelations.

Constructive mathematics without the axiom of dependent choice is also of

interest, primarily because it has a wide array of models.6 As a result, we

will be interested in a number of choice axioms of varying strength, including

the following.

The axiom of choice

AC: If a is an inhabited set and ψ is a (class) function with domain

a such that for each x ∈ a there exists y such that ψ(x, y), then there

exists a choice function f : a→ b with ψ(x, f(x)) for each x ∈ a;

∀x∈a∃yψ(x, y)→ ∃b∃f∈ba∀x∈aψ(x, f(y)).

The axiom of dependent choice

DC: If a is a set, x0 ∈ a, S is a subset of a × a, and for each x ∈ a
there exists y ∈ a such that (x, y) ∈ S, then there exists a sequence

(xn)n∈N in X such that x0 = a and (xn, xn+1) ∈ S for each n;

∀a∀R⊂a×a(∀x∈a∃y∈axRy ∧ x0 ∈ a→
∃f∈aN(f(0) = x0 ∧ ∀n∈Nf(n)Rf(n+ 1))).

The axiom of relativised dependent choice

RDC: Dependent choice for a class relation ψ on a class ϕ:

∀x((ϕ(x)→ ∃y(ϕ(y) ∧ ψ(x, y)))→ (ϕ(x0)→
∃b∃f∈bN(f(o) = xo ∧ ∀n∈N(ϕ(n) ∧ ψ(f(n), f(n+ 1))))).

The axiom of countable choice

CC: If b is an inhabited set and S is a subset of N × b such that for

6Also Fred Richman has voiced concerns over the constructive validity of choice axioms
[93].
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each n there exists y ∈ b with (n, y) ∈ S, then there exists a function

f : N→ b such that (n, f(n)) ∈ S for each n;

∀n∈N∃y∈b(n, y) ∈ S → ∃f∈bN∀n∈N(n, f(n)) ∈ S.

The axiom of unique choice

AC!: The axiom of choice where the (class) relation ψ is restricted to

a (class) function;

∀x∈a∃!yψ(x, y)→ ∃b∃f∈ba∀x∈aψ(x, y).

The axiom of weak countable choice

WCC: If (an)n∈N is a sequence of inhabited sets at most one of which

is not a singleton—if n 6= n′, then one of An, An′ is a singleton—then

there is a choice function f : N→
⋃
an with f(n) ∈ an for each n.

Restrictions of countable choice such as

ACω,2: The axiom of choice with the additional restriction that

|{y ∈ Y : (n, y) ∈ S}| 6 2

for each n.

We can also form new choice principles by restricting the complexity of the

classes from which elements are chosen. This is done using the arithmetic

hierarchy from second order arithmetic. A formula ϕ is a ∆0 formula if

it contains no quantifiers. In the classical setting we can then define the

arithmetically hierarchy for formulas inductively by

I Σ0 ≡ Π0 ≡ ∆0;

I a formula is Σn+1 if it is of the form ∃xϕ for a Πn formula ϕ;

I a formula is Πn+1 if it is of the form ∀xϕ for a Σn formula ϕ.

Then any formula with n quantifiers is (classically) in Σn ∪Πn. A set is Πn

(resp. Σn) if it is defined by a Πn (resp. Σn) formula. In the constructive
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context, where not every formula is equivalent to a formula in which all

quantifiers occur at the front, we must be more careful; we leave the formu-

lation of an appropriate definition of the arithmetic hierarchy as an exercise

(the solution can be found in [64]). We shall only make use of Π1 sets, which

we define directly: a subset S of a set X is a Π1 -set if it is the intersection

of countably many decidable subsets of X. We are particularly interested

in the restriction of ACω,2 to Π1 subsets of N× Y , denoted Π0
1-ACω,2.

The axiom of unique choice, and the axiom of finite choice—

∀m∈n∃yψ(m, y)→ ∃b∃f∈bn∀m∈nψ(m, f(m))

for any positive integer n—are valid in CZF. The relationships between

these choice principles are summarised in Figure 1.

Constructive reverse mathematics is normally, in contrast to classical reverse

mathematics, done over a base system including the axiom of dependent

choice, but it is also interesting, and more in line with the classical pro-

gramme, to classify the choice principles required to prove a theorem. An

additional motivating factor towards considering choice principles is that

many of the common models of constructive set theory do not, in general,

satisfy any axiom of choice beyond unique and finite choice.

In Section 1.5 on reverse mathematics we summarise some of the relations

between the logical and choice principles introduced so far.

Why pursue constructive mathematics?

Of course constructive mathematics has its origins in philosophy, first in the

bizarre and confusing philosophy of Brouwer7 [36] and then in the pragmatic,

and comparably unobjectionable (though aggressively pushed), philosophy

of Bishop [17, 15]. Briefly, when asked the question “When does an object

exist?”: Brouwer answered when it can be ‘mentally constructed’; while

7See [83] for an interesting, if somewhat acerbic, exposition of the philosophical mis-
conceptions of the founders of constructive, particularly intuitionistic, mathematics.
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Bishop suggested that the correct question is “when does an object have a

concrete existence?” Many philosophical motivations have been put forward

for studying constructive mathematics in the intervening years, and if this is

your cup of tea, then please have a sip. If you a not a tea drinker, then rest

assured there are non-philosophical motivations for the study of constructive

mathematics.

Developments in the 20th century, both mathematical and technological,

have provided many reasons to study mathematics with intuitionistic logic.

The development and proliferation of computers, and the application of

mathematics throughout the sciences, has made the question “when can

we, and when can we not, construct?” of fundamental importance, and

‘constructive mathematics’ provides a natural and elegant domain in which

to address this question. Perhaps more importantly (at least for those of us

with an inclination towards more pure mathematics), intuitionistic systems

have come to prominence in mathematics in a natural way through the

category theoretic generalization of set theory: the logic of topos theory8 is

intuitionistic.

More precisely, just as the category of sets forms a topos, general toposes

can be seen as the universe of sets of some local set theory. Toposes can

then be regarded as models of local set theories in such a way that we have

both soundness—theorems of a local set theory T are true in every model

of T—and completeness—any proposition validated by all models of a local

set theory T is a theorem of T . Those theorems which hold in all local

set theories coincide precisely with (some higher order) intuitionistic logic

[10]. Moreover, the standard constructive set theories, introduced in the

next section, can be interpreted into toposes (with possibly a little extra

structure).

8Very briefly, a topos is the natural category theoretic generalization of the category of
sets, the standard universe of ZFC, which is sufficient for the development of mathematics;
each topos defines a mathematical framework. In particular, in every topos one can
identify objects which behave like the empty set, the naturals, the reals, and powersets—
toposes are impredicative. See, for example, [67] for an introduction to topos theory.
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Many further motivations for constructive mathematics have been put forth

and we briefly mention three; the latter two are merely consequences of the

fact that constructive mathematics admits many models.

I Martin Löf type theory provides a firm and informative foundation

for constructive mathematics with a complete, and unobjectionable,

philosophical justification—although one might disagree with his in-

terpretations of the connectives and quantifiers. In contrast the justi-

fications for ZFC, the standard foundation for classical mathematics,

is generally far more personal and intuitive.

I Fred Richman has emphasised the idea that constructive mathemat-

ics is a generalisation of classical mathematics: any classical theorem

ϕ corresponds to the constructive theorem LEM → ϕ (and possi-

bly a stronger theorem OP→ ϕ for some fragment OP of LEM), so

constructive mathematics reveals a finer structure than classical math-

ematics. Of course this is just the observation that constructive math-

ematics (appropriately formalised) is a subsystem of classical mathe-

matics (ZFC, say). One must still argue, as Richman has, that classi-

cal mathematics obscures meaningful distinctions which constructive

mathematics makes apparent. In addition, the wealth of interesting

non-classical toposes, and other models of constructive mathematics,

and their use, for instance, in the foundations of quantum theory [60],

make such an argument.

Related to the arguments of Richman are the ideas of mathematical

precision and pragmatism. Constructive mathematics can also provide

a weak foundation for reverse mathematics with the coding power to

express much of core mathematics; indeed, constructive mathematics

is put forward by Simpson [100] as roughly akin to the base system,

RCA0, of classical reverse mathematics. It is also the case that a con-

structive proof is more informative; not only do we, by using fewer

assumptions (or rather axioms), prove a stronger result, it is also pos-

sible to extract more information, both computational and noncom-
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putational, from a constructive proof.

I Constructive mathematics has a close relationship with classical com-

putability theory. Any positive result from constructive mathematics

can be translated directly into the computability context, allowing one

to avoid the tedious formal details associated with the need for coding

and so forth in computability theory. Many of the negative results,

Brouwerian examples, also transfer over to computable mathematics:

if, for example, from an algorithmic proof of ϕ you could give an algo-

rithm for LLPO, then, since it can be shown no such algorithm exists,

ϕ is noncomputable.

The relationship between constructive mathematics and computable

mathematics is in fact tighter than these simple observations suggest:

“Computable mathematics is the realizability9 interpreta-

tion of constructive mathematics.”

hi Andrej Bauer, [7]

Although Bauer’s comment is an embellishment, it has been suggested,

by Douglas Bridges among others, that many of the positive results of

computable mathematics can be obtained in this way.

These points are discussed further in section 1.4.

The development of constructive mathematics (by Bishop [16] for example)

does not require any formal system of logic; it is done in the typical informal

style of the working (classical) analyst, algebraist, topologist... and this

is the style adopted in this thesis. We give some basic examples of the

informal practice of constructive mathematics in section 1.5, this section

also furnishes us with many of the common positive definitions that are

necessary for the profitable application of constructive methods.

9Realizability is a semantics for constructive mathematics based on trying to formalise
the notions of proof and algorithm in the BHK interpretation of the logical symbols. We
briefly introduce realizability in section 1.3
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For a development of constructive analysis see [16, 18, 23, 32], constructive

algebra has also seen great progress [75, 87] in particular in the pursuit of a

revised Hilbert’s programme [41, 42].

For those who still disparage the study of mathematics from a constructive

point of view (in addition to the classical approach), we finish with this

remarkable (classical) theorem:

Theorem *[ZF] Constructive mathematics is universal, in that it is the

mathematics for every mathematician.

Proof. Given a mathematician M , we have to cases.

Case 1: M is a pessimist. Then he is skeptical and doubts the consistency of

ZFC; whence he falls back upon the firm foundation of Martin-Löf’s type

theory, and is a constructivist.

Case 2: M is an optimist. As an optimist, M prefers the positive con-

structive approach to mathematics to the negative approach of classical

mathematics.

1.1.1 Intuitionistic logic

It has come time for us to be a little more precise, but we will endeavor to

keep the unsightly and cumbersome details of formal logic in the background.

We introduce two (equivalent) formulations of first order intuitionistic logic:

the intuitionistic quantifier calculus IQC. The first, due to Gentzen,10 is

formulated in a way which reflects arguments of mathematical practice, and

is aptly named natural deduction. Natural deduction can be seen as an

attempt to make the BHK-interpretation precise. We first recall the basic

definitions of formal logic that we shall need.

The language L of propositional logic contains:

10A few years after introducing natural deduction, Gentzen gave another formulation
of logic: the sequent calculus. Gentzen’s sequent calculus is less natural than natural
deduction, but is generally superior for proof theoretic investigations.
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I the logical symbols ∧,∨,→,⊥,∀,∃;

I countably many variables v0, v1, . . .;

I countably many n-ary relation symbols Rn0 , R
n
1 , . . . for each positive

natural number n;

I countably many n-ary function symbols fn0 , f
n
1 , . . . for each n; in par-

ticular, 0-ary function symbols are (called) constants.

Falsity ⊥ is identified as the unique 0-ary relation. Terms of L are defined

inductively: variables and constants of L are terms; and if t1, t2, . . . , tn are

terms and f is an n-ary function symbol of L, then f (t1, . . . , tn) is a term.

Atomic formulas are those expressed by relations: if t1, t2, . . . , tn are terms

and R is an n-ary function symbol of L, then R (t1, . . . , tn) is an atomic

formula; in particular, ⊥ is an atomic formula. The formulas of L are

constructed from atomic formulas using the logical symbols:

(i) atomic formulas are formulas;

(ii) if ϕ,ψ are formulas, then

ϕ ∧ ψ,ϕ ∨ ψ, and ϕ→ ψ

are formulas;

(iii) if ϕ is a formula and v is a variable, then ∃vϕ and ∀vϕ are formulas.

In first order logic there is an important distinction between the variables

in a formula introduced within atomic formulas and those introduced by

(iii); the former are called free variables, while the later are bound variables

(being bounded by the quantifier). Formally we define the free variables of

ϕ, denoted FV(ϕ), by induction on the construction of ϕ:

I if ϕ is atomic, then FV(ϕ) is the set of variables occurring in ϕ;

I FV(ϕ ∧ ψ),FV(ϕ ∨ ψ),FV(ϕ→ ψ) = FV(ϕ) ∪ FV(ψ);

I FV(∃vϕ),FV(∀vϕ) = FV(v) \ {ϕ}.
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A sentence is a formula with no free variables. We define ¬A as A implies

absurdity A → ⊥, and we write A ↔ B for A → B ∧ B → A. By A[x/y]

we denote the formula given by replacing every occurrence of x in A by y;

if x only occurs bound in A, then we make no distinction between A and

A[x/y].

We can now introduce Gentzen’s natural deduction. Natural deduction is

built around the application of valid rules, and an argument is given by a

valid finite sequence of these rules; we denote arguments by D1,D2, . . .. Our

most basic rule, which must be used at the beginning of any argument, is

the introduction of assumptions, or suppositions:

Ass.
D1

A
.

The other basic rules are those corresponding to the logical connectives and

quantifiers. For each logical symbol ∗ we have an introduction rule ∗I and

an elimination rule ∗E.

Introduction rules Elimination rules

∧I

D1

A

D2

B

A ∧B
∧Er

D1

A ∧B
A

∧ El

D1

A ∧B
B

→ I

D1

B

A→ B
→ E

D1

A→ B

D∈
A

B

∨Il

D1

A

A ∨B
∨ Ir

D1

B

A ∨B
∨E

D1

A ∨B
D2

A→ C

D3

B → C

C
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∀I

D1

A

∀yA[x/y]

where x bound in D1

∀E

D1

∀xA
A[x/t]

where t is free for x in a

∃I

D1

A[x/t]

∃xA
(D1, A) satisfy condition 1

∃E

D1

∃yA[x/y]

D2

C

C

(D2, C,A) satisfy condition 2

Conditions 1 and 2 are the natural variable restrictions, but before we can

state them precisely, we need a definition. The assumptions Ass(D) of a

deduction D are defined inductively by the following equations.

(i) The assumptions for an argument ending in an application of the as-

sumption rule are Ass(D1) ∪ {A}.

(ii) The assumptions for an argument ending with ∀I are Ass(D1) \ {A}.

(iii) The assumptions for an argument ending with ∃E are

Ass(D1) ∪Ass(D2) \ {A}.

(iv) For a argument ending in one of the other rules the assumptions are

Ass(D1), Ass(D1)∪Ass(D2), or Ass(D1)∪Ass(D2)∪Ass(D3) depending

on which deductions appear in the rules.

Condition 1, in ∀I, says that x is not free in any assumption of D1 and either

x and y are identical or y is not free in A. Condition 2, in ∃E, says that A

is the only assumption of D2 in which x may be free, x is not free in C, and

either x and y are identical or y is not free in A.

A deduction is a triple (Γ, ϕ,D) where Γ is a finite set of formula, ϕ is a

single formula, and D is an argument ending with ϕ the assumptions of
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which form a subset of Γ. The argument D is said to be a proof of ‘ϕ is

derivable from Γ’, in symbols Γ `m ϕ.

What we have really just described is natural deduction for minimal logic—

this is what the m subscript denotes. To get intuitionistic logic (IQC) we

must interpret ⊥ by the intuitionistic absurdity rule:

⊥i

D1

⊥
A

.

The intuitionistic absurdity rule does not effect the assumptions of an ar-

gument. A deduction (Γ, ϕ,D) using the assumption rule, logical rules, and

the intuitionistic absurdity rule is said to be an intuitionistic deduction of

Γ `i ϕ, ϕ is intuitionistically provable from Γ. Classical deduction, denoted

Γ `c ϕ, is defined similarly by adding the law of excluded middle in the

guise of proof by contradiction. The absurdity rule is the same as in the

intuitionistic case,

⊥c

D∞
⊥
A

,

but we are allowed to eliminate ¬A from the assumptions of D1: the assump-

tions of an argument ending in an application of ⊥c are Ass(D1) \ {¬A}.
Classically, we can define some of the connectives and quantifiers in terms

of ⊥ and the other connectives and quantifiers using the following classical

equivalences.11

A ∨B ↔ ¬(¬A ∧ ¬B) A ∧B ↔ ¬(¬A ∨ ¬B)

A→ B ↔ ¬A ∨B

∀xAx ↔ ¬∃x¬Ax ∃xAx ↔ ¬∀x¬Ax.

We will sometimes use ` to represent any of `m,`i,`c when the intended

11In fact we need only the NAND connective given by ANANDB ↔ ¬(A∧B) in order to
define classical propositional logic.
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meaning is clear from context. Under standard terminology, which we now

adopt, the argument D is itself said to be a deduction of Γ ` ϕ, and Γ is

generally taken to be the set of assumptions open in D. We write deductions

in the obvious linear form and label stages in the deduction by the rules they

apply, the previous lines to which the rules are applied, and the assumptions,

in square brackets, of the current subdeduction; this is demonstrated by the

following examples. We first note that, by the assumption introduction and

→I rules, there is a derivation of Γ ∪ {A} ` B if and only if there is a

derivation of Γ ` A→ B.

We begin with an almost trivial example, `m A→ ¬¬A:

1. A Ass. [1]

2. ¬A Ass. [1, 2]

3. ⊥ 1, 2→ E [1, 2]

Here we have proved {A,¬A} `m ⊥, which is equivalent, by our previous

remark, to `m A → (¬A → ⊥), which by definition is `m A → ¬¬A. We

adopt the convention that on the left of the turnstile we write a formula ϕ

for the singleton {ϕ} and we interpret comma as union, so for example Γ, ϕ

represents Γ ∪ {ϕ}.

We also make use of the standard mathematical practice of appealing to a

previously proved result within a separate proof: `m ¬¬¬A→ ¬A

1. ¬¬¬A Ass. [1]

2. A Ass. [1, 2]

3. ¬¬A 2 Theorem [1, 2]

4. ⊥ 1, 3→ E [1, 2]

Now for some more substantial examples. We present a proof, in minimal
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logic, that `m ¬¬A ∧ ¬¬B → ¬¬(A ∧B).

1. ¬¬A ∧ ¬¬B Ass. [1]

2. ¬(A ∧B) Ass. [1, 2]

3. A Ass. [1, 2, 3]

4. B Ass. [1, 2, 3, 4]

5. ¬¬A 1 ∧ E [1, 2, 3, 4]

6. ¬¬B 1 ∧ E [1, 2, 3, 4]

7. A ∧B 3, 4 ∧ I [1, 2, 3, 4]

8. ⊥ 2, 7 → E [1, 2, 3, 4]

9. ¬B 4, 8 → I [1, 2, 3]

10. ⊥ 6, 9 → E [1, 2, 3]

11. ¬A 9, 10 → I [1, 2]

12. ⊥ 5, 11 → E [1, 2]

A more complicated example:

`m (¬(A ∨B)→ C)→ (((¬A→ C) ∨ (¬B → C))→ C → C).

In the following proof, we tacitly repeat the assumptions on lines 3,4 by not

removing them from our running assumptions on line 6.

1. ¬(A ∨B)→ C Ass. [1]

2. ((¬A→ C) ∨ (¬B → C))→ C Ass. [1, 2]

3. ¬A Ass. [1, 2, 3]

4. ¬B Ass. [1, 2, 3, 4]

5. A ∨B Ass. [1, 2, 3, 4, 5]

6. ⊥ 3, 4, 5 ∨ E [1, 2, 3, 4, 5]

7. ¬(A ∨B) 5, 6 → I [1, 2, 3, 4]

8. C 1, 7 → E [1, 2, 3, 4]

9. ¬B → C 4, 8 → I [1, 2, 3]

10. (¬A→ C) ∨ (¬B → C) 10 ∨ Il [1, 2, 3]

11. C 2, 10 → E [1, 2, 3]

12. ¬A→ C 3, 11 → I [1, 2]
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13. (¬A→ C) ∨ (¬B → C) 12 ∨ Ir [1, 2]

14. C 2, 13 → E [1, 2]

We now extend the language L for propositional logic to L′ by

(i) no longer restricting ourselves to only countably many variables, rela-

tions, and function symbols, and

(ii) adding symbols
∨
,
∧

for infinitary disjunction and conjunction; this

allows us to make a step toward second order logic, without leaving

the comfort of a first order system.

Formulas of L′ are defined as before except we allow additional constructions

for our new logical symbols: if (ϕi)i∈I is a set of formulas, then
∨
i∈I ϕi and∧

i∈I ϕi are also formulas; to keep things tidy we will suppress mention of the

index set I. We then extend our minimal, intuitionistic, and classical natural

deduction systems by replacing the rules for disjunction and conjunction by:

∧
I

Di
Ai∧
Ai

∧
Ej

D1∧
Ai

Aj

∨
Ij

D1

Aj∨
Ai

∨
E

D1∨
Ai

Di
Ai → C

C

where deductions ending with applications of rules
∧

Ej ,
∨

Ij have assump-

tions Ass(D1); deductions ending with applications of
∧

I have assumptions⋃
{Ass(Di) : i ∈ I}; and deductions ending with applications of

∨
E have

assumptions Ass(D1) ∪
⋃
{Ass(Di) : i ∈ I}. Note that proofs can now have

infinite width; in our linear notation this is represented by lines indexed

by elements of the possibly infinite index set I. We will also use `m,`i,`c
for infinitary derivations in minimal, intuitionistic, and classical natural de-

duction. Again we leave the details of how deductions are written to a few

examples. We also now allow the assumption set Γ to be infinite.
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The extension of IQC to infinitary logic allows us to make a move toward

second order arithmetic, and thus to express concepts which cannot be de-

fined in pure first order logic, for example torsion groups.

As an example of an infinitary deduction we prove

`m
(
¬
∧
Ai → B

)
→
∧

(¬Ai → B) .

1. ¬
∧
Ai → B Ass. [1]

2.
∧
Ai Ass. [1, 2]

3i. ¬Ai Ass. [1, 2, 3i]

4i. Ai 2
∧

E [1, 2, 3i]

5i. ⊥ 3i, 4i → E [1, 2, 3i]

6i. ¬
∧
Ai 2, 5i → I [1, 3i]

7i. B 1, 6i → E [1, 3i]

8i. ¬Ai → B 3i, 7i → I [1]

9.
∧

(¬Ai → B) 8i
∧

I [1]

And an example with disjunction: `m ¬¬
∨
¬¬Ai → ¬¬

∨
Ai.

1. ¬¬
∨
¬¬Ai Ass. [1]

2. ¬
∨
Ai Ass. [1, 2]

3i. Ai Ass. [1, 2, 3i]

4i.
∨
Ai 2

∧
E [1, 2, 3i]

5i. ⊥ 2, 4i → E [1, 2, 3i]

6i. ¬Ai 3i, 5i → I [1, 2]

7i.
∨
¬¬Ai Ass. [1, 2, 7]

8i. ¬¬Ai Ass. [1, 7, 8i]

9i. ⊥ 6i, 8i → E [1, 2, 7, 8i]

10i. ¬¬Ai → ⊥ 6i, 8i → E [1, 2, 7]

11i. ¬
∨
¬¬Ai 7, 10i → I [1, 2]

12. ⊥ 1, 11i → E [1, 2]

It is trivially true that if Γ `m ϕ, then Γ `i ϕ, and if Γ `i ϕ, then Γ `c ϕ.
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Using the Gödel-Gentzen negative translation we have a partial converse:

we can embed classical infinitary first order logic into minimal infinitary

first order logic. The Gödel-Gentzen negative translation AG of a formula

A is defined inductively by

⊥G = ⊥ PG = ¬¬P for P prime, P 6= ⊥
(
∧
Ai)

G =
∧
AGi (A→ B)G = AG → BG

(
∨
Ai)

G = ¬
∧
¬AGi

(∀xA)G = ∀xAG (∃xA)G = ¬∀x¬AG.

Since ⊥ has no special meaning in minimal logic, we can replace it by an

arbitrary proposition: the �-translation A� of a formula A is AG[⊥/�].

We adopt the shorthand that ¬�A stands for A → �, and for a set Γ of

formulas, we define Γ� = {ϕ� : ϕ ∈ Γ}. We say that a set of formulas Γ is

(intuitionistically) closed under � if for each A ∈ Γ, Γ `i A�[�/B] for any

formula B such that no free variable of B is a bound variable of a formula

in Γ.

Proposition 1 For any formula A, `m ¬�¬�A� ↔ A�, and if Γ `c A,

then Γ� `m A�.

Proof. By induction on the definition of A and the length of the derivation

of Γ `c A respectively. We argue informally.

Since ⊥ has no special meaning in minimal logic, the prime case follows from

`m ¬A ↔ ¬¬¬A. We have the following inductive cases; the right to left

directions are trivial.

1. A =
∧
Ai: If `m ¬�¬�A�, then `m ¬�¬�A�i for each i, so for each i

`m A�i by the induction hypothesis. Hence `m
∧
A�i ; that is, `m A�.

2. A =
∨
Ai and A = ∃xA′ follow from `m ¬�¬�¬�A↔ ¬�A.

3. A = A1 → A2: By the induction hypothesis it suffices to show

¬�¬�(A�1 → A�2 ), A�1 `m ¬�¬�A�2 .
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We have

1. ¬�¬�(A�1 → A�2 ) Ass. [1]

2. A�1 Ass. [1, 2]

3. ¬�A�2 Ass. [1, 2, 3]

4. A�1 → A�2 Ass. [1, 2, 3, 4]

5. A�2 2, 4→ E [1, 2, 3, 4]

6. � 3, 5→ E [1, 2, 3, 4]

7. ¬�(A�1 → A�2 ) 4, 6→ I [1, 2, 3]

8. � 1, 7→ E [1, 2, 3]

4. A = ∀xA′: If `m ¬�¬�∀xA′, then `m ¬�¬�A′[x/t] for suitable t; by

the induction hypothesis `m A′�, and therefore `m ∀xA′�.

Suppose that we have a classical proof of A from assumptions Γ; we prove the

second part of the proposition by induction on the length of this derivation.

The translations of ∨, ∃ are essentially just their classical definitions; since

the deduction rules for ∨, ∃ can classically be seen as derived rules, we may

assume, without loss of generality, that the last rule applied is one of ∧,∀,→
introduction or elimination, or an application of the classical absurdity rule.

The rules for ∧,∀,→ translate directly, so it only left to verify the case where

the deduction ends in an application of the classical absurdity rule:

n. ¬A Ass. S ∪ {n}
· · ·

m. ⊥ S′ ∪ {n}
m+ 1. A n,m⊥c S′

By the induction hypothesis we have a corresponding argument from ¬A�
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to ⊥, so we get the following deduction.

n. ¬A� Ass. S ∪ {n}
· · ·

m. ⊥ S′ ∪ {n}
m+ 1. ¬¬A� n,m→ I S′

m+ 2. ¬¬A� → A� m+ 1 Theorem S′

m+ 3. A� m = 1,m+ 2→ E S′

As an example of deductions in the intuitionistic and classical natural de-

duction systems and the relation between them, we extend Ishihara’s result

from [63] to the infinitary systems; essentially we take Ishihara’s proof and

replace instances of conjunctives and disjunctives by their infinitary versions

where we can.

We define classes Q,R,J ,K by a simultaneous recursion as follows. Let P

range over atomic formulas, Qi range over Q, Ri range over R, Ji range over

J , and Ki range over K. Then Q,R,J ,K are generated by the clauses

P,
∧
Qi,
∨
Qi,∀xQ,∃xQ, J → Q ∈ Q;

P,
∧
Ri, R1 ∨R2, ∀xR,∃xR, J → R ∈ R;

P, J1 ∧ J2,
∨
Ji, ∀xJ, ∃xJ,R→ J ∈ J ;

J,
∧
Ki,∀xK,Q→ K ∈ K.

The infinitary version of Ishihara’s theorem is

Theorem 2 If Γ is closed under �, A ∈ K, and Γ `c A, then Γi ` A.

The proof of Theorem 2 gives an effective method to convert proofs in infini-

tary first order classical logic to proofs in infinitary first order intuitionistic

logic.

Lemma 3 In the following 3,6 are provable in infinitary minimal logic, 8

in intuitionistic logic, and the remainder in minimal logic.
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(1) A→ ¬�¬�A

(2) (A→ B)→ (¬�¬�A→ ¬�¬�B)

(3) ¬�¬(
∧
Ai)→

∧
¬�¬Ai

(4) ¬�¬�A ∧ ¬�¬�B → ¬�¬�(A ∧B)

(5) ¬�¬(A ∨B)→ ¬�¬�(¬�¬A ∨ ¬�¬B)

(6) ¬�¬�
∨
¬�¬�Ai → ¬�¬�

∨
ai

(7) ¬�¬(A→ B)→ (¬�¬�A→ ¬�¬B)

(8) (¬�¬A→ ¬�¬�B)→ ¬�¬�(A→ B)

(9) ¬�¬∀xA→ ∀x¬�¬A

(10) ¬�¬�∃x¬�¬�A→ ¬�¬�∃xA

Proof. The example deductions prove 3-6 (recall that ⊥ has no special

meaning in minimal logic). We only prove 8 since it requires the intuitionistic

absurdity rule.

1. ¬�¬A→ ¬�¬�B Ass. [1]

2. ¬�(A→ B) Ass. [1, 2]

3. ¬A Ass. [1, 2, 3]

4. A Ass. [1, 2, 3, 4]

5. ⊥ 3, 4→ E [1, 2, 3, 4]

6. B 5⊥i [1, 2, 3, 4]

7. A→ B 4, 6→ I [1, 2, 3]

8. � 2, 7→ E [1, 2, 3]

9. ¬�¬A 3, 8→ I [1, 2]

10. ¬�¬�B 1, 9→ E [1, 2]

11. B Ass. [1, 2, 11]

12. A Ass. [1, 2, 11, 12]

13. A→ B 11, 12→ I [1, 2, 11]

14. � 2, 13→ E [1, 2, 11]
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15. ¬�B 11, 14→ I [1, 2]

16. � 10, 15→ E [1, 2]

Proposition 4 If A ∈ Q, then `i A→ A�; in particular, Q is closed under

�. If A ∈ R, then `i ¬�¬A→ A�. If A ∈ J , then `i A� → ¬�¬�A.

Proof. By simultaneous induction; we argue informally in intuitionistic

logic. The induction for formulas in Q are straightforward, but we, nonethe-

less, prove three cases. If Q =
∨
Qi, we have the following derivation

1.
∨
Qi Ass. [1]

2i. Qi Ass. [1, 2i]

3i. Qi → Q�i Induction hypothesis [1, 2i]

4i. Q�i 2i, 3i→ E [1, 2i]

5i.
∨
Q�i 4i ∨ I [1, 2i]

6i. Qi →
∨
Q�i 2i, 5i [1]

7.
∨
Q�i 1, 3i ∨ E

Formally step 3i represents a deduction of Qi → Q�i which exists by the

induction hypothesis step. If Q = ∃xQ′, then Q[x/y] holds for some y. By

the induction hypothesis (Q[x/y])� = Q�[x/y] holds, so ∃xQ�, and hence

¬�¬�∃xQ�, holds. Now suppose Q = J → Q1, where J ∈ J and Q1 ∈ Q.

Then Q→ Q�, by the induction hypothesis in Q, so J → Q�. Thus

J� → ¬�¬�J → ¬�¬�Q� → Q�,

where the first implication is by the induction hypothesis in J , the second

follows from J → Q�, and the last is an application of Proposition 1.

The inductions on the formation of formulas in R ∪ J all follow a similar

pattern, and we give a representative sample. The base case R = ⊥ is

the only place (other than Lemma 3 (8)) that we need the intuitionistic

absurdity rule; and the case J = ⊥ is an application of `m A→ (B → A).
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∧
Ri ∈ R:

¬�¬
∧
Ri →

∧
¬�¬Ri →

∧
R�i .

by Lemma 3, and the induction hypothesis.

R1 ∨R2 ∈ R:

¬�¬(R1 ∨R2)→ ¬�¬�(¬�¬R1 ∨ ¬�¬R2)→ ¬�¬�(R�1 ∨R�2 ).

J → R ∈ R:

¬�¬(J → R) → (¬�¬�J → ¬�¬R) by Lemma 3

→ (J� → ¬�¬R) induction on J

→ (J� → R�) induction on R.

∃xJ ∈ J :

¬�¬�∃xJ� → ¬�¬�∃x¬�¬�J → ¬�¬�∃J

by first the induction hypothesis in J and then by Lemma 3.

R→ J ∈ J :

(R→ J)� = R� → J�

→ (¬�¬R→ J�) induction on R

→ (¬�¬R→ ¬�¬�J) induction on J

→ ¬�¬�(R→ J) by Lemma 3.

We now give the proof of Theorem 2:

Proof. The proof is by induction on the length of a formula in K. Relabel-

ing variables, if necessary, we may assume that all variable conditions are

satisfied. With Γ a set of formulas closed under �, we have four cases to

consider.
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1. J ∈ J : If Γ `c A, then by Lemma 1, Γ� `i A�. By Proposi-

tion 4, Γ� `i ¬�¬�A, so12 Γ�[�/A] `i (¬�¬�A)[�/A]. Noting that

(¬�¬�A)[�/A]—that is, (A → A) → A—is equivalent over minimal

logic to A, it follows from Γ being closed under � that Γ `i A.

2.
∧
Ki: If Γ `c

∧
Ki, then Γ `c Ki for each i. By the induction hypoth-

esis, for all i, Γ `i Ki; whence Γ `i
∧
Ki.

3. ∀xK: If Γ `c ∀xK, then Γ `c K, so by the induction hypothesis

Γ `i K, and finally Γ `i ∀xK.

4. Q → K: Suppose that Γ `c Q → K for some Q ∈ Q and K ∈ K.

By Proposition 4, Γ ∪ {Q} is closed under �, so we can apply the

induction hypothesis to a classical proof of K from Γ ∪ {Q} to show

that Γ ∪ {Q} `i K. Hence Γ `i Q→ K.

A Hilbert style system

We also give a Hilbert style system—a system with axioms and rules, but no

introduction and elimination of assumptions—for intuitionistic logic. There

are six groups of axiom schemata:

∧ −Ax. A ∧B → A, A ∧B → B,

A→ (B → (A ∧B));

∨ −Ax. A→ A ∨B, B → (A ∨B),

(A→ C)→ ((B → C)→ (A ∨B → C));

→ −Ax. A→ (B → A),

(A→ (B → C))→ ((A→ B)→ (A→ C));

⊥−Ax. ⊥ → A;

∃ −Ax. A[x/t]→ ∃xA t free for x in A,

∃x(A→ B)→ (∃yA[x/y]→ B)

x /∈ FV(B), y ∈ FV(A)⇒ x = y;

12The obvious substitution lemma applied here is proved by another straightforward,
but unsightly, induction on the length of a deduction.
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∀ −Ax. ∀xA→ A[x/t] t free for x in A,

∀x(B → A)→ (B → ∀yA[x/y])

x /∈ FV(B), y ∈ FV(A)⇒ x = y;

together with modus ponens and the rule of generalisation: if ` A, then

` ∀xA. The relationship between these axioms and the rules of intuitionistic

natural deduction should be clear, and indeed the theorems provable from

intuitionistic natural deduction and this intuitionistic Hilbert style system

coincide.

These axioms allow us to construct models of intuitionistic logic by inter-

preting proof and algorithm by computable functions. For example, the ∧
axioms correspond to pairing and projection, and the → axioms correspond

to the function sending (x, y) to x and the function sending (x, y, z) to the

value given by the kth Turing machine applied to j, where k is the output of

the xth Turing machine applied to z and j is the output of the yth Turing

machine applied to z; in the lambda notation (introduced below)

k = λxy.x and s = λxyz{{x}(z)}({y}(z)).

Equality axioms

In contrast to the classical case, in constructive mathematics equality is

normally given as a defined notion, and it is natural to think of equality

as mathematical rather than logical. For first order intuitionistic logic with

equality we add a symbol = together with the axioms of equality :

E0 Replacement, ∀x,y(ϕ(x) ∧ x = y → ϕ(y));

E1 Identity, ∀x(x = x);

E2 Symmetry, ∀x,y(x = y → y = x);

E3 Transitivity, ∀x,y,z(x = y ∧ y = z → x = z).

If in addition we have sets and the notion of membership, then we add
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E4 ∀x,y,z(x = y ∧ x ∈ z → y ∈ z);

E5 ∀x,y,z(x = y ∧ z ∈ x→ z ∈ y).

Models of computation

The λ-calculus is a theory of functions as rules, in contrast to the stan-

dard set theoretic treatment of functions as graphs—regarding functions as

rules stresses their computational content. Using his λ-calculus, Church

proposed a notion of ‘effectively computable’ and formulated the Church-

Turing thesis: “a function is (algorithmically) computable if and only if it is

computable by a Turing machine, or equivalently a term of the λ-calculus.”

Terms of the λ-calculus are defined over an alphabet with countably many

variables v1, v2, . . ., the abstractor λ, and parenthesis. The set Λ of λ terms

is given inductively by the following rules.

(i) For each i, vi ∈ Λ.

(ii) If M ∈ Λ, then λx.M ∈ Λ for any variable x.

(iii) If M,N are λ terms, then the application MN of M to N is a λ term.

A few remarks are in order. The term λx.M produced by rule (ii)—instances

of which are known as abstraction—intuitively corresponds to the function

x 7→M , andMN is the result of applying the functionM to inputN—the λ-

calculus makes no distinction between functions and input, this corresponds

to the fact that in computer science programs and data are the same, each

being represented by a binary string. In particular, functions can be applied

to themselves, which is not possible with the graph conception of function

(by cardinality considerations). Bound variables are those which follow a λ.

Terms M,N which can be converted into one another by renaming bound

variables are said to be α-equivalent ; it is customary to treat α-equivalent

terms as identical. In the λ-calculus we can restrict our consideration to

single valued functions by the process of currying where we associate the

functions

λ(x, y).M and λx.(λy.M).
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Anticipating the Curry-Howard correspondence (see section 1.4), currying

corresponds to the equivalence between A ∧B → C and A→ B → C.

The λ-calculus consists of formulas M = N for λ terms M,N with axioms

saying that = is an equivalence relation and that abstraction and application

respect =, together with the axiom for β-conversion

(λx.M)N = M [x := N ],

where substitution M [x := N ] is defined in the natural way and with the

requisite care. Replacing (λx.M)N by M [x := N ] is called β-reduction;

β-reduction captures the idea of function application. Terms to which we

cannot apply β-reduction are called normal.

In general λ-terms cannot be reduced to normal terms. This defect can be

repaired by assigning to each term a type restricting the terms to which it

can be applied. In this context application is a partial relation, so we must

distinguish cases when application is undefined:

I we write fa ↓ to indicate that f is defined at a;

I we write f(a) ' g(b) for f(a) ↓ if and only if g(a) ↓ and f(a) = g(b) if

either, and hence both, are defined.

Both the typed and untyped λ-calculus can be seen as a simple programing

language, and several common programing languages have features inspired

by the λ calculus. In section 1.4 we briefly introduce a foundational system

for constructive mathematics, Martin-Löf type theory, which extends the

typed λ-calculus and which can be seen as a high level programing language.

See [6] for a (very) comprehensive introduction to the λ-calculus.

We introduce a second model of computation, a generalisation of Curry’s

combinatory algebras [43], which is of great importance for the metamathe-

matics of constructive theories. A partial combinatory algebra (pca) is a set

A together with a binary operation ·, called application,13 and distinguished

elements s,k such that for all a, b, c ∈ A
13We write ab for a · b.
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(pca1) kab ' a;

(pca2) sab ↓;
(pca3) sabc ' ac(bc).

A pca is nontrivial if s 6= k, or equivalently if it has two distinct elements.

Terms are defined inductively from a countable set of variables and the

elements of A by application

if a, b are terms, then (ab) is a term.

The terms of a pca are called combinators.

The definition of pca’s is motivated by the following result, which asserts

the λ-completeness of the combinators s,k.

Theorem 5 Every λ term is extensionally equivalent to some combination

of s,k.

The proof is by induction on the construction of λ terms and is a good

exercise in understanding the combinators. For example, the identity i =

λx.x is given by skk:

(skk)(x) = kx(kx) = x.

A more interesting example is the construction of a fixed point combinator;

ssk(s(k(ss(s(ssk))))k) can be verified as a fixed point combinator by an

unsightly computation. The pairing and projection functions

p = λx, y(λz.zxy)

π0 = λx.xk and π1 = λx.x(ki)

are of particular importance.

The λ-calculus can be viewed as a pca with

k = λxy.x,

s = λxyz.xz(yz).
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Equivalently, the set of Turing machines can be made into a pca, but to de-

fine application we first need some notation. We fix an enumeration (ϕn)n∈N

of all Turing machines, and we denote by {e}n the result of running the eth

Turing machine on input n. Then the set of Turing machines can be rep-

resented as a pca with elements natural numbers and application given by

mn = {m}n.
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1.2 Constructive set theory

In his seminal monograph [16], Bishop laid down a naive constructive set

theory and proceeded to develop (constructive) mathematics in the informal

rigorous style of the Bourbaki school. Like the classical mathematician, he

was sure that his work could be done in a formal set theory, but was not

concerned with it. This attitude is still dominant in Bishop’s followers, but

logicians, both mathematical and philosophical, have stepped forward to

provide rigorous foundations for constructive mathematics, and the meta-

mathematics rigorous foundations allow.

We first give a brief description of Bishop’s naive set theory, before we discuss

the formal set theoretical foundations for constructive mathematics.

1.2.1 Naive constructive set theory

The mathematics in this thesis is primarily in the informal style of Bishop’s

constructive mathematics. In ‘Foundations of constructive analysis’, Erret

Bishop set down a naive set theory and proceeded to develop a large body

of core mathematics intuitionistically in this informal setting. We briefly

sketch Bishop’s notion of set.

A set is a well behaved collection of objects. In order for a collection A to

form a set we must give

(i) a description of how to construct the elements of A, this construction

relying only on sets we have already—at least in theory—constructed

prior to A;

(ii) a description of what it means for two elements of A to be equal.

A few remarks. Firstly, Bishop’s universe of sets is predicative, the con-

struction of a set depends only on previously constructed sets. Secondly,

a set is not given only by its members: for Bishop an equivalence relation,

normally called equality, satisfying the equality axioms is a necessary part

of the description of a set. Of course we must have at least one set to begin
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the set construction process; reflecting Kronecker—“God made the integers,

all else is the work of man”—Bishop takes as his starting point the set of

natural numbers.

Let us consider the collection of subsets of a (previously constructed) set

X, the powerclass of X. How does one construct a subset S of X? The

simplest way is to take the elements of X in turn and to indicate whether

or not they are in S—this gives us the collection of all decidable subsets

of X, or equivalently the collection of all functions from X to 2 = {0, 1}.
Defining equality extensionally (f = g if f(x) = g(x) for every x ∈ X), we

conclude that the collection of functions from the set X to the set {0, 1} =

{n ∈ N : n = 0 ∨ n = 1} (where equality on {0, 1} is the restriction of

equality on N) is a set. This argument justifies the exponentiation axiom:

for all sets a, b the collection ba of functions from a to b is a set. In contrast,

since not all sets are decidable—for example {n ∈ N : n = 0 ∧ P} for some

undecided proposition P—it is inconceivable that we can fully describe the

general construction of a subset of X. So we cannot constructively justify

the powerset axiom: the powerclass of a set is a set. Indeed, the subsets of

{1} of the form

{n ∈ N : n = 0 ∧ P}

for some appropriate P—for example if P contains a quantification over

all sets—will depend on sets yet to be constructed; whence accepting the

powerset axiom leads to impredicativity.

For Bishop, the notion of function and set were distinct, both sets and

functions were primitive; functions were not just particular types of sets. A

function f from X to Y is an algorithm which applied to an element x of

X outputs an element f(x) of Y and which respects equality; that is, f is

extensional : if x =X x′, then f(x) =Y f(x′). Since our construction of sets

is ‘algorithmic’, it is reasonable to formalise functions in the standard set

theoretic way, although MLTT, introduced in Section 1.4, is perhaps more

in tune with Bishop’s views in this respect.
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1.2.2 Set theoretical foundations for constructive mathematics

Foundational systems for constructive mathematics have taken two (distinct,

but overlapping) paths:

1. the type theoretic path, its philosophical motivations culminating in

Martin Löf type theory; and

2. the set theoretic path motivated by the success of set theory as a

foundation for classical mathematics.

While MLTT seems to be the most philosophically acceptable foundational

framework for constructive mathematics,14 we will concern ourselves with

constructive set theories, which offer the advantage that tools for mathe-

matics and metamathematics are already well developed for set theory; we

give a brief discussion of the motivations and structure of MLTT in section

1.4. Constructive set theories also make no explicit mention of the notions

of constructive object and construction, and may thus be more appealing

to those of us with no philosophical commitment to constructivism. Having

settled on having a set theoretical foundation for constructive mathemat-

ics, there are two natural ways to approach the design of a constructive set

theory:

(i) we could attempt to formalise the informal set theory adopted by the

Bishop school—this approach, which seems to be favoured by practis-

ing constructivists, was taken by Myhill in his seminal paper [88];

(ii) the second approach is to start with classical ZF(C) set theory and

make it intuitionistic—this approach leads to Intuitionistic ZF set

theory IZF and Aczel’s Constructive ZF set theory CZF.

Again, we favour the second approach, because it has the advantages of 2

above, and in the case of CZF can be justified by the solid constructive

foundation of MLTT.

14Constructive mathematics has been developed directly in MLTT, primarily as formal
topology [95].
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We make use of the following standard notation. We use ∀x∈aϕx as short-

hand for ∀x(x ∈ a→ ϕx), and ∃x∈aϕ for ∃x(x ∈ a∧ϕx). Formulas containing

only quantifiers of the form ∀x∈a or ∃x∈a are called bounded formulas: the

range of the quantifiers is bounded to the set a.

The three constructive set theories that we will adopt for our mathematics

and metamathematics are all subsystems of classical ZFC set theory, which

consists of first order classical logic with two nonlogical binary relation sym-

bols ∈,= together with seven axioms

Extensionality: If sets a and b have the same elements, then a = b,

∀a,b (∀x (x ∈ a↔ x ∈ b)→ a = b) .

Pairing: For any sets a and b there exists a set {a, b} which contains

precisely a and b,

∀a,b∃c (∀x (x ∈ c↔ x = a ∨ x = b)) .

Union: For any set X there exists a set
⋃
X such that if x ∈ a ∈ X,

then x ∈
⋃
X,

∀a∃c (∀x (x ∈ c↔ ∃y ∈ a(x ∈ y))) .

Power set: Far any set X there exists a set P(X) consisting of all

subsets of X,

∀a∃c (∀x (x ∈ c↔ x ⊂ a)) .

Infinity: There exists an infinite set,

∃a ((∃xx ∈ a) ∧ (∀x∈a∃y∈ax ∈ y)) .

Foundation: For every non-empty set a there exists x ∈ a which is
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minimal (such that x ∩ a = ∅),

∀a (∃x(x ∈ a)→ ∃x∈a∀y∈a(y /∈ x)) .

Choice: For any set a and any function F with domain a, if for all

x ∈ a there exists y ∈ F (a), then there exists a function f : a →
∪{F (x) : x ∈ a} such that f(x) ∈ F (x) for each x ∈ a; f is called a

choice function.

and two axiom schema

Separation: For any set a and any formula ϕ, the set {x ∈ a : ϕ(x)}—
that contains all x ∈ a satisfying ϕ—exists,

∀a∃c∀x (x ∈ c↔ x ∈ a ∧ ϕ(x)) ,

for all formula ϕ(x) with c /∈ FV(ϕ).

Replacement: If F is a class function,15 then for any set a the image

of a under F is also a set,

∀x∈a∃!yϕ(x, y)→ ∃c∀y (y ∈ c↔ ∃x∈aϕ(x, y)) ,

for all formula ϕ(x, y) with y /∈ FV(ϕ).

In pursuit of a constructive foundation, our first step is to replace the classi-

cal logic of ZFC with intuitionistic logic. However, since the axioms of ZFC

were formulated in the classical environment, we must check that none of

these axioms reintroduce unacceptable fragments of LEM. Myhill showed

that the foundation axiom and the axiom of choice, the latter was together

15A formula Ψ is a class function if it is functional :

∀x(ϕ(x)→ ∃!yΨ(x, y)

for some formula ϕ.
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with Goodman [53] and was based on an argument of Diaconescu from cat-

egory theory [48], both imply the law of excluded middle, and consequently

must be rejected in their full generality.

Theorem 6 Assume that Separation, extensionality, collection, and pairing

hold. Then the axiom of foundation and the axiom of choice each imply

LEM.

Proof. Foundation: Fix a formula P and consider the set

S = {x ∈ N : x = 0 ∧ P} ∪ {1}.

By foundation there exists an element u of S such that z /∈ u for all z ∈ S.

Either u = 0 and P holds, or u = 1 and ¬P holds.

Choice: Fix a formula P , letX be the set {0, 1} with equality16 =X satisfying

0 =X 1⇔ P,

and let S = {(0, 0), (1, 1)}. Then S is a subset of X × {0, 1}, where {0, 1}
is given the standard equality =, and for all x ∈ X there exists y ∈ {0, 1}
such that (x, y) ∈ S. Applying the axiom of choice we ‘construct’ a pair

(f(0), f(1)) ∈ {0, 1} such that (0, f(0)), (1, f(1)) ∈ S and if 0 =X 1, then

f(0) = f(1). If f(0) = 0 and f(1) = 1, then ¬(f(0) = f(1)), so ¬(0 =X 1)

and hence ¬P . Otherwise either f(0) = 1, so (0, 1) = (0, f(0)) ∈ S, or

f(1) = 0 and (1, 0) = (1, f(1)) ∈ S. In both cases we have that 0 =X 1 and

therefore P .

The classical nature of AC rests on the extensionality of the choice function:

it is through this extensionality that we are able to decide what S looks

like, and hence whether or not P holds. To illustrate this, we show the

constructive inadmissibility of ACR,2:17

16If one insists on the use of set equality, then we can define X to be {a = {x : x =
0 ∧ P}, 1} with set equality. For then a = 1 if and only if P holds.

17The proof is a small variation of a Brouwerian example extracted by Martin Escardo
from [5].
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For any binary predicate ϕ on R×{0, 1}, if for each real number

x there exists i ∈ {0, 1} such that ϕ(x, i), then there exists a

function f : R→ {0, 1} such that ϕ(x, f(x)) for all x ∈ R.

Proposition 7 ACR,2 implies WLPO.

Proof. For each x ∈ R either x > 0 or x < 1. Using ACR,2 we construct a

function f : R→ {0, 1} such that

f(x) = 0 ⇒ x < 1,

f(x) = 1 ⇒ x > 0.

Then f(0) = 0 and f(1) = 1, so f is nonconstant. Using an interval halving

argument, we can construct x ∈ [0, 1] such that f is discontinuous at x;

without loss of generality, f(x) = 0. Given an increasing binary sequence

α ∈ 2N we inductively construct a sequence (yn)n∈N as follows. If α(n) = 0,

then yn = x and if α(n − 1) = 1, then yn = yn−1. If α(n) = 1 − α(n − 1),

then we let yn ∈ (x− 2−n, x+ 2−2) be such that f(yn) = 1. Then (yn)n∈N

is Cauchy and hence converges to a limit y ∈ R. If f(y) = 0, then α(n) = 0

for all n, and if f(y) = 1 then it is not the case that α(n) = 0 for each n.

Bishop gave the following argument for accepting some choice even when

working constructively: if we have a proof of ∀x∈X∃y∈Y ϕ(x, y), then, by the

BHK interpretation, we have an algorithm which given x ∈ X computes

y ∈ Y such that ϕ(x, y); this algorithm is precisely the function the axiom

of choice asserts to exist. This apparent contradiction—AC implies LEM,

but choice can be validated under the BHK interpretation—is reconciled by

the fact that Bishop’s algorithm may fail to be extensional; for example the

algorithm present in the latter half of the previous theorem. But Bishop’s

argument will validate choice when intensional and extensional equality co-

incide on the choice domain, so the constructive mathematician may happily

adopt the axiom of countable choice

CC: If a is an inhabited set and S a subset of N×Y such that for

each positive integer n there exists x ∈ a such that (n, x) ∈ S,
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then there is a function f : N → a for which (n, f(n)) ∈ S for

each n ∈ N.

This argument can be made rigorous in Martin-Löf type theory [81] and can

be extended to justify the stronger principle of dependent choice

DC: If a is a set, S is a subset of a×a; and for each x0 ∈ a there

exists y ∈ a such that (x, y) ∈ S, then there exists a sequence

(xn)n∈N in X such that (xn, xn+1) ∈ S for each positive integer

n.

The foundation axiom is replaced by the classically equivalent, but construc-

tively weaker, form in which it is most often used:

Set induction: A property that holds for a set a whenever it holds

for each element of a, holds for all sets,

∀a (∀x∈aϕ(x)→ ϕ(a))→ ∀aϕ(a)

for any formula ϕ(x).

In contrast, in place of the replacement scheme we use collection, which is

a theorem of ZF, but which cannot be proved from the other axioms of our

first constructive set theory.

Collection: Every total class relation with domain a set can be refined

to a total class relation with set-sized codomain,

∀x∈a∃yϕ(x, y)→ ∃b∀x∈a∃y∈bϕ(x, y).

This leads us to the system of intuitionistic Zermelo-Fraenkel set theory,

which consists of intuitionistic logic with two binary relation symbols ∈,=
together with the axioms and axiom schema of

IZF: Extensionality, Pairing, Union, Powerset, Infinity, Set in-

duction, Separation, and Collection.
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The double negation interpretation of classical logic into intuitionistic logic

was extended by Friedman to give an interpretation of ZF in IZF. It follows

that ZF and IZF are equiconsistant and therefore have the same proof

theoretic strength. IZF holds in any Grothendieck or realizability topos,

and any topos which has small limits.

There is another aspect to the constructivist philosophy which we have thus

far ignored: a constructive universe should be built from the bottom up,

rather than existing as a completed whole like the classical ZF universe. A

definition of an object A is impredicative if it is given by a quantification

over a collection of objects of which A is a member; so impredicative defini-

tions make tacit appeal to a completed static mathematical universe. The

rejection of impredicativity is clear in the intuitionistic philosophy put forth

by Brouwer, where the universe is dynamic, but is generally less acknowl-

edged, and not considered important, by the Bishop school [91], although it

is clearly part of the informal set theory put forth by Bishop. The neglect

of predicativity issues by Bishop’s followers is likely due to the fact that im-

predicative definitions are generally easy to avoid in the (informal) practice

of constructive (or classical) mathematics. Some consideration will convince

the reader that the sources of impredicativity in IZF are the powerset axiom,

and the schema of separation.

The impredicative nature of separation results from its application to for-

mulas which may be defined only in terms of objects not yet constructed.

This is circumvented by restricting separation to bounded formula:

Bounded separation For any set a and any bounded formula ϕ, the

set {x ∈ a : ϕ(x)}—that contains all x ∈ a satisfying ϕ—exists,

∀a∃c∀x (x ∈ c↔ x ∈ a ∧ ϕ(x)) ,

for all bounded formula ϕ(x) with c /∈ FV(ϕ).

The impredicative nature of the powerset axiom is a little more subtle, but

is essentially the same: in the constructive context the power class of 1
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contains far more than just 0, 1; it contains sets of the form {x : x = 0∧P}
for any formula P , in particular, formulas which may not be definable over

the sets which we have already constructed. The fundamental issue at hand

is that constructively membership of a set is generally not decidable. If, in

powerset, we restrict ourselves to subsets which are decidable, then we get

the axiom of exponentiation with the domain Y = {0, 1}.

Before giving the definition of exponentiation we need to code functions as

sets. A relation is a triple (R, a, b) with R ⊂ a × b; the domain a and

codomain, or range, b of R are normally suppressed. We often write xRy

for (x, y) ∈ R. If for all x ∈ a there exists a y ∈ b such that xRy, then R

is said to be total. A function f is a relation such that if (x, y), (x, z) ∈ f ,

then y = z; we write f(x) = y for (x, y) ∈ f and we write Fun(f,X, Y ), or

f : X → Y , to express that f is a function with domain X and codomain

Y . The image of a relation R is the set

image(R) = {y ∈ b : ∃x∈a(x, y) ∈ R}.

If (R, a, b) is a total relation, any subset S of b for which R ∩ (a × S) is

total is called a partial image of R. The image of a function f is its unique

partial image, and for any subset S of X we denote by f(S) the image of f

restricted to S.

Exponentiation If a and b are sets, then the collection ba of functions

from a to b is a set,

∀a,b∃c(f ∈ c↔ Fun(f, a, b)).

Exponentiation is classically equivalent to the powerset axiom, since every

set is decidable, so each subset can be associated with its characteristic

function.
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We can now define constructive set theory (CST), which is closely related

to Myhill’s original formalisation of Bishop’s constructive mathematics.18

CST consists of the axioms

CST: Extensionality, Pairing, Union, Exponentiation, Infinity,

Set induction, Bounded separation, Replacement, and dependent

choice.

Aczel’s Constructive ZF set theory has more complicated origins. In the

early 1970’s Per Martin Löf introduced his (intentional) intuitionistic type

theory, a constructive alternative to set theory based on the Curry-Howard

isomorphism.19 MLTT is generally accepted as the best foundational frame-

work to make the ideas of constructive mathematics precise. In a series of

three papers [1, 2, 3], Peter Aczel showed how a particular type of MLTT

can be interpreted as a universe of sets in such a way that the Curry-Howard

isomorphism validates the axioms of constructive set theory. The construc-

tive set theory so interpreted—Aczel’s CZF—is very roughly akin to inter-

secting MLTT with ZF;20 Aczel chose not to include any choice axiom in

CZF to ensure a wealth of interesting models, in particular any topos.

As a result of these complicated origins, some aspects of CZF, in particular

the subset collection axiom, may look a little unnatural. Before we describe

CZF we need a few more definitions. A set a is said to be inductive, written

Ind(a), if ∅ ∈ a and x ∪ {x}, the successor of x, is in a whenever x ∈
a. Classically, the axiom of infinity is required to define infinite sets, in

particular the natural numbers. The first new aspect of CZF is the axiom

of strong infinity which explicitly defines the natural numbers.

18Myhill’s constructive set theory [88] was three sorted, having sorts for numbers, partial
functions, and sets.

19The Curry-Howard isomorphism identifies a proposition with the type of its proofs,
effectively relating programs with proofs. It is a generalisation of the correspondence
between natural deduction and Church’s lambda calculus given by the BHK interpretation
with ‘algorithm’ interpreted as ‘object of the lambda calculus.’

20There are principles which hold in both MLTT and ZF, for example countable choice
on the natural numbers.
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Strong Infinity: There is minimal inductive set,

∃a(Ind(a) ∧ ∀b(Ind(b)→ a ⊂ b)).

We also add a strong form of collection, also a theorem of ZFC, which,

in addition to collection, asserts that the set b is a subset of the image of

(R, a, b); that is, that b is a partial image of R. Roughly this says that b is

slim or almost optimal.

Strong Collection:

∀x∈a∃yϕ(x, y)→ ∃b(∀x∈a∃y∈bϕ(x, y) ∧ ∀y∈b∃x∈aϕ(x, y)).

The final, and most artificial, piece of the CZF is the subset collection

axiom, which is a predicative powerset-like axiom strictly between powerset

and exponentiation, over the other axioms of CZF [76].

Subset collection For sets a, b,

∃c∀u(∀x∈a∃y∈bψ(x, y, u)→ ∃d∈c(∀x∈a∃y∈bψ(x, y, u)∧∀y∈b∃x∈aψ(x, y, u))).

The formula ψ in the statement of subset collection represents a class of

total relations, with domain a and codomain b, indexed by some collection

of sets (namely, the class C(a, b, ψ) = {u : ∀x∈a∃y∈bψ(x, y, u)}). Subset

collection states that for all sets a, b and formula ψ there exists a set c such

that for each u ∈ C(a, b, ψ), there is a partial image of u in c. Since images

of functions are unique, fixing sets a, b and taking ψ to be Fun(u, a, b), we

recover the exponentiation scheme for a, b.

We now define Aczel’s Constructive ZF set theory [4], which is the most

popular of the constructive set theories. CZF consists of the axioms

CZF: Extensionality, Pairing, Union, Subset collection, Strong

infinity, Set induction, Bounded separation, and Strong collec-

tion.
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CST minus the axiom of dependent choice is a subsystem of CZF. Since

CZF can be interpreted into Martin Löf type theory, it is predicative, and

hence, proof theoretically, much weaker than IZF. CZF also holds in any

Π-pretopos, and hence any topos.

Now that we have a constructive set theory which is predicative, possibly

foundation and the axiom of choice no longer imply the law of excluded

middle? This is the case, but the arguments of Theorem 6 still show that

Foundation and choice imply P ∨ ¬P for any bounded formula P , and are

therefore still unacceptable.

Ordinals

Ordinals are not very well behaved in the constructive setting. In particular

they cannot be linearly ordered, and even defining ordinals in CZF takes a

little care. Since they still provide a ranking of the universe, which allows

us define classes by transfinite recursion on the ordinals, and prove proper-

ties using transfinite induction on the ordinals, it is worth the effort. But

we must be careful to avoid making the nonconstructive case distinctions

common in classical set theory.

An ordinal is a transitive set of transitive sets; we denote the collection of

ordinals by ORD. Any element of an ordinal is also an ordinal, and the

statement Ord(α), that α is an ordinal, is ∆0. While the ordinals are not as

courteous in the constructive setting as we have come to expect from them,

they are still closed under the successor map, a 7→ a∪ {a}, and unions, and

most importantly they still allow for definitions by recursion.

Proposition 8 For any class V and any total class function G with domain

V n×ORD×V , there exists a class function F : V n×ORD→ V such that

F (x, α) = G(x, α, {< z, F (x, z) >}),

for each x ∈ V n and each ordinal α.
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Proof. Let Ψ be the predicate given by Ψ(x, f, α) if and only if f is a

function whose domain is an ordinal containing α and f(β) = G(x, β, f � β)

for all α ∈ dom(f). We define F by

F (x, α) = y ↔ ∃f (Ψ(x, f, α) ∧ f(α) = y).

In order to complete the proof we must show that F is a total class function

with domain V n × ORD, and that if Ψ(x, α, f) and β ∈ dom(f), then

f(β) = G(x, β, f � β).

We proceed by set induction. Fix x, α and suppose that ∀β∈α∃!fΨ(x, f, β).

By replacement there exists a set A such that

∀β∈α∃f∈AΨ(x, f, β) and ∀f∈A∃β∈αΨ(x, f, β).

Define a relation f0 with ordinal domain by

f0 =
⋃
A,

and set

f = f0 ∪ {< α,G(x, α, {< β, f0(β) >: β ∈ α}}.

Then f is a function with domain α: for if g, g′ ∈ A and β ∈ dom(g) ∩
dom(g′), then

g(β) = G(x, β, g � β) = G(x, β, g′ � β) = g′(β),

where the middle equality is by a straightforward set induction. This com-

pletes the proof that F is a total class function. That f(β) = G(x, β, f � β)

for all β ∈ dom(f) follows from the construction.

Real numbers

Classically, the real numbers are fully characterised (up to isomorphism) as

a complete totally ordered field. In particular, the constructions of Dedekind

and Cauchy coincide. In the setting of constructive mathematics without
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choice (either CZF or IZF) the situation is more complicated (and more

interesting). The standard constructions of the natural numbers, integers,

and rationals are valid in the constructive setting.

In [16] Bishop presents the reals as Cauchy sequences with a fixed modulus

of convergence: a sequence (xn)n∈N is a regular Cauchy sequence if

|xn − xm| 6
1

n
+

1

m

for all positive integers n,m. The collection of regular Cauchy sequences of

rational numbers form a set by exponentiation and bounded separation. For

regular Cauchy sequences of rationals x = (xn)n∈N, y = (yn)n∈N we define

I an equivalence relation, equality, by x = y if for all n ∈ N

|xn − yn| 6 2/n;

I a partial order <, by x < y if there exists n such that xn + 1/n <

yn − 1/n.

The Cauchy reals RC is the set of equivalence classes of regular Cauchy

sequences under equality. However, in the absence of choice, it is more nat-

ural to work with regular Cauchy sequences of rationals with the equivalence

relation = rather than equivalence classes. In an abuse of notation we also

call this latter set the Cauchy reals.

The algebraic operations are essentially defined componentwise, but we must

pass to a subsequence of the componentwise sequence in order to maintain

regularity:

x+ y = (x2n + y2n)n∈N;

−x = (−xn)n∈N;

xy = (x2Mny2Mn)n∈N, where M = max{x0, y0}+ 2.
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If x > 0, then there exists n such that xn− 1/n > 0, let n0 be the least such

n and let k = xn0 − 1/n0. Then

x−1 = (1/xDn+n0)n∈N,

where D is the least integer greater than 1/k2. Associating each rational

q with the constant sequence q = (q)n∈N gives an embedding of the field

(Q, 0, 1,+, ·) into the field (RC , 0, 1,+, ·).

The other common construction of the reals is by Dedekind cuts. A Dedekind

cut is an inhabited set X of rational numbers such that

1. X is bounded above: there exists r ∈ Q such that r > q for all q ∈ L;

2. X is downward closed: if q ∈ L and q′ < q, then q′ ∈ L;

3. X is located: for any rationals r, r′, if r < r′, then either r ∈ L or

r′ /∈ L.

The collection of Dedekind cuts, the Dedekind reals RD, forms a set in CZF

[4], but is not a set in CZF with subset collection replaced by exponentiation

[78].

Let X,Y be Dedekind reals. Addition and additive inverse on the Dedekind

reals are given by

X + Y = {a+ b : a ∈ X, b ∈ Y } and −X = {−q : q ∈ Q \X}.

For positive Dedekind reals X,Y we have

XY = {ab : a ∈ X, b ∈ Y }6 and X−1 = {q−1 : q ∈ Q \X}6,

where S6 is the downward closure {q ∈ Q : ∃s∈Sq < s} of S. Multiplication

is extended to all Dedekind reals by writing21

X = max{1, X + 1} −max{1,−X + 1}
21The operation (x, y) 7→ max{x, y} is given by union.
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and using the identity (a− b)(c−d) = ac− (bc+ad)+ bd, and multiplicative

inverse for negative reals is given by X−1 = −(−X)−1.

To any regular Cauchy sequence x of rationals we can associate the Dedekind

real

Xx = {q ∈ Q : ∃nq < xn + 2/n}.

As a consequence in any context in which the Dedekind and Cauchy reals

are not isomorphic, like CZF and IZF, results about Dedekind reals are

stronger than the corresponding results about Cauchy reals. With ACω,2

we can show that x 7→ Xx is invertible: we can associate to any Dedekind

real X (the equivalence class of) a regular Cauchy sequence xX . Using

ACω,2 we construct a function f : Q×Q→ {0, 1} such that for all r, q ∈ Q

f(q, r) = 0 ⇒ q ∈ X;

f(q, r) = 1 ⇒ r /∈ X.

For n ∈ N let xn = k/n where k is the smallest integer such that

f

(
k − 1

n
,
k

n

)
= 0 and f

(
k

n
,
k + 1

n

)
= 0.

Then xX = (xn)n∈N is a regular Cauchy sequence. The mapping x 7→ Lx is

an embedding of the Cauchy reals into the Dedekind reals which preserves

the field structure; and with ACω,2 this map induces an isomorphism be-

tween the Cauchy and Dedekind reals. It is shown in [39] that ACω,2 is

not required to prove that the Dedekind and Cauchy reals are isomorphic.

However, for any intuitionistic theory T without some form of countable

choice, there exists a model of T in which

There exists a Dedekind real X such that X 6= x for each Cauchy

real x.

It is also not possible, in the absence of choice, to show that the Cauchy real

numbers are Cauchy complete—that is, to show that any Cauchy sequence

of regular Cauchy sequences of rational numbers converges to a Cauchy
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real. In the next section we give a model of IZF in which (i) there are

Dedekind reals with no associated Cauchy real, (ii) the Dedekind reals are

not countable (in a constructively strong sense), and (iii) there is a Cauchy

sequence of Dedekind reals which does not converge to any Dedekind real.

See [77] for a more complete treatment of these issues.

What we adopt

It now befits us to set forth the foundational system(s) we will adhere to. For

the work without choice, particularly that of section 3.1, we have in mind

CZF, since we feel the need for the Dedekind reals to form a set. For any

results which require choice, under which the Dedekind and Cauchy reals

coincide, we have in mind CST. The few simple independence results we

present will be over IZF, possibly with other assumptions of the background

universe (see section 1.3 for details). We have made an attempt to flag any

use we make of choice principles beyond the axiom of unique choice.
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1.3 Models of IZF

This section gives a gentle introduction to models of IZF, in particular to

topological models. The take home message is: the move from classical logic

to intuitionistic logic allows much greater freedom in the choice of forcing

semantics. Throughout this section we use → for internal implication in a

model, and ⇒ for implication at the metalevel.

1.3.1 Kripke models

We first introduce a Kripke semantics for intuitionistic logic. Kripke models

have their root in the possible world interpretation of modal logic. In possi-

ble world semantics we are given a lattice P of worlds and, for p, q ∈ P, we

interpret p 6 q as ‘p is visible from q’. To each world we associate a clas-

sical model of propositional or first order logic, with relation and function

symbols. The modal operators are then interpreted as

I �ϕ (normally read, necessarily ϕ) holds at world p if ϕ holds at all

worlds visible from p;

I ♦ϕ (normally read, possibly ϕ) holds at world p if there exists some

world visible from p in which ϕ holds.

Long before Kripke had proved completeness results for the possible world

semantics of various modal logics, Gödel gave an interpretation of intuition-

istic logic in the modal logic S4. This presaged Kripke’s possible-world-like

semantics for the intuitionistic predicate calculus; subsequently Kripke mod-

els were extended to first order logic. We describe Kripke models for IQC

and a language L with predicate symbols.

A Kripke model for IQC with relation symbols is a quadruple K = (K,6

, D,) where

(i) (K,6) is an inhabited poset;
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(ii) the domain function D assigns an inhabited set to each element of K

and is monotone with respect to 6:

∀k,k′(k 6 k′ → D(k) ⊂ D(k′));

(iii)  is a relation, the forcing relation, between K and the set of atomic

formulas over L with parameters in D =
⋃
{D(k) : k ∈ K} such that

for all k, k′ ∈ K and any n-ary relation R

k  R(d1, . . . , dn) ⇒ di ∈ D(k) for 1 6 i 6 n,

k  R(d1, . . . , dn) ∧ k 6 k′ ⇒ k′  R(d1, . . . , dn),

¬(k  ⊥).

If k′ 6 k we say that k′ extends, or is an extension of, k. We extend 

inductively to all formulas in L with parameters in D =
⋃
{D(k) : k ∈ K}:

K1 k  A ∧B if k  A and k  B;

K2 k  A ∨B if k  A or k  B;

K3 k  A→ B if for all extensions k′ of k if k′  A, then k′  B;

K4 k  ∀xϕx if for every extension k′ of k and each d ∈ D(k′), k′  ϕd;

K5 k  ∃xϕx if there exists d ∈ D(k) such that k  ϕd.

We read p  ϕ as ‘ϕ is valid or true at p.’ A formula ϕ is valid in the Kripke

model K, written K  ϕ, if it is valid at every node of K. In particular, if

K has a root node 0, then ϕ is valid in K if and only if it is valid at 0. If

ϕ holds in every Kripke model, we say that ϕ is valid for Kripke semantics

and write  ϕ.

Proposition 9 The forcing relation is monotonic: if p  ϕ and q 6 p, then

q  ϕ.

Proof. By induction on the construction of ϕ. Monotonicity for atomic

formula is part of the definition of a Kripke model. If ϕ = A ∧ B, then
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k  A and k  B; then for any extension k′ of k, k′  A and k′  B, by

the induction hypothesis, so k′  A ∧ B. The case ϕ = A ∨ B is similar.

Since forcing implications and universal quantifiers are defined in terms of

extensions, the case ϕ = A → B and the case ϕ = ∀xA are immediate.

Finally, the case ϕ = ∃xA follows from the monotonicity of D.

Brouwer’s intuitionism gives us the following very helpful interpretation of

a Kripke model. We view a node p of our poset P as a ‘state of knowledge’

and the nodes q extending p as possible future states of knowledge. With

this view

I the monotonicity of D says that once we have constructed an object

it always exists;

I the monotonicity of  says that once ϕ is proved it is always true;

I p  ϕ→ ψ if whenever ϕ is true in some possible future state, then ψ

is also true in this state;

I p  ∀xϕ if in every future state ϕx holds for all objects shown to exist.

The way in which forcing is defined for disjunction and implication is remi-

niscent of the BHK interpretation of these logical connectives.

As a simple example of unpacking a forcing statement we consider what it

means for a node to force ¬¬ϕ for some formula ϕ. By definition, k  ¬ϕ if

k  ϕ→ ⊥; since no k ∈ K forces ⊥, p  ¬ϕ precisely when ¬(k′  ϕ) for all

k′ 6 k. Therefore k  ¬¬ϕ if no extension of k forces ¬ϕ, so every extension

of k has an extension k′ which forces ϕ. With the notion of a dense subset of

a poset we can give a more succinct description of when k  ¬¬ϕ. A subset

S of a poset K is dense in K if for every k ∈ K there exists an extension

of k in S; S is dense below k ∈ K, if S is dense in {k′ ∈ K : k′ 6 k}. If S

is dense in K, then S is dense below k for each k ∈ K. We then have that

k  ¬¬ϕ if and only if

{p ∈ K : p  ϕ}

is dense below k.
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Kripke semantics is sound and complete for IQC.

Theorem 10 Kripke semantics is sound for IQC: if ` ϕ, then  ϕ.

Proof. We verify the axioms and rules of the Hilbert style deduction system

for IQC. Most cases, including the modus ponens and generalisation rules,

are straightforward. We only consider the two cases:

(A→ C)→ ((B → C)→ (A ∨B → C)):

We must show that any node of any Kripke model forces the above

formula for any choice of A,B,C. Unpacking the implications, we

must show that if k forces A→ C, B → C, and A ∨ B, then it forces

C: since k  A ∨ B, either k  A or k  B; in the first case k  C

since k  A→ C and k 6 k, and the second case is analogous.

(A→ (B → C))→ ((A→ B)→ (A→ C)):

Suppose that k forces A → (B → C), A → B, and A; we must show

that k forces C. Since k 6 k, we can apply modus ponens twice to

show that k forces B → C and B, and then one final time to see that

k  C.

The standard proofs of completeness are nonconstructive.

Theorem 11 (ZF) Kripke semantics is complete for IQC: if  ϕ, then

` ϕ.

Proof. See Theorem 5.11 of [107].

1.3.2 Forcing models

We are interested in developing Kripke models for set theory. We will focus

our attention on forcing models; for a different approach see [61] and see

[77, 78, 47] for some more involved custom examples (some of which also
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apply forcing). In what follows our metatheory will be IZF unless otherwise

stated.

We restrict ourselves to giving a special type of Kripke model for set theory:

intuitionistic forcing. Our goal is to define a class model V (P) = (P,6, D,)

satisfying the axioms of IZF; as such we want to have a fixed universe of

sets. The temporal aspect of our model will be given by how the elements

of the domain D are interpreted at each node. We construct D in a manner

similar to the construction of the von Neumann hierarchy, but we want to

build in the dependence on our future worlds.

Before defining D, we provide a few motivating examples. Suppose we want

to construct a set τ which looks like 0 = ∅ at some nodes, but looks like

1 = {0} at some node p of P (and by monotonicity at each node q extending

p). Such a set will consist of the element 0 together with a label indicating

that 0 ∈ τ at p:

σ = {< 0, p >};

this is a simple example of what is called a name. As a slightly more com-

plicated example we set σ′ = {< 0, q >,< 1, r >}, then 0 ∈ σ at any node

extending q and 1 ∈ σ′ at any node extending r. So, depending on p, q and

P, σ′ may appear, in various futures, to look like 0, 1, {1}, or 2 = {0, 1}.
We could then use σ, σ′ to build a more complicated set τ , which contains

σ, whatever this looks like, at some node p′ (and, by monotonicity, any ex-

tension of p′), and contains σ′ at nodes q′ and r′: this gives the following

name

τ = {< σ, p′ >,< σ′, q′ >,< σ′, r′ >}.

In general, a name τ is a set of pairs < σ, p > where σ is a name and p is a

node of P: formally we define the class V (P) of names over P by a transfinite

recursion

Vα(P) =
⋃
{P(Vβ(P)× P) ∪ Vβ(P) : β ∈ α}

V (P) =
⋃

α∈ORD

Vα(P).
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Since V (P) is a proper class, it is officially viewed as a predicate

x ∈ V (P)⇔ ∃α(ORD(α) ∧ x ∈ Vα(P)).

In several places in the proof that forcing models are sound for IZF we do

a transfinite induction on the name construction; formally, for a name τ we

define the rank rk(τ) of τ inductively by

rk(τ) =
⋃
{rk(σ) + 1 :< σ, p >∈ τ}.

In order to discuss forcing statements we must expand our language to

include a constant for each element of V (P), but we happily gloss over such

technical details.

To complete the definition of a forcing model over P we must interpret the

membership and equality relations. For the simplest names we have already

defined the interpretation of ∈: for τ = {< xi, pi >: xi ∈ V, pi ∈ P, i ∈ I}

p  x ∈ τ ⇔ ∃i∈I(x = xi ∧ p 6 pi).

For higher levels of the inductive definition, we are guided by the formula

u ∈ v ↔ ∃y∈v(u = y).

Given that v is a set of names, for p to force u ∈ v, we want to produce a

name σ and q ∈ K such that < σ, q >∈ v, p 6 q (and hence p  σ ∈ v), and

p  u = σ. We now want to define the interpretation of =; our guide here

is the extensionality formula

u = v ↔ ∀x∈u(x ∈ v) ∧ ∀y∈v(y ∈ u).

So for p to force u ⊂ v we want that for every < σ, q >∈ u and each r

extending both q (and hence forcing σ ∈ u) and p we want r  σ ∈ v. The

equality u = v is forced by p, if p forces both u ⊂ v and v ⊂ u. Formally, we
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define p  u = v and p  u ∈ v by a simultaneous recursion on the definition

of u, v:

p  u ⊂ v ⇔ ∀<σ,q>∈u∀r6p,q(r  σ ∈ v);

p  u = v ⇔ p  u ⊂ v and p  v ⊂ u;

p  u ∈ v ⇔ ∃σ∃q>p(< σ, q >∈ v and p  u = σ).

The next lemma, at least partially, confirms that p  σ ∈ τ behaves as we

had hoped.

Lemma 12 Let τ be a name. If < σ, q >∈ τ , then q  σ ∈ τ .

Proof. Since q 6 q the result follows from p  σ = σ, which is proved by

induction on the rank of σ (see Theorem 15).

Lemma 13 For any poset P, the forcing model V (P) is a Kripke model.

Proof. Since the domain function is constant, we only need to show that 

is monotonic for ∈ and = and that no k ∈ K forces ⊥, both of which follow

readily from the definitions.

Since our restriction to a constant domain simplifies some of the details of

Kripke semantics we give the simplified forcing relations again.

p  A ∧B if p  A and p  B;

p  A ∨B if p  A or p  B;

p  A→ B if for all extensions q of p if q  A, then q  B;

p  ∀xϕx if p  ϕτ for all every name τ ;

p  ∃xϕx if there exists a name τ such that p  ϕτ .

We write V (P) for the model (P,6, V (P),) and we refer to it as a forcing

model. Hereafter we will assume that our poset P has a maximal element

1—such an element can be appended if necessary.

60



As a simple exercise in producing names, we give a canonical name x̌ to each

set x in the real world; this is done by transfinite induction. For a set x we

define

x̌ = {< y̌,1 >: y ∈ x}.

Clearly for any p ∈ P, p  x̌ ∈ y̌ if and only if x ∈ y, so x 7→ x̌ can be seen as

an embedding of the von-Nuemann hierarchy into the forcing model V (P).

Lemma 14 If p  x = y and p  ϕ(x), then p  ϕ(y).

Proof. By induction on the complexity of ϕ. The base case is given by

E3,E4,E5 which are shown to hold in the proof of Theorem 15 below.

The only nontrivial induction step is when ϕ = ψ1 → ψ2. Supposing

p  ψ1(x) → ψ2(x) and p  x = y, if r  ψ1(y) for some r 6 p, then

by the induction hypothesis r  ψ1(x). Then r  ψ2(x) and, again by the

induction hypothesis, r  ψ2(y); whence p  ψ1(y)→ ψ2(y).

Theorem 15 (IZF) Forcing is sound for IZF: IZF ` ϕ⇒ V (P)  ϕ.

Proof. That forcing models are sound for intuitionistic logic follows from

Theorem 10 and Lemma 13.

Equality Axioms:

E1 ∀x(x = x);

E2 ∀x,y(x = y → y = x);

E3 ∀x,y,z(x = y ∧ y = z → x = z);

E4 ∀x,y,z(x = y ∧ x ∈ z → y ∈ z);

E5 ∀x,y,z(x = y ∧ z ∈ x→ z ∈ y).

These are all proved by a straightforward induction on the rank of a name,

except for E3 and E4 which use a simultaneous induction on rank, and E5

which follows straightforwardly from E4.
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E1: Fix a name τ and let < σ, q >∈ τ . By the induction hypothesis,

1  σ = σ, so q  σ ∈ τ . Hence ∀<σ,q>∈τ∀p61,q(p  σ ∈ τ); that is

1  τ ⊂ τ , from which the result follows.

E2: Follows directly from the symmetry of the definition.

E3 and E4: To show E3, it suffices to show that if x ⊂ y and y ⊂ z,

then x ⊂ z. Suppose first that p  x ⊂ y ∧ y ⊂ z and that E4 holds

for all names in
⋃
{Vβ : β 6 rk(z)}. Then

∀<σ,q>∈x∀r6p,q(r  σ ∈ y) and ∀<σ,q>∈y∀r6p,q(r  σ ∈ z).

Fix < σ, q >∈ x and r 6 p, q. Since r  σ ∈ y, there exists < σ′, q′ >∈
y such that q′ > r and r  σ = σ′ and since r 6 p, q′, r  σ′ ∈ z.

Hence, by our induction hypothesis, r  σ ∈ z. Since < σ, q >∈ x and

r 6 p, q are arbitrary, p  x ⊂ z.

To show E4, suppose that p  x = y ∧ x ∈ z, and that E3 holds for all

names with rank less than the rank of z. Since p  x ∈ z, there exists

< σ, q >∈ z such that q > p and p  x = σ. Applying E3 to x, σ, y, we

have that p  σ = y. Hence there exists < σ, q >∈ z such that q > p

and p  y = σ; that is, p  y ∈ z.

E5: Suppose that p forces that x = y and z ∈ x. Since p forces z ∈ x,

there exists < σ, q >∈ x with q > p such that p  σ = z. Thus

p  x = y implies that p forces σ ∈ y; whence p  σ = z ∧ σ ∈ y. It

now follows from E4 that p  z ∈ y.

Axioms of IZF.

Extensionality: ∀x,y(∀t(t ∈ x↔ t ∈ y)→ x = y).

We must show that 1 forces Extensionality. This means, by definition,

that for all names x, y and all p ∈ K, if p  ∀t(t ∈ x ↔ t ∈ y), then

p  x = y. Fix x, y and suppose that p  ∀t(t ∈ x → t ∈ y). In
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order to show that p  x ⊂ y, we must show that r  σ ∈ y for

any < σ, q >∈ x and r 6 p, q; fix such σ, q, and r . By Lemma 12,

r  σ ∈ x, so r  σ ∈ y since r 6 p and p forces t ∈ x→ t ∈ y.

Pairing: ∀x,y∃z∀t(t ∈ z ↔ t = x ∨ t = y).

Given names x, y, we must define a name z such that for any t

p  t ∈ z ⇔ (p  t = x ∨ p  t = y).

This is easily done: using pairing in the metatheory, we define

z = {< x,1 >,< y,1 >}.

Then 1  x ∈ z ∧ y ∈ z, and if p  t ∈ z, then there exists < σ, q >∈ z
such that q > p and p  σ = t. Either < σ, q >=< x,1 >, in which

case p  σ = x, or < σ, q >=< y,1 > and p  σ = y.

Union: ∀x∃y∀s(s ∈ y ↔ ∃t(s ∈ t ∧ t ∈ y)).

We must show that for each name x there exists a name y such that

for all names s and each p ∈ P

p  s ∈ A ⇔ ∃t(s ∈ t ∧ t ∈ x).

Given a name x, define

y = {< t, r >: ∃x(r  t ∈ x ∧ x ∈ a)}

=
{
< t, r >∈ Vrk(x) ×K :

∃q,q′6r, ∃x∈Vrk(a)(< t, q >∈ x∧ < x, q′ >∈ a)
}

by (bounded) separation on Vrk(x) × K. Suppose p  t ∈ y; let <

σ, q >∈ y be such that q > p and p  t = σ. Since < σ, q >∈ y,

q  σ ∈ s ∧ s ∈ x for some name s, so p  t ∈ s ∧ s ∈ x. Hence

p  ∃s(t ∈ s∧s ∈ x). Conversely if p  t ∈ s∧s ∈ x, then < t, p >∈ y,

so r  t ∈ y.
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Separation: ∀x∃y∀t(t ∈ y ↔ t ∈ x ∧ ϕ).

Given a name x define

y = {< t, p >: p  t ∈ x ∧ p  ϕx}

by separation on Vrk(x)(K)×K. Then for all names t and each p ∈ K,

p forces that t ∈ z if and only if p forces t ∈ x and p forces ϕ.

Powerset: ∀x∃y∀t(t ∈ y ↔ t ⊂ x).

Given x, define

y = {< t, p >: p  t ⊂ x}

by bounded separation on P(Vrk(x)(K) × K). Then for each p ∈ K,

p  t ∈ y if and only if p  t ⊂ x.

Set induction: ∀x (∀y(y ∈ x→ ϕ(y))→ ϕ(x))→ ∀xϕ(x).

Suppose that

p  ∀y(y ∈ x→ ϕ(y))→ ϕ(x)

for all x. We prove that p  ∀xϕ(x) by induction on the rank of x.

Fix a name a and suppose that p  ϕ(x) for all x with rank less than

rk(a). If r  y ∈ x for some r 6 p, then there exists < σ, q >∈ x such

that q > r and r  σ = y. Since rk(σ) < rk(x), p, and hence r, forces

ϕ(σ) by the induction hypothesis; so r  ϕ(y), by Lemma 14. Thus

p  ∀y(y ∈ a → ϕ(y)) and it follows from our initial assumption that

p  ϕ(a), which completes the induction.

Infinity: ∃x(∃ss ∈ x ∧ ∀s∈x∃t∈xs ∈ t).
Let x be the canonical name Ň for the natural numbers.

Collection: ∀x∈a∃yθ(x, y)→ ∃b∀x∈a∃y∈bθ(x, y).

Suppose that

p  ∀x∈a∃yθ(x, y) (∗)

and define

a′ = {< x, q >: q  x ∈ a, q 6 p}
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by (bounded) separation on Vrk(a) ×K. Unpacking (∗) we have that

∀<x,q>∈a′∃y(q  θ(x, y)).

We can now apply collection in the metatheory to construct b′ such

that

∀<x,q>∈a′∃y∈b′(q  θ(x, y)).

By (full) separation b = b′ ∩ V (K) is a name. Then

∀q6p∀x(q  x ∈ a⇒ ∃y∈bq  θ(x, y)),

so p  ∃b∀x∈a∃y∈bθ(x, y).

We give a simple example of a forcing model of IZF. A set S is said to

admit a constant function if there exists a function f : S → S such that

f(s1) = f(s2) for all s1, s2 ∈ S. We show that the statement

(*) Every set admits a constant function.

is independent of IZF plus dependent choice, and hence Bishop’s con-

structive mathematics.22 There are two objections to (*) as a construc-

tive principle: (i) if we have a constructive proof of (*) restricted to a

collection A of inhabited sets, then by examining the codomains of the

constant functions (fa)a∈A given by (*), we are able—using unique choice

on ϕ(a, y) = ∀x∈a(fa(x) = y)—to construct a choice function for A; (ii) the

nature of a constant function on S depends on whether S is inhabited or

empty, which is not something that can be constructively decided.

Our model shows that (*) fails even for finite subsets of the natural numbers;

since dependent choice holds in the model, the failure of this restriction of (*)

rests with objection (ii). If we restrict (*) to Σ0
1 sets, then it is constructively

valid.
22Condition (*) is considered in [5] where, in particular, it is shown to imply a construc-

tively dubious principle and a homotopy type theory taboo.
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We take the model V (P) over the poset P elements {0, 1, 2, 3} and compa-

rabilities as indicated below.

0

1 2

3

Let σ = {< 0̌, 1 >,< 1̌, 0 >}. Suppose 0 forces that a P-name τ is a function

on σ; in particular, for all p ∈ P and all P-names x, if p  x ∈ σ, then there

exists a P-name η such that p  η ∈ σ and p  (x, η) ∈ τ . It follows that

1  (0̌, 0̌) ∈ τ and 2  (1̌, 1̌) ∈ τ.

Hence 3 forces that (0̌, 0̌), (1̌, 1̌) ∈ τ , so that τ is not the name of a constant

function on σ.

Since P is finite, we can code all names of natural numbers in M(P) by

natural numbers at the meta level; this allows us to prove dependent choice

in M(P) by applying dependent choice, to names for natural numbers and

a predicate involving the forcing relation, at the meta-level. Hence M(P)

satisfies DC.

1.3.3 Topological models

Let (X,TX) be a topological space. For a point x ∈ X, we denote by Nx the

set of neighbourhoods of x. Let V (X) be the class of names V (TX) from

forcing: V (X) is defined inductively by

Vα(X) =
⋃
{P(Vβ(X)× TX) : β ∈ α},

V (X) =
⋃

α∈ORD

Vα(X);
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for a name τ , the rank rk(τ) of τ is inf{α ∈ ORD : τ ∈ Vα(X)}. We

first define, by induction, the topological forcing relation  between points

and formulas; an open set U is then said to force a formula A if each ele-

ment of U forces A. The base cases, forcing prime formulas, are defined by

simultaneous transfinite recursion on rank:

x  u ∈ v if there exists < σ, V >∈ v such that x ∈ V and x  σ = u:

∃<σ,V >∈v(x ∈ V ∧ x  σ = u).

x  u ⊂ v if for some neighborhood W of x and all < σ,U >∈ u if any

point in W forcing that σ ∈ u also forces that σ ∈ v:

∃W∈Nx∀y∈W∀<σ,U>∈u(y ∈ U → y  σ ∈ v).

We extend  to all formulas inductively by the following clauses.

x  A ∧B if x  A and x  B.

x  ∃uAu if there exists a name τ such that x  Aτ .

x  A ∨ B if there is a neighborhood of x which either forces A or

forces B:

∃W∈Nx((∀y∈W y  A) ∨ (∀y∈W y  B)).

x  A→ B if there is a neighborhood W of x such that if y ∈W and

y  A, then y  B:

∃W∈Nx∀y∈W (y  A→ y  B).

x  ∀uAu if there is a neighborhood of x which forces Aτ for any name

τ :

∃W∈Nx∀y∈W∀τ∈V (X)(y  Aτ).

We further require that no node forces falsity

∀x∈X¬(x  ⊥)
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and define

U  A if and only if ∀x∈Ux  A,

for U ∈ TX . Note that monotonicity follows immediately from this defini-

tion, and a simple induction argument shows that x  A if and only if there

is a neighborhood W of x such that W  A.

The definition of the topological model MX = (X,TX , V (X),) is completed

by setting A to be true in MX if and only if A is forced by X:

MX � A ⇔ X  A.

Let (X,TX) be a topological space. By unwrapping the various definitions

we have that:

MX � u ∈ v ⇔ ∀x∈X∃<σ,V >∈v(x ∈ V ∧ x  σ = u);

MX � u ⊂ v ⇔ ∀<σ,U>∈u∀x∈U (x  σ ∈ v);

MX � A ∧B ⇔ MX � A and MX � B;

MX � A ∨B ⇔ ∀x∈X(x  A ∨ x  B);

MX � A→ B ⇔ ∀x∈X(x  A⇒ x  B);

MX � ∃aA ⇔ ∀x∈X∃σ∈V (X)(x  Aσ);

MX � ∀aA ⇔ ∀σ∈V (X)MX � Aσ.

Comparing these with the conditions for a forcing model V (P) to satisfy a

formula, we see that ⊂,∧,→, and ∀ behave in essentially the same way. For

example MX � u ⊂ v if and only if each U ∈ TX forces u ⊂ v, which is

precisely the condition for V (TX) to satisfy u ⊂ v. In contrast, the validity

of membership, existential statements, and disjunctions is now local:

I for MX � u ∈ v, the < σ, V >∈ v such that x  σ ∈ v ∧ u = σ may

depend on x;

I for MX � ∃uA, there need not be one name σ such that MX � Aσ—

points may differ on the names they force to satisfy A;

I similarly for disjunctions, points may force different parts of the dis-

junction, but each point forces at least one.
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Despite these differences, the soundness theorem for topological models of

IZF follows almost directly from the arguments in the soundness theorem

for forcing models.

Theorem 16 (IZF) Topological models are sound for IZF:

IZF ` ϕ⇒MX  ϕ.

Proof. The proof is very similar to the proof that forcing is sound for

IZF, Theorem 16. We need only check that the arguments in the proof of

Theorem 16 can be carried out locally; this is left as an exercise.

The next theorem gives an example of a typical argument in topological

forcing.23

Lemma 17 (LPO) Let (X,TX) be a locally connected topological space,

and let (Xn)n∈N be a sequence of subsets of X such that X = Xn ∪ (∼Xn)◦.

Then

X =

( ⋂

n∈N
Xn

)◦
∪
⋃

n∈N
(∼Xn)◦.

Proof. Fix x ∈ X and let U be an open connected neighborhood of x. Since

U is connected, either U ⊂ Xn or U ⊂ (∼Xn)◦, for otherwise we could write

U as the disjoint union of the nonempty open sets U ∩Xn and U ∩ (∼Xn)◦.

Hence it follows from LPO that either U ⊂ Xn for each n or there exists

n such that U ⊂ (∼Xn)◦. In the former case x ∈
(⋂

n∈NXn

)◦
and in the

latter x ∈
⋃
n∈N(∼Xn)◦.

Theorem 18 (LPO) Let (X,TX) be a connected topological space. Then

MX � LPO.

Proof. Suppose U ∈ TX forces that α is a binary sequence. For each

n there exists an open subset Un of U such that U = Un ∪ (∼Un)◦, and

23Much thanks must go to Andrew Swan for giving so much of his time to convince
me that LPO should hold in many topological models; the proof of the next theorem is
essentially his.
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Un  α(n) = 0 and (∼Un)◦  α(n) = 1. Then

( ⋂

n∈N
Un

)◦
 ∀n∈Nα(n) = 0 and

⋃

n∈N
(∼Un)◦  ∃n∈Nα(n) = 1.

It follows from Lemma 17 that U =
(⋂

n∈N Un
)◦ ∪⋃n∈N(∼Un)◦, and hence

that U  (∀n∈Nα(n) = 0) ∨ ∃n∈Nα(n) = 1.

In general, since topological semantics is local, properties valid in a particu-

lar topological model only depend on the local properties of the underlying

topological space.

Topological models have been well studied as sheaf models Sh(O(X)) over

a topological space (X,TX) [54], where the following very useful characteri-

sation of the Dedekind and Cauchy reals in a topological model is given.

Proposition 19 Let (X,TX) be a topological space. Then the Dedekind re-

als in Sh(O(X)) are represented by the continuous functions from (X,TX) to

RD, and the Cauchy reals are represented by the locally constant functions.

We shall have a close look at the sheaf model over [0, 1], with the standard

topology, in section 1.5.

1.3.4 Realizability

Topological models provide a natural semantics for Brouwer’s intuitionism:

in particular, every topological model satisfies Brouwer’s fan theorem [47],

and many natural examples satisfy Brouwer’s continuity principles.24 More-

over, Brouwer’s perception of mathematics can (anachronistically) be used

to motivate Kripke, forcing, and topological models for IZF.

There is another school of constructive mathematics, the Russian school of

recursive mathematics, with a different philosophical standpoint, which also

motivates a semantics for IZF; namely, realizability. Realizability can be

24In particular, Krol [71] gave a topological model satisfying Brouwer’s fan theorem and
continuity principles as well as Kripke’s schema.
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seen as an attempt to make precise the notions of proof and algorithm in the

BHK interpretation of the logical connectives and quantifiers. We interpret

both proof and algorithm by computations; partial combinatory algebra’s

provide us with a rich source of models of computability appropriate for this

task.

Let A be a pca. The basic structure of realizability models is similar to that

of forcing. First we inductively construct a universe of A-names

V (A)α =
⋃

β<α

P(A× V (A)β),

V (A) =
⋃

α∈ORD

V (A)α;

we interpret the labels from A as providing computational evidence of the

properties of names. The realizability relation , between elements of A
and formulas of our (extended) language, is defined by induction. Let a, b

be names, and let e be an element of A, we write e0, e1 for the projections

π0e, π1e of e and , e0, e1 > for the pair pe0e1. The base cases are

I e  a ∈ b if there exists a name c such that 〈e0, c〉 ∈ b and e1  a = c;

I e  a ⊂ b if for all 〈f, d〉 in a, e0f ↓ and e0f  d ∈ b;

I ¬e  ⊥.

The induction cases closely reflect the BHK interpretation:

I e  A ∧B if e0  A and e1  B;

I e  A ∨B if e0 = 0 and e1  A or e0 = 1 and e1  B;

I e  A→ B if for every f ∈ A which forces A, ef ↓ and ef  B;

I e  ∀xϕx if for every name a, e  A[x/a];

I e]  ∃xϕx if there exists name a such that e  A[x/a].
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We call any e ∈ A such that e  A a realizer of A. The realizability model

V (A) satisfies A if there is a realizer for A in A: V (A) � A if and only if

∃e∈Ae  A.

Theorem 20 Realizability is sound for IZF: if A is a pca and IZF` A,

then V (A) satisfies A.

Proof. The full proof can be found in McCarty’s thesis [82].

Realizability models have been put to great use in the study of the meta-

mathematic properties of constructive set theory. For example whether con-

structive theories have the set existence property [90, 103], conservativity

and independence [8, 38], and program extraction [13].

In the same way that Kripke models can be used to give models of classical

set theory, realizability has been extended by Krivine to give models of

ZFC [70] (forcing models can even be seen as a special case of Krivine’s

realizability).
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1.4 Constructive mathematics and computability

Constructive proofs are (logically) simpler than nonconstructive proofs, and

it is often the case that (the search for) a constructive proof reveals more

about why a result is true—the purpose of proofs after all is to tell us why

something is true (we already know what is true). So an appreciation for

constructive methods may give the classical mathematician more instruc-

tive proofs. But what else might working constructively give the classical

mathematician? We give a few examples.

1.4.1 Constructive mathematics and computation

The message of this brief section is

“Algorithmic mathematics—that is, computer science—appears

to be equivalent to mathematics that uses only intuitionistic

logic.”25

. D. Bridges and S. Reeves, [29]

The essence of our message is what is expressed by the Curry-Howard cor-

respondence between proof systems and models of computation; at its most

general, the correspondence is the association of propositions with types.

Data types, or simply types, are the computer science equivalent of a set,

each program has an associated type which describes the valid inputs and

outputs of a program. More specifically, the Curry-Howard isomorphism

gives a correspondence between models of computation and intuitionistic

theories. For example, between natural deduction and the λ-calculus there

is a correspondence between: hypothesis and free variables; implication elim-

ination and application; and implication introduction and abstraction.

How do we get programs from proofs? The proper, or at most widely ac-

cepted, foundational system for computer science is Martin-Löf’s intuitionis-

tic type theory—the same type theory which interprets CZF plus relativised

25Although, as Martin Escardo pointed out to me, many, if not most, computer scientists
use classical logic.
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dependent choice (and large cardinal like assumptions)—and the Curry-

Howard correspondence allows us to view mathematical proofs in MLTT,

or CZF, as programs in some typed λ-calculus. This process is sketched

below.

Marin-Löf Type Theory

Martin-Löf type theory can be viewed as a high level programing language,26

or alternatively as a restricted set theory: types are roughly the completely

presented sets—sets in which every element carries evidence of its member-

ship. Types form the valid domains of quantification. Informally, in order to

define a type we must describe a set in the sense of Bishop, and additionally:

(i) describe the canonical members, elements which witness there own

membership;

(ii) describe how to evaluate members of A to give canonical members.

For example, the type of natural numbers N consists of canonical elements

defined inductively by

0 is canonical, and if n is canonical, then the successor s(n) of n

is canonical,

together with elements defined from canonical elements using the operations

defined by recursion. The evaluation rules for N are the standard rules for

evaluating operations, so for example 3! + 102 − 3 evaluates to 103. From a

programing perspective, canonical elements correspond to data, and general

elements to programs which give instructions for their own evaluation. So

canonical members roughly correspond to λ terms in normal form. There

is, however, no notion of canonical element in the formal theory.

MLTT is based on taking the Curry-Howard isomorphism as a philosophical

principle. Above we interpreted a type as a set, but, by the ‘propositions-

as-types’ idea, we can also interpret a type as a proposition. Under this

26As Beeson puts it “a sort of λ-calculus with variable types” [9].
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interpretations, elements of a type correspond to ‘proofs’, or realizers, of the

associated proposition, and a proposition corresponds to the collection of

its realizers. Returning to the natural numbers, the type N can be inter-

preted as the proposition ‘there exists a natural number’, and any natural

number gives a proof of this proposition. The propositions-as-types notion

together with the basic type constructors, introduced below, allow us to

embed intuitionistic logic into MLTT.

Before introducing some methods for constructing new types from old, there

is one more key aspect of MLTT to introduce, that of judgements. Math-

ematics happens at the level of judgements, while realizers give only the

computational content. The four basic types of judgement are the follow-

ing.

I A is a type, written TypeA.

I a has type A, written a : A.

I s, t are equal elements of type A, s = t : A.

I A and B are equal types, A = B, they have the same elements and

the same equality.

If A is a type, then the judgement that a : A is the assertion that a is

a proof of the proposition corresponding to A. So for example, if A is

the type corresponding to Lagrange’s four-square theorem—every natural

number can be expressed as the sum of four squares—then the judgement

a : A corresponds to a proof of the four-square theorem, and the program

a which given n ∈ n enumerates N4 in an appropriate order until it finds

(a, b, c, d) such that a2 + b2 + c2 + d2 = n is an element of A—this search

is bounded by
√
n. Judgements can also have a dependency on a type, for

example

I a is of type A given that b is of type B, written a : A(b : B);

I B is a family of types over A, TypeB(x) x : A.
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We now give the basic ways to construct types, and relate them to the

embedding of logic via the Curry-Howard isomorphism.

I We start with the empty type 0 and the unit type 1. By the Curry-

Howard isomorphism, 0 is a proposition with no proof and corresponds

to false, while 1 has a single element and corresponds to true.

I Pi-types are analogous to indexed products of sets, they generalise

function spaces by allowing the image type to vary with the input.

Intuitively f ∈ Π(A,B) corresponds to f(a) ∈ B(a) (a : A), where

B(a) is a family of types dependent on A. The logical interpretation

of Π(A,B) is ∀x∈AB(x); for if f : Π(A,B), then given any realizer a of

A, f(a) is a realizer of B(a). For types A,B, we write A→ B for the

type of functions from A to B. If f : A → B, then f maps realizers

of A to realizers of B; whence an element of A → B corresponds to

a proof that A logically entails B. The Π-types can also be seen as a

generalisation of λ-abstraction.

I Sigma-types are analogous to indexed disjoint unions; the intuitive

meaning of the type Σ(A,B) is the set {(a, b) : a ∈ A, b ∈ B(a)}
where TypeB(a) (a : A). Thinking now in terms of propositions, (a, b)

realizes Σ(A,B) if a : A and b realizes B(a), so Σ(A,B) corresponds to

the existential statement ∃a∈AB(a). We get Cartesian products as the

special case of Σ-types when the dependency of B is trivial—that is,

when B(a) is B for each a : A. An element of type A×B corresponds

to a pair (a, b) such that a realizes A and b realizes B. Hence A × B
gives an interpretation of A ∧B.

I Given types A,B there is also a disjoint sum type A+B an element of

which is a member of A ∪B together with a label indicating whether

it is from A or B. Disjoint sums are the type equivalent of disjunc-

tion, so we must also introduce operations i, j which inject A and B

respectively into A + B; i, j are realizers of the intuitionistic axioms

A→ A ∨B and B → A ∨B.
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I Inductive types are introduced as a special case of the type of well

founded trees. By the Curry-Howard correspondence, primitive recur-

sion is identified with the induction type

N− elim : P (0)→ Π(N, P (n)→ P (sn))→ Π(N, P ),

for any P such that TypeP (n) (n : N). More generally, inductive

families correspond to inductively defined relations. The naturals are

inductively generated by 0 : N and s : N→ N.

Formally, type theories are usually presented as a dependently typed lambda

calculus. We have basic rules for equality and substitution, and for each

type constructor, rules for formation, introduction, elimination, and defining

equality on the type. See [81] for a full account of MLTT.

Martin-Löf type theory is the first system we have seen which is clearly pred-

icative: types can only be constructed from previously constructed types,

and we avoid the appeal to a completed universe of sets which is inherent in

even a predicative set theory like CZF. One may try to justify the construc-

tive credentials of CZF directly from the axioms, but the most convincing

evidence that CZF is constructive comes from Aczel’s interpretation of CZF

in MLTT. MLTT is intensional, Per Martin-Löf’s original formulation was

extensional, but Martin-Löf choose to make his type theory intensional in

order to preserve the decidability of type checking. Finally we note that,

since the intuitive justification for relativised dependent choice is valid for

completely presented sets, relativised dependent choice is valid in MLTT.

We can now be a little more specific about MLTT’s credentials as a pro-

graming language. Given a proposition A, a mathematical proof J of A,

formalized in MLTT, is a judgement that a : A for some a. The typed λ

term a is a computable function which gives a computable realisation of A,

and the judgement J is a proof that a meets the programing specification

given by A.

See [95] for the development of formal topology in MLTT.
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General program extraction

The utility of MLTT as a programing language results from the careful as-

signment and preservation of computational content (realizers) as we form

types. For intuitionistic logic and set theories we have given a similar sys-

tematic assignment of computational information, in the metatheory, in the

form of realizability. Using these realizability models, program extraction

can be achieved from constructive proofs without needing to formalise our

results in the mathematically unfamiliar territory of type theory.

We only give an example, for realizability with Turing machines, of what

can be proved in this direction.

Theorem 21 There are Turing machines u,v such that if

e  ∀x∈N∃y∈Nϕ(x, y),

then

(ve)(n)  ϕ(n,ue(u));

and if ϕ is recursive, then in IZF we have ϕ(n, {ue}(n)) for each n.

Proof. See Lipton [73].

Other approaches and more refined techniques have been used to extract

programs from minimal logic [99], and for intuitionistic systems with choice

and inductive definitions [11, 12]. Programs have also been extracted from

classical proofs using these techniques [14], but in this case we no longer have

a guarantee that the extracted program meets it specifications. Kohlenbach

has developed very successful techniques for the extraction of computational

information from classical proofs [69] using similar ideas.

Exact real number computation

Programs derived directly from constructive proofs via realizability come

with a guarantee that they meet their specifications (assuming the extrac-

tion is correct!). Programs dealing with real number computation have an
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additional, similar, advantage over their more traditional counterparts: con-

structive results give exact real number calculations. When we implement

a constructive proof we do not have to worry about finite computer preci-

sion producing erroneous results—since constructive mathematics deals with

finite information and procedures (and only the potential infinite), construc-

tive results will be implemented faithfully.

We borrow an example from [32, page 2]. Consider the function f : [0, 1]→
R given by

f(x) =

(
x− 3

4

)(
x− 1

2

)2

− 2−51

and the classical proof of the intermediate value theorem which given reals

a < b with f(a) < 0 < f(b) proceeds by testing the midpoint (b − a)/2 to

see whether it is positive, negative or zero, and refines the interval [a, b] to

a smaller one [x, y] for some x, y ∈ {a, b, (b− a)/2}, depending on the result

of this test, which still must (classically) contain a root. If our computer

implementation of this proof uses 50-bit precision, then at the first step we

test f(1/2) and concluding it is 0, as 2−51 is below the computer precision, we

stop the program and output x = 1/2 as a root of f . But the unique root of f

is greater than 3/4! This phenomenon cannot occur with a program derived

from a constructive proof: constructive proofs have interval arithmetic built

in. This example is very similar to the proof that the intermediate value

theorem does not admit a constructive proof.

1.4.2 Theorems for free

The message of this section is

The power of constructive mathematics is in its weakness: con-

structive proofs give us more, precisely because they require less.

The weakness of CZF allows it to be interpreted into many systems of

mathematics, in particular in MLTT and in any topos. For the classical

mathematician, who—for the sake of argument—only cares for the one true
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system, this may seem to be of little consequence, but a constructive proof

also furnishes us with additional information which may be of interest to the

classical mathematician. We give two basic examples of what the classical

mathematician gets for free from a (possibly inadvertent) constructive proof.

As a crude example, suppose you have have shown that f is a well defined

function between metric spaces, and that you observe the proof to be fully

constructive. Then you can take a proof in IZF and using a standard

realizability interpretation find a computable realizer that f is a function.

Since every computable function is continuous, f must be continuous. Thus

from a constructive proof that f is a function, we get a classical proof that

f is continuous and even computable—see [7] for a formal result.

A more advanced example was given by Joyal who gave a categorical exten-

sion of Kripke semantics for higher order Heyting arithmetic27 (HAH), and

used it to derive the following continuity result.

Theorem 22 (ZFC) If we have a proof that for all x ∈ RD there exists

y ∈ RD such that A(x, y) in HAH, then there is a proof in HAH that

for all x ∈ RD there exists an open neighborhood U of x and a continuous

function f : U → RD such that A(x, f(x)) for all y ∈ U .

Proof. See [108, page 805]. The proof uses a sheaf model over the topo-

logical space with points the disjoint union RD∪̇RD of RD with itself, and

opens U1∪̇U2 where U1 ⊂ U2 and U1 is open in the standard topology on

RD.

This result extends to CZF or IZF. Thus if we have a constructive proof

of ∀x∈RD∃y∈RDA(x, y), then classically we know that we can find a locally

continuous solution for y in terms of x.

27Heyting arithmetic is an intuitionistic formulation of Peano arithmetic, and Peano
arithmetic can be interpreted in Heyting arithmetic by a double negation interpretation.
Higher order Heyting arithmetic is Heyting arithmetic with types for functions from the
natural numbers to the natural numbers, functions between number theoretic functions,
and so forth.
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In general, we can interpret proofs in CZF not only to be about the familiar

denizens of the mathematical universe, but also to those inhabitants of any

model of CZF, and in particular any topos. Thus by catering the topos to

your interests you can cater the interpretations of constructive theorems.

Constructive mathematics and computability

In [7], Bauer gives an introduction to a particularly striking and well de-

veloped example of deriving classical results from a model of constructive

mathematics:

“Computable mathematics is the realizability interpretation of

constructive mathematics.”

We only give a simple example of how results in constructive mathematics

can be converted into results in computable mathematics using realizability.

A multivalued map g : X ⇒ Y is a function from X to the collection of

inhabited subsets of X. The multivalued map g : X ⇒ Y is computably

realized if there exists a computable function f : X → Y such that f(x) ∈
g(x) for each x ∈ X. The following is Proposition 4.30 of [7].

Proposition 23 If we can prove

∀x∈X∃y∈YR(x, y)

with intuitionistic logic, then there is a computably realized multivalued map

g : X ⇒ Y such that R(x, y) holds for all y ∈ g(x).

Bauer uses this Proposition together with [108, Theorem 7.2.7] to show

that there is a computably realized multivalued map which takes (f, x, n) ∈
RR×R×N to a subset S of N such that 1/m is a 1/n-modulus of continuity

for f at x for each m ∈ S.
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1.5 Constructive (reverse) mathematics

This section gives some basic constructive mathematics and constructive

reverse mathematics. First we present some definitions which are indispens-

able to the practicing constructivist.

1.5.1 Constructive definitions

As we have emphasised in the previous section, any proof in Bishop’s con-

structive mathematics contains an algorithm which ‘implements’ the result

it proves. So if the conclusion of a theorem has some computational content,

then so must the hypothesis: we cannot get something for nothing! To get

constructively meaningful results, it is necessary to rewrite many classical

definitions in a positive way; we must also at times make explicit conditions

which hold trivially in classical mathematics, but which may fail in our

framework. At still other times, a classical definition given a constructive

reading becomes a far stronger property, so here we must adopt a compu-

tationally weaker, though classically equivalent alternative. Here we give

some of the definitions which are fundamental to the study of constructive

analysis. Other constructive definitions will be introduced as required.

Let X be a metric space and let S be a subset of X. If there exists x ∈ S,

then S is said to be inhabited ; constructively this is a stronger property than

S being nonempty, ¬(S = ∅). An inhabited set S is said to be located if for

each x ∈ X the distance

ρ (x, S) = inf {ρ(x, s) : s ∈ S}

from x to S exists. Let ε > 0. An ε-approximation to S is a subset T of S

such that for each s ∈ S, there exists t ∈ T such that ρ(s, t) < ε. We say

that S is totally bounded if for each ε > 0 there exists a finitely enumerable28

ε-approximation to S. A metric space is said to be compact if it is complete

28A set is finitely enumerable if it is the image of {1, . . . , n} for some n ∈ N+, and a set
is finite if it is in bijection with {1, . . . , n} for some n ∈ N+; constructively these notions
are distinct.
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and totally bounded. A totally bounded subset of X is located [18, page 95,

Proposition (4.4)]. In a metric space X, we denote by B(x, r) and B(x, r)

the open and closed balls, respectively, centred on x ∈ X with radius r > 0.

Continuity is a thorny issue in constructive mathematics.29 Since the three

major extensions of Bishop’s constructive mathematics—classical mathe-

matics, Brouwers intuitionism, and recursive mathematics–all disagree on

which continuity principles hold, we must be very careful; in particular, in

recursive mathematics there is a continuous function on the unit interval

which is not uniformly continuous. In [16], Bishop elegantly sidesteps this

problem by including the uniform continuity theorem in the definition of con-

tinuity: a function f with totally bounded domain is Bishop-continuous if f

is uniformly continuous on each compact subset of its domain. A modulus of

continuity for f : X → Y is a function which takes values30 (x, ε) ∈ X×R+

and outputs δ > 0 such that (ε, δ) satisfies the definition of continuity for f

at x. A modulus of continuity is a uniform modulus of continuity if δ does

not depend on x.

The law of trichotomy

∀x∈R(x < 0 ∨ x = 0 ∨ 0 < x)

implies LLPO, and hence is not constructively valid. The constructive law

of trichotomy

∀x,y,z∈R(x < y → x < z ∨ z < y)

is sufficient for most arguments.

1.5.2 Constructive reverse mathematics

The goal of a reverse mathematics is to classify theorems according to the ax-

ioms they require in addition to some basic theory, our base system. Results

29See [80] for a discussion of continuity in constructive mathematics.
30For a subset S of R we use S+ to denote the positive elements of S; S−, S0+ are

defined similarly.
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in reverse mathematics have two parts: first we give a standard mathemati-

cal proof of a theorem ϕ in some extension Base+ of our base system Base,

showing the sufficiency of the principles of that extension; and then we give

a reversal, a proof in Base that if ϕ holds, then so does each theorem of

Base+. Typically the extensions of our base system are represented by the

addition of a single axiom, and a reversal is given by proving that a theorem

implies this axiom. The theorems we study in a reverse mathematics will

be some subset of those results which are consistent with our base system.

In classical reverse mathematics [100] the base system RCA0 is roughly

the study of computable objects with classical logic, and the base system is

extended by set existence axioms. In constructive reverse mathematics we

extend or base system by logical axioms and by function existence axioms.

The main reason for focusing on function existence axioms rather than set

existence axioms is that set membership is generally not decidable in con-

structive mathematics: function existence axioms give us this decidability.

This is related to the adoption of exponentiation, in place of the powerset

axiom, in constructive set theories. Logical principles can be viewed as func-

tion existence axioms, but this is sometimes disruptive; for example LLPO

could be viewed as a function from {α ∈ 2N : ∀n,m∈Nα(n)α(m) = 0} to 2

such that

LLPO(α) = 0 ⇒ ∀n∈Nα(2n) = 0;

LLPO(α) = 1 ⇒ ∀n∈Nα(2n+ 1) = 0.

However this removes the possibility that applying LLPO twice to the zero

sequence produces different responses—this function form of LLPO will be

equivalent to Weak König’s lemma,

WKL: Every infinite decidable, binary tree has an infinite path,

and hence to LLPO plus binary choice for Π0
1 formulas, Π0

1-ACω,2 [64].

In constructive reverse mathematics we take as our base theory some sys-

tem of constructive mathematics, and study theorems from the classical,
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intuitionistic, and recursive schools of mathematics (or indeed any result

consistent with our base theory). The extensions of our base theory will be

given by some combination of a logical principle and a function existence

axiom. The literature on constructive reverse mathematics is somewhat con-

fused; in particular, very little constructive reverse mathematics has been

done over an explicit formal system, and there is no formal framework which

has gained much attention (see [74] for a critic of constructive reverse math-

ematics as a programme).

There are three types of constructive reverse mathematics in the literature.

The majority of reverse constructive mathematics has been done informally.

In informal constructive reverse mathematics, our base theory is Bishop’s

constructive mathematics, and we focus our attention on fragments of LEM,

and the semi-constructive principles of RUSS and INT. It is the expecta-

tion that this programme could be formalised in CST or some higher order

Heyting arithmetic plus dependent choice. If we are interested in construc-

tive mathematics without choice or its numerous models, then we can take

CZF or IZF as our base system and set our focus on the fragments of the

axiom of choice, logical principles, and the semi-constructive principles of

RUSS and INT.

Ishihara has proposed a formal approach to constructive reverse mathemat-

ics [64] more in line with the classical reverse mathematics of Friedman and

Simpson. We take as our base (a subsystem of) elementary analysis EL.

Elementary analysis is an extension of Heyting arithmetic with variables for

number theoretic functions. In addition to the axioms of Heyting arithmetic,

EL has primitive recursion, λ-conversion, countable choice for quantifier free

formulas, and the induction scheme

(A(0) ∧ ∀n(A(n)→ A(n+ 1)))→ ∀nA(n),

for any formula A, where n ranges over the natural numbers. See [107] for

a detailed study of elementary analysis.

Since the focus of constructive reverse mathematics is on logical principles,
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it is natural to work with a strong set theoretic base theory as in the informal

approach. However, we feel that the relationship between CZF and topos

theory makes it beneficial to omit choice from our base theory. Consequently

we adopt CZF without choice as our base theory. The next theorem gives

an example of some of the results of constructive reverse mathematics. See

[65] for a review of informal constructive reverse mathematics, and [64] for

constructive reverse mathematics formalised in elementary analysis.

Theorem 24 (CZF) The following are equivalent to WKL.

1. LLPO plus Π0
1-ACω,2.

2. If a sequence of (enumerably) closed subsets in R has the finite inter-

section property, then it has inhabited intersection.

The following are equivalent to FT for decidable trees.

1. An infinite binary tree with at most one infinite branch—for all distinct

α, β ∈ 2N there exists n such that one of α(n), β(n) is not in the tree—

has an infinite branch.

2. Each positive valued uniformly continuous function defined on a com-

pact metric space has positive infimum.

3. The Heine-Borel theorem for ∆0 open covers: every ∆0 open cover of

[0, 1] has a finite subcover.

The following are equivalent to BD-N.

1. Each sequentially continuous mapping from a separable metric space

into a metric space is continuous.

2. Each bijective continuous linear mapping between Banach spaces has

a continuous inverse.

3. K(R) is sequentially complete.31

31K(R) is the uniformly convex space of uniformly continuous functions in RR with the
seminorms

f 7→ sup
n

sup
|x|>n

2α(n)|f(x)| (α ∈ 2N).
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An important principle in reverse constructive mathematics is the minimum

principle

MIN: A continuous real valued function on a compact metric

space attains its infimum.

In the presence of ACω,2, MIN is equivalent to WKL. MIN implies the

following weakening of the law of trichotomy

LLPOR: for all x ∈ RD either x 6 0 or x > 0.

If weak countable choice holds, then LLPO and LLPOR are equivalent.

We present a model of IZF below in which WKL holds and LLPOR fails;

it follows, in particular, that MIN is strictly stronger than WKL.

The little reverse constructive mathematics we indulge in will be done, in-

formally, over CZF or IZF—our only countermodel is a model of IZF,

so can be seen as a nonderivability result over any reasonable constructive

base theory without choice axioms. For a theorem T , we write T ∈ [A,B] to

mean (B → T ) ∧ (T → A). For example, many of the fixed point theorems

we consider are easily seen to be in [LLPOR,MIN]. If we have Π0
1-ACω,2

then [LLPO,MIN] collapses to [WKL,MIN]; if we have ACω,2 in our

base theory, then [LLPO,MIN] collapses to LLPO; indeed without choice

the implications in

WKL

LLPO

LLPOR

MIN

are fully indicated.

Some of the principles which occur in constructive mathematics and there

interrelations (over CZF) are given in Figure 1.

WWKL, weak weak König’s lemma, is the restriction of WKL to trees

with positive measure; MP∨ is LLPO restricted to binary sequences which

87



...

AC RDC DC CC ACω,2 Π0
1-ACω,2

WCC KS PFP WPFP

WKL

LEM LPO WLPO WWKL LLPO

BD-N MP MP∨

WMP

FT FTΠ0
1 UCT FTc FT∆

Figure 1: Some classically valid principles of constructive reverse mathe-
matics.

also satisfy the hypothesis of MP; and WMP, weak Markov’s principle, is

a strange weakening of MP which holds in the three main schools of con-

structive mathematics, but is independent fo IZF [75]. If we add countable

or dependent choice to our base system, then more arrows can be added

to Figure 1. For example, under countable choice WKL and LLPO are

equivalent and imply UCT.

One of the drawbacks of constructive reverse mathematics, which contrasts

greatly with classical reverse mathematics, is the number of principles that

occur and the complex relationships between them. The above diagram,

which we emphasise deals only with principles that arise in mathematical

practice, exemplifies this. We give a further example. In [34] it was shown

that the statement “every continuous homomorphism θ from R onto a com-

pact abelian group such that {θ(t) : t > 0} is open has a minimal period”32

implies that LLPO and WLPO are equivalent, and Hannes Diener asked

32It is shown in [34] that every such homomorphism has a period; that is, there exists
τ > 0 such that θ(τ) = θ(0).
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whether there is a natural principle representing this gap. We show that

WLPO is equivalent to the conjunction of LLPO and a weakening of the

principle of finite possibility:

(WPFP) For each binary sequence (an)n>1, there exists a binary

sequence (bn)n>1 such that an = 0 for all n if and only if it is

not the case that bn = 0 for all n.

Indeed, this equivalence holds with LLPO replaced by MP∨; we can isolate

a tighter bounding principle on the gap between LLPO and WLPO, but

it would be somewhat contrived.

Proposition 25 WLPO is equivalent to MP∨ + WPFP.

On first sight it seems that LEM can be decomposed into separate pieces

KS and LPO, but Proposition 25 shows that both KS and LPO imply

PFP and hence they are not quite separate.

In order to prove Proposition 25 we need the next lemma, which says that if

LLPO holds, then given any two binary sequences we can decide in which

the first nonzero term does not appear. To make this precise we introduce

a function F : 2N → N ∪ {∞} defined by

F (α) = inf {n ∈ N : an = 1} .

Note that F is not a constructively well defined function. For a given se-

quence α we may not be able to calculate F (α), but for each natural number

n we can decide whether F (α) is less than, equal to, or greater than n. In

particular, statements like F (α) 6 F (β) have a clear interpretation: namely,

I F (α) 6 F (β) is read as ‘if an is the first nonzero term of α, then bk = 0

for all k < n’;

I F (α) < F (β) means that ‘if an is the first nonzero term of α, then

bk = 0 for all k 6 n’;
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I F (α) 6= F (β) is interpreted as ‘for all x ∈ N∪ {∞}, either ¬F (α) = x

or ¬F (β) = x.

If F (α) 6 F (β) and F (α) 6= F (β), then F (α) < F (β).

Lemma 26 LLPO is equivalent to the statement

(*) For all binary sequences α = (an)n>1 and β = (bn)n>1 either

F (α) > F (β) or F (β) 6 F (α).

Further, if LLPO holds and it is impossible that an = 0 for all n, then

F (α) < F (β) or F (α) = F (β) or F (α) > F (β), and MP∨ is equivalent to

the restriction of (∗) to sequences such that it is impossible that an = 0 for

all n.

Proof. We define a binary sequence (cn)n>1 with at most one nonzero term

by

cn =

{
an/2 −max {ck : k 6 n} n even

b(n+1)/2 −max {ck : k 6 n} n odd.

By LLPO, either c2n = 0 for all n or c2n+1 = 0 for all n. In the first case

suppose that n = F (α) > F (β). Then bk = 0 for all k 6 n and ak = 0 for

all k < n, so

c2n = an −max {ck : k 6 n} = 1

—a contradiction. It follows that F (α) 6 F (β). Similarly, in the second

case F (α) > F (β).

Now suppose that it is impossible for an = 0 for all n; then ¬F (α) = ∞.

Define (dn)n>1 by

dn =

{
bn/2 −max {ck : k 6 n} n even

a(n+1)/2 −max {ck : k 6 n} n odd.

Applying LLPO to both γ = (cn)n>1 and δ = (dn)n>1 we have four possible

outcomes:

1. c2n = 0 and d2n = 0 for all n;
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2. c2n+1 = 0 and d2n = 0 for all n;

3. c2n = 0 and d2n+1 = 0 for all n;

4. c2n+1 = 0 and d2n+1 = 0 for all n.

In the first and fourth cases we have that F (γ) 6 F (δ) 6 F (γ), so F (γ) =

F (δ). In the second case, F (α) > F (β). If F (α) = F (β) = n, then d2n = 1,

a contradiction; whence F (α) > F (β). A similar argument shows that in

the third case F (α) < F (β). The last statement follows immediately from

the first part of the proof.

We can now give the proof of Proposition 25:

Proof. Let α = (an)n>1 be a binary sequence; without loss of generality

α = (an)n>1 has at most one nonzero term. Using WPFP, construct a

sequence β = (bn)n>1 such that

∀n∈N (an = 0) ⇔ ¬∀n∈N (bn = 0) .

By LLPO and Lemma 26, either F (α) > F (β) or F (β) 6 F (α). If F (α) >

F (β) and it is not the case that an = 0 for all n, then F (β) = ∞, which

is absurd. Hence in the first case ¬¬(an = 0 for all n); that is, an = 0 for

all n. In the latter case if an = 0 for all n, then F (α) = ∞ again gives a

contradiction, so in this case we have ¬(an = 0 for all n).

Conversely, let (an)n>1 be a binary sequence. By WLPO, either an = 0 for

all n or it is impossible for an = 0 for all n. In the first case we set bn = 1

for each n and in the second we set bn = 0 for all n. Then (bn)n>1 satisfies

WPFP for (an)n>1. If (an)n>1 has at most one nonzero term, then applying

WLPO to the sequence (a2n)n>1 allows us to decide whether a2n = 0 for

all n or a2n+1 = 0 for all n.

Rathjen and Chen’s extension of Lifschitz realizability to IZF (see [39]) gives

a model of IZF in which LLPO holds and WLPO is false, and hence a

model in which WPFP fails.
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1.5.3 A useful model

We will explore a little, from the vantage of ZFC, the constructive land-

scape of the sheaf Sh(O([0, 1]) over [0, 1] with the standard topology. Recall

(Proposition 19) that the Dedekind reals are represented by the continuous

real valued functions on [0, 1], and the Cauchy reals are represented by the

constant functions. Therefore the Cauchy and Dedekind reals are not iso-

morphic, and hence ACω,2 fails. However, by Theorem 18 LPO holds in

Sh(O([0, 1]), so Π0
1-ACω,2 is validated. We show that even WCC fails in

Sh(O([0, 1]). We first observe that

Sh(O([0, 1])) 6� ∀x∈RD(x < 0 ∨ x = 0 ∨ x > 0),

since for example 1/2 does not force that t 7→ t − 1/2 satisfies the law

of trichotomy. Indeed, by varying our internal Dedekind reals (continuous

functions from [0, 1] to R), we see that no x ∈ [0, 1] forces the law of tri-

chotomy, and so it is even provably false in Sh(O([0, 1]). If we can show that

WCC together with LPO implies the law of trichotomy, then we must have

that Sh(O([0, 1]) 6� WCC. Fix x ∈ RD. By WCC there exists a binary

sequence α ∈ 2N such that

α(n) = 0 ⇒ |x| < 1

n
;

α(n) = 1 ⇒ |x| > 1

n+ 1
.

Applying LPO to α, either α(n) = 0 for all n and x = 0, or there exists

n such that α(n) = 1. In this latter case a 6= 0, and hence either x > 0 or

x < 0.

Other intuitionistic non-implications we get from Sh(O([0, 1]) are: LPO

does not imply the intermediate value theorem, since the former is validated

and the latter fails (see [107]); LLPO and even LPO does not imply that

the Cauchy and Dedekind reals are isomorphic.33 We can also conclude that

33I was asked by Hajime Ishihara whether LLPO implied the intermediate value theo-
rem in the absence of choice. The possibility that LLPO implied RD ∼= RC was raised
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for a Dedekind real X and a rational q, the statements X > q and X > q

are not Π0
1 for otherwise Π0

1-ACω,2 would imply the equivalence of LPO

and the law of trichotomy.

Since the space of continuous real valued functions on [0, 1] with the supre-

mum norm is not complete, not every Cauchy sequence of Dedekind reals in

Sh(O([0, 1]) converges to a Dedekind real.

We finish with a sequence (xn)n∈N of Dedekind reals such that34

Sh(O([0, 1]) 6� ∀x∈R∃n∈Nx 6= xn.

Let (qn, rn)n∈N be an enumeration of Q2, and let xn be the linear function

joining (0, qn) and (1, rn)—

xn : t 7→ (r − q)t+ q

—and consider x ∈ R. Let x be an internal Dedekind real. If n ∈ N such

that qn < x(0) and rn > x(1), then by the (approximate) intermediate value

theorem ‖x− xn‖∞ = 0, so Sh(O([0, 1]) 6� x 6= xn.

at a talk by Michael Rathjen on Lifschitz realizability [39], a model in which weak choice
principles fail, but these two definitions of the reals coincide.

34This example came out of conversations with Andrew Swan. However, as Peter Schus-
ter pointed out to us, it has already been presented by Bas Spitters [102].
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Chapter 2

Some preliminary results

2 Some preliminary results

This chapter presents some results that we shall need later. The results of

2.3, on the construction of demand functions, are of independent interest in

mathematical economics.

2.1 Fan Theorems and Uniform continuity

Let 2N denote the space of infinite binary sequences, Cantor’s space, and let

2∗ be the set of finite binary sequences. A subset S of 2∗ is decidable if for

each a ∈ 2∗ either a ∈ S or a /∈ S. For two elements u = (u1, . . . , um), v =

(v1, . . . , vn) ∈ 2∗ we denote by u _ v the concatenation

(u1, . . . , um, v1, . . . , vn)

of u and v. For each α ∈ 2N and each N ∈ N we denote by α(N) the

finite binary sequence consisting of the first N terms of α. A set B of finite

binary sequences is called a bar if for each α ∈ 2N there exists N ∈ N such

that α(N) ∈ B. A bar B is said to be uniform if there exists N ∈ N such

that for each α ∈ 2N there is n 6 N with α(n) ∈ B. The weakest form of

Brouwer’s fan theorem is:

FT∆: Every decidable bar is uniform.

Stronger versions of the fan theorem are obtained by allowing more complex

bars. A set S is said to be a Π0
1-set if there exists a decidable subset D of

2∗ ×N such that
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for each u ∈ 2∗ and each n ∈ N, if (u, n) ∈ D, then (u _ 0, n) ∈
D and (u _ 1, n) ∈ D,

and S = {u ∈ 2∗ : ∀n∈N(u, n) ∈ D}. It is easy to see that the fan theorem

for bars which are also Π0
1-sets

FTΠ0
1
: Every Π0

1-bar is uniform.

implies FT∆. The converse (and non-implications between other variants

of Brouwer’s fan theorem) have recently been shown not to hold in IZF

[47]. Brouwer’s fan theorem is not intuitionistically valid (that is, provable

in CZF), but is accepted by some schools of constructive mathematics (see

[23]).

Each fan theorem has an equivalent formulation where we allow an arbitrary

finitely branching tree in the place of the binary fan 2N. With this notation,

Brouwer’s full fan theorem can be stated as follows.

FT: Every bar is uniform.

The fan theorem for a finitely branching tree is reduced to that on 2N by

replacing tree width by tree depth: a tree consisting of a root with n branches

can be treated as a binary tree with depth dlog2(n)e, possibly with some

branches duplicated.

A predicate P on S ×S ×R+ is said to be a pointwise continuous predicate

on S if

(i) for each ε > 0 and each x ∈ S, there exists δ > 0 such that if y, y′ ∈
B(x, δ), then P (y, y′, ε);

(ii) if ε > 0, x′ ∈ S, and (xn)n>1 is a sequence in S converging to a point

x of S and such that P (xn, x
′, ε) for each n, then P (x, x′, ε);

(iii) for all x, x′ ∈ S and each ε > 0 either P (x, x′, ε) or ¬P (x, x′, ε/2).

If the δ in condition (i) can be chosen independently of x, then P is said to

be a uniformly continuous predicate on S.
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For example to each pointwise (resp. uniformly) continuous function f :

S → R we can associate a pointwise (resp. uniformly) continuous predicate

given by

P (x, x′, ε) ≡ |f(x)− f(x′)| 6 ε.

The proof of the following is based on that of Theorem 2 of [46].

Lemma 27 (ACω,2) Assume the fan theorem for Π0
1-bars. Then every

pointwise continuous predicate on [0, 1] is uniformly continuous.

Proof. Let P be a pointwise continuous predicate on [0, 1] and fix ε > 0.

Let X = {−1, 0, 1} and let X∗ be the set of finite sequences of elements of

X. Define f : XN → [0, 1] by

f(α) =
1

2
+
∞∑

n=1

2−(n+1)α(n);

then f is a uniformly continuous function which maps XN onto [0, 1]. Using

ACω,2, we construct a binary valued function λ on X∗ ×X∗ such that

λ(u, v) = 1 ⇒ P (f(u _ 0), f(v _ 0), ε);

λ(u, v) = 0 ⇒ ¬P (f(u _ 0), f(v _ 0), ε/2),

where 0 = (0, . . .). Let D be the set of pairs (u, n) in X∗ ×N such that

for all v, w ∈ X∗ with lengths at most n − |u|, λ(u _ v, u _

w) = 1;

clearly D is a decidable set and if (u, n) ∈ D, then (u _ a, n) ∈ D for each

a ∈ {−1, 0, 1}. Hence

B = {u ∈ X∗ : ∀n∈N(u, n) ∈ D}

is a Π0
1-set. To see that B is a bar, consider any α ∈ XN. Since P is a

pointwise continuous predicate, there exists δ > 0 such that P (y, y′, ε/2) for
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all y, y′ ∈ B(f(α), δ). If N > 0 is such that 2−N < δ, then for all u, v ∈ X∗

f(α(N) _ u _ 0), f(α(N) _ v _ 0) ∈ B(x, δ),

so

P (f(α(N) _ u _ 0), f(α(N) _ v _ 0), ε/2).

Hence λ(α(N) _ u,α(N) _ u) = 1 for all u, v ∈ X∗ and therefore α(N) ∈
B.

Using FTΠ0
1
, compute N ∈ N such that α(N) ∈ B for each α ∈ XN. Let

x, y ∈ [0, 1] be such that ρ(x, y) < 2−(N+1). Then there exist α, β ∈ XN

such that f(α) = x, f(β) = y, and α(N) = β(N). Since α(N) ∈ B,

P (f(α(N) _ u _ 0), f(α(N) _ v _ 0), ε)

for all u, v ∈ X∗. It now follows from condition (ii) of being a pointwise

continuous predicate that P (x, y, ε) holds. Hence P is uniformly continuous.

Theorem 28 (ACω,2) Assume the fan theorem for Π0
1-bars. Then every

pointwise continuous predicate on [0, 1]n is uniformly continuous.

Proof. We proceed by induction on n. The case n = 1 is just Lemma

27. Suppose that the result holds for predicates on [0, 1]n−1, and let P be a

predicate on [0, 1]n. For each x in [0, 1] let Px be the predicate on [0, 1]n−1

given by

Px(z, z′, ε)⇔ P ((z, x), (z′, x), ε).

Since P is a pointwise continuous predicate, Px is pointwise continuous for

each x ∈ [0, 1]. It follows from our induction hypothesis that each Px is

uniformly continuous. Define a predicate P ′ on [0, 1] by

P ′(s, t, ε) ⇔ ∀y∈[0,1]n−1Px((s, y), (t, y), ε).

It is easily shown that P ′ is also a pointwise continuous predicate and that

P ′(s, t, δ) holds for all s, t ∈ [0, 1] if and only if P (x, x′, δ) holds for all
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x, x′ ∈ [0, 1]n. By Lemma 27, P ′ is uniformly continuous; whence P is

uniformly continuous.

A predicate P on S ×R+ ×R+ is said to be a weakly continuous predicate

on S if

(i) for each x ∈ S and each ε > 0, there exists δ > 0 such that P (x, ε, δ);

(ii) if P (x, ε, δ) and |x− y| < δ′ < δ, then P (y, ε, δ − δ′).

If in addition, for each ε > 0, there exists δ > 0 such that P (x, ε, δ) for all

x ∈ S, then P is a uniformly weakly continuous predicate on S.

Theorem 29 The statement

Every weakly continuous predicate on [0, 1]n is uniformly weakly

continuous.

is equivalent to the full fan theorem.

Proof. Let P be a weakly continuous predicate on [0, 1] and fix ε > 0.

Define a uniformly continuous function f from 2N onto [0, 1] by

f(α) =

∞∑

n=1

(
2

3

)n−1((−1)an + 1

2

)
,

where α = (an)n>1, and let

B =
{
a ∈ 2∗ : ∀x∈(f(a_0),f(a_i1))P

(
x, ε, (2/3)|a|

)}
,

where _ denotes concatenation, 0 = (0, . . .), and i1 = (1, 0, . . .). We show

that B is a bar. Let α ∈ 2N, and, using (i), pick δ > 0 such that P (f(α), ε, δ).

Pick n such that (2/3)n−1 < 2δ. Then

(f(α(n) _ 0), f(α(n) _ i1))(2/3)n ⊂ (f(α)− δ, f(α+ δ)).

It follows from condition (ii) that α(n) ∈ B; whence B is a bar.
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By Brouwer’s fan theorem, there exists N > 0 such that for all α ∈ 2N

there is n < N with α(n) ∈ B. Then, by condition (ii), P
(
x, ε, (2/3)N

)
for

all x ∈ [0, 1]. This extends to weakly continuous predicates on [0, 1]n by an

induction argument similar to that in the proof of Theorem 28.

Conversely, let B be a bar that is closed under extension and define a pred-

icate P by

P (x, ε, δ) ≡ ∀x
(
f(x) = α→ ∃N>0(2−N > δ ∧ α(N) ∈ B)

)
.

It is easy to show that P is a pointwise continuous predicate. Hence P is

uniformly continuous; in particular, there exists δ > 0 such that P (x, 1, δ)

holds for all x ∈ [0, 1]. Pick N > 0 such that 2−N < δ. Then for all α ∈ 2N,

α(N) ∈ B.

We present here a generalisation, along similar lines to the above, of a recent

result of Hannes Diener [45].35

A predicate P on S2 × R+ is said to be a strongly pointwise continuous

predicate on S if

(i) for each ε > 0 and each x ∈ S, there exists δ > 0 such that if y, y′ ∈
B(x, δ), then P (y, y′, ε);

(ii)′ if (xn)n∈N and (x′n)n∈N are sequences in S converging to x and x′,

respectively, such that ¬P (x, x′, ε), then there exists n ∈ N such that

¬P (xn, x
′
n, ε);

(iii)′ for all x, x′ ∈ S, each ε > 0, and any r ∈ (0, 1), either P (x, x′, ε) or

¬P (x, x′, rε).

As before, if the δ in condition (i) can be chosen independent of x, then P

is said to be a uniformly continuous predicate on S. Note that the predi-

cates derived from a (uniformly) continuous function is in fact a (uniformly)

strongly continuous predicate.

35There is no claim that this is an exciting generalisation, but our proof is both consid-
erably simpler and more natural than the intricate proof in [45].
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Proposition 30 (CC) WKL implies that every strongly pointwise contin-

uous predicate on [0, 1] is uniform.

For each n > 0 let Sn = {0, 2−n, . . . , 1−2−n} and define g : 2<ω∪2ω → [0, 1]

by

g(a) =

|a|∑

i=0

a(i)2−(i+1).

We write D for the set ∪{Sn : n ∈ N} of dyadic rationals in [0, 1); g is a

bijection between 2∗ and D. For a pointwise continuous predicate P on a

subset S of R we define

ϕP (ε, δ) ≡ ∀x,y∈S(|x− y| < δ → P (x, y, ε)),

and we use ϕ¬P (ε, δ) to denote the existence statement classically equivalent

to ¬ϕP (ε, δ). To ease notation, we write ϕP |S for ϕP |S×S×R+
.

Lemma 31 (CC) WKL ` Let P be pointwise continuous predicate on

[a, b] and let δ, ε be positive real numbers. Then there exist x, y ∈ [a, b]

such that

ϕ¬P (ε, δ) −→ |x− y| < δ ∧ ¬P (x, y, ε).

Proof. We may assume that a = 0 and b = 1. Using countable choice,

construct a function γ : (Q ∩ [a, b])2 ×N such that

γ(x, y, n) = 0 ⇒ |x− y| > δ − 2−n ∨ P (x, y, ε+ 2−n);

γ(x, y, n) = 1 ⇒ |x− y| < δ ∧ ¬P (x, y, ε).

Using γ, we construct an increasing binary sequence (λn)n∈N such that

λn = 0 ⇒ ∀x,y∈Snγ(x, y, n) = 0;

λn = 1 ⇒ ∃x,y∈Sn∃m6nγ(x, y,m) = 1.
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Finally we construct a decidable binary tree T as follows. If λn = 0 we let

Tn = 2n, and if λn−1 = 1 we set

Tn = {σ _ 0 : σ ∈ Tn−1 and |σ| = ht(T )}.

If λn = 1 − λn−1, we let x, y be the minimal elements of Sn such that

γ(x, y, n) = 1 and we set Tn = 2n∪{g−1(x)⊕g−1(y)} ↓—the branch g−1(x)⊕
g−1(y) is the unique branch of Tn with length ht(Tn), and it codes the

witnesses x, y that δ is not a modulus of uniform continuity for ε. Then

T =
⋃

n∈N
Tn

is an infinite decidable tree.

Using WKL we can construct an infinite path α through T . Set x =

g(π0α), y = g(π1α). Suppose there exist u, v ∈ [0, 1] such that |u−v| < δ and

¬ϕP (ε, δ). Since f is pointwise continuous, there must exist such u, v ∈ D.

Hence γ(u, v, n) = 1 for some n ∈ N such that u, v ∈ Sn, so λn = 1. It now

follows from the construction of T that x, y have the desired property.

We recall a lemma of Hajime Ishihara [66]: WKL is equivalent to the longest

path principle

LPP: Let T be a decidable tree. Then there exists α ∈ 2ω such

that for all n, if α(n) /∈ T , then T ⊂ 2<n.

Here is the proof of Proposition 30:

Proof. Let P be a strongly pointwise continuous predicate on [0, 1] and fix

ε > 0. We define a function J taking finite binary sequences to subintervals

of [0, 1] inductively as follows: we set J<> = [0, 1] and if Ju = [p, q], then we

set Ju_0 = [p, (p+ q)/2] and Ju_1 = [(p+ q)/2, q]. By repeated application

of the lemma, we can construct sequences (xu)u∈2∗ , (yu)u∈2∗ such that for

each u, xu, yu ∈ Ju and

ϕ¬P |Ju
(ε, 2−|u|) −→ |xu − yu| < 2−|u| ∧ ¬P (xu, yu, ε).
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Using countable choice again, we construct a decidable tree T such that

u ∈ T ⇒ P (xu, yu, ε− 2−|u|);

u /∈ T ⇒ P (xu, yu, ε).

Let α be a longest path of T , and let ξ be the unique element of

⋂

n∈N
Jα(n).

Let δ > 0 be such that P (x, y, ε/2) for all x, y ∈ (ξ − δ, ξ + δ), and let n

be such that 2−n+1 < max{δ, ε}. If u = α(n) ∈ T , then |xu − yu| < δ

and |f(xu) − f(yu)| > ε − 2−n > ε/2 contradicting our choice of δ. Hence

α(n) /∈ T , so T ⊂ 2n. It follows that for all x, y ∈ [0, 1], if |x − y| < 2−n,

then P (x, y, 2ε).

2.2 Boundary crossings

Let C be a located convex subset of a Banach space X. Then for each ξ ∈ C◦

and each z ∈ −C there exists a unique point h(ξ, z) in the intersection of

the interval

[ξ, z] = {tξ + (1− t)z : t ∈ [0, 1]}

and the boundary ∂C of C; moreover, the mapping (ξ, z) 7→ h(ξ, z)—the

boundary crossing map of C—is pointwise continuous on C◦×−C [32, Propo-

sition 5.1.5]. The next lemma shows that for a fixed ξ ∈ C◦, this mapping

is uniformly continuous.

Lemma 32 Let X be a bounded convex subset of RN and let ξ ∈ X◦. Then

the function h : RN → X which fixes each point of X and sends y ∈ ∼X to

the unique intersection point of [ξ, y] and ∂X is uniformly continuous.

Proof. Without loss of generality we suppose ξ = 0. Let N > 0 be such

that X ⊂ B(0, N) and let r > 0 be such that B(0, r) ⊂ X. Since the
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function mapping a point x 6= 0 to the unique intersection point of

Rx = {rx : r ∈ R}

and ∂B(0, N) is uniformly continuous on −B(0, r/2), it suffices to show that

h is uniformly continuous on ∂B(0, N).

Given δ > 0, set θ = cos−1(1 − (δ2/2N2)), β = cos−1(δ/2N) and α =

sin−1(r/N). Define

ϕ(δ) =
δ|sin(β)|
|sin(α+ θ)|

.

The function ϕ is constructed as a ‘worst case scenario’ given thatX contains

B(0, r) and is strictly contained in B(0, N); see the following diagram.

b b

b

b

0

∂B(0, r)

∂B(0, N)

p

α

ϕ(δ)

δ

Fix a, b ∈ ∂B(0, N) with 0 < ‖a − b‖ < δ, and let x ∈ [0, a] ∩ X and

y ∈ [0, b]∩X such that ‖x−y‖ > ϕ(δ); without loss of generality, ‖x‖ < ‖y‖.
It suffices to show that it cannot occur that both x, y ∈ ∂X, for then the

assumption that ‖h(x) − h(y)‖ > ϕ(δ) leads to a contradiction. By the

construction of ϕ, the unique line passing through x and y must intersect

B(0, r). It follows that

x ∈ (conhull (B(0, r) ∪ {y}))◦ ⊂ X◦,

where conhull(S) is the convex hull of S. Hence if ‖a− b‖ < δ, then ‖h(a)−
h(b)‖ 6 ϕ(δ).
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It only remains to show that for each ε > 0 we can find a δ > 0 such that

ϕ(δ) < ε. From elementary calculations we have that

ϕ(δ) =
δ
√

4N2 − δ2

2r(1− (δ2/2N2)) + 2δ
√

(1− (r2/N2))(1− (δ2/2N2))

≤ δ
√

4N2 − δ2

2r(1− (r2/2N2)) + 2δ(1− (r2/N2))
−→ 0

as δ → 0.

2.3 Demand functions

This section gives conditions under which the demand function of a strictly

convex preference relation can be constructed, and should be seen as a con-

tinuation of the work of Douglas Bridges [22, 24, 25, 28] to examine aspects

of mathematical economics in a rigorously constructive manner. In particu-

lar, Bridges considered the problem that we consider here in [25]. Corollary

43 is a generalisation of the main result of [25]; our proof, although less

elegant, is also somewhat simpler.

Following Bridges we take, as our starting point, the standard configuration

in microeconomics consisting of a consumer whose consumption set X is

a compact, convex subset of Rn ordered by a strictly convex preference

relation �. For a given price vector p ∈ Rn and a given initial endowment

w, the consumers budget set

β(p, w) = {x ∈ X : p · x 6 w}

is the collection of all consumption bundles available to the consumer.

As detailed in [25], it is easy to show that classically, if β(p, w) 6= ∅, then

there exists a unique �-maximal point ξp,w ∈ β(p, w): ξp,w < x for all

x ∈ β(p, w). Let T be the set of pairs consisting of a price vector p and

an initial endowment w for which β(p, w) is inhabited. If the preference

relation � is continuous, then a sequential compactness argument gives the

104



sequential, and hence pointwise, continuity of the demand function F on T

which sends (p, w) to the maximal element ξp,w of β(p, w) (see, for example,

chapter 2, section D of [104]).

Bridges asked under what conditions can we

1. Compute the demand function F ;

2. Compute a modulus of uniform continuity for F : given ε > 0, can we

produce δ > 0 such that if (p, w), (p′, w′) ∈ T with ‖(p, w)−(p′, w′)‖ <
δ, then ‖F (p, w)− F (p′, w′)‖ < ε.

In [25] Bridges introduced the notion of a uniformly rotund preference re-

lation and showed that if � is uniformly rotund and you restrict F to a

compact subset of T on which the consumer cannot be satiated, then F is

uniformly continuous. Theorem 43 shows that we do not need the hypothe-

sis that our consumer is nonsatiated. Theorems 33 and 41 encapsulate what

we can say about strictly convex preference relations, which is more than

one might think.

We direct the reader to [22, 24] for an introduction to Bridges’ programme

to constructivise mathematical economics.

A preference relation � on a set X is a binary relation which is

I asymmetric: if x � y, then ¬(y � x);

I negatively transitive: if x � y, then for all z either x � z or z � y.

If x � y, we say that x is preferable to y. We write x < y, x is preferable or

indifferent to y, for ¬(y � x). We note that x � x is contradictory, that �
and < are transitive, and that if either x < y � z or x � y < z, then x � z.

Let � be a preference relation on a subset X of RN .

I � is a continuous preference relation if the graph

{(x, x′) : x � x′}

of � is open.

105



I � is strictly convex if X is convex and tx+ (1− t)x′ � x or tx+ (1−
t)x′ � x′ whenever x 6= x′ ∈ X and t ∈ (0, 1).

I X is uniformly rotund if for each ε > 0 there exists δ > 0 such that

for all x, x′ ∈ X, if ‖x− x′‖ > ε, then

{
1

2

(
x+ x′

)
+ z : z ∈ B(0, δ)

}
⊂ X,

where B(x, r) is the open ball of radius r centred on x. The preference

relation � is uniformly rotund if X is uniformly rotund and for each

ε > 0 there exists δ > 0 such that if ‖x− x′‖ > ε (x, x′ ∈ X), then for

each z ∈ B(0, δ) either 1
2 (x+ x′) + z � x or 1

2 (x+ x′) + z � x′.

A uniformly rotund preference relation is strictly convex.

2.3.1 Constructing maxima

In this section we focus on the construction of maximally preferred elements

of a consumption set X. Our main result is

Theorem 33 (ACω,2) Let � be a continuous, strictly convex preference

relation on an inhabited, compact subset X of Euclidean space. Then there

exists a unique ξ ∈ X such that ξ < x for all x ∈ X.

Our proof proceeds by induction. The following lemma provides the key to

proving the one dimensional case.

Lemma 34 Let � be a strictly convex preference relation on [0, 1]. Then

either 1/2 < x for all x ∈ [0, 1/4) or 1/2 < x for all x ∈ (3/4, 1].

Proof. Applying the strict convexity of� to 1/4 ∈ (0, 3/4), 1/2 ∈ (1/4, 3/4),

3/4 ∈ (1/2, 1) yields

1/4 � 0 or 1/4 � 3/4;

1/2 � 1/4 or 1/2 � 3/4;

3/4 � 1/4 or 3/4 � 1.
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It follows that either 1/2 � 1/4 � 0 or 1/2 � 3/4 � 1. In the first case

suppose that x < 1/2 for some x ∈ [0, 1/4). Then, by the strict convexity

and transitivity of �, 1/4 � 1/2; this contradiction ensures that 1/2 < x for

all x ∈ [0, 1/4). Similarly, in the second case 1/2 < x for all x ∈ (3/4, 1].

Lemma 35 (ACω,2) If � is a strictly convex, continuous preference rela-

tion on [0, 1], then there exists ξ ∈ [0, 1] such that ξ < x for all x ∈ [0, 1].

Proof. We inductively construct intervals [ξ
n
, ξn] such that, for each n,

1. [ξ
n
, ξn] ⊂ [ξ

n−1
, ξn−1];

2. ξn − ξn = (4/5)n;

3. for each x ∈ [0, 1] \ [ξ
n
, ξn],there exists y ∈ [ξ

n
, ξn] such that y < x.

To begin the construction set ξ
0

= 0 and ξ0 = 1. At stage n, rescaling

for n > 1, we apply Lemma 34; if the first case obtains, then we set ξ
n

=

(3ξ
n−1

+ ξn−1)/4 and ξn = ξn−1. In the second case we set ξ
n

= ξ
n−1

and ξ0 = (ξ
n−1

+ 3ξn−1)/4. By the transitivity of <, we need only check

condition 3. for [ξ
n−1

, ξn−1]\ [ξ
n
, ξn], and by Lemma 34 y = (ξ

n−1
+ξn−1)/2

suffices for each such point.

Let ξ be the unique intersection of the [ξ
n
, ξn]. Since < is continuous, the

maximality of ξ follows from 3.

Lemma 36 (ACω,2) If � is a strictly convex, continuous preference rela-

tion on [a, b], where a 6 b, then there exists ξ ∈ [a, b] such that ξ < x for all

x ∈ [a, b].

Proof. Construct an increasing binary sequence (λn)n>1 such that

λn = 0 ⇒ b− a < 1/n;

λn = 1 ⇒ b− a > 1/(n+ 1).

Without loss of generality, we may assume that λ1 = 0. If λn = 0, set

xn = a and if λn = 1− λn−1, then we apply Lemma 35, after some scaling,
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to construct a �-maximal element x in [a, b], and set xk = x for all k > n.

Then for m > n, |xn−xm| < 2/(n−1), so (xn)n>1 converges to some element

ξ ∈ [a, b]. If there exists x 6= ξ such that x � ξ, then b− a > 0 and we get a

contradiction to Lemma 35. The result now follows from continuity.

We use πi to denote the i-th projection function, and we write [x, y] for

{tx+ (1− t)y : t ∈ [0, 1]}.

Here is the proof of Theorem 33:

Proof. We proceed by induction on the dimension n of the space containing

X. Lemma 36 is just the case n = 1. Now suppose we have proved the result

for n and consider a strictly convex preference relation � on a compact,

convex subset X of Rn. Define a preference relation �′ on π1(X) = [a, b] by

s �i t ⇔ ∃x∈X∀y∈X (π1(x) = s and if π1(y) = t, then x � y) .

Then �′ is strictly convex and sequentially continuous: let s1, s2, t ∈ [a, b]

with s1 < t < s2. By the induction hypothesis there exist ξ1, ξ2 such that

π1(ξi) = si and ξi < x for all x ∈ X with π1(x) = si (i = 1, 2). Let z be the

unique element of [ξ1, ξ2] such that π1(z) = t. Then, by the strict convexity

of �, either z � ξ1 or z � ξ2. In the first case t �′ s1 and in the second

t �′ s2. Hence � is strictly convex. That �′ is continuous is straightforward.

We can now apply Lemma 36 to construct a maximal element ξ1 of (π1(X),�′

), and then the induction hypothesis to construct a maximal element of

S = {x ∈ X : π1(x) = ξ1} with � |S . Clearly ξ = ξ1 × ξ2 is a �-maximal

element of X. The uniqueness of maximal elements follows directly from

the strict convexity of �.

We shall have need for the following simple corollary, which is of independent

interest.

Corollary 37 Under the conditions of Theorem 33, if x ∈ X and x 6= ξ,

then ξ � x.
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Proof. Let y = (x + ξ)/2. Then either y � x or y � ξ. Since ξ < y the

former must attain, so ξ < y � x.

If we are not interested in unique maxima, then we might suppose that �
only satisfies the weaker condition of being convex : for all x, y ∈ X and

each t ∈ [0, 1], either (x+ y)/2 < x or (x+ y)/2 < y. We give a Brouwerian

counterexample to show that this condition is not strong enough to allow the

construction of a maximal point. Let x ∈ (−1/4, 1/4) and let fx : [0, 1]→ R

be the function given by

fx(t) =





sign(x)(t−max{x, 0}) t ∈ [0,max{x, 0}]
0 t ∈ [max{x, 0}, 1−max{x, 0}]
−sign(x)(t−max{x, 0}) t ∈ [1−max{x, 0}, 1],

where36

sign(x) =





−1 x < 0

0 x = 0

1 x > 0.

Define a preference relation � on [0, 1] by

t � s⇔ fx(t) > fx(s).

It is easy to see that � is continuous and convex. Further, if x > 0, then 0

is the unique maximal element, and if x < 0, then 1 is the unique maximal

element. Now suppose that we can construct ξ ∈ [0, 1] such that ξ < t for

all t ∈ [0, 1]; either ξ > 0 or ξ < 1. In the first case we have ¬(x > 0) and

in the second ¬(x < 0), so the statement

‘Every continuous, convex preference relation on [0, 1] has a max-

imal element’

implies ∀x∈R(x 6 0 ∨ x > 0).

36This is just convenient notation, formally sign is not a constructively well defined
function, but the function f does exist constructively. We can define x 7→ fx for x 6= 0
and extend to all x by continuity.
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2.3.2 Continuous demand functions

We now consider a consumer whose consumption set X is a closed convex

subset of Rn ordered by a strictly convex preference relation �, and who has

an initial endowment w ∈ R. For a given price vector p ∈ R, a consumers

budget set

β(p, w) = {x ∈ X : p.x 6 w}

is the collection of commodity bundles the consumer can afford. The col-

lection of maximal elements of β(p, w) form the consumers demand set for

price p and initial endowment w.

Lemma 38 If p > 0 and there exists x ∈ X such that p·x 6 w, then β(p, w)

is compact and convex.

Proof. Convexity is clear. See [25] for a proof that β(p, w) is compact.

We use ∂S to denote the boundary of a subset S of some metric space.

Lemma 39 The boundary of β(p, w) is compact.

Proof. If X is colocated, then ρ(x, ∂X) = max{ρ(x,X), ρ(x,−X)} and

hence the boundary of X is located. Therefore it suffices to show that

−β(p, w) is located. This is similar to the proof of Lemma 38.

It now follows from Theorem 33 that the function F , the consumers de-

mand function, that maps (p, w), where p is a price vector and w an initial

endowment, to the unique maximal element of β(p, w), is well defined. By

logical considerations, see section 1.4, we have that any function which can

be proven to exist within Bishop’s constructive mathematics alone is clas-

sically continuous, so the consumers demand function is continuous in the

classical setting.

We seek conditions under which F is constructively continuous. We study

the continuity of F by looking at the map Γ, on the set T of all inhabited
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β(p, w), which maps β(p, w) to F (p, w). We give T the Hausdorff metric:

for located subsets A,B of a metric space Y

ρH(A,B) = max {sup{ρ(a,B) : a ∈ A}, sup{ρ(b, A) : b ∈ B}} .

Our next lemma shows how studying Γ allows us to show the continuity of

F .

Lemma 40 If Γ is continuous, then F is continuous. If Γ is uniformly

continuous, then for each p ∈ Rn, w 7→ F (p, w) is uniformly continuous,

and for each w ∈ R, p 7→ F (p, w) is Bishop continuous.

Our next result says that adopting Brouwer’s fan theorem is sufficient to

prove the classical result that F is continuous when � is continuous and

strictly convex. We observe that if β(p, w) is inhabited and every component

of p is positive, then

β(p, w) =

{
x ∈ Rn :

n∑

i=1

pixi 6 w

}

is a diamond, and if the diameter

sup{ρ(x, y) : x, y ∈ β(p, w)}

of β(p, w) > 0, then β(p, w) has inhabited interior.

Theorem 41 Suppose Brouwer’s full fan theorem holds. If � is continuous

and strictly convex, then F is Bishop continuous.

Proof. Since FT implies that every continuous function on a compact

space is uniformly continuous, it suffices, by Lemma 40, to show that Γ is

continuous. Fix ε > 0, and (p, w) ∈ Rn+1 such that β(p, w) is inhabited; we

write S = β(p, w) and ξ = F (p, w).

Either ρ(ξ, ∂S) > 0 or ρ(ξ, ∂S) < ε/2. In the first case ξ is maximal on the

entire set of consumer bundles, so it suffices to set δ = ε. In the second
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case, let ϕ be the natural bijection of [0, 1]n with T ≡ ∂β(p, w)\Bρ1(x, ε/2);

without loss of generality, ϕ is nonexpansive. We define a predicate on [0, 1]

by

P (x, α, δ) ⇔ ∀y∈B(ϕ(x),δ)ξ � y.

Then P is a weakly continuous predicate: condition (i) follows from Corol-

lary 37 and the lower pointwise continuity of �; condition (ii) follows from

elementary geometry, given that ϕ is nonexpansive. By Theorem 29, P is

weakly uniformly continuous and hence there exists δ > 0 such that every

y ∈ B(x, δ) is strictly less preferable than ξ for all x ∈ T . If ρ(x, S) <

min{δ, ε}/2, then ρ(x, T ) < δ, x ∈ S, or x ∈ B(ξ, ε). In the first two cases

ξ � x; it follows that F (p′, w′) ∈ B(ξ, ε) whenever ρH(β(p, w), β(p′, w′) <

min{δ, ε}/2.

It may seem a little odd that we choose to work in Bishop’s constructive

mathematics because we are interested in producing results with computa-

tional meaning, but that we then add an extra principle FT to our frame-

work. In particular, the inconsistency of Brouwer’s fan theorem with recur-

sive analysis [23] may cause some consternation. The constructive nature

of the fan theorem can be intuitively justified as follows: in order to assert

that B is a bar we must have a proof that B is a bar, and a proof is a finite

object; therefore an examination of the finite information used in the proof

that B is a bar should reveal the uniform bound that the fan theorem gives

us. Although this argument does not hold up under scrutiny, with the right

formulation, versions of the fan theorem can be proved in some systems of

computation [37, 106].

2.3.3 Uniformly rotund preference relations

In order to prove Theorem 41 we effectively strengthened our theory, and

therefore weakened our notion of computable. The other natural approach

toward proving the existence of a Bishop continuous demand function is to

strengthen the conditions on �. We follow the lead of Bridges in [25] and

focus on uniformly rotund preference relations.
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Hereafter, we extend the domain of Γ to all inhabited compact convex sub-

sets of X. Theorem 33 still ensures that Γ is well defined.

Theorem 42 If � is a uniformly rotund preference relation, then Γ is uni-

formly continuous.

Proof. Let S, S′ be compact, convex subsets of X and let ξ, ξ′ be their �-

maximal points. Fix ε > 0 and let δ′ > 0 be such that if ‖x−x′‖ > ε (x, x′ ∈
X), then for each z ∈ B(0, δ′) either 1

2 (x+ x′)+z � x or 1
2 (x+ x′)+z � x′,

and set δ = min{ε, δ′}/2.

If ρH(S, S′) < δ, then ‖ξ− ξ′‖ 6 ε: Let S, S′ be such that ρH(S, S′) < δ and

suppose that ‖ξ − ξ′‖ > ε. Since S, S′ are convex

S ∩B((ξ + ξ′)/2, δ) and S′ ∩B((ξ + ξ′)/2, δ)

are both inhabited; let z be an element of the former set and let z′ be an

element of the latter. By the maximality of ξ ∈ S and our choice of δ, z � ξ′;
similarly, z′ � ξ. Therefore

ξ < z � ξ′ < z′ � ξ,

which is absurd. Hence ‖ξ − ξ′‖ 6 ε.

As a corollary we have the following improvement on the main result of [25].

Corollary 43 Let � be a uniformly rotund preference relation on a com-

pact, uniformly rotund subset X of Rn, and let S be a subset of Rn × R

such that β(p, w) is inhabited for each (p, w) ∈ S. Then for each p ∈ Rn,

the function w 7→ F (p, w) is uniformly continuous, and for each w ∈ R,

the function p 7→ F (p, w) is Bishop continuous. In particular, F is Bishop

Continuous.

Proof. The result follows directly from Lemma 40 and Theorem 42.

Not surprisingly, a less uniform version of rotundness is enough to give us

the pointwise continuity of Γ. A subset X of Rn is rotund if for each x ∈ X
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and each ε > 0 there exists δ > 0 such that for all x′ ∈ X, if ‖x − x′‖ > ε,

then {
1

2

(
x+ x′

)
+ z : z ∈ B(0, δ)

}
⊂ X.

A preference relation � is rotund if X is rotund and for each x ∈ X, ε > 0

there exists δ > 0 such that if ‖x−x′‖ > ε (x′ ∈ X), then for each z ∈ B(0, δ)

either 1
2 (x+ x′) + z � x or 1

2 (x+ x′) + z � x′.

Theorem 44 If � is a rotund preference relation, then Γ is continuous.

Proof. The proof is, of course very similar to the proof of Theorem 42.

Let S be a compact, convex subset of X and let ξ be the unique maximal

element of S. Fix ε > 0. Pick δ > 0 such that if ‖ξ − x‖ > ε (x ∈ X), then

for each z ∈ B(0, δ) either 1
2 (ξ + x) + z � ξ or 1

2 (ξ + x) + z � x′. If S′ is

a compact, convex subset of X, with maxima ξ′, such that ρH(S, S′) < δ,

then the assumption that ‖ξ − ξ′‖ > ε leads to a contradiction as in the

proof of Theorem 42.

By the next result, Theorem 42 can be used to improve on Theorem 41.

Proposition 45 Assume Brouwer’s full fan theorem. If � is continuous

and strictly convex, then � is uniformly rotund.

Proof. Without loss of generality,

C = {(x, y) ∈ X2 : ‖x− y‖ > ε}

is compact; moreover

P ((x, y), ε, δ) ≡ ‖x− y‖ < ε ∨ ∀z∈B((x+y)/2,δ)(z � x ∨ z � y)

defines a continuous predicate on C. Hence P is uniformly continuous by

Theorem 29, but the uniformity of P says precisely that � is uniformly

rotund.

Corollary 46 Suppose Brouwer’s full fan theorem holds. If � is continuous

and strictly convex, then Γ is uniformly continuous.
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Chapter 3

Constructing fixed points

3 Constructing fixed points

In this chapter we consider the problem of constructing the fixed points of

the most prominent classical fixed point theorems.

Fixed-point theorems are a major tool in both functional analysis and math-

ematical economics and are used to prove the existence of solutions to dif-

ferential equations and the existence of Nash equilibria among other things.

Despite this, the constructive literature on fixed point theorems has been

scant37. There are (at least) two reasons for this:

(i) The standard proof of the simplest and most useful of the well known

fixed point theorems, the Banach fixed point theorem, is essentially

constructive.

(ii) The nonconstructive nature of Brouwer’s fixed point theorem, and the

subsequent rejection of this theorem by Brouwer, is well known, and a

constructive approximate version for simplices (via Sperner’s lemma)

is part of the folklore.

Only recently has a fully constructive proof of the approximate version of

Brouwer’s fixed point theorem, for simplices, been presented [110].

Let X be a metric space and let f be a function from X into X. If

ρ(x, f(x)) < ε, then x is called an ε-fixed point. A function f : X → X

37Although [26] gives a Bishop-style constructive treatment of Edelstein’s fixed point
theorem; and Kohlenbach [69, Chapter 18] examines contractive and nonexpansive fixed
point theorems for computational content using tools from proof theory.
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has approximate fixed points if for each ε > 0 there exists an ε-fixed point

of f in X. If every uniformly continuous function from X into X has ap-

proximate fixed points, then X is said to have the approximate fixed point

property.

This chapter is split into five sections. The first two look at the question

‘when can we construct fixed points which exist classically?’, the first focuses

on the intermediate value theorem in choice free constructive mathematics,

and the second looks at the various contraction mapping theorems. The

final three sections demonstrate the construction of approximate fixed points

for Brouwer’s fixed point theorem, and the two most commonly applied

extensions, those of Schauder and Kakutani.

3.1 The intermediate value theorem

In this section we study the intermediate value theorem as the simplest

interesting case of the question

Given a nonconstructive fixed point theorem, under what extra

conditions can we construct a fixed point?

In particular we study the question: when can we construct a (non-unique)

fixed point without choice axioms?

3.1.1 The intermediate value theorem in CLASS and BISH

The intermediate value theorem

IVT: Let f : [a, b] → R be a continuous function such that

f(a) 6 0 6 f(b). Then there exists an x ∈ [a, b] such that

f(x) = 0.

has a surprisingly rich history within Bishop’s constructive mathematics.

There are two standard classical proofs of this result. In the first we define

x = sup{y : f(y) 6 0} and show that this x is a root of f . Constructively,

however, this supremum may not exist; the supremum of a subset X of R
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exists constructively if and only if X is upper order located : for all α, β ∈ Q,

if α < β, then either x < β for all x ∈ X or there exists x ∈ X with α < x.

In the second proof we ‘construct’ a sequence of nested intervals [an, bn],

whose lengths tends to zero, such that f(an) 6 0 6 f(bn) for all n. This is

done using interval halving: set a1 = a and b1 = b. Suppose that we have

constructed (ak)
n−1
k=1 and (bk)

n−1
k=1 , and let m be the midpoint of [an−1, bn−1].

Either f(m) > 0 or f(m) 6 0. In the first case we set an = an−1, bn = m,

and in the second we set an = m, bn = bn−1. The desired root is then

given by the shared limit of (an)n>1 and (bn)n>1, which are nondecreasing

and nonincreasing, respectively. The problem with this argument construc-

tively is in deciding, for each n, whether the value of f at the midpoint of

[an−1, bn−1] is greater than or equal to zero, or less than or equal to zero:

the statement

∀x∈Rx > 0 ∧ x 6 0

implies LLPO (and is equivalent to LLPO under WCC). So neither of

these proofs is constructive, and in fact IVT implies LLPO, and in the

presence of Π0
1-ACω,2, IVT and LLPO are equivalent. The first construc-

tive version of IVT, the approximate intermediate value theorem, was given

by Bishop in [16] and showed, using choice, the existence of approximate so-

lutions of arbitrary precision:

aIVT: Let f : [a, b] → R be a (uniformly) continuous function

such that f(a) 6 0 6 f(b). Then for all ε > 0 there exists

x ∈ [a, b] such that |f(x)| < ε.

Bishop’s proof of aIVT essentially uses the classical interval halving argu-

ment above, stopping when the value of |f | at the midpoint of [an−1, bn−1] is

known to be less than ε. In [23, Chapter 3, Theorem 2.5], Bridges and Rich-

man gave an exact constructive version of the intermediate value theorem38

requiring only the additional hypothesis that f be locally nonzero: for each

38In the presence of countable choice, we only require f to be sequentially continuous
for both aIVT and this exact version of the intermediate value theorem (see exercise 11,
page 21 of [32]).
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x ∈ (a, b) and each ε ∈ (0,min{x− a, b− x}), there exists y ∈ (x− ε, x+ ε)

such that f(y) 6= 0. Once again the proof proceeds by an interval halving

argument, this time with the midpoint of [an−1, bn−1] perturbed slightly, if

necessary, so that the function evaluation is nonzero. The known proofs of

this exact constructive intermediate value theorem use some form of count-

able choice, and it is shown below that some form of choice is necessary.

A root x of a function f : R→ R is stable if

∀ε>0∃y,z∈(x−ε,x+ε)∩I(f(y) < 0 < f(z));

that is, a root x of f is stable if f crosses the horizontal axis arbitrarily close

to x. Both of the above classical proofs and the constructive proof of the

intermediate value theorem for locally nonzero functions, IVTloc, produce

stable roots. Indeed a function satisfying the hypothesis of the intermediate

value theorem might only have stable roots, and constructively we could

never hope to construct a root which was not stable.

3.1.2 The intermediate value theorem in CZF

So under what conditions can we construct, in CZF, roots of a continuous

function which crosses the x- axis? The answer from Bishop’s constructive

mathematics, when the function is locally nonzero, requires some form of

the axiom of choice, at least when working with the Dedekind reals.

Proposition 47 (IZF) The intermediate value theorem restricted to locally

nonzero functions on the Dedekind reals is independent of IZF.

Proof. We give a topological space (X,TX) such that the topological model

over X satisfies IZF plus ¬IVTloc. The points of X are uniformly continu-

ous, locally nonzero, real valued functions on [0, 1] such that −f(0) = f(1) =

1 for each f ∈ X. A basic open U ∈ TX is a pair (U1, U2) where U1 is a

finite subset of (0, 1) × R \ {0} and U2 is a finite subset of Q+ × Q+. A

function f ∈ X is in U if

(i) U1 ⊂ graph(f);
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(ii) for each (ε, δ) ∈ U2, there exists δ′ < δ such that δ′ is an ε-modulus of

uniform continuity for f .

Let fG be the function associated to the generic. We first show that fG

is a total function; we show that if U ` x ∈ [0, 1], then for all p, q ∈ Q,

U ` (g(x) < q) ∨ (p < g(x)). Set ε = (q − p)/2. Then the basic opens

{(y, z), (ε, 1/n)}, where n ∈ N, z is a nonzero real and U ` |x − y| < 1/n,

cover U ; whence U  (g(x) < q) ∨ (p < g(x)). Then fG is uniformly

continuous, since for all ε > 0 the opens (∅, {(ε, 1/n)}) (n ∈ N) cover X,

and fG is locally nonzero since, given any open interval I in [0, 1] and any

U ∈ T , if U does not already force fG to be nonzero on I, then we can extend

U by adding (x, r) to U1 for some x ∈ I and some sufficiently small nonzero

r. To see that X forces that there does not exist x such that f(x) = 0, we

show that U 6 fG(σ) = 0 for every name σ and every nonempty U ∈ TX .

For suppose U  σ ∈ R. Since U1, U2 are finite, we can pick a, r > 0

sufficiently small such that the opens

Uq = (U1 ∪ {(q, b)}, U2 ∪ {(a/2, r)}

are nonempty for all rational q in [0, 1] and some b > a depending on q (such

a b can be given explicitly, so this does not require choice). Then U forces

σ to be within r of some rational q ∈ [0, 1], and hence Uq is an extension of

U forcing that fG(σ) 6= 0.

Proposition 47 shows that IVT for locally nonzero functions requires some

form of choice. However, we show below that this version of IVT holds in the

sheaf model Sh(O[0, 1]), and hence that IVT for locally nonzero functions

does not imply any of the choice principles which fail in that model. We

take IZF plus CC as our metatheory since we will need to apply IVTloc, to

produce a stable root, at the meta-level; we only distinguish the Dedekind

and Cauchy reals in the model, so RD, [0, 1]D will be used for the internal

Dedekind reals. Let f : [0, 1]D → RD be a uniformly continuous, locally

nonzero function in Sh(O[0, 1]). Since f is locally nonzero, we have that for
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all positive ε ∈ Q and all x ∈ [0, 1]D there exists y ∈ [0, 1]D such that39

‖x− y‖∞ < ε and f(y) 6= 0 for all t ∈ [0, 1]. By IVTloc, in the metatheory,

we can construct a stable root s ∈ [0, 1] of the function r 7→ f(r)(1/2), where

r is the constant function on [0, 1] with codomain {r}. If f(s) is not the

constant zero function, then it follows from the continuity of f that there

exists r ∈ [0, 1] such that f(r) has a stable root. Since this contradicts that

f is locally nonzero, s is a root of f in Sh(O[0, 1]). This sheaf model also

shows that LPO does not imply the intermediate value theorem.

We now turn our attention to obtaining positive results. For completeness

we begin with a proof of the approximate version of the intermediate value

theorem, and by giving the choice free constructive content of the classical

proof of IVT by interval halving.

Proposition 48 Let f : [a, b] → R be a continuous function such that

f(a) 6 0 6 f(b). Then for all ε > 0 there exists x ∈ [a, b] such that

|f(x)| < ε.

Proof. Since f is continuous and [a, b] is connected, f([a, b]) is connected.

Hence it is not the case that f([a, b]) is bounded away from 0; it follows that

inf{|f(x)| : x ∈ [a, b]} = 0.

The classical interval halving argument yields the following proposition

within CZF.

Proposition 49 Let f : [a, b]→ R be a function such that f(a) < 0 < f(b)

and f(x) 6= 0 for all x ∈ [0, 1]. Then there exists x ∈ [0, 1] such that f(x) is

not sequentially continuous at x: there exists a sequence (xn)n>1 converging

to x such that (f (xn))n>1 is bounded away from f(x).

Proof. Construct sequences (an)n>1, (bn)n>1 as follows. Set a1 = a, b1 = b.

Suppose we have constructed a1, . . . , an−1 and b1, . . . , bn−1, and let m =

(an−1 + bn−1)/2. Since f(m) 6= 0, either f(m) > 0 or f(m) < 0. In the first

case we set an = an−1, bn = m, and in the second we set an = m, bn = bn−1.

Then
39The distance between x and y in the model Sh(O[0, 1]) is, externally, ‖x− y‖∞.
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• f (an) < 0 for all n ∈ N;

• f (bn) < 0 for all n ∈ N;

• (an)n>1 and (bn)n>1 converge to a shared limit x.

Either f(x) > 0 or f(x) < 0. In the first case an → x, but f (an) < 0 for

all n; therefore (f (an))n>1 is bounded away from f(x). In the second case

(bn)n>1 defies sequential continuity.

Corollary 50 Let f : [a, b]→ R be a sequentially continuous function such

that f(a) 6 0 6 f(b). Then ¬
(
∀x∈[0,1] f(x) 6= 0

)
.

The above corollary has a further simple consequence which, in view of

Theorem 47, is a little surprising. The previous result says that the function

f cannot fail to have a root; with this in mind we define: x ∈ R is said to

be within ε of a root of f if

¬¬∃y∈R(|x− y| < ε ∧ f(y) = 0).

Corollary 51 Let f : [a, b]→ R be a sequentially continuous function such

that f(a) 6 0 6 f(b). Then for each ε > 0 there exists x ∈ (a, b) such that

x is within ε of a root of f .

Proof. Pick n ∈ N such that ε > (a − b)/n. Let ξ0 = a, ξ2n = b and for

each 0 < i < 2n let ξi ∈ [a, b] be such that

∣∣∣∣ξi −
(a− b)i

2n

∣∣∣∣ < ε/2 and f(ξi) 6== 0

—this is an instance of finite choice. Then the function

g(x) =





f(ξ0)−f(ξ1)
ξ0−ξ1 (x− ξ0) + f(ξ0) x ∈ [ξ0, ξ1]

...

f(ξ2n−1)−f(ξ2n)
ξ2n−1−ξ2n (x− ξ2n−1) + f(ξ2n−1) x ∈ [ξ2n−1, ξ2n]

121



has an inhabited and finite set of roots each element of which is, by Corollary

50, within ε of a root of f .

Using countable choice we can, as in the proof of this last corollary, construct

a sequence of functions (gn)n∈N such that for each n, the set of roots of gn

is an inhabited, finite set, and each root of gn is within 2−n of a root of

f . Using countable choice again (to repeatedly apply the approximate law

of trichotomy), we can form an inhabited, finitely branching forest F of

decidable trees with labels from [a, b] such that

I the nodes in the nth level of any T in F are the zeros of gn,

I if a node labeled x is a child of a node labeled y and y is a root of gn,

then |x− y| < 2−n+1,

I the branches of F represent all stable roots of f as Cauchy reals.

Then each T in F is a spread (that is, has no leaves), and any branch of F

realizes the intermediate value theorem for locally nonzero functions. So we

can recover the locally nonzero version of the intermediate value theorem.

We now turn our attention to the construction of exact roots. For the

remainder of this section we use I to denote either a closed bounded interval

or the entire real line. Let f be a continuous real valued function on I.

Since the property of all the roots of a function f being stable only gives

us positive information about f when we already have a root of f , it seems

unlikely that this condition is strong enough to prove a constructive version

of the intermediate value theorem, even when we allow choice. We give

a strengthening of the notion of a function having only stable roots. A

function f : I → R is said to have uniformly stable roots if

∀ε>0∃δ>0∀x∈I(|f(x)| < δ ⇒ ∃y,z∈(x−ε,x+ε)∩If(y) < 0 < f(z)).

It is easy to see that if f has uniformly stable roots, then f is locally nonzero

and has only stable roots.
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Since, given a function f : [a, b] → R with f(a) 6 0 and f(b) > 0, we need

only construct the smallest root of f , we only require f to have uniformly

upper-stable roots:

∀ε>0∃δ>0∀x∈(a,b)(|f(x)| < δ ⇒ ∃z∈(x−ε,x+ε)f(z) > 0).

Our choice free constructive version of the intermediate value theorem is the

following.

Proposition 52 Let f : [a, b]→ R be a uniformly continuous function with

uniformly upper-stable roots such that f(a) 6 0 and f(b) > 0. Then there

exists x ∈ [a, b] such that f(x) = 0 and f(y) < 0 for all y ∈ [0, x).

Before proving Proposition 52, we give some examples of functions with

uniformly stable roots. If f : R → R is a uniformly continuous, continu-

ously differentiable function which only has roots of multiplicity one in the

following strong sense

There exists r > 0 such that max{|f(x)|, |f ′(x)|} > r for all

x ∈ R.

then f has uniformly stable roots. To see this, fix ε > 0 and let r > 0 be

such that max{|f(x)|, |f ′(x)|} > r for all x ∈ R; without loss of generality

ε < 1/2 and r < 1. Since f is uniformly continuous, there exists δ1 ∈ (0, ε)

such that if |x−y| < δ1, then |f(x)−f(y)| < r/2. Set δ = δ1r and fix x ∈ R

such that |f(x)| < δ. Then for all y ∈ (x− δ1, x+ δ1)

|f(y)| 6 |f(x)|+ |f(y)− f(x)|

< δ + r/2

< r,

so, by our choice of r, |f ′(y)| > r. Suppose that there exist y, y′ ∈ (x−δ1, x+

δ1) such that f ′(y) < 0 < f ′(y′). Applying aIVT to f ′|(min{y,y′},max{y,y′})

produces z ∈ (min {y, y′} ,max {y, y′}) such that |f ′(z)| < r, which is a

contradiction. Hence either f ′(y) > r for all y ∈ (x − δ1, x + δ1) or else
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f ′(y) 6 −r for all y ∈ (x− δ1, x+ δ1). In the first case

f(x+ δ1) > rδ1 + f(x) = δ + f(x) > 0, and

f(x− δ1) 6 −rδ1 + f(x) = −δ + f(x) < 0.

In the second case f(x+δ1) < 0 < f(x−δ1). Since x+δ1, x−δ1 ∈ (x−ε, x+ε),

f has uniformly stable roots.

If f is a polynomial, then we can do better. First we require a few notions

from [92]. We denote by πn(R) the set of monic polynomials of degree n with

real coefficients given any of the standard metrics. An n-multiset is an image

of {1, 2, . . . , n}. The distance between two n-multisets X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn} is given by

ρn(X,Y ) = inf
σ∈Sn

sup{|xi − yσ(i)| : 1 6 i 6 n},

where Sn denotes the group of permutations on n elements; the set Mn(C)

of n-multisets of complex numbers taken with ρn is a pseudometric space.

In [92] it is shown that the natural map F from Mn(C) to πn(R) is one-one

and uniformly bicontinuous.

Let

p(x) =

n∑

i=1

(x− ri) (ri ∈ C)

be a polynomial40 such that ri 6= rj for all 1 6 i < j 6 n. Then p has

uniformly stable roots. We prove that there exists r > 0 such that for all

x ∈ R either |p(x)| > r or |p′(x)| > r; this is done by induction on the

degree of p. The case where p is linear is trivial. Suppose that the result

holds for polynomials of degree n− 1 and write

p(x) = (x− r1)
n∑

i=2

(x− ri) ≡ (x− r1)q(x).

40Of course, the application of Proposition 52 to such polynomials is not very interesting.
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Then by our induction hypothesis there exists r′ ∈ (0, 1) such that for all

x ∈ R either |q(x)| > r′ or |q′(x)| > r′. Fix x ∈ R and let R ∈ R be such

that p′(y) < R for all y ∈ [r1 − 1, r1 + 1]; without loss of generality r′ < R.

If |q(x)| > r′, then either |x− r1| > r′/3R and

|p(x)| = (x− r1)q(x) >
r′

3R
r′ =

r′2

3R
,

or |x− r1| < 2r′/3R. In the latter case

|(x− r1)q′(x)| < 2r′

3R
R =

2r′

3
,

so

|p′(x)| = |(x− r1)q′(x) + q(x)| > r′

3
.

It remains to consider the case |q′(x)| > r′. Let ε > 0 be such that |r1−ri| >
ε for all i ∈ {2, . . . , n}. Using the uniform bicontinuity of the natural map F

sending n-multisets of C to polynomials of degree n, there exists δ > 0 such

that for all q′ ∈ πn(R) if ρ(q, q′) < δ, then ρn(F−1(q), F−1(q′)) < ε. Suppose

that |q(r1)| < δ. Then ρ(q, q + q(r1)) < δ, so ρn(F−1(q), F−1(q + q(r1))) <

ε/2. Since q + q(r1) has a root at r1, there exists i ∈ {1, . . . , n} such that

|r1 − ri| < ε, which is absurd. It follows that |q(r1)| > δ > 0. By the

continuity of q at r1, there exists δ′ ∈ (0,min{r′/R, r′}) such that for all

x ∈ R either

|x− r1| > δ′ or |q(x)| > δ′.

In the first case either |q(x)| > r′δ′/3 and

|p(x)| = |(x− r1)q(x)| > r′δ′

3
δ′ =

r′δ′2

3
,

or |q(x)| < 2rδ′/3. If |q(x)| < 2r′δ′/3, then |(x− r1)q′(x)| > r′δ′ and

|p′(x)| = |(x− r1)q′(x) + q(x)| > r′δ′

3
>
r′δ′2

3
.
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In the second case |x−r1| > δ′/3R and so |p(x)| > δ′2/3R, or |x−r1| < δ′/2R

and |p′(x)| > δ′/2 > δ′2/3R. Given that δ′ < r′ < 1, it just remains to set

r = min

{
r′δ′2

3
,
δ′2

3R

}
;

then for all x ∈ R either |p(x)| > r or |p′(x)| > r.

The next lemma is a (very) slight generalisation of a result in [97] which

considers strictly increasing functions.

Lemma 53 Let f be a locally nonzero nondecreasing real valued function on

[a, b] such that f(a) 6 0 and f(b) > 0. Then there exists a unique x ∈ [a, b]

with f(x) = 0.

Proof. Without loss of generality a = 0 and b = 1. Define

L = {y ∈ [0, 1] : f(y) 6 0} ;

it is easily shown that the required x is given by the supremum of L provided

that this supremum exists. Since f(0) 6 0, 0 ∈ L so L is nonempty. Let

α, β ∈ Q be such that α < β; without loss of generality α, β ∈ [0, 1]. Since

f is locally nonzero, there exist α′, β′ such that α < α′ < β′ < β and f (α′)

and f (β′) are nonzero. If f (α′) > 0 and f (β′) < 0, then f (β′) < 0 <

f (α′), which contradicts that f is nondecreasing. Hence either f (α′) < 0

or f (β′) > 0. If f (α′) < 0, then f (α) < 0 and α ∈ L. If f (β′) > 0, then

f(y) < f (β′) for each y ∈ L, so, since f is nondecreasing, y 6 β for each

y ∈ L and β is an upper bound for L. Hence L is upper order located and

therefore x = sup(L) exists.

It remains to show that this x is unique. To this end, let x, y ∈ [0, 1] be

such that f(x) = f(y) = 0, and suppose that x 6= y. Without loss of

generality x < y. Since f is locally nonzero, there exists z ∈ (x, y) such

that f(z) 6= 0; either f(z) > 0 or f(z) < 0. In the first case we have that

f(z) < f(x) and x < z, contradicting that f is nondecreasing. In the second
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case, f(y) < f(z) and z < y, which again gives a contradiction. Hence x = y

and f has a unique root.

Here is the proof of Proposition 52:

Proof. We may assume that a = 0 and b = 1. Define a nondecreasing

function g : [0, 1]→ R by41

g(x) = sup {f(y) : y ∈ [0, x]} ;

it is easily shown that g is uniformly continuous. Then any zero of g is a zero

of f : let x ∈ [0, 1] be a zero of g and suppose that f(x) 6= 0. If f(x) > 0,

then g(x) > 0, which is absurd. Therefore f(x) < 0. Using the continuity

of f at x, pick r > 0 such that f(y) < f(x)/2 for all y ∈ (x − r, x). Let

δ ∈ (0, |f(x)|/2) be such that for all x′ ∈ [0, 1] if |f(x′)| < δ, then there

exists z ∈ (x′ − r, x′ + r) with f(z) > 0. Since

g(x) = sup {f(y) : y ∈ [0, x]} = 0,

there exists x′ ∈ [0, x] such that |f(x′)| < δ; moreover, since δ < |f(x)|/2,

x′ 6 x − r. Then, by our choice of δ, there exists z < x′ + r 6 x such that

f(z) > 0, and so g(x) > 0. This final contradiction ensures that f(x) = 0.

Thus in order to show that f has a zero we need only show that g has a

zero; in turn, by Lemma 53, it suffices to show that g is locally nonzero. To

this end, fix x ∈ [0, 1] and ε > 0; without loss of generality x /∈ {0, 1} and

ε < min{x, 1−x}. Using that f has uniformly upper-stable roots, pick δ > 0

such that for all x ∈ [0, 1], if |f(x)| < δ, then there exists z ∈ (x− ε, x+ ε)

such that f(z) > 0.

Either |g(x)| > 0 or, as we may assume, |g(x)| < δ. Then there exists

y ∈ [0, x] such that |f(y)| < δ; whence, by our choice of δ, there exists

41The supremum of {f(y) : y ∈ [0, x]} is given by({
q ∈ Q : ∃y∈[0,x](q < f(y))

}
,
{
q ∈ Q : ∀y∈[0,x](f(y) < q)

})
.

This is a Dedekind real because f is uniformly continuous and [0, x] is totally bounded.
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z ∈ (y − ε, y + ε) such that f(z) > 0. Thus g(x + ε) > f(z) > 0. It now

follows from the continuity of g at x+ ε that g is locally nonzero.

Let x be the unique root of g; consider y ∈ [0, x) and set ε′ = y − x. Since

f has uniformly upper-stable roots, there exists δ′ > 0 such that for all

x′ ∈ [0, 1]

|f(x)| < δ′ ⇒ ∃z′∈(x′−ε′,x′+ε′)∩[0,1]f(z′) > 0.

Either f(y) < 0 or f(y) > −δ′. In the latter case, there exists z < y+ε′ = x

such that f(z) > 0. This contradicts our construction of x; whence f(y) < 0.

Corollary 54 If f : [0, 1] → R is uniformly continuous, has uniformly

stable roots, and f(0)f(1) < 0, then Zf is located.

Proof. Fix x ∈ R and let s, t ∈ Q with s < t. Let δ > 0 be such that

if |f(x)| < δ, then there exist y, y′ ∈ (x − |t − s|, x + |t − s|) such that

f(y) < 0 < f(y′). Either

inf{|f(z)| : z ∈ (x− s, x+ s)} > 0 or inf{|f(z)| : z ∈ (x− s, x+ s)} < δ.

In the first case, ρ(x, Zf ) > 0. In the second case, there exist y, y′ ∈ (x −
t, x+ t) such that f(y) < 0 < f(y′). By the Theorem there exists z ∈ (y, y′)

such that f(z) = 0; whence ρ(x, Zf ) < t.

In general: the statement

‘If f is continuous, then Zf is located’

is equivalent to the weak law of trichotomy : for all x ∈ R either x = 0 or

¬x = 0. To show that Zf is located it is sufficient to apply the weak law of

trichotomy to inf{|f(s)| : s ∈ [t1, t2]} for appropriate t1, t2 ∈ R. Conversely

for sufficiently small x ∈ R if the zero set of

f : t 7→ (t− 1)2(t− 2)(t− 3)2 + x
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is located then we can decide that x = 0, x 6 0 and ¬(x = 0), or x > 0 and

¬(x = 0).

In [97], Peter Schuster put forward the ‘guarded thesis’ that in order to

construct an object in BISH without choice we require that object to be

unique (in some strong sense). In Proposition 52 this uniqueness is given

by the produced x being the minimal root of f . Finding the minimal root

of a locally nonconstant uniformly continuous function f : [a, b] → R with

f(a) 6 0 and f(b) > 0 is not possible in general, even when we allow

choice principles. For example, let a be a real number close to 0 and define

f : [−1, 2]→ R by

f(x) = x2(x− 1) + a.

Then, for sufficiently small a, f has minimal root less than 1/2 if and only

if a > 0 and has minimal root greater than 0 if and only if a < 0. Knowing

that f has only stable roots does not help, since there exists a stable root

of f less than 1/2 if and only if a > 0.

For a function f : I → R, we say that f has roots isolated above if for

each x ∈ I with f(x) = 0, there exists ε > 0 such that f(y) 6= 0 for

all y ∈ (x, x + ε) ∩ I. Applying Proposition 52 iteratively to a function

f : [a, b] → R which has roots isolated above, has uniformly stable roots

and is such that f(a) 6 0 6 f(b), we can find all the initial roots of f in

the following sense: there exists a nondecreasing sequence (xi)i>1 contained

in [a, b] ∪ {b+ 1} such that for each i

(i) either f (xi) = 0 and xi < xi+1, or else xi = b+ 1; and

(ii) if x ∈ [a, b], f(x) = 0 and there exists i ∈ N such that x < xi, then

x = xj for some j < i.

Proposition 55 Let f : [a, b]→ R be a continuous function with uniformly

stable roots such that f(a) 6 0 6 f(b) and such that each root of f is isolated

above. Then we can find all the initial roots of f .
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Proof. By Proposition 52, there exists x ∈ [a, b] such that f(x) = 0 and

f(y) 6= 0 for all y ∈ [0, x); set x1 = x. Suppose that we have constructed

x1, x2, . . . , xn−1 such that f(xi) = 0 for each i and such that

∀y∈[0,xn−1)−{x1,...,xn−2}f(y) 6= 0. (∗)

Let ε ∈ (0, 1− xn−1) be such that f(y) 6= 0 for all y ∈ (xn−1, xn−1 + ε), and

let δ > 0 be such that for all x ∈ [0, 1]

|f(x)| < δ ⇒ ∃x,y∈(x−ε,x+ε)∩[a,b]f(y) < 0 < f(z).

Suppose that there exist y, y′ ∈ (xn−1, xn−1 + ε) such that f(y) < 0 < f(y′).

If y < y′, applying Proposition 52 to f |(y,y′) produces z ∈ (y, y′) such that

f(z) = 0—a contradiction. If y′ < y we get a similar contradiction. Hence

either f(y) > 0 for all y ∈ (x, x+ε) or else f(y) < 0 for all y ∈ (xn−1, xn−1 +

ε).

For illustration, we consider the case where f(y) > 0 for all y ∈ (x, x + ε).

Define

m = inf {|f(z)| : z ∈ [x+ ε, 1]} .

Either m > 0 or m < δ. In the first case f(z) 6= 0 for all z ∈ [0, 1] −
{x1, . . . , xn−1} and we set xi = b+ 1 for all i > n. In the second case there

exists z ∈ [xn−1+ε, 1] such that |f(z)| < δ; thus there exists z′ ∈ [xn−1+ε, 1)

with f(z′) < 0. Applying Proposition 52 to −f |[xn−1+ε/2,z] produces xn >

xn−1 + ε with f(xn) = 0. For each y ∈ [0, xn)−{x1, . . . , xn−1}, f(y) 6= 0 by

(∗), Proposition 52, and by our choice of ε. The case when f(y) < 0 for all

y ∈ (xn−1, xn−1 + ε) is handled similarly.

Since each root of f is isolated above, Sn = {x1, . . . , xn} is discrete for each

n ∈ N. If y < xi for some i ∈ N and ρ (y, Si) > 0, then y ∈ [0, xi) −
{x1, . . . , xi−1}, so f(y) 6= 0. Hence if y < xi for some i ∈ N and f(y) = 0,

then ρ (y, Si) = 0. Since Si is closed and discrete, y = xj for some j ∈
{1, . . . , i− 1}; whence we can find all the initial roots of f .
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3.1.3 Continuity

Joyal’s derived continuity rule shows that many results about the Dedekind

reals in CZF give algorithms which are at least locally continuous. We

present a few results on the continuity of algorithms for the intermediate

value theorem.

The function f : [0, 1] → R : x 7→ 2x − 1 shows that the interval halving

proof of the exact intermediate value theorem with LLPO and the interval

halving proof of IVTloc are not even operations (they may return different

outputs for the same input), let alone continuous. The functions fa : (x −
1)2(x − 2) + a (a ∈ R) shows that the standard classical sup argument is

also discontinuous.

It was observed by Helmut Schwichtenberg that if f maps Q in to Q, then,

since equality on Q is decidable, we can use interval halving to find a root of

f without choice. If we restrict this to the family of functions {fa : a ∈ Q}
from above, we get a function Q → R : a 7→ x such that fa(x) = 0, which

cannot be globally continuous.

The proof of Proposition 52 is more well behaved. Let

S = {f ∈ C([0, 1],R) : f has uniformly upper

stable roots , f(0) < 0 < f(1)}

with the supremum norm.

Proposition 56 The mapping F : S → (0, 1) which sends f ∈ S to the

minimal root of f is continuous.

Proof. Fix f ∈ S and, using Proposition 52, construct the minimal root x

of f . Let ε > 0 and let z ∈ (x−ε, x+ε) be such that f(z) > 0. Since x is the

minimal root of f and f is continuous, z > x. Set δ = min{f(z),−f(x− ε)}
and consider g ∈ S such that ρ(f, g) < δ; suppose that |F (g)−x| > ε. Then

either F (g) > x+ ε or F (g) < x− ε. In the first case, g(0) < 0 6 f(z)− δ <
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g(z), so by Proposition 48 it is impossible for the minimal root F (g) of g to

be greater than x + ε. Suppose there exists y ∈ [0, x − ε] with f(y) > −δ.
Then there exists z′ ∈ (0, x) such that f(z′) > 0. Applying Proposition 48

once again leads to a contradiction. Hence |F (g)− x| < ε.

Having uniformly stable roots can be characterised in terms of the function

f 7→ Zf . We restrict our attention to functions with located zero sets: let

Sl = {f ∈ C([0, 1],R) : Zf is located, f(0) < 0 < f(1)}

with the supremum norm. Then

I x is a stable root of f if

∀ε>0∃δ>0∀g∈S(‖f − g‖∞ < δ → ρ(x, Zg) < ε);

I f has uniformly stable roots if

∀ε>0∃δ>0∀g∈S(‖f − g‖∞ < δ → sup{ρ(x, Zg) : x ∈ Zf} < ε).

A natural question to ask is: what condition on f corresponds to the conti-

nuity of the mapping F : Sl → P[0, 1] sending f to Zf . Our next proposition

answers this question. A function f has strongly uniformly stable roots if

∀ε>0∃δ>0∀x∈R(|f(x)| < δ ⇒ ∃y,z∈(x−ε,x+ε)f(y),−f(z) > δ) (∗).

The examples we gave above of functions with uniformly stable roots satisfy

this stronger condition.

Proposition 57 Let f ∈ Sl. Then f has strongly uniformly stable roots

if and only if the function F : S → P[0, 1] which sends g ∈ S to Zg is

continuous at f .

Proof. Suppose that f has strongly uniformly stable roots, fix ε > 0, and

let δ > 0 be as in (*). We must show that, if g ∈ Sl is such that ‖f−g‖∞ < δ,
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then

ρ(Zf , Zg) = max{sup{ρ(x, Zg) : x ∈ Zf}, sup{ρ(x, Zf ) : x ∈ Zg}} < ε.

If x ∈ Zf , then there exist y, z ∈ B(x, ε) such that, without loss of generality,

g(y) < 0 < g(z). By Corollary 50, we have that Zg∩B(x, ε) cannot be empty;

since Zg is located, Zg ∩B(x, ε) must be inhabited and hence ρ(x, Zg) < ε.

If x ∈ Zg, then |f(x)| < δ. It follows from (∗), Corollary 50, and the

locatedness of Zf that ρ(x, Zf ) < ε. Hence ρ(Zf , Zg) < ε.

Conversely, suppose that F is continuous at f . Fix ε > 0 and let δ > 0

be such that if ‖f − g‖∞ < 3δ, then ρ(Zf , Zg) < ε/2. If |f(x)| < δ, then

f − f(x) has a zero at x and ‖f − (f − f(x))‖ < 3δ; whence there exists a

root x′ of f in B(x, ε/2). Also g1 = f − f(x) + 2δ and g2 = f − f(x) − 2δ

satisfy ‖f − gi‖∞ < 3δ (i = 1, 2), so there exist x1, x2 ∈ B(x′, ε/2) such that

gi(xi) = 0 (i = 1, 2). Then x1, x2 ∈ B(x, ε and f(x1),−f(x2) > δ.

Classically a real valued function on [0, 1] satisfies the intermediate value

property if there exists z ∈ (x, y) such that f(z) = 0 whenever x, y ∈ [0, 1]

and f(x) < 0 < f(y). The intermediate value theorem states that every con-

tinuous real valued function on the unit interval has the intermediate value

property. Given a constructive reading, the intermediate value theorem is

unstable: let a ∈ (0, 1) and define

fa(x) =





x− 1/3 x ∈ [0, 1/3 + a]

a x ∈ [1/3 + a, 2/3 + a]

x− 2/3 x ∈ [2/3 + a, 1].

Then f0 has the intermediate value property, but fa has the intermediate

value property if and only if a > 0 or a 6 0. The reason for this noncon-

structivity is that the intermediate value property is concerned only with

the existence of roots, but the function taking f to the set Zf of zeros of f

can be discontinuous. We define a constructive intermediate value property :

IVPc: The function on Sl which sends f ∈ R[0,1] to the set
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Zf = {x ∈ [0, 1] : f(x) = 0} is continuous at f .

Proposition 57 can be restated as: a function satisfies the constructive in-

termediate value property if and only if it has strongly uniformly stable

roots.

In the setting of type two effectivity [111] a new programme of reverse math-

ematics with emphasis on the computational content of theorems has began

[20, 21]. The important questions here are of the form: how noncomputable

is a particular multivalued function. For example, how noncomputable is

the multivalued function which sends a continuous function f ∈ C[0, 1] to its

set of zeros. In the foregoing we consider this from a different angle; we ask

not how noncomputable this function is, but what is the largest subset of

its domain on which it is computable. Although this question seems of less

general interest, we feel it gives a natural approach to the systematic study

of constructive and computable analysis.

3.1.4 Relationships between notions

We finish by presenting some examples showing the relationship between

the various properties on a function f .

There exists a function f : R → R that has only stable roots, for which it

is impossible not to have a root, and for which we can, in general, only find

a root if Markov’s Principle holds, but which is only locally nonzero if MP

holds. Let a ∈ R be such that ¬(a = 0) and define f : R→ R by42

f(x) =





−x− 1
a + a a > 1

x > 0

−x+ 1
a + a a 6 1

x < 0

a otherwise.

42The standard construction of functions on R by case does not require choice.
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1
a

1
a

a > 0

a < 0

To see that f has only stable roots, let x ∈ R be a root of f . Note that if

a 6= 0, then f is locally linear at x with gradient −1, so f has only stable

roots. Pick N > 0 such that |x| < N . If |a| < 1/N , then |x| > N , which

is absurd. Hence |a| > 0 and f has only stable roots. Now suppose that

f is locally nonzero. Then there exists x ∈ (−1, 1) with f(x) 6= 0 and so

|a| > min{1, |f(x)|} > 0.

This example does not have a direct impact on whether having only stable

roots is sufficient to prove a constructive intermediate value theorem (with-

out choice), since it is necessary in this example that the domain of f is

unbounded. It is possible to give an example of a function f : [0, 2] → R

with compact domain such that f has only stable roots, f is only locally

non-zero, in general, if MP holds, and it is impossible for f not to have a

root: let a be a non-negative real number such that ¬(a = 1) and define

f(x) =





2x− 1 x ∈ [0, 1]

2(a− 1)x+ 3− 2a x ∈ [1, 3/2]

a x ∈ [3/2, 2].
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a

However, in this case it is easy to find the root of f .

The condition that f : I → R have at most one root

∀x,y∈I(x 6= y ⇒ f(x) > 0 ∨ f(y) > 0)

is not strong enough to prove that f has uniformly upper-stable roots, even

when f is continuous, has only stable roots, and there exist a, b ∈ I such

that f(a)f(b) < 0. To see this, recall that in Russian recursive mathe-

matics there exists a continuous function g : [0, 1/2] → R with supremum

0 such that g(x) < 0 for each x ∈ [0, 1/2] (see [23, Chapter 6, Corollary

2.9]). The construction of g uses the existence of an enumeration of the set

of partial functions from N into N with countable domain. Assuming the

Church-Markov-Turing thesis, this enumeration is constructed using count-

able choice [107]. Define

f(x) =





g(x) x ∈ [0, 1/2]

g(1/2) x ∈ [1/2, 3/4]

4(1− g(1/2))x− 3 + 4g(1/2) x ∈ [3/4, 1].

Then f is a continuous real valued function on the unit interval, f(0) =

g(0) < 0, and f(1) = 1 > 0. Since f is linear with gradient 4(1− f(1/2)) on

[3/4, 1] and since the only root of f is within this interval, all roots of f are
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stable. To see that f has at most one root, note that f(x) 6= 0 for all

x ∈ [0, 1]−
{

3− 4f(1/2)

4(1− f(1/2))

}
.

But f does not have uniformly upper-stable roots: let ε = 1/4. For all

δ > 0 there exists x ∈ [0, 1/2] such that |f(x)| < δ, but f(y) 6= 0 for all

y ∈ (x− ε, x+ ε) ∩ [0, 1].

If a continuous function f : [a, b] → R with f(a) < 0 and f(b) > 043 has

uniformly at most one zero—that is,

∀ε>0∃δ>0∀x,y∈I (|f(x)| < δ ∧ |f(y)| < δ ⇒ |x− y| < ε)

—then f has uniformly stable roots. To see this, let f : [a, b] → R be a

continuous function with uniformly at most one root and fix ε > 0. Let

δ ∈ (0, r) be such that for all x, y ∈ [a, b]

|f(x)| < δ ∧ |f(y)| < δ ⇒ |x− y| < ε,

and let x ∈ [a, b] be such that |f(x)| < δ. Using the continuity of f at

a and b, we may assume that |f(x)| > δ for all x ∈ [a, a + ε) ∪ (b − ε, b].
Then x ∈ [a+ ε, b− ε] and so, by continuity, it suffices to show that f(x−
ε) < 0 < f(x + ε). Suppose that f(x + ε) < δ. If f(x + ε) > −δ, then

|f(x + ε)| < δ, so |x − (x − ε)| < ε—a contradiction from which it follows

that f(x + ε) < 0. Then by the approximate intermediate value theorem,

there exists z ∈ (x+ ε, 1) such that |f(z)| < δ, but

|z − x| > |x+ ε− x| = ε,

again contradicting our choice of δ. Thus f(x+ ε) > δ > 0. A similar proof

shows that f(x− ε) < 0.

With countable choice any continuous function f : [a, b]→ R with f(a) < 0

43We need this condition to rule out a function contained entirely above or below the
x-axis (for example, f(x) = |x− 1/2| on [0, 1]).
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and f(b) > 0 that has at most one root has only stable roots. Let f : [a, b]→
R be a continuous function with f(a) < 0 and f(b) > 0 that has at most one

root, let x ∈ [a, b] be such that f(x) = 0, and let ε > 0. Then x 6∈ {a, b} and

without loss of generality (x−ε, x+ε) ⊂ [a, b]. Since f has at most one root,

f(x + ε/2) 6= 0 and f(x − ε/2) 6= 0. Suppose that f(x + ε/2) < 0. Having

at most one zero implies being locally nonconstant, so we can apply the

standard constructive intermediate value theorem (which requires countable

choice) to construct y ∈ [x+ ε/2, 1] with f(y) = 0—a contradiction. Hence

f(x+ ε/2) > 0. A similar proof shows that f(x− ε/2) < 0, so x is a stable

root and f has only stable roots.

As you would expect, if f : R→ R has uniformly stable roots and does not

have two roots, then f has uniformly at most one root. Let ε > 0. Since

f has uniformly stable roots, there exists δ < 0 such that for all x ∈ R if

|f(x)| < δ, then there exist y, z ∈ (x−ε/2, x+ε/2) with f(y) < 0 < f(z). Let

x, x′ ∈ R be such that |f(x)| < δ and |f(x′)| < δ, and suppose that |x−x′| >
ε. Then there exist y, z ∈ (x− ε/2, x+ ε/2) and y′, z′ ∈ (x′ − ε/2, x′ + ε/2)

such that f(y) < 0 < f(z) and f(y′) < 0 < f(z′). By Proposition 52, there

exist w ∈ (y, z) and w′ ∈ (y′, z′) such that f(w) = f(w′) = 0. But, since

|x − x′| > ε, w 6= w′—this contradicts that f does not have two roots.

Hence |x− x′| 6 ε, and f has uniformly at most one zero.

The following diagram summarises the relationships between the various

properties of a function f : R→ R; all implications are strict.
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∃a,b∈Rf(a)f(b) < 0 + uniformly at most one

uniformly at most one
+

stable
uniformly stable

locally nonzero
+

stable

uniformly stable
+

not 2 roots
uniformly at most one at most one

locally nonzero
∃a,b∈Rf(a)f(b) < 0

+
at most one

stable
+ CC
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3.2 Contractive and nonexpansive mappings

In this section we look at the simplest, but seemingly most general, case of

classical fixed point theorems in which we can guarantee the constructive

existence of exact fixed points: contractive mappings. This is the one place

in this thesis where will give a little attention to the computational efficiency

of the algorithms that we insist our proofs contain.44

Let S be a subset of a metric space X and let f : S → X. There are three

basic types of nonexpansive properties we may require of f :

I f is uniformly contractive if there exists r ∈ (0, 1) such that

‖f(x)− f(y)‖ 6 r‖x− y‖

for all x, y ∈ S;

I f is contractive if ‖f(x)− f(y)‖ < ‖x− y‖ for all x, y ∈ S with x 6= y;

I f is nonexpansive if ‖f(x)− f(y)‖ 6 ‖x− y‖ for all x, y ∈ S.

Nonexpansive, and hence (uniformly) contractive, mappings are uniformly

continuous, and, as the following lemma shows, any fixed point of a contrac-

tive mapping is unique.

Lemma 58 If f is a contractive mapping of X into itself and x, y are dis-

tinct points of X, then either f(x) 6= x or f(y) 6= y.

Proof. Since

‖x− f(x)‖+ ‖y − f(y)‖ > ‖x− y‖ − ‖f(x)− f(y)‖ > 0,

either ‖x− f(x)‖ > 0 or ‖y − f(y)‖ > 0.

As we have already said, the standard classical proof of the contractive

mapping theorem

44Constructive mathematicians are generally not interested in the efficiency of their
proofs—the important question is what can be computed—and the contents of this section
represent the only (and very minimal) thought I have ever given to algorithmic efficiency.
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Every uniformly contractive mapping of an inhabited closed sub-

set of a complete metric space into itself has a fixed point,

is fully constructive: for any x ∈ S the sequence (fn+1(x))n∈N converges at

a rate determined by r and ‖x − f(x)‖. If 1 − r is small (and ‖x − f(x)‖
is large), then this sequence will converge very slowly; while this proof is

mathematically very simple, it is computationally poor. So what can we

do? This is really a question for the numerical analyst rather than the

constructive mathematician, but we will give another proof of the contractive

mapping theorem for Rn (as a special case of Edelstein’s fixed point theorem

on non-uniformly contractive mappings) which is far more efficient—see the

discussion after the proof of Theorem 61. First we consider the converse of

the contractive mapping theorem.

3.2.1 Uniformly contractive mappings

A metric space X is said to have the Banach fixed point property if every

uniformly contractive mapping on an inhabited closed subspace of X has a

fixed point. Classically, the contractive mapping theorem gives a character-

isation of complete spaces

(*) A metric space is complete if and only if it has the Banach

fixed point property.

Proposition 59 (WCC) (*) is equivalent to LPO.

Proof. Suppose that (*) holds, fix a ∈ R, and set X = {0, 1}a. Consider

an inhabited closed subspace Y of X and a contraction mapping f : Y → Y

with contraction constant r ∈ (0, 1). Fix y ∈ Y and let λ ∈ {0, 1} be such

that f(y) = λa; then λa ∈ Y . Suppose that f(λa) 6= λa. Then a 6= 0, and

f(λa) = y = (1− λ)a. But

a = ρ(f(y), f(λa)) 6 rρ(y, λa) = ra,
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so a = 0—a contradiction. Hence λa is a fixed point of f and X has the

Banach fixed point property. By (*), X is then complete. By examining the

limit of the sequence λna, where (λn)n∈N is a binary sequence such that

λn = 0 ⇒ a <
1

n

λn = 1 ⇒ a >
1

n+ 1
,

we can decide whether a = 0 or a 6= 0.

Conversely, assume LPO, let X be a metric space with the Banach fixed

point property, and let (xn)n>1 be a Cauchy sequence in X. Define

θ(x) = inf {ρ(x, xn) : xn 6= x, n ∈ N} .

Using LPO, we may assume that the terms of (xn)n>1 are all distinct and

that θ (xn) > 0 for each n ∈ N. Define (kn)n>1 inductively as follows. Set

k1 = 1 and suppose that we have constructed k1, . . . , km. Let km+1 be such

that

ρ(xs, xt) 6 θ(xkm)

for all s, t > km+1. Set S = {xkn : n ∈ N} and define a contraction mapping

f on S by setting f (xkn) = xkn+1 for each n ∈ N. Extend f , by continuity,

to a contraction mapping on S. Since X has the Banach mapping property,

there exists x ∈ S such that f(x) = x. Then x ∈ X and, it is easy to see

that, x is the limit of (xn)n>1.

Given an inhabited metric space X and a function f : X → X without a

fixed point, the sequence (fn+1(x))n∈N, for any x ∈ X, witnesses that X is

not complete. Indeed, (fn+1(x))n∈N is eventually bounded away from each

point of X: extend f to a (uniformly contractive) mapping on X̂, and let x̂

be the unique fixed point of f in X̂. Pick x0 ∈ X and let xn = fn(x0) for

each n > 1; then (xn)n>0 is a Cauchy sequence in X which converges to x̂

in X̂. By Lemma 58, f(x) 6= x for each x ∈ X and so, by continuity, x 6= x̂

for each x ∈ X. Since (xn)n>0 converges to x̂, it follows that (xn)n>0 is a
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Cauchy sequence in X which is eventually bounded away from each point

of X.

There is a weaker property associated with uniformly contractive mappings.

A a metric space S is said to have the contraction mapping property if every

uniformly contractive mapping from S into S has a fixed point. We present a

constructive proof of a result, due to Borwein [19], which characterises when

sets with a strong connectedness property have the contraction mapping

property. A metric space X is said to be uniformly Lipschitz-connected if

there exists a positive real number L such that for all x, y ∈ X, there exists

a function g : [0, 1]→ X such that g(0) = x, g(1) = y and

ρ(g(s), g(t)) 6 L|s− t|ρ(g(0), g(1))

for all s, t ∈ [0, 1].

Theorem 60 (CC) Let S be an inhabited uniformly Lipschitz-connected

metric space. Then S is complete if and only if it has the contraction map-

ping property.

Proof. Suppose that S is complete. Let f be a contraction mapping on

S with contraction constant r ∈ (0, 1), and fix x ∈ S. Let x0 = x and

xn = fn−1(x) for each n ∈ N. Then (xn)n>1 is a Cauchy sequence in S: if

m > n > 1, then

ρ (xn, xm) 6
m−1∑

k=n

ρ (xk, xk+1) <
rn

1− r
ρ (x0, x1) −→ 0 as n −→∞.

Hence (xn)n>1 converges to some point x ∈ S; clearly f(x) = x.

Conversely, suppose that S has the contraction mapping property, let (xn)n>1

be a Cauchy sequence in S, and let x̂ be the limit of (xn)n>1 in the comple-

tion (Ŝ, ρ̂) of (S, ρ). Without loss of generality we may take

ρ (xn, xm) < 2−min{m,n} (m,n ∈ N).
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Using countable choice and the uniform Lipschitz-connectedness of S, con-

struct L > 0 and functions gk : [0, 1] → S (k ∈ N) such that for each k,

gk(0) = xk+1, gk(1) = xk, and

ρ(gk(s), gk(t)) < L|s− t|ρ(xk, xk+1)

for all s, t ∈ [0, 1]. Using the gluing lemma [33], define a mapping

g : {0} ∪
⋃

k>1

[2−(k+1), 2−k] ∪ (1,∞)→ S ∪ {x̂}

by

g(t) ≡





x̂ if t = 0

gk(2
k+1t− 1) if t ∈ [2−(k+1), 2−k]

x1 if t > 1.

Suppose that there exist t1, t2 with t2 < t1 and ρ(g(t1), g(t2)) > L|t1−t2|. By

continuity we may assume, without loss of generality that ti ∈ [2−ni , 2−ni+1]

(i = 1, 2); set s0 = t1, sn1−n2 = t2, and sk = 2−n2−1+k for 1 6 k 6 n1−n2−1.

Then

n1−n2∑

k=1

ρ(g(sk−1), g(sk)) > ρ(g(t1), g(t2))

> L|t1 − t2|

=

n1−n2∑

k=1

|sk−1 − sk|,

so there exists 1 6 k 6 n1−n2−1 such that ρ(g(sk−1), g(sk)) > L|sk−1−sk|.
But

ρ(g(sk−1), g(sk)) = ρ
(
gk(2

k+1sk−1 − 1), gk(2
k+1sk − 1))

)

6 L2k+1|sk−1 − sk|ρ(xk+1, xk)

6 L|sk−1 − sk|
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—a contradiction. Hence

ρ(g(s), g(t)) 6 L|s− t| (1)

for all s, t in the domain of g. It follows that g is uniformly continuous on

its domain, and so extends to a uniformly continuous mapping g : [0,∞)→
S ∪ {x̂} such that (1) holds for all s, t ∈ [0,∞).

Now define a uniformly continuous mapping h : Ŝ → [0,∞) by

h(x) ≡ 2

L
ρ(x, x̂).

Then g ◦ h is a contraction mapping on Ŝ, and therefore on S, and

x̂ = g(0) = g(h(x̂)) = g ◦ h(x̂).

Hence x̂ is the unique fixed point of g ◦ h in Ŝ. Since S has the contraction

mapping property, x̂ ∈ S, so (xn)n>1 converges.

3.2.2 Contractive mappings

Edelstein [49] gave the following generalisation of the contractive mapping

theorem.

Theorem 61 A bounded contractive mapping of Rn into itself has a unique

fixed point.

We give a constructive proof of this result which is essentially a tidier version

of the proof of Bridges et al [26]. We fix a bounded, contractive mapping

f : Rn → Rn.

Lemma 62 For all x, y ∈ Rn

‖z − f(z)‖ > ‖f(x)− y‖ − ‖x− y‖.
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Proof. Since f is contractive, we have

‖z − f(z)‖ > ‖z − f(x)‖ − ‖f(x)− f(z)‖

> ‖z − f(x)‖ − ‖x− z‖.

Here then is the proof of Edelstein’s theorem:

Proof. The proof is by induction on n; the case n = 0 is trivial. Suppose

we have proved the result for functions on Rn−1 and let f : Rn → Rn.

Since f is bounded there exists n > 0 such that f(Rn) ⊂ C0 ≡ [−N,N ]n.

Let S = {1/3, 2/3}n and for each 1 6 k 6 n and each s ∈ S we take a

hyperplane

Hs,k = {x+ s : x ⊥ ek}

through x and orthogonal to the kth basis vector ek. By applying our in-

duction hypothesis n2n times to the contractive mappings

fs,k = πs,k ◦ f

restricted to Hs,k, where πs,k is the projection of Rn onto Hs,k, we construct

points xs,k (s ∈ S, 1 6 k 6 n) such that fs,k fixes xs,k. By Lemma 62, for

each k and each s with kth coordinate 1/3, either f(s) 6= s or f(s+ ek/3) 6=
s+ ek/3. Since fs,k fixes xs,k, it follows from Lemma 62 that there is δ > 0

and an n-cube C1 with each side of length 2N/3 such that |f(x) − x| > δ

for all x /∈ C1. Continuing in this way, we construct a sequence (Ci)i∈N of

nested cubes such that Ci has sides of length (2/3)iN ; by continuity, the

unique point in the intersection of {Cn : n ∈ N} is the unique fixed point of

f .

A few comments on the proof are in order. Edelstein’s fixed point theorem

is in essence what you get from the intermediate value theorem for locally

nonzero functions with at most one zero (Lemma 53) by an induction on

the dimension. So, although the above proof uses ACω,2 the result requires
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no choice. The proof could be criticised for being algorithmically very in-

efficient: each time we construct Ci+1 from Ci (for n > 2) we apply the

inductive hypothesis n2n times, each application of which in turn appeals

to the induction hypothesis many times, and so on. Should we find this

disturbing, after all we made such a big deal about the algorithmic content

of constructive mathematics in Section 1.4. Not really: we have made no

effort for efficiency, like any other mathematician we have searched for a

simple, possibly elegant, and illustrative proof. We would hope that we, if

so inclined, could find a more efficient proof.

So pretending for a moment that we are so inclined, let us strive a little more

for this efficiency. Assume for simplicity that we have already cornered the

fixed point into the box B0 = [0, 1]n, and let ξ be the fixed point we must

find. Picking two distinct points close to the centre of the box, Lemma 58

guarantees that one of them, y say, is not fixed by f . We can now use

Lemma 62 to eliminate (almost) half of the box from our search, to give a

set S0 which must contains ξ. To keep things from getting too complicated,

we extend S0 to a box and rotate and translate so that the edges are parallel

to the basis vectors. We then repeat this process to produce a sequence of

boxes (Bn)n∈N such that the area of Bn is bounded above by (1/
√

2)n−1 + δ

for some arbitrarily small δ chosen beforehand.

We must ensure that the maximum of the lengths of the edges also tends

to zero. If we accept Markov’s principle, then this is immediate. Without

Markov’s principle, for example if we wish to get a known rate of convergence

for our approximations to the fixed point, we must work harder. If one edge

is larger than the others by r, then we can use Lemma 62 and that f(x) is

closer to ξ for all x 6= ξ to reduce this edge by (almost) r/2. Finally, if need

be—if there are a number of sides whose lengths are near the maximum,

and the previous techniques keep reducing the smaller edges—we can apply

the induction hypothesis to reduce specific edges. These very simple strate-

gies would provide a significant increase in the efficiency of the algorithm

inherent in the proof of Theorem 61, although no doubt a numerical analyst
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could do considerably better still (and still guarantee the convergence of the

algorithm).

In the special case of a uniformly contractive mapping f , we can use the

contraction constant r to ensure that the relative dimensions of the box do

not become too different without having to use the induction hypothesis.

Suppose for simplicity that n = 2 and that the box is contained in the

positive quadrant with a vertex at (0, 0), and that the edges of our box are a

side of length d1 in direction e1 = (0, 1) and a side of length d2 in direction

e2 = (1, 0). If

d2 <

(
r(
√

2− 1)

r +
√
n

)
d1,

then, since f has contraction constant r, a point

a ∈ {(d1/3, d2/2), ((2d1)/3, d2/3)}

is moved by enough to ensure that the smallest angle between f(a)− a and

e1 is less than 45 degrees. We can then apply Lemma 62 to reduce the box

by a factor of 1/
√

2 in the e1 direction. In higher dimensions, we can use

this trick to reduce the box in a direction other than that of the smallest

edge, and we can ensure that the ratio of the lengths of any two edges does

not exceed
2(r +

√
n

r(
√

2− 1)

without needing to appeal to induction. This, together with the uniform

bound on the area of Bn, allows us to give a computationally simple al-

gorithm for finding the fixed point of f which converges at a quick rate

dependent on r and n.

We give a simplified proof of Proposition 3.2 from [26]. A function f from

a metric space X into itself has a uniformly unique fixed point if for all

ε > 0 there exists δ > 0 such that if max{ρ(x, f(x)), ρ(y, f(y))} < δ, then

ρ(x, y) < ε. With countable choice, FT∆ implies that a function with

a unique fixed point has a uniformly unique fixed point; and if f has a
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uniformly unique fixed point, then we can construct the fixed point of f .

Lemma 63 If f : R→ R is a bounded contractive mapping with fixed point

ξ and x, y < ξ with |f(x)− x| < |f(y)− y|, then x < y.

Proof. By continuity x 6= y; suppose that x > y. Then

|x− y| = x− y

= (x− f(x)) + (f(x)− f(y) + (f(y)− y)

= (f(x)− f(y))− (|f(x)− x| − |f(y)− y|)

> |f(x)− f(y)|,

which contradicts that f is contractive. Hence x < y.

Proposition 64 A bounded contractive mapping of Rn into itself has a

uniformly unique fixed point.

Proof. Fix ε > 0 and let ξ be the fixed point of f . We first consider the case

n = 1: let f : R→ R be a bounded contractive mapping. By continuity we

can find y1 < ξ < y2 such that |f(yi)− yi| < ε; set

δ = min{|f(y1)− y1|, |f(y2)− y2|}.

If |f(x) − x| < δ, then either |x − ξ| < ε or, as we may assume, x 6= ξ.

If x < ξ, then Lemma 63, with y = y1, shows that x ∈ (y1, ξ) and hence

|x−ξ| < ε. If x > ξ we apply Lemma 63 to the function −f and with y = y2

to get the same conclusion.

Now consider f : Rn → Rn for n > 1, and let lk be the line ξ+Rek (1 6 k 6

n). Applying the first part of the proof repeatedly construct δ1, . . . , δn > 0

such that for each 1 6 k 6 n and all x ∈ lk, if |πk ◦ f(x) − x| < δ, then

|ξ − x| < ε/
√
n. Then

δ = min{δ1, . . . , δn}

satisfies the conclusion of the uniform unique fixed point condition for ε.
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In [26] Bridges et al proceed to give a bound on the rate of convergence

of (fn(x))n∈N for a bounded, contractive mapping on R2. Kohlenbach pro-

duced other bounds on the rate of convergence of (fn(x))n∈N using his proof

mining techniques [69].

We finish with a question: does the proof of Theorem 61 require induction?

If the answer is yes, then one suspects that the major difficulty is finding a

precise formulation of the question.

3.2.3 Nonexpansive mappings

It is with nonexpansive mappings that the classical and constructive fixed

points diverge: The standard Brouwerian example showing that the interme-

diate value theorem implies LLPO is easily altered to show that we cannot

prove constructively that every nonexpansive mapping on [0, 1] has the fixed

point property.45

Let a ∈ R be near zero and construct a continuous mapping f : [0, 1]→ [0, 1]

such that

f(x) =





1/3 if x ∈ [0, 1/3 + a]

x− a if x ∈ [1/3 + a, 2/3 + a]

2/3 if x ∈ [2/3 + a, 1].

45Classically, every continuous nonexpansive mapping on a bounded closed subset of a
uniformly convex Banach space has the fixed point property. The standard classical proof
for Hilbert spaces (see [101]) requires the statement that ‘every convex bounded closed
subset of a Hilbert space is weakly compact’, which implies LPO. As a consequence it
seems likely that the most general formulation of the nonexpansive fixed point theorem
does not follow from WKL; however, if we restrict ourselves to weakly compact subsets
of a Hilbert space, then the nonexpansive fixed point theorem follows from WKL.
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...

f(x)

︸︷︷︸
2a

If f has a fixed point, then either it is greater than 1/3 and a 6 0 or it is

less than 2/3 and a > 0. Hence the statement ‘every nonexpansive mapping

of [0, 1] into itself has a fixed point’ implies that

∀a∈R(a > 0 ∨ a 6 0),

which in turn implies LLPO.

Using a standard classical argument (see for example [101]), we can, however,

show that such a mapping has approximate fixed points.

Proposition 65 Let S be a bounded subset of a normed space X such that

the closure of X is convex and let f be a nonexpansive mapping of S into

itself. Then f has approximate fixed points.

Proof. Since we are only interested in approximate fixed points we may

replace X by its completion X̂, and S by its closure in X̂; we may also

assume that 0 ∈ S. Fix ε > 0 and let N > 0 be such that S is contained in

the ball of radius N centered on 0. Pick r ∈ (1 − ε/N, 1), and let x be the

unique fixed point of the contraction mapping rf . Then

‖f(x)− x‖ = ‖f(x)− rf(x)‖ = (1− r)‖f(x)‖ 6 (1− r)N < ε.

Hence x is an ε-fixed point.
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It follows from the previous proposition that MIN implies that every non-

expansive function which maps a bounded convex subset into itself has a

fixed point.

152



3.3 Brouwer’s fixed point theorem

For completeness, we give a constructive proof of the approximate Brouwer

fixed point theorem, extended to uniformly sequentially continuous func-

tions; for novelty we give a proof based on David Gale’s proof from [52].

Before we do this we require a few more definitions.

Gale’s proof of Brouwer’s fixed point theorem uses a generalisation of the

game of Hex. An n-dimensional Hex board of size k consists of vertices

V = {1, . . . , k}n with edges between two vertices x, y ∈ V if46 ‖x − y‖ = 1

and either xi 6 yi for each i or yi 6 xi for each i. Then n-dimensional Hex

is an n-player game where players take turns to pick unclaimed vertices. A

player gains an edge of the hex board if she owns the nodes at either end;

player i wins the game by connecting the two i-banks

i-bank 1 = {(v1, . . . , vn) ∈ V : vi = 0},

i-bank 2 = {(v1, . . . , vn) ∈ V : vi = k},

with her edges. The ‘Hex Theorem’ of [52] (which, as finite combinatorics,

is fully constructive) says that any colouring of an n-dimensional Hex board

with at most n colours has a winner (for n > 2 there may be more than

one).

Lemma 66 Let f be a function from the unit hypercube [0, 1]n into itself.

Then for all ε, δ > 0 either there exists x ∈ [0, 1]n such that ρ(x, f(x)) < ε

or there exist x, x′ ∈ [0, 1]n such that ρ (x, x′) < δ and ρ(f(x), f(x′)) > ε.

Proof. Write

f(x) = (f1(x), . . . , fn(x)) ;

Fixing ε, δ > 0, without loss of generality take δ < ε/3. Pick N > 0

such that 1/N < δ, and subdivide [0, 1]n into an n-dimensional Hex board

of size N . We partition the set V of vertices of this Hex board into sets

46We use ‖ · ‖ throughout this section to represent the maximum norm.
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C+
1 , C

−
1 , . . . , C

+
n , C

−
n , and B such that

x ∈ C+
1 ⇒ f1(x)− x1 >

2ε

3
;

x ∈ C−1 ⇒ x1 − f1(x) >
2ε

3
;

...

x ∈ C+
n ⇒ fn(x)− xn >

2ε

3
;

x ∈ C−n ⇒ xn − fn(x) >
2ε

3
;

x ∈ B ⇒ ‖f(x)− x‖ < ε.

By the Hex theorem, either B is inhabited, and there exists x ∈ [0, 1] such

that ρ(x, f(x)) < ε, or, as we may assume, there exists an i-path from i-bank

1 to i-bank 2 for some 1 6 i 6 n. Since no vertex of C+
i has i-th coordinate

1 and no vertex of C−i has i-th coordinate 0, such a path contains points

from each set. Hence there exist adjacent vertices x, x′ such that x ∈ C+
i

and x′ ∈ C−i . Then ‖x− x′‖ < δ < ε/3, fi(x) > fi(x
′), and

fi(x)− fi(x′) = (fi(x)− x) +
(
x− x′

)
+
(
x′ − fi(x′)

)

>
2ε

3
− ε

3
+

2ε

3
= ε.

Therefore ρ(f(x), f(x′)) > |fi(x)− fi(x′)| > ε.

With this lemma at hand we can weaken the standard hypothesis of the

approximate Brouwer fixed point theorem. A function f : [0, 1]n → [0, 1]n is

uniformly sequentially continuous47 if for all sequences (xn)n>1 , (yn)n>1 in

[0, 1]n, if ρ (xn, yn) tends to zero as n→∞, then ρ (f (xn) , f (yn)) also tends

to zero as n→∞. It is easy to see that uniform continuity implies uniform

sequential continuity; the converse is equivalent to BD-N and hence cannot

be proved constructively (see [31]).

47Throughout this section and the next, uniformly sequentially continuous can be sub-
stituted for uniformly continuous in the definition of the approximate fixed point property.
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Theorem 67 (CC) Let f be a uniformly sequentially continuous function

from the unit hypercube [0, 1]n into itself. Then f has approximate fixed

points.

Proof. We construct, using countable choice, sequences (xn)n>1 , (x
′
n)n>1

as follows. For each n ∈ N, apply Lemma 66 to construct either x ∈ [0, 1]n

such that ρ(x, f(x)) < ε or x, x′ ∈ [0, 1]n such that ρ(x, x′) < 1/n and

ρ(f(x), f(x′)) > ε. In the latter case we set xn = x and x′n = x′; in

the former we set xn = x′n = x. Then (ρ (xn, x
′
n))n>1 converges to zero.

Since f is uniformly sequentially continuous, there exists N ∈ N such that

ρ (f (xn) , f (x′n)) < ε for all n > N . It follows that ρ (xN , f (xN )) < ε.

Without countable choice we seem to require f to be uniformly continuous:

Corollary 68 Let f be a uniformly continuous function from the unit hy-

percube [0, 1]n into itself. Then f has approximate fixed points.

Proof. For a given ε > 0, let δ be as in the definition of uniform continuity.

Then applying Lemma 66 must produce an ε-fixed point of f , for the other

disjunct is ruled out by the choice of δ.

Next we extend the approximate Brouwer fixed point theorem, for uniformly

continuous functions, to compact convex subsets of Rn. A subset S of a

normed space X is strictly convex if for each ε > 0 there exists δ > 0

such that for all x, y in the boundary ∂S of S, if48 ρ
(

1
2(x− y), ∂S

)
< δ,

then ‖x− y‖ < ε. A normed space X is uniformly convex if its unit ball is

strictly convex: for all ε > 0 there exists δ > 0 such that for all x, y ∈ X with

‖x‖ = ‖y‖ = 1, if
∥∥1

2(x− y)
∥∥ > 1− δ, then ‖x− y‖ < ε. Any inner product

space is uniformly convex [32, Page 93], and the Lp spaces for 1 < p < ∞
are uniformly convex [18, Chapter 7, (3.22)].

Let S be an inhabited subset of a metric spaceX, and let x ∈ X. We say that

b ∈ S is a closest point, or best approximation, to x in S if ρ(x, b) ≤ ρ(x, s)

for all s ∈ S. The following extends Theorem 6 of [30].

48We do not require ∂S to be located here: for an arbitrary subset S of a metric space
X we use ‘ρ(x, S) < ε’ as a shorthand for ‘there exists s ∈ S with ρ(x, s) < ε. If S is
located, then this coincides with the standard meaning.
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Theorem 69 Let S be a complete, located, convex subset of a uniformly

convex normed space X. Then each point in X has a unique closest point

in S. Moreover, the mapping Q from X to S sending x to the best approxi-

mation to x in S is uniformly continuous.

Proof. The proof of Theorem 6 in [30] establishes that for each x ∈ X and

each ε > 0 the set

Sxε = {y ∈ S : ρ(x, y) < ρ(x, S) + ε}

has diameter no greater than ε, and hence that x has a unique best ap-

proximation in S. To see that Q is uniformly continuous, observe that if

‖x−y‖ < ε/2, then Syε/2 ⊂ S
x
ε . Hence Q(x), Q(y) ∈ Sxε , so ‖Q(x)−Q(y)‖ 6

ε.

We call the mapping Q from the preceding theorem the projection onto S.

Theorem 70 Every totally bounded set S of Rn with convex closure has

the approximate fixed point property.

Proof. Let S be a subset of Rn satisfying the conditions of the theorem;

without loss of generality we may assume that S is both closed and a subset

of the unit cube [0, 1]n. Fix ε > 0 and let Q be the projection mapping from

[0, 1]n onto S (which exists, by the preceding theorem). Applying Theorem

67 to the mapping f ◦ Q : [0, 1]n → [0, 1]n, construct x ∈ [0, 1]n such that

‖x− f ◦Q(x)‖ < ε/2. Then

‖x−Q(x)‖ = ρ(x, S)

6 ‖x− f ◦Q(x)‖ < ε

2
,

so

‖Q(x)− f(Q(x))‖ 6 ‖Q(x)− x‖+ ‖x− f ◦Q(x)‖

<
ε

2
+
ε

2
= ε.
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Hence Q(x) is an ε-fixed point of f .

For a subset S of a metric space X we write

Sε = {y ∈ X : ρ(x, y) < ε for some x ∈ S} .

Classically, Brouwer’s fixed point theorem holds for any metric space which

is homeomorphic to [0, 1]n; this also holds constructively. For subsets of

uniformly convex normed spaces, this result is classically equivalent to, but

seems constructively weaker than, the following.

Proposition 71 Let X be a uniformly convex normed space, let S be a

subset of X with the approximate fixed point property, and let T be a subset of

X such that for each ε > 0 there exists a uniformly bicontinuous49 function

fε : S → T such that fε(S) is convex and totally bounded and

fε(S) ⊂ T ⊂ (fε(S))ε .

Then T has the approximate fixed point property.

Proof. Let f be a uniformly continuous function from T into itself, and fix

ε > 0. Let δ > 0 be such that for all x, y ∈ T , if ‖x− y‖ < δ, then

∥∥fε/2(x)− fε/2(y)
∥∥ < ε/2,

where fε/2 is as in the statement of the proposition. Let Q be the projection

onto fε/2(S) restricted to T , and let I : fε/2(S) → T be the inclusion

mapping; note that ‖Q(t)− t‖ < ε/2 for all t ∈ T .

49A function f from X onto Y is uniformly bicontinuous if both f and its inverse are
uniformly continuous.
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...

S fε/2(S) T

fε/2 I

f−1
ε/2

Q

f

Then f−1
ε/2 ◦ Q ◦ f ◦ I ◦ fε/2 is a uniformly continuous function from S into

S. Hence there exists x ∈ S such that

‖f−1
ε/2 ◦Q ◦ f ◦ fε/2(x)− x‖ < δ.

Then

‖Q ◦ f ◦ fε/2(x)− fε/2(x)‖ < ε/2,

and so

∥∥f
(
fε/2(x)

)
− fε/2(x)

∥∥ 6
∥∥f ◦ fε/2(x)−Q ◦ f ◦ fε/2(x)

∥∥

+
∥∥Q ◦ f ◦ fε/2(x)− fε/2(x)

∥∥

6
ε

2
+
ε

2
= ε.

Thus Q
(
f−1
ε/2(x)

)
is an ε-fixed point of f .

Brouwer’s fixed point theorem implies the intermediate value theorem, and

Edelstein’s fixed point theorem, and hence implies LLPO. Corollary 68 to-

gether with MIN gives Brouwer’s fixed point theorem for uniformly continu-

ous functions; Brouwer’s fixed point theorem is also, in the absence of choice,

strictly stronger than LLPO since it implies LLPOR. Thus Brouwer’s fixed

point theorem for uniformly continuous functions is in (LLPO,MIN]. In

the presence of ACω,2, Brouwer’s fixed point theorem for sequentially con-

tinuous function also follows from WKL: let f : [0, 1]n → [0, 1]n be a sequen-

tially continuous function, we first approximate f by a sequence (fn)n>1 of

affine, and therefore uniformly continuous, functions to which, given WKL,
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we apply Brouwer’s fixed point theorem for uniformly continuous functions

to produce a sequence of points (xn)n>1 such that xn = fn(xn) for each n.

By WKL, we may suppose that (xn)n>1 converges to some point x. The

sequential continuity of f then ensures that x is a fixed point of f .

Orehkov [89] constructed a continuous function f in RUSS which maps

the unit square into itself and which does not have a fixed point: for all

x ∈ [0, 1]2, f(x) 6= x. Consequentially, it is not likely that Brouwer’s fixed

point theorem holds constructively even if we impose a natural uniqueness

condition. In particular, the condition that f has at most one fixed point

for all distinct x, y ∈ dom(f), either f(x) 6= x or f(y) 6= y

is not sufficient to give the existence of an exact fixed point constructively.

On the other hand, it is easy to see, given Corollary 68, that it suffices for

f to have a uniformly unique fixed point. Wim Veldman [110] has shown

that Brouwer’s fixed point theorem for pointwise continuous functions is

equivalent to FT∆.

We finish with a question: is there a model of IZF which validates the

intermediate value theorem and in which Brouwer’s fixed point theorem

fails? If the answer is yes, then it would show that any classical proof of

Brouwer’s fixed point theorem by induction must appeal to excluded middle

in the inductive step.
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3.4 Schauder’s fixed point theorem

In this section we extend Brouwer’s fixed point theorem by considering com-

pact convex subsets of arbitrary Banach spaces; this gives us Schauder’s fixed

point theorem. We also consider Rothe’s further extension.

3.4.1 Approximate fixed points

We call a located subset S of a normed space X projective if there ex-

ists a uniformly continuous projection function Q of X onto S such that

ρ(x,Q(x)) = ρ(x, S) for each x in X. We give an approximate version of

Schauder’s fixed point theorem for projective sets.

Lemma 72 Let S be a totally bounded subset of a metric space X, fix β >

α > 0, and let S′ be a convex set such that for each x ∈ S there exists x′ ∈ S′

such that ρ(x, x′) < α/2. Then there exists a uniformly continuous function

P from S into S′ such that ‖P (x)− x‖ < β for all x ∈ S.

Proof. Let {x1, . . . , xn} be an α/2-approximation to S, and for each 1 6

i 6 n pick x′i ∈ S′ such that ρ(xi, x
′
i) < α/2. Then for each x ∈ S there

exists i such that ρ(x, x′i) < α.

Let f1, . . . , fn be the uniformly continuous functions from S into R given

by

fi(x) = max
{

0, γ − ‖x− x′i‖
}
,

where γ = (α+ β)/2. Then for each x ∈ S, there exists i such that

fi(x) > γ − α;

whence

P (x) ≡
∑n

i=1 fi(x)x′i∑n
i=1 fi(x)

defines a uniformly continuous map from S into S′.
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Let r > 0 and write {1, . . . , n} as the disjoint union of two sets P,Q such

that

i ∈ P ⇒ ‖x− x′‖ < γ + r;

i ∈ Q ⇒ ‖x− x′‖ > γ.

Then P (x) is a convex combination of points in P , so

‖P (x)− x‖ 6 max{‖x− x′i‖ : i ∈ P} < γ + r.

Since r > 0 is arbitrary, it follows that ‖P (x)− x‖ 6 γ < β for all x ∈ S.

Theorem 73 Let S be an inhabited, totally bounded, projective subset of a

normed space X. Then S has the approximate fixed points property.

Proof. Let f : S → be a uniformly continuous function. Fixing ε > 0, let

{x1, . . . , xn} be an ε/8-approximation to S. Using [18, Lemma 2.5, Chapter

7], construct a finite-dimensional subspace V of X, with a basis contained

in S, such that

ρ(xi, V ) < ε/8

for all i ∈ {1, . . . , n}. For each such i pick x′i ∈ V such that ‖xi − x′i‖ < ε/8.

Then for each x ∈ S, there exists i ∈ {1, . . . , n} such that ‖x− x′i‖ < ε/4.

Let S be the closed convex hull of {x′1, . . . , x′n}, and let Q : S′ → S be the

restriction to S′ of the projection onto S. If
∑n

i=1 λi = 1 and each λi ≥ 0,

then

∥∥∥∥∥Q
(

n∑

i=1

λix
′
i

)
−

n∑

i=1

λix
′
i

∥∥∥∥∥ ≤
n∑

i=1

λi
∥∥Qx′i − x′i

∥∥

=

n∑

i=1

λiρ
(
x′i, S

)

≤
n∑

i=1

λi
∥∥x′i − xi

∥∥ < ε

8
;

thus ‖Q(x)− x‖ < ε/4 for all x ∈ S′.
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Using Lemma 72, construct a uniformly continuous function P : S → S′

such that ‖P (x) − x‖ < ε/3 for all x ∈ S. Then P ◦ f ◦ Q is a uniformly

continuous map from S′ into S′; by Brouwer’s fixed point theorem, Theorem

67, there exists x′ ∈ S′ such that

‖P ◦ f ◦Q(x′)− x′‖ < 5ε/12;

write x = Q(x′). Then x ∈ S and

‖f(x)− x‖ 6 ‖f(x)− P ◦ f ◦Q(x′)‖+ ‖P ◦ f ◦Q(x′)− x′‖+ ‖x′ − x‖

= ‖f(x)− P (f(x))‖+ ‖P ◦ f ◦Q(x′)− x′‖+ ‖x′ −Q(x′)‖

< ε/3 + 5ε/12 + ε/4 = ε.

Hence x is an ε-fixed point of f .

By Theorem 69, every complete, located, convex subset of a uniformly con-

vex space is projective; this gives us the following result.

Corollary 74 Let S be an inhabited, totally bounded subset of a uniformly

convex normed space X such that the closure S of S is convex. Then S has

the approximate fixed points property.

Proof. Since we are interested in approximate fixed points, replacing X

with its completion X̂ and S with its closure in X̂, we may assume that S

is compact and convex. The result then follows from Theorems 69 and 73.

Strictly convex sets are also projective; the proof is similar to that of The-

orem 69 (which, in turn, is based on the proof of Theorem 6 of [30]).

Theorem 75 Let S be an inhabited, complete, located, strictly convex subset

of a normed space X. Then each point in X has a unique closest point in S.

Moreover, the mapping Q from X to S sending x to the best approximation

to x in S is uniformly continuous.
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Proof. Let x be a point of X, fix ε > 0, and let δ ∈ (0, ε/2) be such that

for all x, y ∈ ∂S, if ρ
(

1
2(x− y), ∂S

)
< 2δ, then ‖x− y‖ < ε/2. Set

Sxε = {y ∈ S : ‖x− y‖ < ρ(x, S) + δ/2} ;

and fix y1, y2 ∈ Sxε . Either ρ(x, S) < δ/2 and

‖y1 − y2‖ 6 ‖y1 − x‖+ ‖y2 − x‖ < δ + δ < ε,

or, as we may assume, ρ(x, S) > 0. Since S is located S ∪∼S is dense in X;

whence we can apply Proposition 5.15 of [32] to construct the unique points

y′1, y
′
2 such that y′i is in the intersection of

[x, yi] ≡ {tx+ (1− t)y : t ∈ [0, 1]}

and ∂S. Then, for i = 1, 2,

ρ(yi, y
′
i) = ρ(x, yi)− ρ(x, y′i) < ρ(x, S) + δ/2− ρ(x, S) = δ/2,

so

∥∥∥∥x−
1

2
(y′1 + y′2)

∥∥∥∥ 6
1

2
‖x− y′1‖+

1

2
‖x− y′2‖

6
1

2

(
‖x− y1‖+ ‖y1 − y′1‖+ ‖x− y2‖+ ‖y2 − y′2‖

)

< ρ(x, S) + 2δ.

Apply Proposition 5.15 of [32] again to construct the unique point z in the

intersection of [x,
1

2
(y′1, y

′
2)] and the boundary of S. Then

ρ(z,
1

2
(y′1 + y′2)) = ρ(x,

1

2
(y′1 + y′2))− ρ(x, z)

< ρ(x, S) + 2δ − ρ(x, S) = 2δ.
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Therefore, by our choice of δ, ‖y′1 − y2′‖ < ε/2, and so

ρ(y1, y2) 6 ρ(y1, y
′
1) + ρ(y′1, y

′
2) + ρ(y′2, y2)

< δ/2 + ε/2 + δ/2 < ε.

Hence the diameter of Sxε is no greater than ε. The proof then proceeds as

in Theorem 69.

Corollary 76 Let S be an inhabited, totally bounded, strictly convex subset

of a normed space X such that the closure of S is strictly convex. Then S

has the approximate fixed points property.

Proof. As for Corollary 8.

In the proof of Theorem 73, we begin by approximating the convex, totally

bounded set S by a set S′ contained in a finite dimensional subspace of

X. We then use f to define a uniformly continuous map from S′ into itself

to which we can apply Brouwer’s fixed point theorem. In particular, this

requires us to construct a uniformly continuous map from S′ into S which

is close to the identity map; it is in order to construct this mapping that

we require S to be projective. In the following result we circumvent this re-

quirement: by considering only open sets, we can ensure that S′ is contained

in S; we can then produce a uniformly continuous function from S′ into S′

by restricting the domain of f , rather than composing f with a mapping

from S′ into S, as in Theorem 73.

Theorem 77 Every inhabited, open, totally bounded, convex subset of a

normed space has the approximate fixed points property.

Proof. The proof is similar to that of the preceding theorem. Let S be

an inhabited, open, totally bounded, convex subset of a normed space X,

and let f : S → S be a uniformly continuous function. Let {x1, . . . , xn} be

an ε/6-approximation to S. We construct, as follows, a finite-dimensional

subspace V of X such that V contains an ε/3-approximation {x′1, . . . , x′n}
to S. Let V1 = span{x1} and x′1 = x1. Suppose that we have constructed
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Vk−1 and x′1, . . . , x
′
k and let r ∈ (0, ε/6) be such that B(xk, r) ⊂ S. Either

ρ(xk, Vk−1) > 0 or ρ(xk, Vk−1) < r. In the first case we set

Vk = span{Vk−1, xk}

and xk = x′k. In the second case, pick x′k ∈ V such that ‖xk − x′k‖ < r

and set Vk = Vk−1. Set V = Vn; it is easy to see that {x′1, . . . , x′n} is an

ε/3-approximation to S.

Let S′ be the convex hull of {x′1, . . . , x′n}. Then S′ ⊂ S and, by Lemma

72, there exists a uniformly continuous function P : S → S′ such that

‖P (x)−x‖ < ε/2 for all x ∈ S. Using Brouwer’s fixed point theorem, applied

to P ◦f |S′ : S′ → S′, construct x ∈ S′ such that ‖P ◦f(x)−x‖ < ε/2. Then

‖f(x)− x‖ 6 ‖f(x)− P ◦ f(x)‖+ ‖P ◦ f(x)− x‖

< ε/2 + ε/2 = ε.

Hence x is an ε-fixed point of f .

We can extend Theorem 73 to give an approximate version of Rothe’s the-

orem [94, 101] for projective sets.

Theorem 78 Let S be a compact, convex, projective subset of a normed

space X, and let f be a uniformly continuous function from S into X which

maps the boundary of S into S. Then f has approximate fixed points.

Proof. Fix ε > 0, let Q be the projection onto S, and let δ ∈ (0, ε/4)

be such that if ‖x − y‖ < δ, then ‖f(x) − f(y)‖ < ε. Since Q ◦ f is a

uniformly continuous function from S into S, it follows from Schauder’s

fixed point theorem for projective sets that there exists x ∈ S such that

‖Q ◦ f(x) − x‖ < δ. Suppose that ρ(f(x), S) > ε/4. Thenf(x) /∈ S and

ρ(x, y) > δ for all y ∈ ∂S—this contradicts that ‖Q ◦ f(x)− x‖ < δ.
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Therefore ρ(f(x), S) 6 ε/4, so

‖f ◦Q(x)−Q(x)‖ 6 ‖f ◦Q(x)− f(x)‖+ ‖f(x)−Q ◦ f(x)‖

+‖Q ◦ f(x)− x‖+ ‖x−Q(x)‖

< ε/4 + ε/4 + δ + δ < ε.

Hence Q(x) is an ε-fixed point of f .

Since Schauder’s fixed point theorem implies Brouwer’s fixed point theorem

and follows from MIN, it is in (LLPO,MIN].

3.4.2 An application: Peano’s existence theorem

We give an application of the approximate Schauder fixed point theorem

for uniformly convex spaces (Corollary 74). A standard application of

Schauder’s fixed point theorem is in proving Peano’s Theorem asserting the

existence of solutions to particular differential equations:

Peano’s Theorem Let A be a closed subset of R, let (x0, y0) ∈
A, and let r > 0 be such that if |x− x0| 6 r and |y − y0| 6 r,

then (x, y) ∈ A. Let f : A→ R be continuous, let

M > sup {|f(x, y)| : |x− x0| 6 r, |y − y0| 6 r} ,

and set h = min {r, r/M}. Then the differential equation

y′ = f(x, y), y (x0) = y0 (2)

has a solution y on the interval [x0 − h, x0 + h].

However, since the exact version of Peano’s Theorem implies LLPO (see

[35], which also gives an alternative constructive proof of an approximate

Peano’s Theorem, [9] gives a proof that Peano’s Theorem implies LLPO),

we can only hope to prove an approximate version of Peano’s Theorem.
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There is another, more pressing, problem: Peano’s Theorem asserts the

existence of solutions to particular differential equations in the normed space

C(I), for some interval I, with the supremum norm, but this normed space

is not uniformly convex. To overcome this difficulty, we first approximate

the sup norm with a uniformly convex norm—this relies on being able to

restrict the possible solutions of (2) to a sufficiently friendly subset of C(I).

A solution to the differential equation (2) on an interval I in R is precisely

a fixed point of the mapping U : C(I)→ C(I) given by

U(y) = y0 +

∫ x

x0

f(t, y(t))dt.

The differential equation (2) is said to have approximate solutions on an

interval I if for all ε > 0 there exists a continuous function y : I → R such

that ‖U(y)− y‖ < ε.

To prove a constructive version of Peano’s theorem, we need the following

lemma. A subset S of C(I) is Lipschitz if there exists M > 0 such that for

all y ∈ S and all x1, x2 ∈ I we have

|y(x1)− y(x2)| 6M |x1 − x2|;

that is, M is a Lipschitz constant for each y ∈ S. We call M a Lipschitz

constant for S.

Lemma 79 If S is a bounded Lipschitz subset of C(I), then for each ε > 0

there exists p > 1 such that | ‖y‖ − ‖y‖p| < ε for all y ∈ S.

Proof. Fix ε > 0 and let N be a bound for S and M be a Lipschitz constant

for S. It suffices to choose p > 1 such that |‖y‖−‖y‖p| < ε, where y is given

by

y(x) = max

{
M,

4N

b− a

}(
1− 2

b− a

∣∣∣∣x−
a+ b

2

∣∣∣∣
)
−N.
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This is possible because, in C([−1, 1]),

‖1− |x|‖p =

(∫ 1

−1
|1− |x||pdt

)1/p

=

(
2

∫ 1

0
|1− x|pdt

)1/p

=

(
2

p+ 1

)1/p

−→ 1,

as p→∞.

Theorem 80 Let A ⊂ R2 be closed, (x0, y0) ∈ A◦, and r > 0 be such that

if |x− x0| 6 r, then (x, y) ∈ A. Let f : A→ R be uniformly continuous, let

M > sup {|f(x, y)| : |x− x0| 6 r, |y − y0| 6 r} ,

and let h = min {r, r/M}. Then the differential equation

y′ = f(x, y), y (x0) = y0

has approximate solutions.

Proof. Fix ε > 0, let I = [x0 − h, x0 + h], and set

M = {y ∈ C(I) : |y(t)− y0| 6 r for all t ∈ I} .

Since f is uniformly continuous, U is also uniformly continuous. Define

S = {y ∈M : (‖Uy‖ 6 |y0|+Mh)∧

(∀x1,x2∈I |y(x1)− y(x2)| 6M |x1 − x2|)} .
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Let y ∈M and t ∈ I. Then

|Uy(t)− y0| =

∣∣∣∣
∫ x

x0

f(t, y(t))dt

∣∣∣∣ 6Mh 6 r,

‖Uy‖ =

∣∣∣∣y0 +

∫ x

x0

f(t, y(t))dt

∣∣∣∣ 6 |y0|+Mh, and

|Uy(x1)− Uy(x2)| 6
∣∣∣∣
∫ x2

x1

f(t, y(t))dt

∣∣∣∣
6 M |x1 − x2|.

Hence U mapsM into S. By (a slight variation of) [18, (5.6) pg. 102], S is

compact; and, by Lemma 79, there exists p > 1 such that

|‖y‖ − ‖y‖p| < ε/2,

for all y ∈ S. We can now apply the Schauder fixed point theorem to U |S
to construct a y ∈ S such that ‖Uy − y‖p < ε/2. Then

‖Uy − y‖ < ‖Uy − y‖p + ε/2

< ε/2 + ε/2 = ε,

so y is an ε-fixed point of U .

The above proof readily extends to a system

y′1 = f1(y1, . . . , yn, x)

y′2 = f2(y1, . . . , yn, x)

...

y′n = fn(y1, . . . , yn, x)

of linear ordinary differential equations.
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3.5 Kakutani’s fixed point theorem

In this section we give a constructive treatment of Kakutani’s extension of

Brouwer’s fixed point theorem [68].

Let U be a function from a metric space X into the class P∗(X) of nonempty

subsets of X; U is said to be a set valued mapping on X. We say that U

is convex (compact, closed, etc.) if U(x) is convex (compact, closed, etc.)

for each x ∈ X. A mapping U : X → P∗(X) is said to be sequentially

upper hemi-continuous if for each pair of sequences (xn)n>1, (yn)n>1 in X

converging to points x, y in X respectively, if yn ∈ U (xn) for each n, then

ρ(y, U(x)) = 0; in particular, if U is closed, then y ∈ U(x). If U is closed,

then U is sequentially upper hemi-continuous if and only if the graph

G(U) =
⋃

x∈X
{x} × U(x)

of U is closed. A point x ∈ S such that x ∈ U(x) is called a fixed point of

U . Kakutani’s fixed point theorem is the following.

Kakutani’s fixed point theorem Let S be a compact, convex

subset of Rn and let U : S → P∗(S) be a closed, convex, se-

quentially upper hemi-continuous mapping. Then U has a fixed

point.

If f is sequentially continuous, then U(x) = {f(x)} is sequentially upper

hemi-continuous; this shows that Kakutani’s fixed point theorem is a gener-

alisation of Brouwer’s fixed point theorem, and hence Kakutani’s fixed point

theorem is not constructively valid.

Classically, the Kakutani fixed point theorem is equivalent to the Brouwer

fixed point theorem (in the sense that it is straightforward to prove one

given the other; in reverse mathematics, both theorems are equivalent to

WKL0). The constructive proof of (an approximate) Brouwer fixed point

theorem, for a uniformly continuous function f from [0, 1]n into itself, uses a
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combinatorial argument to show that for all δ, ε > 0 either there exists x, y ∈
[0, 1]n such that ρ(x, y) < δ and ρ(f(x), f(y)) > ε, or we can construct x ∈
[0, 1]n such that ρ(x, f(x)) < ε. Given ε > 0, the former possibility is then

ruled out by using the uniform continuity of f to choose an appropriate δ. It

is clear that f must satisfy some uniform form of continuity for this approach

to work; indeed Wim Veldman has shown that the approximate Brouwer

fixed point theorem for pointwise continuous functions is equivalent to FT∆

[110]. If we are to prove a constructive version of Kakutani’s fixed point

theorem using the constructive approximate Brouwer fixed point theorem,

we must therefore have our set valued mappings satisfy some form of uniform

continuity.

This section is broken up into three parts. The first examines Kakutani’s

original proof from a constructive perspective, and in the second part we

discuss the difficulties of formulating an appropriate notion of uniform con-

tinuity for set valued mappings, and hence a constructive version of the

Kakutani fixed point theorem. We then give our constructive version of

Kakutani’s fixed point theorem in the final part; this result has, classically,

both weaker hypothesis and a weaker conclusion—we only construct approx-

imate fixed points—than the classical version, but is classically equivalent

to the standard formulation.

3.5.1 Kakutani’s proof

Our first question is: what is the constructive content of the standard clas-

sical proofs of Kakutani’s fixed point theorem?

As we saw before, Kakutani’s fixed point theorem implies LLPO; thus any

classical proof of Kakutani’s fixed point theorem must be non-constructive.

On the other hand, Kakutani’s original proof of his theorem only requires

(several applications of) weak König’s lemma, in addition to intuitionistic

logic.

Theorem 81 (WCC) Kakutani’s fixed point theorem follows from WKL.
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Proof. Suppose WKL holds. We give Kakutani’s original proof, adapted

to the unit hypercube. Let U be a sequentially upper hemi-continuous set

valued mapping on [0, 1]n. For each k ∈ N let fk be the affine extension of

a function on

{0, 1/k, . . . , 1}n

which takes values in U(x) for each x in its domain. Since WKL implies

Brouwer’s fixed point theorem, we can construct a sequence (xk)k>1 such

that xk = fk (xk) for each k ∈ N; by WKL we may suppose that (xk)k>1

converges to some point x0 ∈ [0, 1]n. Since LLPO allows us to decide

whether a 6 0 or a > 0 for each a ∈ R, for each k ∈ N there exists s ∈ Sk
such that

xk ∈ {x ∈ [0, 1]n : 0 6 xi − si 6 1/k, 1 6 i 6 n} ≡ {xk1, . . . , xk2n}.

Let λk1, . . . , λ
k
2n (k ∈ N) be such that λki > 0 for each i,

∑2n

i=1 λ
k
i = 1, and

xk =
2k∑

i=1

λki x
k
i .

Set yki = fk(x
k
i ) for each k ∈ N, 1 6 i 6 2k. Then yki ∈ U(xki ) for all i, k and

xk = fk(xk) =
2k∑

i=1

λki y
k
i .

Applying WKL repeatedly, we may assume that for each 1 6 i 6 2n there

exist sequences
(
λki
)
k>1

,
(
yki
)
k>1

such that
(
λki
)
k>1

converges to λ0
i in R

and
(
yki
)
k>1

converges to y0
i in [0, 1]n. Then λ0

i > 0 for each i,
∑2n

i=1 λ
0
i = 1,

and

x0 =

2n∑

i=0

λ0
i y

0
i .

Moreover, xki → x0, yki → y0
i , and yki ∈ U(xki ) for each i; whence, since U

is closed and upper hemi-continuous, y0
i ∈ U(x0) for each i. It now follows
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from the convexity of U that

x0 =

2n∑

i=0

λ0
i y

0
i ∈ U(x0);

that is, x0 is a fixed point of U .

We extend this to a closed, convex, sequentially upper hemi-continuous map-

ping U on an arbitrary convex compact subset S of Rn as follows. Let Q be

the uniformly continuous function from Rn into S which takes a point x of

Rn to the (unique) closest point to x in S; this function exists and is uni-

formly continuous (Lemma 32). We may suppose, without loss of generality,

that S is contained in the unit hypercube. Define a set valued mapping U ′

on the unit hypercube by setting

U ′(x) = U(Q(x)).

It is easy to see that U ′ is closed, convex, and sequentially upper hemi-

continuous; whence, since S is closed and U ′ maps into S, there exists x ∈ S
such that x ∈ U ′(x). Since x = Q(x), x is also a fixed point of U .

Intuition may suggest that the functions (fk)k>1 become closer and closer

to U in some sense, and hence that Kakutani’s proof contains a proof of

the existence of approximate fixed points—a set valued mapping U on a

metric space X has approximate fixed points if for each ε > 0 there exists

x ∈ X such that ρ(x, U(x)) < ε; such an x is called an ε-fixed point of U .

However, in order to construct approximate fixed points, we must be able

to quantify the ‘convergence’ of these affine approximations. Our eventual

solution to finding a constructive Kakutani fixed point theorem is to restrict

our mapping U in such a way as to ensure that for each ε > 0 there exists

an affine function contained in an ε-expansion of the graph of U .
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3.5.2 Continuity for set valued mappings

We are ready to begin our journey toward a constructive Kakutani fixed

point theorem. The constructive treatment of Brouwer’s fixed point theorem

suggests that we take the following route:

(i) we should recast upper sequential hemi-continuity as a pointwise prop-

erty;

(ii) we should further consider a uniform notion of upper sequential hemi-

continuity;

(iii) we should focus on approximate fixed points.

It is also natural to insist that the image of each point be a located set; but,

working constructively, this severely restricts the set valued mappings we

can define. For example, in order to prove one direction of Proposition 83,

we have in mind the function U : [0, 1]→ P∗([0, 1]) given by

U(x) =





{0} x < 1/2

[0, 1] x = 1/2

{1} x > 1/2.

However, U is only defined on the subset [0, 1/2) ∪ {1/2} ∪ (1/2, 1] of [0, 1],

which equals [0, 1] only in the presence of LPO—in fact, this equality is

equivalent to the law of trichotomy. We can overcome this problem by

defining a set valued mapping from its graph: set G to be the subset of

[0, 1]2 given by [(0, 0), (1/2, 0)] ∪ [(1/2, 0), (1/2, 1)] ∪ [(1/2, 1), 1, 1)]—where

[x, y] = {tx+ (1− t)y : t ∈ [0, 1]}—and let U(x) = {y ∈ [0, 1] : (x, y) ∈ G}.

Note that in general U(x) need not be located or even inhabited, but it is

nonempty.

We say that a mapping U : X → P∗(X) is pointwise upper hemi-continuous

if for each x ∈ X and each ε > 0 there exists δ > 0 such that for all y ∈ X,

if ‖x− y‖ < δ, then

U(y) ⊂ (U(x))ε ,
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...

1

1
2

Figure 2: The graph G of U : [0, 1]→ P∗([0, 1]).

where, for a subset S of a metric space X and a positive real number ε,

Sε = {x ∈ X : ∃s∈Sρ(x, s) < ε} .

If U is pointwise upper hemi-continuous, then U is sequentially upper hemi-

continuous. Suppose that U is a pointwise upper hemi-continuous function

and let (xn)n>1, (yn)n>1 be sequences in X converging to points x and y of

X, respectively, such that yn ∈ U (xn) for each n. Fix ε > 0 and let δ > 0

be such that U(z) ⊂ (U(x))ε/2 for all z ∈ B(x, δ). Pick N > 0 such that

ρ(xn, x) < δ and ρ(yn, y) < ε/2 for all n > N . Then for each n > N we have

yn ∈ U(xn) ⊂ (U(x))ε/2,

so

ρ(y, U(x)) 6 ρ(y, yn) + ρ(yn, U(x))

< ε/2 + ε/2 = ε.

Since ε > 0 is arbitrary, ρ(y, U(x)) = 0.

Lemma 82 (WCC+LPO) If U is an upper hemi-continuous mapping on

the unit hypercube [0, 1]n and G(U) is separable, then U(x) is located for
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each x.

Proof. Let (zn)n∈N be a dense sequence in the graph of U , and fix some

z ∈ [0, 1]2n and some r > 0. Using the law of trichotomy, which follows from

LPO plus WCC, we can construct a binary sequence (λN )n∈N such that

λn = 0 ⇒ ∃m∈N(zm ∈ B(z, r) and ρ(x, π1(zm)) <
1

m

λn = 1 ⇒ ∀m∈N(zm /∈ B(z, r) or ρ(x, π1(zm)) >
1

m
.

Applying LPO to (λN )n∈N we have that either λn = 0 for all n in which case

ρ(z, U(x)) 6 r, or there exists n such that λn = 1 and hence ρ(z, U(x)) > r.

Since z, r are arbitrary, it follows that U(x) is located.

Proposition 83 (WCC) The statement

Every sequentially upper hemi-continuous mapping with a sepa-

rable graph is pointwise upper hemi-continuous.

is equivalent to LPO.

Proof. Let U be a sequentially upper hemi-continuous mapping on X, let

((xn, yn))n>1 be a dense sequence in the graph of U , and fix x ∈ X and

ε > 0. Using LPO, construct a binary double sequence (λk,n)k,n>1 such

that

λk,n = 1 ⇔ ρ (x, xn) <
1

k
∧ ρ (yn, U(x)) > ε.

By LPO, either for all k there exists an n ∈ N such that λn,k = 1, or else

there exists k ∈ N such that λk,n = 0 for all n ∈ N. If there exists k ∈ N

such that λk,n = 0 for each n ∈ N, then δ = 1/k satisfies the definition of

pointwise upper hemi-continuity and we are done. Therefore it suffices to

rule out the former case: if for each k there exists n such that λk,n = 1, then

there exist sequences (xn)n>1 , (yn)n>1 in X such that (xn)n>1 converges to

x, and for each n, yn ∈ U (xn) and ρ (yn, U(x)) > ε—a contradiction.

To show the converse consider the function U : [0, 1] → P∗([0, 1]) pictured

in Figure 2. It is straightforward to show that G(U) is closed and hence
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that U is sequentially upper hemi-continuous. Suppose that U is pointwise

upper hemi-continuous and let a be a number close to 0. Let δ > 0 be such

that if y ∈ B(|a|+ 1/2, δ), then

U(y) ⊂ (U(|a|+ 1/2))1/2 .

Either a 6= 0 or |a| < δ. In the latter case, if a 6= 0, then

[0, 1] = U(1/2) ⊂ U(|a|+ 1/2)1/2 = [1/2, 1],

which is absurd. Hence a is in fact equal to 0. Thus the sequential upper

hemi-continuity of f implies

∀a∈R (a = 0 ∨ a 6= 0) ,

which in turn implies LPO.

The natural notion of uniform pointwise upper hemi-continuity seems to be

too strong to be of much interest. In particular, if U , in addition to satisfying

the uniform notion of pointwise upper hemi-continuity, is located, then U

is uniformly continuous , however, is equivalent to the uniform continuity

of U as a function from X to P∗(X) endowed with the standard Hausdorff

metric.

The uniform version of pointwise upper hemi-continuity is not classically

equivalent to the non-uniform version because, for a fixed ε, the δ(x) satis-

fying sequential upper hemi-continuity at x need not vary continuously with

x and may fail to be bounded below by a positive valued continuous func-

tion. Another result of this is that few functions are constructively pointwise

upper hemi-continuous; for instance the (benign) mapping given in the proof

of Proposition 83.

The uniform continuity of U is a significantly stronger property than that of

sequential upper hemi-continuity, and easily leads to an approximate fixed

point theorem of relatively little interest.
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In order to find a more satisfactory constructive version of Kakutani’s fixed

point theorem (preferably classically equivalent to the classical one), we need

to find a notion similar to pointwise sequential upper hemi-continuity, and

with more computational content than sequential upper hemi-continuity,

for which the uniform version is classically equivalent to the non-uniform

version. To that end, we say that a mapping U : X → P∗(X) is locally

approximable if for each x ∈ X and each ε > 0, there exists δ > 0 such that

if y, y′ ∈ B(x, δ), u ∈ U(y), u′ ∈ U(y′), and t ∈ [0, 1], then

ρ ((zt, ut) , G(U)) < ε,

where zt = ty+ (1− t)y′ and ut = tu+ (1− t)u′; note that we do not require

G(U) to be located here: we use ‘ρ(x, S) < ε’ as a shorthand for ‘there exists

s ∈ S such that ρ(x, s) < ε’.

Proposition 84 Every convex, pointwise upper hemi-continuous set valued

mapping on a linear metric space is locally approximable.

Proof. Let X be a linear metric space and let U be a convex, pointwise

upper hemi-continuous set valued mapping on X. Fix x ∈ X and ε > 0,

and let δ ∈ (0, ε/2) be such that U(y) ⊂ (U(x))ε/2 for all y ∈ B(x, δ). Let

y, y′ ∈ B(x, δ), u ∈ U(x), u′ ∈ U(y), and t ∈ [0, 1]; since (U(x))ε/2 is convex,

ut ∈ (U(x))ε/2. Then

ρ (zt, x) 6 max{ρ(x, y), ρ(x, y′)} < δ < ε/2,

so

ρ ((zt, ut) , G(U)) 6 ρ ((zt, ut) , {x} × U(x))

< ρ ((zt, ut) , (x, ut)) + ε/2

= ρ (zt, x) + ε/2

< ε/2 + ε/2 = ε.

Hence U is locally approximable.

178



Above we have negotiated from the sequential upper hemi-continuity of a

set valued mapping to its being locally approximable via the property of

pointwise upper hemi-continuity. By Proposition 83 this requires LPO. It

seems likely that we can prove this (classical) equivalence directly under the

assumption of weaker nonconstructive principles; our next result is a first

attempt at this.

In [62], Ishihara showed that BD-N holds in the classical, intuitionistic,

and recursive models of BISH, and that the statement ‘every sequentially

continuous mapping from a separable metric space is pointwise continuous’

is equivalent, over BISH, to BD-N. The proof of the following uses ideas

from [62].

Proposition 85 (ACω,2) Suppose WKL and BD-N hold. Let U be a con-

vex, sequentially upper hemi-continuous set valued mapping on a separable

metric space. Then U is locally approximable.

Proof. Let (xn)n>1 be a dense sequence in S, and fix x ∈ S and ε > 0.

Define

A = {0} ∪
{
k > 0 : ∃m,n

(
xm, xn ∈ B(x, k−1)∧

∃t∈[0,1]∃u∈U(xm)∃u′∈U(xn)(ρ((zt, ut), G(U)) > ε/2)
)}
,

where zt = txm + (1− t)xn and ut = tu+ (1− t)u′. We show that the set A

is pseudobounded. It then follows from BD-N that there exists M > 0 such

that a < M for all a ∈ A. The definition of A then ensures that δ = 1/M

satisfies the definition of local approximability.

Let (an)n>1 be a nondecreasing sequence in A. Using ACω,2, we construct

a binary sequence (λn)i>1 such that

λn = 0 ⇒ an/i < 1;

λn = 1 ⇒ an/i > 1/2.
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Let u ∈ U(x), and construct sequences (xn)n>1 , (x
′
n)n>1 , (yn)n>1 , (y

′
n)n>1

in S and a sequence (tn)n>1 in [0, 1] as follows. If λn = 0, set xn = x′n = x,

yn = y′n = u, and ti = 0. If λn = 1, then pick xk, xl ∈ B(x, i−1), u ∈
U(xk), u

′ ∈ U(xl), and t ∈ [0, 1] such that ρ((zt, ut), G(U)) > ε, and set

xn = xk, x
′
n = xl, yn = u, y′n = u′, and tn = t. Then (xn)n>1 and (x′n)n>1

converge to x, and, since (an)n>1 is nondecreasing, we may assume by WKL

that there exist y, y′ ∈ S and t ∈ [0, 1] such that (yn)n>1 converges to y,

(y′n)n>1 converges to y′, and (tn)n>1 converges to t. Then, by the sequential

upper hemi-continuity of U , ρ(y, U(x)) = ρ(y′, U(x)) = 0; whence, since

U(x) is convex, ρ(ty + (1− t)y′, U(x)) = 0. Let N > 0 be such that

max
{
ρ((xn, yn), (x, y)), ρ((x′n, y

′
n), (x, y))

}
< ε

for all n > N , and suppose that there exists n > N with λn = 1. Then

ρ((tnxn + (1− tn)x′n, tnyn + (1− tn)y′n), G(U)) > ε,

but

ρ((tnxn + (1− tn)x′n, tnyn + (1− tn)y′n), U(x)) < ε+ ρ((x, z), U(x)) = ε.

This contradiction ensures that λn = 0 for all n > N ; thus A is pseu-

dobounded.

It is unknown whether LLPO implies BD-N over IZF plus DC.

We say that U : X → P∗(X) is approximable if it satisfies the uniform

version of local approximability: for each ε > 0, there exists δ > 0 such that

if x, x′ ∈ X, ‖x− x′‖ < δ, u ∈ U(x), u′ ∈ U(x′), and t ∈ [0, 1], then

ρ ((zt, ut) , G(U)) < ε,

where zt = tx + (1 − t)x′ and ut = tu + (1 − t)u′. Given a function f :

X → X, define Uf : X → P∗(X) by Uf (x) = {f(x)}. If f is continuous

then Uf is locally approximable, and if f is uniformly continuous then Uf
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is approximable.

To each located, locally approximable (resp. approximable) function we can

associate a strongly pointwise (resp. uniformly) continuous predicate P such

that P (x, x′, δ) if and only if for all u ∈ U(x), u′ ∈ U(x′), and t ∈ [0, 1],

ρ ((zt, ut) , G(U)) < ε.

This gives the following result.

Proposition 86 (ACω,2) If the fan theorem for Π0
1 bars holds, then every

locally approximable, located mapping on [0, 1]n is approximable.

Proof. Follows directly from the above characterisation of (local) approx-

imable by continuous predicates and Theorem 28.

Classically every closed, convex, sequentially upper hemi-continuous map-

ping on a convex subset of Rn is approximable. It seems unlikely that every

upper hemi-continuous mapping with a located graph is constructively ap-

proximable, but the one dimensional case is straightforward.

Proposition 87 (CC) If U : [0, 1] → P∗[0, 1] is a closed, convex, sequen-

tially upper hemi-continuous mapping and G(U) is located, then U is ap-

proximable.

Lemma 88 (CC) Let U : [0, 1] → P∗[0, 1] be a closed, convex, sequen-

tially upper hemi-continuous mapping with a located graph. Then U([x, y])

is convex, for all x, y ∈ [0, 1] with x < y.

Proof. Let S = U([x, y]) and suppose that there exists that there exists

r > 0 and t ∈ conhull(S) such that |s − t| > r for all s ∈ S; since G(U)

is located we may assume, without loss of generality, that there exist zx ∈
U(x), zy ∈ U(y) such that zx < t < zy. We inductively construct sequences

(xn)n∈N, (zxn)n∈N , (yn)n∈N, (zyn)n∈N in [0, 1] such that

1. (xn, zxn) , (yn, zyn) ∈ G(U) for each n;
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2. xn 6 xn+1 < yn+1 6 xn;

3. |xn − yn| < (1/2)n|x− y|;

4. zxn < t− r and zyn > t+ r.

We begin the construction by setting x0 = x, y0 = y, zx0 = zx, and zy0 = zy.

Having constructed the first n terms of each sequence, we take a (1/2)n+2

approximation to G(U) which contains both (xn, zxn) and (yn, zyn). By the

one-dimensional case of Sperner’s lemma, which can be proved by a simple

contradiction argument, we can find points
(
xn+1, zxn+1

)
,
(
yn+1, zyn+1

)
in

this approximation which satisfy conditions 1 to 4. This completes the in-

duction. It follows that the shared limit of (xn)n∈N, (yn)n∈N is not convex—

a contradiction. Hence t ∈ S.

Now if t ∈ conhullS, then, since t ∈ S, we can use an argument almost

identical to the first part of the proof to produce sequences of points (xn)n∈N,

(zxn)n∈N, (yn)n∈N, (zyn)n∈N in [0, 1] satisfying 1 to 3 and such that zxn <

t+ 1/n and zyn > t− 1/n. Then t ∈ U(x∞) where x∞ is the shared limit of

(xn)n∈N, (yn)n∈N.

Here then is the proof of Proposition 87:

Proof. For ε > 0, set δ = ε. Let (x, zx), (y, zy) ∈ G(U) with x < y, and

let t ∈ (0, 1); set r = ε −min{t, 1 − t}|x − y|. If B(zt, r) ∩ G(U) is empty,

then U([x, y]) is not convex. This contradiction, and the locatedness of the

graph of U , ensures that B(zt, ε) ∩G(U) is inhabited.

3.5.3 Constructing approximate fixed points

A mapping U is approximable if for each positive ε there exists a positive

δ such that the convex hull of any two points in the graph of U which are

separated by less than δ never strays more than ε from the graph of U ; our

next lemma shows that if U is approximable, then we can generalise this

from any two points of G(U) to any finite subset of G(U). This will allow

us to give a constructive version of Kakutani’s fixed point theorem which is

classically equivalent to the classical version.
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Lemma 89 Let U : X → P∗(X) be an approximable function. Then for

each n > 0 and each ε > 0 there exists δ > 0 such that for all x1, . . . , xn,

u1, . . . , un ∈ X and all t ∈ [0, 1]n, if ui ∈ U(xi) for each i,
∑n

i=1 ti = 1, and

max{‖xi − xj‖ : 1 6 i, j 6 n} < δ,

then

ρ((zt, ut), G(U)) < ε,

where zt =
∑n

i=1 tixi and ut =
∑n

i=1 tiui.

Proof. We proceed by induction; the case n = 1 is trivial. Suppose that we

have shown the result for n = k−1. Let t ∈ [0, 1]k and u1, . . . , uk be as in the

statement of the lemma, and let δ > 0 be such that for all x1, . . . , xk−1 ∈ Xn

and all t ∈ [0, 1]k−1, if ui ∈ U(xi) for each i,
∑k−1

i=1 ti = 1, and

max{‖xi − xj‖ : 1 6 i, j 6 k − 1} < δ,

then ρ((zt, ut), G(U)) < ε/2. Let t′ be the k − 1 dimensional vector with

i-th component ti/
∑k−1

j=1 tj . Then

ρ ((zt′ , ut′) , G(U)) < ε/2.

Picking (x, u) ∈ G(U) with ρ ((zt′ , ut′) , (x, u)) < ε/2 and t ∈ [0, 1] such that

ρ((zt, ut), (tx+ (1− t)xn, tu+ (1− t)un)) < ε/2, we have that

ρ ((zt, ut) , G(U)) < ρ((zt, ut), (tx+ (1− t)xn, tu+ (1− t)un)) + ε/2

< ε/2 + ε/2 = ε.

This completes the induction.

Theorem 90 Let S be a totally bounded subset of Rn with convex closure

and let U be an approximable set valued mapping on S. Then for each ε > 0

there exists x ∈ S such that ρ(x, U(x)) < ε.
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Proof. Fix ε > 0 and let δ > 0 be such that for all x1, . . . , xk ∈ Xn and all

t ∈ [0, 1]n, if ui ∈ U(xi) for each i,
∑n

i=1 ti = 1, and max{‖xi − xj‖ : 1 6

i, j 6 k} < δ, then

ρ((zt, ut), G(U)) < ε/3.

Let S′ = {x1, . . . , xl} be a discrete δ-approximation to S. For each xi ∈ S′,
pick ui ∈ U(xi); let g be the uniformly continuous affine function on S that

takes the value ui at xi for each 1 6 i 6 l. By the approximate Brouwer

fixed point theorem, there exists y ∈ S such that ρ(y, g(y)) < ε/3. By our

choice of δ, there exists (x, u) ∈ G(U) such that ρ((y, g(y)), (x, u)) < ε/3.

Therefore

ρ(x, u) 6 ρ(x, y) + ρ(y, g(y)) + ρ(g(y), u)

< ε/3 + ε/3 + ε/3 = ε,

so ρ(x, U(x)) < ε.

To see that Theorem 90 is classically equivalent to the classical theorem

let U : S → P∗(S) be as in the classical Kakutani fixed point theorem;

then, as previously shown, U is approximable under classical logic. Using

the above theorem (and countable choice), construct a sequence (xn)n>1 in

X such that ρ(xn, U(xn)) < 1/n for each n. Since X is compact, we may

assume, by WKL, that (xn)n>1 converges to some x ∈ X. For each n, pick

yn ∈ U(xn) such that ρ(xn, yn) < 1/n. Then yn → x and so, since U is

closed and sequential upper hemi-continuous, x ∈ U(x).

The following diagram summarises this classical proof; we suppress the use

of ACω,2.
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...

Sequential UH-Cts Pointwise UH-Cts Locally approximable Approximable

LPO

FT
Π0
1

WKL + BD-N
Approximate
-fixed points

Fixed point

LLPO

In particular, we feel that this gives a conceptually more straightforward

classical proof of the Kakutani fixed point theorem than the standard classi-

cal proofs: that sequential upper hemi-continuity classically implies approx-

imability is quite intuitive, and that approximable mappings have approxi-

mate fixed points is very natural in light of Brouwer’s fixed point theorem;

it then just remains to apply MIN, which roughly says that any ‘continuous

problem’ on a compact space which has approximate solutions has an exact

solution.

Our constructive version of Kakutani’s fixed point theorem is clearly moti-

vated by trying to reduce to Brouwer’s fixed point theorem. In turn, the

approximate Brouwer’s fixed point theorem is normally proved using finite

combinatorics. An alternative approach to giving an approximate Kakutani

fixed point theorem would be to apply finite combinatorics to data coming

directly from our set valued mapping.

Classically any ε approximation to the graph of a closed, convex, sequentially

upper hemi-continuous mapping must contain an ε-fixed point. Can we

prove an approximate version of Kakutani’s fixed point theorem for convex,

sequentially upper hemi-continuous mapping U? perhaps by taking an ε-

approximation to the graph of U and applying combinatorics in a similar

manner to the proof of Brouwer’s fixed point theorem. The one dimensional

case of this version of Kakutani’s fixed point theorem follows directly from

Proposition 87 and Theorem 90.
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Proposition 91 Let U be convex, sequentially upper hemi-continuous set

valued mapping on [0, 1]. Then for each ε > 0, there exists x ∈ [0, 1] such

that ρ(x, U(x)) < ε.

3.5.4 An extension

Theorem 90 gives a very simple and intuitive constructive version of Kaku-

tani’s fixed point theorem. An examination of the proof shows that we in

fact only require our set valued mapping U to satisfy the following condition,

weaker than approximability and often much easier to verify. A set valued

mapping U on a metric space X is said to be weakly approximable if for each

ε > 0, there exist

I a positive real number δ < ε,

I a δ/2-approximation S of X, and

I a function V from S into P∗X with G(V ) ⊂ G(U),

such that if x, x′ ∈ S, ‖x−x′‖ < δ, u ∈ V (x), u′ ∈ V (x′), and t ∈ [0, 1], then

ρ ((zt, ut) , G(U)) < ε.

If V can be chosen independent of ε, in which case S is a dense subset of

X, then U is said to be weakly approximable with respect to V .

The proofs of Lemma 89 and Theorem 90 readily extend to give the following

result.

Theorem 92 Let S be a totally bounded subset of Rn with convex closure

and let U be a weakly approximable set valued mapping on S. Then for each

ε > 0 there exists x ∈ S such that ρ(x, U(x)) < ε.
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Chapter 4

Constructing economic equilibria

4 Constructing economic equilibria

4.1 The minimax theorem

In [68], Kakutani presented his fixed point theorem and used it to give a

simple proof of von Neumann’s minimax theorem, which guarantees the

existence of saddle points for particular functions:

Theorem 93 Let f : [0, 1]n × [0, 1]m → R be a continuous function such

that for each x0, y0 ∈ [0, 1] and each real number r the sets

{y ∈ L : f(x0, y) 6 r} and

{x ∈ L : f(x, y0) > r}

are convex. Then

sup
x∈[0,1]

inf
y∈[0,1]

f(x, y) = inf
y∈[0,1]

sup
x∈[0,1]

f(x, y).

Classically the suprema and infima are attained, and so can be replaced by

minimum and maximum—hence the name ‘minimax’ theorem. We will give

a constructive proof of this ‘infisup’ theorem using Theorem 92.

Throughout this section we fix a uniformly continuous function f : [0, 1]n ×
[0, 1]m → R satisfying the conditions of Theorem 93, and for each ε > 0 we
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set

Vε =

{
(x0, y0) ∈ [0, 1]n × [0, 1]m : f(x0, y0) 6 inf

y∈[0,1]
f(x0, y) + ε

}
;

Wε =

{
(x0, y0) ∈ [0, 1]n × [0, 1]m : f(x0, y0) > sup

x∈[0,1]
f(x, y0)− ε

}
.

In order to prove the minimax theorem, we extend, in the obvious way,

the definition of approximable, weakly approximable with respect to, and

weakly approximable to functions which take points from a metric space X

to subsets of a second metric space Y ; we call such a function a set valued

mapping from X into Y . We associate Vε and Wε with the set valued

mappings given by

Vε(x) = {y ∈ [0, 1]n : (x, y) ∈ V } and Wε(y) = {x ∈ [0, 1]n : (y, x) ∈W};

note that Vε,Wε are convex valued. Let Ui be a set valued mapping from

Xi into Yi (i = 1, 2). The product of U1 and U2, written U1 × U2, is the set

valued mapping from X1 ×X2 to Y1 × Y2 given by

U1 × U2(x1, x2) = U1(x1)× U2(x2).

We omit the straightforward proof of the next lemma.

Lemma 94 Let Ui be a set valued mapping from Xi into Yi (i = 1, 2). If

U1, U2 are (weakly) approximable, then U1 × U2 is (weakly) approximable,

and if U1, U2 are weakly approximable with respect to V1, V2 respectively,

then U1 × U2 is weakly approximable with respect to V1 × V2.

Lemma 95 For each ε > 0, Vε is weakly approximable with respect to Vε/2

and Wε is weakly approximable with respect to Wε/2.

Proof. We only give the proof for Vε; the proof for Wε is entirely analogous.

Since f is uniformly continuous, there exists δ > 0 such that (Vε/2)δ is

contained in Vε. Let x, x′ be points of [0, 1]n such that ‖x − x′‖ < δ and

fix y, y′ such that (x, y), (x′, y′) ∈ Vε/2. Then (x, y), (x, y) ∈ Vε, where
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x = (x + x′)/2. Since Vε(x) is convex valued, ty + (1 − t)y′ ∈ Vε for each

t ∈ [0, 1]; whence

ρ((zt,ut), G(u)) 6 ρ((zt,ut), {x} × Vε(x))

= ρ(tx+ (1− t)x′, x) < δ.

Since δ can be chosen to be arbitrarily small, this completes the proof.

We now have the proof of Theorem 93:

Proof. Let f : [0, 1]× [0, 1]→ R be as in the statement of the theorem. It

is easy to see that

sup
x∈[0,1]

inf
y∈[0,1]

f(x, y) 6 inf
y∈[0,1]

sup
x∈[0,1]

f(x, y).

Fix ε > 0 and let δ > 0 be such that ‖f(x, y) − f(x′, y′)‖ < ε/4 whenever

‖(x, y)− (x′, y′)‖ < δ. By Lemmas 94 and 95 the set valued mapping U on

[0, 1]n+m given by

U = Wε/2 × Vε/2

is approximable with respect to Wε/4 × Vε/4. By Theorem 92, there exists

(x0, y0) ∈ [0, 1]n+m such that ρ((x0, y0), U(x0, y0)) < δ. It follows from the

definition of U and our choice of δ, that

f(x0, y0) < inf
y∈[0,1]

f(x0, y) + ε, and

f(x0, y0) > sup
x∈[0,1]

f(x, y0)− ε.

Hence

inf
y∈[0,1]

sup
x∈[0,1]

f(x, y) 6 sup
x∈[0,1]

f(x0, y0)

< f(x0, y0) + ε

< inf
y∈[0,1]

f(x0, y) + 2ε

6 sup
x∈[0,1]

inf
y∈[0,1]

f(x, y) + 2ε.
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Since ε > 0 is arbitrary, this completes the proof.
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4.2 Walras’s existence theorem

In [105] Yasuhito Tanaka shows that Walras’s existence theorem implies

LLPO—he essentially gives a translation of the standard Brouwerian coun-

terexample for Brouwer’s fixed point theorem—it follows that Walras’s exis-

tence theorem does not admit a constructive proof. We give a constructive

proof of an approximate version of Walras’s existence theorem from which

the full theorem can be recovered with an application of MIN. We then

push Uzawa’s equivalence theorem to the level of approximate solutions,

before considering economies with at most one equilibrium.

Consider an economy E with n + 1 commodities, a set of price vectors P ,

and excess demand functions f0, . . . , fn from P into R; we associate E with

the set {f0, . . . , fn}. For p ∈ P , we interpret fi(p) as the excess demand

for commodity i when the price p prevails. If fi(p) is negative, then there

is a surplus of commodity i, and if fi(p) is positive, there is a deficit of

commodity i. An equilibrium of E is a price vector p ∈ P such that

fi(p) 6 0 (0 6 i 6 n).

Given an economy E, we are interested in finding an equilibrium of E.

A fundamental result of equilibrium theory is Walras’s existence theorem,

which gives a sufficient condition for the existence of an equilibrium. For

simplicity, we set P to be the regular n-simplex

∆n =
{

(p0, . . . , pn) :
∑

pk = 1
}

with the metric ρ inherited from Rn. Walras’s existence theorem can be

stated as follows.

Theorem Let P be the regular n-simplex and let f0, . . . , fn be

continuous real valued functions on P which satisfy Walras’s

Law : for all p ∈ P

p0f0(p) + · · ·+ pnfn(p) = 0.
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Then there exists p ∈ P such that

1. fi(p) 6 0 for each 0 6 i 6 n;

2. if pi > 0, then fi(p) = 0.

The standard proof of Walras’s existence theorem involves an application of

Brouwer’s fixed point theorem to a cleverly defined function ϕ from P into

itself. The fixed point of ϕ is then shown to be an equilibrium of the economy.

Since Brouwer’s fixed point theorem implies LLPO, the standard proof of

Walras’s existence theorem is nonconstructive. It is then natural to ask:

Is the Walras existence theorem nonconstructive? The answer, suggested

by Uzawa’s equivalence theorem—which states that Brouwer’s fixed point

theorem and Walras’s equivalence theorem are classically equivalent—and

proven by Yasuhito Tanaka in [105], is that Walras’s existence theorem also

implies LLPO and therefore does not admit a constructive proof.

The body of this section is broken up into two parts. In the first we prove,

under the assumptions of Walras’s existence theorem, the existence of ap-

proximate equilibriums: an economy E is said to have approximate equilib-

riums if for each ε > 0, there exists p ∈ P such that fi(p) 6 ε for each i.

The second section gives a version of Uzawa’s equivalence theorem at the

level of computational content, and then considers economies with at most

one equilibrium.

4.2.1 A constructive Walras existence theorem

Our constructive version of the Walras existence theorem is

Proposition 96 Let P be the regular n-simplex and let f0, . . . , fn be uni-

formly continuous real valued functions on P which satisfy Walras’s Law.

Then for each R, ε > 0, there exists p ∈ P such that

1. fi(p) 6 ε for each 0 6 i 6 n;
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2. if pi > R, then |fi(p)| < ε.

We call this the approximate Walras existence axiom.

For the remainder of this section, let P be the regular n-simplex, let f0, . . . , fn

be uniformly continuous real valued functions on P which satisfy Walras’s

Law, and fix ε > 0. Since P ×{0, . . . , n} is compact and each fi is uniformly

continuous,

M = sup {fi(p) : 0 6 i 6 n, p ∈ P}+ 1/4

exists. For each i let

vi(p) = pi + max {0, fi(p)− ε/2n} ;

then vi(p) > pi if and only if fi(p) > ε/2n. Define uniformly continuous real

valued functions ϕ0, . . . , ϕn on P by

ϕi = λ−1vi(p),

where50

λ =
∑

vk(p).

Then ϕ(p) = (ϕ0, . . . , ϕn) is a uniformly continuous function from P into

itself: for each p, ϕi(p) = λ−1vi(p) > 0 and

∑
ϕk(p) =

∑
λ−1vk(p) = λ−1

∑
vk(p) = λ−1λ = 1.

Before proving Proposition 96 we require a number of lemmas.

Lemma 97 If there exists i such that fi(p) > R > ε/2n, then λ > 1 + (R−
ε/2n).

50Throughout this section summands are over {0, . . . , n} unless otherwise stated, and
have index k.
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Proof. Suppose that fi(p) > R > ε/2n. Then

λ =
∑

vk(p)

=
∑

pk +
∑

max {0, fk(p)− ε/2n}

> 1 + (fi(p)− ε/2n) > 1 + (R− ε/2n).

The next lemma and its successor are intimately related to the first and

second part, respectively, of the conclusion of Proposition 96.

Lemma 98 Let p ∈ P . If ε ∈ (0, 1) and

ρ(p, ϕ(p)) < r =
ε2

2(ε+ 2)(2Mn+ ε)
,

then fi(p) 6 ε for each i.

Proof. We have that
∣∣pi − λ−1vi(p)

∣∣ < r for each i, so

vi(p) < λ(pi + r).

Suppose that there exists k ∈ {0, . . . , n} such that fk(p) > ε. Then λ >

1 + ε/2. Write {0, . . . , n} as the disjoint union of two sets P and Q such

that

i ∈ P ⇒ pi >

(
ε+ 2

ε

)
r;

i ∈ Q ⇒ pi < 2

(
ε+ 2

ε

)
r.

Since ε < 1 and M > 1/4, we have that ε−1(ε + 2)r < 1/(n + 1), so P is

inhabited. If i ∈ P , then

vi(p) > λ(pi − r) > (1 + ε/2)(pi − r) > pi,
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by our choice of r. Hence

∑
pifi(p) =

∑

i∈P
pifi(p) +

∑

i∈Q
pifi(p)

>

(∑

i∈P
pi

)
ε/2n− 2

(
ε+ 2

ε

)
rnM

>

(
1− 2n

(
ε+ 2

ε

)
r

)
ε/2n− 2

(
ε+ 2

ε

)
rnM = 0,

by our choice of r. This contradiction of Walras’s law ensures that fi(p) 6 ε

for each i.

Lemma 99 Let p ∈ P . If

ρ(p, ϕ(p)) < r =
ε2

M(ε+ 2n)
,

then |pifi(p)| 6 ε for each i.

Proof. Suppose that pifi(p) > ε/n for some i. Then fi(p) > ε/n, so

λ > 1 + ε/2n. If pk > ε−1(ε+ 2n)r, then

vi(p) > λ (pi − r) > (1 + ε/2n)(pk − r) > pk,

by our choice of r; whence fk(p) > 0. Then

∑
pkfk(p) = pifi(p) +

∑

k 6=i
pkfk(p)

> pifi(p)−Mn

(
ε+ 2n

ε

)
r

> ε/n−Mn

(
ε+ n

ε

)
r = 0,

again by our choice of r. It follows from this contradiction that pifi(p) 6 ε/n

for each i.
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Now suppose that pifi(p) < −ε. Then

∑
pifi(p) = pifi(p) +

∑

k 6=i
pkfk(p) < −ε+ n(ε/n) = 0,

which is absurd. Hence pifi(p) > −ε for each i, so |pifi(p)| 6 ε.

We now have the proof of Proposition 96:

Proof. Fix R, ε ∈ (0, 1) and let

r = min

{
ε2R2

M(εR+ 2n)
,

ε2

2(ε+ 4)(4Mn+ ε)

}
.

Using the approximate Brouwer fixed point theorem, construct p ∈ P such

that ρ(p, ϕ(p)) < r. Then for each i we have that fi(p) 6 ε/2 < ε and

|pifi(p)| < εR, by Lemma 98 and Lemma 99. Suppose that pi > R. Then

fi(p) > −
εR

pi
> −εR

R
= −ε;

whence |fi(p)| < ε.

With an application of MIN we can recover the full classical version of

Walras’s existence theorem for economies with uniformly continuous demand

functions.

Note that proving, using MIN, the full classical version of Walras’s exis-

tence theorem from Proposition 96 only requires the first condition of that

proposition. However, condition 2 of Proposition 96 is vital for proving,

in the next section, a version of Uzawa’s equivalence theorem for the ap-

proximate versions of Brouwer’s fixed point theorem and Walras’s existence

theorem.

4.2.2 Uzawa’s equivalence theorem

In [105] Yasuhito Tanaka states that the Uzawa equivalence theorem is non-

constructive, when what he actually shows is that Walras’s existence the-
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orem is nonconstructive. In fact, the standard proof of the equivalence of

Walras’s existence theorem and Brouwer’s fixed point theorem is essentially

constructive; see [109]. Uzawa’s equivalence theorem can be more infor-

matively stated as follows; we use E to denote the set of economies with

uniformly continuous excess demand functions which satisfy Walras’s law,

and C(P ) to denote the set of uniformly continuous functions from P into

itself.

Theorem 100 There exist mappings U : E → C(P ) and V : C(P )→ E such

that

1. for each E in E, p ∈ P is a fixed point of U(E) if and only if p is an

equilibrium of E;

2. for each ϕ in C(P ), p ∈ P is an equilibrium of V (ϕ) if and only if p

is a fixed point of ϕ.

Proof. We sketch Uzawa’s original proof [109]. For an economy E and a

price vector p we set

U(E)(p) =
v(p)∑
vk(p)

,

where vi(p) = pi + max {0, fi(p)}. If p is a fixed point of U(E), then vi(p) =

λpi for each i, where

λ =
∑

vk(p).

The assumption that fi(p) > 0 for some i implies that λ > 1, which leads

to a contradiction of Walras’s law.

Now let ϕ be a continuous function from P into itself and define an economy

V (ϕ) by setting

fi(p) = ϕi(p)− piµ(p),

where

µ(p) =

∑
pkϕk(p)∑
p2
i

;
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it is easily checked that f0, . . . , fn satisfy Walras’s law. Let p be an equilib-

rium of V (ϕ): for each i

ϕi(p) 6 piµ(p)

with equality if pi > 0. Suppose that ϕi(p) 6= piµ(p). Then ¬ (pi > 0)

implies that pi = 0, so

0 6 ϕi(p) 6 piµ(p) = 0;

whence ϕi(p) = piµ(p), which is absurd. It follows that ϕi(p) = piµ(p) for

each i. Summing over all i gives that µ(p) = 1, and therefore ϕi(p) = pi for

each i.

Corollary 101 Brouwer’s fixed point theorem and Walras’s existence the-

orem are equivalent.

Corollary 102 Walras’s existence theorem is in (LLPO,MIN].

Does Uzawa’s equivalence theorem also hold with Walras’s existence theo-

rem and Brouwer’s fixed point theorem replaced by their approximate (and

constructively valid) forms? The next theorem answers this question in the

affirmative.

Theorem 103 The approximate Brouwer fixed point theorem and the ap-

proximate Walras existence theorem (Proposition 96) are equivalent.

Proof. In the proof of Proposition 96 it is shown that the approximate

Brouwer fixed point theorem implies the approximate Walras existence the-

orem. For the converse, let ϕ be a uniformly continuous function from P

into P , let ε ∈ (0, 1), and let f0, . . . , fn be the excess demand functions of

V (ϕ):

fi(p) = ϕi(p)− piµ(p),

where

µ(p) =

∑
piϕi(p)∑
p2
i

.
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Let

M = sup {µ(p) : p ∈ P} ,

and set r = ε2/2n. By the approximate Walras existence theorem there

exists p ∈ P such that fi(p) 6 r/(n+1) for each i, and if pi > r/(2M(n+1)),

then

0 6 ϕi(p) 6 piµ(p) + r/(n+ 1).

Either pi < r/(M(n + 1)) or pi > r/(2M(n + 1)). In the the former case

piµ(p) + r(n+ 1) < ε, so

|pi − ϕi(p)| < ε,

piµ(p) < r/(n+ 1),

|ϕi(p)− piµ(p)| < r/(n+ 1).

On the other hand, if pi > r/(2M(n+ 1)), then |fi(p)| < r/(n+ 1) and once

again |ϕi(p)− piµ(p)| < r/(n+ 1). Summing over all i we have

|1− µ(p)| =
∣∣∣
∑

ϕk(p)−
∑

pkµ(p)
∣∣∣

6
∑
|ϕk(p)− pkµ(p)| < r.

Hence

(1− r)
∑

p2
i <

∑
pkϕk(p) < (1 + r)

∑
p2
k

and

ϕi(p) 6 piµ(p) + r/(n+ 1) < pi(1 + r) + r/(n+ 1) < pi + 2r 6 pi + ε.
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Now suppose that there exists i such that ϕi(p) < pi − ε. Then pi > ε and

∑
pkϕk(p) = piϕi(p) +

∑

k 6=i
pkϕk(p)

< pi(pi − ε) +
∑

k 6=i
pk

< p2
i − ε2 +

∑

k 6=i
pk (pk + δ)

=
(∑

p2
k

)
+ 2nr − ε2 6 (1− r)

∑
p2
k

—a contradiction. Thus ϕi(p) > pi − ε for each i, so |pi − ϕi(p)| 6 ε. Since

all norms on Rn are equivalent, this completes the proof.

Suppose that ACω,2 holds. Then, since Brouwer’s fixed point theorem and

Walras’s existence theorem both

a) imply LLPO, and

b) are equivalent to their approximate versions in the presence of LLPO,

the Uzawa equivalence theorem (Corollary 101) follows directly51 from The-

orem 103.

When trying to produce an exact constructive version of a nonconstructive

result a natural additional hypothesis to add is that any exact solution is

unique in a computationally meaningful way. A function ϕ from P into P

is said to have at most one fixed point if for all distinct p, p′ ∈ P either

ρ (p, ϕ(p)) > 0 or ρ
(
p′, ϕ

(
p′
))
> 0.

We say that an economy E has at most one equilibrium if for all distinct

p, p′ ∈ P either

max {fi(p) : 0 6 i 6 n} > 0 or max
{
fi
(
p′
)

: 0 6 i 6 n
}
> 0.

51Though, in order to avoid a circular argument we must appeal to Tanaka’s direct
proof that Walras’s existence theorem implies LLPO, rather than to Corollary 102.
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In [110], Veldman showed that Brouwer’s fixed point theorem for func-

tions with at most one fixed point is equivalent, under countable choice,

to Brouwer’s fan theorem for decidable bars. Using Theorems 100 and 103

we can extend this result to economies with at most one equilibrium.

In order to do this we must recall the function U from Theorem 100 and the

approximations to U used in the proof of Proposition 96: for an economy

E, a price vector p, and a positive real number δ we set

U(E)(p) =
v(p)∑
vk(p)

,

Uδ(E)(p) =
vδ(p)∑
vδ,k(p)

,

where vi(p) = pi + max{0, fi(p)} and vδ,i(p) = max {0, fi(p)− δ}.

Lemma 104 The functions Uδ converge pointwise to U as δ tends to zero.

Proof. Fix ε > 0, let M = sup {vi(p) : 0 6 i 6 n, p ∈ P}, and let

δ =
ε

2M(n+ 1) + 1
.

By the definitions of vi and vδ,i we have

|vi(p)− vδ,i(p)| < δ,
∣∣λ− λ′

∣∣ < (n+ 1)δ,

where

λ =
∑

vk(p) and λ̃ =
∑

vδ,k.
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Note that λ 6 1 +M(n+ 1). Then, for each E ∈ E and each p ∈ P ,

|Ui(E)(p)− Uδ,i(E)(p)| =
∣∣∣λ−1vi(p)− λ̃−1vδ,i(p)

∣∣∣

=
(
λλ̃
)−1 ∣∣∣λ̃vi(p)− λvδ,i(p)

∣∣∣

6
∣∣∣λ̃vi(p)− λvi(p)

∣∣∣+ |λvi(p)− λvδ,i(p)|

=
∣∣∣λ− λ̃

∣∣∣ |vi(p)|+ λ |vi(p)− vδ,i(p)|

< (n+ 1)δM + (1 +M(n+ 1))δ = ε,

by our choice of δ.

Theorem 105 (CC) The statement

Every economy on P with uniformly continuous excess demand

functions which satisfies Walras’s law and which has at most one

equilibrium has an equilibrium.

is equivalent to FT∆.

Proof. Let E be an economy with uniformly continuous excess demand

functions f0, . . . , fn, let ϕ be a uniformly continuous function from P into

P , and let U, V be the functions from Theorem 100. The proof of Theorem

103 taken together with Lemma 104 establishes the following.

a) For each ε > 0 there exists δ > 0 such that if fi(p) 6 δ for each i, then

ρ(p, U(E)(p)) < ε.

b) For each δ > 0 there exists ε > 0 such that if ρ(p, ϕ(p)) < ε, then

V (ϕ)i(p) 6 δ for each i.

The contrapositives of a) and b) together with Theorem 100 show that to

each economy with at most one equilibrium we can associate a function

from P into itself with at most one fixed point, and to each function from

P into P with at most one fixed point we can associate an economy with at

most one equilibrium. The result now follows from the equivalence of FT∆

with Brouwer’s fixed point theorem for functions with at most one zero (see

[110]).
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4.3 McKenzie’s theorem

A competitive equilibrium of an economy consists of a price vector p ∈ RN ,

points ξ1, . . . , ξi ∈ RN , and a vector η in the aggregate production set

Y = Y1 + · · ·+ Yn,

satisfying

E1 ξi ∈ Di(p) for each 1 6 i 6 m.

E2 p · y 6 p · η = 0 for all y ∈ Y .

E3
∑m

i=1 ξi = η.

An economy is said to have approximate competitive equilibria if for all ε > 0

there exist a price vector p ∈ RN , points ξ1, . . . , ξi ∈ RN , and a vector η

satisfying E1,E3, and

AE p · η > −ε.

Let Fi denote the demand function on (Xi,<i). A subset Y of a normed

space is said to be a convex cone if λy ∈ Y and y+y′ ∈ Y whenever y, y′ ∈ Y
and λ > 0. The convex conic closure cone(Y ) of Y is the smallest convex

cone containing Y ; that is,

cone(S) = {r(tx+ (1− t)y) : r > 0, t ∈ [0, 1], x, y ∈ S}.

We use S◦ to denote the interior of a subset S of a metric space.

We can now state McKenzie’s theorem on the existence of competitive equi-

libria.

McKenzie’s Theorem

Suppose that

(i) each Xi is compact and convex;
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(ii) each <i is continuous and strictly convex;

(iii) (Xi ∩ Y )◦ is nonempty for each i;

(iv) Y is a closed convex cone;

(v) Y ∩ {(x1, . . . , xN ) : xi > 0 for each i} = {0}; and

(vi) for each p ∈ RN and each i, if
∑m

i=1 Fi(p) ∈ Y , then there

exists xi ∈ Xi such that xi �i Fi(p).

Then there exists a competitive equilibrium.

The standard proofs of McKenzie’s theorem all contain seemingly necessary

applications of Brouwer’s fixed point (often in the guise of Kakutani’s fixed

point theorem). Since the construction of exact fixed points is not possible—

even with strong assumptions on the function, like the uniqueness of any

fixed point [89, 110]—it seems unlikely that a constructive proof of the

existence of exact competitive equilibria is possible under any economically

reasonable assumptions.

It may seem that given Theorem 43 and the approximate version of Brouwer’s

fixed point theorem, that all the hard work for giving a computational ver-

sion of McKenzie’s theorem has already been done. This is not the case:

much care and attention must be given to the construction of the, family, of

set valued mappings to which we will apply Kakutani’s fixed point theorem.

4.3.1 Constructing competitive equilibria

Our constructive version of McKenzie’s theorem is the following.

Theorem 106 Suppose that

(i) each Xi is compact and convex;

(ii) each <i is continuous and uniformly rotund;

(iii) (Xi ∩ Y )◦ is inhabited for each i;
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(iv) Y is a located closed convex cone;

(v) Y ∩ {(x1, . . . , xN ) : xi > 0 for each i} = {0}; and

(vi) for each p ∈ RN and each i, if
∑m

i=1 Fi(p) ∈ Y , then there exists

xi ∈ Xi such that xi �i Fi(p).

Then there are approximate competitive equilibria.

Our proof follows the standard classical proof via Kakutani’s fixed point

theorem (see [86]) as closely as possible; typical of constructive mathematics,

it has a distinctly geometric character. The polar of a subset S of RN is the

set

Spol =
{
p ∈ RN : p · x 6 0 for all x ∈ S

}
.

It follows directly from the definition that two sets S, T ⊂ RN have the same

polar if and only if they have the same convex conic closure. Classically, a

little further work shows that

(*) the polar of the polar of a set is equal to its convex conic

closure,

but this is not the case in our intuitionistic setting as the following Brouw-

erian counterexample shows.

Given a proposition P , let S be the set

S = {(0, 1)} ∪ {x : x = (1/2, 0) ∧ P} ∪ {x : x = (1, 0) ∧ ¬P}.

Then (1, 1) ∈ (Spol)pol. Suppose that (1, 1) ∈ cone(S); that is, suppose there

exist r > 0, t ∈ [0, 1], and x, y ∈ S such that

(1, 1) = r(tx+ (1− t)y).

Without loss of generality, we may suppose x = (0, 1). Then either r > 2,

in which case y must be (1/2, 0) and so P holds, or r < 3 and, similarly, ¬P
must hold. Hence (*) implies the law of excluded middle.
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The above counterexample is rather contrived and seems to have little to

do with real mathematics or economics, but seems merely to indicate how

one would show (*) to be independent of some formalisation of constructive

mathematics. It is, however, relevant: since our framework encapsulates

what is computable in a strict, though ill-defined, way, this example shows

that we cannot compute the information implicit in “x ∈ cone(S)”—that

there exists r > 0, t ∈ [0, 1], y, y′ ∈ S such that x = r(ty + (1− t)y′)—given

only the information that for all z, if z · p 6 0 for all p ∈ S, then x · z = 0.

Succinctly, belonging to the conic closure of a set gives more computational

information than belonging to the polar of the polar of that set, and when it

comes to computational information we cannot get something for nothing!

The above failure of (*) results from us having a poor handle on the set S.

The sets we deal with in practice are generally more well behaved, and (*)

can be proved, constructively, for a large class of sets. The following result

meets our needs.

Proposition 107 Let S be a located closed convex cone in RN . Then the

polar of the polar of S equals S.

Proof. By definition x ∈ (Spol)pol if and only if

⋂

s∈S
{z ∈ RN : z · s 6 0} = Spol ⊂ {x}pol.

The assumption that ρ(x, S) > 0 would contradict the above equation: let

y be the closest point to x in S, this exists by Theorem 6 of [30]. Since S is

a closed convex cone, y − x ∈ Spol, but x − y /∈ {x}pol. Hence ρ(x, S) = 0,

and, since S is closed, x ∈ S. The converse is straightforward.

For each i we fix ξi ∈ (Xi ∩ Y )◦ and let ξ =
∑m

i=1 ξi; without loss of gen-

erality, each term of ξ is nonzero. The proof of Theorem 106 proceeds by

an application of a constructively valid version of Kakutani’s fixed point

theorem to the set

P =
{

p ∈ Y pol : p · ξ = −1
}
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of normalised price vectors. First, however, we require a number of lemmas.

For the remainder of the section we assume that the hypothesis of Theorem

106 hold.

Lemma 108 If y ∈ Y ◦, then p ·y < 0 for all nonzero p ∈ Y pol. Moreover,

sup{p · y : p ∈ Y pol, ‖p‖ = 1} < 0.

Proof. Let p be a nonzero element of Y pol; pick 1 6 i 6 N such that

pi 6= 0, and fix r > 0 such that B(y, r) ⊂ Y . Then

y′ ≡ y + (sign(pi)r)ei ∈ Y,

where ei is the ith basis vector. Hence

p · y < p · y + |rpi| = p · y′ 6 0.

If ‖p‖ = 1, then we may suppose that |pi| > 1/2
√
N ; thus p · y < −|rpi| <

−r/2
√
N .

Let S be a subset of a metric space X. The complement of S is

∼S = {x ∈ X : x 6= s for all s ∈ S}.

If S is located, then the apartness complement of S is the set

−S = {x ∈ X : ρ(x, S) > 0}.

Lemma 109 For each i the demand function Fi for Xi maps into ∼(Y ◦).

Proof. Suppose that F (p) ∈ Y ◦. Then, by Lemma 108, p ·F (p) < 0, which

contradicts Theorem 43.

We cannot assert that the (inhabited) intersection of two totally bounded

sets is totally bounded—in general this is equivalent to the law of excluded

middle.
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Lemma 110 Let X,Y be convex subsets of a normed space such that X,Y

are both totally bounded, and (X ∩ Y )◦ is inhabited. Then X ∩ Y is totally

bounded.

Proof. Let ξ ∈ (X ∩ Y )◦ and let R > 0; without loss of generality ξ ∈
B(0, R). Let Y ′ = Y ∩ B(0, R) and let h be the uniformly continuous

function which fixes X and maps each point y in −X to the unique point

in [ξ, z] ∩ ∂X. Fix ε > 0 and let δ ∈ (0, ε/4) be such that if ‖y − y′‖ < δ,

then ‖h(y) − h(y′)‖ < ε/4. Let {y1, . . . , yk} be a δ/2-approximation of Y

and partition {1, . . . , k} into disjoint sets P,Q such that

i ∈ P ⇒ ρ(yi, X) < δ;

i ∈ Q ⇒ ρ(yi, X) > δ/2.

If i ∈ P , then there exists x ∈ X such that ρ(x, yi) < δ. Then

‖yi − h(yi)‖ 6 ‖yi − xi‖+ ‖xi − h(yi)‖ < ε/4 + ε/4 = ε/2

and, since Y is convex, h(yi) ∈ X ∩ Y . The set

S = {h (yi) : i ∈ P}

is an ε-approximation of X ∩ Y ∩B(0, R) = X ∩ Y ′: fix z ∈ X ∩ Y and pick

1 6 i 6 k such that

‖z − yi‖ < δ/2.

Then i ∈ P , so h(yi) ∈ S and

‖z − h(yi)‖ 6 ‖z − yi‖+ ‖yi − h(yi)‖

< δ/2 + ε/2 < ε.

In order to apply Kakutani’s fixed point theorem we must have a weakly

approximable mapping on a metric space with a compact convex closure.
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We can now show that the set of price vectors is a suitable domain for our

weakly approximable mapping.

Lemma 111 P is compact and convex.

Proof. It is straightforward to show that P is closed and convex; it just

remains to show that P is totally bounded. By the bilinearity of the mapping

(p,x) 7→ p · x, both Y pol and

{p ∈ RN : p · ξ = −1}

are locally totally bounded. Since P is the intersection of these two sets,

P is locally totally bounded by Lemma 110. It remains to show that P is

bounded: by Lemma 108

M = sup{p · y : p ∈ Y pol, ‖p‖ = 1} < 0.

Suppose that there exists p ∈ P such that ‖p‖ > −1/M . Then p/‖p‖ ∈
Y pol and (p/‖p‖) · ξ = −1/‖p‖ > M—a contradiction.

It remains to produce a weakly approximable mapping on P .

Lemma 112 For each y ∈ Y and each r > 0 there exists p ∈ P such that

p · y > −r.

Proof. Fix y ∈ ∂Y . Suppose that

sup{p · y : p ∈ P} < 0;

this supremum exists since P is totally bounded and (p,x) 7→ p · x is uni-

formly continuous. Then there exists z ∈ −Y such that p · z < 0 for all

p ∈ P . But

z ∈ P pol = (Y pol)pol = Y.

This contradiction ensures that sup{p · y : p ∈ P} = 0, from which the

result follows.

The proof of the following simple lemma is left to the reader.
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Lemma 113 The composition of a weakly approximable mapping with a

uniformly continuous function is weakly approximable.

Here is the last piece of the puzzle:

Lemma 114 For a fixed r > 0 and for each z ∈ ∂Y , define

gr(z) = {p ∈ P : p · z > −r} .

Then gr(z) is inhabited and located for each r > 0, and gr is weakly approx-

imable.

Proof. That gr(z) is inhabited for each z follows from Lemma 112. Fix

ε > 0 and let δ > 0 be such that for all z, z′ ∈ RN , if ‖z − z′‖ < δ, then

‖p · z − p · z′‖ < r/2 for all p ∈ P—such a δ exists since the mapping

(p,x) 7→ p · x is uniformly continuous and P is totally bounded. Let z, z′ ∈
RN be such that ‖z − z′‖ < δ and let p ∈ gr/2(z) and p′ ∈ gr/2(z′). For

each t ∈ [0, 1], let pt = tp + (1 − t)p′ and zt = tz + (1 − t)z′. Then for all

t ∈ [0, 1] we have

pt · zt = (tp + (1− t)p′) · (tz + (1− t)z′)

= t2p · z + t(1− t)(p · z′ + p′ · z) + (1− t)2p′ · z′

> −t2r/2− 2t(1− t)r − (1− t)2r/2 = −r.

Hence gr is weakly approximable with respect to gr/2. That gr(z) is located

for each z ∈ ∂Y follows from Theorem (4.9) on page 98 of [18], and the

uniform continuity of the mapping p 7→ p · y on P .

We now have the proof of Theorem 106:

Proof. Let Fi be the demand function for the ith consumer and let

F =

m∑

i=1

Fi.
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Fix ε > 0 and let δ > 0 be such that for all p ∈ P , if ‖x − x′‖ < δ, then

‖p · x− p · x′‖ < ε/2. Set

m = min

{
ε

2
,

δ

sup
{∥∥ξ − η

∥∥ : η ∈ F (P )
}
}
.

For each r > 0, define a set valued mapping Φr on P by

Φr = gr ◦ h ◦ F,

where h, gr are as in Lemma 32 and Lemma 114 respectively; Φr is well

defined by Lemma 109. By Lemmas 32,111,113,114 and Corollary 43, Φr is

approximable for each r > 0 and P is compact and convex. Using Theorem

90, construct p ∈ P such that

p ∈ gm ◦ h ◦ F (p).

Set ξi = Fi(p) for each i, and set η = F (p). Then, by definition, the ξi

satisfy condition E1, and η satisfies E3. Pick t ∈ [0, 1) such that

ζ ≡ h(F (p)) = tξ + (1− t)η.

Since p ∈ gm(ζ) and η ∈ Y ,

−m < p · ζ = tp · ξ + (1− t)p · η 6 −t,

so t < m; whence ‖ζ−η‖ < δ. By our choice of δ, it follows that ‖p·η−p·ζ‖ <
ε/2. Thus p · η > −ε, so AE is satisfied.

With the help of MIN we can recover the existence of an exact competi-

tive equilibrium in the conclusion of Theorem 106. With WKL and ACω,2

we have: repeatedly apply Theorem 106 to construct sequences (pn)n>1,

(ξ1,n)n>1, . . . , (ξm,n)n>1, (ηn)n>1 in RN such that pn, ξ1,n, · · · , ξm,n, ηn sat-

isfy E1,E3 and pn·, ηn > −1/n for each n. With m+2 applications of WKL

we can construct an increasing sequence (kn)n>1 and points p, ξ1, · · · , ξm, η ∈
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RN such that pn → p, ξi,n → ξi (1 6 i 6 m), and etan → η as n → ∞.

The continuity of the demand functions, the dot product, and summation

ensure that p, ξ1, · · · , ξm, η ∈ RN is a competitive equilibrium.

The work above together with Theorem 41 gives the next result, which in

the presence of Brouwer’s fan theorem improves on Theorem 106.

Theorem 115 Assume that Brouwer’s full fan theorem holds. Suppose that

(i) each Xi is compact and convex;

(ii) each �i is continuous and strictly convex;

(iii) (Xi ∩ Y )◦ is inhabited for each i;

(iv) Y is a located closed convex cone;

(v) Y ∩ {(x1, . . . , xN ) : xi > 0 for each i} = {0}; and

(vi) for each p ∈ RN and each i, if
∑m

i=1 Fi(p) ∈ Y , then there exists

xi ∈ Xi such that xi �i Fi(p).

Then there are approximate competitive equilibria.

Proof. Using Theorem 41 in place of Corollary 43 in the proof of Theorem

106, we only require each �i to be strictly convex.
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