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Abstract

The interaction of horizontal shear flows and magnetic fieldstably stratified layers is central
to many problems in astrophysical fluid dynamics. Motionssirch stratified systems, such
as the solar tachocline, may be studied within the shall@atewapproximation, valid when
the horizontal length scales associated with the motionlamng compared to the vertical
scales. Shallow-water systems have the advantage thaptiirea the fundamental dynamics
resulting from stratification, but there is no explicit dagence on the vertical co-ordinate,
and is thus mathematically simpler than the continuoushatified, three-dimensional fluid
equations. Here, we study the shear instability problenhiwithe framework of shallow-water

magnetohydrodynamics.

A standard linear analysis is first carried out, where wevedtieorems satisfied by general basic
states (growth rate bounds, semi-circle theorems, diabiliteria, parity results), investigate the
instabilities associated with idealised, piecewise-tamsprofiles (the vortex sheet and rectangular
jet), and investigate the instabilities associated with prototypical smooth profiles (hyperbolic-
tangent shear-layer and Bickley jet); these are studiecnaytical, numerical and asymptotic
methods. The nonlinear development of the instabilitieseated with the smooth profiles is
then investigated numerically, focussing first on the clearig the nonlinear evolution arising from
MHD effects, before investigating the differences arisirgn shallow-water effects. We finally

investigate the interplay between MHD and shallow-watéot$ on the nonlinear evolution.
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%“He who learns but does not think is lost; he who thinks butsduet learn is in danger” — Confuciuspalects2.15






Acknowledgements

First and foremost | would like to thank my supervisors, Badiughes and Stephen Griffiths, for
introducing me to this interesting research topic, as wsethair continued support, guidance and
patience with this thesis and my academic development begpast four years. | would also like
to thank my undergraduate supervisors, Djoko Wirosoetisfiguel Moyers-Gonzalez, and my

pastoral advisor John Bolton for encouraging me to pursu $thdies fives years ago.

| further extend my thanks to the following people for dissioas and contribution that have
improved parts of this thesis: Steve Tobias and Sam Huntedifzussions of the properties
possessed by shallow-water systems; Eyal Heifetz for camsnen the counter-propgating
Rossby wave mechanism that appears in Chapter 5; AndrewrGitly discussions that improved
Chapter 5, and for the anti-dynamo result in Chapter 7; Bepwdeth and Laura Burgess, for a
template of their nonlinear code that served as a startimgt pb the nonlinear code | wrote to
generate the results in Chapter 6 and 7; and my examiners Daitschel and Chris Jones for
comments that clarified some technical points and impradvegbtesentation of the thesis. | would
also like to thank Pat Diamond, Nic Brummell, Pascale Garasdvell as Yusuke Kosuga, Erica
Rosenblum, Toby Wood, CJ Donnelly and other participanthefsix week 2010 International
Summer Institute for Modelling in Astrophysics summer pezgme that contributed significantly

to my early academic development.

On a more personal note, | would like to thank my family, staffl student members at Leeds
mathematics department, and my friends from outside tharttepnt for their continued support

and encouragement during my time at Leeds.

This work was supported by the STFC doctoral training grantE806934/1.



Vi



mﬁ"

m@

>

hp
hy

D/Dt
)

Notation

three-dimensional magnetic fiell3 = (b,,b,,b.)
two-dimensional magnetic fielé,= (b,,b,)
magnetic flux in shallow-watei3 = (h;b,,, h:by)
phase speed,= ¢, +ic;

Froude numberf’ = U /\/gH

gravitational acceleration

equilibrium fluid depth

the free surface displacement

bottom topography

total fluid heighth, = Hy + F2h

vertical component of currenf,= e, - (V x Bs)
inverse Alfvén-Mach numbed/ = B/uU

total pressure

gas pressure

potential vorticity,qg = w/h;

the basic state velocity

three-dimensional velocity fieldys = (u, v, w)
two-dimensional velocity fieldy = (u, v)

momentum in shallow-watet/ = (hu, hyv)

streamwise wavenumber
density

vertical component of vorticitypy = e, - (V x u3)

gradient operator
gradient operator witk-component omitted

material derivative

d(-)/dy
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Chapter 1

Introduction

Geophysical and astrophysical systems are often densdijfistd, with flows characterised by
motions that have a long horizontal length scale comparé twe vertical scale. The dynamics
of such systems are often studied under the shallow-wagmogimation (e.g., Pedlosky 1987,
§3; Salmon 199832; Vallis 2006,53; Buhler 2009§1); this constitutes a set of two-dimensional
equations with no explicit dependence on the vertical chrate, a mathematical simplification
compared with the continuously stratified three-dimersisgstem. The shallow-water equations
capture the fundamental dynamics of density stratificatsupporting slow, vortical motions as

well as fast, wave motions, and interactions thereof.

The hydrodynamic shallow-water equations have often beed as a model for geophysical and
astrophysical systems, such as the Earth’s ocean (e.{js, 06, part IV) or Jupiter's weather
layer (e.g., Cho & Polvani, 1996a; Showman, 2007). They lB@®w@sed as a simplified model for
exploring the fundamental fluid dynamics underlying geital and astrophysical systems, for
example: vortex and wave dynamics in uniformly rotatingtsyss (e.g., Sadourny, 1975; Young,
1986; Ripa, 1987; Farge & Sadourny, 1989; Ford, 1994; Pokial., 1994; Stegner & Dritschel,
2000; Fordet al., 2000; Mohebalhojeh & Dritschel, 2001; Lahaye & Zeitlin,120 Plotka &
Dritschel, 2012); jet formation in differentially rotatinsystems (e.g., Cho & Polvani, 1996a,b;
Showman, 2007; Scott & Polvani, 2008; Dritschel & Scott, Z0%howman & Polvani, 2011);
wave-wave or wave-mean flow interaction (e.g., Ripa, 198HhI& & Mcintyre, 1998; Bihler,
2000; Buhler & Mclintyre, 2003; Buhler, 2009); shear itliies (e.g., Satomura, 1981; Griffiths
et al, 1982; Paldor, 1983; Ripa, 1983; Hayashi & Young, 1987; Baith, 1999; Dritschekt al.,
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1999; Mohebalhojeh & Dritschel, 2000; Poulin & Flierl, 2Q@¥itschel & Vanneste, 2006).

In this thesis we shall be concentrating on shear instegsilit To study the behaviour of shear
flows at a fundamental level, we shall investigate instaddiof parallel shear flows in planar
geometry. Instability of parallel shear flows in the hydrodgic (not necessarily shallow-water)
setting is by now a well-established topic, often includedlaapters in monographs dedicated to
instabilities (Lin, 1955; Betchov & Criminale, 1967; Chaagekhar, 1981; Drazin & Reid, 1981;
Schmid & Henningson, 2001; Criminad¢ al.,, 2003) or geophysical fluid dynamics (e.g., Pedlosky
1987,587; Vallis 2006,56; Buhler 200957). Instabilities associated with shear flows leads to the
breakdown of the flow, formation of coherent structures, ewehtual transition into turbulence
via secondary instabilities (e.g., Schmid & Henningsor)120 The breakdown of the flow and
transition to turbulence has implications for mixing of meamtum, vorticity, passive scalars,
density (if stratification is present) and so forth, so itfigheoretical as well as physical interest
to study shear flow instabilities. For example, see the temmew by Smyth & Moum (2012)
for recent advances in shear instability research in gesipayfluid dynamics. Shear instabilities
in the hydrodynamic shallow-water setting have been inyattd by numerous authors. It is
known that instability may result from the basic flow profilesgessing non-monotonic (potential)
vorticity gradients (e.g., Ripa, 1983; Ford, 1994; Balrttipr1999; Dritschekt al,, 1999; Poulin

& Flierl, 2003; Dritschel & Vildez, 2007), as in the inconagsible system, but also from gravity
wave interaction (e.g., Satomura, 1981; Griffigtsl,, 1982; Paldor, 1983; Ripa, 1983; Hayashi &
Young, 1987; Balmforth, 1999; Dritschel & Vanneste, 200B)e formation of vortices resulting
from the instability then also emit gravity waves (e.g.,tBehelet al. 1999; Mohebalhojeh &
Dritschel 2000; Poulin & Flierl 2003; Dritschel & Vannest®db; see also Ford 1994; Polvani
et al. 1994; Fordet al. 2000 for example on gravity wave emission by shallow-watatiees),

something that is absent in the incompressible setting.

Many astrophysical systems are stratified, thin in termsspkat ratios, and are ionised. The
interaction of the fluid motion with a background magnetiddfi;m such systems require the
magnetohydrodynamic (MHD) description; one interest tisesn MHD analogue of the shallow-
water equations as a simplified model for investigating titerplay between stratification and
MHD effects. To this end, the shallow-water MHD system (SWIMHvas derived by Gilman
(2000), and we shall be investigating the dynamics of sheaisfin the SWMHD system.

Often we shall have in mind the solar tachocline as an exaofpdech an astrophysical system.
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From helioseismology (see, for example, the review by @dmsen-Dalsgaard & Thompson
2007), it was inferred from observational data relativadgently that, in the Sun, the latitudinal
differential rotation (faster at the equator and slowerhat poles) holds true along radial lines
throughout the convection zone, whilst the inner radiatieee rotates roughly in solid body
rotation; a representation of this inversion for the angrdgéational period is given in Figure 1.1.
This naturally leads to a thin transition region (of deptipragimately 0.0Fg,) of strong shear
located at approximately OR%,r, this region was termed the tachocline by Spiegel & Zahn2).99
In particular, the lower portion of the tachocline that ighin the radiative zone is known to be
strongly stratified, and the assumptions that go into thbastravater description are well satisfied
in this region. For completeness, some data estimated bglGat0. R, are reproduced here
in Table 1.1; this will be used to estimate the magnitude ofa@® non-dimensional parameters
in Chapter 2. The tachocline is regarded as an importanepédhe jigsaw in understanding
the global solar dynamics. Its mere existence has led toagsessment of the underlying fluid
dynamical behaviour due to fluid/magnetic coupling, legdim questions on how the tachocline
is maintained, generally known as the tachocline confinémesblem (e.g., Spiegel & Zahn,
1992; Gough & Mclntyre, 1998; Garaud, 2007; Wood & Mcinty26,11; Woodket al,, 2011). The
tachocline is generally seen as the seat of the solar dynemnéributing to the strengthening of
the magnetic field via differential rotation (e.g., Tobiad\iss, 2007). The issue of instabilities
associated with the differential rotation profile and itygibal consequences is also of relevance
(e.g Gilman & Cally, 2007; Dikpatet al,, 2009; Zagarashivilet al,, 2010). We refer the reader to
the book “The solar tachocline” (edited by Hughes, Rosner &4/ 2007) for a comprehensive

and relatively recent review of the current research problassociated with the tachocline.

Since the derivation by Gilman (2000), the SWMHD equatioasehbeen studied both from a
theoretical and modelling point of view. They have been shéwpossess a hyperbolic as well
as Hamiltonian structure (De Sterck, 2001; Dellar, 200D3B) Rossmanith, 2002). The MHD
modifications to wave motions supported by the hydrodynashallow-water system have also
been derived (Schectet al., 2001; Zagarashivilet al,, 2008; Heng & Spitkovsky, 2009). To date,
the principal aim of studies of shear flow instabilities in BMWD have been to investigate in detall
the global aspect of the instability, employing sphericabmetry and model differential rotation
profiles as the basic shear flow (Dikpati & Gilman, 2001; RelldpPikpati, 2003; Dikpatiet al,,

2003; Dikpati & Gilman, 2005). These authors consideredchstate profiles that only depend

on latitude, and they investigated the effects of differaagnetic field strengths, varying physical



Chapter 1. Introduction 4

450 nHz

425

400

375

350

325

300

Figure 1.1: Angular velocity profile inferred from heliosgiology, taken from the LSV group at HAO,
NCAR (htt p: / / ww. hao. ucar . edu/ resear ch/ | sv/ | sv. php, convection page). 450nHz and
325 nHz translates roughly to rotation periods of 26 and 36 dahe tachocline is indicated by the dashed

line.

Quantity meaning value & = 0.7Rgyn  UNItS (cgs units)
Rsun Solar radius 6.95 x 1010 cm
Qpole angular frequency at pole 2.0 x 1076 st

Qequator  @ngular frequency at equator 2.9 x 1076 s !

P density 0.21 gcm3
N buoyancy frequency 8 x 1074 s!

c sound speed 2.3 x 107 cms!
g gravitational acceleration 5.4 x 10% cms?
140 magnetic permeability 1

n magnetic diffusivity 4.1 x 10? cm? st
v kinematic viscosity 2.7 x 10* cm? st
K thermal diffusivity 1.4 x 107 cm? st

Table 1.1: Some physical parameters given in Gough (200ThéSun at? = 0.7 Rgyn



Chapter 1. Introduction 5

structure of the background magnetic field, and the deperdem the gravity parameter (théi,
which will be seen to be related to our Froude numBeasG ~ F~2; see Dikpati & Gilman

2001; Rempel & Dikpati 2003; Dikpatt al. 2003).

These previous studies of shear instabilities have fodusse the global instabilities. To
complement these previous studies, we focus here on logalitities, with the aim to examine
the shear flow instability problem in a more general contekor this, we consider here the
instability problem of plane parallel shear flows in the &rlgyer SWMHD system. We ask the
general question: how are the well known fluid instabilitdplane parallel shear flows modified

by MHD and shallow-water effects?

We begin in Chapter 2 with a derivation of the SWMHD equatjarsd, in planar geometry with
appropriate boundary conditions, highlight the consémmalaws and wave modes possessed by
this system. We study the onset of instability via a lineaalysis, and derive in Chapter 3 the
governing eigenvalue equation, as well as some generdigaslid for suitably differentiable
profiles. At a sufficiently local level, most flows may be mdeeélas either a shear layer or a
jet. In Chapter 4 we consider the instability charactarsstf idealised versions of these shear
layer and jet profiles, namely, the vortex sheet and themgatar jet. It is known such piecewise-
constant profiles reveal features that have analogues icotiiesponding smooth cases, and the
resulting problem benefit from the fact the problem may beesbcompletely or asymptotically.
In Chapter 5 we consider two prototypical flow profiles oftempboyed for studying the instability
characteristics of shear layers and jets, the hyperbatigent shear layer and the Bickley jet.
To highlight several features of interest, we first solve ¢igenvalue problem numerically. We
consider the instability mechanism, where there is anpnétation of the instability mechanism
in terms of a pair of counter-propagating Rossby waves; wehssv this paradigm is modified
when MHD and shallow water effects are present. The longeveesymptotic procedure of Drazin
& Howard (1962) is generalised to the SWMHD system, and tla@sdytical, asymptotic results
complement the numerical results presented earlier. Thénear evolution of unstable smooth
shear flows is then studied numerically. Chapter 6 focuseah@incompressible cases, with a
review of the numerical techniques and known results initeeature. It is known that the vortices
normally formed from the hydrodynamic evolution may be dwstd by MHD effects, depending
on the field strength and on the size of the magnetic difftysiparameter. An investigation of

the disruption on the dependence of the background fieldgttieand dissipation parameter is
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carried out, and we provide estimates of the boundariesdestthe different regimes. Chapter
7 deals with the modifications introduced by shallow-wateats. Some numerical issues are
highlighted, before an investigation into the parametgedeence of the nonlinear evolution.
Detailed conclusion and discussion are given at the endaf ebapter, and a brief conclusion

and suggestions for future work are given in Chapter 8.



Chapter 2

The shallow-water MHD equations

For self-containment purposes, we reproduce here a derivaf the shallow-water MHD
(SWMHD) equations (see also Gilman, 2000; Dellar, 2003aticipating the discussions in
the later chapters, we also provide derivations of the awatiens laws and wave solutions for

this system.

2.1 Derivation

We consider a magneto-fluid with a free surface at h(x,y,t) with undisturbed free surface at
z = 0, lying over some topography (describing real topographgeulying dynamical effects or
otherwise)z = —H (z,y). The total fluid column height is given by, = H + h; see Figure 2.1.
We focus on dynamics at a sufficiently local level so that tles$®y number (measuring the
relative importance between inertia and rotational effets large, so that the Coriolis term is
relatively small and may be neglected as a simplificatiore fhinee-dimensional incompressible,
ideal MHD equations describing the dynamics of a thin layfeglectrically conducting fluid of

constant density, with gravitational acceleration, are given by

1
% +uz-Vus =——Vp+ (V X Bg) X B3 — ge,, (2.1a)
ot Po
B
—88t3 4+ u3 - VB3 = B3 - Vusg, (2.1b)

V-ug =0, (2.1¢)

V.B;=0. (2.1d)
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Figure 2.1: Physical set up of the problem.

Here, the subscript ‘3’ denotes the full three-dimensianantity, andB3 is given in units of

velocity, soBs = B*/./nopo, Wherepy is the permeability of free space.

To proceed with the derivation, we note that the momentunatgu (2.1a) may be written as

P 1
Uty Vg = ——VP+ By - VB — ge., 2.2)
ot Po

whereP = p + |B3|?/2, the sum of the gas and magnetic pressure. We assume thgpiite t
horizontal length scal& is much greater than the typical vertical length scHleso that the
aspect ratiea = #/L is small. Now, the < 1 approximation justifies the neglect of the vertical

acceleration, and the leading order balance in the vericahentum equation is assumed to be

oP
Fr —pPoY, (2.3)
z

which may be termed magneto-hydrostatic balance. Intiegré2.3), we obtain
P = —pogz + P, (2.4)

where P, is to be fixed by the boundary conditions. Across the freeaserfpressure should be
continuous; we take the pressure to be zero above the frizzswithout loss of generality, and

SO
P(‘T’y, Z7t) = Pog[h(%y»t) - Z]‘ (25)

DenotingV . as the gradient operator with thecomponent omitted, we see that
1
—V.P =gV_h. (2.6)
Po

Now, because th¥ . i terms are independent of this means we may also assume, b,, andb,
are alsaz-independent, and so the horizontal momentum equatiomieso

g—? +u-Vyau=b-V,b—gV._h. (2.7)
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Hereu = (u,v) andb = (b,,b,). The dependency in the vertical co-ordinatdoes not appear
explicitly, which highlights an important feature of thealbw-water equations: if the fields are
initially depth independent, they will remain so for all selguent time (e.g¢2.3 of Salmon 1998
or §3.1 of Vallis 2006).

Now, integratingV - ug = 0 over the fluid depth gives
[wliZ =~V -, (2.8)

with h; = H + h. Sincew is just the material derivative of the position of a partaruélement,

we have
z=h 9 9
[Wii=ty =\ 5; Tus V| [H+h(zyt) =5 +u- V. )h (2.9)
ot ot
Putting the two together, we obtain
% + V.- (hyu) =0. (2.10)

For the induction equation (2.1b), assumings small compared tb, andb,;, there is only explicit

evolution of the horizontal magnetic field, with the goveigiequation given by

%—ku-vzb:b-vzu. (2.11)

Finally, from the conditiorivV - B3 = 0,

D: _ . .0, (2.12)
0z
Integrating over the fluid depth gives
b.):=" = —hV. - b. (2.13)

We make two further additional assumptions. The lower bamnds taken to be a perfect
conductor, and it is assumed that the free surface star&saiffield line. By Alfvén’s theorem,
field lines are frozen into the fluid, and the free surface tlensains a field line. The full three-
dimensional field should be locally parallel to the verticalindaries. So, letting be the normal

vector to the vertical boundaries, we requBg - n = 0, and hence

(bay by, —hy V., - b) - (=0h/dx, —Oh/y,1) = =V - (hyb) = 0. (2.14)
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In summary, the single layer SWMHD equations in Cartesianrcinates are given by

ou

N +u-Vu=>b-Vb—g¢Vh, (2.15a)
%+u-Vbzb-Vu, (2.15b)
h
oh + V- (hyu) =0, (2.15¢)
ot
V- (htd) =0, (2.15d)

where the subscript on the gradient operator has been dioplewill be seen later that the
divergence-free condition (2.15d), if satisfied initiallg preserved by the dynamics, and thus
serves as a constraint for the initial condition; hence waale five equations for five variables,
subject to a constraint. Note that itd /0t that appears sinck is the only quantity inh; =
H+h(z,y,t) thatis time dependent. This set of equations is only deperuethe two horizontal
variables, but there is a vertical structure in theandb, are not necessarily zero, but are related

to the horizontal divergence of andb respectively.

It should be noted that a vector identity may be used to rewvthi¢ induction equation (2.15b) in

the form
ob

5=V (uxb) + (V-wb— (V- bu. (2.16)

Neitherw or b are divergence-free by themselves; rather, tijsand B3, reconstructed from the

relations (2.8) and (2.13), that are divergence-free.

2.2 Properties

For completeness we provide an overview of the basic pregedatisfied by the SWMHD

equations, highlighting some important points that willdiecussed in the later chapters.

2.2.1 Non-dimensional form

A common approach is to rescale the problem to obtain a nmeasional set of equations. Taking

then

w—Uu, b—Bb,  h—Hh, (2.17)
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we shall also choose to scale time by the advective time rétla@ the Alfvén time, so we also

have
0 190 UOI 1
Tz VoIV (2.18)
Rescaling accordingly gives
ou 9 1
ob
5 Tu Vb=b-Vu, (2.19b)
oh + V- (hyu) =0, (2.19¢)
ot
V- (htd) = 0. (2.19d)

The two non-dimensional parameters are then the inversee®dMach numbedV = B/U, a
measure of the relative importance of the Lorentz force tanoh the fluid inertia term, and the
Froude numbefF' = U/ /\/gH, a measure of how strong gravity is (it will be seen tRast related

to the speed of gravity waves). A further rescalingiof> F2h results in the set of equations

%—z‘ +u-Vu=M?b-Vb—Vh, (2.20a)

% +u-Vb=b-Vu, (2.20b)
F2% + V- (hyu) =0, (2.20c)
V- (hd) =0, (2.20d)

whereh; = H + F?h is the total fluid depth. The Froude number now appears in tesrand flux
conservation equations rather than the momentum equafitietwo-dimensional incompressible
MHD equations are recovered whéh = 0, H = 1 (with i identified with the pressurg).

Furthermore, the hydrodynamic equations are obtained When 0.

To get a rough estimate @ff and F' for the tachocline we use the parameters given in Table 1.1.

We take the typical velocity and length scales as

Qpole + €2 L
T— MZ L=2nx0TRan = U=Z=13x107cms’ (221)

We first estimatél/. There is some uncertainty in the magnetic field stretigjtin the tachocline,
but a likely range i403G < B* < 10°G. This leads to
B*
v/ H0Po

B= cms !t~ 22x10>°cms!, (2.22)
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and so we have

0.0l <M < 1. (2.23)

For the Froude number, instead of just takikgand work outF = U /\/gH, we consider a
slightly different approach that is often employed in gegtal fluid dynamics; this approach
was also the one adopted by, for example, Dikpati & GilmarD{20 In the hydrodynamic case,
there is a formal analogy between linearised shallow-wsystem and the linearised primitive
equations, and the shallow-water gravity wavégH, correspond to the fastest gravity waves in
the continuously stratified case, given Ny, /7 (e.g., Gill, 1982£6.11). TakingH; = 0.03 Rsyn,

this impliesNH, /7 ~ 5 x 10° cm s™!, and thus giving
F ~ 0.25. (2.24)

The equivalent deptft in this case is approximatelyx 106 cm (or50 km).

This implies that the large-scale magnetic field is weaktikedao the large-scale flow, and that
the system is strongly constrained by stratification effedlthough we have estimates fbrand
M for the tachocline, we will not restrict ourselves to theaegmeters as we are interested in the

more general shear flow instability problem.

2.2.2 Conserved quantities

In line with the domain set up considered later, we consideicase where the domain is periodic
in z and bounded by perfectly conducting impermeable wallg imith no underlying topography
(so H = 1). Now we haveh; = 1 + F?h, we first note that integrating the divergence-free

condition (2.20d) over the domain leads to the restriction
=L
[ebyly— ", = 0. (2.25)
This is satisfied for example if we take no normal flux boundamgditions
by=0 on y==%L,. (2.26)

This, together with no normal flow boundary conditions

v=0 on y==xL,, (2.27)
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implies the condition

Oh
— =0 ==L 2.28

from they-component of the momentum equation. We then have the fislpaonservation laws:

Mass conservation

d
T // hy dedy = —/ V- (hyu) dzdy = 0, (2.29)

since the domain is periodic inandv = 0 on they-boundaries.

Momentum conservation

// hyu daxdy = // { (hyuw) + htgh} dedy — M? // bV - (hyb) daxdy
// <F2— + h> dzdy = 0,
ox

owing to periodicity inz, andv = 0 as well asb, = 0 on they-boundaries. Note that the

(2.30)

divergence-free condition (2.15d) is required for momentwnservation.

_// hyv dedy = — //[ (hyvu) —|—ht?] dedy — M? //b V- (hb) dzedy
Y
2
// a9 (F — —|—h> dxdy (2.31)

h2 +Ly
Ly

again, owing to periodicity, and = 0 as well ash, = 0 on they-boundaries. As above, the
divergence-free condition (2.15d) is again required fansssvation. The loss af-momentum
conservation here is related to the fact that we no longee i@nslational invariance ip. In
the incompressible limif" = 0, the extra contribution happens to vanish as long as thete is
net difference in the mean pressure on the side walls. Weingtassing that the presence of

underlying topography also results in extra contributitmthe momentum budget.

Flux conservation

Similar to the above manipulations, we have

%// hyby dady = _//v - (hebyu) dzdy — // uV - (heb) dady = 0, (2.32)
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and

% / / hib, dzdy = — / / V - (hibyu) dady — / / vV - (hyb) dzdy = 0, (2.33)

using periodicity inz, v = 0 andb, = 0 on they-boundaries. The divergence-free condition

(2.15d) is again necessary for conservation.

Total energy conservation

The total energy of the system evolves as

2 2 212
2dt// [he(|ul? + M2[bJ?) + F2h?] dady

//v { <|“|2+2MQ|b|2 +h>} dady (2.34)

+ M? // hib - V (uby + vby) dady,

where the energy contributions on the left hand side of (2a84 the kinetic energy, the magnetic
energy, and the potential energy; notice that the kinetitraagnetic energy is multiplied by the
total height and is cubic in nature, whereas the potentiaiggnonly involves the deviation from
the rest state. In the incompressible limiit= 0, the potential energy contribution disappears,
whilst in the hydrodynamic limif\/ = 0, the magnetic contribution disappears. The first integral
vanishes because of periodicity and= 0 on the boundaries. Performing an integration by parts

on the second integral,
// {ht (uby + vb )} dzdy = [heby (uby + vby)|*=5™ + [heby, (ub, —i—vby)]zzfyLy

— //(ubw + vby )V - (hyb) dzdy = 0,
(2.35)

owing to periodicity,b, = 0 on the boundary, and the divergence free condition. Thusotiaé

energy is conserved.

Divergence-free condition

All of the above conservation laws as written depend crlyc@i the fact that the divergence-free
condition of the magnetic field (2.20d) holds for all time.idttherefore important to verify that

the governing equation preserves this divergence-frediton during the evolution. This may
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be shown by a brute force calculation by considering the tiexévative ofV - (h;b) and using
the remaining equations as appropriate (index notatioa isarseful). A cleaner way to show this

(due to Sam Hunter, private communication) is to observe tha

V x (u x hyb) = hyb - Vu — hb(V - u) — w - V(hib) + u[V - (hib)]

= hyb - Vu — hyw - Vb — bV - (hyw)] + [V - (heb)]

(2.36a)
= 2 (b) +ulV - (b)),
SO
%v (heb) =V [V x () + w(V - (hyb))]. (2.36b)

The divergence of a curl is zero, and sa@jb is divergence free dt= 0, the subsequent evolution
will keep the fields divergence free. Another way to show thigperty is to observe that the
induction equation may be written as

(hsb)

5 + V- (hyub — hibu) = 0, (2.37)

as in De Sterck (2001), using the tensor notatiah);; = w;b;. Taking a divergence also shows

that the divergence-free condition is preserved in timehieydynamics.

Equations in transport variables

Another equivalent and potentially useful way of writing tBWMHD equations is in terms of the

transport variable§U , B, h) = (h,u, hyb, h). Equations given by (2.20) may then be written as

ouU UU BB
. — M2 = 2.
o TV < P P ) + hyVh =0, (2.38a)
OB UB BU
p22h +V-U=0, (2.38c)
ot
V-B=0. (2.38d)

We have used the divergence-free condition implicitly wheiting the equations in this form.
The remainingh terms may also be included in the divergence term if thereoisimderlying

topography. Then it may be checked that mass, momentum, fildyeaergy conservation are as
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before by using the analogous boundary conditions given by

V=0 B,=0 and g_ZZO on y==xL,. (2.39)

This shows that, at least in the ideal case, we have the egeonservation laws. We will be
interested in solving the SWMHD equations numerically teestigate the nonlinear evolution in
due course. It will be seen that there are some subtle isegesding the choice of solving the
equations in velocity or transport variables and the d&gp terms that are to be inserted. In the
ideal case there is no big difference between the two foriiomis; we will use the velocity variable
formulation in the linear analysis and discuss why we mighhitto use the transport variable

formulation over the velocity variable formulation in themerical investigation in Chapter 7.

Other quantities and their associated conservation laws

In the shallow-water system with/ = 0, the potential vorticity

woo o Ou
hy’ dx Oy’

is materially conserved, satisfyinBq/Dt = 0, with D/Dt = 9/0t + w - V. WhenM # 0

q= (2.40)

however this is no longer true, as the Lorentz force term iegaly rotational. Instead, it is the

flux functionh.b = e, x V A that is materially conserved, satisfyidgA/Dt = 0.

The SWMHD system also possesses a Hamiltonian structudgraenstrated by Dellar (2002).
Choosing the state variables, constructing the Hamiltoaia equipping it with a Poisson bracket
(with associated Poisson tensor), conserved quantitiggsbmalerived in a systematic manner.
Furthermore, the representation is in fact a non-canooita) and as such there are extra Casimir
invariants that corresponds to non-trivial conservatammg; in this case the Casimir invariants are

related to the flux functiom. One notable invariant that the Hamiltonian formulationeas is

// hyu - b dzdy, (2.41)

again, the condition (2.20d) is necessary for conservation

the global cross-helicity given by

2.2.3 Waves

The type of waves supported by the SWMHD equations, inctudire effect of rotation, have
been previously investigated (Scheaterl, 2001; Zagarashivilet al., 2008; Heng & Spitkovsky,
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2009). To obtain the dispersion relation governing waveiomotve consider again the simplified

case where the equations are posed in a channel, with nortggng and take as basic state
Uy = ey, by = ey, h = 0. (2.42)

Linearising about this basic state, we obtain

ou @—MQ% Gh:

ot + ox oz + oz 0, (2.432)
ov Ov 0b oh

E*%_MQa_jJra_y:O’ (2.43Db)
ob, 0Ob, Ou

%y e oy, (2.43c)
oh  Oh ou Ov

F2 222 o 2.43
<8t+8w>+8x+8y 0 (2.43¢)

The boundary conditions = b, = 0h/dy = 0 suggest we consider solutions of the form

(u, by, h) = (ug, bg.0, ho) cos <%) g(ho—wt) (2.44a)
(v,by) = (vo,by,0) sin <@) g (ko—wt), (2.44b)
’ L
which leads to the algebraic system
k—w 0 —kM? 0 k uo
0 k—w 0 —~kM?  inm/L Vo
—k 0 k—w 0 0 beo | =0 (2.45)
0 —k 0 k-w 0 by.0
k. —inm/L 0 0 F2(k —w) ho

The dispersion relation is then

n?n?

(k—w)[(k —w)? = kK2M? |F*(k — w)? — F2k*M? — k* — 3

=0. (2.46)

The first bracket corresponds to the = vy = 0 case which is not a wave mode of interest
here. The second bracket is associated with the Alfvéncbrarhich has dispersion relation and

eigenfunctions given by

wa=k+ Mk, u=Fby, v=7Fby, h=0. (2.47)
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The last bracket is associated with magneto-gravity wavbks.dispersion relation is given by

VK2 + F2M2k2 + n272 /L2

Wmg = k £ 2 , (2.48a)
and the eigenfunctions are given by
u == hg Fhy/k? ZQT%?;Q/Z;LQWQ/LQ Cos (nzy) cos(kx — wt),
v="F hoF(mT/L) \/Zz 1522;\24/252 /L7 sin (ngy) sin(kx — wt),
by =ho Z(Zn:{f;;g;g sin <nzy) sin(kx — wt),

h =hg cos (%) cos(kx — wt).

WhenF' — 0, we see that the gravity waves become infinitely fast and féeetiwely filtered out
of the system. These exact wave solutions are used laterdpt@h7 as a check for the numerical

routines.
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Chapter 3

Linear theory: eigenvalue problem and

general theorems

3.1 Linearisation and eigenvalue problem

The non-dimensional SWMHD equations are given by

ou

5 tuVu= —Vh+ M?b- Vb, (3.1a)
%—i—u-Vb:b-Vu, (3.1b)
FQ% +V - (hyu) = 0, (3.1c)
V- (hb) =0, (3.1d)

whereh;, = H + F2h is the total fluid depth. For the linear problem considerea hthe basic
state and perturbation are chosen to satisfy the diverdeeeeondition (3.1d), so it need not be

considered explicitly. Above a topography of the fofhiy), we consider a basic state

h =0, u=Uy(y)e, and b= By(y)es, (3.2)

so that the basic magnetic field profile is initially aligne@thathe basic flow profile. We then

consider perturbations i, v = (u,v) andb = (b, b,) to this basic state. The linear evolution is
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then described by

(%%—Uo%) u+ Ujv = —%%—MQ (BO%+Béby> , (3.39)
(%+%§Jv:{%+M@@%, (3.30)

(% + UO%> b, + Byv = Ubb, + 30%7 (3.3c)
<%+%§)%:%%, (3.:3d)

F? (% + an%> h+H <% + Z_D + H'v =0, (3.3e)

where a prime denotes differentiation with respeqj.to

Since the coefficients of the system of linear PDEs given 8) @e only functions of, we may

consider modal solutions of the form

£(w,y,t) = Re{é(y) explia(z — ct)]}, (3.4)
whereq is the (real) wavenumber ands the phase speed, so that ac is the wave frequency.
We shall be considering a temporal analysis in whidhk real and: = ¢, +ic; is complex; we then
observe that such a modal solution grows kike(«c;t). Equations (3.3) reduce to an eigenvalue

problem given by the following system of equations, aftapging the hatted notation,

i(Up — c)u +vUf = —iah + M?(Bfb, + iaBob,), (3.5a)

ia(Uy — c)v = =1’ +iaM?Bgb,, (3.5b)

ia(Uy — ¢)by — Ujby = iaBou — By, (3.5¢)

ia(Uy — )b, = iaByv, (3.5d)

ia(Uy — ¢)F?h +iau + (Hv) = 0. (3.5¢)

This system may in fact be reduced to a single second order. GID&inating in favour ofv gives

a single governing differential equation given by

[l -

a?§? U 52 '
H(Uy—c¢)?2 H(Uy—c) <(U0 - c)2K2> * (Up — ¢)3K?2

whereQo = —U))/H is the background potential vorticity, and

S*(y) = (Uoly) — ) = M*Bj(y),  K*(y) =1-F>S*(y). (3.7)
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We note that equation (3.6) remains unchanged uader —«, so we may therefore take > 0
without loss of generality; thus unstable modes have 0. The ODE (3.6) may be singular in
the domain ifc is purely real; here, we shall be interested only in insii#sl, so this will not be

an issue.

The eigenvalue equation (3.6) may be cast into a more confipract Following Howard (1961),

we consider the transformatidiiv = (Uy — ¢)"G. Equation (3.6) then becomes

A\ 2ny2 /
[(UO D> G’] _QZ(UO_C)QnEQE

HK? H
U(/](UO _ C)Qn—le (U(I))Q(UO _ C)Zn—QEQ Q{)(UO _ C)Qn—le G -
+(n—1) { (K2) n K? N HK? o=
(3.8)
We see that taking = 1 gives us the much simplified equation
s2@71 4 ,G

which we shall use for the remainder of the linear analysisthé shallow-water, hydrodynamic
limit (M = 0), equation (3.6) reduces to equation (3.4) of Balmforth9@)9 In the two-
dimensional incompressible MHD limitF{ = 0 and H = 1), (3.9) reduces to equation (3.5)

of Hughes & Tobias (2001).

We will consider equation (3.9) in either an unbounded domiair which |G| — 0 as|y| — oo,
or in a bounded domain with rigid side walls, whére= 0. Either way, for given read, (3.9) is

then an eigenvalue problem for the unknown phase speed, + ic;.

In the hydrodynamic casé{ = 0), there is an analogy between the shallow-water equatiods a
the compressible Euler equations (e.g., Vallis 20361, or Buhler 200%1.6). We may thus draw
on the previous results of shear instabilities in the cosgibde hydrodynamic system in order to

compare with our results.

3.2 Growth rate bound

A bound on the instability growth rate may be obtained by ipalaiting equations (3.3) in a
manner analogous to that adopted by, for example, Griff26&). The rate of change of the total

disturbance energy is given by the combination

Hu* x (3.32)+ Hv* x (3.3b)+ (M?Hb}) x (3.3¢)+ (M*Hb}) x (3.3d)+ h x (3.3€)
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where* denotes complex conjugate. On adopting the form (3.4) foptrturbations, the real part
of this expression gives

ac; [H (Juf® + [v]* + M?|bg|* + M?|by|*) + F?|h)*] =
(3.10)

— Re[HU] (vu* — M?b%b,) + M?H B (vb, — u*by)] — Reg(th*).
Y

On integrating over thg domain, employing the boundary condition onand manipulating the

remaining terms on the right hand side using the fact##Re(pq*) < |p|? + |¢|? yields
1
ozci/Edy < §(max |U§|+ M max |B6|)/H (|u|2 + o2 + M?|b,)? + M2|by|2) dy (3.11)

with F is equal to the square bracket quantity on the left hand didguation (3.10). Adding an
extraF?|h|? term to the integrand on the right hand side respects theuaiég so we obtain the

following bound on the growth rate:
1
ac; < §(max |U§| + M max |B)|). (3.12)

Thus the growth rate of a modal solution is bounded above datierage of the maximum shear
and the maximum current. In the absence of a magnetic fielsl rélduces to the well-known

bound in hydrodynamics (Hgiland, 1953; Howard, 1961).

3.3 Semicircle theorems

In a classic paper, Howard (1961) proved that, for incongibés, hydrodynamic parallel shear
flows, the wave speed of any unstable mode must lie within a semi-circle in the claxp
plane determined by properties of the basic state flow. Sulesely, semi-circle theorems have
been derived for several other hydrodynamical and hydromiag systems (e.g., Kochar & Jain,
1979a,b; Collings & Grimshaw, 1980; Watson, 1981; Hayashfa&ng, 1987; Shivamoggi &
Debnath, 1987; Thuburn & Haynes, 1996; Hughes & Tobias, 2B@darashiviliet al,, 2010). In

a similar manner, semi-circle theorems may be derived ®IS¥WMHD system.

Multiplying equation (3.9) byG*, integrating ovel and using the boundary conditions gives the

SQ ’G/’2 5 52‘G‘2

The imaginary part of (3.13) gives

_GP L lGP
H|K|* H

ci/ (Up — ¢r)x dy =0, where > 0. (3.14)
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Equation (3.14) immediately yields Rayleigh’s result tHiat unstable modes,. lies in the range

of Up (i.e. Uypmin < ¢ < Up,max). Note this formal bound is independent6f

On using equation (3.14), the real part of (3.13) gives

S 4
@+ [xdu= [x(UF -0 ay-#* [ RlPan @19
which implies that
0<@+3) [xay< @3- M), [xav (3.16)

Thus the complex wave speedof an unstable eigenfunction must lie within the semi-eircl

defined by

(2 +¢?) < (U — M*Bj) (3.17)

Another semi-circle bound may be obtained, by using theluakty
0 > /(UO - UO,maX)(UO - UO,min)X dy

Substituting from (3.14), deriving an inequality from (8)Jand dropping the integral multiplying

F? leads to the expression
0 2 [C% + C? - (UO,min + UO,max)Cr + UO,minUO,max + MQ(BQ)min] /X dy, (318)

which gives another semi-circle bound: the speed an unstable eigenfunction must lie within

the region defined by

Umin Umx2 ljmx_l—]min2
Cr — . —g - a] +c?§{ - 2 . } — M?(B?)min- (3.19)

Thus, taking these results together, the eigenvaleé an unstable mode must lie within the
intersection of the two semi-circles defined by (3.17) an@i9RB In the absence of magnetic field,
semi-circle (3.19) lies wholly within semi-circle (3.19nd we recover the well-known result of

Howard (1961).

A drawback of the above approach is that the bounds do nogicotiie Froude numbef. It
is possible to includd” into the semi-circle bounds using similar manipulationshiat used by

Pedlosky (1964), but this does not tighten the bounds; se8¢lction 3.5 for details.
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Figure 3.1: Four possible regimes for the semicircle bo§8ds’) and (3.19). They coulda) completely
overlap;(b) partially overlapjc) shrink to a point{d) be disjoint. For the latter two cases, the intersection

region is empty, so there are no normal mode instabilities.

3.3.1 Stability criteria

As observed by Hughes & Tobias (2001), for non-zero magriietid there is the possibility of

the two semi-circles overlapping, being disjoint, or indleeasing to exist; see Figure 3.1. Thus,
in addition to giving eigenvalue bounds for unstable modasse results also provide sufficient
conditions for stability. From (3.17) and (3.19) it followisat the basic state is linearly stable if

any one of the following three conditions is satisfied:

M|By| > |Up| everywhere in the domajn (3.20)

U max U min
M| By > [ Z0imax~ Do, (3.21)

UO,max + UO,min N \/(Uo,max - UO,min

2
. 5 ) + M2(B)in > 1/ (U3 — M2B3) ... (3.22)

This result is equivalent to that given in Hughes & Tobias0@0for incompressible MHD.

3.4 Parity results

In the hydrodynamic case, it is known that, when the basie giassesses certain symmetries,
the allowed form of eigenvalues or the eigenfunctions toitiseability problem is appropriately
restricted (see, for example, Drazin & Howard, 1966). Simiesults may be generalised to

SWMHD if we further assume thdg?(y) and H (y) are even functions aboyt= 0.
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Following Howard (1963), whei/(y) is odd abouty = 0, we notice that (3.9) is unchanged
underc — —c andG(y) — G(—y). By considering the conjugate equation, we see that an
unstable eigenfunction must be accompanied by eigenvafike formec = +c¢, +ic;, So unstable
solutions are either standing waves € 0) or a pair of counter-propagating waves with the same
phase speed. As argued by Howard (1963), the symmetry inabie btate implies there is no
preferred direction for wave propagation, consistent withform the eigenvalues are allowed to

take.

Now consider the case whéf(y) is even abouy = 0. Then it is seen that

Ge(y) = 5 [G(y) + G(—y)] and  Go(y) = 5 [G(y) — G(=y)] (3.23)

N | —
N | —

are also eigenfunctions of (3.9). If we now takg multiplied by (3.9) withG = G., and subtract
from G, multiplied by (3.9) withG = G,, integrating over thg-domain gives

(GLG, — GG, =0, (3.24)
owing to the imposed boundary conditions on the eigenfanctlhe Wronskian of7. andG,, is
equal to zero implies that the two functions are linearlyesefent throughout the domain. This
cannot be the case so one of them is identically zero, andftirerwe conclude the eigenfunction

corresponding to a particular eigenvalue is either an evead function abouy = 0.

3.5 Discussion

Equation (3.8) for other values ofn

Here and in later chapters, we considerithe 1 case in equation (3.8), leading to equation (3.9)
from which we obtain the semi-circle theorems and parityltss Howard (1961) noticed that
by taking different values of,, notably then = 0 andn = 1/2 cases, different results could be

obtained.

In the absence of MHD effects, the= 0 case does indeed give us a generalisation of Rayleigh’s
criterion for the ' = 0 case, as noted already by Balmforth (1999). When MHD effaots
present, the usual manoeuvre (e.g., Drazin & Reid, 1982) gives an expression involving

which needs to change sign over the domain for there to bestaitity (e.g., Hughes & Tobias,
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2001). This is of minimal use since we need to solve the fudbfgm before we can use the

criterion.

A different approach may yet give stability theorems. A noetldue initially to Arnol'd (1966a)
considers using wave activity invariants and deducing &rstability results that can, in certain
cases, be extended to nonlinear stability. Briefly, follogvEhepherd (1990), we consider the non-
canonical Hamiltonian representation of a system (fluidesyis written in the Eulerian formalism
generally require the non-canonical representationkgrghby

ou OH
I g 2
ot ] ou’ (3.25)

whereuw is the state vector{ is the Hamiltonian functional, and is the symplectic (Poisson)
operator. In the canonical representatian= (p,q), wherep and ¢ are the generalised co-

ordinates (usually momentum and position), and we see that

10
J= . (3.26)
0 1

The benefit with using the non-canonical representatiorhas it makes explicit the Casimir
invariants associated with the kernel &f For example, in two-dimensional incompressible
hydrodynamics, the Casimirs are functions of vorticity. Bgether’'s theorem, conservation laws
are associated with symmetries (and vice-versa), and imtioenpressible hydrodynamic system,
the Casimirs are associated with the particle relabelymyrsetry (e.g., Salmon, 19987). In the
hydrodynamic shallow-water system, the Casimirs@re [ f(¢) dS, wheref is an arbitrary
function of the potential vorticity (e.g., Shepherd, 1990); in the SWMHD system, the Casimirs

are of the form
¢ = [15(4) + ugla)) as. (3.27)

whereh, = H + F?h, and f and g are arbitrary functions of the flux functiod, defined as

hitb = e x VA (Dellar, 2002).

The observation then is that, for a steady basic $fateve have

0
oUy J H

u=Up

Now, the Hamiltonian functional{ and the Casimir functional are both invariants of the system,

and so we have
O0H

ou

_ac

=_ = (3.29)
u=Uo ou

u=Up
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where the minus sign is by convention, and from this we maykwoit the Casimir functionals.

Then we construct the wave activity functional

A(u) = H(u) — H(Up) + C(u) — C(Up), (3.30)

which is an invariant of the dynamics4 here is sometimes called the pseudo-energy.
may be further augmented by other conserved functionalsh si8 along-stream momentum
(relevant here for the shear flow problem). The point is thatder the small amplitude
approximation, this quantity can serve as a Hamiltoniantfar linearised dynamics, act as
a norm to measure disturbance growth, and hence provide asmeaobtain formal stability
criteria for linear stability. Furthermore, it is usuallpyagratic, and so in certain cases, additional
convexity estimates can result in nonlinear, Lyapunoetggability criteria. In the incompressible
hydrodynamic case for plane parallel shear flows, it was shinvat Rayleigh’s condition comes
from considering the pseudo-energy (e.g., Salmon, 1998, whilst the Rayleigh—Fjgrtoft
condition comes from augmenting the pseudo-energy withdalitianal momentum functional.
These may also be promoted to nonlinear stability conditiand appear as special cases of

Arnol’d’s theorems.

The idea of using wave activity invariants in various disgsi has been employed previously by
various authors (e.g., Taylor, 1915; Blumen, 1970; Satamil®81; Eliassen, 1983; Ripa, 1983).
The advantage of using the Hamiltonian structure is thatewastivities may be derived in a
systematic manner, as well as making obvious the links Ww#hunderlying structure of the system
of equations and its associated symmetries/conservatios. [There have been several works that
invoke the Hamiltonian structure explicitly (e.g., Holhal,, 1985; Mcintyre & Shepherd, 1987,
Dritschel, 1988; Shepherd, 1990, 1992; Vladimirov & Mdffeét995; Vladimirovet al, 1996;
Nycander, 2003; Shepherd, 2003), and it would certainly batwinvestigating whether such a

procedure can yield a result for the SWMHD system.

For then = 1/2 case, using manipulations similar to Chimonas (1970), toe/ip rate bound
(3.12) may be obtained. The method used in the main body ©ttapter is substantially cleaner
and more intuitive, and since we do not obtain a new resultesgmtation of the working has been

omitted.
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Further extensions to the semi-circle theorem(s)

The two semi-circle bounds (3.17) and (3.19) are indepenafef, and it would be desirable to
obtain a formal bound that includds dependence to reflect the fact that we are considering a
shallow-water system. The term of interest in equationy8id

|57

F2
H’KZ‘Q

G'? dy, (3.31)

and we are interested in bounding this term. The simplesgttd do is to maximise or minimise

|S2|2. However, a minimisation procedure yields
15?12 = [(Uy — ¢)? — (2 + M?BR)] + 42 (U — ¢)? > 4c2 (U — ), (3.32)

which does not have a positive non-zero lower bound.

We could however consider bounding?|? from above. This gives

5% = [(Uo — er)® = (¢] + M B3)] + 4¢} (Uo — ¢)* < (1 +4¢)(Uo — ;) (3.33)

< (1 + 40@2)(U0,max - UYO,min)2

sincelp min < ¢, < Uy max- After taking a modulus sign accordingly, the semi-ciresuit (3.19)

is modified to

UO,max + UO,min
Cr — 5

2
> + [1 - 4F2(U0,max - le,min)Q]cz2
) (3.34)
S (UO,max - UYO,min)2 (Z + F2> - MQ(Bg)min'

This manipulation is similar to that of Pedlosky (1964), epcin his case a Poincaré inequality
was also used. This formal bound is worse than the originahdéb semi-circle bounds as it

becomes less strict dsincreases, to such a point where the ellipse becomes ifatbfi

A similar manipulation modifies the semi-circle (3.17) to
0< (2 +c?) < (U2 — M*B2)max — F2(1 + 4¢2)(Uo.max — Uomin)?, (3.35)

where in this case a change of sign is required.

We have attempted to adapt the elegant method used by Kochain&1979a) to our case. The
original method was successful in including the stratifaatterm (the term multiplied by the

Richardson number) in the case considered by Howard (1964jve a semi-ellipse theorem.
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Similar approaches have been tried here and we were unstdegienerating something similar
for the shallow-water or MHD cases. The method of Barstor8Ql%has also been attempted
(working in the Lagrangian formulation and consideringev@int supremum or infimum of the

associated operators) but nothing new has been deriveddnaploying that formalism.



Chapter 3. Linear theory: eigenvalue problem and geneeakéms

30



31

Chapter 4

Instabilities of piecewise-constant

profiles

There are many variations of the shear flow instability peobthat may be studied, with different
profiles of the magnetic field, parameter values, and so.fokn restrict ourselves to the simpler
case where there is no topograplty £ 1) and the background magnetic field is uniforBy(= 1,
so thatM is now our measure of the field strength). This simplifies tlubjem somewhat and in
certain limits reduces to problems that have been prewaisdied in the incompressible and/or
hydrodynamic case. With these restrictions, equation (88omes

[Z—ZG’}/ —a?5%G =0, (4.1)
where, agains? = (Uy — ¢)? — M?, andK? = 1 — F252%. We seek solutions in an unbounded
domain, with

|G| — 0 as |y| — oc. 4.2

We consider velocity profile&y(y) that are piecewise-constant. In addition to allowing fa th
problem to be solved analytically, such profiles usuallyesdsome features that are present in the

analogous smooth profiles, which we consider in Chapter 5.

If Uy(y) is discontinuous ay = v, then the eigenfunctio must satisfy two jump conditions
aty = yo. In the usual way (e.g., Drazin & Reid, 19823), denotingy to be the cross-stream

displacement (so = Dn/Dt), the (linearised) kinematic boundary condition implies

+
Vo _ v P 4.3
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The free surface displacement (and so pressure) must alsmrimuous aty = yo. The

corresponding condition off is most easily derived by integrating (4.1) acrgss o, yielding

Yo
[—G’] =0. (4.3b)

4.1 \ortex sheet

We first consider the velocity profile

+1, y >0,
-1, y<O.

Then, fory # 0, (4.1) becomes’” — o> K2G = 0. Using (4.2) and (4.3a), we thus find

exp (—aK
Cly) = p(-aKiy), y>0, .4

exp (+aK-y), y <0,

where

Ki=+1-F2[(1Fc?—-M?, Re(Ki)>0. (4.5)

The second jump condition (4.3b) then implies an eigenvadiation forc:

(1—c)?—-M?* (1+c¢)?—-M?
= U. 4.
K, + 7 0 (4.6)

Note thatc is independent of wavenumber so any unstable mode with > 0 has an unbounded
growth rate ase. — oo. This is an artefact of considering ideal fluids; viscositil \act

preferentially on small scales and remove this unphysiebbafiour.

There are several special cases. Wher- M = 0, we recover the classical Kelvin—Helmholtz
instability with ¢ = +i. When F = 0 but M # 0, (4.6) reduces to the incompressible MHD
case withc? = —(1 — M?), a result due to Michael (1953). The Kelvin—-Helmholtz ittity

is stabilized whenM > 1, which might be expected physically as the disturbance datot
work to bend the field lines. Whefh/ = 0 but F' # 0, we obtain the classical hydrodynamic
shallow-water case, which is analogous to two-dimensianatpressible hydrodynamics. The
Kelvin—Helmholtz instability is stabilized wheR' > V2 (Bazdenkov & Pogutse, 1983; Miles,
1958), which might be expected physically as the disturbdms to do work to move the free

surface against gravity. Thus, increasifigor M in the absence of the other is stabilising.
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Figure 4.1: Contours of Iifay) given by the expression (4.8), with stability boundarie§)4

In the general case whefeand M are both non-zero, (4.6) can be rearranged and squareddo yie
c{2(1 + % = M?) — F?[(1 — ¢)> = M?][(1 +¢)® — M?]} = 0. (4.7)

Here we will ignore the degenerate case with 0 that occurs whed/ = 1. We have checked

numerically that only two roots of (4.7) also satisfy (4.®)ey arec = +¢y, where

1/2
AVI+4F2 +4FAM2 — (1 + F?2 + F2M? /
=i

oy = [ (4.8)

Note that Réc,) = 0. A contour plot of In{c,) is shown in Figure 4.1. Using (4.8), we see that

there is instability only if

M <1 and F< (4.9

1—M?%
Although, at fixedM, increasingF' is always stabilising, the critical value @f above which the
flow is stable increases dg increases towards Thus, although magnetic field and free surface

effects are stabilising in isolation, together they caml lerinstabilities at large values éf.

We have also solved the full equation (4.6) numerically videavton iteration scheme, and the
roots associated with instability are described:-pgiven by (4.8). No other modes of instability

were found from solving numerically (4.6).
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4.1.1 Asymptotic analysis:M ~ 1

The tongue region of instability @t/ < 1 may be further investigated via an asymptotic analysis.
Writing ¢ = (1 — M?) < 1 andF? = O(1), equation (4.7) is given by

1 2
0:c4—2[ﬁ—|—2—,u]62—,u[ﬁ—4. (4.10)

We know the roots are stable whgris non-positive, i.eM > 1. The two dominant balances are
¢ = O(1) andc? = O(u). TheO(1) roots are real both at the leading order and at the next order

correction and hence are ignored. Thé&:) roots take the form

”/1—71\42 as (1-M*»)—o0t, F2=0(0) (4.11)
1+ 2F2 ’ B ' '

As expected, this root is stable whé# > 1, in accordance with the stability criterion. For the

C ~

caseF? = ¢! > 1, if u < ¢, then we have (4.11) to leading order, ang if> ¢, we can show
that the roots are real, so we consider the gase \e with A = O(1). The dominant balance
gives eitherc> = O(1) or ¢> = O(€?), and again thé (1) roots are real at leading order and at

the next order correction so will be ignored. Théc) roots take the form

1—-2X
A ~e(l— MY —=2,
4
Notice that we require\ > 1/2 for instability, i.e.
2
F [E—
SVioae

and we recover one of our conditions in (4.9). Restoring tadirsgs of relevant terms, we have

=Mz (- M) 2 2y ot
c~|\/ 5F " 1 as F*~(1-M*)—0". (4.12)

The exact result (4.8) and the asymptotic results (4.11)(dari®) are plotted in Figure 4.2, and

the quantitative agreement between the asymptotics amd slts is apparent.

4.2 Rectangular jet

We now consider the velocity profile

1, |yl <1,
Uo(y) = (4.13)

0, lyl>1
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Figure 4.2: Comparison between the exact results (4.83nddy crosses, and the asymptotic results (4.11)

and (4.12), given by the dot-dashed line and solid line retbpy. Note the use of different axes here.

Then, (4.1) and (4.2) imply

Ciexp(—aKo(y —1)), y>1,
G =1 C.cosh(aKyy)+ C,sinh(aKyy), |y <1, (4.14)
C_exp (+aKo(y + 1)), y < —1,

for someC,, C_, C. andC,, where

Ko=+1—-F2(c2 - M?2), K;=+/1-F2[1-¢)?—- M2 (4.15)
We consider modes that satisfy #&)) > 0, i.e. modes that decay at infinity.

Since the profile is even abouyt= 0, we may follow Rayleigh’s formulation (e.g., Drazin & Reid,
1981, Q1.7) and consider eigenfunctions that are either evedd. For the even mode, we have

C, = 0, and the matching conditions gives

2 —-M?* (1—-¢)?—M?
+

e e tanh(aK;) = 0. (4.16)

For the odd mode, we havé. = 0, and matching gives

A —M?* (1—-¢)?—M?
th(aKq) = 0. 4.17

e + e coth(aK1) =0 (4.17)
When there is no magnetic field, these equations reduce tciaspeases of results given
by Gill (1965), who considered corresponding instabditi®r two-dimensional compressible

hydrodynamics.
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Equations (4.16) and (4.17) will need to be solved numayichkre this is done using a Newton
iteration scheme, tracking from the mode that existd/at= 0 and F' = 0. Contours of Infc;)
are shown in Figure 4.3 for a wide range of parameters. Here, 0, and two types of roots are
found: roots that have fixed are denoted by solid contours, and other roots that havéngary,
found in thea > 1, F > 21/2 regime, denoted by dashed contours. These roots have hawh fo
previously by Gill (1965) in the compressible hydrodynars@iting; by analogy, we will refer to
these as supersonic modes. We observe for now these supersoaies are weak instabilities.
Other features displayed by Figure 4.3 include: (i) at lakg@-igure 4.3,,b), the even and odd
modes lead to instabilities of comparable strength, whithiothe vortex sheet of Figure 4.1; (ii)
the even mode is generally more unstable than the odd ma@yleg{ther mode is unstable beyond
a cutoff M = 1/2; (iv) for small « and moderatd’ (Figure 4.3, f), there is a cutoff whed/ is
smaller thanV/ = 1/2. Using asymptotic analyses, we will now quantitativelyatése properties

() and (iv), and say something about property (ii).

4.2.1 \Vortex sheet like behaviour at largex

Assuming we have Ré&;) > 0, and M and F' are of moderate size, then we notice that
tanh(aK7) — 1, so both (4.16) and (4.17) may be approximated by

—(c? — M?) (1—¢)2 - M?

VI-FAE M2 J1-F1-of - M (4-18)

Solving foré = ¢ — U whereU = 1/2, we notice the resulting equation is similar in form to the
governing equation for the vortex sheet (4.6) up to extraemisal factors. The solution to (4.18)

is seen to be given by

(4.19)

= = - 1/2
_ -~ V1 AF202 £ AR M202 — (1 4 F20? + F2M?)
c=(c—-U)=i 7 :

The region where there is instability is given by

| 2
M< = d Fe<y|—0 4.20
<z A S\ 1A= (4.20)

Physically, a sufficiently localised short-wave disturbamnwould only ‘see’ one of the flanks of
the jet, and thus resemble a vortex sheet instability. F@lth= 0 case, this result is consistent

with the condition given in Gill (1965).
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Figure 4.3: Contours of;, computed numerically for the even mode (equation (4.23),dolumn) and
the odd mode (equation (4.17), right column) of the rectéargat at some selected. Note the different
choice of axes used in the bottom panels. The stability bagndccording to computed results is the
contour labelled by ‘0’. The stability boundaries (4.2@),24) and (4.26) are plotted also in the appropriate

panels.

Returning briefly to these supersonic instabilities thastexn the region beyond the cutoff given
by conditions in (4.20), the interpretation by Gill (196%) that, even though the modes are
effectively isolated vortex sheet instabilities when>> 1, when the stability boundary given
by (4.20) is crossed, the isolated modes on one flank becodietirg, interact with the mode
on the other flank, and leading to instability. Such instaéd arising from interacting radiating
waves is termed resonant over-reflection (e.g., Mcintyre &3saman, 1978; Benilov & Lapin,
2013}. Although these instabilities exist, we observe that these growth rates that are small,

and thus have not investigated them in great detail here.

This is in contrast to over-reflection, which does not neaelyslead to instability (e.g., Acheson, 1976).
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4.2.2 Long-wave cutoff due to the magnetic field
Even mode

We consider the even mode first. Assuming that
Re(K7) > 0, a <1, and oF <1, (4.21)

we havetanh(a K1) ~ a K7, and (4.16) becomes

(2 - M?)
V1= F2(c2 — M?)

= al(1—¢)? — M?. (4.22)

Suppose that? = O(1). If M = O(1) also, therc = +M at leading order, andis real at the
next correction. Letting/? = i < 1, the interesting results comes from takimg~ 1, which

gives, at leading order in,
c~iva—M?2  as  M*~a—0", F2=0(). (4.23)

Whenu = M? < «, we recover the result of Gill (1965). The presence of thematig field is to
reduce the strength of the instability, and in this casetioduce a long-wave cutoff. The Froude

number dependence comes in at the next correction.

Consider nowF? = ¢! > 1. We leta ~ €%; to be consistent with the assumptions stated in
(4.21), we need > 1/2. Again, M? = O(1) results in a reat, so we consideM/? = ; < 1.

It may be checked that the balance that gives a non-zesbleading order ig. ~ ¢ ~ «. This
impliesc ~ €'/2 ~ /2, with the corresponding result

1/2
o2F? oA

2

c~ I

- M?+ + a2 as M*~F?2~a—0". (4.24)

We see that there is a long-wave cutoff due to the presencenafgmetic field. Notice also that,

whenF' is small, expression (4.24) reduces formally to (4.23).

Figure 4.4 shows the computed growth rates over a rangecoimpared with the corresponding
asymptotic results. The computed results are found byrsplrie full eigenvalue equation (4.16)
with a Newton root finding method. Notice that the domain didity of (4.24) requiresxF—2 =

O(1), consistent also with the numerical results given in thédmotpanels of Figure 4.3. In both

cases, we note that~ ia!/2; we will see that the scaling is different for the odd mode.
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Figure 4.4: Comparison of the computed growth rates andribdigied growth rates from the asymptotic
results, for the even mode of the rectangular jetat= 0.1. The computed results are given by crosses
(and circles when the computed result is smaller than whgthealisplayed at this axis choice)x (4.23)

is given by the dot-dashed line (cutoff plotted as vertiaatted line) andvyx(4.24) is given by the solid
line (cutoff plotted as vertical dashed line). The correxfing growth rate as predicted by the large

asymptotics (4.18) is plotted as squares when this grovi¢hisanon-zero.

Odd mode

The analysis for the odd mode is entirely analogous excedme small complications. Using
the assumptions in (4.21), the governing eigenvalue enudtir the odd mode given by (4.17)

may be approximated by
(1—¢)? — M? . —a(c? = M?)
1—F[(1—c¢)>—M?  \/1—F2(Z— M?)

Consider first the case whe#€® = O(1). It may again be seen that?> = O(1) gives real

(4.25)

solutions at both leading order and at the next correctiakinf M? = i < 1, we again have

u ~ « with leading order solutiomy = 1, with the relevant asymptotic result

1/2

«

c~1+i{7—M2 as M?*~a—0, F?=0(1). (4.26)
V1—F? }

We immediately see there is a problem: the analysis is orllg f@r 2 not close tol, and we
need to look in more detail at the caBé = 1 + ¢. We note that (4.26) suggests also a long-wave
cutoff due to the magnetic field (with result plotted in Figur.3), that; ~ «'/2, and also that the
growth rate should peak ne&F = 1.
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For F2 = 1 + ¢, to get an instability we need to take= 1 + ec;, with u!/2 ~ a?/5 ~ ¢ where
M? = ;i < 1; the other choice is ~ y, which gives a reat;. The equation for; is then given
by the quintic equation

(C% - 1/)2(201 +1)= —\2, (4.27)

wherer and X are O(1) constants withy = ve? anda = \e*/°. This unfortunately has no
closed form solution. Even though we cannot solvedom closed form, we can say that is
expected to be complex because of the numerical resulterezsin Figure 4.3. We observe that

¢ = 1+ a*/°¢; with Im(¢1) > 0, which suggests the odd mode may be more unstable than the
even mode at thig" ~ 1 regime. We will revisit the possibility of the odd mode dotiimg in the

next subsection.

For larger values of, we letF’? = ¢! >> 1. On takingM? = ;1 < 1, we obtain the result

i 1
cn T[T M2 as e MYEED Lol 0t (s> 1/2), (4.28)

wheres may be left as a free parameter, and this result now sugdests is no cutoff due to the
magnetic field, ag; is small but non-zero. The fact that there is no longer a tatb$mall o
suggests also that in this highsmalla regime, the odd modes are preferred over the even mode.

We also notice that this result is formally equivalent to bsult (4.26) in the largé’ limit.

We compare the numerical results from the full equation{th the asymptotic results given
by equation (4.26) — equation (4.28) is the ladgdimit of (4.26) so has been omitted. We plot
in Figure 4.5 the growth ratec; againsta, and the agreement between the numerical and the
asymptotic results is apparent. The scaling suggestedenith= 1 + ¢ analysis has also been

checked and agreement is observed.

4.2.3 Preferred mode of instability: even versus odd modes.

As we have noted, the odd mode may be the preferred mode abilitst in certain regimes.
To investigate this more thoroughly, we carried out a scaer QV/, F', «) space, computing the
eigenvalues corresponding to the even and the odd modes isThbnverted into the regime
diagram given by Figures 4.6 and 4.7, showing the regionsiarpeter space where one or the

other mode is preferred.
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Figure 4.5: Comparison of the computed growth rates andribdigied growth rates from the asymptotic
results, for the odd mode of the rectangular jeflat= 0.1. The computed results are given by crosses
(and circles when the computed result is smaller than whgthealisplayed at this axis choice)x (4.26)

is given by the dot-dashed line (cutoff plotted as verticattedd line). The corresponding growth rate as

predicted by the large asymptotics (4.18) is plotted as squares when this grové¢hisanon-zero.

The mode preference transition at smélimay be quantified by a small asymptotic analysis.
First note that wheit” is zero, i.e. K = 1, the closed form solution to the equations for the even
and odd modes may be found from equations (4.16) and (4.1/&n gespectively by

o _ T+v/-T+M(1+T) S0 _ 1+/-T+M2(1+T)2
¢ 1+T ’ ° 1+T

(4.29)

C

)

whereT = tanh . Notice that the two modes are equally unstable. The ckifi¢aabove which
there is no instability for any value ef may be shown to bé/. = 1/2, and there is a long-wave
cutoff due to the magnetic field given by

1—2M2 —\/1—4M?

i (4.30)

Ay =
This cutoff is plotted as in Figures 4.6 and 4.7.

Now, we letF? = ¢ < 1 and assume that and M/ are of moderate size. It may be shown that
the appropriate form of the asymptotic solutiorcis= (9 + F2¢(M) + O(F*). Substituting this
into (4.16), (4.17), and manipulating accordingly, we @bta

1—T—2i\/T—M2(1+T)>2
41+ T)4/T — M2(1 +T)?

D =0T+ T? + o(T? - 1)] (4.31a)
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Figure 4.6: A plot over(«, F') space showing the different scenarios for the rectangetarijere,c. =
Im(c.) ande, = Im(c,); see legend for the corresponding regime denoted by I-\& cTitoff atF" = 0 due

to the magnetic field (4.30) is labelled ag and is plotted as the dot-dashed line. The change of regime,
i.e. where the even and odd mode are equally unstable, agtecthy the smallF" asymptotic analysis

(4.32), is labelled a&.; and plotted as the dashed line in the diagrams.

for the even mode, and

1—T —2i\/T — M2(1+T)2
41+ T)4/T — M?>(1+T)?

) =0T+ T% 4+ Ta(l — T?)]

(]

(4.31b)

for the odd mode. If the expression inside the square rooedmtive or zero, i.e. there is no
instability at leading order, then there is no instabilitycaat the first correction. By considering
the imaginary part of (4.31a) and (4.31b) appropriatelg, \thlue ofa where the even and odd

modes are equally unstable is then given by

(4.32)

e 4M? — /8 — 32M>2
Q-1 = tan
cl 1 +4M2 )

and we see that I(nél)) < Im(cgl)) whena < a, and vice versa, i.e. the odd mode is more
unstable than the even mode for sufficiently smallThis changeover value (4.32) is plotted as

a1 In Figures 4.6 and 4.7
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Figure 4.7: A zoomed in version of Figure 4.6.

4.2.4 Miscellaneous features

In Figures 4.4 and 4.5 we note that in certain cases there islledefined most unstable mode.
We have tried to predict where the precise location for tipignaal o will occur by considering
expressions liké(ac;)/0a, but without much success. We can however use the large aaitl sm
« results to say when such a well-defined optimadill exist, since ifc; goes to zero ag — 0
anda — oo, there must be a well-defined optimal For the casél/ = 0.1 in Figures 4.4 and
4.5, the result (4.20) tells us that tifecutoff occurs at” = 5/1/3 ~ 2.88, which agrees with the

appearance of the peaks in the respective figures.

4.3 Summary and discussion

For the vortex sheet, it was shown that closed form solutinag be written down for the root
corresponding to instability, from which stability critermay be derived. This instability is
strongest wherd/ and I’ are both zero. On increasirfg or M when the other is zero, it is seen
that the effect is to decrease the growth rate of the in#tighibnsistent with energetic arguments.

However, we also observe that there is a tongue regiod'ftarge and)M close tol, indicating
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that somehow the individual stabilisation effects caneaheother out. An asymptotic analysis
was carried out near the stability boundadry = 1 to investigate the behaviour of the instability

in this tongue region.

For the rectangular jet, there were several features of thatewe have found. Far > 1, we
found two types of instability, one that is like a vortex shiestability, and the other is what we
termed supersonic instabilities, previously found by Gi®65) and now attributed to resonant
over-reflection. We focussed on the vortex sheet instislitand found analytical expressions
for these instabilities via an asymptotic analysis. Theessgnic instabilities were observed to
be weak instabilities so have not been investigated in ghetil; it is certainly possible however
to investigate them via an asymptotic procedure, as was io@él (1965). Numerically it was
found that there are no instabilities whéh > 1/2. Fora < 1, it was seen that there is a
cutoff due to the magnetic field, and the locations of thegeftsuwere found by an asymptotic
procedure. Although it was found that the even mode is gépareore unstable that the odd
mode, via numerical and asymptotic procedures, we weretalfied regions in parameter space

where the odd mode is the strongest instability.
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4.4 Appendix: Expressions for eigenfunctions

When the profile is piecewise-constant, the eigenfunctiay e written down explicitly, given
below. Note that thé” dependence appearsié? = 1 — F25% =1 — F?[(Uy — ¢)? — M?], and

in the caseF’ = 0, / is identified withp, the pressure term in the incompressible case. Note the
expressions foh remain formally atO(1) in the limit of I tending to zero, and this is because
of the rescalingh = B/F2 we employed when we wrote down the full SWMHD equations in

Chapter 2.

Note in these cases there are no vorticity or current peatians except at the discontinuities.

\Vortex sheet

+1, y>0
Up = (4.333)
-1, y<0
e Ky oy >0
G = (4.33b)
eJraK_y’ y < 0
+(1 —c)e Ky 4y >0
b= (4.33¢)
—(L+c)etoFv, 4y <0
. Me K+y 4 >0
by = (4.33d)
MeteE-y 4 <0
—i(l—c¢)K e Ky >0
4= Ky (4.33¢)
—i(l+c)K tetel-y 4 <0
R —IMK temoK+v ¢y >0
b, = (4.33f)
HMEtetol-—v 4 <0
. HSZK e By oy >0
h= o (4.33g)
—iS2 K letoK-y 4y <0
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Rectangular jet: even mode
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(4.34a)

(4.34b)

(4.34¢)

(4.34d)

(4.34€)

(4.34f)

(4.349)
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Rectangular jet: odd mode
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(4.35a)

(4.35b)

(4.35c)

(4.35d)

(4.35e)

(4.35f)

(4.350)
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Chapter 5

Linear instabilities of smooth profiles

As a model for more realistic profiles, we consider in thispthathe instabilities associated with
the hyperbolic-tangent shear layer and the Bickley jet.id\gar simplicity, we limit ourselves to
the case of a uniform background magnetic field with no uydegltopography. Linear instability
calculations involving these two profiles are well docunedrin the literature in a wide variety of
contexts (e.g., Lipps, 1962; Howard, 1963; Michalke, 198¢§zin & Howard, 1966; Hazel, 1972;
Drazin & Reid, 1981; Sutherland & Peltier, 1992, 1994; HuwgyBeTobias, 2001) and provide a

comparison and check on our results.

5.1 Numerical method

We seek a numerical solution of the eigenvalue equation),(rltten as

(5%) _ (K2

5?2 K?

G" + { ] G — ?’K*G =0, (5.1)

where, again,s? = (Uy — ¢)?> — M? and K? = 1 — F2S2. Although the velocity profiles
are technically defined over the entire real line, we solwedfuation on the finite domain

[—Ly, L,]. We will consider solutions that decay exponentiallyj;asecomes large, namely
G ~ exp[—aKy], Re(K) >0 as |y| — oo, (5.2)

and the size ofL, chosen depends on the decay properties of the eigenfupcvenwill

be doubling L, until the change in the computed eigenvalue is suitably lsnsaich that
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lc(2Ly)|/|c(Ly)| < €, for some choice of. We solve the second order ODE (5.1) by a shooting
method, with matching imposed at= 0, employing a generalised Newton method as the root-
finding algorithm; the integration is started frafl,,, taking

G G

= —O[Ki’ — —AO[K+, (53)
G 1L, G L,

as the initialisation, wher&. = 1 — F?[(U(£o0) — ¢)? — M?], with U(+o00) = =1 for the
shear layer an@/ (+o00) = 0 for the jet. The constamt and the eigenvalueaccordingly until the
matching errors ay = 0 are sufficiently small. To avoid singularities in the govagiequation,
we seek only unstable modes. The routines were written in IM¥H, using routineode113

as the integrator (an Adams-Bashforth type method with tadagrid). Although the boundary
conditions are functions af, changing at every iteration, we generally have no problerits
convergence provided that the initial guess is close tortleevalue. Solutions are initialised from
F =0, M = 0 at some fixedr using a known numerical result documented in, for example,
Drazin & Reid (1981). Runs at new parameter values are thiéalised using an estimate for
the eigenvalue from previously calculated eigenvaluesatby parameter values. The Bickley
jetis even abouy = 0 and hence the parity result of Section 3.4 holds, i.e. therdighctions are
either even or odd. In this case we need integrate only yp=t00, with the imposition of either

G'(0) = 0 (even mode) ot7(0) = 0 (odd mode).

5.2 Hyperbolic-tangent shear layer

In this subsection, we consider the basic state velocitydéfby
Uo(y) = tanh(y), —00 < y < o0. (5.4)

From inequality (3.12) we know that the growth rates associated with any instability are
bounded above byiax |U/|/2 = 1/2; furthermore, from the stability criteria (3.20) or (3.21)is
profile is stable whed/ > 1. From the parity results in Section 3.4, the eigenvaluescaied
with unstable eigenfunctions take the form= +c¢, + ic;. In the hydrodynamic case, instability
exists only within the bandwidth < o < 1, with a neutral mode at = 1 (e.g., Drazin & Reid,

1981,5§31.10).

Figure 5.1 shows contours ef over theF' and M parameter space at selectedreflecting: (i) a

relatively short wave disturbance (Figure &);1(ii) the most unstable mode in the hydrodynamic
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Figure 5.1: Contours aof; over F' and M parameter space at selectedThe results have been filtered so
that only modes withc,.| < 10~2 are plotted. Figure 4.1 is reproduced here as ganébr comparison

purposes.

incompressible case (Figure b)(iii) a long wave disturbance in panel (Figure §.1Figure 4.1,

the corresponding diagram for the vortex sheet profile, psaduced here as the Figure i) (
for comparison purposes. We should note that the results heen filtered so that only the low-
frequency modes (here those wijth| < 10~3) have been displayed; as explained below, there
is also a distinct second mode of instability (with larger), which is manifest at higher values
of F. Figure 5.1¢) and () are remarkably similar, suggesting that long-wave iriktads for this
velocity profile resemble the instabilities of a vortex ghekhis resemblance will be quantified
via a long-wave asymptotic analysis in Section 5.5, in whighderive the more general result

that long-wave instabilities of any shear layer profile relske vortex sheet instabilities.

As described above, figure 5.1 is compiled by tracking theludiom of a particular mode
of instability, using the incompressible hydrodynamicecgs’ = M = 0) as the starting
point. It is therefore important to ask whether there ardtemidl, distinct modes of instability.
Indeed, it is known that for both two-dimensional compraleshydrodynamics and shallow-water
hydrodynamics, there is a second mode of instability, fdmnhBlumenet al. (1975) and Satomura
(1981) respectively. Compared to the first modes (those @iirEi5.1), which may be referred

to as inflection point instabilities, these second modess(mersonic modes for compressible
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hydrodynamics) are observed to be weaker instabilitiessgss a weaker spatial decay, and occur
as a pair of propagating waves with phase speed Inflection point instabilities can be attributed
to interacting Rossby waves supported by the backgrounar ¢kee, for example, the review by
Carpenteret al,, 2012); by contrast, supersonic instabilities (absenh&K < 1 regime) can

be attributed to gravity waves interacting with criticayéas (e.g., Satomura, 1981; Hayashi &
Young, 1987; Takehiro & Hayashi, 1992; Balmforth, 1999; Bmn& Lapin, 2013) and, indeed,
can occur for linear shear flows, explicitly filtering out thessibility of Rossby waves due to
the background shear. This is consistent with the theoreRipd (1983), which states that for
instability, either the associated potential vorticityfile possesses an inflection point or that the
flow is supersonic £ > 1) somewhere in the domain, conditions necessary for Rossthpia

gravity wave interaction leading to instability.

Such second mode instabilities can also be identified in tWMBD system; some contours of
associated with these instabilities are presented in Ei§L2. By analogy with the instabilities
found in compressible MHD, we shall also refer to these maessupersonic’. Figure 5.3
plots their growth rate over the unstable bandwidth at varisample parameter values. It can
be seen that the supersonic instabilities generally hawakevegrowth rates than inflection point
instabilities, consistent with the results of Blumeinal. (1975). As we shall see in Section 5.5,
the relation between the two types of unstable modes canglerer in some detail in the small

wavelength limit.

5.3 Instability mechanism in terms of counter-propagatingRossby

waves

As mentioned above, inflection point instabilities can kelatted to interacting Rossby waves
supported by the background shear. The constructive @m@rée of a pair of Counter-propagating
Rossby Waves (CRW) has been put forward as the mechanisideadnstability of shear flows
in a variety of settings (e.g., Bretherton, 1966a; Hoslehal., 1985; Baines & Mitsudera, 1994;
Heifetz et al,, 1999, 2004; Heifetz & Methven, 2005; Harnik & Heifetz, 20MHeifetz et al.,
2009; Carpenteet al,, 2012). For the SWMHD system, it is therefore natural to émgiow this

underlying mechanism is modified by shallow-water and MHi2&s.

Let us first consider the incompressible, hydrodynamic ddse= 0, M

0). Viewed
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«a = 0.20, with second mode « = 0.01, with second mode Ci
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Figure 5.2: Contours aof; over F' and M parameter space at selectedInflection point instabilities with
le.| < 1073 are plotted as solid lines while supersonic instabilitiéh,.| > 103 are plotted as dashed

lines.
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Figure 5.3: The growth rate over the unstable bandwidthlatt parameter values o (y) = tanh(y).

The inflection-point mode is plotted as lines and the supsérsnode as markers.
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Figure 5.4: Basic CRW mechanism in schematic form, for thekgeound velocity profile ofy = tanh(y),

so the background vorticity profile 9, = —secH(y). Solid lines here depict the dynamics for the
incompressible, hydrodynamic case. The contours are ofidhticity. \orticity anomalies are shown
by the closed solid curves, and the effect of these on the otirgours, leading to instability, is shown by

solid arrows.

individually, the Rossby waves are neutral. Its directidrpmpagation is determined by the
vorticity profile, which in this case is related to the baakgrd flow. This in turn is seen to imply
a wave propagation that is in the opposite direction to thekdpaund flow. A pair of CRW may
then be held stationary by the background flow, become pluded, and, depending on the
phase shift, interfere constructively, leading to mutuapéfication and hence instability. This is
the scenario depicted in, for example, Figure 1 of Heifetz &tlWen (2005). Schematically, these
CRW are represented by the solid curves in figure 5.4, whegle efathe vorticity anomalies has
an associated velocity, and where the configuration is suahthe mutual influence of the two

Rossby waves acts to increase the wave amplitude.

We plot in Figures 5.5 and 5.6 the relevant eigenfunctionstfie most unstable mode at
some sample values df and M, with the Rossby waves represented by vorticity anomalies;
the incompressible hydrodynamic case is displayed in pésein the figures. Looking at
Figure 5.5¢), the pattern is consistent with the schematic in Figure Sal at the simplest level,
we observe that increasing or M perturbs the patterns away from the optimal configuration fo

instability, thus leading to the observed stabilisatione Wéw quantify how the extra physics of
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Figure 5.5: Vorticity eigenfunction of the most unstabledaoof Uy(y) = tanh(y) at some selected
parameters. Here and in subsequent diagrams of this tyges rgositive and blue is negative. Notice

the larger shift between the pair of wavesidss increased, and a slight tilting whénis increased.

(b) F = 0.75, M =0 (a) F = 0.75, M = 0.75
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b

Figure 5.6: Height (pressure) eigenfunction of the mostabie mode of/y(y) = tanh(y) at some selected

0.5 *
ax /2T

parameters. Notice an increased tilting with increading

the SWMHD system perturbs the patterns away from the optiramfiguration.

So since Rossby waves are associated with vorticity anesjalive consider the vorticity

equation and see what can be inferred. The vorticity eguatidwo-dimensional incompressible
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hydrodynamics is

D 0
—w—a—c:—i-u Vw = 0. (5.5)
Then, linearising about a basic shear flow(y) gives
d d
<8t + an > —1)96. (5.6)

Now, we note thab is related to the cross-stream displacement of the matadburn as

d d
<6t+an>n_v, (5.7)
and so taking modal solutions of the form (3.4) then gives

= —i%%. (5.8)

This says that, in the incompressible hydrodynamic caseyariicity anomalies are tied to the

deformation of the material contour.

Here we work out the eigenfunction farand» associated with the most unstable mode ft@m

and compare the two in Figure 5.7. As a measure of the errotaleelate the relativé., error:

rel. L, error= [l = (_”Q/O)”L2, )|, = //(-)2 dzdy. (5.9)

[|wl| L.
As we can see, the relative error is small, less than 1%; tleusam say with confidence that the

vorticity budget equation captures all the vorticity cdmitions.

5.3.1 Modifications in the SWMHD case

The SWMHD vorticity equation is given by

Dw

- —(V-uw)w+ M?b-Vj+ M*(V -b)j, (5.10)

wherew and j are thez-components of the vorticityV x w, and electric currentV x b,

respectively. Using equations (3.1c) and (3.1d), this aawiitten as

Dw Dh
_ F2
Dt D

+ F2hwV -u + M*(1 — F?j)b-Vj — M*hjV - b. (5.11)

On linearising about the basic stdt& = Uy(y)e., By = le,, taking modal solutions of the

form (3.4), we obtain the following expression for the vaitti budget:

&= —iQ + F2hQ + MQ%, (5.12)

0o—C
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Figure 5.7: Vorticity contributions associated with theghonstable mode & = 0, M = 0; panel(a) is
also Figure 5.5(). The small relativel., error given by (5.9) indicates that the vorticity anomakesne

solely from deformation of the material contours.

where()y = —U] is the basic state vorticity. These three terms represemtribotions due
respectively to the deformation of the cross-stream digpieent, to shallow-water and magnetic
effects. Inspection of Figure 5.1 shows that the instgbiitmost vigorous whed/ = F' = 0
and that increasing eithév/ or F' when the other parameter is zero is stabilising; we theeefor
expect that the vorticity anomalies from the magnetic aralleh-water effects will counteract

that associated with the deformation of the material cantou

CRWSs modification when one ofF’ or M is zero

Consider first the case whefe= 0 (the incompressible MHD case). Equation (5.12) is given by

j
Uy—c

GO = —7QH + M? (5.13)

We show in Figure 5.8 a typical result fé* = 0 showing the physical form of the respective

components associated with the most unstable mode at ttieutear parameter values.

We notice that the positive contribution to vorticity wh&h £ 0 has a centre that straddles the two

negative vorticity anomalies associated with the defolonatf the material contour, and the same
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Figure 5.8: Vorticity contributions associated with theshanstable mode d@ = 0, M = 0.25. Notice
that unlike the hydrodynamic shallow-water case, the eiyticontribution due the MHD effects is the
same order as the contribution due to the displacement ah#terial contour. Note also the bottom panels

are zoomed in than the other panels.

is true half a wavelength along where the sign of the coniobs are swapped. At the simplest
level, we have a modification to the basic CRW mechanism,ngine-igure 5.9. The location
and the sign of the extra vorticity contribution is such tihabunteracts the action associated with
the underlying CRW mechanism and so is stabilising, cossiswith the stabilisation observed

previously.

The case wherd/ = 0 (so the shallow-water, hydrodynamic case) may be congldieren

analogous manner. Equation (5.12) in this case is given by
& = —A + F2hQy. (5.14)

This equation is a restatement of the conservation of patardrticity, and may be derived from
starting withDg/Dt = 0 and linearising accordingly. We plot in Figure 5.10 a typiessult for
M = 0 showing the physical form of the components, again usingibst unstable mode at
this particular parameter value. A similar interpretatleads to a schematic like Figure 5.9, as

in the FF = 0 case. We note however that the vorticity anomalies arisiom fthe perturbation



Chapter 5. Linear instabilities of smooth profiles 59

A ‘ Qo(y)
|

Figure 5.9: Modified CRW mechanism in pictorial form, withetbbackground velocity profilé, =
tanh(y). The solid contours are associated with the basic CRW mésihaas in Figure 5.4. The closed
dashed curves represent the additional vorticity anomdlie to the extra physical effects. The (stabilising)

effect of these extra vorticity anomalies are shown by trehdd arrows.

of the material contour is the dominant contribution to theole vorticity, larger than the extra

contribution by an order of magnitude.

As a further verification of these ideas, we have also adopt@arturbative approach to the
analysis of expression (5.12), approximating the shallater and magnetic contributions using
the eigenfunction fotE = M = 0. It can be readily seen that calculatid¢th(2, using h

is consistent with that obtained from the full linear eqoas (see Figure 5.41b). To obtain
an estimate of the magnetic contribution, it is necessargaloulatej; using the governing
equations (3.3c) — (3.3d) with the velocity obtained whién= M = 0. This is slightly more
involved than forB, but can be shown to provide a consistent vorticity contidmy see for
example Figure 5.1%J and the numerically calculated contribution given in Fegb.11¢). Thus
the idea that shallow-water and magnetic effects act td g vorticity distribution from an

optimal configuration for instability is confirmed.
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Figure 5.10: Vorticity contributions associated with theshunstable mode & = 0.5, M = 0. Notice
that the vorticity contribution due the presence of a fredase is much smaller than the contribution due

to the displacement of the material contour.
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Figure 5.11: Vorticity contributions implied by the veloceigenfunction calculated & = 0, M = 0.
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that, as observed before, the vorticity contribution fréma MHD term is larger than the contribution from
the shallow-water term, and both are such that they coutttita contribution from the deformation of the

material contour.

CRWSs modification in the full SWMHD case

The vorticityw and its three constituent components in expression (5r&Zrewn in Figure 5.12

for the representative case bf = 0.25, F' = 0.5. The contribution from the deformation of the
material contour is consistent with that of Figure b)5(Note that the extra contributions due to
non-zeroF' or M have opposite signs of vorticity that straddle the appaiprpeaks and troughs
of the underlying vorticity anomalies due to the CRW mechiamiand its stabilising effect is as in
the schematic given in Figure 5.9. We observe that the Wyrtiontribution associated with the

M terms are an order of magnitude larger than the contribsititue toF'.

So we see that the underlying CRW mechanism, in the SWMHDeByshecessarily generates

vorticity anomalies that implies an action that counterdbe basic instability mechanism. There
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are certain details that we have not accounted for, sucheasctteleration of the waves from these
induced anomalies which affects phase locking, fringeceffaway from the peaks and troughs of

the extra vorticity anomalies, and so forth; these are dsed at the end of this chapter.

5.4 Bickley jet

Here we consider the basic state velocity defined by
Uo(y) = sech(y), —00 < gy < 00. (5.15)

From inequality (3.12), the instability growth rates; are bounded above hyax |Uj|/2 =
2/(3\/3); furthermore, from stability criterion (3.21), this veltcprofile is stable when/ >
1/2. For the incompressible hydrodynamic case, even and odeésna unstable only in the
respective bandwidth8 < o < 2 and0 < a < 1, with neutral modes at = 2 anda = 1

respectively (e.g., Drazin & Reid, 198331.9).

Figure 5.13 shows contours of over (M, F') space for selected values of the wavenumber,
tracking from the mode al/ = 0, F' = 0. The values ofx are chosen to reflect: (i) the
most unstable mode in the incompressible hydrodynamic(€agere 5.13,b); (ii) the mode with
highestc; in the incompressible hydrodynamic case (Figure &d)3(iii) a long-wave disturbance
(Figure 5.13, f). The magnetic field provides a stabilising influence, wlsmost pronounced at
small values of the wavenumber This feature will be quantified later via a long-wave asyotipt

analysis.

Figure 5.14 shows the growth rate of the modes over the uedtabdwidth at selected parameter
values. In general, the even mode is more unstable than thenode. Though there are isolated
regions where the odd modes are more readily destabilisese tdo not necessarily correspond to
the regions predicted by the stability analysis for theagtlar jet, described in Chapter 4. We
have also performed some sample calculations in regionsevthe analysis for the rectangular
jet suggests a preference for odd modes; however, we fousttaray evidence to suggest that for
the Bickley jet the odd modes are more unstable than the ewglesnn those regions. Thus, for
this particular aspect of the problem, the stability préipsrof the piecewise-constant profile do

not provide a quantitative guide to those of the smooth @rofil
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Figure 5.13: Contours of; over the " and M parameter space at selectedfor the even mode (left
column) and the odd mode (right column)i@f(y) = secH (y). The predicted cut off from the asymptotic
result (5.38) is plotted in panet)
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Figure 5.14: The growth rate over the unstable bandwidthelicied parameter values o (y) =

secH (y). The even mode is plotted as lines and the odd mode as markers.
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Figure 5.15: Vorticity eigenfunction of the most unstablemode of/;(y) = secH (y), at some selected

parameters.

A natural question to ask, prompted by the findings for regtigar jet in Chapter 4 and the
shear layer earlier this chapter, is whether there are iaddlt modes of instability to those
shown in Figure 5.14, which were obtained from tracking nsogtarting from the incompressible,
hydrodynamic caseH{ = 0, M = 0). We have performed a scan ové¥/, F') space at various
values of the wavenumber, with randomly generated initialisations chosen so thatitfitial
guesses for: lie within the smallest rectangle containing the semifein@.19). A substantial
number of computations (20 different initialisations aep200 different parameter values) were
carried out, solving the governing eigenvalue equatioh wit parity imposed. Via this, admittedly
non-exhaustive, procedure, we have not found any unstabtke rthat differs from the even and

odd modes obtained by tracking from the starting poinf'of 0, M = 0.

One question to ask is whether the CRW mechanism discussker éa applicable to the jet
profile. For the jet case we may be tempted to say there are @w® @f Rossby waves, centred
around each of the jet flanks. However, we should note thag tisea change in wave behaviour
in the middle of the jet, where the flow is at its maximum d&A/d < 0, in contrast to inflection
points wherel’” = 0. The interaction of these Rossby waves are not straighéi@hkecause,
for example, the flow is not necessarily holding the wavetsostary any more. We do not pursue
the Rossby wave interpretation as the instability meclmarfi@ this profile, however, we provide

plots of the eigenfunction for completeness (Figures 5015 18).
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Figure 5.16: Height (pressure) eigenfunction of the mostalsie even mode @f,(y) = secl(y), at some

selected parameters.
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Figure 5.17: Vorticity eigenfunction of the most unstabtilanode ofl/y (y) = secH(y), at some selected

parameters.

5.5 Long-wave asymptotics

Several features of the instabilities of the hyperbolingent shear layer and the Bickley jet may be
clarified by generalising the long-wave asymptotic procediue originally to Drazin & Howard

(1962). We consider the governing equation (5.1), writtetne form:

2
Z2(G" - *K*G) + (Z2*)G =0, 7Z? = % (5.16)
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Figure 5.18: Height (pressure) eigenfunction of the mostalsie odd mode dfy(y) = sech(y), at some

selected parameters.

We assume that the velocity profiles under consideratiorsach that/,. = Uy(+oo) are well-
defined. Then, on choosing an appropriate frame of referandesuitable normalisation for the
basic flow, any velocity profile may be designated as eitr&@vear layerf U, = +1, or as get
if Uy = 0. The idea is that, for long-wave disturbances, the behawibl/y(y) aty = +oo gives
the leading order behaviour, with the variations assodiatigh the basic state leading to higher

order corrections.
We further assume thaf (and so(Z?2)’) decays sufficiently rapidly ag| — oo. Adopting the
same notation as Drazin & Howard (1962), we consider saistto (5.16), for fixed, of the form

Oly) = Gy(y) = x(y)exp(—aKyy), y>0, (5.17)

G_(y) = 0(y) exp(+aK_y), y<0,
with x, 0 — constant ag — +oo, and whereK? = 1 — F282 = 1 — F?[(Ux — ¢)? — M?].
The perturbations must decay @s— +oo; hence RéK ) > 0. We consider expansions of the

functionsx(y) andé(y) of the form

e} (o)

XW) =D (+a)"xnly),  0y) = (—a)"0u(y), (5.18)

n=0 n=0
with xo,600 — constant 0) andy,,,0,(n > 1) — 0 asy — +oo. It turns out to be most
convenient to fixyp(co) = 6y(—o0) = 1, and then to accommodate the necessary degree of

freedom in the matching conditions f6f aty = 0. Without loss of generality, we shall focus
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on the equations foy; those ford follow in a similar fashion. On substituting expressionsl@

(with the expansions (5.18)) into (5.16), equating the ficiehts at each order af gives

0=[Z%x0), (5.19a)
0=[Z2*x1] — K+[(Z%x0) + Z°xa); (5.19b)
0= (22X o) = Kol(Zxns1) + Zoxuii] + Z2(K2 —K?),  n>0.  (5.190)

Equation (5.19a) integrates #x{, = C, with the conditions at infinity then giving' = 0. Thus
Xo = constant= 1 through our choice of((occ). Integration of equations (5.19b) — (5.19c) then

gives, after some algebra,

y 72
X12/00< —Z—J2r> dys,

) (5.20)
L I R L ) 5 (U z2
X2=/OO ﬁ/oo(s —S+)dy2+K+/oo 1——5 ) dyz| dys.
Analogously, we have
90 = 17
v z?
0, = K_ /_OO (1 — ﬁ> dys, (5.21)
Y L[ 2 2 [N z?
Having normalised; and#f, the matching conditions gt= 0 become
G.(0)=TG_(0), and G’ (0)=TG"(0), (5.22)

for some constarif. Consistency thus implies_ (0)G”_(0) = G_(0)G’_(0), which gives

S? S?
[

K, K_
00 0
+a U (S* - S%) dy +/ (8% — 5%) dy (5.23)
0 —00
S 0 52 S? o0 S 9
K K <1 - §> - KiK_ Jo <1 - §> dy} 0,

where the factor of-1/Z2 multiplying the whole of the right hand side has been removed

Although we have focussed on the case of uniform backgrouagnetic field, it is possible to

include a non-uniform background magnetic field in our dafdn, subject to imposing conditions
analogous to those for the background velocity profile. Rerdase where there is a underlying
topography, we refer the reader to the article of Collings @nhaw (1980) for the assumptions

required.
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5.5.1 Hyperbolic-tangent shear layer

For a shear layef/L = +1, the leading order term of expression (5.23) gives

(1 — )2 — M2 (1 + )2 — M2
V1—=F2[(1—-c@)2 - M2 /1-F2[(1+c¢©)2 - M2

=0, (5.24)

which is exactly the eigenvalue equation of the vortex slié&). Hence, for any shear layer,
¢ — ¢y in (4.8) asae — 0. This is perhaps not entirely surprising: sufficiently lomgves will, at
least to leading order, see the shear layer as a discontiftits also suggests that the tongue of
instability (cf. Figure 5.%) is a generic feature of shear layer profiles since long wakesnstable

in the tongue region.

Information about the second mode of instability may be iokth at the next order. From
the discussion of the vortex sheet in Chapter 4, we know thenw is sufficiently high, the
eigenvaluer, becomes real. Following Blumeet al. (1975), we considet = ¢, + ac®) + ..

Choosingey, € R, we note that

KoK og=+1-F2(1—-¢)% - M2\/1-F2[(1+¢)2—M2=1 (5.25)

upon writing oute, in full using (4.8). Assumingl — M?) = O(1), to proceed, we need to obtain
the O(«) correction to this first term in the square bracket in (5.28)d evaluate the remaining

integrals.

Takingc = ¢, + acl)) and Taylor expand accordingly, we use thél) relation that

52 S?
e L (5.26)
Kip K=
to eliminate terms accordingly. This yields in our case
Si 52 2
— +— = —A4 1+4F2 4 4F4M?2| . 5.27

In the M = 0 case this is an equivalent form to that obtained by Bluwteal. (1975).

Now, to evaluate the integrals on the right hand side of (6.@thenU, = tanh(y),

/00(52—52)(1 /O 282y dy=—
Dydy+ [ (S2—S2)dy=—2. (5.28)
0 —o0
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For the latter two integrals, using the substitutior- tanh(y) and partial fractions results in

2 0 2 2 00 2
it (1—5——> dy — 5 (1—S—§> dy

KL K_ ) 52 K. K_ J,
0 1
—dv dv
=2 5.29
CV[/11—1)+/0 1+v} ( )
+1—(CV—M)2 /1 dv 1= (e + M)? /1 dv
2M v —M—¢y 2M v+ M—c

In (5.29), for the integrals in the square brackets, sineestire no singularities on the integration
path, the integrals may be evaluated in the usual fashiom.thHeoother two integrals, there is
potentially a singularity on the integration path. Singec R, we deform the contour as a
semicircle to go under the singulafitatv = ¢, + M andv = ¢, — M respectively. Observing

that the singularities are simple poles with residue 1, thed Bxpression is given by

1—(cy — M)? 1—M—
e P ! )log< CV>+51

2M 1+ M+c¢y
1—(c\,—i—M)21 14+ M —¢y 5
oM B\ 1T - Mta) ™
with
m, oy — M| <1, mi, o+ M <1,
51 = and (52 = (530)
0, otherwise 0, otherwise

Putting the above together, writing everything out in fuldananipulating the expressions a little,
we final obtain an expression fof!) given by

oD _i\/F2[(1—c\,)2—M2]—1 (14 ev)® — M? «
i VI+A4F? + AFIM?
<1 +

{log (M—Z:%z> — 01— 52} (5.31)
+# {log (%) + 0y — 52}> ,

with §; given by (5.30). It may be shown that féf — 0, the expression inside the braces is equal

— N[&R

to 4M (1 — ¢y)~2 + O(M?), and that equation (5.31) formally reduces to an equivetemt of
equation (21) in Blumerrt al. (1975). Unlike for the leading order resulf, there is no cut off
with increasingF'. By expanding:, given by (4.8) up to powers df —*, it may though be readily

demonstrated from (5.31) that (")) — 0F asF — oc.

The analysis leading to expression (5.31) is valid onlycfanot close to zero, i.e£? not close to

2(1 — M?)~! or M not close tol. When2 — F2(1 — M?)~!is small,0(a?/3) to be precise, we

*As we consider Irfey) — 0.
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havec, ~ act) ~ o!/3. Performing appropriate rescaling and choosing the apjatepbranch

so that Ré/---) > 0, givesc(! as the solution of the cubic equation

2M? 2 1 14+ M
0+ 3 < T 0 (532

— —FY)ce—ia|———+ —1

123 T \1-ae )C Q[I—M2+2M 1M
for o/3 ~ 2(1— M?)~! — F? — 0. Equation (5.32) formally reduces to equation (23) in Blame
etal.(1975). There is an inadmissible raot —ic;, and two roots that are either purely imaginary

(c = ic;) or complex ¢ = +¢, + ic;) depending o2, Considering the expansion
(5.32)= (c —iA)*(c —iB),

the transition to non-zerg. may be seen to occur at

1/3

Feuso= 7372 ~

4 (1— M2)3

2 2 VL 1 1 1+ M\?
9 [a 6 + < + )] (5.33)

—1
=2 oM BT
This expression reduces i2,s, = 2—3(6a%)!/3 whenM — 0, as given by Blumeet al.(1975).
The leading order result with, separately, correctionsiftibe outer and inner expansions, together
with the full numerical results, are presented in figure 518 asymptotic results, including the
location of the cusp given by equation (5.33), show excelégreement with the numerically

computed values.

5.5.2 Long-wave asymptotics for jets

A general velocity profile is defined as a jet if, in an apprafiframe, U, = 0. In this case,
expression (5.23) simplifies to

0:%+a[/_2(52—53) y—;—%/_z< —i—é) dy}—kO(aQ), (5.34)
whereS? = (0 — ¢)2 — M?2. Here, for a fixed value of’, we need to consider different regimes
for M. For F? = O(1), if M? = O(1) thenc is real at both leading order and at the next order
correction. The marginal case g2 ~ «, but this gives:(?) = 0 at leading order. At the next
order correction, we choose to balance the first two termdernight hand side of (5.34). On
letting M? = po and defininge = f_J“;O U?/2 dy, where E may be assumed to b@(1) via

rescaling, we obtain

c~ivVaE—-M?2  as  M?~a—0, F2=0(1). (5.35)
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Figure 5.19: Line graphs of= ¢, + i¢c; ata = 0.01, varying with F' for some values oiM, for the shear
layer. The crosses are computed results, solid line is yra@totic result, + acy with ¢; given by (5.31),

and the dot-dashed line is the inner expansion given by theaet solution to the cubic (5.32).

The corresponding result for the compressible hydrodyoarase was derived by Gill & Drazin

(1965), and for the incompressible MHD case by Gedzelmarn3}L9

For largeF, we let 2 = ¢~! >> 1. Then the interesting case is whéf? = O(¢) anda ~ .

Considering the same balance as above gives the followsutre

1/2 .
as 5~ M?*~a—0. (5.36)

a2F2E2
c~l | ——

2

atFAE4

—M2+\/a2E2+ .

This result reduces formally to (5.34) in the limit of small

For the Bickley jet,ff;o(secﬁy)2 dy = 4/3. The corresponding long-wave asymptotic results

are therefore given by

.2
c~i ga—M2 as M?’~a—0, F?=0(1), (5.37)
and
1/2
Ap4 1
c~i|=a?F? - M? + oz2—|—a9 as ﬁNMQrwa—)O. (5.38)
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Figure 5.20: Comparison of the computed growth rates (es)sand the predicted growth rates from the
asymptotic results fot/(y) = secH(y), at M = 0.1: ax(5.37) is given by the dot-dashed line (cutoff
plotted as vertical dotted line) andx (5.38) is given by the solid line (cutoff plotted as verticished

line). Circles denote the modes stabilised by the magnetit. fi

The growth rate as predicted by (5.37) and (5.38) is plottgmirst the computed growth rates
(of the even mode) in Figure 5.20; it can be seen that the fsutlie to the magnetic field are

accurately predicted.

5.5.3 Consistency issues of long-wave asymptotics for jets

One potential concern is that we have assumed that the s@utegdal in the square brackets in

expression (5.34) is negligible in the leading order batane show here that

2 — M? +o00 2 — M2
1= F2( — ) / [1 T Wo— =P dy = O(eloge), (5.39)

—0o0
wheree is some small parameter related to the regime of intereats e asymptotic scheme is

indeed consistent.

Following Drazin & Howard (1962), we shall assume thég| < Ae ¥, which is satisfied
for the Bickley jet considered. This condition may be retiixehoosing|Us| < A/(1 + y*7),

wheren is an integer, provides a modified version of (5.39) usingapproach below. Drazin
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& Howard (1962) make the additional assumption that ‘almost pure imaginary’, namely that

lel/|eil < N < oco. Here we adopt the modified assumption that

2 M2
’C’% < N, = 0(1). (5.40)

Although there is no rigourous explanation for why this dddwold, it is supported by both oar

posteriorinumerical and asymptotic results.

Consider first the case df = 0. The left hand side of (5.39) is then given by

00 62 o M2
I= (- Mz)/o [1 S MQ} dy, (5.41)

where we have taken the integral over the positive realHirafwithout loss of generality. We

split the range of integration as

00 log(+) %) A 1/a
/ :/ +/ , where log(-) = log (—) : (5.42)
0 0 log(-) ¢

We now proceed by bounding the individual integrals andesing their leading order size by

using the result (5.34). First, using
Uy — ) = M?| > ¢, (5.43)

it is seen that

log(+) log(-) c 2 + M2
@) [T ez [ {H"C—z] dy

< |2 = M| log(-)[1 + ] (5.44)

= O(alog o),
upon also using the assumption tAd@? = O(«), and the derived result (5.34) that= O(a'/?).

We choose to construct an upper bound for the second integfallows:
o & U2 —2Uyc
2 2 2 2 0 0
¢ —M / <) dy = (¢ — M / [—]
( ) 1og(~)( ) ( ) og () (U o 6)2 _ M2

62 o M2 00
<M ™ g+ 2ivne oy
i log() (5.45)

<N
2a a

A2e—2alog(") 2 Ae—alog(")
+

= O(a),

from which it follows that/ = O(alog «).
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For F2 = O(1), we make the additional assumption that

1 1
=@ =30 < [+ P = e = N2 = 0 (5.46)

where we have used the triangle inequality in reverse anatrasé of the facts that/? = O(«)
and that: = O(a!/?) from (5.35). We may immediately conclude tHat O(«log o) as before.
For F2 = ¢!, the corresponding result is (5.35), which states that C'\/e and M? = pie; an
entirely analogous procedure will give the reslit= O(eloge). So indeed we have consistency
of the asymptotic scheme for the jet case. f@] < A/(1 + y*>"), an analogous result may be
derived by adopting a different splitting of the integral(f142). This shows that if we were to
calculate the next order correction, we need to be awarembahay obtain terms a (e loge),
something that is perhaps not immediately obvious. A maiific of this procedure may be

applied to the case where the magnetic field is not uniform.

5.6 Summary and discussion

For the shear layer, we found two types of instabilities. Tirg of these is what we termed
the inflection point instability, possessing the charastier that ¢, = 0, and its instability
mechanism may be interpreted as the result of a pair of copnd@agating Rosshy waves. The
other instability we found is the supersonic instabilitpspessing the characteristic tlhat# 0,
and are generally attributed to gravity waves interactiri whe critical levels. The supersonic
instabilities were found to be weaker instabilities, so \&eehfocussed our study on the inflection

point instabilities.

The inflection-point instability is strongest around tfie= 0, M = 0 case, for which there exists
an interpretation for the instability mechanism in termsaifinter-propagating Rossby waves. We
showed that modifications due to MHD and/or shallow-watérat$ are present. It was seen that
the underlying Rossby wave mechanism necessarily geneseteity anomalies that counteract
the basic instability mechanism, consistent with the olerstabilisation from the numerical

results.

A long-wave asymptotic analysis showed that, at leadingmtte instability behaves like a vortex
sheet instability as discussed in Chapter 4. When there Isatbng order instability, there can

be instability atO(«), and the resulting analytical expression describes weltipersonic modes
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from the numerical calculations. The criticlfor which that supersonic instability becomes the

preferred mode of instability was also derived from thismagiotic analysis.

For the Bickley jet, the parity result dictates that the efgaction is either even or odd about
y = 0. The even mode is generally found to be more unstable thaodthienode, although there
are isolated regions in parameter space where the congairgei A cutoff of the instability due

to the magnetic field at < 1 is again observed, and the locations of the cutoffs may bedou

using an asymptotic analysis.

With regards to the Rossby wave mechanism, there were sidtait we have not taken into
account, such as the changes in the phase-locking mechéhierimduced vorticity anomalies
from extra effects accelerates the underlying Rossby Waeesvhether it would be applicable
even in the tongue region of instability for the shear layEhe mathematical basis appears to
be well developed for an extended investigation (e.g.,diedt al., 1999, 2004, 2009; Carpenter
et al, 2012), and it would be interesting to investigate the modifons to the wave dynamics,
potentially revealing the more subtle features possesgdtebinstability. Since we know that,
in the hydrodynamic case, the stability criteria may berprieted as conditions that allow the
relevant mechanisms to occur, one question we may ask isitive¢ know the precise details
associated with the instability mechanism, can we dedwre this stability criteria (e.g., Heifetz
et al, 2009)? This would be particularly interesting since weehaet managed to derive stability
conditions for this system of equations, and this may pmadother avenue to derive stability

theorems.

With regards to the supersonic instabilities, it would afsointeresting to consider a further
investigation into the characteristic of these instabsit using tools employed by previous works
(e.g., Satomura, 1981; Hayashi & Young, 1987; Takehiro & &$dy, 1992; Balmforth, 1999). It
was mentioned also in Balmforth (1999) that one interpi@iadf these supersonic instabilities
is via over-reflection (e.g., Acheson, 1976; Lindzen & Tubg78; Mcintyre & Weissman, 1978;
Lindzen, 1988; Harnik & Heifetz, 2007; Bakas & Farrell, 20Benilov & Lapin, 2013), and
it would be interesting to derive the modifications to oweftection in SWMHD to further our
understanding on phenomena involving magneto-gravityesaviFurthermore, in the work of
Harnik & Heifetz (2007), an attempt was made to reconcile-ogéection and the Rossby wave
action-at-a-distance mechanism, and it would also bedstielg to see how over-reflection leading

to instability may be interpreted in this formalism.



Chapter 5. Linear instabilities of smooth profiles 76

5.7 Appendix: Recovering fields from the eigenfunctiorG

The quantitieq, v, by, Ey, fz) may be recovered from knowledge of the eigenfunctionit may

be shown that, for the case whele= 1 ando = (Uy — ¢)G

b =(Uy — ¢)G, (5.47a)
b, =M ByG, (5.47b)
¥+ F2M[B}(Uy — ¢) + BoUlb, — F2[(Uy — ¢)U}y + M?ByBj)o
U= . 5 ) (5.47¢)
—ia[l — F2[(Uy — ¢)2 — M2BY]]
byt F2[(Uy — e)Uj + M BoUglb, — F>M[BoUj + (Up — ¢) B0 (5.47d)

’ —ia[l — F2[(Uy — ¢)? — M2BZ]] ’
M(By(Uy — ¢) + BOUé)ISy — [(Uy — c)Us + M?ByBj]o + [(U — ¢)* — M2 B3]’

h (U — ¢)[1 — F2[(Up — ¢)?> — M?B{]]

(5.47¢€)

In the investigation presented here, the numerical dévestwere calculated by a fourth-order
accurate finite-difference approximation using thes ght s routine given in Fornberg (1998).
We observe heré remains formally atO(1) because of the rescaling = iiz/F2 employed
when we wrote down the full non-dimensionalised SWMHD emuest Indeed, sincé is to

be identified withp whenF' = 0, it may be shown that we recover the above expression if we sta
with the equations witlé” = 0 and reconstrugt from (a, 0, by, By). The perturbation displacement

7, vorticity w, potential vorticityq and curreny are seen to satisfy

];_72 —v = f= m7 (5.483)

w= % — g—Z = O =iad — 1, (5.48b)
Q+q= % = =0 FQh+ O(smalf), (5.48c¢)
j= 2 %iy = j—iab, - . (5.48d)

Working out vorticity and current frond andj; is found to be more accurate than taking derivatives
of the full © andw fields. It is found that by taking the numerical solution andeirting it back
into the linearised equations (3.3), the largest error aasored by thd.., norm is of O(10~2)

for the choice of numerical tolerance we used for working@ut his occurs in the-momentum

equation; typical diagrams for the errors from an inversgogiven in Figure 5.21.
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Figure 5.21:L., error of the inverted eigenfunctions for the cdse= 0.7, M = 0.2 anda = 0.26, when
the numerical solutions are substituted into the linedri88/MHD equations given by (3.3). This diagram

is typical of the behaviour of the errors, with the largesbes in they-momentum equation.
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Chapter 6

Nonlinear evolution: two-dimensional

Incompressible MHD

In the previous chapter the instability characteristic¢hefshear layer and the Bickley jet profile
were investigated. A natural progression now is to investighe nonlinear evolution of unstable
shear flows. In this chapter, we consider the incompresdiinlié (F = 0) to highlight the
dynamics due to MHD effects, before moving on to an invesiigeof the full SWMHD system
in Chapter 7. We start by reviewing in some detail the nunaéncethods we employ. We then
review the hydrodynamic case before proceeding to an iigatitn of the MHD case. A summary

and discussion of the results are given at the end of the ehapt

6.1 Mathematical formulation and numerical methods

As in the previous chapter, we consider the case with no t@pby and a uniform background
magnetic field given byB, = 1, and we will consider eithet/s(y) = tanh(y) or Uy(y) =
secR(y); M = B/U is then our measure of the field strength. We shall be invatitigg the
nonlinear evolution numerically. Since we only have fingsalution and we expect the evolution
to generate small-scales, we need something to damp theadkssaile features, in a physical
manner, to stabilise our numerical routines. To this end,rewestate the viscous and Ohmic

dissipation. The (two-dimensional) incompressible MHDi&ipns ¢ = 0) in non-dimensional
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form are then given by

1
%—?%—u-Vu—Vp—MQb-Vb:R—eVQU, (6.1a)
ob L o
5+u-Vb—b-Vu—ﬁV b, (6.1b)
v-u:o’ (6.1C)
V-b=0. (6.1d)

The Reynolds numbers are defined using the velocity andHestgtles associated with the basic
flow, so
Re= %, Rm= U—E, (6.2)
v n

wherev is the kinematic viscosity, anglis the coefficient of magnetic diffusivity.

We shall be interested in the temporal evolution of the dyingnand we consider a domain that is
periodic inz and wall bounded i. A domain of lengthZ,, = 27/« will support one wavelength
of the instability with wavenumbet, doubling this gives two wavelengths of the instabilitydan
so forth. Although the basic flow profiles are technically dedi on an unbounded domain, it is
found that by taking thg-boundaries located gt= +L,, for L, sufficiently large, together with

appropriate boundary conditions, the dynamical influerfidheboundaries can be minimised.

Sinceu andb are both divergence-free, we write the equations in ternasstfeamfunction) and

a magnetic potentiall, here defined as
u=-e, x Vi, b=e, x VA. (6.3)
The vorticityw and curreng are then given by
w = V2, j=V2A. (6.4)

The divergence-free conditions are automatically satished the set of equations (6.1) have the

equivalent formulation given by

A 0(w,w) — MDA,V 4) = 2V, (6.52)
O oW, 4) = VA, (6.5b)
V2 = w, (6.5¢)
where
(o, p) = 2098 _ 0208 (6.6)

T Ordy Oy ox
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is the usual Jacobian term. The corresponding basic staelsen given by

— log cosh(y),
Wo(y) = Ao(y) = —v. (6.7)
— tanh(y),
This set up is convenient in that we do not have to worry aboytosing the divergence-free
condition at every time step via, for example, splitting hoets, projection methods, or semi-

implicit methods (e.g., Peyret, 2002).

In our channel geometry, boundary conditiong imeed to be imposed accordingly. The no-normal
flow condition impliesv = 0vy/0x = 0 ony = +L,, so is a constant function im. Then,

because momentum is conserved,

/ / udady = / / % dzdy = Ly[1(t)]", = constant (6.8)

so we must have
(], = W), (6.9)

This is satisfied if

The same argument applies to the no-normal flux conditjos 0, giving

A(t,£L,) = A(0,+Ly). (6.10b)

To mimic a free shear flow, we use stress-free boundary donditather than no-slip, so

ou 0%
The above conditions are then to be enforced at each tippeast®rdingly.

Additionally, we split the above quantities as a basic gphis a perturbation, i.e.
=Wo(y) +v, A= Ag(y) + A4, (6.11)
and also

w=Q(y)+ VP =-Uy)+ V%,  j=Joly) +V’A=0+V’A (6.12)



Chapter 6. Nonlinear evolution: two-dimensional inconsgible MHD 82

Inserting this into equation (6.5) and dropping the tildes,obtain the equivalent formulation

ow ow , 0 5, [OV2A 9 1 1 .,
o T Uo + Qo +0(w) = M? | ==+ 0(A, V2 A) | = o Vi + o 0f, (6.132)
DA A 1,
Vi) = w. (6.13c)

At first this seems to be complicating matters somewhat, lieretare in fact several benefits to
doing this. Using the same arguments for the boundary dondias above, the conditions to be

imposed on equations (6.13) translate to
P(+Ly,) =0, A(£Ly) =0, w(+L,) =0. (6.14)

We also see that if we manually set the Jacobian terms to weroecover the linear equations,
and this provides a check on the numerical routines by camgpdhe results with the linear
calculations from the previous chapter. One possible gontethat the viscous dissipation
changes the background flow before the instability has acehém manifest. To combat this,
we can switch off the basic state dissipation R during the linear phase, and switch it
back on when the perturbations are sufficiently large (evgasured by the energy). Tests
have been carried out comparing this approach to a case whenghing (background flow and
perturbations) is dissipated and a case where only therpation states are dissipated, and the

gualitative differences are not large, so we employ thig@ggh in our simulations.

6.2 Numerical methods: Fourier—Chebyshev pseudo-spectra

method

We solve the system (6.13) using a pseudo-spectral methumghudar method that is characterised
by its high accuracy and that is especially powerful in negtdar domains. We consider a Fourier
expansion int and a Chebyshev expansionin We review the basic procedures here for self-
containment purposes (for further reading, see, for exan@nutecet al. 1993, Fornberg 1998,

Trefethen 2000, Boyd 2001, Peyret 2002 or Durran 2010).
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6.2.1 Pseudo-spectral methods

A sufficiently smooth quantity, may be expanded in terms of Fourier and Chebyshev modes as
uw=>Y " apd"T;(y), (6.15)
ko j

where T;(y) are the Chebyshev polynomials of the first kind and the coxnpbkponentials
represent the Fourier modes. Although an infinite sum isigdpin practical situations this sum
is truncated at some finit&/,, and IV, corresponding to the numerical resolution. Effectively
we go from a physical space descriptiofiz;, ;) to a spectral one where the data of interest
are the coefficients ;. To obtain these coefficients, the data is sampled at speailaication
points in physical space, and a spectral transform is eredldy switch between physical and
spectral representations. For analytiaala spectral description has a discretisation error which
drops off likeO(c=V), whereas a physical space description has a discretisationthat drops
off like O(N~°), depending on the order of discretisation. This is due tddhethat a spectral
description is inherently global, taking into account thenpled data at every collocation point,

whereas a finite-difference type description is local.

Certain operations are easier/faster to do in the releyaattes. In spectral space, the operators
associated with differentiation are usually relativelyle, so solving the corresponding algebraic
equations is usually not a problem. However, nonlinear petsdare costly since a convolution
sum is often required. The opposite is true in physical spheee the operators are usually dense
and ill-conditioned, but products may be done trivially. &ploit the corresponding advantages,
the pseudo-spectral formalism performs the differeriaéind linear algebra operations in spectral
space, and forms products in physical space, utilising @stoam to switch between the two
spaces. One of the key ingredients then is an efficient twamsfoutine, and this exists for both
Fourier and Chebyshev modes. There are aliasing errors Yanering the nonlinear product

followed by transforms, but these may be appropriately redo

6.2.2 Fourier modes

For Fourier modes, the Fast Fourier Transform (FFT; algoritdue originally to Cooley & Tukey

1965) is available; see, for example, Boyd 20910. This lets us transform(z;) to a(k) =
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> a€F¥i where the collocation points are given by

27 )
xi:m’ i=0,1,--- ,N, — 1. (6.16)

The transform is fast in that the number of operations reguis O(N, log N,), as opposed
to standard discrete Fourier transform algorithms thatcally requires O(N?2) operations.

Differentiation in spectral space is especially simpleggiby

o .
o k. (6.17)

Numerical tests of the FFT routines used are give$tis.

There are errors from using this pseudo-spectral appr@aising from the fact that there is some
ambiguity when sampling a function at a finite number of akion points. For example, suppose
we haver; = (0,7, 27), the sampled values(z;) = (0,0,0) may well describe: = sin(nx) for

n € Z; here, the resolution limits the highest harmonic that mapitoperly described. Normally
this is not an issue, but spurious errors do arise when FFfisminear products are taken, since
the combination of the lower harmonics may result in unpdaidiigher harmonics that are below
the truncation level set by the resolution, so introducipgr®us oscillations. There are several
methods to remove these errors, with Orszag’s 2/3 rule @Qrsk971) being particularly simple
to implement. During the transform stage, we simply set tefficients of the highest third of the
harmonics to zero. In a Fourier representation of the abegeshould bear in mind thaY, points
give modes fronk = —N,/2,---0,1,--- N, /2, so in the transform routine, all coefficients with
wavenumbers satisfying

k| > [(N2/2)(2/3)] = [Nz/3] (6.18)

are set to zero, wherg-)] is the ceiling function. We have found that dealiased ruesbetter
behaved, especially when the run appears to only be masgiesllved. Another point to note
is that the discretised version of the differential equegido not necessarily conserve discretely
the physical quantities such as those mentioned in Chapt@n2 way to ensure the discretised
equations inherit the conservations laws from the contisucase is to remove the dealiasing

errors (e.g., Boyd, 200%11). All runs reported here are dealiased using Orszag'sub#3

The Fourier description allows spatial integration to baalm a particularly convenient fashion.
We note that

Lz . Lmao, k= 0,
/ a,eh® dz = (6.19)
0 0, k=2mn/L,, né€N.
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with L, the length of the periodic domain. So to integrate in:thdirection, we simply need to
pick out thek = 0 Fourier mode and multiply it by.,.. This method of numerical integration is

spectrally accurate.

We have also the standard Parseval’'s theorem given by

Ly
/ wdr =Ly Y |agl”. (6.20)
0 k

This follows from the fact that the Fourier modes are orth@daovith respect to the corresponding
inner product on this domain of interest. Indeed, expandihgn Fourier modes automatically

gives the result, assuming the order of integration and satiornmay be exchanged. This allows
us for example to work out the global and modal decompositibguadratic quantities (such as

energy) whilst maintaining spectral accuracy.

6.2.3 Chebyshev modes

Chebyshev polynomials of the first kind gre [—1, 1] may be defined by the recurrence relation
Toy) =1, TW=vy, Tinaly) = 2yT5(y) = Tj1(y)- (6.21)
Alternatively, they may be defined as polynomials satigfyin
Tj(y) = cos(j arccos y), j=0,1,---. (6.22)

A clear description of this is given in the book of Trefeth@0@0), where Chebyshev polynomials
are seen as the cosine function wrapped around a cylinde¢h tW#i% description, there is a clear
relationship between the Chebyshev modes and cosinedascto an adapted FFT serves as the

transform.

The collocation points we employ in this case are the Gawdsito points given by

Y; = cos <;{—j> , J=0,---N,. (6.23)
y

Aliasing errors will be present if we use the pseudo-speafsproach, but again may be removed

by setting to zero the highest third of the wavenumbers.

Differentiation in Chebyshev spectral space is not asgitBirward as in Fourier space; however

the matrices are still relatively sparse. These diffeatinin matrices are evaluated via recurrence
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relations, and may be shown to be given by (e.g., Peyret,, 2302

N,
. 2 - . .
i) = = Y. P j=000N, -1 (6.24)
T p=j+1, (p+j) odd
and
1 Ny
i’ =— 3 p? =iy, =0 Ny -1 (6.25)

€ p=j+1, (p+k) even
where the Chebyshev weightsare given by

27 .] = Oa
Cj = (626)

1, j>o0.

We then see that the differentiation matrices for the first second derivative®,; and D, are

given by
01030 5 008 0 64 0
0408 0 0 0 48 0 240
D; = 06 0 10 , Dy = 00 9% 0 |, (627)
08 0 : 0 0 160
0 10 : 0 0

where blank entries are zeroes. The matrices take an upgegtlar form. Arescaling is required
if the domain is not defined op = [—1, 1]. The corresponding matrices in physical space are

dense (e.g., Trefethen, 2008).

In this kind of pseudo-spectral method, boundary conditiare imposed by modifying the rows
of the operators corresponding to the highest harmonicsis #method introduces a small
error (denoted by) because we have sacrificed some modes in favour of forcedgpdlindary
condition; however, we still maintain spectral accuracgwiNthe Chebyshev polynomials are seen

to satisfy

and
Ti(1) =4%  Ti(-1) = (=177
so for Dirichlet conditions on the boundaries, we need tdampthe bottom two rows of the

differential operators by

b+:(1 ... 1), b,:(l 1 (_I)Ny). (6.28)
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For Neumann conditions, we need to replace the last two rgws b

b+:(0 1 .- NyQ), b_:(() -1 - (_1)Ny—1Ny2). (6.29)

When the operators are modified by the rows enforcing the demynconditions, the resulting
matrix appears to be of a form where appropriate manipuiatihould result in uncoupled systems
that may be solved separately. This is indeed the case wkeaeshlting equation of the form of
a constant-coefficient Helmholtz equation, where only sdcand zero derivatives are involved.
For purely Dirichlet or purely Neumann conditions, the tgsg system is of the quasi-tridiagonal
form, for which a fast solver exists (Thual, 1986). Most dgque we need to solve are of this
Helmholtz type, and as such we may use the fast solver. Theda&r require$) (V') operations,
compared to the standatdJ-decomposition with a back-substitution, which typicalgguires

O(N?) operations. For more details of this fast solver, see Seétid.

Spatial integration may be performed via the Clenshaw-+€adadrature (Clenshaw & Curtis

1960; see also Trefethen 20GQ2). This is given by

2 Co><1
0 c1><0
2 2
1 — o2 C2 X T3
/udywaa, w=|172|= =22 (6.30)
-1 0 0
2 1
- N2 VX ToN?

wherea = (a;) are the Chebyshev coefficientsuofObserve that only the even coefficients make

a contribution, since an odd function integrated over amel@nain is identically zero.

To calculate the integrals of quadratic quantities, we oamaly on an analogous Parseval’s
theorem as the Chebyshev modes are not orthogonal to thateigtionw(y) = 1. Instead, the

relationship between the coefficientsw@ndu? is given by

Ny Nl/ Nl/
_ T 2 _ ) )
U = E a;jT; = u” = g g ajapT}Ty
j=0 7=0 k=0

(6.31)




Chapter 6. Nonlinear evolution: two-dimensional inconsgible MHD 88

upon using a standard relation for Chebyshev polynomialgh&n

Ny Ny

1 1
a;ap
/_1udyw§j§j 5 /_1<Tj+k+Tk_j|>dy, (6.32)

§=0 k=0

and we can evaluate the integral by summing the coefficientspited by the relevant Clenshaw—
Curtis weights, but truncating whey + k) > N,. However, we expect this method to be
extremely inefficient since we have to perfo[’nQNy?) elementary operations. Alternatively, one
could take a FFT ofi? and use the Clenshaw—Curtis quadrature as before. It wad tbat both
methods are comparable in accuracy but the summation methmeerly expensive except for

relatively small values olV,; see Section 6.8 for more details.

6.3 Numerical methods: time-stepping by linear multi-stepnethods

The spatial discretisation turns the system of PDEs inta afsdifferential equations taking the
symbolic form

% = N(u) + L(u). (6.33)
Here, u is the state vector of interest, and we will denote the nealinand linear operators
associated with the problem & and L respectively. For example, in the one-dimensional

advection-diffusion equatiol(u) = —udu/0x andL(u) = vd*u/dz>.

Perhaps the first ‘obvious’ thing to do is to consider a fulkplecit discretisation; that is,

something of the form
u" = A(AL W u o N, N(u™ ), - L(u™), L(u™ ), ), (6.34)

where the superscript denotes the state variable at theargéléme level, and the precise form of
A depends on the time-step method used. The important thithgtisonly information from the
previous time levels are required. When the temporal disat#on is done this way, the time-step

required for numerical stability is subject to the CFL cdiwdi (e.g., Boyd, 2001§12)

uN + UL
X

At { ] < Cet = O(1), (6.35)

where C¢y is a method dependent number (we refer to this as the CFL nuhdse), and the
subscripts denote the relevant terms associated with yeqshdescribed b andL. Physically,

this condition places a necessary restriction on the tirap-size associated with the phenomenon
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represented by the various terms if we are to advance in tirmeumerically stable fashion. This
turns out to be a severe issue if the diffusion terms are todaged explicitly; for the Fourier—
Chebyshev method we consider here, the constraint on tieediep size can be very severe (e.g.,

Boyd, 2001§12).

Such time-step constraints may be bypassed if a fully imptiethod is considered; symbolically,

this is represented by
uTLJrl - A(Atv un+17 un7 Ty N(unJrl)v N(un)v Tty L(un+1)7 L(un)v o ) (636)

Implicit methods tend to be conditionally stable, but canegpensive since an iterative solver
is required if nonlinear terms are involved. This shifts deenputational burden from the small
time-step size to the increased number of operations atteaekstep. As a compromise, a semi-

implicit method of the form
u = A(AL wT W N@), N, - L™, L), ), (6.37)

may be considered. Here, the nonlinear terms are treatditidxpwvhilst the linear terms are
treated implicitly. An iterative solver is usually not récpd, and the problematic terms are not
subject to the CFL condition; we should however bear in mivat stability does not necessarily

imply accuracy. This semi-implicit time discretisatiortli® one we will consider here.

We employ the Adams-Bashforth/Backward-Difference atbors of orderk (AB/BDk; see

Peyret 2002§4) as our time-marching algorithm. For the incompressibligecconsidered in this
chapter, we are going to use the variable time-step verdidxB¢(BD3 (because this allows for
stable numerical integration at larger time-steps tharBAEY and AB2/Crank-Nicolson) given by

(e.g., Peyret, 20024)

n+1 n n—1 n—2
Gou” e AT AU Ty N )£ b N ) +boN (%) + L), (6.38a)

At,
1 1 —(1 1
apg =1+ + ) a; = ( +TC)( —i—rc—H“p)’
T+7re 147re+71, re(re +1p)
(6.38b)
L+7rc+1p —(1+7.)
ag = —————, az — )
rerp(147e) Tp(re +1p) (1 +7¢ + 1)
by — (L4re)(d +re+ T'p)7 by = mj by = i7 (6.38c)
re(re + 1) Telp rp(re +1p)
At tn — ¢l At tn—l —gn—2
ro = pl _ — =2 _ (6.38d)

T At gl gt TPTA, T g e
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The time-step sizét is set by the maximum allowable value satisfying

ap | maxUotw) (L)] < Cu. (6.39)
Ax Ay

whereu = (u,v) in (6.39), and the CFL number is an input parameter. See@®e6tb for a

derivation and some of the related numerical tests cartg¢doo the AB/BD3 algorithm.

There are other methods, such as Integrating Factor or Expiah Time Differencing, that could
act as an alternative to a semi-implicit discretisationthaese all have other associated problems
when a Chebyshev discretisation is employed; see, for ebearhjyermore (2007) for a review

and comparison of such methods in the spherical MHD context.

Our subsequent parameter choices for the simulations asentafter doing convergence tests on
the time-step size and spatial resolution, by comparing aimalf the time-step and/or increased
resolution (twice the resolution where possible) and Iogkat, for example, the energy and
dissipation time-series. Energy power spectrum for thes noresented here show the energy
content at the higher modes are small (belv9v?), indicating our runs are well-resolved;

spectrum diagrams have been omitted here.

6.4 Hydrodynamic evolution: a review

We first review what is known about the nonlinear evolutionuoktable shear flows in the
incompressible, hydrodynamic limit. Although the resydtesented are not new, we reproduce
them here for self-containment, and to demonstrate thatnoumerical routines are able to
reproduce known, well-established results. For the hygradhic case, we sélt/ to zero in the

governing equation (6.13), and solve only for the vortigityd streamfunction.

6.4.1 Hyperbolic-tangent shear layer

For this flow profile we focus on the case where the domain stpeaactly one wavelength of
the most unstable mode predicted by the linear theory, salelt, = 27 /«, with o = 0.44
(Michalke 1964, and Chapter 5 here). Test runs have fourtd/tha= 10 is sufficiently large
for finite-domain effects to be negligible. For this case Wease a resolution aV,, = 256 and

N, = 512, at Re= 500, a compromise between having well-resolved runs and treenahbeing
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too dissipative. A CFL number of 0.25 is employed for the datian, its value again found from
convergence tests. We initialise the primary instabilifyhveome amplitude at fixed phase, and,
additionally, extra perturbations at lower amplitudesasidom phase. Mathematically, we add the
following to the initial vorticity 2¢:

[Nz /3]
w= {1073 cos(ax) +107° Z i cos(kx — 2moy,) eV’
k: k/a=2

Here, v, and oy are randomly generated numbers in the rapgg 1]. Higher harmonics are
limited to | N, /3| where [(-)] is the floor function. A Gaussian ig is chosen so that the
perturbations are sufficiently localised aroupd= 0. Although we do not initialise with an
eigenfunction as calculated from linear theory, the smalplitude perturbation allows for a
well-defined linear phase where the perturbations have ithare sufficient time to readjust to
the optimum configuration. Only needs to be initially specified as the first step involves an
inversion to give the corresponding When the domain is large enough to support two or more
wavelengths of the primary instability, the initial petttation is appropriately modified so that the

wavenumbers smaller than the primary instability alsomgi@emall non-zero amplitude.

Figure 6.1 shows snapshots of the vorticity at several tintles left-column shows the total
vorticity, and the right column shows the vorticity with tike = 0 Fourier mode removed.
Figure 6.1¢) shows that the shear layer starts rolling up and stretchies thin region of vorticity
called the braid. In this case the stagnation pointis at 0, y = 0. As the instability develops,
fine features form until they are smeared out by viscosityt By70 the braids have been diffused
and only the large vortex remains. The vortex oscillates imdmplitude is gradually damped
by viscosity. The vortex was seen to be long-lived. This igi@te picture agrees with previous
results (e.g., Ho & Huerre, 1984). For Figure 6)1ve make the observation that at the early
stages of the evolution the vorticity pattern resemblesifeich.5¢), the vorticity eigenfunction
obtained from linear theory. This gives us confidence thH#tpagh we did not initialise using
the eigenfunction, the linear phase is long enough that ¢nupations adjust to the optimum

configuration.

Another feature in which we might be interested is the evmtubf the along-stream mean profile
u, defined by
1 [l
U= — . 4
u I /0 u dx (6.40)

We also define the shear layer width by the width of the regionnded by they-locations of
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Figure 6.1: Snapshots of vorticity for the shear layer raiiRe= 500. Left column shows the full vorticity,

whilst the right column shows vorticity with the= 0 Fourier mode removed.

which the difference betweeanand its free-stream value{., = +1 in this case) is smaller than
some tolerance. Another possible way to define this widthldvbe by they-location whereo
is sufficiently close to its free-stream value & 0 in this case). Snapshots afare shown in

Figure 6.2.

Here, we see that as the instability develops and the shgar falls up, the shear flattens out,
leading to an increase of the shear layer width. There daesppear to be much more broadening
after the roll-up stage, and any small increases in shear lajdth after the roll-up stage we

attribute to viscous effects. Although there is still ananflon point, the parallel flow assumption
no longer applies, and so to say anything about the stabilitiie saturated state we would need

to consider a linear instability analysis of this state Vi@, example, a Floquet analysis (e.g.,
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Figure 6.2: Snapshots affor the shear layer run at Re 500.

Klaassen & Peltier, 1985b). The possibility of hydrodynarsécondary instabilities is reviewed

at the end of this section.

In the hydrodynamic case, the domain-integrated energii®o is given by

1d 1
5q // \Vo|? dedy = —R—e//w? dzdy. (6.41)

We show first in Figure 6.3 a time-series of the domain-irggt kinetic energy. Using Parseval’s
theorem or otherwise, we separate the energy content iatsmtan § = 0 Fourier mode) and
perturbation k # 0 Fourier mode) component. A fitting of the perturbation egésgised to infer

a growth rate during the linear phase, and this inferred tiroate 0.185 is close to the growth rate
inferred from linear calculations, which is 0.189 (Michalk964, and Chapter 5 here). Most of
the energy resides in the mean flow during the evolution, aad after saturation the perturbation
energy is still around two orders of magnitude less than teanrenergy. The dissipation is
sufficiently weak that the decrease in total energy is atraddiD% (orE(t = 150)/E(t = 0) ~
0.9). One feature that we note is that there is an oscillatioménpgerturbation energy, indicating
that there is continual transfer of energy between the meaw dhd the perturbation. This is
related to the oscillation in physical space when the vagésaning with/against the background
shear, a phenomenon known as nutation (e.g., Miura & Sa#8)19he process may be further
quantified by an examination of the Reynolds stresses. Hewikis is not our primary focus here,
and so we refer the reader to, for example, Klaassen & Pélis85a) or Metcalfest al. (1987)

for a detailed discussion.
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Figure 6.3: Time-series of the energy for the shear layeatite= 500 (solid = perturbation state; dashed
= mean state; black dot-dashedtotal energy). Most of the energy still resides in the meathsatotal

energy and mean energy curve lie on top of each other.

We show in Figure 6.4 the dissipation ratg defined by

1
€Re = R_e// w? dzdy. (6.42)

We observe thaire is bounded above by its initial value in the diagram; thisdsduse enstrophy
(and in fact any function of vorticity) is an ideal invariasfttwo-dimensional hydrodynamics, and
there can be no net enstrophy production in this set up. $ShHiswever not the case when MHD
effects are present, since the Lorentz force feedbackte®the conservation of vorticity, leading

to a dissipation rate exceeding the initial rate.

We have also checked that the numerical method conserasly-momentum. The initialisation
has no momentum to begin with, as the basic state has zeroomeéntum, and the disturbances
are periodic with zero mean. The numerical integration shtvat, for the course of the run,

domain-integrated momentum remains at machine level maigs.

Hydrodynamic secondary instabilities

Although the primary focus of this flow is the single waveldngase, we have also carried out runs
at two wavelengths, and test cases at four wavelengthskittown that a configuration of a row

of like-signed vortices is unstable, and is most unstablentinstability at twice the wavelength
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Figure 6.4: A time-series of the dissipation ragg for the shear layer run at Re 500.

of the primary instability (i.e. at wavenumbay/2), a result first demonstrated for point vortices
by von Karman (e.g., Lamb, 193¢7). This subharmonic pairing instability has been invedtd
analytically (Kelly, 1967; Stuart, 1967) and numericallgofcos & Sherman, 1984; Metcalfe
et al, 1987; Klaassen & Peltier, 1989, 1991; Staquet, 1995; Madh& Peltier, 2012a,b) for
the shear layer. As the name suggests, this secondaryiiitgteduses like-signed vortices to pair
up and merge into larger vortices, further broadening thampeofile. We have performed some
simulations where only the fundamental wavenumbeaeceives a non-zero amplitude, but the
domain is large enough to support two vortices initiallynfiimg, and we find that the vortices do
not merge at least for the run duration (uptte- 200, wheret = 50 is approximately the time
when the primary instability starts saturating). If ingtee initialise in a ‘generic’ fashion, with
non-zero amplitudes at wavenumbers in the subharmonic igherhharmonics, the vortices do
merge. Measuring the growth rate numerically at each Foor@e as (e.g., Klaassen & Peltier

1989)
1 dE(k,t)

") = D

(6.43)

shows that, as a function of time(«, ¢) is initially the largest, then it is supersededdiyy/2, t*)
at some later time*. This merging generates further small scale activity as begeen by an

increase in dissipation rate at the time around the merging.

Even in the single-wavelength case, the vortex core formay lme unstable to several secondary

instabilities, although most of these are ruled out in odtirsg we mention them however for
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completeness. One of these is the shear aligned conveostability of Klaassen & Peltier
(1985a,b); when stratification is present, a shear flow invéréical rolls up in to a vortex that
entrains heavier fluid and transports it to a region of liglfited, which can then be buoyantly
unstable. Another instability associated with the vortexecis the instability associated with
elliptical streamlines (Pierrehumbert, 1986; Bayly, 198&leffe, 1990). The elliptical instability
a wave resonance phenomenon but requires a third spatiahdion, something that we do not
have here. This secondary instability plays a role in thakutewn of the two-dimensional flow
into three-dimensional turbulence, and is applicable ira@ety of laboratory, geophysical and
astrophysical flows where elliptic streamlines are foured; IsSerswell (2002) for a comprehensive

review.

Away from the vortex core, the braid region may also suffer idewwariety of secondary
instabilities, which may be of strain or shear type (e.g.ro8® & Sherman, 1976; Metcalfe
et al, 1987; Dritschelet al,, 1991; Staquet, 1995, 2000; Caulfield & Kerswell, 2000). Sehe
have not been observed in our test runs at higher Re, althauggbnly limited ourselves to
Re = 1000. The hyperbolic instability investigated by Caulfield & kearell (2000) suggests
that such braid/stagnation-point instabilities may be enanstable than the elliptic instability
associated with the vortex core, and may also contributeedteakdown of the two-dimensional

profile into three-dimensional turbulence; see Mashayele&i¢t (2012a,b).

As observed by various authors, the emergence of such sagoirtabilities can delay the

subharmonic pairing instability (Metcalfet al, 1987; Staquet, 1995). Additionally, Mashayek
& Peltier (2012a,b) recently demonstrated that secondastabilities can cause the disruption
of the parent vortex before pairing can occur. This is peshaferesting in that, as mentioned in
Mashayek & Peltier (2012a), pairing is almost never seemfane but is usually seen in numerical
simulations. They attribute this to the fact that the Regiasaiumbers in numerical simulations
were never high enough (until their investigation) for eteecondary instabilities to dominate
over the pairing mode. We have observed pairing here in odrdalynamic simulations, but in

our physical setting here, the secondary instabilitiesrgak or not supported.

To summarise, there are a wide variety of secondary ingitabithat can cause the breakdown of
the flow into three-dimensional turbulence. This breakdd&s important consequences in, for
example, vertical mixing in the ocean (e.g., Caulfield & Re|t2000; Staquet, 2000; Peltier &
Caulfield, 2003; Mashayek & Peltier, 2012b).
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Figure 6.5: Snapshots of vorticity for the Bickley jet, at R&500.

6.4.2 Bickley jet

We now give a similar account for the Bickley jet profile. Frdime linear theory calculations (see
Figure 5.14), the even mode is generally more unstable, smerig excitation should trigger the
even mode. The most unstable even mode has wavenuimbsed.9, and thus we initialise as in
the shear layer case, with the primary disturbance at fixadghand higher harmonics at a lower
amplitude with random phase. To demonstrate that pairibged®n vortices can occur, we take a
domain that supports two wavelengths of the primary inktgbirhe domain size is about4 by

20 in 2 andy, using a resolution oV, = 256 andNV,, = 512, also at Re= 500. Figure 6.5 shows

snapshots of the vorticity.

We see that, in some sense, the jet profile is like a double sngsr, with two opposite vorticity
layers. The instability causes a meandering of the jet, vbitbsequently breaks, causing the
shear regions to roll-up into vortices. These vortices awifferent sign and can influence each
other to give interesting dynamics. Since we have two wagghes of the primary instability,
there are four primary vortices formed, two of each signpglwith some small, less well-defined
satellites, much like what was observed in, for example ugkp & Deem (1971) and Sutherland
& Peltier (1994). This kind of configuration is not unlike anviiarman street, whose stability with
finite vortex cores has been analysed and is shown to be galhetinstable (e.g., Kida, 1982;

Jimenez, 1987, 1988). Indeed, at some stage near the end nfroat: = 150, two of these
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Figure 6.6: Snapshots of thefor the Bickley jet run at Re= 500. Notice that there is some back flow at

the later times.

vortices (usually the two positive vortices) start showaagly stages of merging. This then affects
how the other vortices propagate, causes a change in thed tnagle and results in the vortices
propagating towards thgboundaries. In alonger run not presented here, the vertimn bounce
around the domain, deflecting from the boundaries upon itmf&e runs are qualitatively similar
to those reported by, for example, Zabusky & Deem (1971) anble®land & Peltier (1994). We
only display results up to = 150 as the dynamical influence of the wall is certainly minimal up

to this moment; once the vortices hit the walls, finite-dameffects are obviously non-negligible.

Figure 6.6 shows snapshotswmfAs in the shear layer case, the instability causes the flofigr

to broaden out and reduce the shear. We also observe thatstimmom flow velocity decreases
down to about a half of the initial maximum. It is also inténeg to see some mean back flow,
shown at later times, a phenomenon that has previous beervet4e.g., Zabusky & Deem, 1971,

Figure 9).

Figure 6.7 shows a time-series of the energy. A fitting of theysbation energy was used to
obtain a growth rate 0.152, which agrees well with the grovatie 0.160 obtained from linear
calculations. The energy remains largely in the mean stddsvever, E(t = 150)/E(t = 0) ~

0.7, implying a loss about 30% of the total energy; this shoulddrapared to just under 10% loss
for the shear layer run. A test run at higher resolution iatdis that this loss of energy is due to

the choice of Re and not from the runs being under-resolvid.dissipation ratere is plotted in
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Figure 6.7: Time-series of energy for the Bickley jet run at=R500 (blue= kinetic; solid= perturbation

state; dashed mean state; black dot-dashedotal energy).
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Figure 6.8: Time-series of the dissipation ratg for the Bickey jet run at Re= 500.

Figure 6.8. The dissipation is again bounded by its initelie as explained before.

6.5 MHD evolution: hyperbolic-tangent shear layer

We now examine the effect of a magnetic field on the nonlinealuéon of unstable shear flows,
starting with the shear layer before moving onto the jet fgofiVe consider an initially uniform

magnetic field, so the initial state is not resistively ubktge.g., Biskamp, 20004). However, the
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evolved state may be resistively unstable, and the dynamagsbe altered by resistive instabilities.

A priori, we might envisage three MHD regimes:

1. MHD effects are ‘strong’, so that although the initialtetés linearly stable, it could be

nonlinearly stable (e.g., suppression of shear layemup)}-

2. MHD effects are ‘weak’, and the evolution is much like th@llodynamic case;

3. some intermediate case between the two, where the \lamimigon can wind up the field

lines, build up MHD feedback, and modify the nonlinear depehent.

It is this intermediate case (3) we are particularly intexésn; although the field is initially weak
(measured by energy ratios for example), MHD effects maybeategligible when the nonlinear
evolution is concerned. Naturally, we expect the degreeediback to depend on the field strength

M, the magnetic diffusivity as measured by Rm, and, on theogitg as measured by Re.

The nonlinear development of the MHD shear layer case hasdtedied previously (Miura, 1982;
Malagoliet al, 1996; Franlet al., 1996; Jonest al,, 1997; Keppenst al,, 1999; Jeongt al., 2000;
Baty et al., 2003; Palottiet al,, 2008). However, all these authors have used routines risbifpr
solving compressible MHD. Furthermore, all these worksrafrom Palottiet al. (2008), rely on
resolution dependent numerical dissipation. Pakdttal. (2008) investigated the dependence of
the evolution on Rm but not on the field strength whilst the other works investigated the effects

of M and the sonic Mach number on the evolution.

The account we present here is new in that we numericallyegblrincompressible MHD system
rather than a small Mach number run of compressible MHD, amthermore, we investigate the
simultaneous dependence of the nonlinear evolution on bbt#ind Rm. The former is perhaps
not that significant, as it appears that the more strikingetspf the nonlinear evolution stems from
MHD rather than compressible effects (Malagetial., 1996; Jonegt al, 1997). The nonlinear
evolution can result in secondary resistive instabilisiese finite Rm leads to reconnection events,
which release magnetic stresses back onto the flow, altdrendynamics. The theory of classical
resistive instabilities relies on Ohmic dissipation (eRjskamp, 200034), so we argue that, for
any attempt to reconcile the numerical results and the yheorploying explicit Ohmic dissipation

rather than some numerical artefact is essential. Furbeng able to control the strength of
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parameter value

« 0.44

Ce 0.2

Ly, x L, 0,27 /a] x [-10,10]

Re 500

M 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1
Rm 50, 250, 500, 750, 1000

N, x Ny 512 x 1024 for Rm = 1000

384 x 768 for Rm = 750
256 x 512 otherwise

Table 6.1: Parameter values employed in our investigatiothie shear layer profile.

Ohmic dissipation is important in a systematic exploratidparameter space, something that is

not possible with resolution-dependent dissipation.

For our investigation, we fix Re= 500, and consider several values of Rm ranging frairno
1000 (or, effectively, several values of the magnetic Prandthbhar Pm= Rm/Re ranging from
0.1 to 2), and a wide range of basic field strengths measuretl/byll runs are dealised, and, as
a reminder,M/ = 1 guarantees linear stability (from Chapter 5 here). We havaded on small
values ofM, where the linear growth rates and eigenfunctions are anbllgperturbations away
from the hydrodynamic case. We use the same fundamentahwan®era = 0.44, chosen so that
only a single wavelength of the primary instability is sugpd. Calculations have been carried

out at the parameter values given in Table 6.1.

For illustrative purposes, we focus on three sample rungrevRm= 500, andM = 0.01, 0.03,
and0.05. At these values of\/, the initial magnetic energy is no more than 1% of the initial

kinetic energy. Figure 6.9 shows snapshots of vorticitynftbese runs.

Figure 6.9¢) shows the run af\/ = 0.01, a truly weak field case, for which the evolution
resembles the hydrodynamic evolution. In this case thestedtching and shearing of the magnetic
field, but the resulting magnetic forces are never strongigmaoo alter the macro-dynamics in any
significant way. This should be contrasted to file= 0.03 run given in Figure 6.%). As the

shear layer rolls up, the stretched field is now strong endadgbed back on the flow, resulting
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Figure 6.9: Snapshots of vorticity for the shear layer dedént field strengths (at Rea Re = 500).

in positive vorticity filaments in the peripheral regionstbé vortex. This build up of filaments
with strong vorticity however is not sustained, andtby 150 the filaments have been smoothed
out by dissipative effects. The final frame of Figure 6)4till bears some resemblance to the
corresponding frame for th&/ = 0.01 case, with a clear signature of the vortex, although it
has diminished in size. This would perhaps be termed a ‘yifiidruptive’ case. Figure 6.8
shows a ‘severely disruptive’ case, wh&h= 0.05. The initial roll-up is similar to the other two
cases; however very strong regions of vorticity are crea#¢d = 100 the vortex seems to have
suffered some elongation and shearing due to the MHD fe&dir&o the flow. By the end frame,
although there are still traces of the vortex remaininga#t been substantially reduced in size, and

the dominant features in the domain are now strong vortfdaynents.
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For theM = 0.1, Rm = 500 case (not presented here), what little remains of the pamtdx is
destroyed by = 150, and vorticity filaments litter the computational domain.itcreasing Rm
for the above runs, the behaviour becomes more violent andliberved disruption is stronger.
For example, thé/ = 0.03, Rm = 1000 run is more like the severely disruptive run presented
here in Figure 6.9{, in contrast to the mildly disruptive run at the safmebut Rm= 500 shown

in Figure 6.90). This indicates that there is stronger disruption withréasing)M and Rm.

Itis informative to see the magnetic field line configuratidihis may be done by plotting contours
of the magnetic potential; snapshots of the field lines are given in Figure 6.10 for lthee cases
presented here. The contours are chosen so that the fieddthiread the region € [—2,2] at

t = 0, with a 0.5 spacing; the field line threading= 0 is omitted for clarity. We see that in
Figure 6.104), for the non-disruptive case, the field lines are wound uphayvortical motion
and form concentrated flux regions on the edges of the vasteot) regions should also be seen as
current sheets, which are expected to be resistively ulestabsuch a situation with curved field
lines, the magnetic tension, given By= b - Vb, has a component directed into the vortex. The
idea is that the vortical motion winds up the field lines aniidsuup magnetic stresses, which are
then released at a major reconnection event, and act on ttexvin this weak field case the force
is not strong enough to disrupt the vortex in any significaaywBy the end time, the magnetic
loops inside the vortex have largely been diffused and ntagfiex has been expelled from the
centre to the edges of the vortex. This process of flux exqnulisas previously been described by
Weiss (1966), who, via dimensional arguments, also preditite strength to which fields could
grow. Although his numerical computations were carried iouhe kinematic regime, with no
feedback on the velocity field via the Lorentz force in the neatom egauation, th&/ = 0.01
case here is comparable to his results in that the Lorente ismever significant compared to the

fluid inertia even locally, and the kinematic assumptioresveell satisfied.

Now we compare the weak case bf = 0.01 to the mildly disruptive case oM/ = 0.03 in
Figure 6.10¢). The magnetic stresses are now strong enough to cause so@idn. The parent
vortex is still present after the mild disruption and a flupebed state is reached. Tii¢ = 0.03
case suffers no further disruption events aftes 150 in a longer test run we have carried out.
This may be explained by the fact that, since the vortex is &bimaintain its integrity after the
initial disruption, most of the field lines that thread thetea end up being expelled, so there is

nothing left for the surviving vortex to wind up. For thg = 0.05 case in Figure 6.10J, the
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Figure 6.10: Snapshots of field lines for the shear layer atissveral field strengths (at RmmRe = 500).

stresses released are even stronger and distort the vigméficaintly. The evolution is completely

different, with clear signs of magnetic islands, and a flupetbed state is not achieved.

We observe that disruption is a fast phenomenon, occurringpimore than an eddy turnover
time. One key point we want to highlight is that the disrupfizvhen it does happen, affects the
dynamics well before the flux expelled state has been reaétied, to demonstrate further that the
magnetic tension does act to distort the vortex, we plot gufg 6.11 the field line configuration

with the tension force overlaid as arrows, at a time beforeappndisruption event has occurred.

There is indeed a component directed towards the centre aftitiex.
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Figure 6.11: Magnetic tension, plotted as arrows, with nitagie proportional to their length, superimposed

on afield line plot. The arrow lengths have been magnified tactof of four for clarity.
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Figure 6.12: Snapshots of current for the shear layer ruRrfat= Re = 500, M = 0.05).

Figure 6.12 shows snapshots of the current dersity the M = 0.05 run. The configuration is
consistent with the field line plots in Figure 6.2(in that strong current layers are formed on the
fringes of the vortex. Such thin layers of current are knowbé resistively unstable. Note also

that it is not a single current layer, but a double currengtdkiat exists on the edges of the vortex.

One other feature to note in the more violent disruptive €dsethat the current distribution

bears a noticeable visual resemblance with the vorticiggribution, as has been observed in
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(a) By = tanh(y) (b) Bo(y) = secH(y)

Figure 6.13: Field line configuration from a tearing unstdhiltialisation, with no background flow.

two-dimensional MHD turbulence simulations (e.g., Bislka& Welter, 1989; Biskamp, 2003;
Dritschel & Tobias, 2012). The shearing of the field linesti®rsgest at regions with non-zero
vorticity so perhaps it is not entirely unexpected that theent is largest around these regions

and implying a vorticity-current correlation.

It is known that, in thin current layers, the tearing typetafhdities are usually the fastest
growing instabilities (e.g., Furtht al. 1963; Biskamp 2000¢4; Priest & Forbes 2003;6). In
Figure 6.13 we show the field line configuration from nonlineanulations, initialising with
By(y) = tanh(y) (the single current layer, Figure 6 43andB,(y) = secH(y) (a double current
layer, Figure 6.18), with no background flow. The tearing instability causesalping of the field
lines and forms magnetic islands. In other nonlinear sitiana in vortical flows (e.g., Biskamp &
Welter, 1989), the break up of current layers is often aitat to tearing instabilities, and, in those
cases, the break up is often accompanied by balloon liketates in the electric current. These
balloon like structures have been observed in some of ouineam simulations of shear flows
with background magnetic field, so, given that tearing inititees are usually the most unstable
resistive instability in a thin current layer configuratioghseems plausible that these are also in
play here. We give some details of our attempt at providingenewidence for pinning down the

exact resistive instability at play in the discussion settt the end of the chapter.

Going back to the shear layer case, we show snapshaidafthe sample runs in Figure 6.14.

Compared to the hydrodynamic cases, we make the obserthtibdisruption events encourage a



Chapter 6. Nonlinear evolution: two-dimensional inconsgible MHD 107

(a) M = 0.01 (b) M = 0.03 (¢) M = 0.05
: : 10— :

= - = t=110

t = 150

-10

Figure 6.14: Snapshots affor the shear layer runs at different field strengths (at-RiRe = 500).

further broadening of the profile after the initial roll-ugnd the shear layer width is increased.
Further, the stronger the disruption, the larger the shagerlwidth. This agrees with the

observations made in previous studies (e.g Padoti., 2008).

The energy evolution in incompressible MHD is given by

1d 2 2 2 1 2 M? 2
2 q (IVY|* + M*|VA|?) dady = ~Re w’ dady — R 7 dady, (6.44)

consisting of a kinetic energy term, magnetic energy terisgous dissipation proportional to
enstrophy, and Ohmic dissipation proportional to curreptased. We plot in Figure 6.15 a time-

series of the energies for the sample runs.

Growth rates for the linear instability are inferred via &riiy of the perturbation kinetic energy
as before, and we see that the growth rates are to the hydmdyrgrowth rate at 0.185. For
the M = 0.01 case in Figure 6.15}, it can be seen that perturbation magnetic energy remains
considerably smaller than the perturbation kinetic enetigig is consistent with the observation
that MHD effects play a secondary role in the dynamics in¢haise. The total energy loss is about
10%, comparable with the hydrodynamic case. ForMie= 0.03 case in Figure 6.15], the
perturbation magnetic energy is still an order of magnitshaller than the perturbation kinetic
energy. The perturbation magnetic energy is seen to decnytfi= 100 signifying no significant
build up of the magnetic field after the primary disruptiorneTtotal energy loss is around 12%,

still comparable with the hydrodynamic case. For the = 0.05 case in Figure 6.1b}, the
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Figure 6.15: Time-series of the energies (bukinetic; red= magnetic; solid= perturbation state; dashed
= mean state; black dot-dashed liagtotal energy) for the shear layer runs at different fieldrajths (at
Rm = Re = 500).

perturbation magnetic energy is comparable with the peation kinetic energy, and this certainly
indicates that the dynamics are significantly influenced biyMeffects. The total energy loss here

is higher, at around 17%.

The increase in energy loss observed in Figure 6.15 is perkapected; since the Ohmic

M? ,
Rm = o //]2 dady (6.45)

is related to the current density, and we have already obdehat strong current sheets appear

dissipation rate given by

as a result of the vortical motion, this implies that extresghation is present, leading to higher
energy loss. We plot in Figure 6.16 the viscous dissipatain dgre, the Ohmic dissipation rate
erm and the total dissipation for the three sample cases. Indtdedeen that the more disruptive

case atV/ = 0.05 has a much higher Ohmic dissipation, so much so that Ohmsgpdison is the
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Figure 6.16: Domain-integrated dissipation ratg (blue curve)erm (red curve) and = ere+ erm (black

dashed curve) for the shear layer runs, at RrRe = 500.

dominant contribution of the total dissipation. AddititlgaFigure 6.16¢) shows that there is an
increase inere aroundt = 70 for this severely disruptive case, signifying that therarigncrease

in global enstrophy and hence vorticity production by MHEeefs.

Before classifying the computational runs, there are diresgveral questions that one should ask:

1. Can we predict how the growth of the magnetic stress giveikm and Re, and, using this,

estimate the degree of disruption?
2. What is the dependence of disruption on Re and other hydewdic secondary instabilities?

3. Is the break up of the layer caused by a tearing type nesiststability?

We shall now attempt to answer the first question, and prazikimematic estimate that depends

on M and Rm; we defer the latter two question to the discussiotioseat the end of the chapter.
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6.5.1 Regime boundary estimation

We know that if the magnetic stresses built up by the vortination are significant before the
major reconnection event occurs, then we can expect disrupt occur. The question then is

how to quantify the size of the stresses.

The circular motion of the vortex has associated with it argeetal force. For a fluid with density
p and permeability., if a uniform vortex has length scalg, and velocityU., then the centripetal
force scales likpU?2/L.. So we expect there to be significant disruption if the teméioce T is
comparable to the centripetal force, i.e.

pUZ
L.’

T ~ |pb- Vb| ~ (6.46)

where agairb = b*/,/puo is in units of velocity. Then it remains to estimate how lafgean
get. For this purpose, we employ a kinematic argument sirtaléhat given in Weiss (1966). A
kinematic argument should at least give us a first estimateoof largeT can grow until it is

arrested by dissipative effects.

We start from the (dimensional) induction equation

ob

o = Vx(uxb)+ nV2b. (6.47)

Now, the initial large-scale field, at length scald.. may be amplified to a stronger small-scale

field b at a smaller length scale Away from dissipation scales, flux conservation impliest thve

have
ByL
BoL.=bl = b= Og €. (6.48)
This amplification is arrested when the advection t&m (u x b) is comparable to the diffusive
termnV?b, i.e.
UBy nb
implying
L\ V3
b~ <U > By. (6.50)
n
This is the first part of the argument in Weiss (1966), andbdugre is hisB; .
Now, sinceb > By and/ < L., we have, using (6.48) and (6.50)
b? b3 B?
T ~ |pb-Vb| ~ p— ~ ~ pU, =2 6.51
|pb - V| ~ p; PBoL. ~ PV (6.51)
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This suggests we are in the disruptive regime when

B2 U2 B? T,
pUeqo N pLe N 70 ~ L_ ~ Q. (6.52)
(& e

where(2, is the typical scale for vorticity in two-dimensions.

Going back to our non-dimensional set up, a constant fieldiésnphat

1
By — M, — — Rm,
n

so the expected disruption condition (6.46) becomes
M?’Rm~ Q.. (6.53)

For the shear layer profile considered hdbg,~ 1. The severely disruptive case @/, Rm) =
(0.05,500) has M?Rm = 1.25, the mildly disruptive case ofM,Rm) = (0.03,500) has
M?Rm = 0.45, and the non-disruptive case 0f/,Rm) = (0.01,500) has M?Rm = 0.05,
so this kinematic prediction is then at least consistent e observed disruption for these three

sample cases.

As argued before, the disruption event occurs well befoseflux expulsion regime is reached
(approximately half to one turnover time compared with ¢hog four turnover times for flux
expulsion), so we use the above estimate, which takes icmuat how much the field lines may
be amplified before it is arrested by finite magnetic disgypatWe will test our kinematic estimate
here, and discuss the possibilities of a dynamic estimateeidiscussion section at the end of the

chapter.

6.5.2 Regime classification

We now proceed to classify our set of runs(it/, Rm) space. To do this we need some way of
measuring the degree of disruption. There are severalrtsatorrelated with the observed degree
of disruption, such as the dominance of filamentary voytisttuctures and the increase of shear

layer width. We construct measures that make use of theseligarvations.

More filamentary structures implies more small-scale #gtivin a spectral representation this
implies that more modes are required to reconstruct thenatigorofile. Using vorticity as

an example, since we have data for vorticity collocated atréievant points, we consider a
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case keut marker

severely disruptive keut > 25 o
mildly disruptive 10 < keut < 25 A

no visible disruption keut < 10 X

Table 6.2: Regime classification for the shear layer in thermpressible case, using the spectral truncation

measure.

spectral representation of the data. We then take someatianavavenumbek.;, and a spectral
truncation is carried out by setting to zero the coefficiemith wavenumbersicy: < k, < N,

for Chebyshev modes arig,: < k, < N, /2 for Fourier modes. The enstrophy associated with
w(k = keut) is calculated for increasinkcy: until some large percentage of the total enstrophy is
recovered, and we record tlhg,; that achieves this; vorticity fields possessing more filaiargn
structure will have a highet.,. As a demonstration, reconstructions of the spectrallydated
vorticity at several values df.; are given in Figure 6.17, using the= 100 frames of Figure 6.9.
The enstrophy capture percentage, given|o|?/||wtn||?, where| - || is interpreted in the.?
sense, is given underneath the panels. As expected, fonaere the main feature is the parent
vortex, only a few modes are needed to capture most of theophstand reproduce the original

profile. More modes are required when filamentary structaregpresent.

For our purpose we choose thg, that recovers 99% of the enstrophy, i.e.

chutH2
llwotun |2

> 0.99, (6.54)
and we takékc,t maximised over the run time at eath/, Rm). We choose to use enstrophy over
the current squared because in our case Re is fixed whilst Rot,i&nd a larger Rm allows for
thinner current sheets, naturally resulting in a larkggr. Enstrophy is used over energy because
enstrophy provides a sharper measure, &sone derivative higher tha¥iy). The maximum over
the run is taken because this takes into account when thatyadiat its most vigorous, compared

to, say, takingkqt at the end time when diffusion may have already smoothedauédeatures.

Using Figure 6.17 as a rough visual guide and with some edidr using some sample runs,
we classify the runs as in Table 6.2. The raw data from our fsetns is given in Table 6.3; for

comparison, the hydrodynamic run at R&500 haskey: = 7.

Another measure of the disruption that we consider is thehnafl the shear layer. As observed
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Figure 6.17: Vorticity field truncated spectrally at sevéeaels, for thet = 100 snapshot (third row of
Figure 6.9). The enstrophy capture ratio given by the lefichside of (6.54) at various truncation levels is

also given.
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M 0.01| 0.02| 0.03| 0.04| 0.05| 0.06 | 0.07 | 0.1
Rm
1000 7 17 37 25 55 54 60 | 60
750 7 14 30 34 34 41 45 | 60
500 7 7 24 31 33 31 33 | 46
250 7 7 7 22 27 29 28 | 31
50 7 7 7 7 8 9 11 | 14

Table 6.3: Raw data from the set of calculations atER&00 for the shear layer, with numbers denoting the

truncation wavenumbét,,; maximised over time. The hydrodynamic case bas= 7.

case layer expansion factpr marker
severely disruptive f>15 o
mildly disruptive 1L15< f<15 A
no visible disruption 1.15< f X

Table 6.4: Regime classification for the shear layer in tleenmpressible case, using the shear layer width

measure.

in Figure 6.14, the more disruptive the run, the larger theaskayer width. To measure the shear
layer width, we find the location wheff@ — u.,| < 0.01, with T, the free-stream value of the
profile (i, = 1 for the shear layer profile). To give a measure, we fix a snapghe, and
calculate the shear layer width, normalised by the shear lajdth in the hydrodynamic case at
the corresponding time. For our purposes, we took the laydthvat the end time = 150, so

B layer width of run at = 150
~ layer width of hydrodynamic run at= 150

f (6.55)

From this, we classify the runs as in Table 6.4. The raw datgivien in Table 6.5. The
hydrodynamic case has a factor of with an initial layer width of about 5.9 and an end layer

width of 7.65.

Using the two classifications, we plot in Figure 6.18 reginegchms in(M, Rm) space based
on the two measures given, for the single wavelength case at R00. Lines of M?Rm = C,
consistent with (6.53), for several values@©@fare overlaid onto the diagram. There was some
calibration required for classifying the simulations;sthias been done so that the essentially

hydrodynamic runs and the severely disruptive runs areupagbtas best as possible. There are
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M 01| 02| 03| 04| 05| 06| 07| 01
Rm
1000 1.08| 1.30| 1.74| 1.88| 2.11| 1.94| 2.37| 2.46
750 1.07| 1.28| 1.69| 1.81| 1.95| 1.99| 2.37 | 2.52
500 1.04| 1.17| 1.37| 1.57| 1.88| 2.01| 2.24 | 2.56
250 1.04| 1.07| 1.20| 1.41| 1.67| 1.78| 2.01| 2.40
50 1.03| 1.04| 1.07| 1.07| 1.13| 1.10| 1.25| 1.52

Table 6.5: Raw data from the set of calculations at=R&00 for the shear layer. The numbers denote the
shear layer width expansion factor (relative to the hydraagic run at Re= 500, taken at end time). The

expansion factor for the hydrodynamic case is defined tf bel.

one or two differences in classification but these invayidig close to our regime boundaries.
The boundaries were not expected to be sharp, so we argubehainor differences in this case
does not invalidate our conclusions. It appears fH&Rm > 0.5 captures most of the severely
disruptive cases. More important, the dependence of vdligxiption by secondary resistive
instabilities is well described by the estimate?Rm, at least for the range of parameter values we

have considered.

6.5.3 Dependence of evolution on Re

In the hydrodynamic case, when the domain is large enouglpfmost two or more wavelengths of
the primary instability, vortices formed from the primanstability may pair up. One might ask
about the interplay between the pairing modes and the dy@élynidriven resistive instabilities
when the domain is large enough to support pairing instasli In the test runs we have carried
out, we observed that, disruption, if it occurs, does so fieefmy pairing of the vortices; for
severely disruptive cases the vortex can be destroyedebefoy pairing can happen. For the
cases where the disruption is mild, disruption occursh#figreducing the vortices in size, then
pairing occurs. Assuming this pairing is allowed to takecpleone can imagine cases where the
primary disruption is weak/mild, but any subsequent pgirgsults in further build up of magnetic
stresses, promoting a weakly/mildly disruptive case toldlgiseverely disruptive case. We have
not observed this in any of our test runs, but these werdaestrto no more than four wavelengths
because of limits on resolution available. In the study ofyBs al. (2003), eight wavelengths of

the primary instability were allowed, and, in their Figurg & promotion to a severely disruptive
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Figure 6.18: Regime diagram, as measured by the spectraation wavenumbeéit.,; (maximised over
time) and via the shear layer width expansion fagt¢taken at end time). The suggested boundary given

by (6.53) is plotted for several values ©f

case is seen (their Figure 15 comes from a fully resistivepressible MHD while the other runs

in that paper use a numerical dissipation).

Hydrodynamic secondary instabilities were seen also tp @leole in the transition to turbulence
and are dependent on Re (Mashayek & Peltier, 2012a,b); hewewst of these secondary
instabilities are excluded in our physical set up. Our satiahs are limited to Re= 1000 and as

yet it remains inconclusive whether the dependence on Reakev than\/2Rm, as suggested by
the kinematic estimate; in our tests runs at higher Re werebghat the disruption appears to be

more severe.
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6.5.4 The cases with largef/

For completeness, Figure 6.19 shows snapshots of theityoftic runs with larger values o/
than those considered previously; recall, from Chapteh&, &/ > 1 guarantees linear stability
of this basic state. A larger perturbation to the vorticitgsagiven to compensate for the slower
growth rates. We should note that the time snapshots areongparable to those in Figure 6.9

since the perturbation is of a different magnitude.

For theM = 0.2 case in Figure 6.18], we observe severe disruption, with regions of very strong
vorticity generated even before the vortex has completelgn&éd. The disruption is very rapid
and strong filaments litter the domain. Even in this sliglstiprter run, the shear layer is observed
to have spread to the boundary. For fle= 0.4 case in Figure 6.18), we perhaps still observe
some disruption, but now the background field appears to feagtenough to suppress fluid
motion, and by the end frame, we have what would be deemediadastate. For théd/ = 0.6
case in Figure 6.19), nothing that is characteristic of disruption is obsepnat it would appear

that even the rolling up motion has been suppressed.

We note then that the disruption estimate?Rm ~ €2, only predicts the degree of disruption
where there is a rolling up of the shear layer. The transitioation between the disruptive regime

and the nonlinearly stable regime has not been investidetesl

6.6 MHD evolution: Bickley jet

We now consider an analogous investigation for the Bickégypjofile. In planar geometry, the
evolution of this profile in the incompressible MHD systens liseen investigated by Biskamp
et al. (1998); jet-like profiles in the compressible MHD regime @édween investigated by, for
example, Min (1997a,b) and Baty & Keppens (2006). All thegthars find that vortices may
be disrupted, and that weak vorticity bands become the damhifeature in the domain. As in
the shear layer case, we consider valued/fothat, according to linear theory, result in growth
rates and eigenfunctions that are comparable to the hydamdiz case. As was done previously,
we takea = 0.9, with a domain that supports two wavelengths of the primasyability, partly
for consistency, and partly to demonstrate that compleseipiion may happen before pairing of

vortices occur. A summary of the run parameters is given bi€Té.6.
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Figure 6.19: Snapshots of vorticity for the shear layer atesdarger values o/ (at Rm = Re = 500).
Note the use of a wider colour scale compared to Figure 6@ tfaa simulations were initialised with a

larger perturbation than the ones presented in Figure 6.19.

As before, we take three representative runs, carried oRivat= 500 and M = 0.01, 0.03,
and 0.05; as a reminderM = 0.5 implies linear stability (see Chapter 5). In Figure 6.20 we
show snapshots of the vorticity for these three runs. Inadks, the primary instability causes a
meandering and break up of the jet, as in the hydrodynami diaplayed in Figure 6.5. For the
M = 0.01 case in Figure 6.20}, att = 100, we see that there is some sort of distortion to the
vortices, due to the release of built up magnetic stresselisthe vortices take an almost triangular
shape in this frame. The stresses built up in this case haveegesvidently not very strong, and

the vortices are able to recover their elliptical shape$ by 150; at this time, we also see early
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parameter range

« 0.90

Ce 0.2

Ly x L, (0,27 /a] x [~10, 10]

Re 500

M 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1
Rm 50, 250, 500, 750

Ny x Ny 384 x 768 for Rm = 750

256 x 512 otherwise

Table 6.6: Parameter values employed in our investigatiothie Bickley jet profile.

signs of vortex pairing.

We may contrast this to the other two cases, where thin Vyriiayers are seen in the= 75
frames. The resulting magnetic stresses are larger andhétvgsa more significant impact on the
flow. By ¢t = 100, the vortices have lost their structure and bands of voytlmecome the dominant
feature in the domain, as in Biskarepal.(1998). Unlike the shear layer case, however, it appears
that disruption is not sustained; there is one primary gison but this does not trigger further
disruptions. We attribute this to the fact that, for the shager, the primary disruption results in
motion that can tap into the background flow when the layeeamts away from the region near
y = 0, triggering more disruption. This is not the case for theklg jet profile as the flow is
primarily supported neay = 0. The intensity of vorticity at the late time= 150 is substantially
lower than for theM = 0.01 case in Figure 6.20], signifying that there has been increased

dissipation, resulting in a significant decrease in agtivit

The associated magnetic field line profiles are plotted iruféigs.21, again with field lines
threading the regiop € [—2,2] att = 0, at 0.5 spacing; the field line threadigpg= 0 is omitted
for clarity purposes. For all cases, it is seen that the regan the edge of the vortices coincide
with regions of strong flux concentration, implying strongrent layers at these locations. This
strong field region is again not a result of flux expulsion, fiadiher a result of the vortical motion
winding up field lines. For thé/ = 0.01 case in Figure 6.24}, we observe the formation of
some magnetic islands, indicating that reconnection ofratg field lines has occurred. For

the M = 0.03 case in Figure 6.2b], we see very clear traces of magnetic islands even until
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Figure 6.20: Snapshots of vorticity for the Bickley jet affelient field strengths (at Rm Re = 500).

t = 150, suggesting that the relaxed state is still to be reached. thfeoM = 0.05 case in
Figure 6.21¢), it appears that the relaxed state is almost reached, witte glistorted field lines
but no traces of magnetic islands. This largely diffusetestecurs sooner than the = 0.03
case in Figure 6.21], indicating that a stronger disruption leads to a quickdaxation to a state

with weaker activity.

Snapshots of the electric current dengifipr the M = 0.05 case are shown in Figure 6.22. As for
the shear layer, double current layers are observed at tlesad the vortices rather than single
layers; this configuration is expected to be unstable toah@ly of tearing instabilities. Filaments
are again the dominant features in the domain. It is alsodsteg to see that, in Figure 6.22(

the intensity of the current at this late time is very low; taat this to the shear layer case, with
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Figure 6.21: Snapshots of field lines for the Bickley jet rahseveral field strengths (at RmmRe = 500).

its current profile given in Figure 6.12)

In Figure 6.23 we show snapshotswf As with the shear layer, there is broadeningidds the
primary instability saturates and the jet breaks up intdi®es. In contrast to the shear layer case
however, the jet widths (computed using either u.,| or | — W | as the measure) for the runs
at different field strengths at the end time= 150 are in fact comparable with each other. This
seems to be because there is really only one significantpdisruevent, in contrast to the shear
layer case where a cascade of disruptions may occur, letmlangubstantial increase of the shear
layer width. We do observe, however, that the decrease i fi@a value, given bymax [u(y)],

is correlated with increasing disruption, with more digivg runs leading to a larger decrease in
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Figure 6.22: Snapshots of electric current for the Bick&y(@t Rm= Re= 500, M = 0.05).

(a) M =0.01 (¢) M = 0.05
10, w 1 1 w
> 0 =  Or = Or
-10 -10 -10

Figure 6.23: Snapshots affor the Bickley jet runs at different field strengths (at RerRe = 500).

max |u(y)|. We use this later to construct a measure of disruption.

Figure 6.24 shows the energy time-series of the represemtains. Again, a growth rate
is inferred by a fitting of the perturbation kinetic energydathese values are close to the
hydrodynamic dynamic growth rate at 0.160. As in the shegerlauns, we observe that the

magnetic energy levels saturate at a different magnitugerd#ing on the initial field strength.
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Figure 6.24: Time-series of energies (blakinetic; red= magnetic; solid= perturbation state; dashed

mean state; black dot-dashed liadotal energy) for the Bickley jet runs (at Rea Re = 500).

The disruptive cases have the perturbation magnetic amtikienergies comparable at some point
during the run. There is a noticeable loss of total energyMh= 0.01 case in Figure 6.24] has

a loss of around 30%, comparable with the hydrodynamic aalsiést in the M/ = 0.05 case in
Figure 6.24¢), this is around 40%.

In Figure 6.25 we plot the dissipation rates for the threesriwnlike the shear layer runs, Ohmic
dissipation is not necessarily several orders of magnitigber than the viscous dissipation;
however in all three runs they are at some point comparable Ghmic dissipation increases
to a peak value but then generally decreases afterwardg;asbthis to the shear layer case in
Figure 6.16 where multiple well-defined peaks in the Ohmassigiation are observed. This is
consistent with the observation that the disruption evargsiot sustained, and there is really only

one primary disruption event.

In this multiple wavelength case there is the possibilitpaifing of like-signed vortices; however

in the runs where we observe disruption, the destructionoofioes occurs before any vortex
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Figure 6.25: Domain-integrated dissipation rate (blue curve)egrm (red curve) and = ere+ erm (black

dashed curve) for the Bickley jet runs.

pairing has occurred. When the field is sufficiently weaktiges form as usual and the evolution
is essentially like the hydrodynamic case. One may ask \ehettultiple pairings can lead to

more disruption due to extra winding up of field lines. As dissed in the shear layer case, this
certainly seems possible from the work of Batyal. (2003); however we have not observed it in
any of our test runs with a larger domain (we have limited elwes to a domain that supports no

more than four wavelengths of the primary instability).

6.6.1 Regime classification

Since we still have vortices winding up field lines, the poex argument in Section 6.5.2 leading
to the estimate/?Rm ~ €. is still relevant. In this case. ~ 0.7, and the representative
runs give values ofi/?Rm consistent with the observed non-disruptive (vortex idated) and

disruptive (band dominated) cases. We have also tried @giagtral truncation and jet widths to

classify our runs; there is a problem here in that a spectratation does not appear to distinguish



Chapter 6. Nonlinear evolution: two-dimensional inconsgible MHD 125

case peak: reduction factor marker
disruptive/bands < 0.75 o
not disruptive/vortices >0.75 X

Table 6.7: Regime classification for the Bickley jet in thedmpressible case, using the peak jet strength

reduction factor.

M 0.01] 0.02| 0.03| 0.04| 0.05| 0.06| 0.07| 0.1
Rm
750 0.90| 0.64| 0.48| 0.45| 0.52| 0.52| 0.57 | 0.65
500 0.93] 0.69| 0.51| 0.45| 0.51| 0.56| 0.51| 0.65
250 0.96| 0.89| 0.67| 0.51| 0.51| 0.53| 0.51| 0.29
50 0.96| 0.96| 0.93| 0.80| 0.80| 0.40| 0.26| 0.29

Table 6.8: Raw data from the set of calculations at=R&00 for the Bickley jet. The numbers denote the

peak jet strength reduction factor relative to the hydraayit case.

between relatively wide bands of vorticity and compactieges, and we have already made the
observation that the jet widths of the saturated statesaapdne comparable to each other in our
runs. One measure that does seem to be well correlated witthethree of disruption is the peak
jet strength valuenax |u(y)|. We will thus takemax [u(y)| at the end of the MHD simulations
att = 150 and divide this by the peak value of the equivalent hydrodyinaun to give us a
reduction factor. We classify the runs using the conditigiven in Table 6.7; the corresponding
hydrodynamic case of course has a reduction factor of 1, mitk [u(y)| = 0.55 at¢ = 150 in

this case. The raw data is given in Table 6.8 and a regimeatiagg given in Figure 6.26.

We see thatM/?Rm > 0.1 appears to capture all the disruptive cases. More impdytahe

dependence of disruption on the combinatid?Rm appears to be well captured.

6.6.2 The cases with largef/

For completeness, we plot in Figure 6.27 snapshots of thiiprof a run at largerd, here at
M = 0.25 (M = 0.5 implies linear stability), with Rm= Re = 500. The jet appears to meander a
little but does not break up into vortices; compare this toghear layer case where the vortex does

not form at largerd/. Again, the estimatéd/>Rm ~ ). requires that we have vortices forming
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Figure 6.26: Regime diagram, as measured by the reductithe gfeak value o at end time as a relative

factor to the equivalent hydrodynamic case. Agaif:Rm = C is plotted for some values @f.
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Figure 6.27: Snapshots of vorticity for the Bickley jet rumld = 0.25 (at Rm= Re = 500).

in the first place; the transition between the disruptive aodlinear stable regime has not been

investigated.

6.7 Summary and discussion

To summarise, we have investigated the nonlinear evolutibrshear flow instabilities in
incompressible MHD, taking” = 0. Even for weak background field (in the sense that the initial
magnetic energy is much smaller than the initial kineticrgyg it is known from previous work

that the vortical motion arising from the hydrodynamic eximn can amplify the magnetic field,
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feedback onto the flow, and cause disruption to the cohenertgres that would otherwise form.
Our work here appears to be the first to investigate the sametius dependence of disruption on
the basic field strengtih/ and the dissipation parameter, in this case measured by dheatic
Reynolds number Rm, as well as provide an estimate for thertsmce of the degree of disruption

on the parameter values.

For the shear layer, we focussed on the case where the doogporss a single wavelength of
the most unstable mode. In the hydrodynamic case, the shgarrolls up into a vortex, and in
our physical setting, there are no observable hydrodynaetondary instabilities (e.g., pairing,
braid, convective etc.) that affect the stability of thetesr and the vortex was seen to be long-
lived. When a background magnetic field was included, theses were observed: the case
where MHD effects are truly weak, the evolution being esaéynthydrodynamic, with the field
lines advected passively and eventually reaching a fluxlexdpeegime; the mildly disruptive
case, where the vortical motion stretched field lines, séfgpstresses, but the vortex survives this
disruption, retains its integrity, and a flux expelled regiwas also reached; the severely disruptive
case, where the MHD feedback was sufficiently strong, dtsrgghe vortex significantly, a flux
expelled regime is not reached, and the resulting domireattifes in the domain are vorticity
filaments rather than a coherent vortex. The degree of disrupas seen to become more severe
on increasing Rm and/av/ (assuming that we are still in the nonlinearly unstablemegi It was

also seen that the increase of the shear layer width wadatedevith the degree of disruption.

With regards to the disruption mechanism, vortical motiomds up magnetic field lines,
stretching out a thin current sheet and building up magsétisses. This build up is arrested when
the current sheet becomes sufficiently thin and breaks §biglalue to a resistive instability). This
releases the magnetic stress that feeds back onto the flbswtiadly causing disruption. With
this in mind, we provided an estimate for the degree of olexbrisruption using a kinematic,
dimensional argument. The resulting estimat&?Rm ~ ., was tested against the numerical
data overM and Rm space, with the degree of disruption measured by drap&cncation
wavenumber (maximised over the run) and a shear layer wijthresion factor (taken at end
of the run). It was seen that, for the shear layer cd$éRm > 0.5 appears to capture all of
the severely disruptive runs, but, more importantly, thgrele of disruption exhibited by the data

conformed well to the parameter combinatibff Rm.

For the Bickley jet, we focussed on the case where the donugiposts two wavelengths of the
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most unstable mode. In the hydrodynamic case, it was seé¢rihthgets undergoes a kinking
motion before breaking up into vortices, which then subsetjy pair up. In the MHD case, either
the vortices survive the disruption event, and the evatutimoceeds as in the hydrodynamic case,
or the vortices are completely disrupted, and vorticitydsaform instead. The disruption was
observed to be less violent than for the shear layer, in bieaetappears to be only one significant
disruption event, rather than a continued cascade of disng This was attributed to the fact that,
in the shear layer, the resulting motion can further tap théobackground flow energy away from
y = 0 for trigger more disruption events, whilst this is not thee#or the jet profile as the flow is
largely supported aroung= 0. It was observed from profiles afthat the peak value af, rather
than the jet width or the spectral truncation wavenumbes, peter correlated with the disruption
observed. Since the physical mechanism leading to dismusi similar to the shear layer case,
we also tested th&/?Rm ~ (. estimate against the data. It was seen fidRm > 0.1 appears
to capture all the disruptive runs, and, furthermore, theeddence on the combinatidi>Rm

was seen in the regime diagram.

For completeness, we have also performed some runs wittr lfgwhere it appears that we have
nonlinear stability, with no rolling up of the shear layertweaking up of the jet. Our estimate for
disruption then requires that we do in fact have vorticemfng. The transition location between

the disruptive and nonlinearly stable regime has not beastigated here.

Generally, disruption is a fast process, typically ocawgrin no more than an eddy turnover time.
For the shear layer, disruption occurs before a flux expealgime is reached, and for the jet,
disruption can occur before there is any pairing betweenvtitices. Our estimate, stemming
from a particularly simple kinematic and dimensional arguain also highlights that some care is
needed when the term ‘weak field’ is used; in our shear flowlprolusing our estimate, it i3/
and Rm in the combination/?Rm < 1 that results in an evolution that is essentially unmodified
by MHD effects. The fact that disruption by MHD effects is tfasd depends od/?Rm
indicates that this phenomenon will be a robust feature énrntbnlinear development of shear
flows in astrophysical systems, since Rm is typically vergda This disruption mechanism from
MHD effects also provides another route for transition tdtilence without resorting to other
hydrodynamic instabilities that require, for exampleatitication effects, and so can operate even
in strongly stratified systems where the fluid motion is predi@ntly horizontal and secondary

hydrodynamic instabilities may be weak. This potentialgs impact on, for example, mixing
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properties in such electrically conducting fluid systenmnething that we have not investigated

here.

We now discuss some other points relating to the disruptienhanism that were mentioned in

the main body of the text.

6.7.1 Dependence on viscosity

All the numerical results presented here were for both tleaskayer and the Bickley jet were
performed at Re= 500, and one might wonder about the effects of increasing Re. &\e hlso
conducted some test runs at Re750 and 1000; one comparison for the shear layer is given in
Figure 6.28, where we plot side by side some quantities édigirom the simulations. There are
some differences, and it is certainly true that the runsrgelaRe appear to result in a more severe
disruption, with more vorticity filaments appearing. Singe are restricted here in computing
resources, we are unable to probe the parameter regionhertiRg, although we do observe that
larger Re increases the life-time of the vorticity filamefotened from the shredding of the vortex.
We also suspect that, in other systems where other secohgdrgdynamic instabilities operate
(e.g., Mashayek & Peltier, 2012a,b), the increase in Realgth lead to a stronger disruption of the
vortices formed, except in this case the disruption is duee¢ombination of both hydrodynamic
and resistive secondary instabilities. Larger simulai@@r ones employing a different formalism;
Dritschel & Tobias 2012) would allow for an investigation thfe dynamical dependence on

increasing Re and also Rm.

6.7.2 Arresting mechanism: tearing instabilities?

The cause of the major reconnection event in the shear laysrhras largely been attributed to
tearing instabilities by previous investigations (e.gneket al,, 1997; Keppenst al,, 1999; Baty
et al, 2003), although we suspect a similar mechanism is at plaghfojet runs. In particular,
these authors observe in their simulations the appeardrstaiotures that are consistent with the
onset of tearing instabilities, such as magnetic islandscaiains of plasmoids (e.qg., Figure 11 of
Keppenset al. 1999; Figure 15 of Batgt al. 2003). Tearing-type instabilities are generally the
most unstable in such a current sheet settiidgaf Biskamp 20006 of Priest & Forbes 2000).

However, we also observe current sheet pinching beforerusheet break up in regions centred
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(a) Re= 500 (b) Re= 1000
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Figure 6.28: Comparison between two shear layer rudd at 0.05, Rm = 1000 at two different values
of Re. Displayed are the energy time-series (blukinetic; red= magnetic), dissipation rates (blue

viscous; red= Ohmic) and snapshots of

around the stagnation point; Figure 6.29 shows snapshdtseofurrent in a higher resolution

run, Re= Rm = 500 but at512 x 1024, with M = 0.05, centred around the stagnation point.
This pinching is presumably due to the combined effect ofiiflew pushing the current sheets
together, and the instability causing the sheet to pinclolild be beneficial if we could separate
the effect due to the background flow, and provide more ecieléor us to conclude the exact type

of resistive instability causing the major reconnectiorrdy

In the time-series of energies shown in Figure 6.15, afteriniftial peak of perturbation kinetic
energy, the perturbation magnetic energy continues to grtitile. One might be convinced that

the perturbation magnetic energy grows at a smaller ratelyply observation of the relevant
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Figure 6.29: Snapshots of current for the shear layer ruRifat= Re = 500, M = 0.05), in a small box

centred around the stagnation point. A pinching of the eursheet is observed.

figures. If we suppose that might be the case, we could tryrfied & growth rate for the tearing
instability via a fitting of the available data; using datavbeent = 50 and¢ = 55 for the shear
layer runs (just before the first peak in the perturbationme#ig energy in Figure 6.15), a growth
rate was inferred for some sample cases at several valuesaid Rm. The peak field strength
and the length scales of current layers are obtained fromathedata at = 50, and from this a
Lundquist number

_ TR : _e

Lu=—, TA= —, TR = (6.56)
TA vA n

was inferred. Herer, is an Alfvén transit time, andp is a resistive time. We know that,
classically, the tearing mode with no background flow has @wtir rate o that scales like
o ~ Lu~3/° (Furthet al,, 1963). Comparing the inferred growth rates to the thebiydifference
between the values is around a factor of 2. This may seem pimgnihowever, we should bear in
mind that: (i) we have a background flow and the value of viggagas not taken into account;
(ii) a fitting of 5 time units is probably too small to be meagful; (iii) the instability, if it really

is a tearing-type instability, results from the nonlineaolation of a shear flow instability with a
constantly evolving basic state, and a linear phase mayaweli-defined; (iv) it may be a double

tearing mode.

We also tried to detect the growth rate of the tearing modenlaiyaing data taken from a small box
around key features of the instabilities . We have tried iséVecations (centred on the stagnation
point, centred on the eye-lid of the vortex formed, centnethe leading braid-region of the vortex

formed); however, nothing particularly conclusive resdlfrom this approach.
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We also carried out simulations for the nonlinear evolutibrtearing modes with a background
flow, as in, for example, Ofmaet al. (1993), Cheret al. (1997), Otto & Fairfield (2000). Both
single current layers (e.gBo(y) = tanh(y)) and double current layers (e.dy(y) = sect(y))
have been tried with and without a background shear layer dliodifferent shear layer widths.
The code manages to reproduce what has been documenteaughg\iut does not seem to give
any extra information that is relevant to our case here. ttiqudar, we never observe the violent
evolution associated with the shear layer profile that i©meg here, for several values of Re

ranging from500 to 1000.

Knowing exactly what the arresting mechanism is would cateplthe dynamical picture
concerning disruption induced by vortical motion, as wellprovide some explicit suggestions
to the parameter dependence we might want to look out foramebime estimations. It certainly
seems plausible that the tearing-type instability actb@satresting mechanism, but we can not be
sure about this until there is more evidence available. Wgecture that it is probably a tearing
mode supplemented by the straining experienced by the-begidn/current-layer centred around
the stagnation point that ultimately leads to the currepéddreak up. The interplay between
these two mechanisms however is not clear. There are ta@mig investigate this but we have

not looked at this in much detail.

6.7.3 Validating and improving on the disruption estimate

Supposing for the moment that the dependence of disruptioR® is weak, one interesting
and fairly straight forward thing to do would be to see howtfar kinematic regime estimation
M?Rm ~ Q. extends intq M, Rm) space. This would simply involve running larger simulagion
at higher Rm, possibly using thef2Rm ~ ), estimate as a guide for where to look in parameter
space. This may also help clarify the resistive instabjibynt made previously, giving us more

evidence towards pinning down the exact type of resistigtalility causing the disruption.

One possible and more involved investigation would be to gpohd a kinematic argument
and obtain an estimate that takes into account the dynaraibéek. This has been done in
the magneto-convection setting by Gallowetyal. (1978) and Galloway & Moore (1979) via a
matched asymptotic technique. It would be interesting terek those arguments to this perhaps
simpler case, since we do not have thermal driving. Perhaps/@n simpler case would be to

revisit the problem of Weiss (1966), with a vortex in a twoadnsional doubly periodic box and
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a uniform background magnetic field, but taking into accabetdynamical feedback. Some test
simulations we have carried out shows similar disruptivieavéour as those observed here, but we

have not studied the parameter dependence in nearly as rataif.d

(At time of final correction) Dritschel & Tobias (private conunication) have also reported similar results for the

vortex-in-a-box problem.
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Figure 6.30: Computation time scaling for the FFT commaradgraged over 100 calculations. The
computed times for the relevant routines are divided by lig®ttetical scalings, so the data should fit to

a constant function.

6.8 Appendix A: Differentiation and quadrature routines in Fourier—

Chebyshev spectral space

6.8.1 Fast Fourier Transform (FFT)

For transforming between physical and spectral space wetheséft command native to
MATLAB, which is based on the FFTW library. This was adaptexdaacustom routine here,
which has the option for transforming our data between giaysipace, Chebyshev—Fourier space
and intermediate cases. It is well known that a single FFTaforarray of lengthV requires
O(N log N) operations. For our tests, we calculate the computatiomgisnand, from that, infer
scalings of these timings with increasing Some large number of runs were carried out and the
computation time was averaged over the number of runs toajiveThis is done at increasing
values ofN to give some(N) ~ f(N). We plott/f(N) in Figure 6.30, where the averaging was

done over 100 calculations.

We see then the one-dimensional FFT for transforming froiysical to physical-Fourier or
physical-Chebyshev space scales likeV log N), and the two-dimensional FFT transforming
from physical to Chebyshev—Fourier space scaleslik&? log V). Some irregularities are seen,

and this may be due to the fact that FFT is a bit faster wNezontains many factors of 2.
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Figure 6.31: Computation time scaling for the commands tduate the integrals of quadratic quantities,
averaged over 20 calculations. The computed times for tlewaet routines have been divided by the

theoretical scalings, so the data should fit to a constaratifum

6.8.2 Integration of quadratic quantities

As discussed in Section 6.2, we can evaluate in spectratghadntegrals of quadratic quantities
by summing coefficients in Fourier—Chebyshev spectralespa@his is expected to be slow as the

summation has to be done individually. Instead, we conglderg the integral as follows:

1. Transform from full spectral space tespectral and-physical spacef(z,3) — f(Z,y);
2. Perform anz-integration using the standard Parseval's theorenf($oy) — [ f2(y) d;

3. Perform a transform ig and do spectral integration using the Clenshaw—Curtis raae,

soff2 dx—)ffod:Udy.

Two extra FFTs are required but otherwise the relevant cdatipns are fast as they take
advantage of vectorisation. The methods are compared atglgrialogous to that in the previous
section is given as Figure 6.31, averaged at €dabver 20 calculations. The summation method
was only carried out for smalN as the computation time became prohibitively large. Both
computation methods maintain spectral accuracy but itéarcthat the method utilising extra

FFTs is faster and has a better asymptotic scaling.
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6.8.3 Quasi-TriDiagonal Solver (QTS)

The fast Helmholtz solver we use is due to Thual (1986); segeAdix B of Peyret (2002) and
4.1 of Canuteet al. (1993). Using the inversion stép?y = w as an example, we note that in

our case the linear system takes the following form in spéspace:

Dy — K2l --- ")
bt =gt ], (6.57)
bi gf

whereb® andg* are the vectors and scalars for enforcing the boundary tonsi Now, there
is a recurrence relationship between the second derivatigethe zero derivative Chebyshev

coefficients, given by

A(22+Q ~(2) +Ru§£2—ug, j=2,3-Ny, (6.58a)
with
Gj—2 —6j+2 €j+4
= ; Qi =551 Rj = ——, (6.58b)
T 4G -1 T2(2 1) 74+ 1)

wherec; ande; are given by

2, ] =0, 17 j <N\, 3
¢j = e = ! (6.58¢)

1, otherwise 0 j7>N,.

We then observe that (6.57) may be written as
O kA =, k=0,1,---N, -2,
Zbk =9 (6.59)
d.h=9
k

so eliminating accordingly, it may be seen that the systerargby (6.57) takes the alternative

form

f)]{qﬁij + Q;TZ)] + R31ﬁ]+2 = f]a .] = 27 cee >Ny7 (660a)

where

I)J{ = k2pj7 Q; = _kQQj -1, R; = kQRJ" (6.60b)
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and
fi = =(Pjwj—2 + Qj&; + Rjwj2)- (6.60c)

Notice that there are no primes @) @@ and R in the definition off. The system decouples, and

the even and odd coefficients may be solved separately. Bh#ing decoupled system is of the

form
by by - by, o g
Py Q) R, o f2

P / R Qﬁ
o = f.4 (6.61)

P/ / /
N,—2 @n,—2 B, 2
/ / I
Py, Qn, N, In,

where b and g denotes the boundary condition vector and the boundaryevahpropriately

modified, and similarly for the odd coefficients; this syst@&nof quasi-tridiagonal form (a
tridiagonal system with one extra row). An analogue of theris algorithm for the tridiagonal

system is given as follows:

1. Let! be the length obevenodd Definep = P,

even/od

4 and analogously fof, R, and f. Let

¥ = eveniodd SO We solve for) and then extract the relevant information to geten/odd

2. Construct

Xp= -2y, = T (6.62)
qr qr
—Di fi—miY; .
Xi1=—, Y, 1= +——, =7—-1,...,1 6.63
g X LT X, ' (6.69)
3. Construct
0; = X; 101, Ai = Xi A1+ Y, 1=1,...,1, (6.64)
with Op =1, 0= 0.
4. Evaluate
” Jevenlodd— A
= =EEE—, 0= ;biei, A= ;bm. (6.65)
From this, compute
Ui = X1 + Y5, i=0,...,1 -1, (6.66)

and extract the data accordingly.
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For the inversion probleriv?y) = w, we impose the) = 0 condition, so

+g_
beven = (1 1 1) ) Jeven = Zhs 5 = 0,
bodd=(1 1 ---1)7 godd:g+;g_:0-

This algorithm is stable if the system satisfies a diagordiyninant condition given by

> |pil +[ri| i 7 #£0,
|43 (6.67)
> \pi] + ’TZ" if r; = 0.
This method may be used if Dirichlet or Neumann boundary ttimm$ are used on both
boundaries, but needs to be modified if mixed boundary ciomditare used. If the boundary

conditions are inhomogeneous and when the domain is npt bri], extra prefactors will appear

IN Geven/odd

As for the Thomas algorithm, the number of operations reguis O (N), which is substantially
smaller than using.U—decomposition and a back-substitution, which typicallguiees O(N?)
operations. In Figure 6.32 we plot the computation time for@esentative problem (solving for
the inversion step of the vorticity for the streamfunctidrile first time-step), averaged over 20
calculations, required by the QTS routine as compared terathtive commands in MATLAB,
namely (i)l i nsol ve with no options invoked (denoted as Linsolve in Figure 6.32)d (ii)

| u followed byl i nsol ve with options for solving strictly upper- and lower-triarigu systems
(denoted as LU in the Figure Figure 6.32). The numericalediffices between the computed
solutions are of)(10~8); however, it is seen that the actual computation time andtiggested
asymptotic behaviour of the scaling of the QTS routine campédavourably td i nsol ve and

| u commands in MATLAB.

6.9 Appendix B: Derivation of AB/BD3

We first derive the BDk algorithms. We discreti8e™ ! /ot by a backward difference formula,
knowing the data at three levels before. Chapter 3 of FognkE®98) provides the formula
for finding the appropriate weights for an arbitrary spactthdl, essentially rearranging the

appropriate Lagrange polynomial and tracing its coeffisieie have

i Ci_g_
Fyj(x) =) 2" fP(2) = cof(wo) + Ateca f(m) + -, (6.68)
k=0
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Figure 6.32: Computation time scalings for the linear aystelver routines, averaged over 20 calculations.

wherek is the derivative required an; is the Lagrange polynomial given by

(x—@0) (w — 2y 1)(x — xj41) - ( — ) (6.69)

Fij = (@) —@o) -+ (wj — wj—1)(@j — wja) - (5 — @)

For our casek = 3, and we seekcs , c3 1, ¢35, ¢} 3) with
(w0, 21, 22, 73) = (0, =Ate, =Ate — Alpr, —Ale — Aty — Atya), (6.70)
whereAt with subscripts are defined in Section 6.3.

The Lagrange polynomials are respectively

(x + Ate)(x + Ate + Atpr) (@ + Ate + Aty + Atyo)

Fy = , 6.71a
30 Ato(Ate + Aty)(Ate + Aty + Atyy) (6.712)
x(x + At + Atpr)(x + Ate + Atyy + Atyg)
Fy = P p p2) 6.71b
31 — At Aty (Aty + Atyy) ( )
Py :x(:v + Ate)(z + Ate + Aty + Atpz)’ (6.71¢)
—(Atpl + Atpz)(—Atpl)Atpz
z(z + Ate)(z + Ate + Aty)
F33 = . 6.71d
BT (Al + Aty + Atya)(—Atyy — Atyy)(—Atys) ( )
The coefficient of:! gives
n+1 n n—1 n—2
ou __ aou + a1u™ + asu + agu (6.72)

ot At, ’

with the coefficients:; given by (6.38).
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It then remains to turn this into a AB/BDk scheme by approsingathe f (u"*1) term by known

data. We observe that

(At,)?

F™™h) = fu") + Atef'(u") + 2=

f )+ (6.73)

so we consider approximating the derivative terms usingeasiated difference that is third order

accurate. Using the same formula, we s@gk), c; 1, ¢35) and(c3 o, ¢3 1, ¢3 5) with
(Io, Iy, 562) = (0, —Atpl, —Atpl — Atpg), (674)

and we obtain

(1‘ + Atpl)(.%' + Atpl + Atpg)

Fap = , 6.75a
20 Aty (At + Atyy) ( )
.%'(I'—i-At 1+ At 2)
Fo = P P 6.75b
2 “Atpy Aty (6.75b)
(x + Atp)z
Foo = . 6.75
2 T TN (— Aty — Aby) (6.75¢)
This gives
2r 41 (Te +1p) r
Atechy = L Atech) = —— 20 Atechy = —— 6.76
€20 Tc(rc T Tp)v €21 rery ) €22 Tp(rc T Tp)v ( )
and
(At)? 1 (At)? , 1 (At)? , 1
Coo = ) €1 = — ) Cop = —— >
2 re(re +1p) 2 Telp 2 rp(re +1p)
(6.77)
which in turn gives us
n n n Atc 2 n
P () + At () + B0
=f(u") + Ate(cyo f(u") + ey f(u" ™) + b f(u"7?))
Aty (6.78)
+ 2C (o f(u") + 3 f (W) + o f (u™2))

=bo f(u") + by f(u"") + ba f(u"72),
with coefficients given by (6.38). When the step size is amsthese reduce to known formulas

(e.g., Peyret, 20024).

To test the time-marching algorithm and the semi-impligatment, we use the example given in
§4.5 of Peyret (2002), a one-dimensional advection-diffagiroblem with forcing where the exact

solution is known, and test the AB/BD3 algorithm with= 92 /9y? in (6.38) against AB/BD2
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Figure 6.33: (Discretel., error at the final time of the semi-implicit schemes giventim/tariable versions

of AB/BD2, AB/BD3, and AB3/BD1.

and AB3/BD1 withL similarly treated. To generate the time grid, we specifyep size mean and
randomly generate spacings that have Gaussian distribwiith small variance (typically around

a quarter of the mean); the grid is different at eadbut all three methods use the same randomly
generated grid at the sameThe results are shown in Figure 6.33, plotted against a unead

the error with mean time-step size. The theoretical deereaerror with decrease in mean-step

size is confirmed by the numerical results.
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Chapter 7

Nonlinear evolution: shallow-water

MHD

Following on from the investigation witti" = 0 in the previous chapter, we now study the
nonlinear evolution of the shear layer and the jet profilehhenSWMHD system wheré’ > 0.
There are some difficulties with regards to the numericall@mentation in the shallow-water
case, and we address these first before presenting thesrigeuitthe simulations. Our focus here
is on thel’ < 1 case, and the associated non-zero Froude number modificattbe processes
highlighted in the previous chapter. Some details with mégdo the/” > 1 cases are given

towards the end of the chapter.

7.1 Numerical and mathematical formulation of SWMHD

7.1.1 The choice of dissipation and conservation problems

The SWMHD equations were derived in the ideal setting, mdesive expect small-scale features
to appear as part of the nonlinear evolution, some sort @figidn will be required to stabilise
the routines. The problem of the form of dissipation to takéhie hydrodynamic shallow-water
eqguations has been previously discussed (e.g., Gent, 028®zet al,, 2011; Gilbertet al,, 2013).

As an illustrative example, suppose we consider a SWMHDegyswith dissipation that looks
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similar to the incompressible MHD equations given in (6giyen by

%—;‘Jru-w—M?b-VHVh: Riev%, (7.1a)
% +u-Vb—b-Vu = %nv%, (7.1b)

FQ% + V- [(1+ F*h)u] = %v%, (7.1c)

V- [(1+ F%h)b] = 0. (7.1d)

Here, R denotes an associated dissipatioh (ot necessarily physical). For numerical purposes,
there is no reason why we cannot take this form of dissipattanrns out though that there are
physical reasons why the choice of dissipation in (7.1) iaréiqularly bad one. Regardless of this,
there is a fundamental issue that does need to be addressktthasis the self-consistency of the
derivation of the SWMHD equations when finite magnetic giggon is present. The derivation
leading to the SWMHD system assumes there is no magnetipaliss, and so the free surface
is initially and remains a field line. In the ideal case, tlgustified, leading to the modified
divergence-free condition of the magnetic field, but thisasdonger necessarily true when finite

magnetic dissipation is present. How do we reconcile this?

For the moment, we argue that for short-time phenomenagd Bm, the frozen-in condition is
a reasonable assumption. We then need to be careful withaimairg the equivalent divergence-
free condition as well as the conservation laws. As we havedhalready in Chapter 2, the
equivalent divergence-free condition is absolutely rezpifor the absence of extra sources in the
conserved quantities. This frozen-in assumption may bespgige for phenomena on dynamic
time-scales, such as shear flow instabilities, but is mogaiody not valid for phenomena on
dissipative time-scales that occur in, for example, tueboé or dynamo studies. A justification
into this fundamental problem of self-consistency mustdaressed if the SWMHD equations are

to be used for such studies. We revisit this point in the disicun section later.

Suppose we use formulation (7.1). We now show what else cargug in terms of conservation
laws. In Chapter 2 we already demonstrated the various oaatgmn properties of the ideal
SWMHD system (on the left hand side of 7.1), so here we focushenmodifications of the

conservation properties resulting from the dissipatiomgeon the right hand side of (7.1).
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Mass conservation

//ht dzdy = —// ( ;Z) h dady. (7.2)

If we have periodicity inz, then we need™>R~! = 0 or 9h/0dy = 0 on the boundaries for mass

conservation.

Momentum conservation violation

Assuming that the divergence-free condition is satisfieclfidime, thex-momentum evolution is

F
—// hyu daedy = // < heV2u + —uV2h> dxdy

1
:—F2<R—e+§>/ VhtVudxdy,

where we use periodicity im, v = 0, b, = 0 and additionallyou/dy = 0 asy-boundary

given by

(7.3)

conditions. So there is no momentum conservation sincextna &rms are not generically zero.

Similarly, for they-momentum equation,

F2
—// hyv dedy = //< he V20 + vV2h> dxdy
11 P
=—F? —+= / Vh-Vvd:cdy—/ F2— +h dz,
Re R 2 y=—L,

and we encounter a similar problem.

(7.4)

Flux conservation violation

In addition to problems with momentum conservation, theralso a problem with magnetic flux

conservation. Again, assuming the divergence-free cianditolds,

d 1 5 F?
E// hib, dzdy —// (thtv by + —be h) dady

1
.
—_F (Rm R)/ Vh - Vb, dedy,

where periodicity inx, v = 0, b, = 0 and additionallyob, /0y = 0 asy-boundary conditions

(7.5)

have been used. Observe also that

d 1 9 F?

7.6
—F2i+l/w¢wdd 7o)
B Rm ' R y ACY;
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S0 again there are extra contributions to global magneticffam extra terms.

Total energy conservation in velocity variables

Constructing the energy budget as before, we see that
2 2 212
2dt// ht (|u* + M?b*) + F h] dxdy

1 M? ) lu|? 4+ M2b|? _, F?_,
// [Re (hyu) - u+ﬁn(htb) b+ — <fv h> +h—eV h] dady
1 (Ou;\> M2 (b \?|  F? [0h\?
_//ht{[R_e<8xi> —m<8mi> *ﬁ(ax) dzdy

2 i 1 Oh Ou; 2 1 Oh 0b;
r // [(Re ) Jaxz&vl_'_M Rm+R b](?acz&vl dzdy.

(7.7)
Thus we do not have a formally negative-definite dissipatitien F' £ 0.
Divergence free condition violation
Finally, we observe that
0 — (hyb) = V X (u % hyb) + L2+ F—va% (7.8)
ot T Rm R ’
and so
Og (hyb) =V 1hV2b+F2bV2h £ 0 (7.9)
ot Rt Rm R ’ '

unless Rm! = R™! = 0 or F = 0. This is particularly problematic, as the divergence-free

condition was used implicitly in the calculations of the etlsonservation laws.

So now we have seen what could go wrong, we consider an alternianplementation of
dissipation using the SWMHD equations written in transpeaatiables with (U, B,h) =
(htu, h:b, h)

ou uuU BB 1
— M2 = V2 7.1
5tV ( P P >+hch Rev U, (7.10a)
OB UB BU 5
— —— - —) =-=V*B, 7.10b
oh
F?— U =—V? 7.1
5TV U=Fx v h, (7.10c)

V.B=0. (7.10d)



Chapter 7. Nonlinear evolution: shallow-water MHD 147

Here, tensor notation is used, with’ B);; = U;B;. Also note that the form of the dissipation
employed in (7.10) is different to that in (7.1). Before gpithrough the same arguments using

conservation laws, we first make the observation thagtbemponent of the momentum equation

is given by
oV 9 (UV - M?B,B, o (V?—M*B; oh 1 _,
N + B ( I > + a—y (7@ + htﬁ_y = R—eV V. (7.11)

If we takeV = 0 and B, = 0 as boundary conditions, then, on thdoundaries, we have

oh 1 9%V

hy o -2
y=tlL, Re dy?

B (7.12)

y==xL,
Substituting foroV'/dy using the continuity equation, also evaluated attimundaries, we have

oh 10 (F_QVQh_FQah aU>

hi— = —— — —
y=tL, Reody

7.13
dy R ot  Ox ( )

y=+Ly
Upon swapping the derivatives for tlié term and further assumingU/dy = 0 on they-
boundaries, this gives

2 2
F2 0 oh :<iFv2_ht>8h

_— — — 7.14
Reot dy y=tL, Re R oy ( )

y==xLy
For the simulations presented later, we will take! = 0, and so ifoh/dy = 0 initially, then

0h/0y = 0 on the boundaries for all subsequent time.

Mass conservation

The continuity equation has not been modified, so perigdicitz and 0h/0y = 0 on the

boundaries leads again to mass conservation.

Momentum conservation

Assuming the divergence-free condition Brholds,

d 1 9
a//dedy = R_e/ VU dzdy = 0, (7.15)
since we have periodicity’ = 0, B, = 0 and if we takedU/dy = 0 on they-boundaries.
Similarly,
d 1 R
— //v dedy = —/ V2V dzdy —/ F’— +h dz (7.16)
dt Re 2 y=—L,

using the same set of boundary conditions. No extra termsaapp this setting.
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Flux conservation

Again, assuming the divergence-free condition holds,

d 1 9
T // B, dzdy = %//V B, dzdy =0, (7.17)

using periodicity,V = 0, B, = 0, and if we taked B, /0y = 0 on they-boundaries. Similarly,

d
dt//B dzdy = —//VB dzdy
dy— //883

upon using the same set of boundary condltlons.

(7.18)

Total energy conservation

Since the equations are formulated 1Gr and B, we first need to work out what the implied

dissipation operators far andb are. Suppose that

ou
=D 7.19
at + Re) ( )
then we have
G+ = hiDge+ ZuV?h (7.20)
The right hand side must be equivalent to R€2U in (7.10a), so
1 V2U F?u

2
_ h. 7.21
R*"Re h, R htv (7.21)

A similar manipulation implies that

— ——V?h. (7.22)

Then the energy equation is
2 2 212
2dt// [Py (Jul? + M2[bJ?) + F2h?] dady
2 212
2dt/ [(U-u+ M*B-b)+ F°h?] dady

F2 \u!2+M2]b]2 F2
_ a2 oy o2 R O hed Ll et B 2 . v
_//[Reu VU+Rmb VB+R< 2 >Vh+hRVh}d:vdy

// 1 auj2+%2 abj2+F_2 athd
ox; Rm \ Ox; R \ Oz; ey

2 1 1 Oh Ou; o (1 1Y, Oh b
o //KR Re J3561356@+M R Rm bjaxi&m dady.

(7.23)
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So, in the hydrodynamic shallow-water system, we can in fauain a negative-definite
dissipation if we choose Re R (as in Poulin & Flierl 2003). We will be takingg~! = 0, so we
do not end up with negative-definite disspation; howevenilitbe seen the extra contributions
arising from this choice is small compared to negative-@efinontribution for all theF’ < 1

results we present.

Divergence-free condition

We see that

and so
0 J
E(V-B)_V-[Vx(---)+u(V-B)+WnVV-B . (7.25)

Thus an initially divergence-free field remains divergefree in the continuous time setting. So
certainly formulation (7.10) in transport variables mains more (but not all) of the conservation
laws than formulation (7.1) in velocity variables. In pediar, the divergence-free condition

(7.10d) is maintained by the formulation of the SWMHD eqoiasi given by (7.10).

7.1.2 Arguments for employing(7.10)

Despite some of the flaws that are present with formulatiohO)7 namely the lack of negative-
definite energy dissipation in the general case with R, ReRandlistinct, we will be using this

formulation and here we give our reasons for this.

With regards to momentum dissipation, several other piisigib have been given in Oche al.
(2011) and Gilbertet al. (2013); our choice here is option Ill of Ochea al. (2011). Some of
the other possibilities, used in the absence of a dissipadion in the continuity equation, have
the property that they give a negative-definite dissipatinod maintain other conservation laws.
However, the forms of these dissipation terms are not pdatity convenient to treat numerically
in our pseudo-spectral, semi-implicit-in-time formalismainly because the associated dissipation

terms involve nonlinear combinations fandU .

There is of course the possibility of taking ReR in (7.10), which does give a negative-definite

dissipation of energy (as in Poulin & Flierl, 2003). We hawa done this here and for the results
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presented later, we have'R= 0. This is partly because, whermR # 0, the resulting equation
for h to be solved is of fourth rather than second ordey.irThe fast solver does not appear to
have a generalisation to the fourth order problem, and thathar solver needs to be used. In the
test runs at some values Bf we compared the case where-RRe (usingLU for inversion ofh)
and R™! = 0 (using the fast solver). The runs were qualitatively coraphe, but the routine using
LU takes anything upwards of five times the amount of time to mmpared to the routine using

the fast solver.

With regards to the other dissipative terms when R= 0, given in the hydrodynamic case by
F? [[u;(9;h)(diu;) dzdy, we see that these terms are contains factors~oénd involve V.
We expect that, foF’ small, steepening should not be an issu&#as small, and hence the extra
contributions to dissipation are also going to be small. As#ter of convenience, we numerically
implement (7.10) with R! = 0, and trackF™ [[ u;(9;h)(d;u;) dzdy. In our test runs, we found
that, in this particular shear flow problem and at the valdes’ @t which we focussed most of
our attention [© < 1), the absolute value of the extra contributions is only alspercentage
of the total dissipation. There were some issues with tas$ ai " > 1, which we defer to
later discussions. So this choice of dissipation is unjikelcause major problems, using tlais

posteriorivalidation.

For the MHD case, if we bypass the fundamental issue of finkgldlippage and insist on satisfying
this divergence-free condition, then we need a magnetsipdifon that maintains this condition.
There are several possible choices (Andrew Gilbert, grigatnmunication), with ours being one
of them; see Section 7.6 for more details. The alternatigcels are such that, in the absence of
dissipation in the continuity equation, a negative-dedimiissipation may be achieved. However,
the terms are nonlinear and are problematic to treat in oumdism. So, again mainly for
simplicity and also because we expect the extra contribsitio be small in thé” < 1 regime, we
employ the setting as in (7.10) and track the extra conidhatto magnetic dissipation, here given
by F2 [[ b;(0;h)(0;b;) dzdy; these are again seen to be small compared to the total atissip

in our test runs.

In summary, we numerically solve for the SWMHD equationsegiin (7.10), with R' = 0. This
formulation is an improvement over the formulation in véfpco/ariables as more conservation
laws are maintained. In particular, the divergence-fregditmn is maintained. We should note,

however, that energy dissipation in this set up is not negatefinite; tests have shown that, in
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this particular problem and at the valuesiofwe consider, the fact that we do not formally have
negative-definite dissipation is unlikely to be a significaroblem since the extra contribution is

only a small percentage of the total dissipation, demotestriater for some representative cases.

We note in passing that there is also a possibility to empiewbrticityw, divergenced (with the

associated potentials) and the height fields fundamental variables (e.g., Polvehial., 1994;

Cho & Polvani, 1996a,b; Scott & Polvani, 2008). This is intftee preferred method when the
domain is doubly periodic, since a spectral method emptpgither Fourier modes or spherical
harmonics allows for a straightforward solution of the tésg Poisson equation. For the channel
geometry we have here, there is the added complicationasBlahoundary conditions that need to
be imposed. In this case the formulation in terms$wfé, 1) leads to a coupled elliptic system to
be solved at the inversion step at every time-step (Saln@®9)2 This is expensive as an iterative

solver will then be required; this formalism has not beetetbsere.

To maintain the divergence-free condition, we employ a flnction such that

B=e. x VA. (7.26)

This reduces to the magnetic potential in two-dimensionaebinpressible MHD wheii” = 0.

The equations that we will be solving are given by

2_M2B2 2R — M?B,B 1
ou 9 (U N B A Do) O Loy (7.07a)
ot Ox 1+ F2h 2 oy 1+ F2%h or Re
ov o <UV - MQBxBy> ) <v2 ~ M2B2 F2h2> oh

1 2
AN 9 o _ Ly (7.2
o Tar\ 11 Fn ) o\ TTrEn T2 )Ty TreY v (727D)

oA U o4 V04
ot 1+ F2h0x 1+ F2h 0y
on U oV

2ot OO 9Y

ot T or oy

|-
= —V~°A 7.27
Rm » ©)

=0, (7.27d)

where we have taken R = 0. WhenF = 0, the above equations formally reduce to that of
incompressible MHD. In two-dimensional planar MHD, it isisenown that there is no dynamo
action (Zel'dovich, 1957); an anti-dynamo result may bevaihg¢due to Andrew Gilbert, private
communication); see Section 7.6. We once again the choidssipation is amd hocchoice and
does not stem from a self-consistent derivation from thesBmesq MHD equations; we comment
on the possibility of deriving a set of thin-layer equatiams self-consistent way at the end of this

chapter.
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To satisfy as many of the conservation properties as pesdiie take the boundary conditions

ou _ b _

V=0 —= — =0, A=0 on =+L,. 7.28
Y ay 9 ay ) y Yy ( )

From (7.27c), we observe that the boundary conditios: 0 implies that, on the boundaries, all
terms on the left hand side add A/dx? are zero, and so this impli€g A/0y? = 0B, /0y = 0
on the boundaries. With such boundary conditions, wavéisdithe boundaries will be reflected
back into the domain. Test runs have shown that the gravityesvgenerated foF® < 1 are
small in amplitude and do not appear to have a significantieffie the macro-dynamics. There
are methods to absorb impacting gravity waves, such adiimgeponge-layers or modifying the

boundary conditions (e.g., Durran, 20%8), but these are not employed here.

7.1.3 Presence of fast waves

Unlike the incompressible case, fast gravity waves are g in shallow-water systems. If we
were to consider an explicit treatment of all terms exceptdissipation terms, then we would

have a restriction o\t of the form

UN UN ug VG
A — 4+ — — 4+ = < = 1). 7.2
txmax{( x+ y),( x+ y)}_Ccﬂ O(1) (7.29)

For numerical stabilityA¢ needs to be small enough so that the fastest process suppgrtbe
system is evolved in a stable fashion. From Chapter 2, wecexpat (ug, vg) ~ O(F~1), and

this places severe restrictions on the time-step, paatigutor small F.

There are several ways around this restriction, for exarbplemploying splitting methods or
semi-implicit treatments (see e.g., Peyret, 2002; Dur2&i0). We will consider here a semi-
implicit treatment of the relevant terms, namely i@ terms in equations (7.27a) and (7.27Db),

and the divergence terms in equation (7.27d).

Another issue we address before giving the full details efttime discretisation is the stability
properties of the time-marching scheme for wave propagatito illustrate this, it is perhaps
easiest to consider the one-dimensional, inviscid, hygrachic shallow-water equations, with

a uniform background flow; in the ideal case, there is no @ifiee between using velocity or
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transport variables, so we use velocity variables tempwrdihe linearised equations are

ou Ou Oh
E + % + % =0, (7.30a)
Oh  Oh 0
P [E + %] + a_z = 0. (7.30b)

To analyse the stability of the scheme, we carry out a von Newmrstability analysis (e.g., Durran,
2010,§3), using the AB/BD2 method, rather than AB/BD3 employedhia previous chapter, to
demonstrate the differences in the stability propertigsvéen this second and third order time-

marching scheme. A discretisation with /0x anddu/0x treated implicitly then gives

n+1 n n—1 0 n n—1 athrl
aou" T+ au”t + agu” T + AtUO%(bou +bu" ) + At B 0, (7.31a)
2 n+1 n n—1 2 0 n n—1 8un+1
F (aoh + alh + agh ) + F AtUQ%(boh + blh ) + or = 0, (731b)
where the AB/BD2 coefficients are given by (Peyret, 20@3,
247, 1 1
ag 1—|—’I“c’ al——l—r—c, ay = 1—{—7‘0’ (7323.)
1 1
bo=1+ —, by = ——, (7.32b)
Te Te
At tn — th—
re ==L = ! (7.32¢)

Atc B thrl - tn.
Now, since the system given by (7.31) is a functionzadnly, we consider solutions @f andu
of the form(u", ™) ~ A" exp(ikx), whereA € C. If |A| > 1, then the numerical solution will

grow at each time-step and thus be numerically unstableoiday: = ikAt¢, we obtain the linear

system
V A Up, z 2A? U
AB/BDQ( 0,%2) “1 =0, (7.33)
ZA2 F2VAB/BD2 h
where we have used the shorthand
Vap/pp2 = a0A® + (a1 + Upbpz) A + (az + Ugby 2). (7.34)

ChoosingF' and Uy, we can solve this system fot on az = z,. + iz; grid. Choosing the
appropriate branch of solutions, we can plot the stabiliptour |A] = 1 in the complexz
plane, with numerical stability| | < 1) to the left of the contour, and instability otherwise.
In Figure 7.1 we plot the stability region of AB/BD2 along tvithe corresponding results for
AB/BD3, AB3/Crank-Nicolson, and AB2/Crank-Nicolson, feeverall’ values. Since = ikAt,
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Figure 7.1: Numerical stability boundaries of various timarching schemes for the one-dimensional,
linear, hydrodynamic shallow-water equations, plottedeserall” values. The schemes are stable for

values left of the contours.

if the scheme is unstable on some of the= 0 line then we have a restriction akt. We see that
when AB3 schemes are employed in this setting, we have aeseariction omAt whenF <« 1,
whilst the AB2 scheme does not appear to exhibit this unaelgiroehaviour. The AB/BD3 version
of the code is easily adapted to AB/BD2 since the only thiigs heeds changing are the relevant
coefficientsa; andb;, given in equation (7.32); thus we employ the AB/BD2 schestha time-

marching algorithm in this chapter.

As a final test of the AB/BD2 scheme, we solve numerically twe-tlimensional linearised
SWMHD equations. These are solved with the AB/BD2 schemmegubie semi-implicit formalism
presented earlier, appropriately initialised with exav@y wave solutions given by (2.48).

First an elliptic equation for, is solved, therw and v are updated at each time-step, with a
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Figure 7.2: Relativd., errors for a two-dimensional, linear SWMHD evolution of agle gravity wave
initialisation, at several’ values;Uy = 1, M = 0.1, wavenumbe(k,!) = (6,1) and(L,, L,) = (2, 1),
with N, = N,, = 32.

Chebyshev discretisation in and Fourier discretisation im as in Chapter 6, using = 0,

by, = 0 andoh/0y = 0 as they-boundary conditions. The initial wave profile was evolved
for 10 periods, and the relative spatiaj error was calculated at the end time. Figure 7.2 shows
a typical error diagram, with errors diminishing at the eatrtheoretical rate. Note that even for
relatively largeAt, the scheme is stable as predicted; the chief source ofisrppesumably due

to dispersion. Tests with polychromatic initialisatiortsow similar qualitative and quantitative
behaviour. Although results here only show cases Witk 1, it is seen that such a semi-implicit
treatment using the AB/BD2 scheme maintains numericallgyafor linear dynamics even for

F>1.

Returning to the SWMHD system (in transport variables),raesponding semi-implicit treatment
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in time using the AB/BD2 discretisation results in the sckem

<a0 — ﬁ—éw) Ul =N®U) - Atag:l, (7.35a)

<a0 — ﬁ—ZW) Vil = N(V) — Atahajl, (7.35b)

<a0 — F?—riW) A" = N(A), (7.35c¢)

aoF2h™ 4+ At (alg;“ + a‘gH) = F2N(h), (7.35d)
Y

where N denotes the relevant terms that are evaluated at the leglds/ln + 1. Taking the

divergence of the momentum equation then gives

At _,\ (OU™LgUmH\  (ON(U)  ON(V) _—
<a0_R—ev>< 5t oy >_< 5t o )—Ach . (7.36)

and so we have the following elliptic equation to solve ior

{(Atfv? — agF? <a0 — ﬁv?)} pn

Re
(7.37)
= At (a'\é(g) - a':';p) — F%*(ag — vAtV?)N(h).

Onceh™*! is known, the other equations may be appropriately advamcéce. Since this is
a second order scheme, the first time-step is taken using lan@@nk-Nicolson scheme with a

similar semi-implicit treatment.

Note that the algorithm also works fdf = 0, and in this casé is to be identified with the
pressure fielgh. There is however a subtlety in the inversion stepifavhen solving the Poisson
equation (7.37); see Section 7.7 for details. The shallatewprogram may be used to solve
for incompressible dynamics, and results from this progteave been checked against those
obtained from the program employing the streamfunctioricity formulation. The qualitative
and quantitative results (e.g., agreement of shear laydthvat end time, general behaviour of
energy time-series and dissipation rates) from the twornarog agree with each other, but the
program using the streamfunction-vorticity formulatioms faster because it has one less equation

to solve.

7.2 Hydrodynamic evolution

We focus first on cases with < 1. We have found that, for the nonlinear runs using AB/BD2, the

CFL number needs to be reduced from around 0.15 for the dhdkes to about 0.05 for larger
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in order to retain numerical stability, with the transitianaroundf” ~ 0.4. In these shallow-water
runs, we initialise with a linear eigenfunction (appropelg scaled) at specified, and add to this
higher wavenumber perturbations at lower amplitude witfdcen phase. The initial total energy
of the perturbations is fixed a0=°. As before, we switch off the dissipation of the basic state

until the perturbations are sufficiently large, using thesanergy criteria as in Chapter 6.

7.2.1 Hyperbolic-tangent shear layer

Table 7.1 shows a summary of the parameter values employdidefehear layer runs. Again, we
focus on the case where the domain supports a single watelehthe primary instability. The
optimal « for these cases are closedo= 0.44. We will focus our investigation o” = 0, 0.1

and0.5; the runs atF’ = 0.25 and F' = 0.75 are comparable to those At= 0.1 and F' = 0.5

respectively.

parameter range

F 0, 0.1, 0.25,0.5,0.75

Re 500

N, x N, 256 x 512

Cel 0.15forF < 0.5
0.05forF > 0.5

« 0.44

Table 7.1: Parameter values used in our investigation ohtinear SWMHD equations for the shear

layer profile.

We show in Figure 7.3 snapshots of the potential vortigity w/h; (this reduces to the regular
vorticity when F' = 0). Figure 7.3§) is the case withF" = 0, i.e. the incompressible case; the
evolution for this case has already been described in thégu® chapter. The vortex does not lie
in the centre of domain as in Figure 6.1 because of a phaseetitfe in the initialisation. For the
case withF' = 0.1 in Figure 7.3p), the evolution is largely similar to the incompressibleeaFor
F = 0.5 in Figure 7.3¢), the rolling up stage is delayed somewhat but otherwisestodution

is similar to the other two cases. The saturated state alatfgie F' value is a slightly elongated

vortex compared to the smdil cases.
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Figure 7.3: Snapshots of potential vorticity at some défevalues off” for the shear layer runs (at Re

500). The F' = 0 case may be compared to Figure 6.1.

In Figure 7.4 we show the height field for thé = 0.5 case at early times; the = 0.1 case

is qualitatively similar except that the quantities are wthan order of magnitude smaller. In
Figure 7.4¢) we plot the deviation from the basic height fieltfh. We can clearly see that
the pattern is growing in amplitude; however, no other #gtiis seen because the component
corresponding to the fundamental mode dominates. In Figug) we plot the same quantity
but with the first Fourier harmonic filtered out, in order ton@ve a portion of the fundamental
mode of instability. We can now see more small-amplitudéviagt corresponding to gravity
waves travelling around the domain, reflecting from ghleoundaries accordingly. These waves

are invariably of small amplitude and do not seem to affeettfacro-dynamics significantly.
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Figure 7.4: Snapshots of the height field for tfie= 0.5 run at some early times, for the shear layer run (at

Re = 500). The left column has the mean heiglif (= 1) removed, while the right column has the mean

and first Fourier harmonic removed.

Figure 7.5 shows snapshotsmfor the representative cases; it can be seen that there igenb g
difference between the three plots. The rolling up of thesksyer increases the shear layer width,

with the widths being comparable in all three cases oncedheated state has been reached.

In Figure 7.6 we show the energy time-series (kinetic ancemg@l) for the three cases.
Growth rates are inferred by a fitting of the perturbationekim energy and these agree well
with calculations from linear theory (at 0.185, 0.184 and40. for ¥ = 0, 0.1 and 0.5
respectively). Whet” £ 0, kinetic energy can also be transformed into potentialgnequal to
[[ F2h?/2 dzdy. We first observe that the potential energy is largerffor 0.5 thanF' = 0.1,

since there is a larger deformation to the free surf@ék. Another feature that we observe from
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(a) F=0 (b) F=0.1
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Figure 7.5: Snapshots affor the shear layer runs (at Re 500).

the energy plots is that the evolution of the perturbatioteptial energy largely follows that of
the perturbation kinetic energy. The oscillations in theekic energy are again related to vortex
nutation, and the similarity in the evolution of the two egeprofiles is due to the height field
adjusting to the oscillations in velocity accordingly. Tiotal energy loss for all three cases is

comparable to the incompressible case, at around 10%.

The right hand side of the energy balance equation (7.23yéndpy

.1 ou;\° o Oh du,
€Re = R_e// [ht ((%UZ) + Fu, 9%, 01, dady. (7.38)

In Figure 7.7 we show the time-series of the domain-integraerms representing dissipation.

The solid curve is a time-series @ke, Whilst the dashed line is the absolute value of
Re'F? [[;(0;h)(9;u;) dzdy. It turns out thatge is positive definite whilst the cross term,
which may be of either sign (but tends to be negative) is muddlsr than the sign-definite term.
As we can see, for the purely incompressible case With= 0, there is no extra contribution
since the cross term is multiplied by a factor/of. For the other two cases, the size of the cross
term increases witlf'; however it is still only a small percentage of the total citmition. We
conclude therefore that, even though we do not have signitdetiissipation of energy, the effects
of this choice of dissipation operator on this particulagahinstability problem are unlikely to be

significant.



Chapter 7. Nonlinear evolution: shallow-water MHD 161

(a) F=0

WREmm e e e e e s e e e e s m

1P growthrs 0.179 -

7,
7
2 -

10°F g : .

'y

0 50 100 150
(b) F =0.1

10 T T T T T T T T T S T T T ST T T T T T T T T T

growth 0.178
o 10 g~ -
7,

-2 ys Z

107+ . : -

1
50 100 150
(¢c) F=0.5

0 50 100 150

Figure 7.6: Time-series of energies (blainetic; magenta= potential; solid= perturbation state; dashed

= mean state; black dot-dashed liaeotal energy), for the shear layer runs (atR&00).

Finally, Figure 7.8 shows the time-series of the domairgrdated momentum. We choose here
to use linear scales to highlight the rapid sign changeseénrsthnal. The domain-integrated
momentum, given by the red solid curve (note the differemtsaxsed for the panels), initially
starts off very small, then grows somewhat but remains nigadgr small. The corresponding
curve for the domain-integratedkmomentum is given by the blue curve (the initialisation has
z-momentum to begin with); the values are consistently alafil0~!!) and variations of this
signal are not visible at this axis scale. The source of thevtirin they-momentum appears to be
due to theh terms in equation (7.16). We have tried tracking values footh sides and integrating
both sides as a function of time to see whether the two termarrelated; there appears to
be reasonable agreement, but we have a noisy signal and $atebeation is not particularly
accurate. We have also tracked the domain-integrated massiy mass conservation; and mass

is conserved at an error no more th@fil0—#) (not shown).
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Figure 7.7: Domain-integrated dissipation rafg (solid curve) and contribution from the cross term

(dashed curve) for the shear layer runs.
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Figure 7.8: Domain-integrated momentum for the shear layes. The red curve represents the domain-
integratedy-momentum (which is not expected to be conserved). The hlneec which represents the

domain-integrated-momentum (also should be zero) has variations that areisibterat this axis scale.
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We have also considered the case of multiple wavelengtlrngaccurs as in the incompressible

case without substantial difference.

7.2.2 Bickley jet

For the Bickley jet, the calculations in Chapter 5 indicduat the even mode is more unstable than
the odd mode for any within the unstable bandwidth, so we initialise the nordineimulation
with the even eigenfunction, normalised so that the totiélirenergy is fixed al0~>. We use

the same parameter values as in the shear layer case excégitave = 0.9, with the domain
large enough to support two wavelengths of the primary biktyg as in Chapter 6. Linear theory
tells us that, at the values df we are considering, the even mode has a growth rate similar
to the incompressible case, with hardly any noticeableugeation of the eigenfunctions. The
question then is whether the nonlinear evolution is sigaifity different. From our investigation

of the shear layer, we might suspect that the evolution vatl Ime noticeably different to the

incompressible case providéd < 1.

Figure 7.9 shows snapshots of the potential vorticity atttiiee different values of” we are
considering; it would appear in this case that there is almodifference in the evolution, with
all the panels being visually identical to each other. Alifjo not our focus here, when rotational
effects are present, it is well known that there is an asymyimtween the stability properties
of cyclones and anti-cyclones (vortices of positive andatigg vorticity respectively), where

modifying F' can have a more noticeable effect (e.g., Polemil., 1994; Poulin & Flierl, 2003).

In Figure 7.10 we show the height field for tilé = 0.5 case, to show that there is small-
amplitude activity in the height field and thus the presenitcenaall amplitude gravity waves.
The corresponding diagram fét = 0.1 is similar but the plotted quantities are at least an order

of magnitude smaller.

In Figure 7.11 we show snhapshotswfor the jet profile. Once again, the profiles are virtually
indistinguishable from each other, with the same beha\astin the incompressible hydrodynamic

case. The jet profile broadens and reduces in magnitude swiitie reverse flow observed.

The time-series of the energy for the Bickley jet profile istf@d in Figure 7.12. Growth rates are
inferred from a fit of the perturbation kinetic energy, andsh agree well with the linear theory

(which are 0.160, 0.160 and 0.157 fbr = 0, 0.1 and0.5 respectively). The growth rates are
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Figure 7.9: Snapshots of potential vorticity at variousreal of £ for the Bickley jet profile (at Re= 500).

The F’ = 0 case may be compared to Figure 6.5.

also comparable to each other, with a slight difference ier& = 0.5 case. We see that the
perturbation potential energy is a few orders of magnitudelker than the kinetic energy, but the
potential energy increases wiffi The total loss of energy is comparable to the incompressibl

case, at around 30%.

Figure 7.13 shows the dissipation rates represented bethestin (7.38). Again, we notice that
the extra contribution from the cross term is several ordémsagnitude less than the sign-definite
dissipation, and thus our choice of dissipation is unlikelycause a significant problem in this

shear instability problem, even though it is not formallgrsdefinite.

The domain-integrated perturbation momentum is plotteBigure 7.14. In this case there is a
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Figure 7.10: Snapshots of the height field for fhe= 0.5 run at some early times, for the Bickley jet profile
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(at Re= 500). The left column has the background height fiéld= 1 removed, while the right column

has both the background height field and first Fourier mod@vewh

background flow with non-zer@-momentum; the momentum contribution of this was removed
to give a deviation from momentum conservation. Even whenhtas been done, we see that the

largest deviation from zero comes from th@nomentum signal, given by the red curve. The blue

curve representing themomentum has been overlaid for visibility purposes, arttiatscale any

variations are not visible. The errors are small and shoale la negligible effect on the overall

dynamics. A similar integration of the signal as discussedtie shear layer case has been tried

and the conclusions are broadly similar.
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Figure 7.11: Snapshots offor the Bickley jet runs (at Re= 500).
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Figure 7.12: Time-series of energies (blgekinetic; magenta= potential; solid= perturbation state;

dashed= mean state; black dot-dashed lindotal energy) for the Bickley jet runs (at Re 500).
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Figure 7.13: Domain-integrated dissipation rétg (solid curve) and contribution from the cross term

(dashed curve) for the Bickley jet runs. The cross term dauion increases in magnitude with increasing
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Figure 7.14: Domain-integrated pertubation momentumifelBickley jet profile. The red curve represents
the domain-integrateg-momentum (which is not formally conserved), and the blureuepresented the

domain-integrated-momentum with the background state removed.
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7.3 MHD evolution

We now turn to the cases with/ > 0, again with a uniform background magnetic field. We first
discuss the evolution of the shear layer profile with indrega$’ before moving on to the Bickley

jet profile.

7.3.1 Hyperbolic-tangent shear layer:F’ = 0.1

At such a small value of” we do not expect a large deviation from the conclusions draem
the ' = 0 incompressible case. As such, we will not go into so muchildasawe have done
previously, but concentrate on highlighting the differemi¢hat do arise. We focus on the regime
of small M as before and use the Re500, Rm = 500 andM = 0.01, 0.03 and0.05 runs as our

three representative cases.

Figure 7.15 shows snapshots of the potential vorticity #eint values ofA/. These are
comparable to the corresponding diagrams for the incorajimescase (Figure 6.9). The three
cases show various degrees of disruption as before, witkased disruption with increasing

and Rm. The vortex winds up field lines, builds magnetic stesand stretches out thin current
sheets that are resistively unstable. The breakup of thermuayer releases the stresses, impacts
back on the vortex, and potentially causes disruption. énstbakly disruptive cases, the surviving
vortex would expel field lines to the edges of the vortex aoigef We will use the spectral
truncation parameter later to measure the severity of plignu for the runs at different parameter

values.

The plots related to the magnetic quantities are largelylairto those given in the incompressible
case and have been omitted. Plotting the height field shaesgrof small-amplitude waves, but
we omit this here also as it does not appear to show any plaricunteresting features that are

obviously associated with MHD effects.

Figure 7.16 shows shapshotsmfwe see again that the degree of disruption is correlateu thvit
resulting shear layer width. Later on we will use the layedtiviexpansion factor to quantify the

degree of disruption, as was done previously for the incesgible case.

Figure 7.17 shows the time-series of the energy for thesglsarans. The behaviour of the

magnetic energy is largely as observed in Figure 6.15 fointt@mpressible case, with a different
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Figure 7.15: Snapshots of potential vorticityfat= 0.1 and different values ol for the shear layer (at
Re = Rm = 500). Compare this to Figure 6.9.

saturation level correlated with the degree of disruptibeesved. In the mildly disruptive cases,
the behaviour of the potential energy is similar to that gfufe 7.6, with the perturbation potential

energy mimicking the evolution of the perturbation kinegitergy.

As before, we monitor the contributions to dissipation fréime sign-definite terms and sign-

indefinite terms in the runs; a time-series of these quastiibr these three sample runs is given
in Figure 7.18. In this case and at this valuefgfthe contribution from the extra cross terms
is several orders of magnitude smaller than the total disip, so we expect that the effects

of employing this dissipation operator are, for this prabland at this value of, unlikely to
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Figure 7.16: Snapshots afwith /' = 0.1 for the shear layer runs (at Re Rm = 500). Compare this to
Figure 6.14.

contribute significantly to the resulting dynamics.

We have also looked at the time-series of the other consenvgtiantities, namely momentum,
magnetic flux and mass. The time-series of domain-integnatementum is again very noisy and
the main error comes from themomentum signal, which fluctuates about zero with an aomgit
of O(10~7); thez-momentum is 0£) (10~ 1) for the duration of the runs. The graph looks similar
to the middle panel of Figure 7.8 and have been omitted. Theerwation of magnetic flux is very
well maintained, with errors for both- andy-flux kept at no more tha®(10~1%). In light of the
well-behaved conservation of the magnetic flux and masgdhresponding time-series have also

been omitted.

To classify the runs, we use again the spectral truncaticampeter (equation 6.54, maximised over
all times for which we have data for) and the shear layer wikbansion factor (equation 6.55,
taken at the end time) as a measure of the disruption. The isggimee boundaries in the previous
chapter given in Table 6.2 and 6.4 are used for comparisopopas, and the same kinematic
estimatel/?Rm ~ €. as derived previously will be tested with this set of datae fidrodynamic

case hagg, = 7 and an expansion factor of with an initial layer width of 5.92 and an end layer

width of 7.54 in our non-dimensional units. The regime déagris given in Figure 7.19, and the
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Figure 7.17: Time-series of energies (blaekinetic; red= magnetic, magenta= potential; solid=
perturbation state; dashed mean state; black dot-dashed ligetotal energy) for the shear layer runs

(at Rm= Re= 500, F = 0.1).

raw data in Tables 7.2 and 7.3.

The raw data may be compared with the data forfhe 0 case given in Tables 6.3 and 6.5, and
only one of the runs has been classified differently. Thisigaar run is on the borderline of the
regime boundary in thé” = 0 case anyway so this discrepancy is not a concern. Conséguent
the regime diagram given in Figure 7.19 is largely similathat for the casé” = 0 (given by
Figure 6.18, without the Rm= 1000 data and with one marker changed). We see again that
the degree of disruption is well described by the suggestednpeter dependendd >Rm, with

M?Rm > 0.5 capturing the runs that are classified as severely disrupted
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Figure 7.18: Domain-integrated dissipation ragg (solid curve) and contribution from the cross term
(dashed curve), for the shear layerfat= 0.1; blue represents the terms associated with momentum

dissipation, and red represents the terms associated witdifisipation.

0.01| 0.02| 0.03| 0.04| 0.05| 0.06| 0.07| 0.1
Rm

750 7 18 35 | 47 42 38 48 | 54
500 7 7 23 36 44 36 36 | 44
7
7

250 7 8 18 25 31 32 | 26
50 7 7 8 8 10 11 | 13

Table 7.2: Raw data from the set of calculations at=R&00 for the shear layer runs & = 0.1. The
numbers denote the truncation wavenumbgr(taking the maximum over time). The hydrodynamic case

at F' = 0.1 haske, = 7. See Figure 7.19 for colour codes.
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Figure 7.19: Regime diagram for the shear layer runk at 0.1, as measured by the spectral truncation

M

parameteric,; and via the shear layer width at the end of the run. The sugdésiundaries given by

M?Rm = C are plotted for several values 6f. The colours are as before, with blue denoting non-

disruptive cases, magenta denoting mildly disruptive €aaed red denoting strongly disruptive cases.

M 01|02|03|04| 05| 06| 07|01
Rm
750 1.02| 119|160 1.80| 1.94| 2.42| 2.33| 2.57
500 1.02| 1.16| 1.43| 1.71| 1.97| 2.00| 2.14 | 2.65
250 1.02| 1.05| 1.26| 1.49| 1.64| 1.86| 2.04| 2.42
50 1.00| 1.02| 1.03| 1.05| 1.07| 1.10| 1.16| 1.36

Table 7.3: Raw data from the set of calculations at=R&00 for the shear layer runs & = 0.1. The

numbers denote the shear layer width expansion factotifrel® the hydrodynamic run at Re 500 and

F = 0.1, taken at end time). The expansion factor for the hydrodyoaase is defined to bg = 1. See

Figure 7.19 for colour codes.
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Figure 7.20: Snapshots of vorticity & = 0.5 at some different values a¥/ for the shear layer (at
Re = Rm = 500).

7.3.2 Hyperbolic-tangent shear layer:F' = 0.5

Having seen that the smail case does not seem to be very different to the incompressilsie,
we now consider a case whefgis slightly larger. We still use Rme= Re = 500, with M = 0.01,
0.03 and 0.05 as our three representative cases. We agaimuse 0.44, even though this is
not the optimal wavenumber at these parameter values (tirmalpvavenumber here is around

a = 0.40).

Figure 7.20 shows snapshots of the potential vorticity. @ammg this to Figure 7.15 and 6.9,
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we see that the runs appear less disruptive. fhe- 0.01 case in Figure 7.20) resembles the
hydrodynamic case, with the vorticity concentrated in fiegmewhat slightly more elongated)
vortex. For theM = 0.03 case in Figure 7.20], there are some hints of vorticity regions outside
the vortex but these are distinctly fainter than in the gpondingF’ = 0.1 or F' = 0 case. The
vortex here is of a similar size to the smallef case, in contrast to the = 0.1 case, where the
resulting vortex forM = 0.03 is smaller than that fod/ = 0.01. For theM = 0.05 case in
Figure 7.20¢), this was previously a severely disruptive case at thisevaf A/ and Rm, but now
the disruption is noticeably milder. Although strong voityj filaments are seen and the vortex
appears to have reduced in size, it retains its integrityoufhé end time = 150. A longer
run shows that, for thisg/ = 0.05 case, the filaments eventually get smeared out but the vortex
remains, unlike the analogous case wiieis smaller, with the vortex completely destroyed. The
equivalent diagrams for current and height do not appedrde siny new features and have been

omitted.

There are some plausible explanations for this decreabe iohtserved disruption. One possibility
is that the magnetic stresses build up as before, and asgesr¢hat are released act on the fluid
column. However, now that the fluid column is also allowed tvevertically, a portion of this
built up stress ends up as work done against gravity, anatisisioning effect results in a milder
disruption. The suppression of filamentation due to thetshoange of interaction whef > 0

has been previously reported by, for example, Waugh & Drgs¢1991).

Figure 7.21 shows snapshotswfor these runs. We note that the final time shear layer width of
the M = 0.03 case is not noticeably different to thatf = 0.01, unlike the equivalent diagrams
for smaller F' given in Figures 7.16 and 6.14. The shear layer widthMbr= 0.05 is also only
marginally larger than for the other two cases, unlike thallnF’ cases. If we use the shear layer
width as a measure of the disruption then we again concluate kbeping M, Rm, Re «) fixed,

we expect runs to be classified as having suffered a mildewtion with increasing”.

The time-series of the energies are plotted in Figure 7.2% Jrowth rates are again inferred
and these are consistent with the growth rates obtained thertinear calculation. The potential

energy for all three runs here is larger than in the equivaleEgram in Figure 7.17, foF’ = 0.1.

In Figure 7.23 we show the domain-integrated dissipatiomse The sign-indefinite contribution
is larger here than foF' = 0.1; however, it is still only a small percentage of the totakdgation.

The conservation properties of other quantities have beecked and are well-maintained by the
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Figure 7.21: Snapshots afwith £ = 0.5 for the shear layer runs (at Re Rm = 500).

M 0.01] 0.02| 0.03| 0.04| 0.05| 0.06| 0.07| 0.1
Rm
750 5 5 24 | 35 | 42 | 42 | 40 | 55
500 5 5 15 | 27 | 31 | 29 | 35 | 32
250 5 5 5 10 | 20 | 23 | 23 | 21
50 5 5 5 5 5 6 7 10

Table 7.4: Raw data from the set of calculations atR&00 for the shear layer at' = 0.5. The numbers
denote the truncation wavenumidgy; (taking the maximum over time). The hydrodynamic caselhas=

5.

numerical scheme, with errors do not excée(do—7); these diagrams have been omitted.

In order to classify the runs and for comparison purposesjseeghe same measures and regime
boundaries as in thé" = 0.1 and F = 0 cases, measured against the hydrodynamic run at
F = 0.5. The regime diagram inM, Rm) space is given in Figure 7.24. The raw data for the
MHD runs is given in Tables 7.4 and 7.5, for the spectral tation parameter and shear layer
width expansion respectively; the hydrodynamic run kgs= 5 (maximised over the times for

which we have data) anfl= 1, with the shear layer width of 7.65 units (takent at 150).

We observe that there are several runs previously classifiedverely/mildly disruptive that are
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Figure 7.22: Time-series of energies (blaekinetic; red= magnetic, magenta= potential; solid=

perturbation state; dashed mean state; black dot-dashed ligetotal energy) for the shear layer runs

(at Rm= Re= 500, F' = 0.5).

M 01|02| 03| 04| 05| 06| 07] 01
Rm
750 1.00| 1.02| 1.13| 1.47| 1.63| 1.60| 1.74| 2.61
500 1.00| 1.01| 1.10| 1.29| 1.48| 1.63| 1.61| 2.09
250 1.00| 1.01| 1.03| 1.15| 1.26| 1.40| 1.53| 1.82
50 1.00| 1.00| 1.00| 1.00| 1.00| 1.01| 1.01| 1.03

Table 7.5: Raw data from the set of calculations atRe00 for the shear layer at' = 0.5. The numbers

denote the shear layer width expansion factor (relativeedydrodynamic run at Re 500, taken at end

time). The expansion factor for the hydrodynamic case isiddfto bef = 1.
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(a) M = 0.01

Figure 7.23: Domain-integrated dissipation régg (solid curve) and contribution from the cross term
(dashed curve) for the shear layer rungiat= 0.5 blue represents the momentum dissipation terms, and

red represents the flux dissipation terms.

now classified as mildly/non-disruptive. There are also ealiscrepancies between the two
measures. Considering that the regime boundaries wergratad using only data from the
incompressible case, this discrepancy is perhaps not eng The regime changeovers still
appear to closely follow the dependent&Rm = C well, at least for the coverage 61/, Rm)
space we have here. The regidfRm > 0.5 now contains some runs that are classified as
mildly disruptive, in contrast to the small@t cases, consistent with the runs generally suffering a
weaker disruption at highdr (compared to Figure 7.19). In conclusion, we expect thaigigsn

to follow the dependenca&/?Rm = f(F), with f a decreasing function df.

7.3.3 Bickleyjet: F' < 1

We have already observed in Section 7.2.2 that the effects gf 1 appear to be weak for the
nonlinear evolution of the Bickley jet in the hydrodynansballow-water case. In Figure 7.25 we

show snapshots of the potential vorticityfat= 0.5, again for Rm= Re = 500, and M = 0.01,
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Figure 7.24: Regime diagram for the shear layetat= 0.5, as measured by the spectral truncation
parameteric,; and via the shear layer width at the end of the run. The sugdésiundaries given by

M?Rm = C are plotted for several values 6f

0.03, and0.05 as our representative cases.

We observe here that, compared to Figure 6.20, there arediffarences in the transients for the
more disruptive cases; however the end result is quakdigtsimilar, with the appearance of weak
bands of vorticity. What is slightly different in this casethat, in the end frame of the = 0.05
case, there appears to be slightly more activity comparedet@orresponding/ = 0.03 case,
contrary to the corresponding comparison when= 0 given in Figure 6.20. For the weak field
case, the disruption is slight, only deforming the vortiskghtly but not destroying them, and the
vortices recover their elliptical shape by the end frameedurction in the amplitude and spreading

of the jet may also be seen in the profilegiof

The other diagrams (profiles af, time-series of energies, dissipation and conservation of
quantities) and the regime diagram are virtually indistisbable to those given for the

incompressible case in Chapter 6 and have been omitted. iaultl appear that the effect of
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Figure 7.25: Snapshots of potential vorticityfat= 0.5 and different values ao¥/ for the Bickley jet profile
(at Re= Rm = 500).

I < 1 on the evolution of the Bickley is relatively weak. Againjshmay not be true when

rotational effects are present, since we then expect vaggmmetry to play a role in the dynamics.

7.4 Thecaseof >1

It would appear that the nonlinear dynamics in tie< 1 regime is not significantly different
to the FF = 0 limit, so it is of interest to investigate the > 1 regime where, for example,
supersonic instabilities are present. However, we randatoe serious humerical problems when

considering the? > 1 cases. In Figure 7.26 we plot the perturbed free surface $tiear layer
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Figure 7.26: Perturbed free surface platéor the shear layer at/ = 0, F = /2, at a snapshot taken a
short while before the numerical routine crashg@s) and(b) shows cross-sections af and(c) shows a

surface plot ofi. For image rendering purposés) is produced using only a fifth of the total data points.

test run, atV = 0 andF = /2, initialised using the eigenfunction calculated from &n¢heory.

It can be seen that there is nonlinear steepening of the diré&ce. Steepening was also observed
for the Bickley jet simulations withF” > 1. It is during the nonlinear phase of the instability,
where the background flow starts being modified by the peatiohs, that we start seeing this
steepening. It should be noted that, for the linear shall@ater case, our time-stepping scheme at
this CFL number is stable faf > 1; we still observe steepening when the CFL number has been
decreased. The code crashes shortly after this time-soa@Bkierturning of the free surface and
shock formation has been observed in previous shallowrveiteulations of shear instabilities
(e.g., Chu, 2010, and references within), so we believestiispening is a generic feature arising

from the dynamics and is not a numerical artefact.

As shallow-water theory is a long-wave theory (dynamicsehavsmall aspect ratio), shock
formation leads to the breakdown of the assumption of hydtias balance, and therefore
breakdown of shallow-water theory. There are methods td wéh steepening (numerical,

modifying or augmenting shallow-water theory) and thesediscussed in the discussion section
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at the end of this chapter.

7.5 Summary and discussion

We assumed that the free surface is forced to stay a fieldrésalting in the conditioi/ - (hb) =

0. Putting to one-side the validity of this assumption for thement, it was seen that seen that
the SWMHD equations written in terms of the transport vdéal/ = h;u and B = h;b, with a
Laplacian operator acting dii and B to mimic dissipation, maintain more conservation laws than
the analogous approach employing velocity variables. Aiqadarly important point is that our
approach here maintains the divergence-free condWier3 = 0, implicitly required in deriving
the conservation laws even in the ideal case. The approadmp®y is particularly convenient
to implement in our pseudo-spectral, semi-implicit-im& approach, but it does not provide a
formally negative-definite dissipation. We have thougltkeal the formally sign-indefinite term
in our simulations and have found this extra contributiobamnly a small percentage of the total
dissipation for ourF’ < 1 simulations, so is unlikely to play a significant role in thgnemics.
We conjecture that there should be mathematically comgistay of deriving shallow-water with
magnetic dissipation, and we suspect that, for our probtemapproach is a good approximation
to the ‘exact’ theory since the errors introduced appearetarall. As fast waves are present,
certain terms in the shallow-water system were treatediditlplto relieve the CFL condition. It
was also found, via a von Neumann analysis, that the AB/BD2me possessed better stability
properties than AB/BD3, so numerical routines for the sivalvater system used AB/BD2 as the

time-marching scheme.

We focussed on thé” < 1 cases. For the shear layer, we again considered the case thieer
domain supports a single wavelength of the primary indtgbMVe first investigated the effect of
increasingF when M = 0. At small values ofF’, small-amplitude gravity waves are present;
however, they do not seem to affect the nonlinear dynamicg weich, and the evolution was
largely like the incompressible case, with a long-livedterrforming. For larger values af’,
small-amplitude gravity waves are again present, althahgbe are at a larger amplitude than the
small F' cases. The vortex formed is more elongated than for the ipoessible and small’
cases, but is also seen to be long-lived. When a magnetiddigldluded, the degree of disruption

observed in the small’ cases was comparable to the incompressible case. For lydgemwever,
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the disruption is seen to be milder. One explanation for ithihat when the magnetic stresses
are released on the fluid column, some of this is converterldaeforming the free surface and
thus does work against gravity. Like the incompressible cdisruption, when it occurs, is a fast

phenomenon, occurring within one or two eddy turnover tidgsr the formation of the vortex.

We also tested our kinematic regime estimaféRm ~ €, against the data from the shallow-
water runs. We classified the runs using the same regime hdesdas those used in the
incompressible case. It is seen that, for sniglithe classifications are largely the same as the
incompressible case. For largét, the runs appear to suffer a milder disruption, with some
runs that were previously severe/mildly disruptive cliisdias mildly/non-disruptive. Thus our
estimateM?’Rm ~ (), over-estimates the degree of disruption at the range® gind Rm we
covered. The data points still follow the/>2Rm = f(F) dependence reasonably well, witha

decreasing function aof'.

For the Bickley jet, wherf' < 1 in both the hydrodynamic and MHD regime, the evolution i sti
effectively like the incompressible case, except for the fhat the presence of small-amplitude
gravity waves, although these do not appear to influence dhex dynamics very much. The
transients are slightly different but the disruption obeerappears to depend mainly é# and
Rm and only weakly ot". The regime classifications are also largely similar to titempressible

case and so the results were not presented.

Once F' exceedsO(1), there are numerical difficulties for both profiles, whereerdurning of
the free surface was observed. This points to a breakdowhadibg/-water theory as the small
aspect ratio and hydrostatic balance assumption becomalsdinand further numerical and/or

mathematical modification or a different model is requireihtestigate the dynamics.

We now provide a discussion of several issues that arosaglthis investigation, in decreasing

order of severity.

Numerical treatment of gravity wave terms

One not so crippling numerical issue we had was that the Ckhben required for numerical
stability was somewhat low wheR # 0. As a reminder, the nonlinear terth + F2h)Vh was
split into a linear term that was treated implicitly, whitee nonlinear term was treated explicitly.

We suspect this decrease in CFL number is due to this expietment of the nonlinear terms,
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and it might be an idea to try for a more implicit treatment ieega larger stable time-step. We
could treat the nonlinear term as implicitly as possiblelsthmaintaining linearity at leveb + 1.
To do this, we observe that

h
hn+1th+1 ~ (hn+At %

so taking an approximation of the time derivative term uglata from level andn — 1 (but not

n > VA (7.39)

leveln + 1 in order to maintain linearity at level + 1) gives
heVh =~ {1 + F?[(1 + boAt)h™ + by Ath" 1} VA (7.40)

where theb; coefficients are given in (7.32). If we then form the equafionh in our semi-
implicit approach, we observe that we need to take a divemefh;Vh, and we will end up
with an inversion forh that involves operators involving second as well as firsivdéves. Not
only can we not use the fast solver as we no longer have a Hélrgguation to solve, we also
have spatially varying coefficients multiplying the di#etial operators. So, in the shallow-water
cases, finite-difference/volume methods are perhaps mdaebke since no spectral representation
(so no convolution sums) is required. Other formulatiomsvirticity-divergence or otherwise)
may also lead to other numerical schemes (e.g., Moheballgo[@ritschel, 2000, 2001; Dritschel
& Vildez, 2007).

Although we have not considered inserting sponge-layeabsorb outgoing gravity waves (e.g.,
Durran, 2010§8), this may be done in principle, to better mimic the freeastflow problem. In
this shear instability problem it is possibly not a major cem as the gravity waves are small-
amplitude and do not seem to alter the vortex dynamics dllrthech. Although not our focus
here, in studies of gravity wave generation by shear flowsrevttee outward flux is of concern
(e.g., Sutherlanet al,, 1994; Sutherland & Peltier, 1994; Staquet & Sommeria, 2@3kas &

Farrell, 2009a,b), ways to stop waves reflecting from thendaties are required.

Nonlinear steepening whent" > 1

Our investigation was restricted to the regirhie < 1 where we do not appear to encounter
steepening that causes the routines to crash. Ffhe 1 region contains, for the shear layer,
the portion of parameter space where supersonic modes stabie) as well as the tongue region
(when MHD effects are present), and, for the Bickley jet, ibgion where perhaps the nonlinear

dynamics would be more different than the< 1 case we have considered here.
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Steepening points to the breakdown of shallow-water thewatyich is a system of equation
obtained at leading order in the aspect ratio. Going to tlxé oréler in aspect ratio, the equations
obtained includes dispersion effects that can counterté@pening; the set of equations are known
as the Green—Naghdi equations (Green & Naghdi 1976; se®altar 2003b and Pearce & Esler
2010). This may perhaps be required for investigating theadvics in the region where wave

steepening occurs.

There are several numerical methods that deal with nonlsteapening and shock formation, but
we have not tested any of these in any detail to judge theitivel merits. One possibility is to
employ a dissipation of as in Poulin & Flierl (2003); such a dissipation may reprégsysical
mechanism (e.g., radiative damping), and its additionalsequences on the conservation laws
have already been discussed. A second possibility is to@mngblock capturing methods used in
compressible or shallow-water dynamics (e.g., Toro, 2@Hy, 2010), and these would involve
using a finite-difference/volume method. One other polisitthat prevents nonlinear steepening
in shallow-water is to modify the pressure telh in the momentum equation appropriately, as

in BUhler (1998).

Form of the dissipation

We have already highlighted that finite magnetic diffugivitplies field line slippage, something

that is not entirely consistent with the derivation of the MWD equations as we have here.
Another potential problem is that the dissipation that we elinploy does not guarantee a sign-
definite energy dissipation. We discuss the latter poinbigethe more fundamental question of

the self-consistency of the SWMHD system when finite magraiffusion is present.

We consider first the form of momentum dissipation. The potd associated with the form of
momentum dissipation in the hydrodynamic case have beetmopsty discussed in the literature
(e.g., Ochoeet al, 2011; Gilbertet al, 2013). The recent papers of Ochetal. (2011) and
Gilbert et al. (2013) conclude that, to ensure momentum conservatiorgifisgpation should be
expressed in terms of the divergence of a symmetric stressrtewith the correct factors aéf

to account for the fact that momentum in shallow-water iegibyU = hu (see also Bihler,
2000). It then remains to check whether we have negativeitiefenergy dissipation. The form
of dissipation employed here, given BU in the transport variable formulation (corresponding

to option Il of Ochoaet al. 2011) satisfies the momentum condition, but does not givenadiby
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negative-definite dissipation. Other forms of the dissgrathat do maintain momentum and
negative-definite dissipation are given in Ocledaal. (2011) and Gilberet al. (2013). None of
these are particularly well suited to a pseudo-spectraij-gaplicit-in-time treatment, because the
terms are nonlinear in the fundamental variables, so fitifference/volume methods are perhaps

better suited for this line of investigation.

With regards to the form of the magnetic dissipation, we havied that, if we were to enforce
the frozen-in property, then we would need a magnetic disisip that maintains the divergence-
free condition in the magnetic field. A general form of magnelissipation that satisfies this
property was suggested by Andrew Gilbert (private comnatinn); see Section 7.6. The main
point is although there is the possibility for a magnetidwifon that also gives negative-definite
dissipation of magnetic energy, the dissipation terms apipenonlinear combinations, much like
the issue encountered in the choice of momentum dissipafigain, a finite-difference/volume

approach is perhaps more suitable to implement these typlssipation.

Returning to the more fundamental question of self-coestt, we argued that, for phenomena
on short dynamical time-scales such as shear flow insiabijlithe frozen-in approximation is
perhaps a plausible one. Although our methoddshog we conjecture that it is perhaps a good
approximation to the ‘exact’ theory, to be derived selfgistently starting from the Boussinesq
three-dimensional MHD equations, because the errorsdated with our approach is small and
our integration times are short. The same argument is alcershinly not going to be true
for studies that require dynamics to be simulated on residtme-scales, such as turbulence
or dynamo problems (overlooking the possibility of an ahiramo theorem for the moment).
Studies that do utilise the SWMHD equations with finite mdgndiffusivity and the frozen-in
approximation need to justify not only the form of the disdipn used, but also the validity of
the underlying approximations on a case by case basis. Asedircgoint, we feel that this issue
has not been appropriately addressed in the article by &flid. (2005), who study the possibility
of dynamo action in some sort of system resembling the SWMMdesn here. As we have
alluded to already, there is also the possibility of antiayo results depending on the form of the

dissipation if the frozen-in approximation is used (se€tiSp&.6).

It should be possible to derive a self-consistent form ofSNeMHD equations with dissipation
included in the derivation by, for example, matching the rig field in the fluid layer onto some

external magnetic field profile. The question then is whethempproximations that are required
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are realistic, and whether one actually gains anything filoing an approximation, as some of the
advantages of employing the shallow-water system (sudheasystem being explicitly dependent
on only two spatial dimensions) may be lost. The derivatiihe SWMHD system with field-line
slippage has not been investigated in much detail here stafundamental question that needs
to be addressed, especially if the SWMHD system is to be gragldor modelling nonlinear

physical phenomena, such as global tachocline or hot exeptiynamics.
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7.6 Appendix A: Other forms of magnetic dissipation in SWMHD

In the absence of dissipation in the continuity equatiomsater

0B UB BU h
with
hD = =V x (hY'V x (hib)), (7.42)

wherep andgq are free parameters for the moment &ndk the total fluid column (Andrew Gilbert,
private communication). The factor 6f multiplying D is to account for dissipation of the total
fluid column. It is obvious that this form of dissipation miims the divergence-free condition of
the magnetic field, and reduces accordingly in the incongfislesscase. The case that we used in
(7.10), in transport variables wiffi> B (where only energy dissipation was an issue), is the case

wherep = 0 andg = 1. In general, we have

14d b
—— he|bl? daedy = - - - hib - — dzd
th//tllwy +//t 5 drdy
1
—..4— [ [ hb-Ddzd 7.43
+ [ [ b D dady (7.4

:..._%//hf(be)-(Vx (hb)) drdy.

Then we see that, for our cage£ 0 andg = 1), the energy dissipation is not negative-definite,
as observed already. If instead we tgke= 1 andq = 0, then we have a negative-definite
dissipation, with the dissipation related to the domairegnated current/[ h;52 dzdy. The
numerical advantage of the= 0, ¢ = 1 case is that it leads to terms that are particularly easy to
treat in our pseudo-spectral formalism. The: 1, ¢ = 0 case contains nonlinear terms which may
be treated accordingly in the finite-difference/volumerapph, in contrast to the pseudo-spectral

approach we employed here.

7.6.1 Anti-dynamo result

The following results are also due to Andrew Gilbert (privabmmunication), included here for
completeness. In the ideal SWMHD system, the induction tamuan terms of the flux function
(with hy = 1+ F2h)

hb=e, x VA (7.44)
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is given by (Dellar, 2002)

A
aa_t +u-VA=0. (7.45)

With our choice of dissipatiom = 0 andg = 1 in equation (7.42), we have

0A 1

— VA= _——V?A. 7.46

e +u-V Rmv ( )
In the shallow-water case, the argument is that the maximaoint gl = A, cannot increase in

time and so there is no dynamo, at least in terms of magnexiclfitfull, suppose we have

Amax(t) - A(:Bmax(t)7 t)) (747)
Then
VAl =0, v2A|wmx <0, (7.48)
and so dA q oA
max — :Bmaan . VA| max
dt dt Tmax ot (7 49)
1 2 )
=—u- VA, + o=V Al, <o

The maximumA,,.x cannot increase, so a dynamo that has increasing magnetiwiftutime is

impossible.

For the cas@ = 1 andg = 0 which gives negative-definite dissipation, it may be shomat the

induction equation in terms of the streamfunction is giMaro(r notation) by

0A 1 1 F?
= VA= — V24—~
ot Tu VA= RRY RM1+ F2h

(Vh) - (VA). (7.50)
When F' = 0 this reduces to the incompressible case. A similar antadymresult may be shown

since the extra term has\aA contribution, which is zero at ..

7.7 Appendix B: Numerical scheme wher¥' = 0

When F' = 0, the inversion forh in (7.37) becomes ill-defined whein = 0 since we have a

second order differential equation with two Neumann bowndanditions. This corresponds to
the issue that, in the incompressible case, pressure ieffigcacts as a Lagrange multiplier to
ensure incompressibility at every time-step, but sincaliy appears through a derivative (unlike

the shallow-water case where there is a specific evolutiomtean for i), the mean component
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of the pressure is defined up to a constant. Although this mmearponent plays no role in the
dynamics, it does however lead to a non-unique inversioriixTbis constant, we observe that, in

the incompressible case, the Poisson equatiop f@given by
1
V=V (u-Vu—Mb Vb)+ R—ev%. (7.51)

Taking anz-average, using the divergence-free conditionafandb, and the conditio®u/dy =

0 on they-boundaries, we end up with

an - 82

Integrating once gives
op ov 5, Oby
8y_2<U6y+M by 6y>+C' (7.53)

The constan is zero sinc&p/dy, v andb, are zero on thg-boundaries. Integrating once again
gives another constant that is irrelevant for the dynanhieace may be set to zero. We notice then
sincev andb, are zero on the boundaries, ther= 0 on the boundaries also. To implement this
in our numerical routine, an extra option was written in sattvhen/ = 0 andk = 0, instead

of implementing homogeneous Neumann conditions on botls\{gdlved using the fast solver),
one of the boundary conditions was changed to a homogeneicighl€t condition (to take into

account we set the constant to be zero) and solved Wwirdecomposition.
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Chapter 8

Conclusions and further work

8.1 Summary of results

We have investigated the problem of shear flow instabilitiethe single layer SWMHD system,
in planar geometry with no rotation. General propertieshef SWMHD system were reviewed,

paying particular attention to the conservation propsrtie

For the onset of the instabilities, the linearised probleas first formulated in the usual manner,
looking at the temporal evolution of normal mode solutiomsl dormulating an eigenvalue
problem. Some results for general basic states were derMédthen focussed on the simpler
problem with no underlying topography and a uniform backgo magnetic field. Instability
characteristics of two piecewise-constant profiles, theexosheet and the rectangular jet, and
two smooth profiles, the hyperbolic-tangent shear layer thedBickley jet, were investigated
via numerical and asymptotic methods. For the shear layer,mhodes of instabilities were
identified, the inflection-point and supersonic instaiedit The inflection-point instabilities have
larger growth rates, are standing waves, resemble thexveinet instability at smatk, and their
associated instability mechanism is normally attribut@dhie constructive interference of a pair
of counter-propagating Rossby waves. The supersonichitises are found wherf > 1, have
growth rates that are smaller than the inflection-point mspddse as a pair of propagating waves,
and the associated instability mechanism is normallylkaitied to gravity wave interaction with
critical layers. The Bickley jet was found to possess two esodf instability, classified as either

even or odd abouy = 0. For the shear layer, the instabilities close to fie= 0, M = 0
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case are normally attributed to counter-propagating Rogslves, and here we also investigated
modifications to this mechanism introduced by shallow-watel MHD effects. It was seen that
the underlying Rossby wave action-at-a-distance mectmgenerates vorticity anomalies that
counteract the basic mechanism, leading to stabilisafitimednstability. A long-wave asymptotic

procedure was employed to provide analytical expressmuosrplement the numerical results.

For the nonlinear evolution, it was seen that vortices tbanfas the shear layer rolls up or as
the jet profile breaks up may suffer disruption when MHD eBewere present. Focussing first
on the incompressible case, this disruption was seen tmdepethe basic field strengti/ and

the magnetic dissipation parameter, here characterisaticoynagnetic Reynolds number Rm.
An estimate from a kinematic argument suggests that thendepee of the disruption on the
parameter values scales &8’Rm ~ (., where(, is the typical vorticity magnitude of the
vortices formed. A range of runs from both profiles were dfeest accordingly and it was seen
that the data conforms well to thef?Rm dependence. Although we have restricted ourselves
to studying the dependence df and Rm, some tests runs at larger Re suggests that disruption
is more severe also at increasing Re; this is perhaps expastthe dissipation acts less on the
vorticity filaments, prolonging it's lifetime, contributh to the amount of small-scale activity. In
the shallow-water case, we focussed onfhe 1 case ag’ 2 1 appears to lead to overturning of
the free surface, and thus leads to the breakdown of shallaier theory as the initial assumptions
used in deriving the set of equations becomes invalid. Failsralues ofF’, the evolution was
essentially like the incompressible case. For the shear lay moderate values df, it was
seen that the disruption appears to be milder. For the Bidkke all /' < 1 cases appear to be
qualitatively similar, with minimal differences betwedreseF' < 1 runs and the incompressible
runs, except for the presence of small-amplitude gravityesawhich do not seem to interact
significantly with the vortical motions. The kinematic estite //?Rm ~ ). was tested against
the numerical data from the shallow-water runs, and thesgegfrdisruption appears still to depend

closely onM2Rm.

More in-depth summaries and relevant discussions may badfati the end of the individual

chapters.
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8.2 Conclusions

We have provided a thorough investigation into the charisties of shear instabilities associated
with free-shear flows, focusing on shear layer and jet pofile particular, we have attempted to
provide an investigation into the underlying instabiliteamanism and its modifications by other

physical effects.

With regards to disruption by MHD effects, since Rm is tyflickarge in astrophysical systems of
interest and the fact that disruption occurs on dynamicaéiscales (no more than a few eddy
turnover times), we expect disruption to be a robust featuranstable shear flows, causing
the breakdown of coherent structures and the transitiomrafiar flows into chaotic, turbulent
motion. The key feature of these secondary resistive iilisiad is that they may operate in
strongly stratified systems with large Richardson numbeenvbther secondary hydrodynamic

instabilities are comparatively weak.

Our disruption estimatd/?Rm ~ €, is a kinematic one, relying only on the fact that vortices
wind up the magnetic field. It should therefore serve as adisttnate even for shear flows in
other physical systems, for example, where the systemasfs&td and velocity shear is in the
vertical, i.e. the Kelvin—Helmholtz scenario. The extamtnhich the kinematic estimate is true

has not been investigated for the large Rm region as largerate required.

Understanding the breakdown of coherent structures imbukent motion is not only interesting
from a fluid dynamical point of view, but it also has importatiysical consequences. One such
example is in turbulent mixing, physically relevant in bgiophysical and astrophysical systems.
We have not looked at the consequences on mixing in this basét, is certainly an interesting

problem to consider in the future.

8.3 Some possible further work

Extension of Ripa’s theorem

As mentioned in Chapter 3 and 5, one result in shallow-wdtat e have not managed to
generalise to the SWMHD system is an analogue of Ripa’'s #émofRipa, 1983). Ripa’s

theorem states that, for the rotating, hydrodynamic shallater system in planar geometry,
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if the Rayleigh—Fjartoft condition (for potential vortig) and a subsonic condition is satisfied,
then the basic state is formally stable, i.e. linearly statol infinitesimal disturbances. The
approach adopted in the derivation is to make use of the lymuigrsymmetries possessed by
the equations to construct a norm and to find the extrematsstaa a variational problem, an
idea dating back to Arnol'd (1965a,b, 1966a,b). These narmag be constructed directly from
the governing equations although some ingenuity may bearnestj(e.g., Taylor, 1915; Drazin &
Howard, 1966; Bretherton, 1966b; Blumen, 1971; Satomu®&11Eliassen, 1983), or may be
constructed more systematically for general ideal fluidesys by making use of the underlying
Hamiltonian structure (e.g., Holmt al,, 1985; Shepherd, 1990). For the shallow-water system,
Ripa’s theorem may be derived via this method (Shepherd,1193P; see also Ripa 1991 for the
multi-layer case), while in the incompressible MHD caseylBigh—Fjgrtoft type stability criteria
have been derived previously via similar methods (e.g.nHatlal, 1985; Vladimirov & Moffatt,
1995; Vladimirovet al,, 1996). The SWMHD system has been shown to possess a Haianilton
structure (Dellar, 2002, 2003a), and it remains to derigbibty conditions for this system; this is

currently being investigated.

Maodification to the Rossby wave mechanism by other physicalffects

In Chapter 5 we attributed the inflection-point instal@itito interacting Rossby waves, and
considered modifications to the underlying mechanism witlearghysical effects were involved.
It should be possible to quantify in more detail the modifaatof the Rossby waves by MHD
effects. One approach is to consider the piecewise-linégngilayer profile (sometimes known
as the Rayleigh strip), which may be solved exactly in therbgignamic case. The mathematical
basis appears to be well established (e.g., Hedée®l,, 1999, 2004; Heifetz & Methven, 2005;
Heifetz et al, 2006; Harnik & Heifetz, 2007; Heifetet al, 2009; Carpenteet al,, 2012),
employing, for example: the Generalised Stability Theooyrrfalism of Farrell & loannou
(19964a,b) to obtain information about the optimum confitjaraand information about transient
growth; pseudo-energy/momentum (related also to the Hamigin formalism discussed earlier)
to quantify wave activity responsible for instability inmsilations; wave kernels (or Green’s
functions) to described the wave-interaction effects. duld be informative to see how the
inclusion of a background magnetic field would alter the ulyiteg Rossby (or Rossby-Alfvén)

wave dynamics and its role in generating the instability.
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Supersonic modes, gravity wave interaction, and over-reftgion

As demonstrated in the shallow-water system, instabilag also arise owing to gravity wave
interaction with critical layers in the system (e.g., Satioay 1981; Hayashi & Young, 1987,
Takehiro & Hayashi, 1992; Balmforth, 1999). It would be mgting to further investigate
these supersonic modes via the WKB/numerical approach kdéhiia & Hayashi (1992) and
the matched asymptotics approach of Balmforth (1999) inSMéMHD system. Related to
wave interaction is the process of over-reflection (e.gheson, 1976; Lindzen & Tung, 1978;
Lindzen, 1988; Benilov & Lapin, 2013). There have also betanapts to interpret the over-
reflection phenomenon by an analogous Rossby wave actiartisgtance mechanism (Harnik
& Heifetz, 2007). It would also be interesting to see in detiaé MHD modifications to the
underlying mechanisms associated with gravity waves, deroto provide a better understanding

of phenomena associated with magneto-gravity waves.

Disruption mechanism and regime estimates

A fairly simple extension of the work carried out here woulel to test the kinematic estimate
M?Rm ~ ., with larger runs at higher Rm and Re, and to see how well thisiate extends into
parameter space. The probing of parameter space would gthgl&inematic estimate as a guide
to where to look, and to see whether th&Rm dependence holds true for more extreme values

in parameter space.

Going beyond the kinematic estimate, it would be desirablebtain estimates that consider the
full dynamical problem so that effects in the incompressiéhd shallow-water regimes are taken
into account. A dynamical estimate was previously giverifiermagneto-convection by Galloway
et al. (1978); see also the numerical investigation in Galloway &ave (1979). Although the
physical settings are different, it should be possible tapadheir asymptotic techniques to our
problem in order to provide estimates of the magnetic figlehgith before disruption occurs. An
even simpler problem may be to consider a vortex in a doubhjedic box (as in Weiss 1966),
but with dynamical feedback. Some test runs of this vortea-box problem have shown that the
vortex may also be disrupted by MHD effects, so this probleouild complement our shear flow
study in understanding the underlying mechanism, as wglt@sding another testing ground for

our theoretical predictions.



Chapter 8. Conclusions and further work 196

One component in the disruption mechanism that we have ot dkle to clarify is the resistive
instability leading to release of magnetic stresses. Wpestighat it is a tearing-type instability,
since tearing instabilities tend to be the fastest growimgtabilities in thin currents. Larger
resolution runs should provide more data and possibly sHearer signatures of the resistive
instabilities in these thin current sheets. We also havesiiear flow as well as vortex-in-a-box
problem as testing grounds to investigate the nature ofdbistive instabilities in current sheets

arising from vortical motion.

A complementary approach to the pseudo-spectral methodawe émployed here would be to
consider the vortex in a box problem and/or the shear flowlprolusing contour dynamics, such
as the Contour Advective Semi-Lagrangian algorithm (CA8Ig., Mohebalhojeh & Dritschel,
2009) or the newer version, the Combined Lagrangian Adereddethod (CLAM; e.g., Dritschel
& Fontane, 2010). The routines are based on semi-Lagrangigthods advecting (potential)
vorticity contours, and are formally Re oo methods (the process of contour surgery removes
small-scale, sharp features not covered by the numerisalution). The CASL/CLAM codes
have been tested in various settings and are known to becatdprbduce results obtained via, for
example, pseudospectral methods, at an impressive fnagtithe cost in terms of both time and
computing power (e.g., Dritschel & Scott, 2009). The MHDsien of CLAM has been employed
in a recent study of two-dimensional MHD turbulence (Dtitslc& Tobias, 2012) and it was seen
that the results are comparable to runs performed usinglpspactral methods, for low magnetic
Prandtl numbery <« n < 1), again at a tiny fraction of the cost. This would provide theo

approach for investigating the dependence of the dynamié®eo

F > 1 regime and shallow-water with dissipation

We have not been able to investigate the nonlinear evolaticear flows in thé" > 1 regime

because of nonlinear steepening leading to overturninhefftee surface. Shock formation
is something that our numerical routines cannot deal witthatmoment, but also points to
the breakdown of shallow-water theory, since the initisdumsptions (small-aspect ratio and
hydrostatic balance) become invalid. Other models, suchalow-water theory with dispersion
(Green—Naghdi equations for example), will be requiredpimbing the dynamics at the regimes

where steepening occurs.

As discussed already in Chapter 8, the forms of dissipatiahrovide the desired conservation
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properties (such as momentum and magnetic flux conseryatiegative-definite dissipation
of energy, maintenance of the divergence-free conditi@jur in nonlinear combinations
of the fundamental variable, which causes problems in adwsspectral but not in a finite-
difference/volume approach. Our choice of dissipationhm &' < 1 regime led to extra sign-
indefinite contributions to energy dissipation (althoudiese were seen to be small for this
dynamical problem), and it would certainly be more satifacif we use something that gives us
the desired physics, including conservation of varioustjtias and dissipation being negative-

definite.

At a more fundamental level, the self-consistency issue WMBID with finite magnetic
dissipation needs to be addressed if the SWMHD system is tséa as model of, for example,
the solar tachocline. It should be possible to include fimitgnetic dissipation in the derivation,
starting from the Boussinesq incompressible MHD equatipeshaps by matching onto some
sort of external magnetic field profile, leading to some o#®trof equations. It then remains to
see whether we can do the approximation in such a way as terpeesertain conservation laws,
and whether such an approximation is in fact beneficial as &g lose, for example, the two-
dimensional aspect of shallow-water. On the other handgsive expect there to be no dynamo
when magnetic flux is conserved in the layer of fluid, we mayehténe possibility of dynamo

action when the flux conservation is relaxed.

Other physical effects: stratification, rotation, geomety, etc.

Beyond our simple case of a single-layer, non-rotatingll@avater system in planar geometry,
various extensions are possible. For example, multi-layedels may be considered to mimic
stratification; a derivation of the multi-layer models haseb achieved (Sam Hunter, private
communication), assuming that magnetic flux is conservedaith layer. This system should

serve as a simplified model for investigating the interplegneen stratification and MHD effects.

Rotation effects may also be considered, and, in particalaanalogue of the quasi-geostrophic
(QG) equations is of particular interest due to its simplicand some provisional work has been
performed. Taking a different route to Gilman (1967a,bad)p considered taking an analogue of
the QG limit of the continuously stratified MHD equations dref taking layers, we started from
the layered shallow-water models under the frozen-in afipration, took an analogue of the QG

limit, and we derived the same set of equations given in Gilifi®67a,b,c). The difference is
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that, done this way, it was clear why there is no explicit dmgpof the magnetic field in the
different layers in the momentum or induction equation. Trial idea of using this magneto-
quasi-geostrophic model (MQG perhaps; see also Umurhdg, 20 arXiV) was to investigate
the jet formation problem in MHD (e.qg., Tobias al,, 2007); this is however beyond the scope of

this study and will be developed elsewhere.

The shear flow problem in the spherical case has been coediddready, as mentioned in
Chapter 1 (Dikpati & Gilman, 2001; Rempel & Dikpati, 2003;Kpati et al, 2003; Dikpati &

Gilman, 2005). These works are linear studies, and it woelititeresting to consider the nonlinear
behaviour, bearing in mind the discussion we presentedraiards to the form of the dissipation

employed.

Going beyond shallow-water, the shear flow problem with MHigas in the Kelvin—Helmholtz
problem, i.e. vertical shear with vertical stratificati@m{ possibly with a third spatial dimension)
would merit an investigation. This would then introduce titeer well-known hydrodynamic
secondary instabilities into play, alongside the expeclisduption arising from MHD effects.
These would presumably contribute to the breakdown of @stiestructures into turbulence, with
implications for turbulent mixing, for example. This is anportant area of study as it would have

implications for the mixing properties in stratified MHD $gs1s, such as the tachocline.

It is hoped that this study contributes to the larger studilbfD by investigating in some detalil
the dynamics in a simpler setting, highlighting some fundatal features that should be present
even when other physical effects might be in play. Sheaalnigies play an important role in
the transition into turbulence, and this investigation \ept sufficiently theoretical to provide
a fundamental understanding to the underlying dynamicsftinens part of this larger physical

problem.



199

Bibliography

ACHESON D. J. 1976. On over-reflexiod. Fluid Mech, 77, 433-472.

ARNOL'D, V. I. 1965a. Conditions for nonlinear stability of statég plane curvilinear flows of

an ideal fluid.Soviet Math.6, 773—777.

ARNOL' D, V. |. 1965b. Variational principle for three-dimensiorsiéady-state flows of an ideal

fluid. J. Appl. Math. Mech.29, 1002-1008.

ARNOL' D, V. |. 1966a. On ara priori estimate in the theory of hydrodynamical stabiliymer.
Math. Soc. Transl. Sef79, 267-269.

ARNOL'D, V. |. 1966b. Sur la géometrie differéntielle des groupd.tk de dimension infinie et

ses applications a I'hydrodynamique des fluids parféim. Inst. Fourier 161, 316-361.

BAINES, P. G., & MITSUDERA, H. 1994. On the mechanism of shear instabilitiek.Fluid
Mech, 276, 327-342.

BAKAS, N. A., & FARRELL, B. F. 2009a. Gravity waves in a horizontal shear flow. Part I:
Growth mechanisms in the absence of potential vorticityysbations.J. Phys. Oceanogi39,
481-496.

BAKAS, N. A., & FARRELL, B. F. 2009b. Gravity waves in a horizontal shear flow. Part Il
Interaction between gravity waves and potential vortipgyturbations.J. Phys. Oceanogr39,
497-511.

BAKAS, N. A., & FARRELL, B. F. 2010. The role of nonnormality in overreflection theaod.

Atmos. Scj.67, 2547—-2558.

BALMFORTH, N. J. 1999. Shear instability in shallow watér.Fluid Mech, 387, 97-127.



BIBLIOGRAPHY 200

BARSTON, E. M. 1980. Circle theorems for inviscid steady flows. J. Engng Scj.18, 477-489.

BATY, H., & KEPPENS R. 2006. Kelvin-Helmholtz disruptions in extended magest jet flows.
Astron. Astrophys447, 9-22.

BATY, H., KEPPENS R., & CoMTE, P. 2003. The two-dimensional magnetohydrodynamic
Kelvin-Helmholtz instability: Compressibility and largeale coalescence effect®hys. of

Plasmas10, 4661-4674.

BAyLy, B. J. 1986. Three-dimensional instability of ellipticadil. Phys. Rev. Lett57, 2160—
2163.

BAzDENKOV, S. V., & POGUTSE O. P. 1983. Supersonic stabilization of a tangential simear
thin atmosphereJETP Lett, 37, 375-377.

BENILOV, E. S., & LAPIN, V. N. 2013. On resonant over-reflection of waves by j&sophys.

Astrophys. Fluid Dyn.107, 304-327.

BETCHOV, R., & CRIMINALE, W. O. 1967. Stability of parallel flowApplied Math. and Mech.
10.

Biskamp, D. 2000.Magnetic reconnection in plasma€ambridge University Press.
BiskamP, D. 2003. Magnetohydrodynamic turbulenc€ambridge University Press.

Biskamp, D., & WELTER, H. 1989. Dynamics of decaying two-dimensional

magnetohydrodynamic turbulendehys. Fluids B1, 1964—-1979.

BiskAmP, D., SCHWARZ, E., & ZEILER, A. 1998. Instability of a magnetized plasma jBhys.
Plasmas5, 2485-2488.

BLUMEN, W. 1970. Shear layer instability of an inviscid comprekesituid. J. Fluid Mech, 40,
769-781.

BLUMEN, W. 1971. On the stability of plane flow with horizontal sheéarthree-dimensional

nondivergent disturbance&eophys. Astrophys. Fluid Dyre, 189-200.

BLUMEN, W., DRAZIN, P. G., & BILLINGS, D. F. 1975. Shear layer instability of an inviscid
compressible fluid. Part 2. Fluid Mech, 71, 305-316.



BIBLIOGRAPHY 201

BovyD, J. P. 2001 Chebyshev and Fourier Spectral Metho@sver, New York.

BRETHERTON F. P. 1966a. Baroclinic instability and the short wavetangut-off in terms of

potential vorticity. Q. J. Roy. Met. Soc92, 335-345.

BRETHERTON F. P. 1966h. Critical layer instability in baroclinic flon®. J. Roy. Met. Soc92,
325-334.

BUHLER, O. 1998. A shallow-water model that prevents nonlineagmaing of gravity waves.

J. Atmos. Scj55, 2884—2891.

BUHLER, O. 2000. On the vorticity transport due to dissipating aaling waves in shallow-

water flow. J. Fluid Mech, 407, 235—-263.
BUHLER, O. 2009.Waves and mean flow€ambridge University Press.

BUHLER, O., & MCINTYRE, M. E. 1998. On non-dissipative wave-mean interactionshn t

atmopsheres or oceank.Fluid Mech, 354, 301-343.

BUHLER, O., & MCINTYRE, M. E. 2003. Remote recoil: a new wave-mean interactiorcefie

Fluid Mech, 492 207-230.

CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A., & ZANG, T. A. 1993. Spectral Methods In
Fluid Dynamics Springer.

CARPENTER J. R., TEDFORD, E. W., HEIFETZ, E., & LAWRENCE, G. A. 2012. Instability
in stratified shear flow: Review of a physical interpretatimased on interacting wave&ppl.

Mech. Rey.64, 061001.

CAULFIELD, C. P., & KERSWELL, R. R. 2000. The nonlinear development of three-dimensiona
disturbances at hyperbolic stagnations points: A modeheflraid region in mixing layers.

Phys. Fluids12, 1032-1043.

CAULFIELD, C. P., & FeLTIER, W. R. 2000. The anatomy of the mixing transition in

homogeneous and stratified free shear lay&rgluid Mech, 413 1-47.

CHANDRASEKHAR, S. 1981. Hydrodynamic and Hydromagnetic Stabilitover edn. Dover

Publications Inc.



BIBLIOGRAPHY 202

CHEN, Q., OrTO, A., & LEE, L. C. 1997. Tearing instability, Kelvin-Helmholtz insfity, and
magnetic reconnectionl. Geophys. Resl02 151-161.

CHIMONAS, G. 1970. The extension of the Miles-Howard theorem to casgible fluids. J.
Fluid Mech, 43, 833—-836.

CHO, J. Y.-K., & POLVANI, L. M. 1996a. The formation of jets and vortices from freelyolving

shallow water turbulence on the surface of a sphetess. Fluids 8, 1531-1552.

CHO, J. Y.-K., & PoLvANI, L. M. 1996b. The morphogenesis of bands and zonal windsen th

atmospheres on the giant outer plan&sience273 335-337.

CHRISTENSENDALSGAARD, J., & THOMPSON M. J. 2007. Observational results and issues
concerning the tachoclineln: HUGHES, D. W., ROSNER R., & WEISS, N. O. (eds),The

Solar Tachocline Cambridge University Press.

CHu, V. H. 2010. Shear instability, wave and turbulence simoiest using shallow-water

equations.J. Hydro-environ. Res3, 173-178.

CLENSHAW, C. W., & CURTIS, A. R. 1960. A method for numerical integration on an autémat

computer.Numerische Mathemati, 197-205.

CoLLINGS, I. L., & GRIMSHAW, R. H. J. 1980. The effect of topography on the stability of a

barotropic coastal currenDyn. Atmos. Ocean5, 83—106.

COOLEY, J. W., & TUKEY, J. W. 1965. An algorithm for the machine calculation of céemp
Fourier seriesMath. Comput.19, 297-301.

Corcos G. M., & SHERMAN, F. S. 1976. Vorticity concentration and the dynamics otainle
free shear layersl. Fluid Mech, 73, 241-264.

CoRrcos G. M., & SHERMAN, F. S. 1984. The mixing layer: Deterministic models of a tleht
flow. Part 1. Introduction and the two-dimensional flalvFluid Mech, 139, 29-65.

CRIMINALE, W. O., ACKSON, T. L., & JosLIN, R. D. 2003. Theory and computation in

hydrodynamic stability Cambridge University Press.

DE STERCK, H. 2001. Hyperbolic theory of the “shallow water” magnetdiodynamics
equations.Phys. Plasmas3, 3293-3304.



BIBLIOGRAPHY 203

DELLAR, P. J. 2002. Hamiltonian and symmetric hyperbolic streuof shallow water

magnetohydrodynamic#hys. Plasma®, 1130-1136.

DELLAR, P. J. 2003a. Common Hamiltonian structure of the shallowemwaquations with

horizontal temperature gradients and magnetic fidhs/s. Fluids 15, 292-297.

DELLAR, P. J. 2003b. Dispersive shallow water magnetohydrodycanhys. Plasmasl0,
581-590.

DIkPATI, M., & GILMAN, P. A. 2001. Analysis of hydrodynamic stability of solarhacline
latitudinal differential rotation using a shallow-watepdel. Astrophys. J.551, 536-564.

DIkPATI, M., & GILMAN, P. A. 2005. A shallow-water theory for the Sun’s active libinges.
Astrophys. J. Lett635 L193-L196.

DIKPATI, M., GILMAN, P. A., & REMPEL, M. 2003. Stability analysis of tachocline latitudinal
differential rotation and coexisting toroidal band usingheallow-water model. Astrophys. J.

596, 680-697.

DIkpPATI, M., GILMAN, P. A., CALLY, P. S., & MEScH, M. S. 2009. Axisymmetric MHD
instabilities in solar/stellar tachoclineAstrophys. J.692 1421-1431.

DRAZIN, P. G., & HOWARD, L. N. 1962. The instability to long waves of unbounded fatal
inviscid flow. J. Fluid Mech, 14, 257—-283.

DRAZIN, P. G., & HOwARD, L. N. 1966. Hydrodynamic stability of parallel flow of inil
fluid. Advan. Appl. Mech9, 1-89.

DRAZIN, P. G., & ReID, W. H. 1981. Hydrodynamic Stability2nd edn. Cambridge University

Press.

DRITSCHEL, D. G. 1988. Nonlinear stability bounds for inviscid, twirénsional, parallel or
circular flows with monotonic vorticity, and the analogohsse-dimensional quasi-geostrophic

flows. J. Fluid Mech, 191, 575-581.

DRITSCHEL, D. G., & FONTANE, J. 2010. The combined Lagrangian advection methad.

Comput. Phys229, 5408-5417.



BIBLIOGRAPHY 204

DRITSCHEL, D. G., & ScoTT, R. K. 2009. On the simulation of nearly inviscid two-dimiemsl

turbulence.J. Comput. Phys228 2707-2711.

DRITSCHEL, D. G., & ScoTT, R. K. 2011. Jet sharpening by turbulent mixirighil. Tran. Roy.
Soc. A369 754-770.

DRITSCHEL, D. G., & TOBIAS, S. M. 2012. Two-dimensional magnetohydrodynamic tuncee
in the small magnetic Prandtl number limi. Fluid Mech, 703 85-98.

DRITSCHEL, D. G., & VANNESTE, J. 2006. The instability of a potential vorticity front. Fluid
Mech, 561, 237—-254.

DRITSCHEL, D. G., & VIUDEZ, A. 2007. The persistence of balance in geophysical fladvs.
Fluid Mech, 570 365-383.

DRITSCHEL, D. G., HAYNES, P. H., UCKES, M. N., & SHEPHERD, T. G. 1991. The stability
of a two-dimensional vorticity filament under uniform strad. Fluid Mech, 230, 647—665.

DRITSCHEL, D. G., PoLvANI, L. M., & M OHEBALHOJEH, A. R. 1999. The contour-advective
semi-Lagrangian algorithm for the shallow water equatiohton. Weather Rey127, 1551—

1564.
DURRAN, D. R. 2010.Numerical methods for fluid dynami@nd edn. Springer.

ELIASSEN, A. 1983. The Charney-Stern theorem on barotropic-bariacinstability. Pure Appl.
Geophys.121, 563-572.

FARGE, M., & SADOURNY, R. 1989. Wave-vortex dynamics in rotating shallow wafei-luid.

Mech, 206, 433—-462.

FARRELL, B. F., & IoOANNOU, P. J. 1996a. Generalized stability theory. Part |: Autooos

operators.J. Atmos. Scj53, 2025-2040.

FARRELL, B. F., & loANNOU, P. J. 1996b. Generalized stability theory. Part II: Noteaamous
operators.J. Atmos. Scj53, 2041-2053.

FORD, R. 1994. The instability of an axisymmetric vortex with nebonic potential vorticity in

rotating shallow waterJ. Fluid Mech, 280 303—334.



BIBLIOGRAPHY 205

FORD, R., MCINTYRE, M. E., & NORTON, W. A. 2000. Balance and the slow quasimanifold:
Some explicit results]. Atmos. Sci57, 1236-1254.

FORNBERG B. 1998.A practical guide to pseudospectral metho@ambridge University Press.

FRANK, A., JONES, T. W., Rru, D., & GAALAAS, J. B. 1996. The MHD Kelvin-Helmholtz
instability: A two-dimensional numerical studspstrophys. J.460 777—793.

FURTH, H. P., KILLEEN, J., & ROSENBLUTH, M. N. 1963. Finite resistivity instabilities of a

sheet pinchPhys. Fluids6, 459-484.

GALLOWAY, D. J., & MoOORE, D. R. 1979. Axisymmetric convection in the presence of a

magnetic field.Geophys. Astrophys. Fluid Dyri.2, 73-105.

GALLOWAY, D. J., RROoCcTOR M. R. E., & WEISS, N. O. 1978. Magnetic flux ropes and
convection.J. Fluid Mech, 87, 243-261.

GARAUD, P. 2007. Magnetic confinement of the solar tachoclineHUGHES, D. W., ROSNER

R., & WEISS N. O. (eds),The solar tachoclineCambridge University Press.

GEDZELMAN, S. D. 1973. Hydromagnetic stability of parallel flow of aread heterogeneous

fluid. J. Fluid Mech, 58, 777—-794.

GENT, P. R. 1993. The energetically consistent shallow-wateraggns. J. Atmos. Scj.50,
1323-1325.

GILBERT, A. D., RIEDINGER, X., & THUBURN, J. 2013. Note on the form of the viscous term

for two dimensional Navier-Stokes flowSubmitted to Quart J. Mech. Appl. Math.

GILL, A. E. 1965. Instabilities of “top-hat” jets and wakes in quessible fluidsPhys. Fluids
1428-1430.

GILL, A. E. 1982.Atmospheric-Ocean Dynamic&cademic Press.

GiLL, A. E., & DrAzIN, P. G. 1965. Note on instability of compressible jets and egalo
long-wave disturbancel. Fluids Mech.22, 415.

GILMAN, P. A. 1967a. Stability of baroclinic flows in a zonal magodield: Part I. J. Atmos.

Sci, 24, 101-118.



BIBLIOGRAPHY 206

GILMAN, P. A. 1967b. Stability of baroclinic flows in a zonal magndteld: Part II. J. Atmos.
Sci, 24, 119-129.

GILMAN, P. A. 1967c. Stability of baroclinic flows in a zonal magodteld: Part Ill. J. Atmos.

Sci, 24, 130-143.

GILMAN, P. A. 2000. Magnetohydrodynamic “shallow water” equadiéor the solar tachocline.

Astrophys. J.544, L79-L82.

GILMAN, P. A., & CALLY, P. S. 2007. Global MHD instabilities of the tachocliie:. HUGHES,
D. W., RosSNER R., & WEIsS, N. O. (eds),The Solar Tachocline Cambridge University

Press.

GOUGH, D. O. 2007. An introduction to the solar tachoclie: HUGHES, D. W., ROSNER R.,
& WEISS, N. O. (eds),The Solar TachoclineCambridge University Press.

GOUGH, D. O., & MCINTYRE, M. E. 1998. Inevitability of a magnetic field in the Sun’s iati/e
interior. Nature 394, 755-757.

GREEN, A. E., & NAGHDI, P. M. 1976. A derivation of equations for wave propagatiowater

of variable depthJ. Fluid Mech, 78, 237-246.

GRIFFITHS, R. W., KILLWORTH, P. D., & STERN, M. E. 1982. Ageostrophic instability of
ocean currents]. Fluid Mech, 117, 343-377.

GRIFFITHS, S. D. 2008. The limiting form of inertial instability in gptysical flows.J. Fluid
Mech, 605 115-143.

HARNIK, N., & HEIFETZ, E. 2007. Relating overreflection and wave geometry to thmies-
propagating Rossby wave perspective: Toward a deeper mietihaunderstanding of shear

instability. J. Atmos. Scj64, 2238-2261.

HAYASHI, Y.-Y., & Y OUNG, W. R. 1987. Stable and unstable shear modes of rotatindjgdara
flows in shallow waterJ. Fluid Mech, 184, 477-504.

HAzEL, P. 1972. Numerical studies of the stability of inviscidasified shear flows.J. Fluid

Mech, 51, 39-61.



BIBLIOGRAPHY 207

HEIFETZ, E., & METHVEN, J. 2005. Relating optimal growth to counter-propagatirgssty
Waves in shear instabilityPhys. Fluids 17, 064107.

HEIFETZ, E., BiIsHOR C. H., & ALPERT, P. 1999. Counter-propagating Rossby waves in the

barotropic Rayleigh model of shear instability. J. Roy. Met. Socl125 2835-2853.

HEIFETZ, E., BisHOR C. H., HOSKINS, B. J., & METHVEN, J. 2004. The counter-propagating
Rossby-wave perspective on baroclinic instability. |: Mahatical basisQ. J. Roy. Met. Sog.

130 211-231.

HEIFETZ, E., REUVENI, Y., GELFGAT, A., KiT, E., & METHVEN, J. 2006. The
counterpropagating Rossby wave perspective on Kelvin Heltn instability as a limiting case

of a Rayleigh shear layer with zero widtRhys. Fluids18, 018101.

HEIFETZ, E., HARNIK, N., & TAMARIN, T. 2009. Canonical Hamiltonian representation of
pseudoenergy in shear flows using counter-propagatingbiRdssves. Q. J. Roy. Met. Soc.
135 2161-2167.

HENG, K., & SPITKOVSKY, A. 2009. Magnetohydrodynamic shallow water waves: Linear

analysis.Astrophys. J.703 1819-1831.

Ho, C-. M., & HUERRE, P. 1984. Perturbed free shear laye/snnu. Rev. Fluid Mech16,
365-424.

H@ILAND, E. 1953. On two-dimensional perturbation of linear fl&eopfys. Pub].18, 333—342.

HoLwm, D.D., MARSDEN, J.E., RaTiu, T.S., & WEINSTEIN, A. 1985. Nonlinear stability of
fluid and plasma equilibriaPhys. Rep.123 1-116.

HOsSKINS, B. J., MCINTYRE, M. E., & ROBERTSON A. W. 1985. On the use and significance

of isentropic potential vorticity map£Q. J. Roy. Met. Socl11, 877-946.
HOWARD, L. N. 1961. Note on a paper of John W. Milek.Fluid Mech, 10, 509-512.

HowaRD, L. N. 1963. Neutral curves and stability boundaries intiteal flow. J. Fluid Mech,
16, 333-342.

HUGHES, D. W., & ToBIAS, S. M. 2001. On the instability of magnetohydrodynamic shea
flows. Proc. R. Soc. Lond. 457, 1365-1384.



BIBLIOGRAPHY 208

HUGHES, D. W., ROSNER R., & WEISS N. O. 2007. The Solar Tachocline Cambridge

University Press.

JEONG, H., Rvu, D., JoNES, T. W., , & FRANK, A. 2000. The magnetohydrodynamic Kelvin-
Helmholtz instability. IIl. The role of sheared magnetiddian planar flows Astrophys. J.529,

536-547.

JMENEZ, J. 1987. On the linear stability of the inviscid Karmamntea street.J. Fluid Mech,
178 177-194.

JMENEZ, J. 1988. Linear stability of a non-asymmetric, inviscidrian street of small uniform

vortices.J. Fluid Mech, 189, 337-348.

JONES, T. W., GAALAAS, J. B., Rru, D., & FRANK, A. 1997. The MHD Kelvin-Helmholtz
instability. 1. The role of weak and oblique fields in plarfeows. Astrophys. J.482, 230-244.

KELLY, R. E. 1967. On the stability of an invsicid shear layer whcperiodic in space and time.

J. Fluid Mech, 27, 657-689.

KEPPENS R., TOTH, G., WESTERMANN, R. H. J., & GOEDBLOED, J. P. 1999. Growth and
saturation of the Kelvin-Helmholtz instability with palelland anti-parallel magnetic fields.

Plasma Phys61, 1-19.
KERSWELL, R. R. 2002. Elliptical instabilityAnnu. Rev. Fluid Mech34, 83-113.

KiDA, S. 1982. Stabilizing effects of finite core on Karman earstreet. J. Fluid Mech, 122,

487-504.

KLAASSEN, G. P., & FELTIER, W. R. 1985a. Evolution of finite amplitude Kelvin-Helmholt
billows in two spatial dimensionsl. Atmos. Scj42, 1321-1339.

KLAASSEN, G. P., & FELTIER, W. R. 1985b. The onset of turbulence in finite-amplitudevitel
Helmholtz billows.J. Fluid Mech, 155 1-35.

KLAASSEN, G. P., & FELTIER, W. R. 1989. The role of transverse secondary instabiliti¢he

evolution of free shear layers. Fluid Mech, 202, 367-402.

KLAASSEN, G. P., & RELTIER, W. R. 1991. The influence of stratification on secondary

instability in free shear layerdl. Fluid Mech, 227, 71-106.



BIBLIOGRAPHY 209

KOCHAR, G. T., & JAIN, R. K. 1979a. Note on Howard’s semicircle theoredn Fluid Mech,
91, 489-491.

KOCHAR, G. T., & JAIN, R. K. 1979b. On Howard’s semi-circle theorem in hydromaigseJ.
Phys. Soc. Jpn47, 654—658.

LAHAYE, N., & ZEITLIN, V. 2012. Decaying vortex and wave turbulence in rotatinglletv
water model, as follows from high-resolution direct nuroarisimulations. Phys. Fluids 24,

115106.
LAamB, H. 1932.Hydrodynamics6™ edn. Cambridge University Press.

LiLLo, R., MININNI, P. D., & GOMEZ, D. O. 2005. Toward a dynamo model for the solar
tachocline.Physica A349 667-674.

LiN, C. C. 1955.The theory of hydrodynamics stabilit¢ambridge University Press.

LINDZEN, R. S. 1988. Instability of plane parallel shear flow (Tovgaadmechanistic picture of

how it works). PAGEOPH 16, 103-121.

LINDZEN, R. S., & TUNG, K. K. 1978. Wave overreflection and shear instabilityAtmos. Sc|.
35, 1626-1632.

Lipps F. B. 1962. The barotropic stability of the mean winds indtrmosphereJ. Fluid Mech,
12, 397-407.

LIVERMORE, P. W. 2007. An implementation of the exponential time défecing scheme to the

magnetohydrodynamic equations in a spherical sielComput. Phys220, 824-838.

MALAGOLI, A., Bopo, G., & ROSNER R. 1996. On the nonlinear evolution of

magnetohydrodynamic Kelvin-Helmholtz instabilitiesstrophys. J.456 708-716.

MASHAYEK, A., & PELTIER, W. R. 2012a. The ‘zoo’ of secondary instabilities prectyso
stratified shear flow transition. Part 1 Shear aligned cdiv@cpairing, and braid instabilities.

J. Fluid Mech 708, 5-44.

MASHAYEK, A., & PELTIER, W. R. 2012h. The ‘zoo’ of secondary instabilities precuyso
stratified shear flow transition. Part 2 The influence of gication. J. Fluid Mech 708 45-70.



BIBLIOGRAPHY 210

MCINTYRE, M. E., & SHEPHERD, T. G. 1987. An exact local conservation theorem for finite-
amplitude disturbances to non-parallel shear flows, withargs on Hamiltonian structure and

on Arnol'd’s stability theoremsJ. Fluid Mech, 181, 527-565.

MCINTYRE, M. E., & WEISSMAN, M. A. 1978. On radiating instabilities and resonant

overreflection.J. Atmos. Scj.35, 1190-1196.

METCALFE, R. W., ORSzZAG, S. A., BRACHET, M. E., & RILEY, J. J. 1987. Secondary
instability of a temporally growing mixing layed. Fluid Mech, 184, 207—-243.

MICHAEL, D. H. 1953. Stability of a combined current and vortex sheatperfectly conducting

fluid. Proc. Camb. Phil. So¢c51, 528-532.

MICHALKE, A. 1964. On the inviscid instability of the hyperbolic-tgant velocity profile. J.
Fluid Mech, 19, 543-556.

MILES, J. W. 1958. On the disturbed motion of a vortex shéeEluid Mech, 4, 538-552.

MiIN, K. W. 1997a. Numerical simulation of the individual modelexion in a slab jet.Mon.

Not. R. Astron. Soc285 191-200.

MiIN, K. W. 1997b. Simulation of the Kelvin-Helmholtz instabjliin the magnetized jet.
Astrophys. J.482 733-746.

MIURA, A. 1982. Nonlinear evolution of the magnetohydrodynamétvii-Helmholtz instability.
Phys. Rev. Lett49, 779-782.

MIURA, A., & SATO, T. 1978. Theory of vortex nutation and amplitude oscitlatin an inviscid

shear instabilityJ. Fluid Mech, 86, 33-47.

MOHEBALHOJEH, A. R., & DRITSCHEL, D. G. 2000. On the representation of gravity waves in

numerical models of the shallow water equatio@®s.J. Roy. Met. Soc126, 669—-688.

MOHEBALHOJEH, A. R., & DRITSCHEL, D. G. 2001. Hierarchies of balance conditions for the

f-plane shallow water equationd. Atmos. Scj58, 2411-2426.

MOHEBALHOJEH, A. R., & DRITSCHEL, D. G. 2009. The diabatic contour-advective semi-
Lagrangian algorithms for the spherical shallow water éqna. Mon. Weather Reyv137,

2979-2994.



BIBLIOGRAPHY 211

NYCANDER, J. 2003. Stable vortices as maximum or minimum energy flowsO. U. VELASCO
FUENTES, J. SHEINBAUM, J. OQcHOA (ed), Nonlinear Processes in Geophysical Fluid

Dynamics Kluwer.

OCHOA, J., SHEINBAUM, J., & JMENEZ, A. 2011. Lateral friction in reduced-gravity models:
Parametrizations consistent with energy dissipation amdervation of angular momenuri.

Phys. Oceanogr4dl, 1894-1901.

OFMAN, L., MORRISON P. J., & SEINOLFSON, R. S. 1993. Nonlinear evolution of resistive

tearing mode instability with shear flow and viscosi®hys. Fluids B2, 376—-387.

ORSZAG, S. A. 1971. On the elimination of aliasing in finite-diffece schemes by filtering

high-wavenumber components. Atmos. Scj28, 1074.

OTT10, A., & FAIRFIELD, D. H. 2000. Kelvin-Helmholtz instability at the magnetibtzoundary:
MHD simulation and comparison with geotail observationk.Geophys. Res105 21175-
21190.

PALDOR, N. 1983. Linear stability and stable modes of geostroptants. Geophys. Astrophys.
Fluid Dyn., 24, 299-326.

PaLoTTI, M. L., HEITSCH, F., ZWEIBEL, E. G., & HUANG, Y. M. 2008. Evolution of
unmagnetized and magnetized shear lay&sstophys. J.678 234-244.

PEARCE, J. D., & ESLER, J. G. 2010. A pseudo-spectral algorithm and test caseshéor t
numerical solution of the two-dimensional rotating Greétaghdi shallow water equations.

J. Comput. Phys229 7594-7608.

PEDLOSKY, J. 1964. The stability of currents in the atmosphere andtean: Part 1.J. Atmos.
Sci, 21, 201-219.

PEDLOSKY, J. 1987.Geophysical Fluid Dynamic£nd edn. Springer-Verlag.

PELTIER, W. R., & CAULFIELD, C. P. 2003. Mixing efficiency in stratified shear flow&nnu.
Rev. Fluid Mech.35, 135-167.

PEYRET, R. 2002.Spectral methods for incompressible viscous flSwringer AMS.



BIBLIOGRAPHY 212

PIERREHUMBERT, R. T. 1986. Universal short-wave instability of two-dins@nal eddies in an

inviscid fluid. Phys. Rev. Lett57, 2157-2159.

PLoTkA, H., & DRITSCHEL, D. G. 2012. Quasi-geostrophic shallow-water vortex{patc

equilibria and their stabilityGeophys. Astrophys. Fluid Dyri06 574-595.

PoLVvANI, L. M., McWiILLIAMS, J. C., $ALL, M., & FORD, R. 1994. The coherent structures
of shallow water turbulence: Deformation radius effecigl@ne/anticyclone asymmetry and

gravity wave generationChaos 4, 177-186.

POULIN, F. J., & ALIERL, G. R. 2003. The nonlinear evolution of barotropically @ jets.J.
Phys. Oceanogr33, 2173-2192.

PrRIEST, E. R., & FORBES T. G. 2000.Magnetic reconnection: MHD theory and applications

Cambridge University Press.

REMPEL, M., & DIKPATI, M. 2003. Storage and equilibrium of toroidal magnetic feid
the solar tachocline: A comparison between MHD shallowewaind full MHD approaches.

Astrophys. J.584, 524-527.

RipA, P. 1982. Nonlinear wave-wave interactions in a one-lagduced-gravity model on the

equatorialg plane.J. Phys. Oceanogrl2, 97-111.

RipA, P. 1983. General stability conditions for zonal flows in a-dgyer model on thg-plane or

the sphereJ. Fluid Mech, 126, 463-489.

RiPA, P. 1987. On the stability of elliptical vortex solution dfet shallow-water equationsl.

Fluid Mech, 183 343-363.

RiPA, P. 1991. General stability conditions for a multi-layerdeb J. Fluids Mech. 222, 119—
137.

RossMANITH, J. A. 2002.A wave propagation method with constrained transport fericand

shallow water magnetohydrodynamid3h.D. thesis, University of Washington.

SADOURNY, R. 1975. The dynamics of finite-difference models of thdlshawater equations.

J. Atmos. Scj.32, 680-689.

SALMON, R. 1998.Lectures on Geophysical Fluid Dynamid3xford University Press.



BIBLIOGRAPHY 213

SALMON, R. 2009. A shallow water model conserving energy and piatleanstrophy in the

presence of boundaried. Mar. Res.67, 779-814.

SATOMURA, T. 1981. An investigation of shear instability in a shallesater. J. Met. Soc. Japan

59, 148-170.

ScHECTER D. A., BovyDp, J. F., & GLMAN, P. A. 2001. “Shallow-water”
magnetohydrodynamic waves in the Solar tachocli&trophys. J.551, L185-1L188.

ScHMID, P. J., & HENNINGSON, D. S. 2001.Stability and Transition In Shear Flow#\pplied

Mathematical Sciences, vol. 142. Springer.

ScotT, R. K., & PoLvaNI, L. M. 2008. Equatorial superrotation in shallow atmospker

Geophys. Res. LetB5, L24202.

SHEPHERD, T. G. 1990. Symmetries, conservation laws, and Hamiltors&ructure in

geophysical fluid dynamicsAdv. Geophys287-338.

SHEPHERD, T. G. 1992. Arnold stability applied to fluid flow: Successasd failures.
In: CARNEVALE, G.F., & R.T. RERREHUMBERT, EDS. (eds), Nonlinear Phenomena In

Atmospheric and Oceanic Scienc&pringer-Verlag.

SHEPHERD, T. G. 2003. Ripa’s theorem and its relativetn: O. U. VELASCO FUENTES,

J. SHEINBAUM, J. OcHOA (ed),Nonlinear Processes in Geophysical Fluid Dynami€kiwer.

SHIVAMOGGI, B. K., & DEBNATH, L. 1987. Stability of magnetohydrodynamic stratified shea
flows. Acta Mech, 68, 33—42.

SHOWMAN, A. P. 2007. Numerical simulations of forced shallow-wéatabulence: Effects of
moist convection on the large-scale on circulation of &rpénd Saturn.J. Atmos. Scj.64,

3132-3157.

SHOWMAN, A. P., & PoLvANI, L. M. 2011. Equatorial superrotation on tidally locked

exoplanetsAstrophys. J.738 71-94.

SMYTH, W. D., & Mouwm, J. N. 2012. Ocean mixing by Kelvin-Helmholtz instability.
Oceanography25, 140-149.

SPIEGEL, E. A., & ZAHN, J. P. 1992. The Solar tachoclin&stron. Astrophys265 106-114.



BIBLIOGRAPHY 214

STAQUET, C. 1995. Two-dimensional secondary instabilities in argjty stratified shear layer.

J. Fluid Mech, 296, 73-126.

STAQUET, C. 2000. Mixing in a stably stratified shear layer: Two- ahdee-dimensional

numerical experimentd-luid Dyn. Res.27, 367-404.

STAQUET, C., & SOMMERIA, J. 2002. Internal gravity waves: From instabilities tdotuence.

Annu. Rev. Fluid Mech34, 559-593.

STEGNER, A., & DRITSCHEL, D. G. 2000. A numerical investigation of the stability oflated
vortices beyond the quasi-geostrophic regite?hys. Oceanogr30, 2562-2573.

STUART, J. T. 1967. On finite amplitude oscillations in laminar mixilayers. J. Fluid Mech,

29, 417-440.

SUTHERLAND, B. R., & PELTIER, W. R. 1992. The stability of stratified jetsGeophys.
Astrophys. Fluid Dyn.66, 101-131.

SUTHERLAND, B. R., & PeELTIER, W. R. 1994. Turbulence transition and internal wave

generation in density stratified jet8hys. Fluids6, 1267-1284.

SUTHERLAND, B. R., CAULFIELD, C. P., & RELTIER, W. R. 1994. Internal gravity wave

generation and hydrodynamic instability. Atmos. Sci51, 3261-3280.

TAKEHIRO, S. |., & HAYASHI, Y. Y. 1992. Over-reflection and shear instability in a shaH
water model.J. Fluid Mech, 236, 259-279.

TAYLOR, G. |. 1915. Eddy motion in the atmospheRhil. Trans. Roy. Soc. Lond, Al5 1-26.

THUAL, O. 1986. Transition vers la turbulence dans des sgstes dynamique apparést la

convection Ph.D. thesis, Univresité de Nice-Sophia Antipolis.

THUBURN, J., & HAYNES, P. H. 1996. Bounds on the growth rate and phase velocity of
instabilities in non-divergent barotropic flow on a sphefesemicircle theorem.Q. J. Roy.

Met. Soc.122 779-787.

ToBIAS, S. M., & WEISS, N. O. 2007. The solar dynamo and the tachoclit@. HUGHES,
D. W., RosNER R., & WEIss, N. O. (eds),The solar tachocline Cambridge University

Press.



BIBLIOGRAPHY 215

ToBIAS, S. M., DAMOND, P. H., & HUGHES, D. W. 2007. -plane magnetohydrodynamic
turbulence in the Solar tachoclin@strophys. J.667, L113-L116.

TORO, E. F. 2001.Shock-Capturing Methods for Free-Surface Shallow Flowgey.
TREFETHEN L. N. 2000. Spectral Methods in MATLAESIAM.
VALLIS, G. K. 2006.Atmospheric and Oceanic Fluid DynamidgSambridge University Press.

VLADIMIROV, V. A., & MOFFATT, H. K. 1995. On general transformations and variational
principles for the magnetohydrodynamics of ideal fluidsit Ra Fundamental principlesJ.

Fluid Mech, 283 125-139.

VLADIMIROV, V. A., MOFFATT, H. K., & ILIN, K. I. 1996. On general transformations and
variational principles for the magnetohydrodynamics efidfluids. Part 2. Stability criteria for

two-dimensional flowsJ. Fluid Mech, 329 187-205.

WALEFFE, F. 1990. On the three-dimensional instability of strainedices. Phys. Fluids A2,

76-80.

WATSON, M. 1981. Shear instability of differential rotation in staGeophys. Astrophys. Fluid
Dyn,, 16, 285—-298.

WAUGH, D. W., & DRITSCHEL, D. G. 1991. The stability of flamentary vorticity in two-
dimensional geophysical vortex-dynamics moddlg=luid Mech, 231, 575-598.

WEIss, N. O. 1966. The expulsion of magnetic flux by eddi¢doc. Roy. Soc. Lond.,/293
310-328.

WoobD, T., & MCINTYRE, M. E. 2011. Polar confinement of the Sun’s interior magnfisici

by laminar magnetostrophic flow. Fluid Mech, 677, 445-482.

Woob, T., MCCASLIN, J., & GARAUD, P. 2011. The Sun’s meridional circulation and interior

magnetic field Astrophys. J.738 47.
YOUNG, W. R. 1986. Elliptical vortices in shallow water. Fluid Mech, 171, 101-119.

ZABUSKY, N. J., & DEEM, G. S. 1971. Dynamical evolution of two-dimensional unktanear

flows. J. Fluid Mech, 47, 353-379.



BIBLIOGRAPHY 216

ZAQARASHIVILI, T. V., OLIVER, R., BALLESTER, J. L., & SHERGELASHVILI, B. M. 2008.

Rossby waves in “shallow water” magnetohydrodynamis& A., 470, 815-820.

ZAQARASHIVILI, T. V., CARBONELL, M., OLIVER, R., & BALLESTER, J. L. 2010. Magnetic

Rossby waves in the solar tachocline and Rieger-type petiies. Astrophys. J.709, 749—758.

ZEL'DOVICH, YA. B. 1957. The mangetic field in the two-dimensional motiora@onducting

turbulent fluid. Sov. Physics JET,R, 460-462.



