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1 Summary 

Neural stem cells (NSCs) give rise to the mammalian central nervous 

system in a highly regulated process. Notch signalling is critical for the 

maintenance and fate determination of NSCs and we identified the RNA 

binding protein TDP-43 as a downstream effector of Notch1. TDP-43 is a key 

player in various neurodegenerative diseases including Amyotrophic lateral 

sclerosis (ALS), Frontotemporal lobar degeneration (FTLD) and Alzheimer’s 

disease. Here the protein is a main component of cytoplasmic inclusions 

accumulating in apoptotic neurons. Point mutations in TDP-43 were recently 

shown to cause ALS and FTLD and the protein was therefore suggested to 

play a role in disease onset or progression. However, it is not known how the 

mutations affect protein function and whether they result in a loss- or gain-of-

funtion. Upregulation of p53 has been observed in affected neurons of ALS 

patients, but no correlation to TDP-43 has been described to date. In this 

study we show that expression of TDP-43 and its mutant form TDP-43(A315T) in 

the developing telencephalon results in p53-mediated apoptosis of NSCs. In 

accordance, we were able to rescue the early lethality of hTDP-43(A315T) 

mutant mice by pharmacological inhibition of p53. Furthermore, we show in 

our studies that TDP-43 binds Cdkn1a mRNA and demonstrate Cdkn1a as 

being upregulated after TDP-43 expression. This most probably results in 

altered cell cycle regulation which we observed following TDP-43 and TDP-

43(A315T) expression.  
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2 Abbreviations 
 
ALS  Amyotrophic lateral sclerosis 
AVE  Anterior visceral endoderm 
bHLH  basic helix-loop-helix 
BLBP  Brain lipid-binding protein 
BMP  Bone morphogenic protein 
BPs  Basal progenitor cells 
BrdU  Bromodesoxyuridine 
Cdkn1a Cyclin-dependent kinase inhibitor 1a 
cDNA  complementary DNA 
cKO  conditional knockout 
CLIP  Crosslinked RNA Immunoprecipitation 
CNS  Central nervous system 
CFTR  Cystic fibrosis transmembrane conductance regulator 
CP  Cortical plate 
DEPC  Diethylpyrocarbonate 
dsRBD Double-stranded RNA binding domain 
dsRNA Double-stranded RNA 
EdU  Ethynyldeoxyuridine 
ES  Embryonic stem 
EtOH  Ethanol 
FACS  Fluorescence-activated cell sorting 
FGF  Fibroblast growth factor 
FMRP  Fragile X mental retardation protein 
FTLD  Frontotemporal lobar degeneration 
FUS  Fused in Sarcoma 
FXS  Fragile X syndrome 
FXTAS Fragile X tremor ataxia syndrome 
GLAST Astrocyte-specific glutamate transporter 
HBSS  Hank’s buffered saline solution 
INM  Interkinetic nuclear migration 
iPS  Induced pluripotent stem 
IUE  In utero electroporation 
ISH  In situ Hybridization 
IZ  Intermediate zone 
KD  Knockdown 
KH  K homology 
Lcn2  Lipocalin2 
miRNA MicroRNA 
MP  Microprocessor 
NEs  Neuroepithelial cells 
NES  Nuclear export signal 
Ngn2  Neurogenin 2 
NGS  Normal goat serum 
NICD  Notch intracellular domain 
NLS  Nuclear localization signal 
NPs  Neural progenitors 
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NS  Neurosphere 
NSC  Neural stem cell 
PCR  Polymerase chain reaction 
PFA  Paraformaldehyde 
piRNA  Piwi-interacting RNA 
PMSF  Phenylmethylsulfonyl fluoride 
PNS  Peripheral nervous system 
PVDF  Polyvinylidene fluoride 
qRT-PCR Quantitative real time PCR 
RACE  3’ rapid amplification of cDNA ends 
RBP  RNA binding protein 
RGCs  Radial glial cells 
RISC  RNA inducible silencing complex 
RNP  Ribonucleoprotein 
hnRNP heterogeneous nuclear ribonucleoprotein 
RRM  RNA recognition motif 
RT  Room temperature 
Sam68 Src associated in mitosis 68 kDa 
Shh  Sonic hedgehog 
siRNA  Small interfering RNA 
SMA  Spinal muscular atrophy 
SMN  Survival motor neuron 
SOD1  CuZn superoxide dismutase 1 
SR  Serine/Arginine-rich 
SVZ  Subventricular zone 
TDP-43 Tar DNA binding protein 43 kDa 
TGF  Transforming growth factor 
TN-C  Tenascin-C 
TNFR  Tumor necrosis factor receptors 
VZ  Ventricular zone 
 



 INTRODUCTION 
 

 9 

3 Introduction 
The introduction will guide the reader through the development of the 

central nervous system (CNS) with a special focus on the telencephalic 

development, as most of the experimental work was performed in this brain 

region. I will briefly touch upon gastrulation, neuronal induction and patterning 

of the neural tube and thereafter concentrate on cortical development. After I 

shortly introduce Notch signalling and a transcriptome analysis on Notch1 

depleted neural progenitor cells, which will explain the starting point of the 

project the thesis is composed of. The group of genes we focused on showing 

altered expression in the transcriptome analysis are RNA binding proteins, 

which will therefore be commented on in a separate chapter. A detailed 

chapter on TDP-43 will summarise the state of the art, with a special focus on 

the known functions of the protein and its role in neurodegenerative disease. 

Finally, an introduction on p53 and apoptosis will make the reader familiar 

with cell death mechanisms, as one of the key findings of the thesis is based 

on p53-mediated apoptosis.  

At the end of the introduction the main hypothesis and questions 

addressed in the thesis will be outlined and an overview of the experiments 

will be given.  

3.1 Development of the Mammalian Cerebral Cortex 

The brain is the most complex and least understood mammalian organ. 

The cerebral cortex, being the most highly evolved part of the human brain, 

encodes higher functions, determines intelligence and personality and 

distinguishes us from other mammals. Its massive enlargement through 

evolution, particularly in surface area, results in the convolution of the cortex 

and generation of ridges (gyri) and grooves (sulci) (Borrell and Reillo, 2012). 

Gyrification usually increases with brain size and presumably enhances 

computational capacities of the cortex, which is probably due to the increased 

number of neurons and their interaction. Therefore, the level of gyrification 

reflects the functional development of the cerebral cortex and thus correlates 

with intelligence (Deng et al., 2011). The importance of proper gyrification is 
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also apparent from various human diseases and a number of neurospychiatric 

disorders such as autism, epilepsy and schizophrenia (Yang et al., 2010). 

3.1.1 Gastrulation and Neural Induction 

Gastrulation in mammals occurs after implantation of the blastocyst into the 

uterine wall. During the process of gastrulation the three germ layers namely 

ectoderm, mesoderm and endoderm form, these are the precursor structures 

for organogenesis (Tam et al., 1993). The implanted blastocyst is cylindrical 

and composed of two structures, the epiblast to the distal and the hypoblast to 

the proximal side. The hypoblast forms all extraembryonic structures whereas 

the epiblast gives rise to embryonic ectoderm, endoderm and mesoderm 

(Gilbert, 2003). Both epi- and hypoblast are surrounded by the visceral 

endoderm, and the ventral side of the embryo corresponds to the outer 

surface of the visceral endoderm (Fig. 1).  

 
Figure 1. E6.5 embryo at early gastrulation stage Post-implanted embryo at E6.5 displaying early 
embryonic structures such as extraembryonic ectoderm and embryonic ectoderm. Distal-proximal, 
anterior-posterior, and ventral (V) -dorsal (D) axis are already determined at this early stage. 

 

The dorsal side corresponds to the epiblast surface directed towards the 

proamniotic cavity which will form in the centre of the embryo. During the 
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process of gastrulation cells undergo specification and migration, which is 

mainly coordinated by two signalling centres, the anterior visceral endoderm 

(AVE) located apically and the node at the tip of the epiblast (Bachiller et al., 

2000; Beddington, 1994). On the posterior side of the epiblast the primitive 

streak forms and prospective mesodermal cells migrate through this streak 

(Fig. 1). The cell ingression is coordinated by FGFs and the primitive streak 

will lengthen during this process along the apical-posterior axis until it reaches 

the node (Ciruna and Rossant, 2001). The extension is probably due to 

intercalation of some of the recruited cells between the distal and proximal 

ends of the streak. The definitive endoderm also ingresses through the 

primitive streak. Prospective neuroectoderm cells migrate through the node 

giving rise to the notochord at the anterior end of the embryo (Tam and 

Behringer, 1997). 

The first insights into how neural tissue is induced came from pioneering 

work of Mangold and Spemann in 1924. By means of transplantation 

experiments they discovered a region of the blastopore, the dorsal lip, whose 

cells are already determined in their fate. Grafting of the dorsal lip into a 

recipient gastrula resulted in the induction of a second body axis. Only 

decades later was the bone morphogenic protein (BMP) antagonist Noggin 

identified as a molecular mediator that induces neuronal specification (Smith 

and Harland, 1992). Now many models of neural induction have been 

proposed, the predominant one being the default model suggested by Levine 

and Brivanlou (Levine and Brivanlou, 2007). This model is based on the idea 

that the early mouse embryo exists in a primed neural state that will only form 

other tissue, if the neural fate is blocked. The block of neural fate occurs 

initially at the posterior side of the embryo where the formation of mesoderm 

and endoderm is mediated by BMP/TGF-β (transforming growth factor), 

Nodal, FGF and Wnt signals, which are antagonised ventrally where the 

neural tube forms. 

In the mouse embryo BMP/TGF-β are inhibited by Chordin and Noggin that 

are produced by the node (Bachiller et al., 2000). The second signalling 

center, the AVE expresses Lim-1, Hesx1 and Otx-2, which are necessary for 

the formation of head structures and generation of an anterior-posterior axis 

(Perea-Gomez et al., 2001). In addition, anterior-posterior polarity is specified 
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by Hox-gene expression. Hox-genes are highly conserved throughout 

evolution and are expressed in all vertebrates. The genes are arranged in 

clusters on the chromosome according to their expression pattern along the 

head-tail axis, where the genes expressed most anterior are located towards 

the 3’ end of the cluster (Pearson et al., 2005). 

3.1.2 Formation of the Neural Tube 

Following gastrulation a portion of the dorsal ectoderm is specified to 

become neural ectoderm and is thereafter referred to as the neural plate. The 

neural plate forms the mammalian CNS and most of the peripheral nervous 

system (PNS) and the structure is determined by inductive signals from the 

notochord, which expresses sonic hedgehog (Shh) (Ybot-Gonzalez et al., 

2002). Additionally BMP inhibition through BMP antagonists is necessary for 

formation of neural ectoderm (Fig. 2) (Wilson and Hemmati-Brivanlou, 1995). 

The neural plate will undergo a process called neurulation and form the neural 

tube, whose anterior part gives rise to the brain and posterior part to the 

spinal cord (Liu and Niswander, 2005). Neurulation is divided into two phases, 

primary and secondary 

phases of neurulation 

(Lowery and Sive, 2004). 

The portion of the neural 

tube that forms the brain and 

most part of the spinal cord 

is made during primary 

neurulation and more caudal 

parts by secondary 

neurulation (Schoenwolf and 

Delongo, 1980).  

 

Figure 2. Neural tube formation 
During primary neurulation the neural 
folds elevate and fuse dorsally which 
results in the formation of a tube-like 
structure. Adapted from (Liu and 
Niswander, 2005) 
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During primary neurulation the edges of the neural plate fold upwards 

forming the neural folds that eventually fuse dorsomedially to form the neural 

tube beneath the ectoderm (Fig. 2). Neural crest cells derive from the neural 

folds at the dorsal most region of the neural tube at the junction between the 

ectoderm and neural ectoderm (Gilbert, 2003). These cells migrate out and 

differentiate into many cell lineages including Schwann cells, peripheral 

neurons and melanocytes. In the anterior region of the embryo neural crest 

cells also give rise to muscle and craniofacial bones. In the process of 

secondary neurulation the neural tube is formed by hollowing out of a 

condensed cord of cells that has formed under the ectodermal surface 

(Knecht and Bronner-Fraser, 2002).  

3.1.3 Patterning of the Neural Tube 

After formation of the neural tube, the tissue will acquire a defined pattern 

along the dorsal-ventral and anterior-posterior axis. This process is highly 

organized both temporally and spatially in order to generate a functional 

nervous system. The patterning of the spinal cord is determined by two major 

factors, Shh and proteins of the TGF-β family. Shh originates from the 

notochord and TGF-β family proteins from the ectoderm. These paracrine 

factors initiate signalling centres in the neural tube itself at the ventral pole the 

floor plate that expresses Shh and dorsally the roof plate expressing BMP4 

(Gilbert, 2003). Shh functions as a morphogen and generates a gradient 

along the ventral-dorsal axis which results in the expression of particular 

transcription factors and the generation of defined neuronal cell types (Fig. 3) 

(Chamberlain et al., 2008). In this way 5 domains are formed ventrally, termed 

p3, pMN, p2, p1 and p0 (Briscoe et al., 2000; Ericson et al., 1997). The 

transcription factors that are expressed at a given time point are determined 

by the concentration of the morphogen and the duration of the exposure of the 

cells to the morphogen (Harfe et al., 2004). As these parameters change over 

time the cells accordingly express different transcription factors. In this way 

the cells of the floor plate initially express Olig2, but start to express Nkx2.2 

and finally Shh as Shh levels increase (Ribes and Briscoe, 2009).  
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In the dorsal neural tube however, the paracrine factors determining the 

expression patterns and cell fates are not that well understood. BMPs are 

expressed and secreted from the roof plate, but they do not function as 

classical morphogens and were not shown to act over a long distance in the 

same way that Shh does (Hogan, 1996; Hu et al., 2004). In addition, several 

members of the TGF-β family are necessary for proper patterning of the 

dorsal neural tube, as are members of the Wnt family (Le Dreau and Marti, 

2012). Thus, formation of the 6 dorsal domains of the neural tube termed dP1-

dP6, is very complex and likely depends on an interplay between different 

inductive signals.  

 
Figure 3. Patterning of the neural tube The notochord induces expression of Shh in the floor plate 
and the ectoderm induces expression of the TGF-β proteins in the roof plate of the neural tube. A from 
this expression resulting Shh gradient at the ventral and TGF-β family gradient at the dorsal side results 
in the generation of distinct domains along the dorsal-ventral axis.  
 

3.1.4 Regional Specification of the Forebrain 

Besides establishment of a dorsal-ventral axis the neural tube acquires a 

defined anterior-posterior pattern. For the most part, the neural tube will give 

rise to spinal cord while the anterior end will split into distinct areas that 

compose the brain. From rostral to caudal these are termed forebrain, 

midbrain and hindbrain. The forebrain can be divided into telencephalon and 

diencephalon and the hindbrain into metencephalon and myelencephalon 

(Developmental of the Nervous System, 2006). All of these regions enlarge as 

development progresses and acquire a distinct and complex structure. Early 

in brain development an organizing centre located at the boundary of 

mesencephalon and metencephalon, the midbrain/hindbrain boundary or 

isthmus establishes the correct regionalization of forebrain and hindbrain 
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(Alvarado-Mallart, 1993). The midbrain/hindbrain boundary develops from the 

expression domains of Otx2 in the anterior and Gbx2 in the posterior part of 

the early embryo (Rhinn and Brand, 2001). The two genes cross-inhibit each 

other and at the point where this inhibition overlaps fgf8 is expressed 

(Crossley et al., 1996). The boundary is maintained by expression of 

engrailed which is induced by FGF8 and also other signalling molecules 

including Wnt1 and Pax2 (Lee et al., 1997). The specific brain regions will 

thereafter develop and many more genes are involved but the detailed 

description exceeds the scope of this thesis.  

In the following chapters I will focus on the development of the 

telencephalon in rodents and therefore more closely explain the organization 

of this structure before the onset of neurogenesis. The telencephalon consists 

of 2 hemispheres and their cavities are referred to as the lateral ventricles. 

Each hemisphere can roughly be divided into the pallium to the dorsal side, 

which will develop into the cerebral cortex, and the subpallium on the ventral 

side, which will become the basal ganglia (Fig. 4). Both of these areas can 

further be subdivided, in the case of the subpallium into the lateral and the 

medial ganglionic eminence. The lateral surface of the pallium that is directed 

to the ventricle is also referred to as the apical surface. On the opposite side 

is the basal surface, the surface of the cortex (Campbell, 2003).  

 

 

 

Figure 4. Dorso-ventral 
patterning of the 
telencephalon Coronal 
hemisection through the 
developing telencephalon 
of a mouse embryo. Pax6 
in the pallium and Gsh2 in 
the subpallium co-repress 
each other, resulting in 
specific expression of 
transcription factors Ngn2 
and Ascl1 in the drosal and 
ventral domain. VZ = 
ventricular zone, MGE = 
medial ganglionic 
eminence, LGE = lateral 
ganglionic eminence. 
Adapted from (Campbell, 
2003) 
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Two key transcriptional regulators Pax6 and Emx2 are regionally 

expressed in the cortex. The two proteins are expressed in the dorsal part of 

the cortex in an opposing gradient. Emx2 is highest in the posterior-medial 

part and diminishes to the anterior-lateral opposite to Pax6 (Bishop et al., 

2000). Not only can the telencephalon be divided into different expression 

domains on the anterior-posterior axis, but also along the dorsal-ventral axis. 

The restricted expression of transcription factors in pallium and subpallium 

results in distinct progenitor domains, which give rise to specific neuron 

subtypes. In the pallium Pax6 and its downstream target Neurogenin2 (Ngn2) 

are expressed by dorsal progenitor cells (Fig. 4), regulating their identity (Gotz 

et al., 1998; Kovach et al., 2013). Gsh2 and Ascl1 execute the same function 

in the subpallium. Pax6 and Gsh2 are key factors in setting up dorsal-ventral 

polarity and inhibit each other (Yun et al., 2001). Knockout of Pax6 or Gsh2 

severely disturb the balance between the two areas and result in expansion of 

either the dorsal or ventral progenitor domain (Toresson et al., 2000). 

Additionally Ngn2 restricts Ascl1 expression to the ventral telencephalon and 

the two proneural genes are crucial in establishing dorsal and ventral 

expression domains. Cortical neurons in mice depleted for Neurog2 acquire 

ventral characteristics and in addition expression domains of ventral factors 

are expanded into the dorsal telencephalon (Fode et al., 2000). However, 

neuronal determination is not abolished after Ngn2 deletion from the pallium 

as misexpressed Ascl1 compensates to a certain degree for Neurog2 loss. 

Similarly Ascl1-deleted progenitors in the subpallium can be fully rescued by 

Neurog2 expression (Parras et al., 2002). Many more factors are involved in 

dorsal and ventral fate determination such as Sox6, which is expressed in the 

pallium and was shown to be involved in controlling dorsal progenitor identity 

(Azim et al., 2009).  

3.1.5 Transition of Neuroepithelial Cells to Radial Glial Cells. 

The cerebral cortex originates from the neuroepithelium, a single layer of 

NSCs called neuroepithelial cells (NEs). The nucleus of these cells migrates 

up and down the apical-basal axis according to the different phases of the cell 

cycle. In S-phase the cell body is located towards the basal surface and 
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migrates back down apically during G2-phase. Reaching the apical surface 

the NE will divide symmetrically giving rise to two identical NEs (Fig. 5). This 

movement is referred to as interkinetic nuclear migration (INM) and gives the 

neuroepithelium a layered appearance (pseudostratified) (McConnell, 1995; 

Takahashi et al., 1993). However, it is not clear how positioning of the cell 

body and cell cycle progression interfere with each other. Recent studies 

addressing this issue illustrated that arrest of nuclear migration in G2-phase 

inhibits mitotic entry (Hu et al., 2013). Proper INM is therefore a requirement 

for cells to progress from G2- into M-phase. NEs show typical epithelial 

features including tight junctions and adherence junctions at the apical end 

and the expression of neuroepithelial markers such as the intermediate 

filament Nestin. In addition they express occludin and E-cadherin which are 

lost before neurogenesis begins (Kriegstein and Gotz, 2003). 

 
At E9-10, which is approximately when cortical neurogenesis begins, the 

NEs acquire characteristics of glial cells such and expression of astroglial 

markers and are thereafter referred to as radial glial cells (RGCs) (Kriegstein 

and Alvarez-Buylla, 2009). RGCs are NSCs as they self-replicate and are 

multipotent, giving rise to different cell types such as astrocytes, 

oligodendrocytes and neurons. The RGCs maintain Nestin expression but 

also begin to express Astrocyte-Specific Glutamate Transporter (GLAST), 

Tenascin-C (TN-C) and Brain Lipid-Binding Protein (BLBP) (Kriegstein and 

Gotz, 2003). Tight junctional complexes are lost in RGCs whereas adherens 

junctions are maintained (Aaku-Saraste et al., 1996). However, the cells retain 

their apical-basal polarity and the connection of the radial processes to the 

basal and apical surfaces. RGCs still line the lateral ventricle and undergo 
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Figure 5. Interkinetic 
nuclear migration (INM) in 
the neuroepithelium At 
E9-10 the neuroepithelium 
is composed of 
neuroepithelial cells which 
are undergoing INM and 
self-replicate. 
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INM although their nucleus only migrates within the ventricular zone (VZ), 

which is the layer lining the ventricle (Fig. 6). The transition of NEs to RGCs 

starts around E10 and terminates at around E12. Throughout the process of 

cortical neurogenesis the initial neuroepithelium will transform into multiple 

cell layers composed of different cell types (see section 3.1.6 and 3.1.7). 

RGCs in the dorsal telencephalon express the stem cell markers Sox2 and 

Pax6 but are more fate-restricted than NEs. They mainly give rise to neurons, 

astrocytes or oligodendrocytes in a direct or indirect way. Most astrocytes and 

oligodendrocytes are generated indirectly, meaning that first an intermediate 

cell type originates which is more fate restricted than the RGCs that will then 

differentiate further. NEs can undergo two different modes of division; 

symmetric or asymmetric. When cells proliferate symmetrically, cell 

constituents are distributed equally to the two daughter cells giving rise to two 

identical cells. In the case of NEs and RGCs this type of division is self-

replicative and therefore considerably increases the number of NSCs. 

Symmetric divisions first take place in the neuroepithelium, amplifying the 

number of NEs, and decrease as development and neurogenesis progresses. 

RGCs in contrast to NEs mostly divide asymmetrically, giving rise to either a 

RGC and a neuron or to a RGC and a basal progenitor cell (BP), which is an 

intermediate in the generation of neurons (Fig. 6). These asymmetric 

neurogenic divisions are important, as RGCs need to generate a large 

amount of neurons throughout cortical development, but still have to maintain 

the stem cell pool.  

As mentioned earlier, NEs and RGCs are highly polarized along their 

apical-basal axis and many constituents are only located to one pole of the 

cell. The polarized distribution of cell fate components in dividing cells is best 

studied in Drosophila neuroblasts, where it was shown that a group of 

proteins including Par3, Par6 and aPKC are key in setting up cell polarity 

(Knoblich, 2008). Par3 was also determined as a crucial factor in maintaining 

cell polarity and asymmetric division in the developing mammalian cortex 

(Bultje et al., 2009). In addition, asymmetric distribution of numb, an 

antagonist of the Notch signalling pathway is important in maintaining cell 

polarity (Zhong et al., 1996). The general notion therefore is that a division 

along the apical-basal axis with a vertical cleavage plane results in the equal, 
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symmetric distribution of cell fate determinants to the daughter cells. If the cell 

divides horizontal to the basal surface, crucial apical constituents will only 

remain in one of the daughter cells and result in an asymmetric division (Gotz 

and Huttner, 2005; Huttner and Brand, 1997; Shitamukai and Matsuzaki, 

2012). It is still a controversial matter if cleavage plane orientation alone is 

determining the mode of division but that discussion goes beyond the scope 

of this introduction.  

3.1.6 Early Embryonic Neurogenesis in the Mouse Cerebral Cortex 

From E12 onwards RGCs constitute the major pool of progenitor cells in 

the telencephalon. They divide and amongst others, give rise to BPs, which 

are located in a layer basal to the VZ that is referred to as the subventricular 

zone (SVZ) (Fig. 6). This layer is not present in all regions of the mammalian 

brain but exists in the telencephalon where BPs are most abundant. BPs 

express the transcription factors Tbr2, Ngn2 and NeuroD1 and are already 

committed to the neuronal lineage (Englund et al., 2005; Hevner, 2006). In 

contrast to NE and RGCs, the BPs loose their apical-basal polarity, are 

multipolar and undergo mitosis in the SVZ without obvious INM. The BPs are 

not able to self-renew extensively and mostly undergo symmetric neurogenic 

division giving rise to two immature neurons or neuroblasts. BPs are not 

pluripotent and are therefore not considered NSCs. However, they are further 

committed progenitors and one can refer to them as neural progenitor cells 

since they are able to give rise to neurons. The term neural progenitor can 

also be applied to NSCs such as NEs and RGCs and if used in the text, it 

refers to all three cell types. Neuroblasts migrate to the basal surface where 

they start to differentiate into Tbr1 positive neurons that incorporate into the 

cortical plate (CP) (Noctor et al., 2004). The newborn neurons use the radial 

fibre of the RGCs as a guide and migrate radially along them to their final 

location where they integrate (Noctor et al., 2001). In this inside out fashion 

the 6 layers of the cortex are consecutively generated until E19 when 

corticogenesis is completed. 

 

 



 INTRODUCTION 
 

 20 

 
Figure 6. Telencephalic development during the peak of neurogenesis Location and generation of 
radial glial cells, basal progenitors and neurons in the developing cerebral cortex at E14.5. Through 
asymmetric division radial glial cells give rise to neurons and basal progenitors. IZ = intermediate zone, 
SVZ = subventricular zone, VZ = ventricular zone, MZ = marginal zone, L1 = Layer 1. Adapted from 
(Tiberi et al., 2012) 

 

3.1.7 Layering of the Mammalian Neocortex 

Each cortical layer is composed of specific subtypes of neurons, which can 

be characterised by morphology, electrophysiology and markers. They can 

broadly be classified into GABAergic inhibitory interneurons and excitatory 

pyramidal neurons, which are glutamatergic. Pyramidal neurons originate 

from the VZ and radially migrate outwards to the CP. In contrast interneurons 

are derived from the ventral telencephalon, predominantly the medial 

ganglionic eminence from where they migrate tangentially to the cortex 

(Kriegstein and Noctor, 2004).  

Pyramidal projection neurons represent ~80% of the cortical neurons. They 

have a pyramid-shaped soma, several dendrites towards the basal surface 

and a single neurite that is directed towards the apical surface (Fig. 6) 

(Garcia-Lopez et al., 2006). After the migration of the neurons to their final 
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location within the cortex they undergo morphological and molecular 

differentiation and start to express layer specific genetic markers. Pyramidal 

neurons of Layer 6 (L6), which is the deepest layer and is therefore generated 

first, express Tbr1 and Sox5. Mice deficient in these genes show distinct 

neuronal migration defects resulting in inversion of the deeper layers. Sox5 is 

not only expressed in L6 but also in L5 and controls positioning of pyramidal 

neurons in these layers. Therefore, neurons in Sox5-/- mice fail to migrate past 

the early-born neurons, which results in inversion of the upper and lower 

layers (Kwan et al., 2008). In contrast to Sox5, Tbr1 does not only regulate 

positioning but also differentiation. This likely causes the distinct phenotype in 

Tbr1-deficient mice resulting in neuron clusters, which vary from rostral to 

caudal (Han et al., 2011; Hevner et al., 2001). Brn1 and Brn2 regulate the 

migration in the upper layers and are expressed in L2-L5. In contrast to most 

other transcription factors that are expressed in pyramidal neurons, Brn1 and 

Brn2 are already expressed in the BPs and maintain expression throughout 

migration and differentiation. Thus, double knockout of the two genes causes 

not only migration defects but also reduced proliferation of progenitors in the 

VZ and SVZ from E14.5 onwards, resulting in decreased number of late-born 

neurons (Sugitani et al., 2002). Satb2 is expressed in pyramidal neurons of all 

6 layers and mice deficient in this gene show delayed migration of late-born 

neurons, a defect that is corrected for postnatally (Alcamo et al., 2008; 

Britanova et al., 2008). One of the most significant migration defects in cortical 

development is observed in Reeler mutant mice. Here neurons fail to migrate 

past older neurons which results in an inversion of the layers (Caviness, 

1982). However, the mechanism is different from those caused by loss of the 

layer specific transcription factors. Reelin is a secreted extracellular matrix 

glycoprotein produced by Cajal-Retzius cells. These neurons are located in 

the mantel zone, which is the first and most outer layer generated during 

cortical development (Fig. 5). The mantel zone corresponds to L1 and no 

neurons migrate past this layer but integrate below. It is interesting to note, 

that although neurons integrate into the wrong location they still maintain the 

molecular and projection identity according to their birthdate. Therefore, 

neurons must be already determined in their fate as they start to migrate 

radially to their final location. The early commitment of embryonically 
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generated neurons was nicely addressed by Susan McConnell. Performing 

isochronic and heterochronic transplantation experiments in ferrets, she 

showed that the birthdate of cortical neurons correlates with their final laminar 

position and identity (McConnell, 1988). 

From mouse models it becomes apparent that proper migration and 

positioning are crucial in establishing a normal cortical lamination. However, 

apart from the factors regulating migration there are several other proteins 

that are necessary for the generation of the functional neocortex. Cux1 and 

Cux2 for example are expressed in the upper layers and regulate 

synaptogenesis and spine morphology of pyramidal neurons (Cubelos et al., 

2010) and Satb2 controls dendritic arborisation (Zhang et al., 2011). 

3.1.8 Sequential Expression of Transcription Factors during Cortical 

Development 

The predominant neuronal cell type in the dorsal cortex are pyramidal 

projection neurons and a sequential expression of transcription factors is 

associated with their formation. Pax6, Tbr2, NeuroD1 and Tbr1 are 

sequentially expressed in a partially overlapping manner (Englund et al., 

2005). Pax6 is present in NSCs in the VZ and is crucial in promoting both 

proliferation and differentiation (Quinn et al., 2007). Loss of Pax6 function 

leads to the reduction of cortical neurons, which is probably due to reduced 

Ngn2 expression. Ngn2 is a transcription factor that induces neuronal 

differentiation and is directly activated by Pax6 (Heins et al., 2002; Scardigli et 

al., 2001). The T-box transcription factor Tbr2 is expressed by BPs in the SVZ 

and is also important in establishing neuronal commitment. Moreover, BPs 

still proliferate to some degree and Tbr2 deletion causes severe behavioural 

deficits and microcephaly (Arnold et al., 2008). NeuroD1 is detected in some 

mitotically active cells of the upper SVZ but mainly regulates neuronal 

migration, survival and maturation of immature postmitotic neurons (Kim, 

2013). Finally, Tbr1 is expressed in early born neurons which reside in layer 6 

(Hevner et al., 2001). The expression patterns can therefore be linked to 

certain steps in neurogenesis. However, they are not exclusive but instead 

show a partial overlap and co-expression in the same cell. The sequential 
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expression of Pax6 à Tbr2 à NeuroD1 à Tbr1 seems to be a conserved 

program for neurogenesis of glutamatergic neurons as it is also found in the 

cerebellum (with some modifications) and the adult hippocampus (Hevner et 

al., 2006). 

3.1.9 Morphogens and Pathways Regulating Cortical Development 

Besides intrinsic factors, some of which are mentioned above, there are 

many extrinsic cues that regulate cortical development. These include BMP, 

TGF, Wnts, Shh, and fibroblast growth factors (FGFs). Many of these 

morphogens are involved in early patterning of the cortex while some of them 

act in regulating cortical neurogenesis.  

The Wnt pathway plays an important role in patterning of the forebrain and 

it is crucial for proper dorsalization of the telencephalon (Backman et al., 

2005; Grove et al., 1998). Wnt signalling is necessary for maintenance of 

progenitors at early stages of cortical development, indicated by β-catenin 

deletion experiments (Woodhead et al., 2006). Conversely, overexpression of 

stabilized β-catenin leads to overproliferation of cortical progenitors caused by 

delayed cell cycle exit (Chenn and Walsh, 2002, 2003). In contrast to these 

findings Wnt signalling promotes neurogenesis at later stages. In vitro 

experiments showed a direct activating effect of a β-catenin/TCF complex on 

Neurog1 and Neurog2 (Hirabayashi and Gotoh, 2005; Hirabayashi et al., 

2004). In vivo this effect is restricted to late cortical progenitors highlighting 

the stage and cell type-dependent effects of Wnts. How the different 

responses to Wnt signalling are timed is still an open question. The dual 

function of Wnt/β-catenin is possibly dependent on other factors such as 

varying amounts of Wnts (oscillatory actions of Wnt/β-catenin) or the adhesive 

function of β-catenin (Junghans et al., 2005). Furthermore, FGF2 signalling 

was suggested to influence the switch from progenitor maintenance to 

differentiation, as the presence of FGF2 supports maintenance of cortical 

progenitors whereas neuronal differentiation is enhanced in the absence of 

FGF2 (Israsena et al., 2004).  

Besides FGF2, which is required for expansion of NEs, FGF10 is 

expressed in cortical progenitors. It promotes the transition of NEs into RGCs 



 INTRODUCTION 
 

 24 

and its deletion results in a delayed appearance of neurogenic progenitors 

(Sahara and O'Leary, 2009). Interestingly, FGF10 is mainly expressed in the 

frontal areas of the developing cortex similar to FGF8, which increases 

survival and proliferation by cortical progenitors. FGF8 was furthermore found 

to diffuse from anterior to posterior generating a protein gradient (Toyoda et 

al., 2010). However, it is not clear if it acts as a classical diffusible morphogen 

and thereby regulates pattern formation. Finally, FGF9 and 18 contribute to 

the shift from neurogenesis to gliogenesis in the cortex. As neurons are 

differentiating they start to express the two factors and increasing levels will 

eventually promote gliogenesis in a feedback mechanism (Iguchi et al., 2013).  

 

3.2 Notch Signalling and Targets of Notch1 

Notch signalling is pivotal for the maintenance and cell fate choice of NSCs 

in the developing brain and in the neurogenic regions of the adult brain (de la 

Pompa et al., 1997; Lutolf et al., 2002; Nyfeler et al., 2005). Thus, Notch1 is 

predominantly expressed throughout the neuroepithelium from E9.5 and 

remains expressed in the 

neurogenic regions of the mouse 

brain even into adulthood (Basak 

and Taylor, 2007; Stump et al., 

2002). Conditional gene 

inactivation of Notch signalling 

components in the mouse have 

revealed the requirement for 

canonical Notch signals to 

generate a functional nervous 

system during embryogenesis 

(Hitoshi et al., 2002; Lutolf et al., 

2002). Still, the precise mechanism 

of how the Notch signal regulates 

neurogenesis and the formation of 

the mouse nervous system is not 

Figure 7. Notch signalling pathway Upon 
binding of Notch receptor to the ligand the 
intracellular domain of Notch (NICD) is being 
cleaved off. The NICD translocates to the nucleus 
where it associates with RBPJ-kappa, resulting in 
subsequent activation of canonical Notch target 
genes. Adapted from (Shimojo et al., 2011) 

Jagged1

Notch1

NICD

N
u
c
le
u
s

C
y
to
p
la
s
m

NICD

Hes1/Hes5

hes1/hes5

hes1/hes5

Ascl1,Ngn2

RBPJ

ADAMs

Ȗ�VHFUHWDVH�



 INTRODUCTION 
 

 25 

clear as well as are the target genes of the Notch transcriptional machinery.  

Notch family members are transmembrane proteins, which act as 

receptors. Notch signalling is activated by the binding of canonical ligands of 

the Delta or Jagged families to Notch receptors. Upon binding of a ligand, an 

ADAM protease and a Presinilin containing γ-secretase complex sequentially 

cleave off the ectodomain and intracellular domains of Notch (NICD) (Bray, 

2006). The NICD translocates to the nucleus where, in mice, it binds to and 

induces partial dissociation of the RBPJ-kappa repressor complex (Fig. 7). 

The NICD-RBPJ-kappa complex recruits chromatin remodelling proteins such 

as Histone acetyltransferases P300/CBP and Mastermind that recruit the RNA 

Polymerase II complex and promote transcriptional activation of targets 

including Hes and Hesr genes (Mumm and Kopan, 2000). The key targets of 

the Notch cascade in the mouse CNS are the Hes/Hey gene family, which 

encode basic helix-loop-helix (bHLH) transcription factors including Hes1 and 

Hes5. Hes5 can negatively regulate neurogenesis by suppressing the 

expression of the proneural genes Ascl1, Atoh1, Neurog1 and Neurog2. The 

proneural genes in turn activate expression of neuronal genes and induce 

neuronal commitment. Hence, Hes5 and Hes1 are central effectors of Notch 

signalling that prevent neural progenitor cells from entering neurogenesis 

(Hatakeyama et al., 2004; Ohtsuka et al., 1999). 

3.2.1 Dynamic Regulation of Transcription Factors in NSCs 

The bHLH transcriptional activators Neurog1, Neurog2 and Ascl1 are 

expressed in cortical progenitor cells of the telencephalon. Neurog1 and 

Neurog2 are important for development of the dorsal telencephalon (Fode et 

al., 2000), whereas Ascl1 controls ventral fates (Casarosa et al., 1999). These 

factors are implicated in neuronal differentiation whereas Ngn2 is clearly the 

most important as Ngn2-deficient mice display distinct corticogenesis defects 

(Fode et al., 2000; Nieto et al., 2001). Notch signalling causes Ascl1 and 

Neurog2 inhibition via Hes1/Hes5 in a process called lateral inhibition (Beatus 

and Lendahl, 1998; Kageyama et al., 2005). Thereby NSCs are maintained 

and neighbouring cells are induced to differentiate. Hes1 levels oscillate with 

a periodicity of 2-3 hours in NSCs due to a negative feedback loop (Hirata et 
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al., 2002; Shimojo et al., 2008). Because of the oscillating Hes1 levels, Ngn2 

is periodically repressed which again results in oscillating Delta1 levels as 

Delta1 is a directly activated target (Castro et al., 2006; Shimojo et al., 2008). 

This dynamic expression keeps NSCs in their undifferentiated state and only if 

Ngn2 expression is sustained will cells undergo neuronal differentiation 

(Kageyama et al., 2009). The mechanism controlling Ngn2 and Delta1 

expression levels however are not known. 

3.2.2 Identification of Novel Notch1 Targets 

One of the first experiments to address the function of Notch1 in the 

nervous system was to delete Notch1 conditionally from the NSCs of 

midbrain/hindbrain boundary (Lutolf et al., 2002). This ablation resulted in 

precocious differentiation, apoptosis and loss of well-known Notch targets 

including Hes5. Targeted mutation of Notch1 and RBPJ similarly results in 

altered expression of Notch targets and enhanced expression of proneural 

genes (de la Pompa et al., 1997). Not only is Notch signalling crucial to 

maintain stem cell potential, activated Notch1 promotes the acquisition of an 

earlier, less committed cellular phenotype in vivo (Gaiano et al., 2000). 

In order to analyse the expression profile of cells that were conditionally 

inactivated for Notch1, a transcriptome analysis was performed. The analysis 

was executed by a former PhD student in the lab, who crossed Notch1flox/flox 

onto En2::Cre mice to selectively delete Notch1 from Engrailed2 expressing 

progenitors of the midbrain/hindbrain boundary (Lutolf et al., 2002). Embryos 

carrying floxed Notch1 (Notchlox) and En2::Cre alleles were isolated at E10 

and individual cerebellar primordia were isolated from Notch1flox/flox, En2::Cre 

(mutant) and Notch1flox/wt, En2::Cre (control) animals. RNA was isolated from 

individual primordia using Trizol (Life Technologies) and RNeasy (Qiagen) 

columns and RNA was quantified by spectroscopy (NanoDrop) and analysed 

by 2100 Bioanalyzer (Agilent Technologies). The RNA samples of four mutant 

and four control animals were labelled and probed on Affymetrix MG430 

genechips (Verdon Taylor and Robert Kirch, unpublished), and the data were 

analysed by Genespringer software (Verdon Taylor and Robert Kirch, 

unpublished). Regulated genes were determined as those that showed a 
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differential expression of >2 fold on three of the four mutant genechips over all 

four control samples. Putative regulated genes were analysed further by 

quantitative RT-PCR on independent samples. Numerous Notch1-regulated 

gene clusters, which were classified according to gene ontology, were 

identified. One of these gene clusters encoded members of the RNA binding 

protein (RBP) family of proteins, which were mostly upregulated following 

Notch1 ablation (Fig. 8). Tardbp and Fus, two proteins shown to be involved 

in onset and progression of neurodegenerative disease were upregulated in 

the microarray. In addition, genes involved in miRNA biogenesis such as 

Sam68 and Xpo5 were found to be downregulated following Notch1 depletion. 

The data from this transcriptome analysis provided the basis for two studies. 

Firstly, the functional analysis of TDP-43 during telencephalon development, 

which is the topic of this PhD thesis. Secondly, a study I worked on as a side 

project investigating the function of Drosha and the microprocessor in NSCs. 

The main findings of this work are summarized in the Appendix. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 8. RBPs identified by microarray 
screen in the embryonic nervous system 
following conditional inactivation of Notch1 
Many of the RBPs found were upregulated 
(wt/mut level <1) following Notch1-ablation. The 
values are calculated as averages from four 
microarrays with independent wild type samples 
compared to four mircoarrays probed with 
independent mutant samples. 
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3.3 Cellular Function of RNA-Binding Proteins 

RBPs are localized in the nucleus or cytoplasm and are able to bind to 

single or double stranded RNA. They can be very diverse and contain one or 

more RNA-binding domains some of which are well-characterized such as the 

RNA-recognition motif (RRM), double stranded RNA binding domain (dsRBD) 

and K homology (KH) domain (Lunde et al., 2007). Additionally, they often 

contain domains that mediate interaction with other proteins, allowing them to 

form ribonucleoprotein (RNP) complexes composed of several RBPs 

(Dreyfuss et al., 2002). The proteins themself can be post-translationally 

modified which can results in altered RNA-binding function or changed 

localization within the cell (Glisovic et al., 2008). RBPs can control protein 

expression by the regulation of numerous cellular functions related to RNA 

biology. They play a major role at many different steps of pre-mRNA 

processing such as splicing, polyadenylation, RNA modification, localization, 

transport, translation and turnover (Glisovic et al., 2008).  

Alternative splicing is a process that can lead to the generation of distinct 

splice variant mRNAs encoding different protein isoforms and is mainly 

regulated by RBPs. During patterning of the neural tube for example, the 

midbrain/hindbrain boundary expresses two different isoforms of FGF8, 

FGF8a and FGF8b (Ghosh et al., 1996; Olsen et al., 2006). FGF8b contains 

an additional 11 amino acids compared to FGF8a, due to an alternative splice 

site. This alters their binding affinity to FGF receptors. The two isoforms have 

different functions during midbrain patterning and misexpression causes 

distinct phenotypes (Liu et al., 1999; Sato et al., 2004). RNPs bind to 

immature target RNAs in the nucleus (Giorgi and Moore, 2007) where they 

regulate the rate and efficiency of RNA splicing to form mature transcripts that 

can be polyadenylated, capped and exported to the cytoplasm ready for 

translation. In addition, RBPs can play a role in targeting mRNAs to distinct 

regions in a cell or to specific structures such as dendrites or synapses of 

neurons for example (Wells, 2006). It is also likely that RBPs help to shuttle 

specific target mRNAs to the RNA inducible silencing complex (RISC) found 

within P-body-like structures (Eulalio et al., 2007a; Eulalio et al., 2007b). In 

addition, it has been claimed that binding of RBPs to specific regions of target 
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mRNAs modulates the stability of transcripts and this may be by interacting or 

interfering with the RISC complex. Finally, RBPs play a pivotal role in the 

initiation and regulation of translation as docking sites or constituents of the 

ribosome or polysome complex (Glisovic et al., 2008; Kishore et al., 2010). 

Hence, transcriptional regulation of gene product expression is refined by 

post-transcriptional mechanisms through which cells can rapidly modulate the 

expression of specific proteins without the need for changing gene 

transcription. 

3.3.1 RNA-Binding Proteins in Disease 

RBPs are key regulators of RNA metabolism, especially pre-mRNA 

processing. It is therefore not surprising that mutations in RBPs are involved 

in many human diseases such as cancer and neurodegenerative disorders 

(Castello et al., 2013). Cancer can be caused by gain- and loss-of-function 

mutations, chromosomal rearrangement and gene amplifications. 

Chromosomal translocations of the Fus (Fused in sarcoma) gene were 

identified in human cancer (Crozat et al., 1993), where the promoter and N-

terminal domain of the Fus gene fuses with the C-terminus of transcription 

factors such as CHOP. The fusion protein FUS-CHOP looses the RNA-

binding domain present in FUS which is replaced by the DNA-binding domain 

of the transcription factor (Riggi et al., 2007). Thus, the FUS protein acquires 

a strong transcriptional activation domain, resulting in tumor formation. Altered 

expression of RBPs such as increased levels of Src associated in mitosis 

(Sam68) were found in breast and prostate cancer (Bielli et al., 2011). Sam68 

is involved in cytoplasmic-nuclear RNA transport (Li et al., 2002) and 

alternative splicing (Iijima et al., 2011) and binds, among several transcripts, 

β-actin mRNA which is the primary cytoskeletal component of dendritic spines 

(Itoh et al., 2002). The protein is therefore crucial for proper synaptic function 

and loss of Sam68 results in severe neurological defects such as Fragile X 

tremor ataxia syndrome (FXTAS) (Sellier et al., 2010). Loss-of-function in the 

RNA-binding protein Fragile X mental retardation protein (FMRP) also results 

in a neurodegenerative disorder called Fragile X syndrome (FXS). The 5’ UTR 

of the FMR1 (Fragile X mental retardation 1) gene contains several CGG 
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repeats, which are expanded in the disease to more than 200 repeats. The 

CpG islands become hypermethylated which causes gene silencing and loss 

of the protein in patients carrying this mutation (Garber et al., 2008). FMRP is 

mainly expressed in the brain and has been suggested to play a role in many 

different processes such as translational regulation at synapses and dendritic 

mRNA location (Bardoni et al., 2006; Li et al., 2001). Many more RBPs have 

been linked to neurodegenerative disorders for example the Tar DNA binding 

protein (TDP-43), which will be discussed in chapter 3.5. Additionally genetic 

mutations in RBPs cause muscular disorders and the most important one to 

mention is Spinal muscular atrophy (SMA) that is caused by mutations or 

deletion of the Survival motor neuron (SMN) gene (Cartegni and Krainer, 

2002). The functional protein encoded by SMN is SMN1, which is crucial for 

splicing and proper localization of RNP complexes in motor neurons. The 

other transcript variant SMN2 carries a single nucleotide change in exon 7 

that disrupts splicing and results in deletion of exon 7 (Lorson and Androphy, 

2000; Monani et al., 1999). Thus, the protein is less stable and becomes 

rapidly degraded.  

 

3.4 TDP-43 

3.4.1 Known Functions of TDP-43 

TDP-43 was originally identified as a factor capable of binding to the TAR 

DNA of human immunodeficiency virus where it is implicated in transcriptional 

regulation (Ou et al., 1995). It belongs to the family of heterogeneous nuclear 

ribonucleoproteins (hnRNP) and is ubiquitously expressed (Wang et al., 

2004). Deletion of Tardbp gene in mice leads to early embryonic lethality 

between E3.5 and E6.5 (Sephton et al., 2010b; Wu et al., 2010) indicating an 

important role during early development.  

Structurally, TDP-43 is a 414 amino acid protein that contains two RNA-

recognition motifs (RRMs), RRM-1 and RRM-2, and a glycine-rich region at its 

C-terminus (Fig. 9) (Buratti et al., 2001). The RRM-1 is necessary and 

sufficient for nucleic acid binding activity and the binding of the protein to 

single stranded RNA is highly specific for GU-rich sequences (Ayala et al., 
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2005). The C-terminus of TDP-43 is necessary for the formation of hnRNP-

rich complexes (Buratti et al., 2005; D'Ambrogio et al., 2009) and contains 

most of the TDP-43 point mutations that were identified in ALS cases. The 

ALS-linked mutations were shown to increase the half-life of the protein 

compared to wild type TDP-43 (Ling et al., 2010). TDP-43 is a 43 kDa protein, 

has a nuclear localization sequence (NLS) and a predicted nuclear export 

sequence (NES). It is localized primarily to the nucleus but seems to be 

continuously shuttled between nucleus and cytoplasm as it was observed for 

other hnRNPs and SR (serine/arginine-rich) proteins (Wang et al., 2002). The 

shuttling is necessary as the hnRNPs execute functions in both cellular 

compartments just like TDP-43. The proper localization of the protein can be 

disturbed by deletion or insertion of point mutations into the NLS (Ayala et al., 

2008b; Barmada et al., 2010).  

 

 
Figure 9. The TDP-43 and FUS proteins Scheme of TDP-43 and FUS, showing the functional domains 
present in the proteins. Both proteins inherit a nuclear localization signal, nuclear export signal, glycine-
rich region and one respectively two RNA-recognition motifs. Adapted from (Lagier-Tourenne et al., 
2010) 
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are a characteristic feature of a number of neurodegenerative disorders 

(Neumann et al., 2006). Several studies have investigated the cause and 

function of these aggregates, that are mainly composed of C-terminal 

fragments of TDP-43 of  ~25 kDa and ~35 kDa, which are phosphorylated and 
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seeds resulting in aggregation of TDP-43 (Nonaka et al., 2013). Interestingly 

some studies have shown that mislocalization of TDP-43 to the cytoplasm is 

insufficient to induce apoptosis (Igaz et al., 2011) and that cytoplasmic TDP-

43 aggregates are not necessary for induction of apoptosis in vivo (Arnold et 

al., 2013; Barmada et al., 2010; Igaz et al., 2011; Wegorzewska et al., 2009). 

It is therefore not clear if the inclusions are in fact causing cell death or 

whether they are a defense mechanism of the cell to store excessive TDP-43 

protein. Apoptotic neurons that display cytoplasmic inclusions show a partial 

deletion of TDP-43 from the nucleus (Igaz et al., 2011), which was suggested 

to drive, at least in part, the pathogenesis in diseases such as ALS. A recent 

study though demonstrated that degeneration of motor neurons due to 

expression of TDP-43 mutants does not result as a consequence of loss of 

TDP-43 from the nucleus or accumulation of TDP-43 aggregates in vivo 

(Arnold et al., 2013).  

It was reported that the cleavage of TDP-43 can be caspase-mediated 

(Suzuki et al., 2011) and also other factors of the apoptosis pathway such as 

Bim, Bax and Bcl were shown to be involved in TDP-43 induced cell death 

(Gonzalez de Aguilar et al., 2000; Suzuki et al., 2011). Additionally elevated 

p53 levels were detected in affected neurons of ALS patients (Eve et al., 

2007; Martin, 2000; Ranganathan and Bowser, 2010). However, the absence 

of p53 in a transgenic mouse model for ALS (hSOD1(G93A)) did not rescue the 

apoptosis, suggesting that cell death in these animals occurred in a p53-

independent manner (Kuntz et al., 2000; Prudlo et al., 2000). In addition, 

deletion of Puma, a downstream effector of p53, had no effect on the lifespan 

of SOD1(G93A) mice (Kieran et al., 2007). A causal link between p53 and TDP-

43 induced cell death has not been reported so far. 

Many lines of transgenic mice have been generated expressing wild type or 

mutant forms of TDP-43 (Arnold et al., 2013; Igaz et al., 2011; Iguchi et al., 

2013; Tsai et al., 2010; Wegorzewska et al., 2009; Wils et al., 2010; Xu et al., 

2010). TDP-43 expression from different promoters at varying levels causes 

neurodegeneration reminiscent of ALS and FTLD and results in early mortality 

in mice. One exception is a mouse line where an age-dependent progressive 

motor neuron death was observed following expression of TDP-43 point 

mutants close to endogenous TDP-43 levels (Arnold et al., 2013). As the KO 
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of TDP-43 causes early embryonic lethality conditional KO mice have also 

been generated. Global Tardbp deletion in postnatal mice using a Rosa-

CreER led to rapid death of the animals due to altered body fat metabolism 

(Chiang et al., 2010). Mice with Tardbp cKO in postnatal motor neurons 

exhibited an age-dependent progressive motor dysfunction (Iguchi et al., 

2013). 

Another known function of TDP-43 is in the regulation of pre-mRNA 

splicing. Currently 4 systems have been described where TDP-43 affects 

RNA splicing. The first described was the splicing out of exon 9 resulting in 

exon skipping of the cystic fibrosis transmembrane conductance regulator 

(CFTR). To regulate the exon 9 skipping, TDP-43 specifically binds to the GU-

rich exon-intron junction sequences of the CFTR pre-mRNA (Ayala et al., 

2006). TDP-43 also acts as a negative splicing regulator for Apo AII exon 3 by 

binding to UG-repeated elements (Mercado et al., 2005). However, molecular 

analysis show that the splicing inhibition through TDP-43 is partially 

dependent on the interaction with other hnRNP proteins including A1/A2/B1/C 

(Buratti et al., 2005). TDP-43 can also have a positive role in splicing as it 

enhances exon 7 inclusion during the SMN2 pre-mRNA splicing (Bose et al., 

2008). In addition, it was shown that TDP-43 and hnRNP H repress splicing of 

SC35 transcripts by competing with SC35 for binding to the terminal 3’ splice 

site of SC35 mRNA (Dreumont et al., 2010).  

TDP-43 can also regulate the transcript levels of genes such as Cyclin-

dependent kinase 6 (Cdk6) (Ayala et al., 2008a), Histone deacetylase 6 

(Hdac6) (Fiesel et al., 2010), Neurofilament light polypeptide (Nefl) (Strong et 

al., 2007), Autophagy related 7 (Atg7) (Bose et al., 2011) and Tardbp (Ayala 

et al., 2010; Sephton et al., 2010a). In the case of Tardbp, TDP-43 binds to 

the 3´ UTR of its own mRNA and thus promotes RNA instability. In addition, 

several groups have performed high throughput screening analysis in various 

systems that have revealed many additional transcripts that are bound and 

potentially regulated by TDP-43 (Buratti et al., 2013; Polymenidou et al., 2011; 

Tollervey et al., 2011). The relevance and function of TDP-43-binding to these 

many RNAs remains to be shown as does the relevance of the binding in 

disease. 
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3.4.2 TDP-43 in Neurodegenerative Disease 

ALS is a neurodegenerative disease characterized by the progressive 

death of motor neurons of the spinal cord, motor cortex and brainstem (Kirby 

et al., 2010). Patients suffering from ALS display progressive muscle 

weakening and eventually die due to respiratory failure or pneumonia within 2-

5 years of diagnosis (Mulder and Howard, 1976). ALS is a late onset disease 

with an incidence of 1-2 per 100,000 whereas it strikes most people between 

the age of 50-65. Most ALS cases are sporadic (~90% sALS) and are 

pathologically and clinically indistinguishable from familial ALS (fALS), which 

is inherited in an autosomal-dominant mode (Kirby et al., 2010). Nearly all of 

the sALS cases display TDP-43 pathology (ALS-TDP), manifesting in 

ubiquitin-positive inclusions in the cytoplasm of affected motor neurons, 

whose main constituent is TDP-43 (Neumann et al., 2006). In 5% of fALS and 

sALS cases point mutations in the TDP-43 protein have been found, mainly 

localized to the highly conserved C-terminal region. Up to now more than 30 

Tardbp point mutations have been identified in ALS-TDP (Dormann and 

Haass, 2011; Pesiridis et al., 2009). ALS cases with familial history are also 

associated with mutations in other genes, including CuZn superoxide 

dismutase 1 (SOD1) (Battistini et al., 2005), FUS (Kwiatkowski et al., 2009; 

Vance et al., 2009), Progranuline (Schymick et al., 2007), Valosine containing 

protein (VCP) (Johnson et al., 2010), Optineurin (Maruyama et al., 2010), 

Ubiquilin 2 (Deng et al., 2011), Profilin 1 (Wu et al., 2012) and Angiogenin 

(Ang) (Thiyagarajan et al., 2012), of which SOD1 is the most common of all 

mutations. Interestingly the inclusions occurring in patients with SOD1 

mutations are TDP-43- and FUS-negative which suggests a different 

mechanism of pathology (Dormann and Haass, 2011). In addition, expanded 

GGGGCC hexanucleotide repeats in the noncoding region of C9ORF72 on 

Chromosome 9p were recently found in ALS and FTLD patients. These 

repeats were detected in several patients and are suggested to cause both 

ALS and FTLD (DeJesus-Hernandez et al., 2011). The interrelationship 

between these different mutations and genes remains unknown however, 

TDP-43 aggregates seem to occur in many cases. 
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Not only is TDP-43 a key factor in ALS but also in other neurodegenerative 

diseases including Alzheimer’s disease, Parkinson’s disease, FTLD and 

Huntington’s disease (Chen-Plotkin et al., 2010). The disease affected 

neurons also display cytoplasmic inclusions consistent of TDP-43 and it is still 

under debate whether these inclusions are a cause or a secondary feature of 

the disease. It is still not known how TDP-43 triggers disease or contributes to 

observed phenotypes of other neurological disease. The prevailing question 

at the moment is, whether TDP-43 mutations result in loss-, gain-of-function 

or gain-of-amorphic function. Despite intensive research on ALS and TDP-43 

we are far from understanding the disease mechanism and the role of TDP-43 

during disease onset and progression.  

3.4.3 TDP-43 pathology in ALS patients 

ALS is the most common motor neuron disease, that goes along with 

muscle weakness and atrophy caused by degeneration of lower and upper 

motor neurons. α-motor neurons of the spinal cord as well as brainstem motor 

neurons of cranial nerves V, VII and X-XII display TDP-43 pathology, which is 

characterized by cytoplasmic inclusions consistend of ubiquitinylated and 

phosphorylated TDP-43 protein (Brettschneider et al., 2013). In addition, 

neurons of the frontal and motor cortex, striatum and hippocampal dentate 

granular neurons are affected (Neumann et al., 2006). In the cortex mainly 

layer 5 pyramidal neurons display TDP-43 pathology. At later disease stages 

TDP-43 inclusions are also present in projection neurons of layer II, III and VI 

whereas layer IV neurons are unaffected (Brettschneider et al., 2013). 

Besides neurons, TDP-43 immunopositive inclusions are present in 

oligendroglial cells in the subcortical white matter and cortex.  

15% of ALS patients develop symptoms such as behavioral and cognitive 

impairment that are typically defining FTLD (Ringholz et al., 2005). 

Conversely, 50% of FTLD patients show ALS pathology characterized by 

TDP-43 inclusions, thus showing the clinical and pathological link between the 

two diseases (Ling et al., 2013).  

Mouse models expressing wild type or mutant TDP-43 develop ALS and 

FTLD pathology to a certain extent. The mice display cognitive deficits an 
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motor neuron dysfunction (Swarup et al., 2011; Tsai et al., 2010). In addition 

TDP-43 inclusions are observed in the spinal cord, hippocampus and cortex 

(Igaz et al., 2011; Swarup et al., 2011; Wils et al., 2010). In the motor and 

somatosensory cortex ubiquitin pathology is only present in layer V neurons 

although TDP-43 is ubiquitiously expressed (Wegorzewska et al., 2009; Wils 

et al., 2010). Additionally increased GFAP reactivity in layer V is observed 

suggesting local activation of astrocytes caused by neuronal degeneration.  

3.4.4 The Role of Astrocytes in ALS 

Astrocytes are star-shaped glial cells present in the spinal cord and brain. 

They are involved in physical structuring of the brain and closely interact with 

neurons providing them with nutrients like lactate and glycogen and control 

extracellular levels of neurotransmitters and ions which are essential for 

neuron function (Ransom and Ransom, 2012). Astrocytes can become 

activated which occurs in response to injury of the CNS and also in 

neurodegenerative diseases, and this results in proliferation and characteristic 

phenotypic changes of the cells. Reactive astrocytes display an increased 

GFAP expression, extended processes and altered expression of extracellular 

matrix proteins. Active astrocytes can trigger motor neuron death by secretion 

of pro-apoptotic factors and nitric oxide, which results in mitochondrial 

damage (Barbeito et al., 2004). Astrocytosis is a pathological characteristic of 

ALS and was long considered to be a secondary feature of the disease 

(Hirano, 1996). Resent publications however indicate that glial cells play a 

critical role during neurodegeneration. Astrocytes derived from SOD1 mutant 

mice were shown to affect survival of wild type and SOD1 mutant motor 

neurons whereas interneurons and dorsal root ganglion neurons were 

unaffected (Di Giorgio et al., 2007; Nagai et al., 2007). Similar results were 

observed in two other studies where human motor neurons derived from 

embryonic stem cells or ALS patients displayed sensitivity to co-cultured 

SOD1 mutant astrocytes (Di Giorgio et al., 2008; Haidet-Phillips et al., 2011). 

In addition, wild type nonneuronal cells were found to extend the survival of 

SOD1 mutant motor neurons, indicating a protective effect (Clement et al., 

2003). A possible factor mediating the toxic function of activated astrocytes is 
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Lipocalin2 (Lcn2) that was identified in two independent studies employing 

TDP-43 mutant rats (Bi et al., 2013; Tong et al., 2013). Lcn2 was secreted by 

reactive astrocytes and was selectively toxic to neurons. However, the 

expression of Lcn2 was independent of mutant TDP-43 expression and might 

therefore be caused by the reactive status of astrocytes (Tong et al., 2013). 

Collectively these studies indicate a non-cell autonomous effect of glial cells 

on motor neurons whereas the only in vivo data on the matter was obtained 

from Tong et al. 2003. This group used transgenic rats that selectively 

expressed TDP-43(M337V) in astrocytes. The animals displayed progressive 

motor neuron death and progressive paralysis. Contradicting data was 

published by Serio et al. as they observed no adverse effects of TDP-43 

mutant astrocytes on co-cultured motor neurons (Serio et al., 2013). Most of 

the studies convincingly demonstrating a non-cell autonomous 

neurodegeneration were obtained using SOD1 mutant cells. fALS cases with 

SOD1 mutations do not show TDP-43 pathology and TDP-43 and SOD1 

mutant astrocytes might influence motor neurons differently. However, Tong 

et al. showed non-cell autonomous effects of TDP-43 mutant astrocytes on 

neighbouring motor neurons. These differing findings could be due to dose 

dependent effects. Induced pluripotent stem (iPS) cells derived form ALS 

patients carry one copy of the mutated gene and therefore express mutant 

protein at a much lower level than the TDP-43(M337V) transgenic rats. Thus, a 

certain level of mutant TDP-43 expression in astrocytes might be necessary to 

induce apoptosis in neighbouring motor neurons.  

A recent study investigated the adverse effect of oligodendrocytes on 

motor neurons. Oligodendrocytes are a type of glial cells, located in the CNS 

providing support and insulation for neurons (Kang et al., 2013). Degenerating 

oligodendrocytes were identified in the gray matter of SOD1(G93A) mice prior to 

disease onset. SOD1 deletion increased survival of the mice by delaying 

disease onset. These results also support the concept of non-cell autonomous 

degeneration of motor neurons and further studies will be needed to resolve 

the problem.  
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3.4.5 TDP-43 and FUS Regulate miRNA Processing 

A protein that has several structural and functional analogies with TDP-43 

is the hnRNP protein FUS (Fig. 9). It was shown that mutations in this protein 

similar to TDP-43 trigger premature degeneration of motor neurons and are 

responsible for 4-5% of familial ALS cases (Kwiatkowski et al., 2009; Vance et 

al., 2009). Inclusions containing FUS are also present in FTLD and ALS, 

though they are less frequent than TDP-43 inclusion (Kwiatkowski et al., 

2009; Vance et al., 2009). FUS is a DNA/RNA binding protein with an RRM, a 

glycine rich region and a NES that has been implicated in RNA maturation 

and splicing (Fig. 10). These striking similarities between TDP-43 and FUS 

and the linkage of the very to neurodegenerative diseases suggest a similar 

function in the onset of ALS.  

By mass spectrometry both proteins have been found to associate with 

Drosha, suggesting an involvement of TDP-43 and FUS in miRNA processing 

(Lagier-Tourenne and Cleveland, 2009). In fact, it was shown that the cellular 

levels of let-7b and miR-663 are affected by TDP-43 deletion (Buratti et al., 

2001). There is also evidence for the involvement of FUS in miRNA 

biogenesis. FUS interacts with Drosha and specific pri-miRNA sequences and 

helps Drosha recruitment to chromatin, allowing for efficient miRNA 

processing (Kang et al., 2013; Morlando et al., 2012). Similarly TDP-43 was 

shown to simultaneously bind to the Drosha complex and pri-miRNAs, which 

results in efficient cleavage into pre-miRNAs (Serio et al., 2013). Another 

hnRNP protein very similar to TDP-43, hnRNP A1, was shown to regulate the 

processing of pre-miR-18a (Guil and Caceres, 2007). All this data suggests a 

general function of hnRNPs in miRNA processing. Whether Drosha, the 

microprocessor or miRNAs play a role in sALS or fALS-TDP-43 remains to be 

clarified. 
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3.5 The Apoptosis Pathway and the Key Factor p53 

The tumor suppressor protein p53 encoded by Trp53 in mice regulates cell 

cycle, apoptosis and numerous other processes (Matlashewski et al., 1984). 

During normal homeostasis p53 is inactivated by its inhibitor Mdm2, an E3-

ligase that mediates ubiquitination of p53 and thus proteasomal degradation. 

Another critical regulator of p53 is Mdm4, a protein structurally very similar to 

Mdm2. Mdm4 contains a C-terminal Ring domain via which it interacts with 

Mdm2 to promote E3-ligase activity (Marine and Jochemsen, 2005). However, 

the protein itself lacks the E3-ligase activity. Despite repressing p53 function 

Mdm4 is an important regulator of Mdm2, and Mdm2 as well as Mdm4 

knockout mice display embryonic lethality which can be rescued by p53 

deletion (Montes de Oca Luna et al., 1995; Parant et al., 2001). Upon cellular 

stresses including DNA damage, hypoxia or cell cycle abnormalities, p53 can 

be phosphorylated by a number of kinases including ATM, ATR, Chk1 or 

Chk2. p53-phosphorylation at the N-terminus disrupts binding of Mdm2 and 

thus degradation of the protein (Kruse and Gu, 2009). Stabilized p53 can bind 

to transcriptional coactivators in the nucleus and activate transcription of 

genes including Cdkn1a (Cyclin-dependent kinase inhibitor 1) (Fig. 10). 

Cdkn1a encodes p21, a regulator of cell cycle progression. Increased levels 

of p21 result in cell cycle arrest at the two main checkpoints, G2/M and G1/S-

phase. The arrest allows for DNA damage repair and other repair mechanism 

to occur and the cell can thereafter progress through cell cycle (Woo and 

Poon, 2003). However, apoptosis can be initiated if the cell damage is 

irreparable.  

Besides phosphorylation other posttranslational modifications of p53 are 

regulating the function of the protein. p53 can be acetylated by the histone 

acetyltransferase CBP/p300 which allows for recruitment of cofactors and 

activation of target genes. Although p53 inherits a DNA-binding domain, 

cofactors are needed for the transcription of certain genes such as p21, Bax, 

and Puma. In addition, p53 can be sumoylated, methylated and neddylated 

whereas most of posttraslational modifications occur at the C-terminus of the 

protein (Kruse and Gu, 2009).  

 



 INTRODUCTION 
 

 40 

 
Figure 10. Apoptosis pathway p53 is inhibited by Mdm2 and becomes phosphorylated upon cellular 
stresses such as DNA damage. The phosphorylated and therefore stabilized protein acts as a 
transcriptional activator for Cdkn1a and other genes and can induce cell cycle arrest via increased p21 
levels. Additionally pro-apoptotic proteins can be activated such as Puma and Bax, which causes 
caspase and mitochondria mediated apoptosis.  
 
 

Programmed cell death or apoptosis goes along with characteristic cell 

changes such as membrane blebbing, DNA and nuclear fragmentation and 

cell shrinkage (Kerr et al., 1972). Apoptosis can also be induced by 

phosphorylated p53 protein through activation of pro-apoptotic factors such as 

Puma, Noxa, Bax and proteins of the anti-apoptotic Bcl2 family. Anti-apoptotic 

Bcl2 proteins like Bcl2 and Bcl-XL are located at the mitochondrial surface 

where they inhibit the pro-apoptotic proteins Bax and Bak and thereby 

promote survival of the cell (Kubli and Gustafsson, 2012). Activation of Puma 

and the effector proteins Bax and Bak results in binding and neutralisation of 

anti-apoptotic BCL-2 proteins. Thus Bax and Bak are freed and they can form 

pores in the outer mitochondrial membrane, which results in permeabilization 

of the membrane and release of pro-apoptotic factors from the mitochondria 

(Green and Kroemer, 2009). One of this factors is cytochrome C which 

interacts with Apaf1 and thereby initiates the formation of the apoptosome. 

The apoptosome recruits and activates the initiator caspase pro-caspase-9 
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through cleavage of the pro-caspase. Activated caspase-9 thereafter activates 

downstream effector caspases such as caspase-3 which degrade cellular 

targets (McIlwain et al., 2013). In addition, death receptors that belong to the 

group of tumor necrosis factor receptors (TNFR) can trigger apoptosis. The 

receptors contain an intracellular death domain that can initiate a signalling 

cascade, which will ultimately lead to apoptosis (Mc Guire et al., 2011). The 

major proteins of this cascade are caspases, which play also a central role in 

p53-mediated apoptosis, necrosis and inflammation. In contrast to p53-

activated apoptosis, the caspases involved in death receptor–mediated 

apoptosis are caspase 8, 7 and 3. 

Programmed cell death is a complex process in which many different 

signalling pathways and factors are involved. However, p53 is the central 

protein in cell death induction and its function has been addressed in 

numerous studies (Levine and Oren, 2009). Mouse models with p53 deletion, 

activated p53 or mutant p53 have been employed to study the protein, 

especially during tumor formation (Donehower and Lozano, 2009; Lozano, 

2010). In many cancers the protein was found to be absent or inactive due to 

missense mutations (Muller and Vousden, 2013), and it also plays a major 

role during neuronal apoptosis. p53 is implicated in apoptosis occurring in 

Alzheimer’s disease (de la Monte et al., 1997), Parkinson’s disease (Duan et 

al., 2002) and ALS (Martin, 2000; Ranganathan and Bowser, 2010) and 

inhibition of p53 in stroke and ischemia models rescues apoptosis (Culmsee 

et al., 2001). 

 

3.6 Hypothesis 

NSCs are capable of self renewal and differentiation. They are found 

throughout the embryonic development of the brain and Notch signalling is 

critical for the maintenance of NSCs. Performing a transcriptome analysis on 

Notch1 depleted tissue we identified a group of RBPs that showed altered 

expression upon loss of Notch1. A gene from this analysis that particularly 

caught our interest was Tardbp. The gene was found to be mutated in ALS 

and FTLD patients and the encoded protein TDP-43 is one of the main 

constituents of cytoplasmic inclusions residing in affected neurons. Studies on 
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TDP-43 have linked the protein to several cellular processes such as 

transcription, translation, splicing, mRNA export and miRNA biogenesis. 

However, TDP-43 function during brain development has not been addressed. 

We therefore decided to study the function of TDP-43 protein during 

development of the telencephalon, and in particular in NSCs. We found TDP-

43 as being upregulated following Notch1 depletion indicating a role for TDP-

43 in NSC maintenance and/or differentation. Thus, we intended to analyse 

the endogenous expression of Tardbp mRNA and protein in the different cell 

types of the developing brain by performing In Situ Hybridisation and 

immunohistochemistry. In order to address the function of TDP-43 and TDP-

43(A315T) we performed loss- and gain-of-function experiments. By In Utero 

Electroporation one can express or knockdown proteins of interest in the 

NSCs of the developing telencephalon. Thus, we employed this powerful 

technique to investigate the effect of modulated TDP-43 expression in vivo. 

Based on the results of these experiments we addressed the observed 

apoptosis phenotype following TDP-43 and TDP-43(A315T) expression in more 

detail. In addition, we investigated the function of TDP-43 and TDP-43(A315T) 

on cell cycle regulation, as we noticed a block in cell cycle progression after 

expression of TDP-43. Taken together we investigated the role of TDP-43 and 

TDP-43(A315T) in the developing telencephalon in vivo, and found that 

expression of TDP-43 and the point mutant in NSCs results in an apoptosis 

phenotype that is p53-dependent. In addition TDP-43 binds Cdkn1a mRNA 

which results in the upregulation of the transcript and a block of the cell cycle 

at G1/S and G2/M phase. 
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4 Materials 

4.1 Chemicals  

All used chemicals were obtained from the following companies if not 

indicated differently:  

Amersham Pharmacia Biotech, J.T.Baker, Carl Roth GmbH, Fluka, 

GibcoBRL, GE Healthcare, Invitrogen, Merck KGaA, Qiagen GmbH, Roche 

Diagnostics GmbH, Sigma-Aldrich. 

 

4.2 Buffers and Solutions 

All buffers and solutions were prepared with water purified in a Millipore filter 

system (Biocel A10 century). For the work with RNA all solutions were 

prepared RNAse free with Diethylpyrocarbonate (DEPC) treated water and 

autoclaved before use. 

4.2.1 Animal Treatment 

BrdU solution 10 mg/ml 5,5´-diaminobenzidine and 0,0024% 
H2O2 in 0.05 M Trizma-HCl, pH7.4 

HBSS/PenStrept 1x Hank´s buffered saline solution (HBSS, Gibco), 
1% PenStrept 

PFT-α solution 20 mM PFT-α in DMSO 
 

4.2.2 Histological and In Situ Hybridization (ISH) Procedures 

Blocking buffer 0.3% Triton, 2% NGS in PBS 
Buffer B1 100 mM Tris-HCl pH7.5, 150 mM NaCl 
Buffer B2 Buffer B1, 1% Blocking Reagent (Roche) 
Buffer B3 100 mM Tris-HCl pH9.5, 100 mM NaCl, 50 mM 

MgCl2 
Borate buffer 0.1 M Boric acid (in H2O), adjust to pH8.5 
DEPC H2O DEPC treated H2O 
0.2 M EDTA 0.2 M EDTA in H2O 
0.15% Eosin solution 0.15% (w/v) Eosin in 100% EtOH 
40% EtOH 40% EtOH in PBS 
70% EtOH 70% EtOH in PBS 
95% EtOH 95% EtOH in H2O (PBS cannot be used as it 

would result in precipitation of the salt) 
2 N HCl 2N HCl in H2O 
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Hybridisation mix 50% Formamide, 5x SSC, 5x Denhardt´s solution 
(Invitrogen), 250 µg/ml yeast tRNA (Roche) 

4 M Lithium chloride 4 M Lithium chloride in H2O 
NBT/BCIP 10 ml buffer B3, 45 µl NBT (Roche), 33 µl BCIP 

(Roche), the solution was filtered sterile after 
preparation 

PB buffer 0.1 M Phosphate buffer, adjust to pH7.4 
PBS 2.7 mM KCl pH7.4, 1.5 mM KH2PO4, 8.1 mM 

Na2PO4, 137 mM NaCl, (1 tablet) in 0.5 l H2O 
4% PFA 4% (w/v) Paraformaldehyde in 0.1 M PB buffer 
Sodium citrate 10 mM NaCitrate-2H2O, 0.05% Tween 
15% Sucrose in PBS 15% (w/v) Sucrose in PBS 
30% Sucrose in PBS 30% (w/v) Sucrose in PBS 
20x SSC 3 M NaCl, 0.3 M Na3Citrate-2H2O, adjust to pH7 
 

4.2.3 Cell Culture 

Blasticidin solution 10 mg/ml blasticidin S HCl in sterilized water 
Cell culture medium for 
N2A cells 

DMEM (Gibco), 1% Pen/Strept (Gibco), 10% fetal 
calf serum (FCS) (Life Technologies), FCS was 
heat inactivated for 30 min at 56°C before use 

Digestion mix Papain Mix, Ovomucoid Mix 1:1 
DMEM/F12 DMEM/F12 + GlutaMax™-I (Gibco) 
L15 L15 (Leibovitz) + GlutaMax™-I (Gibco) 
Neurosphere medium 
NS medium 

49 ml DMEM/F12 + GlutaMax™-I (Gibco), 1 ml 
B27 supplement (Gibco), 20 ng/ml FGF-2 (R&D), 
NS medium cannot be filtered sterile 

Ovomucoid mix 45 mg Trypsin inhibitor (Sigma), 21 mg BSA 
(Sigma), 40 µg/ml DNAse I (cell culture grade, 
Roche), 39 ml L15 medium, has to be filtered 
sterile and can be used one week if stored at 4°C 

Papain mix 30 U/ml Papain (Sigma), 40 µg/ml DNAse I, 0.24 
mg/ml Cystein (diluted in L15) (Sigma); has to be 
prepared fresh and filtered sterile 

0.25% Trypsin 2.5% Trypsin (Gibco) 1:10 diluted in Versene 
(Gibco) 

 

4.2.4 Biochemical Procedures 

5x AP I buffer 300 mM Tris-HCl, adjust to pH9.4 
1x AP II buffer 30 mM Tris-HCl, adjust to pH9.4 
Blocking buffer 5% (w/v) milk in TBST 
IP buffer 50 mM Hepes pH7.5, 0.4 M NaCl, 1 mM EDTA, 1 

mM DTT, 0.5% Triton-X-100, 10% Glycerol, add 
fresh 1x Complete from 50x stock solution 

1x KP buffer 30 mM Tris-HCl pH9.4, 40 mM ε-capronacid, 0.1% 
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SDS 
Lysis buffer 20 mM Tris-HCl pH7.6, 150 mM NaCl, 2 mM 

EDTA, 0.5% Triton-X-100, 0.5% Nonidet P40, 
10% Glycerol, add fresh 1x Complete from 50x 
stock solution 

RIPA buffer 50 mM Tris-HCl pH8, 150 mM NaCl, 1% Triton-X-
100, 0.5% Sodium deoxychelate, 0.1% SDS, add 
fresh 1x Complete from 50x stock solution 

RIP buffer 50 mM Hepes pH7.5, 0.1 M NaCl, 5 mM EDTA, 10 
mM DTT, 0.5% Triton-X-100, 10% Glycerol, 1% 
SDS 

Running buffer 25mM Tris-HCl pH9.4, 192 mM Glycine, 0.1% 
SDS 

Sample loading buffer 62.5 mM Tris-HCl pH6.8, 2% SDS, 0.01% 
Bromophenolblue, 25% Glycerol 

TBS 10 mM Tris-HCl pH8, 150 mM NaCl 
TBST 10 mM Tris-HCl pH8, 150 mM NaCl, 1%Tween20 
 
 
Recipes for SDS-acrylamide gel preparation: 
 
Separation gel (15%) Stacking gel (4%) 
2.5 ml 30% Acrylamid/Bis Acrylamid 0.555 ml 30% Acrylamid/Bis Acrylamid 
1.25 ml 1,5 M Tris-HCl (pH8,8) 1.055 ml 0,5 M Tris-HCl (pH6,8) 
25 µl 20% SDS 11.1 µl 20% SDS 
50 µl 10% APS 22.2 µl 10% APS 
5 ml H2O 2 ml H2O 
5 µl TEMED 2 µl TEMED 
 

4.2.5 Molecular Biology 

DNA loading buffer 15% Ficoll, 2.5% Bromphenolblue, 2.5% Xylene 
dNTPs 10 mM of each dATP, dGTP, dCTP, dTTP 

(Fermentas) in H2O 
2 M Glycine 2 M Glycine in H2O 
LB medium 10 g Bacto-tryptone, 5 g Bacto-Yeast Extract, 5g 

NaCl, add H2O up to 1 l (was prepared in the in-
house media kitchen) 

Saturated NaCl ~6 M NaCl in H2O 
0.1 M PMSF 0.1 M Phenylmethylsulfonyl fluoride 
RNA loading buffer 1 µl 10x TAE, 10 µl Formamide, 3.5 µl; 37% 

Formaldehyde, Ethidiumbromide 1:2000 
Tail lysis buffer 50 mM Tris-HCl pH8, 0.1 M EDTA, 0.1 M NaCl, 

1% SDS, 0.5 mg/ml Proteinase K freshly added 
before use. 

50x TAE 242 g Trizma-Base, 57.1 ml CH3COOH, 100 ml 
0.5 M EDTA pH8, to a total volume of 1 l 
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1 M TEA 1 M Triethanolamine, HCl 37%, adjust to pH8 
0.25% Trypsin 2.5% Trypsin (Gibco) 1:10 diluted in Versene 

(Gibco) 
 
 

4.3 Antibodies 

Antibodies used for ISH and Immunoprecipitation 
anti-DIG Fab-Fragments (Roche)  

anti-FLAG® M2 Affinity Gel (Sigma) 

 

 
Primary antibodies used for Immunostaining 

Antigen Origin Dilution Source  
BrdU rat 1:500 Serotec abD OBT0030CX 

activated caspase-3 rabbit 1:200 Cell Signaling, ASP1755A1E 
Pax6 mouse 1:500 Covance PRB-278P 

phospho-Histone 3 rabbit 1:300 Upstate 06-570 
Tbr1 rabbit 1:500 Abcam 31940 
Tbr2 rabbit 1:500 Abcam 9618 

TDP-43 rabbit 1:500 Proteintech 12892-1-AP 
 

 

Secondary antibodies used for Immunostaining 

Antigen Origin Dilution Source  
FITC conjugated anti-

mouse Immunoglobulin 
donkey 1:1000 Jackson ImmunoResearch 

FITC conjugated anti-
rabbit Immunoglobulin 

donkey 1:1000 Jackson ImmunoResearch 

Cy™3 conjugated anti-
mouse Immunoglobulin 

donkey 1:1000 Jackson ImmunoResearch 

Cy™3  conjugated anti-
rabbit Immunoglobulin 

 

donkey 1:1000 Jackson ImmunoResearch 

Cy™5  conjugated anti-
rabbit Immunoglobulin 

 

donkey 1:1000 Jackson ImmunoResearch 

Biotin-SP-conjugated 
anti-rat Immunoglobulin 

donkey 1:1000 Jackson ImmunoResearch 

Cy™3  conjugated 
Streptavidin 

 1:1000 Jackson ImmunoResearch 
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Primary antibodies used for Immunoblotting 

Description Origin Dilution Source 
Flag mouse 

 

 

1:2000 Sigma F3165 
GAPDH mouse 1:10000 Calbiochem (6C5) 

GFP mouse 1:1000 Roche 11814460001 
p21 rabbit 1:120 Abcam 7960 
p53 rabbit 1:1000 Santa Cruz (FL393) 

TDP-43 rabbit 1:2000 Proteintech 12892-1-AP 
 
 

Secondary antibodies used for Immunoblotting 

Description Origin Dilution Source 
Peroxidase-conjugated anti-

mouse Immunoglobulin 
donkey  1:10000 Jackson ImmunoResearch 

Peroxidase-conjugated anti-
rabbit Immunoglobulin 

donkey 1:10000 Jackson ImmunoResearch 

 

4.4 Primers 

 
Primers for cloning of ISH probes 

Description Forward 5'-3' Reverse 5'-3' 
Tardbp attccttcccgtctgtgctt ggctgttgtcggattcctt 

 
 

qRT-PCR primers 

Description Forward 5'-3' Reverse 5'-3' 
        Actin aggtgacagcattgcttctg gggagaccaaagccttc 

Bax tgaagacagggcctttttg aattcgccggagacactcg 
Bcl2 cctgtggtcatggatctgtt ggaagaccaggctttcttgt 

GAPDH tccatgacaactttggcattgtgg gttgctgttgaagtcgcaggagac 
Puma agcagcacttcgcgtcgcc cctgggtaaggggaggagt 

p21-3’UTR aaggccagctaggatgacag agagacccacaggagaggtg 
p21-CDR caaagtgtgccgttgtctct aggaagtactgggcctcttg 

p53-3’UTR cccagcgaaattctatccag cagacaggctttgcagaatg 
TDP-43-3’UTR gcccacaaactgaggggataa tgtcctcctgcacacaagtc 
TDP-43-CDR aggttgcccagtctctttgt agttcatccctccacccata 
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Genotyping primer 

Description Forward 5'-3' Reverse 5'-3' 

hTDP-43(A315T) #1 ctgttgtcggattccttccc   
#2  ctcgtcaatttcttacctggag caactgcaagagggtttattgg 

Trp53 #1  cgggaaatagagacgctgagtccg 
#2  ggtggggtgggattagataaatgcc 

agtgtgatgatggtaaggatag
gtcggc 

 

4.5 Enzymes 

BioScriptTM kit (Bioline) 

Cloned Pfu DNA Polymerase (Stratagene) 

Dnase I recombinant, Rnase free (Roche) 

pGEM-T Easy Vector System (Promega) 

Kappa2G polymerase (Peqlab) 

KOD DNA Polymerase (Novagen®) 

Proteinase K (Roche) 

Rnase-Inhibitor recombinant (Invitrogen) 

Sp6 RNA-Polymerase (Roche) 

SensiMix SYBR Kit (Bioline) 

SuperScript™ III First-Strand Synthesis System for RT-PCR (Invitrogen) 

T4 DNA-Ligase (Promega) 

T3 and T7 RNA-Polymerase (Roche) 

TaqDNA-Polymerase Kit (Invitrogen) 

 

4.6 Reagents  

Immunohistochemistry 
1,4-diazabicyclo(2.2.2)octane mounting medium (DABCO, Sigma) 

4’,6-Diamino-2-phenylindol (DAPI) (Roche) 

Normal Goat Serum (NGS) (Gibco) 

Tissue-Tek® O.C.T™ Compound (Sakura) 

Eukitt®-quick-hardening mounting media (Fluka) 

Cell Culture 
Lipofectamine™ 2000 Reagent (Invitrogen) 
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Poly-L-Lysin hydrobromide (Sigma-Aldrich) 

TransFectin™ Lipid Reagent (Biorad) 

Molecular Biology 
cOmplete, EDTA-free (Roche) 

1 Kb Plus DNA Ladder (Invitrogen) 

GlycoBlue™ (Applied Biosystems)  

Protein G Sepharose 4 Fast Flow (GE Healthcare) 

Precision Plus Protein™ Standards (BioRad) 

 

4.7 Plasmids 

 
Plasmid Cloned by / obtained from 
pBS-Beta2 NeuroD1::mCherry (Philip Knuckles) 

pBS-Beta2 NeuroD1::TDP-43 (Philip Knuckles) 

pCAGGS-eGFP (laboratory Prof. R. Kemler) 

pCAGGS-p21 (Miriam Vogt) 

pCAGGS-TDP-43 (Miriam Vogt)  

pCAGGS-TDP-43(A315T) (Miriam Vogt) 

pCAGGS-∆RRM1 (Miriam Vogt) 

p3X-GFP-flag   (laboratory Prof. S. Wilson) 

p3X-FLAG-myc-CMVTM-26 (Sigma)  

p3X-TDP-43-flag (Miriam Vogt) 

pFucci mKO-hCdt1 (Addgene)  

pMI-Tomato (Sebastian Lugert) 

pMI-TDP-43-Tomato (Miriam Vogt) 

pMI-TDP-43(A315T)-Tomato (Miriam Vogt) 

pSuper-shRenilla (Oligoengine) (Philip Knuckles) 

pSuper-shTDP-43 (Oligoengine) (Miriam Vogt) 

 
pCAGGS-TDP-43 and pCAGGS-∆RRM1 were subcloned into the pCAGGS 

vector from expression constructs obtained from Francisco E. Baralle (Ayala 

et al., 2008b).  
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pCAGGS-TDP-43(A315T) was subloned into the pCAGGS vector from an 

expression construct obtained from Pamela Shaw (SITraN, University of 

Sheffield.  

 

4.8 Kits 

 
Amersham™ ECL™ Western Blotting Detection Reagents (GE Healthcare) 

Click-iT® EdU Imaging Kit (Invitrogen) 

CalPhosTM Mammalian Transfection Kit (Clontech) 

10x DIG RNA labelling mix (Roche) 

EndoFree® Plasmid Maxi Kit (Qiagen) 

Pierce® BCA Protein Assay Kit (Thermo Scientific) 

Retro-XTM Concentrator (Clontech) 

QIAGEN Plasmid Midi Kit (Qiagen) 

QIAprep® Spin Miniprep Kit (Qiagen) 

QIA quick® Gel Extraction Kit (Qiagen) 

TRIZOL® Reagent (Invitrogen) 
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5 Methods 

5.1 Animal Treatment  

5.1.1 Animal Husbandry 

Mice were kept on a 12-hour day/night cycle with adequate food and water 

under SPF (specific pathogen free) conditions. Adult mice 8-12 weeks of age 

were used in the experiments. The day of vaginal plug was considered as 

embryonic day 0.5 (E0.5). 

C57Bl/6J, Trp53tm1Tyj and hTDP-43(A315T) (Schebelle et al., 2010), mice were 

used in the experiments.  

5.1.2 Intraperitoneal Injection of BrdU  

BrdU solution was stored in aliquots of 1 ml at -20°C. During use it was kept 

at 4°C in tubes wrapped with aluminum foil since BrdU is light sensitive. A 

final dose of 50 mg/kg bodyweight of the BrdU solution was injected 

intraperitoneally before sacrificing the mouse and isolation of the embryos. 

5.1.3 Intraperitoneal Injection of PFT-α  

PFT-α solution was stored in aliquots of 20 µl at -20°C. During use it was kept 

at 4°C and a final dose of 2.2 mg/kg bodyweight of the PFT-α solution was 

injected intraperitoneally into pregnant mice. 

5.1.4 In Utero Electroporation (IUE) 

For injections of plasmid DNA into embryonic brains in utero, a microinjector 

(Pneumatic Pico Pump, WPI Rnage) and Borosilicate glass capillaries (Kwick-

FilTM) were used. The capillaries were pulled in a micropipette puller (Sutter 

Instrument Co.) at: heat = 540°C; pull = 50; velocity = 50; time = 200 sec. The 

tip of the capillaries was broken off and sharpened using a capillary sharpener 

(Bachofer). The capillaries were back end-loaded with 10 µl of the plasmid 

solutions.  
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Plasmid stocks were prepared endotoxin free and resuspended in PBS at a 

high concentration (2-4 µg/µl). Fast green contrast dye diluted in PBS (10%) 

was added to the plasmids to control the targeting of the injection. For cell 

tracing the expression vector was injected together with a second vector 

coding for a fluorescent protein in a ratio of 3:1. Thereby, one can later trace 

the cells that were electroporated in vivo.  

Mice were anesthetized with Isofluran (Baxter), diluted in O2 and secured on a 

heated operating table. The eyes of the animals were covered with 

Bepanthene crème to avoid drying-out. The fur was removed from the 

stomach using depilation cream 

and the skin disinfected with 70% 

Ethanol (EtOH) thereafter. Before 

opening the abdomen, the skin was 

moistened with HBSS/PenStrept. 

This was repeated continuously, 

especially during the 

electroporation, to prevent drying-

out. After the capillary was checked 

for clogging a cut of about 2 cm 

was made from the bottom of the abdomen upwards. The uterine horns 

containing the embryos (E13.5) were pulled out of the abdominal cavity and 

1–2 µl of DNA solution were injected into one of the lateral ventricle of each 

embryo (Fig. 11). A cold light source was used for illuminating the developing 

embryos. The embryos were electroporated (Electro Square Pavator™, BTX® 

Harvard Apparatus) with 40 V, a pulse length of 50 ms and 5 pulses in an 

interval of 950 ms. The positive pole of the electrode was oriented towards the 

injection side, thereby DNA enters stem cells lining the lateral ventricle. 

Paddles were stored in cell culture PBS when not used. 

After injection and electroporation embryos were returned into the abdomen 

and the abdomen was filled with HBSS/PenStrept to disinfect it. Excess of 

HBSS/PenStrept and bubbles were gently pushed out of the thoracic cavity. 

Then the muscle and afterwards the skin were sutured. The animals were 

allowed to recover under a heat lamp. 

Figure 11: IUE scheme Embryos are electroporated 
at E13.5 and cells can be traced by expression of a 
fluorescent protein from a co-electroporated plasmid. 

+

+
-

 GFP/mCherry

E13.5 E14.5
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5.2 Histology 

5.2.1 Postnatal Tissue Fixation 

After mice were sacrificed in CO2, the embryos were isolated and fixed in 4% 

PFA at 4°C overnight. Then the tissue was cryoprotected in a sucrose 

gradient. First the tissue was incubated in 15% sucrose solution until it was 

equalized and sank to the bottom, followed by the same procedure using 30% 

solution. Thereafter, the tissue was embedded in tissue O.C.T. over dry ice 

and stored at -80°C. 

For paraffin embedding E6.5 embryos were washed twice in PBS after fixation 

in 4% PFA for 1 h at 4°C. Thereafter the embryos were consecutively 

incubated in 40%, 80% and 100% EtOH to dehydrate them. Each incubation 

was performed for 1 h at 4°C with constant agitation. Then the 100% EtOH 

was replaced with xylene for 2-5 min and embryos were put into hot paraffin 

before the tissue turned completely yellow or transparent. The embryos were 

left in hot paraffin overnight and were embedded the day after using fresh 

paraffin. The paraffin with the embryos was put to 4°C to harden and 

thereafter stored at 4°C. 

5.2.2 Cryosectioning 

After tissue equilibration to -20°C for 30 min, transverse sections were made 

at -21°C and 20 µm thickness using a cryostat (Leica CM3050S). The 

sections were collected on pre-cleaned and ground edged glass slides 

(SuperFrost Thermo Scientific). After air drying for 15 min, the sections were 

stored at 4°C in PBS.  

5.2.3 Paraffin-Sectioning 

Paraffin embedded embryos were sectioned at room temperature (RT) at a 

thickness of 7 µm using a microtome (Reichert-Jung 2030 Biocut). The 

sections were collected on pre-cleaned and ground edged glass slides 

(SuperFrost Thermo Scientific), dried at 37°C and finally stored at 4°C. 
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5.2.4 Antigen Retrieval 

Antigen retrieval was performed for anti-BrdU, activated caspase-3, TDP-43, 

Tbr1 and Tbr2 stainings.  

 

Antigen retrieval for activated caspase-3, TDP-43, Tbr1 and Tbr2  

Sections were incubated in sodium citrate buffer for 30 min at 80°C in a water 

bath, cooled afterwards to RT for 50 min and washed in PBS for 10 min. 
 

Antigen retrieval for BrdU  

Since BrdU is integrated into the genome sections were incubated in 2N HCl 

for 30 min at 37°C, cooled afterwards to RT for 15 min, incubated in borate 

buffer for 15 min at RT and finally washed in PBS for 10 min. 

5.2.5 Staining of Cryopreserved Tissue Fixed in 4% PFA 

To inhibit unspecific binding the tissue was blocked using normal goat serum 

(NGS). Therefore 300 µl of blocking solution was added to each slide and 

incubated for 1 h at RT. The blocking solution was removed and 250 µl of 

primary antibody diluted in blocking solution were added to each slide. The 

slides were covered with parafilm to avoid drying out and incubated at 4°C 

overnight in a moist chamber. The next day, slides were washed (3x10 min, 

PBS, RT) and 250 µl blocking solution with secondary antibodies were added 

to each slide, covered with parafilm and incubated in the dark for 3 h at RT. 

After, the slides were washed (3x10 min, PBS, RT) and the nuclei were 

stained using DAPI diluted in PBS (1 µg/ml) for 15 min at RT. The slides were 

washed one more time with PBS, air-dried for 15 min and mounted with 

DABCO. All steps following the application of the secondary antibody were 

performed in the dark to avoid fading of the fluorescent signal.  

For the BrdU staining a biotinylated secondary antibody was used in 

combination with a Cy™3-conjugated streptavidin to enhance the signal. The 

sections were incubated with the biotinylated anti-rat antibody for 3 h at RT 

and with the Cy™3-conjugated streptavidin for 1 h at RT, whereas both were 

diluted in blocking solution. 
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5.2.6 Ethynyldeoxyuridine (EdU) Staining 

EdU is an uridinederivate like BrdU and is integrated into the DNA during 

replication of the genome which allows measuring of DNA synthesis. The 

advantage of using EdU over BrdU is that the chemical compound Alexa 

Flour® azide can bind covalently to EdU via a copper-catalyzed reaction. This 

allows direct binding of a primary antibody, without denaturing of the DNA.  

For EdU staining the Click-iT® EdU Imaging Kit was used according to the 

manufacturer’s instructions. 

5.2.7 Hematoxylin & Eosin (H&E) Staining of Paraffin Embedded Tissue 

Fixed in 4% PFA 

H&E staining was performed to identify broad morphological changes in 

transgenic mouse embryos. With this staining method cell nuclei are coloured 

blue by oxidation of Hematoxylin which is added first to the slides. After a 

counterstaining using Eosin, eosinophilic parts of the cell such as collagen, 

cytoplasm, muscle fibres and red blood cells will be labelled in red.  

In order to perform H&E staining paraffin sections were re-hydrated by two 

times incubation in xylene for 5 min each followed by immersion of the slides 

in an EtOH series. The slides were incubated consecutively in 100%, 95% 

and 70% EtOH for 5 min each and finally transferred to H2O for 5 min. Then 

the sections were incubated in Mayer’s Hematoxylin solution for 2 min and 

washed in running tap water for 10 min. Next slides were counterstained in 

0.15% Eosin solution for 10 min and de-hydrated with 95% and 100% EtOH 

for 2 min each, cleared in two changes of xylene for 5 min each, air-dried for 

10 min and finally mounted in xylene based mounting media. 

The incubation times of the sections with Hematoxylin and Eosin varies 

dependent of the thickness of the sections. The incubation times mentioned 

above were used for 7 µm sections.  
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5.3 In Situ Hybridization (ISH) 

5.3.1 Preparation of ISH probe 

cDNA containing vectors were linearized using appropriate restriction 

enzymes (section 5.6.3) and the digest was analysed on a 0.6% agarose gel 

(section 5.6.4). The adequate bands were cut from the gel, purified and the 

concentration measured. To obtain Digoxygenine (DIG)-labelled RNA probes, 

linearized DNA was used as template in the RNA-labelling reaction mix. The 

mix was comprised of 7 µg template DNA, 1x reaction buffer (10x), 0.05 µg/µl 

RNase Inhibitor (1 µg/µl), 1x DIG RNA labelling Mix (10x) and 4 U/µl RNA 

Polymerase (40 U/µl) (T3 or T7). The final volume of the mix was adjusted to 

20 µl with DEPC H2O and incubated at 37°C overnight. The newly 

synthesized RNA-probes were precipitated by addition of 2 µl 0.2 M EDTA, 

2.4 µl 4 M lithium chloride and 75 µl 100% EtOH. The sample was mixed and 

incubated at -20°C for 30 min. Labelled RNA was precipitated by 

centrifugation (13000 rpm, 30 min, 4°C) and the supernatant carefully 

removed. RNA was washed with 75 µl 70% EtOH (chilled at -20°C) and 

centrifuged (13000 rpm, 30 min, 4°C). The supernatant was removed and the 

pellet air-dried for ~5 min. Thereafter, the cRNA-probes were dissolved in 100 

µl DEPC H2O and the RNA concentration measured using a NanoDrop ND-

1000 Spectrophotometer. To analyse the size of the probes they were run on 

a 1% RNA gel (section 5.6.5). The cDNA probes were stored at -20°C after 

adding one volume of formamide. 

5.3.2 ISH Procedure 

For acetylation a glass tray with slides was filled with 250 ml 0.1 M TAE and a 

magnetic stirrer added. 625 µl acetic anhydride was added dropwise with 

constant stirring and after 20 min, slides were washed (3x5 min, PBS, RT). 

For pre-hybridization, the slides were placed horizontally in a moistened 

chamber (50% formamide) with 400 µl of hybridisation-mix (without DIG-

labelled probes) for 3-4 h at RT. Prior hybridisation DIG-labelled probes were 

denatured by incubation of 100 ng/ml probe diluted in hybridisation–mix at  

85°C for 5 min and kept on ice thereafter. The pre-hybridisation-mix was 
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replaced by the DIG-labelled probe containing hybridisation-mix (400 µl per 

slide) and covered with hybri-slips (Sigma). The moist chamber was sealed 

with parafilm and incubated in a pre-heated incubator at 68°C overnight. 

Bottles with 5x and 0.2x SSC, a glass tray and an 80 ml glass beaker were 

also put into the incubator overnight to equilibrate. 

The next day, slides were rinsed in pre-warmed 5x SSC (68°C) in an 80 ml 

glass beaker and washed in 5x SSC for 5 min at 68°C. Afterwards, they were 

incubated in 0.2x SSC for 1 h at 68°C and finally cooled to RT for 5 min. 

Slides were placed in a moistened chamber and incubated for 1 h at RT with 

400 µl buffer B2. Next, hybridized DIG-labelled probes were detected with 400 

µl alkaline phosphatase coupled anti-DIG Fab-Fragments dissolved 1:2000 in 

the buffer B2, covered with hybri-slips for 4 h at RT. Afterwards, slides were 

washed twice for 20 min in buffer B1. To provide suitable conditions for the 

colour reaction and to suppress endogenous alkaline phosphatase activity, 

the samples were briefly rinsed and subsequently equilibrated overnight at 

4°C in buffer B3. 

The colour reaction was carried out in a moistened chamber by adding 400 µl 

of NBT/BCIP solution, an alkalinephosphate substrate. The slides were 

covered with hybri-slips and incubated at 37°C for developing. As the staining 

developed the slides were put to RT to slow down the reaction. For overnight 

reactions slides were kept at 4°C. The developing time varied, dependent on 

the used probe. Therefore the staining was controlled under the light 

microscope. 

A sense probe was always included and as here background staining 

appeared, slides were transferred to PBS to stop the reaction. After washing 

for 1 h in PBS, the slides were mounted with DABCO. 
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5.4 Cell culture 

5.4.1 Transfection of Cells with Lipofectamine or Transfectin 

For transfection, N2A cells were grown to a confluency of 70-80%. 

Lipofectamine™ 2000 Reagent or TransFectin™ Lipid Reagent were used 

and prepared according to the manufacturer’s instructions. 

5.4.2 Generation of Stable Cell Lines 

The stable N2A cell line N2A-hCdt1 was generated using the pFucci mKO-

hCdt1 (Sakaue-Sawano et al., 2008) expression plasmid. Cells were 

transfected with the plasmid and kept under blasticidin selection to eliminate 

all non-transfected cells. The medium containing blasticidin (10 µg/ml) was 

changed every 3-4 days and cells were sorted using FACS (section 5.4.6.) 

after 4 weeks of selection. Single cells were seeded in 96 well plates, 

expanded and analysed to confirm adequate expression of the plasmid.  

5.4.3 Antibody Staining of Cells 

Cells were plated on Poly-L-Lysine coated glass plates in a 12 well plate. 

Before staining the cells were washed twice in PBS to remove all serum which 

would result in a strong background signal after staining. Next, cells were 

fixed in 4% PFA for 20 min at RT with shaking. After, they were washed (3x10 

min, PBS, RT) and blocked with blocking solution for 30 min. The primary 

antibody diluted in blocking buffer was added for 1.5 h at RT with gentle 

shaking. The antibody solution was removed, the cells washed (3x10 min, 

PBS, RT) and next incubated with the secondary antibody in blocking buffer 

for 1.5 h at RT shaking. After washing (3x10 min, PBS, RT) the nuclei were 

stained using DAPI diluted in PBS (1 µg/ml) for 15 min at RT. The cells were 

washed once more with PBS and mounted with DABCO on glass slides. All 

steps following the application of the secondary antibody were performed in 

the dark to avoid fading of the fluorescent signal. 

For staining of cells the primary antibody anti-phospho-Histone 3 was used in 

the concentration of 1:400. As secondary antibody Cy™5 conjugated anti-

rabbit Immunoglobulin was used in a concentration of 1:1000.  
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5.4.4 Isolation and Culturing of Embryonic Forebrain NSCs 

Embryonic and adult NSCs can be cultured and expanded in vitro as 

neurospheres. For generation of embryonic neurospheres, the region of the 

dorsal forebrain where NSCs are located was micro-dissected.  

Before starting the dissection 5 ml sterile glass vials were prepared and 

labelled. Under the cell culture hood and under sterile conditions 150 µl of 

ovomucoid mix and 150 µl of papain mix were added to each vial.  

 

Isolation of the embryonic forebrain and NSCs: 
The uterus containing the embryos (E12.5-E18.5) was placed into a sterile 10 

cm dish with L15 medium. In a sterile cell culture hood the embryos were 

removed from the uterus and transferred to a fresh sterile 10 cm dish 

containing L15 medium. Embryos were decapitated and transferred to a fresh 

sterile 10 cm dish containing L15 medium. The micro-dissection of embryonic 

forebrain was performed with fine forceps with a scissor action under sterile 

conditions in a cell culture hood, using a binocular. The dissected tissue was 

transferred to a 5 ml glass vial with screw cap using the forceps or a sieve 

and lightly homogenized in the digestion mix with the tips of the forceps to 

assist the enzyme penetrating the tissue. Thereafter, the tissue was kept at 

room temperature until all of the dissections were completed. Between 

dissections of the embryos, any tissue sticking to the forceps and scissors 

was removed and the tools were sterilized by submersion in 70% ethanol. 

Care was taken not to damage the tips of the fine forceps. Therefore, a tissue 

paper was pushed to the bottom of the 50 ml bottle to protect the tips of the 

forceps. The dissection was continued until all of the embryos were prepared 

and tissue was digested in the 300 µl digestion mix for 10 min at 37˚C. 
The total volume of the digestion mix was increased relative to the size of the 

tissue isolated. Preparing the tissue from individual embryos reduced the risk 

of contaminating all of the preparation if the dissected tissue was pooled. If 

mutant mice were being used for the preparation, the donor embryos were 

genotyped and preparations with the same genotype pooled at a later stage if 

necessary. 
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After incubation an equal volume (300 µl) of ovomucoid mix was added and 

the tissue dissociated in the digestion/ovomucoid mix using fire-polished glass 

pipettes. Either a rubber bulb or electronic pipetting device was used and it 

was taken care not to aspirate the cells into the pipetter. The cells were 

pipetted 10-20 times until the solution was homogeneous and no clumps of 

tissue were visible. If the tissue did not dissociate easily, the tip of the Pasteur 

pipette was gently pressed against the bottom of the tube to reduce the 

opening and increase the pressure on the cells. 

Preparation of fire-polishing pipettes:  
The tips of sterile glass Pasteur pipettes were held on the edge of a Bunsen 

flame and rotated until the tip started to melt, removing the sharp edge, and 

reducing the diameter of the opening. The longer the tip was flamed the 

smaller the opening became. The diameter of the opening should not be too 

small to avoid damaging the cells due to shear forces. At least one fire-

polished pipette was prepared for each embryo to be dissected and the 

pipettes were sterilized by flaming prior to use. 

The dissociated cells were added to 9 ml DMEM/F12 in a 15 ml conical tube 

at room temperature and cells were centrifuged (80-100 xg, 5 min, RT) in a 

swing-out rotor. The supernatant was removed (leave a little – 100 µl – over 

the cells to avoid losing neural stem cells), and the cells were suspended in 4 

ml of neurosphere (NS)-Medium using a 1 ml pipette. 300.000 cells were 

transferred to a 25 cm2 flask for culture and it was assure that they were 

single cells. 

Culturing of NSCs as NS: 
Cells were fed every 4 d (addition of 4 ml NS-Medium) and passaged after 7 

d. Flasks were shaken every day to avoid clustering of the NS as this would 

falsify the number and size of NS formed after a given time point. Healthy NS 

are spherical with a smooth regular surface and are shiny under transmitted 

light (Fig. 12). If the cells attached to the plastic and spread out, the 

concentration of FGF-2 was too low and the cells were differentiating. This 

mostly happens if too many cells are taken into culture after dissociation of 

the tissue. In such an instance ½ of the cells were discarded and fresh NS-

Medium was added up to the original volume. 
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Figure 12. Images of developing neurospheres as well as fused and overgrown spheres A. Cells 
were isolated as described and plated in neurosphere medium. Most of the cells should be single and 
the culture should be devoid of aggregates. B. After 4 d in culture, neurospheres will have formed and 
should be relatively uniform in size. Neurospheres should be compact and homogeneous in texture as 
well as luminosity. C. If maintained at high density neurospheres will aggregate and fuse. D. Large and 
fused neurospheres can have rough edges and can be non-homogenous in texture. Also they 
sometimes display a dark or vacuolated center. Scale bar = 50 µm.  
 

Passage of NS: 
NS were transferred in a 15 ml falcon and centrifuged (800 rpm, 5 min, RT). 

Supernatant was removed, 200 µl Trypsin added and incubated at 37˚C for 5-

10 min. Thereafter 500 µl ovomucoid mix was added and the cells 

singularized using a fire-polished glass pipette. 5 ml of DMEM/F12 was 

added, the cells centrifuged (800 rpm, 5 min, RT) and the supernatant 

removed. Cells were dissociated in 1 ml and 300.000 cells used for re-

culturing in a 25 cm2 flask. It was assured that the cells were singularized 

properly as the newly formed NS would otherwise not be clonal and not 

representative for the neural stem cell potential of the cells. 

Freezing of NS: 
NS were frozen 3-4 d after the last passage when small spheres were already 

formed. Optional the cells can also be frozen directly after passaging. For 

freezing the cells were harvested in a 15 ml falcon, the supernatant removed 

and cells frozen in NS-Medium + 10 % DMSO.  
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5.4.5 Viral Infection of Neurospheres 

Retroviruses were generated using the packaging cell line Plat-E (Morita et 

al., 2000). Plat-E cells were transfected with the viral plasmid constructs using 

CalPhosTM Mammalian Transfection Kit according to the manufacturer’s 

instructions. Viral supernatants were collected 48 and 72 h after transfection 

and the virus was purified using the Retro-XTM Concentrator according to the 

manufacturer’s instructions. 

For viral infection neurospheres were passaged and allowed to recover for 24 

h. Then virus (50 virus particles/cell) was added in a small volume (~200 µl) of 

NS-medium for 4 h and the cells were afterwards cultured in an adequate 

volume until analysis or sorting. 

5.4.6 FACS (Fluorescence-activated cell sorting) 

FACS was performed by the staff of the in-house FACS facility using a 

FACSAria™ III (BD Biosciences). 

 

5.5 Biochemical Methods 

5.5.1 Lysis of Cells for Immunoblot Analysis 

To obtain cell lysates cells were first washed with ice cold PBS and an 

adequate volume of lysis buffer was added. The lysis buffer contained 

detergents and proteinase inhibitors to avoid the degradation of the proteins. 

Next, the cell suspension was transferred to an eppendorf tube, cells were 

lysed by trituration and incubated at 4°C with constant agitation. After the cell 

suspension was centrifuged (13000 rpm, 5 min, 4°C) to sediment the 

insoluble parts of the cells. The supernatant containing all soluble proteins 

was transferred to a new tube and the protein concentration measured using 

a BCA Protein Assay Kit according to the manufacturer’s instructions. For 

storage, lysates were kept at -20°C. 
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5.5.2 Immunoprecipitation 

A 6 cm2 plate of N2A cells was transfected with expression plasmids (p3X-

TDP-43-flag or p3X-GFP-flag as control). After 24 h cells were washed with 

cold PBS, 500 µl IP lysis buffer added and the plates incubated at 4°C for 20 

min with gentle agitation. Thereafter, the cell suspension was transferred to 

an eppendorf tube and centrifuged (13000 rpm, 10 min, 4°C) to sediment the 

insoluble parts. The supernatant containing the soluble proteins was 

transferred to a new tube and 1/10 was used as input control. The remaining 

lysate was added to pre-blocked beads coupled to anti-flag antibody (ANTI-

FLAG® M2 Affinity Gel) or to un-coupled beads (Sepharose-G beads) and 

incubated at 4°C for 2 h with constant agitation. For pre-blocking 40 µl beads 

were washed twice with 900 µl cold H2O (2000 rpm, 1 min, RT), then 400 µl 

IP lysis buffer + 1% BSA was added and incubated at 4°C (on a rotating 

wheel) overnight. After incubation of lysate and beads the samples were 

centrifuged (2000 rpm, 5 min, 4°C) the supernatant discarded and the beads 

with the bound proteins washed twice with IP lysis buffer. For the release of 

the bound proteins from the beads 100 µl of RIP buffer was added and 

incubated at 70°C for 1 h. The supernatant containing the immunoprecipitated 

proteins was then analysed on a SDS-gel.  

5.5.3 SDS-Polyacrylamide-Gel-Electrophoresis (SDS-page) of Proteins  

To separate proteins according to their molecular weight SDS-acrylamide gels 

were used. For low molecular weight proteins like TDP-43 15% separation gel 

and 4% stacking gel were used. The gel was casted into a gel apparature 

(BioRad) according to the manufacturer’s instruction and allowed to 

polymerise.  

20-40 µg proteins with 2x sample loading buffer were denatured at 95°C for 5 

min and loaded on the gel. To determine the molecular weight a standard 

weight marker was loaded on the gel. The proteins were separated at 35 mA 

constant current per gel. Electrophoresis was performed in running buffer until 

the bromophenolblue band of the loading buffer reached the bottom of the gel. 
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5.5.4 Blotting of Proteins from SDS Page Gels 

For blotting onto a Polyvinylidene fluoride (PVDF) membrane, proteins were 

transferred electrophoretically from an SDS-gel. To do so, one Whatman 

paper, moistened in AP I buffer, was placed onto the negative cathode of a 

blotting apparatus. A second Whatman paper moistened in AP II buffer was 

put on top, followed by a PVDF membrane that was activated for 1 min in 

Methanol and after soaked in AP II buffer. The SDS-gel and three Whatman 

paper soaked in KP buffer were added. To allow a proper transfer of the 

protein onto the membrane bubbles were avoided. The positive anode was 

put on top and the proteins were blotted for 30 min at 0.8 mA/cm2.  

5.5.5 Immunodetection of Proteins on PVDF Membrane 

To detect specific proteins the PVDF membrane was incubated with specific 

antibodies. First the membrane was incubated with blocking buffer for 1 h at 

RT with shaking. Second, primary antibodies diluted in blocking buffer were 

added and incubated overnight at 4°C shaking. The next day, the membrane 

was washed (3x10 min, TBST, RT) and the secondary antibodies coupled to 

horse reddish peroxidase, diluted in blocking buffer were added to the 

membrane. After incubation for 1 h at RT with shaking the membrane was 

washed again 2 times in TBST and finally one time using TBS. 

For antibody detection the Amersham™ ECL™ Western Blotting Detection 

Reagent was used. The peroxidase catalyzes the oxidation of luminol, which 

is present as a substrate leading to chemiluminescence. The signal was 

detected by an X-ray film or the ChemiDoc™ MP Imaging System (BioRad). 

The amount of protein was quantified using the ImageLab™ Software Version 

4.0. 
 

5.6 Molecular Biology Methods 

5.6.1 Transformation of Bacteria 

For transformation of bacteria electro-competent E.coli bacteria from the line 

XL1 blue or TOP 10 were used. 40 µl bacteria were thawed and kept on ice. 

DNA was added to the bacteria and after mixing gently they were incubated 
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on ice for 1 min. The bacteria were transferred to a cooled electroporation 

cuvette (1 mm) and electroporated with 1.8 kV using a MicroPulser (BioRad). 

Afterwards, 600 µl of LB medium was added and bacteria were transferred to 

an eppendorf tube and incubated for 1 h at 37°C. The transformed bacteria 

were plated on agar plates with the corresponding resistance and incubated 

at 37°C overnight. For re-transformation of bacteria with plasmid 0.1 µg of 

DNA was used. 10 µl of the transformed cells in LB medium were diluted 1:10 

in LB medium and plated. For transforming bacteria with a ligation, 1/3 (~2 µl) 

of the ligation was used and 200 µl of the bacteria were plated. 

50 mg/ml Kanamycin- and 80 mg/ml Ampicillin-Stocks were prepared in H2O, 

stored in 1 ml aliquots at -20°C and used 1:1000. 

5.6.2 DNA Isolation from Tail Biopsies 

In order to perform genotyping of mice, DNA was isolated form tail biopsies. 

Therefore, 500 µl of tail lysis buffer was added to each sample and incubated 

at 55°C overnight with shaking. The next day 250 µl saturated NaCl (6 M) was 

added, mixed gently and centrifuged (13000 rpm, 7 min, RT). After 600 µl of 

the supernatant were transferred to a new tube and 400 µl Isopropanol added 

to precipitate the DNA. DNA was centrifuged (13000 rpm, 5 min, RT), washed 

with 200 µl 70% EtOH (-20°C) and the supernatant was discarded after 

another round of centrifugation (13000 rpm, 1 min, RT). Thereafter, the DNA 

was dried, resuspended in 500 µl H2O and stored at -20°C. 

5.6.3 Restriction Digest of DNA Constructs 

For restriction digestion enzymes and appropriate buffers from BioLabs® were 

used. Control digest was performed with 0.1 – 1 µg DNA together with 2-5 U 

restriction enzyme per µg DNA, the appropriate 1x buffer (10x) and if 

recommended BSA (100 µg/ml) in a total volume of 20 µl. To obtain a 

linearized vector for the generation of ISH probes or cloning experiments, a 

total volume of 50 µl and 5 µg of DNA were used. The digestion mix was 

incubated for 1-2 h at 37°C and analysed on an agarose gel. 
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5.6.4 DNA Agarose Gel Electrophoresis 

DNA fragments were analysed by using agarose gel electrophoresis. Agarose 

was dissolved in 1x TAE buffer to a final concentration of 1% by boiling. The 

hot solution was allowed to cool to 65°C, 2.5 ng/ml ethidium bromide added 

and the gel was casted. Gel electrophoresis was performed submerged in an 

electrophoresis tank filled with 1x TAE buffer between two electrodes. DNA 

samples loaded were with 5x DNA loading buffer. Fragments were separated 

in an electric field of maximum 120 V and a current of 0.2 A. To assign the 

DNA fragments, 2-10 µl of 1 Kb ladder was used. 

5.6.5 Denaturing RNA Agarose Gel Electrophoresis 

For preparation of a RNA agarose gel, 1.2 g agarose was added to 75 ml H2O 

(DNAse free) and 10 ml 10x TAE buffer. The agarose was melted by heating 

it in the microwave and cooled to about 60°C. Afterwards 18 ml 37% 

formaldehyde was added. The gel was casted and allowed to solidify. Before 

loading RNA was resuspended in 2 µl DEPC H2O. Then 15 µl of fresh RNA 

loading buffer was added and incubated at 65°C for 5 min. The DNA samples 

were loaded on the gel with 5x DNA loading buffer and run at 60 V.  

5.6.6 Sequencing of DNA Constructs 

Plasmids were sequenced externally using sequence specific primers. 

5.6.7 RNA Purification for Quantitative Real Time PCR (qRT-PCR) 

RNA was purified from cells or tissue using TRIZOL® Reagent according to 

the manufacturer’s instructions. Next RNA was precipitated using isopropanol 

and dried for ~10 min until all EtOH had evaporated and the pellet was 

resuspended in RNase free water. The amount of RNA was measured using a 

NanoDrop ND-1000 Spectrophotometer. 

5.6.8 cDNA Preparation 

The reverse transcription to generate cDNA was performed using the 

SuperScript III First-Strand Synthesis kit. For the reaction, 1 µg of total RNA 

was incubated with 1 µl oligodeoxythymidine primers (50 µM) and 1 µl dNTPs 
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(10 mM) and filled up to 13 µl with H2O. The reaction was incubated at 65°C 

for 5 min in a light cycler and thereafter put on ice. 6 µl of Premix consisting of 

4µl 5x first strand buffer, 1 µl 0.1 M DTT, 1 µl reverse transcriptase and 1 µl 

RNase inhibitor (1 µg/µl) was added to the sample and the reaction incubated 

at 50°C for 60 min. Thereafter the reverse transcriptase was inactivated at 

70°C for 15 min and cDNA was stored at -20°C. 

5.6.9 Polymerase Chain Reaction (PCR) 

PCR was performed according to this general protocol. Per reaction 1x Buffer 

(10x), 1.5 µM MgCl2 (50 mM), 200 µM dNTPs (10 mM), 0.2 µM each forward 

and reverse Primer (20 pM), 1 U/µl Polymerase (5 U/µl) and 0.1 - 0.5 µg 

template DNA was used. The PCR reaction was run in a light cycler at which 

the strands were first separated by heating the reaction to 94°C for 5 min. 

Annealing was performed for 1 min with the appropriate annealing 

temperature, which was adjusted dependent on the melting temperature of 

the primers. For extension of the PCR fragments a temperature of 72°C was 

used and the extension time was adjusted to the length of the expected PCR 

fragment (1 min/kb). 30-35 cycles were run in order to receive an appropriate 

amount of DNA. For the final extension the reaction was incubated at 72°C for 

7 min after the last cycle and the reaction was cooled to 4°C thereafter. 

For genotyping of mice Taq-Polymerase was used. For cloning purposes 

proof reading Polymerases such as KOD DNA Polymerase or Cloned Pfu 

DNA Polymerase were used according to the manufacturer’s instruction.  

5.6.10 Crosslinked RNA Immunoprecipitation (CLIP) 

This method is for the immunoprecipitation of Flag-tagged RNA binding 

proteins from mammalian cell lines and isolation of the bound RNAs for 

analysis by quantitative real-time PCR. The RNA binding protein of interest 

was tagged with the M2 Flag-tag and expressed in N2A cells. However, 

specific antibodies for the protein of interest can be used in conjunction with 

Sepharose G-beads. 

This method is also published online  at http://www.bio-

protocol.org/wenzhang.aspx?id=398 
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Blocking of the beads: 
40 µl Anti-Flag M2 Affinity Gel beads coupled to antibody were washed twice 

with 900 µl of pure H2O (cold). 400 µl IP lysis buffer + 1% BSA was added 

and incubated at 4°C (on a rotating wheel) overnight. Alternatively 30 µl 

Sepharose G-Beads + specific antibody was used. The amount of antibody 

and beads to be used in the pre-coupling need to be determined in 

preliminary experiments. 

Cell transfection: 
2 x 10 cm2 tissue culture plates were used per condition (this might vary 

depending on the cell type and the level of expression of the protein of 

interest). No more than 10 plates were processed at a time in order to assure 

that every experiment was treated the same. Cells were transfected with the 

appropriate plasmids and incubated for 48 h to express the tagged protein. 

Formaldehyde crosslinking and preparation of cell extracts: 
Medium was removed, cells washed once with PBS and 1 ml 0.25% Trypsin 

(pre-heated to 37°C) added. Cells were incubated with the Trypsin until they 

lost cell-cell contact and 5 ml DMEM including 10% fetal calf serum (pre-

warmed to 37°C) was added to inhibit the trypsin. After, cells were transferred 

to a 15 ml conical tube by pipetting and incubated on ice for 5 min. Thereafter, 

cells were harvested (100 xg, 2 min) the supernatant discarded and the cell 

pellet resuspended in 5 ml ice-cold PBS. A 250 µl aliquot of the cell 

suspension was kept for Western blot analysis to be used as a transfection 

control. 143 µl 37% formaldehyde (over a period of approximately 10 

seconds, all of the samples were treated in the same way) was added to the 

cell suspension and the 15 ml conical tubes were thereafter placed on a 

rocking plate and shaken for 10 min at room temperature. 685 µl 2 M Glycine 

(over a period of approximately 10 s, all of the samples were treated in the 

same way) was added to block the formaldehyde. The tubes were again 

placed on a rocking plate and shaken for 5 min at room temperature. Cells 

were harvested (100 xg, 2 min, RT), supernatant discarded and the cell pellet 

transferred to ice. Cells were washed twice with 5 ml ice-cold PBS and 

harvested (100 xg, 2 min, 4°C). The supernatant was removed from the cells 

after the last wash and 1 ml of IP lysis buffer + 20 µl 0.1 M 

phenylmethylsulfonyl fluoride (PMSF) + 20 µl complete protease inhibitor 
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(50x) + 5 µl RNase inhibitor (40 U/ul) was added to each sample. For 

sonication the cells were kept on ice at all times and sonication was 

performed 10x (10 s on, 10 s off, Amplitude 15 µm) until the lysate was clear. 

Probe sonicator was cleaned with RNaseZap between the samples to avoid 

contamination with RNases. The lysed cells were transferred to a 1.5 ml snap-

cap tube and kept on ice. After centrifugation of the lysates (14000 xg, 3 min, 

RT) 50 µl of the supernatant was kept as an INPUT control (used to 

standardize the qPCR analysis). The rest of the lysate was added to the 

blocked beads and incubated overnight at 4°C on a rotating wheel. 

Reverse crosslink and RNA extraction: 
The beads were washed 5 times with 900 µl of IP lysis buffer collecting the 

beads by centrifugation (1000 xg, 1 min, RT). All of the supernatant was 

removed after the last wash and 100 µl of RIP buffer + 1 µl RNase inhibitor 

added. 50 µl of RIP buffer was added to the INPUT control. The samples and 

INPUT controls were incubated for 1 h at 70°C to reverse the cross-link, 

centrifuged (400 xg, 1 min, RT) to sediment the beads and 100 µl of the 

supernatant collected. The RNA was extracted with Trizol reagent (proceed 

according to the manufacturer’s instruction, see section 5.6.7). Optionally 1 µl 

of Glycogen blue was added before precipitation of the RNA with Isopropanol 

to make the pellet visible. Precipitation was performed at -20°C for 1 h to 

increase the amount of precipitated RNA. 

DNAse treatment of the RNA to avoid contamination with genomic DNA.  

The RNA pellet was directly diluted in DNAse mastermix (per sample: 16 µl 

DEPC treated H2O, 2 µl DNAase buffer, 2 µl DNAse) in order to use all RNA 

in the following RT reaction and it was proceeded after the manufacturer’s 

instruction. 

Reverse transcription of the RNA into cDNA: 
BioScriptTM kit works well but other reverse transcriptase kits may also be 

used. 9 µl of the DNAse treated RNA was used in a reverse transcriptase-

containing and a reverse transcriptase-minus (negative control) reaction for 

each sample. cDNA was primed with random hexamer primers and the 

reaction performed according to the manufacturer’s instructions. The cDNA 

was diluted 1:4 and continued with quantitative real-time PCR analysis of the 
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target gene to identify specific changes in target mRNA level. Alternatively the 

cDNA can be used to generate a library. 

5.6.11 Quantitative Real-time PCR (qRT-PCR) 

Quantitative real-time PCR was performed using the SensiMix SYBR Kit. 

Primers for detection of specific targets were designed using Primer3Plus 

software (http://www.bioinformatics.nl). The pipetting robot QIAgility (Qiagen) 

was used to pipette the master mix and to transfer it into the reaction tubes. 1 

µl of template was added manually to 9 µl master mix. The reaction was run in 

a Rotor-GeneTM 6000 Real-time PCR machine (Corbett) and analysed using 

Rotor-gene 6000 series software 1.7. 

 

5.7 Imaging 

Sections were analysed with an Apoptom (Zeiss Observer.Z1) or confocal 

(Zeiss LSM510) fluorescence microscope. Images were acquired using Zen 

pro 2012 (Zeiss) or Zeiss LSM 4.2 (Zeiss) and processed with ImageJ64 or 

Photoshop CS5 (Adobe) software. Images of hTDP-43(A315T) embryos were 

acquired using a Leica MZFlΙΙΙ and H&E stainings were acquired using an 

Axioskop2 plus (Zeiss). 

 

5.8 Quantification and Statistical Analysis of the Data 

Randomly selected, stained cells were analysed with fixed photomultiplier 

settings on a Zeiss LSM510 confocal microscope (Zeiss). In order to ensure 

an unbiased analysis, countings were performed in a blind manner at which 

images of control and experiment were labelled randomly. For IUE 

experiments data of at least 3 embryos were analysed per experiment 

whereas 3-5 sections were quantified per embryo and staining. Embryos with 

a very low number of electroporated cells as well as embryos with an 

electroporation area too close to the MGE or the medial midline were 

excluded from the analysis. Data are presented as average percentages of 

co-labelled cells. Statistical comparisons were conducted by two-tailed 
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unpaired Student's t-test. Significance was established at P < 0.05. In all 

graphs, error bars are standard error of the mean (s.e.m.) 
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6 Results 

6.1 Background and Key Findings 

The mammalian central nervous system arises from neural stem cells 

(NSCs). This process is highly regulated and Notch signalling plays a key role 

in the maintenance and fate of NSCs (see section 3.1.2-9 and 3.2). The RNA 

binding protein TDP-43 is regulated downstream of Notch1 in NSCs (see 

section 3.2). Point mutations in TDP-43 were recently shown to cause ALS 

and affected neurons show cytoplasmic inclusions of TDP-43 protein. 

Accumulation of TDP-43 in apoptotic neurons is also a characteristic of other 

neurodegenerative diseases including Alzheimer’s disease. Therefore, TDP-

43 is suggested to play a role in disease onset or progression but it is not 

known how it triggers or contributes to the disease phenotypes. We have 

investigated the function of wild type and mutant TDP-43 protein in NSCs in 

vivo and in vitro by gain- and loss-of-function approaches.  

We performed in utero electroporation to both express and knockdown 

TDP-43 transiently in NSCs in the forebrains of mouse embryos. We could 

show that expression of TDP-43 and the TDP-43 point mutant TDP-43(A315T) 

results in rapid death of NSCs in vivo. This effect can be rescued by p53 

inhibition using a specific p53 inhibitor or by genetically ablating p53. 

Moreover, we are able to rescue the early lethality in a transgenic mouse 

model in which hTDP-43(A315T) is expressed from the endogenous Tardbp 

regulatory elements by pharmacological inhibition of p53. Analysing the 

apoptosis pathway further we found p53 as well as the downstream factors 

Cdkn1a, Bax and Bbc3/Puma upregulated upon TDP-43 and TDP-43(A315T) 

expression. In addition, expression of TDP-43 and TDP-43(A315T) results in cell 

cycle arrest of neural progenitors in S- and M-phase in vitro. p21 is a key 

regulator of cell cycle progression and we determined that Cdkn1a mRNA is 

bound by TDP-43 and upregulated after TDP-43 expression. Thus, TDP-43 

might directly regulate p21 levels explaining our findings that TDP-43 gain-of-

function experiments lead to cell cycle arrest in G1 and G2-phase. To date this 

work represents the first study demonstrating a direct link between TDP-43 
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and p53-mediated neuronal cell death as well as presenting insights into p21 

dependent cell cycle regulation via TDP-43. 

6.2 Statement of Contributions 

I performed all experiments except for the injection of hTDP-43(A315T) 

mutant mice with the p53-inhibitor PFT-α, which was done in collaboration 

with Andrea Huber at the Helmholtz Zentrum München. I participated in the 

experimental design, data analysis and contributed to the writing of the 

manuscript, which is currently finalized. 

6.3 Results 

The following result part is subdivided into three sections, including the three 

main findings of the work.  

6.3.1 Performing gain- and loss-of-function experiments for TDP-43 in vivo, 

we show that loss of TDP-43 does not affect survival of NSCs. 

However, increased TDP-43 level in NSCs induces cell death whereas 

TDP-43 expression in BPs does not affect survival. 

6.3.2 Apoptosis induced by TDP-43 is p53 dependent and pharmacological 

inhibition of p53 rescues early lethality of hTDP-43(A315T) transgenic 

mice. 

6.3.4 TDP-43 binds Cdkn1a mRNA, which results in increased Cdkn1a 

transcript levels and altered cell cycle regulation. 

 

6.3.1 Gain- and loss-of-function experiments for TDP-43 

TDP-43 is expressed in neural progenitor cells of the developing CNS 
We have previously found that Tardbp is upregulated upon deleting Notch1 

from embryonic neural stem cells (Fig. 8). Therefore, we first analysed the 

expression levels of TDP-43 in the developing CNS by performing in situ 

hybridisation analysis for Tardbp in the developing CNS of E11.5 embryos. 

We found TDP-43 transcripts expressed by progenitor cells of the spinal cord, 

midbrain and telencephalon (Fig. 13a). TDP-43 protein was detected in the 

cytoplasm of NSCs lining the ventricle (Fig. 13b,b’ arrows). Most of the TDP-

43 high expressing cells were in M-phase of the cell cycle, shown by pH3 
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staining (Fig. 13c, arrowheads). Additionally, TDP-43 protein was present in 

neuroblasts in the SVZ and CP (Fig. 13b). 

 

 
Figure 13: TDP-43 is expressed in neural progenitor cells in the developing CNS  

a. In situ hybridization analysis using RNA probes generated against the 5’ UTR of Tardbp. Tardbp is 
highly expressed in NPs of the spinal cord, telencephalon and midbrain of E11.5 embryos. b,b’. TDP-43 
is expressed by NSCs lining the lateral ventricle of the telencephalon (arrows) and neurons in the CP at 
E13.5. c. Most of the NSCs are in M-phase, which was confirmed by immunostaining for pH3 
(arrowheads). VZ = ventricular zone, SVZ = subventricular zone and CP = cortical plate. Scale bars in a 
= 100 µm, in b and c = 20 µm.  

 

Expression of TDP-43 and TDP-43(A315T) in NSCs induces cell death in 
vivo 

To address the function of TDP-43 in NSCs during development of the 

telencephalon we performed gain- and loss-of-function experiments. For in 

vivo analysis we used in utero electroporation (IUE) for transfection of plasmid 
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DNA into NSCs of the developing telencephalon, allowing expression or 

knockdown of proteins. Electroporations were performed at embryonic day 

E13.5 for two reasons. First, E13.5 is the time point whereafter neurogenesis 

peaks in the developing telencephalon and secondly the embryos are big 

enough to be manipulated easily enabling high electroporation efficiency. For 

this TDP-43 as well as TDP-43(A315T) expression plasmids (Fig. 14a) were co-

electroporated with a GFP expression plasmid allowing for the identification of 

transfected cells. TDP-43(A315T) causes in an autosomal dominant ALS in 

patients, however, it is not known whether the mutation results in loss-, gain-

of-function or gain-of-amorphic function. 

 
Figure 14: Expression of TDP-43 and TDP-43(A315T) results in apoptosis 

a. Scheme of TDP-43 and TDP-43(A315T). The corresponding cDNAs were cloned into the pCAGGS 
expression vector. b. Expression of TDP-43 and TDP-43(A315T) by IUE drives cells into apoptosis after 24 
hours, confirmed by immunostaining against cleaved caspase-3. Scale bars = 20 µm. Dashed line 
marks the ventricular lining. 

 
Expression of TDP-43 as well as TDP-43(A315T) by IUE resulted in an 

increase in apoptosis as indicated by pycnotic and fragmented nuclei of 

transfected cells within 24 hours (Fig. 14b arrows). Antibody staining against 

cleaved caspase3 confirmed that GFP+ cells were undergoing cell death (Fig. 
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14b). Although no quantification was performed to determine the amount of 

apoptotic cells, we observed an increase in apoptosis based on cellular 

phenotypic changes.  

 
Figure 15: TDP-43 and TDP-43(A315T) expression results in loss of NPs  

a. Immunostaining of embryos after expression of TDP-43 or control against pH3, Pax6, Tbr2 and Tbr1. 
TDP-43 expression leads to a reduced number of cells in M-phase (pH3+) and mislocalization from the 
ventricular lining (arrowheads). b. Quantification of pH3 positive cells expressing TDP-43 or control 
plasmids. tTest **P<0.005. c. Quantification of Pax6 positive cells expressing TDP-43, TDP-43(A315T) or 
control plasmids. tTest *P<0.05 and **P<0.005. d. Quantification of Tbr2 positive cells expressing TDP-
43, TDP-43(A315T) or control plasmids. tTest ***P<0.001 and *P<0.05. e. Quantification of Tbr1 positive 
cells expressing TDP-43 or control plasmids. tTest ***P<0.001. Scale bars = 20 µm. Dashed line marks 
the ventricular lining. 
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In order to investigate how the few transfected (GFP+, TDP-43+) surviving 

cells were affected by the expression of TDP-43 and TDP-43(A315T) 

respectively, we performed immunostaining with different antibodies. Some of 

the electroporated cells were still mitotically active as they expressed the M-

phase marker pH3 (Fig. 15a,b). Interestingly, these pH3+ cells were 

mislocalized within the VZ (Fig. 15a arrowheads) and were no longer at the 

ventricular lining as seen in control and wild type embryos (Fig. 15a arrows). 

Furthermore, we found that the Pax6+ NSC population was also reduced in 

number after 24 hours after onset of TDP-43 and TDP-43(A315T) expression 

(Fig. 15a,c). In addition, we observed that neuronal differentiation was 

impaired, marked by a significant reduction in basal progenitors (Tbr2+) in the 

SVZ and differentiated neurons (Tbr1+) in the CP (Fig. 15a,d,e). 

Expression of TDP-43 in basal progenitors (BPs) does not result in 
apoptosis 

Expression of TDP-43 in NSCs leads to apoptosis within 24 hours, based 

on observed changes in cellular morphology. In order to address whether 

exogenous expression of TDP-43 is generally toxic and to test if this effect is 

cell type specific we expressed wild type TDP-43 in BPs using NeuroD1 

regulatory elements (Fig. 16e). These cells are already committed towards the 

neuronal lineage but are still able to undergo one round of cell division. 

NeuroD1 is a transcription factor that starts to be expressed as BPs undergo 

differentiation in the SVZ. 48 hours post IUE apoptotic cells were not 

detectable and TDP-43 expressing cells looked normal. In the control 

condition most of the electroporated cells were located to the SVZ and very 

few had reached the CP (Fig. 16a arrows). In contrast several cells were 

located in the CP after TDP-43 expression in BPs (arrows). To address 

whether the increased number of cells in the CP was due to the transfection 

efficiency, we quantified the number of Tbr2 and Tbr1-positive cells and found 

them strongly increased after TDP-43 expression (Fig. 16b,c). More self-

replicative divisions of BPs instead of symmetric neurogenic divisions can 

cause the elevated numbers of BPs (Tbr2+), whereas increased numbers of 

newborn neurons (Tbr1+) might result from precocious differentiation or exit of 

BPs from the SVZ. 
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Figure 16: Expression of TDP-43 in BPs leads to an increased number of neurons 

a. Expression of TDP-43 under the control of a NeuroD1 promoter element results in an increased 
number of GFP+ cells in the CP after 48 hours. b,c. Quantification of Tbr2 and Tbr1 positive cells show 
an increase after TDP-43 expression in BPs. tTest ***P<0.001, tTest **P<0.05 d. Electroporated cells 
with an active NeuroD1 promoter were identified by expression of mCherry from the NeuroD1 promoter. 
After expression of TDP-43 in BPs the overall number of mCherry/GFP double positive cells is strongly 
increased. e. Schemes of the expression construct NeuroD1::TDP-43 and the reporter constructs 
NeuroD1::mCherry and pCAGGS::eGFP f. Calculation of the colocalization coefficient = area where 
mCherry and GFP are co-expressed. tTest **P<0.005. Dashed line marks the ventricular lining, dotted 
line marks the CP. Scale bars = 50 µm. 
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Co-electroporation with a construct expressing mCherry under the same 

NeuroD1 promoter elements used for TDP-43 allowed us to check the activity 

of the promoter and potential activation of the neurogenic pathway. We 

therefore electroporated the animals with 3 constructs: pCAGGS::eGFP to 

report for transfected cells, NeuroD1::mCherry to report for NeuroD1 promoter 

activity and NeuroD1::TDP-43 or a control plasmid (Fig. 16e). We detected 

proportionally many more mCherry+ cells after expression of TDP-43 

compared to control after 48 hours (Fig. 16d). This was quantified by 

calculating the colocalization coefficient of mCherry and GFP positive cells, 

which displayed an increase after TDP-43 expression in BPs (Fig. 16f). The 

increased number of mCherry+ cells suggests an enhancing effect of TDP-43 

on the NeuroD1 promoter and an increased proliferation of TDP-43 

expressing BP cells. However, BPs expressing exogenous TDP-43 did not 

die. 

Cell survival is not affected by knockdown of TDP-43 

TDP-43 interacts with several target mRNAs, one of which is its own 

mRNA. Binding of TDP-43 protein to a RNA binding region located within the 

3’ UTR of the Tardbp mRNA leads to destabilization and degradation of its 

own mRNA (Ayala et al., 2010). In order to test whether the apoptotic 

phenotype we observed following TDP-43 expression might be caused by 

degradation of the endogenous Tardbp mRNA we applied direct knockdown 

(KD) experiments of the endogenous TDP-43 protein. Therefore, we used an 

in vivo shRNA approach by expressing a shRNA in NSCs from a plasmid 

vector that specifically targets Tardbp mRNA by IUE. To confirm the specific 

downregulation we first isolated transfected E14.5 embryonic forebrain cells 

24 hours post-electroporation. We took advantage of a co-electroporated 

GFP-reporter plasmid and sorted for GFP+ cells by FACS and analysed their 

mRNA expression levels by qRT-PCR (Fig. 17a). To control for specificity of 

the TDP-43 shRNA approach an irrelevant shRNA construct was used 

targeting Renilla luciferase mRNA. We found Tardbp mRNA levels decreased 

down to 30% after hairpin-mediated downregulation in vivo compared to 

control conditions (Fig. 17b).  
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Figure 17: TDP-43 KD does not affect survival of NPs 

a. Cartoon of experimental procedure applied to isolate electroporated (green) embryonic day (E) 14.5 
(shRNA KD) NPs for qRT-PCR analysis. Wild type embryos were electroporated with TDP-43 shRNA or 
control (Renilla) shRNA expression vectors. Forebrain cells were isolated and FACSorted for GFP+ cells 
after 24 hours. b. TDP-43 mRNA levels are reduced down to 30% after expression of TDP-43 shRNA in 
in vivo electroporated neural progenitors (sorted by Flow cytometry). tTest: *P<0.001 

 
To address whether specific cell populations were affected by the 

downregulation of Tardbp mRNA we performed immunohistochemical marker 

analysis. Importantly, we did not observe an increase in apoptosis in 

transfected cells 24 hours after IUE and TDP-43 KD. Instead we detected an 

increase in the number of proliferating cells already 24 hours after 

downregulation of endogenous Tardbp, as shown by an increase in BrdU we 

observed pulse labelling for 1.5 hours and by increased pH3 staining (Fig. 

18a-c). In contrast, the Pax6+ cell population was reduced whereas the Tbr2+ 

cells exhibited no significant change (Fig. 18a,d,e). These data demonstrate 

that the cell death we observed in our TDP-43 expression experiments was 

not due to a downregulation of endogenous Tardbp levels and therefore 

unlikely due to a dominant negative or loss-of-function. Moreover, our shRNA 

studies provide evidence for a role of TDP-43 in regulating cell proliferation in 

vivo. 
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Figure 18: TDP-43 KD does not affect survival but leads to an increase in proliferating 
cells 

a. Embryos immunostained against Pax6, pH3 and Tbr2 24 hours after expression of TDP-43 KD or 
Renilla KD (control). The number of cells in M- and S-phase are increased after TDP-43 KD. The 
number of NSCs is decreased whereas BPs is not affected by the reduction of TDP-43. b. Quantification 
of BrdU positive cells in TDP-43 KD and control cells. tTest *P<0.05. Scheme of BrdU labelling 
procedure of E13.5 embryos with a BrdU pulse 22.5 hours post-electroporation and 1.5 hours prior to 
sacrifice. c. Quantification of pH3 positive cells in TDP-43 KD and control cells. tTest *P<0.05. d. 
Quantification of Pax6 positive cells in TDP-43 KD and control cells. tTest *P<0.05. e. Quantification of 
Tbr2 positive cells in TDP-43 KD and control cells. tTest P=0.07. Dashed line marks the ventricular 
lining, dotted line marks the basal surface. Scale bars = 20 µm. 
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6.3.2 TDP-43 induces p53-dependent apoptosis 

TDP-43 induced apoptosis in NSCs is p53-dependent 

p53 is a central factor of the apoptosis pathway and able to activate various 

downstream targets (see section 3.6). Although elevated p53 protein levels 

were reported in ALS patients a causal molecular link to the onset of cell 

death during progression of the disease is still missing (Martin, 2000; 

Ranganathan and Bowser, 2010). To investigate whether the onset of 

apoptosis by NSCs we observed after expression of TDP-43 (Fig 19b,a 

arrows) and TDP-43(A315T) is dependent on p53 we performed IUE in p53-

deficient mice. Interestingly no cell death was detectable in p53-/- and p53+/- 

embryos 24 hours after expression of TDP-43 and TDP-43(A315T) (Fig. 19a,b).  

It should be mentioned here, that apoptosis was not determined by 

immunostaining against apoptosis markers such as cleaved caspase3, but 

simply by the observation of cell phenotypic changes such as membrane 

blebbing, nuclear fragmentation and cell shrinkage. Apototic cells were not 

quantified after TDP-43 and TDP-43(A315T) expression or after rescue by p53 

deletion.  
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Figure 19: Toxicity mediated by TDP-43 can be rescued by deletion of p53 

a. Expression of TDP-43 in wild type embryos induces apoptosis (arrows) of transfected cells (GFP+) 
whereas expression in p53+/- and p53-/- does not affect cell survival. b. TDP-43 staining is present in 
transfected cells 24 hours after IUE. In wild type embryos this results in apoptosis whereas cell survival 
in p53-/+ is not affected. Dashed line marks the ventricular lining, dotted line marks the apical basal 
surface. Scale bars = 20 µm. 
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Figure 20: Toxicity mediated by TDP-43 can be rescued by pharmacological inhibition 
of p53 

a. p53 inhibition by PFT-α in vivo into pregnant wild type mice after IUE inhibits apoptosis. Embryos 
were analysed by staining for BrdU and pH3. TDP-43 transfection led to a decreased number of cells in 
S- and M-phase. b. Quantification of BrdU positive cells expressing TDP-43 or control plasmids. BrdU 
administration to the mice 3 hours prior analysis. tTest *P<0.05. c. Quantification of pH3 positive cells 
expressing TDP-43 or control plasmids. tTest P<0.45.d. Quantification of Pax6 positive cells expressing 
TDP-43 or control plasmids. tTest **P<0.005. e. Quantification of Tbr2 positive cells expressing TDP-43 
or control plasmids. tTest P<0.48. Dashed line marks the ventricular lining. Scale bars = 20 µm.  

 
In a second approach, we injected the p53-inhibitor PFT-α into pregnant 

wild type mice directly after IUE and expression of TDP-43 and 8 hours before 

harvesting the embryos. We again observed a rescue of the TDP-43 induced 

cell death (Fig. 20), as we did not observe any cellular phenotypic changes in 

electroporated cells. By investigating in more detail the TDP-43 positive cells 

after IUE and pharmacological inhibition of p53 we found that the number of 

NSCs (Pax6+) and BPs (Tbr2+) were unchanged in p53 inhibition rescued 
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animals (Fig. 20d,e). However, we noticed a reduction of proliferating cells. 

We performed BrdU pulse labelling experiments and pH3 immunoanalysis to 

assess changes in proliferation and observed a reduction of BrdU+ cells within 

the TDP-43 transfected population (monitored by GFP-expression) (Fig. 20a,b 

arrows). In addition, a decrease of pH3+ cells lining the ventricle was 

detectable (Fig. 20a,c arrows). Hence, loss of p53 rescued the apoptosis 

induced by TDP-43 but progenitor proliferation was still affected. 

Pharmacological inhibition of p53 rescues hTDP-43(A315T) mice 

Several TDP-43 mutant transgenic mice have been generated in the past. 

These mice develop features of ALS and FTLD and early lethality of the 

animals (Arnold et al., 2013; Igaz et al., 2011; Iguchi et al., 2013; Tsai et al., 

2010; Wegorzewska et al., 2009; Wils et al., 2010; Xu et al., 2010). In our 

study we used a transgenic TDP-43 animal model in which a mutant form of 

human TDP-43 carrying the A315T point mutation is inserted via knock-in into 

exon 1 of the mouse TDP-43 genomic locus (Schebelle et al., 2010). 

Expression of hTDP-43(A315T) from both alleles resulted in embryonic lethality 

as no live homozygous mutant mice were born. We analysed the embryos 

more closely in order to identify the cause and time point of the death of the 

embryos. Homozygous E6.5 embryos did not display any morphological 

changes indicating that blastocyst formation and implantation were not 

affected (Fig. 21a). E9.5 homozygous mutant embryos showed a 

developmental delay compared to wild type and heterozygous littermates. 

Many of the homozygous mutant embryos were misformed and pale at the 

time point of harvesting. However, homozygous hTDP-43(A315T) mice were 

obtained at a normal mendelian ratio at this point (Fig. 21b). By E12.5 mutant 

embryos were rare and we did not find mutants after E12.5. Lethality of 

embryos at E9 is mostly due to heart defects, which we did not investigate 

further. 

In the IUE experiments TDP-43 induced cell death in vivo was rescued 

upon deletion or suppression of p53. To test if the lethality of the hTDP-

43(A315T) transgenic embryos is also due to a p53-mediated pathway we 

pharmacologically inhibited p53 in pregnant hTDP-43(A315T) mice. PFT-α was 

injected daily into pregnant hTDP-43(A315T) mice from day 5.5 post coitum. We 
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were able to collect homozygous mutant embryos up to E14.5, the last stage 

analysed, at a normal mendelian ratio (Fig. 21d). The rescued embryos were 

slightly smaller than their heterozygous or wild type littermates but apart from 

that did not show any morphological abnormalities (Fig. 21c).  

 

 
 
Figure 21: Pharmacological inhibition of p53 rescues hTDP-43(A315T) mice 

a. Implantation of hTDP-43(A315T) homozygous embryos is normal whereas E9.5 embryos display severe 
developmental defects. b. Table displaying the proportion of mutant vs. het/WT offspring at E6.5 and 
E9.5 c. PFT-α injection of pregnant hTDP-43(A315T) rescues survival of mutant embryos until E14.5. 
Mutant embryos are significantly smaller than heterozygous littermates. d. Table displaying the 
proportion of mutant vs. het/WT offspring with (black) and without (red) p53 inhibition. Scale bars in a 
and c = 1 mm, 200 µm for E6.5.  
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Figure 22: Pharmacological inhibition of p53 rescues hTDP-43(A315T) mice 

a,b Immunostainings of hTDP-43(A315T) embryos after PFT-α mediated rescue for BrdU, pH3, Tbr2 and 
Pax6. No changes in NSCs (Pax6+), BPs (Tbr2+) or neurons (Tbr1+) are visible. Additionally no 
alterations are detectable in proliferating cells (pH3+ and BrdU+). Dashed line marks the ventricular 
lining, dotted line marks the basal surface. Scale bars = 20 µm.  
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The brains of the homozygous mutant embryos showed a normal dorsal-

ventral and anterior-posterior patterning and all brain regions were present. 

As our previous expression and knockdown studies of TDP-43 were 

performed in the forebrain we analysed the telencephalon of the rescued 

embryos. We therefore performed immunohistochemical analysis of the 

different cell types present in the telencephalon of E14.5 brains. Pax6+ NSCs 

were present and localized in the VZ and BPs (Tbr2+) and differentiated 

neurons (Tbr1+) were detected by immunostaining and displayed a normal 

localization (Fig. 22b). The cerebral cortex of the mutants displayed a regular 

layering, though the layers of cortex and lateral wall are thinner compared to 

control littermates (Fig 22b). Most of the NSCs in the mutant VZ were 

proliferating and had entered S-phase during a 3 hour BrdU pulse as in the 

control. NSCs in M-phase (pH3+) were localized correctly to the ventricular 

lining and few proliferating pH3+ BPs were detected in the SVZ (Fig. 22a, 

arrows) of control and homozygous mutant embryos. In addition, no distinct 

areas of apoptotic or necrotic cells were observed in the telencephalon of the 

rescued embryos. Thus, the rescued hTDP-43(A315T) embryos do not display 

any defects except for the growth retardation. 

 

6.3.3 TDP-43 regulates cell cycle progression through binding to 

Cdkn1a mRNA 

TDP-43 expression results in cell cycle arrest of N2A cells in G2- and S-
phase 

In in vivo experiments we observed alterations in the number of cells going 

through M- and S-phase after KD and expression of TDP-43. We investigated 

the effect of TDP-43 on cell cycle regulation. There are two cell cycle 

checkpoints ensuring proper progression through cell cycle. One checkpoint is 

located at the end of G1-phase, deciding whether cells are ready to divide and 

to progress into S-phase. The second checkpoint is at the end of G2-phase 

and ensures that the genome has doubled properly and that the cell is ready 

for mitosis (Jung et al., 2010; Woo and Poon, 2003). Both checkpoints are 

regulated by p21, which is a direct target of p53. Upon phosphorylation and 
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stabilization of p53, the p53 protein translocates to the nucleus where it acts 

as a transcription factor and activates the p21 gene among others (Fig. 10). 

Because of the link of p21 to p53 and the important function of p21 during cell 

cycle progression we included p21 in our further studies on cell cycle 

regulation by TDP-43. 

To investigate the cell cycle phenotype we used a neural progenitor cell 

line N2A and expressed TDP-43, TDP-43(A315T) or p21. The transfection 

efficiency of N2A cells was high (~95%), still we made use of a GFP 

expression plasmid to identify the transfected cells. 24 hours post-transfection 

the cells were fixed and analysed for their cell cycle status. N2A cells express 

TDP-43 endogenously (Fig. 26d) and an increased TDP-43 protein level or 

expression of TDP-43(A315T) resulted in a modest number of apoptotic cells, 

determined by morphological changes (Fig. 23a,c and Fig 24a arrows). 

Similarly, expression of p21 induced cell death in a few cells comparable to 

the number of apoptotic cells after expression of TDP-43, TDP-43(A315T) and 

showed a significant increase over control transfected cells (Fig. 23c). 

However, the total number of apoptotic cells was very low, allowing for further 

analysis of the transfected cells. 

To analyse cells in S-phase, EdU was added to the medium 1 hour prior to 

fixation and staining of the cells. Within this hour about 33% of control 

transfected cells had gone through S-phase and intercalated EdU in the newly 

synthesised DNA strands (Fig. 23a,b empty arrowhead). This number was 

strongly reduced by expression of TDP-43 and TDP-43(A315T), indicating that 

less cells had entered S-phase. As expected, expression of p21 in N2A cells 

completely blocked cells from progressing into S-phase. Only non-transfected 

(GFP-) cells displayed an EdU staining under these conditions (Fig. 23a filled 

arrows).  
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Figure 23: Expression of TDP-43 and TDP-43(A315T) in N2A cells decrease the number of 
cells in S-phase 

a. Immunostaining of N2A cells 24 hours after TDP-43 and TDP-43(A315T) for EdU displays a reduced 
number of transfected cells in S-phase (empty arrowheads) following a 1 hour EdU pulse. Most EdU+ 
cells under these conditions are untransfected (GFP-) (filled arrows). Expression of TDP-43 and TDP-
43(A315T) induces apoptosis in some cells (arrows). b. Quantification of EdU+ cells after expression of 
p21, TDP-43, TDP-43(A315T) and control plasmids. tTest ***P=0.001 c. Quantification of apoptotic cells 
after expression of p21, TDP-43, TDP-43(A315T) and control plasmids. tTest *P=0.05 and tTest 
**P=0.005.  
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In IUE experiments we found that the number of cells labelled with pH3 

was decreased following TDP-43 expression and increased after Tardbp KD. 

Phosphorylation of Histone 3 increases already in late-replicating/early-

condensing heterochromatin and can therefore be detected as a dotty staining 

in cells in G2-phase. To check whether entry into M-phase was affected after 

TDP-43 expression we analysed cells for pH3 more closely by distinguishing 

those cells with a dotty (G2-phase) and a more homogeneously stained 

nucleus (M-phase). Cells were considered as having a dotty staining, as long 

as single dots could clearly be identified in the stained nucleus. In control 

conditions about 5% of the cells were in M-phase (Fig. 24a filled arrowheads 

and 24c) and 10% in G2-phase (Fig. 24a empty arrowheads and 24b). After 

expression of TDP-43 and TDP-43(A315T) double the amount of cells was in G2 

whereas nearly no cells with a fully stained nucleus were present 24 hours 

after transfection. We conclude that expression of TDP-43 as well as the 

TDP-43(A315T) point mutant arrests cells in late G2. Similarly, p21 expression 

resulted in a reduction of cells in M-phase but in addition also cells in G2-

phase were completely lost as increased p21 levels block cells in G1-phase. 
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Figure 24: Expression of TDP-43 and TDP-43(A315T) in N2A cells arrests cells in G2-phase 

a. Immunostaining of N2A cells 24 hours after TDP-43 and TDP-43(A315T) results in reduced number of 
transfected (GFP+) cells in M-phase, labelled with anti-pH3 antibody (complete staining of the nucleus; 
filled arrowheads). In contrast transfected (GFP+) cells in G2-phase are increased (dotty pH3 staining of 
the nucleus; empty arrows). Expression of TDP-43 and TDP-43(A315T) induces apoptosis in some cells 
(arrows). Number of cells in G0/G1 reflected by hCdt1-KO2 expression are not altered after TDP-43 and 
TDP-43(A315T) expression. b. Quantification of pH3+ cells in G2-phase after expression of p21, TDP-43, 
TDP-43(A315T) and control plasmids. tTest ***P=0.001 c. Quantification of pH3+ cells in M-phase after 
expression of p21, TDP-43, TDP-43(A315T) and control plasmids. tTest ***P=0.001 d. Quantification of 
hCdt1+ cells after expression of p21, TDP-43, TDP-43(A315T) and control plasmids. tTest ***P=0.001 
P=0.45 and tTest P=0.28. 
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In order to check for cells in G1-phase we stably transfected N2A cells with 

the hCdt1-KO2 plasmid (Sakaue-Sawano et al., 2008). Cdt1 is expressed in 

cells in G0/G1-phase and the protein is gradually degraded as the cell 

continues to cycle into S-phase. The hCdt1-KO2 plasmid expresses a 

fragment of the human Cdt1 protein fused to the fluorescent protein Kusabira 

Orange. Therefore, the stably transfected N2A cells express Kusabira Orange 

in G0/G1-phase of the cell cycle. Quantifying the Kusabira Orange-positive 

cells after expression of TDP-43 or TDP-43(A315T) we could not detect a 

change in cell numbers compared to control (Fig. 24a,d). The expression level 

of the hCdt1-KO2 varies heavily and for the quantifications only cells with a 

strong Kusabira Orange expression were included in order to avoid 

implication of negative cells. The hCdt1-KO2 construct is expressed reliably in 

G0/G1-phase, as we found all GFP+ cells arrested in G1 after expression of 

p21 (Fig. 24a,d). Only non-transfected (GFP-) cells displayed a pH3 staining 

and were hCdt1- (Fig. 24a yellow arrowhead).  
 

RNA binding ability of TDP-43 is crucial in mediating apoptosis 
The mechanism through which TDP-43 induces apoptosis and alters cell 

cycle is unclear and in order to define which part of the TDP-43 protein is 

functionally important in inducing the observed effects we employed a TDP-43 

mutant where the RNA recognition motive 1 (RRM1) had been deleted (Fig. 

25a). TDP-43 was recently shown to regulate not only his own but also other 

mRNAs (Ayala et al., 2010; Polymenidou et al., 2011; Tollervey et al., 2011). 

The RRM1 is necessary and sufficient to mediate binding of TDP-43 to RNA 

and we therefore deleted this domain in order to investigate the importance of 

the RNA binding ability of the protein. We performed IUE and expressed TDP-

43-∆RRM1 in vivo. TDP-43-∆RRM1 expression did not induce apoptosis of 

electroporated cells within 24 hours (Fig. 25b). We did not observe significant 

changes in the numbers of NSCs (Pax6+) or basal progenitors (Tbr2+) (Fig. 

25c-e). This suggests that the RNA binding ability of the protein is crucial to 

induce apoptosis and observed changes in neuron numbers. These data also 

support that the mutant TDP-43 has a gain or amorphic rather than loss-of-

function. 
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Figure 25: Toxic effect of TDP-43 is dependent on the binding to RNA 

a. Scheme of TDP-43-∆RRM1. The corresponding cDNA was cloned into the pCAGGS expression 
vector. b. Expression of TDP-43-∆RRM1 does not result in apoptosis. c. Embryos immunostained 
against Pax6 and Tbr2 24 hours after expression of TDP-∆RRM1 or control. Localization and number of 
BPs (Tbr2+) and NSCs (Pax6+) are not changed 24 h post-electroporation. d. Quantification of Pax6 
positive cells expressing TDP-43-∆RRM1 or control plasmid. tTest P=0.2. e. Quantification of Tbr2 
positive cells expressing TDP-43-∆RRM1 or control plasmid. tTest P=0.1. Dashed line marks the 
ventricular lining. Scale bars = 20 µm.  

 
TDP-43 binds and regulates Cdkn1a mRNA 

TDP-43 and TDP-43(A315T) expression induced apoptosis in vivo and 

blocked cells from progressing into S- and M-phase of the cell cycle. 

Increased p21 levels similarly cause cell cycle arrest at which activated p53 

can induce Cdkn1a transcription. Many RBPs bind Cdkn1a mRNA, regulate 

its stability and thereby affect p21 protein levels (Jung et al., 2010). TDP-43 is 

an RBP reported to bind and regulate several RNAs, therefore, we tested if 
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TDP-43 binds Cdkn1a specifically. We performed crosslinked RNA 

immunoprecipitation (CLIP) experiments in N2A cells after expression of a 

flag-tagged TDP-43 protein or flag-tagged GFP as a control. 48 hours after 

transfection cells were crosslinked with PFA and CLIP performed with beads 

coupled to anti-flag antibodies. After pull-down of the proteins, reverse cross-

link and purification of the pulled-down RNA, the bound RNAs were reverse 

transcribed into cDNA and analysed by qRT-PCR. qRT-PCR values of the 

CLIPed products were corrected relative to the input RNA concentration of 

each condition and primers specific for Cdkn1a, Tardbp (positive control) and 

β-actin (negative control) were used. TDP-43 bound to Cdkn1a as well as 

Tardbp mRNA (Fig. 26a,b), showing that TDP-43 does indeed bind its own 

mRNA, but also Cdkn1a. β-actin levels were not pulled down with TDP-43. 

In order to investigate how binding of TDP-43 affects Cdkn1a mRNA levels 

and vice versa we performed qRT-PCR analysis in vitro. N2A cells were 

transfected with expression plasmids (TDP-43, TDP-43(A315T), p21 or control) 

and the cells harvested 24 hours post-transfection. Total RNA was isolated 

and reverse transcribed into cDNA. TDP-43 and TDP-43(A315T) expression 

resulted in downregulation of Tardbp mRNA levels as has already been 

demonstrated (Ayala et al., 2010; Polymenidou et al., 2011; Sephton et al., 

2010a; Tollervey et al., 2011). Additionally, Tardbp was decreased after p21 

expression which also translated into reduced TDP-43 protein levels (Fig. 

26c,d). Next we analysed Cdkn1a mRNA levels and detected an increase in 

Cdkn1a transcripts following expression of TDP-43 and TDP-43(A315T) (Fig. 

26c) and p21 itself. It was not possible to test if the changes on the mRNA 

level were translated into increased p21 protein because endogenous p21 

was expressed at very low levels in N2A cells. This made it difficult to detect 

the protein per se or quantify changes at protein level. Binding of TDP-43 and 

TDP-43(A315T) to Cdkn1a mRNA resulted in an increase in p21 transcript levels. 

In contrast, p21 downregulated Tardbp and also Cdkn1a levels. In addition, 

we identified a negative feedback loop for p21 which regulates its own 

transcript levels. 
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Figure 26: TDP-43 binds p21 mRNA 

a. Quantitative qRT-PCR analysis of Tardbp, p21 and β-actin transcripts CLIPed from N2A cells 
transfected with flag-TDP-43. Values are fold enrichment over control CLIPed (flag-GFP) transcripts. 
Statistical analysis of CLIPed products corrected relative to input RNA concentrations compared to flag-
GFP CLIPed samples. b. Gel analysis of amplicons for TDP-43 and p21 after CLIP with TDP-43. Flag-
tagged GFP was CLIPed as a control. The agarose gels are representative experiments performed in 
duplicate (2 lanes per CLIP). CLIP RT+ shows amplification of precipitated TDP-43 and p21 RNAs. 
CLIP RT- and Input RT+ are controls for RNA amplification and absence of genomic DNA 
contamination. c. qRT-PCR analysis of N2A cells transfected with control, p21, TDP-43 or TDP-43(A315T). 
Expression of p21, TDP-43 and TDP-43(A315T) results in decrease of Tardbp mRNA. Cdkn1a mRNA is 
downregulated by p21 whereas TDP-43 and TDP-43(A315T) results in an upregulation of Cdkn1a. d. 
Expression of p21 downregulates TDP-43 protein levels in N2A cells. e. IP of flag-tagged TDP-43 and 
GFP demonstrates no protein interaction between TDP-43 and p21 or p53. f. qRT-PCR analysis of 
NSCs expressing control, TDP-43 or TDP-43(A315T). Expression of TDP-43 and TDP-43(A315T) results in 
an increase of Trp53, Cdkn1a, Bbc3 and Bax levels, whereas Bcl-2 levels are slightly decreased. tTest 
*P<0.05, **P<0.01 and ***P<0.001 

 
Addressing if TDP-43 also interacts with p21 or p53 on protein level we 

performed immunoprecipitation experiments. Therefore, flag-tagged TDP-43 

and flag-tagged GFP as a control, were expressed in N2A cells for 30 hours. 

The cells were then lysed and the proteins separated on an SDS-page and 

transferred to a membrane. Blotting of the membrane with anti-TDP-43 

antibody we detected the endogenous and exogenous protein in the Input 

lane of cells transfected with flag-tagged TDP-43, whereas only the 

endogenous protein was present in the Input of flag-GFP transfected cells 

(Fig. 26e). In addition, we detected a prominent band for flag-tagged TDP-43 
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after IP of flag-tagged TDP-43 (IP lane). We were able to pull-down the two 

flag-tagged proteins using beads coupled to anti-flag antibody, whereas no 

GFP, TDP-43 or Flag-protein was detected in the bead-only control. We 

analysed the pulled-down proteins using anti-p53 antibody but did not detect 

p53 in the IP lane of neither flag-GFP nor flag-TDP-43. Thus, we were not 

able to show an interaction between TDP-43 and p53 at the protein level. We 

could also not detect an interaction between p21 and TDP-43 or GFP proteins.  

Exogenous expression of TDP-43 and TDP-43(A315T) results in apoptosis in 

vivo, a phenotype that can be rescued by inhibition of p53. Therefore, we 

addressed whether p53 levels are changed upon TDP-43 and TDP-43(A315T) 

expression in primary NSCs. In order to test the effects of TDP-43 and TDP-

43(A315T) on p53 and downstream factors of the apoptosis pathway in NSCs 

cultured as neurospheres TDP-43 and TDP-43(A315T) were expressed in NSCs 

using retroviruses, which resulted in a stable integration and expression of 

genes including an IRES Tomato reporter in the actively proliferating cells. 

Embryonic neurospheres were infected with pMI-TDP-43-Tomato, pMI-TDP-

43(A315T)-Tomato or pMI-Tomato (control) and the unsorted cells were 

analysed 4 days after infection. Expression of TDP-43 and TDP-43(A315T) did 

not affect survival of the NSCs most probably due to the high concentration of 

growth factors present in the neurosphere medium (see method section 5.4.4). 

The RNA of the infected NSCs was isolated and analysed by qRT-PCR. We 

found Trp53 and Cdkn1a to be upregulated after TDP-43 and TDP-43(A315T) 

expression compared to controls (Fig. 26f). We also observed an increase in 

Bbc3 and Bax levels though not as pronounced. Bcl-2 levels were not 

significantly changed following TDP-43 and TDP-43(A315T) expression. Hence, 

expression of TDP-43 and TDP-43(A315T) in NSCs in vitro results in an 

increase of Trp53 and also affects downstream factors of the apoptosis 

pathway such as the direct p53 target Cdkn1a. 

 

Expression of p21 does not induce apoptosis in vivo 
We have demonstrated a binding of TDP-43 to Cdkn1a mRNA, which 

results in upregulation of the transcript. In addition, expression of TDP-43 

resulted in apoptosis of transfected cells in vivo. In order to test if TDP-43 

triggers cell death through increased p21 levels, we expressed p21 by IUE in 
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vivo. 24 hours post-electroporation no apoptotic cells were detected following 

p21 expression (Fig. 27a) and BP (Tbr2+) numbers were unchanged (Fig. 

27d) . However, as expected p21 expression arrested cell cycle and actively 

proliferating cells were completely lost. All transfected cells were pH3- and 

after a BrdU pulse for 2 hours only 2% of the cells had passed through S-

phase (Fig. 27a-c arrows). Thus, increased p21 protein levels induced cell 

cycle arrest which may also be part of the TDP-43 induced phenotype, but did 

not trigger apoptosis in vivo.  

 

 

Figure 27: p21 expression in vivo does not induce apoptosis 

a. Immunostaining of electroporated embryos 24 hours after expression of p21 or control plasmids. 
Embryos were stained against pH3 and BrdU. Following p21 expression the number of proliferating cells 
is strongly reduced (arrows). b. Quantification of pH3 positive cells expressing p21 or control plasmids. 
tTest ***P<0.001. c. Quantification of BrdU positive cells expressing p21 or control plasmids. Scheme of 
BrdU labelling procedure of E13.5 embryos with a BrdU pulse 22 hours post-electroporation and 2 hours 
prior to sacrifice. tTest **P<0.01. d. Quantification of Tbr2 positive cells expressing p21 or control 
plasmids. tTest P<0.25. Dashed line marks the ventricular lining. Scale bars = 20 µm.  
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7 Discussion 
Since the last century a growing number of people develop 

neurodegenerative diseases mostly due to the higher life expectancy of 

humans. These primarily late onset diseases can occur sporadic or due to an 

inherited mutation. A large number of mutated genes has been identified in 

the last years and provided more insight into the pathogenesis of these 

disorders. Still, the high heterogeneity of neurodegenerative diseases makes 

it difficult to understand the mechanism causing the neuron loss. In ALS 

patients for instance, more than 9 different genetic mutations have been 

linked to disease onset. One of the mutated genes is Tardbp, but it is not 

known how the point mutations affect the function of the TDP-43 protein or 

how TDP-43 mutations cause disease. Furthermore the cytoplasmic 

inclusions residing in affected neurons of ALS, Alzheimer’s disease and FTLD 

patients are partially composed of TDP-43. Neither the cause of the inclusions 

nor their effect on the cells are clear.  

Notch signalling is an important pathway in several developmental 

processes including brain development. Notch plays a key role in the 

maintenance and fate of NSCs. By performing a microarray analysis we 

identified several novel targets regulated upon Notch1 deletion. One of the 

genes affected was Tardbp, which we found to be upregulated following 

Notch1 ablation. Because of the particular interest of the protein and the link 

to NSC regulation we sought to study the function of TDP-43 in NSCs. 

 To analyse the expression of TDP-43 we performed ISH and found Tardbp 

present at high levels in progenitor cells of the midbrain, telencephalon and 

spinal cord in E11.5 embryos. This coincides with the Tardbp expression 

pattern published by Sephton et al. where TDP-43 was knocked-out using a 

gene trap which carried a β-galactosidase reporter gene (Sephton et al., 

2010b). The group reported Tardbp expression in progenitor cells of the 

midbrain, hindbrain, telencephalon and spinal cord at embryonic stages. In 

addition, they detected a decrease of β-galactosidase expression in postnatal 

brains. Still, a distinct X-gal staining was observed in the hippocampus, 

olfactory bulb, neocortex and granule cell layer of the cerebellum of adult 

animals. This reduced expression of Tardbp at postnatal stages coincides 
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with the gradual loss of NSCs after birth. Analysing TDP-43 protein 

expression we detected a cytoplasmic staining in mitotically active NSCs 

lining the lateral ventricle. Additionally TDP-43 staining was detected in 

neuroblasts in the CP and at lower levels in the SVZ. 

To address the function of TDP-43 we employed IUE. With this method 

proteins of interest can be expressed or knocked-down in NSCs of the 

developing telencephalon. Importantly, IUE transfects the cells that line the 

ventricles of the brain by default, which at this stage are RGCs, thus targeting 

NSCs within a wildtype environment. The analysis of the electroporated cells 

can be performed at any given time point although one has to keep in mind 

that the transiently transfected DNA will be diluted out with every cell division. 

In addition, the number of cells are variable implying that quantifications must 

be performed as percentages of total electroporated cells. Another limitation 

of the method in our set up is, that we are co-electroporating two expression 

plasmids in parallel. One plasmid encodes the fluorescent protein GFP to 

trace the cells and the other plasmid the protein of interest. Thus, it is possible 

that cells are taking up only one of the two plasmids. In order to ensure, that 

all GFP+ cells are expressing the protein of interest the plasmids are used in a 

ratio of 3:1. However, it is still possible, although very unlikely, that some of 

the GFP+ cells are not expressing the second plasmid and vice versa. To 

address this issue one could perform IUE with plasmids encoding for different 

fluorescent proteins. One could therefore clearly determine how many of the 

cells are double or single positive. Alternatively one could express both 

proteins from the same plasmid, using an internal ribosomal entry site (IRES) 

to circumvent the problem.  

Expression of TDP-43 and TDP-43(A315T) in vivo triggered cell death within 

24 hours. The persistent surviving cells missed to express the adequate NSC 

(Pax6) and BP (Tbr2) markers and after 48 hours almost no surviving cells 

were detected, reflected by a complete loss of Tbr1+ neurons. Selective 

expression of TDP-43 in BPs did not induce apoptosis even after 48 hours. 

Instead TDP-43 induced an increase in Tbr2+ and Tbr1+ cells. In addition, 

immature neurons expressing the proneural gene NeuroD1 were strongly 

increased. This can be explained by an enhancing effect of TDP-43 on 

NeuroD1 expression or an increased production of NeuroD1+ cells due to 
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altered proliferation or differentiation. The microarray data coincides with this 

result as Notch1 deletion induces precocious differentiation and upregulated 

Tardbp levels. Thus, increased TDP-43 levels can be linked to differentiation 

or proliferation of neural progenitor cells. However, the two opposing findings 

indicate a cell type specific effect of TDP-43 in NSCs and BPs. While NSCs 

rapidly underwent apoptosis the expression of TDP-43 in BPs increased the 

number of differentiated neurons and did not cause cell death. The two cell 

types are in fact very different concerning their proliferative potential, marker 

expression, location and cell cycle regulation. The proliferation of NSCs is 

tightly regulated compared to BPs and a disturbance of the timing might have 

a severe effect on the survival of these cells. Another possible explanation for 

the different effects on cell survival are the differing TDP-43 expression levels 

due to the different promoters used in the experiments.  

The apoptosis phenotype following TDP-43 and TDP-43(A315T) expression in 

NSCs is conflicting with a recent study where a TDP-43-GFP fusion protein 

was expressed by IUE (Akamatsu et al., 2013). The authors did not observe 

significant cell death in the analysed animals. We used TDP-43-GFP for IUE 

and did not detect an effect on cell survival after 48 hours. Thus, the GFP 

protein must alter TDP-43 function, possibly through disturbance of correct 

protein folding.  

Many groups suggest a connection between the partial clearance of TDP-

43 from the nucleus of apoptotic neurons and the onset of cell death. We 

therefore performed loss-of-function experiments to analyse the effect on 

NSCs in vivo. No cell death was observed 24 hours after Tardbp KD. TDP-43 

is indispensable for early development (Sephton et al., 2010b), yet at the time 

point analysed it did not seem to have a crucial function in NSC maintenance. 

In addition, we can conclude from this experiment that potential loss of 

endogenous TDP-43 after TDP-43 expression by IUE did not cause the 

apoptosis phenotype. This would have been a possibility as TDP-43 regulates 

its own levels by destabilization of the mRNA through binding of the protein to 

the 3’ UTR. We expressed the coding region of TDP-43 in the electroporated 

cells, which therefore only allowed for a negative regulation of the 

endogenous protein and not the transgene, thus circumventing the 

autoregulatory feedback loop.  
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Classically apoptosis is induced by various stressors, which eventually 

results in stabilization of p53 protein through phosphorylation. Phosphorylated 

p53 will then translocate to the nucleus and activate different downstream 

factors resulting in cell cycle arrest and cell death (Fig. 28). We therefore tried 

to rescue the TDP-43 induced apoptosis by inhibition of p53. In vivo p53 was 

either inhibited pharmacologically using PFT-α or by genetic ablation of p53. 

Both approaches fully rescued the apoptosis phenotype. In addition, the early 

lethality of hTDP-43(A315T) homozygous mutant mice was rescued by p53 

inhibition. Similar rescue experiments were performed more then 10 years 

ago in hSOD1(G93A) mice. Interestingly p53 deletion did not rescue the early 

lethality in those animals (Kuntz et al., 2000; Prudlo et al., 2000). Apoptosis 

and embryonic lethality must have occurred in a p53-independent way 

possibly through death receptors such as Fas (Mc Guire et al., 2011). This 

notion is supported by a recent study in which death receptor 6 (DR6) levels 

were found to be elevated in SOD1(G93A) transgenic mice (Huang et al., 2013). 

Additionally, treatment with antagonist antibody against DR6 increased motor 

neuron survival and therefore provided a neuroprotective effect in these 

animals. In line with this, TDP-43 is not present in cytoplasmic inclusions in 

ALS cases with SOD1 mutations and TDP-43 is thus not contributing to the 

pathogenesis (Dormann and Haass, 2011). Presenting an intriguing 

explanation for why p53 inhibition may not rescue SOD1 induced cell death. 

One can therefore suggest that neuronal cell death in ALS is induced through 

different mechanisms, dependent on the mutated genes present. In several of 

our rescue experiments we made use of the p53 inhibitor PFT-α and it is 

therefore important to consider how the small molecule inhibits p53 function. 

The drug is a specific inhibitor of p53 and blocks transcription and activation 

of the protein (Komarov et al., 1999). PFT-α was shown to rescue apoptosis in 

rodent models of stroke (Leker et al., 2004), kainate-induced seizures 

(Culmsee et al., 2001) and Parkinson’s disease (Duan et al., 2002). Although 

it is not clear how the drug interacts with p53 it is very unlikely that PFT-α 

affects any other protein or signalling pathway in the cell. In addition we 

observed the same rescue after genetic ablation of p53 and pharmacological 

inhibition of p53, and therefore conclude that off-target effects by the drug can 

be excluded.  
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Although p53-deletion rescued the apoptosis phenotype, changes in the 

number of proliferating cells could still be observed. We detected a reduction 

of cells in M- and S-phase in vivo even after p53-inhibition. In line with this 

proliferative cells were increased after Tardbp KD which was also reported in 

an independent study (Ayala et al., 2008a). Performing in vitro experiments 

we found that cells were blocked in the cell cycle at the end of G2- and G1-

phase following TDP-43 and TDP-43(A315T) expression. In addition, another 

study reported G2/M arrest after expression of TDP-43 in vitro (Lee et al., 

2012). However, in this study the effect was partially dependent on p53 and 

apoptosis could not be rescued by p53-deletion. The contradicting results can 

be explained by the cell line that was used in those experiments. The group 

employed HeLa cells for their study, which have an altered cell cycle 

regulation and might not respond adequately to inhibition of p53.  

p21 regulates the transition from G2- into M-phase and G1- into S-phase 

and expression of p21 resulted in a complete block at these two checkpoints 

in vitro and in vivo. Similar cell cycle alterations were observed after TDP-43 

and TDP-43(A315T) expression (Fig. 28). This was most likely caused by the 

interaction of TDP-43 and Cdkn1a, which we observed by performing CLIP 

experiments. TDP-43 binds Cdkn1a mRNA resulting in an upregulation of p21 

mRNA and protein in N2A cells and NSCs. The increase was more 

pronounced in NSCs than in N2A cells and can be explained by the different 

cells types used in the experiments. N2A cells are originally derived form a 

neuroblastoma and have an altered cell cycle regulation due to genetic 

mutations and adaptations that might have occurred over time in culture. In 

contrast NSCs are a primary cell line that is only cultured for short time and 

the cell cycle as well as apoptosis pathway is still unaffected. Elevated p21 

levels triggered by TDP-43 and TDP-43(A315T) expression most likely caused 

cell cycle arrest in our experiments. Sustained growth arrest of cells can 

trigger apoptosis and for that reason we analysed how expression of p21 

affects cell survival. Increased p21 levels in vivo did not cause apoptosis 

within 24 hours and the cell death observed after TDP-43 and TDP-43(A315T) 

expression must thus be due to a different or additional mechanism. Still, RNA 

binding ability of TDP-43 seems to be crucial in mediating the apoptosis 

phenotype since expression of TDP-43-ΔRRM1 did not induce cell death. 
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However, one has to consider that deletion of the RRM1 might also affect 

protein folding. The RRM1 comprises 70 amino acids and therefore 

constitutes a big part of the TDP-43 protein (414 amino acids). Deletion of this 

domain might, in addition to RNA-binding ability also alter interaction with 

other proteins. If time allowed one could have rendered the RRM1 non-

functional by site-directed mutation and could have more accurately 

addressed RNA-binding function of TDP-43.  

To investigate how TDP-43 and TDP-43(A315T) expression affects the 

apoptosis pathway, downstream effectors of p53 were analysed. The 

experiments were performed in primary NSC cultures instead of N2A cells, as 

the cancer cell line N2A presumably does not reliably represent occurring 

changes in the p53 pathway. It has not been addressed whether tumor 

suppressor genes are deleted or mutated in N2A cells, which makes it very 

difficult to study apoptosis in such a cell line. NSCs can be isolated and 

cultured as neurospheres and experiments were performed after passaging 

the cells for 3-4 times, ensuring that the cultured cells are all residing from 

self-replicating NSCs. After 3-4 passages cells are in culture for 4-5 weeks 

and most likely have not acquired any sporadic mutations to their genome, 

which would give them a growth advantage and affect the read-out of the 

experiment. TDP-43 and TDP-43(A315T) expression in NSCs resulted in 

upregulation of Trp53. In line with this, downstream effectors of p53 such as 

Cdkn1a, Bbc3 and Bax were upregulated. Here the strongest increase was 

observed in Cdkn1a levels. This is probably caused by a dual activation of 

Cdkn1a through p53 and TDP-43. Bbc3, another direct target of p53 also 

showed a strong upregulation. Puma is important for p53 function in the 

cytoplasm as it releases the protein from its binding to Bcl2 proteins at the 

mitochondrial membrane. Thus, p53 can interact with pro-apoptotic proteins 

like Bax and trigger permeabilization of the mitochondrial membrane and 

apoptosis. Bax levels were also increased in our study, however, not as 

strongly as Bbc3, probably due to the hierarchy of the signalling cascade. Bcl-

2 transcript levels were not significantly altered in NSCs, yet, we did not 

analyse the expression levels of other members of the Bcl2 family.  
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Figure 28. The TDP-43 and FUS proteins TDP-43 interacting with p53 results in an upregulation of 
Trp53 and therefore induces apoptosis. Additionally TDP-43 activates Cdkn1a transcription resulting in 
cell cycle arrest, which possibly contributes to apoptosis. 
 

Trp53 transcript levels were upregulated following TDP-43 expression. 

However, we did not analyse the p53 protein for posttranscriptional 

modifications or altered levels. Stress signals trigger phosphorylation, 

ubiquitinylation and acetylation of p53 and it would be interesting to see if 

these modifications are occurring after TDP-43 expression. Specific 

posttranslational modifications trigger different effects on target genes. The 

degree of p53 acetylation for example can be linked to different p53 target 

genes (Kruse and Gu, 2009). Genes involved in DNA repair and growth arrest 

are activated by partially acetylated p53 whereas full acetylation is required 

for activation of pro-apoptotic genes. Thus, analysing the posttranslational 

modifications of p53 following TDP-43 expression would give more insight into 

the effects triggered in the cell. Different modifications of p53 may enhance or 

counteract TDP-43 induced activation in a cell and cortex specific manner. In 

addition, we need to analyse how TDP-43 interacts with p53. Performing 
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immunoprecipitation experiments we ruled out an interaction of p53 and TDP-

43 on protein level. We therefore intend to analyse if TDP-43 interacts with 

Trp53 mRNA by performing CLIP experiments in NSCs.  

Besides Cdkn1a and potentially Trp53, additional mRNA targets are bound 

by TDP-43. CLIP-Seq experiments have been performed to identify the bound 

transcripts in different cell lines and also in mouse brains and brains from 

FTLD patients (Buratti et al., 2013). These experiments did not shed light on 

the role of TDP-43 in disease. Performing a similar experiment in N2A cells or 

NSC neurospheres is therefore unlikely to bring new insights. It would be 

interesting though to check the targets identified in the CLIP-Seq experiments 

for Trp53 and Cdkn1a or other cell cycle regulators and apoptosis factors. 

However, only the data from Xiao et al. is currently available to us and here 

Trp53 and Cdkn1a were not included in the list of 127 targets identified to bind 

to TDP-43 (Xiao et al., 2011).  

Performing expression experiments of TDP-43 and TDP-43(A315T) we 

observed two phenotypes. Firstly an apoptosis phenotype that was rescued 

upon p53 deletion or inhibition and secondly a cell cycle phenotype that 

occurred independent of p53. It is not clear if these two mechanisms are 

connected and if cell cycle arrest is necessary to induce apoptosis. This 

question could be addressed by expression of TDP-43 and simultaneously 

knockdown of Cdkn1a mRNA. A more challenging approach would be the 

replacement of the endogenous p21 with a p21 that is lacking the binding 

domain for TDP-43. Therefore, it would be necessary to determine the protein 

binding domain in the Cdkn1a mRNA, yet most RBPs bind to the 3’ UTR of 

target transcripts. One could thus simply delete the endogenous p21 and 

express the coding region of the protein with a synthetic 3’ UTR.  

In our study we performed rescue experiments of homozygous mutant 

hTDP-43(A315T) embryos that normally die at around E9.5. Embryonic death at 

this time point of development is mostly due to heart or vasculature failures. 

We did not investigate this further but it is certainly very unlikely that 

embryonic death is caused by brain defects. In order to investigate the effects 

of the point mutant TDP-43(A315T) on neuronal cells one could rescue the 

embryos until a specific time point by PFT-α injection. The treatment could 
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then be stopped and the developing brains analysed thereafter with a special 

focus on NSCs and neuronal differentiation. 

TDP-43 point mutations trigger ALS and the affected motor neurons display 

cytoplasmic inclusions composed of the protein. It was reported that the point 

mutations cause a higher stability of the protein compared to the wild type 

protein. Increased levels of mutated TDP-43 might therefore be present in the 

nucleus of the cell and we showed in our study that increased levels of TDP-

43 and TDP-43(A315T) induce apoptosis. Thus TDP-43 increase could cause a 

defense mechanism of the cell that is shuttling and storage of the excess 

protein in the cytoplasm. However, this might not be sufficient and eventually 

the cell will undergo apoptosis. In neurodegenerative disorders specifically 

neurons are affected, although the mutated proteins are ubiquitously 

expressed. Why is it, that pathology selectively targets neuronal subtypes? 

Neurons are vulnerable cells, due to their long neurites and axons in which 

cargos such as neurotransmitters, proteins and synaptic vesicle precursors 

are constantly transported back and forth (Hirokawa et al., 2010). Thus 

storage of proteins in the cytoplasm might increase the stress level of neurons 

and have a tremendous effect on the survival of these cells (Roy et al., 2005). 

However, this issue is still under debate and requires further investigation 

(Saxena and Caroni, 2011). In our experiments we also observed a cell type 

specific effect of TDP-43. Whereas survival of BPs was not affected by TDP-

43 expression, NSCs rapidly underwent apoptosis. Yet, we were able to 

rescue these cells by p53 inhibition and it is thus evident to suggest, that p53 

inhibition might also rescue affected neurons in ALS patients. First one would 

of course have to confirm the TDP-43-induced apoptosis and rescue in 

human cells, preferentially differentiated neurons. 
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9 Appendix 
 

During my tenure as a PhD student I worked on a side project investigating 

the function of Drosha and the microprocessor in NSCs. The project was 

published in 2012, and the following chapters include the data I have 

contributed to the paper: ‘Drosha regulates neurogenesis by controlling 

Neurogenin 2 expression independent of microRNAs’. In addition a short 

introduction to the topic as well as additional Material & Methods are listed.  

 

9.1 Introduction 

9.1.1 Small, non-coding RNAs 

Small, non-coding RNA species including microRNAs (miRNAs), small 

interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), small nuclear 

RNAs (snRNAs) and Piwi-interacting RNAs (piRNAs) control gene expression 

in plants and animals (Li and Liu, 2011). Small RNAs have been shown to be 

implicated in a wide range of cellular processes (Pauli et al., 2011). They 

regulate mRNA stability and translation through distinct RNA silencing 

pathways and are mainly distinguished by their different origins and 

biogenesis pathways (Zamore and Haley, 2005). siRNAs are generated from 

exogenous or endogenous double-stranded RNAs (dsRNAs) whereas the 

piRNAs derive from single-stranded precursors independent of RNase III 

enzymes (Ishizu et al., 2012). piRNAs form complexes with Piwi proteins and 

silence retrotransposons and other genetic elements in germ cells, mainly 

during spermatogenesis (Bushati and Cohen, 2007). miRNAs, another group 

of small, non-coding species of RNAs originate from hairpin-containing 

transcripts and play a crucial role in the regulation of gene expression. 

Discovered initially by loss-of-function mutations in C. elegans (Lee et al., 

1993), miRNAs have also been identified in higher vertebrates. In animals 

hundreds of miRNAs are described although the function of only a few have 

been explored.  
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9.1.2 MicroRNA Biogenesis 

Most miRNAs are encoded as solitary genes and are under the control of 

their own promoters and regulatory sequences. Yet, others are closely 

clustered on the genome and may be co-regulated with other members of the 

cluster. Some miRNAs are also found within the non-coding or coding region 

of larger genes (Ambros, 2004). miRNAs are derived from long, largely 

unstructured transcripts (pri-miRNA) that are primarily, although not 

exclusively, transcribed by RNA-Polymerase II (Lee et al., 2004). Pri-miRNAs 

contain a stem-loop or “hairpin” structure of about ~70 nt in length. This 

sequence is recognised by a protein complex termed the “microprocessor” 

(Ayala et al., 2006) that is 

composed of two key 

factors: Drosha, a member 

of the ribonuclease III 

family and DGCR8. 

Drosha contains a double-

stranded RNA binding 

domain (dsRBD) and two 

RNase III domains which 

form an intramolecular 

dimer and cleave the 3’ 

and 5’ strands of the stem 

(Han et al., 2004). 

Because the dsRBD of 

Drosha is insufficient for 

substrate binding, Drosha 

needs a partner protein, 

DGCR8, surrogating the 

RNA recognition function.  

 DGCR8 contains two dsRBDs and recognises the unique features of the 

pri-miRNA, which include the ssRNA segments flanking a stem of appropriate 

length. DGCR8 anchors at the ssRNA-dsRNA junction and directs Drosha to 

cleave 11 bp away from the junction (Han et al., 2006). The hairpin is cut out 

Figure 29: Biogenesis of miRNA Scheme outlining the 
stepwise cleavage and maturation of miRNA. Drosha/DGCR8 
cleave the initial pri-miRNA, which is then transported into the 
cytoplasm, further processed by Dicer/TRBP and loaded onto the 
RISC complex. Adapted from (Winter et al., 2009) 
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by the microprocessor to yield a precursor miRNA (pre-miRNA). Exportin-5 

transports the pre-miRNA via a Ran-GTP-dependent mechanism into the 

cytoplasm (Bohnsack et al., 2004; Lund et al., 2004), where it is cleaved by 

another RNase III endonuclease, Dicer1. Dicer1 together with the dsRBD 

protein TRBP release the 2 nt 3´overhang containing a ~22 nt miRNA : 

miRNA complex. Usually a single “leader” strand is finally loaded onto the 

RISC composed of proteins of the Argonaute family (Maniataki and 

Mourelatos, 2005) (Fig. 29) .  

In the cytoplasm, the miRNA can specifically interact with the 

complementary mRNA, which results in translational repression, mRNA 

cleavage or de-adenylation (Seila and Sharp, 2008). The base-pair 

complementarity between the miRNA and the mRNA dictates which 

mechanism of silencing will predominate. In cases where complementarity is 

near perfect, as happens primarily in plants, degradation is mediated through 

direct cleavage of the mRNA. The catalytic component of the RISC that 

performs the cleavage is thought to be Argonaute 2 in vertebrates (Liu et al., 

2004). In animals, degradation of mRNA following perfect base-pairing is very 

rare. Most miRNAs in animals base-pair imperfectly resulting in translational 

silencing and overall downregulation of protein levels (Bushati and Cohen, 

2007). The mechanisms by which miRNAs regulate gene expression are still 

under debate. Published studies indicate that miRNAs inhibit translational 

initiation, block elongation or cause premature termination of translation 

(ribosome drop-off) (Bushati and Cohen, 2007; Seila and Sharp, 2008). 

Obviously perfect base-pair recognition of the entire 22 nt miRNA is not a 

requirement for mRNA silencing. Instead a short “seed sequences” between 

base 2 and 7 of the miRNA is essential for correct target recognition (Doench 

and Sharp, 2004) and translational inhibition. Interestingly, the imperfect 

recognition of targets by miRNA programmed RISC results in the possibility 

for a single miRNA to regulate the expression of several genes 

simultaneously. 
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9.1.3 Function of miRNAs during Mouse Development 

Silencing of genes mediated by miRNAs is a mechanism involved in many 

physiological processes such as muscle differentiation, hematopoiesis, bone 

formation and neurogenesis (Ivey and Srivastava, 2010). Additionally miRNAs 

are involved in cancer and are important for maintenance of pluripotency in 

stem cells (Leonardo et al., 2012). Some studies address the function of 

individual miRNAs, however, loss of single miRNAs very rarely results in a 

detectable phenotype in mice. This may, in part, be explained by the 

duplication and redundancy among miRNAs with similar seed sequences in 

higher vertebrates. Many factors are involved in miRNA biogenesis and 

deletion or knockdown (KD) of the very results in much more severe 

phenotypes. Therefore, miRNA function in different cell systems has been 

investigated using global impairment strategies. However, these approaches 

are limited, as many factors are not only involved in the biogenesis of one 

small, non-coding RNA species but instead participate in the maturation of 

several different ones. 

The Dicer1 gene was used in many studies and Dicer1 knockout (KO) in 

mice results in embryonic lethality at E7.5 possibly due to a loss of pluripotent 

stem cells (Bernstein et al., 2003). Conditional deletion of Dicer1 from 

different cell types of the developing mouse cortex causes death of mice 

shortly after weaning and the cortex displays a high degree of apoptosis and 

impaired differentiation (Davis et al., 2008; De Pietri Tonelli et al., 2008; 

Kawase-Koga et al., 2009; Nowakowski et al., 2011). The changes observed 

following Dicer1 ablation are possibly not only due to the loss of miRNAs as 

Dicer1 is also implicated in other cellular processes such as maturation of 

small interfering RNAs (siRNAs) or noncanonical miRNAs (Babiarz et al., 

2008; Ruby et al., 2007). In order to achieve a more selective impairment of 

miRNA biogenesis, factors upstream of Dicer1 such as Drosha and DGCR8 

have been deleted. Dgcr8 conditional knockout (cKO) in mice results in a 

phenotype distinct from Dicer1 cKO and the comparison of the two identified 

novel noncanonical miRNAs (Babiarz et al., 2011). KO of Dgcr8 from 

embryonic stem (ES) cells similarly differs from the Dicer1 KO in ES cells. 

Dgcr8 KO ES cells fail to downregulate pluripotency markers and early 
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differentiation markers are partially absent (Wang et al., 2007). Still, survival 

and growth is not affected whereas Dicer1 KO ES cells stop growing after 8 

days in culture (Kanellopoulou et al., 2005). Dicer1-null ES cells similarly to 

Dgcr8 KO ES cells display differentiation defects and in addition reduction of 

epigenetic silencing of centromeric repeat sequences. The observed Dicer1 

KO phenotype, however, is conflicting with the published data from Bernstein 

et al. 2003, where Dicer1-deficient ES cells could not be obtained, which was 

possibly due to differences in the experimental procedure. Drosha-null ES cell 

lines have been generated, however, it was not reported whether they exhibit 

phenotypes (Karginov et al., 2010). Drosha cKO was also analysed in the 

immune system, where miRNAs are indispensable for functional regulatory T 

cells (Chong et al., 2008), and in the postnatal skin of mice (Teta et al., 2012).  

  



 APPENDIX  
 

 131 

 

9.2 Materials 

In addition to the Materials described in chapter 4 the following reagents were 

used in this set of experiments. 

 

9.2.1 Primers 

Primers for 3’ Rapid Amplification of cDNA Ends (3’ RACE) 
Anchored 3’ RACE oligo-dT primer: gaccacgcgtatcgatgtcgacttttttttttttttttv 

Ngn2_fwd: ttgtaggcttttgtaagggttg  

Binding primer_rev: gaccacgcgtatcgatgtcgac 

 
 
Primers for cloning of ISH probes 

Description Forward 5'-3' Reverse 5'-3' 
Drosha taatgatccggaccttcgag cttagaaaggcaatgctccg 

 
 

qRT-PCR primers 

Description Forward 5'-3' Reverse 5'-3' 
        Actin aggtgacagcattgcttctg gggagaccaaagccttc 

DGCR8 gccacaggtggaagaagaa acactggcggcttagtcaa 
GAPDH tccatgacaactttggcattgtgg gttgctgttgaagtcgcaggagac 
NeuroD1 gcgttgccttagcacttctt ctcttgagtgttatgggtctgg 
NeuroD6 ggatcacatggctctctctg gagtgtcgcatcgtctcct 

Ngn2 gaaacacgtgtgtggctga gccacaggtggaagaagaa 
hRluc tgatcggaatgggtaagtcc ggccttgatcttgtcttggt 
Sox2 ccgtgatgccgactagaaa gaagcgcctaacgtaccact 
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Genotyping primer 

Description Forward 5'-3' Reverse 5'-3' 

Dicerflox/flox #1 cctgacagtgacggtccaaag 
#2  catgactcttcaactcaaact cctgagcaaggcaagtcattc 

Droshaflox/flox gcagaaagtctcccactcctaaccttc ccaggggaaattaaacgagac
tcc 

 

9.2.2 Enzymes 

Poly(A) Polymerase (NEB) 

 

9.2.3 Plasmids 

 
Plasmid Cloned by / obtained from 
Hes5::Cre (Onur Basak) 

pCAGGS-mCherry (Philip Knuckles) 

pCK-Flag-Drosha (laboratory Prof. V. Narry. Kim) 

pCK-Flag-TNDrosha (laboratory Prof. V. Narry. Kim) 

psiCHECK2 (Philip Knuckles) 

psiCHECK2-Neurog2-3’ UTR (Philip Knuckles) 

psiCHECK2-Neurog2-HP (Miriam Vogt) 

pSuper-shDrosha (Oligoengine) (Philip Knuckles) 

shNgn2 (laboratory Prof. F. Guillemot) 
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9.3 Methods 

In addition to the Methods described in chapter 5 the following methods were 

used in this set of experiments. 

 

9.3.1 Animal Husbandry 

Mice were kept on a 12-hour day/night cycle with adequate food and water 

under SPF (specific pathogen free) conditions. Adult mice 8-12 weeks of age 

were used in the experiments. The day of vaginal plug was considered as 

embryonic day 0.5 (E0.5). 

Rosa-CAGS-Stop-eGFP (Tchorz et al., 2012), Droshaflox/flox (Chong et al., 

2008) and Dicerflox/flox (Harfe et al., 2005) mice were used in the experiments.  

 

9.3.2 3’ Rapid Amplification of cDNA Ends (3’ RACE) 

For 3’ RACE, RNA of total RNA extract were 3’ polyadenylated using Poly(A) 

Polymerase following the manufacturer’s instructions. Next, 1 µg of 

polyadenylated total RNA was used for cDNA synthesis using the SuperScript 

III First-Strand Synthesis kit and an anchored 3’ RACE oligo-dT primer 

(gaccacgcgtatcgatgtcgacttttttttttttttttv). The PCR amplification from cDNA was 

performed using Kappa2G polymerase according to the manufacturer’s 

instructions with forward (Ngn2) specific primers (ttgtaggcttttgtaagggttg) and 

an anchor binding primer as reverse primer (gaccacgcgtatcgatgtcgac). 
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9.1 Results 

9.1.1 Background and Key Findings 

Canonical Notch signalling is essential to maintain NSCs as it regulates 

transcription factors of the Hes and proneural gene families. Proneural genes 

including the transcription factor Neurogenin2 induce the neuronal 

differentiation program and are negatively regulated by Hes proteins in NSCs. 

Hes proteins are expressed in an oscillatory fashion which results in opposing 

degradation of proneural gene mRNAs and thereby oscillatory expression of 

proneural proteins. The mechanism controlling the instability of proneural 

gene mRNA such as Neurog2 and thus preventing precocious accumulation 

and differentiation of NSCs are not known. miRNAs have been shown to 

regulate gene expression on post-transcriptional level and therefore would 

have been a potential candidate to regulate mRNA levels of proneural genes 

in NSCs. However, Dicer1, a key factor in the RNA biogenesis pathway has 

been shown not to be required for maintenance or differentiation of NSCs. In 

general the role of miRNAs and the components necessary for miRNA 

production have not been explored in NSC biology. We investigated the 

function of Drosha and DGCR8, the two components of the microprocessor, 

through loss-of-function strategies. We found that Drosha and Dgcr8 are 

highly expressed in forebrain progenitors and conditional deletion or small 

hairpin-mediated knockdown in NSCs in vivo induces precocious 

differentiation. This effect occurs independently of Dicer1 and miRNA levels 

are unchanged at the time point when the phenotype is observed. We 

uncovered that the microprocessor components Drosha and DGCR8 function 

to destabilize Neurog2 mRNA and thus prevent accumulation of the mRNA 

and protein which would result in differentiation of NSCs. Mechanistically 

Drosha directly binds conserved hairpin structures in the 3’ UTR of Neurog2 

which leads to the destabilization and degradation of the mRNA. We identified 

a novel mechanism that regulates proneural gene expression in NSCs, which 

is possibly also conserved in other systems where post-transcriptional 

regulation of mRNAs is essential. 
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9.1.2 Statement of Contributions 

For the paper ‘Drosha regulates neurogenesis by controlling Neurogenin2 

expression independent of miRNAs’ I participated in the execution of several 

experiments, in particular in the biochemical analysis of the interaction of 

Drosha with Neurog2 mRNA. I also participated in the experimental design 

and data analysis and contributed to the writing of the final manuscript. In the 

following chapter the reader will find the results I contributed to the paper. For 

better understanding of the study some data generated by Philip Knuckles 

and Verdon Taylor are shown which are clearly labelled. Furthermore the 

paper is included as not all experiments of the study are mentioned in this 

chapter.  

9.1.3 Results 

The miRNA microprocessor is critical for embryonic neurogenesis 
The MP controls initial stages of miRNA biogenesis. The central 

components of the MP, DGCR8 and Drosha, form a multimeric complex that 

binds double-stranded hairpins of pri-miRNAs and cleaves them to release 

the hairpin pre-miRNA. Pre-miRNAs generated by the MP in the nucleus are 

exported and processed to mature miRNAs by Dicer1 (Bernstein et al., 2003). 

To analyse the expression pattern of Drosha in the developing telencephalon 

we performing in situ hybridisation assays. We found Drosha being expressed 

by forebrain progenitors in the VZ and differentiating neurons in the CP (Fig. 

30). The RNA levels of Drosha seem to show a dynamic expression pattern 

during the differentiation of progenitors in the VZ to SVZ/IZ and differentiating 

immature neurons in the CP. 
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Figure 30: Drosha is expressed in the developing dorsal telencephalon 

In situ hybridization analysis displaying Drosha mRNA expression in the dorsal telencephalon of E14.5 
mouse embryos. VZ = ventricular zone, SVZ = subventricular zone, IZ = intermediate zone and MZ = 
marginal zone. Scale bars = 100 µm.  

 
NSCs in the developing telencephalon have active Notch signalling and 

express the Notch target Hes5. In order to address the function of Drosha in 

Notch signalling neural progenitors (NPs) we expressed Cre recombinase 

from the Hes5 regulatory elements in loxP-flanked (floxed) Drosha embryos 

by IUE (Fig. 31a). This resulted in recombination and deletion of the Drosha 

locus specifically in transfected NPs. A mCherry expression plasmid was co-

electroporated to trace the transfected and recombined cells. NPs 

conditionally deleted for Drosha showed reduced expression of the progenitor 

protein Pax6 after 24 hours (Fig. 31b). Unlike control cells most Drosha 

depleted cells had exited from the VZ and entered into the SVZ/IZ or CP. To 

address whether the Drosha effects required the core MP components we 

knocked-down Dgcr8 by shRNA expression. Therefore, IUE of wild type 

animals was performed using a plasmid that expresses a hairpin shRNA that 

specifically targets Dgcr8 mRNA. Dgcr8 KD phenocopied the cKO of Drosha, 

as it resulted in rapid loss of progenitor markers and exit from the VZ within 24 

hours (Fig. 31d).  

The effect of inactivating Drosha or DGCR8 on NPs was distinct to the 

Dicer cKO phenotype described previously (De Pietri Tonelli et al., 2008; 

Makeyev et al., 2007). We therefore also performed cKO of Dicer1 from Notch 

signalling NPs to analyse the resulting phenotype in our system. Again, the 

Hes5::cre construct was used for electroporation of loxP-flanked (floxed) 

Dicer1 embryos in order to achieve recombination selectively in NPs. In 

contrast to Drosha and DGCR8 deleted NPs, Dicer1 cKO cells did not 



 APPENDIX  
 

 137 

precociously exit the VZ and retained progenitor-marker expression after 24 

hours (Fig. 31c). Comparing Dicer1 depleted NPs to control cells we observed 

no obvious changes in cell location, survival or marker expression.  

 

 
Figure 31: Inactivation of the MP at E13.5 results in NP differentiation in contrast to 
Dicer1 cKO 

a. Hes5::cre construct driving expression of Cre-recombinase from the mouse Hes5 regulatory elements 
including promoter, exons I, II, III, introns, the endogenous 3’ UTR and polyA b. Drosha cKO results in 
NPs downregulating Pax6 and exiting the VZ, lineage traced by mCherry c. Dicer1 cKO NPs do not 
precociously exit the VZ and express the progenitor marker Pax6. d. shRNA mediated KD of Dgcr8 
results in downregulation of Pax6 and exit of NPs from the VZ. VZ = ventricular zone, SVZ = 
subventricular zone, IZ = intermediate zone and CP = cortical plate. Scale bars = 20 µm.  

 
miRNAs are unaffected by Drosha KD at the point of phenotypic effects 

The MP and Dicer1 are involved in different steps of miRNA biogenesis. 

Whereas the microprocessor recognises and cleaves hairpin structures in the 

nucleus and therefore decides which RNA is processed into miRNA, Dicer1 

acts in the cytoplasm where it undertakes the final cleavage giving rise to the 

mature miRNA. Both steps however are crucial to yield mature miRNAs. The 
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different phenotypes observed after MP inactivation and Dicer1 ablation 

suggest that the induced effects may not result from changes in mature 

miRNA levels. Additionally the phenotypic changes induced by Drosha and 

DGCR8 deletion were already distinguishable after 24 hours. This time-frame 

is too short to be an effect dependent on changes in miRNA levels. We 

therefore analysed the miRNA levels of 381 miRNAs in vivo after Drosha 

deletion. Therefore, Drosha floxed embryos were electroporated using the 

Hes5::cre and a mCherry expressing construct. The embryos were harvested 

after 24 hours and transfected NPs (mCherry+) were isolated and sorted by 

FACS. Subsequently the RNA of the sorted cells was isolated and analysed 

using TaqMan® array cards, allowing for the analysis of 381 rodent miRNAs. 

187 of the analysed miRNAs were expressed in NPs and none showed 

substantial changes after 24 hours of Drosha cKO (Fig. 32). This suggested 

that mature miRNAs are quite stable in NPs and blocking MP function for 24 

hours does not significantly affect their levels.  

 
 

Drosha deletion results in increased cell death over time 
Dicer1 KO in the dorsal telencephalon was reported to result in a striking 

phenotype. Whereas neural stem/progenitor cells are unaffected, 

differentiation and survival of newborn neurons are impaired. At E14.5 a 

massive apoptosis in the cerebral cortex of Dicer1-deleted mice occurs (Davis 
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Figure 32: miRNA levels are unchanged 
after 24 hours of Drosha cKO 

Change in cycle threshold (ΔCt) plot of relative 
miRNA expression profiles of control (Droshaflox/WT) 
and Drosha cKO NPs. R2 =0.9314 indicates no 
change in miRNA levels 24 hours after Drosha cKO 
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et al., 2008; De Pietri Tonelli et al., 2008). We therefore, checked for apoptotic 

cells after Drosha and Dicer1 deletion in the electroporated embryos.  

 

 
Figure 33: Over time Drosha cKO results in increased cell death 

a. In the control no morphological changes are observed 4 days post-transfection (i). Cells in the SVZ/IZ 
are reminiscent of migratory neuroblasts on their way to the CP (ii) b. 4 days after Dicer cKO very few 
cells are found in the CP. Massive cell death has occurred detectable by left over cell debris in the 
SVZ/IZ (iii and iv) arrow. c. 4 days after Drosha deletion cells have migrated to the CP and show a 
normal neuronal morphology (vi, vii). Some cells in the SVZ/IZ show aberrant morphology and cell 
debris is evident (viii and xi) indicative of cell death (arrow). VZ = ventricular zone, SVZ = subventricular 
zone, IZ = intermediate zone and CP = cortical plate. Scale bars = 20 µm.  
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At early time point no apoptotic cells were detected in Drosha or Dicer1 cKO 

embryos (Fig. 31a,b and data not shown), whereas 4 days after Dicer1-

ablation many cells had undergone cell death (Fig. 33b). Very few intact cells 

were found in the CP and only cell debris remained in the SVZ/IZ indicative of 

cell death. 4 days after Drosha cKO some apoptotic cells were detectable in 

the SVZ/IZ though the effect was less severe than in Dicer1 cKO mice (Fig. 

33c). cKO of Dgcr8 in neurons resulted in a similar phenotype displaying 

modest cell death (Babiarz et al., 2011), which indicates that the apoptosis 

occurring after 4 days is the result of reduced miRNA levels. Thus, we detect 

apoptotic cells 4 days after Dicer1 and Drosha deletion from NPs, similarly to 

the published Dicer1 KO phenotype. 

 
Proneural gene mRNA levels are regulated by Drosha 

Next we wanted to analyse how NSC gene expression is affected after 

Drosha cKO. We addressed the role of Drosha in cultured NSCs 

(neurospheres) by conditional inactivation. Therefore, NSCs were isolated 

from Droshaflox/flox and Droshaflox/wt littermates that were crossed onto GFP-

Cre reporter mice. NSCs were expanded in cell culture and Drosha was 

efficiently ablated by infection of dissociated cells with Cre-recombinase 

expressing Adenovirus (Akagi et al., 1997), reported by GFP expression of 

recombined cells (data not shown). RNA of the unsorted cells was isolated, 

reverse transcribed into cDNA and analysed by qRT-PCR. Drosha deletion 

resulted in a 2.8-fold increase in Dgcr8 mRNA levels (Fig. 34), in line with the 

published findings of Narry Kim’s lab (Han et al., 2004). The Kim lab showed 

a direct and miRNA independent regulation of Dgcr8 expression by Drosha, 

which results in hairpin cleavage and degradation of the mRNA. Upon 

deletion of Drosha, Dgcr8 mRNA is not cleaved and degraded which leads to 

an increased transcript level. The proneural transcription factor Neurog2 and 

its downstream effector NeuroD1 were also increased after Drosha cKO in 

NSCs whereas Sox2 mRNA levels were decreased (Fig. 34). Neurog2 and 

NeuroD1 are possibly regulated by a mechanism similar to the one reported in 

Han et al. 2009. The observed changes following Drosha deletion were not 

seen after Dicer1 cKO where Dgcr8, Sox2, Neurog2 and NeuroD1 mRNA 

levels were unchanged. Therefore, Drosha but not Dicer1 cKO affects 
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transcript levels of the proneural genes Neurog2 and NeuroD1 as well as 

Dgcr8 and Sox2. 

 
 

NP differentiation after Drosha cKO is mediated by increased Ngn2 
expression 

To test whether the changes in mRNA levels are also translated into 

protein, we analysed Ngn2 expression after Drosha cKO in vivo. Therefore, 

Drosha and Dgcr8 were deleted by IUE from NPs similar to the previous 

experiments and Ngn2 expression was analysed 24 hours later. We found a 

strong increase in Ngn2-expressing cells after deletion of Drosha or DGCR8 

compared to control, and the cells maintained the expression ectopically into 

the SVZ/IZ (Fig. 35a,b arrowheads). We next addressed if expression of Ngn2 

in vivo can phenocopy Drosha cKO. Therefore, Ngn2 was expressed by IUE, 

which resulted in exit of the transfected (mCherry+) cells from the VZ and loss 

of progenitor marker Pax6 after 24 hours (Fig. 35c,d arrowheads). This shows 

that increased Ngn2 expression is sufficient to induce differentiation of NPs 

and precocious exit from the VZ. 
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Figure 34: Drosha regulates proneural 
mRNA levels unlike Dicer1 

a. qRT-PCR analysis of Drosha cKO and Dicer1 
cKO neurospheres. Drosha cKO increased mRNA 
levels of the proneural genes Neurog2 and NeuroD1 
and resulted in loss of progenitor-associated Sox2. 
DGCR8 mRNA levels are also increased. These 
changes were not seen after Dicer1 cKO. tTest 
*P<0.05 and **P<0.001 
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Figure 35: NP differentiation after Drosha cKO is mediated by increased Ngn2 
expression 

a. Following Drosha KD cells in the VZ express Ngn2 (arrows) and maintain expression ectopically into 
the SVZ/IZ (arrowheads) unlike control cells. b. Quantification of cells expressing Ngn2 after Drosha 
and DGCR8 KD compared to control. tTest *P<0.05 and **P<0.001 c. Expression of Ngn2 by IUE in 
NSCs results in loss of the progenitor marker Pax6. Electroporated cells precociously exit the VZ after 
Ngn2 expression similar to Drosha cKO and Dgcr8 KD. d. Quantification of Pax6+ cells after Ngn2 
expression. tTest *P<0.05 VZ = ventricular zone, SVZ = subventricular zone and IZ = intermediate zone. 
Scale bars = 20 µm.  

 

Drosha KD neural progenitors can be rescued by Neurog2 KD 
Drosha-ablation in NPs leads to increased Ngn2 levels, which results in 

differentiation of NPs. We tried to rescue the phenotype by KD of Neurog2, to 

confirm that precocious differentiation and exit of NPs from the VZ is driven by 

increased Ngn2. Therefore, small hairpin RNAs targeting Drosha and 

Neurog2 were expressed simultaneously in vivo by IUE. This resulted in a 

rescue of NPs as the transfected (mCherry+) cells were normally distributed in 
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the SVZ and VZ compared to control where a scrambled shRNA was used 

(Fig. 36a,b). This result confirms that increased Ngn2 levels alone cause 

precocious exit of NPs from the VZ. 

 
Figure 36: shRNA mediated KD of Neurog2 can rescue Drosha KD NPs 

a. Simultaneous KD of Drosha and Neurog2 rescues NPs. Electroporated cells are localized in a normal 
distribution in the SVZ/IZ and VZ compared to control (scrambled shRNA). b. Quantification of Pax6+ 
cells in the VZ and total cortical area after Ngn2 expression in NSCs. VZ = ventricular zone, SVZ = 
subventricular zone and IZ = intermediate zone. Scale bars = 20 µm.  

 

Drosha binds to Neurog2 mRNA via conserved hairpins in the 3’ UTR 
Loss of the MP by Drosha cKO or Dgcr8 KD resulted in NP differentiation 

and exit from the VZ within 24 hours, a phenotype distinct from Dicer1 cKO. 

Considering the early manifestation of the phenotype and the unchanged 

levels of miRNAs we speculated that the MP has a miRNA-independent 

function. Neurog2 mRNA levels were upregulated following deletion of the MP 

and Neurog2 KD rescued the Drosha and Dgcr8 phenotype. We therefore 

checked the transcripts of the proneural gene Neurog2 for conserved hairpin 

structures. The in silico analysis revealed multiple secondary stem loop 

structures in the 3’ UTR of Neurog2 (Fig. 37a). To address if Drosha binds to 

Neurog2 mRNA we performed a crosslinked RNA immunoprecipitation (CLIP) 

experiment. pCK-Flag-Drosha, a transdominant version of Drosha, which has 

a mutation in the enzyme domain (pCK-Flag-TNDrosha) and Flag-GFP 

(control) were expressed in N2A cells and the CLIPed RNA was analysed by 

qRT-PCR. qRT-PCR values of the CLIPed products were corrected relative to 

the input RNA concentration of each condition and compared to flag-GFP 

CLIPed samples. We found that Neurog2 mRNA was bound by Drosha 
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resulting in a 2.5 fold increase over control. Additionally Dgcr8 mRNA 

(positive control) was pulled down with Drosha protein whereas no enrichment 

was detected for Gapdh. Hairpin structures were also predicted for NeuroD1 

and NeuroD6 transcripts, which were also bound by Drosha (Fig. 37b). 

Drosha therefore directly binds to Neurog2 mRNA as well as Dgcr8, NeuroD1 

and NeuroD6. 

 

 
Figure 37: Neurog2 mRNA contains hairpins bound by Drosha 

a. Schematic representation of the mouse Neurog2 mRNA, which contains 4 conserved hairpins in the 
3’ UTR (EvoFold prediction) b. qRT-PCR analysis of Neurog2, DGCR8, NeuroD1, NeuroD6 and 
GAPDH transcripts CLIPed from N2A cells after Drosha-flag or transdominant (TN) Drosha-flag 
expression. Statistical analysis of CLIPed products corrected relative to input RNA concentrations 
compared to flag-GFP CLIPed samples. tTest *P<0.05 and **P<0.001 c. 3’-RACE analysis of full-length 
3’Neurog2 mRNA (FL 3’ UTR) in control (Ctrl: Droshaflox/WT) and Drosha cKO neurospheres. d. Drosha 
cKO results in increase in Ngn2 protein in neurospheres compared to control. Values standardized to 
GAPDH levels using ImageJ software. e. Scheme of the mouse Renilla luciferase constructs expressing 
mRNAs containing either synthetic SV40 Poly(A) sequences (psiCheck), psiCheck-Neurog2-3’ UTR or a 
synthetic SV40 Poly(A) containing a tandem repeat of the Ngn2 hairpin (psiCheck-Neurog2-HP) f. qRT-
PCR analysis of humanized Renilla luciferase (hRluc) mRNA from psiCheck-Neurog2-3’ UTR and 
psiCheck-Neurog2-HP CLIPed from N2A relative to psiCheck. Values are fold enrichment over CLIPed 
control (psiCheck). CLIPed products are corrected relative to input RNA concentrations compared to 
Flag-Drosha. tTest *P<0.05 and **P<0.001 
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Investigating if binding of Drosha to Neurog2 mRNA affects transcript 

stability we tested if intact 3’ ends were still present in control conditions or 

after Drosha cKO. Therefore, sorted NPs from electroporated Droshaflox/flox 

and control (Droshaflox/Wt) embryos, which were deleted for Drosha upon cre-

mediated recombination of the floxed locus, were used. RNA of the sorted 

NPs was isolated and the transcripts were polyadenylated in vitro, followed by 

3’ rapid amplification of cDNA ends (RACE) rt-PCR, using an anchored 

oligo(dt) RACE primer. For the amplification a Neurog2-specific 5’ primer that 

spanned the hairpin region, and an anchored binding primer as reverse primer 

were used. After Drosha cKO an amplicon of the predicted size was detected 

whereas no Neurog2 transcripts containing the intact 3’ end of the Neurog2  

mRNA were detected in the presence of Drosha (Fig. 37c). This change is 

also reflected in Ngn2 protein level, which is increased nearly two fold after 

Drosha deletion (Fig. 33d). Therefore, intact 3’ ends of the Neurog2 transcript, 

which include the conserved hairpin, are present after Drosha deletion, 

whereas they are absent in the presence of a functional MP.  

To assess if the hairpin structures in the 3’ end of Neurog2 are bound by 

the MP we again performed CLIP. This time Flag-tagged Drosha was 

expressed together with a Renilla luciferase (hRluc) reporter. The hRluc 

constructs contained either Neurog2 3’ UTR or two copies of the hairpin 

present in the 3’ UTR of their downstream sequence (Fig. 37e). qRT-PCR 

analysis of the precipitated mRNA was performed using specific primers 

against hRluc. hRluc mRNA bound to Drosha via the Neurog2 3’ UTR as well 

as Neurog2 HP and we detected a 3 and 5 fold increase over control (Fig. 

33e,f). No mRNA was pulled down with the control construct (psiCheck) with 

Flag-tagged Drosha. We therefore conclude that the conserved hairpin (bases 

2044 – 2022) in the 3’ end of Neurog2 is sufficient to mediate binding to 

Drosha and the MP.  
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9.1 Discussion 

Neurogenesis is a multistep developmental process that is key to CNS 

function and plasticity. The mammalian cortex, one of the most complex 

structures of the brain, is composed of various cell types which arise from 

NSCs during embryonic development (Guillemot, 2005). Canonical Notch 

signalling maintains NSCs by regulation of transcription factors of the Hes and 

proneural gene families. Hes genes are expressed in an oscillatory fashion 

and negatively regulate neurogenic transcription factors including Neurog2 

(Fig. 38). In fact, mRNA and protein levels of Hes1 and Ngn2 were shown to 

oscillate in NSCs in a complementary manner (Kageyama et al., 2009; 

Shimojo et al., 2008). Paradoxically, mRNAs of neurogenic transcription 

factors are readily expressed in NSCs and it has been hypothesized, that the 

lack of induction of neuronal differentiation is the consequence of post-

transcriptional mechanisms that destabilize mRNAs. In our study we show 

that the mRNA levels of the proneural transcription factor Ngn2 is regulated 

by direct binding and destabilization by the MP, which happens independent 

of miRNA and Dicer1.  

Expression analysis of Drosha by in situ hybridisation displayed high 

Drosha levels in NPs in the VZ and differentiating neurons in the CP, which is 

in agreement with independently reported data from a genome wide 

transcription atlas (http://www.eurexpress.org). The same database shows a 

correlating Dgcr8 expression, whereas Dicer1 is not present in NPs of the 

developing forebrain. This explains partly why Dicer1 ablation did not affect 

NPs. In fact, comparison of Dicer1 and Dgcr8 KO revealed distinct phenotypic 

differences (Babiarz et al., 2011). Dicer1 cKO from the developing 

telencephalon resulted in impaired differentiation and cell death (De Pietri 

Tonelli et al., 2008). Likewise we observed apoptosis 4 days after Dicer1-

depletion, as only fragmented cell debris remained in the SVZ and CP. In 

comparison, cKO of Drosha resulted in a less severe phenotype since only 

few apoptotic cells were found after 4 days. Apoptosis was therefore occurring 

upon loss of mature miRNAs, therefore no cell death could be detected at 

early time points after Drosha or Dgcr8 depletion (data not shown). The more 

severe apoptosis phenotype after Dicer1 depletion can be explained by the 
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additional functions of the protein during maturation of small interfering RNAs 

(siRNAs) or noncanonical miRNAs (Babiarz et al., 2008; Ruby et al., 2007). 

Drosha cKO in NPs caused precocious differentiation and exit from the VZ 

within 24 hours. Similarly Dgcr8 KD promoted differentiation in vivo, showing 

that MP inactivation was causing the phenotype. In contrast, NPs conditionally 

depleted for Dicer1 retained stem cell markers. The observation of two distinct 

phenotypes after Dicer1 deletion or MP inactivation suggests that the effect is 

not resulting from alterations in mature miRNA levels. This was also 

supported by the fact that the changes caused by Drosha and Dgcr8 deletion 

were already visible after 24 hours, a time-frame too short to allow for 

essential shifts in miRNA levels. Analysis of Drosha depleted cells confirmed 

that mature miRNA levels were unchanged at the time point when Drosha 

phenotype occurred, which is therefore independent of miRNA loss.  

The loss-of-function data showed, that the MP is necessary to maintain 

stem cell potential and prevent early differentiation. Precocious differentiation 

and exit from the VZ after MP inactivation was going along with changes in 

proneural gene mRNA levels. Neurog2 and its downstream effector NeuroD1 

were increased upon Drosha cKO whereas their levels were unchanged after 

Dicer1 deletion. Expression of Ngn2 in NPs was sufficient to induce 

differentiation and exit from the VZ and phenocopied the changes after 

Drosha deletion. Furthermore we were able to rescue the Drosha phenotype 

via shRNA-mediated KD of Neurog2, showing that Ngn2 expression is 

necessary to induce VZ exit of NPs. These findings demonstrate, that 

increased Ngn2 levels are sufficient and necessary to induce precocious 

differentiation and suggest a direct effect of Drosha loss on Neurog2 levels. It 

needs to be investigated though if the increase in NeuroD1 occurs 

downstream of Ngn2, or whether this is directly dependent on Drosha 

deletion.  

Drosha binds and affects transcript stability of Dgcr8, by binding to hairpin 

structures embedded in the Dgcr8 mRNA (Han et al., 2004). Concordantly we 

observed an increase in Dgcr8 levels after Drosha deletion, whereas Dicer1 

cKO did not cause this effect. In addition, Drosha and the MP were reported 

to directly affect mRNA stability in a miRNA independent manner by cleavage 

of pre-miRNA-like hairpins (Chong et al., 2010; Macias et al., 2012). Neurog2, 
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NeuroD1 and NeuroD6 mRNA were predicted by EvoFold and Mfold 

algorithms to contain evolutionary conserved hairpins in the 3’ UTR. The 

transcripts were bound by Drosha and in the case of Neurog2 we specified, 

that the binding took place via the conserved hairpin structures (Fig. 38). This 

interaction mediated cleavage of the 3’ UTR, as no intact 3’ ends of the 

Neurog2 transcript were detected in the presence of Drosha. Upon Drosha 

cKO Neurog2 mRNA containing the 3’ UTR as well as the Ngn2 protein were 

abundant. However, we did not identify the exact cleavage site of the Neurog2 

hairpin. Drosha was also binding to NeuroD1 and NeuroD6, suggesting a 

general mechanism of proneural gene regulation by the MP. This needs to be 

confirmed though as we did not formally proof cleavage of NeuroD1 and 

NeuroD6 by the MP.  

 
Figure 38. Drosha and the microprocessor regulate proneural gene expression in NPs a. Drosha 
directly binds Neurog2 mRNAs in NPs, which results in cleavage of the conserved hairpin localized in 
the 3’ UTR and degradation of the mRNA. b. Scheme of dynamic expression of Hes and the proneural 
genes Neurog2 and NeuroD1 in NPs. Hes genes transcriptionally repress their own levels, which results 
in an oscillatory expression. Conversely Ngn2 is expressed in an oscillatory fashion in NPs. Drosha 
prevents accumulation of Ngn2 by destabilization of the mRNA and thus inhibits precocious 
differentiation of NPs.  
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Tight temporo-spatial control of embryonic neurogenesis is required to 

ensure proper development of the cortex, which is achieved by neurogenic 

transcription factors. The discovery of microprocessor-dependent and Dicer1-

independent Neurog2 mRNA destabilization during embryonic neurogenesis 

represents a novel regulatory mechanism during forebrain development. This 

mechanism is crucial to maintain NSCs and prevent early differentiation and is 

possibly also involved in the regulation of other systems where hypostable 

transcription factors are at work. Therefore, it would we interesting to 

investigate other proneural genes that are involved in NP differentiation such 

as Atoh1, Ascl1 and Neurog1. Whereas Ngn1 and Ngn2 are important in 

development of the dorsal telencephalon Ascl1 is expressed in the subpallium 

where it controls ventral fate. It is very likely that transcript destabilization 

through Drosha is a conserved mechanism in NP differentiation and occurs as 

well in other parts of the brain and not only in the dorsal telencephalon. This 

assumption is supported by conserved hairpin structures that are predicted for 

Neurog1 and Atoh1. NeuroD family members are transcriptional targets of 

proneural genes, which are activated upon neuronal differentiation. 

Evolutionarily conserved hairpin structures were also predicted in NeuroD6 

and NeuroD1, which are potential target sites for the MP. It would therefore be 

very interesting to investigate if Drosha does not only act at the level of the 

proneural genes but in addition keeps their target genes in check.  

We showed in the CLIP experiment that Drosha is binding Neurog2 mRNA, 

which results in cleavage of the 3’ UTR. However, we did not identify the 

exact cleavage site of the hairpin or determine whether the MP has different 

binding affinities for NeuroD1, NeuroD6 and Neurog2. These would be 

interesting points to address in order to identify any domain specific regulation 

of proneural factors at the post-transcriptional level.  

With the Drosha mediated and Dicer1-independent cleavage of the 

proneural gene Neurog2 we identified a novel mechanism of NP regulation. In 

the expression analysis we detected Drosha transcript not only in NPs in the 

VZ but also at high levels in differentiating immature neurons in the CP. It is 

therefore likely that Drosha is not only important for NSC maintenance but 

also for differentiation of neurons. The MP potentially regulates proneural 

factor mRNA stability throughout neuronal commitment, controlling changes in 
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transition from stem cells to basal progenitor cells to neurons. One could 

therefore investigate Drosha-bound transcripts in various cell types present 

during cortical development.  

In our previous study we focused on specific proneural genes which were 

predicted to harbour conserved hairpin structures and checked for Drosha 

binding and regulation. However, there might be a whole array of non-

miRNAs in NSCs and potentially neurons that are regulated by the MP. This 

could be addressed by Drosha CLIP-Seq analysis, which can be performed 

not only in embryonic but also adult NSCs and other cell populations. Thereby 

the non-miRNAs bound by the MP can be identified by correlating the data 

with analysis of miRNA expression by NSCs, which has been performed 

previously in the lab.  
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miRNAs are small noncoding RNAs that inhibit translation, and 
destabilize and deadenylate target mRNAs1,2. Identity between target 
mRNA and the ‘seed’ sequence at the 5  end of the miRNA is essential 
to attenuate translational output, whereas incomplete base pairing at 
the 3  end of the miRNA allows target heterogeneity3,4. miRNAs are 
generated predominantly through a multistep process. In canonical  
miRNA processing, a long primary transcript, the pri-miRNA, is 
cleaved by the microprocessor. The central components of the micro-
processor, DGCR8 and Drosha, form a multimeric complex that binds 
double-stranded hairpins of pri-miRNAs and cleaves them, releasing 
the stem-loop pre-miRNA5–7. The pre-miRNA is exported from the 
nucleus and processed to a mature double-stranded miRNA by Dicer8. 
miRNAs are loaded onto the RNA-induced silencing complex (RISC). 
Some miRNAs are generated independently of the microprocessor, 
including from pre-miRNA like transcripts called mirtrons released 
by the splicing machinery9,10 and from small nucleolar RNAs11–13. 
Some miRNAs are also generated independently of Dicer by the 
RNase III Argonaute 2 (refs. 14–16). Despite crucial roles in miRNA 
production, conditional knockout (cKO) of Dicer1 has no obvious 
effect on embryonic forebrain neural stem cells, indicating that  
miRNAs are not critical for cortical neurogenesis but are important 
for neuronal survival17,18. In retinal progenitors, loss of Dicer1 results 
in a defect in the transition from early to late progenitor stages19. 
Similarly, Dgcr8 cKO from neurons results in less cell death than in 
Dicer1 mutants, implying functions for noncanonical miRNAs in the 

brain18. However, Dicer also regulates Alu RNA levels in retinal pig-
mented epithelial cells by degradation, preventing their accumulation 
and toxicity20.

Development of the mammalian central nervous system is highly 
controlled. Radial glial stem cells line the lumen of the neural tube, 
form the ventricular zone and are the major source of neurons 
throughout the brain21. Radial glial stem cells in the dorsal telen-
cephalon generate basal progenitors, a committed intermediate cell 
type that populates the subventricular zone22. Basal progenitors gen-
erate neurons that migrate to superficial layers of the forming cortex. 
Notch signaling activates Hes genes, maintains stem or progenitor cells 
and represses neurogenesis by suppressing transcription of proneural 
genes including Ascl1, Atoh1 and Neurog genes23. Paradoxically, pro-
neural genes are expressed by ventricular-zone progenitors at low  
levels. The proneural basic helix-loop-helix factors control neurogenic 
differentiation and immature neuronal migration through a cascade 
of transcriptional regulation24. Hes proteins are in an unstable auto-
regulatory feedback loop, which results in oscillating expression25. 
In turn, mRNAs of the proneural factors are also hypostable, and the 
factors themselves are regulated post-transcriptionally25,26. Although 
much is known about the regulation of the neurogenic transcription 
factors at the transcriptional level27,28, little is known about post-
 transcriptional regulation. mRNA degradation and destabilization 
have crucial roles in preventing aberrant accumulation of neurogenic 
factors and abnormal neurogenesis. Hence, the regulated stability 
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Drosha regulates neurogenesis by controlling 
Neurogenin 2 expression independent of microRNAs
Philip Knuckles1,8, Miriam A Vogt1,2,8, Sebastian Lugert1,2, Marta Milo3, Mark M W Chong4,5,  
Guillaume M Hautbergue6, Stuart A Wilson6, Dan R Littman4,7 & Verdon Taylor1,2

Temporal regulation of embryonic neurogenesis is controlled by hypostable transcription factors. The mechanism of the process is 
unclear. Here we show that the RNase III Drosha and DGCR8 (also known as Pasha), key components of the microRNA (miRNA) 
microprocessor, have important functions in mouse neurogenesis. Loss of microprocessor in forebrain neural progenitors resulted 
in a loss of stem cell character and precocious differentiation whereas Dicer deficiency did not. Drosha negatively regulated 
expression of the transcription factors Neurogenin 2 (Ngn2) and NeuroD1 whereas forced Ngn2 expression phenocopied the 
loss of Drosha. Neurog2 mRNA contains evolutionarily conserved hairpins with similarities to pri-miRNAs, and associates with 
the microprocessor in neural progenitors. We uncovered a Drosha-dependent destabilization of Neurog2 mRNAs consistent with 
microprocessor cleavage at hairpins. Our findings implicate direct and miRNA-independent destabilization of proneural mRNAs 
by the microprocessor, which facilitates neural stem cell (NSC) maintenance by blocking accumulation of differentiation and 
determination factors.
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of the neurogenic transcription factor cas-
cade is critical for normal brain development. 
The destabilization mechanisms that control 
proneural mRNAs, including those encod-
ing Ngn2 in the embryonic forebrain, are  
not clear.

Here we show that, unlike Dicer, the micro-
processor is essential during early stages of 
mammalian forebrain neurogenesis. The 
microprocessor directly binds to and desta-
bilizes the Neurog2 mRNA in a Dicer- and 
miRNA-independent process. Thus, Drosha 
and the microprocessor regulate the dynamics  
of proneural factor mRNA degradation, pro-
viding molecular inhibition of Ngn2 accu-
mulation, thereby controlling progenitor-cell 
maintenance and neurogenic differentiation.

RESULTS
The microprocessor is critical for embryonic neurogenesis
Drosha is expressed in the developing CNS by forebrain progeni-
tors and differentiating neurons in the cortical plate (Supplementary 
Fig. 1a). We assessed Drosha function by cKO of its gene from Notch 
signaling neural progenitors by expressing Cre recombinase from the 
Hes5 regulatory elements in loxP-flanked (floxed) Drosha embryos 
(Supplementary Fig. 1b–d). Drosha cKO resulted in a loss of neural 
progenitor marker Pax6, precocious exit of cells from the ventricular 
zone, and entry into the subventricular or intermediate zone (SVZ/IZ). 
Drosha cKO cells migrated to the cortical plate, which is consistent with 
precocious differentiation (Fig. 1a). In contrast, Dicer1 cKO neural  
progenitors retained progenitor-marker expression and did not pre-
cociously exit the ventricular zone (Fig. 1b). Hence, loss of Drosha 
resulted in a neural progenitor phenotype distinct from one resulting 
from the loss of Dicer and presumably miRNAs17,29.

We confirmed our Drosha cKO findings using short hairpin RNAs 
(shRNAs) to knock down Drosha in neural progenitors. Progenitors 
subjected to Drosha knockdown had reduced Pax6 and Sox2 expres-
sion, and lost radial morphology and contact to the apical surface of 
the ventricular zone (Supplementary Figs. 2a–g and 3). Neural pro-
genitors of the ventricular zone rely on Notch signaling and express 
Hes5 (refs. 30,31). Drosha knockdown in neural progenitors resulted in 
a loss of Hes5 expression, consistent with loss of both canonical Notch 
activity and stem or progenitor status (Supplementary Fig. 4).

We also expressed a catalytically inactive transdominant-negative 
Drosha32 in neural progenitors. Most transdominant negative 
Drosha–expressing neural progenitors exited the ventricular zone 
and turned down Pax6 expression (Supplementary Fig. 2f,g). To 
address whether the Drosha effects required the core microprocessor 
components, we knocked down Dgcr8 by shRNA expression. Dgcr8 
knockdown resulted in rapid loss of progenitor markers (DGCR8,  
17.9  5.8% and control, 36.8  2.6%, ± s.e.m.; P < 0.001: Fig. 1c) 
and exit from the ventricular zone, phenocopying the loss of Drosha. 
Drosha or DGCR8 inactivation did not result in apoptosis at early 
time points (Supplementary Fig. 5). Thus, neural progenitors of 
the developing forebrain depend upon Drosha and microprocessor  
function and lose progenitor status upon inactivation.

Inactivation of Drosha does not induce cell-cycle exit
Cell cycle and differentiation in the developing forebrain are inti-
mately connected33. Blocking cell cycle induces neural-progenitor dif-
ferentiation and exit from the ventricular zone34. The microprocessor, 

miRNAs and Dicer have all been linked to cell-cycle regulation in 
other systems35,36. However, Drosha knockdown cells remained in 
the cell cycle, expressing Ki67 (Drosha knockdown cells, 35.5  9.2%, 
control, 36.6  7.0%: Fig. 2a) even in the SVZ/IZ. Although reduced 
in number compared to controls, some cells remaining in the ven-
tricular zone of Drosha knockdown mice were proliferating, and this 
corresponded to an increase in mitotic cells in the subventricular zone 
(Fig. 2b). BrdU incorporation 3 h before killing the mice revealed a 
moderate reduction in S-phase labeling of Drosha knockdown cells 
(Fig. 2c,d). Together with maintained Ki67 expression this suggested 
slowing of the cell cycle rather than premature exit. Loss of Drosha 
did not affect the total number of BrdU-labeled cells when cells were 
labeled 48 h after knockdown (Fig. 2d). However, the reduction in the 
number of BrdU-labeled cells in the apical region of the ventricular 
zone and a concomitant increase in the subventricular zone was con-
sistent with Drosha knockdown inducing a transition from a ventricu-
lar zone stem or progenitor cell to a basal progenitor (Fig. 2e,f).

Tbr2 is expressed by basal progenitors in the subventricular zone. 
Tbr2 expression did not increase as a result of Drosha knockdown 
(Supplementary Fig. 6a–c). We did not observe differences in Tbr2 
expression in the SVZ/IZ when comparing Drosha knockdown cells 
to controls even after 48 h when most Drosha knockdown cells had 
exited the ventricular zone (Supplementary Fig. 6d). We found that 
many Drosha knockdown cells had not only exited the ventricular 
zone and entered the subventricular zone but had migrated to the 
intermediate zone (Supplementary Fig. 6b). Tbr1 and NeuN are asso-
ciated with postmitotic neurons at this stage, but their expression was 
not affected by Drosha knockdown (data not shown). Hence, reduced 
Drosha and microprocessor activity promoted a rapid transition of 
ventricular-zone progenitors to mitotically active subventricular- 
zone progenitors.

miRNAs levels are not affected by Drosha knockdown
The difference in phenotype between microprocessor inactivation and 
Dicer1 cKO suggested that the effects induced by Drosha or DGCR8 
inactivation may not be the result of changes in mature miRNA levels. 
Furthermore, the phenotype alterations following conditional disrup-
tion of Drosha and DGCR8 expression were evident by 24 h, a time-
frame too short to remodel the cellular transcriptome and proteome 
through changes in miRNA levels. We addressed whether miRNA 
levels were altered as a result of loss of Drosha. We sorted Drosha 
cKO and control neural progenitors from embryonic day 15.5 (E15.5) 

C
on

tr
ol

D
g
cr
8 

K
D

mCherry Pax6c

SVZ/IZ

IZ/SVZ

VZ

VZ

C
on

tr
ol

D
ro
sh
a 

cK
O

mCherry Pax6a
CP

SVZ/IZ

SVZ/IZ

SVZ/IZ

SVZ
IZ

CP

VZ
VZ

VZ
VZ

C
on

tr
ol

D
ic
er
1 

cK
O

b mCherry Pax6

CP

CP

SVZ/IZ

SVZ/IZ

SVZ

SVZ

IZ

IZ

VZ

VZ

VZ

VZ

Figure 1 Microprocessor inactivation at E13.5 induces neural-progenitor differentiation and results 
in a distinct phenotype compared to Dicer1 cKO. (a) Fluorescence images of sections show that 
Drosha cKO neural progenitors exit the ventricular zone (VZ) (by embryonic day 15.5), entering the 
SVZ/IZ and some precociously migrate to the cortical plate (CP). Drosha cKO cells downregulate the 
progenitor marker Pax6. (b) Dicer1 cKO neural progenitors express the progenitor marker Pax6 and 
do not precociously exit the VZ. (c) shRNA Dgcr8 knockdown (KD) at embryonic day 13.5 results in 
downregulation of Pax6 and neural progenitor exit from the VZ, transfected cells monitored by mCherry 
expression. Dashed lines mark the boundaries between the VZ, SVZ/IZ and CP. All scale bars, 20 m.



 APPENDIX  
 

 153 

 

©
20

12
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

NATURE NEUROSCIENCE ADVANCE ONLINE PUBLICATION 3

A R T I C L E S

embryos, isolated small RNAs and generated expression profiles of 
381 miRNAs (Supplementary Fig. 6e). We detected 187 miRNAs in 
neural progenitors (cycle threshold value below 32; Supplementary 
Table 1), and their levels were not substantially changed 48 h after 
Drosha cKO (R2 = 0.93; Fig. 3a) even though the mutant phenotype 
was well established. Hence, Drosha cKO did not cause global changes 
in miRNA levels.

To gauge general miRNA stability and address whether mature 
miRNA levels changed after disrupting microprocessor function, 
we knocked down Drosha or Dgcr8 in N2A cells and analyzed 
selected miRNAs by quantitative PCR. The abundance of none of the  
miRNAs analyzed (miR15a, miR9, miR30d and miR124a) was affected 
by Drosha or Dgcr8 knockdown (Supplementary Fig. 7a,b). In agree-
ment with recent reports37, these data confirm the relative stability of 
mature miRNAs and that blocking microprocessor function for 24 h 
does not significantly affect their levels.

Drosha is required for maintenance of NSC self-renewal
NSCs form neurospheres and retain the capacity to self-renew  
in vitro. We addressed the role of Drosha in NSC maintenance by con-
ditional inactivation from spherogenic embryonic forebrain cells. We 
ablated Drosha from NSCs with Cre recombinase–expressing adeno-
virus (Supplementary Fig. 6f,g). Sphere-forming potential of Drosha 
cKO NSCs was reduced 45% compared to that in control cells hetero-
zygous for floxed and wild-type Drosha alleles (Droshaflox/WT) NSCs 
(Fig. 3b). After dissociation and replating, Drosha-deficient NSCs 
continued to show impaired sphere-forming (self-renewing) ability 
(Fig. 3b). In accordance with the phenotype differences observed 
by acute depletion of Drosha and Dicer in vivo, Drosha-deficient 
neurospheres showed distinct defects compared to Dicer-deficient 
neurospheres38, which could be propagated indefinitely38.

Microprocessor inactivation induced a rapid loss of neural progeni-
tor status without obvious effects on miRNAs. We compared Drosha 
and Dicer1 cKO cells 4 d after ablation. Dicer1 cKO cells had under-
gone cell death in vivo and only fragmented cell debris remained in 
the SVZ/IZ and cortical plate. Drosha cKO brains showed increased 
cell death over control brains, although cell death was less severe 
than in the Dicer1 cKO (Supplementary Fig. 5a–d). These results are 
similar to findings after Dgcr8 cKO in neurons18 and suggested that 
the cell death in Drosha cKO cells at 4 d may reflect reduced miRNA 
amounts. We profiled miRNAs in Drosha cKO NSCs 5 d after abla-
tion. We detected 135 miRNAs in control NSCs and only 44 miRNAs 
in Drosha-deficient NSCs 5 d after cKO (Supplementary Tables 2 
and 3). Expression of remaining miRNAs was dramatically reduced 

in Drosha cKO cells (R2 = 0.2091; Supplementary Fig. 7c). Hence, 
Drosha ablation resulted in a delayed reduction in miRNAs and cell 
death of maturing neurons.

Drosha regulates proneural gene mRNA levels
We analyzed the effects of Drosha cKO on NSC gene expression. 
Ablation of Drosha from dorsal telencephalic NSCs reduced Sox2 
mRNA levels, consistent with a loss of neural progenitors in contrast 
to Dicer1-deficient NSCs, which retain stem-cell markers (Fig. 3c)38. 
Drosha regulates DGCR8 expression directly in a miRNA-independent  
fashion by cleaving hairpins in its mRNA32. Drosha cKO from NSCs 
resulted in a 2.8-fold increase in Dgcr8 mRNA levels, supporting 
inhibition of the microprocessor (Fig. 3c). Proneural transcription 
factors of the Ngn, Ascl and Atoh families are pivotal regulators of 
mammalian neurogenesis39. Ngn2 is important for neurogenesis in 
the dorsal forebrain40 and regulates the expression of downstream 
effectors including NeuroD1. Neurog2 mRNA levels were increased 
tenfold after Drosha cKO compared to control cells but were not 
changed by Dicer1 cKO (Fig. 3c). Consistent with Drosha cKO cells 
losing NSC status and commencing differentiation, mRNA levels of 
Ngn2 downstream target NeuroD1 were also increased (Fig. 3c). We 
examined the expression of Ascl1 and Atoh1 mRNAs, which encode 
two proneural factors that regulate ventral and dorsal midline neuro-
genesis, respectively. Neither mRNA was expressed at high levels, nor 
was the abundance of their mRNAs altered after Drosha cKO (data 
not shown).

We next addressed whether Drosha regulates Neurog2 mRNA levels 
in another system. Drosha knockdown in N2A cells reduced Drosha 
mRNA levels by > 55% and protein amounts to barely detectable levels 
(Fig. 3d and Supplementary Fig. 2a). Neurog2 mRNA levels were 
increased 5.3-fold in Drosha knockdown N2A cells relative to control 
cells, indicating that Drosha may directly regulate Ngn2 in neural 
progenitors (Fig. 3c,d). We addressed whether Neurog2 and Neurod1 
mRNAs are regulated in vivo after Drosha knockdown. We expressed 
Drosha or control shRNAs in dorsal forebrain neural progenitors and 
also transfected them with an mCherry expression vector for sorting. 
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Twenty-four hours after knockdown we sorted the transfected cells 
from pools of embryos, isolated mRNA and performed quantitative 
real-time PCR (qrt-PCR) (Supplementary Fig. 5e). Drosha mRNA 
levels were reduced, and expression of both Neurog2 and Neurod1 
mRNAs increased 4.6-fold and 2.8-fold, respectively (Fig. 3e). These 
findings indicated that Drosha regulates Neurog2 mRNA levels in 
neural progenitors.

Microprocessor-depleted progenitors express Neurog2
The mRNA and protein levels of the proneural genes are dynamic 
during NSC commitment and differentiation25. We analyzed the 
expression of Ngn2 after Drosha knockdown in vivo and found almost 
twice as many Ngn2-expressing cells compared to controls (Fig. 4a,b). 
Dgcr8 knockdown resulted in a similar increase in Ngn2-expressing  
cells indicating that the elevated Neurog2 mRNA levels caused by 
microprocessor inactivation translated into increased protein expres-
sion (Fig. 4b). Ngn2 is stabilized in differentiating neurogenic pro-
genitors to induce commitment and is reduced by the time precursors 
have entered the subventricular zone. Most control neural progenitors 
that expressed Ngn2 were restricted to the ventricular zone (Fig. 4a). 
By contrast, many Drosha knockdown and Dgcr8 knockdown cells 
(data not shown) in the SVZ/IZ retained weak Ngn2 expression in 
an ectopic basal location (Fig. 4a). This suggested that loss of micro-
processor activity resulted not only in an increase Ngn2 protein but 
also extended expression of Neurog2 into later stages of the neuro-
genic lineage.

To test whether increased amounts of Ngn2 result in activation 
of downstream targets, we generated a Neurod1 promoter construct 
that drives mCherry expression (NeuroDømCherry) (Fig. 4c). After 
transfection, NeuroDømCherry is expressed in cells within the 
SVZ/IZ but not in the ventricular zone, consistent with endogenous 
Neurod1 expression (Fig. 4d). We expressed NeuroDømCherry, 
pCAGGsøeGFP (transfection reporter expressing eGFP) and 
either Drosha or control shRNA constructs in neural progenitors 
in vivo and analyzed activation of the Neurod1 promoter (mCherry 
expression). Many control transfected cells (expressing an shRNA 
directed against Renilla luciferase–GFP) and predominantly those 
in the SVZ/IZ, expressed mCherry (NeuroDømCherry), consistent 
with an onset of neurogenic differentiation (Fig. 4d). Control cells 
(GFP-expressing) in the ventricular zone did not express mCherry 

(NeuroDømCherry) as these cells presumably remained as uncom-
mitted ventricular-zone progenitors. The majority of the Drosha 
knockdown cells activated NeuroDømCherry, and expression of 
this transgene was particularly prominent in the cells in the SVZ/IZ.  
In addition, the number of neural progenitors in the apical ventricular 
zone that expressed mCherry (NeuroDømCherry) increased 2.7-fold 
(Drosha knockdown, 4.0  0.6% and control, 1.5  1.0%; P < 0.05). This  
was consistent with the increased expression of Ngn2 leading to 
precocious activation of Neurod1 transcription by Drosha-depleted 
neural progenitors.

Expression of Ngn2 phenocopies Drosha knockdown
We postulated that microprocessor inactivation stabilized Neurog2 
mRNA and increased translation of Ngn2 protein, initiating neuro-
genesis by activation of targets. We addressed whether increased 
Ngn2 expression is sufficient to induce neural-progenitor differ-
entiation and exit from the ventricular zone. Expression of Ngn2 
resulted in a loss of stem or progenitor markers including Pax6 and 
induced exit of neural progenitors from the ventricular zone, similar 
to inactivation the microprocessor (Fig. 5a). Even the few remain-
ing cells in the ventricular zone turned down Pax6 expression after 
Ngn2 expression (Ngn2, 49.2  12.7% and control, 25.1  2.5%;  
P < 0.05: Fig. 5b). We co-transfected neural progenitors in vivo with 
NeuroDømCherry, pCAGGsøeGFP and either pCAGGsøNgn2 or 
control pCAGGsøempty constructs. Ngn2 expression induced the 
Neurod1 promoter not only in SVZ/IZ cells but also ectopically in 
neural progenitors in the ventricular zone (Fig. 5c). Like Drosha and 
microprocessor inactivation, Ngn2 expression was not sufficient to 
induce Tbr2 expression in vivo (Ngn2, 42.2  3.6% of transfected 
cells and control, 43.5  3.6%; P = 0.68). Hence, Ngn2 is sufficient 
to induce neural progenitor exit from the ventricular zone, activate 
a neurogenic differentiation program and phenocopy loss of micro-
processor activity.

We addressed whether Ngn2 expression was necessary for the 
 ventricular-zone exit induced by the loss of Drosha and whether 
shRNA-mediated Neurog2 knockdown could rescue the phenotype 
change. We knocked down Drosha and at the same time Neurog2  
using two independent shRNA constructs and analyzed neural 
progenitors after 24 h. Drosha and Neurog2 double knockdown  
neural progenitors resembled control scrambled shRNA–expressing 
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neural progenitors and showed a normal ventricular–subventricular 
zone distribution (Supplementary Fig. 8). Thus, Ngn2 not only can 
phenocopy the loss of microprocessor function but is a major effector 
in the Drosha loss-of-function phenotype.

Neurog2 mRNA contains hairpins bound by microprocessor 
Drosha cKO, Drosha knockdown and Dgcr8 knockdown resulted in 
similar phenotypes distinct to that caused by the ablation of Dicer1 
from neural progenitors. We speculated that the microprocessor has 
miRNA-independent functions in neural progenitors that modulate 
differentiation. In silico analysis revealed that the last 350 bases in the 
3  untranslated region (3  UTR) of the Neurog2 mRNA contain multi-
ple evolutionarily conserved hairpin structures (EvoFold) (Fig. 6a). 
These hairpins were reminiscent of pri-miRNAs and thus were poten-
tial targets of the microprocessor. We examined whether the micro-
processor bound Neurog2 mRNA in neural progenitors by performing 

cross-linked immunoprecipitation (CLIP) (Supplementary Fig. 9a). 
We expressed Flag-tagged Drosha or Flag-tagged transdominant 
negative Drosha in N2A cells and Flag-tagged GFP as a control and 
analyzed bound RNAs after CLIP by qrt-PCR. As controls, Dgcr8 
but not GAPDH mRNA were precipitated by CLIP with Drosha and 
transdominant negative Drosha (Fig. 6b and Supplementary Fig. 9b). 
Endogenous Neurog2 mRNA associated with Drosha and transdomi-
nant-negative Drosha. Thus, Drosha interacts with Neurog2 mRNA, 
supporting potential destabilization. Algorithms predict conserved 
secondary stem-loop structures in Neurod1 and Neurod6 mRNAs, 
downstream determination factors and targets of proneural genes. 
Neurod1 and Neurod6 mRNAs also associated with Drosha and 
transdominant negative Drosha in N2A cells (Fig. 6b).

We assessed whether Neurog2 mRNAs with intact 3  ends were 
present in cultured NSCs. To detect potential deadenylated (and 
cleaved) RNA transcripts we performed in vitro RNA polyadenyla-
tion before 3  rapid amplification of cDNA ends (RACE) rt-PCR 
using an anchored oligo(dT) RACE primer and an Neurog2-specific 
5  primer to generate amplicons that spanned the putative hairpin 
cleavage region of the mRNA. NSCs expressed Ngn2 at low levels and 
its mRNA could be detected with primers directed to the open read-
ing frame (Fig. 3c). However, we did not detect Neurog2 transcripts 
containing the 3  end of the mRNA in Drosha heterozygous NSC 
cultures, which is consistent with transcript cleavage (Fig. 6c). In 
contrast, we detected intact Neurog2 transcripts in Drosha cKO neuro-
spheres (Fig. 6c). The total increase in full-length Neurog2 mRNA 
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expressing cells after Drosha and Dgcr8 knockdown relative to control.  
(c) NeuroDømCherry and pCAGGsøeGFP transfection reporter constructs. 
(d) Drosha knockdown cells induce Neurod1 promoter activity (red) in the VZ.  
IZ. t test: *P < 0.05 and **P < 0.001. Error bars, s.e.m. (control, n = 5; 
Drosha knockdown, n = 5). All scale bars, 20 m.
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Figure 5 Expression of Ngn2 phenocopies Drosha inhibition and 
microprocessor inactivation and induces NeuroDømCherry expression.  
(a) Expression of Ngn2 in ventricular zone (VZ) neural progenitors induces 
exit from the VZ, entry into the subventricular zone (SVZ/IZ) and loss of 
Pax6 expression similar to Drosha knockdown. (b) Magnification of Ngn2-
expressing cells in the VZ (arrowheads) that do not express Pax6 compared 
to control transfected cells in the VZ, where most retain Pax6 expression.  
(c) Expression of Ngn2 leads to an activation of the NeuroDømCherry 
reporter in a similar fashion to the inactivation of Drosha and micro-
processor. Many cells migrate to the SVZ/IZ and the remaining Ngn2 over 
expressing cells in the VZ express NeuroDømCherry. t test: *P < 0.05.  
Error bars, s.e.m. (control, n = 3; Ngn2, n = 3). All scale bars, 20 m.
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translated into an almost twofold increase in Ngn2 protein in Drosha 
cKO NSCs compared to heterozygous controls (Fig. 6d). These data 
suggested that Neurog2 transcripts in NSC are normally destabilized 
by the microprocessor leading to reduced Ngn2 protein expression.

Neurog2 mRNA hairpin conveys microprocessor association
We addressed whether the 3  UTR of the Neurog2 mRNA and its 
hairpin structures bind the microprocessor. We inserted the entire 
Neurog2 3  UTR downstream of the Renilla luciferase coding region 
in the dual reporter system psiCheck2 or two copies of the hairpin 
(bases 2,044–2,202) into the SV40 synthetic polyadenylation sequence 
and expressed these in N2A cells (Fig. 6e). We performed CLIP with 
Flag-tagged Drosha and qrt-PCR for Renilla luciferase mRNA. The 
full-length Neurog2 3  UTR containing Renilla luciferase mRNA asso-
ciated with Drosha and was precipitated by CLIP from transfected 
N2A cells (Fig. 6f). The Neurog2 RNA hairpin alone was sufficient 
to convey mRNA binding to the microprocessor, whereas the SV40 
synthetic polyadenylation sequence of psiCheck did not interact with 
the microprocessor. These data indicate that the conserved hairpin 
(bases 2,044–2,202) in the 3  UTR of Neurog2 transcripts is sufficient 
to convey binding of an mRNA to the microprocessor.

DISCUSSION
Our results are consistent with a new function for the microprocessor 
components Drosha and DGCR8 in neurogenesis in addition to 
miRNA biogenesis. We propose that the microprocessor destabi-
lizes Neurog2 mRNA, thereby regulating neural stem or progenitor 
cell maintenance independently of Dicer activity. Recent evidence 

supports alternate functions for Drosha and the microprocessor in 
the regulation of the cellular proteome in a cell- and tissue-specific 
manner by directly targeting and destabilizing hairpin-containing 
mRNAs32,41–43. The archetypal demonstration of this function is 
the cleavage of Dgcr8 mRNA in an autoregulatory feedback mech-
anism32. Although it has been claimed that mRNA cleavage by 
Drosha may be specific for Dgcr8 (ref. 44), comparison of Drosha and 
Dicer1 cKO cells uncovered many microprocessor targeted mRNAs 
that are destabilized in a cell-specific manner42. Here we describe 
miRNA-independent regulation of Neurog2 mRNA that reflects the 
endogenous instability of Neurog2 transcripts in neural progenitors 
(Supplementary Fig. 10a).

NSCs depend on canonical Notch signaling and Hes proteins to 
block neurogenesis. Hes proteins and their mRNAs are hypostable 
and are regulated through an autoinhibitory oscillatory feedback 
mechanism (Supplementary Fig. 10b)45. Hes proteins (fluctuating 
amounts) bind to and repress proneural gene expression, including 
that encoding Ngn2. Ngn2 expression in forebrain neural progenitors 
is hypostable but upon loss of stem-cell status it accumulates, activates 
downstream targets and drives progenitors into differentiation39,46. 
Although Hes proteins are important for the inhibition of Neurog2 
transcription, it is unclear how Neurog2 mRNAs are held in check and 
destabilized. We found that microprocessor activity in neural pro-
genitors regulates both Neurog2 mRNA and Ngn2 protein levels and 
thus neurogenesis. This suggests a key role for the microprocessor- 
dependent regulatory mechanism in NSCs, preventing precocious 
accumulation of Ngn2 synergistic with transcriptional regula-
tion by Notch (Supplementary Fig. 10b). However, a reduction in 

Figure 6 Drosha interacts and destabilizes  
hairpins within Neurog2 mRNA. (a) Schematic  
representation of the mouse Neurog2 mRNA.  
Neurog2 mRNA contains a 3  UTR of 1,109  
bases with evolutionarily conserved hairpin  
structures (EvoFold prediction). (b) qrt-PCR  
analysis of Neurog2, Dgcr8, Neurod1, NeuroD6  
and Gapdh transcripts precipitated by CLIP  
from N2A cells with Drosha and transdominant  
negative (TN) Drosha. Values are fold  
enrichment over control CLIP-precipitated  
(Flag-GFP) transcripts. Statistical analysis of  
CLIP-precipitated products corrected relative  
to input RNA concentrations compared to  
Flag-GFP CLIPed samples. Agarose gel analysis  
of the amplicons is shown in Supplementary  
Figure 9b. (c) 3 -RACE analysis of full-length 3   
Neurog2 mRNA (FL 3  UTR) in control  
(Ctl: Droshaflox/WT) and Drosha cKO neurospheres.  
(d) Drosha cKO translated into increased Ngn2  
protein levels in neurospheres relative to  
control (Ctl: Droshaflox/WT) neurospheres.  
Data were quantified by densitometry using  
ImageJ software, standardized to GAPDH levels.  
(e) Scheme of the mouse Renilla luciferase  
constructs expressing mRNAs containing either  
synthetic SV40 polyadenylation sequences  
(psiCheck), psiCheck–Neurog2–3  UTR or a  
synthetic SV40 polyadenylation sequences  
containing a tandem repeat of the Neurog2  
hairpin (bases 2,044–2,202) (psiCheck– 
Neurog2–hairpin). (f) qrt-PCR analysis of  
humanized Renilla luciferase (hRluc) mRNA  
from psiCheck–Neurog2–3  UTR and psiCheck–Neurog2–hairpin CLIP-precipitated from N2A relative to psiCheck. Values are fold enrichment over 
CLIP-precipitated (Flag-Drosha) psiCheck transcripts. Statistical analysis of CLIP-precipitated products corrected relative to input RNA concentrations 
compared to Flag-Drosha CLIP-precipitated samples. t test: *P < 0.05 and **P < 0.001. Error bars, s.e.m. For b and f, n = 3.
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 microprocessor activity on the Neurog2 mRNA could regulate the 
onset of differentiation of NSCs. As Ngn2 and its downstream targets 
are in an autoregulatory cascade, even moderate changes in Neurog2 
mRNA stability and half-life could affect fate.

The microprocessor is involved in early stages of miRNA biogen-
esis, and Dicer, in their maturation47. Dicer1 cKO did not result in 
neural-progenitor differentiation in the forebrain or upregulation of 
Ngn2, consistent with previous reports and substantiating that the 
microprocessor has functions independent of miRNAs17,29. In addi-
tion, the rapid and dramatic phenotypic changes we observed were not 
associated with global changes in mature miRNA expression levels. 
This suggests that miRNAs are relatively stable in neural progeni-
tors. miRANDA predicts several miRNAs that could potentially target 
Neurog2 mRNA. Either these miRNAs were not expressed by neural 
progenitors, or their expression was not altered by microprocessor 
inactivation. We also showed that the conserved hairpins in Neurog2 
are sufficient to convey microprocessor association. Although we 
cannot formally exclude that accumulation of pri-miRNAs may have 
miRNA-independent functions in gene regulation, we phenocopied 
the Drosha and microprocessor inhibition phenotypes by forced 
expression of Ngn2. This suggested that Ngn2 regulation is a key 
element of the Dicer-independent function of the microprocessor in 
neural progenitors.

Our findings were reminiscent of the microprocessor cleavage of 
pri-miRNA–like hairpins in protein-coding mRNAs described pre-
viously32,41–43 and provide a physiological relevance for this alter-
nate function. EvoFold and Mfold algorithms predict that mRNAs 
encoding Ngn2, NeuroD1 and NeuroD6 all contain evolutionar-
ily conserved hairpins that could be microprocessor targets. We 
show Drosha association with the mRNAs encoding NeuroD1 and 
NeuroD6 and transcript profiling of Drosha-deficient neural pro-
genitors revealed increases in Neurod1 and Neurod6 as well as Dgcr8 
and Fmr1 mRNAs (data not shown). Fmr1 has been identified in a 
tiling microarray screen for Drosha-regulated mRNAs in Drosophila  
melanogaster48. We suggest that microprocessor action on target 
mRNAs in neural progenitors contributes to regulation of differen-
tiation (Supplementary Fig. 10b).

Drosha-deficient neural progenitors downregulate progenitor 
markers, consistent with increased Ngn2 expression and activation 
of differentiation. They also migrate rapidly to the SVZ/IZ, similar  
to neural progenitors where Ngn2 expression is forced from a ubiq-
uitous promoter. Ngn2 regulates the expression of Rnd2, which 
controls migration in the forebrain46. Although both Drosha knock-
down and Ngn2 expression resulted in Neurod1 activation, neither 
induced expression of the basal progenitor marker Tbr2. This sug-
gests that Tbr2 expression requires additional mechanisms that are 
not activated and are potentially independent of Ngn2 and Drosha. 
Alternatively, the absence of precocious Tbr2 expression by micro-
processor-deficient and Ngn2-expressing neural progenitors may 
reflect the rapid kinetics of the differentiation phenotype. Notably, 
neuroepithelial cells can generate neurons without generating Tbr2-
expressing basal progenitors49. It remains to be determined whether 
Drosha is also involved in this process during development.

We provide to our knowledge the first evidence for a direct mecha-
nism through which Drosha and the microprocessor can regulate  
neural progenitor maintenance and differentiation during development. 
How does Neurog2 mRNA and protein accumulate in neural progeni-
tors to initiate differentiation under normal differentiation? Although 
Drosha and Dgcr8 mRNA levels are prominent in neural progenitors  
in the ventricular zone, their expression is somewhat reduced in cells 
within the SVZ/IZ and where Ngn2-expressing cells accumulate. 

Furthermore, NeuroD1 and NeuroD6 expression also increases in 
this region39. Thus, microprocessor expression and activity may be 
downregulated as neural progenitors commit to differentiation ena-
bling Ngn2 to accumulate through a positive feedback autoregulation 
on its own promoter. In addition, microprocessor function may be 
controlled at target hairpins by cell- and tissue-specific expression 
of regulatory proteins that could include RNA-binding proteins that 
compete with the microprocessor. This remains to be explored but 
opens a potentially new avenue for post-translational proteome regu-
lation. Precedent for this is found in the function of Lin28, which 
blocks microprocessor cleavage of a subset of pri-miRNAs50. Our 
data indicate the multifaceted functions of Drosha in the regulation of 
mRNA expression. The full pallet of neural progenitor mRNAs regu-
lated by the microprocessor in this way remains to be uncovered.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Animals and administration of thymidine analogs. Hes5øGFP, floxed Drosha 
and floxed Dicer1 mice have been described elsewhere51–53. Adult mice 8–12 
weeks of age were used in the experiments. Mice were maintained on a 12-h 
day-night cycle with adequate food and water under specific pathogen-free  
conditions and according to Max Planck Institutional and German Federal 
regulations and under license numbers H-05/01, 0-06/02, G-09/18, G-09/19 
and G-08/26 (Ethical Commission Freiburg, Germany). The day of vaginal plug 
was considered as embryonic day 0 (E0). Bromodesoxyuridine (BrdU; Sigma) 
50 mg/kg body weight, was administered by intraperitoneal (i.p.) injection 3 h 
before killing the mice.

In utero electroporation for overexpression in neural progenitors in vivo. 
Female C57BL/6J, floxed Drosha and floxed Dicer1 mice were anesthetized with 
isoflurane 13.5 d after detection of vaginal plug and their uteri were exposed. For 
the injection of DNA constructs, a microinjector (Pneumatic Pico Pump, WPI 
Rnage) and Borosilicate glass capillaries (Kwick-Fil; Hampton Research) were 
used. The capillaries were pulled in a micropipette puller (Sutter Instrument 
Co.). The tip of the capillaries was broken and sharpened using a capillary 
sharpener (Bachofer). The capillaries were back end–loaded with 10 l of 
the plasmid. Plasmid stocks were prepared under endotoxin-free conditions. 
Plasmids were dissolved in sterile PBS at a high concentration (2–4 g/ l).  
A fast green contrast dye (10%) was added to the plasmids to visualize targeted 
area of the telencephalon. The overexpression or knockdown vectors were 
electroporated in a molecular excess of 3:1 with the transfection reporter vector 
(pCAGGsømCherry or pCAGGsøeGFP). Mice were anesthetized with 1–2% 
isoflurane (Baxter) in a constant flow of O2 and secured on a heated operating 
table. Body temperature was monitored continually. The fur was removed from 
the abdomen using depilation cream. Throughout the operation the peritoneal 
cavity was moistened with sterile HBSS to prevent drying. The uterine horns 
containing the embryos (E13.5) were manipulated under sterile conditions 
by hand. A cold light source was used to illuminate the developing embryos. 
We injected 1–2 l of DNA solution (3–4 g) into the lateral ventricles of each 
embryo. The embryos were electroporated (Electro Square Pavator, BTX; Harvard 
Apparatus) with ten pulses of 40 V and a pulse length of 50 ms at 950-ms inter-
vals. The anode of the electrode was oriented toward the injected side. After 
injection and electroporation, the uterus was returned into the abdomen, the 
muscle and the skin sutured and the females allowed to recover under a heat-
ing lamp with constant observation and were given free access to postoperative 
analgesic (Temgesic jelly). The animals were sacrificed after a defined time by 
cervical dislocation or CO2 inhalation and the embryos isolated and prepared  
for sectioning.

Expression plasmids and constructs. Full-length cDNAs for mCherry and 
eGFP were subcloned into pCAGGs expression vectors, the Ngn2 cDNA 
 including the endogenous UTRs was a gift from F. Guillemot. pSuper-shDrosha 
and pSuper-shDGCR8 were obtained from Addgene; pSuper-shGFP was a 
gift of D. Messerschmitt and pSuper-shRenilla was cloned according to the 
manufacturer’s instructions (Oligoengine). pCK-Drosha-WT-Flag and 
pCK-TN-Drosha-Flag expression constructs (TN, transdominant negative) 
have been described previously32 and Hes5øCre was generated by cloning a  
Cre-recombinase cDNA into the ATG of the Hes5 transgene as described  
previously51. NeuroDømCherry reporter was generated by cloning an mCherry 
cDNA downstream of the NeuroD promoter (Beta2) in the pBS-Beta2 plasmid. 
The mouse Neurog2 3  UTR and tandem copies of the hairpin fragment bases 
2044–2202 of the mouse Neurog2 mRNA were amplified by PCR and cloned 
into the NotI site of psiCheck2 vector (Promega) 3  to the open reading frame 
of the Renilla luciferace.

In situ RNA hybridization. Brains were isolated, frozen in OCT compound 
(TissueTech), and 20 m cryostat sections were made and postfixed in  
4% PFA. In situ RNA hybridization was performed as described previously54. 
A digoxigenin (DIG)-labeled RNA probe for Drosha (amplified from mouse 
cDNA using primers fwd 5 -TAATGATCCGGACCTTCGAG-3  and rev 
5 -CTTAGAAAGGCAATGCTCCG-3 ) using the procedures described pre-
viously54. Expression was detected by colorimetric reaction using NBT (nitro-
blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3-indolylphosphate  

p-toluidine) as reaction substrates and images taken using an Axioplan micro-
scope (Zeiss) with an Axiocam charge-coupled device (CCD) camera (Zeiss).

Fluorescence-activated cell sorting (FACS), neurosphere cultures and immuno-
histochemistry and terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL). Brains of electroporated embryos were transferred to L15 
medium (Gibco) and the electroporated area of the brain microdissected and 
mechanically dissociated in the presence of l-cysteine and papain. Cells were 
sorted by FACS, gating on mCherry+ or GFP+ cell populations depending on the 
experiment. Neurosphere cultures were established from E13.5 floxed Drosha, 
floxed Dicer1 and control embryo brains in the presence of FGF2 and EGF as 
described previously51,55. Cre recombinase–expressing adenovirus (adeno-Cre) 
infection and analysis of neurosphere number were performed as described 
previously56. For histology, embryos were collected, and the brains were fixed 
in 4% paraformaldehyde (PFA) solution in 0.1 M phosphate buffer overnight. 
Brains were cryoprotected in a 30% sucrose solution in 0.1 M phosphate buffer for  
24 h, embedded and frozen over dry ice in OCT (TissueTEK). Horizontal sections 
(20 m) were collected on Superfrost glass slides (Thermo Scientific) and stored 
at −20 °C until use. For immunostaining, sections were incubated overnight at  
4 °C with the primary antibody diluted in blocking solution of 2% normal donkey 
serum (Jackson ImmunoResearch), 0.1% Triton X-100 in PBS. Sections were 
washed three times in PBS and incubated at room temperature for 3 h with the 
corresponding secondary antibodies in blocking solution. When signal amplifica-
tion was needed, sections were washed and incubated for 1 h at room temperature 
in streptavidin-FITC (Jackson ImmunoResearch; 1:400) and counterstained with 
DAPI (1 g/ml). For BrdU detection, sections were treated with 2 M HCl at  
37 °C for 15 min before primary antibody incubation. HCl-treated sections were 
then equilibrated in borate buffer (0.1 M, pH 8.5) for 10 min. For Ki67, Ngn2 and 
Tbr2 detection, antigens were recovered at 80 °C for 30 min in sodium citrate 
solution (10 mM, pH 6.0). Stained sections were embedded in mounting medium 
containing diazabicyclo-octane (DABCO; Sigma) as an anti-fading agent and 
visualized using a Zeiss LSM510 confocal microscope. Antibodies and conditions 
used for immunolabeling were rat anti-BrdU (1:500; OBT0030, AbD Serotec), 
rabbit anti–cleaved Caspase3 (1:200; 5A1E, Cell Signaling), rabbit anti-Drosha 
(1:1000; D2881, Cell Signaling), rabbit anti-Drosha (1:100; ab12286, Abcam), 
mouse anti– -tubulin (1:25; D2881, Sigma), mouse anti-GAPDH (1:10,000; 6C5, 
Calbiochem), guinea pig anti-GLAST (1:200; AB1782, Chemicon), rat anti-Ki67 
(1:25; TEC-3, Dako), mouse anti-Ngn2 (1:500; MAB3314, R and D), rabbit anti-
Pax6 (1:300; PRB-278P, Covance), mouse anti-Sox2 (1:500; AB5770, Chemicon), 
rabbit anti-Tbr2 (1:1000; ab23345, Abcam) in combination with FITC- or  
Cy3-conjugated donkey anti–species specific immunoglobulin antibodies 
(1:1,000; Jackson ImmunoResearch). For TUNEL labeling of DNA, an In situ 
Cell Death Detection Kit (Roche) was used according to the manufacturer’s 
instructions. Sections were analyzed with an Axioscope (Zeiss) or confocal 
(Zeiss LSM510) fluorescence microscope. Fragmented cell debris lacking DAPI 
stained nuclei was visualized with either an Axioscope (Zeiss) or confocal (Zeiss 
LSM510) fluorescence microscope and 3D reconstruction. Images were acquired 
using Axiovision or Zeiss LSM 4.2 (Zeiss) and processed with ImageJ 1.33 or  
Photoshop CS4 (Adobe) software.

RNA analysis and Neurog2 3  RACE fragment detection. Total RNA was iso-
lated from FACS-sorted electroporated cells or adeno-Cre–infected neurospheres 
using mirVANA total RNA isolation kits (Ambion) according to the manufac-
turer’s instructions. RNA purity and quantity were verified using a Bioanalyser 
2100 RNA chips (Agilent). miRNA profiling was performed on TaqMan arrays 
(Invitrogen) with 500 ng of purified RNA according to the manufacturer’s 
instructions. Expression analysis was performed using the comparative cycle 
threshold (Ct) method. For 3  RACE of Neurog2 fragment detection, total RNA 
was 3  polyadenylated using poly(A) polymerase (NEB) following the manufac-
turer’s instructions. We used 1 g of total RNA for cDNA synthesis using the 
Superscript III First-Strand kit for rt-PCR (Invitrogen), priming the reaction 
with an anchored 3  RACE oligo(dT) primer. PCR amplification from cDNA 
was performed using Kappa2G polymerase (Peqlab) with forward Neurog2-
specific primers and an anchor binding primer. Resulting fragments, including 
Neurog2 full-length 3  UTR RNAs, were visualized by standard gel electrophoresis 
cloned and sequenced. Gapdh was amplified as a control using mRNA-specific 
primers. The primers used were -actin fwd 5 -AAGGCCAACCGTGAAAAG 
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AT-3  and rev 5 -GTGGTACGACCAGAGGCATAC-3 , 3  RACE oligo-dT 
fwd 5 -GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTV-3 ,  
3  RACE anchor 5 -GACCACGCGTATCGATGTCGAC-3 , 3  RACE forward  
5 -TTGTAGGCTTTTGTAAGGGTTG-3 , Drosha fwd 5 -CTATGATCGG 
GGGAGAACG-3  and rev 5 -CCGGTGCCTGTGTCTCTC-3 , Dgcr8 fwd  
5 -GGCGAATGGAGGAAAAATATG-3  and rev 5 -AGGCAATGGCTCTG 
TAGGTG-3 , Dgcr8 (CLIP) fwd 5 -GCCACAGGTGGAAGAAGAA-3  and  
rev 5 -ACACTGGCGGCTTAGTCAA-3 , Gapdh fwd 5 -AGTGATGGCAT 
GGACTGTGGTC-3  and rev 5 -TCCATGACAACTTTGGCATTGTGG-3 ,  
Neurod1 fwd 5 -CGCAGAAGGCAAGGTGTC-3  and rev 5 -TTTGGTC 
ATGTTTCCACTTCC-3 , Neurog2 fwd 5 -GACATTCCCGGACACACAC-
3  and rev 5 -AGTCTCAGATTTGACGAACATCC-3 , Neurog2 (CLIP) fwd  
5 -AGGAGGGAGGATTGCTTC-3  and rev 5 -GGCATCTGCTCTATTCC 
CA-3 , hRluc fwd 5 -TGATCGGAATGGGTAAGTCC-3  and rev 5 -GGCC 
TTGATCTTGTCTTGGT-3 , Sox2 fwd 5 -TCCAAAAACTAATCACAACAA 
TCG-3  and rev 5 -GAAGTGCAATTGGGATGAAAA-3 , and Tbp fwd 5 -CG 
GTCGCGTCATTTTCTC-3  and rev 5 -GGGTTATCTTCACACACCATGA-3 .

Quantitative real-time PCR analysis of gene and miRNA expression. For RNA 
isolation, cells were lysed directly in Trizol (Invitrogen) reagent. RNA was pre-
pared according to the manufacturer’s instructions. We used 1 g of total RNA 
for cDNA synthesis by oligo(dT) priming and Superscript III first strand kit 
(Invitrogen). For quantitative rt-PCR, we used the comparative Ct method with 
Roche Universal probes performed on a 7300 Real-Time PCR System (Applied 
Biosystems). TATA-binding protein, -actin and Gapdh mRNA levels were  
measured as endogenous controls and for quantification. For mature miRNA 
quantification, SYBR green–based Ncode system (Invitrogen) was used following 
the manufacturer’s instructions and normalized to U6 RNA.

Cross-linked RNA immunoprecipitation. N2A cells were transfected using 
Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions 

with p3X-Flag-GFP or pCK-Drosha-WT-Flag or pCK-TN-Drosha-Flag and 
trypsinized after 48 h. The cells were then fixed in 3% formaldehyde in PBS for 
10 min and lysed by sonication (10 pulses for 10 s). Immunoprecipitation was 
performed overnight at 4 °C using anti-Flag M2 Affinity Gel (Sigma-Aldrich). 
After collection by centrifugation at 2,000g and washing 3–4 times with lysis 
buffer, the complexes were reverse cross-linked, and RNA was extracted using 
Trizol reagent (Invitrogen) according to the manufacturer’s instructions. Isolated 
RNA was treated with RNase-free DNase I (Roche) to remove any genomic DNA 
contamination. First-strand cDNA was generated using BioScrip (Bioline) and 
random hexamer primers followed by real-time PCR using SensiMix SYBR kit 
(Bioline).

Quantification and statistical analysis of the data. Randomly selected, stained 
cells were analyzed with fixed photomultiplier settings on a Zeiss LSM510 con-
focal microscope. Data are presented as average percentages of co-labeled cells. 
Statistical comparisons were conducted by two-tailed unpaired Student’s t-test. 
Significance was established at P < 0.05. In all graphs, error bars, s.d.
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