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Abstract

Mixed-phase Arctic stratocumulus clouds are ubiquitous to the region during the summer

months. However, despite their prevalence, very little is known about the processes

which maintain the cloud. Recent observations have shown that Arctic stratocumulus

commonly extend into the temperature inversion which caps the Arctic boundary layer.

This is atypical to sub-tropical stratocumulus where the cloud top is found in the vicinity

of the inversion base, and unexpected as strong longwave radiative cooling would be

expected to keep the cloud top and inversion base heights in equilibrium. Uniquely to

the Arctic, inversions in specific humidity are also commonly observed coincident with

temperature inversions, and this is thought to contribute to the clouds’ subsistence in

the strongly stable inversion layer.

In this thesis, observations from the Arctic Summer Cloud Ocean Study (ASCOS) are

used to characterize the lower Arctic atmosphere and provide the basis for simulations

of stratocumulus cloud encroachment into the Arctic temperature inversion. Observa-

tions show that cloud extending into the inversion by more than 100 m was a common

occurrence during ASCOS, which is consistent with measurements made during previ-

ous summer field campaigns. Simulations made with the Met Office Large Eddy Model

(LEM) were used to model the encroachment, and results suggest that the depth of

encroachment has a high correlation with the humidity inversion strength.

A number of different cloud-inversion regimes were identified from the model simulations.

When specific humidity fell off inside the temperature inversion, the high relative humid-

ity of the region just above the inversion base was found to allow encroachment of cloud

up to 40 m into the inversion layer. While in the presence of a specific humidity inversion

the encroachment was larger reaching a maximum of 200 m. The presence of specific

humidity inversions and their relationship to the encroaching cloud was determined to

be self-sustaining, and the cloud found to remain at a quasi-stable depth for as long as

a moisture source is available to replenish the loss of water from ice precipitation. How-

ever, encroachment of cloud into the inversion was shown to cause a significant reduction

in the buoyant production of TKE at cloud top, which led to turbulence shutting off

completely in the clouds with the largest encroachment depth. This caused a thermal

adjustment of the inversion layer to the cloud which led a reduction in the encroachment
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depth. The overall impact of encroachment on boundary layer turbulence was found

to be significant, with TKE reduced by up to 90 % in the simulations with the largest

encroachment depth.
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Chapter 1

Introduction

Global mean sea surface temperatures have risen by around 0.8 oC since the beginning of

the 20th century; an increase which is primarily a consequence of anthropogenic climate

change caused by the emission of greenhouse gases to the Earth’s atmosphere, and a

rise which is projected to continue at a faster rate in the future. Although atmospheric

temperatures have risen across the planet, the Arctic - a region which acts as an important

regulator of the global climate system - has experienced the most dramatic change over

the past few decades; with surface temperatures rising at a higher rate than anywhere else

on the Earth and summer sea ice extent and thickness decreasing significantly. A change

recently highlighted by the record sea-ice minimum of 2012, in which sea-ice extent was

down 49 % on the 1979 - 2000 average.

Changes to the Arctic climate are likely to have a substantial impact on the local en-

vironment; impacting the people, wildlife and vegetation which are reliant and in some

cases specially adapted to the unique Arctic ecosystem. Arctic climate change is also

predicted to impact on the lower latitudes through the modification of weather patterns

and ocean circulation, and if the region becomes completely ice-free, may potentially lead

to the Earth’s climate reaching a tipping point; bringing about irreversible changes to

the natural environment.

These impacts highlight the need for accurate predictions of Arctic climate change in in-

forming decisions on environmental policy. Climate models currently struggle to predict

Arctic temperature change with the consequence that Arctic sea-ice loss is underesti-

mated. The reasons for this divergence between models and observation are severalfold,

however the lack of understanding of several unique physical, chemical and biological

processes which occur in the region are thought to be a major contributor to the un-

certainty. This is especially true in the central Arctic, where the harsh environmental

conditions have prevented the collection of an extensive in-situ measurement set needed
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1. Introduction

to develop Arctic specific paramaterizations in climate models.

Low-level Arctic stratiform cloud and in particular its interaction and feedback with the

underlying sea-ice surface has been highlighted as one area of the Arctic climate system

in need of further investigation. Arctic stratus clouds are ubiquitous during the summer

months, with a semi-persistent layer covering much of the central Arctic Ocean. However

despite their prevalence, regional and global climate models fail to simulate both their

macrophysical properties: occurrence and extent, and microphysical properties: cloud

phase, ice crystal and cloud droplet number; with the consequence that the Arctic surface

energy budget is poorly represented.

While superficially similar to their sub-tropical and mid-latitudinal marine counterparts

a number of differences exist, for instance Arctic stratocumulus are commonly composed

of both ice crystals and supercooled liquid water. Another major difference and one which

has so far received very little attention is the observation of Arctic stratocumulus cloud

top extending into the temperature inversion which caps the central Arctic boundary

layer. Because of the strong stability of the temperature inversion, the encroachment of

cloud into the inversion layer is unexpected and sub-tropical marine stratocumulus are al-

ways assumed to have a cloud top coincident with the base of the temperature inversion.

While previous research has identified that the encroachment of Arctic stratocumulus

into the inversion is related to the presence of specific humidity inversions - which are

also commonly found situated coincident with the Arctic temperature inversion - their

remains an open question as to the exact mechanisms which control this relationship,

and the sensitivity of the encroachment to the specific humidity inversion strength and

other atmospheric properties is yet to be examined. Furthermore, the effect that the

encroachment has on the development of the cloud and boundary layer is so far undeter-

mined, therefore it is uncertain whether there is a need for cloud-inversion encroachment

to be represented in climate and weather prediction models.

This project aims to investigate the encroachment of Arctic stratocumulus cloud into the

temperature inversion, quantify the prevalence of the regime in the central Arctic and

better determine its relationship to the coincident humidity inversion under a variety

of atmospheric conditions. The will be carried out with the intention that the research

generate a more detailed and complete mechanistic description of the cloud encroachment

into the inversion layer, and if its effect on BL development is shown to be important

provide a basis for the development of Arctic boundary layer cloud parameterizations for

use in global and regional climate models.

To achieve this aim, the methodology of this project firstly consists of analysis of mea-

surements collected during the Arctic Summer Cloud Ocean study (ASCOS). This recent

Swedish-led field campaign to the central Arctic had a primary purpose of understand-

ing the life cycle of summertime Arctic stratocumulus clouds, including their observed
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encroachment into the temperature inversion. Analysis of ASCOS data will focus on the

identification of the inversion from the measurement set and on determining statistical re-

lationships between measures of the cloud-inversion encroachment and other atmospheric

properties. Numerical simulations using the Met Office Large Eddy Model (LEM) will

then be made using the ASCOS observations as a basis to constrain the model runs. A

number of simulations in which the strength of the humidity inversion is varied will be

made to understand its effect on the encroachment. The simulations aim to quantify

and gain a process based understanding of the radiative-microphysical-dynamical mech-

anisms which control the encroachment and determine any feedbacks the encroachment

has on the development of the Arctic boundary layer.

The help achieve the aims of this project a number of research questions will be investi-

gated:

� How similar were ASCOS conditions to those found in previous Arctic field campaigns,

and do ASCOS observations support the evidence suggesting that cloud encroachment

into the temperature inversion is prevalent in Arctic clouds?

� Is the assumption that the top of sub-tropical marine stratocumulus cloud is always

coincident with the inversion base realistic?

� What are the fundamental radiative-microphysical-dynamical mechanisms which sup-

port the encroachment?

� What physical effect does the encroachment of cloud into the inversion have on bound-

ary layer development, and how is this effect determined by the depth or amount of

cloud mass with encroaches inside the inversion layer?

� What relationships between encroachment statistics can be derived - either directly

from the ASCOS dataset or from numerical simulations - which may lead the way for

a parameterization of the cloud encroachment into the temperature inversion?

Chapter 2 provides an overview of the background science and literature which is essential

to this study. This includes details on relevant aspects of boundary layer meteorology,

including a discussion of the macro and microphysical properties of both sub-tropical

marine and mixed-phase Arctic stratocumulus, Arctic climate change, an overview of

previous Arctic field campaigns, and lastly the entrainment mechanism and a discus-

sion on available definitions of the entrainment zone. Chapter 3 gives a description of

the large eddy model including the models governing equations and all major physical

parametrizations: sub-grid motions, cloud microphysics, radiation, boundary conditions

and large scale forcing. A description of the algorithm added to the model to diagnosti-

cally determine the inversion layer boundaries is also given, and a discussion of any merits

3



1. Introduction

and deficiencies of the modelling framework is provided. In Chapter 4 this is followed by

a validation of the numerical model. Validation is achieved through simulating a widely

studied Arctic stratocumulus case study and comparing to a wide range of model results

from a cloud model inter-comparison. Chapter 5 introduces the ASCOS field campaign,

describes the campaign logistics, objectives and general meteorological conditions, along

with a description of the observations used in this research. Analysis of the observations

is also made with the aim of understanding cloud-inversion properties: how these re-

late to observations from different studies; and to other measured atmospheric variables.

Chapter 6 uses a case study developed from the ASCOS dataset to model a mixed-phase

Arctic stratocumulus cloud and its encroachment into the elevated Arctic temperature

inversion. The simulation is forced by a large scale water vapour source in the inversion

layer; and compared against simulations where no forcing is present. Chapter 7 extends

the analysis of the simulated cloud to look at the effect that the forcing specification has

on the encroachment, and the sensitivity of the BL to the subsequent change in encroach-

ment. Finally in Chapter 8, a summary of the results is presented and recommendations

for future work are provided.
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Chapter 2

Background

Chapter 1 introduced the subject of this research, which is the study of mixed-phase

Arctic stratocumulus and the encroachment of cloud top into the elevated temperature

inversion which is commonly observed above the Arctic boundary layer. In this chapter,

background to this topic will be given through an in-depth review of relevant literature.

The focus here will not just be on the physics of mixed-phase Arctic stratocumulus;

dynamical, cloud microphysical and radiative properties, but will also address their re-

lationship to the more extensively studied sub-tropical marine stratocumulus and the

wider Arctic climate. To aid the reader the definition a number of atmospheric variables

and general meteorological concepts used throughout the study will also be provided.

2.1 The atmospheric boundary layer

2.1.1 Structure of the lower atmosphere

When discussing the Earth’s atmosphere it is useful to separate it into layers dependent on

their vertical thermal structure. The troposphere which extends from the Earth’s surface

up to around 12 km is where most atmospheric mass is situated and is generally defined

as the region of the atmosphere where temperature falls with height at the adiabatic

lapse rate. Above the troposphere, temperature increase with height in a layer of the

atmosphere known as the stratosphere, this is followed by the upper atmospheric layers;

the mesosphere, thermosphere and exosphere. The influence of the Earth’s surface is

essentially limited to the troposphere. It is also the region where weather systems occur,

making it the principal region for meteorological analysis.

The troposphere can be separated into two further layers called the free troposphere and

the planetary or atmospheric boundary layer, hereafter referred to as the boundary layer
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2. Background

Figure 2.1: Vertical profiles of water vapour, qv and liquid water, ql mass mixing ratios,
equivalent potential temperature, θe and temperature, T measured on flights through a
summertime mid-latitude marine stratocumulus topped boundary layer. Dots represent
the means of horizontal legs and dotted lines the values expected for a well-mixed layer.
Reproduced from Wood (2012) who adapted the original image from Nicholls (1984).

(BL). As its name suggests the boundary layer is the region of the troposphere closest to

the Earth’s surface. Stull (1988) defines it as the ’part of the troposphere that is directly

influenced by the earth’s surface, and responds to surface forcings with a timescale of

about an hour or less’. The BL often has a depth in the order of 1 km or less, and is

characteristically defined by strong turbulent motions, a strong diurnal cycle and the

presence of fog, stratocumulus and fair weather cumulus clouds.

The free troposphere is situated above the BL and occupies the remainder of the tro-

posphere. The free troposphere is generally more quiescent, containing much weaker

turbulence, slower mixing and a weaker diurnal variation - except in the presence of deep

convection or active frontal systems. The two layers are often separated by a region of

rapidly increasing temperature known as an inversion. The significant increase in tem-

perature across the inversion makes it extremely stable, essentially capping the BL below

and preventing steady mixing of BL and free tropospheric air. Occasionally buoyant

parcels of air manage to overshoot the base of the inversion and mix free-tropospheric

air into the BL in a processes known as entrainment.

2.1.2 The stratocumulus topped boundary layer

Stratocumulus clouds are found over almost all regions of the Earth. From the vast

sheets which cover thousands of kilometres of the Eastern sub-tropical oceans, through
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Figure 2.2: Radiative, microphysical and dynamical processes which occur in a mid-
latitude stratocumulus topped boundary layer. Reproduced from Holtslag (1998).

the mid-latitudes, and up into the central Arctic ocean (Klein & Hartmann, 1993). They

have the most extensive coverage of any cloud type (Wood, 2012), and alongside fair

weather cumulus are the most important clouds to influence the development of the BL.

Stratocumulus commonly form over regions of high pressure in the sub-tropics and mid-

latitudes where synoptic scale anticyclonic subsidence creates a temperature inversion as

the descending air warms through adiabatic compression. This capping inversion traps

water vapour added to the BL by advection and from surface evaporation causing the

BL to moisten until saturation and the formation of cloud.

A boundary layer where the dynamics are controlled by the presence of stratocumu-

lus is called a stratocumulus topped boundary layer (STBL). Measured and idealized

vertical profiles of atmospheric variables through a mid-latitude STBL are shown in Fig-

ure 2.1. The observed stratocumulus is liquid-phase (liquid condensate only) and non-

precipitating. The idealized liquid water mass mixing ratio (henceforth mixing ratio), ql

increases linearly from the height of the cloud base, zcb up to the height of the cloud top,

zct, before rapidly falling to to zero inside the inversion layer. In reality, the entrainment

of dry air from above means liquid water mixing ratios near the cloud top are often less

than the idealized values. Within the sub-cloud layer, temperature typically decreases at

the adiabatic lapse rate of -9.8 K km−1 while through the cloud layer latent heat release

due to condensation causes temperature to drop off at the saturated adiabatic lapse rate.

Throughout the STBL, the total water mixing ratio, qt and the equivalent potential tem-

perature, θe; which are both conserved under dry as well as moist adiabatic processes,

are well-mixed and so their profiles are constant with height. This region is described as
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a mixed layer (ML). Above the mixed layer the temperature increases across the inver-

sion, while the water vapour mixing ratio and total water mixing ratios drop of rapidly.

While inversions are also commonly present above cloud-free regions, the sharp jump

in atmospheric variables at the inversion is a characteristic of the STBL, with vertical

mixing due to longwave radiative cooling tending to reduce the potential temperature

gradient in the region below cloud top and leaving a sharp jump in temperature at the

inversion (Paluch & Lenschow, 1991). Though studies rarely calculate the boundaries of

the inversion with any accuracy, the prototypical stratocumulus cloud top is found in the

vicinity of the temperature inversion base, zib and they are often assumed as coincident

(e.g. Paluch & Lenschow, 1991; Stevens et al., 2007; Tjernstrom & Rune, 2003).

In Figure 2.1, the observed ML extends from the top of the cloud layer all the way

down to the surface, thus the surface and cloud are in a coupled state. However in the

sub-tropics and mid-latitude, the STBL typically has a strong diurnal cycle in which

the surface and sub-cloud layer sometimes becomes decoupled from the cloud layer by a

region of positive stability. Coupled mixed layers such as that observed in Nicholls (1984)

are typically found at night time and in the early morning. The deep coupled mixed layer

is maintained by turbulence generated from cloud top radiative cooling and from cellular

convection (Figure 2.2). After sunrise the absorption of solar radiation heats the cloud.

This both destabilises the cloud layer and stabilises the sub-cloud layer below, thus the

two regions decouple. Decoupling closes the cloud off from the source of water vapour

at the surface which can lead to the cloud thinning and ultimately its break up. In

precipitating stratocumulus, latent heating associated with drizzle production within the

cloud and evaporative cooling of drizzle below the cloud base can also contribute to the

decoupling of the ML. This is often strongest late in the morning when vertical velocities

are strongest and drizzle production is at its greatest. If drizzle reaches the surface it

can also deplete the BL of water (Stevens et al., 1998).

While the formation of stratocumulus cloud largely depends on the prevailing meteo-

rological conditions, the optical properties of the cloud and its tendency to precipitate

depend on both its microphysical and macrophysical properties. In addition to a high

relative humidity (low temperature and/or high specific humidity), cloud droplet forma-

tion requires the presence of hygroscopic atmospheric aerosol particles known as Cloud

Condensation Nuclei (CCN) which are capable of initiating droplet formation at the low

supersaturations found in the atmospheric environment; typically supersaturations rarely

exceed 10 %, and are often less than 1 % (Pruppacher & Klett, 1997). A strong corre-

lation exists between concentration of CCN particles and the number of cloud droplets,

Nl (Twomey, 1959), and the number of droplets over which the liquid water mass is

distributed impacts the average size of the cloud droplet with low CCN concentrations

leading to a small number of large droplets, while high CCN concentrations leading a

large number of small droplets.
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The CCN concentration affects the clouds optical properties - with an increase in the

CCN concentration, hence droplet number at a fixed liquid water content (LWC) lead-

ing to the cloud having a higher shortwave albedo (Twomey, 1977). The distribution of

droplet sizes is also broader when CCN concentrations are low and because the growth of

droplets to a precipitable size in the warm environment is largely dependent on their colli-

sion and coalescence, smaller CCN concentrations are associated with drizzle production

(Bretherton et al., 2004; vanZanten et al., 2005). Typically in the marine environment

CCN numbers are in the range of 100 cm−3 to 1000 cm−3 (Raes et al., 2000). Ackerman

et al. (2004) found that an increase in the cloud droplet number led to an increase in

the LWP of sub-tropical stratocumulus. The response of the LWP to droplet number

was found to be due to an increase in sedimentation in the region near cloud top. In

(Bretherton et al., 2007), sedimentation was found to decrease the entrainment rate by

removing liquid water from the EZ, thus reducing evaporative and radiative cooling which

are mechanisms which promote the sinking of entrained air into the cloud layer.

2.1.3 Cloud top entrainment

Cloud top entrainment occurs as boundary layer thermals overshoot the top of the mixed

layer, capturing non turbulent air from within the temperature inversion before returning

to the BL. Entrainment is of central importance to the development of the STBL. It is the

primary means of boundary layer growth (Boers et al., 1984), and a major influence on

the structure and distribution of stratocumulus clouds. Through a mechanism known as

cloud top entrainment instability (CTEI)(Deardorff, 1980; Lilly, 1968), entrainment can

also sometimes lead to the thinning and break up of stratocumulus. CTEI occurs if the

mixing of warm dry inversion air with saturated BL air causes strong enough evaporation

to destabilise the air parcel and make it negatively buoyant. Under the force of buoyancy

the parcel sinks leading to a positive buoyancy flux, g
Tv
w′θ′v, stronger turbulence and

increased entrainment of warm dry air (Yamaguchi & Randall, 2008). Thus the CTEI

mechanism has a positive feedback on itself which can lead to the destruction of the

cloud.

While entrainment is an inherently local process, with mixing occurring discontinuously

across the cloud top interface in discrete events, the rate of entrainment of free tropo-

spheric air into the mixed layer below is by definition a property of the area and time

averaged mixing (Stull, 1988). The entrainment rate is usually defined in terms of an

entrainment velocity, we which is zero when there is no turbulence and positive at any

other time. If the rate of atmospheric subsidence, ws and the height of the boundary

layer top, zi are known accurately then we can be calculated simply through (Wood &
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Bretherton, 2004):
∂zi
∂t

+ u(zi) · ∇zi = we − ws(zi) (2.1)

where u(zi) is the horizontal wind velocity. A number of parametrizations also exist to

calculate the entrainment rate (see for example Stevens (2002) for a review).

2.1.4 Entrainment zone definition

When calculating the entrainment rate from observations it is convenient to define an

interfacial layer over which the mixing occurs known as the entrainment zone (EZ). As

entrainment is the mixing of laminar and turbulent air, the entrainment zone is a layer

characterised by overshooting thermals, intermittent turbulence and broken cloud. A

fundamental definition of the entrainment zone is that it is the region around the top of

the ML where w′θ′v is negative (Figure 2.3)(Driedonks & Tennekes, 1984); denoting the

production of potential energy at the expense of turbulent kinetic energy (TKE) i.e. the

consumption of turbulent energy in mixing less dense and hence more buoyant air down

into the BL. While this definition of the EZ is theoretically correct, in reality it is difficult

to determine w′θ′v from observations, and for this reason a number of other definitions of

the EZ have been developed, as yet none of which have become universally excepted.

It is often defined as the region in which the mean profile of some scalar quantity has a

significant vertical gradient (Cohn & Angevine, 2000). Example quantities include the

potential temperature, θ, the water vapour mixing ratio, qv or specific humidity, qspec,

and the concentration of atmospheric aerosol and hence the lidar backscatter. Deardorff

(1980) defines the upper limit of the EZ as greatest height reached by overshooting

thermals and the lower limit as the height where mixed layer air occupies 90 - 95 % of

the horizontal area. A similar technique commonly used in lidar studies is to define the

EZ from the probability density function of a set of spatially or temporally distributed

local estimate of the BL top (Flamant et al., 1997; Wilde et al., 1985), where the 5 % and

95 % limits of the distribution are often chosen as the EZ boundaries. These techniques

suffer from the varied definition of zi between studies. In Deardorff (1980) zi is taken as

the height where the mean w′θ′v is at its minimum while in Cohn & Angevine (2000) it

is defined as the mean of gradient estimates of the BL top.

A relatively new method which was developed to find zi and the EZ boundaries from

lidar backscatter profiles is the use of an edge-detecting wavelet technique (Brooks, 2003;

Davis et al., 1997; Grabon et al., 2010). The wavelet method is able to determine the

upper and lower boundaries of the transition zone; which Brooks (2003) defines as the

local region over which an atmospheric scalar changes from its well-mixed BL value to

it free-tropospheric value. The transition zone is the gradient region which would be

identified from a single radiosonde profile and can vary significantly from the EZ. For
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Figure 2.3: Typical structure of the θ and vertical heat flux w′θ′ profiles through the
convective boundary layer. h1 and h2 are the heights of the entrainment zone base and
top respectively, h is the height of the mixed layer top, and hs is the height of the surface
layer top. Reproduced from Driedonks & Tennekes (1984).

example estimates of zi from single radiosonde profiles can produce errors as large as 0.4zi

(Stull, 1988). In Brooks (2003) the upper and lower boundaries of the EZ are determined

as the area average of the transition zone boundaries, and the BL top is determined to

be equal to the base of the entrainment zone. Alternatively, as described in Brooks &

Fowler (2012) the BL top is sometimes defined as the area average altitude of the peak in

the vertical gradient in the lidar backscatter signal, which is somewhere near the centre

of the transition zone. Reviews of the different measures and estimates of zi can be found

in Sullivan et al. (1998) and Brooks & Fowler (2012).

To avoid confusion from the different naming conventions, henceforth the inversion will

from now on refer strictly to the temperature inversion. The boundaries of the inversion;

which is a deep stable layer, are not necessarily the same as the boundaries of the inver-

sion; which is a dynamic layer will may extend only a short distance into the inversion

layer. Nevertheless the base of both regions is typically equal and so zib will also be

used to denote both the inversion base and the entrainment zone base. zit will be used

exclusively to denote the top of the entrainment zone. zi will be used exclusively to

denote the boundary layer top determined as the area average altitude of the peak in the

vertical gradient of the potential temperature profiles.
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2.2 Arctic clouds and their climatic significance

Recent observations show that the Arctic is subject to rapid changes. Near-surface tem-

peratures are rising throughout the region (Johannessen et al., 2004), and the sea-ice

extent and thickness are decreasing (Lindsay & Zhang, 2005; Rothrock et al., 1999); to

the effect that in 2012 the Arctic sea-ice September minimum extent reached a record low

of 49 % below the 1979 - 2000 average (NSIDC, 2012). The warming experienced in the

Arctic is more pronounced than anywhere else on the earth with near-surface tempera-

tures rising at twice the rate of the global average (Winton, 2006), thereby highlighting

the region’s sensitivity to rapid climate change (Holland & Bitz, 2003; Serreze et al.,

2009) in what is commonly termed “Arctic amplification” (Serreze & Francis, 2006).

Numerous mechanisms have been identified as leading to the amplified global warming in

the Arctic region including changes to atmospheric circulations (Graversen et al., 2008;

Yang et al., 2010), oceanic circulations (Chylek et al., 2009) or a combination of both

(Bengtsson et al., 2004; Wood & Overland, 2010). The impact of these on Arctic climate

change is substantial, for instance Yang et al. (2010) attribute up to 50 % of the rise in

Arctic tropospheric temperatures through the late 1990s to increasing poleward energy

transport. Local processes have also been identified as contributing to the amplification.

Curry et al. (1996) demonstrated how physical feedback mechanisms lead to accelerated

warming, for example the sea-ice albedo feedback (Perovich et al., 2007): warming of the

Arctic ocean leads to a reduction in sea-ice coverage and increase in the area of open-ocean

exposed - as open-ocean has a lower albedo than sea-ice this leads to weaker reflection of

downwelling solar radiation back to space, greater solar warming of the surface and an

increase in the sea-ice melt. Other causes include the altered heat transport between the

lower atmosphere and the retreating sea-ice (Screen & Simmonds, 2010; Serreze et al.,

2009), enhanced longwave radiative forcing due to changes in the atmospheric water

vapour content and cloud cover (Francis & Hunter, 2007; Graversen & Wang, 2009),

and changes to atmospheric aerosol; with Shindell & Faluvegi (2009) suggesting that

the reduction in Arctic concentrations of sulphate aerosols and the concurrent increase

in the concentration of black carbon has substantially contributed to the increase in

tropospheric temperatures over the past three decades. Feedbacks within the climate

system can also lead to processes working together and this can exacerbate the Arctic

warming (Serreze & Barry, 2011).

Climate modelling studies show that the Arctic amplification is likely to continue into

the future with the Intergovernmental Panel on Climate Change Forth Assessment Re-

port (IPCC-AR4) predicting that the Arctic region will experience a 5oC increase in

annual-mean air temperatures by the end of the 21st century (Solomon et al., 2007) and

the summertime Arctic Ocean predicted to be largely free of sea-ice within the next 40
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Figure 2.4: Annual cycle of cloud fraction from surface-based observations (H95) and
satellite retrievals (ISCCP D2, TOVS Path-P, and APP-x) for the Arctic region north of
80oN over the period 1982-91. Reproduced from Wang & Key (2005).

years (Chapman & Walsh, 2007). Despite climate models agreeing that the region is set

to warm, modelling the Arctic climate is a particular problem for General Circulation

Models (GCMs) and Regional Climate Models (RCMs) meaning they struggle to repro-

duce even the current Arctic climate properly (Chapman & Walsh, 2007; Tjernstrom

et al., 2005, 2008; Walsh et al., 2009), and show their greatest variability over the Arctic

region (Solomon et al., 2007; Tjernstrom et al., 2005; Walsh et al., 2002). The difficultly

in simulating the Arctic climate is largely due to the poor understanding of physical

mechanisms and feedbacks within the system - which in turn results from a paucity of

data (Randall et al., 1998). This leads to model parametrizations of physical processes

relying on data from more accessible regions in the lower latitudes where conditions are

often very different.

A major concern for climate models is their inability to correctly predict clouds (Solomon

et al., 2007), and Arctic clouds are a particular problem (Karlsson & Svensson, 2010;

Tjernstrom et al., 2008; Walsh et al., 2002, 2009) which is disconcerting due to their

prominence in causing Arctic amplification (Winton, 2006). Arctic clouds are generally

characterised by semi-persistent low level stratiform clouds and fog, which are ubiquitous

to the region, particularly during the summer months where cloud fractions can be as

high as 80 - 90 % (Curry & Ebert, 1992; Liu et al., 2012; Shupe et al., 2011; Wang & Key,

2005). The seasonal distribution of cloud fraction at latitudes above 80oN from a number

of ground based and satellite measurements is shown in Figure 2.4. Cloud fraction peaks

during the summer and reaches a seasonal low during the spring and autumn - the so
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called transition seasons. During the wintertime cloud fraction is typically around 60 %.

Curry et al. (1996) and Beesley & Moritz (1999) investigated this annual cycle of cloud

cover and attributed differences in seasonal cloudiness to a greater presence of clear-sky

ice crystal precipitation reducing the cloud lifetime in the colder months, though the

reason why the lowest cloud fraction is found in the transitional seasons and not the

summer is still unknown.

Fog and stratocumulus have an important influence on the energy balance of the Arctic

region; with Intrieri et al. (2002b) showing that that low-level clouds are the most sig-

nificant factor controlling the Arctic surface radiation budget, and Curry et al. (1993)

demonstrating that the equilibrium thickness of sea-ice may be significantly affected by

changes to cloud coverage and optical properties. Clouds regulate the Earth’s surface

energy budget through their influence on radiation, causing both a reduction in the down-

ward shortwave flux to the surface and enhancement in the downward longwave flux as

compared to clear sky conditions; the albedo and greenhouse effects respectively. Low

clouds tend to radiate at a similar intensity as the surface which reduces their green-

house forcing. In the sub-tropics and mid-latitudes this leads to the reflectivity being

more important in low clouds, therefore the cloud albedo effect tends to outweigh the

greenhouse effect with the net result that they have a negative radiative forcing; thus they

cool the surface relative to clear sky conditions (Harrison et al., 1990). However over the

Arctic Ocean the incoming shortwave radiation flux is weak and the surface reflectivity

is often of a similar magnitude or greater to the cloud albedo, meaning stratocumulus

tend to warm the surface throughout the entire year except for a few weeks during the

mid-summer where the shortwave flux is at a maximum Intrieri et al. (2002b).

The presence of sea-ice is an integral feature of the Arctic climate system with sea-ice

affecting the physical relationship between the surface and atmosphere through its large

albedo and its insulating of the atmosphere from the relatively warm ocean below the ice.

Although Arctic clouds currently warm the surface the relationship between the sea-ice

and clouds is complex (Kay & Gettelman, 2009). The cloud radiative forcing depends

on the clouds optical properties; which are related to the cloud phase and microphysical

properties, and also on the surface albedo and solar zenith angle (Sedlar et al., 2011).

Therefore estimating what the cloud radiative forcing will be in the future is made difficult

by uncertainty in how cloud cover and its microphysical properties will change. Intrieri

et al. (2002a) found a much greater difference in the radiative forcing between clear

and cloudy skies in the summer as compared to the winter suggesting that changes to

summertime cloud will have the greatest effect on the sea-ice energy budget. Observations

show only a small increase in summertime cloud cover over the last few decades whereas

the winter cloud fraction has decreased over this period and the spring cloud fraction has

increased by around 5 % per decade (Figure 2.5). Schweiger (2004) attributes this to an

increase in cyclonic activity.
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Figure 2.5: Timeseries of the seasonally averaged cloud fraction as detected over the
Arctic seas from the TOVS Path-P and AVHRR Polar Pathfinder satellites for the period
1980 - 2001. Cloud fractions are averaged over ocean areas for a) winter, b) spring,
c) summer and d) autumn. x-axis is the year, while y-axis is the cloud fraction (%).
Reproduced from Schweiger (2004).
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2.3 The central Arctic boundary layer

2.3.1 Major Arctic field campaigns

The first major study of Arctic boundary layer clouds was the Arctic Stratus Experi-

ment (ASE)(Herman & Curry, 1984) in June 1980. Before this experiment Arctic stra-

tocumulus had been viewed as dynamically and microphysically similar to sub-tropical

marine stratocumulus. ASE made simultaneous measurements of turbulence, radiation

and microphysics and provided the fundamental basis for the understanding of Arctic

stratocumulus; their formation, multi-layer structure and persistence.

More recently there have been several field campaigns with a primary objective of un-

derstanding the Arctic boundary layer. The Beaufort and Arctic Storms Experiment

(BASE)(Curry et al., 1997) was carried out in the autumn of 1994 over the South

Beaufort Sea with aircraft measurements of the surface and boundary layer cloud prop-

erties. The First International Satellite Cloud Climatology Project Regional Experi-

ment (FIRE)(Curry et al., 2000) studied the interaction between Arctic boundary layer

cloud and the surface. FIRE took place off the North coast of Alaska during April and

July 1998, coinciding with a year-long ice drift program which took place from October

1997 to October 1998 known as The Surface Heat Budget of the Arctic Ocean Project

(SHEBA)(Uttal et al., 2002). The broad objective of SHEBA was to understand Arctic

feedback processes and improve physical parametrizations in GCMs. Measurements made

during SHEBA were extensive and included BL meteorology, remotely sensed dynami-

cal and microphysical cloud properties from cloud radar; and ice and ocean properties.

SHEBA is probably the most widely studied dataset of Arctic meteorology and its year

long time-line provides a seasonal record of cloud properties at a single location.

The Mixed Phase Arctic Cloud Experiment (M-PACE)(Verlinde et al., 2007) took place

during the autumn transitional season of 2004 on the North Slope of Alaska with the

objective of characterising Arctic mixed-phase clouds. For one month instrumentation

was deployed at four sites in the region, enhancing the ground based instruments al-

ready located at the Department of Energy Atmospheric Radiation Measurement site

in Barrow and Oliktok Point. Measurements included radiosonde profiles, ground based

remote sensing of cloud properties and in-situ cloud measurements through multiple

aircraft flights. The Indirect and Semi-Direct Aerosol Campaign (ISDAC)(McFarquhar

et al., 2011) took place during April 2008 and was designed as a spring transition season

comparison case for the M-PACE campaign; taking place at the same location and with

similar instrumentation.

From the European side of the Arctic, four Swedish-led summertime expeditions into

the high Arctic Ocean have also been carried out to study the physical and chemi-
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cal properties of the central Arctic. The International Arctic Ocean Experiment 1991

(IAOE-91)(Leck et al., 1996) was the first of the Swedish-led field campaigns and had the

objective of testing the hypothesis that sulphates derived from marine biogenically pro-

duced dimethyl sulphide are a source of CCN in the Arctic, thus influencing Arctic cloud

properties. The Arctic Ocean Experiment 1996 (AOE-96)(Leck et al., 2001) and the

Arctic Ocean Experiment 2001 (AOE-2001)(Tjernstrom et al., 2004) continued the work

of IAOE-91 with the broadened objective of understanding the influence of all aerosol on

the regional climate. In AOE-2001 greater emphasis was placed on the structure of the

Arctic boundary layer, and a substantially expanded meteorological measurement pro-

gramme was included to meet the project objectives. The Arctic Summer Cloud Ocean

Study 2008 (ASCOS), which was the latest of the field campaigns, was carried out during

August and September of 2008. Once again the breadth of the study was expanded to

understand the formation and persistence of summertime Arctic clouds. The campaign

included a range of measurements encompassing marine biology, atmospheric chemistry

and aerosol, oceanography and meteorology so that a number of aerosol-cloud-climate in-

teractions could be studied. ASCOS data forms the basis of the model simulations made

in this study; therefore more details on the field campaign will be provided in Chapter 5.

2.3.2 Structure of the lower atmosphere

Due to its high-latitude the central Arctic experiences 24 hours of sunlight a day during

the summer months and 24 hours of complete darkness during the winter. Even through

the summer months the downwelling flux of solar radiation is small here compared to

lower latitudes, and the absence of a strong diurnal variation in the forcing coupled

with the presence of persistent low level cloud and the unique sea-ice surface makes the

structure of the central Arctic BL distinctively different to the mid-latitude and sub-

tropical marine BL.

Curry et al. (1996) defined three types of stratocumulus-topped Arctic boundary lay-

ers during summer months: a stable boundary layer with thin patchy cloud possibly in

multiple layers; a stable boundary layer with a cloud layer above the BL; and lastly a

cloud topped mixed layer extending from the surface. In all cases it is typical for the

uppermost cloud layer to be topped by a strong temperature inversion which observa-

tions suggest is ubiquitous throughout the year (Kahl, 1990; Kahl et al., 1992; Kahl &

Martinez, 1996; Serreze et al., 1992; Tjernstrom & Graversen, 2009) and which Curry

et al. (1993) found occurred a minimum of 85 % of the time in August and had a median

temperature difference across the inversion of 2.8 oC. Uniquely to the Arctic atmosphere

specific humidity inversions are also commonly observed coincident with the temperature

inversion (Curry et al., 1996, 2000; Devasthale et al., 2011; Pinto, 1998; Sedlar & Tjern-

strom, 2009). These are thought be associated with moisture advection and precipitation
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drying the lower atmosphere (Curry et al., 2000).

Measurements of the lower atmosphere made during AOE-2001 characterize the summer-

time central Arctic boundary layer as shallow (typically around 150 m deep), well-mixed

and very moist (Tjernstrom, 2005, 2007; Tjernstrom et al., 2004). The BL was frequently

occupied by patchy fog and low level cloud (more than 70 % of the time); with cloud

base found below 100 m over 60 % of the time. However strong surface inversion were

rarely seen and Tjernstrom (2005) found that although there was a high variability in

the near surface stability, vertical gradients were consistently of slightly stable or near-

neutral stability in the lowest 100 m of atmosphere (Figure 2.6). Above this layer the

observed temperature gradient most frequently followed the moist adiabat until a height

of around 400 m which is where the most frequent cloud top was observed during the

campaign, i.e. the cloud and sub-cloud layer were well mixed. Beyond cloud top the

atmosphere was strongly stable until heights of 1 km. Temperature inversions were com-

monly found in the lower atmosphere with at least one inversion observed at all times

over the entire AOE-2001 expedition and two observed 77 % of the time. Inversions

were most frequently situated with their base at 200 m (Tjernstrom, 2005), and typically

the temperature decreased by less than 6 oC over the depth of the inversion, which was

most frequently around 400 m. Inversions of specific humidity were also observed to

coincide with the temperature inversion, with specific humidities most frequently found

to increase by between 0 - 0.5 g kg−1. Typically this resulted in a 0 % change in the

relative humidity over the specific humidity inversions depth.

Lower atmospheric conditions as measured during the SHEBA summer, showed a BL

structure similar to that observed during AOE-2001. Dai et al. (2011) found that the

median BL depth was 430, 180 and 320 m in the months of June, July and August

respectively, whilst measurements of the vertical potential temperature gradient showed

the BL was most commonly of a near-neutral stability (Tjernstrom & Graversen, 2009).

Throughout the rest of the year the lower atmospheric stability was also most frequently

near-neutral (Figure 2.7), though a higher stability was more commonly encountered

during the winter months (Persson et al., 2002), with the result that BL depth was lower

here than during any other season with a median value of 100 m (Dai et al., 2011). Surface

temperature inversions were found frequently in the winter and autumn (61 and 53 % of

the time respectively) but rarely in the spring and summer (15 and 9 %), whilst elevated

inversions dominated in the spring and summer months (85 and 91 %), with autumn

and winter occurrences less frequent though still significant (39 and 47 %) (Tjernstrom

& Graversen, 2009). The occurrence of both surface and elevated inversions around half

the time during the winter is indicative of a switch in the structure of the atmosphere

which Tjernstrom & Graversen (2009) explain as an effect of a change to BL cloudiness.

In all seasons, elevated inversions were most commonly found with their bases capping

the BL; an inversion base height of around 200 - 400 m was measured during the spring
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Figure 2.6: Frequency of occurrence in %, of the vertical temperature gradient (K m−1)
as a function of height for the entire AOE-2001 expedition north of 85oN. The thick
solid and dashed lines are the dry and moist adiabats, respectively. Reproduced from
Tjernstrom (2005).

Figure 2.7: Frequency of occurrence in %, of the vertical potential temperature gradient
(K m−1) for the SHEBA expedition during (a) December - February, (b) March - May, (c)
June - August and (d) September - November. Note the logarithmic scale. Reproduced
from (Tjernstrom & Graversen, 2009).
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and summer, while in the winter the inversion base was lower (less than 100 m). Inversion

depths were thicker during the winter than the summer with the median thickness of 600

- 800 m compared to 200 - 400 m and inversion were also stronger; typically 8 - 10 oC in

the winter compared to 2 - 6 oC in the summer (Tjernstrom & Graversen, 2009).

Contrary to that found in the sub-tropical and mid-latitude marine STBL, there is no

strong diurnal variation of the Arctic BL. However from an analysis of AOE-2001 data,

Tjernstrom (2007) found that the small diurnal variation in solar fluxes during the sum-

mer led to a statistically significant diurnal cycle in BL properties such as the wind

speed, friction velocity and cloud properties, and more weakly for temperature, relative

humidity and sensible heat flux. The most pronounced diurnal variability was found in

the cloud layer; with cloud-base height at its lowest at noon preceded by enhanced drizzle

and elevated cloud top heights in the afternoon, which is the opposite to what is found

in mid-latitude stratocumulus. When the capping inversion layer was coolest and least

strongly stable in the mid afternoon the cloud layer was at is warmest and most strongly

stratified. The opposite was found in the mid morning.

From the surface of the central Arctic Ocean, sea-ice exerts a strong control over the

lower BL conditions (Tjernstrom et al., 2004). It can impact cloud coverage (Schweiger

et al., 2008), and its presence is a feature which distinguishes a central Arctic BL from the

typical marine STBL. While the sea-ice surface of the central Arctic is fairly homogeneous

compared to other environments, differences to the amount of snow cover and area of open

ocean can have significant consequences on surface properties and to surface-atmospheric

exchange. When sea-ice melts, areas of open ocean called open leads form between ice

floes, and ponds of freshwater form on the ice; Perovich et al. (2002) found meltponds

covered up to 25 % of the surface during the SHEBA summer. Meltponds and open leads

decrease the albedo of the surface and increase the fluxes of heat and moisture into the

atmosphere (Pinto et al., 2003; Sterk et al., 2013). The presence of melt ponds and open

leads provides the BL with a near continuous supply of moisture with the result that the

near-surface relative humidity with respect to water was always greater than 90 % during

AOE-2001 (Tjernstrom et al., 2004), and almost 100 % during the entire SHEBA summer

(Andreas et al., 2002). While during the wintertime, the SHEBA relative humidities with

respect to liquid water were lower, falling to a minimum of between 60 - 70 %, while the

relative humidity with respect to ice was found to be near 100 % or more over the entire

year. Latent heat release and storage associated with the melt and freeze of sea-ice

and snow also influence near-surface atmospheric temperatures, and during AOE-2001

temperatures were most commonly observed at 0 oC and -1.7 oC (which are the freezing

points of fresh and salt water respectively) and displayed little sensitivity to heating and

cooling higher in the atmosphere (Tjernstrom et al., 2004).
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2.3.3 Mixed-phase Arctic stratocumulus clouds

Low-level stratiform clouds are ubiquitous in the Arctic region. However despite their

prevalence, the long polar winters and formidable conditions experienced in the region

mean that direct measurements of clouds are sparser here than anywhere else on the

planet. On account of this observational deficit, relatively little is know about the pro-

cesses which lead to the formation and persistence of Arctic stratocumulus as compared

to the sub-tropical and mid-latitude counterparts (Curry et al., 1996; Morrison et al.,

2012). Though observations and modelling studies suggest that the principal physical

processes which govern the development of the STBL also govern the development of

Arctic stratocumulus topped boundary layer (Figure 2.8). Studies also show that a num-

ber of differences in the dynamical, microphysical and radiative properties of the clouds

exist.

Large-scale formation of Arctic stratocumulus is thought to be caused by the modifi-

cation of the local air mass due to the advection of relatively warm and moist air and

from radiative cooling (Curry & Herman, 1985b; Herman & Goody, 1976; Herman &

Curry, 1984). However, because the Arctic BL is always close to saturation, mesoscale

disturbances which cause either the BL temperature to fall or its specific humidity to

increase can cause cloud formation on local scales (Wang & Wang, 2004). This can also

sometimes lead to the formation of multiple stratiform layers which is a distinctly Arctic

phenomenon (Curry et al., 1996; Tsay & Jayaweera, 1984). The relationship of cloud to

the large scale environment is complicated, however once formed Arctic stratocumulus

are able to persist for a few days or more (Shupe, 2011), under weak synoptic forcing

and large-scale subsidence (Pinto, 1998; Zuidema et al., 2005). Local mixing is more

important to their maintenance with Curry et al. (2000) suggesting that meltponds and

open leads act as a source of BL moisture which is critical to their persistence. Where

a specific humidity inversion is present above the cloud top, entrainment of air from

the inversion into the BL may also support the persistence of the cloud layer Tsay &

Jayaweera (1984).

Microphysical properties can impact on Arctic stratocumulus. Annual Arctic aerosol

concentrations are typically highest during the winter and spring because of an inflow of

anthropogenic pollution from the mid-latitudes at this time of year (e.g. Sirois & Barrie,

1999). However in the summer the Arctic BL can be considered pristine with aerosol

concentrations usually less than 150 cm−3 (Bigg et al., 1996; Bigg & Leck, 2001; Covert

et al., 1996; Heintzenberg & Leck, 2012). These low aerosol numbers are due to the

fact that few local aerosol sources exist in the Arctic BL; in the AOE-96 and AOE-2001

field campaigns the surface microlayer of open leads (thin film on the water top) was

proposed to be a primary biological source of marine particles (Bigg et al., 2001; Leck

et al., 1996, 2002), though its relative importance as a source is as yet undetermined.
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Figure 2.8: Conceptual model to illustrate the structure of mixed-phase Arctic stratocu-
mulus. Reproduced from Morrison et al. (2012).

Low concentrations are exacerbated by the high frequency of inversions preventing par-

ticle deposition from the free troposphere into the BL. Unusually, the low concentration

of CCN aerosol in the lower Arctic atmosphere means that cloud formation is frequently

limited by CCN availability (Bigg et al., 1996; Mauritsen et al., 2011) - Mauritsen et al.

(2011) estimated that such conditions might occur as much as 30 % of the time based

on all the CCN measurements from the IAOE-91, AOE-96, AOE-2001 and ASCOS cam-

paigns. Thus the local Arctic BL is sometimes under conditions of what Mauritsen et al.

(2011) describes as a “tenuous cloud regime”; whereby at typical supersaturations the

CCN concentrations are too low for cloud formation (no condensation until around 400

% relative humidity).

A significant difference between Arctic stratocumulus and those found in lower latitudes

is the cloud phase. While sub-tropical stratocumulus are exclusively liquid-phase: com-

posed of liquid water, drizzle and/or rain droplets only. Arctic stratocumulus have been

observed to be liquid-phase only - possibly at temperatures below 0oC with cloud in the

form of supercooled liquid water; ice-phase only where they are composed of ice, snow

and/or graupel; or mixed-phase where they are composed of a mixture of supercooled liq-

uid water droplets and ice crystals. The seasonal frequency of occurrence of cloud phase

was calculated by Shupe (2011) at three Arctic locations; Barrow and Oliktok Point in
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the north slope of Alaska and from the SHEBA site in the western Arctic Ocean. When

considering the annual mean across all sites, ice-phase only clouds were the most preva-

lent. These were found at least 40 % of the time during each month of the year at each of

sites, and between 60 and 70 % of the time as an annual average. Ice clouds were found

through the BL and in the free troposphere up to heights approaching the tropopause.

Ice cloud temperatures varied between 0oC and 60oC.

Mixed-phase clouds were the next most common cloud type with a annual average occur-

rence of between 25 and 47 % (Shupe et al., 2006). Mixed-phase clouds displayed more

of a seasonal cycle than ice clouds, with a minima in winter and maxima in September

or October. Liquid-phase only clouds showed the greatest variability of all cloud types

with a strong seasonal cycle evident at each measurement site. Liquid cloud occurrences

peaked during the summer, with a maximum frequency of occurrence of more than 30 %

at SHEBA and Barrow in June and July (Shupe et al., 2006). While winter and spring

frequencies were much lower falling to minimums of less than 5 % at all sites. Liquid

water was observed down to temperatures as cold as -40oC; which is the temperature at

which homogeneous freezing of cloud droplets occurs (Pruppacher & Klett, 1997), though

below -24oC liquid water was always in the presence of ice.

The persistence of mixed-phase clouds is surprising as at temperatures below the freez-

ing point of water, the saturation vapour pressure over ice is lower than that over liquid

water and this permits ice particles to grow by vapour deposition at the expense of liq-

uid condensate, the so-called Wegener-Bergeron-Findeison mechanism (Bergeron, 1935;

Findeisen, 1938; Wegener, 1911). Riming of cloud water onto existing ice particles also

contributes to the loss of cloud water and under certain environmental conditions sec-

ondary ice multiplication mechanisms can rapidly increase the ice crystal number leading

to an increased instability from the Wegener-Bergeron-Findeison mechanism; for instance

fragmentation of ice particles (Vardiman, 1978), and rime splintering (Hallett & Mossop,

1974; Mossop, 1985) which occurs between temperatures of -3 and -8oC.

While glaciation of the whole cloud can sometime occur quite rapidly (e.g. Hobbs &

Rangno, 1990) the formation of new ice crystals seems to be sufficiently slow in mixed-

phase Arctic stratocumulus for liquid water contents to be maintained and the cloud to

remain of mixed-phase (Morrison et al., 2012). Nucleation of ice occurs on ice-forming

aerosol known as Ice Nuclei (IN) which are found at much lower atmospheric concentra-

tions than CCN - typically between 10−5 to 0.1 cm3 (DeMott et al., 2010; Rogers et al.,

2001). Because ice crystal number is critical to the Wegener-Bergeron-Findeison mecha-

nism, low IN concentrations are necessary to support persistent mixed-phase cloud, and

model simulations show that modest increases in IN can lead to the rapid glaciation of

mixed-phase clouds into ice-phase only clouds (Harrington et al., 1999; Jiang et al., 2000;

Pinto, 1998).
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Figure 2.9: Monthly and annual statistics of all-liquid cloud (a) droplet effective radius,
(b) liquid water content, (c) liquid water path, and (d) hours of occurrence. The box-
and-whisker plots provide the 5th, 25th, 50th, 75th and 95th percentiles of the data, and
the mean is given as a symbol. Reproduced from Shupe et al. (2006).

Figure 2.10: Monthly and annual statistics of all-ice cloud (a) ice effective diameter, (b)
ice water content, (c) ice water path, and (d) hours of occurrence. The box-and-whisker
plots provide the 5th, 25th, 50th, 75th and 95th percentiles of the data, and the mean is
given as a symbol. Reproduced from Shupe et al. (2006).
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It might be possible that the liquid phase may itself regulate the ice concentrations within

the cloud (Morrison et al., 2012). Rangno & Hobbs (2001) and Hobbs & Rangno (1985)

both found a correlation between the number of large droplets and the ice concentrations

in mixed-phase clouds, while de Boer et al. (2011) found that despite the greater super-

saturation with respect to ice at temperature below 0oC, ice crystals only occurred once

supercooled liquid was present in the cloud. This is supported by observations showing

the preference of a mixed-phase over ice-phase only state at temperatures above about

-25oC (Shupe, 2011). If indeed the number of large droplets and the ice concentrations

are correlated then the conversion of liquid to ice would be self limiting and provided a

negative feedback on ice production (Morrison et al., 2012). The spatial distribution of

liquid water and ice within the mixed-phase cloud may also contribute to their resistance

to full glaciation. The characteristic structure of mixed-phase Arctic stratocumulus is

of a thin layer of supercooled liquid water near the top of the cloud which continually

precipitates ice through and below the liquid layer (Shupe et al., 2008). The continual

loss of ice, restricts its ability to compete with liquid water for the available vapour and

supports its maintenance (e.g. Harrington et al., 1999).

Generally the absolute amount of water in Arctic stratocumulus is lower than found in

marine stratocumulus, with measurements from ASE finding a maximum liquid water

content of 0.5 g m−3 and the vertically integrated liquid water content, also known as

the liquid water path (LWP) ranging from 11 to 117 g m−2 for low clouds. Mean droplet

radii were found in the range of 2 - 7 µm (Curry, 1986; Herman & Curry, 1984; Tsay &

Jayaweera, 1984). Ground based radar and lidar retrievals of all-liquid and all-ice cloud

microphysical properties for the whole SHEBA campaign are shown in Figures 2.9 and

2.10. During the summer months the LWC had an average value of around 0.1 g m−3

and the ice water content (IWC) was an average of 0.02 g m−3 (Shupe et al., 2006). The

LWP and the vertically integrated ice water content, also known as the ice water path

(IWP) were observed to be in the range of 30 - 50 g m−2 and 20 - 50 g m−2 respectively

(Shupe et al., 2006).

The mean vertical distribution of LWC observed during SHEBA for single-layer clouds

was a linear increase from cloud base until a height of about 60 % of the cloud top,

while Tsay & Jayaweera (1984) found maximum LWC near the top of the liquid layer

as in typical in sub-tropical stratocumulus. Shupe et al. (2006) found that IWC was

at a maximum at 25 % of the depth of the cloud from its base to top in all-ice clouds;

reflecting ice crystal growth as the particles fall through the liquid cloud, and their rapid

sublimation below cloud base. While in mixed-phase clouds a are broader IWC maximum

was observed in the upper-middle portion of the cloud. Shupe et al. (2006) observed cloud

droplet number concentrations of the order of 100 cm−3 while in both ASE and M-PACE,

droplet number concentrations reached up to 500 cm−3 (Curry & Ebert, 1992; Verlinde

et al., 2007). Droplet numbers over the Arctic are sensitive to aerosol pollution events and
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Garrett & Zhao (2006) found annual mean values of 53 cm−3 and 153 cm−3, made during

clean and polluted conditions near Barrow, Alaska. The observed droplet size spectra

in Arctic stratocumulus appears to be fairly broad and Curry (1986) found the ratio of

the standard deviation to the mean radius of the droplet spectrum to be an average of

around 0.6 from ASE observations. This is larger than is typically found in sub-tropical

clouds (e.g. Noonkester, 1984) which Curry (1986) attribute to turbulence induced by

radiative cooling at cloud top causing fluctuations in the supersaturation field. Tsay &

Jayaweera (1984) found that the droplet spectra is usually bi-modal at cloud top and

mono-modal at cloud base.

The characteristic distribution of a small number of large droplets within Arctic stra-

tocumulus, means the clouds are typically optically thin. Thus they are less effective

at reflecting solar radiation back to space (Twomey, 1977) than stratocumulus with a

large number of droplets; for summertime Arctic stratocumulus Herman & Curry (1984)

determined cloud reflectivities to be between 0.2 and 0.68 compared to typical marine

values of 0.5 or greater (e.g. Stephens et al., 1978). Sometimes Arctic stratocumulus

may become grey, whereby they emit less thermal radiation than a black body (emission

is dependent on temperature only)(Shupe & Intrieri, 2004; Walsh & Chapman, 1998).

Cloud thermal radiation emission follows the relationship:

FLW =εσSBT
4 (2.2)

where σSB is the Stefan-Boltzmann constant, T is the temperature and ε is the emissivity

which is given by:

ε =1− exp(−kabsLWP ) (2.3)

where the mass absorption coefficient kabs depends on the wavelength. Clouds start to

emit thermal radiation as blackbodies (ε ≈ 1) between LWPs of around 30 to 50 g m−2

(Garrett & Zhao, 2006; Stephens, 1978). In regions dominated by marine stratocumulus

the average LWP is between 40 and 150 g m−2 (e.g. ODell et al., 2008; Weng & Grody,

1994) thus low latitude stratocumulus behave like black bodies. However the LWP of

Arctic stratocumulus is often less than this value (Shupe et al., 2006), and consequently

Curry & Herman (1985a) determined bulk cloud emissivities to range between 0.4 and 1

during the summer months. The low LWP of Arctic stratocumulus means that emission

has a greater dependence on the cloud microstructure; temperature, height, droplet num-

ber and water content (Shupe & Intrieri, 2004), and makes them particularly sensitive

changes to CCN (Garrett & Zhao, 2006).

The cloud emissivity also determines the longwave radiative cooling rate, which as for

marine stratocumulus is a dominant term in the local heat budget of the mixed-phase
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stratocumulus boundary layer, generating instability which leads to the buoyant pro-

duction of TKE. In mixed-phase clouds the presence of the ice can reduce the longwave

radiative cooling rate over that expected for a liquid-phase only cloud, by limiting the

amount of liquid water (Pinto, 1998).

The ice can also affect the depth over which cooling occurs by altering the opacity of

the cloud. Opacity is commonly described using the optical depth, τ . For a cloud layer

where the mass extinction coefficient, kext is constant (kext = kabs + ksca, where ksca is

the mass scattering coefficient), τ can be determined through the relationship:

τ =kext

∫ h

0
LWCdz (2.4)

The value of kext is proportional to the geometrical cross-sectional area of the particle

and the extinction efficiency, Qext which in turn depends on particle size, the frequency

of the radiation and the particle distribution. For the extinction of longwave radiation by

cloud droplets, Qext has a complex relationship and must be calculated using Mie theory,

however for particles much larger than the wavelength of the radiation, Qext asymptotes

to 2, and so τ can be approximately calculated as (Wood, 2006):

τ =

∫ h

0

3

2

LWC

ρwre
dz (2.5)

where h is the cloud thickness, ρw is the density of water and re is the cloud droplet

effective radius; which is the area weighted radius of the cloud droplets, relating the

total surface area of the cloud droplets to their combined mass (Hansen & Travis, 1974).

Equivalent relationships also exist for ice (e.g. Ebert & Curry, 1992), where an ice effective

diameter De is used as a measure of the optical size of ice crystals.

While the ice cloud optical depth is relatively small compared to that of supercooled

liquid cloud, and therefore ice is less important at preventing the transmission of radiation

through the cloud. The presence of ice can indirectly regulate the clouds optical depth

with Curry & Ebert (1992) finding that a move to ice-only conditions is associated with a

drop in optical depth. As the greatest longwave radiative cooling in a cloud layer occurs

around about the level where the optical depth is equal to one (Marshak & Davis, 2005;

Wallace & Hobbs, 2006), the presence of ice extends the depth of peak longwave radiative

cooling deeper into the cloud. During the SHEBA summer Shupe et al. (2006) found re

and De to be mean values of 5 µm and 90 µm respectively (Figures 2.9 and 2.10).

The relationship between local processes; the cloud microphysics, radiation and dynamics

in mixed-phase Arctic stratocumulus (Figure 2.8) is key to the sustenance of the cloud

(Morrison et al., 2012). As for sub-tropical stratocumulus, turbulence in the Arctic BL is

primarily generated through longwave radiative cooling; with peak cooling rates of greater
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than 60 K day−1 near cloud top (Harrington et al., 1999; Jiang et al., 2000; Pinto, 1998),

keeping the BL well-mixed so that θe and qt are nearly constant with height, and forcing

condensation in updraughts. Thus the microphysics-radiation-dynamics relationship is a

self-maintaining feedback (Morrison et al., 2012).

Large-scale horizontal advection of water vapour into the inversion can also help sustain

the clouds (Curry, 1983; Curry et al., 1997; Pinto, 1998), with turbulent transport of

water vapour from the specific humidity inversions to the mixed layer providing a source

of moisture to balance the almost continual loss from ice precipitation (Solomon et al.,

2011). Though the surface fluxes are relatively minor over the sea-ice (e.g. Persson et al.,

2002; Tjernstrom, 2007), the source of moisture from the surface can also contribute to

the clouds persistence (Zuidema et al., 2005).

Where ice precipitation is particularly strong or the large-scale advection causes the

environment to dry, the cloud can sometimes dry enough that the supercooled liquid

water is reduced to an amount that the cloud top radiative cooling is too weak to maintain

turbulent mixing of the BL, causing the cloud to decouple from the surface (Morrison

et al., 2011). Unlike in the sub-tropical BL, the presence of humidity inversions and the

feedbacks between local processes makes the cloud less susceptible to break up associated

with decoupling (Bretherton et al., 2010).

2.3.4 Cloud encroachment into the inversion

Whilst the prototypical sub-tropical and mid-latitude stratocumulus has a cloud top

which is found coincident with the base of the capping inversion. A range of observations

have shown that Arctic stratocumulus frequently have a cloud top which extends inside

the inversion layer (Sedlar & Tjernstrom, 2009; Tjernstrom, 2005). Using data collected

during SHEBA, ASCOS and from an Arctic observation site at Barrow, Alaska, Sedlar

et al. (2012) recently analysed observations of specific humidity inversions in an attempt

to characterize the encroachment of cloud into the inversion layer.

Inversion boundaries were identified from temperature retrievals made by a dual-channel

microwave radiometer, while the cloud top was identified from radar reflectivity retrievals

from a millimetre cloud radar. Two types of cloud-inversion regimes were identified. The

first was the typical marine STBL regime where the cloud is capped by the inversion,

which Sedlar et al. (2012) distinguished as cloud top being at or below the inversion base

by no more than 100 m. The second regime was of a cloud inside the inversion, which was

distinguished as a cloud top at least 90 m (two vertical radar gates) above the inversion

base, but at a height lower than the inversion top. Only inversion with a depth of more

than 40 m and clouds which were below an altitude of 3 km were considered.
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Figure 2.11: Relative frequency of height difference between the inversion base and cloud
top for clouds capped by the inversion (grey lines) and clouds inside the inversion (black
lines). Reproduced from Sedlar et al. (2012).

In each of the datasets the combined prevalence of both of the cloud-inversion regimes was

found to be less than 50 % of the total time. During ASCOS the majority (two thirds)

of the cloud-inversion collocation was determined to be cloud inside the inversion. While

in Barrow, the prevalence of regimes was reversed with cloud capped by the inversion

present around two thirds of the time. In SHEBA the relative frequency of both regimes

was more equal, with 60 % of collocations being cloud inside the inversion. SHEBA and

ASCOS measurement were made over Arctic Ocean while Barrow is based on the north

slope Alaska, suggesting a preference for clouds inside the inversion away from land. The

magnitude of difference between the cloud top and inversion base heights was typically

50 m or less where cloud was capped by the inversion in ASCOS and at Barrow, while

distributed more evenly between heights of -100 to 0 m in SHEBA. In all datasets the

greatest frequency of occurrence of cloud encroachment depth was below 150 m, though

infrequently the cloud top extended as high as 500 m inside the inversion (Figure 2.11).

In general lower clouds with bases below 600 m (300 m for sea-ice sites) were found to

be more likely to extend into the inversion, while higher clouds were more likely to be

capped by the inversion.

Overall the inversion thickness ranged between 100 and 500 m, and inversion strengths

varied between 0 and 14oC. Generally cases where cloud was found inside the inversion

were associated with inversions which were stronger by 2 - 4 oC and deeper by 200 - 300

m. Inversions associated with clouds capped by the inversion were typically weaker with
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a strength of less than 2oC. Moisture inversions were found in 85 % of cases where cloud

encroached in the temperature inversion and in more than 60 % of cases where the cloud

was capped by the inversion. The high frequency of moisture inversions shows that they

are widely prevalent, and suggests that they may be an important source of BL moisture,

especially where decoupling exists between the cloud and the surface.

Sedlar et al. (2012) also examined the longwave emissivity and emission temperature for

clouds of both regimes with a radiative transfer model. A number of different profiles

using an idealised setup of an inversion layer cloud with varying water contents inside

the inversion were examined. The emissivity profiles were found to have a dependence

on the fraction of the LWC found inside the inversion which led to longwave cooling

occurring over a greater depth of the cloud. Sedlar et al. (2012) suggest the change in

the cooling depth promotes a rise in the total cloud layer cooling because of increased

condensation associate with the change in longwave emissivity. The broadening of the

cooling region was also associated with a reduction in the peak of the cooling profile.

However in all cases except the most extreme liquid water contents inside the inversion,

the position of the peak cooling was determined to be at the inversion base height and

so cloud inside the inversion would not necessarily be expected to force an adjustment of

the thermodynamic profile.

So far the only modelling study to address the question of how cloud is maintained inside

the inversion layer is Solomon et al. (2011). The Solomon et al. (2011) study modelled

an Arctic mixed-phase stratocumulus observed over the Beaufort Sea during the ISDAC

field campaign on 8th April 2008. The observed cloud was multi-layered, with a mixed-

phase cloud with top at around 1 km precipitating ice and snow from its base into an

ice-only layer below. The cloud was largely composed of ice, with the retrieved IWP of

60 g m−2 or greater, generally exceeding the retrieved LWP of between 20 and 100 g

m−2. Observations suggested that the cloud layer was decoupled from the surface by a

stable region of air at cloud base which separated well-mixed layers within the cloud and

below the cloud base. Above the cloudy mixed layer a sharp temperature inversion of

around 4 K and a humidity inversion where water vapour mixing ratios were found to

increase from 1.2 to 1.6 g kg−1 across the transition zone were measured. Cloud top was

retrieved up to a maximum of 100 m inside the inversion.

Modelling of the cloud was performed using a version of the Weather Research Forecast

model (Skamarock et al., 2008), in which several grids of increasing resolution were

nested inside each other. The innermost domain had a maximum vertical resolution

of 16 m through the cloud-driven mixed layer and 8 m through the upper entrainment

zone, allowing the dynamical motions of large eddies to be resolved explicitly. The

model was forced with lateral and surface boundary conditions from the European Centre

for Medium-Range Weather Forecasts (ECMWF) 4x daily, T255 ERA-Interim dataset.
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Figure 2.12: Horizontally and temporally averaged profiles of θe, w′θ′ and w′θ′v through
an inversion encroaching Arctic stratocumulus. The gray shading indicates the position
of the entrainment zones and dashed red lines the position of the cloud layer top and
base. Reproduced from Solomon et al. (2011)

Figure 2.13: Horizontally and temporally averaged potential temperature tendencies in
the upper region of the mixed layer and cloud top entrainment zone. TOTAL is the
total tendency, COND is the tendency due to condensation/evaporation, LWRAD the
tendency due to longwave radiative heating/cooling, ADV the tendency due to total
advection and WTP the tendency due to vertical eddy advection. The gray shading
indicates the position of the entrainment zones and dashed red lines the position of the
cloud layer top and base. Reproduced from Solomon et al. (2011)
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Figure 2.14: Horizontally and temporally averaged tendencies of (A) total water, (B)
water vapour, (C) cloud liquid water, and (D) cloud ice water. Note units are printed
incorrectly and should read g m−3 day−1. MICROPHY is the net tendency due to cloud
microphysics and sedimentation. RES is the residual tendency due to sub-grid scale
mixing plus diffusion. WM and UVM are the tendencies due to mean horizontal and
vertical advection respectively and are calculated by horizontally averaging tendencies.
UVP is the tendency due to horizontal eddy advection which is is calculated as the
divergence of fluxes across the domain, and WP is tendency due to vertical eddy advection
which is calculated from the divergence of the vertical eddy flux. In each of the plots the
gray shading indicates the position of the entrainment zones and dashed red lines the
position of the cloud layer top and base. Reproduced from Solomon et al. (2011)
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Figure 2.15: (Left) Horizontally and temporally averaged resolved TKE tendencies, where
ETrans is tendency due TKE transport, Shear the tendency due to shear production,
Buoy the tendency due to buoyancy and RES which is the tendency due to pressure
transport plus dissipation. (Right) Mean resolved (black line) and sub-grid (blue line)
TKE. The gray shading indicates the position of the entrainment zones and dashed red
lines the position of the cloud layer top and base. Reproduced from Solomon et al. (2011)

Generally, the simulated BL compared well with the observations although the stable

region between the cloud and sub-cloud layer was too deep and the simulated temperature

inversion was 1 K too strong.

The time and area averaged profiles of w′θ, w′θ′v and θe are shown in Figure 2.12. The

entrainment zones which were estimated from the changes in the θe slope are also shown.

The upper entrainment zone is around 60 m deep and its boundaries are roughly con-

sistent with the area of negative w′θ′v near the top of the mixed layer. The peak in

simulated cloud water was found at the base of the humidity inversion and liquid cloud

extended approximately 50 m into the inversion, accounting for 23 % of the total liquid

cloud water. The negative peak in w′θ′v; which is identified as the top of the mixed layer,

zi in Deardorff (1980), is located just below the centre of the entrainment zone between

20 and 30 m above zib.

Figures 2.13, 2.14 and 2.15 show the 15-minute time and area averaged budgets of θ,

the water contents and TKE respectively. Prognostic equations for θ and the water
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constituents are given by (Stull, 1988):

∂θ

∂t
=

(
p0
p

) R
Cp

Q1 − ui · ∇θ −
∂w′θ′

∂z
(2.6)

∂qn
∂t

=Qn2 − ui · ∇qn −
∂w′q′n
∂z

(2.7)

where p is the pressure and p0 the pressure at the surface, Cp is the specific heat capacity

at constant pressure, ui is three dimensional flow velocity; where i denotes the direction,

w is the vertical velocity and ’ denotes a perturbation from the mean state. The θ

budget is a balance of heat storage and tendencies due to diabatic heating/cooling, Q1;

from condensational heating and radiative heating, and from both the horizontal and

vertical transport of heat due to the mean winds and the divergence of the vertical heat

flux. The water constituent, qn (where n is the water species) budgets are a balance

between water storage and tendencies due to diabatic moistening due to phase changes,

Qn2 ; where sedimentation is included in the Qn2 term for the hydrometeors, and from the

transport of water due to the mean winds and the divergence of the vertical water flux.

The TKE budget is given by (Garratt, 1992):

∂TKE

∂t
=

(
g

θ0

)
w′θ′v −

(
u′w′

∂u

∂z
+ v′w′

∂v

∂z

)
− ∂w′TKE

∂z
− ∂w′p′

ρ∂z
− ε (2.8)

where TKE=0.5(u′2 + v′2 + w′2). The first term of the TKE budget is the storage and

this is balanced by (from left to right respectively); buoyancy production/consumption,

shear production, vertical turbulent transport, pressure transport and viscous dissipation.

Figures 2.13 and 2.14 show that the temperature and humidity inversions are supported

by a large scale horizontal advective source of warm moist air into the upper entrainment

zone (henceforth entrainment zone) equal to an advective θ tendency of 40 K day−1

and water vapour tendency of around 2 g kg−1 day−1. Large scale vertical transport of

moisture also increases the water vapour tendency in the EZ by up to 3 g kg−1 day−1.

Longwave radiative cooling is the dominant source of TKE in the cloud-driven mixed layer

and the main driver of entrainment (Figure 2.15). Radiative cooling peaks within the EZ

with a tendency of around -110 K day−1, though here it is largely offset by condensational

heating and the vertical eddy flux of heat from the inversion above, resulting in a net EZ

cooling of up to -40 K day−1. A weak but significant eddy flux of water vapour from the

humidity inversion also act as a source of moisture to the cloud layer below, offsetting the

loss of water vapour from condensation in updraughts and deposition in both updraughts

and downdraughts in the mixed-layer.

Overall the mixed layer is a net sink of total water with sedimentation loss of ice and

snow to the surface the greatest contributor. The vertical flux of water vapour from the
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humidity inversion into the mixed layer is the only source of humidity in the decoupled

cloud system simulated in Solomon et al. (2011), thus the humidity inversion plays a

crucial role in supporting the persistence of the mixed-phase cloud. This highlights a

significant difference between Arctic stratocumulus where cloud top encroaches inside

the inversion and typical sub-tropical stratocumulus where entrainment dries the BL.
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Chapter 3

Large Eddy Simulation model

description

Large Eddy Simulation (LES) is a modelling technique used to simulate turbulent flows

such as those observed in the BL. The basis of the LES technique is to filter the ba-

sic equation set so that the only largest most energetic BL eddies (typically on scales

greater than a few metres to about 100 metres, depending on the application) are explic-

itly modelled, while those eddies which are in the dissipating range of turbulent motions

are parametrised. These eddies are unimportant for the mean flow evolution and their

statistically self similar and isotropic properties allow them to be parametrised effec-

tively in a sub-grid scale (SGS) turbulence model. Such parametrisation reduces the

computational constraints of resolving all scales of BL turbulence, while still allowing

the determination of non-mean flow characteristics.

3.1 UK Met Office Large Eddy Model

The LES model used in this study is Version 2.4 of the UK Met Office (UKMO) Large

Eddy Model (LEM)(Derbyshire et al., 1999; Gray et al., 2001); though with the inclusion

of fully interactive microphysics and radiation schemes within the model, the LEM can

more appropriately be described as a Cloud Resolving Model (CRM). Previous applica-

tions of the LEM have included the simulation of dry and moist boundary layers including

both shallow and precipitating convective clouds, marine stratocumulus, altostratus and

cirrus (Hill & Dobbie, 2008; Hill et al., 2008; Marsham et al., 2007a,b; Petch, 2006). It

has also been compared against many other CRMs and LES models in several model

intercomparisons (Ackerman et al., 2009; Morrison et al., 2009a; Siebesma et al., 2003;

Stevens et al., 2005).
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3.1.1 Governing equations of the resolved-scale fields

The LEM solves a filtered Boussinesq-type equation set which is applicable for incom-

pressible fluids. The Boussinesq approximation is suitable for buoyancy-driven flows

where shallow convection conditions are satisfied - such as in the BL - and assumes that

density differences are sufficiently small within the resolved flow so as to be neglected in

the momentum equation, except where they appear in terms multiplied by the accelera-

tion due to gravity. The Boussinesq-type equation set takes the following form (in tensor

notation):

Dui
Dt

=− ∂

∂xi

(
p′

ρs

)
+ δi3B

′ +
1

ρs

∂τ sij
∂xj
− 2εijkΩjuk (3.1)

0 =
∂

∂xi
(ρsui) (3.2)

Dθ

Dt
=

1

ρs

∂hθi
∂xi

+

(
∂θ

∂t

)
MPHY S

+

(
∂θ

∂t

)
RAD

+

(
∂θ

∂t

)
LS

(3.3)

Dqn
Dt

=
1

ρs

∂hqni
∂xi

+

(
∂qn
∂t

)
MPHY S

+

(
∂qn
∂t

)
LS

(
∂qn
∂t

)
SED

(3.4)

where the subscript s denotes a reference state and ′ a perturbation from the reference

state. In the LEM equation set, u is the resolved flow velocity vector, x the three

dimensional position vector, p is the pressure, ρ is the air density, θ is the resolved

potential temperature and qn represents all other resolved scalar variables including the

hydrometeors. The terms τ s, which is the sub-grid stress and hθ and hqn which are

the sub-grid scalar fluxes of θ and qn respectively, are the sub-grid contributions to the

resolved field and will be described in Section 3.1.2. B′ is a buoyancy term given by

B′ = gθ
′
v/θs, where θv is the virtual potential temperature and g is the acceleration due

to gravity.

The terms (∂θ/∂t)MPHY S , (∂θ/∂t)RAD, (∂θ/∂t)LS , (∂qn/∂t)MPHY S and (∂qn/∂t)LS are

the source terms for θ and qn due to microphysics, radiation and large scale forcing

respectively. These will be described in more detail in Sections 3.1.3, 3.1.4 and 3.1.6.

(∂qn/∂t)SED represents the tendency due to sedimentation which is equal to the diver-

gence of the particle fallout, ∂Vqlx/∂z, where Vqlx is the terminal particle fall speed. δi3

is the Kroneker delta function, εijk is the alternating pseudo-tensor and Ω is the Earth’s

angular velocity. As convention the material derivative, D/Dt is given by:

D

Dt
≡ ∂

∂t
+ ui

∂

∂xi
(3.5)

For a Boussinesq system where the mean reference state is given by ρs, θs and ps, it is

assumed that deviations from the reference state are small throughout the atmosphere

and the reference state is constant with height. Such an approximation is only valid

37



3. Large Eddy Simulation model description

for shallow motions limited to the BL, so instead the LEM uses the so-called quasi-

Boussinesq or anelastic approximation whereby the reference state is allowed to change as

a function of height only. The anelastic assumption requires the LEM to be setup using

an approximately adiabatic reference state, using θ′ as the prognostic thermodynamic

variable, therefore Equation 3.3 is replaced by:

Dθ′

Dt
+ w

Dθs
Dz

=
1

ρs

∂hθ
′
i

∂xi
+

1

ρs

∂hθ3
∂z

+

(
∂θ′

∂t

)
MPHY S

+

(
∂θ′

∂t

)
RAD

+

(
∂θ′

∂t

)
LS

(3.6)

where w is the vertical velocity. Although the anelastic approximation is well suited to

the atmospheric flow we aim to simulate in this study, the equation set does have intrinsic

errors associated with the approximation, though these can be minimised by assuring the

deviations from the reference state are small.

3.1.2 Sub-grid motions

The parametrization of sub-grid motion in the LEM is based on an extension of the clas-

sical Smagorinsky-Lilly eddy viscosity model (Smagorinsky, 1963). The sub-grid contri-

butions to the resolved flow are provided by the sub-grid stress, τ sij , and scalar flux, hn,i

which are defined by:

τ sij =ρsνSij (3.7)

hn,i =−ρsνh∂qn/∂xi (3.8)

where ν is the sub-grid eddy viscosity, νh the corresponding diffusivity for scalars, and

Sij =
∂ui
∂xj

∂uj
∂xi

(3.9)

is the rate of strain tensor. Following Smagorinsky (1963), the eddy viscosity and eddy

diffusivity are calculated as a function of Sij and a basic mixing length λe which filters

out motions on scales greater than the grid box size.

ν =λ2eSfm(Rip) (3.10)

νh =λ2eSfh(Rip) (3.11)

However in the LEM a dependence is also made on the stability of the flow through a

pointwise Richardson number dependant function, f(Rip), where:

Rip =
∂B′/∂z

S2
(3.12)
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and no more sub-grid contributions to the flow are made when f(Rip) is greater than a

critical Richardson number, Ric.

3.1.3 Cloud microphysics

The standard LEM as described in Gray et al. (2001) has an integrated three phase bulk

microphysics scheme which has been tested extensively within the model. The approach

of the Gray et al. (2001) cloud microphysics scheme is to represent cloud droplets using

only the prognostic mass mixing ratio of the cloud droplet size distribution; a so called

single-moment approach. In single-moment models the number concentration of cloud

droplets is constant through the model integration and set to a user defined value.

For this reason the approach taken here has been to use the double-moment cloud mi-

crophysics scheme developed in Morrison et al. (2005, 2009b). This microphysics model

prognoses both the 0th moment (number concentration) and the 3rd moment (mass mix-

ing ratio) of the particle size distribution for five hydrometeor species; cloud droplets,

cloud ice, rain, snow and graupel. Cloud droplets and rain particle size distributions are

represented by gamma functions:

N(D) = NoDµe-λD (3.13)

where D is the particle diameter, and No, λ and µ are the intercept, slope and shape

parameters of the size distribution respectively. In turn No and λ are derived from the

predicted number concentration N, mass mixing ratio q and µ which is defined. For cloud

ice and the precipitation species; rain, snow and graupel, µ = 0 and the gamma functions

reduce to the Marshall-Palmer (exponential function) distributions. For cloud droplets

µ is a function of the predicted number concentration.

Within the Morrison et al. (2005) scheme number concentration and mass mixing ratio

tendency equations for each hydrometeor are found from:(
∂qi
∂t

)
MPHY S

=

(
∂qi
∂t

)
PRO

+

(
∂qi
∂t

)
COND/DEP

+

(
∂qi
∂t

)
AUTO

(3.14)

+

(
∂qi
∂t

)
COAG

+

(
∂qi
∂t

)
MLT/FRZ

+

(
∂qi
∂t

)
MULT(

∂Ni

∂t

)
MPHY S

=

(
∂Ni

∂t

)
PRO

+

(
∂Ni

∂t

)
EV AP/SUB

+

(
∂Ni

∂t

)
AUTO

(3.15)

+

(
∂Ni

∂t

)
SELF

+

(
∂Ni

∂t

)
COAG

+

(
∂Ni

∂t

)
MLT/FRZ

+

(
∂qi
∂t

)
MULT

where subscript i refers to the species. The terms on the right hand side of Equation 3.14

from left to right are primary production (droplet activation or ice nucleation), condensa-
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tion/deposition (evaporation/sublimation), autoconversion (transfer of water and ice to

snow and rain due to coalescence and diffusional growth), coagulation, melting/freezing,

and ice multiplication. On the right hand side of Equation 3.15 from left to right the terms

represent primary production, condensation/deposition (evaporation/sublimation), auto-

conversion, self-collection, collection between hydrometeor species, melting/freezing, and

ice multiplication. Details on the parametrisations of all these processes are outlined in

Morrison et al. (2005, 2009b).

3.1.3.1 Droplet activation

Aerosol activation to cloud droplets is based on the parametrisation of Abdul-Razzak

et al. (1998) and Abdul-Razzak & Ghan (2000). In this scheme the aerosol number size

distribution (subscript a) is represented by a multi-mode log normal size distribution:

dn

da
=

I∑
i=1

Nai√
2πσi

exp

(
−1

2

ln2(r/r̄i)

ln2(σi)

)
(3.16)

with each aerosol mode i described by a number of chemical and physical characteristics of

the aerosol species. In the Morrison et al. (2005, 2009b) scheme, the geometric mean dry

radius r̄i, geometric standard deviation σi and total number concentration Nai of mode i

is prescribed from observations. The scheme parametrises the maximum supersaturation

Smax reached under the environmental conditions, and derives a critical size rci at which

all larger particles are activated from:

rci = r̄i

(
Sci
Smax

) 2
3

(i = 1, ..., I) (3.17)

where Sci is the critical supersaturation of a particle of size r̄i. The potential number of

droplets activated over each time step, Nact is then calculated from:

Nact =
I∑
i=1

Nai
1

2
[1−erf(ui)] (3.18)

where:

ui ≡
ln(rci/r̄i)√

2 lnσi
=

2 ln(Sci/Smax)√
2 lnσi

(3.19)

and finally the droplet number tendency due to aerosol activation is given by:(
∂Nl

∂t

)
PRO

=
Nact −Nl

dt
(3.20)

where the number of cloud droplets already present has been taken away from Nl which

is used as a proxy for the potential number activated.
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3.1.4 Radiation

Radiation in the LEM is treated using the Edwards-Slingo radiation code (Edwards &

Slingo, 1996). The Edwards-Slingo scheme uses the two stream Delta-Eddington approx-

imation for both shortwave and longwave regions of the spectrum. The code is flexible in

respect to the number and width of spectral bands, which for these simulations are fixed

at 6 and 9 for the shortwave and longwave regions respectively. Over all spectral bands

the Delta-Eddington approximation computes a solution to the upward and downward

net flux density divergence, dF+ and dF− over a differential thickness dτ , where τ is the

optical depth.
dF+

dτ
= α1F

+ - α2F
− - Q+ (3.21)

dF−

dτ
= α2F

+ - α1F
− + Q− (3.22)

The weighting functions, α1 and α2; and source functions, Q± are defined in terms of

a diffusivity factor, the forward and backward scattering fractions for diffuse shortwave

radiation and the backward scattering fraction for direct shortwave radiation.

Gaseous absorption, and scattering and absorption by aerosol are treated in the model

with fixed profiles of species defined by the user at the beginning of the simulation.

The optical properties for both water droplets and ice particles are considered grey, i.e.

the emissivity is assumed constant for all spectral bands. Single scattering properties

for the liquid phase are defined using the liquid water path and effective radius of the

droplet size distribution and equivalently for the ice phase following the parametrisation

of Slingo (1989). At the surface an emissivity and albedo are also defined by the user at

the beginning of the simulation.

3.1.5 Boundary conditions

The LEM uses periodic horizontal boundary conditions for all prognostic quantities. On

LES scales the Arctic boundary layer can be assumed as horizontally homogeneous and

so periodic boundary conditions are well suited to such a study and shouldn’t complicate

BL development so long as the domain is large enough to support a reasonable number

of mixing length scale eddies. The model domain top and bottom act like rigid lids such

that the vertical velocity is set equal to zero at both surfaces. To prevent the spurious

reflection of gravity waves off the rigid domain top, the boundary is placed well above the

cloud layer and a Newtonian dampening layer is used whereby all prognostic variables in

the damping layer are relaxed to their horizontal means.

The surface boundary conditions for the LEM are derived from Monin-Obukhov similarity

theory (Monin & Obukhov, 1954) using the Businger-Dyer approximations (Businger
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et al., 1971). This bulk formula allows the calculation of the turbulent fluxes of heat,

moisture and momentum which then act on resolved fields in the lowest model level. To

complete this calculation the LEM supports the specification of either a fixed surface

temperature and surface humidity; or fixed surface sensible and latent heat fluxes. In

either case, the values are defined as horizontally homogeneous across the domain, and

can either be specified as time-varying or constant for the simulation. In the time-varying

case, the time dependence of the surface boundary conditions must be specified before

initialisation.

3.1.6 Large scale forcing

Dynamical motions in LES are limited to the depth of the BL. In reality the microscale

atmosphere is influenced by both local processes and from mesoscale and synoptic systems

that develop over scales much greater than those which can be modelled in an LES. For

this reason it is usual for LES models (in a Eularian system) to specify terms in their

equations set which account for larger scale atmospheric forcing. In the LEM this is done

through the specification of large scale sources of heat, (∂θ/∂t)LS and scalars (∂qn/∂t)LS
to account for horizontal advection into the model domain, and through the definition of a

large scale vertical velocity wLS to account for atmospheric subsidence or ascent. Forcings

are specified at each level of the model grid and act uniformly across each horizontal layer

of the model domain. While time-varying forcing can be specified, forcing profiles have

to be defined at the beginning of the simulation.

3.1.6.1 Wavelet method to determine the mixed layer top

In this study, so as to allow a time-varying forcing which develops in accord with the

evolution of the modelled BL depth, a modified version of the algorithm described in

Brooks (2003) is used to determine the position of the BL top and the forcing profiles

are modified to follow its evolution. The Brooks (2003) algorithm is an edge-detecting

wavelet technique developed to find the BL top from the profile of lidar backscatter. The

algorithm makes use of a wavelet covariance transform; which was developed as a means

of detecting step changes in a signal. The wavelet covariance transform, Wf is equal to

(Gamage & Hagelberg, 1993):

Wf (a, b) =
1

a

∫ zt

zb

f (z)h

(
z − b
a

)
dz (3.23)

where a is the spatial extent, or dilation, f(z) is the signal of interest, zb and zt are the

lower and upper limits of the profile, h is a step function named the Haar function, which

42



3. Large Eddy Simulation model description

is defined as:

h

(
z − b
a

)
=


+1 : b− a

2 ≤ z ≤ b
−1 : b ≤ z ≤ b+ a

2

0 : elsewhere

(3.24)

where b is the location at which the Haar function is centred. The local maximum in the

covariance transform of the Haar function identifies a step in f(z), which is equal to a

boundary of the transition zone. The choice of the dilation is important, and needs to be

large enough to distinguish the transition zone from small scale variability. An example

lidar backscatter profile, Haar function and the resulting Wf at a number of different

dilations is shown in Figure 3.1.

When f(z) is made equal to the potential temperature, the direction of gradient in the

profile is reversed. Consequently the direction of the Haar function is reversed in the

inversion finding algorithm. In all results a dilation of 100 m is used as this was found to

give the most accurate results without being too sensitive to the small scale variability

of the profiles.
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3. Large Eddy Simulation model description

Figure 3.1: Example of a lidar backscatter profile and Haar function (top) and the
resulting covariance transform at various values (bottom). Reproduced from Brooks
(2003)
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Chapter 4

Validation of the LES model

In this chapter, simulations are made to validate that the LEM with Morrison et al.

(2005, 2009b) cloud microphysics is capable of accurately modelling the radiative, dy-

namical, and microphysical properties of mixed-phase Arctic stratocumulus. Validating

high resolution models such as those used for LES is tricky as observations often lack the

spatial or temporal resolution needed for a detailed comparison. The validation problem

is made even more problematic by the fact that many physical processes including mi-

crophysical ones are almost impossible to measure in the field. This makes it extremely

difficult to directly validate model physics. In fact, for this reason the results of LES

and CRM simulations are themselves typically used to validate the physics of large scale

atmospheric models such as GCMs and RCMs.

A general validation of the model against field observations is usually done through

a comparison of few easily measurable atmospheric variables such as the water paths,

profiles of water contents and state variables, surface precipitation rates, and velocity

and turbulence fields if available. Often the comparison is made using the mean fields

of the model. Another complementary approach for validation is to compare the results

of several models with each other. While all LES and CRM models are fundamentally

similar, differences in the model physics and numerical schemes can have a significant

effect on their simulation of atmospheric flows. Comparing results is a useful way of

ascertaining the modelling capability as compared to other models.

In this chapter, simulations of a single layer mixed-phase Arctic stratocumulus cloud

observed during the M-PACE field campaign are presented. The validation of the LEM

will be done through an evaluation of simulations against both observations and a range

of LES model and CRM simulations made as part of the Global Water and Energy Ex-

periment Cloud System Study (GCSS) M-PACE B model intercomparison (Klein et al.,

2009). General details about the M-PACE field campaign are given in the references of
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4. Validation of the LES model

Table 4.1: Description of simulations made in the M-PACE B validation.

Microphysics Hoz. domain Hoz. res. Vert. domain. Vert. res.

val standard mixed-phase 20 km 50 m 4 km 50 m
val no ice warm only 20 km 50 m 4 km 50 m
val high res mixed-phase 20 km 50 m 4 km 25 m

Section 2.3.1 and specifics of the case study can be found in Klein et al. (2009). For this

reason, only a brief discussion of the campaign, participating models and observations

made will be given.

4.1 M-PACE B case study

The GCSS M-PACE B study was an model intercomparison with the aim of presenting the

state of current models ability to simulate single-layer mixed-phase Arctic stratocumulus

clouds. The intercomparison included the participation of 17 single column models and

9 CRMs including a version of the UKMO LEM which used the double-moment cloud

microphysics scheme of Ferrier (1994). For this the purpose of the validation we will

focus on the results of the CRM simulations only.

Participating models aimed to simulate a cold-air outbreak mixed-phase Arctic stratocu-

mulus observed over the Beaufort sea between 1700 UTC 9 October and 0500 UTC 10

October 2004. Observations of BL properties included measurements from two aircraft

flights through the study area and by a range of active and passive remote sensing equip-

ment at locations in Barrow and Oliktok point. More details on the instruments and

study area can be found in Klein et al. (2009) and references therein.

The observed BL was well-mixed from the surface up to the base of a weak capping tem-

perature inversion of around 2 K at between 1000 and 1500 m. Liquid cloud was observed

in the upper half of the BL and ice was observed in the liquid layer and precipitating

throughout the sub-cloud layer all the way down to the surface. Liquid mass greatly

exceeded ice mass.

4.2 Initial setup and validation design

Participating models made three simulations; a standard simulation with the full warm

and cold-phase cloud microphysics, a simulation with no ice, and a high resolution simu-

lation. The model domain and resolution varied between models. The LEM with Ferrier
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4. Validation of the LES model

Figure 4.1: Initial model conditions for the potential temperature (right panel, thick
line), and the water vapour (left panel, thick line) and liquid cloud water mixing ratios
(left panel, dotted line). Also shown are the profiles of θ (right panel, thin line) and qv
(left panel, thin line) from a sounding at Barrow on 1700 UTC 9 October 2004. Figure
is taken from Klein et al. (2009).

(1994) cloud microphysics used a 3D domain of 6.4 x 6.4 x 4 km and a uniform resolution

of 50 m in the horizontal; and 50 and 25 m in the vertical for the standard and high

resolution simulations respectively.

In this study, three validation simulations are made using the LEM with Morrison et al.

(2005, 2009b) cloud microphysics (Table 4.1). The val standard and val hi res simula-

tions use the full two-moment Morrison et al. (2005, 2009b) cloud microphysics scheme

described in Section 3.1.3. This prognoses the mass and number of liquid cloud droplets,

rain, ice crystals, snow crystals and graupel. val no ice is a warm-phase simulation where

only the liquid water and rain are prognosed. In the Morrison et al. (2005, 2009b) cloud

microphysics scheme a bi-modal log-normal dry-aerosol size distribution is needed to

prognose the activation of aerosol to cloud droplets and an ice nuclei concentration is

required to prognose source of ice crystals from heterogeneous nucleation. The ice nuclei

concentrations and dry aerosol distribution parameters used in the validation simulations

are as described in Klein et al. (2009). All validation simulations are made on total 2D

domain of 20 x 4 km, where the decision to validate the model in two dimensions was

made as 2D is the preferred dimensionality with which we aim to complete ASCOS sim-

ulations. In val standard and val no ice both the horizontal and vertical resolution is 50

m, while in val hi res the vertical resolution is increased to 25 m.

The initialisation profiles used in each of the CRM simulations and the three validation
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Table 4.2: Median LWP and IWP values (4 - 12 hours) simulated in the M-PACE B
validation runs and those modelled in the GCSS model intercomparison (Klein et al.,
2009). In the table, UKMO refers to the LEM simulations with Ferrier (1994) cloud
microphysics, while UKMO2M to the LEM simulations with Morrison et al. (2005, 2009b)
cloud microphysics. Median CRM is the median of all CRM simulations and Median 2M
is the median of all simulations which included double-moment cloud microphysics.

Liquid water path (g m−2) Ice water path (g m−2)
Standard No ice High resolution Standard High resolution

Median CRM 57.3 183.6 63.1 17.1 22.8
Median 2M 100.0 183.6 195.7 19.9 10.3
UKMO 29.7 77.6 36.7 22.7 24.3
UKMO2M 149.1 243.2 153.6 30.9 27.5

simulations is shown in Figure 4.1. The model is initialised using uniform profiles of θil

and qt the surface up to a pressure of 850 hPa. Above the mixed layer the inversion

is represented by a step in θil and qt over a single model grid level. In the validation

simulations no liquid or ice cloud is specified at initialisation and is instead formed

through the cloud microphysics scheme.

Large scale forcings are applied to the models to keep the results from drifting too far

from observations. Applied forcings constitute a large scale vertical velocity (subsidence),

and horizontal advective sources of water vapour and heat. Profiles of forcings are shown

in Klein et al. (2009). The surface boundary is specified as an ocean surface with a

temperature of 274.1 K. Surface fluxes are kept fixed for the entirety of the simulations

at 136.5 W m2 for sensible heat and 107.7 W m2 for latent heat.

4.3 val standard simulation results

Following the method of Klein et al. (2009), the model was integrated for a total of

12 hours and results are compared for the 4 - 12 hour time period. The val standard

simulation takes around two hours to spin-up. After spin-up a mixed-phase cloud with

a liquid cloud base at around 650 m and top at around 1500 m is present (Figure 4.2).

Despite the imposed large scale atmospheric subsidence, the cloud is lifted over the

simulations with cloud top reaching 1700 m by 12 hours. The liquid cloud is precipitating

rain; and ice, snow and graupel are also simulated from the surface up to the height of

the liquid cloud top. Over the 4 - 12 hour period the time-averaged cloud fraction is

greater than zero between 0 m and the maximum cloud top of 1700 m. This is over

100 m or more deeper than simulated by the other CRM’s, however the result compares
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Figure 4.2: val standard simulation. Instantaneous horizontal cross-section of LWC out-
put at 2 hours of simulation time with 1 K contours of θe from between 274 and 302 K
overlaid (grey lines).

favourably with the radar observations in which cloud fractions are positive up to around

1750 m.

Observed condensate water paths over the study period varied considerably depending on

the platform and region of measurement. Ground based measurements are greater than

the aircraft measurements, particularly for the IWP and those collected over Barrow are

larger than those collected over Oliktok point. Klein et al. (2009) suggest best estimates

of 160 ± 50 g m−2 for the LWP and in the range of 8 to 30 g m−2 for the IWP.

Median condensate water paths for the validation simulations are given in Table 4.2

alongside some results from the model intercomparison. Here the LWP includes the

total integrated rain water content where simulated and the IWP the total integrated

snow and graupel water contents where applicable. As shown in Table 4.2, the overall

performance of the CRM simulations is poor, and although the median IWP falls inside

the best estimate of observations, the median LWP is massively underestimated with

simulated clouds containing half the lower observed estimate of liquid cloud mass. The

condensate water paths simulated in val standard (labelled as standard UKMO2M in the

table) perform better and both the LWP and IWP values are reasonable.

The water paths simulated in val standard differ considerably from those simulated in the

original LEM simulations (labelled as standard UKMO in the table), with the simulated

LWP almost five times less than in val standard. Although both the original standard

49



4. Validation of the LES model

LEM simulation and the val original simulation use double-moment cloud microphysics

for rain and the ice species, the original LEM model is only single-moment for liquid

water and so uses a fixed cloud droplet number. The simulations also have a different

dimensionality and domain size. The improvement in simulated LWP between the median

of all CRM’s and the median of the double-moment models suggests that the improved

microphysical sophistication of the val original simulation explains the improvement in

its LWP representation. However, it should be noted that as explained in Klein et al.

(2009) the simulations made by the models which use double-moment cloud microphysics

were distributed bi-modally with half the models simulating LWP’s less than 60 g m−2

and half simulating values exceeding 140 g m−2, which suggests that the simulated clouds

are dependent on more than just the microphysics scheme.

The time-averaged vertical distribution of the liquid and ice water contents from the

median of the CRM simulations and from the val standard simulation are shown in

Figures 4.3 and 4.4 respectively. In these figures water contents are displayed on a

normalized height coordinate where -1 is equal to the surface height, 0 to the liquid cloud

base height and +1 to the liquid cloud top height. The peak average LWC simulated

in val standard is around 0.34 g m−3. This value is at the upper limit of the range of

maximum LWC’s simulated by the CRM’s, and slightly greater than the peak median

LWC of around 0.30 g m−3 measured by the aircraft. In the median CRM profile the

peak LWC is found between 60 and 70 % of the way through the cloud while in the

aircraft observations and val standard simulation the peak LWC is found 80 % of the

way through the cloud layer.

The distribution of ice simulated in val standard is more similar to the median of the

CRM results, and the profiles falls at the uppermost quarter of all CRM simulations.

Compared to the liquid, the distribution of ice is much more uniform and extends to the

surface. However, peaks in the IWC do exist and as for the LWC’s, the peak median IWC

is found between 60 - 70 % of the way through the liquid cloud layer in the CRM’s and

80 % of the way through the liquid cloud layer in the val standard simulation. Generally

the magnitude and distribution of water contents simulated by val standard is consistent

with the observations and performs well compared to the CRM results. It should be

noted however that the variability in the observations and in particular the IWC values

is relatively large and this variability is not captured in the model.

Figures 4.5 and 4.6 compares time-averaged vertical distributions of the total water mass

mixing ratio and the liquid-ice-water potential temperature respectively from the median

of the CRM simulations and from the val standard simulation. θil and qt are both

conserved under dry as well as moist adiabatic processes. On initialisation the atmosphere

is well mixed from the surface up to the base of the capping inversion at 1300 m. Over the

course of the val standard simulation the inversion lifts so that the 4 - 12 hour average
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Figure 4.3: Time-averaged LWC from CRM’s as a function of normalized height. Black
line denotes the median profile of all CRM models, the dark shaded area the innermost
50 % of data and light shaded area the outermost 50 %. The blue line denotes the
val standard profile. Figure is from Klein et al. (2009), except edited to include the LEM
simulations.

Figure 4.4: As Figure 4.3, except for the IWC. Figure is from Klein et al. (2009), except
edited to include the LEM simulations.
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Figure 4.5: As Figure 4.3, except for the total water mixing ratio, qt. Dot-dash line is
the initial condition. Figure is from Klein et al. (2009), except edited to include the LEM
simulations.

Figure 4.6: As Figure 4.5, except for the liquid-ice-water potential temperature, θil.
Figure is from Klein et al. (2009), except edited to include the LEM simulations.
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inversion layer base is situated at 1700 m. This is 200 m higher than the median of the

CRM simulations and at the outermost range of all simulations. The time-averaged qt

profile is much more uniformly distributed in the val standard simulation than it is in

the median of the CRM simulations. The time-averaged θil profile is also more well-

mixed, with turbulence driven by cloud top radiative cooling and strong surface heat

fluxes maintaining a mixed-layer through the whole of the boundary layer. Klein et al.

(2009) found that the models which predicted the largest LWC’s were also the most well

mixed and the results of the val standard simulation support this conclusion. Greater

liquid mass driving stronger cloud top radiative cooling and turbulent mixing would also

increase the rate of cloud top entrainment and explain the extra 200 m of mixed layer

growth in the val standard simulation.

4.4 Sensitivity studies

4.4.1 No ice microphysics

As shown in Table 4.2, the LWP increased by over 60 % between the val standard and

val no ice simulations. While the increase is significant, the fractional change is relatively

small as compared to the median of the CRM models which experienced an LWP increase

of 220 % between the standard and no ice simulations, and in the original LEM simulation

which experienced a increase of 165 %. The results indicate that the inclusion of cold-

phase microphysics has a large impact on the total condensate simulated. The change

to the LWP from the inclusion of ice is less in the val no ice simulation than in the

original LEM simulations supporting the conclusion of Klein et al. (2009) that models

with condensate water paths under 150 g m−2 show the greatest sensitivity.

4.4.2 Vertical resolution

As found by Klein et al. (2009), there was little sensitivity to vertical resolution between

the val standard and val high res simulations and the sensitivity was much less than to

the inclusion of ice microphysics. While the vertical resolution was doubled between the

simulations, even the val high res simulation had a relatively crude vertical resolution of

25 m, and increasing the vertical resolution to 10 or 5 m may have a far greater effect on

the simulated cloud.
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4.5 Summary and discussion

Simulations of a single layer mixed-phase Arctic stratocumulus observed during the M-

PACE field campaign were made to validate the LEM with Morrison et al. (2005, 2009b)

cloud microphysics. Results were compared with simulations made by seven other CRM’s

made as part of the GCSS M-PACE B model intercomparison. These included a set

of simulations made with a version of the Met Office LEM with Ferrier (1994) cloud

microphysics.

The LEM performed favourably compared to results produced by the range of CRM’s

which participated in the model intercomparison. CRM’s had a tendency to produce a

cloud which contained too little liquid water, and this resulted in less vertical mixing,

a shallower BL and the development of an unrealistic qt profile. In comparison, the

mixed-phase stratocumulus simulated by the LEM was both qualitatively and quanti-

tatively similar to the observed cloud. The simulated liquid and ice water paths were

within the bounds of the measurement range, and the profiles of water contents agreed

extremely well with the observed quantities. Generally the performance of the LEM

with the Morrison et al. (2005, 2009b) microphysics scheme is improved over the original

model and the results give confidence that the Morrison et al. (2005, 2009b) cloud mi-

crophysics scheme is sophisticated enough to model mixed-phase stratocumulus clouds

with reasonable accuracy.
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Chapter 5

Dataset description and analysis

The following chapter gives a description of, and outlines analysis made on the datasets

used to setup the model simulations. Data is provided by the Arctic Summer Cloud

Ocean Study (ASCOS) and the affiliated Arctic Mechanisms of Interaction Between the

Surface and Atmosphere (AMISA) field campaigns. These complementary and concur-

rent experiments were carried out over the central Arctic Ocean during the summer of

2008. Together they provide one of the most complete sets of observations of summertime

BL meteorology collected over the central Arctic region.

A full description of the field campaigns is beyond the scope of this chapter and more

details can be found within the references of the relevant sections. Here only a basic

overview of the campaign logistics, alongside meteorological conditions experienced and

details on any instruments used in the setup or analysis of model simulations are pro-

vided. Supplementary to the campaign descriptions, in Section 5.1.3 an analysis of the

thermodynamic and cloud fields observed during ASCOS and a comparison with the

conditions experienced during other central Arctic field campaigns is presented. Lastly

in Section 5.2.1.2 the development of a representative observationally constrained aerosol

size distribution which will be used in the large eddy simulations is detailed.

5.1 Arctic Summer Cloud Ocean Study 2008

The Arctic Summer Cloud Ocean Study (ASCOS) was an International Polar Year

project aimed at understanding the processes which are important to the formation and

lifetime of low-level Arctic clouds in the Arctic Ocean. ASCOS took place between 2

August and 9 September 2008, based aboard the Swedish icebreaker Oden (Figure 5.1)

and was the fourth in a series of summer expeditions to this region continuing the exper-

iments carried out during the IAOE-91 (Leck et al., 1996), AOE-96 (Leck et al., 2001)
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Figure 5.1: The Swedish icebreaker Oden drifting with a central Arctic ice-flow, and in
the foreground, acoustic screens around sodar instrumentation. Courtesy of Ian Brooks.

and AOE-2001 (Tjernstrom et al., 2004) field campaigns. Oden’s cruise track is shown

in Figure 5.2. For the three weeks (12 August - 1 September) the ship was moored to

and drifted with a 3.2 x 5.7 km ice floe, reaching a maximum latitude of 87.5oN. During

this period extensive measurements were made both from the ship and at three sites on

the ice floe: an ocean site, an open lead site and a surface meteorology site. An aerial

photo of the ice floe, with measurement sites labelled is shown in Figure 5.3.

5.1.1 Meteorological instrumentation

ASCOS took an integrated approach to understand the life cycle of Arctic stratocu-

mulus and measurements included physical oceanography, marine biochemistry, gas and

particulate chemistry, ocean turbulence and meteorology. In this study our interest is

confined to the meteorological instrumentation, which can be divided into: surface based

instruments used to measure ground and surface layer properties, ground based remote

sensing equipment used to provide indirectly measured profiles of the atmosphere, and

radiosonde balloons to provide directly measured atmospheric profiles.

5.1.1.1 Surface layer measurements

An array of both direct and remote sensing surface based meteorological instrumenta-

tion was setup to measure ground and surface layer properties. On the sea-ice, instru-

mentation included a 15 m mast with aspirated temperature sensors, relative humidity

sensors and sonic anemometers paired to either fine wire temperature sensors or Licor

(LI-7500) open path H20/CO2 analysers. Sensors were vertically situated so as to give

measurements on an approximately logarithmic scale. A 30 m mast with a single sonic
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Figure 5.2: Odens track during ASCOS. Inset diagram is the path taken during the ice
drift period. Courtesy of Ian Brooks.

Figure 5.3: The ASCOS ice camp including position of Oden, the open lead, met-alley
and ocean measurement sites. Courtesy of Staffan Sjögren.
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anemometer at its head was also set up close to the 15 m mast, extending turbulence mea-

surements above the expected surface layer. Near the meteorological masts four Epply

radiometers made measurements of upwelling and downwelling shortwave and longwave

radiative fluxes, and thermocouples were deployed on the ice surface to measure the skin

temperature, and within the ice at depths of 5, 15, 40 and 100 cm to collect a vertical

profile of ice temperature. A more detailed description of the surface meteorological

equipment is given in Sedlar et al. (2011)..

5.1.1.2 Radiosonde balloons

At approximately 0000, 0600, 1200 and 1800 UTC daily for the entire duration of the

cruise, Vaisala RS92 radiosondes were released from Oden’s helipad. These provided

vertical profiles of temperature, relative humidity and wind speed which were later in-

terpolated onto a uniform vertical grid with 5 m vertical resolution in the lowest 1 km

degrading to 100 m resolution above 12 km.

5.1.1.3 Remote sensing instruments and derived measurements

On the Oden an array of remote sensing instruments were deployed (Figure 5.4), in-

cluding a 449 MHz wind profiler and a 60 GHz scanning microwave radiometer, which

following the retrieval techniques of Trokhimovski et al. (1998) and Westwater et al.

(1999) provided temperature profiles between 30 m and 1200 m with root-mean-square-

errors typically less than 1 K. Laser ceilometers, an S-band cloud and precipitation radar,

a dual wavelength (24/31 GHz) microwave radiometer (MWR)(Westwater et al., 2001),

and a 35-GHz millimeter cloud radar (MMCR)(Moran et al., 1998) were also deployed

to retrieve various cloud and precipitation properties.

Effective radius was determined from the MMCR radar reflectivity (Frisch et al., 2002),

while during periods without precipitation, LWP was diagnosed from the MWR (Shupe,

2007) with a root-mean-square-error of around 25 g m−2 (Westwater et al., 2001). Using

the LWP, vertical temperature profiles from the radiosondes and the radar reflectivity,

mean Doppler velocity and spectral width from the MMCR, the cloud phase was deter-

mined which allowed a number of liquid and ice phase cloud properties to be derived.

Estimates of the liquid cloud base and top made from the ceilometer and MMCR reflec-

tivity measurements respectively can be used with the LWP and radiosonde temperature

profiles to determine the LWC, though while the LWP is determined with a reasonable

accuracy the distribution of liquid water within the cloud layer is uncertain and assumed

to be adiabatic. Ice cloud boundaries and the IWC can be determined based on MMCR

radar reflectivity retrievals using an Arctic specific retrieval coefficient (Shupe et al.,
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Figure 5.4: Remote sensing instrumentation aboard Oden. Courtesy of Michael Tjern-
ström.

2005, 2006). While the relative vertical distribution of ice is easily quantified from the

radar reflectivity, determining IWP is more difficult with random and systematic errors

both contributing to an IWP uncertainty factor of two.

5.1.2 Overview of meteorological conditions

The prevailing large-scale atmospheric pattern during the ASCOS campaign was of an

anticyclonic circulation over the Arctic ocean, broken by a series a storms systems which

brought conditions of strong wind, deep clouds and precipitation into the vicinity of

Oden. The conditions experienced during ASCOS were seasonally uncharacteristic and

anomalous to the climatological mean (see Tjernstrom et al. (2012) for a more detailed

explanation). They also differed from the synoptic-scale conditions experienced during

previous central Arctic expeditions; AOE-96, AOE-2001 and SHEBA, which were gener-

ally more cyclonic.

The synoptic-scale atmospheric conditions varied considerably over the campaign. To

illustrate the development of the large-scale meteorology, Figure 5.5 shows ECMWF

surface pressure and 10 m wind fields on four days of the ice drift period, with 12-hourly

storm tracks of the most dominant weather systems derived from ECMWF analysis also

indicated. During Oden’s transit to the central Arctic and in the first half of the ice drift
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Figure 5.5: Synoptic scale sea-level pressure and 10 m level surface wind from the
ECMWF analysis over four days of the ASCOS campaign: (a) 11, (b) 14, (c) 25 Au-
gust and (d) 1 September, 2008. Red lines show the 12-hour storm tracks of the most
significant weather systems encountered in the period around the analysis day, with red
dots mark the location of the storm centre at 0000 UTC on each day. The approximate
location of the ASCOS ice drift is marked by the red x. Reproduced from Tjernstrom
et al. (2012).
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Figure 5.6: Time-height cross section of the MMCR radar reflectivity (dBZe) with the
positions of major warm (red line) and cold (blue line) frontal zones indicated. For
reference; day of year (DoY) 234 is the 21 August. Reproduced from Tjernstrom et al.
(2012).

Figure 5.7: Timeseries of measurements made at the surface meteorology site over the
ice drift period. (a) Surface pressure, (b) 1 m temperature and (c) 2 m wind speed.
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(up until the 24 August), a number of significant low-pressure systems passed over the

ASCOS study area. Typically the storm systems moved in from a westerly direction,

which is the opposite of the norm but consistent with the anomalous surface pressure

fields (Tjernstrom et al., 2012).

Starting from the 4 August, the first storm system moved clockwise around the pole from

the Canada basin to Kara Sea which it reached by the 7 August (Figure 5.5 (a)), before

passing south over ASCOS on the first day of the ice drift period (12 August). This was

followed by another significant weather system which rapidly moved west (Figure 5.5

(b)); from the Kara Sea on the 12 August, south past Oden on 14 and 15 August before

moving over the Canadian archipelago. Two further storms the appeared and travelled

north-eastwards over the next few days but didn’t affect ASCOS. From the 21 August

there was a two day break in the synoptic activity, however on 23 August this inactivity

was broken by the passing of a further storm system through the Arctic. After the 24

August conditions were more quiescent with large scale meteorology largely governed by

a high pressure system which initially developed over Svalbard before moving northwards

over the pole, and a second high was positioned over the northern Atlantic (Figure 5.5

(c) and (d)).

The influence of synoptic activity on the development of the vertical structure of clouds

in the region around Oden is illustrated in Figure 5.6, which shows a time-height cross

section of the MMCR radar reflectivity overlaid with the positions of major frontal zones

as determined subjectively by Tjernstrom et al. (2012) from the rate of change of the

equivalent potential temperature (determined from the radiosondes). As warm air is

observed earlier aloft than at the surface, warm fronts are identified as those sloping

backwards in time. Cold fronts slope forwards in time for the opposite reason. The most

synoptically active conditions were observed in the time period before the 21 August

(DoY 234), with a high number of fronts passing over Oden during this period and the

cloud radar reflectivity; which is proportional to the particle size to the sixth power,

identifying the presence of clouds which were geometrically thick, sometimes in multiple

layers and often precipitating ice. Over this period the surface temperature was always

between 0 and -1.8 oC (the freezing points of fresh and saline water respectively), while

near-surface wind speeds varied from values typically greater than 5 m s−1 before 17

August (DoY 230); when the greater number of fronts pass over Oden, to less than 5 m

s−1 afterwards (Figure 5.7).

The break in synoptic activity from the 21 August (DoY 234) was marked by a significant

drop in surface temperature to -7 oC and a small rise in the surface pressure. Over this

period cloud was tenuous apart from the presence of a cirrus cloud between an altitude of

5 and 9.5 km which passed over Oden on the 22 August (DoY 235). Sedlar et al. (2011)

attributes the drop in temperature over these days to the loss of warming associated with
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Figure 5.8: Time-height cross section of MMCR reflectivity (filled colour) for the period
0000 UTC 25 August - 0000 UTC 01 September. Ceilometer first cloud base height
(black circles), inversion base height (thick black line), and 60 GHz scanning microwave
radiometer temperature (thin black line below 1200 m) and interpolated radiosonde tem-
perature (thin black line above 1200 m) measurements overlaid.

the longwave radiative forcing from low level cloud. This was interrupted between the

23 August (DoY 236) and 24 August (DoY 237) when a further depression passed over

Oden bringing a brief period of deeper cloud activity and a drop in the surface pressure,

although near-surface winds remained low. After 24 August high pressure brought cooler

and drier air to the region around Oden and quiescent conditions of low near-surface

winds. Low level stratiform cloud dominated from this time onwards and over the next

week near-surface temperatures remained between -4 and -2 oC until a drop in surface

temperatures late on the 1 September which saw the onset of the freeze. The freeze onset

date is most commonly found between the 2nd week of August and 1st week of September

(Belchansky et al., 2004), and Sedlar et al. (2011) argue that without the presence of

stratiform cloud to warm the surface, onset of freeze could have occurred any time from

21 August onwards. Cloudiness during this period was determined largely by the large

scale circulation, demonstrating the complex interplay between the synoptic conditions,

cloud cover and sea-ice in the region (Kay & Gettelman, 2009).

A number of different meteorological regimes can be identified from the cloud fields and

surface measurements (Birch et al., 2012; Sedlar et al., 2011), with the most significant

change in conditions occurring after 24 August. This change saw a major shift from a

synoptically dominated system with deep precipitating clouds to a stratocumulus driven

regime, which is more characteristic of that expected in the central Arctic during the

summer. As the focus of this study is on stratiform BL clouds, henceforth analysis will

only consider measurements from the latter half of the ice drift; 0000 UTC 25 August -

0000 UTC 01 September.
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5.1.3 Characteristics of the lower atmosphere

5.1.3.1 General conditions

A time-height cross section of the cloud radar reflectivity for the stratocumulus dominated

period is shown in Figure 5.8. Also shown are the positions of the first cloud base as

determined from the laser ceilometer, and the temperature; which was provided from 60

GHz scanning microwave radiometer below 1200 m and from the interpolated radiosonde

measurements above. The height of the inversion base as determined using the Brooks

(2003) algorithm is also shown.

A first-order impression of the period is of a lower atmosphere dominated by the presence

of a persistent stratocumulus cloud, which is a single layer except for a brief time at the

start of the 25 August and for a few hours on the evening of 29 August. A cloud

radar reflectivity greater than -17 dBZ is characteristic of targets which are bigger than

cloud droplets (Shupe, 2011). Within the observed BL these targets are confined to

heights below a shallow layer of liquid water near the cloud top and are identified as ice.

Sometimes the ice signal extends down to the surface, thus ice is precipitating through

the cloud and sub-cloud layer with a vertical distribution which is typical of mixed-phase

Arctic stratocumulus (Shupe et al., 2008). On first impressions the cloud deck is elevated

as compared to that observed during the AOE-2001 campaign and maximum height of

the reflectivity signal is higher than the inversion base over much of the analysis period,

suggesting the clouds are mostly of the cloud inside the inversion regime identified by

Sedlar et al. (2012).

Timeseries of the LWP and IWP over the stratocumulus dominated period are shown

in Figures 5.9 and 5.10 respectively. The LWP is greater than zero over 97 % of the

time during this period while the IWP is greater than zero more than 99 % of the

time. Therefore cloud is most often characterized as mixed phase. Observed LWP’s are

typically in the order of 50 to 150 g m−2 with a median value of 59 g m−2. The median

IWP is 5 g m−2. The IWP shows considerable variability (two orders of magnitudes)

over hourly time scales, with background IWP’s of less than 10 g m−2 broken up with

icing events where the IWP increases by up to 250 g m−2.

Without detailed measurements of the ice particle numbers it is impossible to properly

explain these events, however changes to IN concentration would be one possible mech-

anism whereby rapid glaciation would occur (Harrington et al., 1999; Pinto, 1998). As

BL temperatures are always sub-freezing, small changes to IN concentrations can lead

to rapid ice growth through the Wegener-Bergeron-Findeison mechanism as explained

in Section 2.3.3, which would rapidly remove the liquid water and possibly lead to an

ice-only cloud (e.g. Harrington et al., 1999; Jiang et al., 2000). Interestingly the linear
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Figure 5.9: Timeseries of LWP over the period 0000 UTC 25 August - 0000 UTC 01
September.

Figure 5.10: As Figure 5.9 except for the IWP.

correlation between the LWP and IWP is small (the coefficient of determination, r2 =

0.08) therefore rapid icing events don’t have much of an impact on the liquid water. It is

possible that the vertical distribution of liquid and ice prevents full glaciation after rapid

icing (Morrison et al., 2012; Shupe et al., 2008).

Figure 5.11 shows the thermodynamic structure of the lower atmosphere as captured by

measurements made during the approximately 6-hourly radiosonde ascents. The bound-

aries of the cloud are also shown, where the cloud top is determined from the maximum

height of return of the 5-minute averaged MMCR reflectivity and the cloud base is de-

termined as uppermost cloud base below the MMCR cloud top as determined from the

laser ceilometer. Note the differences in the two measurement procedures; the radiosonde

observations are measurements from a single ascent through the atmosphere while the

cloud boundaries are remote retrievals whose signal is the average of that collected over

a wider geographical extent.

Profiles of the lower atmosphere show a variety of structures. At least one temperature

inversion is present below 2 km in each of the radiosonde profiles and specific humidities
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Figure 5.11: (a) 6-hourly radiosonde thermodynamic profiles over the stratocumulus
analysis period. For each radiosonde ascent the left pane shows profiles of temperature
(black line) and dew point temperature (blue line) and right pane shows specific humid-
ity (black line). The grey shaded regions represent cloud boundaries, with cloud top
determined from 5-min averaged MMCR reflectivity profiles and cloud base from laser
ceilometer within 5 min of the radiosonde release time. 0533 UTC 25th August 2008 -
1121 UTC 27th August 2008.
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Figure 5.11: (b) 1737 UTC 27th August 2008 - 2323 UTC 29th August 2008.
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Figure 5.12: Frequency of occurrence (%), of the vertical temperature gradient (K m−1)
for the entire stratocumulus dominated period. Temperature gradients are calculated
from the 60 GHz scanning microwave radiometer measurements. Also shown is the
position of the dry adiabat (white dotted line).

are often observed coincide with the main temperature inversion. Despite the differences

between the two measurement procedures the cloud base determined by the laser ceilome-

ter is largely coincident with the first vertical height at which saturation is predicted from

the thermodynamic profiles. In most of these profiles the temperature gradient above

cloud base falls off vertically at the moist adiabat. Clouds are typically around 400 - 500

m deep and in all of the profiles the cloud top extends into the temperature inversion.

The temperature and dew point profiles also show the atmosphere to be saturated above

the base of the inversion on some occasions. However the extension into the inversion

predicted from the thermodynamic profiles is modest (less than 100 m) compared to the

that found from the MMCR cloud top estimates (up to 400 m). The difference between

these estimates of cloud top could be attributed to a local variation in the supersatura-

tion field above the inversion. However because of errors in the dew point temperature

due to the hygrometer instrument freezing during the radiosonde ascents, it is difficult

to ascertain how important local variability is to the measured differences.

Directly below the cloud base a variety of temperature structures are observed, however

the temperature profile most commonly falls off vertically at the dry adiabat from an

altitude of 100 - 200 m until cloud base. The 100 - 200 m altitude most often denotes the
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Figure 5.13: Frequency of occurrence (%) of the main temperature inversion analysed
from the scanning microwave radiometer, showing (a) the height to the main inversion
base and the depths of the main inversion (m), and (b) the strength of the inversions
(oC).

height of the BL top, with the BL either stable, or of a near-neutral stability and capped

by a shallow region where the temperature increases (by less than 0.3oC) at its uppermost.

Though the true BL is shallow, the cloud-driven mixed layer has characteristics of a STBL

which has been elevated above the true BL. Mostly this region is well mixed, however a

stable region below cloud base sometimes separates the cloud from the sub-cloud layer

indicating decoupling.

5.1.3.2 Vertical atmospheric structure

Figure 5.12 shows the frequency of occurrence of the lower atmospheric stability for the

stratocumulus dominated period. Stability is determined as the vertical gradient of the

60 GHz scanning microwave radiometer temperature with height. Within the lowest

900 m of the atmosphere the stability was most frequently found to have a gradient

between the moist and dry adiabats. The high frequency of this gradient demonstrates

the influence of the cloud on the lower Arctic atmosphere during this period of ASCOS,

and is consistent with the stability observed at lower levels during the AOE-2001 (Figure

2.6) and SHEBA field campaigns (Figure 2.7).

Despite the preference for neutral stability in the lower atmosphere, the temperature

gradient of the lowest 100 m was variable and sometimes very stable conditions were

measured. This situation of a near neutral but sometimes stable surface was also observed

during AOE-2001 (Tjernstrom, 2005) and results suggest that this surface regime may
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Figure 5.14: As Figure 5.13 except for the (a) cloud base and cloud top heights and (b)
cloud depth.

be common to the Arctic summer. Above 600 m the vertical temperature gradient was

also frequently positive, while above 900 m, positive stability is the most frequently

occurring thermal structure. The high stability in these regions indicates the presence of

the inversion layer at these heights.

The frequency of occurrence of the inversion base height as determined by applying the

Brooks (2003) algorithm to the 60 GHz scanning radiometer data is shown in Figure

5.13. At least one inversion was found in over 90 % of the radiometer profiles during

the stratocumulus period, which is close to the 91 % occurrence of elevated temperature

inversion found over the SHEBA summer (Tjernstrom & Graversen, 2009). Like in

AOE-2001 and during the SHEBA summer, there is a preference during the ASCOS

stratocumulus dominated period for elevated inversions over surface inversions. However

the peak inversion base is found at around 750 m (Figure 5.13 (a)) compared to 200

m during AOE-2001 (Tjernstrom, 2005) and between 200 - 400 m during the SHEBA

summer (Tjernstrom & Graversen, 2009).

The inversion top was also determined from the radiometer data. Inversion top was

identified subjectively, though for the majority of the analysis period was found equal to

the height of the greatest temperature above the inversion base and below 2 km. The

peak frequency of the inversion top height was found at around 900 m. Inversion depths

were most frequently less than 100 m (Figure 5.13 (a)) and had strengths of 4 - 8oC

(Figure 5.13 (b)) making them narrower and sharper than those experienced during both

AOE-2001 and in the SHEBA summer.

Stratocumulus clouds were also elevated during ASCOS as compared to that observed
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Figure 5.15: As Figure 5.13 except for height difference (m) between the cloud top and
the inversion base, zi+.

during AOE-2001 and SHEBA. Figure 5.14 (a) shows the frequency of occurrence of the

cloud base measured by laser ceilometer and cloud tops from determined by the MMCR

reflectivity for the stratocumulus dominated period. Cloud bases ranged between the

surface and around 1.4 km over the analysis period with a peak occurrence at 500 m.

While the peak cloud top was situated at around 950 m and the most frequent cloud

depth was 500 m (Figure 5.14 (b)), which is narrower than found in the previous summer

campaigns.

5.1.3.3 Cloud-inversion properties

Analysis of the ASCOS observations will now be directed at the focus of this study - the

encroachment of cloud top into the temperature inversion. Following the methodology

of Sedlar et al. (2012), observations of cloud and thermodynamic fields are utilised to

determine whether cloud was situated inside the inversion layer, or cloud was capped by

the inversion. During the period of ASCOS which was dominated by stratocumulus, the

inversion encroachment depth, zi+, which is given by:

zi+ = zct − zib (5.1)

was greater than zero in 86 % of the profiles where cloud was observed. Thus cloud inside

the inversion were the most prevalent cloud-inversion regime. The relative frequency of

occurrence of zi+ is shown in Figure 5.15. Typically the cloud encroached less than 180 m

inside the inversion though a small number of profiles measured zi+ values of more than

300 m, with the maximum around 500 m. Of the 14 % of profiles where zi+ was less than
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zero, 45 % were within 100 m of the inversion; which is the definition of a cloud capped

by the inversion given by Sedlar et al. (2012). This amount is equal to around 6 % of

the total profiles in which cloud was observed. Of the clouds capped by the inversion the

cloud top was most frequency observed within 50 m of the inversion (Figure 5.15).

zi+ values for low level clouds were also calculated by Sedlar et al. (2012) from AS-

COS observations; however in their study cloud was analysed over the entire ice drift

and their determination of the inversion boundaries also differed to this study (see Sec-

tion 2.3.4). Because the analysis of Sedlar et al. (2012) included time-periods in which

non-stratocumulus-dominated conditions prevailed, the collocation of cloud inside the

inversion was reduced to two thirds in their study. However despite the difference in the

chosen analysis period and the inversion finding method, the most frequent zi+ value as

determined by Sedlar et al. (2012), and in this study were within 25 m of each other

(Figure 2.11). This supports the use of the Brooks (2003) algorithm to determine the

inversion base height, and furthermore suggests that the stratocumulus dominated period

chosen in this study is an appropriate time-period for a detailed analysis of the cloud

encroachment mechanisms.

While cloud-inversion collocations for the SHEBA campaign and at the Arctic observa-

tion site at Barrow, Alaska, differed to those found during the stratocumulus dominated

period of ASCOS; with cloud capped by the inversion typically more prevalent at these

sites. As discussed in Section 2.3.4, analysis of the cloud encroachment depth at these

locations also showed a preference for clouds inside the inversion to have a zi+ of 150 m

or less, with maximum cloud encroachment depths of up to 500 m occurring much less

frequently. The approximate agreement of the zi+ distribution found during the stratocu-

mulus dominated period of ASCOS and at the other Arctic locations, suggests that for

clouds with tops inside the inversion, the encroachment depth is relatively independent

of location. Furthermore the preference for zi+ values of 150 m or less may be indicative

of limit to the encroachment depth under the most frequently encountered atmospheric

conditions.

Physically it may be expected that zi+ is limited by a feedback from the clouds presence

inside the inversion; such as a thermal adjustment caused by strong radiative cooling

inside the layer. However, although zi+ is a useful reference for the state of the cloud-

inversion, knowledge of the cloud and inversion layer boundaries exclusively is not in-

dicative of the underlying physical processes which control the encroachment. To predict

the influence of the encroachment on the physics of the cloud - for instance through its

alteration of radiative fluxes - observations of cloud water mass and cloud microphysical

properties; and their vertical distribution through the cloud are needed.

Although high-resolution cloud microphysical measurements were not recorded during

ASCOS. The influence of zi+ on cloud thermodynamics can be qualitatively estimated
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Figure 5.16: Timeseries of zi+ over the period 0000 UTC 25 August - 0000 UTC 01
September.

Figure 5.17: As Figure 5.16 except for LWP i+.

Figure 5.18: As Figure 5.16 except for the τ values of the inversion layer calculated using
a kext of 0.16 m2 g−1 (black solid line) and using a Qext of 2 (blue solid line). Also shown
is the line of unity optical depth (dashed black line).
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from the effect that the liquid cloud mass inside the inversion has on the optical depth.

The absolute integrated mass of liquid cloud water inside the inversion is given by:

LWP i+ =

∫ zct

zib

LWCdz (5.2)

Computing the optical depth of the liquid layer inside the inversion using Equations

2.4 and 5.2 requires the calculation of kext through Mie theory, however its calculation

is complex and so to reduce the computational expense, two estimates of the optical

depth using simplified assumptions are used instead. The first estimate of τ makes the

assumption of a constant kext equal to a value of 0.16 m2 g−1 - which is a reasonable

value for stratocumulus clouds (Stephens, 1978). The second estimate assumes that cloud

droplet are much larger than the wavelength of radiation, thus Qext can be made equal

to two and τ can be calculated from the vertical distribution of the LWC and re through

Equation 2.5. This assumption usually only holds true for the extinction of shortwave

radiation by cloud droplets, though provides a limit to the longwave optical depth value.

Timeseries of zi+ (>0 only), LWP i+ and τ for the analysis period are shown in Figures

5.16, 5.17 and 5.18 respectively. While none of the timeseries of the cloud-inversion

properties follow a trend over the analysis period, over time scales of half a day or less,

LWP i+ fluctuates between values less than 10 g m−2 and greater than 20 g m−2; and

zi+ fluctuates between values of 50 m or less and values of 150 m or more. The temporal

development of zi+ has a step like appearance suggesting that the transition from shallow

to deep inversion encroachment depths is rapid, occurring over less than 60 minutes or

so. However this is likely to be artificial and the transition between shallow and deep

inversion encroachment depths more gradual. The step like development results from

the rapid change in the inversion base height, which is caused by the inversion being

detected in the upper part of the 60 GHz scanning radiometer retrieval. In the upper

region of the radiometer retrieval, the retrieval method uses time-interpolated radiosonde

temperature profiles as a first guess to derive the radiometer temperatures, and the step-

like appearance is most likely an artefact of the interpolation. Nevertheless the fluctuation

between relatively deep to shallow and relatively moist to dry inversions over short time-

scales demonstrates that the cloud-inversion system is not quasi-static.

Because of its dependence on LWP i+, the optical depth also fluctuates rapidly over

short time-scales; the opacity of the cloud inside the inversion varying between values

close to zero and a maximum of 16 (Qext = 2). Despite the different assumptions made

in the two τ approximations, the temporal development of both timeseries is generally

equivalent. However the Qext = 2 method produces larger optical depths and the root-

mean-square error of the τ approximations is 0.92. Although there is uncertainty in the

exact magnitude of τ , the frequency that the optical depth is greater than or equal to

one is approximately the same using both assumptions; with τ ≥ 1 for 48 % and 58
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Figure 5.19: Scatter plot of (a) zi+ against LWP i+, and (b) zi+ against τ as calculated
using the Qext = 2 assumption.

% of the analysis period as calculated using the kext = 0.16 and Qext = 2 assumptions

respectively. Thus the results suggest that inversion is commonly opaque to longwave

radiation.

The relationship between zi+ and LWP i+; and between zi+ and τ as calculated using

the Qext = 2 assumption is shown in Figures 5.19 (a) and (b) respectively. Despite a

large amount of scatter, a weak positive relationship between both zi+ and LWP i+; and

zi+ and τ is evident, with the largest masses of liquid water and highest optical depths

generally found in the deepest cloudy-inversion layers. From a physical perspective, the

high temperature and stability of the inversion acts as a barrier to the condensational

growth of cloud droplets in the layer. Therefore it might be expected that the LWC

decreases proportional to zi+, leading to a functional relationship between LWP i+ and

zi+. However, while the shape of the relationship between zi+ and LWP i+ suggests a

weak linear relationship between the variables, an r2 value of 0.39 indicates that less

than half the variability of LWP i+ can be explained by a linear dependence on zi+.

Thus other variables must contribute significantly to the mass of liquid water inside the

inversion.

The proportionality of τ and LWP i+ using the kext = 0.16 assumption means that Figure

5.19 (a) also indicates the relationship between these variables. Comparing the scatter

between Figures 5.19 (a) and (b), there is little difference, thus despite the different as-

sumptions made in calculating the two τ values, the linear dependence on zi+ is relatively

similar with r2 equal to 0.35 for Qext = 2. This results from the high linear dependence

of τ (found using Qext = 2) on LWP i+, with r2 equal to 0.90.
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Figure 5.20: Scatter plot of τ as calculated using the Qext = 2 assumption against
∆zi+/∆t. Red dots indicate τ values below one, and blue dots τ values greater than or
equal to one.

As discussed in Section 2.3.3, the position of maximum longwave radiative cooling is

found about where the optical depth is equal to one. Therefore Figure 5.18 suggests

that during the stratocumulus dominated period of ASCOS, the position of maximum

longwave radiative cooling was commonly inside the inversion layer. Assuming that the

radiative cooling is the dominant term in the upper cloud heat budget, then the absolute

cooling of the inversion relative to the boundary layer should lead to the inversion layer

experiencing a thermal adjustment to the presence of the cloud. Such an adjustment

wasn’t simulated by Solomon et al. (2011); with radiative cooling instead balanced by

the heat from condensation and large scale advection. Sedlar et al. (2012) also found that

despite cooling occurring over a greater depth, the maximum radiative cooling was only

positioned above the inversion base when the mass of liquid water inside the inversion

was large. While under smaller instances of the LWP i+, the maximum cooling was

positioned coincident with zib.

Unfortunately the errors associated with the radiometer retrieval method, means that it

isn’t possible to determine whether a cooling response of the atmosphere to the presence

of inversion layer cloud is directly evident in the ASCOS dataset with any certainty.

Despite this limitation, adjustment of the inversion boundaries should be evident in the

timeseries of zi+, with cooling of the cloud-inversion region causing zi+ to fall as zib

equates with the base of the cooled layer.

To examine whether this was found over the analysis period, the τ (Qext = 2) and zib

timeseries were temporally averaged to remove short time-scale fluctuations, and the

relationship between τ and ∆zib/∆t was examined. A number of averaging periods
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between 12.5 and 50 minutes were tested, and because the thermal adjustment might not

respond quickly enough to cause a reduction in zi+ over the same time period, time lags

varying between zero minutes and maximum of 50 minutes were applied to ∆zib/∆t. For

each of the averaging periods and lags, the relationship between τ and zi+ was found to

be very weak. The shape of the relationship between the variables was similar for each

determinations, and is illustrated in Figure 5.20 for an averaging period of 25 minutes

and zero minutes time lag. Generally ∆zib/∆t is scattered around a change of 0 m s−1

and both increases and reductions in zi+ are found across the range of optical depths.

Figure 5.20 suggests that thermal adjustment of the inversion due to the presence of

cloud was not experienced in the analysis period. However, the use of a τ approximation

as a proxy for the radiative cooling potential of the layer means that the result is not

conclusive.

The examination of the thermal adjustment mechanism demonstrates the limitation of

direct analysis of the ASCOS dataset in providing a detailed understanding of the under-

lying physical process which control the encroachment. Nevertheless, the clear positive

relationship between zi+ and LWP i+ (Figure 5.19 (a)) suggests that characterization of

the encroachment may be possible using simple parameterizations. Although the formu-

lation of such parameterizations is beyond the scope of this analysis, and would benefit

from a more detailed understanding of the physics beforehand. The relationships between

a few atmospheric variables which would be expected to influence the encroachment will

now be examined.

The relationship between zi+, and the percentage of the total liquid cloud mass found

inside the inversion, qi+l , as calculated from:

qi+l = 100
LWP i+

LWP
(5.3)

is shown in Figure 5.21 (a). The dependence between the variables indicates the weight-

ing of the cloud mass inside the inversion, to the mass in the BL at different inversion

encroachment depths; small values indicating a well mixed cloud with an approximately

adiabatic liquid water profile, and high values a cloud which deviates from the typi-

cal stratocumulus profiles described in Section 2.1.2. The dependence of qi+l on zi+ is

positive and non-linear and the variability of qi+l below 150 m is smaller than at en-

croachment depth above this value, suggesting a transition to less uniform cloud layers

as zi+ increases.

Normalising zi+ by the total cloud depth, zct − zcb reduces the scatter of the variables,

while retaining the approximate shape of the relationship (Figure 5.21 (b)). Without

a detailed understanding of the mechanisms which lead to the encroachment, it is not

necessarily clear which way the dependence between these variables lies, however qi+l has
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Figure 5.21: Scatter plot indicating the relationship between (a) zi+ (m) and qi+l (%),
(b) 100zi+/(zct - zcb) (%) and qi+l (%), (c) zit - zib (m) and zi+ (m), and (d) Tit - Tib

(K) and zi+ (m).
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been chosen as the response variable in (Figure 5.21 (b)) as its determination is probably

the most useful to predict. While the depth of encroachment is most likely influenced

by both the cloud properties and the background atmospheric state, if zib can be related

to the background atmospheric state with confidence, Figure 5.21 (b) would give an

indication of the mass inside the inversion, and allow the possibility of determining its

influence on the clouds heat budget and dynamics.

The depth of the inversion layer zit − zib, and strength of the temperature inversion,

Tit − Tib are two atmospheric quantities which might be expected to influence the depth

of encroachment. Unfortunately, there is weak if any dependence of zi+ on these variables

(Figures 5.21 (c) and (d)). The dependence of zi+ on number of other quantities were

also tested, though the relationship was always weak. However one variable which the

dependence wasn’t determined for, because of a lack of measurements, is strength of the

humidity inversion. Simulations made by Solomon et al. (2011) indicate the importance of

the specific humidity inversion in maintaining the cloud inside the temperature inversion,

and if there is a strong dependence between the humidity inversion strength and zi+, a

parameterization of LWP i+ would be made possible.

5.2 Arctic Mechanisms of Interaction Between the Surface

and Atmosphere

The Arctic Mechanisms of Interaction Between the Surface and Atmosphere (AMISA)

field campaign was an aircraft-borne field campaign with the objective of studying Arc-

tic clouds and mapping sea-ice extent. AMISA was carried out aboard a NASA DC-8

aircraft, with flights taking place concurrently with ASCOS so as to supplement the

extensive surface based observations with in situ measurements of cloud and aerosol

properties; instruments aboard the aircraft remotely sensed the sea ice and various mete-

orological properties, and a number of instruments made direct measurements of physical

and chemical aerosol properties.

In total seven DC-8 flights were made between 8 August and 28 August. Besides the

first and last flights which made the transit between the USA and Kiruna, Sweden, all

other flights began and ended in Kiruna. Five of the flights (including the first transit)

passed over the Oden so as to allow cross examination of observations from the different

platforms. Table 5.1 gives details of the flight logistics and their scientific mission.
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Table 5.1: Description of AMISA flights.

Flight Date Description

1 08/08/2008 Transit. Palmdale, USA - Kiruna, Sweden (Oden overpass)
2 12/08/2008 Mapping radiation, microphysics near Oden
3 15/08/2008 Mapping radiation, microphysics near Oden
4 22/08/2008 Ice edge mapping
5 23/08/2008 Mapping radiation, microphysics near Oden
6 25/08/2008 Mapping radiation, microphysics near Oden
7 28/08/2008 Transit. Kiruna, Sweden - Bangor, USA

5.2.1 AMISA aerosol number-size distribution

As explained in Section 3.1.3.1, an aerosol number size distribution is needed in the

LEM Morrison et al. (2005, 2009b) microphysics scheme to model the activation of aerosol

particles to cloud droplets. In this study, measurements made during AMISA are analysed

to construct an aerosol number size distribution which is representative of that found in

vicinity of Oden during the stratocumulus dominated period. As the focus of this study

is on low level central Arctic stratiform cloud, data collected on the transit flights and

during the stormy conditions is unsuitable for the analysis. Therefore analysis will be

limited to flight 6.

During AMISA flight 6, the DC-8 left Kiruna, Sweden at 0710 UTC, flying at high

altitude until 1400 UTC when the plane descended below 2 km. Over the next four and

a half hours the plane was in the vicinity of the Oden flying racetrack patterns at fixed

and varying altitudes around the ship (Figure 5.2.1 so as to collect vertical measurement

of cloud and aerosol properties). Aerosol number size distributions are derived from

measurements collected during flight 6 between 1400 and 1630 UTC on the 25 August.

5.2.1.1 Instrumentation

Typically aerosols which activate to become cloud droplets are particles from the accu-

mulation or coarse mode particles. Particles of these sizes have diameters of 0.01 µm

or greater (Raes et al., 2000). To cover as wide a range of particle sizes as was pos-

sible from the measurements, aerosol number size distributions are constructed from a

combination of measurements made using a Particle Measurement Systems (PMS) Pas-

sive Cavity Aerosol Spectrometer Probe (PCASP) and a NASA Langley TSI Scanning

Mobility Particle Sizer (SMPS). The PCASP instrument is an optical particle counter

which measures aerosol size distribution in the nominal range 0.1 to 3 µm (diameter),

by exposing each particle to laser radiation and measuring the amount of light scattered.
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Figure 5.22: AMISA flight track on 25/08/2008. The blue marker shows Oden’s location.
Inset diagram is the 3D flight path over the analysis period.

The instrument is fitted to the aircraft in one of the PMS canisters under the aircraft

wings. The SMPS instrument separates and identifies particles in the size range 0.01 -

0.2 µm by their differential mobility when exposed to an electrical field, the instrument

was based inside the aircraft and aerosol was collected through a Clarke probe inlet.

5.2.1.2 Aerosol size distribution

Aerosol particles found within the central Arctic may be either local; for instance from the

surface microlayer of open leads (Bigg et al., 2001), or transported into the region (Sirois

& Barrie, 1999). In both cases, for the CCN aerosols to form droplets, vertical transport

of the particles; either from the surface, or from the free troposphere has to be able to

move them to a region of the atmosphere which is saturated. For particles advected into

the free troposphere a barrier to their movement is the frequent occurrence of temperature

inversions. As explained in Section 2.1.1, the rapid increase of temperature across the

inversion makes it is highly stable. Therefore turbulent motions are dampened inside

the inversion and transport of scalars such as aerosol particles across the interface is

limited. For particles who’s source is at the ground, surface inversions and decoupling

of the cloud layer cause a similar barrier. Observations show that cloud formation is

frequently limited by CCN availability in the central Arctic (Bigg et al., 1996; Mauritsen

et al., 2011), and the presence of frequent inversions may contribute to the low CCN

numbers.
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Table 5.2: AMISA flight 6 aerosol number-size distribution parameters; mean and stan-
dard deviation of the aerosol concentration and number of measurement bins used to
compute the statistics.

Position SMPS (cm−3) PCASP (cm−3)
Mean St.dev No. Mean St.dev No.

Above-Cloud 161.73 86.89 20 14.95 20.26 162
Below-Cloud 67.05 83.51 21 6.57 6.66 128
In-Cloud 85.28 0.00 2 1.90 1.21 24

Temperature profiles from the ascending/descending portions of flight indicate that the

observed cloud was in the vicinity of a temperature inversion during the analysis period,

suggesting that the vertical distribution of aerosol isn’t uniform through the atmosphere.

To allow the examination of the effect of location on aerosol spectrum, observations were

classified by whether the aircraft was flying in-cloud, above cloud or below the cloud

layer.

Figure 5.23: Temporally and spatially averaged SMPS (square markers) and PCASP
(hexagon markers) aerosol number-size measurements and their fitted log-normal distri-
bution (solid line).
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Table 5.3: AMISA flight 6 log-normal aerosol number-size distribution fitting parameters.

Position Mode 1 Mode 2
r̄1 σ1 Na1 r̄2 σ2 Na2

(µm) (µm) (cm−3) (µm) (µm) (cm−3)

Above-Cloud 161.73 86.89 20 14.95 20.26 162
Below-Cloud 67.05 83.51 21 6.57 6.66 128
In-Cloud 85.28 0.00 2 1.90 1.21 24

Cloudiness was classified by liquid water relative humidities of 100 % or more. The

above/below position classification was then inferred from the altitude, relative humidity

and temperature records. As static temperature and humidity profiles at the plane’s

location are unavailable, it was assumed in the classification of above-cloud and below-

cloud that observed stratocumulus is a single cloud layer and has a uniform cloud top

height over small horizontal distances. Above-cloud was associated with measurements

inside or above the inversion layer.

To construct the categorised distributions, a single spectrum was generated from the

SMPS and PCASP measurements every 15 minutes. As both instruments didn’t operate

continuously over the analysis period, those bins in which either of the instruments didn’t

make measurements were then discarded to remove bias. From these 15 minute spectra,

in-cloud, above-cloud and below-cloud mean size distributions for the whole analysis

period were produced. Table 5.2 gives concentration statistics for each classification.

Particle numbers of both instruments are largest above the cloud suggesting an above-

cloud aerosol source. In-cloud PCASP concentrations are smaller than those found in

clear-sky, which is consistent with the largest particles forming cloud droplets. SMPS

concentrations are smaller below the cloud than inside.

Differences in the SMPS and PCASP measurement techniques mean that the two dis-

tributions don’t fit perfectly in the overlap size range. To ensure PCASP and SMPS

distribution consistency in the overlap region, PCASP number concentrations across the

whole PCASP distribution were adjusted so that the PCASP and SMPS number con-

centrations in the overlap region were equal. Bimodal log-normal distributions were then

fitted to the three mean aerosol distributions. Table 5.3 details the fitting parameters. As

temperature inversion were so frequently observed during period dominated by stratocu-

mulus cloud, the below-cloud distribution was chosen to best represent the background

aerosol. The fitted log-normal curves for the below cloud distribution are shown in Figure

5.23.
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5.3 Summary and discussion

This chapter introduced the Arctic Summer Cloud Ocean Study (ASCOS) and com-

pared observations made during ASCOS with measurements collected during previous

central Arctic field campaigns. ASCOS was carried out during the summer of 2008

under seasonally uncharacteristic large-scale atmospheric conditions, which differed to

those experienced during AOE-96, AOE-2001 and SHEBA where the central Arctic was

commonly dominated by high pressure. During the fist half of the ASCOS ice-drift,

synoptic-scale conditions were characterized by the passing of a series of frontal systems

over the central Arctic bringing deep convective storms clouds to the vicinity of Oden.

While in the latter half of the ice-drift, conditions became more typical for the central

Arctic summer and were characterized by quiescent conditions and Arctic stratocumulus

cloud dominating the lower atmosphere. In support of the aims of the thesis, analysis

was directed at the stratocumulus-dominated period, 25 August - 1 October.

Overall the thermodynamics conditions showed similarities with previous summer cam-

paigns; a slightly stable or near-neural BL around 100 - 300 m deep, followed vertically

by a layer of near-neutral stability until the height of the cloud top. However the depth

of the sub-cloud layer was often much deeper during ASCOS, with the cloud elevated

as compared to those observed during AOE-2001 and SHEBA by an average amount

of around 500 - 600 m. The stratocumulus deck observed during ASCOS was nearly

always mixed-phase with a characteristic vertical structure of a thin layer of liquid wa-

ter - typically around 500 m deep - which was continually precipitating ice through the

cloud down to the surface. Clouds were mostly decoupled from the surface. LWP’s were

in the order of 50 to 150 g m−2 and the IWP had a median value of 5 g m−2. How-

ever, ice concentrations varied considerably over the latter ice-drift and measurements

were unable to explain the rapid growth of the IWP by up to two orders of magni-

tude. Correlation between the ice and liquid was weak and ice events never caused the

cloud to become ice-only. Results suggest that the rapid glaciation of cloud through the

Wegener-Bergeron-Findeison mechanism may be inhibited by the vertical distribution of

hydrometeors in the cloud.

To allow an examination of the encroachment of cloud into the temperature inversion, the

Brooks (2003) algorithm was used determine the location of the temperature inversion

base. Elevated temperature inversions were identified in 90 % of atmospheric temperature

profiles during the analysis period, which is consistent with their identification over 91

% of the SHEBA summer. In keeping with previous summer campaigns, ASCOS data

showed a preference for elevated over surface inversions, however inversion bases were

found most commonly located a height of around 750 m, compared to 200 m during AOE-

2001 and between 200 - 400 m during SHEBA. Thus despite ASCOS sharing a similar
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vertical structure of the lower atmosphere to previous campaigns: shallow stable or

neutral BL, followed by a well-mixed cloud-driven layer up to the base of the temperature

inversion, the depth of the lower atmosphere was much greater during ASCOS.

To help understand how the prevalence of inversion encroaching clouds during ASCOS

compared to that found at other Arctic locations, cloud-inversion collocations were used

to identify the periods where the cloud was situated inside the inversion layer and those

where cloud was capped by the inversion layer. Over the analysis period, cloud was

determined to be inside the inversion for 86 % of the observed profiles, which was found to

be approximately representative of collocations evaluated over the entire ASCOS ice-drift.

The high prevalence of the cloud inside the inversion regime is also similar to observations

of cloud-inversion encroachment during SHEBA, where cloud inside the inversion was

observed around 60 % of the time. And while clouds capped by the inversion are found

to be the most frequent cloud-inversion collocation over the Arctic measurement site at

Barrow, Alaska, the site is situated closer to a land mass. Therefore the high collocation

of cloud inside the inversion observed during ASCOS and SHEBA was identified as being

characteristic of the regimes prevalence over the central Arctic sea-ice.

When cloud was found inside the inversion, the most frequently found encroachment

depth zi+, was 150 m into the temperature inversion. The observation of zi+ most

commonly occurring below 150 m at other Arctic locations suggested a possible feedback

in the cloud which limited the encroachment depth. To examine whether zi+ was limited

by a thermal adjustment of the inversion layer from strong radiative cooling at cloud top,

the integrated mass of the inversion layer liquid cloud, LWP i+ and an approximation

of the longwave optical depth of the layer, τ were found to help describe the radiative

cooling potential of the layer. Approximations of τ were made using the assumption

that the cloud either had a constant mass extinction coefficient of 0.16 m2 g−1; meaning

τ was proportional to LWP i+, or that the cloud particles were much larger than the

wavelength of the radiation, allowing the calculation τ using an extinction efficiency of

two. This approximation is usually only strictly valid when examining the shortwave

optical depth.

The temporal development of zi+, LWP i+ and τ showed considerable variability over

short timescales, however for between 48 % and 58 % of the analysis period, τ was

found to be greater than one. Because the position of peak cloud top radiative cooling

is expected about the region where τ is equal to one, this suggested that peak radiative

cooling was located inside the inversion layer approximately half of the time cloud was

found inside the inversion. Although this suggested a potential for thermal adjustment

from cloud top radiative cooling, analysis of the correlation between τ and the change

in zi+ over time showed no adjustment of zi+ proceeding periods where τ was large and

thermal adjustment would be expected. While this analysis was not conclusive, this

85



5. Dataset description and analysis

result suggests that radiative cooling within the inversion layer is probably balanced by

condensational heating and heat transport into the layer as found by Solomon et al.

(2011), leading to the peak absolute cooling of the layer occurring coincident with the

inversion base (Sedlar et al., 2012).

Both LWP i+, and the fraction of the total liquid water cloud mass found inside the inver-

sion, qi+l were identified as has having a non-linear functional dependence on zi+. Despite

a large amount of scatter, the relationship between zi+ and these variables demonstrates

the possibility for parameterization of the encroachment mechanism with the intention

of calculating the mass of water inside the inversion. For such a parameterization, zi+

would need to be found within the model, however from the limited ASCOS observations,

zi+ was to found to have little dependence on other atmospheric parameters including

the strength and depth of the temperature inversion. Nevertheless, ASCOS observations

didn’t allow the dependence of zi+ on the humidity inversion strength to be calculated

and it is expected from Solomon et al. (2011) that a relationship between these variables

exists.

Next aerosol number-size distributions measured during the Arctic Mechanisms of In-

teraction Between the Surface and Atmosphere (AMISA) field campaign were analysed

to derive aerosol activation parameters for the LEM model. Only one flight made dur-

ing AMISA was suitable for modelling the low level Arctic stratocumulus clouds. Using

flight data of meteorological conditions to determine where the measurement was made

in relation to the cloud and inversion, average aerosol distributions were composed us-

ing the PCASP and SMPS instruments. Distributions were determined for above-cloud,

in-cloud and below-cloud conditions and log-normal approximations fitted to the three

datasets. The below-cloud distribution was chosen as the most suitable in representing

the background aerosol.

In reference to the aims of thesis, results show that despite the seasonally uncharacteristic

large-scale atmospheric conditions and greater preference for clouds situated higher in the

atmosphere, the prevalence of cloud inside the inversion was similar in ASCOS to that

found during previous summer campaigns, particularly SHEBA. Cloud encroachment into

the inversion was found to occur frequently during ASCOS, with a significant mass of

liquid water present inside the inversion suggesting a potential influence on development

of the lower atmosphere. While analysis of cloud-inversion properties was unable to

determine any relationships which could directly be used to determine the depth cloud

encroaches into the inversion, the mass of water inside the inversion was determined to

have a function dependence on zi+, implying that parameterizations of encroachment

may be possible. Although ASCOS observations suffered from a lack of coverage and

absence of measurement of several properties which would be useful in understanding

the mechanisms which control the encroachment, simulations using the LEM in the next
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chapters should be able address these issues and provide a more detailed mechanistic

understanding of the cloud encroachment.

In summary, the results in this chapter suggest that the encroachment of cloud into the

temperature inversion is widely prevalent in Arctic stratocumulus and despite the season-

ally uncharacteristic conditions experienced during the campaign, indicate the suitability

of ASCOS data to investigating the encroachment mechanism.
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Chapter 6

Stratocumulus encroachment into

the inversion layer: Large Eddy

Simulations

In Chapter 4 a number of the simulated cloud properties were found to quantitatively

agree with the M-PACE observations, and results demonstrated the LEM’s ability to

simulate mixed-phase Arctic stratocumulus and the complex dynamical-microphysical-

radiative interactions which influence the development of the Arctic BL. The dynamics

of the cloud observed in the M-PACE B case study were driven by cloud-top radiative

cooling, and from the strong surface fluxes of heat and moisture found over the Beaufort

Sea. As is found in sub-tropical marine stratocumulus, the total water mixing ratio

observed in the M-PACE B case was conserved through the BL and dropped off rapidly

through the transition zone. Consequently cloud top was observed to be coincident with

the top of the boundary layer.

The mean conditions observed during the ASCOS field campaign differed to those ob-

served during M-PACE. Over the sea-ice surface of the central Arctic much weaker forc-

ings act on the BL. Specific humidity inversions are also frequently observed coincident

with the capping temperature inversion, and cloud top is often observed to encroach into

the transition zone (Sedlar et al., 2012; Tjernstrom et al., 2012). The mechanisms which

allow cloud to persist inside the temperature inversion have been examined by Solomon

et al. (2011), who demonstrated that inversion layer cloud could be supported so long

as a source of inversion layer water vapour was maintained to balance sedimentation

loss. Solomon et al. (2011) also provided an explanation of why the temperature inver-

sion doesn’t adjust to the presence of cloud, with condensational heating, vertical eddy

advection and zonal advection of heat balancing the cloud top radiative cooling in the
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Table 6.1: Description of simulations made to investigate the encroachment of cloud into
the inversion layer. Setup parameters described in text.

Simulation Domain qblt qinvt Nin (∂qv/∂t)LS (∆z)LS
(g kg−1) (g kg−1) (L−1) (g kg−1 day−1) (m)

control 2D 2.78 1.00 1.7 - -
control Ninx2 2D 2.78 1.00 3.4 - -
control Ninx3 2D 2.78 1.00 5.1 - -
control Ninx4 2D 2.78 1.00 6.8 - -
control dry 2D 2.08 1.00 3.4 - -
control 3D 3D 2.78 1.00 3.4 - -
ls2g150m 2D 2.78 1.00 3.4 2.0 150
ls2g150m 3D 3D 2.78 1.00 3.4 2.0 150

inversion layer. While the modelling study was able to provide a detailed description of

these processes, the model setup used in Solomon et al. (2011) was inadequate to study

the sensitivity of the cloud and BL properties to temperature and specific humidity in-

versions with different attributes. In this chapter the LEM is employed to study the

observed encroachment using an idealised framework, with analysis focusing on the ra-

diative, dynamical and microphysical relationships which exist in inversion encroaching

clouds and the differences they have to stratocumulus whose cloud top is found below

the inversion.

6.1 Initial setup and simulation design

The dynamic and thermodynamic conditions used to setup the control simulations are

developed from the radiosonde launches at 1121 and 1737 UTC on 27 August. The LEM

is initialised using profiles of liquid water potential temperature, θl (Deardorff, 1976):

θl = θ −
(
Lvθ

CpT

)
· ql (6.1)

and the total water mixing ratio, qt, which are both conserved through phase changes of

water (Figure 6.1). Here Lv is the latent heat of vaporization. Neither liquid nor ice cloud

are prescribed at initialisation but are instead formed through the model microphysics.

Throughout the model domain the specification of θl and qt approximate the observed

radiosonde profiles with an idealised linear fit, with the minor inversion at 200 m and

the main inversion above the boundary layer defined by steps in θl over a single grid box

level. Vertically uniform zonal and meridional horizontal winds of -8 m s−1 and -3.5 m

s−1 respectively are prescribed at initialisation, with nudging employed throughout the

model domain. To prevent the spurious reflection of gravity waves off the rigid top, a
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Figure 6.1: Profiles of (a) temperature, (b) total water mixing ratio and (c) relative hu-
midity, from radiosondes launched at 1127 (green dashed line) and 1737 UTC 27 August
(red dashed line) and from the control initialisation (black solid line) and control dry
initialisation (blue solid line).

Newtonian dampening layer is employed between 1.8 and 2.4 km, and to instigate model

turbulence, θl and qt are randomly perturbed between 0.3 and 0.6 km.

In total eight simulations are presented in this chapter. The control runs are setup

so that a total water inversion is not present in the simulation; they are used to test

the sensitivity of the model to microphysical parameters and in the case of control dry,

the sensitivity of the initial setup to inversion moisture. Two further simulations use

the exact setup of the control run except prescribe a water vapour forcing so that an

inversion in total water forms in the region above the mixed layer. Most simulations are

made in 2D for computational efficiency. However two 3D simulations are included to

test the sensitivity to model dimensionality. 2D simulations are made on a model domain

of 4.8 km in the horizontal by 2.4 km in the vertical, using a grid spacing of 10 m in the

horizontal and a staggered grid in the vertical with 5 m resolution between the surface

and 1.2 km, and 10 m resolution above. 3D simulations use a horizontal domain of 4.8 x

4.8 km.

Details of the initial specification of simulations is shown in Table 6.1, where qblt and qinvt

are the initial total water mixing ratios at the BL top and top of the temperature inver-

sion respectively, and Nin is the number of ice nuclei available for primary ice nucleation.
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Table 6.2: Value of the fixed LEM model parameters.

Parameter Value

Latitude (o) 87.35
Longitude (o) -8.55
Surface Temperature (K) 271.0
Surface Pressure (hPa) 1020.5
Sensible Heat Flux (W m−2) -0.08
Latent Heat Flux (W m−2) 2.06
Albedo 0.84
Roughness Length Heat (m) 5x10−5

Roughness Length Momentum (m) 5x10−4

Effective Radius (µm) 7.3
Effective Radius Ice (µm) 25.3

As no measurements of Nin were collected during ASCOS, here we apply the same pri-

mary ice nucleation conditions as specified in the GCSS SHEBA model inter-comparison

(Morrison et al., 2011), where at temperatures below 273.15 K, and at supersaturation

with respect to ice of greater than 5 %:(
∂Ni

∂t

)
PRIMNUC

=
Nin − (Ni +Ns +Ng)

∂t
(6.2)

In control an Nin of 1.7 L−1 is used following Morrison et al. (2011), while in the other

simulations multiples of this value are used to test the sensitivity to ice specification. Sur-

face boundary conditions are defined by fixed fluxes of sensible and latent heat. Their

prescribed values and that of various other parameters used in the model are shown in

Table 6.2. These values are all means of ASCOS observations on 27th August 2008 except

the roughness lengths which are prescribed following Birch (2009). The bi-modal aerosol

distribution described in Section 5.2.1 is used by the Morrison et al. (2005, 2009b) mi-

crophysics scheme to model the activation of aerosol particles to cloud droplets. Aerosol

composition is assumed to be ammonium bisulphate with an insoluble fraction of 30%

(Klein et al., 2009).

Large scale advective forcing of water vapour is applied to the ls2g150m and ls2g150m 3D

simulations to produce a total water inversion, and omitted from the control simulations.

Large scale forcing of heat and other scalars are omitted from all simulations, as is the

specification of wLS . While subsidence and the large scale advection of heat contribute to

the development of the central Arctic BL, these parameters are usually assimilated from

field measurements, none of which were made during ASCOS. Another technique used

to estimate their values is from the output of GCM model simulations, though because

there is often a large uncertainty in their exact magnitude (Stevens et al., 2003) and
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because models often display a high sensitivity to their value (see for instance Chlond

et al. (2004)), this approach was not taken in this study. The consequence of omitting

wLS is that the simulated atmosphere is likely to deviate from the observed atmosphere

over time. Under conditions of strong subsidence which often accompanies sub-tropical

stratocumulus, this may be particularly pronounced. However, because large scale sub-

sidence is typically weak in the Arctic and has a weak influence on the development

of mixed-phase Arctic stratocumulus, its omission should not alter the evolution of the

cloud much in these simulations. It also is important to note that the aim of these simu-

lations is not to reproduce the case study exactly but rather to understand the physical

processes controlling intrusion of the cloud into the inversion. Therefore some deviation

of the model from the observations isn’t of concern so long as the general characteristics

of the case are simulated.

As there are no observations which can be used to provide the advective forcings of

water vapour in the LEM model, the magnitude of the advective source of inversion

layer water vapour in the ls2g150m and ls2g150m 3D simulations is made equal to the

mean advective source modelled in the Solomon et al. (2011) study. Over their analysis

period, Solomon et al. (2011) simulated a 2 g m−3 day−1 advective source of water into

the entrainment zone (Figure 2.14). Following this, in the ls2g150m and ls2g150m 3D

simulations a uniform forcing of 2 g m−3 day−1 is applied to the model grid between zib

and a height 150 m above, where the Brooks (2003) algorithm is used during the model

integration to determine zib. To ensure that the large scale forcing doesn’t influence

the BL development during the spin-up, the prescribed forcing is only applied after four

hours of simulation time.

6.2 Control simulations

The following simulations are chosen as the basis to compare further model runs against.

In the control setup, no total water inversion or large scale inversion layer moisture

source is specified and the initial profiles are as would be expected for Arctic stratocu-

mulus clouds where cloud top is found coincident with the inversion base. The control

simulations are designed so as to facilitate a more meaningful comparison between BL

development in situations where cloud top extends a significant distance into the tem-

perature inversion against cases where it is situated close to the inversion base. However,

because observations were unable to give a background measure of the central Arctic ice

nuclei concentration, the control setup is also used to test the sensitivity of simulations

to Nin and determine a suitable value to use in further simulations.

In the following results unless otherwise stated, profiles refer to vertical profiles; and

timeseries and vertical profiles of selected cloud properties are averages of the entire
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Figure 6.2: control simulation. Timeseries of instantaneous integrated sub-grid TKE
(dashed line) and integrated sub-grid + resolved TKE (solid lines).

horizontal domain (layer averages) made over a five minute time-period. Where no time

averaging has been performed, results are described as instantaneous.

6.2.1 Time development of the control simulation

The model is integrated in time for a total of 20 hours. In the first few hours spin-up is

evident with BL turbulence initially generated from instabilities which develop from the

perturbations of the θl field and TKE restricted to sub-grid scales. Then after 10 minutes,

cloud top radiative cooling starts to drive convective instability generating resolved scale

eddies and a rapid increase in TKE (Figure 6.2). After four hours integrated TKE reaches

a quasi-stable value of around 0.20 m3 s−2 indicating the simulation is fully spun-up.

A cloud forms within the first model time step with a mixed-phase layer between 300

and 600 m which is precipitating ice and snow into a sub-cloud layer below. During the

model spin-up the cloud base falls as turbulence increases and buoyant eddies mix moist

air further down into the BL, until four hours of simulation time where the mixed-phase

layer reaches a quasi-stable depth of between 450 and 500 m. Over the remainder of the

simulation the cloud top lifts at a rate of 0.41 cm s−1, reaching 800 m after 12 hours.

The mixed-phase cloud is predominantly composed of liquid water with the peak domain

average LWC equal to around 0.4 g m−3 and peak domain average IWC equal to 0.026

g m−3, where from here onwards the IWC will be used to refer to the ice + snow water

content, and the IWP will refer to the ice + snow water path.

The BL is well mixed from the surface up to the base of the temperature inversion, zib,

which has a strength of around 4 K just preceding the model spin-up, strengthening to

more than 6 K by the end of the simulation. These values are typical of that observed

during stratocumulus dominated period of ASCOS (see Figure 5.13). The mean (4 - 20

hours) entrainment zone depth is 77 m and the mixed layer top zi is located 43 m above
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the lower limit of the EZ. The peak in the LWC is found to coincide with zib and the

layer maximum cloud top, zct is found 46 m above zib which roughly coincides with zi.

The layer average cloud top is found 29 m above zib. Despite the absence of a large

scale moisture source within the inversion layer, the location of both the layer mean and

maximum cloud tops with respect to zib suggests that the cloud is not capped by the

inversion. While the depth of the extension into the inversion is relatively small compared

to inversion encroachment depths found during ASCOS (Figure 5.16)and other at other

Arctic sites (Sedlar et al., 2012), it is not insignificant, and the depth is quasi-constant

for the entire duration of the simulation suggesting that the vertical distribution of cloud

in the inversion is stable.

The instantaneous 2D cross-sections of LWC and the vertical velocity output at 12 hours

are shown in Figure 6.3 and 6.4. Cloud top is situated in the vicinity of the temperature

inversion which is marked by a sharp θe gradient. LWC is greatest in the region below

cloud top reaching a maximum of 0.57 g m−3. Near cloud top the variability in LWC is

large and entrainment is evident in the areas where the mixing of dry free-tropospheric

air and saturated mixed layer air leads to a greatly reduced water content. The bottom

of the liquid layer is less well defined than top with cloud base situated between 350 and

600 m.

The variation in θe below cloud top is small and the entire cloud and sub-cloud layer can

be considered well-mixed. Different scales of motion are evident at different altitudes,

with the largest most dominant eddies occurring in the mixed layer. Within the liquid

cloud, the largest eddies have a diameter of around 400 m and vertical motions range from

-3.5 to 2.5 m s−1. Within the mixed-layer downdraughts are stronger than updraughts

and are limited to a narrower horizontal extent which is consistent with turbulence caused

by longwave radiative cooling at cloud top. Condensation is confined to the updraughts

and evaporation to the downdraughts; therefore at any level within the cloud the LWC

is greater in the updraught than the downdraughts, and the peak LWC’s are found at

the top of updraughts (Wood, 2012). This asymmetry is also reflected in the difference

between the cloud base for upward and downward moving branches of the circulation

(Wood, 2012).

Figures 6.5 and 6.6 compare timeseries of the LWP and IWP from the control simulation

against ASCOS retrievals over the same period. So as to allow a better comparison

between the observations where cloud top extended deep into the inversion and the

control simulation where cloud top and zi are much closer together, Figures 6.5 and

6.6 also compare the LWC and IWC retrievals vertically integrated from the cloud base

up to the height of zib,
∫ zib
zcb

LWC dz and
∫ zib
zcbi

(IWC) dz respectively. As the first four

hours of simulation were marked by model spin-up, in Figures 6.5 and 6.6 and henceforth

observations are shifted so that 1137 UTC 27th August corresponds to four hours of
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Figure 6.3: control simulation. Instantaneous horizontal cross-section of LWC output at
12 hours of simulation time with 1 K contours of θe from between 275 and 285 K overlaid
(black lines).

Figure 6.4: control simulation. Instantaneous horizontal cross-section of vertical velocity
output at 12 hours of simulation time. Also shown are the liquid cloud base and top
(thick black lines).
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Figure 6.5: control simulation. Timeseries of LWP.

Figure 6.6: control simulation. As Figure 6.5 except for the IWP.

simulation time and the 4 - 20 hour simulation period corresponds to 1137 UTC 27th -

0337 UTC 28th August.

It is evident from Figures 6.5 and 6.6 that while a significant fraction of the retrieved

liquid cloud is frequently situated above the base of the temperature inversion, very little

of the ice and snow mass is situated there. Initially after model spin-up the control

simulation significantly overestimates the integrated mass of liquid cloud water with the

simulated LWP up to twice that observed, then after 10 hours the LWP is similar to the

upper limit of observations. The simulated liquid cloud is also deeper extending over an

average depth of 501 m between the cloud base and inversion base compared to a depth

of 395 m in the observations.

The average IWP is slightly underestimated in the control simulation, noting that as

described in Section 5.1.1.3 the relative errors in the determination of IWP may be up

to a factor of two. Observations display considerably more variability than captured in

the model with values ranging by a factor of 100, however some of the difference is likely

explained by the fact that the observational retrievals are single column measurements

as the cloud advects past, while model results are domain averages thus some of the
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small-scale variability is smoothed out. Correctly representing the phase composition of

clouds is a common struggle for modelling studies (Harrington et al., 1999; Luo et al.,

2008a; Morrison et al., 2003), especially where the atmosphere is supercooled meaning

ice microphysical mechanisms such as the Wegener-Bergeron-Findeison instability can

lead to the rapid glaciation of the cloud. The reasonable simulation of both the absolute

and relative magnitudes of the liquid and ice cloud and their persistence throughout the

simulation suggests that the model does a reasonable job at simulating the microphysical

processes.

6.2.2 The sensitivity of the control simulation to the ice nuclei concen-

tration

A number of runs were made to test the sensitivity of the control simulation to the

concentration of ice nuclei, Nin. The development of these simulations was generally

consistent with development of the control run, however the increase in Nin led to higher

ice and lower liquid water contents. Table 6.3 compares cloud water statistics for the

range of control simulations. Between control and control Ninx2 the increase of Nin from

1.7 to 3.4 L−1 leads to an average increase in the
∫ zib
zcbi

(IWC) dz of over 20 % and a

decrease in
∫ zib
zcb

(LWC) dz of more than 30 %, which is consistent with the findings of

Prenni et al. (2007) and Morrison et al. (2008). This is also accompanied by an 10 %

decrease in the depth of the liquid layer and slight increase in the depth of the ice layer.

The entrainment rate, we, which in the absence of a large scale subsidence forcing is

calculated as:

we =
∆zi
∆t

(6.3)

is found to decrease as Nin is increased (Table 6.4). All values are reasonable for stra-

tocumulus clouds (e.g. Stevens et al., 2003). Both the magnitude of the domain minimum

and maximum vertical velocities and of the integrated TKE also decrease as Nin is in-

creased. This decrease in turbulence is associated with a reduction in the magnitude of

the buoyancy production of TKE, which in turn is due to a fall in the longwave cooling

rate as a greater amount of water is distributed away from the liquid into the ice phase.

The drop in the entrainment rate is consistent with the fall in ML turbulence and has

been simulated in Fridlind et al. (2012).

Figures 6.7 and 6.8 compare profiles of the layer average LWC and cloud droplet density;

and IWC and ice + snow crystal density respectively from the each of the control sim-

ulations. Profiles are temporally averaged over 4 - 20 hours and have been normalised

before the time averaging is carried out so that the liquid or ice cloud base height is

equal to zero and the inversion base height is equal to one. Within the ice layer, crystal
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Figure 6.7: Comparison of profiles of liquid cloud properties with height normalised so
inversion base height is equal to one and cloud base zero, for the control simulations.
Solid lines are the time-averaged (4 - 20 hours) profiles of (a) LWC, and (b) droplet
density. Dashed lines are the ± 1 standard deviations.

Figure 6.8: As for Figure 6.7 except for the (a) IWC, and (b) ice + snow crystal density.
Profiles normalised by the inversion base and the ice cloud base.
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Table 6.3: Comparison of the time-averaged cloud water statistics of the control simula-
tions (4 - 20 hours).

Data zib − zcb
∫ zib
zcb

(LWC)dz zib − zcbi
∫ zib
zcbi

(IWC)dz

(m) (gm−2) (m) (gm−2)
µ σ µ σ µ σ µ σ

Observations 395 82 57.17 14.17 618 68 9.59 13.38
control 501 29 92.97 5.97 713 72 8.94 2.20
control Ninx2 448 41 62.18 4.97 729 53 10.95 1.41
control Ninx3 433 54 48.27 6.69 737 55 11.99 1.45
control Ninx4 419 60 39.68 6.43 726 51 12.60 1.18

numbers increase upwards through the cloud with the maximum number densities found

slightly below the ice layer top, which is situated roughly coincident with the base of

the inversion. Approximately two thirds of the total number is made up of ice crystals

and in all simulations primary ice nucleation in the major source of crystal number. Ice

and snow mass peaks at 60 % of the way up the ice cloud layer. This is higher than the

observations where the peak was found 40 % of the way up the cloud, however agrees

with the surface-base retrievals of mixed-phase cloud made during SHEBA where the

peak was a broad maximum in the upper-middle of the cloud (Shupe et al., 2006).

Nucleation and deposition of water vapour onto the growing ice crystals are the largest

microphysical sources of ice, while sublimation reduces ice in the sub-cloud layer. Snow is

primarily formed from the deposition of water vapour onto the growing particles, though

droplet accretion and ice-to-snow autoconversion also contribute to its microphysical

source above the liquid cloud base. As for ice, sublimation leads to a net microphysical

loss of snow in the sub-cloud layer. The increase in Nin over the range of control simula-

tions leads to a linear increase in the ice + snow crystal density and in the mixed-phase

region of the cloud. The increase in Nin also causes a change in the ice mass which is

greatest as Nin is doubled from 1.7 to 3.4 L−1. Comparing the retrieved IWC profile to

the simulations, the best agreement with the peak IWC is found from the control Ninx2

run.

Above the lowest 20% of the liquid cloud; where the layer average LWC is small due to

variability in the cloud base, the LWC increases linearly with height until its peak at zib.

Within the inversion the LWC drops off rapidly. This distribution of liquid cloud matches

that found by Sedlar et al. (2012) from an analysis of inversion encroaching clouds ob-

served at the ASCOS, SHEBA and Barrow sites. Condensation in cloudy updraughts is

the major microphysical source of liquid droplets and evaporation in downdraughts the

largest microphysical sink. In the main body of the cloud the droplet number density is

approximately constant with height and so droplets increase in size upwards through the
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Table 6.4: As in Table 6.3 except for the time-averaged dynamical statistics.

Data TKE wmax wmin we
(m2 s−3) (m s−1) (m s−1) (cm s−1)
µ σ µ σ µ σ µ σ

control 0.21 0.04 2.04 0.28 -2.44 0.33 0.41 0.02
control Ninx2 0.16 0.03 1.90 0.24 -2.33 0.25 0.37 0.02
control Ninx3 0.15 0.02 1.79 0.22 -2.27 0.26 0.33 0.02
control Ninx4 0.13 0.02 1.73 0.21 -2.25 0.26 0.30 0.02

liquid layer. Mean simulated droplet number concentrations were in the order of 15 - 20

cm−3 which is low for marine clouds but within the range of Arctic observations (Gultepe

et al., 2004; Morrison et al., 2008; Shupe et al., 2006). The maximum LWC and droplet

number decreases as Nin is multiplied, however the height of the peak LWC is always

located in the top 10 % of the liquid layer (Tsay & Jayaweera, 1984). In the retrievals

the LWC is distributed more evenly through the cloud and the maximum LWC is found

slightly lower in the liquid layer. Each of the simulations overestimates the maximum

LWC.

Overall the simulations show reasonable agreement with the observed liquid and ice cloud

properties. The vertical structure of the cloud water contents follows a typical distribu-

tion of Arctic mixed-phase stratocumulus (Shupe et al., 2008), and this is reproduced in

each of the simulations. The liquid cloud simulated in the control Ninx4 run has the clos-

est mean depth and peak LWC to the observations however
∫ zib
zcb

LWC dz is only around

two thirds of the observed value. The control Ninx2 run has the closest agreement with

the
∫ zib
zcb

LWC dz observations and the best agreement to the retrieved cold-phase cloud.

6.2.3 Mean profiles of fluxes and tendencies in the control Ninx2 sim-

ulation

The control Ninx2 simulation was found to have the closest agreement to the observed

cloud, and so henceforth will be considered as the standard reference simulation against

which to compare further simulations. As was detailed in the previous section the devel-

opment of the control Ninx2 simulation was similar to that found in control run except

that the change in cloud microphysics led to a redistribution of cloud between the liquid

and ice phases, and weaker turbulence led to a shallower liquid layer. Within the con-

trol Ninx2 simulation the vertical distribution of the LWC was consistent to that found

in the control run and zct was located an average of 47 m above zib. Thus despite no large

scale water vapour advection the control Ninx2 run also cloud top encroachment into the

inversion layer. So that a detailed comparison can be made between control Ninx2 and
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Figure 6.9: control Ninx2 simulation. Profiles of (a) θe, (b) the resolved w′θ′v (black
line) and the resolved w′θ′ (blue line) with height normalised so that the surface height
is equal to zero and the inversion base height, zib is equal to one. Solid lines are the
time-averaged (4 - 20 hours) profiles and dashed lines are the ± 1 standard deviations.
The grey shaded area denotes the mean entrainment zone and the horizontal red lines
the liquid cloud boundaries.

subsequent simulations, profiles of the w′θ′v as well as the budgets of θ, TKE and the

hydrometer species will now be examined.

6.2.3.1 Buoyancy fluxes

Figure 6.9 shows profiles of equivalent potential temperature, θe, the resolved vertical heat

flux, w′θ′ and the resolved vertical flux of virtual potential temperature, w′θ′v averaged

over 4 - 20 hours, where profiles have been normalised before the time averaging is

performed so that the surface height is equal to zero and the inversion base height, zib is

equal to one. These values are the standard heights used to normalise the STBL (Stull,

1988). The layer maximum/minimum cloud boundaries and the entrainment zone are

also marked.

θe is conserved under both dry and moist adiabatic processes and its vertical derivative

gives a measure of the stability of an atmospheric column. A constant θe profile indicates

a well mixed layer while an increasing θe profile with height indicates a stable region. The
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resolved w′θ′v is a measure of eddy transport of heat over vertical layers, with motions in

regions of positive w′θ′v increasing the stability of the layer while motions in regions of

negative w′θ′v decreasing the stability of the layer. In Figure 6.9 the layer minimum cloud

base is found at a normalised height of 0.4 while the layer mean cloud base (not shown)

is found at normalised depth of 0.5. As is typical for stratocumulus the maximum w′θ′v

value is found within the cloud layer (Nicholls & Leighton, 1986). Above the layer mean

cloud base the sharp increase in w′θ′v is associated with latent heat release (Bretherton &

Wyant, 1997), while the layer of negative w′θ′v below the cloud base makes the sub-cloud

layer a sink for turbulence. Negative w′θ′v is associated with decoupling (Bretherton

& Wyant, 1997; Turton & Nicholls, 1987), though the mean θe profile is well mixed in

the sub-cloud layer suggesting the ML extends from the surface up to the base of the

inversion (bottom of the entrainment zone).

Above zib, the equivalent potential temperature sharply increases by a mean value of 6 oC

over the depth of the entrainment zone. The EZ has an average thickness of 75 m while

zct and the region above the inversion base contains around 10 % of the liquid cloud.

Generally the boundaries of the EZ as determined by the Brooks (2003) algorithm are

consistent with the region of negative w′θ′v; a fundamental definition of the entrainment

zone (Driedonks & Tennekes, 1984) - signifying the consumption of TKE at the expense

of entraining less dense inversion layer air into the mixed layer below. The negative peak

in w′θ′v roughly corresponds to the height of the layer maximum cloud top. In the cloud

driven mixed layer w′θ′v is up to 30 % greater than the vertical heat flux, w′θ′ indicating

that moisture differences contribute significantly to w′θ′v.

6.2.3.2 Potential temperature tendency

Figure 6.10 show the time-averaged θ budget in which the averaging and normalisation

of profiles has been performed as for Figure 6.9. In Figure 6.10, TOTAL refers to the net

θ tendency, Dθ/Dt; RAD is the tendency due to radiative heating/cooling, (∂θ/∂t)RAD;

MPHYS is the tendency due to cloud microphysics, (∂θ/∂t)MPHY S ; and EDDY is the

tendency due to vertical turbulent transport which is calculated from the divergence of

the vertical heat flux, ∂w′θ′/∂z. The θ budget is give in Equation 2.6.

Longwave radiative cooling is the dominant forcing in stratocumulus, generating insta-

bilities which lead to turbulent mixing and driving cloud top entrainment. Longwave

cooling dominates the radiative contribution to the θ budget in the uppermost third of

the liquid cloud and peaks at the base of the inversion with a minimum tendency of

around -70 K day−1. In the bottom two thirds of the liquid cloud the radiative heating

rate is positive. This is mostly due to longwave heating which occurs because the absorp-

tion of upwelling longwave radiative emitted from the relatively warm surface is greater
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Figure 6.10: control Ninx2 simulation. As for Figure 6.9 except for the θ budget. Terms
described in text.

Figure 6.11: control Ninx2 simulation. As for Figure 6.9 except for the (a) TKE budget
and (b) total TKE. Terms described in text.
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than emission from the lower region of the cloud. Throughout the cloud the contribution

of the shortwave radiation to the net radiative heating rate is minor with a maximum

tendency of less that 5 K day−1 found near cloud top.

While the peak in the longwave radiative cooling occurs in the lower EZ, the flux of cooled

air downwards away from the layer and the heat from condensation partially balance the

radiative cooling here and the largest net cooling of θ occurs coincident with the cloud

top in the upper part of the EZ, where radiative cooling is negligible. Here the net θ

tendency is a cooling of slightly less than 40 K day−1 which peaks at the height of the

layer maximum cloud top. Cooling in this region is mostly due to the entrainment of

heat away from here into the layer below. Within the cloudy well mixed layer the net θ

tendency is slightly negative, close to zero with the diabatic heating terms balanced by

cooling from eddy transport.

6.2.3.3 Turbulent kinetic energy tendency

Figure 6.11 (a) and (b) shows the normalised, time-averaged TKE budget and total

TKE profiles where TOTAL refers the net TKE tendency, DTKE/Dt; SHEAR is the

tendency due to shear production, (∂TKE/∂t)SHEAR; BUOY is the tendency due to

buoyancy, (∂TKE/∂t)BUOY ; TRANS is the tendency due to vertical transport of TKE,

(∂TKE/∂t)TRANS ; PRES is the tendency due to pressure, (∂TKE/∂t)PRES ; and DISP

the loss in TKE due to dissipation, (∂TKE/∂t)DISP . The TKE budget is given in

Equation 2.8.

Total TKE increases with height through the BL and reaches a maximum near the top of

the cloud layer, while a secondary maxima is present in the total TKE profile in the sub-

cloud layer, close to the surface. The peak in total TKE near the cloud top coincides with

the height where the buoyancy production of TKE is greatest indicating that turbulence

in the cloud is mostly driven by instability generation from cloud processes; longwave

radiative cooling near cloud top and latent heating/cooling. This distribution is typical

for Arctic mixed-phase stratocumulus (e.g. Pinto, 1998).

The TKE maxima near the surface is shear-driven. Despite the shear-driven TKE peak

near the surface, over the averaging period shear generation is less than turbulent dissi-

pation, leading to a net TKE loss of up to -0.0017 m2 s−3. Hence the region close to the

surface is a net sink of TKE over the averaging period. Within the EZ, negative w′θ′v

due to entrainment leads to the consumption of TKE. A local maxima in the dissipation

rate is also found here and there is a net transport of TKE from the EZ and upper cloud,

towards the liquid cloud base and the sub-cloud layer below which also reduces the TKE.

The pressure term is a positive source of TKE in the EZ and overbalances the other terms

leading to peak tendency of 4x10−5 m2 s−3. The pressure term is also positive in the top
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Figure 6.12: control Ninx2 simulation. As for Figure 6.9 except for (a) the mean water
species mixing ratios and (b) the mean water content tendencies. Note that in (a) the
upper x-axis is for the water vapour and total water mixing ratios and the lower x-axis
the liquid water and ice + snow water mixing ratios.

5 % of the mixed layer and contributes with the buoyancy to a net source of TKE here.

Through the rest of the mixed layer the net TKE tendency is a loss of -3x10−6 m2 s−3.

6.2.3.4 Water content tendencies

Figure 6.12 shows profiles of the time-averaged water constituent mixing ratios and the

net water content tendencies normalised in height as for the previous figures. Because

ice + snow water mixing ratios are small relative to the liquid and water vapour mixing

ratios, the total water mixing ratio is primarily composed of liquid water and water

vapour within the cloud and water vapour elsewhere. The vertical distribution of the

total water mixing ratio is uniform between the mixed layer, but falls by almost 0.1 g

kg−1 within the lower EZ, before returning to its mixed layer value at cloud top. Through

the cloud layer water vapour decreases until a minimum at the height of the peak LWC.

Above this height water vapour increases to a value comparable to that found at cloud

base. This significant positive gradient of water vapour across the lower part of the EZ

is the result of the initialisation - the falloff of qt above the inversion base wasn’t sharp

enough to prevent qv increasing above the cloud top. The difference of qv across the
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gradient is large enough to be considered a humidity inversion. It might be expected

that the excess of water vapour in this region would have been rapidly transported into

the BL and a more typical STBL water vapour profile would have formed (Figure 2.1),

however the presence of the humidity inversion in the average profiles between 4 -20 hours

demonstrates that the dynamical-cloud microphysical interaction within the BL are able

to support the humidity even where no large scale advection of moisture is present.

From Figure 6.12 (b) it can be seen that the entire BL is a sink of total water except

in shallow regions at the base and top of the EZ. The greatest loss of total water occurs

between these layers, with the negative water vapour tendency of more than -3.5 g m−3

day−1 overbalancing the positive liquid water tendency of around 2 g m−3 day−1 and

leading to a loss of total water of -1.5 g m−3 day−1. Water vapour is being lost throughout

the EZ, however the loss is not distributed evenly and instead peaks at a height slightly

below the centre of the EZ where the minima of the water vapour profile is found. This

unequal drying centred around the humidity inversion base, supports the maintenance

of the humidity inversion. Liquid water loss is greatest within the cloud layer with the

tendency equal to -0.25 g m−3 day−1 here, while only slightly negative in the sub-cloud

layer below. Water vapour loss is also around -0.25 g m−3 day−1 throughout the entire

mixed layer and this results in mean water vapour and total water mixing ratio profiles

being nearly 0.2 g kg−1 drier than at initialisation. Ice isn’t found above zib, however a

net tendency of 0.07 g m−3 day−1 is found in the region below EZ and of 0.05 g m−3

day−1 in the bottom half of the cloud, whilst the layer in-between is losing ice and snow

at a rate of 0.025 g m−3 day−1.

Normalised time-averaged water content tendency terms are shown in Figure 6.13 where

TOTAL refers the net water content tendency, Dq/Dt; MPHYS is the tendency due

to cloud microphysics, (∂q/∂t)MPHY S ; EDDY is the tendency due to vertical turbulent

transport which is calculated from the divergence of the vertical moisture flux, ∂w′q′/∂z;

and SED is the tendency due to sedimentation of particles, (∂q/∂t)SED. The water

content budget are given in Equation 2.7. The tendency due to cloud microphysics in

the LEM is a balance between number of processes as described in Equation 3.14. The

microphysical tendency of ql depends on the activation of aerosol to cloud droplets, con-

densation/evaporation, and the parametrized autoconversion of liquid droplets to rain

droplets, ice and snow. The tendencies for the ice and snow mass depend on ice nucle-

ation, deposition of water vapour onto ice and snow/sublimation, freezing and melting

and autoconversion.

The positive liquid water tendency in the lower EZ is primarily due to eddy transport

from the mixed layer below, with microphysics also increasing the water content here and

at the cloud base. Fallout of cloud droplets from the EZ is significant, removing liquid

water from the EZ and transporting it uniformly across the region below. Generally the
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Figure 6.13: control Ninx2 simulation. As for Figure 6.9 except for the (a) qt budget, (b)
qv budget, (c) ql budget and (d) qi + qs budget. Terms described in text.
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ice budget terms follow similar profile shapes to the LWC terms, except that in the ice

cloud the profiles are skewed to extend through the sub-cloud layer towards the base

of the ice layer at the surface. Fallout of ice crystals and snow from the upper cloud

to the bottom is mostly offset by eddy transport upwards through the cloud and a net

microphysical source of snow and ice above the liquid cloud base and microphysical sink

below.

The water vapour budget is only dependent on the cloud microphysical sources/sinks and

from eddy transport. In the upper part of the entrainment zone (above zct), there is net

evaporation while through the rest of the EZ condensation leads to a water vapour loss.

Eddy transport has the reversed distribution - a down-gradient transport of water vapour

from the humidity inversion top to its base (negative w′q′v) depletes the upper EZ of water

vapour while moistening the cloudy part. The combined sources/sinks contribute to the

negative water vapour tendency shown in Figure 6.12 (b). Vertical profiles of the water

vapour tendency terms illustrate that condensation below the cloud top is strong enough

to overbalance the eddy source of water vapour and produce the vertically unequal drying

profile which maintains the humidity inversion. As liquid water is lost from the EZ by

sedimentation, and because the only source of water vapour to the cloudy region of the

EZ is from the top of the humidity inversion, this means that the humidity inversion also

maintains the cloud in this layer. Therefore the system is self-sustaining so long as the

eddy transport of water vapour can replenish the lower EZ with enough water vapour for

the region to stay saturated.

Dominant cloud microphysical processes are the sublimation of ice and snow which lead to

a net microphysical source of water vapour in the sub-cloud layer and evaporation which

is a source of water vapour in the centre of the cloud. Condensation and deposition

lead to a net microphysical loss of water vapour near the liquid cloud base and near

cloud top. Eddy transport partially balances the microphysical loss/gain throughout the

cloud. Microphysical terms sum to zero when considering the total water tendency and

the largest contribution to the budget comes from the fallout of moisture from the top

third of the liquid cloud to the atmosphere below.

6.2.4 Sensitivity of the control setup to EZ moisture

Although it is rare for observations and modelling studies to explicitly calculate the

boundaries of the inversion layer exactly, it is often often assumed in sub-tropical and

mid-latitude marine stratocumulus that the cloud top is roughly coincident with the base

of the inversion layer (e.g. Paluch & Lenschow, 1991; Stevens et al., 2007; Tjernstrom &

Rune, 2003). While Arctic stratocumulus differ from low-latitude marine stratocumulus

in several ways; including the presence of ice and snow rather than drizzle, weak synoptic
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Table 6.5: Time-averaged dynamical statistics of the control dry simulation (4 - 20 hours).

Data TKE wmax wmin we
(m2 s−3) (m s−1) (m s−1) (cm s−1)
µ σ µ σ µ σ µ σ

control Ninx2 0.16 0.03 1.90 0.24 -2.33 0.25 0.37 0.02
control dry 0.18 0.04 1.96 0.26 -2.42 0.28 0.37 0.03

subsidence and a much weaker solar radiation flux. In Arctic stratocumulus the cloud

top is only expected to encroach into the temperature inversion when a strong specific

humidity inversion is present (Sedlar & Tjernstrom, 2009; Sedlar et al., 2012), else the

cloud top and inversion base heights are also expected to be equal. Despite the absence of

a total water inversion in the control setup, in each of the control simulations presented

so far the time-averaged layer maximum cloud top, zct was found to be situated more

than 40 m above zib at a height which was found to be roughly consistent with zi. Whilst

the layer average cloud top was situated around 30 m above zib.

Profiles of the water vapour budget terms in Figure 6.13 suggest that the sustainment

of the humidity inversion in the absence of moisture advection into the inversion layer,

is dependent on the condensation-sedimentation removing water vapour from the lower

part of the EZ, thus maintaining the vertical gradient in the water vapour and the eddy

transport of water vapour down the inversion. As described in briefly Section 6.2.3.4, the

initial specification of the qt profile leads to the formation of the water vapour inversion.

The initial setup employed in the control simulations was of θ and qt profiles which were

well mixed below zib, while above the inversion base there is a step up of θ, followed

by a gradual increase through the rest of the model domain. Above the inversion base,

qt is gradually reduced from its mixed layer value (Figure 6.1). These setup profiles are

similar to those used in other large-eddy simulations of stratocumulus (e.g. Stevens et al.,

2005), except that in other studies qt is typically stepped down at zib.

To examine whether the encroachment of cloud into the inversion in the control simula-

tions is entirely dependent on the presence of the specific humidity inversion, a further

simulation - control dry is presented. The control dry simulation is initialised using the

exact conditions specified in the control Ninx2 run, except that qt is reduced above the

top of the mixed layer (Figure 6.1). In the control dry run the value of qt at the mixed

layer top is 0.7 g kg−1 less than specified in control Ninx2 simulation, which results in a

step loss in the relative humidity by around 25 % over a single grid box. Above the top

of the mixed layer, the vertical gradient in qt is equal in both simulations, falling to a

minimum of 1 g kg−1 at heights of 1.2 and 1.6 km in the control dry and control Ninx2

simulations respectively.
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Figure 6.14: control dry simulation. As for Figure 6.9 except for the (a) mean hydrome-
teor mixing ratios and (b) w′θ′v (solid black line) ±1 standard deviations (dashed black
lines) and vertical heat flux (solid blue line). Note that in (a) the upper x-axis is for the
water vapour and total water mixing ratios and the lower x-axis the liquid water and ice
+ snow water mixing ratios.

Although there is a small increase in the integrated TKE, the dynamics of the control dry

run are otherwise generally consistent with that found in the control Ninx2 simulation,

with vertical velocities of a similar magnitude and the mean entrainment rate unchanged

(Table 6.5). The cloud layer simulated in the control dry run is also similar to that found

in the control Ninx2 simulation, however the liquid layer is slightly shallower with a mean

depth of 429 m and this results in a smaller mean LWP of 58.4 g m−3. The alteration

of the initial qt profile in the control dry run means that the vertical distribution of

water vapour and the hydrometeors more closely resembles that found in a prototypical

sub-tropical stratocumulus; qt well-mixed through the cloud layer up until the base of

the inversion and qv decreasing upwards through the cloud layer then more dramatically

through the temperature inversion above (Figure 6.14 (a)). However, even though the

water vapour decreases through the entire inversion, its fall directly above zib is not

particularly sharp.

Similarly to the control Ninx2 simulation, zib coincides with the peak in the LWC and

liquid water is found above zib. Thus even without a humidity inversion, liquid cloud

is able to extend into the temperature inversion. Over the entire 4 - 20 hour averaging
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Figure 6.15: control Ninx2 simulation. Instantaneous horizontal cross-section of LWC in
the vicinity of the entrainment zone, output at 12 hours of simulation time and overlaid
with 1 K contours of θe. Also shown are the layer average entrainment zone boundaries
(black dot-dash lines), zi (black solid line), the layer average cloud top (black solid line),
and the local transition zone region (grey shaded area).

Figure 6.16: control dry simulation. As for Figure 6.15 except for the control dry simu-
lation.

period, the mean depth that the layer maximum cloud top encroaches into the inversion

is 41 m while the depth that the layer average cloud top encroaches above zib is 21 m.

The layer average depth is around two thirds of the value found in the control Ninx2

run, suggesting the change to the thermodynamic profiles has impacted on the cloud top

encroachment depth, though the drying of the initial profiles isn’t significant enough for

the cloud to be capped by the inversion.

As was found in the control Ninx2 simulation, the time-averaged normalised w′θ′v is

negative between the boundaries of the EZ (Figure 6.14 (b)). As discussed in Section

2.1.4, the EZ is the region in which non-turbulent free tropospheric air is mixed with

turbulent air from the mixed layer below, which is the region where w′θ′v is less than zero

(Driedonks & Tennekes, 1984). This supports the validity of the Brooks (2003) algorithm
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in its determination of the EZ boundaries.

The structure of the entrainment zone differs between the two simulations as shown in

the 2D cross-sections of the instantaneous LWC output at 12 hours and overlaid with

contours of θe in Figures 6.15 and 6.16. The local transition zone boundaries are also

marked in each figure by the grey shaded region, while the layer average cloud top

height, zct, the area average altitude of the peak in the vertical gradient of the potential

temperature, zi and the height of the EZ base, zib and top, zit; which are calculated as

the layer average of the transition zone boundaries, are marked by horizontal lines. As

discussed in Section 2.1.4 the transition zone is the local boundary over which mixing

occurs. Comparing the output of the two simulations it is noticeable that there is less

variability in the position of the cloud top in the control Ninx2 simulation, with the layer

mean and maximum cloud tops closer together. Both simulations also illustrate that zi

is almost equal to the layer maximum cloud top, suggesting it is useful as a measure of

the BL top.

Figure 6.17 shows the normalised time-averaged water content budgets for the control dry

simulation. Comparing the time-averaged water content tendencies to those found for the

control Ninx2 run in Figure 6.13, a change in the vertical profile of the moistening/drying

is evident with both the liquid water and water vapour tendencies increasing through

most of the EZ. The increasing liquid water content in the EZ is due to liquid water

overshooting the top of the mixed layer but only evaporating in the upper part of the EZ

- where the humidity gradient has the largest magnitude. In the lower part of the EZ,

sedimentation of liquid returns some water back to the ML but the overall tendency is

positive. This evaporation causes the water vapour content to increase in the layer.

Net condensation is able to occur in this region as gradient of both the temperature and

water vapour profiles directly above the inversion base is relatively small. The normalised

θ tendency for the control Ninx2 run in Figure 6.18 shows that this profile shape is due

to peak cooling of the EZ occurring above zib. This is despite the peak in the longwave

radiative cooling occurs at the inversion base. With the combination of evaporative and

radiative cooling; and the down gradient eddy transport of heat from inversion top to

base, causing the peak loss of around 80 K day−1 to be found towards the top of the

EZ at a height coincident with zct. In the region directly above zib where there is net

condensational heating, the cooling is weaker at less than 10 day−1.

The extension of zct an average of 41 m above zib, and the layer average cloud top 21

m above zib demonstrates that under certain circumstances cloud is able to encroach

into the inversion layer even when a humidity inversion is not present. The height at

which cloud is able to encroach into the inversion is dependent on the relative humidity

of the EZ; which on a macrophysical scale depends on how sharply the water vapour

profile drops off above zib, how sharply the temperature increases across the inversion,
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Figure 6.17: control dry simulation. As for Figure 6.13 except for the (a) qt budget, (b)
qv budget, (c) ql budget and (d) qi + qs budget in the control dry simulation.

and on the absolute water vapour and temperatures in the ML. The relatively smooth

transition from the ML to the EZ in the control dry simulation supports an extension of

cloud top into the inversion layer; though it is smaller than where a humidity inversion

is also present, and suggests that the assumption that the mean cloud top height (in a

horizontal sense) and the inversion base are always coincident within the STBL may be

erroneous.
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Figure 6.18: control dry simulation. As for Figure 6.10 except for the control dry simu-
lation.

6.3 Simulation of cloud top encroachment into the inver-

sion

6.3.1 Time development of the ls2g150m simulation

As in the control simulations the model is integrated in time for a total of 20 hours.

The first four hours of simulation are marked by model spin-up and the integration of

ls2g150m is identical to the control Ninx2 simulation. After four hours the large scale

advective source of water vapour is applied to the model domain in the region between

zib and zib + 150 m. Between 5 and 10 hours the advected water vapour increases the

relative humidity inside the temperature inversion to saturation, and the cloud top rises

further into the temperature inversion from its initial quasi-stable height coincident with

zi. The time development of the depth cloud top rises into the inversion, zi+ and the

percentage of liquid water mass inside the inversion, qi+l are shown in Figures 6.19 and

6.20 respectively for both the control Ninx2 and ls2g150m simulations. The cloud top

was an average of 44 m inside the inversion in the control Ninx2 simulation and this

height roughly coincided with the height of zi. In the ls2g150m simulation it takes 10

hours for the cloud top to reach a quasi-stable depth inside the inversion. Over the 4 -

20 hour comparison period the average zi+, and qi+l simulated in ls2g150m is 74 m and
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Figure 6.19: ls2g150m simulation. Timeseries of zi+.

Figure 6.20: ls2g150m simulation. As Figure 6.19 except for qi+l .

Figure 6.21: ls2g150m simulation. As Figure 6.19 except for LWP.

Figure 6.22: ls2g150m simulation. As Figure 6.19 except for IWP.
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Table 6.6: Time-averaged cloud water statistics of the ls2g150m simulation (4 - 20 hours).

Data zib − zcb
∫ zib
zcb

LWC dz zib − zcbi
∫ zib
zcbi

(IWC) dz

(m) (gm−2) (m) (gm−2)
µ σ µ σ µ σ µ σ

Observations 395 82 57.17 14.17 618 68 9.59 13.38
control Ninx2 448 41 62.18 4.97 753 61 10.97 1.42
ls2g150m 495 160 65.02 2.56 756 71 11.47 1.48

15 % respectively which is 27 m and 5 % more than simulated in control Ninx2. The

layer average cloud top is located at a mean depth of 54 m above zib, and zi is found at

a mean depth of 49 m above zib.

The well mixed region of the liquid cloud simulated in ls2g150m is also deeper than

that simulated in control Ninx2 and contains more liquid mass; which is consistent with

the entrainment of moist humidity inversion air into the mixed layer (Table 6.6). The

combination of a deeper well-mixed liquid layer and the extra inversion layer cloud growth

results in an LWP which is an average of 10 % greater than in the control Ninx2 simulation

(Figure 6.21). As in each of the control simulations, ice and snow is precipitated from

the mixed-phase cloud between zib and zcb and in the sub-cloud layer below down to

the surface. The difference between the IWP simulated in ls2g150m and control Ninx2

is small (Figure 6.21). we is 15 % greater than in the control Ninx2 run with a mean

value of 0.42 cm s−1. In Figure 6.23 (a) and (b), normalised profiles of the simulated and

retrieved LWC and IWC are compared as for Figures 6.7 (a) and 6.8 (a) respectively.

Despite a larger peak LWC in the ls2g150m simulation, the shape of the normalised profile

throughout the mixed layer and inside the inversion is consistent with that simulated in

control Ninx2. The peak IWC is also greater in the ls2g150m simulation and is situated

slightly lower inside the mixed layer, which is closer to the observed profile.

Despite the extra growth of cloud inside the inversion the time development of the

ls2g150m simulation is generally consistent with the control Ninx2 simulation. However

one interesting difference in the development of the simulation is illustrated in Figure

6.24 which shows the timeseries of integrated TKE. In the control Ninx2 simulation in-

tegrated TKE is quasi-stable after the model spin-up with an average value of 0.17 m3

s−2. However in the ls2g150m simulation integrated TKE falls between 5 to 10 hours as

the cloud top rises further into the temperature inversion, before reaching a quasi-stable

value of around 0.11 m3 s−2 after 10 hours of simulation time. This quasi-stable value

is over a third less than mean value simulated in the control Ninx2 run, and so marks a

significant drop in turbulence which is associated with cloud encroaching into the inver-

sion layer. This suppression of TKE in the ls2g150m simulation marks a change in the

dynamics of the cloud system and will be explored over subsequent sections.
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Figure 6.23: ls2g150m simulation. Time-averaged (4 - 20 hours) profiles of the (a) LWC
and (b) ice + snow water content. Profiles are normalised so inversion base height is
equal to one and cloud base zero.

Figure 6.24: ls2g150m simulation. Timeseries of instantaneous integrated sub-grid +
resolved TKE.
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Figure 6.25: ls2g150m simulation. Profiles of (a) θe, (b) the resolved w′θ′v (black line)
and the resolved w′θ′ (blue line) with height normalised so zib is equal to one and the
surface zero. Solid lines are the time-averaged (4 - 20 hours) profiles and dashed lines
are the ± 1 standard deviations. The grey shaded area denotes the mean entrainment
zone and the horizontal red lines the liquid cloud boundaries.

6.3.2 Mean profiles of fluxes and tendencies in the ls2g150m simulation

6.3.2.1 Buoyancy fluxes

Figure 6.25 shows the 4 - 20 hours time-averaged profiles of normalised θe, w′θ′ and

the resolved w′θ′v where the profiles are normalised as in Figure 6.9 so that the surface

height is equal to zero and inversion base height is equal to one. As in the control Ninx2

simulation the average θe profile is uniform from zib down to the surface indicating that

despite the negative w′θ′v below the cloud base the entire region is well mixed. The

strength of the temperature inversion is greater than simulated in the control Ninx2

simulation due to the cloud extending higher up into the free troposphere, and above the

EZ there is greater variability in the θe profile. The EZ has an average depth of around

93 m, and is defined by the region of negative w′θ′v near cloud top, however unlike that

found in the control Ninx2 simulation the cloud top is not coincident with the negative

peak in w′θ′v. The magnitude of both w′θ′ and w′θ′v are less than in the control Ninx2

simulation suggesting a reduction in the contribution of w′θ′v to the generation of TKE.
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6.3.2.2 Potential temperature tendency

As for the control Ninx2 simulation, longwave cooling dominates the radiative contribu-

tion to the θ budget in the uppermost third of the liquid cloud and peaks in the EZ (Figure

6.26). The peak longwave radiative cooling is greater than simulated in control Ninx2 at

around -90 K day−1, compared to around 60 K day−1. As discussed in Section 2.3.4; in

radiative transfer calculations through Arctic stratocumulus, Sedlar et al. (2012) found

that the peak condensational heating always occurred coincident to zib. however in the

ls2g150m simulation the extra liquid cloud mass above zib leads to the peak cooling oc-

curring slightly inside the EZ. The peak condensational heating is of a slightly larger

magnitude to that found in the control Ninx2 simulation (around 30 K day−1 compared

to 20 K day−1) and occurs in the EZ, however because entrained air is relatively moist

in ls2g150m no cooling associated with evaporation is found near cloud top. Eddy heat

transport of heat is roughly of a similar magnitude to that simulated in control Ninx2

causing a peak cooling of around -20 K day−1 in the upper EZ, just below the cloud top.

This height is coincident with the peak diabatic heating/cooling and contributes to the

peak net θ cooling tendency of slightly more than 60 K day−1. This peak cooling in the

EZ is 20 K day−1 stronger than in the simulation with a humidity source. Below the EZ

the profiles of all tendency terms match that found in control Ninx2 simulation except

that the magnitude of the eddy term is less.

6.3.2.3 Turbulent kinetic energy tendency

The TKE budget in Figure 6.27 (b) shows that there is a reduction in the magnitude

of the TKE buoyancy production/consumption term, with production in the upper two

thirds of the cloudy mixed layer reduced by around a fifth compared to that simulated in

the control Ninx2 run, while in the EZ the buoyancy consumption is reduced by around a

quarter. The TKE transport and pressure terms are reduced accordingly and the overall

effect on the net TKE tendency is a reduction in its magnitude by a quarter in the EZ,

with DTKE/DT peaking at 3x10−5 m2 s−3. As in the control Ninx2 simulation the total

TKE profile has two maxima; one near the surface which is shear-driven and one below

zib which is generated by buoyancy production from longwave radiative cooling (Figure

6.27 (b)). Both maxima are reduced in the ls2g150m simulation with the peak near

cloud top almost 30 % less than the equivalent peak found in the control Ninx2 run.

This reduction accounts for the loss of integrated TKE of around a third between the

control Ninx2 and ls2g150m simulations (Figure 6.24) and suggests the fall in turbulence

is associated with a change to the buoyancy production from longwave radiative cooling

as the cloud encroached higher into the inversion.
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Figure 6.26: ls2g150m simulation. As for Figure 6.25 except for the θ budget. Terms
described in Section 6.2.3.2.

Figure 6.27: ls2g150m simulation. As for Figure 6.25 except for (a) the TKE budget and
(b) the total TKE. Terms described in Section 6.2.3.3.
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6.3.2.4 Instability generation

The peak radiative cooling was of a similar magnitude in both the control Ninx2 and

ls2g150m simulations, however in the ls2g150m run the region of net radiative cooling

was found to be situated higher in the EZ. To explain why the vertical shift of the cooling

profile reduced the buoyancy production of TKE it is useful to examine the generation

of instability in the simulated cloud. Instability is incited by longwave radiative cooling

when (Dobbie & Jonas, 2001):

∂H

∂z
< 0 and

∣∣∣∣∂θv(z, t)∂z

∣∣∣∣ <∣∣∣∣θv(z, t)Tv

∂H

∂z
δt

∣∣∣∣ (6.4)

where H is the radiative heating or cooling rate equal to ∂θRAD/∂t, Tv is the virtual

temperature and θv(z, t) is the virtual potential temperature. From Equation 6.4 a

non-dimensional parameter known as the radiative-heating stability number, Rsn can be

defined as:

Rsn =
(∂θv(z, t)/∂z)

− (θv(z, t)/Tv) (∂H/∂z) δt
(6.5)

where to incite radiative instability it is required that:

0 < Rsn < 1 (6.6)

δt is defined by Dobbie & Jonas (2001) as “the time-scale over which radiation is able

to heat or cool the layer before the layer appreciably (dynamically) adjusts”. Similarly,

by replacing H with the latent heating or cooling rate, L the generation of instability

by latent cooling is described and a latent-heating stability number, Lsn can be defined.

By combining both heat sources a combined radiative and latent stability number, Csn

is defined:

Csn =
(∂θv(z, t)/∂z)

− (θv(z, t)/Tv) {(∂H/∂z) + (∂L/∂z)} δt
(6.7)

where for instability to be initiated, Csn must satisfy the condition:

0 < Csn < 1 (6.8)

Figure 6.28 (a) shows profiles of θv and the radiative and latent heating rates from the

ls2g150m simulation with averaging and normalisation performed on the profiles as done

in the previous figures. The regions which are most important in terms of initiating

instability are where the vertical gradients of H and L are negative. For H this is

between a normalised height of 0.7 and 1.04 with the strongest gradient found in the

region of longwave radiative cooling above 0.9. For L this is between 0.6 and 0.7 (though
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Figure 6.28: ls2g150m simulation. As for Figure 6.25 except for the (a) gradient in
radiative (H, blue line) and latent (L, red line) heating rates, and (b) the radiative-heating
(Rsn, blue), latent-heating (Lsn, red) and combined (Csn, green) stability numbers.

∂L/∂z is only slightly negative here) and between 1.04 and 1.1 The vertical gradient of

the virtual potential temperature, ∂θv/∂z gives a measure of the stability of the column

and its resistance to destabilisation from the production of buoyant parcels of air. ∂θv/∂z

is positive through the entire BL, however its value is much smaller in the ML than in the

EZ, meaning diabatic processes are more easily able to overcome the thermal stratification

and induce instability. ∂θv/∂z peaks near the centre of the EZ.

Figure 6.28 (b) shows values of the radiative, latent and combined stability numbers

between zero and one, where the numbers are calculated from the normalised time-

averaged profiles in Figure 6.28 (a). Instability is incited by latent heating/cooling in

two regions: at the top of the EZ, and near the centre of the cloud. Instability is incited

by radiative heating/cooling in top of the ML and around the base of the EZ where the

gradient in θv is relatively small. Csn is between zero and one between 0.64 and 1.04 of

the depth of zib, which is almost the same region as where Rsn is between zero and one,

and latent heating/cooling is less important than radiative heating/cooling in inciting

instability in the uppermost part of the cloud.

A comparison of the normalised heights within cloud that instability is incited at in the

control Ninx2 and ls2g150m simulations is given in Table 6.7. Instability is incitable by
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Table 6.7: Comparison of the stability number statistics of the control Ninx2 and
ls2g150m simulations. zmax is the maximum normalised height within the cloud where
instability is incited and % is the percentage of the cloud depth where instability can be
incited.

Simulation 0 < Rsn < 1 0 < Lsn < 1 0 < Csn < 1
zmax % zmax % zmax %

control Ninx2 0.91 50 0.98 30 0.91 62
ls2g150m 0.89 48 0.98 26 0.89 58

latent heating/cooling through a greater fraction of the cloud simulated in the ls2g150m

simulation, and incitable by radiative heating/cooling through a greater fraction of the

cloud simulated in the control Ninx2 simulation. Overall instability is incitable through

62 % and 58 % of the depths of the cloud in the control Ninx2 and ls2g150m simulations

respectively. The max height of instability generation from radiation in the control Ninx2

simulation is at normalised height of 0.91 which is coincident with zib. In the ls2g150m

simulation the maximum height of radiative generation is at 0.89 which is above the zib at

0.87. In both simulations the uppermost normalised height where ∂H/∂z is greater than

zero is 0.92, thus a greater fraction of the depth where the first condition for instability

generation (first terms of Equation 6.4) is satisfied is in a region of strong thermal strati-

fication in the ls2g150m simulation, leading to a decrease in the incitement of instability

by the cloud. This reduction in the depth over which instability is incited explains why

the encroachment of cloud top further into the EZ in the ls2g150m simulation leads to a

reduction in w′θ′v and the TKE.

6.3.2.5 Mean water contents and tendencies

Figure 6.29 shows profiles of the time-averaged water contents and the net water content

tendencies normalised in height as for the previous figures. As in the control Ninx2

simulation, the ice mixing ratios are relatively small and the total water mixing ratio

is primarily composed of liquid water and water vapour. In the mixed layer the water

vapour and total water ratios are consistent to those simulated in the control Ninx2

run with an average profiles exhibiting a drying of almost 0.2 g kg−1 compared to the

initialised profiles. In the EZ a water vapour inversion with a mean strength of 0.8 g kg−1

is present, stretching from its base coincident with zib up to the top of the cloud layer.

The relatively large magnitude of the water vapour inversion also causes the total water

mixing ratio to increase rapidly through the EZ, though the strength of the qt inversion

is reduced to 0.6 g kg−1 because of the presence of liquid water. As in the control Ninx2

simulation the total water mixing ratio at the base of the inversion is drier than in the

mixed layer.
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Figure 6.29: ls2g150m simulation. As for Figure 6.25 except for (a) the mean water
species mixing ratios and (b) the mean water content tendencies. Note that in (a) the
upper x-axis is for the water vapour and total water mixing ratios and the lower x-axis
the liquid water and ice + snow water mixing ratios.

As in the control Ninx2 simulation, liquid water is increasing at a rate of around 2 g

m3 day−1 in the EZ (Figure 6.30 (b)). However the magnitude of the water vapour and

total water tendencies is much greater here with the peak qv loss more than -10 g m−3

day−1, which is almost three times the peak tendency found the control Ninx2 run. The

negative tendency at zib strengthens the humidity inversion by reducing the water vapour

mixing ratio at its base. Above the cloud top a positive water vapour tendency of around

2.5 g m3 day−1 is found, and this also contributes to the strengthening of the humidity

inversion from its top. Through the mixed layer net hydrometeor tendencies are roughly

consistent with those found in the control Ninx2 simulation.

Normalised time-averaged water content budgets are shown in Figure 6.30, where LS is

the tendency due to large scale forcing, (∂q/∂t)LS and the other terms are as described

in Section 6.3.2.5. The liquid and ice water content budgets are generally consistent

with those found in the control Ninx2 simulation except for a reduction in the eddy

transport which results from the drop in the strength of the BL turbulence; and greater

sedimentation of liquid cloud droplets from the EZ into the mixed layer below which

results from the increase in the cloud’s LWC. Examining the water vapour budget, the

positive net water vapour tendency above cloud top can be explained by the prescribed
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Figure 6.30: ls2g150m simulation. As for Figure 6.25 except for the (a) qt budget, (b) qv
budget, (c) ql budget and (d) qi + qs budget. Terms described in Section 6.2.3.4 except
LS, which is the source of water from large scale forcing, (∂q/∂t)LS .
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Table 6.8: Mean (± one standard deviation) contribution of the budget terms to the 4 -
20 hours time-averaged vertically integrated water content tendencies in the entrainment
zone. In units of g m−2 day−1.

Entrainment zone MPHYS EDDY SED LS TOTAL

Total water 0±0 628±283 -858±358 83±38 -147±145
Water vapour -424±196 107±52 0±0 83±38 -234±145
Liquid water 413±192 510±231 -837±350 0±0 86±72
Ice water 11±5 11± 9 -21±12 0±0 1±1

Table 6.9: As in Table 6.8 except for the mixed layer budget.

Mixed layer MPHYS EDDY SED LS TOTAL

Total water 0±0 -584±266 374±194 0±0 -211±184
Water vapour -70±169 -63±37 0±0 0±0 -133±177
Liquid water -417±244 -510±231 820±343 0±0 -108±170
Ice water 487±218 -11±9 -446±219 0±0 30±149

large scale water vapour forcing. While the increased magnitude of the water vapour loss

within the EZ can be explained by a change to the tendency due to cloud microphysics.

The magnitude of the water vapour loss due to cloud microphysical processes is similar

to that modelled in the control Ninx2 simulation except that in ls2g150m simulation the

increased cloud-inversion encroachment depth shifts the condensation region near cloud

top vertically in relation to zib, so that its peak is coincident with the peak loss due to

eddy transport. This also explains the increased loss of total water in the EZ.

6.3.2.6 Layer Budgets

In Tables 6.8 and 6.9 the mean ± 1 standard deviation of the time-averaged (4 - 20

hours) vertically integrated layer budgets for each hydrometeor are compared for the

entrainment zone and mixed layer respectively. There is a mean net decrease in the total

water content in the EZ with sedimentation away from the layer greater than combined

source of moisture from the large scale forcing and from the eddy transport into the

layer. Because the ice water contents in the EZ are relatively small, sedimentation loss

from the layer is almost entirely due to liquid water (-837 g m−2 day−1 of a total -858

g m−2 day−1). Eddy transport into the layer is also primarily liquid water, with the

mean integrated tendency of 510 g m−2 day−1 almost five times greater than for water

vapour. A net microphysical source of liquid water of 413 g m−2 day−1 is found in the

EZ which combined with the eddy source is greater than the sedimentation by 86 g m−2

day−1. Liquid water is the only hydrometeor with a positive net tendency in the layer,

with the loss of water vapour due to cloud microphysics (condensation and deposition)
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Figure 6.31: ls2g150m simulation. Timeseries of the 30 minute averaged water content
tendencies integrated through the (a) entrainment zone and (b) mixed layer.

dominating the water vapour budget and leading to a net loss of -234 g m−2 day−1. The

ice budget in the EZ is relatively small and almost in balance. Comparing the integrated

EZ tendencies to those simulated in the control Ninx2 run, the sign of each of the net

hydrometeor tendencies is the same however the magnitude of the integrated tendencies

is greater with the liquid tendency equal to 86 g m−2 day−1 compared with to 64 g m−2

day−1 in the control Ninx2 simulation and the water vapour tendency equal to -133 g

m−2 day−1 compared to -100 g m−2 day−1.

In the ML there is also a mean net decrease in the total water content with eddy transport

to the EZ (primarily as liquid water) in excess of the sedimentation source in the layer

by 211 g m−2 day−1. A mean net decrease in the integrated liquid water content is also

found with the source of liquid from sedimentation unable to balance the eddy transport

to the EZ and the net microphysical loss from evaporation. Deposition of water vapour

onto ice and snow is greater than its evaporative source leading to a net microphysical

loss of water vapour of -70 g m−2. Eddy transport of water vapour with a tendency

of -63 g m−2 also contributes to an integrated water vapour content tendency which is

negative. The eddy transport tendency in the ML is 44 g m−2 less than the total eddy

transport into the EZ meaning the excess is sourced from above the EZ. The integrated
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ice water tendencies are much larger in the ML than in the EZ with the net integrated

tendency equal to 30 g m−2, with the source from cloud microphysics mostly offset by

sedimentation loss to the surface. The net integrated ML tendencies of liquid water and

ice in the ls2g150m simulation are comparable to those simulated in the control Ninx2

run, while the net integrated water vapour and total water tendencies are roughly double

the size of those simulated in the control Ninx2 run.

Timeseries of the mean water content tendencies averaged across the entrainment zone

and the mixed layer (Figure 6.31), show that throughout almost the entire duration

of the ls2g150m simulation the EZ is a source of liquid water while the mixed layer is

a sink. Though there is variation in the magnitude of the gain/loss of liquid water in

these regions, the temporal dependency is minimal, which suggests that the layer average

tendencies are independent of the depth cloud top encroaches above the inversion base

(Figure 6.19, which rises steadily between 4 and 12 hours. Both the EZ and ML are

sinks for water vapour and total water and their layer average tendencies appear to show

greater dependence on the depth of zct - zib. This can be explained by the vertical shift

in the water vapour loss associated with condensation which was described in Section

6.3.2.5. The ice tendency in the mixed layer shows little temporal dependence and

switches between being slightly positive to slightly negative which suggest that the ML

can be both a source or sink of ice at different times.

6.3.3 Comparison with the Solomon et al. (2011) simulation

Despite the differences in both the modelling framework used; model dimensions, grid

size and resolution, model forcings etc, and the differences between the simulated case

studies; surface-cloud coupling, liquid/ice phase distribution - both the ls2g150m run

and the simulation made in the Solomon et al. (2011) study were able to model the

encroachment of cloud top into the inversion layer. Furthermore, the processes which

allow the stratocumulus cloud to encroach into the inversion in the ls2g150m simulation

is consistent with those described in Solomon et al. (2011), giving confidence to the results

of this chapter.

Comparing the potential temperature tendencies in Figures 6.26 and 2.13 it is apparent

that even with the absence of an advective heat source in the ls2g150m simulation,

the simulated θ budget inside the EZ is qualitatively similar in both simulations with

condensational heating and a net heat transport from the upper part of the EZ to the

lower part balancing the cooling from longwave emission. Although the LWC’s are smaller

in the Solomon et al. (2011) simulation, the magnitude of the peak longwave radiative

cooling is larger than modelled in the ls2g150m run, most likely reflecting a greater droplet

number near cloud top which causes the cooling to be concentrated in a shallower layer.
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The condensational heat source is of similar magnitude in both simulations, whilst the

warming from eddy transport in the ls2g150m simulation is less that a third of size of that

simulated in the Solomon et al. (2011) study, with the difference reflecting a reduction

in w′θ′. Overall the difference in the peak net tendency is roughly 20 K day−1.

The net TKE distribution is similar in both of the simulations with a peak found near the

top of the mixed layer which has a magnitude of 0.4 m2 s−2. Buoyancy production is the

largest contributor to the TKE tendency in both the simulations, though the tendency

is larger in the Solomon et al. (2011) run. Shear is also an important source of TKE in

the Solomon et al. (2011) simulation, through the cloud and in the EZ especially where

it balances TKE consumption from the dampening effect of the stable layer. The setup

of vertically uniform horizontal velocities at initialisation and the constraint on their

development from the model nudging means that shear is less important in the ls2g150m

simulation except near the surface.

Although water contents are greater in the ls2g150m run, in both of the simulations the

distribution of water contents within the ML and EZ is similar, with total water well

mixed up to the base of the inversion, liquid cloud increasing linearly from its base to zib

before dropping off through the EZ, and ice precipitating through the whole BL below

zib. Profiles of the water content budgets and their vertically integrated values in the EZ

and ML also share similarities. In both simulations condensation in cloudy updraughts is

greater than evaporation inside the EZ leading to a microphysical source of liquid water,

while sedimentation of liquid droplets depletes the EZ of liquid water. The magnitude of

the sedimentation is larger in the ls2g150m simulations, suggesting larger cloud droplets

and a smaller droplet concentration which is consistent with the difference in the radiative

cooling described above. In both simulations there is a net eddy transfer of liquid water

from the ML to the EZ which offsets the net loss from the sedimentation and contributes

with the microphysical liquid source to a positive liquid water tendency in the EZ.

In both simulations there is down gradient eddy transfer of water vapour from the top

of the entrainment zone towards it base. The eddy flux dries the upper part of the

EZ, whilst moistening the lower part where the loss due to condensation is greatest. In

the Solomon et al. (2011) simulation, mean and turbulent horizontal advective source

of water vapour also moisten the EZ with the net effect of the water vapour tendency

being positive in the region of EZ below the cloud top. In the ls2g150m simulation the

advective sources of moisture are parametrized by a large scale forcing of water vapour.

The net effect of the large scale forcing is to moisten the EZ and the region of inversion

layer above (up to an average of around 70 m higher than zct). Below the cloud top the

contribution from the large scale forcing is too small to offset the net water vapour sink

from condensation and there is a negative water vapour tendency, while above the cloud

top the forcing leads to a positive water vapour tendency.
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6.3.4 Comparison of 2D and 3D simulations

To test the sensitivity of the control setup to the dimensionality of the model domain, two

3D simulations were also made. control 3D and ls2g150m 3D were ran using the exact

specifications of the control Ninx2 and ls2g150m simulations except that they included

a second horizontal dimension (Table 6.1). The spin-up of the 3D simulations mirrors

that found in the 2D runs with TKE increasing rapidly over the first ten minutes before

gradually increasing to a quasi-stable value after fours hours (Figure 6.32).

After spin-up, the magnitude of the integrated TKE is only around a third of that found

in the 2D simulations with a mean value of 0.051 m3 s2 in the control 3D run and 0.038

m3 s2 in the ls2g150m 3D run. Stronger turbulence is a characteristic of 2D simulations

(Moeng et al., 1996), however the reduction in integrated TKE of a quarter between the

two 3D simulations is consistent with that found in 2D and so gives confidence that the

change in the cloud dynamics as the cloud encroaches into the inversion is retained. The

mean encroachment depths simulated in the 3D run were almost equal to the 2D values

with the domain maximum cloud top situated 47 m above zib in the control 3D run and

65 m above zib in the ls2g150m 3D run. Compared to ls2g150m, there was less variability

in the cloud top height in the ls2g150m 3D simulation and the layer average value was

at around 60 m, which is 10 m higher than in 2D.

Domain average maximum and minimum vertical velocities are reduced in the 3D simu-

lations, dropping to -1.76 m s−1 and 1.41 m s−1 respectively in the control 3D simulation

and -1.41 m s−1 and 1.31 m s−1 respectively in the ls2g150m simulation. Weaker turbu-

lence in the 3D simulation leads to a reduction in we, with the mean value of 0.16 cm s−1

less than half that simulated in the control Ninx2 run. In the ls2g150m 3D simulation

the reduction is less significant, with the mean we equal to 0.4 cm s−1 which is only 10

% less than simulated in the ls2g150m simulation. The difference in the reduction of

the entrainment velocity between the two setups demonstrates that in simulations where

the cloud top encroaches into the inversion, zib is not solely dependent on the intensity

of the turbulence. Between the 2D and 3D simulations there is a significant increase in

the net amount of condensate and a redistribution of water between the warm and cold

phases. In both 3D simulations the mean LWP is around a third greater and the mean

IWP a third less than in the 3D run. Overall much less variability of the domain average

properties was found in the 3D simulations than in 2D (Grabowski et al., 1998).

A comparison of the time-averaged 2D and 3D θe and ql profiles which are normalised

in height so that the cloud top is equal to one and the surface zero is shown in Figure

6.33, while profiles of the TKE, and vertical heat and total moisture fluxes normalised

equivalently are shown in Figure 6.34. The peak LWC is greater in the 3D simulations and

the liquid cloud fills a greater depth of the BL. Overall the mean depth of the liquid layer
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Figure 6.32: Comparison of timeseries of instantaneous integrated sub-grid + resolved
TKE in the control Ninx2 and control 3D simulations.

is a 575 m in the control 3D simulation and 729 m in the ls2g150m simulation, meaning

depths increased by more than 100 m and 200 m respectively over the 2D simulations. In

the control 3D run the greater liquid water contents near cloud top leads to a larger peak

in the radiative cooling which drives stronger eddy heat and moisture fluxes. While in

the ls2g150m and ls2g150m 3D simulations the peak in the radiative cooling and in the

eddy heat flux is of an equal magnitude. Despite the increase in the magnitude of w′θ′
′
in

the control 3D simulation the net TKE profile is smaller throughout the BL than in the

2D run. Near cloud top the negative eddy flux associated with entrainment is reduced

in the 3D simulations suggesting that dynamics in stably stratified regions are handled

differently in the 2D and 3D models. Entrainment has the effect of drawing warm air

down into the ML and its reduction in the 3D simulations, coupled with greater longwave

cooling causes the temperature in the mixed layer to fall.

Despite the change to the magnitude and shape of the eddy flux profiles, the heat budget

in the ls2g150m and ls2g150m 3D simulations are similar with longwave radiative cooling

peaking in the EZ where it is partially offset by condensational heating, and in the lower

part of the EZ eddy transfer of heat; with an overall effect of a net cooling throughout

entrainment zone. The moisture budgets are also equivalent in the 2D and 3D simulations

with net source of liquid water in the EZ, and a net loss of water vapour in the EZ and

source in the region of the inversion layer above. Overall there is a noticeable difference in

the eddy structure of the 2D and 3D simulations and a significant change to the domain

integrated water contents and TKE. However, despite the differences, the cloud structure

and simulation of cloud top encroachment inside the inversion is relatively consistent.

The differences between the 2D and 3D simulations are significant enough that 3D sim-

ulations would be preferable on physical terms. However the total length of time need

to run the 3D simulation over 160 processors was more than three weeks for a 20 hour
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Figure 6.33: Comparison of the control Ninx2 and control 3D simulations. Profiles of
the time-averaged (a) θe and (b) ql normalised so liquid cloud top is equal to one and
the surface zero. The black horizontal line marks the cloud top and coloured horizontal
lines the cloud bases.

Figure 6.34: Comparison of the control Ninx2 and control 3D simulations. Profiles of
the time-averaged (a) TKE, (b) w′θ′ and (c) w′qt normalised so liquid cloud top is equal
to one and the surface zero. The black horizontal line marks the cloud top and coloured
horizontal lines the cloud bases.
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model integration at the specified resolution. This compares to two day running length

for the equivalent 2D simulation when ran on a single processor. For this reason, the

simulations in this study are primarily made in two dimensions.

6.4 Summary and conclusions

In this chapter a mixed-phase Arctic stratocumulus observed on 27th August 2008 during

the ASCOS field campaign was simulated using the Met Office LEM. Observations of

cloud and thermodynamic fields showed a well-mixed Arctic stratocumulus topped BL,

which was capped by an inversion in both temperature and specific humidity. As observed

in similar Arctic stratocumulus in the presence of the specific humidity inversion (Sedlar

et al., 2012), the cloud top was found to extend into the inversion by as much as 400

m over the observation period (Figure 5.15). Until very recently there has been little

effort to understand the physical mechanisms which control cloud encroachment into the

inversion, however from modelling a mixed-phase Arctic stratocumulus observed over the

Beaufort sea, Solomon et al. (2011) found that inversion layer cloud could be supported

in the presence of a humidity inversion, as long as a source of inversion layer moisture

- such as horizontal advection of water vapour (Curry et al., 1997; Pinto, 1998) - was

present to replenish the liquid and ice which is lost from sedimentation (Solomon et al.,

2011).

To examine the physical processes which support the extension of cloud top in the in-

version, and understand how it influences the development of the BL, a number of two-

dimension large eddy simulations were made in this chapter. The control Ninx2 simu-

lation was setup using idealised profiles of θl and qt, with profile shapes similar to that

expected in a sub-tropical STBL; well-mixed until cloud top height with θl rising rapidly

above and qt dropping off. The simulation omitted any large scale sources of water

vapour, however despite the lack of moisture sources above the base of the inversion,

the layer maximum cloud top was found over 47 m inside the EZ - which was coinci-

dent to the height that the minimum w′θ′v was found. The layer average cloud top was

found to be at 29 m above zib. The extension of cloud into the inversion layer initially

occurred because the drop in the total water mixing ratio at the model initialisation

was gradual enough that a specific humidity inversion formed after the initial conden-

sation in the model. The persistence of the cloud in the inversion was supported by

radiative-dynamical-microphysical mechanisms within the cloud.

The cloud was mixed-phase and persistent with a steady LWP and cloud depth. Though

mixed phase, the ice mass concentration of the cloud was relatively small, and while

it rose steadily over the simulation the cloud didn’t glaciate to an ice-only cloud, as

other models have simulated (Harrington et al., 1999; Luo et al., 2008a; Morrison et al.,
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2003). The vertical layering of the cloud was typical for that found in mixed-phase Arctic

stratocumulus with a shallow layer of liquid near the cloud top precipitating ice through

the cloud below through the sub-cloud layer down to the surface (Shupe et al., 2008).

As indicated by Morrison et al. (2012), this may have contributed to the persistence

of the liquid water. As is typical for both sub-tropical marine Arctic stratocumulus

and mixed-phase Arctic stratocumulus, instability generated from radiative cooling was

found to be the most significant source of turbulence (e.g.Lilly (1968) and Moeng et al.

(1996) for marine stratocumulus and Jiang et al. (2000) and Luo et al. (2008b) for Arctic

stratocumulus).

Buoyancy generated from radiative cooling was found to create strong downdraughts

in the cloud and narrow updraughts in which condensation occurred. Nucleation and

deposition were found to be the largest sources of ice mass, and although sublimation in

the sub-cloud layer returned some water vapour back to the atmosphere, the constant

precipitation of ice made the BL a net sink of water vapour. However, the drying of the

atmosphere wasn’t significant enough that liquid water content fell below the amount

needed for strong radiative cooling, buoyancy generation and further condensation. Thus

the water contents were stable.

The lower part of the entrainment zone/inversion layer was saturated and an analysis of

the cloud water content budgets showed that liquid water which overshot the base of the

temperature inversion didn’t evaporate in this region. Condensation and eddy transport

maintained cloud in the lower EZ despite the constant fallout of water droplets to the

mixed-layer, and while condensation-sedimentation lead to the lower EZ being a net sink

for water vapour, down gradient transport of water vapour from the top of the humidity

inversion to its base replenished the water vapour mass. The vertical distribution of

condensation supported the humidity inversion structure, thus the humidity inversion

with cloud extending into it was self sustaining. However in the absence of moisture

advection to the inversion layer it would be expected that the inversion would dry out

too much to support cloud top encroachment and the specific humidity inversion would

be removed. An analysis of the heat budget showed that the peak radiative cooling was

coincident with zib, which agreed with radiative heating/cooling profiles of an idealised

inversion-encroaching cloud as determined by Sedlar et al. (2012), however the peak

in the net cooling was positioned higher in the cloud because of eddy transport and

condensational heating near the inversion. This meant that cooling didn’t lead to an

adjustment of the temperature inversion boundaries, which would have lead to cloud top

being readjusted so it was coincident with the inversion.

Next the control dry simulation was made to examine what effect a reduction of the initial

water vapour mass at cloud top would have on cloud top encroachment into the inversion.

In this simulation the initial profile of qt was made much drier above zib. Despite the
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inversion layer being much drier, the layer maximum cloud top was still found to encroach

into the inversion by around 40 m, however the variability in the spatial cloud top height

was much larger and the layer mean cloud top height was only around 20 m above the

inversion base. As in the control Ninx2 simulation the peak longwave radiative cooling

coincided with the inversion base, but the peak cooling occurred higher in the cloud.

The gradual transition from the mixed layer to the inversion was found to be the rea-

son the cloud encroachment was supported. This result is surprising as the top of a

stratocumulus cloud is usually assumed to be coincident with the base of the tempera-

ture inversion (e.g. Paluch & Lenschow, 1991; Stevens et al., 2007; Tjernstrom & Rune,

2003). The control dry simulation suggests that even in the absence of a humidity inver-

sion, stratocumulus clouds may encroach inside the inversion a significant depth so long

as the temperature increase and/or moisture loss across the inversion isn’t too sharp,

i.e. the relative humidity loss isn’t too large. Because the relative humidity depends on

the absolute temperature and specific humidity, it would be expected that the encroach-

ment would happen more readily in the Arctic where the low temperature means that

saturation is reached at a lower water vapour contents. Cloud microphysical parame-

ters; droplet number and size, effective radius - may also affect the encroachment depth

because of their impact on microphysical process rates and the clouds optical depth.

A further simulation was made using the same initial conditions as the control Ninx2

simulation, except that after the model spin-up a source of water vapour was prescribed to

act on the domain in a 150 m deep region above the inversion base. The time development

of the ls2g150m simulation, saw the layer maximum cloud top rise more than 90 m into

the inversion layer with the time-averaged layer mean cloud top found at over 54 m

above zib. While the profile shapes of the θ, water content and TKE budgets were

found to be generally consistent to those modelled in the control Ninx2 simulation, the

increase of the liquid water content inside the EZ lead to a greater proportion of the

longwave radiative cooling occurring in the stability stratified EZ, reducing the depth

over which instability could be incited from longwave radiative cooling. Consequently

a reduction in the magnitude of w′θ′v was found which led to a drop of around a third

in the intensity of boundary layer turbulence. Although Sedlar et al. (2012) predicted

that an increase in the mass of liquid water inside the inversion would cause the depth

over which radiative cooling occurs to increase, in their radiative transfer calculation

the peak radiative cooling was always coincident with zib. Although their model only

considered radiative transfer, the distribution of radiative cooling they predict as cloud

top encroaches into the inversion would not impact on instability generation as instability

is only incited where the divergence of the cooling is negative (below the peak cooling).

Thus the turbulence reduction in the ls2g150m simulation is in contradiction to their

result.
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A comparison the ls2g150m simulation with the results of Solomon et al. (2011), showed

that the idealised setup used in this experiment reproduces the physical mechanisms

which Solomon et al. (2011) demonstrated to be important in supporting cloud inside

the inversion layer. However in the ls2g150m simulation the source of inversion layer

moisture was found to increase the water vapour tendency above the cloud only, whereas

in the Solomon et al. (2011) simulation, a vertical flux of water vapour resulting from

advection of water vapour by the mean wind and a horizontal flux of water vapour by

the mean wind increased the water vapour throughout the EZ.

A comparison of both the control Ninx2 and ls2g150m simulations with equivalent 3D

runs showed differences in the profiles of the TKE and the heat and moisture fluxes

through the cloud, and a change in the dynamics resulted in clouds which were deeper,

had larger LWP’s and smaller IWP’s and in the case of the control Ninx2 simulation,

much weaker subsidence. Despite the differences between the two and three dimensional

simulations, in both cases cloud top were found to extend a similar height into the

inversion layer and in both 2D and 3D there was a reduction in the integrated TKE as

this height was extended.

Overall the simulations made in this chapter demonstrate the sensitivity of mixed-phase

Arctic stratocumulus to the distribution of humidity and temperature in the lower Arctic

atmosphere. Cloud top was found able to encroach into the inversion in a number of

situations; in the presence of a humidity inversion or a dry entrainment zone, with or

without moisture advection above the inversion. And these results represent a departure

from the previous assumption of two distinct states of the cloud top-inversion interface; a

cloud capped by a temperature inversion, and a cloud encroaching into the temperature

inversion.

The aim of this chapter is to understand the mechanisms which control the encroachment

of cloud into the temperature inversion and characterize the features which distinguish

them from sub-tropical marine stratocumulus. Simulations made in this chapter show

that the assumption that sub-tropical stratocumulus (or at least clouds with a similar

morphology) always have cloud top coincident with the base of the inversion is not neces-

sarily correct. The simulation of shallow, though not insignificant encroachment of cloud

into a dry humidity inversion is a new result, however a detailed examination of the

cloud-inversion interface under more typical sub-tropical conditions is needed to under-

stand the magnitude of encroachment in these clouds. Even if a small amount of inversion

encroachment is determined to occur frequently at the top sub-tropical stratocumulus,

results in this chapter have shown that the effect on BL development is likely to be very

small as the distribution of cloud top cooling; and therefore the dynamics of the cloud, is

similar to that found in a proto-typical stratocumulus layer. Therefore the assumption

that cloud top is coincident with base of the inversion in sub-tropical stratocumulus may
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be untrue, but it is likely this has little impact on parameterizations of these clouds.

The mechanisms which control encroachment into the dry inversion were described in

this chapter and found to be different to that under conditions where a specific humidity

inversion is present. The processes which lead to the maintenance of cloud inside the

inversion in this situation was generally shown to be in a agreement with those found

by Solomon et al. (2011). And while this supports the modelling approach used in this

study, simulations made in this chapter and in Solomon et al. (2011) are of only very

shallow encroachment and it is unclear whether the physics of the system is the same at

the larger encroachment depth found in observations.

A significant result of this chapter and a major step in understanding the encroachment is

the finding that even relatively modest encroachment can lead to a change in the amount

of BL turbulence. This effect is important as cloud-driven turbulence is the largest source

of vertical mixing within the central Arctic. As discussed in Section 2.3.3, the Arctic is a

CCN-limited environment and so the rate of vertical mixing of aerosol from the surface

and/or free troposphere is important to the both the persistence of cloud, its phase and

microphysical properties. The finding that encroachment leads to a reduction in the

BL turbulence budget is so far the only significant feedback which has been determined

from clouds encroaching into the temperature inversion and highlights the need for cloud-

inversion encroachment to be represented in parameterizations of Arctic cloud.
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Chapter 7

Sensitivity of cloud encroachment

to water vapour forcing

In Chapter 6, simulations made using an LES model were used to understand the physi-

cal mechanisms which allow mixed-phase Arctic stratocumulus to extend into the Arctic

temperature inversion. Using observations from the ASCOS field campaign, a modelling

setup was specified for the simulations which both reproduced the general meteorological

properties of the case study, whilst also remaining idealised enough for the physical mech-

anisms of cloud-inversion encroachment to be analysed without unnecessary reference to

the specific meteorological state. Whilst the simulations made in Chapter 6 were able

to model cloud top encroachment into the Arctic inversion, the depth of encroachment

was relatively shallow compared to that measured by a range of observations presented

in Chapters 2 and 5.

Although results showed cloud encroachment into the inversion even in the absence of

a specific humidity inversion, the greatest encroachment was found where a humidity

inversion was maintained by large scale advection of water vapour. In the ls2g150m

simulation the advective forcing of water vapour was informed by the Solomon et al.

(2011) modelling study of an Arctic stratocumulus observed during the ISDAC field

campaign as described in Section 2.3.4, while in reality moisture advection into the

Arctic depends on the synoptic scale dynamics and can vary considerably (e.g. Pinto,

1998). Due to the importance of the advective moisture source in forming the humidity

inversion, and its influence on encroachment in the ls2g150m simulation, it is reasonable

to expect that a change to the specification of the water vapour advection would impact

on the encroachment depth. Therefore in this chapter simulations are made which test

the sensitivity of the modelled encroachment to the large scale forcing.
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Table 7.1: Description of simulations made to investigate the sensitivity of encroachment
to water vapour forcing. Setup parameters described in Section 6.1.

Simulation Domain qbl qinv Nin (∂qv/∂t)LS (∆z)LS
(g kg−1) (g kg−1) (L−1) (g kg−1 day−1) (m)

control Ninx2 2D 2.67 1.00 3.4 - -
ls2g050m 2D 2.78 1.00 3.4 2.0 50
ls2g100m 2D 2.78 1.00 3.4 2.0 100
ls2g150m 2D 2.78 1.00 3.4 2.0 150
ls2g200m 2D 2.78 1.00 3.4 2.0 200
ls3g050m 2D 2.78 1.00 3.4 3.0 50
ls3g100m 2D 2.78 1.00 3.4 3.0 100
ls3g150m 2D 2.78 1.00 3.4 3.0 150
ls3g200m 2D 2.78 1.00 3.4 3.0 200
ls4g050m 2D 2.78 1.00 3.4 4.0 50
ls4g100m 2D 2.78 1.00 3.4 4.0 100
ls4g150m 2D 2.78 1.00 3.4 4.0 150
ls4g200m 2D 2.78 1.00 3.4 4.0 200

7.1 Initial setup and simulation design

In total 11 new simulations are made in this chapter. These are used in addition to the

control Ninx2 and ls2g150m simulations to understand how the specification of the large

scale water vapour forcing impacts on the cloud encroachment into the inversion layer;

and how this feedbacks on the cloud and the BL dynamics.

Details of all the simulations undertaken in this chapter are given in Table 7.1. Each of

the forced simulations is based on the setup used in the control Ninx2 simulation, except

that a large scale forcing is applied to the model above the inversion base. The forcing

specification is as described for the ls2g150m simulation except that two properties of

the forcing are varied: the rate of forcing and the depth over which the forcing is applied.

A combination of three forcing rates: 2, 3 and 4 g kg−1 day−1; and four forcing depths:

50, 100, 150 and 200 m are used in the range of simulations. Once again the Brooks

(2003) algorithm is used to find the base of the inversion; which is used as the height at

which forcing is applied above. As in the previous chapter, simulations are made in two

dimensions to reduce the computation constraint. The purpose of the simulations made

here is not to recreate the case study exactly rather to use the observations as a guide

for the analysis.
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Figure 7.1: Forcing simulations. Timeseries of zi+. Green line is the mean and grey-
shaded area denotes the range.

Figure 7.2: Forcing simulations. Timeseries of qi+l . Green line is the mean and grey-
shaded area denotes the range.

7.2 Sensitivity to the qt inversion strength

7.2.1 Time development of the forcing simulations

As for the ls2g150m simulation, the spin-up of all the forcing simulations is marked by a

rise in integrated TKE, a slight deepening of the liquid cloud layer and almost a doubling

of the LWP. The setup of each of these simulations is consistent with the control Ninx2

run except for the water vapour forcing which is only activated after four hours; therefore

as in the control Ninx2 simulation the initial specification of qv is an increase at the base

of the temperature inversion (Figure 6.12 (a)). Consequently, over the first four hours the

cloud encroaches into the inversion by around 50 m through the mechanisms described

in Sections 6.2.3.2 and 6.2.3.4.

After four hours of simulation time the water vapour forcing is switched on and begins

to raise the humidity of the sub-saturated region of the inversion layer. The differential

forcing rate means that the inversion layer is brought to saturation in the forcing simula-
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Table 7.2: Comparison of the time-averaged cloud-inversion layer statistics (4 - 20 hours)
of the forcing simulations. zct is the layer average cloud top, while zct is the layer
maximum cloud top.

Data zct − zib zct − zib
∫ zib
zcb

(LWC)dz qi+l
(m) (m) (gm−2) (%)
µ max µ max µ max µ max

Observations - - 190 288 15.14 35.21 24.4 69.2
control Ninx2 29 33 47 67 6.88 9.57 10.0 12.5
ls2g050m 41 44 59 74 9.74 11.55 13.5 15.6
ls2g100m 48 52 67 83 10.97 12.75 14.6 17.0
ls2g150m 54 66 74 91 11.88 14.23 15.4 17.7
ls2g200m 60 80 79 101 12.38 15.62 15.6 19.0
ls3g050m 46 48 66 88 10.71 12.47 14.1 17.2
ls3g100m 57 68 75 93 12.56 14.81 15.6 18.4
ls3g150m 65 87 83 111 13.43 17.93 16.0 19.9
ls3g200m 74 120 91 139 15.07 24.65 16.5 27.6
ls4g050m 50 54 68 84 11.60 13.30 15.1 17.4
ls4g100m 63 79 80 101 13.67 17.24 16.2 19.7
ls4g150m 78 116 96 133 16.04 26.31 16.6 27.2
ls4g200m 102 197 121 219 22.67 49.27 21.5 42.4

tions with 4 g kg−1 day−1 most quickly. This begins after five hours. Over the next few

hours, the cloud top begins to encroach further into the inversion (Figure 7.1) and the

fraction of the cloud inside the inversion rises steadily in each of the simulations (Figure

7.2).

Time-averaged (4 - 20 hours) cloud-inversion statistics are shown in Table 7.2. The

time-averaged encroachment depth and both the absolute and relative mass inside the

inversion, increase by both a greater forcing rate at a fixed depth; or a greater forcing

depth at fixed rate. Therefore the smallest encroachment occurs in the ls2g050m simula-

tion - this has both the weakest forcing rate and shallowest region over which the water

vapour is added. Whilst the greatest encroachment is found in the ls4g200m simulation -

this has the combination of the strongest forcing rate and the greatest depth over which

water vapour is added.

The encroachment of cloud into the inversion in this simulation is considerable with

cloud top extending a maximum of 219 m above zib, which equates to almost half the

liquid mass of the cloud residing inside the inversion. However both the mean and max-

imum encroachment depths are around 70 m shorter than the respective observations

for the comparable time-period. The mean and maximum integrated water contents are

greater in the ls4g200m simulation than the observations, while the mean and maxi-

mum fractional liquid water cloud masses are less. Thus the real atmosphere exhibits
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Figure 7.3: ls4g200m simulation. Timeseries of zi+.

a much greater variability in the inversion layer cloud depth-mass relationship over the

comparison period than is captured in the range of simulations.

In the majority of the simulations, zi+ is relatively constant through the averaging period,

with the difference between the mean and the maximum less than 35 m. Thus the

cloud encroachment into the inversion is quasi-stable. However the simulations which

experience the greatest encroachment; ls3g200m, ls4g150m and the ls4g200m, have a

much larger variability in the encroachment depth and the relative and absolute mass

inside the inversion. In these simulations rather than the cloud top encroaching to a

quasi-stable depth inside the inversion, zi+ has a marked temporal development. For the

ls4g200m run this is illustrated in Figure 7.3.

In the ls3g200m, ls4g150m and ls4g200m simulations the zi+ initially increases as the

cloud top encroaches further into the inversion, then zi+ is rapidly reduced as the inversion

base rises to a height closer to the cloud top. After a period where zi+ is quasi-stable

the cycle is repeated. Although none of the simulations capture the variability of the

observations over the comparison period, the temporal cycle simulated in the ls4g200m

simulation is consistent with the general development of the observations presented in

Figures 5.16. However, as discussed in Section 5.1.3.3, the cycle in zi+ in the observations

may only be an artefact of an interpolation of radiosonde temperatures which were used

to determine the radiometer temperature; and hence the inversion boundaries.

As was presented for the ls2g150m simulation in the Section 6.3.1, each of the forcing

simulations experiences a drop in integrated TKE relative to the control Ninx2 simula-

tion after the water vapour forcing is applied (Figure 7.4). However the scatter of the

simulations is substantial, with integrated TKE simulated between a range of 0.02 - 0.22

m3 s−2. A subsequent rise in the LWP is also found in each of the simulations (Figure

7.5), while the affect of the forcing on the IWP is more complex (Figure 7.6).
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Figure 7.4: Forcing simulations. Timeseries of instantaneous integrated sub-grid + re-
solved TKE for the forcing simulations. Green line is the mean and grey-shaded area
denotes the range.

Figure 7.5: Forcing simulations. Timeseries of LWP for the forcing simulations. Green
line is the mean and grey-shaded area denotes the range.

Figure 7.6: Forcing simulations. Timeseries of IWP for the forcing simulations. Green
line is the mean and grey-shaded area denotes the range.
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Table 7.3: As in Table 7.2 except for the time-averaged cloud water and dynamical statistics.

Data zib − zcb
∫ zib
zcb

(LWC)dz zib − zcbi
∫ zib
zcbi

(IWC)dz TKE wmax wmin we
(m) (gm−2) (m) (gm−2) (m2 s−3) (m s−1) (m s−1) (cm s−1)
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Observations 395 82 57.17 14.17 618 68 9.59 13.38 - - - - - - - -
control Ninx2 448 41 62.18 4.97 753 61 10.97 1.42 0.16 0.03 1.90 0.24 -2.33 0.25 0.37 0.02
ls2g050m 444 45 62.40 6.20 746 60 11.87 2.20 0.15 0.02 1.84 0.21 -2.28 0.25 0.36 0.02
ls2g100m 469 109 64.36 3.42 749 63 12.03 1.91 0.14 0.02 1.78 0.22 -2.22 0.24 0.38 0.02
ls2g150m 495 160 65.02 2.56 756 71 11.47 1.48 0.13 0.03 1.73 0.26 -2.14 0.27 0.42 0.02
ls2g200m 435 54 67.01 3.97 762 78 11.13 1.73 0.12 0.04 1.68 0.33 -2.02 0.40 0.46 0.01
ls3g050m 454 54 65.52 4.62 749 62 12.03 1.91 0.15 0.02 1.81 0.21 -2.26 0.24 0.37 0.02
ls3g100m 577 198 68.14 3.50 761 72 11.80 1.98 0.12 0.03 1.67 0.24 -2.09 0.27 0.43 0.01
ls3g150m 507 158 70.88 5.78 775 85 11.14 1.91 0.11 0.05 1.59 0.34 -1.90 0.44 0.49 0.01
ls3g200m 491 101 76.36 10.30 784 96 10.95 2.53 0.10 0.06 1.51 0.47 -1.78 0.60 0.50 0.05
ls4g050m 485 135 65.42 3.33 751 64 12.03 1.60 0.14 0.02 1.75 0.21 -2.19 0.25 0.39 0.02
ls4g100m 562 201 70.68 4.25 774 81 11.51 1.89 0.10 0.04 1.61 0.29 -1.93 0.36 0.47 0.01
ls4g150m 475 57 80.51 9.06 791 96 10.45 2.26 0.09 0.06 1.41 0.48 -1.65 0.64 0.51 0.09
ls4g200m 483 74 79.90 12.07 792 98 10.15 1.56 0.09 0.07 1.34 0.58 -1.57 0.75 0.49 0.16
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Mean cloud water statistics for each of the forced simulations and the control Ninx2 run

are presented in Table 7.3. LWP increases with forcing depth and forcing rate, though

for the majority of the simulations the change to the LWP is largely the result of the

extra liquid water above zib, with mean integrated water contents in the BL mostly

within 20 % of the mean value of the control Ninx2 run. The only simulations where the

mean integrated water content of the BL exceed this are the ls3g200m, ls4g150m and

the ls4g200m simulations. These also experience the largest liquid mass increase inside

the inversion. The relationship between the integrated mass of BL liquid water and the

cloud depth is not straightforward and while these simulations have the largest integrated

masses, their BL cloud depths are only 10 % greater than in the control Ninx2 run. In

contrast the ls3g100m simulation has a mean cloud depth below zib of 577 m (over 30 %

greater) while the mass is only 68.14 g m−2 (10 % greater). The difference illustrates a

change to the distribution of liquid water below the inversion base. The overall range in

cloud depths - from base to top is between values of around 500 - 700 m.

In all of the simulations, less than 2 % of the cloud ice is found inside the inversion

layer at any time during the simulation. The IWP has a negative relationship to the

water vapour forcing, with values dropping as the forcing rate is increased and also as

the forcing depth rises; except between the ls2g050m and ls2g100m simulations where

the IWP rises slightly. Despite the drop as forcing increases, all of the simulations but

the two with the largest encroachment (ls4g150m and ls4g200m) have mean IWPs which

are greater than the control Ninx2 run. The depth of the ice layer - which because of the

very small IWC in the inversion layer is equivalent to the depth of the BL - also increases

as the forcing depth and strength increase, and apart from a few simulations with weak

forcing over a shallow depth, the values are greater than in the control Ninx2 simulation.

The combination of an increasing ice cloud depth and decreasing IWP demonstrates that

in addition to a change to the LWC distribution, increased cloud-inversion encroachment

must also lead to a change to the IWC distribution.

Comparing the BL cloud statistics to the observations, the simulated clouds are deeper

and contain a greater mass of liquid water; and although the vertically averaged LWC is

relatively close to the observations in the simulations with weak forcing, simulations with

larger forcing have larger average LWCs. The ice layer are also deeper in the simulations

and have a greater IWP. Mean dynamical quantities for the range of simulations are also

shown in Table 7.3. The drop in TKE experienced with increasing encroachment is also

found to be dependent on both the forcing depth and strength, as is a reduction in the

magnitude of the mean upward and downward vertical velocities. The entrainment rate

also generally increases as the forcing rate and strength are increased with the maximum

mean value of 0.51 m s−1 simulated in the ls4g150m run. This value is almost 40 %

greater than in the control Ninx2 simulation.
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Figure 7.7: Forcing simulations. Comparison of zi+ against LWP i+ for the forcing
simulations. Colours are used to differentiate between the (∂qv/∂t)LS value applied in
the simulation with red, blue and green colour representing simulations with a 2, 3 and
4 g kg−1 day−1 forcings respectively. The cyan markers are the values simulated in the
control Ninx2 simulation and black markers are the ASCOS measurements described in
Section 5.1.3.3.

7.2.2 Relationship between cloud-inversion properties

In Section 5.1.3.3, the ASCOS dataset was analysed to determine whether any statisti-

cal relationships were apparent between the encroachment parameters. In this section,

the LEM simulations made in this chapter will used in the same manner. Firstly the

relationships determined in Section 5.1.3.3 will be tested to see how well the simulated

encroachment statistics fit the ASCOS measurements.

Figure 7.7 shows the dependence of LWP i+ on zi+ for the range of simulations listed

in Table 7.1 and from the ASCOS measurements. In Figure 7.7, colours are used to

differentiate between the (∂qv/∂t)LS value applied in the simulation with red, blue and

green colour representing simulations with a 2, 3 and 4 g kg−1 day−1 forcings respectively.

The cyan markers are the values simulated in the control Ninx2 simulation and black

markers are the ASCOS measurements. Simulations are 5 minute averages.

Across the simulations there is general increase in zi+ and LWP i+ as the large-scale water

vapour forcing is decreased, and the largest scatter is found from the ls4g200m simulation.

A clear dependence of LWP i+ on zi+ is found in the simulations and the linear correlation

is high with the coefficient of determination, r2 = 0.78. While this suggests that a large
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Figure 7.8: Forcing simulations. As for Figure 7.7 except for the zi+ against qi+l . Markers
described in the caption of Figure 7.7.

Figure 7.9: Forcing simulations. As for Figure 7.7 except for the 100*zi+/(zct − zcb)
against qi+l . Markers described in the caption of Figure 7.7.
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proportion of the variation of the LWP i+ is explained by its linear relationship to zi+ the

non-linear functional relationship apparent in the ASCOS measurements suggests that

the linear dependence of the simulated variables might break down at greater values of

zi+.

The scatter of the ASCOS observations is much larger than found in the simulations

and simulations are grouped at an extremity of the measurements; with the simulated

LWP i+ values greater than the measured values for a given zi+. The larger scatter of

the ASCOS measurements in Figure 7.7 is understandable, as the range of atmospheric

conditions experienced during the ASCOS stratocumulus period was much higher than

the conditions imposed on the LEM simulations. Model runs presented in this chap-

ter have a varied magnitude of large-scale water vapour forcing into the inversion layer,

and the depth over which the forcing was applied differs. However, although this cre-

ated humidity inversions with different strengths and depths, which in turn resulted in

changes to the cloud morphology, water paths and temperature inversion characteristics.

The range of conditions experienced in the atmosphere isn’t uniquely constrained by a

simplistic water vapour forcing and the resulting atmospheric development caused by

feedback of the cloud layer. In reality atmospheric dynamics and thermodynamics show

a high spatial and temporal variability due to both synoptic scale development and local

atmospheric processes.

The dependence of qi+l on zi+, and qi+l on 100*zi+/(zct − zcb) for the simulations and

ASCOS measurements is shown Figures 7.8 and 7.9 respectively. As in Figure 7.7 the

largest qi+l values are found in the simulations with the greatest large-scale water vapour

forcing and the ls4g200m simulation has the largest scatter. The ASCOS observations

again have a much greater scatter than the simulations, with simulations grouped at

the upper extremity of the measured data points as in Figure 7.7. Although the linear

correlation between simulated variables is also high for both the dependence of qi+l on

zi+, and qi+l on 100*zi+/(zct − zcb), with r2 = 0.91 and 0.73 respectively. The fit of the

simulations to the ASCOS measurements is only approximate.

Despite the simulated dependencies between the encroachment variables not covering as

wide a parameter space of the dependence’s suggested by the observations, the shape of

the dependence between the variables is relatively similar and the grouping of simulated

dependencies within the limits of the measurements, gives confidence that encroachment

regime simulated in the LEM bears some relation to that found in the real Arctic atmo-

sphere. A better approximation for the dependence between these variables might found

from completing more simulations in which model profiles, parameters and forcings were

varied to cover a wider range of atmospheric conditions. If these simulations were be able

to capture a greater portion of the variability found in the ASCOS dataset, this could

be used to develop a parameterization of LWP i+ from zi+ which is applicable under a
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Figure 7.10: Forcing simulations. Comparison of the time-averaged humidity inversion
strength, qitv - qibv against LWP i+ for the forcing simulations. Colours and markers are
used to differentiate between simulations with red, blue and green colour representing
simulations with 2, 3 and 4 g kg−1 day−1 forcings respectively. While circle, square, six-
pointed star and five-pointed star shaped markers are used to represent the simulations
with forcing depths of 50, 100, 150, 200 m respectively, e.g. the green five-pointed
star is the value from the ls4g200m simulation. The cyan circle is the value from the
control Ninx2 simulation.

variety of conditions. Unfortunately this was not possible to complete in this study.

In Section 5.1.3.3, it was suggested that the dependence of qi+l on 100*zi+/(zct−zcb) could

be used to give an approximate estimate of LWP i+ if the dependence of zi+ on other

atmospheric properties could be determined. Furthermore it was postulated that zi+

would likely have a dependence on the strength of the humidity inversion, qitv - qibv , where

qitv is the water vapour mixing ratio at the humidity inversion top and qibv is the water

vapour mixing ratio at the humidity inversion base. Figure 7.10 shows the dependence

of the time-averaged qitv - qibv on zi+ for the range of simulations. Although a strong

non-linear dependence between the parameters is apparent, the fit of the simulations to

the ASCOS data in Figures 7.7 - 7.9 suggests that the simulated dependence is only valid

under restricted atmospheric conditions and the exact same dependence isn’t likely to be

found if the model was setup differently. Nevertheless such a relationship points the way

for parameterization of the encroachment in the future.

In Chapter 6 it was shown than the encroachment of cloud into the inversion had a sig-

nificant effect on the generation of TKE from cloud top radiative cooling in the ls2g150m

simulation and that this caused a reduction in BL turbulence. This was demonstrated

149



7. Sensitivity of cloud encroachment to water vapour forcing

Figure 7.11: Forcing simulations. As for Figure 7.10 except for the time-averaged zi+
against the vertically integrated TKE. Markers described in the caption of Figure 7.10.

Figure 7.12: Forcing simulations. As for Figure 7.10 except for the time-averaged zi+
against we. Markers described in the caption of Figure 7.10.
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under a number of simulations in Figure 7.6, with the integrated TKE falling to as low

as 10 % of the value found in the control dry run. To determine the relationship between

the encroachment depth and the magnitude of atmospheric turbulence, Figure 7.11 shows

the correlation between zi+ and the magnitude of the integrated TKE. As discussed in

Section 7.2.1 strong negative dependence between the variables is evident. As the values

plotted in Figure 7.11 are time-averages over the whole analysis period there is no scatter

in the individual simulations. The relationship between the time-averaged variables is

best described by a negative linear relationship with r2 = 0.88. However, because the

drop in TKE occurs from a reduction in buoyancy generation as the cloud extends into

the strongly stable inversion (Section 6.3.2.4), it would be expected that the reduction in

integrated TKE for a given increase in zi+ would eventually flatten out as the buoyancy

generation is reduced to zero. This would suggest a non-linear relationship over a wider

parameter space.

A reduction in BL turbulence would be expected lead to a fall in the entrainment velocity,

we, with the weaker turbulent updraughts leading to less overshooting thermals entraining

free tropospheric air into the BL. However a positive non-linear relationship between zi+

and we is found (Figure 7.12). At encroachment depths below 60 m or above 90 m,

encroachment seems to have little effect on we, however between the depths of 60 and

90 m, we increases at an approximate rate of around 0.005 m s−1 for every extra meter

of encroachment. we is calculated from Equation 6.3 in the LEM simulations, therefore

Figure 7.12 actually shows the average change in zi over time at different values of

zi+. This indicates that the strongest large-scale water vapour forcings applied in the

simulations cause the greatest rise in the inversion base through the atmosphere, and

suggests that we is an invalid measure of the entrainment rate where encroachment of

cloud into the inversion occurs.

The relationship between zi+ and we as found through a usually correct approximation,

shows the difficulty of relating simulated variables to their true atmospheric counterparts.

Nevertheless, the high correlation between zi+ and the integrated TKE demonstrates the

usefulness of the LEM simulations in determining dependencies between encroachment

variables and atmospheric properties which are altered by the encroachment, and suggests

that a parameterization of the effect encroachment has on the BL is possible.

7.2.3 Vertical distribution of water contents

The time-averaged vertical distribution of LWC for the range of forcing simulations,

where the profiles are normalised in height so the cloud top is equal to one and cloud

base is equal to zero is shown in Figure 7.13 (a). The greatest variability in the LWC is

found above the inversion base, with the largest mean inversion layer LWC found in the
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Figure 7.13: Profiles of time-averaged (4 - 20 hours) liquid cloud properties with height
normalised so inversion base height is equal to one and cloud base zero. Green solid lines
are the mean (a) LWC, and (b) droplet density of simulations. Grey-shaded area denotes
the range of observations.

Figure 7.14: As for Figure 7.13 except for the (a) IWC, and (b) ice + snow crystal
density. Profiles normalised by the inversion base and the ice cloud base.
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ls4g200m simulation. The mean shape of the profile above zib in the ls4g200m simulation

is relatively similar to that found in the observations. As described in Section 5.1.1.3

the vertical distribution of liquid water is difficult to assign properly from the retrievals

made using the MMCR reflectivity; therefore the similarity, at least on a mean sense,

supports the LWC determination.

In the majority of the simulations (all except the ls3g200m, ls4g150m and ls4g200m runs)

the maximum LWC is below zib through the entire simulation - supporting the results

of the Sedlar et al. (2012) analysis of vertical water content through profiles of inversion

encroaching clouds. These runs simulated a cloud with a top which is always at a quasi-

stable depth above the zib. Consequently the normalised vertical distribution of LWC

doesn’t change very much through the simulation. The vertical structure of LWC in each

of these simulations is similar to the typical stratocumulus distribution with liquid water

increasing through the cloud, and a roughly constant cloud droplet number with height

is also simulated (Figure 7.13 (b)).

In the ls3g200m, ls4g150m and ls4g200m runs, the cloud growth into the inversion fol-

lowed by readjustment of the inversion base leads to a temporal variation in the vertical

structure of the cloud and the maximum LWC is sometimes determined to be above the

inversion base. This is demonstrated in Figure 7.15 which shows vertical profiles of the

LWC and temperature from the ls4g200m simulation at half hour intervals between 6 and

15.5 hours of simulation time. Growth of the liquid cloud inside the inversion initially

proceeds slowly and with the peak LWC below the base of the inversion and the LWC

dropping off linearly above zib. After 8.5 simulation hours condensation in the inversion

layer is more significant and the vertical distribution of the LWC develops a less typical

structure with a secondary maxima inside the inversion layer, then after ten hours the

mass of the liquid inside the inversion begins to force a cooling of the layer. The LWC

inside the inversion continues to rise until the peak is situated above zib. At this point

the vertical distribution of the LWC is almost uniform through the main body of the

cloud. By 15 hours the liquid water inside the inversion layer has cooled the inversion

enough for the temperature to be well mixed up to the new height of peak LWC, thus

zib has adjusted to the cloud. The LWC now increases linearly through the cloud.

The influence of the cloud-inversion development in the ls3g200m, ls4g150m and ls4g200m

simulations is apparent in Figure 7.13 (a) through the variability of the LWC in the centre

of the cloud (range of 0.06 g m−3). The lower range of the LWC in Figure 7.13 (a) is

the mean LWC profile from the ls4g200m simulation. The cloud-inversion development

also leads to a reduction the cloud droplet number. In all of the simulations made in this

chapter, condensation occurs in updraughts and evaporation in downdraughts with the

layer average sum equal to a net condensation near the top of the cloud and evaporation

through the rest of the cloud.
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Figure 7.15: (a) ls4g200m simulation. Profiles of simulated 5-minute averaged LWC (blue
dashed line) and temperature (solid blue line); and the MMCR reflectivity derived LWC
(black dashed line) and radiometer temperature (solid black line). 6 - 10.5 simulation
hours.
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Figure 7.15: (b) 11 - 15.5 simulation hours.
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The vertical distribution of ice within the BL is approximately similar in each of the

simulations (Figure 7.14), with the height of the peak IWC roughly equal in an absolute

sense. However the normalised height of the peak IWC differs between simulations due

to changes to the depth of the ML.

Overall the simulations match the magnitude of the observed profile reasonably well. As

for the ls2g150m simulation nucleation and deposition of water vapour are the largest

microphysical sources of ice and snow, while sublimation reduces ice and snow in the

sub-cloud layer. Within the inversion, ice is predicted in the observations, however in all

the simulations including the ls4g200m run (where the LWC profile was reasonably well

prognosed), ice was limited to the BL only. Ice crystal numbers show little variability

between simulations.

7.2.4 Mean profiles of fluxes and tendencies in the ls4g200m simulation

Next the ls4g200m simulation is examined in more detail so that the mechanisms which

control the cloud encroachment-inversion adjustment can be understood. As in previous

chapters this is done through an examination of time-averaged profiles of w′θ′v, and the

budgets of heat, moisture and the TKE. Profiles are normalised in height by zib.

7.2.4.1 Buoyancy fluxes

Figure 7.16 shows the profile of the time-averaged normalised θe profile alongside profiles

of the resolved w′θ′ and w′θ′v. The mean θe profile shows a greater variability than was

found in the ls2g150m simulation (Figure 6.25), and while the mixed layer extends down

to the surface as in all of the previous simulations examined, in the region directly below

zib (between normalised heights of 0.8 and 1) the mean θe profile increases by 0.2 K.

The EZ has a time-averaged depth of 127 m which is around 50 m larger than the depth

found in the ls2g150m simulation. Across the EZ the strength of the θe increase is also

slightly greater by around 1 K, however because the magnitude of the depth increase is

much larger - the gradient of the mean inversion in the ls4g200m simulation is less. In

the ls2g150m simulation the greatest variability in the θe profile was found above the EZ

however in the ls4g200m simulation variability of an equal size is also found across the EZ

and in the region directly below. The difference is because the cloud top in the ls2g150m

simulation is always at a quasi-static depth above the zib meaning the structure of the

EZ is relatively constant through the simulation while in the ls4g200m run, zi+ changes

over time and as shown in Figure 7.15 the structure of the EZ changes as the layer cools.

As for the previous simulations examined the EZ is marked by negative w′θ′v. The peak
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Figure 7.16: ls4g200m simulation. Profiles of (a) θe, (b) the resolved w′θ′v (black line)
and the resolved w′θ′ (blue line) with height normalised so zib is equal to one and the
surface zero. Solid lines are the time-averaged (4 - 20 hours) profiles and dashed lines
are the ± 1 standard deviations. The grey shaded area denotes the mean entrainment
zone and the horizontal red lines the liquid cloud boundaries.

negative w′θ′v is found towards the bottom of the EZ and has a magnitude of around -

2x10−3 K m s−1, which is less than half of the peak negative value found in the ls2g150m

simulation and around a quarter of the value simulated in the control Ninx2 simulation

(Figure 6.9). The peak w′θ′v is found within the mixed layer below zib at a normalised

height of around 0.9, which is above the normalised height of 0.8 where it is located in

the previously analysed simulations. Compared to the ls2g150m simulation w′θ′v is also

reduced by around two thirds with the peak value equal to 5x10−3 K m s−1.

7.2.4.2 Potential temperature tendency

Due to the cloud-inversion adjustment the heat budget terms have a very different pro-

files to that found in either the control Ninx2 simulation (Figure 6.10) or the ls2g150m

simulation (Figure 6.26). Longwave cooling still dominates the radiative contribution

to the θ budget, and the radiative cooling is still the largest of all the budget terms,

however peak cooling is reduced by a quarter to around -60 K day−1 and the cooling

is spread over a greater depth (from normalised heights of 0.9 - 1.3 compared to 0.9 -
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Figure 7.17: ls4g200m simulation. As for Figure 7.16 except for the θ budget. Terms
described in Section 6.2.3.2.

1.1). The peak cooling is located at a normalised height of 1.1 which is further above zib

than it was in ls2g150m simulation (normalised height of 1.05) or in the control Ninx2

simulation (normalised height of 1), therefore a greater fraction of the cooling is inside

the EZ. Because of the cloud-inversion adjustment the radiative heating/cooling profile

also has a second minor peak at a normalised height of 1.2.

The condensational heating is of a similar magnitude to that found in the control Ninx2

simulation with a peak value of around 20 K day−1, and although the profile shape is

very different due to the cloud-inversion adjustment, the height of peak condensational

heating is coincident with the height of peak radiative cooling which is consistent with

that found in the other simulations. The eddy heating/cooling profile is also consistent

with the ls2g150m and control Ninx2 simulations with a down gradient transport of heat

simulated, except the magnitude is reduced by over 50 % compared to the ls2g150m

run. In the ls2g150m simulation eddy transport reduced the net cooling at the height

of peak radiative cooling, however the reduction of turbulent transport in the ls4g200m

simulation means the combined budget is a peak cooling of -40 K day−1 coincident with

the peak radiative cooling. Despite this difference the upward shift in the peak radiative

cooling means the net cooling is above zib. A secondary peak cooling of around -25 K

day−1 is also present at the height of the EZ top.
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Figure 7.18: ls4g200m simulation. As for Figure 7.16 except for (a) the TKE budget and
(b) the total TKE. Terms described in Section 6.2.3.3.

7.2.4.3 Turbulent kinetic energy tendency

Figure 7.18 (a) and (b) shows the normalised, time-averaged TKE budget and total TKE

profiles. Both the total TKE and the tendency terms have the same vertical distribution

as found in the previous simulations except the magnitude of all of the profiles is reduced.

The maximum total TKE directly below zib is equal 0.18 m2 s−2 which is half that found

in the ls2g150m simulation (Figure 6.27) and a third of that found in the control Ninx2

simulation (Figure 6.11). As discussed in Section 6.2.3.3, buoyancy production is the

greatest generator of turbulence within the cloud and the reduction in the TKE tendency

terms is consistent with the reduction in w′θ′v discussed in Section 7.2.4.1.

7.2.4.4 Mean water contents and tendencies

Figure 7.19 shows profiles of the time-averaged water contents and the net water content

tendencies normalised in height as for the previous figures. The ice mixing ratio is

relatively small and the total water mixing ratio is primarily composed of liquid and

water vapour as in the previous simulations. The liquid cloud top extends higher into

the inversion than found in the ls2g150m simulation, while the water vapour and total

water profiles are generally similar to that found in the ls2g150m simulation except that
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Figure 7.19: ls4g200m simulation. As for Figure 7.16 except for (a) the mean water
species mixing ratios and (b) the mean water content tendencies. Note that in (a) the
upper x-axis is for the water vapour and total water mixing ratios and the lower x-axis
the liquid water and ice + snow water mixing ratios.

gradient in the water vapour inversion is less as the inversion EZ is deeper, and the top

of the water vapour inversion is less well defined.

The water content tendencies also have essentially similar profiles to those simulated

in the ls2g150m run. The greater water vapour forcing is evident in the water vapour

and total water content tendencies above the EZ. The loss of water vapour and total

water within the EZ is reduced to a peak of -7 g m−3 day−1 compared to more than

-11 g m−3 day−1 in the ls2g150m simulation (Figure 6.29). Like the radiative cooling

and condensational heating profiles the liquid water content tendency also has a vertical

structure which influenced by the cloud-inversion adjustment - a peak tendency is found

within the EZ, and a lesser peak is found at the height of the EZ top.

Normalised time-averaged water content budgets are shown in Figure 7.20. The liquid

water budget shows that the unique structure of the liquid water tendency is caused

by the condensation distribution near cloud top due to the cloud-inversion adjustment.

The other liquid water content budget profiles are similar to that found in the ls2g150m

simulation (Figure 6.30) except that sedimentation is spread higher in the EZ and the

mass transport is reduced. In general the other water species budgets are consistent with

those found in the ls2g150m simulation, though the eddy transport is weaker which is
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Figure 7.20: ls4g200m simulation. As for Figure 7.16 except for the (a) qt budget, (b) qv
budget, (c) ql budget and (d) qi + qs budget. Terms described in Section 6.2.3.4 except
LS, which is the source of water from large scale forcing, (∂q/∂t)LS .
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consistent with the reduction in TKE and w′θ′v. In the water vapour and total water

budgets the down gradient transport from the top of the water vapour inversion to its

base is the main source term directly above zib, therefore its reduction leads to a greater

drying in this region. Higher in the inversion the water vapour forcing dominates, as in

the ls2g150m simulation the water vapour tendency at the height of the mean zct is equal

to zero.

The mechanism which sustains the water vapour inversion is similar in the ls4g200m

simulation to the ls2g150m run, with the loss of water from condensation, continuously

replenished by the water vapour from the large scale advection which is transported

downwards by eddies. Differential drying/moistening maintains the gradient across the

water vapour inversion and keeps the region moist enough for liquid cloud to form there.

In the ls4g200m simulation the eddy transport is weaker than in the ls2g150m run,

however the forcing is stronger and so the reduction has little effect on the inversions

maintenance.

7.2.4.5 Cloud-inversion development

The most significant difference in the time development of the cloud-inversion encroach-

ment between the ls4g200m and ls2g150m runs, is that the encroachment is quasi-stable

in the ls2g150m simulation while in the ls4g200m simulation the encroachment evolves

with time. For the ls4g200m run the evolution of zi+, the mass of inversion layer liquid

water and the fraction of liquid water inside the inversion was discussed in Section 7.2.1,

and the development of the cloud and temperature structure was shown in Figure 7.15.

Generally the time development is a growth of cloud above zib, followed by a cooling and

adjustment in the inversion boundaries. Over the duration of the simulation zi+ peaks

at 219 m, however after the inversion base has adjusted to the clouds presence, zi+ is

stable at 100 ± 20 m for the next 4 hours.

To help understand what causes the sudden inversion adjustment, Figure 7.21 shows the

normalised profiles of θe, the heat budget terms and the stability numbers at different

times between 5 and 15 simulation hours. At around five hours of simulation time the

cloud is extended around 70 m into the inversion. The heat budget is similar to the

mean of the control Ninx2 simulation and the combined stability number shows that

instabilities are generated throughout the cloud. Over the next two hours the cloud

encroaches an extra 30 m into the inversion. As was demonstrated to occur in the mean

heat budget of the ls2g150m simulation, the extra liquid mass above zib causes the peak

in the radiative cooling to rise relative to the inversion and contribute a greater weight to

the peak net cooling. As was discussed in Section 6.3.2.4, the movement of the radiative

cooling further into the stable layer reduces the instability generation from radiative
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Figure 7.21: ls4g200m simulation. (a) - (c). Half hourly averaged profiles of θe, the heat
budget terms and the stability numbers, normalised in height so the inversion base is
equal to one and surface equal to zero. Averages centred on (a) 5 hours, (b) 7 hours, and
(c) 9 hours.
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Figure 7.21: ls4g200m simulation. (d) - (f). Normalised profiles with averages centred
on (d) 11 hours, (e) 13 hours, (f) 15 hours.
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cooling and the eddy transport is reduced. Overall the integrated cooling of the cloudy

part of the EZ at seven hours is 50 % greater than at five hours. Comparison with the

budgets analysed in Chapter 6 suggests that the extension of cloud into the inversion is

stable at this time, and the heat loss through the EZ doesn’t lead to the rapid adjustment

of the inversion boundaries.

Over the next few simulation hours, rapid condensation causes the cloud top to extend

further into the inversion, with zi+ equal to a value of around 140 m at 9 hours and 200

m at 11 hours. The entire region of significant radiative cooling is confined to the stable

inversion layer in these profiles, thereby suppressing the generation of instability and

leading to an order of magnitude reduction in the eddy heat transport. In the absence

of turbulence to redistribute heat down gradient through the inversion layer, the peak of

the net cooling aligns with the peak radiative cooling and this causes the magnitude of

the integrated cooling of the cloudy part of the EZ at 9 and 11 hours to be double that

found at five hours. Cooling is now strong enough to cause the rapid redistribution of

the temperature profile and by 15 hours the cloud extends a quasi-stable depth of around

100 m into the inversion.

Thus the mechanism for cloud encroachment under strong water vapour forcing is a

quasi-stable cloud encroachment followed by rapid condensation in the inversion layer,

an upwards shift in the longwave radiative cooling relative to the inversion, a shut off of

turbulence as instability generation from radiative cooling is reduced and an increased

cooling rate which causes the temperature profile to redistribute. The encroachment

depth at which the adjustment mechanism is activated in the ls4g200m simulation around

100 m, though it is probable that altering microphysical parameters: droplet number,

effective radius; or the inversion structure would impact on the depth.

7.3 Summary and conclusions

In this chapter the model configuration developed to simulate mixed-phase Arctic stra-

tocumulus in Chapter 6 was expanded so as to test the sensitivity of the cloud-inversion

encroachment to different water vapour forcings. As in the previous chapter the forcing

was applied above the base of the inversion using the algorithm developed by Brooks

(2003), however in this chapter a range of forcings were applied to the model; with the

setup differing both the forcing rate and depth over which the forcing was applied.

Generally two types of cloud top encroachment were modelled. The first, of which the

encroachment modelled in the ls2g150m simulation is an example, was a quasi-stable

encroachment of cloud into the inversion. Generally this was found for clouds where

the mean cloud top extended less than 100 m above zib. The mechanisms which con-
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trolled the encroachment of this type are as found for the ls2g150m simulation, therefore

because these processes were explained in detail in the previous chapter, quasi-stable

encroachment will not be discussed here any further.

The second type of encroachment was characterised by more significant extension of cloud

into the inversion and a temporal development of the cloud extension depth. Three

simulations had encroachment which developed in this way: the ls3g200m simulation,

the ls4g150m simulation and the ls4g200m simulation. These three simulations had the

largest mean and maximum encroachment depths out of all the runs and the greatest

magnitude of mass inside the inversion. In the ls4g300m simulation cloud top extended

up to a maximum of 219 m into the inversion which is equal to around half of the cloud’s

total liquid water mass. However the extension of cloud into the inversion was variable.

In the ls4g300m simulation the evolution of zi+ through the simulation had a distinct

cycle. Initially zi+ was quasi-static, then as the water vapour forcing increased the

strength of the specific humidity inversion the cloud top rose further above zib, this was

followed by a cooling of the cloud-inversion layer and readjustment of the inversion. The

next few hours were then marked by a quasi-stable zi+, before the cycle repeated.

Due to the growth of cloud top relative to the inversion base, time-averaged budget

profiles which were normalised in height by zib had distinctive shapes with the budgets of

the periods where cloud extended high into the inversion superimposed on budgets from

the periods when the cloud was at quasi-stable depth inside the inversion. The most

significant difference between the budgets of the ls4g300m simulation and those presented

in Chapter 6 for the ls2g150m simulation was the reduction in the turbulent fluxes of

buoyancy, heat and the water constituents. As buoyancy was the largest producer of

turbulence within the cloud, the mean TKE profile and integrated TKE amount were

also reduced significantly.

The reduction in the eddy transport was found to be integral to the encroachment-

inversion adjustment mechanism. As described in Chapter 6, the generation of instability

can be explained through a radiative, latent and combined stability number. These

variables describe whether the cooling/heating from a diabatic process at a point in

the atmosphere is strong enough to overcome the stability of the layer and generate

instability.

In stratocumulus, cloud top radiative cooling is most important mechanism to generate

instability, and during the quasi-stable period of the ls4g200m simulation the peak in

the longwave radiative cooling was directly above zib, therefore instability from radiative

cooling was able to be generated through a large portion of the cloud; either below zib

or directly above where ∂θv/∂z is only slightly positive. However as the cloud-inversion

extension increased the peak radiative cooling was forced higher into the inversion layer
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until it eventually reached a depth, were no instability could be generated by radia-

tive cooling. Because there was little shear through the cloud, this lead to turbulence

essentially switching off.

With regards to the inversion adjustment, the rapid reduction in turbulence meant that

there was no eddy transport through the cloud to redistribute heat, and reduce the

overall cooling rate within the cloudy part of the entrainment zone. Thus cooling was

increased in the EZ and an adjustment of the inversion occurred. Overall this mechanism

represents a local radiative-dynamical feedback within the cloud layer. However, while

the thermal-adjustment mechanism acted as a strong limit to zi+ in the simulations, it

was not apparent in ASCOS observations where despite the rising and falling cycle of zi+

over time suggesting the possibility of an encroachment-adjustment mechanism, analysis

of the change to zi+ at periods of high longwave opacity in Section 5.1.3.3 suggested the

thermal-adjustment mechanism didn’t occur.

The lack of evidence for a thermal-adjustment mechanism in the observations is not

conclusive and can’t be determined from the ASCOS dataset with any certainty. However

even if the mechanism was not active during ASCOS, its simulation by the LEM may not

be artificial. Though this would suggest that thermal-adjustment is either prevented by

aspects of atmospheric development not simulated by the LEM such as large-scale heat

transport balancing the radiative cooling. Or may suggest that the LEM is particularly

sensitive to encroachment and in reality thermal-adjustment might only occur when much

greater masses of liquid water are found inside the inversion.

Thermal adjustment of the inversion was also absent from the simulations of Solomon

et al. (2011). However the cloud modelled in Solomon et al. (2011) did not encroach

as deeply into the inversion as those simulated in the ls3g200m, ls4g150m and ls4g200m

runs, and in the LEM simulations where cloud encroached a similar depth above zib as

found modelled in Solomon et al. (2011), the thermal-adjustment mechanism was also

absent. It would also not be expected from the radiative transfer calculations made by

(Sedlar et al., 2012), however the modelling method in that study was not as detailed

as that employed here, and their analysis appears to be too simplistic to capture the

radiative-microphysical-dynamical interactions found to lead to thermal-adjustment in

this study.

Analysis in this chapter also compared the relationships between zi+ and the mass of

liquid water inside the inversion found using the ASCOS data, and from the range of

simulations. Generally the scatter in the model runs was much smaller than in the obser-

vations, which is reasonable given the more restrictive conditions imposed on atmospheric

development in the LEM. From the complete range of simulations, a number of strong

relationships between the encroachment defining variables were identified. Both the frac-

tion of total liquid mass inside the inversion and the absolute liquid cloud mass inside the
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inversion were found to have a very strong correlation with the inversion encroachment

depth. TKE was also found to have a high positive correlation with the encroachment,

while the negative correlation with the encroachment rate suggests that the diagnostic

of we from the change in BL depth is unsuitable for clouds which encroach into the

inversion.

The primary aim of this research project was to determine the radiative-microphysical-

dynamical mechanisms which control the encroachment of cloud into the temperature

inversion. In this chapter, a range of simulations were made using varying large-scale wa-

ter vapour forcing specifications to simulate different humidity inversion strengths, and a

physically based mechanistic description of the encroachment was determined. Although

the simulations made in this chapter only explored the sensitivity of encroachment to hu-

midity inversion strength, the results found are a crucial step forward in understanding

Arctic stratocumulus clouds and their influence on the Arctic boundary.

Another significant result of this chapter was the discovery that the thermal-adjustment

of the inversion occurs when the buoyancy from cloud top radiative cooling is reduced

by so much that vertical heat transport does not balance the longwave radiative cooling.

This was only found when zi+ was high therefore some cloud-inversion collocations lead

to a thermal-adjustment while others don’t. Furthermore the reduction in the buoyancy

flux was found to lead to a significant drop in the magnitude of BL turbulence and this

was discovered to be proportional to zi, thus a major effect of the encroachment on BL

development was quantified.
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Chapter 8

Conclusions and recommendations

8.1 Conclusions

This thesis presented a study of Arctic mixed-phase stratocumulus clouds and their en-

croachment into the temperature inversion which caps the central Arctic boundary layer.

The primary aim of the study was to gain an insight into the physical mechanisms which

support the extension of cloud into the inversion layer and understand the effect that

cloud-inversion encroachment has on the development of the lower Arctic atmosphere.

It is also hoped that the increased understanding provided by this study should act to

support the development of Arctic stratocumulus parametrizations which are to able to

incorporate the encroachment mchanisms; or the influence of encroachment on the lower

Arctic atmosphere, into climate models.

To achieve these aims, the methodology of the project first involved a direct analysis of

the ASCOS dataset so that the prevalence of clouds which encroached into the inversion

during the campaign could be determined and related to measurements at other Arc-

tic locations. A semi-idealised mixed-phase Arctic stratocumulus case study was then

designed and modelled using large eddy simulations. The purpose of the simulations

was to determine the fundamental radiative-microphysical-dynamical mechanisms which

support the encroachment, and to quantify the relationship between cloud encroachment

and the presence of specific humidity inversions; which had been previously been ob-

served coincident to the temperature inversion over the central Arctic. Simulations used

large-scale forcing of water vapour into the temperature inversion to test the sensitiv-

ity of encroachment to the strength and depth of the humidity inversion, with a novel

inversion-finding algorithm (Brooks, 2003), incorporated into the LEM to determine the

boundaries of the inversion layer.

Direct analysis of the ASCOS dataset showed that despite the central Arctic experiencing
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seasonally uncharacteristic large-scale meteorological conditions during the summer of

2008, during periods where the lower atmosphere was dominated by stratocumulus clouds

the collocation of cloud inside the inversion was the most prevalent cloud-inversion regime.

Generally the structure of the lower Arctic atmosphere observed during ASCOS was

simliar to that found in previous summer campaigns; AOE-2001 and SHEBA (Dai et al.,

2011; Tjernstrom, 2005, 2007; Tjernstrom et al., 2004). With a shallow near-neutral or

slightly stable BL, and cloud residing well above the BL at a height most commonly found

to be between 500 and 950 m. In common with that found at other locations during

the summertime, clouds were most often characterized as mixed-phase with a shallow

liquid layer precipitating ice down to the surface below (Shupe et al., 2008). Elevated

temperature inversions were identified in 90 % of the atmospheric temperature profiles

during the stratocumulus period while in 86 % of the atmospheric profiles where cloud

was observed, the cloud top was found to encroach into the inversion layer. Encroachment

depths, zi+ were diagnosed using the (Brooks, 2003) algorithm to determine the inversion

base, zib, and were shown to be as high as 500 m, however the largest frequency of

occurance was found at depths below 150 m. The common occurance of cloud encroaching

more than 100 m into the inversion was is consistent with measurements at other central

Arctic locations (Sedlar et al., 2012), indicating the high prevalance of this regime under

a variety of large-scale atmospheric conditions.

Numerical simulations modelled a mixed-phase Arctic stratocumulus cloud and in all the

simulations the cloud was found to persist throughout the simulation, with the production

of ice crystals too slow (Morrison et al., 2012), to cause the glaciation of the whole

cloud as found in other studies (Harrington et al., 1999; Jiang et al., 2000; Pinto, 1998).

Simulations explored the radiative-microphysical-dynamical interactions which support

the encroachment and three cloud-inversion regimes were identified. The first regime

was characterised by modest encroachment of the cloud into an inversion where the

water vapour mixing ratio fell of rapidly through the inversion layer. Within this regime

cloud tops were supported up to 40 m above zib by the high relative humidity of the

inversion, which in turn was maintained from evaporation of overshooting thermals in

the entrainment zone. The identification of clouds encroaching into a dry temperature

inversion is unexpected and suggests that sub-tropical stratocumulus cloud may also

extend a modest distance into the inversion if the drop off of the total water mixing

ratio above zib is not sufficiently high and/or the temperature inversion is not sufficiently

sharp.

The second regime was of a cloud whose top extended a quasi-stable depth of over 100 m

inside coincident temperature and humidity inversions. The humidity inversion was found

to support the extension of cloud into the inversion despite the continual loss of moisture

from the atmosphere in the form of ice precipitation. This regime was determined to be

similiar to the one modelled by Solomon et al. (2011). The depth of the encroachment was
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found to be proportional to the strength and depth of the humidity inversion. Radiative-

microphysical-dynamical feedbacks within the cloud supported its encroachment into the

inversion, with longwave radiative cooling at the top of the mixed layer, driving strong

turbulent motions in the BL, overshooting thermals and condensation above zib. The

presence of cloud inside the inversion was shown to cause a significant reduction in the

strength of buoyancy production of TKE due to the cloud top radiative cooling occuring

round about the stably stratified temperature inversion. However under this regime,

the reduction in eddy tranport of heat through the cloud-inversion prevented a thermal-

adjustment of the inversion layer to the presence of the cloud.

The third regime was found to occur under the strongest humidity inversions where zi+

reached a depth high enough for the peak radiative cooling to occur inside the temper-

ature inversion. Within this regime the production of buoyancy from radiative cooling

was essentially shut-off causing an inbalance between radiative cooling, condensation and

eddy heat transport which resulted in the rapid thermal-adjustment of the inversion layer.

This mechanism demonstrates the importance of radiative-microphysical-dynamical feed-

backs in sustaining the cloud (Morrison et al., 2012). However cloud growth inside the

inversion followed by the layers adjustment to the cloud was found to be cyclic, with large-

scale water vapour forcing into the temperature inversion, strengthening the humidity

inversion which inturn induced further encroachment. In this regime the maximum zi+

was found was found to be up 200 m with around 40 % of the clouds liquid water mass

residing inside the inversion.

Regimes two and three were found from simulations in which the humidity inversion was

maintained by a source of inversion layer moisture. However simulations also demon-

strated that so long as the inversion was relatively moist, cloud could be maintained over

45 m into the temperature inversion even in the absence of a source of inversion layer

moisture. Once a cloud encroached into the inversion layer, condensation near the base

of the inversion and the subsequent sedimentation of water droplets into the mixed layer

below was shown to create a humidity gradient across the temperature inversion. This

in turn led to a down-gradient tranport of water vapour from the top of the inversion

towards its base, replenishing the water lost from condensation-sedimentation. So long

as the humidity of the inversion remained strong enough for overshooting thermal to

condense in the layer, this mechanism was shown to be self sustaining as the vertical

distribution of condensation supported the humidity inversion structure. In this regime

the cloud was continuously losing water from ice precipitating to the surface and so it

would be expected that the cloud would dissipate eventually.

This mechanistic description of encroachment of cloud into the inversion demonstrates

that rather than the two cloud-inversion collocations of either cloud capped by the in-

version or cloud inside the inversion, a number of cloud-inversion regimes exist. Where
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no specific humidity inversion exists the cloud can either be capped by the inversion or

it can extend a modest height inside the inversion. This depends on the sharpness of the

gradient in moisture and temperature profiles above cloud. Where a specific humidity

is found coincident with the temperature inversion, the encroachment depth increases

and cloud can either extend a quasi-stable depth into the cloud or at high encroachment

depths follow a cycle of cloud growth into the inversion followed by a readjustment of

the inversion boundaries.

The physics of these regimes was demonstrated to involve complex radiative-microphysical-

dynamical feedbacks in the cloud, however across the range of regimes a simple relation-

ship between the strength of the humidity inversion and the encroachment depth was

determined within the model. Although direct analysis of ASCOS data showed that the

modelled conditions are only a subset of those experienced in the real Arctic atmosphere,

relationships determined in model suggest that parameterization of the encroachment

mechanisms is possible. Therefore, there is a potential for cloud encroachment into the

inversion to be respresented in GCMs and RCMs.

Development of the lower Arctic atmosphere was found to be affected by the encroach-

ment throught the significant reduction in BL turbulence. The strength of the TKE

reduction was found to be proportional to the encroachment depth, and in the simula-

tions with the greatest encroachment, the vertically integrated TKE was reduced by up to

90 % compared to that simulated under the dry inversion regime. This reduction is likely

to have important consequences on the amount of vertical mixing modelled by GCMs

over the central Arctic and will have an effect on both the strength of surface fluxes and

amount of cloud predicted by the model. Thus the absence of cloud top encroachment

into the inversion in GCMs and RCMs may contribute their failure to properly predict

cloud (Karlsson & Svensson, 2010; Tjernstrom et al., 2008; Walsh et al., 2002, 2009).

The influence of cloud encroachment into the inversion on the magnitude of vertical

mixing within the BL may also be important to understand whether the major source

of Arctic aerosol is from a surface or from above the free troposphere (Bigg et al., 2001;

Leck et al., 1996, 2002), with a reduction in vertical mixing where cloud is inside the

inversion preventing the tranport of aerosol through the BL. This may explain why cloud

and fog formation is frequently limited by CCN availability (Bigg et al., 1996; Mauritsen

et al., 2011) and sometimes lead to the tenuous cloud regime observed near the surface

of the central Arctic (Mauritsen et al., 2011), whereby CCN concentrations are too low

for condensation to occur at typical relative humidities.

Although this study gives no indication of how the relative frequency of the cloud-

inversion regimes would change as the Arctic warms as a consequence of anthropogenic

climate change. A reduction in the prevalence of inversion encroaching clouds would

suggest greater vertical mixing of the BL which could possibly lead to increased CCN
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concentrations. As low-level clouds are the most significant factor controlling the Arctic

surface radiation budget Intrieri et al. (2002b) and changes to cloud coverage and albedo

can alter the equillibrium depth of sea-ice Curry et al. (1993), this could have feedbacks

on the Arctic climate system. These consequences warrent further investigation.

8.2 Suggestions for future research

The results presented in this study are based on the analysis of ASCOS observations and

a series of numerical simulations made using a single mixed-phase Arctic stratocumulus

case study in which a large-scale water vapour forcing into the temperature inversion was

varied to induce different levels of cloud encroachment into the inversion layer. Although

this thesis has highlighted a number of interesting mechanisms which control the en-

croachment, these mechanisms were found under a limited parameter space and further

research is required to provide a complete physical characterization of cloud top encroach-

ment in a wider variety of conditions. To achieve this aim a number of suggestions for

future research are provided:

� This study show a modest encroachment of Arctic stratocumulus cloud top into tem-

perature inversion when the specific humidity falls of rapidly with height above the

inversion base. Simulations should be made to understand whether modest cloud-

inversion encroachment is found in sub-tropical stratocumulus clouds or whether the

commonly held assumption that cloud top and inversion base are always coincident is

true under all circumstances.

� Thermal-adjustment of the inversion to the cloud layer was found in simulations where

the water vapour forcing was large, however this was only modelled in two-dimensions.

Equivalent simulations should be carried to evaluate whether the effect is also apparent

in three-dimensional simulations.

� The reduction in TKE as cloud encroaches into the inversion has implications on the

transport of aerosol particles through the Arctic BL. A range of simulations which

include some representation of aerosol transport; possibly through the introduction

of tracers in the LEM, should be used to determine how cloud top encroachment

influences their mixing through the atmosphere so as to help understand whether the

as yet undefined source of central Arctic aerosol is from the free troposphere or the

surface.

� Further Arctic stratocumulus case studies should be designed and simulated so that

a characterization of the encroachment under a wider variety of Arctic atmospheric

conditions can be understood.
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� Parameterizations of the cloud top encroachment or its affect on the lower atmosphere

should be developed and experiments should be carried out using the UM single column

model or a comparable method to test their implementation in GCMs.

� Version 3.0 of the LEM is currently under development and the model incorporates a

much more sophisticated explicit cloud microphysics scheme amongst other changes.

Explicit microphysics models prognose both mass of cloud droplets/ice crystals of many

different sizes allowing the droplet/crystal distribution to change as the simulation is

integrated in time. Simulations of the cloud encroachment using the Version 3.0 of the

LEM with explicit microphysics should be carried out to determine how the distribution

of water droplets at the cloud top is affected by encroachment into the inversion, and

results should be used to inform the specification of cloud microphysical parameters

in LEM’s bulk cloud microphysics model.

� It is suggested that a further summertime expedition to the central Arctic is carried out

in the near future. A particular effort should be made to collect a more extensive set of

measurements of cloud microphysical and thermodynamic properties either directly by

way of dedicated aircraft flghts and/or remotely using a wider range of remote sensing

instruments.
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