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Abstract 

The characterisation of cohesive powders for flowability is often required for reliable 

design and consistent operation of powder processes. This is commonly achieved by the 

unconfined compression test or shear test, but these techniques require a relatively large 

amount of powder and are limited to large pre-consolidation loads. There are a number 

of industrial cases where these tests are not applicable because small amounts of 

powders have to be handled and processed, such as filling and dosing of small quantities 

of powder in capsules and dispersion in dry powder inhalers. In other cases, the 

availability of testing powders could be a limiting issue. It has been shown by 

Hassanpour and Ghadiri (2007) that under certain circumstances, indentation on a 

cohesive powder bed by a blunt indenter can give a measure of the resistance to powder 

flow, which is related to flowability. However, the specification of the operation 

window in terms of sample size, penetration depth, indenter properties and strain rate 

has yet to be fully analysed. In the present work, the ball indentation process is analysed 

by numerical simulations using the Distinct Element Method (DEM). The flow 

resistance of the assembly, commonly termed hardness, is evaluated for a range of 

sample quantities and operation variables. It is shown that a minimum bed height of 20 

particle diameters is required in order to achieve reliable measurements of hardness. A 

sensitivity analysis of indenter size reveals that small indenters with diameters less than 

16 times the particle diameter exhibit fluctuations in powder flow stress measurements, 

which do not represent shear deformation. The penetration depth should be sufficiently 

large to cause notable bed shear deformation. It is found that this minimum penetration 

depth is approximately equal to 10% of the indenter radius. The hardness measurements 

are found to be independent of indenter stiffness within the wide range investigated. 



 

The friction between the indenter and the particles slightly increases the hardness, 

although its influence on the internal stresses is negligible. Cubic and cylindrical 

indenters measure significantly larger hardness value compared to the spherical indenter. 

Increasing the inter-particle friction and cohesion results in higher hardness values and 

internal stresses, due to the increase in resistance to shear deformation. Simulations at a 

range of indenter velocities confirm that the ball indentation technique can be used to 

analyse powder flowability over a wide range of shear rates.   
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CHAPTER 1   Introduction 

 Powder flowability 1.1

In industrial processes such as blending, transfer, storage, feeding, compaction and 

fluidisation the reliable flow of powder plays an important role, since it can affect the 

quality of the final product or production rate. Poor flow leads to wastage, machinery 

maintenance problems and downtime, with associated costs. In discharge of cohesive 

powders from a storage silo, an arch or rathole may form which will result in blockage 

or non-uniform discharge of powders. In the case of fine powders, this may lead to 

uncontrollable flooding and fluidisation of powders in air. In blending of cohesive 

powders, the powder bed may not be dilated which in turn does not allow powders to 

migrate through the dilated bed and reduces the mixing efficiency and quality of the 

final product. This is contrary to free flowing blends which segregate easily during 

subsequent handling processes [1]. 

 

Powder flow is a complex and multidimensional behaviour which depends on many 

powder characteristics [2]. There are a number of test methods for evaluation of flow 

behaviour of powders, most of which require a relatively large amount of powder. 

Furthermore, the most common test method, i.e. the shear cell, measures flow properties 

of bulk powder at relatively large consolidation stresses. There are a number of 

industrial cases where small amounts of loosely compacted powders are handled and 

processed, such as filling and dosing of small quantities of powder in capsules and 

dispersion in dry powder inhalers. In other cases, the availability of testing powders 
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could be an issue. For instance, in nuclear and pharmaceutical industries, the amount of 

powder available for testing is limited due to ionising radiation risks for the former and 

cost of drug in its early development stage for the latter. Moreover, studies of bulk 

behaviour at high compression levels may not be representative of loosely compacted 

powders at a small scale [3]. This exposes the need for a testing method of flowability, 

which makes use of small amounts of testing material. Hassanpour and Ghadiri [4] 

proposed a testing method based on ball indentation on a powder bed which can be 

performed on small amounts of loosely compacted powders. The preliminary results 

correlated well with common test methods, such as the unconfined compression and 

shear cell testing, where a linear relationship between the hardness (flow stress) 

measured by ball indentation and the unconfined yield stress prevailed. However it was 

found that the ratio of hardness to unconfined yield stress, commonly defined as the 

constraint factor, depended on the material. In continuum mechanics, the constraint 

factor is well understood for solid materials such as metals, glasses and polymers. In 

their work, Hassanpour and Ghadiri [4] considered a constraint factor of 3 for all their 

testing materials as a first attempt, but this was later found not to be appropriate [5]. The 

extent of constraining depends on powder properties, such as adhesion, friction, shape, 

roughness, stiffness and hardness. However, the constraining of deformation in the 

indentation process in powder beds is complicated due to the discrete nature and degree 

of freedom of movement of the particles. 

  

 

In a bed of particles under compression the particles are not uniformly loaded; this 

makes it difficult to determine internal stresses analytically. Moreover, measurement of 
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internal stresses and structure is not possible experimentally. The most appropriate 

approach for this purpose is the use of computer simulation by the Distinct Element 

Method (DEM).  

 

In the present work, an attempt is made to investigate the criteria which define the 

minimum required sample quantity, the suitable indenter size range and strain rate 

dependency for the ball indentation test.   To this end, sensitivity analyses have been 

performed by DEM simulation of the indentation process in order to study the localised 

stress/strain behaviour of powder around the indenter. 

 Objectives and structure of the thesis 1.2

The overall aim of this PhD is to further the understanding of the ball indentation 

method using numerical analysis by DEM. This work is part of an Engineering and 

Physical Sciences Research Council (EPSRC) project [6] which is summarised in 

Figure  1.1. 
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Figure  1.1: Schematic diagram of the project plan 

 

The project consists of experimental and computational works. The experimental 

findings will be reported in Mr Umair Zafar’s PhD thesis [7]. The DEM simulations that 

constitute this thesis investigate the operational window of the ball indentation method 

in terms of minimum required sample size, indenter properties (e.g. friction, shape, 
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stiffness and size) and the sensitivity of the measurements with strain rate, with an aim 

of determining the criteria to be followed for the experimental procedures. A wide range 

of materials are characterised and their flowability is determined by the ball indentation 

and other measurement methods. The findings of the various measurement methods are 

compared, with the intention of determining the constraint factor for various materials. 

Sensitivity of hardness and internal stresses during the indentation process with the 

single particle properties are also investigated by the DEM simulations, which is 

subsequently compared to the findings of the experimental work in order to develop the 

understanding of the indentation process and the constraint factor.  

 

Chapter 2 briefly compares various commonly-used flowability measurement 

techniques. The concept of DEM is outlined in Chapter 3 with a focus on the contact 

models and incorporation of shape in the DEM simulations. Description of a new linear 

contact model, which was developed for DEM simulations of elasto-plastic and 

adhesive spheres, is given in Chapter 4.  Chapters 5 and 6 investigate the operational 

window in the ball indentation method in terms of minimum sample size, penetration 

depth and indenter properties (such as size, shape, friction and stiffness) using DEM. 

The sensitivity of the ball indentation process to strain rate is investigated in Chapter 7. 

Finally a summary of the findings of the thesis, concluding remarks and possible future 

work is presented in Chapter 8.   
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CHAPTER 2   Flowability Measurement 

Techniques 

A wide range of techniques are available for evaluating bulk powder flow. There are 

fundamental differences between various techniques and devices which may lead to a 

variation in the measured powder behaviour. There are a number of reviews available in 

the literature which compare various techniques [3, 8]. This chapter outlines briefly the 

commonly used and recently developed techniques for evaluation of flowability of 

powders. A comparison of the techniques is also given. 

 Uniaxial compression test 2.1

In uniaxial compression test, a hollow cylinder with a known cross-sectional area is 

filled with the test powder. Internal wall of the hollow cylinder is made of low friction 

material in order to reduce the effects of wall friction. The bulk solids are compressed 

vertically by an applied force, resulting in the consolidation stress σ1. The more the 

volume of the bulk solid is reduced, the more compressible it is. Compressibility of 

powders can be a measure of their flow behaviour. With easy-flowing, dry and 

relatively large particles, the decrease in the volume of the bulk on compression is not 

very large and the bulk density will increase only slightly. With fine and moist bulk 

solid one will observe a clear increase in bulk density [3]. After unloading the hollow 

cylinder is removed. Subsequently, the consolidated cylindrical bulk solids specimen is 

loaded with an increasing vertical compressive stress until it fails. This failure stress is 
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called the compressive strength, cohesive strength, or unconfined yield strength and is 

denoted as σc. The uniaxial compression test procedure is shown in Figure  2.1. 

 

 

Figure  2.1: Uniaxial compression test procedure: (a) Consolidation; (b) Removal of 

walls and compression stress; (c) Failure of the bulk 

 

Since the bulk solids fail only at a sufficiently large vertical stress there must be a 

material specific yield limit for the bulk solids. The yield limit of bulk solids is strongly 

dependent on its stress history i.e. previous consolidation. Generally for greater 

consolidation stresses, the bulk density and unconfined yield strength increase [8]. 

 Representation of stresses using Mohr’s stress circles 2.1.1

If the force of gravity acting on the bulk solids specimen is negligible and if no friction 

is acting between the wall of the hollow cylinder and the bulk solids, both vertical and 

horizontal stresses are constant within the entire bulk solid specimen [3]. The principal 

stresses are the normal stresses at the planes where there are no shear stresses acting. In 

the cases of zero wall friction, the vertical, σV, and horizontal, σH, stresses are the major 

and minor principal stresses, respectively, from which the Mohr circle for the 

consolidation can be drawn (Figure  2.2). 
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Figure  2.2: Mohr circle representation of consolidation process of uniaxial compression 

test 

 

During unconfined compression, the minor principal stress (i.e. horizontal stress) is 

equal to zero due to the fact that the lateral surface of the specimen is unrestrained and 

not loaded. When the bulk fails, the unconfined yield strength acts vertically which is 

the major principal stress. The failure Mohr circle is shown in Figure  2.3. 

 

 

Figure  2.3: Mohr circle representation of uniaxial compression test 

 

If a horizontal stress greater than zero (σ2 > 0) was to be applied on the specimen (in 

addition to the vertical stress), the bulk powder would fail at a vertical stress which is 

larger than the one in the case of unconfined compression. The minor principal stress in 



 

 

Chapter 2: Flowability measurement techniques 
 

 

9 

 

this case will be the constant horizontal stress. The Mohr circle representation of this 

case is shown in Figure  2.4. 

 

 

Figure  2.4: Mohr circle representation of biaxial compression test 

 

The testing methods by which both the vertical and horizontal stresses are controllable 

are known as biaxial testers. The tangent line to all the possible failure Mohr circles for 

the same consolidation stress is known as the yield locus. This line gives a shear stress 

that is necessary to initiate flow for every normal stress.  Stresses which lead to circles 

below the yield locus only cause an elastic deformation of the bulk solid specimen. 

Stress circles above the yield limit are not possible as the specimen would already be 

flowing when the Mohr stress circle reaches the yield limit. This failure continues 

without applying any larger load on the specimen [3]. 

 

 Classification of powders based on their flow behaviour 2.1.2

Jenike [9] introduced a semi-empirical classification for flowability of bulk powders by 

means of a parameter called flow function, which is given by,  

 
1

c

c

ff



  (2.1) 
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where ffc is the flow function, σ1 is major principal stress and σc is the yield stress. 

Generally the larger the flow function is, the better a bulk solid flows. Jenike classified 

bulk solids flowability based on the value of ffc. This classification is given in Table  2.1. 

 

Table  2.1: Jenike’s classification of powder flowability 

ffc Classification 

< 1 Not flowing 

1-2 Very cohesive 

2-4 Cohesive 

4-10 Easy flowing 

> 10 Free flowing 

 

Flowability is the ratio of major principal stress corresponding to the applied load to 

unconfined yield strength, and this ratio becomes greater with increasing consolidation 

stress for most bulk solids. Therefore the consolidation stress at which the flowability is 

measured must also be given besides the value of ffc. The consolidation stress selected 

for testing should reflect, as much as possible, the actual process conditions in which 

the flow problem occurs. For example in design of a hopper, it is important to consider 

the low consolidation stress ranges that are representative of the regions close to hopper 

apex, since arching mostly occurs around this region [8]. In many applications where 

the bulk solids flows by gravity such as storage bins or silos, two bulk solids with the 

same flowability value but a different bulk density will flow differently because a larger 

gravitational force acts on the bulk solids with the larger bulk density. In such cases that 

bulk density and gravitational forces affect the flow, the flowability value can be 

evaluated by Equation (2.2). 
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b

c

w

ff ff




   (2.2) 

where ffρ is called density-weighed flowability, ρb is the bulk density and ρw is the 

density of liquid water at 0  C 1 bar. The bulk density is divided by the density of liquid 

water in order to obtain a dimensionless term [3]. 

 Shear testing 2.2

The use of the uniaxial compression test may be problematic since very small 

unconfined yield strength values cannot be measured by this method. Moreover, 

preparation of the die to obtain low friction walls is a time-consuming and expensive 

procedure [3].  

 

In shear testers (Figure  2.5), the bulk solids specimen of a known cross section area is 

subjected to a normal stress. Subsequently the top part of the tester is moved 

horizontally relative to the bottom which is fixed. 

 

Figure  2.5: Schematic diagram of shear test procedure 

 

Due to inter-particle and particle-wall friction, a shear stress is acting in the bulk solids 

which is transferred to the top and measured. Since the particles are relatively loosely 

packed at the beginning of shearing, particles can move against each other and rotate. 
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Inter-particle frictional forces will be small and thus the shear stress will be small at the 

beginning. With increasing shear deformation the bulk solids become increasingly 

compact, leading to increased frictional forces and bulk density. Finally the frictional 

forces between the particles are fully mobilised which causes plastic deformation of the 

bulk (known as steady-state flow). The steady-state flow transfers the bulk solids into a 

well-defined, reproducible state of bulk density and strength. The process of 

consolidation and shear to steady-state flow is called preshear and the shear stress at this 

point is called the preshear stress, τpre. The bulk density and the shear stress at the 

steady-state flow are characteristic for the applied normal stress. The preshear procedure 

corresponds to the consolidation step in the uniaxial compression test, however the 

required consolidation stress at preshear is precisely controlled, contrary to the uniaxial 

compression test in which the total vertical stress on the specimen is assumed to be 

equal to the consolidation stress. Moreover, in the case of inhomogeneous bulk solids 

specimens (e.g. when local voids or region with low bulk density exist throughout the 

specimen), the consolidation state of the bulk in the uniaxial compression test may not 

be representative of the whole bulk, especially at low consolidation stresses. This 

problem is avoided in a shear test; during preshear the inhomogeneities are compensated 

by the relatively large shear deformation [3].  

 

After preshear, the normal stress acting on the specimen is reduced to a value less than 

the preshear normal stress. If the consolidated specimen is sheared (under the normal 

stress σsh < σpre), it will start to flow when a sufficiently large shear stress is achieved. 

At the failure of the specimen, the bulk density and shear resistance decrease which 

leads to a reducing shear stress. Therefore at the start of failure, a maximum shear stress 
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is achieved which characterises the incipient flow. The corresponding pair values of 

shear and normal stresses at the failure produce a point on shear vs. normal stress plot, 

which is known as a shear point. The process of preshear to steady-state flow and shear 

to failure is repeated for the same preshear stress but different normal stresses in the 

shear process. This results in a number of shear points on the shear vs. normal stress 

plot. A line containing all the possible shear points for a specific preshear stress is 

known as the yield locus, which is shown in Figure  2.6.   

 

 

Figure  2.6: Determination of yield locus in a shear test 

 

 Representation of stresses using Mohr’s stress circles 2.2.1

In order to evaluate the flowability of a bulk using a shear test, the major principal stress 

and unconfined yield strength must be determined. The major principal stress can be 

evaluated by drawing a Mohr’s circle of steady-state flow. This Mohr’s circle includes 

the preshear point and tangent to the yield locus. Considering the fact that the centre of 

the circle is on the σ-axis, the circle can be drawn (see Figure  2.7). The major principal 

stress is the largest of all normal stresses acting during steady-state flow in all possible 
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planes of the specimen (intercept of the circle with σ-axis). This stress is comparable to 

the consolidation stress of the uniaxial compression test (where σ1 is also the largest 

normal stress) provided the walls are frictionless in the latter. The unconfined yield 

strength cannot be measured directly with a shear test and must be determined from the 

yield locus. At the failure, a normal stress and no shear stress act on the top of the 

specimen, and neither normal nor shear stresses act on the lateral surface of the 

specimen. The Mohr’s circle representing the failure therefore has its minor principal 

stress at zero. Considering the fact that the centre of the circle is on the σ-axis, and that 

the circle is tangent to the yield locus, it can be drawn as shown in Figure  2.7. The 

unconfined yield stress is the intercept of this circle with σ–axis. 

 

 

Figure  2.7: Mohr’s circle representation of shear test 
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 Flowability measurements at low consolidation stresses 2.3

and tensile regimes 

At low consolidation stresses as well as the region where the normal forces are tensile, 

it is important to determine two parameters, cohesion and uniaxial tensile strength 

(denoted as C and σT respectively). Cohesion is the value of shear stress where the yield 

locus intersects with the τ-axis, i.e. where normal stress is zero. Uniaxial tensile strength 

is the value of negative normal stress at which shear stress is zero, i.e. the left end of the 

yield locus. 

 

 Shear testers 2.3.1

With most shear testers it is not possible to measure shear points at very small or 

negative stresses because such stresses cannot easily be applied. In this case cohesion 

and tensile strength can be determined only by extrapolating the yield locus towards 

small and negative normal stresses [8]. Linearity is usually assumed for determination 

of yield loci for very small normal stresses. Mostly yield loci are increasingly curved 

towards small stresses, hence the value of the cohesion and tensile strength cannot be 

determined with confidence in this way. With a few shear testers such as Schulze shear 

ring tester [10] normal stresses of a few hundred Pascal can be measured. In this case, 

the extrapolated value of cohesion can be close to the actual value.  

 

Once the cohesion is determined, the tensile strength can be evaluated based on the 

Warren Spring non-linear model [11], which is a predictive model for determination of 
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yield locus. The shear stress, τ, corresponding to the normal stress, σ, is calculated based 

on the following equation, 

 1

n

TC

 



 
  

 
 (2.3) 

where C is the cohesion, σT is the tensile strength of the material and n is called the 

shear index of the bulk. Shear index is a material dependent parameter and varies 

between 1 and 2. It was found that shear index is not dependant on bulk density or 

consolidation stress of the bulk [11].  

 Sevilla powder tester 2.3.2

This apparatus requires a small volume of powder and measures the uniaxial tensile 

strength of the powder by applying a tensile force to a powder bed due to the pressure 

drop of a percolating gas. A general schematic diagram of this tester is shown in 

Figure  2.8.   
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Figure  2.8: Sevilla powder tester 

 

A bulk solids specimen is located inside a vertical cylindrical vessel and is supported on 

a porous plate which has pore sizes smaller than the particle size. A controlled flow of 

dry gas is introduced from the bottom of the specimen through the pores. The gas flow 

is increased until the powder bed is fluidised into a “freely bubbling regime”, through 

which the powder bulk looses its memory of stress history [12]. Once the specimen 

reaches a steady state, the gas flow is stopped and then reversed in order to apply a 

compressive load. This process corresponds to the preshear stage of a shear test and 

gives a reproducible starting condition for the bulk solid.  In order to measure uniaxial 

tensile yield stress, the gas flow is yet again reversed to an upward-directed flow that is 

slowly increased to put the bed under increasing tension. The consolidation stress at the 

bottom of the bed is assumed to be the total weight of the sample divided by the cross-

section area of the bed; 
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.

c

m g

A
   (2.4) 

where m is the total mass of the sample, g is the gravitational acceleration and A is the 

cross-section area of the bed. When the gas is passed through the particles, it exerts a 

drag force on the particles, causing a pressure drop and hence a tensile stress. Close 

observations reveal that fracture of the bed always starts at the bottom of the bed [12]. 

On increasing the gas flow rate, the tensile stress is increased until the point at which 

the bed fails. Therefore the normal stress acting on the particles at the bottom of the 

vessel can be calculated as follows, 

 
.

n

m g
p

A
    (2.5) 

where Δp is pressure drop of the gas across the bed. With a constant and smooth 

increase of the gas flow rate, the pressure drop is increased linearly. With free flowing 

powders where there is no cohesion and yield locus originates from the origin (i.e. zero 

tensile strength and cohesion values), only gravitational forces should be overcome in 

order to initiate the incipient flow of the powders. The response of the pressure drop 

against increasing the gas flow for free flowing powders is shown schematically in 

Figure  2.9.   

 

 



 

 

Chapter 2: Flowability measurement techniques 
 

 

19 

 

 

Figure  2.9: Schematic response of pressure drop against increasing gas flow for free 

flowing powders in Sevilla powder tester 

 

In the case of cohesive powders, inter-particle adhesive forces need to be overcome in 

addition to the gravitational forces to initiate the incipient flow. Therefore a pressure 

drop larger than that corresponding to the weight of the bed (i.e. the free flowing case) 

is needed. The response of pressure of drop for cohesive powders is shown in 

Figure  2.10. 

 

 

Figure  2.10: Schematic response of pressure drop against increasing gas flow for 

cohesive powders in the Sevilla powder tester 
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The overshoot of pressure drop beyond the bed weight per unit area when the powder 

fails gives a quantitative measure of the uniaxial tensile yield stress. In order to measure 

the tensile strength for different consolidation stresses, the powder is compressed by 

application of a downward-directed gas flow after the steady state of the powder is 

achieved (red arrows in Figure  2.8).  

 Angle of repose 2.3.3

In the angle of repose test, bulk solids are poured through a funnel which is located 

above a plate, forming a conical pile of loose and uncompacted bulk. In order to avoid 

the influence of the surface of the bottom plate, it is provided with a lip to retain a layer 

of bulk solid. The angle of repose is defined as the slope of the conical pile 

(Figure  2.11). 

 

Figure  2.11: Angle of Repose 

 

Carr [13] provided a classification of flow behaviour of powders based on their value of 

angle of repose. This classification is summarised in Table  2.2. 
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Table  2.2: Classification of powder flowability based on angle of repose 

Angle of repose Classification 

  30   Easy flowing 

30   - 45   Cohesive 

45   - 55   Very cohesive 

  55   Not flowing 

 

 

Since bulk solids are falling from a height, the dynamics of the process may affect the 

results. There is no control on the consolidation stresses. With cohesive powders, heaps 

with a peaked tip can be observed which makes it difficult to determine the slope of the 

pile.  

 Vibrating capillary method 2.3.4

The apparatus [14] designed for this technique is illustrated in Figure  2.12. It consists of 

two tubes: a larger (in diameter) glass tube followed by a smaller (in diameter) capillary 

tube. The powder sample is fed to the glass tube by a hopper on the top which is kept 

full with powder during the measurements. The capillary tube is vibrated in the 

horizontal direction with a frequency and amplitude-controlled vibrator. The mass of 

particles discharged from the capillary for a given test is measured by a balance. The 

capillary tube diameter is small enough to prevent powder flow in the absence of 

vibration. The vibration amplitude is increased and the profile of mass flow rate as a 

function of vibration acceleration, which is called the flowability profile, is recorded. 
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Figure  2.12: Schematic diagram of the apparatus for vibrating capillary method 

 

The vibration acceleration, va, is given by Equation (2.6), 

  
2

2av a πf  (2.6) 

where va is the vibration acceleration, a is the vibration amplitude and f is the vibration 

frequency. A typical flowability profile is shown in Figure  2.13. 
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Figure  2.13: Typical flowability profile obtained by vibration capillary method [14] 

 

As it can be seen, there is a critical vibration acceleration at which the particles start 

flowing out of the capillary tube. Beyond this critical acceleration, the mass flow rate 

initially increases, although eventually reaches an asymptote. Jiang et al. [14]  

considered this critical vibration acceleration to be characteristic of the flow behaviour 

of the bulk  and compared this with the results obtained by an angle of repose test for 

different grades of polymethylmethacrylate particles (see Figure  2.14). 

 



 

 

Chapter 2: Flowability measurement techniques 
 

 

24 

 

 

Figure  2.14: Comparison of critical vibration acceleration in vibrating capillary method 

and angle of repose for different grades of polymethylmethacrylate particles [14] 

 

Qualitatively there is good agreement between the results obtained by the vibration 

capillary method and those obtained by angle of repose test.  

 Ball indentation 2.3.5

Different samples of powders are pre-consolidated into a cylindrical die to various low 

pressures. The die must be made of low friction materials (e.g. PTFE) in order to reduce 

the effects of wall friction. The surface is then indented using a spherical indenter and 

the “depth/load” cycle is recorded. The loading speed is chosen so that the indentation 

process is within the quasi-static regime. From the recorded depth/load cycle, the 

hardness of the consolidated bulk is determined.  
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Histroically indentation has been used to determine the hardness of continuum materials. 

Hardness represents the resistance of a material to plastic deformation which is an 

important factor in processes such as comminution, tableting, polishing and attrition 

since it defines the mode and pattern of mechanical failure [15]. Hardness is affected by 

anisotropy in the structure of the material, yield stress, coefficient of friction and the 

geometry of the deformed region. There are a number of indentation test methods for 

solid materials using different geometries of indenter such as sphere, pyramid and cone 

[16]. The hardness number for these cases is calculated from the applied force, the 

projected area of the impression and shape of the indenter. Spheres tend to be better 

options for indentation of bulk powders, since they do not include sharp edges which 

may be comparable in size with individual particle size. Moreover it is important to 

avoid further consolidation of the sample during the indentation process. If the 

specimen is consolidated during indentation the hardness value that is measured 

afterwards may not be representative of the pre-consolidation stress of interest. The 

curvature of a sphere results in a smoother transition from elastic to plastic behaviour 

and allows the powder to be sheared rather than consolidated. During loading, the load 

is increased at a specified rate until a desired maximum load is reached. Then the load is 

decreased during unloading back to zero at the same rate. During unloading, the elastic 

deformation of the sample will recover. This is schematically shown in Figure  2.15. 
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Figure  2.15: Schematic diagram of indentation during (a) loading, (b) maximum loading 

and (c) unloading 

 

In the indentation test, a continuous recording of the applied force and the penetration 

depth is made. A typical load/depth curve is shown in  Figure  2.16. 

 

 

Figure  2.16: Typical indentation load/depth curve 

 

It is noticeable that the unloading curve is not vertical, which shows recovery of the 

elastic deformation during unloading. The maximum depth, the maximum load and the 
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characteristics of the unloading curve are used to calculate the hardness. Hardness is 

given by the ratio of maximum indentation load to projected area of the impression, 

 maxF
H

A
  (2.7) 

where A is the area of the base of the spherical cap that is formed by the impression. 

The relationship between a sphere and its spherical cap is given by [17], 

 

2 2( )

2

bh r
r

h


  (2.8) 

where r is the radius of the spherical indenter, rb is the radius of the base of the cap and 

h is the height of the cap. By rearranging Equation (2.8) the projected area can be 

expressed in terms of size of the indenter and depth of impression, 

 2 2( )bA r dh h     (2.9) 

where d is the diameter of the indenter and h is the depth of the impression. The depth 

of the impression can be evaluated from the load/depth curve i.e. the intercept point of 

unloading cycle and penetration depth axis (hf). As it can be seen from Figure  2.16 there 

is a change in the height of the powder bed at the end of the unloading cycle. This 

behaviour is the result of interactions between the indenter and the powder bed. For 

instance, in the case of cohesive powders, the adhesive force between the indenter and 

powder bed results in a slight surface lift at the end of unloading. In order to disregard 

the effects of such interactions in hardness calculations, an extrapolated depth (hc), 

which is representative of the initial elastic unloading, is used in Equation (2.9). hc can 

be calculated by estimating the tangent to the initial elastic part of the unloading curve. 

The slope of the tangential line determines the location of hc on the penetration depth 

axis. In the indentation test, during formation of the local plasticity zones around the 
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indenter, the volume of the powder bed present in a yield condition is surrounded by an 

elastically deformable region. This implies that the hardness is larger than the plastic 

yield stress. This effect is called the plastic constraint [18], and is defined as the ratio of 

hardness over yield stress, 

 
H

C
Y

  (2.10) 

where C is the constraint factor, H is the hardness and Y is the yield stress. This factor is 

usually greater than unity due to the increase in the local yield strength that is caused by 

the elastically deforming region around the indent. In order to define the flow function it 

is essential to relate hardness to yield strength. Wang et al. [5] have concluded that 

indentation hardness and unconfined yield stress have a linear relationship with pre-

consolidation pressure for a number of materials. This corroborates the linear 

relationship between yield stress and hardness observed for continuum solids, therefore 

indicating a constant constraint factor for a given material. Figure  2.17 shows the 

comparison between the indentation hardness and unconfined yield stress of Avicel. 
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Figure  2.17: The comparison between the indentation hardness and unconfined yield 

stress as a function of pre-consolidation pressure for Avicel [5]. 

 

Hassanpour and Ghadiri [4] considered a constraint factor of 3 in order to evaluate the 

yield strength of α-lactose, magnesium carbonate and salinised glass beads. These 

results were compared to yield strengths measured by uniaxial compression test. A good 

correlation between the indentation hardness and unconfined yield stress was found for 

α-lactose and magnesium carbonate. However, the yield stresses obtained from ball 

indentation and unconfined compression for salinised glass beads did not follow the 

same trend. This can be ascribed to the difference in constraint factor for salinized glass 

beads. Subsequently Wang et al. [5] evaluated the constraint factor for Avicel, starch 

and lactose monohydrate by comparing the results of indentation and uniaxial 

compression. The results are shown in Figure  2.18. 
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Figure  2.18: The relationship between constraint factor and pre-consolidation pressure 

for Avicel, Starch and Lactose [5] 

 

It can be concluded that the constraint factor is independent of the pre-consolidation 

pressure and it is material dependant. The constraint factor for various types of 

continuum solid materials has been reported in the literature. Hill [19] showed that only 

for rigid-perfectly plastic materials, can the constraint factor be estimated as 3. Tabor 

[16] stated that the constraint factor of 3 is only applicable for ductile metals. Johnson 

[20] proposed the following relationship between the indentation hardness and yield 

stress for elastic-perfectly materials, which cover a wide range of continuum solids, 

 
2

1 ln
3 3

H Ea

Y YR

  
    

  
 (2.11) 

where E is Young’s modulus, a is the radius of the impression and R is the indenter 

radius. Equation (2.11) is applicable to continuous solids, and may not be valid for 

discrete particulate systems. For particle assemblies there is no reported work in the 

literature and the constraint factor depends on single particle properties such as particle 

shape, stiffness and inter-particle friction. It was suggested by Wang et al. [5] to 
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investigate the effects of single particle properties on the constraint factor using DEM 

analysis. 

 

Zatloukal and Sklubalova [21] studied dynamic indentation of powders using spherical 

indenter. In their work, the spherical indenter was released from a height above the 

unconsolidated bulk solids and the depth of the impression was measured 

experimentally. Using bulk density of the powder and the volume of impression, the 

“mass of indentation” was calculated using the following equation, 

 
i i bM V    (2.12) 

where Mi is the mass of indentation, ρb is the bulk density and Vi is volume of the 

impression which is calculated based on the depth of impression (h) and indenter radius 

(R) as follow, 

  21
3

3
iV h R h   (2.13) 

In order to evaluate the flowability, mass flow rate, Qm, of the testing powders was 

measured and correlated to the indentation mass. Sodium citrate, potassium citrate, 

sorbitol, and boric acid with three size fractions in the range of 0.315 – 0.630 mm were 

used in the experiments. The correlation is shown in Figure  2.19. 
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Figure  2.19: Linear correlation of mass flow rate and indentation mass [21] 

 

The mass flow rate was found to have a linear correlation with indentation mass for all 

the materials except sorbitol. They ascribed this exception to cohesivity of the sorbitol 

powders which leads to agglomeration of the particles. A similar behaviour was found 

for correlation of volume flow rate, Qv,  and indentation volume, vi (Figure  2.20). 

 

 

Figure  2.20: Linear correlation of volume flow rate and indentation mass [21] 
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It was concluded that this method of indentation can be considered as a simple method 

for qualitative measurement of flowability of powders. The results were found to be 

comparable to compressibility tests and Carr index. This technique needs to be 

developed further by investigating more materials for a range of indentation rate. In this 

method, effects of the dynamics of the indenter must also be investigated since the 

indenter is dropped onto the surface of the bulk at relatively high velocities. This is 

discussed in the next section. 

 Comparison of flowability measurement techniques 2.4

As discussed previously, in order to obtain a quantitative statement regarding 

flowability of bulk solids it is essential to measure strength of the bulk for a given 

consolidation state, i.e. consolidation stress (σ1) and yield strength (σc). This eliminates 

the effects of powder testers on the measurements which in turn enables a comparison 

of flow properties of bulk solids measured by different testing apparatuses. Schulze [3] 

suggested seven criteria that a test apparatus should have in order for a powder tester to 

provide quantitative and reliable results: 

 

1. consolidation procedure with subsequent measurement of strength; 

2. consolidation of the bulk solids test specimen until steady state flow has been 

reached; 

3. not too much difference in directions of loading and testing application i.e. 

similar orientations of the major principal stresses during consolidation and 

measurement of strength; 
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4. reproducible load application of the bulk solids specimen for consolidation (4a) 

and for measuring strength (4b); 

5. known average stresses in the measuring plane with possibly the most uniform 

stress distribution for consolidation (5a) and for measuring strength (5b); 

6. possibility for varying consolidation stresses (adjustment to application of test 

results); 

7. possibility for measuring increase of strength with time (time consolidation if 

required for the application). 

 

During the consolidation procedure of the uniaxial compression test there is a chance 

that the consolidated bulk is non-homogenous. Moreover, friction between the solids 

and cylindrical wall may result in a severe underestimation of the yield strength [8]. 

Nevertheless simplicity of testing procedure in uniaxial compression test is the reason 

behind common usage. In contrast to the uniaxial compression test, shear testers are 

more complex and the measurement are more time consuming. However, the preshear 

process of a shear tester transfers the bulk solid into a fairly reproducible consolidation 

state and hence the results are more reliable and reproducible compared to the uniaxial 

test. With the Sevilla powder tester, the tensile strength of bulk solids is measured 

which makes it applicable for cases where bulk solids are under tension instead of 

compression or very low applied loads. Although bulk solids can be consolidated to a 

reproducible steady state flow condition, it has been suggested by Schwedes [8] that 

results from this novel technique should be compared with common tensile strength 

testers such as uniaxial tensile tests in order to assess its reliability. It should also be 

noted that the stress history can be removed and that the reproducible steady state flow 
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can be achieved if the bulk specimen can be fluidised [3]. Moreover, the consolidation 

level of the reproducible state is limited; powder bed height and density defines the state 

of consolidation.  

 

Angle of repose is a very limited but simple testing technique. There is no control on the 

consolidation state of the bulk solids and therefore no quantitative statement regarding 

flowability of the powder can be possible. However this simple and cost-effective 

technique gives a good qualitative evaluation of the flow behaviour for a range of 

powders. The vibrating capillary method also provides qualitative measurement of the 

powder flow, although the flow function cannot be determined since the consolidation 

state of the bulk is not controllable. The ball indentation method has the potential to 

become a commonly used technique due to its ability to measure flowability at low 

compression stresses using very small quantities of powders. However further 

developments are required regarding determination of the constraint factor. In addition 

to Schulze criteria for flowability measurement apparatuses, three additional criteria can 

be outlined as follows, 

 

8. Possibility for measuring small consolidation stresses. 

9. Requirement of relatively small quantities of testing powder. 

10. Quantifying variation of strength across the sample.  

 

A comparison of the potential capability of the common powder flowability 

measurement techniques based on Schulze and the three additional criteria is 

summarised in Table  2.3. 
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Table  2.3: Comparison of the common powder flowability measurement techniques based on Schulze and three additional criteria.   

Criteria → 1 2 3 4 5 6 7 8 9 10 Comments 

Uniaxial test  ˟      ˟ ˟ ˟ 

Simple, but a powder is not conditioned to a reproducible 

state. The sample size must be large enough to avoid 

influence of the confining walls.  

Biaxial test        ˟ ˟ ˟ 
Similar to uniaxial test, but the yield locus can be measured 

confidently by comparison of multiple points. 

Shear test        ˟ ˟ ˟ 

Time-consuming, but the powder is presheared to achieve a 

well-defined and reproducible state. The major principal and 

unconfined stresses are determined confidently.  

Sevilla powder 

tester 
      ˟  ˟ ˟ 

Tensile strength of the bulk can be measured, but the process 

is rather time-consuming. The powder can be pre-

conditioned only if it is fluidisable. Loosely compacted 

samples can be used.   

Angle of repose ˟ ˟ ˟ ˟ ˟ ˟ ˟ ˟ ˟ ˟ 

Very simple. Gives qualitative results. The unconfined yield 

stress cannot be determined. The consolidation state of the 

bulk is not controlled.  

Vibration 

capillary test 
˟ ˟ ˟ ˟ ˟ ˟ ˟ ˟ ˟ ˟ 

Gives qualitative results. The unconfined yield stress cannot 

be determined. The consolidation state of the bulk is not 

controlled. 

Ball 

indentation 
 ˟   ˟      

Multiple tests can be performed on the same sample to 

determine the distribution of strength. Very small quantities 

are required. It can be performed on loosely compacted 

samples but a powder is not conditioned to a reproducible 

state. The unconfined yield stress is not directly measured.    
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CHAPTER 3   Distinct Element Method (DEM) 

The macroscopic bulk behaviour of powders is governed by the microscopic activity of 

the individual particles in an assembly.  This implies that in order to gain a better 

understanding of particulate systems and their functioning, the particle interactions at 

the microscopic level must be analysed.  It is currently very difficult to investigate the 

behaviour of individual particles within a bulk assembly experimentally.  Therefore it is 

helpful to model the behaviour of particles by the use of numerical simulations. 

Furthermore the use of computer simulations provides a cost effective method as an 

alternative to experiments since no physical material or process equipment is required, 

provided that the simulation results are validated.  Simulations are invaluable for cases 

for which actual experiments are hazardous such as process handling of radioactive 

powders. For particulate solids, the most appropriate approach for this purpose is the 

use of computer simulation by the Distinct Element Method (DEM). The principal of 

DEM was first introduced by Cundall and Strack [22]. In this technique, Newton’s laws 

of motion is applied to describe particle motion and to describe the particle interactions 

with its neighbours, contact mechanics is applied.  Under the assumption that within a 

time-interval the velocity of the elements is unchanged and particle interactions do not 

go beyond its neighbour, the position of the elements is updated. A complete review of 

the methodology of the DEM and its applications are presented elsewhere [23, 24]. In 

this chapter a brief summary of the methodology is provided. A detailed review of 

contact models, which have been proposed for DEM, is given since this aspect has not 

been reviewed adequately in the literature. Different approaches of incorporation of 

particle shape in DEM simulations are also reviewed.    



 

 

Chapter 3: Distinct Element Method (DEM) 
 

 

38 

 

 Time-step  3.1

Particulate systems are composed of distinct particles which displace independently 

from one another and interact only at contact points [22]. Movement of a particle within 

a granular flow is affected not only by the forces and torques originated from contacts 

with its immediate neighbouring particles, but also by disturbance propagations from 

particles far away. In order to avoid evaluation of effects of disturbance waves in DEM, 

the particle displacement calculations are performed after a time-step, within which the 

disturbance cannot propagate from each particle further than its immediate neighbouring 

particles [22].The speed of disturbance waves is approximated by Rayleigh surface 

wave propagation based on physical properties of the discrete medium. The time must 

be sufficiently smaller than Rayleigh time-step in order to ensure realistic force 

transmission rates in the assembly and to prevent numerical instability [25]. The 

Rayleigh time-step is given by Equation (3.1). 

 

1/2

0.1631 0.8766
R

ρ
πR

G
T

υ

 
 
 


 (3.1) 

where R is the particle radius, ρ is the density, G is the shear modulus and υ is the 

Poisson’s ratio of the particle. In practice, a fraction of this maximum value is used for 

the integration time-step. For dense systems with high coordination numbers (4 and 

above) a typical time-step of 0.2TR has been shown to be appropriate. For lower 

coordination numbers 0.4TR is more suitable [26]. Since the time-step varies with 

different particle materials, for an assembly consisting of different material type 

particles, the critical time-step should be the smallest among those determined for 

different material properties [25].  
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 Motion calculations 3.2

Each particle within a granular flow can have two types of motion: translational and 

rotational. Newton’s second law of motion is used to calculate the translational and 

rotational accelerations. By integrating the accelerations over a time-step, particle 

velocities and positions are updated.  The rotational motion is calculated based on 

Equation (3.2). 

 
dω

I M
dt

  (3.2) 

where I is the moment of inertia, ω is the angular velocity, M is the resultant contact 

torque acting on the particle and t is time. The translational motion is calculated based 

on Equation (3.3). 

 g c nc

dV
m F F F

dt
    (3.3) 

where V is the translational velocity of the particle, m is the mass of the particle, Fg is 

the resultant gravitational force acting on the particle and Fc and Fnc are the resultant 

contact and non-contact forces between the particle and surrounding particles or walls. 

Figure  3.1 is a schematic representation of these forces. 
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Figure  3.1: Schematic representation of the forces acting on a particle 

 Contact and non-contact forces 3.3

Particle interactions are not just due to particle collisions and inter-particle contacts. 

Particles may interact with each other while they are apart from each other, e.g. in the 

case of charged particles, attractive or repulsive forces may influence the particles 

motion. The following section is a brief review of common non-contact forces which 

may be present in particulate systems. 

 Van der Waals forces 3.3.1

Van der Waals force is a result of dipole interactions between molecules. Different 

electronic configurations of molecules give them a dipolar character which may result in 

attractions. Van der Waals force operates both in gaseous and liquid environments, 

although it is substantially reduced in liquid environments [27]. Hamaker [28] 

calculated the interaction force between a sphere and a semi-infinite body, by 

summarising all the possible individual molecular interactions, as follows [29], 
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212

 H

van

A R
F

d
 (3.4) 

where AH is the Hamaker coefficient which is a material property related to the 

molecular properties of the particle with radius of R, and d is the separation distance 

between the two bodies. The van der Waals forces become noticeable when particles 

can come sufficiently close together, that is at separation distances of the order of the 

size of a molecule (i.e. 0.2 to 1nm). Moreover, the magnitude of van der Waals forces 

becomes negligible compared with that of the gravitational force when the particle size 

exceeds a few microns. This is due to the fact that the gravitational force is proportional 

to the cube of the particle diameter, but the van der Waals force is proportional to the 

diameter. Once the particles are in contact, the overall van der Waals attraction is 

increased significantly due to increase in the contact area. This situation is enhanced 

when plastic deformation takes place [27]. 

 Liquid bridges 3.3.2

In humid systems (with a relative humidity of > 60%) capillary condensation of the 

fluid in the gap between the particles in close contact may take place resulting in an 

attraction. The maximum attraction is achieved for two smooth spherical particles if the 

liquid covers the particle surfaces completely. For this case, the liquid bridge attraction 

force, FLB, can be calculated as follow [27], 

 2LBF πγR  (3.5) 

where γ is the surface tension of the liquid and R is the radius of the two particles.  
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 Electrostatics 3.3.3

Electrostatic forces can form as a result of tribo-electric charging or formation of a 

potential difference between particles. In the latter case, charged particles attract 

adjacent uncharged particles due to their own image charge. The attraction force can be 

evaluated by the classical Coulomb equation [27], 

 

2

2 2

_ 2

0

1

16
t elec

d
Q

R d
F

πε d

 
 

   (3.6) 

where Q and R are the charge and radius of the charged particle, d is the separation 

distance between the two bodies, and ε0 is the permittivity of the vacuum. In the former 

case i.e. potential difference, particles with a different work-function can form a 

potential difference when they are brought together. This results in an attraction force 

which can be calculated as follows [27], 

  
20

_ ΔV elec

πε R
F V

d
  (3.7) 

where ΔV is the potential difference formed by the contact. It should be noted that in 

humid environments the Coulomb attraction is reduced to zero due to the fact that 

particle surfaces are covered by the liquid, which mostly is a conductor resulting in 

charge leakage and discharging.  

 Contact Force Models 3.4

In order to consider particle interactions in the calculations, the resulting forces from 

particle collisions and contacts are modelled. There exist a number of force models 

which mostly allow particles to have deformation. The deformation is modelled as an 

overlap between particles. In the general case of an assembly of many particles, the 
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contact force model is applied at each contact and the vectorial sum of these contact 

forces is determined to yield the resultant contact force acting on that particle [22]. 

There has been extensive work in the literature in order to develop accurate and/or 

computationally efficient models based on theories of contact mechanics to be 

employed in DEM simulations. Mostly these models are developed for spherical 

contacts based on Hertz theory. Following is a brief review of the most commonly used 

contact models. Four categories are considered for contact models: elastic, elasto-plastic, 

elastic-adhesive and elasto-plastic-adhesive models. For each category normal and 

tangential contact models are described. 

 Elastic contacts 3.4.1

3.4.1.1 Linear spring contact model 

In this simple model [22] the contact force between two perfectly elastic spheres is 

resolved into normal and shear components with respect to the contact plane, 

 
n sF F F   (3.8) 

where F is the contact force, and Fn and Fs are the normal and shear components of the 

contact force. The normal contact force is calculated from the overlap of the particles in 

contact, 

 
n n nF k α  (3.9) 

where αn is the normal overlap and kn is the normal stiffness at the contact which can be 

calculated as follow, 

 

1 2

1 2

n n
n

n n

k k
k

k k



 (3.10) 



 

 

Chapter 3: Distinct Element Method (DEM) 
 

 

44 

 

where 
1

nk and 
2

nk are the normal stiffness for the particles in contact. Figure  3.2 shows a 

schematic force-overlap response of linear-spring model. 

 

α 

f

kn α 

 

Figure  3.2: Schematic of force-overlap response of linear-spring model 

 

The increment of shear force in this model is calculated from, 

 Δ Δs s sF k α   (3.11) 

where Δαs is the increment of shear displacement of the contact and ks is the shear 

contact stiffness which can be calculated as follow, 

 

1 2

1 2

s s
s

s s

k k
k

k k



 (3.12) 

where 1

sk  and 2

sk  are the shear stiffness for the particles in contact. The total shear force 

is found by summing up the previous shear force with the increment of shear force, 

 
' Δs s sF F F   (3.13) 

where '

sF  is the previous shear force [22]. 
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3.4.1.2 Hertz normal contact model 

Based on this model [30], the normal contact force between two perfectly-elastic 

spheres in contact is given by [31], 

 
1/2* * 3/24

3
nF E R α  (3.14) 

where E
*
 and R

*
 are the equivalent Young’s modulus and radius which are given by 

Equations  (3.15) and (3.16), respectively, and α is the normal overlap. 
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 (3.15) 

E1 and E2 are Young’s moduli of the particles in contacts, and υ1 and υ2 are Poisson’s 

ratios of the particles in contact. 
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
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 (3.16) 

R1 and R2 are the radii of the particles in contact. 

3.4.1.3 Mindlin and Deresiewicz’s tangential contact model 

Mindlin and Deresiewicz [32] developed a tangential model for perfectly elastic 

contacts. Due to tangential slip at the contact, the tangential force-displacement 

relationship depends on the loading history and on the rate of change of the normal and 

tangential force. Following is a description of the model for cases where the normal 

displacement does not change (i.e. the radius of the contact area is constant) through the 

change of tangential force: 

 

The tangential force is calculated using the following general equation, 
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  0 0t t t t tf f k α α    (3.17) 

where ft0 is the previous tangential force, αt – αt0 is the change in tangential 

displacement (the same as Δαs in the linear-spring model) and kt is the tangential 

stiffness. Initially, when the tangential displacement starts increasing, the tangential 

stiffness is calculated based on Equation (3.18), 
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1
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t t

n

f
k k

μf

 
  

 
 (3.18) 

where μ is the coefficient of sliding friction and kt0 and ft1 are given by Equations (3.19) 

and (3.21), respectively.  

 
1/2* * 1/2

0 8t nk G R α  (3.19) 

where G
* 

is the equivalent contact shear modulus given by Equation (3.20), 
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 (3.20) 

where G1 and G2 are the shear moduli of the particles in contact.  

 1 0

2

3
t t tf k α  (3.21) 

The contact starts sliding (macro-slip) once the tangential force reaches Coulomb’s limit 

of friction given by Equation (3.22). 

 t nf μ f  (3.22) 

Before the macro-slip occurs, there are regions in the contact area where the shear stress 

exceed the Coulomb’s limit [33]. Therefore, small local tangential displacement occurs 

while the remainder of the contact area is not relatively displaced. This phenomenon is 

known as micro-slip. If the contact is unloaded in the tangential direction, the unloading 

path on the force-displacement curve would be different to that of the loading curve due 
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to the micro-slip. Mindlin and Deresiewicz [32] considered a hysteretic behaviour to 

account for the micro-slip, by which the unloading tangential stiffness is given by, 

 

1/3

1
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2
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t t
t t

n

f f
k k

μf

 
  

 
 (3.23) 

where 
TP

tf  is the tangential force at the point when the contact is unloaded tangentially 

(turning point). The unloading curve follows Equation (3.23) up to 
TP

tf , where the 

history of the turning point becomes insignificant [32]. If the contact is unloaded further, 

the tangential stiffness is the same as the initial stiffness which is given by Equation 

(3.18). In the case of subsequent turning points, the tangential stiffness is evaluated 

using the following equation, 
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 (3.24) 

where TTP

tf  is the tangential force at the second turning point. Figure  3.3 shows a 

schematic tangential force-displacement response of Mindlin and Deresiewicz’s model. 
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Figure  3.3: Schematic tangential force-overlap response of Mindlin and Deresiewicz’s 

model  

 

In cases where both the tangential and normal displacements vary, the tangential force is 

evaluated by assuming that the change in the normal displacement is not significant. 

Mindlin and Deresiewicz [32] considered a “simple loading history” which enables 

solving the problem by superposition of the effects of change in tangential and normal 

displacements. This simple loading history defines a linear tangential stiffness which 

facilitates the tangential force to be adopted for the response corresponding to the new 

normal force. It is best to make use of illustrations to describe this complicated model. 

Figure  3.4 shows the tangential force-displacement response of the case where both 

normal and tangential displacements increase. 
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Figure  3.4: Schematic tangential force-overlap response of Mindlin and Deresiewicz’s 

model for the case where both normal and tangential displacements increase  

 

In Figure  3.4, initially the tangential force increases while the normal force is assumed 

to be constant with a value of fn1. For this part of the loading, the tangential stiffness is 

calculated based on Equation (3.18). At point A, the normal force is increased by Δ nf to 

the value fn2. Based on the simple loading history that Mindlin and Deresiewicz [32] 

proposed, the contact is loaded with a linear tangential stiffness so that the response 

meets the response of a contact which was loaded initially with a constant normal force 

of fn2 at point B which corresponds to a tangential force of Δ nμ f . For unloading and 

reloading cases near turning points, the response of the model is treated in the same 

manner. 

3.4.1.4 Mindlin’s no-slip tangential contact model 

Mindlin [34] proposed a tangential model for perfectly elastic contacts by neglecting the 

effects of micro-slip. The hysteretic behaviour which was considered for Mindlin and 

Deresiewicz’s model [32] is not present in this model. The loading and unloading path 

of the tangential force is the same and the tangential stiffness is given by, 
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1/2* * 1/28t nk G R α  (3.25) 

Di Renzo and Di Maio [35] simulated oblique impact of a particle to a flat wall at 

different impact angles using the linear spring, Mindlin’s no-slip and Mindlin and 

Deresiewicz’s models. The comparison of the results to the experimental findings of 

Kharaz et al. [36] are shown in Figure  3.5.  

 

 

Figure  3.5: Comparison of linear-spring, Mindlin’s no-slip and Mindlin and 

Deresiewicz’s models with the experimental data for oblique impact of a particle at 

different impact angles [35] 

 

Figure  3.5 shows a very good agreement of the three models with the experimental 

results, except for small impact angles. The linear model surprisingly produced better 

results compared to Mindlin’s no-slip model.  
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3.4.1.5 Di Renzo and Di Maio’s no-slip tangential contact model 

Di Renzo and Di Maio [37] proposed a modification to Mindlin’s no-slip tangential 

model [34] so that the macro-slip occurs at the same tangential overlap that Mindlin and 

Deresiewicz[32] predicted. The tangential stiffness is given by Equation (3.26), 

 
1/2* * 1/22 16

3 3
t tM nk k G R α   (3.26) 

where ktM is the tangential stiffness of Mindlin’s no-slip model. This model has the 

advantage of being simple and computationally cost-effective (similar to Mindlin’s no-

slip model). Figure  3.6 shows comparison of Mindlin’s no-slip [34], Di Renzo and Di 

Maio’s no-slip [37] and first loading of Mindlin and Deresiewicz’s [32] tangential 

models.  

αt 

ft

nμf

Mindlin no-slip

Mindlin and 

Deresiewicz

Di Renzo and 

Di Maio

 

Figure  3.6: Comparison of Mindlin’s no-slip, Di Renzo and Di Maio’s no-slip and first 

loading of Mindlin and Deresiewicz’s tangential models. 

 

It was analytically shown that for small impact angles the model of Di Renzo and Di 

Maio provides a better match to Mindlin and Deresiewicz’s model in cases where both 

normal and tangential displacements occur compared to the no-slip model of Mindlin 

[37]. Di Renzo and Di Maio [35, 37] compared the tangential force response of Hertz-
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Mindlin’s no-slip (HM), Hertz-Mindlin and Deresiewicz’s (HMD) and Hertz-Di Renzo 

and Di Maio’s (HDD) for a particle impacting on a flat wall at different impact angles. 

Figure  3.7 shows the tangential force-displacement of the three models at two different 

impact angles.  

 

 

Figure  3.7: Tangential force-displacement of Hertz-Mindlin’s no-slip (HM), Hertz- 

Mindlin and Deresiewicz’s (HMD) and Hertz-Di Renzo and Di Maio’s (HDD) models 

at two different impact angles [37] 

 

As it can be seen, HDD model shows a better agreement with HMD compared to HM 

model. The tangential force-displacement response of HDD model becomes closer to 

that of HMD model at higher impact angles.  
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 Elasto-plastic contacts 3.4.2

3.4.2.1 Thornton’s elasto-plastic normal contact model 

In this model [38] the contact force follows Hertz elastic model until it reaches the yield 

force after which the contact is deformed plastically. The yield force is given by 

Equation (3.27), 

 
2

2

3 *
3

*6
y y

π R
F p

E
  (3.27) 

where py is the yield pressure of the contact. Plastic deformation in this model is 

governed by a constant stiffness of πpyR
*
 based on the assumptions that the contact 

pressure does not increase further than the yield pressure and that the pressure 

distribution over the contact area is Hertzian [31]. The contact force during plastic 

deformation can be calculated using the following equation, 

  *

n y y yF F πp R α α    (3.28) 

where αy is the overlap at which the contact yields and is given by, 
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2 *
2

*4
y y

π R
α p

E
  (3.29) 

If plastic deformation occurs during the loading stage, the contact curvature during 

unloading is less than that of the elastic unloading curvature due to permanent 

deformation of the contact surfaces. During unloading, the force-displacement 

behaviour is assumed to be elastic and is provided by the Hertz equations but with a 

curvature of *1/ pR  corresponding to the point of maximum compression. This curvature 

can be evaluated based on the maximum force the contact experiences during the plastic 

loading, Fmax, as given by Equation (3.30), 
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Since the unloading is considered to be purely elastic based on Hertz theory [30], the 

equation for the unloading is given by, 

  
1/2 3/2

* *4

3
n pF E R α α   (3.31) 

where αp is the permanent plastic deformation given by Equation (3.32), 
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 (3.32) 

where αmax is the maximum overlap during plastic loading. Figure  3.8 is a schematic 

force-overlap response of Thornton’s model. 
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Figure  3.8: Schematic force-overlap response of Thornton’s elasto-plastic model 

 

Finite Element Analysis (FEA) of elasto-plastic contacts showed that when the normal 

stress exceeded the yield pressure, the force-overlap curves were not straight lines [39]. 

This is shown in Figure  3.9.  
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Figure  3.9: FEA force-overlap response of an elasto-plastic contact obtained by Vu-

Quoc and Zhang [39]. The contact is unloaded at three different maximum overlaps. 

 

In Figure  3.9 a red line is drawn from the yield point to the maximum loading overlap in 

order to show that the response in the plastic regime is not linear as assumed by 

Thornton [31]. It is noteworthy however, that the non-linear response in the plastic 

regime does not significantly deviate from the linear extrapolation. This shows that the 

assumptions made by Thornton for a linear plastic stiffness may be adequate. 

 

Vu-Quoc and Zhang [39] compared the pressure distribution over the contact area 

obtained by FEA to that of Hertz for different maximum overlaps (see Figure  3.10). 
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Figure  3.10: Pressure distribution over half of the contact area obtained by FEA and 

Hertzian pressure distribution for three different maximum loading force 

 

The shape of the distribution in the plastic regime obtained by FEA is in agreement with 

Thornton’s assumption where a Hertzian pressure distribution with a cut-off 

corresponding to the limiting contact pressure was assumed [31]. However, as it was 

denoted by Vu-Quoc and Zhang [39], the maximum contact pressure in Thornton’s 

model is larger than the one obtained by the FEA. As a result, the radius of the contact 

area obtained from FEA is less than the one predicted by Thornton for the same normal 

force.    

3.4.2.2 Vu-Quoc and Zhang’s elasto-plastic normal contact model 

Vu-Quoc and Zhang [39] proposed a non-linear elasto-plastic model for spheres in 

collision, based on additive decomposition of the radius of the contact area into an 

elastic part and a plastic part. In this model the contact follows Hertz elastic curve up to 
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a yield point (similar to Thornton’s model). The yield force for two identical spheres in 

contact is given by Equation (3.33), 
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E


  (3.33) 

where Ay(υ) is a scalar depending only on Poisson’s ratio. Vu-Quoc and Zhang [39] did 

not define this scalar, however Vu-Quoc et al. [40] provided two example values; for 

Poisson’s ratio of 0.3, Ay(υ) = 1.61 and for υ = 0.4, Ay(υ) = 1.74. Comparing Equations 

(3.33) and (3.27), it can be observed that the yield force calculated in Thornton’s model 

[38] is very similar to that of Vu-Quoc and Zhang’s.  Vu-Quoc and Zhang [39] derived 

a very complex equation for evaluation of contact force during plastic deformation 

which is given by, 
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 (3.34) 

where Ca and Kc are fitted parameters obtained from FEA results. Ca in fact defines the 

relationship between the plastic component of the contact radius and the contact force. 

Kc defines the permanent deformation relative to the particle radius. Equation (3.34) is a 

very complex equation for which there is no straight-forward solution. Vu-Quoc and 

Zhang [39] suggested solving this equation by Newton-Raphson iterative method 

provided a tolerance value. They showed that for a number of cases within a reasonable 

tolerance, the equation can be solved after a few iterations [39]. For calculation of the 

unloading contact force, Hertzian behaviour is considered where a corrected contact 

curvature, *

pR , is considered similar to Thornton’s model. *

pR  is given by following 

equation. 
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   * *1p c yR K F F R    (3.35) 

Vu-Quoc and Zhang [39] compared the force-overlap response of the FEA results and 

that of their model to the response of Thornton’s model which is shown in Figure  3.11.  

 

 

Figure  3.11: Force-overlap response of FEA, Vu-Quoc and Zhang’s and Thornton’s 

models [39] 

 

The elastic part of the response in all models overlaps, since they all considered 

Hertzian behaviour for this region. During the plastic deformation, however, the 

response of Thornton’s model shows significantly lower plastic stiffness compared to 

the responses of Vu-Quoc and Zhang’s model and FEA. The agreement between the 

FEA results and those of Vu-Quoc and Zhang’s model is expected since the parameters 

of the model are evaluated from FEA simulations. Following is a critique of this model: 
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For the plastic regime, the contact radius, aep, is considered to be addition of the elastic 

Hertzian contact radius, ae, and a plastic contact radius, ap. Figure  3.12 shows the plastic 

contact radius, ap, as a function of normal contact force, where ap is calculated by 

subtracting ae from the results of FEA [39]. 

 

 

Figure  3.12: Plastic contact radius as a function of normal contact force during loading 

and unloading of a contact [39]  

 

Vu-Quoc and Zhang concluded from Figure  3.12 that the plastic contact radius is a 

linear function of normal contact force during plastic contact loading. The parameter Ca 

is in fact the slope of this linear line. The unloading part of the response in Figure  3.12 

surprisingly shows dependency of ap with contact unloading force. In fact, the plastic 

contact radius reduces to almost half of its maximum value during unloading. Therefore 

the contact unloading is not purely elastic. Vu-Quoc and Zhang claimed that FEA 

simulations were performed for elastic-perfectly plastic materials, which contradicts the 

unloading behaviour of Figure  3.12. The full description of FEA simulations is 
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necessary to verify this. In general, the complexity of the non-linear equation for 

evaluation of plastic contact force as well as the fact that FEA simulations must be 

performed previously in order to get the input parameters of this model, result in 

increasing the computational cost extensively. 

3.4.2.3 Walton and Braun normal elasto-plastic model 

Walton and Braun [41] proposed a simple linear model for elasto-plastic contacts. For 

contact loading, the normal force is given by, 

 
n pF k α  (3.36) 

where kp is the plastic stiffness. The unloading force is calculated based on Equation 

(3.37),  

  0n eF k α α   (3.37) 

where ke is the elastic stiffness and α0 is the permanent contact deformation. Figure  3.13 

shows a schematic of the force-overlap response of this model. 

 

α 

f

kp α 

ke α 

α0 

 

Figure  3.13: Schematic force-overlap response of Walton and Braun’s [41] model with 

constant coefficient of restitution  
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Since the slopes kp and ke are constant, the coefficient of restitution of this model is 

independent of impact velocity ( e = (kp/ke)
1/2

 ). This is not in agreement with 

experimental and numerical analyses in the literature [42]. In order to account for 

dependency of coefficient of restitution on impact velocity, Walton and Braun [41] 

suggested an elastic unloading stiffness which increased linearly with the maximum 

loading force with a slope S. The equation for the elastic stiffness is given by, 

 
max.e pk k S F   (3.38) 

where Fmax is the maximum loading force. The parameter S was not given any physical 

definition. However, one can specify S on the basis of giving the best fit of the 

unloading line of the model to the Hertz elastic equation. Figure  3.14 shows a schematic 

force-overlap response of Walton and Braun’s [41] model with varying coefficient of 

restitution.  
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Figure  3.14: Schematic force-overlap response of Walton and Braun’s [41] model with 

varying coefficient of restitution  

 

A more comprehensive model may consider the contact to be elastically deforming 

(with stiffness ke) initially up to a yield limit above which the contact deforms 
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plastically, similar to the models of Thornton, and Vu-Quoc and Zhang. However, in 

real contacts, the presence of asperities always leads to plastic deformation from the 

beginning of loading. Moreover, for typical ratios of Young’s modulus to yield stress of 

elasto-plastic materials, the initial elastic deformation is negligible: considering 

Thornton’s model, the single particle strain at which the contact yield occurs can be 

calculated by dividing the yielding overlap, which is given by Equation (3.29), by 2R
*
. 

Hence the yield strain, γy, is given by,  

 

2
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* * 2

1

2 8 8

y y

y

α pπ π
γ

R E C

 
     

 
 (3.39) 

where C is the ratio of effective Young’s modulus to contact yield pressure which 

typically has a minimum value of about 50 and can range up to a few 1000 for materials 

with notable plastic component. Figure  3.15 shows the yield strain (percentage) as a 

function of C which ranges from 50 to 300. 

 

Figure  3.15: Yield strain as a function of C 
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It can be concluded that generally the yield strain is negligible; therefore excluding an 

initial elastic deformation for the contact model would not prevent the model from 

capturing the realistic behaviour.  

3.4.2.4 Tangential force in elasto-plastic contacts 

Vu-Quoc et al. [43] considered the model of Mindlin and Deresiewicz [32] for FEA 

modelling of elasto-plastic contacts. The normal force was evaluated in a similar 

manner to [39] (see Section  3.4.2.2). It was shown that when the normal force is 

constant while the tangential displacement is increased, the tangential force-

displacement curve becomes stiffer, in contrast to the case where both normal and 

tangential displacements are increased [43]. It was concluded that a tangential model for 

elasto-plastic contacts must facilitate approximation of tangential stiffening and 

softening under constant and varying normal force, respectively. In contrast to the 

analysis of  Vu-Quoc et al. [43], Ning [44] assumed that Mindlin’s no-slip solution 

remains valid for elasto-plastic contacts. Simulation of oblique impact of elasto-plastic 

particles using the model of Thornton [38] for normal force calculations and Equation 

(3.25) for evaluation of tangential force showed that that the tangential force-time 

curves were affected by plastic deformation at low impact angles, however for other 

impact angles the pattern of evolution was similar to that under elastic deformation [44].  

 Elastic-adhesive contacts 3.4.3

3.4.3.1 JKR elastic-adhesion normal contact model 

JKR theory [45] assumes that the attractive forces are confined within the area of 

contact and are zero outside. In other words, the attractive inter-particle forces are of 
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infinitely short range. JKR model extends the Hertz model to two elastic-adhesive 

spheres by using an energy balance approach. The contact area predicted by the JKR 

model is larger than that by Hertz. Consequently there is an outer annulus in the contact 

area which experiences a tensile stress. This annulus surrounds an inner circular region 

over which a Hertzian compressive distribution acts [46].  

 

Figure  3.16 shows schematically the force-overlap response of JKR model.  
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Figure  3.16: Schematic force-overlap response of JKR model 

 

When two spheres come into contact, the normal force between them will immediately 

drop to a certain value (8/9 fc, where fc is the pull-off force [31]) due to van der Waals 

attractive forces. The velocity of the spheres are then reduced gradually and part of the 

initial kinetic energy is radiated into the substrates as elastic waves. The particle 

velocity will reduce to zero at a point where the contact force reaches a maximum value 

and the loading stage is complete. In the recovery stage, the stored elastic energy is 

released and is converted into kinetic energy which causes the spheres to move in the 
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opposite direction. All the work done during the loading stage has been recovered when 

the contact overlap becomes zero. However at this point the spheres remain adhered to 

each other and further work (known as work of adhesion) is required to separate the 

surfaces. The contact breaks at a negative overlap, αf, with the contact force being 5/9 fc 

[44]. Pull-off force, fc, is the maximum tensile force the contact experiences and is given 

by [45], 

 *3
Γ

2
cf πR  (3.40) 

where Г is the interface energy. The governing equation for the force-overlap relation is 

given by [20], 

  
* 3

1/2
* 3

*

4
8 Γ

3
n

E a
F π E a

R
   (3.41) 

where a is the contact radius. The overlap can be evaluated by Equation (3.42)  [20], 
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3.4.3.2 Savkoor and Briggs’ tangential model for elastic-adhesive contacts 

Savkoor and Briggs [47] extended the JKR model to account for the effects of varying 

tangential displacement. The tangential stress distribution over the contact area was 

considered to be the no-slip solution of Mindlin [34] (see Section  3.4.1.4), therefore the 

tangential force-displacement can be evaluated by Equation (3.25). By applying an 

energy balance, Savkoor and Briggs [47] showed that the contact radius will be affected 

by the tangential displacement. The contact radius is given by Equation (3.43), 
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where Fn is the normal contact force, Fc is the JKR pull-off (see Equation (3.40)) and Ft 

is the tangential force evaluated by Equation (3.25). The contact radius according to the 

JKR model is given by [45], 
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n c n c c
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     (3.44) 

Comparing Equations (3.43) and (3.44) shows that the contact force is indeed reduced 

by increasing the tangential force. Savkoor and Briggs [47] suggested that this reduction 

corresponds to “peeling” mechanism which continues until a critical value of the 

tangential force, Ftc, is reached, 
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If the tangential displacement increases beyond the point corresponding to Ftc, the 

peeling process is complete and the contact area would immediately reduce to the 

Hertzian contact area which is given by, 

 
*

3

*

3

4
n

R
a F

E
  (3.46) 

3.4.3.3 Thornton and Yin’s tangential model for elastic-adhesive contacts 

Thornton and Yin [46] proposed a modified version of Savkoor and Briggs’ [47] model. 

Thornton and Yin [46] showed that the critical tangential force which provided peeling 

failure (Equation (3.45)) could be larger than the tangential force required to cause 

sliding. It was concluded that the contacting surfaces must “peel” before contact sliding 

occurs. In order to account for this, a smooth transition from peeling to sliding was 

proposed. The tangential and normal forces of this model follow Savkoor and Briggs 
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[47] model up to the critical tangential force, Ftc. With further tangential displacement, 

the tangential force is given by, 
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 (3.47) 

where αs is given by, 
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The sliding criteria which is followed by peeling failure is given by, 

  2t n cF μ F F   (3.49) 

In order to illustrate the transition of peeling to sliding, tangential force-overlap 

responses of an adhesive-elastic contact with two different constant normal forces are 

shown in Figure  3.17.  

 

 

Figure  3.17: Tangential force-overlap response of Thornton and Yin’s model for two 

different constant normal forces [46] 
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Figure  3.17(a) shows the smooth transition after peeling failure at point Ftc to the sliding 

point. In Figure  3.17(b) at the point where peeling is complete, the tangential force is 

larger than the critical sliding force, hence the force is reduced to μ(Fn + 2Fc). Thornton 

and Ning [46] compared their model with the results of friction measurements reported 

by Briscoe and Kremnitzer [48] . The comparison is shown in Figure  3.18.  

 

 

Figure  3.18: Comparison of the experimental work of Briscoe and Kremnitzer with the 

model of Thornton and Yin [46]  

 

The model can therefore capture the experimental behaviour accurately. 

3.4.3.4 DMT elastic-adhesive normal contact model      

DMT model [49] assumes that the attractive forces all lie outside the contact zone. The 

attraction forces are also assumed not to change the deformed profile from that of Hertz. 

However outside the contact area a tensile stress is assumed to have presence which 

decreases with surface separation. At the point of contact prior to any deformation, the 
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resultant attractive force is suddenly increased to a value known as pull-off force which 

is given by, 

 *2 ΓcF πR  (3.50) 

As the spheres start deforming, the attractive force is rapidly reduced to half of its initial 

value. The normal contact force in this model is given by, 
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 (3.51) 

where FHertz is the Hertz elastic force given by Equation (3.14). Pashley [50] showed 

that the DMT model is valid for small, rigid spheres with a low surface energy (see 

below), whilst JKR model is more applicable to larger, more elastic spheres with a high 

surface energy. In another attempt Muller et al. [51] showed that the prediction of JKR 

and DMT models for the pull-off force was governed by the parameter, 
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 (3.52) 

where z0 is the equilibrium separation. It was found that the JKR and DMT theories 

were accurate to within 10% for values of ξ > 3 and ξ < 1, respectively [46]. This shows 

that JKR model is more applicable to larger and less stiff particles with higher cohesion, 

and DMT model is suitable for modelling of smaller, more rigid particles with less 

cohesion.  

3.4.3.5 Matuttis and Schinner’s elastic-adhesive normal contact model 

Matuttis and Schinner [52] assumed that the cohesion strength is proportional to the 

contact area. Based on this model, a cohesive force , Fc, is added to the contact force. 

 
cF ka  (3.53) 
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where a is the contact area and k is a constant with the units of J.m
-3

. DEM-Solutions 

[26] named this constant, cohesion energy density. The physical meaning of this 

parameter has not been given by Matuttis and Schinner [52]. Hassanpour et al. [53] 

derived an equation for the cohesion energy density based on the JKR interfacial energy 

by equating the tensile work of Matuttis and Schinner [52] model to the cohesion work 

of JKR [45] model, 
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 (3.54) 

where Г is the JKR interfacial energy. Figure  3.19 compares the force-overlap responses 

of the models of Hassanpour et al. [53] and JKR [45].  

 

 

Figure  3.19: Comparison of force-overlap response of JKR and Hassanpour et al. 

models [53] 

 

As it can be seen, the contact force in the compressive side deviates extensively from 

that of JKR. It must be noted that Hassanpour et al. [53] used this model to simulate a 
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high shear granulation process. The dynamics of such systems results in collision-

dominant behaviour, in which the influence of contact stiffness is insignificant (see e.g. 

[54]).  

 Elasto-plastic and adhesive contacts 3.4.4

3.4.4.1 Thornton and Ning’s elasto-plastic and adhesive normal contact model 

Thornton and Ning [31] followed the same approach as Thornton [38] used for elastic-

adhesive contacts, to develop a model for elasto-plastic and adhesive contacts. The 

pressure distribution over the contact area was considered to be the same as that of JKR 

model with a cut-off corresponding to the limiting contact pressure. Based on this 

assumption, an equation was derived for the contact yield pressure which is given by 

Equation (3.55), 
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where ay is the contact radius at which the plastic yield occurs. During the plastic 

deformation, the contact deforms linearly with a stiffness which is given by Equation 

(3.56),  
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where ac is the contact radius at the pull-off force given by Equation (3.57) and a is the 

JKR contact radius from which the normal overlap can be evaluated (see Equation 

(3.42)). 
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where fce is the JKR pull-off force given by Equation (3.40). If plastic deformation 

occurs during the loading stage, the contact curvature during unloading is less than that 

of elastic unloading curvature due to permanent deformation of the contact surfaces. 

During unloading the force-displacement behaviour is assumed to be elastic-adhesive 

and is provided by the JKR equations, but with a curvature of *

pR  corresponding to the 

point of maximum compression. This curvature can be evaluated based on the 

maximum force the contact experiences during the plastic loading, Fmax, as given by 

Equation (3.58), 
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where 
*

maxF  is the equivalent JKR force of Fmax. The plastic pull-off force (i.e. the 

maximum tensile force the contact experiences after plastic deformation) of this model 

is given by Equation (3.59), 
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Figure  3.20 shows a schematic force-overlap response of Thornton and Ning’s model.  

α 

f

Fmax

Fy

αfp

αmaxαy

Fce

Fcp

5/9 Fcp

8/9 Fcp

αc0αf

 

Figure  3.20: Schematic force-overlap response of Thornton and Ning’s model 
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The contact is considered to break at the overlap αfp where the contact force is equal to 

5/9 fcp. The contact, however, can be re-established at overlap αc0 where the contact 

force is equal to 8/9 fcp [44]. This is similar to the JKR theory for the elastic-adhesive 

contacts, where the contact is considered to relax after detachment. Thornton and Ning 

[31] simulated impact of a spherical particle to a flat wall at different impact velocities 

using their elasto-plastic and adhesive model. The force-overlap response of the impacts 

at three different impact velocities is shown in Figure  3.21. 

 

 

Figure  3.21: Force-overlap response of impact of a particle to a flat wall at three 

different impact velocities using Thornton and Ning’s elasto-plastic and adhesive model 

[31] 

The slope of the loading curve is the same for all three different velocities. It is evident 

that in the elastic recovery process, the pull-off force increases with an increase of 

impact velocity; an indication that plastic deformation leads to an increase in the radius 
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of contact curvature. Thornton and Ning [31] also obtained the dependency of 

coefficient of restitution with impact velocity for JKR elastic-adhesive, Thornton’s 

elasto-plastic, and Thornton and Ning’s elasto-plastic and adhesive model. The results 

are shown in Figure  3.22. 

 

 

Figure  3.22: Coefficient of restitution as a function of impact velocity for (a) JKR 

model, (b) Thornton’s elasto-plastic model, and (c) Thornton and Ning’s elasto-plastic 

and adhesive model [31] 

 

Elastic-adhesive contacts provide low coefficients of restitution for small impact 

velocities. This is due to the fact that for small impact velocities the ratio of elastic 

strain energy to work of adhesion is small and most of the elastic energy is utilised in 

overcoming the adhesion. Consequently the rebound energy is very small which 

provides a small rebound velocity. By increasing the impact velocity, the elastic strain 

energy is increased, however the work required to break the contact (i.e. work of 

adhesion) remains unchanged. This results in higher rebound energies and hence the 

increase in coefficient of restitution. With very large impact velocities, the work of 

adhesion becomes negligible relative to the elastic strain energy, therefore the 
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coefficient of restitution is very close to unity. In elasto-plastic contacts, at impact 

velocities which do not provide yielding, the coefficient of restitution is one. Once 

contact yielding occurs, a portion of the input energy is utilised in plastic deformation of 

the contact and therefore the elastic strain energy decreases which results in a smaller 

coefficient of restitution. For elasto-plastic and adhesive contacts, the coefficient of 

restitution initially increases, suggesting that adhesion is predominant in defining the 

coefficient of restitution for small impact velocities. For large impact velocities 

plasticity of the contact dominates the behaviour since the coefficient of restitution 

decreases.   

3.4.4.2 Ning’s elasto-plastic and adhesive tangential contact model 

Ning [44] assumed that the model of Thornton and Yin [46] (see Section  3.4.3.3) is still 

applicable after plastic yielding. Based on this assumption the tangential interaction 

reduces the contact radius through the process of peeling as suggested by Savkoor and 

Briggs [47] (see Section  3.4.3.2). This reduction in contact radius results in a different 

permanent deformation, *

pR , compared to that of the case where friction does not exist. 

The permanent deformation in the presence of friction is given by, 
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 (3.60) 

where Fmax is the maximum loading force and 
*

maxF  is the JKR equivalent force of Fmax. 
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Ning [44] simulated the oblique impact of an elasto-plastic and adhesive particle to a 

flat wall at different impact angles using this model. The results are shown in 

Figure  3.23. 

 

 

Figure  3.23: Tangential coefficient of restitution as a function of impact angle for 

elasto-plastic contacts with and without adhesion [44] 

 

It can be observed that the effect of surface adhesion on tangential behaviour of the 

contact is not significant, since the interactions between the two contacting surfaces are 

dominated by the effect of plastic deformation [44]. The sensitivity of the critical impact 

velocity (the minimum velocity that results in a coefficient of restitution larger than zero) 

to coefficient of sliding friction also confirmed that the tangential behaviour of the 

contact in elasto-plastic and adhesive cases are similar to that in non-cohesive systems 

(see Figure  3.24). 
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Figure  3.24: Critical impact velocity as a function of impact angle for different 

coefficients of sliding friction [44] 

 

3.4.4.3 Tomas’ elasto-plastic and adhesive normal contact model 

Tomas [55] proposed an elasto-plastic and adhesive contact model for ultrafine particles. 

Short range van der Waals forces (Equation (3.61)) are considered before the two 

particles come into contact. 
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where AH is the Hamaker constant (see Section  3.3.1) and af is the minimum separation 

at which van der Waals attractive forces become significant. This separation is 

approximately 0.3-0.4 nm [55]. Once the particles come into physical contact there is a 

tensile force (FH0) acting on the contact. From this point the contact is considered to be 

elastically deformed based on Hertz theory (Equation (3.14)) up to the point where the 

contact pressure reaches the yield pressure. The overlap at which the contact yielding 

occurs is given by, 
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where κA is elastic-plastic contact area coefficient and κp is plastic repulsion coefficient. 

κA represents the ratio of plastic contact deformation area to total contact deformation 

area. Tomas [55] showed that κA ranges from 2/3 (for purely elastic contacts) to 1 (for 

purely plastic contacts). κp describes a dimensionless ratio of attractive van der Waals 

pressure to a constant repulsive micro-yield strength py. Tomas [55] showed that κp 

ranges from 0 (for elastic contacts) to 1 (for soft plastic contacts). These two parameters 

were considered to be constant throughout the contact duration, an assumption which is 

valid only for very fine particles with nanometres of contact radius [55]. During plastic 

deformation, the contact force is a linear function of normal overlap which is given by 

Equation (3.63), 

  *

0n y A p n HF πR p κ κ α F    (3.63) 

Figure  3.25 shows a schematic force-overlap response of Tomas model. 
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Figure  3.25: Schematic force-overlap response of Tomas’ model [55]. 

 

A linear adhesion limit is considered in this model, which accounts for increasing 

adhesion due to increasing plastic deformation. The governing equation for this limit is 

given by, 

 
*

0al vdW n HF πR p α F    (3.64) 

where pvdW is the van der Waals pressure. Contact unloading is assumed to be elastic 

and is given by, 
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where αal is the overlap at which the unloading curve reaches the adhesion limit. In the 

case of reloading, the force follows, 
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which is symmetrical of unloading path with respect to the line αmax-αal. There is no 

clear explanation of this hysteretic behaviour by Tomas [55]. After reaching the 

adhesion limit, contact unloading follows, 
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As it can be seen schematically in Figure  3.25, the unloading stiffness increases with 

increasing the plastic deformation which is in agreement with Hertz non-linear theory. It 

can also be observed from Figure  3.25 that the contact breaks at a very small negative 

overlap which shows that the model does not account for permanent deformation. The 

independency of contact breakage on plastic history is not realistic for larger particles. It 

must be noted that Tomas [55] developed this model for very fine particles. For such 

particle size, the van der Waals forces at close proximity of the contact are still 

significant relative to gravitational force and therefore the model is valid for this range 

of particle size. Furthermore, the derivations of this model are based on molecular 

interactions between the bodies in contact which are the dominant factor only for very 

small particle sizes. For larger particles, the interactional and surface properties such as 

roughness and interfacial energy predominate the contact behaviour relative to 

molecular interactions. It is noteworthy that, in DEM simulations, the particle size is 

commonly scaled-up in order to increase the time-step and consequently to perform 

faster simulations [56] for which Tomas model cannot be employed.  
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3.4.4.4 Tomas’ elasto-plastic and adhesive tangential contact model 

Tomas [55] supplemented the Mindlin’s no-slip solution [34] for the tangential force 

calculations in his model. The model accounts for “partial sticking the load dependent 

adhesion force” [55]. The tangential force is given by Equation (3.68), 

 *4t tF G aα  (3.68) 

where a is the contact radius which is given by Equation (3.69), 
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The sliding limit of the tangential force (Ftc) is considered to be a function of elasto-

plastic contact flattening due to the normal force and positive contribution of the 

adhesive force, 

     01tc n ad H NF μ F F μ κ F F      (3.70) 

where Fad is the load dependent adhesion force (equivalent to plastic pull-off force, fcp, 

in Thornton and Ning’s model [31]) and κ is the “elastic-plastic contact consolidation 

coefficient” which was not clearly described by Tomas [55].  

3.4.4.5 Luding’s (2008) elasto-plastic and adhesive normal contact model 

Luding [57] proposed a simplified linear version of Tomas’s model. Figure  3.26 

illustrates schematically the normal contact model of Luding for elasto-plastic and 

adhesive contacts. 



 

 

Chapter 3: Distinct Element Method (DEM) 
 

 

82 

 

α 

f

α0 

αc 

fc

f0

kp α 

ke (α-α0) 

-kc α 

αmax 

 

Figure  3.26: Schematic diagram of force-overlap relationship in Luding’s [17] model 

 

In this model, the normal force will immediately drop to a certain negative value, f0, 

when two spheres come into contact due to van der Waals attractive forces. On initial 

compressive loading, the contact is considered to be plastically deforming; the contact 

force increases linearly with a plastic stiffness, kp, until an overlap αmax is reached (αmax 

is kept in memory as a history variable). During unloading, the force drops on a line 

with the elastic stiffness ke. The force decreases to zero at overlap α0, which represents 

the plastic contact deformation. Reloading at any instant leads to an increase of the 

force along the same line with slope ke, until the previous maximum force is reached; if 

α increases further beyond αmax, the force again follows the line with plastic stiffness kp 

and αmax has to be adjusted accordingly. Unloading below α0 produces an adhesive force 

until the maximum tensile force (i.e. pull-off force), fc, is reached at overlap αc. Further 

unloading leads to a reduction in the force on the adhesive branch with a negative 

stiffness -kc. The maximum tensile force in this model increases by having larger 

deformations, i.e. increasing αmax would result in a larger negative fc, similar to the 

models of Thornton and Ning [31], and Tomas [55]. Reloading for overlaps smaller 
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than αc, follows a linear line parallel to the initial unloading line. This feature is 

incorporated in order to account for hysteretic unloading-reloading behaviour of Tomas’ 

model [58]. Luding [17] considered an elastic stiffness which increased with maximum 

overlap based on the work of Walton and Braun [41] (see Section  3.4.2.3). A plastic 

flow limit overlap (α
*
), i.e. the overlap beyond which the elastic stiffness becomes 

independent of the maximum overlap, was defined as follows, 

 * *
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where ˆ
ek  is the maximum value of the elastic stiffness and ϕf is the dimensionless 

plasticity depth. The plastic flow limit overlap was defined by Equation (3.72), 
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where αfluid is the “stress-free fluid overlap” which can be computed such that the 

volume fraction in the system equals unity. Luding [59] calculated αfluid by equating the 

bulk volume fraction to one as follows, 

 *0.0477fluidα R  (3.73) 

For maximum overlaps greater than α
*
, elastic stiffness is equal to ˆ

ek  and for smaller 

maximum overlaps the elastic stiffness is evaluated by Equation  (3.74). 

   max

*
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e p e p
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k k k k

α
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Luding’s model contains two functional flaws by which the behaviour of elasto-plastic 

and adhesive contacts is not realistically simulated. First, contacts break at zero overlap 

(α = 0), regardless of loading or unloading history. This implies that all plastic 

deformation has been recovered, which is unrealistic since plastic deformation is 
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permanent. The second issue is with the reloading behaviour at overlaps smaller than αc. 

Since the contact unloading is considered to be elastic, the reloading at any point must 

follow unloading curve up to the point unloading began (αmax). For further loading 

beyond this point, the force should follow the line with slope kp.  

3.4.4.6 Luding’s (2008) elasto-plastic and adhesive tangential contact model 

Luding [57] considered a linear tangential stiffness, kt, similar to the linear-spring model 

(see Section  3.4.1.1). The sliding limit of the tangential force was adopted from the 

model of Tomas [55], where for an adhesive contact, Coulomb’s law is modified by 

considering a positive contribution of adhesion force, 

  tc n cF μ F k α   (3.75) 

 

In this model, the reference for a contact is no longer the zero force level, but the 

adhesive force level along -kcα [57].  

 Particle shape  3.5

The rotation of spheres is restricted only by frictional forces between the particles and 

with other surfaces, whereas for irregular particles, rotation is affected by mechanical 

interlocking in addition to the frictional contacts. For spherical particles only tangential 

forces result in rotation of particles and normal contact forces do not contribute to the 

moment and rotation, since they always act through the centre of the spheres. This is not 

the case for irregular particles for which the rotation can be as a result of both normal 

and tangential forces [60]. Therefore spheres may not be a good representative for 

irregular particles in some cases. It has been shown that spherical particles tend to have 
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a smaller angle of repose [61] and a reduced strength [62] as compared to non-spherical 

particles. Cleary  [63] considered four major ways by which spherical particles differ 

from real irregular particles: 

1. Material shear strength: particle assemblies of irregular particles show resistance 

to shear forces due to mechanical interlocking at the single particle level. 

2. Dilation during shear: irregular particles tend to produce dilated bulk due to their 

volume of revolution. 

3. Voidage distribution: spherical particles pack very efficiently, but irregular 

particles mostly produce porous bulk. 

4. Partitioning of energy between translational and rotational motions is completely 

different for spherical and irregular particles.  

There exist a number of approaches through which non-sphericity of particles can be 

taken into account. These approaches are reviewed in the following sections. 

 Reduction of rotational freedom of spheres 3.5.1

Amongst all 3D shapes, spheres require the simplest method of contact detection in 

which a contact can be detected if the distance between two adjacent spheres becomes 

less than the sum of their radii. Another advantage of spheres is the efficient and 

accurate evaluation of the contact overlap, which provides fast and reliable calculation 

of contact forces. Due to these attributes of spheres, it is always of interest to simulate 

the particulate systems using spheres. In order to represent irregularity of particles while 

using spheres, Morgan [64] proposed a damped sphere rotation as a proxy for 

mechanical interlocking of irregular particles. It was shown that restricting the rotation 

of particles by this method can yield more realistic values of assemblage friction 
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compared to free rolling spheres. Ng and Dobry [65] fixed rotation for spherical 

particles in order to represent the shape of real particles. A simulation of a drained 

monotonic triaxial compression test in which particle rotation is inhibited, showed 

higher shear strength, greater stiffness, stronger dilation and better experimental 

agreement compared to the case of free rolling particles. Another approach is based on 

considering a rolling friction that provides a threshold torque beyond which angular 

motion is allowed. Iwashita and Oda  [66] showed that in the biaxial compression test, 

development of shear bands can only be simulated when the rolling friction is 

considered. It was also reported that by considering the rolling resistance in DEM 

simulations, high gradient of particle rotation along the shear band boundaries can be 

reproduced in a manner similar to those of natural granular solids. In order to reduce the 

rotational freedom of spheres, the centre of mass of the spheres can also be moved away 

from the geometric centre.  

 

Although it has been reported that introducing rolling resistance and replacing the 

geometrical centre of mass lead to higher shear strength of the bulk, many believe that 

higher strength of bulk solids with irregular particles principally arises from the 

mechanical interlocking of particles which may not be well represented by rolling 

friction or spheres with a modified centre of mass [63].  

 Clumped spheres 3.5.2

In this method, particle shape is approximated by a number of overlapping or touching 

spheres with different sizes whose centres are fixed in position relative to each other. 

The advantage of this method is that it provides an approximation of the actual 
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irregularity while maintaining computational efficiency and accuracy of spheres. It must 

be noted that this advantage comes at the expense of increased total number of spheres, 

which increases the computational cost of the simulations [60]. Theoretically any 

particle shape can be modelled, however highly angular particles require a large number 

of small spheres to approximate their sharp edges. Therefore this method is not suitable 

for these sort of shapes [67]. Approximation of shapes with this technique mostly 

produces inadvertent surface roughness for the modelled particles [68]. The induced 

roughness can be controlled by increasing the number of spheres while the 

computations are within a reasonable range of complexity.  

 

Kodam et al. [69] investigated the influence of the forces generated by each component 

sphere using a simple case in which a particle collides with a flat wall.  It was shown 

that when a clumped-spheres particle contacts a flat wall, the component sphere 

stiffness should not be the same as the master sphere contact stiffness. If the same 

stiffness is used in the clumped-sphere model, then the contact becomes effectively 

stiffer. The optimal values of the component sphere stiffness depend upon the number 

of component spheres contacting the wall simultaneously and the degree of overlap for 

each component sphere contact. Kruggel-Emden et al. [70] showed that the results for 

the clumped-spheres method strongly depended on the alignment of the particles. These 

studies demonstrate that great care must be taken when using the clumped-spheres 

approach to modelling non-spherical particles in DEM simulations.  

 

Favier et al. [67] used this method to model discharge of ellipse-shaped particles 

through an orifice in a flat-bottomed hopper. Also, the process was simulated using 
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spherical particles. There was a good agreement between simulations of ellipse-shaped 

particles and physical flows for the rate of discharge and the vertical velocity profiles. 

The spherical particles had agreement with simulated and experimental ellipse-shaped 

particles in frequency of arch formation and orifice diameter. 

 

 Polyhedral shapes 3.5.3

The geometry of polyhedrons is defined in terms of corners, edges and faces; the 

location of corners is given by a series of vectors from the centre of mass and a unit 

outward normal vector is associated with each face. The location and orientation in 

space of each polyhedron is defined by the components of a vector to the centre of 

gravity (with respect to a fixed reference frame) and by the principal axes of inertia of 

the body. The advantage of this type of shape is that complex flat-faced particles can be 

very accurately approximated (Figure  3.27) [71]. 

 

 

Figure  3.27: Polyhedral-shaped particles [71] 
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During a simulation, the co-ordinates of each corner and face need to be recomputed 

each time the collision detection algorithm is used. This is the main limitation which 

requires massive computational power to calculate these coordinates for each individual 

particle. For calculations of contact force, contacts are divided into two main types; 

corner-to-face and edge-to-edge contacts. There exist a number of force evaluation 

methods for these two types of contact. Mostly a linear contact model based on stiffness 

is used. The stiffness varies for edge-to-edge and corner-to-face contacts. Applications 

of linear contact models for polyhedral shapes have not been verified yet. Contact 

detection involves calculation of distance between all edges of a particle with all the 

faces of the surrounding particles which again increases the computational complexity 

of the simulations. This approach is not applicable for smoothly curved shapes since a 

large number of corners and edges are required to approximate curvatures [72]. 

 

Smith et al. [73] simulated triaxial compaction of polyhedral particles using an energy-

based elastic contact model. It was concluded that the evolution of coordination 

numbers and the number of contact groups depended strongly upon particle shape. 

 

Recently, a combination of polyhedra and spheres have been introduced to model 

complex curved shapes. These shapes also allow for simulations of spheres and 

irregular particles together. Spheropolyhedra (Figure  3.28) are obtained as Minkowski 

sums of polyhedra and spheres [74]. 
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Figure  3.28: Spheropolyhedra [74] 

 

Alonso-Marroquin et al. [75] simulated quasi-static biaxial compression of spheres 

(with varying rolling friction) and spherotetrahedrons. The results suggested that 

spherical particles with rolling friction capture some effects of particle shape, but some 

modes of collapse of force chains in highly anisotropic particles cannot be reproduced 

with rolling friction alone. 

 Continuous super-quadric function 3.5.4

Smooth irregular shaped particles can also be represented by using one or more 

continuous functions to describe the surface of a particle. Super-quadrics are 

mathematical shapes that can be generated using the following equation  [63],  

 1

m m m
x y z

a b c

     
       

     
 (3.76) 

where the power m determines the roundness or blockiness of the particle shape. The 

ratios b/a and c/a define the aspect ratio of the shapes and control whether they are 



 

 

Chapter 3: Distinct Element Method (DEM) 
 

 

91 

 

elongated or platey or roundish.  Figure  3.29 shows a range of shapes that can be 

generated by this method.  

 

 

Figure  3.29: Super-quadric shapes [76] 

 

Contact detection between two super-quadric shapes can be determined from the 

intersection of the two functions. Due to the nonlinearity of the equations, this process 

is computationally expensive, though more efficient than polyhedra. Similar to 

polyhedral, the lack of a well-defined contact model for this shape type is the main 

disadvantage.   

 Discrete function representation (DFP) 3.5.5

Solving the nonlinear equations in a continuous function shape can be avoided by 

discretising the boundary of the mathematical shape. This will allow for the contact 

detection to calculate distances between nodes of the discretised elements. It must be 

noted that discretisation affects the smoothness [72]. By enhancing the discretisation the 

smoothness can be approximated; however, this will increase the computational 
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complexity of contact detection. With DFP, super-quadrics perform better compared to 

polyhedral shapes [63].  

 Digitisation 3.5.6

Jia et al.  [77] developed a method in which complex shapes are digitised and 

represented by 3D pixels (voxels). The digitisation is computationally efficient and 

complex shapes can be approximated quite accurately by increasing pixel density.  

Digitisation translates each of the particles into a coherent collection of pixels as shown 

in Figure  3.30. 

 

Figure  3.30: 2D and 3D digitisation of shapes [77] 

 

A contact is detected if one pixel is occupied by two or more particles. The overlaps can 

be accurately and efficiently calculated using the digitised pixels. The time taken to 

check overlaps is a linear function of the particle number and does not increase with the 

complexity of particle shapes which makes this technique preferable compared to other 
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shape representations in terms of computational complexity. Contact force between 

pixels is not yet fully defined. By considering random movements for particles, this 

technique can be used to model packing of particles with complex shapes in to complex 

geometries. Modelling of particulate systems in which particle contacts and collisions 

dominate the flow, is not achievable at the present time 
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CHAPTER 4   A New Linear Model for Elasto-

Plastic and Adhesive Contacts in 

DEM 

Rigorous non-linear models of elasto-plastic contact deformation are time-consuming in 

numerical calculations for DEM and quite often unnecessary for representing actual 

contact deformation of common particulate systems. Simplifications can be made in 

order to reduce the computational complexity of the models, whilst ensuring the 

accuracy of capturing the realistic behaviour of contact interactions. In this chapter a 

new linear model for elasto-plastic and adhesive contacts is described, which is based 

on the model of Thornton and Ning [31]. The motivation behind proposing a new linear 

contact model is that available rigorous models such as the model of Thornton and Ning 

[31] are difficult to be implemented as computer codes [78].  Additionally these models, 

due to their complexity, lead to slow simulations.  

 Normal contacts 4.1

Considering the contact of two spherical bodies, Figure  4.1 shows schematically the 

normal force-overlap response of the proposed model.  
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Figure  4.1: Normal force-overlap response of the proposed model. The governing 

equations are: Fn = -keα-10/9fce from A to B, Fn = keα-8/9fce from B to α0, Fn = kp(α-α0) 

from α0 to C, Fn = ke(α-αp) from C to D, and Fn = ke(2αcp-αp-α) from D to E 

 

Initially the contact is assumed to be elastically deforming prior to reaching the 

compressive state (from point A to α0), after which the plastic deformation is initiated. 

The initial elastic deformation is considered to be a linear version of JKR: once the 

contact is established at α = 0, the contact force is immediately dropped to a tensile 

force (see Section  3.4.3.1), which is equivalent to 8/9fce, where fce at point B is the JKR 

elastic pull-off force given by Equation (4.1), 

 *3
Γ

2
cef πR  (4.1) 

where Г is the interface energy and R
*
 is the reduced radius. The contact is assumed to 

be elastically deforming from point A to point B with an elastic stiffness, ke. The contact 

force for this part of deformation can be evaluated using Equation (4.2), 
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8

9
n e ceF k α f   (4.2) 

Since the deformation is elastic, the unloading curve follows the same path. When, 

during unloading, the normal overlap becomes zero (intersect of the response with 

force-axis), all the work done during the loading stage has been recovered. However at 

this point the sphere remains adhered to the target and further work (known as work of 

adhesion) is required to separate the surfaces. The contact breaks at a negative overlap, 

αfe, with the contact force being 5/9 fce. For overlaps larger than α0 the contact 

deformation is fully plastic and it is governed by the plastic stiffness, kp, where the 

contact force can be evaluated using Equation (4.3), 

  0n pF k α α   (4.3) 

The unloading curve from point C to point D lies on a line with the elastic stiffness ke. 

The equation for this line is given by,  

  n e pF k α α   (4.4) 

where αp is the overlap at which the unloading force becomes zero i.e. the amount of 

plastic deformation.  The unloading path continues until a maximum tensile force (fcp), 

known as the pull-off force, is reached. The calculation of fcp is provided later in this 

chapter. For unloading beyond the pull-off force from point D to point E, a negative 

elastic stiffness, -ke, is considered. The governing equation for this part of contact force 

can be evaluated as follows, 

  2n e cp pF k α α α    (4.5) 

where αcp is the overlap at which the pull-off force is achieved (see Figure  4.1). The 

contact is considered to break at point E at an overlap which provides a force equivalent 
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to 5/9fcp similar to the JKR theory. Deformations expressed by Equations (4.4) and (4.5) 

are reversible i.e. reloading follows the path of unloading. If the particles come towards 

each other after the contact is broken (but while α > 0), the contact is considered to be 

established at αfp. This behaviour is different from the one which Thornton and Ning [31] 

considered for their elasto-plastic and adhesive contact model (see Section  3.4.4.1 and 

[31, 44]). In their model, the unloading part of the contact was considered to follow the 

JKR equation with a reduced local contact curvature due to plastic deformation, αp. 

Therefore, in their model, if the particles come towards each other after the contact is 

broken, the contact is considered to be established at αc0 (see Figure  3.20), where the 

contact force is equal to -8/9fcp.      

 Load-dependent pull-off force 4.1.1

In order to account for the increase in the pull-off force due to plastic deformation (i.e. 

flattening of the contact area), the pull-off force (i.e. the maximum tensile force the 

contact experiences during unloading if the contact is deformed plastically) is evaluated 

by applying an energy balance: the work of adhesion of the contacts is equated to ApГ, 

where Ap is the contact area of the plastic deformation and Г is the interface energy. The 

plastic deformation, αpd, is, 

 
0pd pα α α   (4.6) 

The contact area can be estimated as the projected area of a spherical cap with a 

diameter of 2R
*
 and a cap height of αpd (the coloured area in Figure  4.2). 
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R*

αpd

 

Figure  4.2: Representation of plastic contact area as a spherical cap  

The area is calculated by [17], 

  * 22p pd pdA π R α α   (4.7) 

The work of adhesion can be evaluated using the following equation,  

  * * 2 2

0 0 0Γ 2 2 2ad p p pW π R α R α α α α α      (4.8) 

The work of adhesion, Wad, is the area under the unloading response from αfp to αp, 

which is given by, 

  2 2137
2

162
ad e cp p cp pW k α α α α    (4.9) 

The derivation of Equations (4.8) and (4.9) is described in detail in Appendix I. By 

equating the right hand sides of Equations (4.8) and (4.9), an equation for αcp can be 

derived (see Appendix I), 

 
2

cp p pα α α C    (4.10) 

where C is given by, 

  2 * 2 *

0 0 0

162 137
Γ 2 Γ Γ 2 Γ

137 162
e p p

e

C k π α π R α α π α π R α
k

  
       

  
 (4.11) 

Figure  4.3 shows the elastic JKR and the proposed model’s pull-off forces as functions 

of αcp for the case where ke = 1500 N/m, kp = 210 N/m, Г = 0.02 J/m
2
 and R

*
 = 2.45 μm. 

These values were selected to aid comparison with Thornton and Ning’s and Luding’s 
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models, as described in Section  4.1.5. The reason why the pull-off force is plotted 

against αcp is that it shows the locus of the pull-off force in a contact behaviour which is 

used to further simplify the model in Section  4.1.4.  

 

 

Figure  4.3: The proposed model’s pull-off forces as a function of αcp 

   

Figure  4.3 shows that the pull-off increases with plastic deformation, an observation 

which also has presence in the elasto-plastic and adhesive models of Thornton and Ning 

[31], Tomas [55], and Luding [57]. The pull-off force is obviously always larger than 

the JKR elastic pull-off force. In fact, fcp is a function of ke, kp, Г and αmax, for which a 

direct equation based on these parameters could not be derived. In the following 

sections, the sensitivity of the plastic pull-off force to these parameters is investigated.  

 Sensitivity of plastic pull-off force to contact properties 4.1.2

Figures 4.4-4.7 show the normalised pull-off force (i.e. fcp / fce) as a function of 

normalised αcp (i.e. αcp / R
*
) for different values of the interface energy, elastic stiffness, 
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plastic stiffness and reduced radius, respectively. For all cases the fixed properties are as 

follows: ke = 1500 N/m, kp = 210 N/m, Г = 0.02 J/m
2
, and R

*
 = 2.45 μm. 

 

Figure  4.4: Normalised pull-off force as a function of normalised αcp for different 

interface energies 

 

 

Figure  4.5: Normalised pull-off force as a function of normalised αcp for different elastic 

sitffnesses 
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Figure  4.6: Normalised pull-off force as a function of normalised αcp for different plastic 

stiffnesses 

 

 

Figure  4.7: Normalised pull-off force as a function of normalised αcp for different 

reduced radii 
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As expected, an increase in the interface energy increases the pull-off force sensitivity 

to plastic deformation (see Figure  4.4).  

 

With an increase in the elastic stiffness, the pull-off force increases. This is due to the 

fact that higher elastic stiffness results in larger plastic deformation for the same 

maximum overlap. This is illustrated in Figure  4.8. 

 

α αp1 αmaxαp2 

ke1
ke2

ke1 > ke2

f

α02 

α01 

 

Figure  4.8: Schematic force-overlap response of the proposed model: dotted line 

correspond to the case with lower elastic stiffness 

 

Since the pull-off force is calculated based on plastic deformation, i.e. αp – α0, and the 

plastic deformation increases with the elastic stiffness, the pull-off force increases with 

elastic stiffness (see Figure  4.5).  

 

The responses for different plastic stiffness lie on each other as can be seen in 

Figure  4.6. It can be observed that, despite the fact that the responses follow the same 
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trend, the same pull-off force is achieved at a different maximum overlap, as illustrated 

in Figure  4.9. Note that in the responses investigated in Figure  4.6, the data was 

generated for the same range of maximum overlap.    

 

α αmax1

f

kp1
kp2

αmax2

 

Figure  4.9: Schematic force-overlap response of the proposed model for different plastic 

stiffness 

 

The plastic pull-off force was found to be independent of reduced radius, according to 

Figure  4.7.  

 Impact, rebound and critical sticking velocities 4.1.3

In this section, the equations for the impact, rebound and sticking velocities are derived 

based on applying an energy balance during contact loading and unloading due to the 

collision of a sphere with a semi-infinite rigid flat target. Figure  4.10 shows 

schematically the force-overlap response of the proposed model. Different areas under 

the response, which correspond to different energies, are shaded and coloured. 



 

Chapter 4: A new linear model for elasto-plastic and 

adhesive contacts in DEM 
 

 

104 

 

Wlt

α 

f

Wp

We

Wut

 

Figure  4.10: Schematic force-overlap response of the proposed model 

 

In Figure  4.10 Wlt, Wp, We and Wut correspond to the initial loading tensile work, plastic 

work, elastic work and unloading tensile work, respectively. The impact energy balance 

from the initial velocity to the point where the sphere is brought to rest, Ei, is, 

 
21

2
i i p e ltE mv W W W     (4.12) 

where vi is the impact velocity. Based on this energy balance, an equation is derived for 

vi, 

 
 

1/2
2 2

max 0 0p e

i

k α α k α
v

m

  
 
 
 

 (4.13) 

The full detailed derivation of Equation (4.13) is provided in Appendix II. It must be 

noted that vi is an independent variable and in fact maximum overlap, αmax, is a function 

of vi. However by rearranging the parameters, vi is given as a function of other 

parameters in Equation (4.13). This enables derivations of equations for critical sticking 
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velocity, rebound velocity and coefficient of restitution which will be discussed in the 

following sections.  

 

It is proposed that the critical sticking velocity, vs, i.e. the maximum impact velocity for 

which the contact does not break is given by,  

 
e ut i sW W v v    (4.14) 

For impact velocities larger than vs, the unloading leads to detachment of the contact, as 

there is sufficient elastic strain energy to overcome the work of adhesion. The rebound 

velocity, vr, can be derived based on the following energy balance, 

 
21

2
r r e utE mv W W    (4.15) 

where Er is the rebound kinetic energy. The rebound velocity can be derived based on 

Equation (4.15) (see Appendix II), 

 
    

1/2

max 0 max 03 14 9 8
9

cp

p p cp fp c p

r

f
k α α α α α α α α

v
m

 
       

  
 
 
 

 (4.16) 

Figures 4.11-4.14 show the critical sticking velocity, vs, as a function of interface 

energy, elastic stiffness, plastic stiffness and reduced radius, respectively. For all the 

cases the fixed properties are as follow: ke = 1500 N/m, kp = 210 N/m, Г = 0.02 J/m
2
, 

and R
*
 = 2.45 μm. These conditions have been chosen to facilitate comparison with the 

model of Thornton and Ning and experimental data reported in the literature (see 

Section  4.1.5).    
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Figure  4.11: Critical sticking velocity as a function of interface energy 

 

 

Figure  4.12: Critical sticking velocity as a function of elastic stiffness 
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Figure  4.13: Critical sticking velocity as a function of plastic stiffness 

 

 

 

Figure  4.14: Critical sticking velocity as a function of reduced radius 
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way of finding an equation for the sticking velocity based on single particle properties, 

i.e. elastic and plastic stiffness, interface energy and reduced radius, is to determine the 

best fit equations to responses in Figures 4.11-14.  

 

The critical sticking velocity increases with increasing the interface energy since the 

work of adhesion is increased and larger elastic strain energy is required to break the 

contact. By increasing the elastic stiffness, the unloading elastic work is decreased and 

therefore there is a reduction in the elastic strain energy. In order to compensate for this, 

a larger impact velocity is required to provide a sufficiently large elastic strain energy to 

break the contact. This explains the behaviour seen in Figure  4.12. The critical sticking 

velocity decreases with an increase in the plastic stiffness or reduced radius. Figure  4.13 

shows that the critical sticking velocity decreases with increasing the plastic stiffness. 

This is due to the fact that by increasing the plastic stiffness while keeping the elastic 

stiffness unchanged, the elastic strain energy is increased for a given contact force.  

 

Figures 4.15-4.18 show the coefficient of restitution as a function of impact velocity for 

different values of interface energy, elastic stiffness, plastic stiffness and reduced radius, 

respectively. In all cases the fixed properties are as follow: ke = 1500 N/m, kp = 210 

N/m, Г = 0.02 J/m
2
, and R

*
 = 2.45 μm.  
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Figure  4.15: Coefficient of restitution as a function of impact velocity for different 

values of interface energy 

 

 

Figure  4.16: Coefficient of restitution as a function of impact velocity for different 

values of elastic stiffness 
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Figure  4.17: Coefficient of restitution as a function of impact velocity for different 

values of plastic stiffness 

 

 

Figure  4.18: Coefficient of restitution as a function of impact velocity for different 

values of reduced radius 
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Generally the coefficient of restitution increases with the impact velocity because of 

adhesive nature of the contact; an observation which was seen in experimental analysis 

[42]. The coefficient of restitution reaches an asymptote at very high impact velocities. 

The asymptotic value is a function of contact properties. Increasing the interface energy 

results in a reduction of the coefficient of restitution since the cohesion is increased. 

Increasing the elastic stiffness also reduces the coefficient of restitution, since the 

plastic work and plastic deformation is increased. Increasing the plastic stiffness 

increases the coefficient of restitution, since the contact becomes stiffer and the extent 

of plastic deformation is reduced. Increasing the reduced radius increases the coefficient 

of restitution, since the mass of the particles increases, subsequently the impact kinetic 

energy is increased.  

 

 Linearisation of locus of pull-off force 4.1.4

Figures 4.3-4.7 showed that the locus of pull-off force is governed by the specific 

surface energy and the flattened contact area. The locus is governed by an equation 

which is not linear for very small deformations, yet becomes approximately linear 

towards large deformations (αcp > 0.06R
* 

as can be seen in Figures 4.4-4.7). In an 

attempt to propose a more computationally cost-effective model, the locus of the pull-

off force is considered to be a linear fit to the linear part of the locus. Hence, 

 
0cp cp cp pf k α f    (4.17) 

where kcp is the slope of the linear fit and f0p is the intersection of the fit with the force-

axis. Figure  4.19 shows the pull-off force locus for αcp   0.147 μm (i.e. αcp > 0.06R
*
) 
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and the linear fit for different interface energies: ke = 1500 N/m, kp = 210 N/m, and R
*
 = 

2.45 μm.   

 

 

Figure  4.19: Plastic pull-off force as a function of αcp for different interface energy 

 

Furthermore, in a number of cases the initial elastic deformation may be small as 

compared to the total deformation in which case the model can be simplified further, as 

it is the case for materials with notable plastic deformation (see Section  3.4.2.3). In real 

contacts, the presence of asperities always leads to plastic deformation right from the 

beginning of loading. If the initial elastic deformation is ignored, the force-overlap 

response can be simplified to the model that is shown schematically in Figure  4.20. 
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Figure  4.20: Schematic force-overlap response of the simplified model. The governing 

equations are: Fn = kp(α-α0) from A to B, Fn = ke(α-αp) from B to C, and Fn = ke(2αcp-αp-

α) from C to D 

 

 Comparison of the proposed model with Luding’s, and Thornton 4.1.5

and Ning’s [15] models 

Ning [44] simulated impact of an ammonium fluorescein particle to a silicon target 

using Thornton and Ning’s [31] model. The parameters in their simulations are 

summarised in Table  4.1. 
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Table  4.1: Properties of ammonium fluorescein particle and silicon wall used in Ning’s 

[44] simulations 

Property Particle Wall 

Radius (μm) 2.45 - 

Density (kg/m
3
) 1350 1350 

Elastic modulus (GPa) 1.2 182 

Poisson’s ratio (-) 0.3 0.3 

Interface energy (J/m
2
) 0.2 

Contact yield pressure (MPa) 35.3 

 

The force-overlap response at three different impact velocities was obtained by Ning 

[44] which is shown in Figure  4.21. 

 

 

Figure  4.21: Normal force-overlap response of impact of an ammonium fluorescein 

particle to a silicon target using Thornton and Ning’s model with three different impact 

velocities [44]. 
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PlotDigitizer [79] software is used to digitise the response in their published work and 

reproduced as Figure  4.21. In order to simulate the same system with Luding’s and the 

proposed linear models, the elastic, plastic and adhesive stiffnesses are evaluated by 

determining the slopes of the responses in Figure  4.21. The values are summarised in 

Table  4.2. 

 

Table  4.2: Model parameters obtained by determining the slopes of the responses in 

Figure 4.21 

Property Value 

ke (N/m) 1500 

kp (N/m) 210 

kcp, kc (N/m) 20 

f01, 8/9 fce (μN) 2.1 

f0p (μN) 4.0 

 

It is noteworthy that the elastic stiffness, ke, in Table  4.3 is the average value of the 

initial unloading slopes in Figure  4.21. Luding’s and the proposed models were 

implemented as subroutines for EDEM
®
 software provided by DEM-Solutions, 

Edinburgh, UK. The model with linear pull-off force locus is considered in these 

analyses. The contact breakage is considered to be at zero force for this model, i.e. at αfp 

the contact force is zero; this provides easier implementation of the model as a computer 

code. It will be shown later on that this simplification does not have any significant 

effect on the contact behaviour. Using the parameters in Table 4.2, a 2.45-μm radius 

particle was simulated impacting a flat wall at three impact velocities; 2, 5 and 10 m/s. 

The response using the proposed simplified model is shown in Figure  4.22. 
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Figure  4.22: Normal force-overlap responses of impact of a 2.45-μm radius particle to a 

wall with the parameters in Table 4.2 using the proposed simplified model for three 

different impact velocities. 
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*
, was indeed very small (with the dimensionless plasticity depth of 0.02, 

-10

0

10

20

30

40

50

0 50 100 150 200 250

N
o

rm
a

l 
co

n
ta

ct
 f

o
rc

e 
(μ

N
) 

Overlap (nm) 

v = 2 m/s

v = 5 m/s

v = 10 m/s



 

Chapter 4: A new linear model for elasto-plastic and 

adhesive contacts in DEM 
 

 

117 

 

α
*
 is equal to ~ 0.114 μm). For the dimensionless plasticity depths larger than 0.0412, 

there was always a finite rebound velocity despite extensive plastic deformation. 

 

 

Figure  4.23: Normal force-overlap responses of impact of a 2.45-μm radius particle to a 

wall with the parameters in Table 4.2 using Luding’s model for three different impact 

velocities. 
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In order to provide a more in depth comparison, the coefficient of restitution as a 

function of impact velocity is compared for a range of impact velocities. The results of 

the coefficient of restitution for the 2.45 μm radius ammonium fluorescein particle 

impacting on the silicon target obtained by simulations using Luding’s and the proposed 

models are compared with findings of Ning’s [3] in  Figure  4.24. The data for Thornton 

and Ning’ model were obtained by digitisation of their published work [31].  

 

 

Figure  4.24: Coefficient of restitution as a function of impact velocity using different 

contact models for a 2.45-μm radius ammonium fluorescein particle impacting to a 

silicon target. 
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provides detachment in the proposed model is very similar to the one of Thornton and 

Ning (~1.6 m/s). Thornton and Ning’s results show that the coefficient of restitution 

starts reducing for impact velocities larger than ~ 10 m/s, at which the maximum 

overlap is ~8.5% of the particle radius. For larger impact velocities the overlap becomes 

comparable to particle size, at which point DEM simulations are not realistic due to 

large deformations. Figure  4.24 also shows that the minimum impact velocity that 

results in particle detachment in Luding’s model is much larger compared to that of the 

proposed model and Thornton and Ning’s, 13.8 m/s compared to 1.6 m/s. 

 

In order to verify the energy balance equations in Section  4.1.3, the analytical equation 

for the coefficient of restitution as a function of impact velocity is obtained for Luding’s 

and the proposed simplified models and is compared to the simulation results of  

Figure  4.24. The impact velocity of Luding’s and the simplified models can be obtained 

by Equation , 

  
1/2

2

max 0 max2
p

i

k
v α α α

m

 
  
 

 (4.18) 

For full detailed derivation of Equation (4.18) see Appendix III. The rebound velocity 

can be calculated using Equations (4.19) and (4.20) for Luding’s and the simplified 

models, respectively (see Appendices II and III).  

    
1/2

max
max

cp

r p p fp

fF
v α α α α

m m

 
    
 

 (4.19) 

  
1/2
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max

8

9

cp

r p ce p fe

fF
v α α f α α

m m m

 
    
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 (4.20) 
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where αfe is the overlap at which the unloading contact force is equal to –8/9fce. The 

coefficient of restitution is analytically calculated for a range of impact velocities. The 

analytical results (dotted lines) are plotted alongside the simulated results in Figure  4.25. 

 

 

Figure  4.25: Coefficient of restitution as a function of impact velocity using different 

contact models for a 2.45-μm radius ammonium fluorescein particle impacting to a 

silicon target. The dashed lines are obtained analytically using Equations (4.19) and 

(4.20). 
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impact velocities, the elastic strain energy becomes very large relative to the work of 

adhesion (Wut), so elasto-plastic process dominates since the plastic-cohesive stiffness, 

kcp, is normally smaller than the plastic stiffness, kp. Hence the asymptote has a value of 

(kp/ke)
1/2

  [14]. This asymptotic behaviour is not in line with the experimental evidence 

[80, 81]. In order to account for a decreasing coefficient of restitution at high impact 

velocities, the elastic unloading stiffness must be made load-dependent. Now, 

considering that the stiffness increases proportionally with the contact area, which in 

turn is a function of the maximum overlap, αmax, the stiffness, ke, is given by, 

 2 * 2

max max2ek r R α α    (4.21) 

where r is the contact radius.  Assuming the maximum elastic stiffness, ˆ
ek , is at an 

overlap of R
*
, then 

 

2

*
ˆ

e e

r
k k

R

 
  
 

 (4.22) 

For very small deformations, Equation (4.22) gives elastic stiffness values which can be 

smaller than the plastic stiffness. In order to avoid such values for ke, following the 

approach of Luding [57] as per Equation (3.74), Equation (4.22) can be modified as 

follows, 

  
2

*
ˆ

e p e p

r
k k k k

R

 
   

 
 (4.23) 

The maximum elastic stiffness can be evaluated by finding the tangent to the Hertz 

response of the contact and finding the best match to the Hertz curve for unloading. For 

the values given in Table  4.1 and Table  4.2, a maximum elastic stiffness of 13000 N/m 

provided the closest agreement with the Hertz analysis. 
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The coefficient of restitution as a function of impact velocity is shown in Figure  4.26 

for the proposed model with a load-dependent elastic unloading stiffness. This response 

is obtained by the same energy balance approach as described in Section  4.1.3. The 

prediction from Thornton and Ning’s model is also given for comparison. 

 

 

Figure  4.26: Coefficient of restitution as a function of impact velocity using the 

proposed model with a load-dependent unloading stiffness and Thornton and Ning 

model. 
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Using Luding’s model with increasing elastic stiffness without capping resulted in zero 

rebound velocity and hence zero coefficient of restitution for impact velocities ranging 

from zero to a value that provided a deformation equal to R
*
. The data in Figures 4.23-

4.25 for Luding’s model were obtained for the case where the elastic stiffness was 

capped at ˆ
ek  for overlaps larger than α

*
. New experimental data are needed to check the 

validity of models predictions, as a larger data set than that available for ammonium 

fluorescein particles would provide more certaintity. 

 Normal contact damping 4.2

The normal damping force is a function of normal relative velocity, vr, of the two 

particles in contact. The general equation for mass-spring systems is adopted here for 

normal damping force [57], 

 
nd rF βυ  (4.24) 

where β is the viscous damping given by Equation (4.25) ,  

 
 

 

2 *

2 2

4ln

ln

ne m k
β

e π



 (4.25) 

where e is the coefficient of restitution, m
*
 is the equivalent mass of the two particles in 

contact and kn is the ‘instantaneous’ normal contact stiffness. During the initial elastic 

loading and throughout the elastic unloading kn = ke and during the plastic loading kn = 

kp.  



 

Chapter 4: A new linear model for elasto-plastic and 

adhesive contacts in DEM 
 

 

124 

 

 Tangential model 4.3

For tangential force calculation, a linear tangential stiffness, kt, similar to the linear-

spring model is considered. Therefore the tangential force is evaluated as follow, 

 
t t tF k α  (4.26) 

where αt is the tangential displacement. The sliding limit of the tangential force is 

adopted from the models of Tomas [55], Luding [57] and Thornton and Yin [46]. In all 

the aforementioned models a positive contribution of the normal contact force in 

addition to contribution of the adhesive force is considered for defining the sliding limit. 

Tomas [55] and Luding [57] stated that the reference for the contact is no longer the 

zero force level, but the adhesive force level along the locus of the pull-off force. The 

adhesive contribution in the proposed model is assumed to be fcp – fce, therefore the 

critical tangential force (sliding limit) is given by, 

  
ct n cp ceF μ F f f    (4.27) 

For the simplified version of the model, the sliding limit can also be evaluated as follow, 

  0ct n cp n p ceF μ F k α f f     (4.28) 

 Sensitivity analysis of the proposed model parameters 4.4

A set of simulations are carried out in order to investigate the effects of the model 

parameters on the elastic and plastic components of work during loading and unloading 

of bulk compression. The simplified version of the proposed model is used. The 

tangential stiffness, kt, is equated to the elastic stiffness, ke, throughout the simulations. 

The model parameters for the particles are summarized in Table  4.3.  
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Table  4.3: Model parameter values used in the simulations 

Parameter 

varied 
kp (kN/m) ke (kN/m) Г 

ke 10 
50, 100, 

500, 1000 
0 

kp 

10, 50, 

100, 250, 

500 

1000 0 

kp 

50, 100, 

500, 1000, 

2500 

5000 0 

ke = ke 100 100 0 

Г 100 1000 
0.05, 0.1, 

1, 2, 5 

 

For non-adhesive cases (i.e. when Г = 0), the model becomes identical to that of Walton 

and Braun [41]. For adhesive cases, the plastic-adhesive stiffness, kcp, is kept constant at 

a value of 5 kN/m. The sensitivity of bulk compression response to the plastic stiffness 

(kp) is evaluated with two different fixed values of elastic stiffness (ke) in order to 

achieve the same stiffness ratio (ke/kp) with different ranges of elastic and plastic 

stiffnesses. This will facilitate the sensitivity analysis of stiffness ratio as well as 

sensitivity of elastic and plastic stiffnesses. The walls are considered to be elastic with 

zero adhesion (i.e. Г = 0, kcp = 0 and kp = ke = kt). The stiffness of the walls is set to be 

8000 kN/m. 3400 particles with a mean diameter of 1 mm and a normal size distribution 

(as shown in Table  4.4) are generated inside a cylindrical die of 12 mm diameter. This 

number of particles provides a bed height of approximately 36 mm. The density of the 

particles is set to be 1000 kg/m
3
. 
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Table  4.4: Size distribution of the generated particles 

Particle 

diameter (mm) 

Number 

frequency 

(%) 

0.8 5 

0.9 25 

1 40 

1.1 25 

1.2 5 

 

The time-step is calculated based on a mass-spring system and is given by, 

 
*

*
0.2 0.2crit

crit

m
t t

k
   (4.29) 

where tcrit is the critical time-step for a mass-spring system, m
*
 is the equivalent mass of 

the smallest particle given by Equation(4.30), and k
*

crit is the largest equivalent stiffness 

in the system given by,  

 * smallest

2

m
m   (4.30) 

where msmallest is the mass of the smallest particle in the system. 

 largest*

2
crit

k
k   (4.31) 

where klargest is the largest stiffness in the system. The coefficients of sliding friction and 

restitution are 0.25 and 0.3, respectively for both the particle-particle and particle-wall 

contacts. The compression was simulated at a strain rate of 0.28 s
-1

. In order to define 

the dynamics of the process, the dimensionless shear strain rate of Tardos et. al. [82] is 

evaluated using following equation, 



 

Chapter 4: A new linear model for elasto-plastic and 

adhesive contacts in DEM 
 

 

127 

 

 
1/2

pd

g

 
  

 
   (4.32) 

where γ is the shear strain rate, dp is the mean particle diameter and g is the gravitational 

acceleration. The strain rate of 0.28 s
-1

 provides a dimensionless shear strain rate of ~ 

0.003. It is shown by Tardos et. al. [82] that for dimensionless shear strain rates of < 

0.15, the process is quasi-static, therefore the inertial effects on the stresses throughout 

the bulk are negligible. The assembly is compressed by moving the top platen until a 

bulk strain of 11% (for non-cohesive cases) or a solids fraction of 0.58 (for cohesive 

cases) is achieved, after which the platen is unloaded with the same speed as during the 

compression.  Figure  4.27 shows a typical force-displacement curve of the top platen 

during the bulk compression using DEM. 

 

 

Figure  4.27: Typical loading-unloading curve of compaction (kp = 10 kN/m and ke = 50 

kN/m) 
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The plastic work (i.e. irrecoverable work) on loading is calculated as the closed area 

underneath the curve (the shaded area in Figure  4.27).  The elastic work (i.e. 

recoverable work) is calculated as the area underneath the unloading curve (the hatched 

area in Figure  4.27).  The total input work is the addition of the plastic and elastic work 

components. The normalised elastic and plastic work component are defined as the 

elastic and plastic work, respectively, divided by the input work.  Figure  4.28 shows the 

normalised elastic and plastic work components as a function of stiffness ratio, ke/kp, for 

all the cohesionless cases (first 4 rows of Table  4.3). 

 

 

Figure  4.28: Normalised work as a function of stiffness ratio for all the cohesionless 

cases 

 

Large stiffness ratios imply particles deforming extensively plastically, whereas a 

stiffness ratio of one implies a purely elastic deformation. For the stiffness ratio of one, 

the plastic component of the work is still larger than the elastic one. The plastic work in 
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this case has contributed towards particle rearrangements and frictional forces between 

the particles and the geometry, since the contacts deform elastically.  The graph shows 

that as the stiffness ratio increases, the fraction of plastic work increases, while that of 

elastic work decreases.  The increase in the ratio means either the plastic stiffness is 

decreased or the elastic stiffness is increased. If the plastic stiffness is decreased while 

the elastic stiffness is kept constant (softer particles), more work is expanded in 

deforming contacts to reach the same force. This leads to an increase of the total work, 

while the elastic work remains the same. Therefore normalised elastic work decreases 

and normalised plastic work increases. In the case where the elastic stiffness is 

increased while plastic work is kept constant, the total input work does not change, but 

the fraction of elastic work decreases. This leads to a decrease in the normalised elastic 

work and consequently normalised plastic work increases.  It can also be seen from 

Figure  4.28 that there exists a limit for the stiffness ratio (ke/kp ≈ 20) beyond which 

almost all of the work input into the system is used in plastic deformation. 

 

Figure  4.29 shows the plastic and elastic works as a function of increasing the interface 

energy. 
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Figure  4.29: Elastic and plastic work components as a function of Γ (kp = 100 kN/m, ke 

= 1000 kN/m) 

 

As it can be seen in Figure  4.29, by increasing the interface energy, the plastic work 

increases; however the elastic work is very small for the range of Г investigated here 

and it does not change significantly with the interface energy.  An increase in the 

interface energy increases the work of adhesion. 

 Conclusions 4.5

A new linear elasto-plastic and adhesive contact model for spherical particles has been 

proposed based on improvements of Luding’s model and considering aspects of 

Thornton and Ning’s and Tomas’s contact models. Plastic deformation of contacts 

during loading and pure elastic unloading, accompanied by adhesion are considered, for 

which the pull-off force increases with plastic deformation. Considering the collision of 

a spherical cohesive body with a rigid flat target, the impact velocity that provides 

contact breakage in the proposed model is found to be very similar to that of Thornton 
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and Ning’s model. However with Luding’s model the contact breaks with a much 

higher impact velocity. The coefficient of restitution as a function of impact velocity 

was obtained for the proposed model and Luding’s model. The response of the proposed 

model is in good agreement with the work of Thornton and Ning, however Luding’s 

model underestimated the coefficient of restitution significantly.   

 

Sensitivity analyses of the model parameters on work of compaction reveal that by 

increasing the stiffness ratio (ke/kp) the normalised plastic work increases and the 

normalised elastic work decreases. By increasing the interface energy, the plastic work 

increases, however the elastic work does not change significantly. This highlights the 

flexibility of the model in representing a wide range of particulate materials. The linear 

nature of the model leads to time efficient simulations whilst still capturing the complex 

material behaviour. 
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CHAPTER 5   Numerical Analysis of Minimum 

Sample Size and Indenter Size 

Range in Ball Indentation 

Method by DEM 

As discussed in Section  2.3.5, it has been shown by Hassanpour and Ghadiri [4] that 

under certain circumstances, indentation on a cohesive powder bed by a blunt indenter 

can give a measure of the resistance to powder flow which is related to flowability. 

However, the specification of the operation window in terms of indenter size and 

penetration depth has yet to be fully analysed. In this chapter, the ball indentation 

process is analysed by numerical simulations using the DEM. The flow resistance of the 

assembly, commonly termed hardness, is evaluated for a range of sample quantities and 

operation variables. 

 DEM Simulation of the indentation process 5.1

 Contact models 5.1.1

The calculation of the contact forces of the particles is based on the Hertz analysis for 

the elastic regime. The adhesion force calculation between the particles is based on a 

modified version of the theory of Johnson et al. [45], referred to as JKR model (see 

Section  3.4.3.1). Figure  5.1 compares the Hertz elastic model with the JKR and the 

modified version of the JKR models.  



 

Chapter 5: Numerical analysis of minimum sample size and 

indenter size range in ball indentation method by DEM 
 

 

133 

 

 

Figure  5.1: Comparison of force-overlap behaviour of Hertz, JKR and modified JKR 

contact models 

 

In the modified model, at the point of contact, the normal contact force immediately 

drops to 8/9 of the pull-off force, similar to the JKR model. The particle velocity 

reduces to zero at a point where the contact force reaches a maximum value and the 

loading stage is complete. In the unloading stage, the stored elastic energy is released 

and is converted into kinetic energy which makes the particle move in the opposite 

direction. All the work done during the loading stage is recovered when the contact 

overlap becomes zero. Based on the JKR theory, at this point, the spheres remain 

adhered together and further work is required to separate the surfaces. The modified 

model does not consider this additional work and the contact for this model breaks once 

the overlap becomes zero. However the pull-off force required to break the contact is 

representative of the JKR theory.  
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For tangential contact force calculations the no-slip solution of Mindlin [34] is used (see 

Section  3.4.1.4).  

 Stress calculation 5.1.2

In the results section of this chapter, localised stresses amongst the powder bed are 

evaluated for various operational variables. The approach that Bagi [83] introduced for 

evaluation of stress in granular assemblies, is adopted here. For a localised 

measurement volume, the forces acting on each particle whose centre is inside the 

volume are calculated and the components of the stress tensor within the cell are 

evaluated as follows, 

 
1

p c

c p

ij i i i j

N N

x x n F
V

    (5.1) 

where σij is the ij-component of stress tensor, V is the volume of the measurement space, 

Np is number of particles in the bin, Nc is the number of contacts around particle p, 
c

ix , 

p

ix  and ni are the i-components of contact location, particle centre and normal vector 

directed from a particle centroid to its contact, respectively, and Fj is the j-component of 

the contact force [83].  

 

The localised hydrostatic and deviatoric stresses are also evaluated in the results section. 

The governing equations for calculation of the hydrostatic, σhyd, and deviatoric, τD, 

stresses are Equations (5.2) and (5.3), respectively. 

 
3

xx yy zz

hyd

σ σ σ
σ

 
  (5.2) 
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     
 
 
 

     
  (5.3) 

This stress calculation is implemented as a subroutine for EDEM
®

 software. For the 

details of this implementation see Appendix IV.  

 

 Simulation properties 5.1.3

16000 particles with a mean diameter of 1 mm and a Gaussian size distribution (as 

shown in Table  5.1) are generated inside a cylindrical die which has a diameter (db) of 

39 mm. 

 

Table  5.1: Size distribution of the generated particles 

Particle 

diameter (mm) 

Number 

Frequency (%) 

0.59 0.33 

0.72 3.84 

0.81 11.24 

0.9 21.00 

1.00 27.75 

1.10 20.85 

1.19 10.95 

1.28 3.74 

1.41 0.29 

 

The use of a size distribution rather than a mono disperse system, avoids the formation 

of ordered packing. The material properties are chosen so that they represent glass beads 
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with a cohesive interaction (Material 1) and stainless steel (Material 2), as summarised 

in Table  5.2.  

 

Table  5.2: Material properties used in the simulations 

Material 

property 
Material 1 Material 2 

Young’s modulus 55 GPa 182 GPa 

Poisson’s ratio 0.25 0.3 

Density 2456 kg/m
3
 7800 kg/m

3
 

 

The particles and the indenter are made of Material 1, whereas the cylindrical die and 

the piston, which is used to consolidate the bed, are made of Material 2. The interaction 

properties used in the simulations are summarised in Table  5.3.  

 

Table  5.3: Interaction properties used in the simulations 

Interactional 

property 

Material 1- 

Material 1 

Material 1- 

Material 2 

Coefficient of 

restitution  
0.50 0.30 

Coefficient of 

sliding friction 
0.15 0.0 

Coefficient of  

rolling friction 
0.10 0.0 

Interface energy 0.50 0.0 

 

In order to avoid the influence of wall friction on the assembly, the coefficients of 

sliding and rolling friction between the cylindrical die and the particles are considered 

to be zero. 16000 particles provide a bed height (hb) of about 13 mm. The particles are 

generated within the die and allowed to settle under gravity. The assembly is then 
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consolidated with a piston at a constant strain rate of 1 s
-1

. In order to define the 

dynamics of the process, the dimensionless shear strain rate of Tardos et al. [82] is 

evaluated using Equation (5.4), 

 
1/2

pd

g

 
  

 
   (5.4) 

where γ is the shear strain rate, dp is the mean particle diameter and g is the gravitational 

acceleration. The strain rate of 1 s
-1

 provides a dimensionless shear strain rate of ~ 0.01. 

It is shown by Tardos et al. [82] that for dimensionless shear strain rates of < 0.15, the 

process is quasi-static, therefore the effects of the dynamics of the geometries on the 

stresses throughout the bulk are minimised. For all the simulations, the assembly is pre-

consolidated to 10 kPa (σpre = 10 kPa), as this is within the realistic range of 

experimental work, where results of other flowability techniques, e.g. uniaxial 

unconfined compression, have been reported. Once the desired stress is achieved, the 

piston is unloaded with the same speed as that of the loading. The indentation process is 

simulated using a cohesionless spherical indenter made of Material 1, and the ball is 

penetrated at the same constant velocity as of the piston during consolidation. The 

indenter is a mesh CAD geometry imported into the software in order to facilitate strain 

controlled motion of the indenter with a fixed speed.  

 

 Results and discussions 5.2

Figure  5.2 shows the hardness values calculated (see Section  2.3.5 for details of this 

calculation) for a 13 mm spherical indenter on a bed of cohesive spheres for a range of 

indentation loads.  
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Figure  5.2: Hardness as a function of indentation load (σpre = 10 kPa, hb = 13 mm, db = 

39 mm, d = 13 mm) 

 

At very low indentation loads/penetration depths, high values of hardness are obtained. 

However, the hardness decreases very rapidly to an asymptotic value. Hardness must be 

independent of indentation load in order to represent the plastic yield stress. At very 

small penetration depths, the force on the indenter is due to its interactions with only a 

few spheres, and hence the calculation of projected area of the impression is not suitably 

described by Equation (2.9). As hardness is a continuum measure of resistance to plastic 

deformation, it is necessary to identify a range for indentation load within which a 

relatively constant value of hardness is obtained. The lower limit of this range should 

therefore be based on the depth of penetration which initiates plastic flow in the powder 

bed. The upper limit is affected by the presence of the die wall and the indenter size. 

The limits of penetration depth are investigated later in this paper for a range of indenter 
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sizes.  In order to compare the results of different indenter sizes, a dimensionless 

penetration, hd, as defined by Equation (5.5), is considered.  

 
d

h
h

r
  (5.5) 

where h is the penetration depth and r is the radius of the indenter.  Figure  5.3 shows the 

hardness against dimensionless penetration for an indenter size of 13 mm and at 10 kPa 

pre-consolidation pressure. In order to disregard the artificially high values of hardness 

that occur at the start of the indentation process, the data are presented for 

dimensionless penetrations greater than that corresponding to one particle diameter.  

 

 

Figure  5.3: Hardness as a function of dimensionless penetration (σpre = 10 kPa, hb = 13 

mm, db = 39 mm, d = 13 mm) 

 

It can be seen that initially there are fluctuations in the hardness value, however, after a 

dimensionless penetration of about 0.4, the hardness stabilises around 8 kPa. This 

behaviour can be attributed to the fact that for low penetration depths the plastic flow in 
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the bed is not fully initiated. Figure  5.4 shows hardness against dimensionless 

penetration for indenter sizes of 16 and 19 mm.  

 

 

Figure  5.4: Hardness as a function of dimensionless penetration (σpre = 10 kPa, hb = 13 

mm, db = 39 mm) 

 

For these indenter sizes initial fluctuations in the hardness value are also present, but 

after a dimensionless penetration of about 0.35, the hardness stabilises around 8 kPa. 

Figure  5.5 shows the hardness against dimensionless penetration for indenter sizes of 7 
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Figure  5.5: Hardness as a function of dimensionless penetration (σpre = 10 kPa, hb = 13 

mm, db = 39 mm)  

 

As it can be seen, the hardness exhibits wider fluctuations than previously observed for 

the larger indenters within the whole range of penetration depths investigated here. 

These fluctuations are significantly larger for smaller penetration depths and smaller 

indenter diameters. As the indenter size decreases, approaching the size of bed particles, 

particle rearrangements at the single particle level become more prominent and 

substantially influence the force on the indenter throughout the indentation process, 

resulting in fluctuations, whereas the number of particle-indenter contacts increases if 

the indenter size is increased. This leads to a reduction in the fluctuations of force acting 

on the indenter. Moreover, small indenters may introduce localised consolidation, 

resulting in measuring a greater hardness. Figure  5.6 shows the hardness against 

dimensionless penetration for the indenter sizes of 22 and 25 mm.  
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Figure  5.6: Hardness as a function of dimensionless penetration (σpre = 10 kPa, hb = 13 

mm, db = 39 mm) 

 

After initial fluctuations with these larger indenter sizes, the hardness value is stabilised 

around 10 kPa, which is larger than those measured by smaller indenters (13-19 mm in 

diameter). With large indenters, the indent size may be affected by the surrounding wall. 

In order to examine the wall effects with larger indenters, the particle assembly is 

plotted at three different penetration depths using the 25 mm indenter in Figure  5.7. The 

grey-scale of each particle in Figure  5.7 indicates its velocity, with lighter particles 

having negligible velocity.   
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Figure  5.7: Indentation process using the 25 mm indenter (a) hd = 0.0  (b) hd = 0.27  (c) 

hd = 0.49 

 

It can be seen that the whole bed is deforming during the indentation process at greater 

penetration depths (Figure  5.7c), as indicated by the particles neighbouring the die wall. 

The surrounding walls are therefore restricting the bed deformation, which leads to an 

increase in the resistance of the bed against shear deformation and hence an increase in 

hardness. In order to investigate the wall effects in more detail, localised stresses and 

particle velocities are evaluated for various indenter sizes. For this purpose, a cuboid 

region centrally aligned with the axis in the cylindrical die is considered for the analysis 

(Figure  5.8a). The cuboid region is divided into 15 bins, each of which has dimensions 

of 5.2, 5.2 and 4.2 mm in x, y and z directions, respectively (Figure  5.8).  
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Figure  5.8: Cuboid bins used for localised velocity and stresses analysis: (a) side view 

(b) plan view (dimensions are normalised by mean particle size, which is 1 mm) 

 

The height of the cuboid region approximates the bed height. This region is not 

extended to the walls in order to avoid an excessive number of bins. Within each bin, 

the forces acting on each particle whose centre is inside this cell are calculated and the 

components of the stress tensor within the cell are evaluated as discussed in 

Section  5.1.2. The hydrostatic and deviatoric stresses are also evaluated. The stress 

calculations for each bin are carried out as the indenter is penetrating the bed. Once the 

indenter is inside a bin, the calculation volume in Equation (5.1) is reduced to the 

volume of the bin which is not occupied by the indenter. The calculation of effective bin 

volume due to the interaction between the spherical indenter and cuboid bins is 

mathematically complex; hence the stress calculations are performed only for the range 

of depths within which the indenter does not have an intersection with the bin under 

consideration.  The deviatoric and hydrostatic stresses within each of the bins for 

indenter diameters of 7, 13 and 25 mm are shown in Figures 5.9-5.11, respectively. 
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Figure  5.9: Hydrostatic and deviatoric stresses within the cuboid bins (σpre = 10 kPa, hb = 13 mm, db = 39 mm, d = 7 mm)  
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Figure  5.10: Hydrostatic and deviatoric stresses within the cuboid bins (σpre = 10 kPa, hb = 13 mm, db = 39 mm, d = 13 mm) 
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Figure  5.11: Hydrostatic and deviatoric stresses within the cuboid bins (σpre = 10 kPa, hb = 13 mm, db = 39 mm, d = 25 mm)  
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For the 7 mm indenter, the stresses do not vary significantly within all the bins, except 

for the bin directly below the indenter (bin: 32) which exhibits the highest stress level. 

In this case, the bin width is greater than the projected diameter of impression for most 

of the penetration depth.  This may explain the negligible increase in force in all regions 

except for bin 32. For both the 13 and 25 mm indenters, the stresses close to the bottom 

of the die (bins: 21, 31and 41) are notable, indicating interactions with the die base. The 

bins close to the die cylindrical wall (bins: 11, 12, 51, and 52) show high levels of stress 

only with the 25 mm indenter.  These analyses show that with larger indenters the 

stresses close to the die base are relatively large and the stresses close to the die wall 

may also be large. This indicates that the die in this case provides a resistance to the bed 

shear deformation caused by the indenter.  It is necessary to have a sufficiently large 

clearance between the edge of the indentation zone and the die wall and the base, such 

that the plastic flow of the powder is not restrained by the boundaries. The principle of 

flowability measurement using this technique relies upon establishing a constraint factor, 

i.e. the ratio between hardness and plastic yield stress for a given material.  If the 

indenter diameter is too large the constraint factor will increase due to the wall effects, 

rather than being purely determined by the shear zone. 

 

In order to clarify the influence of wall confinement on hardness measurements, a wider 

range of simulations is required. By varying the bed height and die diameter, the 

minimum sample quantity which is required to reliably measure hardness by ball 

indentation can be determined. Therefore in addition to the simulations with a bed 

height of 13 mm and a bed diameter of 39 mm, a series of simulations are performed for 

a die diameter of 45 mm and bed heights of 20, 30 and 50 mm, using a 13 mm indenter. 
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Hardness against dimensionless penetration for these four simulations is shown in 

Figure  5.12.  

 

 

Figure  5.12: Hardness vs. dimensionless penetration for four different bed heights (σpre 

= 10 kPa, d = 13 mm) 

 

For all of the bed heights, initial fluctuations in hardness can be observed; however, bed 

heights of 20, 30 and 50 mm exhibit lower hardness values (about 6 kPa) than the 13 

mm bed height (about 8 kPa). Since for the larger bed heights a relatively constant 

hardness can be obtained, the simulations for this range of bed heights are not 

influenced by confinement at the base. This is shown to be the case by detailed analyses 

of the internal stresses and velocities, similar to those carried out for the 13 mm bed 

height. As compared to the bin analysis for the 13 mm bed height, the cuboid region 

here is extended by 1 row of cuboid bins towards the die base for the bed height of 20 

mm (Figure  5.13) in order to analyse the stresses throughout the assembly.  
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Figure  5.13: Cuboid bins used for localised velocity and stress analysis for 20 mm bed 

height (a) side view (b) plan view (dimensions are normalised by mean particle size 

which is 1 mm) 

 

The internal stresses inside each bin are shown in Figure  5.14. 
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Figure  5.14: Hydrostatic and deviatoric stresses within cuboid bins (σpre = 10 kPa, hb = 20 mm, db = 45 mm, d = 13 mm) 
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As it can be seen, the stresses decrease to negligible levels towards the base and 

cylindrical walls. Near the base, these stresses are negligible. This is another indication 

that for this scale of simulation, the wall confinement is not influencing the hardness.  

 

With the minimum sample size in terms of bed height and bed diameter now determined, 

a sensitivity analysis for a range of indenter sizes is carried out to reveal the effect of 

indenter size on hardness measurement. The same range of indenter sizes as of the 

previous case is used here to simulate ball indentation on the 20 mm bed height. The 

bed is pre-consolidated to 10 kPa. Figure  5.15 shows hardness against dimensionless 

penetration for indenter sizes of 16, 19 and 22 mm.  

 

 

Figure  5.15: Hardness as a function of dimensionless penetration (σpre = 10 kPa, hb = 

20mm,  db = 45 mm) 
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As compared to the 13 mm bed height system (Figures 5.3-5.6), the hardness shows 

smaller fluctuations. For this range of indenter sizes, a relatively constant value of 

hardness (about 6 kPa) is obtained. Figure  5.16 shows the hardness as a function of the 

dimensionless penetration for indenter diameters of 7, 10 and 13 mm, bed height of 20 

mm and bed diameter of 45 mm.  

 

 

Figure  5.16: Hardness as a function of dimensionless penetration (σpre = 10 kPa, hb = 20 

mm, db = 45mm) 

 

As compared to the larger indenters (16-22 mm in Figure  5.15), the fluctuations within 

the whole range of dimensionless penetration depths are larger for indenter diameters of 

7, 10 and 13 mm. Similar to the 13 mm bed height case, this can be attributed to the fact 

that the smaller indenters are comparable in size to single particles, and rearrangements 

at the single particle level influence the force on the indenter throughout the indentation 

process, resulting in instabilities. The increase in fluctuations with decreasing the 
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indenter size can be quantitatively observed in Figure  5.17, by the range of fluctuations 

as it widens for smaller indenters.  

 

 

Figure  5.17: Average hardness with fluctuation bars indicating standard deviation for 

different indenter sizes (σpre = 10 kPa, hb = 20 mm, db = 45mm) 

 

It can be concluded that the indenter size should be greater than 13 particle diameters, 

with 16 diameters being adequate. 

 

With the minimum sample size and suitable indenter size now determined, the operation 

window for the penetration depth is investigated by calculation of hydrostatic stress 

inside a dynamic bin directly below and centrally aligned with the indenter, whose 

position is fixed relative to the indenter, i.e. it moves with the indenter (see Figure  5.18). 

The size of the bin is the same as the individual bins in the previous analyses, i.e. 5.2, 

5.2 and 4.2 mm in x, y and z directions, respectively. 
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Figure  5.18: Schematic diagram of the dynamic bin underneath the indenter at two 

different penetration depths 

 

Figure  5.19 shows the hydrostatic stress inside this bin for indenter diameters of 7, 16, 

19 and 22 mm, a bed height of 20 mm and a bed diameter of 45 mm.  

 

 

Figure  5.19: Hydrostatic stress inside the dynamic bin as a function of dimensionless 

penetration for different indenter sizes (σpre = 10 kPa, hb = 20 mm, db = 45mm) 
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For the suitable indenter sizes, i.e. 16, 19 and 22 mm indenters, the hydrostatic stress 

increases initially up to a dimensionless penetration of about 0.1. Beyond this point the 

stress has a relatively constant average value, although fluctuating. This is the region of 

interest where the flow stress is calculated.  For dimensionless penetrations beyond 0.5, 

the stress starts increasing again, which indicates the influence of a number of factors 

depending on the proximity of the walls and the base and ultimate penetration depth. 

For the 7-mm indenter, it is difficult to determine a range for constant value of hardness 

due to large fluctuations. 

 Conclusions 5.3

The ball indentation on a compacted assembly of cohesive spheres was simulated using 

DEM. The hardness of the compacted assembly was evaluated for a range of sample 

quantities. It was found that a minimum bed height of 20 particle diameters is required 

in order to achieve reliable hardness values. With small sample sizes, for which the 

surrounding walls and base of the die restrain the bed deformation, an increase in the 

resistance of the bed, i.e. an increase in hardness, is observed. It is necessary to have a 

sufficiently large clearance between the edge of the indentation zone and the die wall, 

such that the plastic flow of the powder is not restrained. The penetration depth is 

normalised with respect to the indenter radius in order to allow the effect of different 

indenter sizes to be analysed and compared. The penetration depth should be 

sufficiently large to cause notable bed shear deformation. It is found that this minimum 

penetration depth is approximately equal to 0.1 in terms of dimensionless penetration. A 

sensitivity analysis of indenter size reveals that indenters with diameters smaller than 16 

particle diameters exhibit fluctuations in hardness measurements, whereas indenters 
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with a diameter of up to 22 particle diameters result in stable hardness values, providing 

the minimum sample criteria are met. As the indenter size decreases, it approaches the 

size of bed particles. Therefore, rearrangements at the single particle level influence the 

force on the indenter throughout the indentation process, resulting in fluctuations in 

hardness. With very large indenters comparable in size to the die, the measurement of 

hardness may be affected by the wall. 
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CHAPTER 6   Sensitivity Analysis of Indenter 

and Single Particle Properties in 

Ball Indentation Method by 

DEM 

With the minimum sample size, suitable indenter size and penetration depth determined 

numerically in Chapter 5, the operation window for the indenter properties such as 

shape, stiffness and friction is investigated in this chapter. Moreover variation of 

hardness and internal stresses with single particle properties such as inter-particle 

friction and cohesion are analysed by DEM simulations of the ball indentation process.  

 

 DEM simulation of the indentation process 6.1

For DEM simulations reported in this chapter, the simplified version of the proposed 

contact model discussed in Chapter 4 is used (see Figure  4.20). The simulations are 

based on meeting the criteria defined in Chapter 5. The sample height and diameter are 

20 and 45 mean particle diameters, respectively. The indentation process was simulated 

using a 16 mm indenter. The simulations are conducted using EDEM
®
 software 

provided by DEM Solutions, Edinburgh, UK.  

 

Particles with a normal size distribution and a mean diameter of 1 mm (as shown in 

Table  6.1) are generated inside the cylindrical die. The use of a size distribution rather 
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than a mono disperse system avoids the formation of ordered packing. In order to 

provide a bed height of approximately 20 mm, 29000 particles are generated. 

 

Table  6.1: Size distribution of the generated particles 

Particle 

diameter (mm) 

Number 

Frequency (%) 

0.724 3.87 

0.814 11.31 

0.896 21.14 

1.000 27.92 

1.104 20.99 

1.188 11.02 

1.278 3.76 

1.28 3.74 

1.41 0.29 

 

The tangential stiffness, kt, was equated to the elastic stiffness, ke, throughout the 

simulations. The material and interactional properties of the elasto-plastic-adhesive 

particles and the non-cohesive elastic geometries (indenter, cylindrical die and piston) 

are summarised in Tables 6.2 and 6.3. 
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Table  6.2: Material properties used in the simulations 

Material property Particles Geometries 

Density (kg/m
3
) 2500 7800 

Poisson’s ratio (-) 0.25 0.3 

Elastic stiffness, ke (MN/m) 1 8 

Plastic stiffness, kp (MN/m) 0.1 - 

Plastic-adhesive stiffness, kcp (MN/m) 0.01 - 

Tangential stiffness, kt (MN/m) 1 8 

 

 

Table  6.3: Interaction properties used in the simulations 

Interactional property Particle - Particle Particle - Wall 

Coefficient of restitution  (-) 0.50 0.30 

Coefficient of sliding friction (-) 0.15 0.0 

Coefficient of  rolling friction (-) 0.01 0.0 

Interface energy (J/m
2
) 2.00 0.0 

 

The particles are generated within the die, ascribed the properties as given in Tables 6.1-

6.3 and allowed to settle under gravity. The assembly is then consolidated with a piston 

at a constant strain rate of 1 s
-1

 to 10 kPa. Once the desired stress is achieved, the piston 

is unloaded with the same speed as that of the loading, similar to the simulations of 

Chapter 5.  

 

As in the analysis of Chapter 5, a dynamic bin with dimensions of 5.2, 5.2 and 4.2 mm 

in x, y and z-directions, respectively was considered. The hydrostatic and deviatoric 
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stresses inside this dynamic bin are evaluated and the results are compared to the 

hardness value measured by the indenter (see Section  5.1.2).  

 

 Sensitivity analysis of indenter properties  6.2

 Indenter stiffness 6.2.1

The simulations were carried out for a wide range of indenter stiffness. The result of 

hardness, hydrostatic and deviatoric stresses as functions of indenter stiffness is shown 

in Figure  6.1.  

 

 

Figure  6.1: Hardness, hydrostatic and deviatoric stresses as functions of indenter 

stiffness 

 

As it can be seen, there is hardly any effect of indenter stiffness in hardness, or 

hydrostatic and deviatoric stress measurement in the ball indentation method. 
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 Indenter shape 6.2.2

The simulations were carried out with three different indenter shapes: cubic, cylindrical 

and spherical indenters. The spherical and cylindrical indenters had a diameter of 16 

mm, while the cubic indenter had equal sides of 16 mm. Figure  6.2 shows hardness, 

hydrostatic and deviatoric stresses measured by the three different indenter shapes.  

 

 

Figure  6.2: Hardness, hydrostatic and deviatoric stresses measured by the three different 

indenter shapes 

 

The hardness measured by cubic and cylindrical indenters is higher to that measured by 

a spherical indenter. The internal stresses within the dynamic bin do not change 

significantly with indenter shape. In order to illustrate this behaviour qualitatively, 

Figure  6.3 shows the assembly at the same penetration depth using the three indenter 

shapes. The colour-scale of each particle in Figure  6.3 indicates its velocity, with blue 

particles having negligible velocity and red particles with large velocity. The colour 
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range for all the three cases is the same; minimum (blue) is 0.002 m/s and maximum 

(red) is 0.04 m/s. 

 

 

Figure  6.3: DEM simulation of indentation technique using (a) cubic, (b) cylindrical and 

(c) spherical indenters at penetration depth of 3.8 mm. For visualisation purposes, the 

assembly is clipped by a plane y-direction. The particles are coloured based on their 

magnitude of velocity (red, green and blue indicate high to low velocities) 

 

As it can be seen, the particles close to the bottom base and surrounding wall show 

some velocity (i.e. particle movement) for cubic and cylindrical indenters, in contrast to 

the spherical case. This suggests that cylindrical and cubical indenters must be smaller 

for this bed height, or the bed height must be larger.   

 

Close inspection of data on which Figure  6.3 is based indicated that there is an increase 

in solids fraction with cubic and cylindrical indenters relative to the spherical case. In 

order to investigate this behaviour quantitatively, the solids fraction in a bin with 

dimensions of 0.01, 0.01 and 0.012 in x, y and z-directions, respectively, which is 

located in the centre of the cylindrical die (see Figure  6.4) is evaluated as a function of 

penetration depth for the three indenter shapes.  
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Figure  6.4: The cuboid bin used for solids fraction analysis: (a) side view (b) plan view 

 

Figure  6.5 shows the solids fraction inside the cuboid bin as a function of penetration 

depth for the three indenter shapes.  

 

 

Figure  6.5: Solids fraction inside the cuboid bin as a function of penetration depth for 

three different indenter shapes 
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As it can be seen, the solids fraction is increased for cubic and cylindrical indenters 

relative to the spherical indenter, an indication of localised consolidation with 

cylindrical and cubic indenters. In fact, the curvature of a sphere results in a smoother 

transition from elastic to plastic behaviour and allows the powder to be sheared rather 

than being consolidated. 

 Indenter friction 6.2.3

The simulations were also conducted for a range of indenter coefficient of sliding 

friction between the particles and the spherical indenter (i.e. indenter friction). The 

results of hardness, hydrostatic and deviatoric stresses are shown in Figure  6.6. 

 

 

Figure  6.6: Hardness, hydrostatic and deviatoric stresses as functions of indenter friction 

 

A general increasing trend in the stresses with indenter friction can be observed. This 

increase is notable when the coefficient of sliding friction is increased from zero to 0.1.  
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of the particles contacting the indenter, consequently the hardness, which is evaluated 

by the force acting on the indenter is increased.   

 Effects of single particle properties 6.3

 Inter-particle friction 6.3.1

Figure  6.7 shows hardness, hydrostatic and deviatoric stresses as functions of inter-

particle coefficient of sliding friction.  

 

 

Figure  6.7: Hardness, hydrostatic and deviatoric stresses as functions of inter-particle 

coefficient of sliding friction 

 

Increasing the inter-particle friction would increase the internal resistance to shear 

deformation, an observation which was expected. It can be observed that there is a limit 

for the sliding friction coefficient beyond which the stresses do not change (compare μs 

= 0.3 and 0.5 in Figure  6.7). This can be attributed to the fact that, within the 
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indentation process, the tangential force at the single particle does not become large 

enough to meet the Coulomb’s criterion of sliding. In other words, for highly frictional 

contacts, contact sliding does not occur. The sliding is indeed a dominant factor in shear 

deformation of the assembly. It can be concluded from Figure  6.7 that when inter-

particle coefficient of sliding friction is larger than 0.3, the contact sliding behaviour 

becomes similar. 

 Inter-particle cohesion 6.3.2

Figure  6.8 shows hardness, hydrostatic and deviatoric stresses as functions of inter-

particle interface energy.  

 

 

Figure  6.8: Hardness, hydrostatic and deviatoric stresses as functions of inter-particle 

interface energy 
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 Conclusions 6.4

The ball indentation on a compacted assembly of cohesive spheres was simulated using 

DEM. The hardness and localised hydrostatic and deviatoric stresses were evaluated for 

various indenter and inter-particle properties. The hardness measurements were found to 

be independent of indenter stiffness. Indenter friction slightly increased the hardness, 

although its influence on the internal stresses was negligible. Cubic and cylindrical 

indenters measured significantly larger hardness value compared to the spherical 

indenter. It was shown that with cubic and cylindrical indenters, the powder bed is 

locally consolidated, hence the measured value of hardness is not representative of the 

bulk consolidation state. Increasing the inter-particle friction and cohesion resulted in 

higher hardness and internal stresses due the increase in resistance to shear deformation. 
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CHAPTER 7   Numerical Analysis of Strain 

Rate Sensitivity in Ball 

Indentation Method by DEM     

In industrial processes such as mixing, blending, handling and storage reliable powder 

flow is important for product quality and a consistent production rate. Understanding 

the flow characteristics of the powder can avoid wastage, machinery maintenance 

problems and downtime in such processes. Strain rate is particularly of great interest 

since in the shear deformation of powder beds beyond the quasi-static regime the shear 

stress is dependent on the strain rate [82]. Extensive work has been reported on the 

rapid chute flow of large granules [84] but the intermediate regime has not been widely 

addressed. However, the industrial powder processes require the specification of an 

operational window in terms of strain rate for reliable and controllable operations. 

Tardos et al. [82] classified powder flow into three regimes based on the shear strain 

rate of the process. At low shear strain rates, the quasi-static regime can be identified, 

during which frictional forces between particles are predominant and the shear stress is 

independent of the strain rate.  In the other extreme at very high shear strain rates, i.e. 

the dynamic regime, the flow is characterised by collisions between particles rather than 

the friction between them and hence the particle inertia is influential. There has been 

extensive work for this regime, in which it has been shown that the shear stress varies 

with the square of strain rate [85-87].  Between the quasi-static and inertial regimes lies 

the intermediate regime, where both collisional and frictional interactions between the 
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particles determine the flow characteristics [82]. Many of the flowability measurement 

techniques (see Section  2.4) evaluate the incipient flow at very low strain rates (i.e. the 

quasi-static regime), and hence cannot depict the strain rate sensitivity of powder flow. 

The only method by which the intermediate regime has been analysed is the Coutte 

device of Tardos et al. [82], where the powder is sheared between two concentric 

cylinders (with the axis being vertical). The inner cylinder is rotated at different 

rotational velocity forming a shear band in the gap. It was confirmed that during the 

quasi-static regime the stresses were independent of the strain rate. For the intermediate 

regime the dependency of the shear stress on the dimensionless strain rate γ
*
 (as given 

by Equation (7.1) ) is with a power index less than 2.  

 

1/2

* pd

g

 
  

 
   (7.1) 

where γ is the shear strain rate, dp is the mean particle diameter and g is the gravitational 

acceleration. For the dynamic regime, this dependency is to a power of 2 [88]. By 

increasing the strain rate, an increase in the fluctuations of the stresses was observed. It 

was shown that the width of the intermediate regime in terms of dimensionless shear 

rate is a function of assembly concentration [82]. At low particle concentration (high 

bed porosity), the width was relatively narrow, between dimensionless shear rates of 0.5 

to 2 [82]. 

 

In two commercial developments, proprietary instruments also subject the powder to 

shear strains in the intermediate regime by a paddle penetrating whilst rotating in a 

powder bed (Freeman Powder Tester FT4 [89] and StableMicro Systems PowderFlow 

Analyser). However the complex paddle geometry provides a highly non-uniform strain 
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field, where the powder strain and strain rate increase from the centre to the cylindrical 

wall. Recently Hare et al. [54] have analysed the shear stress and strain field around a 

rotating impeller and have quantified their radial and axial variations. Their work shows 

that the shear stress is greatest in the vicinity of the front of the blades; the stresses 

reduce above the impeller and away from the impeller in the angular direction, 

providing a highly non-uniform strain field. Based on their work, the interpretation of 

paddle torque to elucidate the strain rate dependency of shear stresses using these 

commercial devices is difficult until systematic work on model materials with ‘tuneable’ 

and controlled bulk cohesion has been fully analysed.  

 

Moreno-Atanasio et al. [90] simulated uniaxial unconfined compression of cohesive 

beds using the Distinct Element Method (DEM) for a range of strain rates. They also 

found that the unconfined yield stress (UYS) did not depend on strain rate for small 

values of strain rate (less than 2 s
-1

), and only exhibited dependency for larger values, 

where a linear relationship between UYS and strain rate was reported. A power law fit 

with a power index of 1.2 showed the best fit for the simulations data. The threshold 

strain rate which defined the limiting quasi-static rate was found to be slightly 

dependent on the inter-particle cohesion, where by increasing the cohesion the threshold 

was increased slightly. It was also shown that by increasing the pre-consolidation stress, 

the sensitivity of UYS to the strain rate decreased in the intermediate and dynamic 

regimes, which was in-line with Tardos et al. [82] findings on assembly concentration. 

It should be noted that possible effects of aeration were not considered in the above 

analysis.  
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In the present chapter the strain rate sensitivity of the stresses in an assembly of 

cohesive spherical particles within the ball indentation process is investigated using 

DEM. Again, the effect of air drag in this analysis is ignored.   

 DEM simulations of the indentation process 7.1

The simulations properties are the same as the ones reported in Chapter 6 (see 

Section  6.1). The simplified version of the proposed contact model discussed in Chapter 

4 is used (see Figure  4.20). The simulations are based on meeting the criteria defined in 

Chapter 5. The sample height and diameter are 20 and 45 mean particle diameters, 

respectively. The indentation process was simulated using a 16 mm indenter. The 

simulations are conducted using EDEM
®
 software provided by DEM Solutions, 

Edinburgh, UK.  Particle and geometry properties are summarised in Tables 6.1-6.3. 

The particles are generated within the die and allowed to settle under gravity. The 

assembly is then consolidated with a piston at a constant strain rate of 1 s
-1

 to 10 kPa. 

Once the desired stress is achieved, the piston is unloaded with the same speed as that of 

the loading, in a similar manner to the simulations of Chapters 5 and 6.  

 

As in the analysis of Chapters 5 and 6, a dynamic bin with dimensions of 5.2, 5.2 and 

4.2 mm in x, y and z-directions, respectively was considered. The hydrostatic and 

deviatoric stresses inside this dynamic bin are evaluated and the results are compared to 

the hardness value measured by the indenter (see Section  5.1.2). 
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 Sensitivity of hardness, hydrostatic and deviatoric 7.2

stresses to strain rate 

Figures 7.1(a)-(d) show hardness, hydrostatic and deviatoric stresses inside the dynamic 

bin as functions of dimensionless penetration for dimensionless strain rates of 0.0115, 

0.2297, 0.4594 and 2.2969, respectively.  
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Figure  7.1: Hardness, hydrostatic and deviatoric stresses inside the dynamic bin as 

functions of dimensionless penetration for a number of dimensionless strain rates in the 

range 0.0115-2.2969 

 

As it can be seen from Figures 7.1(a)-(d), by increasing the strain rate the fluctuations 

become more significant. This is in line with the finding of Tardos et al. [82], who 

showed that by increasing the strain rate large fluctuations appeared and a “liquid-like” 

viscous character was manifested by the bulk powder. With higher strain rates, a larger 

average value of hardness is evaluated, although the fluctuations are influential in 

determining this average. In order to facilitate further observations, the hardness, 

hydrostatic and deviatoric stresses inside the dynamic bin under the indenter are shown 

in Figures 7.2(a)-(c), respectively, as a function of dimensionless penetration for the 

four dimensionless strain rates.  
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Figure  7.2: Hardness, hydrostatic and deviatoric stresses inside the dynamic bin as 

functions of dimensionless penetration for four of dimensionless strain rates in the range 

0.0115-2.2969  

 

As it can be seen from Figures 7.2(a)-(c), by increasing the strain rate above a threshold 

limit, the stresses in the system increase substantially. In order to define this threshold 

in terms of dimensionless strain rate, a wide range of indentation speeds were tested. 

The hardness, hydrostatic and deviatoric stresses inside the dynamic bin are plotted in 

Figure  7.3, as functions of γ
*
, with the error bars indicating the standard deviation of the 

fluctuations.  
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Figure  7.3: Hardness, hydrostatic and deviatoric stresses inside the dynamic bin as 

functions of dimensionless strain rate with the error bars indicating the standard 

deviation of the fluctuations 

 

As it can be seen from Figure  7.3, the stresses show independency to the strain rate for 

small indenter speeds up to a dimensionless strain rate of about 1, beyond which the 

stresses start increasing with increasing strain rate. The error bars also decrease in width  

with the lowering of the strain rate, in line with Tardos et al.’s [82] work, where it was 

found that the dynamic and quasi-static regimes reach asymptotically to the limits of 

large and small fluctuations, respectively.  

 

Figure  7.4 shows hardness, hydrostatic and deviatoric stresses inside the dynamic bin as 

functions of γ
*
 for values of γ

*
 < 1, with the error bars indicating the standard deviation 

of the fluctuations. 
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Figure  7.4: Hardness, hydrostatic and deviatoric stresses inside the dynamic bin as 

functions of dimensionless penetration 

 

As it can be seen, the stresses are relatively independent of the strain rate for this range, 

though the fluctuations increase with γ
*
. It is noteworthy that the ratio between the 

internal stresses and hardness is constant when γ
* 

< 1 (see Figure  7.4), but changes with 

the strain rate above this threshold (see Figure  7.3), implying that the flow stress, as 

expressed by the indentation hardness, becomes strain rate dependent at high strain rates.  

 

 Effects of integration time-step 7.3

The strain rate dependency is a matter of particle inertia, giving rise to different force 

transmission fabric, and should hence be independent of the integration time-step. In 

order to check this, the integration time-step was varied and the stress profile analysed. 

The integration time-step is calculated based on a mass-spring system which is given by. 
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*

*
0.2 crit

m
t t

k
    (7.2) 

where tcrit is the critical time-step for a mass-spring system, m
*
 is the equivalent mass of 

the smallest particle and k
*
 is the largest equivalent stiffness in the system (see 

Section  4.4). 

 

In order to investigate the dependency of the simulation results on the time-step, the 

simulation of the indentation process with the dimensionless strain rate of 2.2969 (i.e. 

large strain rate) was performed using different time-steps. The time-step is calculated 

as follow, 

 .dt t    (7.3) 

where ζ  is the time-step factor and Δt is the time-step evaluated based on mass-spring 

theory using Equation (7.2). The average values and the standard deviation of hardness, 

deviatoric and hydrostatic stresses are plotted in Figure  7.5 as a function of time-step 

factor. 
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Figure  7.5: Hardness, hydrostatic and deviatoric stresses inside the dynamic bin as 

functions of time-step factor 

 

The results of the hydrostatic and deviatoric stresses show independency with the time-

step for the range investigated here. However, the average value of hardness is slightly 

smaller for the time-step factor of 0.01 as compared to 0.10 and 1.00. This difference is 

still negligible relative to the magnitude of the deviations in the system. It can therefore 

be concluded that the influence of strain rate on the stresses occurring in a bed, 

subjected to ball indentation, is not an artefact of time-step. 

 Conclusions 7.4

The hardness, deviatoric and hydrostatic stresses within a bed exposed to ball 

indentation have been analysed as a function of the indentation strain rate. These 

stresses are almost constant up to a dimensionless strain rate of 1, though fluctuations 

begin to increase from γ
*
 = 0.5. However, when γ

*
 is greater than 1, these stresses start 

increasing with γ
*
, with the increase in hardness being the most substantial. The 
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information obtained here corroborate the trend already reported in the literature and 

confirm that the ball indentation technique can be used to analyse powder flowability in 

a wide range of shear rates in a quick and easy way, with the added advantage that only 

a small quantity of powder is required. 
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CHAPTER 8   Conclusions and Recommended 

Future Work 

 Conclusions 8.1

The overall aim of this PhD was to further the understanding of the ball indentation 

method using numerical analysis by DEM. 

 

The ball indentation method has the capability of measuring flowability of small 

quantities of powders at low consolidation stresses. With the aid of DEM simulations, 

the particle interactions at the microscopic level can be analysed for various particle 

properties such as size, shape, stiffness and adhesion. In the literature, there are a 

number of contact models developed for various contacts such as elastic, elasto-plastic, 

elastic-adhesive and elasto-plastic and adhesive contacts, most of which involve 

complex mathematical modelling which leads to an increase in the computational cost 

of the models when impemeneted as a computer code. A new linear elasto-plastic and 

adhesive contact model for spherical particles was proposed in this work. Plastic 

deformation of contacts during loading and pure elastic unloading, accompanied by 

adhesion are considered, for which the pull-off force increases with plastic deformation. 

Considering the collision of a spherical cohesive body with a rigid flat target, the impact 

velocity that provides contact breakage in the proposed model was found to be very 

similar to that of Thornton and Ning’s model. The response of coefficient of restitution 

as a function of impact velocity was also in good agreement with the work of Thornton 



 

 

Chapter 8: Conclusions and Recommended Future Work 
 

 

184 

 

and Ning. Sensitivity analyses of the model parameters on work of compaction reveal 

that by increasing the stiffness ratio (ke/kp) the normalised plastic work increases and the 

normalised elastic work decreases. By increasing the interface energy, the plastic work 

increases, however the elastic work does not change. This highlights the flexibility of 

the model in representing a wide range of particulate materials. The linear nature of the 

model leads to time efficient simulations whilst still capturing the complex material 

behaviour. 

 

The ball indentation on a compacted assembly of cohesive spheres was simulated using 

DEM. The hardness of the compacted assembly was evaluated for a range of sample 

quantities. It was found that a minimum bed height of 20 particle diameters is required 

in order to achieve reliable hardness values. With small sample sizes, for which the 

surrounding walls and base of the die constrain the bed deformation, an increase in the 

resistance of the bed, i.e. an increase in hardness, was observed. It was necessary to 

have a sufficiently large clearance between the edge of the indentation zone and the die 

wall, such that the plastic flow of the powder was not constrained by the wall. The 

penetration depth was normalised with respect to the indenter radius in order to allow 

the effect of different indenter sizes to be analysed and compared. The penetration depth 

should be sufficiently large to cause notable bed shear deformation. It was found that 

this minimum penetration depth was approximately equal to 10% of the indenter radius. 

A sensitivity analysis of indenter size revealed that indenters with diameters smaller 

than 16 particle diameters exhibit fluctuations in hardness measurements, whereas 

indenters with a diameter of up to 22 particle diameters result in stable hardness values, 

providing the minimum sample criteria were met. As the indenter size decreases, it 
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approaches the size of bed particles. Therefore, rearrangements at the single particle 

level influence the force on the indenter throughout the indentation process, resulting in 

fluctuations in hardness. With very large indenters comparable in size to the die, the 

measurement of hardness may be affected by the wall. 

 

The hardness and localised hydrostatic and deviatoric stresses were also evaluated for 

various indenter and inter-particle properties. The hardness measurements were found to 

be independent of indenter stiffness. An increase in indenter friction slightly increased 

the hardness, although its influence on the internal stresses was negligible. Cubic and 

cylindrical indenters measured significantly larger hardness values compared to the 

spherical indenter. It was shown that with cubic and cylindrical indenters, the powder 

bed is locally consolidated, hence the measured value of hardness was not 

representative of the bulk consolidation state. Increasing the inter-particle friction or 

cohesion resulted in greater hardness values and internal stresses due to the increase in 

resistance to shear deformation. 

 

The hardness, deviatoric and hydrostatic stresses within a bed exposed to ball 

indentation were analysed as a function of the indentation strain rate. These stresses 

were almost constant up to a dimensionless strain rate (γ
*
) of 1, though fluctuations 

began to increase from γ
*
 = 0.5. However, when γ

*
 was greater than 1, these stresses 

started increasing with γ
*
, with the increase in hardness being the most substantial. The 

information obtained corroborated the trend already reported in the literature and 

confirmed that the ball indentation technique can be used to analyse powder flowability 
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in a wide range of shear rates in a quick and easy way, with the added advantage that 

only a small quantity of powder is required. 

 Recommended Future Work 8.2

Other flowability measurement methods can be simulated with DEM in order to provide 

comparison with the ball indentation technique. Sensitivity of hardness and internal 

stresses during the indentation process to particle properties can be investigated for a 

wider range of properties such as shape, stiffness, and size distribution. The comparison 

of various techniques and sensitivity analysis of single particle properties can facilitate 

the development of a model for determination of the constraint factor based on single 

particle properties.  

 

The proposed contact model was validated by comparison with the well-established 

model of Thornton and Ning for the case of a particle impacting a flat target at different 

impact velocities. The proposed contact model can be further validated by comparison 

with experimental results, both at single particle and bulk scales. 
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Appendix I:  Derivation of Work of Adhesion 

and Pull-off Force of the 

Proposed Contact Model 

The work of adhesion, Wad, is the area under the unloading response from αfp to αp 

which consists of a trapezium from αfp to αcp and a triangle from αcp to αp. Hence, 
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2 9 9 2 9

5 14 9
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ad cp fp cp p cp cp

cp cp cp fp cp p

W α α f α α f
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  

 (A1.1) 

At overlap αcp we have: 

 
cp e cp e p

cp e p e cp

f k α k α

f k α k α

  

  
 (A1.2) 

 Substituting Equation (A1.2) in (A1.1) and factorising ke/18 gives, 

   2 25 4 14 9 14
18

e
ad cp p fp cp p p fp

k
W α α α α α α α        (A1.3) 

At overlap αfp we have: 

 

5
2

9

5
2

9

cp e fp e cp e p

fp cp p cp

e

f k α k α k α

α α α f
k

    

 
    

 

 (A1.4) 

Substituting Equation (A1.2) in (A1.4) gives, 

 
13 4

9 9
fp cp pα α α   (A1.5) 

Substituting Equation (A1.5) in (A1.3) and factorising 137/9 gives, 
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  2 2137
2

162
ad e cp p cp pW k α α α α    (A1.6) 

The work of adhesion, Wad, can also be evaluated by ApГ, where Ap is the plastic contact 

area given by Equation and Г is the energy density (see Section  4.1.1).  

  * 22p pd pdA π R α α   (A1.7) 

where αpd is the plastic deformation given by (see Section  4.1.1),  

 0pd pα α α   (A1.8) 

Substituting Equation (A1.8) in (A1.7) gives, 

  * * 2 2

0 0 02 2 2p p p pA π R α R α α α α α      (A1.9) 

Hence the work of adhesion is, 

 * * 2 2

0 0 02 Γ 2 Γ Γ Γ 2 Γad p p pW π R α π R α π α π α π α α      (A1.10) 

Equating the right hand sides of Equation (A1.6) and (A1.10) gives, 

 2 2 0cp p cpα α α C    (A1.11) 

where C is given by, 

  2 * 2 *

0 0 0

162 137
Γ 2 Γ Γ 2 Γ

137 162
e p p

e

C k π α π R α α π α π R α
k

  
       

  
 (A1.12) 

Equation (A1.11) is a quadric equation; therefore there are two possible solutions: 

 

2

2

p p

cp

p p

α α C

α

α α C

  


 


 

 (A1.13) 

In order to verify which of the two solutions, given by Equation (A1.13), is suitable, the 

elastic and plastic forces as functions of αcp is plotted using both the solutions in Figure 

A1.1. 
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Figure A1.1: Plastic and elastic pull-off forces as functions of αcp using the solutions 

provided in Equation (A1.13), where fcp1 and fcp2 are evaluated using the first and 

second solutions, respectively.  

 

For the responses in Figure A1.1, ke = 1500 N/m, kp = 210 N/m, Г = 0.02 J/m
2
 and R

*
 = 

2.45 μm. The selection of these values is described in  4.1.1. As it can be seen, using the 

first solution of Equation (A1.13) provides a positive value of –fcp. Hence the second 

solution of Equation (A1.13) is the correct one, 

 
2

cp p pα α α C    (A1.14) 
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Appendix II: Derivation of Impact, Rebound 

and Critical Sticking Velocities 

in the Proposed Contact Model 

In this section, the equations for the impact, rebound and sticking velocities are derived 

based on applying an energy balance during contact loading and unloading. Figure A2.1 

shows schematically the force-overlap response of the proposed model. Different areas 

under the response, which correspond to different energies, are shaded and coloured. 

 

Wlt

α 

f

Wp

We

Wut

 

Figure A2.1: Schematic force-overlap response of the proposed model 

 

In Figure A2.1 Wlt, Wp, We and Wut correspond to the initial loading tensile work, plastic 

work, elastic work and unloading tensile work, respectively. The impact energy balance 

from the initial velocity to the point where the sphere is brought to rest, Ei, is, 
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21

2
i i p e ltE mv W W W     (A2.1) 

where vi is the impact velocity. Wp is the triangular area under the curve between α0 and 

αp. We is the triangular area under the curve between αp and αmax. Hence Wp + We is the 

triangulate area between α0 and αmax, 

  max max 0

1

2
p eW W F α α    (A2.2) 

At αmax we have, 

  max max 0pF k α α   (A2.3) 

Substituting Equation (A2.3) in (A2.2) gives, 

     
2

max 0 max 0 max 0

1 1

2 2
p e p pW W k α α α α k α α       (A2.4) 

Wlt is the negative triangular area under the curve between α = 0 and α0, hence, 

 0

1 8

2 9
lt ceW f α  (A2.5) 

At α0 we have, 

 
0

0

8
0

9

8

9

e ce

ce e

k α f

f k α

 

 

 (A2.6) 

Substituting Equation (A2.6) in (A2.5) gives, 

 
2

0

1

2
lt eW k α  (A2.7) 

Substituting Equations (A2.4) and (A2.7) in (A2.1) gives, 

 
 

1/2
2 2

max 0 0p e

i

k α α k α
v

m

  
 
 
 

 (A2.8) 
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The critical sticking velocity, vs, is the maximum impact velocity by which, the contact 

does not break. Hence, 

 
e ut i sW W v v    (A2.9) 

For impact velocities larger than vs, the unloading leads to detachment of the contact. 

The rebound velocity, vr, can be derived based on the following energy balance, 

 21

2
r r e utE mv W W    (A2.10) 

We is the triangular area under the curve between αp and αmax, hence, 

  max max

1

2
e pW F α α   (A2.11) 

Substituting Equation (A2.3) in (A2.11) gives, 

   max 0 max

1

2
e e pW k α α α α    (A2.12) 

Wut is the negative area under the curve between αp and αfp, hence, 

 0 0ut cp fp c cp p cW A A A      (A2.13) 

where Acp-fp is the negative trapezial area between αcp and αfp, Ac0-cp is the negative 

trapezial area between αc0 and αcp, and Ap-c0 is the negative triangular area between αp 

and αc0.  Hence, 
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      

 
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 (A2.14) 

Substituting Equation (A2.12) and (A2.14) in (A2.10) gives, 
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 (A2.15) 
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Appendix III: Derivation of Impact and 

Rebound Velocities in the 

Proposed Simplified Contact 

Model and Luding’s Model 

In this section, the equations for the impact, rebound and sticking velocities are derived 

based on applying an energy balance during contact loading and unloading for the 

simplified version of the proposed model and the model of Luding. Figure A3.1 shows 

schematically the force-overlap response of the two models. Different areas under the 

response, which correspond to different energies, are shaded and coloured. 
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Figure A3.1: Schematic force-overlap response of (a) the simplified version of the 

proposed model and (b) Luding’s model 
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In Figure A3.1 Wlt, Wp, We and Wut correspond to the initial loading tensile work, plastic 

work, elastic work and unloading tensile work, respectively. The impact energy for both 

of the models is identical since the loading path is the same. Hence, 

 21

2
i i e p ltE mv W W W     (A3.1) 

where We + Wp form a triangle from α0 to αmax with a height of Fmax, thus: 

  max max 0

1

2
p eW W F α α    (A3.2) 

where the maximum contact force, Fmax, is given by, 

  max max max 0 max 0

8

9
p ce p p pF k α f k α k α k α α       (A3.3) 

Substituting Equation (A3.3) in (A3.2) gives, 

  
2

max 0

1

2
p e pW W k α α    (A3.4) 

Wlt is the initial negative tensile work from α = 0 to α0 which is given by, 

 
2

0 0 0 0

1 8 1 1

2 9 2 2
lt ce p pW f α k α α k α    (A3.5) 

Substituting Equation (A3.4) and (A3.5) in (A3.1) gives, 

    
1/2 1/2

2 2 2

max 0 0 max 0 max2
p p p

i

k k k
v α α α α α α

m m m

   
       
   

 (A3.6) 

The rebound kinetic energy is different for the two model since the work of adhesion is 

different. The rebound kinetic energy is subtraction of work of adhesion from the elastic 

strain energy We. If this subtraction results in a negative value i.e. if We is smaller than 

work of adhesion the contact does not break and therefore the rebound kinetic energy is 

zero. The elastic strain energy We is the same for both the models which is given by, 
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  max max

1

2
e pW F α α   (A3.7) 

The work of adhesion in the simplified version of the proposed model is |Wut|, 

  
1

2
ad ut cp p fpW W f α α    (A3.8) 

Therefore the rebound velocity is given by, 

      
1/21/2 1/2

max
max

2 2 cp

r r e ad p p fp

fF
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m m m m

    
          
     

 (A3.9) 

The work of adhesion in Luding’s model is |Wlt| + |Wut| that forms a shape which 

consists of a trapezium and a triangle. The trapezium has a height of 8/9fce and bases of 

αp and αfe, where αfe is the overlap at which the unloading contact force is equal to – 

8/9fce. The triangle has a height of fcp – 8/9fce and a base of αfe. Therefore the work of 

adhesion in Luding’s model can be derived as follows, 
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 (A3.10) 

  Therefore the rebound velocity of Luding’s model is given by, 

    
1/21/2 1/2

max
max

2 2 8

9

cp

r r e ad p ce p fe

fF
v E W W α α f α α

m m m m m
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 (A3.11) 
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Appendix IV: Implementation of Stress 

Calculations in EDEM
®
 

Software 

 

The aim is to implement calculations of stress tensor for individual particles and 

arbitrary measurement volume based on Equations (A4.1) and (A4.2), respectively. 

 
1

c

c p

ij i i i j

Np

σ x x n F
V

    (A4.1) 

 
1

p c

c p

ij i i i j

N N

x x n F
V

    (A4.2) 

where σij is the ij-component of stress tensor, V is the volume of the measurement space, 

Np is number of particles in the bin, Nc is the number of contacts around particle p, c

ix , 

p

ix  and ni are the i-components of contact location, particle centre and normal vector 

directed from a particle centroid to its contact, respectively, and Fj is the j-component of 

the contact force [83].  

In EDEM
®
 software, custom particle properties can be implemented. The data for such 

properties will be available in the analyst part of the software. The minimum, maximum 

and average values of the properties amongst the whole population of the particles or 

particles within a desired measurement volume in the simulation can be extracted. 

Additionally the “total value”, which is the summation of the values of the properties, 

can be extracted again for the whole population of particles or the particles within a 
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measurement volume. For each of the custom properties, it is possible to define number 

of elements. For this case, 9 elements are required to represent the stress tensor. In the 

software two custom properties were defined, “Particle Stress” and “Bin Stress”, 

representing the stress tensor for individual particles and the measurement volume, 

respectively. In EDEM
®

 software only one-dimensional arrays are allowed for custom 

properties, hence the two custom properties are considered to be vectors with 9 elements. 

The indexing of these vectors is shown in  

Custom Property

xx xy xz

ij yx yy yz xx xy xz yx yy yz zx zy zz

zx zy zz

σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ

 
 

      
 
 

 (A4.3) 

In Equation (A4.2) the summation 
pN

 can be performed as a post-analysis process for 

which the “total value” of 
c

c p

i i i j

N

x x n F  can be extracted for a measurement volume. 

The division by the volume of the measurement volume can also be performed in the 

post-analysis since the volume is arbitrary. This shows that only 
c

c p

i i i j

N

x x n F  is 

needed to be evaluated. This was implemented in EDEM
®
 software as a subroutine and 

the value was assigned to “Bin Stress”, 

 BinStress
c

c p

ij i i i j

N

x x n F   (A4.4) 

For evaluation of particle stress tensor the value of “Bin Stress” is divided the volume 

of the particle, 

 
1

ParticleStress
c

c p

ij i i i j

Np

x x n F
V

   (A4.5) 



 

Appendix IV: Implementation of Stress Calculations in  

EDEM
®
 Software 

 

 

XIII 

 

Figure A4.1 shows the available options for two custom particle properties in EDEM
®
 

software. 

 

 

Figure A4.1: Data extraction from the two added attributes in EDEM
®
 software: (a) Bin 

Stress, (b) Particle Stress 
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