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An object-oriented data and query model 

Joseph Vella 

Abstract 

OODBs build effective databases with their development peaking in 2000.  A reason given 

for its neglect is of not having a declarative and procedural language.  Relevant declarative 

languages include ODMG OQL and Flora-2, a first order and object-oriented logic 

programming system based on F-Logic.  Few procedural object algebras have been proposed 

and ours is one and none are offered together. 

The characteristics of the algebra proposed and implemented with Flora-2 are: it is closed; 

it is typed; its ranges and outputs are homogeneous sets of objects; operators work on either 

values or logical identifiers; a result set is asserted; and a query expression’s meta details 

are asserted too.  The algebra has ten operators and most have algebraic properties.  

A framework was developed too and it has its object base loaded with methods that 

maintain it and our algebra.  A framework’s function is to read an EERM diagram to assert 

the respective classes and referential constraints.  The framework then sifts for non-

implementable constructs in the EERM diagram and converts them into implementable 

ones (e.g. n-ary relationships) and translate the object base design into ODMG ODLs.  This 

translation’s correctness and completeness is studied. 

The framework implements run-time type checking as Flora-2 lacks these.  We develop type 

checking for methods that are static, with single arity, polymorphic (e.g. overloaded and 

bounded), and recursive structures (e.g. lists) through well-known and accepted techniques.  

A procedure that converts a subset of OQL into an algebraic expression is given.  Once 

created it is manipulated to produce an optimised expression through a number of query re-

writing methods: e.g. semantic, join reduction, and view materialisation.  These techniques 

are aided by the underlying object base constructs; e.g. primary key constraint presence is 

used to avoid duplicate elimination of a result set.  We show the importance of tight 

coupling in each translation step from an EERM to an algebraic expression.  Also we 

identify invariant constructs, e.g. primary key through a select operand, which do not 

change from a query range to a query result set. 
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1 – Introduction 

This thesis is about data modelling and databases.  Data modelling deals with the 

processes and the artefacts required to accurately and consistently describe the data 

requirements of an application [IBMAC93].  A database is a collection of interrelated or 

independent data items that are stored together to serve an application’s data requirements 

[IBMAC93].  The structure of a collection of data is the result of a data modelling process.  

Databases are managed by a program called a Database Management System (DBMS).  The 

DBMS handling of operations over its data are expected to yield significant benefits in 

terms of data availability, of correct sharing, data consistency maintenance, query 

optimisation, and economy of scale for the end users. 

Since the Eighties the dominant data modelling paradigm has been the relational.  During 

in the Nineties a richer object-oriented based data modelling came into prominence, but 

faded after; nonetheless object-oriented programming remains till today main stream.  

During the Noughties the big data and NoSQL movements, at least from a visibility aspect, 

become prevalent especially where only two of the targets set for consistency, availability 

and data partitioning can be met (i.e. Brewer’s CAP theorem).  In parallel with the 

relational model, the logical data model was developed where first order semantics was 

coupled with logic programming; these are called deductive databases. 

Within this context it is important to underline two issues.  Firstly, within DBMS 

capabilities there is a trade-of between the expressibility of the data modelling and the 

potential for query optimisation.  Secondly, specifications tend to lose detail when they are 

mapped from conceptual to logical data schemas, something we are to address. 

We are motivated in applying an object-oriented data modelling language that captures a 

wider portion of an application’s data requirements when compared to the relational model 

or the NoSQL models.  It is well known that the wider this portion is the more 

requirements the DBMS can manage.  We are also motivated in using a first-order 

semantics logic based data model that can encode and infer on object-oriented data 

modelling.  Consequently with one language we can describe the database structures, the 
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queries over it, define the integrity constrains over the database, the procedures over the 

database, and even the actual data. 

Another part of our motivation is to ensure that the translations required, for example from 

the data requirements to the conceptual model, and from the conceptual to the logical 

model, are seamlessly integrated, rule based, and insofar as this is possible, all information 

encoded in specifications is preserved in every translation.  An advantage of this is that 

specifications encoded remain invariant through translations and therefore it is available 

for latter phases.  For example the primary key concept of an entity, first encoded in the 

conceptual design, is found and used to optimise and execute a query modelling instance.  

To address low attrition requirement we are adopting object-oriented friendly features in 

each translation-target language. 

Inspired by these motivations a number of research questions are addressed in this work.  

The following are a selection of these: 

Firstly, which conceptual modelling representation has many of its constructs easily 

and consistently converted into a logical data model? 

Second, which mix of the many object-oriented themes and variations can be 

selected to form the logical data modelling language used to build a database? 

Third, what needs to be included in an object-oriented query model that has an 

object-oriented data model as its basis? 

Fourth, are the data and query models developed here adequate to build complex 

logical schemas?  

Fifth, can the queries over the object database be specified in declarative and 

procedural languages?  And how do these align to known efforts, for example with 

ODMG OQL? 

Sixth, how effective are the tools and standards used in this research, e.g. EERM, 

ODMG, EyeDB and F-logic, at achieving the stated goals of describing and 

translating data and query modelling faithfully? 
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1.1 Thesis Statement 

During the development of this thesis write-up we show: 

 Our synthesised object-oriented data and query model is still relevant today 

and is adequate to define a complex database.  A justification of its relevance, 

when for example compared with NoSQL systems can forgo database 

consistency, or adopt eventual consistency, in favour of data availability and 

partitioning. 

 The cohesion of the data and the query model through object-oriented themes 

not only makes each model stronger but also enables DBMS led optimisations 

and more opportunities for automated-software development in certain 

database related functions. 

 The framework developed here supports the reading and translation of 

conceptual designs, object-oriented data modelling, query modelling 

implemented with both declarative and procedural constructs, and data type 

checking and inference required by various models.  The framework is an 

effective tool for the database designer as it integrates and aids many activities.  

1.2 Plan of the Thesis 

The second chapter surveys the conceptual EERM language.  Any implementation details 

are avoided; for example n-ary relationships are shown as such and not decomposed. 

The third and fourth chapters cover the object-oriented paradigm by going through its 

many themes and variations to synthesise a data centric data model.  In the fifth chapter a 

definition of an object-oriented database is given.  It also includes an overview of ODMG 

ODL and an ODMG compliant OODBMS, called EyeDB.  The latter is used for running 

examples.  Our own critical overview of ODMG ODL is given at the end of the chapter. 

Chapter six surveys the very useful developments in Datalog and a logic with object-

oriented semantics, called F-logic.  Flora-2, a logic-programming language implementation 

of F-logic, is described here too.  Chapter seven surveys integrity constraints, an important 

component of data and query models, and gives their semantics is given in first order logic. 
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The bulk of our research effort is presented from chapter eight to twelve.  Chapter eight has 

a detailed description of a framework built purposely to enable and integrate the many 

parts that comprise this research body.  Also the chapter gives encodings of database 

artefacts; for example classes, and ISA relationships. Many of the database features require 

implementation and enforcement in our framework; these are programmed in Flora-2. 

In chapter nine we indicate how an EERM conceptual diagram is read and encoded into our 

framework; also a working procedure is presented that converts the conceptual encodings 

into a set of ODMG ODL constructs, specifically EyeDB constructs, after necessary 

transformations of the EERM diagram are done.   

In chapter ten one finds how data type checking and type inference are built into our 

framework.  This module is necessary because Flora-2 does not enforce the data type 

signatures specified in programs written for it. 

In chapters eleven and twelve we develop our procedural algebra; the first chapter has 

operations that have a relational origin while in the second chapter the operators are based 

on the features related to object values and functional methods.  For each operator one 

finds examples, its data-type signatures of its input and output, the pre-conditions and 

post-conditions of the operator, and the actual logic-programming based implementation.  

The algebraic properties are also given. 

In chapter thirteen a number of issues relating to query processing and optimisation are 

described.  Special emphasis is made on techniques that make best use of the artefacts in 

the underlying data and query model.  Furthermore a conversion of declarative OQL 

queries into an algebraic expression using our operators is given.  The procedure is also 

amended with basic, but effective, improvements. 

Chapter fourteen presents a summary and conclusions of our work.  Indications of current 

status and future work possibilities are given too. 
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Chapter 2 – Conceptual Modelling 

Stonebraker states “In contrast to data normalisation, the Entity Relationship Modelling 

became very popular as a database design tool” in [STONE98].  The Entity Relationship 

Modelling is labelled as conceptual because it is devoid of any physical database artefacts 

(e.g. data indexing methods).  It is also evident that a good number of structures and 

constraints are understood and caught very early in the conceptual design.  Entity 

Relationship Model modelling is also adopted in many CASE tools as a basis for generating 

a relational database after data requirements are validated and verified. 

2.1 – ERM and EERM 

The Entity Relationship Model (ERM) introduced by Chen [CHENP76] and formalised by Ng 

[NGPAU81] is a high-level conceptual data modelling language.  Since its introduction, a 

number of additions to the original graphical language have occurred, with a case in point 

(and of interest here) being the Enhanced ERM (EERM).  Ramifications from the ERM are 

numerous, with a significant example being the class diagram found in the Unified 

Modelling Language (UML) [BOOCH99]. 

Other extensions and revisions followed; some are very specific data models as in spatial 

and temporal extensions; yet others are closer to a database model rather than remaining 

abstract as in Chen’s presentation. 

The ERM, in the context of application-development analysis and design, focuses on logical 

units and their constraints.  Also in many structured methodologies for application 

development the ERM is used in supplementary and complementary fashion with 

functional descriptions and data flow paths.  Once an application analysis and design is 

stable then the first step of development is channelled toward the realisation of the 

conceptual design by mapping onto DBMS and programming language specifics.  The ERM 

language is data model independent and consequently it does not particularly favour the 

relational over the object-oriented model and therefore specific procedures to map the high-

level conceptual design onto the constructs of any particular data model are needed. 

The main constructs of the ERM are the entities and their relationships.  The contextual 

use of an ERM assumes that each entity and relationship has many instances.  It is 
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important to note that each construct is adorned with properties and constraints.  Later 

additions to the “basic” ERM introduced other data modelling constructs (e.g. specialisation 

and aggregation) and their associated constraint’s descriptions. 

Most of the artefacts that make up an ERM are depicted graphically, for example 

rectangles, diamonds and ovals, and the edges between these nodes represent associations 

between them. 

2.1.1 Entities 

An entity in an ERM graph is a named construct representing a real or abstract concept in 

the application domain of discourse.  Historically the area of Artificial Intelligence gave the 

origin of this denotation.  For example an EMPLOYEE is an entity in a project description 

information system.  Each entity name in a graph is unique.  An entity is presented as a 

named rectangle in the model’s graph.  Each entity represented in the model is expected to 

have many instances but these instances are not represented in the ERM. 

An entity is also described by a number of properties called attributes.  Each attribute has a 

name, and although not depicted in a graph (or colloquially called a diagram) it is 

annotated with a value domain.  For example in the case of the EMPLOYEE entity likely 

attributes would be NAME, ENO and SALARY with value domains of character string, integer, 

and real number respectively.  Each attribute is depicted as an oval (or a rectangle with 

softened edges) attached to its entity.  Property names have to be unique within an entity.  

Entity instances would then have to be assigned values to these attributes from values of 

their associated domain.  The model does not limit on which set of basic domains are used. 

EMPLOYEE

Name

Eno

Salary
 

Attributes come in a number of flavours and with specified constraints.  For example an 

attribute (or set of) whose value(s) uniquely distinguish any instance from all others of the 

same entity is called the primary key (set).  To represent this constraint the respective 

attributes names are underlined.  Each entity can have one primary key set.  In the case of 

EMPLOYEE the primary key is ENO. 
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Some attributes directly derive their value from other attribute values present in the same 

instance.  For example, given an instance’s DATE_OF_BIRTH value then it is easy to 

compute its current AGE (i.e. without the need to store and keep up to date the relative 

attributes value).  These attributes are the computed attributes and require the designer to 

draw the oval with a dotted line.  Also it is sensible to include a succinct note on how this 

attribute value is derived. 

Date Of Birth

Age *

*) Age is current date

less DateOfBirth.

 

Another aspect of attributes is whether an attribute is considered to be single valued or 

multi-valued.  In most cases one expects a single value from the domain; as in SALARY and 

DATE_OF_BIRTH.  In some other cases an attribute takes many values from the associated 

domain.  In this case we have a multi-valued attribute and these are represented with 

double ovals.  An example would be a property that describes the SKILLS of an employee in 

which we envisage that an employee instance can have zero or many skills. 

Skills
 

Sometimes a sub-set of an entity’s properties tend to have a high affinity and it is 

advantageous to compose these together into what is called a composite attribute.  For 

example assume we have the following properties, HOUSE, STREET and CITY.  These three 

can form the composite attribute HOME_ADDRESS.  The notation used is of a composite 

attribute attached to its entity and the parts attached to the composite attribute. 

Home Address

House

Street

City
 

Each attribute property could have a number of varieties.  For example it is conceivable to 

have a computed attribute that is multi-valued and composite.  
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2.1.2 Relationships 

The other major part of an ERM is depicting relationships between entities.  A relationship 

is a named association between a number of entities that is governed by rules and 

sometimes qualified with its own attributes.  A relationship instance is a particular case of 

a relationship and is qualified by the entity instances that it relates.  For example given the 

entities TEAM and EMPLOYEE are related by an EMPLOY relationship and #1056 and #118 are 

instances of the TEAM and EMPLOYEE entities, and then #1056 EMPLOY #118 is an EMPLOY 

relationship instance. 

Eno

Qualifications

EMPLOYTEAM EMPLOYEE
N1

Start Date

Date Of Birth

Age *

Name

Home Address

House

Street

City

Tno

Description

Name

MANAGE

1 1

 

Fig. 2.1 – ERM with entities and relationships 

As stated in the definition of a relationship its instances must adhere to its rules.  There 

are three types of rules that relate to a relationship definition and these supplement the 

relationship depiction in an ERM (a diamond with an edge connecting each associated 

entity – see figure 2.1). 

1) The first constraint deals with enumerating the entities of a relationship.  

Consequently any relationship instance composition must have each respective entity 

instance coming from the respective entities.  The degree of a relationship is the 

number of entities that define the relationship.  If there are two then the relationship 

is called binary and if there are three then it is called ternary.  In the general case of n 



Object-Oriented Data and Query Models 

Conceptual Modelling - Page [ 12 ] 

entities the relationship is called an n-ary.  If an entity is repeated in a relationship 

definition then the relationship has an additional adjective – recursive.  The most 

popular type is the binary relationship. The EMPLOY is a binary relationship and its 

participating entities are TEAM and EMPLOYEE. 

2) The second constraint specifies, given a relationship between entities, the count of an 

entity’s instances that can participate in a relationship instance.  The most common 

cardinalities are the ‘one’ and the ‘many’ times.  For a binary relationship the possible 

number of these types are four; namely the one-to-one (1-1), one-to-many (1-N), many-

to-one (N-1), and many-to-many (N-M).  For example the EMPLOY relationship in figure 

2.1 is a one-to-many as firstly an instance of team can be associated with many 

instances of employee and secondly as an instance of employee is only associated with 

at most one team.  In the modelling diagram the cardinalities are marked by including 

the symbols “1” and “N” on the respective edges of the relationship.  In the same figure 

the MANAGE relationship is a one-to-one. 

3) Another important constraint relates to the level of participation of an entity’s 

instances in a relationship.  The options are total and partial.  Total participation 

implies that all instances must participate in at least one relationship instance.  For 

example in the EMPLOY relationship in figure 2.1 it is expected that all EMPLOYEEs are 

employed with a team but it is not necessary for all teams to have an employee on 

their books.  A partial participation implies that an entity instance may not be present 

in any relationship instance.  Consequently, for any binary relationship, there are four 

possible cardinality participation constraints; namely total-total, total-partial, partial-

total and partial-partial.  For a total constraint the edge leading from a relationship to 

an entity is drawn as a double line.  When writing relationships it is sometimes 

convenient to write 1(p)-N(t) for a 1-N relationship with a partial and total 

participation as in the EMPLOY relationship.  In the case of the MANAGE relationship 

between TEAM and EMPLOYEE one writes 1(t)-1(p). 

It was earlier indicated that a relationship might have attributes that describe it and 

consequently each relationship attribute has a domain and other qualifiers mentioned 

before for entity attributes.  This is easily denoted in an ERM diagram by connecting an 
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attribute to the respective relationship graphic (i.e. a diamond).  A typical example of a 

relationship attribute is the case of the STARTING_DATE for the EMPLOY relationship (see 

figure 2.1).  The context of attributes attached to a relationship rather than an entity is 

obvious but it is in fact an area that shows a weakness of the modus operandi of modelling 

through ERMs.  For example in a binary 1-N, the relationship attribute could be moved to 

the many cardinality entity (i.e. EMPLOYEE).  This is of course a “legal” arrangement but of 

questionable style even if the ERM building rules are not compromised.  (This and other 

problems with ERMs are discussed in a later section in this chapter). 

2.1.3 Other ERM Features 

What we have seemed up to now is a basic description of ERMs.  There are still some other 

points to explain.  Two of these are weak entities and ERM notes. 

2.1.3.1 Weak Entities and Weak Relationships 

It is not always the case that entity’s instances describing some application have an 

independent existence from all other entities.  For example if for the EMPLOYEE entity we 

like to hold details of an employee’s WORK ASSIGNMENTs then purging an EMPLOYEE 

instance presumes we are purging all WORK ASSIGNMENT instances related to the same 

EMPLOYEE too (see figure 2.2).  Clearly there is an asymmetric dependence between WORK 

ASSIGNMENT instances and the respective EMPLOYEE instance.  To address this modelling 

requirement the ERM introduces another structure called a weak entity whose instance's 

existence is related to a “normal” entity’s instance existence.  In this case WORK 

ASSIGNMENT is a weak entity dependent on EMPLOYEE entity. 

The relationship between a weak entity and its normal entity is also specialised – it is 

called a weak relationship.  The weak relationship is called UNDERTAKE in this example.  At 

this point the entity and relationship constraints (on the weak relationship and the 

participating entities) need consideration.  Firstly it is obvious that the weak entity’s 

relationship to its associated normal entity must be total.  Also the primary constraint of 

the weak entities instances scope is not necessary for all the instances of the weak entity 

but rather for all the weak instances related to a normal entity instance.  In some literature 

this case is known as a partial key. 
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For depicting a weak entity and weak relationships we draw the rectangle and diamond 

with a double line.  If the weak entity has a partial key (rather than a normal primary key) 

then the underlining is drawn dotted rather than continuous.  (See figure 2.2). 

WAno
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TAKEEMPLOYEE
WORK

ASSIGNMENT

N1

Job Title

Interval

Eno

Name

 

Fig. 2.2 – ERM with entities, weak entities and weak relationships 

The cardinalities acceptable in a weak relationship are only one-to-many and one-to-one.  

The relationship must be a total participation on the weak entity.  If a many-to-many weak 

relationship is required then one is expected to consider other modelling constructs; for 

example an aggregation relationship (more in a later section).  Likewise if a weak entity 

seems to require a relationship with any other entity then again it is best to consider 

aggregation. 

The introduction of a weak entity and a weak relationship is not only a new type of 

structural representation.  In fact it is the first example in the ERM where we have a 

transitional action associated with a state change (i.e. a change of the data values).   

2.1.3.2. ERM “Notes” (or Annotations) 

We already have seen the utility of having notes in a diagram (e.g. to explain the 

computation of a derived attribute).  There are also times when notes are required and in 

fact become a necessity.  For example if some business rule requires a structural 

configuration constraint that isn’t caught by our ERM modelling then there is no choice but 

to write explicit notes for the designers to understand.  Unfortunately this may entail 

translating these notes into programming constructs that are not known to a database 

schema. 
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2.2 Enhanced ERM (EERM) 

Since its inception the ERM has had a number of additions.  Some of these are motivated 

by the desire of analysts to capture and analyse better the modelling aspects of an 

application.  This demand is more relevant in areas where data modelling is more contrived 

– for example a CLIENT entity could have a number of attributes that are applicable only to 

a subset of its instances.  These scenarios, although implied to be more sophisticated than 

plain business applications, became more numerous as information systems supports ever 

more varied and wider sets of requirements.  Nonetheless the original ERM context of 

having each artefact representing many instances still prevails. 

A string of additions over the basic ERM are those coming from the semantic data 

modelling [SMITH77 & SMITH77B] and are collectively called Enhanced ERM (or Extended 

ERM is sometimes cited too).  The additions that are of interest here are specialisation and 

generalisation, aggregation and variant records.  Unfortunately there isn’t much agreement 

on the meaning, usage and depiction of these and consequently we will have to cite the 

source that the construct is coming from without implying that it is the only (or best) 

representation. 

2.2.1 Entities and Sub-Classes 

If in an application domain an entity seems to exhibit distinct clustering of its instances 

then it is best to partition the instances into subsets.  The basic idea is attributed to Smith 

and Smith [SMITH77].  A subset has all the properties defined for the class that it is sub-

setting and possibly defines more of its own; this is often called sub-classing.  Each instance 

in a subset is also an instance in the original entity set of instances.  For example the 

EMPLOYEE instances can be divided into either technical employees or administrative 

employees or neither (see figure 2.3).  This is an example of sub-classing where TECHNICAL 

and ADMINISTRATIVE (ADMIN for short) are sub-classes of EMPLOYEE; and EMPLOYEE is 

loosely called a parent class.  Both sub-classes would inherit attributes and relationships 

from their parent entity and are allowed to independently add their own attributes and 

relationships. Consequently sub-classing allows us to specify relationships concisely; for 

example a TECHNICAL instance (not just any EMPLOYEE) can use a piece of HARDWARE or 

SOFTWARE.  Also sub-setting allows the entities to be organised in an entity’s hierarchy. 
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There are a number of options to this sub-setting.  Firstly is sub-classing partial or total 

(see figure 2.4)?  Secondly is sub-classing allowed to overlap or not (i.e. disjoint) between 

sub-classes of an entity (see figure 2.5)?  If, for example, we have an EMPLOYEE who can be 

a TECHNICAL or an ADMIN instance, and there might be EMPLOYEEs who are neither, then 

our sub-class relation has a partial participation and also has disjoint sub-setting.  Thirdly 

an instance can be included in a sub-class either by way of its attribute(s) value called a 

predicate defined instance on its subclasses or by making it an arbitrary instance of a 

subset (where this is called an explicit semantic relationship).  An example of predicate 

defined sub-classing follows: let us assume we have two sub-classes, PERMANENT or 

CONSULTANT, of EMPLOYEE which has an attribute called STATUS that holds an indicator of 

the pay structure.  In this case each PERMANENT and CONSULTANT instance should have the 

following value for the STATUS attribute of “full-time” and “part-time” respectively. 

TECHNICAL ADMIN

EMPLOYEE

D
⊆ ⊇

 

Fig 2.3 – EERM with Employee and its subclasses related through a disjoint and total 

relationship. 

To draw the sub-class relation between a class and its sub-class use a circle and pair of 

edges to connect the relevant entities.  Within the circle we print a “D” for disjointness and 

an “O” for overlapping – see figures 2.3 and 2.5.  Also on the edge closer to the sub-class we 

draw the sub-set symbol (i.e.  ) with the pointed edges in the direction of the sub-class.  If 

the relation is total then the edge from the circle to the class is drawn in double line.  If a 

sub-class relation is predicate defined then that predicate is written on the main edge (the 

edge from the class to the circle) and the value that satisfies on the edge from the circle to 
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the sub-class.  As for drawing styles there are two main references: Elmasri [ELMAS10] and 

Teorey [TEARE05]. 

PERMANENT CONSULTANT
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Job Status

‘permanent’ ‘consultant’

Eno

Job Status

EMPLOYEE
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Fig 2.4 – EERM with Employee and its subclasses related through a disjoint, total and 

predicate defined (i.e. Job Status) relationship. 

In some references known for presenting sub-classing in EERM (e.g. [HULLR87]) it is allowed 

having a number of sub-setting “relationships” radiating from the same entity.  In figure 

2.5 we have done this; EMPLOYEE has a theme of subsets based on TECHNICAL and ADMIN 

and another theme based on the subsets by PERMANENT and CONSULTANT.  These two 

themes are independent from each other.  This multiplicity of sub-setting does complicate 

the diagram and the entity’s hierarchy. 
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Fig 2.5 – EERM with multiple sub-setting relationships 

There is of course the ever present problem associated with inheritance – multiple 

inheritance.  This is possible in EERM and the resolution of conflicts is usually based on 

name overriding in an arbitrary manner.  Most references on EERM state that the analyst 



Object-Oriented Data and Query Models 

Conceptual Modelling - Page [ 18 ] 

is free to restrict his diagram to single inheritance; albeit making the design cluttered and 

repetitive. 

As for entities and relationships, the sub-classing construct comes with a series of 

constraints that all instances involved must adhere to.  Some of these constraints are static, 

while some others are transitional; in references [ELMAS10] and [TEORE05] one finds the 

following.  The static constraints include: 

1) There should be no cycles in the entity-hierarchy through the sub-classing relation. 

2) If sub-classing is restricted to a single inheritance then each entity can only be a sub-

class of at most one entity. 

3) If a sub-classing relation is total then all instances of the parent entity must be an 

instance of at least one sub-class. 

4) If the sub-classing relation is predicate defined then the discriminating value for 

each sub-class must be non-ambiguous.  Also each instance of the sub-class has its 

defining attribute value satisfies any explicitly stated value in the diagram. 

5) If the sub-classing relation is arbitrary (not defined with a predicate) and 

disjointness is specified then each instance of a sub-class in an instance of at most 

one sub-class. 

The transitional constraints on the sub-classing relation include: 

1) On introducing a new instance to an entity that has a total sub-class relation then by 

implication the same instance has to be made an instance of one of the sub-classes.  

Additionally on introducing a new instance to an entity that has a predicate defined 

and total sub-classes constraint then by implication that instance is also made an 

instance of the matching sub-classes. 

2) On purging an entity instance then all the associations in its sub-classes are also 

deleted. 

3) On changing the values of an instance’s attributes that affects the value that 

determine a predicate defined sub-class relation then that instance becomes the 

instance of the current sub-class that matches its new value.  Migrating instances 

from one sub-class to another requires ad hoc procedures because other attribute 

values might not satisfy destination class properties. 
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2.2.2. Categories / Union Records 

A useful addition to the ERM is the category construct (as introduced by Elmasri et al 

[ELMAS85] and also found in NIAM models as an exclusion constraint [VERHE82]).  Let us use 

our EMPLOYEE entity with TECHNICAL, ADMIN and MANAGER sub-classes.  If we want to 

represent a relationship between an employee and a piece of work then we can relate 

EMPLOYEE and an entity called WORK.  If it transpires that only instances from TECH and 

ADMIN should relate to WORK instances then we have to reconsider the diagram.  We could 

leave the relationship between EMPLOYEE and WORK and write a note that prohibits the 

participation of MANAGER instances.  Or we can create a new entity, if multiple inheritance 

is allowed, that sub-classes TECH and ADMIN, say called TECH_ADMIN_EMP, and relate this 

to WORK.  Unfortunately this is not semantically correct as the instances of 

TECH_ADMIN_EMP include all attributes of both TECH and ADMIN.  Also if the two entities 

are not really relate-able through a sub-class relationship, then creating an entity that 

inherits from both is generally not in good style. 

A better solution is to use the category artefact whereby a “new” entity denoted in the 

diagram represents the union of the instances of a number of entities and this union is a 

pool of instances that can participate in a relationship.  The meaning of this construct is 

slightly different from the previous relationships as entities participating in the union 

would generally have different primary key set constraints; one solution is to include 

details of both entities and instances in the relationship instance details.  The notation to 

represent the category concept uses the circle with a letter “U” inside it – see figure 2.6.  

Also the category construct can be qualified as total or partial.  We are not too comfortable 

about introducing a “new” rectangle (as in [ELMAS85]) and really prefer the NIAM exclusive 

notation (i.e. connect the diamond to the circle which is connected to each entity 

participating in the union and connect the emanating relationships with an arc).  There are 

two reasons for this: firstly introducing an entity which is really a “view” of other entities 

and secondly some flexibility is lost as there can be only one cardinality ratio for all entities 

participating in the union. 
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Fig. 2.6 – An EERM with a category (or EOR) artefact – i.e. arc. 

2.2.3 Aggregation 

Aggregation builds an instance out of a number of other instances through a sophisticated 

relationship between the “whole” and its “parts” instances.  This relationship is usually 

transitive but not necessarily.  Aggregation, sometimes colloquially called the part-of 

relationship, is at a higher level than entity composition.  Although this rich construct has 

been known for a long time (through Smith and Smith’s work in [SMITH77b]) few diagrams 

actually use it.  Later and significant literature includes Steel’s work on Lisp [STEEL84], the 

MCC Orion initiative [KIMWO89G], UML [BOOCH00], and Barbier’s [BARBI03].  A telling 

rendition of aggregation through a ‘bill of material’ diagram for a bicycle is shown in figure 

2.7.  While the front wheel brake unit is a part of the whole bicycle, the same unit is in 

itself a whole, at least in terms of spare part sales, as it is made up of other sub parts. 

 

Fig. 2.7 – Exploded drawing of a bicycle (Source: Raleigh Grifter DL60 Exploded Drawing 

from 1977 Raleigh Dealer Manual). 
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We need to have an aggregated relationship which captures: 1) sharing and independence 

of “parts” by the “whole”; 2) total or partial participation of “part” instances; 3) attributes to 

each manifestation of the “part” in a transitive relationship; 4) attributes of the whole 

transitive closure.  In an aggregated relationship sharing and independence are orthogonal 

and consequently we have four possibilities – see figure 2.8. 

or or

Exclusive Sharable

In
d

e
p

e
n

d
e

n
t

D
e

p
e

n
d

e
n

t

E1

E11

R1

A

1

N

E1

E11

R1

A

N

M

E1

E11

R1

A

N

M

E1

E11

R1

A

1

N

E1

E11

R1

A

1

N

E1

E11

R1

A

N

M

 

Fig. 2.8 – Aggregation in EERM (no transitivity is shown) 

As for notation there are two main models, one found in Elmasri [ELMAS10] and the other in 

Teorey [TEARE05] which is the one adopted here and it uses a special circle with an “A”.  In 

figure 2.8 we give the four combinations of an aggregate relationship through the latter 

notation and using sharing and independence to qualify relationship.  It is important to 

note that sharing is connected by a many-to-many relationship.  What do the four patterns 
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yield in terms of the aggregation relationship? The following table gives actual examples; 

see table 2.1. 

Independence Sharing Example 

Independent Sharable Cyclocomputer applet that tracks effort in terms of 

distance and climb.  

Independent Exclusive A bicycle tyre. 

Dependent Sharable Frame spray paint. 

Dependent Exclusive Lock nuts (following advice that lock nuts are to be 

used only once!) 

Table 2.1 – Four aggregation patterns through independence and sharing. 

An example diagram that can meet some of the data modelling requirements of an 

aggregation in the manufacturing of books is in figure 2.9.  In this case there is no part-of 

transitive relationship.  Another example relationship that describes a typical bill of 

material composition is given in figure 2.10; it has a transitive part-of relationships. 
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Fig. 2.9 – A book construction EERM with a simple aggregation relationship. 
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Fig. 2.10 – A bill of material EERM with transitive relationships. Note that entity item 

represents tangible parts, while parts entity is a catalogue description of items. 

For an aggregation relationship to become distinctive from a normal relationship one has to 

consider two aspects.  The first has to do with instances of a relationship; specifically each 

instance of a normal relationship is independent from any other instance but in the case of 

an aggregation relationship many instances are related through transitive closure.  The 

second aspect is the asymmetric role of an aggregation relationship that contrasts with the 

symmetrical nature of a normal relationship.  Consequently before introducing an 

aggregated relationship the analyst must carefully consider these two aspects.  In practice 

these distinctions might not offer conclusive arguments in favour of inclusion of an 

aggregation relationship in a diagram. 

There are a number of implicit constraints associated with an aggregation relationship 

representation in the EERM diagrams.  Some examples follow (refer to figure 2.11). 

a) If a “whole” instance is deleted and that instance is in a transitive aggregation 

relationship that has an encoded non-shareable and dependent part-of relation with other 

instances then all these “parts” are purged too.  Consequently a portion of the graph, the 

sub-graph rooted at the deleted entity instance of the graph, is deleted.  In figure 2.11 

deleting instance ‘c’ reduces graph A) to C). 
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b) Assume we have an aggregation relationship between the “whole” and its parts in a 

transitive aggregation relationship that has an encoded independent part-of relation; then 

deleting an instance would generate a number of transitive closures.  That is, the original 

graph can break into “smaller graphs”.  In the example deleting instance ‘c’ reduces graph 

A) to D). 
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Fig. 2.11 – A number of instances (named ‘a’ to ‘h’) are related with a part of relationship – 

shown as edges A).  The instances transitive closure is represented in B).  Graphs C) 

and D) are the result of deleting instance ‘c’ with different part-of constraints. 

Some “convoluted” constraint requirements are usually identified during design; for 

example the costs of “parts” should not exceed 30; the depth of transitive closure tree 

should be between 3 and 5, the total distance of a travel plan should not exceed 200 units.  

Most of these have to be included as notes to the EERM; notice the use of an entity’s 

computed attributes in figure 2.9 and 2.10 are assigned values computed by tallying the 

sub-graph. 

Some notes of caution have to be mentioned here.  Firstly, it is possible to create legal 

diagrams that do not make intuitive sense.  Secondly, some combinations of the above 

features can be represented as a simpler ERM (e.g. a N(p)-1(t) between a weak entity and 

its related entity can be represented much more simply as a basic aggregation 

relationship).  As for the former we assume a pre-processing of an EERM can detect these 
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“aberrant” relationships, while for the latter we also assume that the simpler solution is 

drawn. 

Nonetheless the biggest problem is that these advanced constructs require more than 

malleable structural rules; in fact good transitional data description constructs are 

required. 

2.3 How and How not to Use ERM 

ERM is a high-level language and we have seen how its diagrams capture a reasonable 

level of structures, relationships and constraints.  From a software engineering perspective 

there is yet another important aspect for using ERMs for database analysis and design: 

how to go about creating the diagrams – i.e. a methodology.  If the use of ERM is part of a 

larger methodology (e.g. SSADM) then it is best to follow the guidelines of the methodology 

and representation.  If, on the other hand, we are interested in building the database and 

depicting its role in the overall functionality, then a methodology as presented in Batini’s et 

al textbook [BATIN92] is a well-known technique. 

In general an ERM is used in top-down design methodologies where these are given an 

informal description of the data requirements and the diagram is built by refining and 

building on successive versions of the diagram. 

The general advantages of using ERM’s proposals in database design are the following. 

1) ERMs are high-level languages that are relatively easy to read by a wide spectrum of 

users (analysts, designers and selected end-users). 

2) ERMs are independent from any particular data model and especially any database 

physical constructs (e.g. indices, or data placement policies). 

3) ERMs describe a high proportion of the data structures, relationships and static 

constraints that an information system requires.  These models are in fact used in 

describing the conceptual and external schemas of the ANSI/SPARC three-level data 

architecture.  Also some papers use ERMs as a basis for building co-operative 

information systems (e.g. a loosely couple multi-database framework); a a seminal 

paper is [HEIMB85]. 
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4) ERMs are also used as a test bed during the analysis and early design phases.  The 

diagrams are useful to verify and validate an information system’s high-level 

requirements. 

5) ERM’s constructs are not fudged or dictated by the target database model; for 

example, with a relational data model an M-N relationship is broken into two 1-N 

relationship and a resolving entity. 

The main disadvantages of using an ERM approach in database design are the following 

four. 

1) A properly drawn ERM does not guarantee it is devoid of data redundancy.  In fact it 

is highly appropriate to re-design critical areas of the diagram through bottom-up 

data analysis (especially if the target data model is the relational then at least Boyce 

Codd Normal Form should be established).  Also some patterns in a diagram require 

the analysts to re-check these (more specific examples, such as connection traps, are 

given in the following sub-section). 

2) For information systems that have a “large” design the size of the diagram and 

interconnections make it hard to read and maintain (e.g. re-draw).  Some researchers 

(a case in point being Elmasri [ELMAS10]) do attempt to “package” the diagram 

through a partitioning into simpler diagrams.  Also some highly data-driven and 

modular systems (with an end-less list of start-up and operational parameters – e.g. 

SAP accounting package { WWW.SAP.COM }) makes the diagram a “complex” graph.  

Consequently EERMs do not scale with size of design. 

3) There is an issue of drawing standardisation.  This is made worst by having 

Graphical User Interface design tools that are too tightly coupled to a specific DBMS. 

4) A query model, based on ERM, is not available per se.  Nonetheless, subsets of ERM 

diagrams are used to describe the structure of an external schema – a view.  An 

interesting development in UML from OMG is Object Constraint Language (OCL) 

[OMGRP06] and Query/View/Transformation (QVT) [OMGRP11]. 

2.3.1. ERMs and CASE tools 

A number of tools are available to the designer who wants to adopt ERM modelling.  These 

provide drawing, and conversion to a database model – mostly relational and a few object 

www.sap.com


Object-Oriented Data and Query Models 

Conceptual Modelling - Page [ 27 ] 

relational.  Popular examples include CA Erwin { WWW.ERWIN.COM }, Toad Data Modeller 

{WWW.QUEST.COM/TOAD-DATA-MODELER }, and DB Designer (which is open source and recently 

renamed) { WWW.FABFORCE.NET/DBDESIGNER4 } – see figure 2.12.  The better ones allow for 

customisation but mostly ‘improve’ on Chen’s original diagram artefacts.  A useful feature 

is the ability of a tool to read a database data dictionary and reverse engineer an ERM. 

 

Fig. 2.12 – Screen dump from one of the conceptual design CASE tools. 

2.4 Problems with ERM/EERM diagram 

A perennial problem with ERM is whether a fact in the information system is presented as 

an entity or as an attribute in another entity.  A case in point is an address abstraction.  

The design heuristic taught for resolving this issue is checking in the requirements whether 

an address ever needs to be decomposed into further parts.  If it is then convert the 

attribute into related entity.  Another aspect to consider when making this decision is the 

data quality level requirement; for example does the address postcode need to spatially 

coincide with that of the Post Office.  For example, if our information system does not 
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match on addresses but feeds into another system which does that (e.g. a data warehouse 

[INMON02]) then the address is better represented as an entity. 

Another nagging problem is the admission of “null” values.  In databases a null occurs 

mainly in two situations.  The first it comes about when an instance does not have an 

applicable value for an attribute (e.g. a company does not have a birthday).  The second 

comes about from the lack of knowledge about an entity’s attribute (e.g. a person has a date 

of birth which is not known in the system).  The occurrence fudges the meaning of 

instances, as the presence of a null in an attribute’s value is ambiguous.  It is best to 

“design out” the possibility of null assignment in parts of the ERM where computations and 

comparisons are intense. 

There is another level of problems with ER diagrams.  These are patterns that, based on 

arrangements of entities and relationships, although structurally correct, do not completely 

convey the meaning of the domain of discourse – these patterns fall under the generic term 

of connection traps.  Also some constraints are either too specific or too general; and 

consequently the constraints of the application are not exactly right. 

2.4.1 Connection Traps 

Given we have two entities that are connected through a sequence of relationships (i.e. 

more than two).  If any instance of these two entities is found not to be in an adjoining 

relationship instances when it is meant to be present, then we have a connection trap. 

Let us develop an example.  We assume that a team hires many employees, an employee 

works on a succession of projects, a project has many employees, and it is understood that a 

team must control a project.  A diagram that represents this has three entities, namely 

TEAM, EMPLOYEE and PROJECT, and two relationships namely a 1(p)-N(t) between TEAM and 

EMPLOYEE, and an N(p)-M(p) between EMPLOYEE and PROJECT – see figure 2.13.  A possible 

connection trap that we need to investigate is whether all instances of PROJECTs are 

related to a TEAM as expected.  Clearly we have a problem since some instances of PROJECT 

might not have any EMPLOYEE assigned to them (there is a partial-partial relationship 

between EMPLOYEE and PROJECT) and consequently cannot relate to any TEAM instance.  

This is typically called a chasm trap and comes about when a sequence of relationships has 
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a partial segment.  One solution requires us to introduce an explicit relationship between 

TEAM and PROJECT and a note that limits this N(p)-M(p) to relationship instances implied 

by the new TEAM and PROJECT relationship (i.e. it is a subset). 

TEAM

WORK 

AT
EMPLOYEE INSTITUTE

1N

PART 

OF

N

1

TEAM

WORK 

AT
PROJECT EMPLOYEE

1N

PART 

OF

1

N

 

Fig. 2.13 – ERM with a chasm trap (left) and fan trap (right) 

Another type of connection trap is the fan trap, this occurs when two one-to-many 

relationships emanate from one entity and an implicit relationship between the latter two 

is expected.  For example let us assume we have INSTITUTEs that launch a number of 

TEAMs, and INSTITUTEs hire a number of EMPLOYEEs – see Fig 2.13.  It is of course 

impossible to determine which EMPLOYEEs work on which TEAM.  To rectify this problem we 

need to re-order the two 1-N relationships, and specifically state that an INSTITUTE 

launches many TEAMs, and each TEAM hires many EMPLOYEEs. 

2.4.2 Many-to-Many Relationships 

It is inevitable that one opts for a many-to-many relationship when the constraints and 

sharing instances seem to be overwhelming a relationship design.  Unfortunately this may 

create a problem as in reality not all relationship instances, although possible in the design, 

are permissible in an application domain.  A simple example is the N-M between students 

and courses, as in reality there is a generic plan of courses for each degree and only form a 

“limited” selection does a student choose some units from the whole range (i.e. university 

wide selection).  Another representation of this is the clustering of the relationship 

instances given a number of students following the same degree program.  To solve this too 

generic N-M one should add notes after exhausting other possible design possibilities.  For 

example add another entity between courses and students such as modules that are a 

selection of courses a student is allowed to choose from. 
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2.4.3 Are Three Binary Relationships Equivalent to One Ternary Relationship? 

What is a ternary relationship?  It is a relationship between three entities and it is used to 

capture an association between these three entity’s instances.  The participation level in a 

ternary relationship is ‘one’ when an instance is related to one combination of the other two 

entity’s instances; otherwise it is a ‘many’ participation.  Consequently if there is an 

association between instances from three entities then no three pairs of binary associations 

can give the same meaning.  See figure 2.14 for noting the difference between the meaning 

of a ternary and binary relationships. 

PART

SUPPLYSUPPLIER PROJECT
PN

M

PART

SUPPLY 

SOME 

PART
SUPPLIER PROJECT

MN

CAN 

SUPPLY
USES

N N

M M

Fig. 2.14 – A ternary relationship is not, in general, reducible to three binary ones. 

Any ERM design verification should include a thorough investigation of the necessity of any 

ternary (or n-ary) relationship.  It is preferable to have three binary relationships rather 

than a ternary, implementation wise, but we have just seen that this is not a question of 

preference but data requirements. 

The necessity of a ternary (or n-ary) relationship is a problem because some CASE tools and 

data models only express binary relationships.  In these cases the n-ary relationship is 

coerced into an aggregated entity with each of its parts denoting one of the n-ary 

relationships.  Furthermore depending on the cardinality of the ternary a set of functional 

dependencies (a form of integrity constraints) needs to be defined and enforced. 

2.4.4 Formalisation of the EERM 

In some references, for example in Ng [NGPAU81] and Vossen [VOSSE91], the structure of 

entities, relationships and a number of constraints (even those found in EERM) are 

represented through a formal model using set, Cartesian products, and integrity 

constraints (i.e. first-order predicate logic denial queries). 

With formalisation of ERM and including functional dependencies (a form of integrity 

constraints) one, for example, can easily show that some ternary relationships cannot be 

represented as three binary relationships.  It is sufficient to show that if the combined 
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primary key sets of the participating entities determine a relationship attribute then there 

are no three binary relationships that can do so. 

Over and above its importance to express the exact meaning of a diagram it also serves us 

another purpose of great relevance here.  Basically these formal structures become our 

basis for the transformation into another database data model and carry the conceptual 

structures and constraints onto the database model. 

2.5 An Example 

A hypothetical database to represent most of the data model and query model examples 

discussed in this study is presented in this section.  This running example describes an 

organisation entrusted with the categorisation and dissemination of Research and 

Development efforts.  The organisation’s scope is in the fields of Information Systems and 

Telematics being undertaken by a number of research organisations.  Both governmental 

agencies and private organisations are sponsors of these research efforts.  This example is 

from Bertino’s exposition found in [BERTI91] and what follows is an informal listing of the 

system requirements, as simple textual statements. 

A number of projects are currently active and for each project, its unique name, 

aim and projected total cost are of interest.  Also each project assignment 

undertakes research that has a hardware or software profile, but some projects 

have aspects from both areas.  For hardware projects the details of interest 

include the devices and the functionality required by the assignment.  As for 

software projects the main interest is in their targeted computer environments 

and the associated tool-set required during their development. 

A number of teams participate in a project’s realisation and each team 

implements a part of the overall project for a predetermined fee.  The team’s 

properties of interest include its name (for identification purposes) and its 

employees.  Each team needs to know the total budget derived from the addition 

of all their participating projects’ budget allotments. 

A person is an employee of only one team and an employee’s pay terms are either 

on a permanent or on a consultative basis (e.g. per hour basis).  A team’s 

employees have a hierarchic placing and (therefore) some employees manage 

others.  Each employee has a distinctive name over the whole scope of the 

database. 
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Teams belongs to a research institution (in most cases are part of a University) 

and receive funds from “outside” sources.  Government and industry are the 

typical outside sources of funding.  Each of these sponsors can finance more than 

one project and more than one team.  In each funding instance it is pertinent to 

determine the exact commitment of a sponsor to each project, categorised by the 

team’s share. 

Details of interest about government and companies are their names, main 

activities and their contact addresses.  Some of the address locations, for a 

number of Government Departments, Institutes and Companies, are the same. 

The above requirements are drawn into the EERM given in figure 2.15. 
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Fig. 2.15 – An example EERM (notes are explained in the following). 

Notes to EERM: 

(1) The budget value for Project, Sponsor and Team instances is computed by summing all 

instances' budget contributions given in their respective allocation relationship. 

(2) Use the Address instances as part of an aggregation.  Relate as independent and 

shareable. 

(3) These are really 'class attributes'; consequently all instances would have the same 

value. 

(4) Should this relationship be changed to an overlap type then the multi-inheritance and 

entity 'S/W & H/W' are redundant. 
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2.6 Summary 

The assertion that Chen’s ERM is a popular top down design language is widely supported; 

the main justifications being its high-level nature and independence of any database data 

model.  A significant branching from it is found in part of UML.  This chapter surveys 

conceptual modelling through Chen’s and other later works in the area. 

Diagrams are composed of entities, relationships, and constraints.  Later additions to ERM, 

including sub-classing, categories and aggregation, are called EERM.  The introduction of 

these constructs not only requires malleable structures but also effective mechanisms to 

describe how the underlying data changes; for example changes to a part-of hierarchy 

required detailed data-changing procedures. 

The automated conversion of an EERM into an object-oriented data model is a priority in 

this study.  The conversion needs to have a high-degree of correctness and completeness.  

The effects of incorrectness are obvious; on the other hand the effects of incompleteness 

would imply that the ‘missing’ artefacts need to be hard wired and consequently 

disconnected from the DBMS control. 

The following chapters deals with a definition of an object-oriented database and data 

model, and presents and an object-oriented database standard.  In chapter nine, where our 

original work is presented, shows how an EERM model is translated into a standard object-

oriented database language.  The translation includes entities, attributes, various types of 

relationships, and constraints (e.g. referential, and primary key set). 
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3 – Object-Oriented Paradigm – Object Basics 

The object-oriented paradigm pioneers are Simula [DAHLO66] and Smalltalk [GOLDB88] and 

an early seminal paper is of Stefik and Bobrow [STEFI86].  An underlying theme, which 

attracts attention, is the mashing of structure and behaviour together in an object and 

availability of a development environment that further aids design and development 

though a number of features and mechanisms.  Currently the most popular programming 

language must be object-oriented Java [GOSLI05]. 

Object-oriented databases (or object databases) are repositories whose schema is defined 

through object-oriented modelling, which has a basis in the object-oriented paradigm.  Data 

modelling languages are no longer abstract; also they are the target language of the 

conceptual design surveyed in the previous chapter.  In this translation the data modelling 

must implement as much as possible of the design found in the diagram. 

A proposal, coming from the Object Database Management Group (ODMG) [CATTE00], of a 

standard has its own data and query model, and descriptions for latching an object 

database to object oriented programming language environments; e.g. coupling to Java.  

The effort has good support and passed a sequence of revisions. 

Nonetheless, no “common” object-oriented data model exists in the sense of the relational 

data model.  There seems to be two main reasons for this deficiency.  Firstly the basic 

themes of the object-oriented paradigm are data abstraction through objects, identification, 

object value, classification, inheritance, and type polymorphism.  Although the feel of these 

themes is quickly grasped, their combination hides a subtle variety of options.  

Furthermore the options and implementation issues available within the paradigm are 

staggering.  Wegner in [WEGNE89A] identified some 128-design options based on seven 

paradigm features and states that "some are more interesting than others".  Secondly the 

relational model, together with the relational calculus and algebra, has its formal basis in 

first order predicate calculus.  This logic is understood and accessible.  On the other hand, 

object-oriented themes come from a widespread spectrum of research areas (as varied as 

computer science, type theory and psychology) – see figure 3.1.  Consequently each theme 

comes with its own theoretical background, requirements, and idiosyncrasies. 
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This chapter and the consequent two survey the object-oriented themes and object-oriented 

data modelling with a strong bias for the database perspective.  The fundamental theme is 

the object and other themes include identification, classes, inheritance, and data typing.  

The chapter leads to the definition of an object-oriented database.  Consequently this 

definition is compared, and used to explain, an object-oriented data model adopted by OMG 

and ODMG. 

Figure 3.1:  Spheres of influence on OODBs development 

In most of the object-oriented data models the object is the major construct.  The objects 

model an information system’s instances.  At a shallow level, an object is a capsule of 

properties that includes the instance’s unique identity, state value and behaviour.  An 

object has a life history: it is created, updated and possibly purged.  This locality of object 

properties is conceptual.  Using the consumer and supplier analogy, processing with objects 

entails consumer objects specifying what a supplier object should do for them but implicitly 

it is the supplier’s prerogative to attempt to match an appropriate behaviour to the 

consumer’s requests. 

The aim of this chapter is to expose high-level ideas of encapsulation and then to start 

building a definition of an object.  The basis of an object’s value part description is 

structural and consequently straightforward.  Object interaction through message passing 

invoking methods is also surveyed in this chapter.  A graph structure of values is used to 

depict an object’s state.  In the later parts, i.e. object identifier section, this graph structure 

is redefined to include value sharing through identifiers.   
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3.1 Encapsulation 

In object-oriented programming languages encapsulation is applicable at an object level and 

it provides feature locality and supports information hiding [MITCH03].  The feature's locality 

implies a collection of an object’s identity, state values and behavioural semantics into a 

single artefact.  The encapsulation feature provides for information hiding by having an 

object declare a number of operations as part of an external interface that is available to its 

clients and another set of operations as part of an internal operation that are only for its 

own use and hidden from any clients.  Clearly the external interfaces partially specify the 

behaviour of an object while the internal operations implement its behaviour. 

One of the important mechanisms for data abstraction in an object-oriented paradigm is 

encapsulation.  Encapsulation, in turn, develops structures where modularity can yield 

better software development by defining the external interfaces through which objects 

interact.  Data abstraction has a strong grounding in computing. For example Simula 

[DAHLO66] has encapsulation and Parnas’ exposition [PARNA72] on data abstraction shows 

the advantages of modularity in software development. 

Other than locality and information hiding, encapsulation favours: 

1) An increase in modularity, loosely described as "autonomous, coherent and organised in 

a robust architecture" programming artefacts [MEYER96], yields a dramatic reduction of 

interdependencies amongst entities. 

2) An increase in comprehension capability of developers brought about by examining the 

external interface of objects. 

 3) A relatively narrower range of objects is affected by code maintenance brought about on 

supporting an Information System’s evolution. 

4) A capability for an object’s internal restructuring if its external interface remains intact. 

3.1.1 External Interfaces 

The external interface is typically described with a set of operations. Each operation has a 

name and a list of arguments with their corresponding type.  Also an indication of the 

returned object type is given.  Note that this technique avoids giving a formal specification 

of each interface operation; in fact this is only a syntactic rendition of the interface. 
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3.1.2 Data Independence and Encapsulation 

The virtues of data independence in database modelling are well known.  So are, at this 

point, the virtues of encapsulation for application development.  Although data 

independence and encapsulation is not the same thing they are reconcilable with a 

compromise.  In object-oriented data modelling an object’s structure is an important part of 

its definitions.  This contrasts with object-oriented programming (especially those with 

abstract data type genera) where an object’s structure is an implementation detail and the 

public interface provides the main view of the object.  A rational explanation is to place an 

entity's attributes and behaviour as part of an object’s external interface and ensure that no 

data modelling construct assumes anything about an object’s internal implementation (e.g. 

object placement or property’s vicinity of other attributes). 

A valid reason for wanting to know the structural make-up of an object is to enable 

querying objects, especially those objects made up of other sub-objects.  The resolution of 

this dilemma follows the above solution of placing this structural profile into the external 

interface.  Nonetheless these external interfaces specifications must remain free of any 

physical specifications. 

3.1.3 Encapsulation and Inheritance 

Encapsulation in systems where objects do not share or export their specification is a 

straightforward mechanism.  When an object imports part of its specification from another 

object (this is a form of specification inheritance) encapsulation is no longer as robust. In 

this case the specification supplier has constraints on its external interface through the 

importing objects' dependencies.  This is a conflicting situation, specifically how to balance 

internal re-organisations needs with other objects' interpretations, has long troubled the 

paradigm (Synder’s OOPSLA paper [SNYDE86] is one of the first reports on encapsulation 

and inheritance in evolving application development).  Chapter four on “Classes and 

Inheritance”, considers the consequences and possible solutions to this problem in further 

detail. 

3.2 Objects and Values 

In this section we dissect various models that describe object components; e.g. identity and 

value composition.  The build-up of an object composition starts from the simple to the 
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complex model with logical identity.  The following sub-sections introduce some basic 

notation and sets. 

3.2.1 Basic Sets 

A set is a collection of instances (some of which could be sets) and is denoted by an 

enumeration of the elements enclosed with curly brackets; namely “{“ and “}”.  Some sets 

have a name.  The null set is a special case of a set (because it is a set with no elements) 

and it is universal.  Null sets symbols include “{ }” or .   

This subsection is mostly based on Beeri’s robust terminology [BERRI90A].  It is assumed 

that there exist a restricted number of basic domains, for example integers, characters and 

Booleans.  Domains need to have their content well known – i.e. universally known.  An 

atomic value is an element of a basic domain; for example ‘9’ denotes an instance of the 

integer’s domain.  Values are fixed, visible, and are ever present.  Each basic domain, Di, 

has its own name, DNi.  D is the disjoint union of all Di: D D i= i .  

In the database culture sets are expected to be homogeneous.  For example the set of 

salaries has all its elements pertaining to the domain of integers. 

Attributes are named characteristics of structures (or objects).  There is a countably infinite 

number of attribute names in set A, and each instance in this set, denoted by ANi, has an 

association to a domain. 

A tuple is a structure that encloses its attributes (we use the square brackets “[“ and “]” to 

enclose them).  A tuple’s specification includes a set of attributes name and value pairs.  If 

ai  A and n > 0 then [a1:v1,  , an:vn] is an n-tuple instance. The “[]” denotes the null tuple.  

Tuple t, for example, with aj attribute has its value denoted by t[aj]; t.aj is a misnomer 

adopted within the database culture. 

For a more flowing description the existence of some other sets is given before being 

explained.   The first is the set of class names, C, that denotes a finite number of class 

names, CNi.  The second is a possibly infinite set of identifiers, O.  There is a special 

identifier, called null identifier, which points nowhere.  Elements of O have a number of 

notational variances; typical examples are idi and oi. 



Object-Oriented Data and Query Models 

OOP – Object Basics - Page [ 41 ] 

The enumeration of the set of structured values without object identifiers, val, depends on D 

and a set of structural composition rules (e.g. tuple constructor).  Each set of rules describes 

a particular state structure.  In the next sub-sections an overview of three such rule sets is 

given. 

3.2.2 Tuple Structured Values 

Structured values in the relational data model are the tuples, representing instances, 

which relations (i.e. tables) take.  The tuples are a subset of the Cartesian product of the 

relation’s schema attribute domains.  The tuple and set are type constructors and create the 

structured value schemas.  See table 3.1 for the data and type definition of relational 

values.  The relational model’s first normal form severely limits the structural profile of 

values in two ways.  First, the only valid use of the type constructors is a set following a 

tuple type constructor application.  Second, the attributes may only range over basic 

domains. 

Table 3:1  Tuple Structure Values 

Rule Generating Part 

The rules that generate the set of relational structure values, valr, on D are: 

1) All instances of D are values of valr.  Therefore all atomic values are part of valr; 

2) If v1,  , vn are n values and a1,  , an are a distinct sequence of attribute names from 

A then [a1:v1,  , an:vn] is a tuple type structure value, valr. 

Typing Part 

The world of types is:  t  ::=  D  

Type t’s interpretation,  t  , follows: 

1)    =  

2)  D   = D ; and 

3)  [a1:D,  , ak:D ]   = { [a1:v1,  , ak:vk ] | vi   D , i = 1   k }. 

 

3.2.3 Non First Normal Form Structured Values 

The first normal form slackening in relational modelling was Makinouchi’s proposition in 

[MAKIN77].  This work led to a more liberal use of the type constructors.  The non-first 

normal form (NF2) relations, the name of these new structural profiles, allow the repeated 

use of the set and tuple constructors (as a whole).  NF2 relations, therefore, can have a 
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relation as an attribute’s domain other than a basic domain.  The relation’s nesting depth 

can have any depth but fixed at design time.  See table 3.2 for the data and type definition 

of nested relational values.  Also, in many NF2 models, another normal form is in force and 

many call it the partitioned normal form (PNF) [ROTHM88].  A nested relation is in PNF if 

all relation schema attributes are functionally dependent on all the basic domain 

attributes.  

Table 3.2:  Nested Relational (NF2) Structure Values 

Rule Generating Part 

The rules that generate the set of complex structure values, valnf, on D are: 

1) All values of D are values of valnf.  Therefore all atomic values are part of valnf; 

2) If v1,  , vn are values and a1,  , an are a sequence of distinct attribute names from A 

then [a1:v1,  , an:vn] is a nested tuple type structure value, valnf. 

Typing Part 

The world of type is: t  ::=  D | [ a1:t,  , ak:t ] 

Type t’s interpretation,  t   , follows: 

1)    =  

2)  D   = D ; and 

3)  [a1:t1,  , ak:tk ]   = { [a1:v1,  , ak:vk ] | vi   ti  , i = 1   k }. 

 

3.2.4 Complex Structured Values 

The data model of Abiteboul and Beeri in [ABITE93A] addressed the set and tuple sequence 

non-commutatively by advocating for the unrestricted use in the order of these type 

constructors.  Their only restriction on the type constructors' sequence is that the last 

constructor must be a set.  The authors named these structures Complex values and in 

table 3.3 one finds their data and type definition.  For an example see figure 3.2.  The 

resultant schemas are acyclic – no part of the schema is defined by itself.  Finally, it is 

easily shown that complex values are generalisations of NF2 and relational values.  Also 

one can map a complex type into a NF2 type by converting a string of type constructors to a 

sequence of set and tuple pairs – see figure 3.3. 
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3.2.5 What gains? 

What are the advantages attained through the adoption of the nested values and complex 

values?  Firstly we have untied ourselves from the restriction of the relational model’s first 

normal form.  Therefore some data access need not require explicit joining of a number of 

relations to access it.  Secondly, although not exemplified here, there are a number of 

reported algebraic and calculus based languages that manipulate these complex structures.  

Unfortunately these complex structures aren’t friendly to instance sharing; this is 

addressed with the interleaving of object identifiers and complex structures in objects. 

Table 3.3:  Complex Structure Values 

Rule Generating Part 

The rules that generate the set of complex structure values, valcs, on D are: 

1) All values of D are values of valcs.  Therefore all atomic values are part of valcs; 

2) If v1,  , vn are n values and a1,  , an are distinct sequence of attribute names from 

A then [a1:v1,  , an:vn] is a tuple type complex structure value, valcs; 

3) If v1,  , vn are n distinct values then {v1,  , vn} is a set complex structure value, 

valcs.  (Note the implicit prohibition of a heterogeneous set; this is common in 

databases). 

Typing Part 

The world of type is: t  ::=  D | [ a1:t,  , ak:t ] | { t } 

Type t’s interpretation,  t , follows: 

1)    =  

2)  D   = D ; 

3)  [a1:t1,  , ak:tk ]   = { [a1:v1,  , ak:vk ] | vi   ti , i = 1   k }; and 

4)  { t }  = { { v1,  , vm } | vi   t , i = 1   m }. 
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Figure 3.2:  Complex Values Relation a) Structure, b) Instance and c) Type Tree 

a) (note attributes in angle brackets (e.g. members) take a set of values.) 
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3.3 Object Identity 

Entities and instances that are of interest to an information system must be identifiable 

and reachable, and consequently identification is part of many conceptual data models.  In 

the database culture there is a strong notion of keys for identification of instances.  

In the object-oriented paradigm a key is called an identifier and each object has one.  An 

identifier is a handle through which other objects refer to it; the seminal papers on this 

theme are [KHOSH86] and [ABITE89B].  Typically this identifier is 1) unique, it distinguishes 

its holder from every other object within a collection, 2) immutable throughout the object’s 

life span, 3) an internal property of an object and therefore is not usually seen or useable by 

Figure 3.3: Nested Relational Structure (2NF) Type Equivalent to the Complex Value 

Structure type of Figure 3.2 (c).  The darkened part of the figure represent 

the changes introduced to match the structures. 
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end users, and 4) its value has nothing to do with its object properties.  Furthermore in 

object databases Atkinson and Morrison [ATKIN95] assert that other than identification 

issues one also needs to correctly map application domain instances to corresponding 

repository objects.  

When an object is created, called instantiation, an identifier is created for it.  In any object 

collection there is a huge quantity of un-instantiated objects; for example integers being 

values of a basic domain.  At this point the subtle issue of what is a value and what is an 

object is reinforced with the help of object-identifiers (as argument already introduced 

earlier in section 3.2).  The general consensus documented by Beeri [BERRI90A] is to make 

the following distinctions: elements of the basic domains are “universal” abstractions and 

ever present, while elements of an information system’s entities are “local” abstractions, 

created on ad hoc basis and have a lifetime.  A technical refinement to this distinction is 

that; the former carry their own information and therefore identify themselves; while the 

latter carry an object’s information content that includes relationships to values and to 

other objects represented by identifiers.   

The paradigm offers object access methods based on navigation but must not exclude access 

based on values.  This contrasts sharply with the access methods found in most 

programming languages and in relational databases.  The following two examples explain 

common pitfalls in either access method: 

1) In programming languages, a memory address pointer (that is identification by 

addressing) facilitates access to a variable's state value and the address is dependent on the 

executing environment rather than on the object it identifies.  A problem may arise when 

having a number of addresses depicting "different" objects when they are identical.  For 

example, a certain employee satisfies a query (return an employee name (a non-distinctive 

property) who earns more than £35,000) and he is bound to the variable WELL_PAID_EMP, 

contemporaneously the same employee satisfies another query (return an employee name 

with a managerial job status and who is working in London) where he is bound to the 

variable LONDON_MANAGER.  These two variables are accessible through different paths (for 

example by pointer re-direction) and for the programming language to support the equality 

semantics it needs specialised constructs that can ascertain the equality of variables 



Object-Oriented Data and Query Models 

OOP – Object Basics - Page [ 47 ] 

WELL_PAID_EMP and LONDON_MANAGER through some pointer chasing mechanism (e.g. 

dereferencing).  

2)  The relational model introduces the notion of a value-based key.  Furthermore the 

relational key is unique within the scope of one table.  A marked confusion arises with 

value based keys because of the differing concepts of value and identity.  A serious 

drawback of this double usage is that the values of the key attributes cannot change 

without affecting the referential integrity of the database. In some of the world’s societies, 

for example, when a female marries she has to forsake her family’s surname for that of her 

spouse.  If the key attribute set contains the family’s surname then a change in that value 

causes an introduction of a second entity (with the new surname) for the same person.  To 

address this in value-based keys, it is a common practice to introduce an “artificial” 

attribute (e.g. employee number) that has no semantic meaning.  Nonetheless this scheme 

is an effective one, and ironically takes the role of a value-based pointer due to the 

attributes lack of semantic meaning. 

In some pre-relational data models the use of pointers for linking one record to another 

resembles the paradigm’s identifiers.  This resemblance led to numerous, and rather loud 

criticism of identifiers in early object-oriented data models in that they re-introduce pointer 

chasing present in the traditional models.  Furthermore Ullman in [ULLMA87] categorically 

states that “object-identity does not mesh well with declarativeness”.  Insisting on the 

conceptual nature of the object-identifiers and leaving the physical pragmatics as an 

implementation detail avoids this polemic. 

The identification property in an object-oriented data model offers the implicit support of 

object equality and sharing.  Through its identifier an object is identifiable from any other 

object and furthermore the identifier is independent of its values, location (in main or 

secondary store), and addressability.  By assigning an identifier to an object's state, sharing 

of objects throughout the collection is possible and is independent from the assigned values.  

This sharing introduces the possibility of building cyclic graphs in an object collection.  

Specifically a number of objects can share an object (or refer to it) without the latter being 

replicated. 
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Three binary predicates, IDENTITY, SHALLOW_EQUALITY and DEEP_EQUALITY, are useful to test for 

the equality of two objects and their level of sharing – this takes care of the identification 

by addressing issue previously presented.  The predicate IDENTICAL evaluates to true when 

the two objects have the same identifier.  SHALLOW_EQUALITY imply that the two objects have 

equal values and objects for their properties.  DEEP_EQUALITY is satisfied if each object’s state 

has equal values when all references are recursively “folded out” by the values they 

represent.  Two identical objects are also shallow equal.  Two shallow equal objects are also 

deep equal.  But generally two deep equal objects are not shallow equal and two shallow 

equal objects are not identical. 

A formal treatment of deep equality in the presence of cyclic graphs (and consequently the 

possibility of infinite trees) is found in Abiteboul’s paper [ABITE95B].  Different copying 

against sharing operators are also required, such as shallow and deep copying, as first 

found in Smalltalk-80 [GOLDB88] and in Common Lisp Object System (CLOS) [BOBRO86].   

Nonetheless it is known from [BEERI99] that, in general, identifiers alone in cyclic structure 

are not sufficient to distinguish two objects. 

3.3.1 Logical aspects of identification 

Modelling identity in a logic-based framework has its own considerations.  A thorny 

problem of identification in logic systems is the generation of new identifiers for derived 

facts.  Chapter six has two sections, i.e. on F-Logic [KIFER95] and Flora2 [YANGG08] that 

addresses this point. 

To achieve rendition of identification, logic systems name a specific interpretation for each 

basic domain.  These basic domains have an implied interpretation rather than a rule 

definition.  Consequently each element of the basic values pertains to interpreted domains 

and each instantiated object pertains to the un-interpreted domain.  Access to values and 

objects in a logical system are through the ground syntactic terms of the query language 

(specifically the Herbrand Universe). 

3.3.2. Complex Value Structure and Nested Relational with Identifiers 

Tables 3.4 and 3.5 have the redefinition of a complex and nested relational value with 

identifiers and figure 3.4 is an example.  For a start, an object database schema S is a pair 

of (C, T) where C is set of classes, T is the application of C in types (see type definition part in 
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figure 3.4).  An instance I of the database schema S is a pair too with the following 

assignments: an assignment  of classes to each of the class instances, and assignment  

between the parts of an object to their value. 

An object, o, up to this point, is a triplet between its identifier, value (either complex or 

nested relational) and an instantiating class. 

o = (id, obj, class)          Remark: write o.id object id 

The meaning of equality, shallow and deep equality is expressed with the following 

relationships: 

Remark: assume we want to relate two objects o1 and o2 

 

Remark: object equality 

 

iff ( o1.id == o2.id ) then object_equality( o1, o2 ) holds. 

 

Remark: shallow equality 

 

iff( o1.id != o2.id & o1.obj == o2.obj )  then shallow_equality( o1, o2 ) holds. 

 

Remark: deep equality 

Remark:   assume the presence of a function, obj_to_val, that recursively  

          replaces all ids in o.obj with basic values 

iff ( o1.id != o2.id & o1.obj != o2.obj &  

      obj_to_val( o1.obj ) == obj_to_val( o2.obj ) ) 

then deep_equality( o1, o2 ) holds 

 

Table 3.4: Object Values (Complex Structure Values with Object Identifiers) 

Rule Generating Part 

The rules that generate the set of object values, obj, on D and O are: 

1) All values of D and O are values of obj; 

2) If v1,  , vn are n object values and a1,  , an are a distinct sequence of attribute 

names from A then [a1:v1,  , an:vn] is a tuple type object value, obj; 

3) If v1,  , vn are n distinct object values then {v1,  , vn} is a set object value, obj. 

4) All references are associated with instances of a class. 

Typing Part 

The world of TYPE is: t  ::=  | D | C | [ a1:t,  , ak:t ] | { t } 

Type t’s interpretation, given a certain mapping of identifiers - ,  t  , follows: 

1)       =  ; 

2)   D   = D ; 

3)  C, C  C ,  C   = (C) ; 

4)  [a1:t1,  , ak:tk ]   = { [a1:v1,  , ak:vk ] | vi   ti     , i = 1,  , k } ; and 

5)  { t }  = { { v1,  , vm } | vi   t    , i = 1,  , m } . 

Note: In 5 of the above a type determines the structure of the values 
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3.3.3 Identifiers and Referential Integrity 

Given the ability to discriminate objects based on their conceptual identifier (and for 

simplicity we disallow synonyms), postulates on the consequent requirements for a 

referentially consistent collection of objects follow.  These two assertions are due to 

Khoshafian and Copeland [KHOSH86] and must hold for an object collection.  The unique 

identifier assumption maintains the uniqueness of the object identifiers in a collection, 

while the no dangling identifier specifies that there can be no reference to an object that 

does not exist. 

These two assumptions are integrated into the object values with identity by introducing 

the following integrity constraints (integrity constraints are explained in detail in chapter 

seven): 


 )()o(),(o

)collection in the bemust                  

 thatsidentifier (including structure ue their valrespectsobject each  of                 

part each value and collection in the sidentifier instance their have classes all  :Remark

CvCC TC, 

 

3.3.4 Identification’s Pragmatics 

The conceptual object identifier has a physical, or a system level, counterpart.  At this 

latter level the identifier is an address to a memory storage space.  The principal 

engineering issues for physical identifiers are their generation and the efficiency of 

operations they participate in.  These operations are basically the retrieval of the 

Table 3.5:  Nested Relational (NF2) Structure Values with Object Identifiers 

Rule Generating Part 

The rules that generate the set of complex structure values, objnf, on D and O are: 

1) All values of D and O are values of objnf.  Therefore all atomic values are part of objnf; 

2) If v1,  , vn are n values and a1,  , an are a distinct sequence of attribute names from 

A then [a1:v1,  , an:vn] is a nested tuple type structure value, objnf. 

Typing Part 

The world of type is: t  ::=   | D | C | [ a1:t,  , ak:t ] 

Type t’s interpretation, given a certain mapping of identifiers - ,  t  , follows: 

1)       =  ; 

2)   D   = D ; 

3)  C, C  C ,  C   = (C) ; 

4)   [a1:t1,  , ak:tk ]      = { [a1:v1,  , ak:vk ] | vi   ti  , i = 1,  , k }. 
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referenced object and possibly retrieval of other objects referenced in a target object; 

consequently a good part of a DBMS performance depends on efficient implementation of 

the referencing mechanisms vis-a-vis expensive disk access requirements.  Two common 

mechanisms follow. 

In the first mechanism a function, that guarantees the uniqueness of the spawned 

identifier, bestows an identifier to an object on instantiation.  The next step involves 

placing the object’s state into a storage space slot.  Finally, add to an index entry that 

associates the identifier to its physical location.  Some object DBMS refine this by 

augmenting the spawned identifier with typed information (for example the class instance 

that created the object).  Typically, with extensible hashing techniques, an object access 

takes one or two disk page reads.  POSTGRES [STONE90A] is one of the earlier 

implementations to adopt this scheme. 

In the second mechanism the identifier is actually a physical address of the object in the 

storage space.  It is a structure of values (for example a volume and disk page).  There are 

two main problems here; this regime loses its conceptual nature previously advocated, and 

an object that has to move into another storage location must leave, in its original address, 

a pointer to the new location.  This has two effects on the DBMS performance and whose 

severity depends on this redirection frequency of occurrence:  1) access is no longer in a 

single data access path but in two; 2) storage page fragmentation becomes more difficult to 

control.  The ONTOS [ANDRE90] implementation advocated this structural scheme. 

A final point about the implementation details of object's identifier concerns the 

preservation of a collection’s referential consistency.  In a strong identity regime any 

operation over the collection must preserve the assumptions at all costs.  For example, an 

object stays in existence for as long as any reference to it is present: that is no explicit 

purging operation is available and hence garbage collection must be present.  Strong 

identity can cause problems associated with logical pinning too (inaccessible objects 

continue to reside in a collection). 

Goldbreg and Robson [GOLDB88] suggest ignoring these rules to allow a level of weak 

identity (with explicit object destruction being supported); this is acceptable only if an 
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adequate exception-handling procedure exists to support the situation when an object 

reference is no longer satisfied by an object in the collection (called dangling reference).   

3.4 Message Passing 

The intra-object communication aspect of most object-oriented systems is taken care 

through a message passing metaphor.  This metaphor is not exclusive to object-orientation 

even though many see the influence of early object-orientation on the pioneering Actor 

[HEWIT73] model.  A communication starts by identifying an object and passing to it a 

message together with a number of arguments.  The receiving object becomes active and 

reacts by executing an operation it associates this message; this operation is called a 

Figure 3.4: Nested Relational Structures with Identifiers Example 
 

The database schema is: 

S1 = ( { TEAM, PERSON }, T ) 

 

Remark:  object identifiers are in italic and arbitrary start with the letter O 

Remark:  classes are written in bold (e.g. PERSON) 

 

T ( TEAM )   = [ DESC : CHAR, MANAGER : PERSON, MEMBERS: { [ MEMBER:PERSON ] } ] 

T ( PERSON ) = [ NAME : CHAR, SKILLS : { [ SKILL:CHAR ] },  

                 PREV_TEAM_MEMB : { [ PREV_TEAM:{ [ MEMBER:PERSON ] } ] } ] 

 

A database instance IS1 that is based on S1 is: 

IS1 = ( ,  ) 

 

Remark:    a mapping from classes to its extent in object identifiers 

 ( TEAM )   = { O10 , O20 } 

 ( PERSON ) = { O101 , O103 , 0105 , O106 , O109 , O110 , O113 } 

 

Remark:   partial function from an object identifier to its value (in obj) 

 ( O10 )  = [ DESC : ‘R&D’ , MANAGER : O101 ,  

                MEMBERS : { [ MEMBER: O101 ] , [ MEMBER: O103 ] } ] 

 ( O20 )  = [ DESC :’SND’ , MANAGER : O110 , 

                MEMBERS : { [ MEMBER: O110 ] , [ MEMBER: O113 ] } ] 

 ( O101 ) = [ NAME : ‘JADE’ ,  

                SKILLS : { [ SKILL : ‘DOC’ ] , [ SKILL : ‘DESIGN’ ] } , 

                PREV_TEAM_MEMB : {  

                    [ PREV_TEAM { [ MEMBER: O101 ] , [ MEMBER: O105 ] } ], 

                    [ PREV_TEAM { [ MEMBER: O101 ] , [ MEMBER: O109 ] } ] } ] 

ETC 
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method.  It is imperative to emphasise that the operation an object executes is part of its 

own definition and not a part of the message transmission. 

For example the message expression (2 PLUS 4) reads as follows; ask object denoted by 

“two”, an integer, to execute its plus operation with object “four” as an argument.  For this 

message, object “two” binds to his method PLUS and pops the object “six”.  If the message 

expression is part of an assignment, SUM <- (2 PLUS 4) is an example, then the variable SUM 

is assigned to the object “six” after executing the expression. 

Message passing provides for blocked asynchronous inter-object communication.  The most 

common mechanism is for the receiving object to pop the expression’s resultant object on to 

the environment.  An object collection is computationally passive; that is, no object is 

executing a method.  A collection’s environment, on the other hand, implies that there is a 

computational process-taking place; it is the usual case that there is at least one active 

object at a point in time  The asynchronicity aspect of message passing comes about by the 

transfer of the current object status from one object to another in a given environment.  In 

the last example, when “two” is the current active object it is executing the message plus 

and the assignment is blocked.  On “two” finishing the plus computation, the object SUM 

becomes active while “two” recedes into being an inactive object. 

3.4.1 The Message Passing and Method Determination Mechanisms 

The message-passing paradigm hides a number of elaborate and subtle mechanisms.  The 

first mechanism accepts, or otherwise, messages sent to it.  The messages that an object 

accepts are those included in its external interface.  To each external interface there is a 

separate mechanism that attaches a method (or an attribute) definition to it. (The latter 

mechanism enforces a partial ordering of methods from local and inherited definitions 

based on their vicinity to the receiving object – details of which are in the “classes and 

inheritance” chapter.)  The closest method overrides all other applicable methods found in 

this partial ordering.  The lack of prior knowledge, even to the receiving object, of which 

method to execute for satisfying a message leads to a late binding practice.  A message and 

an object’s external interface mismatch compel the receiving object to returns a ‘message 

not understood’ error message to the sending object. 
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A method’s computation sometimes entails invoking other methods attached to the current 

active object; that is an object sends a message to itself.  A pseudo name for the current 

active object, like self in Smalltalk, realises this mechanism.  The self name appears in a 

method’s specification.  An effective example of the self pseudo name’s use is the following 

Smalltalk [GOLDB88] implementation of the factorial function: 

factorial 

 self = 0 

  ifTrue:  [^1]. 

 self  < 0 

  ifTrue:  [self error: ‘factorial invalid’] 

  ifFalse: [^self * (self - 1) factorial] 

Another pseudo name is super (again using Smalltalk’s terminology).  The use of super in 

method implementation forces the receiving object to bind not with the most local method 

but the next one along the partial ordering of methods associated with the receiving object 

(this is explained further in the “classes and inheritance” chapter).  The most common use 

of super is when a method definition involves an overridden method.  This is an important 

and effective code re-use facility.  It is sometimes known as incremental behaviour 

specification. 

The determination of which method to execute when an object receives a message depends 

on two mechanisms: firstly on the external interface and secondly on the method look-up 

through the local and inherited method implementation.  These two mechanisms effectively 

isolate the scope of the methods relative to a receiving object. 

It is common that a method name is ubiquitous in objects but each invocation entails 

separate semantics.  This methodology is called method name overloading.  A text book 

example of overloading is the PRINT method example.  Most objects require a different 

implementation and consequently the name PRINT is overloaded. 

Method name overloading occurs throughout the collection while method name overriding 

is a selection mechanism applicable within the scope of the receiving object’s own and 

inherited definitions. 

3.4.2 Message Passing and Function Calls 

Structurally the syntax for function calls and message passing is easily reconcilable: a 

function call takes the form of FUNC(ARG1, ... , ARGN); while a message passing takes the 

form of RECEIVER_OID MSG ARG1 ... ARGN. 
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Assume the presence of a set of method names, M.  A method expression for Mn follows, 

where Mn is a member of M, Cn is the class with which the method is associated, and Tn are 

types for arguments and return type. 

TnTnTnTnCnMn n  ...: 21

 

The semantic contrasts between these two include late binding and method name 

overloading.  Also message passing requires the presence of a privileged and ever present 

argument; which is the receiving object. 

There are two important issues here – look-up performance and execution safety.  For late 

binding it is imperative that the look-up operation is lightweight and comparable to looking 

up a function; the works by Odersky and Walder have received attention – i.e. in [ODERS97].    

Also in late binding the compiler can catch many improper message calls and arguments; 

but it is not absolute.  The many is becoming most in just in time compilers developed from 

techniques introduced in Self by Smith and Ungar [SMITH95].  This is revisited in data 

typing chapter (i.e. Classes and Inheritance). 

3.4.3 Method code 

In object databases a method implementation is often coded with an object-oriented 

language. 

Although novel, the use of methods in a data model has drastic consequences.  For example 

if a method’s code is changing the underlying state of the database then if its computation 

depends on the state the method is seeing then the method invocation becomes potentially 

un-safe in the sense that it might never end.  Method implementations that do not change 

the under-lying database state are said to be side-effect free.  Some method’s 

implementation that do change the state are not necessary un-safe.  Deciding which 

methods are side-effect free is generally a NP-hard problem (this follows from the 

requirement that decision process need to simulate the semantics of the method’s 

implementation). 
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3.4.4 Concurrency and Message Passing 

A high-level characterisation of concurrency in computing is a number of independent 

activities executing and correctly sharing a computational environment.  These 

independent activities require management and intercommunication. 

The object-oriented paradigm’s message passing combines two things: the first is activity 

transfer between the recipient and the sender; the second is limited synchronisation.  These 

alone do not provide a basis for a concurrent framework.  The fact that Simula and 

Smalltalk simulate concurrent systems is not the point.  Nonetheless, an object’s feature 

locality helps with realising concurrency because of the reduction inter-object 

communication.  This feature translates into a simplified placement and separation of 

objects at an implementation level. 

3.4.5 Message Passing in Object-Oriented Databases 

The Orion object-oriented databases has message passing for both object definition and 

manipulation.  The example is adopted from a paper describing Orion [KIMWO90D]. 

Remark:  the following examples are based on the Orion OODB prototype 

         Orion’s message passing syntax is 

         ( selector receiver [ arg1 arg2 arg3 … ] ) 

 

Remark:  where selector is the message and receiver is the object  

         whose class definition is requires 

         (note Orion’s syntax is not consistent here!) 

 

( make-class TEAM  

    :attributes (( desc    :domain STRING ) 

                 ( manager :domain PERSON )  

                 ( members :domain ( set-of PERSON )))) 

 

Remark:  object / instances definition 

( make TEAM :desc ‘R&D’ :manager ( make PERSON :name ‘Jade’ ) ) 

 

Remark:  return a set of team objects with Jade as its manager 

( select TEAM ( manager name = ‘Jade’ )) 

3.5 Summary 

This chapter’s main aims are two: enumerate the better and adequate sources that describe 

basic object-oriented features; accentuate and build bridges between these basic features 

and database design requirements.  The basics covered in this chapter are encapsulation, 

object identity, object values with identity, and message passing.  These are the basis for 

other object-oriented themes and variations described in the next two chapters (i.e. four and 

five). 
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Encapsulation offer the object-oriented paradigm adopters feature locality and information 

hiding.  We have also reported on how encapsulation and data independence overlap as 

there are possible conflicts with inheritance mechanism due to other dependences found 

within inheriting objects. 

Herein we gave a progression on how to build an object’s value; we started with tuple and 

continued with nested values and complex value and finally augment with logical identifier 

to enable better objects sharing their values.  Object identity, at logical level, is a unique 

and immutable identifier.  Also we are able to compare an object’s values at various levels: 

identifier, shallow, and deep.  A formal treatment of an object is given.  

In the chapter four these features are used to describe more involved object-oriented 

themes like classification; classification is a very important database modelling theme.  

Also the principles of inheritance and its pragmatics are given.  Finally data typing 

checking and inference in an object-oriented environment is covered too. 

 



Object-Oriented Data and Query Models 

    

  



Object-Oriented Data and Query Models 

OOP – Classification and Inheritance- Page [ 59 ] 

Chapter 4 
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4 – Object-Oriented Paradigm –  

     Classification and Inheritance 

The concepts of object and identification are used to build the other more involved concepts 

of the object-oriented paradigm.  In this chapter the main concepts are classes and various 

modes of classification for data modelling, inheritance, and data type checking and 

inference in object-oriented environments.   

Classification is fundamental for data modelling and data typing.  Also inheritance, 

attached to classes, aids in data modelling and application development.  The need for a 

flexible data typing regime is a must and many of the advance features had the paradigm 

as a test bed.  Research up to the 2000 is adequate to cover our data type requirements. 

Once these features are synthesised and focused for database design this chapter leads to a 

description of an object-oriented schema (found in the next chapter). 

4.1 Classes and Classification 

Other than identity and state an object has an association with the artefact that created it; 

the latter is typically called a class while the association is called an instance of 

relationship.  Classes collate, or compose in data modelling terminology, structural and 

behavioural properties of objects that are their instances.  The following is an example of a 

class definition in Orion [KIMWO90D] for noble gases and consequently all of its instances 

has, for example, an atomic weight property.  In this example it is possible to see how some 

‘attributes’ can denote values by a reference to other objects (e.g. supplier refers to class 

SUPPLIER and consequently objects are assigned an identifier from its instances). 

Remark:  a class definition in Orion’s OODB prototype syntax 

(make-class  NOBLE_ELEMENT 

    :superclasses ( ELEMENT) 

    :attributes   ((atomic_weight :domain REAL) 

                   (state_at_15c  :domain STRING) 

                   (supplier      :domain SUPPLIER)) 

    :methods      ( purchase_order 

                    clear_stock_level)) 

In a wide variety of scientific systems a classification is the division of a domain into 

partitions and forms a basic structural representation of the subject domain.  In most cases 

the instance-of relationship is semantic in nature and few follow a rule to determine 
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membership.  Mendeleev’s periodic table for chemical properties of elements is an excellent 

example of a lateral classification; every element is a member of one element class (see 

figure 4.1).  For example, in the case of the periodic table, Helium and Argon are instances 

of the NOBLE_ELEMENT class.  The collection of all instances of a class is called its extent 

(e.g. the extent of NOBLE_ELEMENT includes Helium, Argon, etc.).  Classification is also a 

basis on which a number of other conceptual abstractions, like specialisation and 

aggregated composition mentioned in the conceptual design chapter, are built. 

 

Figure 4.1 – Mendeleev’s periodic table (1869) – the “?” named objects were then unknown 

but predicted elements  HTTP://EN.WIKIPEDIA.ORG/WIKI/DMITRI_MENDELEEV  

A basic question arises: is a class artefact an object too?  We believe that this reification is 

of benefit to the paradigm and database culture.  Accepting classes on par with instances 

(e.g. sometimes referred to as object homogeneity) has the following effects: classes have 

their own encapsulation; relationships with other like objects (e.g. classes); relationship 

with their own extents and act as the interface to their instances.  Some sources call 

artefacts that can instantiate classes ‘meta-classes’.  Attributes that are part of a class 

composition or represent a collective property of all its instances are called class attributes.  

In some systems static methods have a similar nature. 



Object-Oriented Data and Query Models 

OOP – Classification and Inheritance- Page [ 62 ] 

It is pertinent to state, at this point, that the ERM’s entities and relationships are 

reconcilable with the paradigm class artefact.  So are the EERM sub-setting and 

aggregation artefacts. 

4.1.1 Class and Generalisation Abstraction 

Another classification comes from biological sciences and where classification of the animal 

kingdom is given through a hierarchic representation; its origin is attributed to Linnaeus 

(HTTP://EN.WIKIPEDIA.ORG/WIKI/CARL_LINNAEUS).   

Through this class hierarchy we can also compare instances, if comparable, of two sets.  If 

these sets are converted into class abstractions then a relationship between classes is built. 

This is the ISA relationship on classes.  We say that the class PRIMATE ISA MAMMAL and the 

class HUMAN ISA PRIMATE.  The ISA relationship between classes is in general reflexive, 

transitive, and anti-symmetric, and consequently a partial order between classes occurs.  A 

very common graphical representation of these classes and ISA relationship is the class 

hierarchy (see figure 4.3 and 4.4). 

There is an important principle associated with the modelling of the ISA relationship.  

Basically any object is an instance of any ancestral class; this is the basis for what is called 

the principle of subsitutability.  It is obvious that the extent of NON-HUMAN_PRIMATES is 

repeated (or absorbed) in the extent of PRIMATES and similarly in the extent of MAMMALS.  

Some literature tries to differentiate instances that are “direct” instances-of to those 

acquired through generalisation.  An extent that includes all instances from any 

descendent class is called its deep extent (see figure 4.2).  The following is a definition of the 

deep extent.  The following says that the deep extent of a class is a union of itself with every 

deep extent of its subclass elements. 

∏    (  )⋃{       (   )                      } 

Other common terms include: a PRIMATE is a specialisation of a MAMMAL and that a MAMMAL 

is a generalisation of a PRIMATE [SMITH77].  A class that specialises another is called a 

descendant class and a class that generalises another is called an ancestral class 

http://en.wikipedia.org/wiki/Carl_Linnaeus
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It is also important to study the meaning and restrictions on the instance-of relationships 

in the presence of an ISA hierarchy.  In our biological system we have stated that the 

instances of PRIMATES and CETACEANS are disjoint.  There also exists an overlapping ISA 

relationship that allows instances to participate in a number of sibling classes.  In effect 

objects are now able to associate with a number of classes. 
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Figure  4.2 – ISA and instance of relationships. Classes are letters and instances are 

numeric.  Class B ISA A, instances 3 & 4 are class D extent, and 3, 4 & 5 are class B’s 

deep extent. 

We have tacitly implied that given an animal instance we can classify it by finding the 

“right” leaf in the hierarchy.  There are design issues as the following two cases expose.  For 

example which classes cannot instantiate objects?  These are called abstract classes. (In 

some systems this term denotes a class that provides an interface but no implementation).  

And do all instances of a class have to be an instance of some descendent class too?  If 

affirmative we have a total ISA relationship otherwise it is a partial ISA– exactly like in an 

EERM sub-setting relationship.   
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Figure 4.3  Classes and a Generalisation Relationship 

Figure 4.4:  Class with properties in a hierarchy 
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assume we have a simple class called PERSON in which basic properties held include NAME 

and ADDRESS.  The MALE and FEMALE classes have a property of interest that is GENDER 
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instances have a “female”; (note we can easily enforce this with integrity constraints – more 
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in chapter seven).  Although we indicated that the instance-of relationship is of a semantic 

nature this is an example of a rule-based instantiation.   We need to quickly state that if 

one swaps the gender’s value that would imply an object migration from one class to the 

other – this is not typically an easy database operation and not surprisingly it is not 

implicitly available in most OODBMS.  

4.1.2 Classes and Aggregation Abstraction 

Although, as seen in the structured object explanation, an object composition allows 

hierarchic composition of values there are cases where an object is composed of a number of 

other objects through their identifiers.  Also some of the “sub-parts” could also be an 

aggregated object. 

Figure 4.5:  A Class Composition Hierarchy 

Therefore in an aggregated object, represented in a class, each of its aggregated relationship 

takes the form of one of the following four types [KIMWO89G] through sharing and 

independence as discussed in chapter two. 

A class definition example that includes an aggregated relationship follows. 
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Remark:  a fragment of a class definition with 

Remark:   an Aggregation relationship in Orion’s OODB prototype syntax 

(make-class    VEHICLE 

  :superclasses nil 

  :attributes   ( ... ( engine_type :domain ENGINE 

                       :composite true :exclusive false :dependent true) 

                                  ) 

  :methods    ( ... )) 

Another interesting and useful graph (i.e. in terms of data and query modelling) is the 

superimposition of the ISA and aspects of aggregation relationships in one graph, this is 

called the Class Composition Hierarchy [KIMWO90D] and an example is given in figure 4.5.  

Also part of chapter five that deals with path expressions has some relevance here.  The 

structure of the graph follows that of the class hierarchy but what is added are another 

type of edges that denote a relationship between one class and another through composition 

and cardinality (i.e. set of single value). 

4.1.3 Prebuilt Class Hierarchy 

From the very earliest of object databases implementations, each had provided for a “pre-

built” class hierarchy that had an array of class’ implementations, with methods and 

attributes.  These are useful “libraries” of code that provided software development a 

tangible boost to productivity through code reuse and differential development of the same 

library.  It is instructive to attribute the in-built class hierarchy pragmatics, together with 

code development tools, to the Smalltalk [GOLDB88] project.  Its design and tools are still 

valid today.  

In figure 4.6 we have an example class hierarchy that includes both user-defined classes, 

for example AMPHIBEAN and its descendants, and prebuilt classes – for example 

COLLECTION and its descendants.  The pre-built part of the class hierarchy is not usually 

drawn in an EERM. 

4.1.4 Classes and their composition 

We have presented classes as an abstraction for a composition of properties and as a 

partitioning agent for a domain’s objects.  From a data-modelling context these properties 

take a variety of forms.  These forms include attributes, methods, relationships, class 

attributes and integrity constraints.  Due to the database context these properties form 

part of a class’ external interface and consequently the control of which properties an end 

user can read, update, delete or run falls in the non-trivial realm of database authorisation 
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modelling. An early articulation came from [CHAMB81] – which is not of any direct interest 

here. 

Figure 4.6 – Class hierarchy including pre-built classes.  Source: McSweeney, J.; 

WWW.JMCSWEENEY.CO.UK/COMPUTING/M206/INDEX.PHP 

A novel feature of the object-oriented paradigm is the use of methods as part of an object’s 

composition.  The more sophisticated class models also use an exception mechanism that 

invokes earmarked actions on an “error” event during a method’s execution but does not 

return control to the method – i.e. non-resumable semantics.  An early adopter of this 

exception model was C++ [STROU94].  Also, but unrelated to error handling, annotations on a 

method’s blocking protocol (an excellent example is CORBA’s oneway IDL method qualifier 

– see [BAKER97]) can also form part of a class definition. 

An important part of a data model is the representation of relationships between objects.  

In a class structure this requires its own constructs that include details of the relationship 

that can adequately implement referential semantics and two-way traversal of a 

http://www.jmcsweeney.co.uk/
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relationship for n-way relationships (i.e. n >= 2).  Also the “higher” form of relationships 

like ISA and aggregation has to be accommodated too. 

Finally we have to include the provision of integrity constraints that are associated with 

the extent of a class and condition its behaviour.  For example it is common requirement to 

have an object’s attribute taking a unique value when compared to its class extent.  Like an 

attribute, integrity constraints are applicable either at an object or at class-extent level.  

4.1.5 Class Implementations and data types 

Are classes and data types the same?  In a class definition there is ample data-type details; 

for example in attributes, relationships, and methods.  The main motivations for data types 

are expression correctness in terms of data usage and the possibilities to convert one data 

type to another if certain rules are respected.  In fact it is advantageous to force a 

relationship between each class and a data type that describes it.  We want to enforce: 

               (  )       (   ) 

The interaction between classes and data types is based along two lines: each class has a 

data type and there could be many classes having the same data type, and some data types 

might not have a class associated with them.  (A forthcoming section on Inheritance and 

Data Types shows the relationship between classes, data types and inheritance in more 

detail.) 

Clearly we want to have classes and data types as two separate, yet related, artefacts. 

4.1.6 Classification Critique 

If classes and classifications are present in a data model then many aspects of database 

practices are assimilated; some are not.  Consequently we have to acknowledge that 

choosing classes for classification modelling is a meta-design decision. 

Before delving into class-based inheritance and data typing it is important to re-iterate the 

pros and cons of classification and classes because design choices need to be made on 

objective grounds. 

One of the most important advantages is the partitioning of an application domain’s 

objects.  Not only can we classify but also, in general, querying (e.g. extracting) objects 

associated with a class extent is computationally easier than querying the whole database.  
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Through classification “higher” data-modelling constructs are possible.  Also the class itself 

becomes a player in the data model as firstly it is a repository of behaviour, constraints and 

structural definitions and secondly it is able to hold aggregate data about the extent. 

Although the notation, definition and implementation of a class is a straightforward matter 

the conceiving of a classification that meets the requirements of an application domain is 

another matter.  Other than being “difficult” a classification is sometimes reduced into a 

match of political will and motives; for example the classification of wines.  Also the design 

of a class presumes that the properties depicted in its definition are sufficient to describe 

and classify objects into their extents.  What are we to do when the values of some object 

properties are unknown?  What are we to do when a property, described in a class, is not 

applicable for an instance? 

Re-classification of a class hierarchy is not a trivial matter as changes are to be on the 

classes involved and the instances found in affected extents and deep extents.  At an object 

level moving it from one class to another is likewise a non-trivial task. 

Another level of design difficulty with class hierarchies is when manipulating these as a 

whole.  For example merging two class hierarchies is a major re-design event (for an early 

record of a class hierarchy re-design see [BERLI90] and [COOKW92]).  Making any two class 

hierarchies co-operate over two diverse computational environments is also a design 

milestone requiring different and difficult and methodological procedures [BAKER97]. 

4.2 Inheritance 

Inheritance is a mechanism for building objects by sharing properties of other artefacts; this 

is also attributed to Simula [DALHO66] too.  This mechanism is almost synonymous with the 

paradigm and many positive features cited in favour of it are possible through inheritance.  

Yet it is obvious that inheritance means different things to different systems. For example 

in Artificial Intelligence inheritance it is used for knowledge representation, reasoning and 

inference.  In semantic data modelling it enables the ordering of entities by an ISA 

relationship.  In programming languages it helps in structuring and composing new data 

structures, and offering better opportunities for code sharing and code re-use – that is 

better productivity in development. 
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4.2.1 Inheritance Mechanism 

Inheritance in object-oriented systems typically builds an object out of the properties 

specified locally for it and out of the properties found in other objects from which it is 

inheriting.  Any property adopted is the one closest to the inheriting object, which can be 

defined locally or along the inheritance path; technically this selection is called over-riding.  

Also some systems prohibit redefinition of properties. 

If a class system is in use then it is typical that class’ ISA relationship determines the 

inheritance path and the encapsulation directive determines what is inheritable.  The 

properties are, for example, attributes, relationships, and integrity constraints.  Mixing the 

class concept and inheritance raises an issue; see next section. 

The inherited properties are "modified", or transformed, to the local scope of the inheriting 

object during the runtime – a late binding operation.  Specifically the transformation 

process needs to do at least two things.  Firstly, it needs to check if an inherited property 

has been modified correctly (correctness will be defined later).  And secondly, any inherited 

property with a "self" reference needs to have these references converted to the inheriting 

object (this is an important transformation as it distinguishes inheritance as a sharing 

mechanism rather than a copying mechanism).   

4.2.2 What to inherit exactly? 

Sub-classing down a class hierarchy implies that any subclass instance can be use when an 

ancestral class instance is required – it is called substitutability.  Therefore any 

incremental modifications, done through sub-classing and inheritance, needs to conserve 

substitutability.  Wegner [WEGNE89B] categorises incremental modification into four kinds 

of sharing each having its own set of constraints (or correctness) that influence what 

inheritance does.  These are: 

1) Behavioural compatibility where the inherited attributes and behaviour have type 

conformance and the same semantics – this is the strictest form of sharing.  

Behaviour is specifiable with a language that includes a signature and a semantic 

interpretation.  The signature is a collection of methods and their data typing.  

Behavioural inheritance compatibility has a number of themes: subset subtype, 

isomorphically embedded subtype, and object-oriented subtype.  Nonetheless each 
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variant is bound to return the same object when properties (defined for both the 

parent and the child) are invoked with the same arguments on either of the parent's 

or the child's operations. 

An example of the subset subtype is that the set of "integers from 0 to 100" is in 

relation to the set of "integers".  A decisive problem to note here is that the restricted 

set is not closed for all its properties (the returned result of 50 plus 60 is out of the 

subset subtype range).   

An example of the isomorphically embedded subtype is the set of "integers" is in 

relation to the set of "real numbers" with the addition and multiplication operations.  

A constraint that is applicable here is that if corresponding operations on 

corresponding arguments of the subtype are defined in the subtype whenever they 

are defined in the supertype and yield corresponding results.  If the operations on the 

set "integers" are extended with division then we have lost this compatibility. 

An example of the object-oriented subtype is an EMPLOYEE in relation to PERSON.  In 

this case the subtype has to have its operations use the same domains for their 

arguments as those of their parent. 

2) Signature compatibility is where the inherited properties may be extended 

horizontally by adding new attributes or extended vertically by constraining existing 

attributes.  The inherited attributes and behaviour must be type conformant, but the 

inherited semantics is undefined and therefore may differ. 

Here the signature is an approximation to the semantics.  These subtype 

relationships are then checked at compile time for data type compatibility.  Not all 

type compatible incremental modifications of the signatures are semantics 

preserving.  For example, in a vertical signature incremental modification on 

PERSON, whose properties are NAME (domain string) and AGE (domain integers from 0 

to 120), to EMPLOYEE (the AGE gets restricted to 16 to 65) some expression's type 

compatibility has to be validated at run time rather than at compile time.  

Furthermore setting the AGE of PERSON (who is also an EMPLOYEE) to 10 breaks our 
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signature constraint and also breaks the principle of substitutability associated with 

the ISA relationship. 

3) Name compatibility (e.g. implementation models exemplified by Smalltalk) – 

where only the implementation is shared through the names of the properties.  The 

inherited semantics can differ and type conformance of signatures (if present) is not a 

necessary condition.   

4) Cancellation (e.g. Artificial Intelligence models) – where only some implementation 

is shared and some of the properties may be purged by the inheritor.  Also this 

mechanism typically relaxes constraints down the hierarchy (in contrast to the 

previous three) – technically it makes the ISA relationship symmetrical.  This is the 

weakest form of sharing.  It is also to be noted that cancellation has an effect on our 

deductive systems in the sense that any arguments that could be derived for certain 

ancestor could become false in descendants that have cancel properties on which the 

original deduction would have been based.  In this circumstance we have what is 

technically called non-monotonic reasoning (more in chapter six). 

If we base our inheritance mechanism on a strict compatibility basis (behavioural, but not 

signature, object-oriented and cancellation) then the inheritance relationship is transitive 

and anti-symmetric.  Consequently a partial order is established.  This builds dependence 

between an object and any other object that inherits from it (already alluded to in the 

encapsulation section).  A very important semantic constraint on any interpretation of 

inheritance is that the ordering does not contain any cycles (i.e. we do not want an object to 

inherit from itself).  Our intention is to have the inheritance relation form a directed and 

acyclic graph.  For the inheritance mechanism based on signature and object-oriented 

compatibility to yield a partial order we need to restrict its use. 

After considering the inheritance mechanism it is worth delving into its reputed 

advantages.  The more important of which are in conceptual modelling (which we have 

already presented as the ISA relationship) and in the possibility of re-use (and especially 

code re-use). 
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4.2.3 Incremental development through re-use 

The reputed advantages of code re-use through inheritance are mainly three [MEYER96].  

First is the possibility of building a system with a high degree of reliability – given that the 

sub-components are reliable.  Second is the economic benefit from a reduction in the 

development phase of an application program.  Third is the federated build-up of an object 

system by the incorporation of object definitions available from multiple developers. 

Over and above sharing, an inheritance mechanism with late binding allows for an artefact 

development to be based on “small and incremental” changes rather than “destructive 

development” (or overwriting).  In contrast to inheritance based incremental development is 

the “copy and paste” development mode.  In this latter case any abstraction is brought down 

to the level of the copied items (e.g. lines of code) and, even more serious, this copied item 

isn’t necessarily correct in its new context. 

4.2.4 Single or Multiple Inheritance? 

If the inheritance mechanism allows an object to inherit from many objects that are not 

related via an ISA relationship then we have multiple inheritance, otherwise we have single 

inheritance.  Multiple inheritance offers more possibilities for incremental modification.  

Unfortunately this does force added difficulties both at conceptual and at technical levels. 

At a conceptual level allowing for multiple inheritance shatters the meaning of conceptual 

specialisation especially since this mechanism doesn’t imply any bias to a particular 

ancestor.  The often-cited example is the ARRAYED_STACK class from Meyer’s [MEYER96] use 

of multiple inheritance.  This class inherits from both ARRAY and STACK with each class 

having clear behaviour and not related through an ISA relationship.  Unfortunately the 

behaviour of the ARRAYED_STACK is not clear because it is easy to find examples where a 

property inherited from a parent class is not at all applicable to it.  For example with the 

ARRAY class we associate the INDEX access which does not make much sense for any 

specialisation of the STACK class. 

Inheriting properties through multiple inheritance potentially leads to name collisions.  

These collisions occur when the dynamic binding name look-up procedure finds more than 

one property that it should execute – see figure 4.7.  In many cases the inheritance 

mechanism attempts to resolve these name clashes either by annotations written by the 
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designer (in Orion [KIMWO90D] the order of the class names in the inheritance list of a class 

definition determines a priority) or by using a superclass ordering mechanism (in CLOS the 

system linearises the directed acyclic graph and then chooses the property closest to the 

calling object [STEEL84]).  

Figure 4.7:  Different Occurrences of Name Collision in Multiple Inheritance 

Can all name collisions be resolved?  Indeed no, as can be shown in figure 4.7 and workings 

given in Simons [SIMON95].  In this situation a different property P is part of classes C2 and 

C3.  Also in C2 and C3 methods R and S depend on their respective P. In C4 when it is to 

use method R it expects to use C2’s version of P while when S is used it now expects P from 

C3. 

4.2.5 Inheritance in Conceptual Design and Implementation Design 

We have seen how an inheritance mechanism can force a hierarchical relationship between 

classes.  In this scenario the best inheritance mechanism compatibility will have to be the 

strict inheritance (i.e. behavioural) since through it we can safely make inferences on the 

relationships.  But incremental modifications based on strict inheritance are not as flexible 

as Smalltalk’s class based inheritance.  Consequently it is common for object-oriented 

models to have non-strict inheritance even though the meaning in parts of the class 

hierarchy might be obscure or problematic. 

To complicate matters it seems inheritance use, or modality, comes in two flavours.  At a 

conceptual level we have the ISA relationship and at an implementation level where there 
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is an emphasis on re-use of properties down the hierarchy driven by convenience rather 

than compatibility (refer to Brachman [BRACH83] and America in [AMERI90B]).  These 

inconsistencies are amplified when a designer tries to integrate a “shrink pack” class 

library with the application’s own class requirements.  Clearly a demarcation between the 

conceptual ISA relationships and developing classes through the inheritance of properties to 

facilitate incremental development (i.e. typically called sub-classing) must occur.   

4.2.6 Other Points with Inheritance 

Is there any other mechanism for combining classes with inheritance? One alternative is a  

system with a delegation-based inheritance where we have objects but no classes 

(Liebermann [LIEBE86]) and the mechanism is based on constructing objects (called 

prototypes) out of existing ones – this is the cloning process.  In effect each object could 

have its own distinct set of properties.  Delegation is common in programming 

environments but not in databases (at least those with a schema). 

4.3 Data Types 

When developing software artefacts our intention is to write these in a readable, reliable 

and efficient manner.  Data types go a substantial way to help us achieve these intentions.  

A shallow description of a data type is a set of values and a number of functions and 

procedures that dictate how any element is manipulated.  Typically how an actual data 

type implementation represents its state, functions and procedure is completely 

independent from its data type specification, so long as it does not break its own 

specifications.  A data type specification might have a number of possible implementations. 

Any operation on and expression involving a data item has to conform to the typing 

specifications of the attributes and functions of the data types involved.  Before the 

operation or the expression is executed it has to be type checked against its typing 

specifications for any data type incompatibilities; if incompatibilities occur than there are 

data type errors.  To check for this we need to be able to associate a data type with each 

expression and function call that is inductively built from the data specification and also 

from the data-type annotations given to intermediate results (e.g. the definition of a 

variable is followed by its data type).  We say that every computational expression in a data 

typed environment has a type expression and type checking is the process of evaluating the 
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expression’s data-type compatibility.  If an expression’s type check is successful then it is 

type safe.  A type safe program must have all its expressions type safe. 

C and C++ source code are not type safe programs when type casts and pointer arithmetic 

are present.  On the other hand Lisp and Smalltalk have type safe expressions. 

There are many reasons for a value, or an intermediate result, not to have a binding to a 

specific data type expression when an evaluation of the expression is required.  

Consequently one must attempt to garner data type details from partial data type 

specifications and data type bindings in the current expression.  The process of using scant 

data type expressions from an expression and basic data type axioms to derive a full data 

type for an expression is called data type inference.  For example in the following it is 

obvious, from the data type result of the SQL query, that the variable NUMBER_PROJ has to 

be an integer for whatever data type table PROJECT is. 

SELECT count(*) INTO number_proj FROM project; 

In any data type system we expect a minimum number of basic data types and these are 

typically the integer, the float, the character string, and the Boolean.  Also, and as seen in 

the earlier chapters, a reference to an object is also useful for specifying sharing semantics.  

With each basic data type a number of applicable methods are defined.  An important part 

of the data type system is the capability of constructing other data types, like the tuple data 

type constructor.  The disjoint union allows for the construction of data type whose 

components are mutually exclusive (i.e. in an instance of the domain only one value is 

present).  More sophisticated type constructors allow us to specify collections of values 

coming from the same data type.  Specific example is the set of integers.  The more 

expressive data type systems allow the creation of data type expressions based on 

polymorphic data types (a later section explains these).  Some data type systems allow the 

specification of a data type to be given in terms of itself (i.e. recursive data types).  An 

example of a recursive type is a list of integers. 

4.3.1 Data Typing 

If our data type system allows an artefact to take a value from one data type domain 

associated with it then our system is called monomorphic.  The artefact could be a variable, 

an object, or an expression.  Many programming languages are mostly monomorphic (e.g. 
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Pascal).  If our data type system allows a variable to take a value from a range of data types 

then our type system is polymorphic.  A good example is the ML [MILNE90] programming 

language data type system. 

4.3.1.1 Static Data Type Checking 

The two common modes of type checking are static and dynamic checking.  Whatever type 

checking mode their core aim is common – prevent data type errors at run time. 

In static type checking data-type errors are prevented by a number of measures.  First, all 

objects, functions, procedures and variables have to be defined and annotated with typing 

information (sometimes redundantly through declarations).  Given these data-type 

annotations then every expression’s data type is understood though a “static” investigation 

of the environment (i.e. program’s details) during program compilation.  In this mode all 

data-type annotations are ironed out from the compiled version of the program; 

consequently the machine code generated is devoid of any type checking code.  No code is 

compiled if any data type error is flagged. 

Many literature sources assert that static checking forces the programmers to adopt 

disciplined code writing behaviour.  Also the generated machine code is optimisable and 

efficient 

Static type checking can be onerous when compiling a large source-code project (this is 

exasperated when the compiler cannot work out a clear order in the data type declarations 

[SCHUS11]).  Static typing is a conservative typing technique in the sense that it prohibits a 

programmer from writing a general purpose program by leaving some of its coding with 

data type ambiguities that are resolvable at run-time – for example, a generically typed 

sorting algorithm.  This implies that a program will not be compiled even when it could 

have been run without problems. Another problematic situation is the correctness of the 

design and implementation (in a complier) of a static type system when it is well known 

that these systems are complex and “immutable” once rolled out. A no holds barred and 

very one sided was written by Ousterhout [OUSTE98]. 

4.3.1.2 Dynamic Data Type Checking 

Dynamically typed expressions imply that data-type errors are reported at run-time when 

they are not avoided.  Consequently the compiled program needs to retain type details and 
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introduce type-checking code for the run-time data type checking of any un-resolved data-

type expressions.  Dynamic typing is useful as it allows a programming language to be used 

to write a generic type sorting. Another possibility with dynamic typing is the sharing and 

importing of persistent data from other environments [ABADI91]. 

There are issues with dynamic data typing; the most obvious is performance of its compiled 

code.  Lately some authors are stating that ‘just in time’ compilation improves the 

dynamically type code performance.  Nonetheless adequate performance is still found in 

more mature implementations like Lisp and Smalltalk.  Another issue is lack of knowledge 

about a program during its coding. This manifests itself in debugging, documentation, and 

IDE environments (e.g. how to help code completion). 

One of the first dynamically typed languages was Lisp, while Smalltalk is the earliest and 

best example from the object paradigm stable.  Not many other programming languages 

offer wide support for dynamic type checking. The reasons being mainly two: first they 

make up for this through other mechanisms (e.g. ML relies on data type polymorphism), 

and second not many programming languages deal adequately with a persistent 

environment peculiarities (one can refer to the paper of Atkinson et al. [ATKIN87] on 

persistent programming). 

Many programming languages have developed type systems with a balance of static and 

dynamic typing [MEIJE04].  Nonetheless static typing will always be required and 

conservative as identifying programs that produce run-time type errors is un-decidable.  

This follows straight from the halting problem. 

4.3.2 Data Type Representation 

Independent of when and how expressions are type checked is the requirement to represent 

the type systems.  The two main streams are the algebraic approach (for example in the 

spirit of Guttag [GUTTA80]) and higher-order functional approach (for example as in Fun of 

[CARDE85]).  In the algebraic approach we need to enumerate the data as sets of values 

called ideals and distinctly represent the functions (including their names and arguments’ 

data type – called the signatures) that manipulate the data.  Other than the function’s 

signatures we need to express their semantics.  The following example (from [DANFO88]) 

represents a simple algebra for a numbers modulo 2 system. 
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Remark:  modulo 2 algebraic system (from DANFO88) 

 

Remark:  signatures 

 

integer    : type; 

zero, one   : function() result integer; 

plus, times : function(integer, integer) result integer; 

 

Remark:  semantics 

 

integer     == {0,1}; 

zero()      == 0; 

one()       == 1; 

plus(x,y)   == if (x==0) then y; else if (y==0) then x; else 0. 

times(x,y)  == if (x==0 or y==0) then 0; else 1. 

Although the previous is a common Abstract Data Type (ADT) representation and is an 

effective tool for abstraction it suffers from not having a concept of state.  These systems 

work by requiring the programmer to provide for a state (e.g. an integer variable) and then 

invoke the operations from the above modulo 2 ADT with an integer as an argument and 

then wait for the result of the operation.  The separation of the state from its associated 

ADT is sometimes scorned.  Parnas [PARNA72] does advocate for state and ADT collective 

representation.   

4.3.3 Data Type Inference 

We have previously stated that each expression’s data type is built inductively from its 

components’ data-type annotations.  What if some data-type annotations are missing? It is 

likely a type checker cannot check such an expression.  Nonetheless the level of type 

safeness can be increased if type checking invokes a process of deducing the data type of 

expressions from the type declarations found in the program, the context of the expression, 

and the axioms of the type system.  In such circumstances and in the right programming 

frameworks data type inference is an effective development tool.  During the bottom-up type 

checking of an expression if a variable has no associated data type then a data type variable 

is introduced.  Consequently for a successful data type inference process the system has to 

come with an instantiation for each data type variable that does not contradict other data 

typing constraints either given or implied. 

For example in the following SQL statement if our knowledge of the SYSDATE function 

includes the return type then it determines the variable’s, i.e. TODAY, data type.  Therefore 

we don’t really need to annotate the variable as a date.   

SELECT sysdate INTO today FROM dual; 
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If we know precious little about the SYSDATE function then we cannot infer TODAY’s data 

type. 

Again we point at ML [MILNE90] and emphasise its flexible type system whose type checking 

has a type inference system component based on first-order logic assertions and deduction.  

A number of programming languages are introducing type inference in their respective 

revisions. 

We have implied, rather naively, that type checking and type inferences are embedded in 

an effective procedure.  In fact some extensions to a basic type system can make both 

checking and inferring un-decidable.  Such extensions are required for aspects of the object-

oriented paradigm – some of Palsberg questions still remain open [PALSB96]. 

4.3.4 Data Type Theory 

At this point an introduction to the semantics of a type theory that caters for abstraction 

and universal polymorphism in the object-oriented paradigm is opportune. 

V, the set of all values, is Scott's [SCOTT76] universe of all values built from basic domains, 

records, disjoint union and function spaces.  This set’s elements are in partial order.  A type 

can then be described by a set of elements from V.  Not all subsets of V are acceptable or 

useful types but those that are we call ideals.  Some of these ideals are the familiar data 

types found in programming languages.  Set inclusion is proposed as an ordering relation 

over the ideals thus forming a lattice structure.  Therefore the type hierarchy generated is 

graphically analogous to class hierarchy presented earlier.  The apex and end nodes of the 

lattice are V and the set with the least element of V (the empty set) respectively. 

The notion of a value having a type is interpreted as membership in a corresponding ideal.  

The selection of basic domains and type constructors influence important characteristics of 

a programming language’s data-type sub-system.  Therefore a monomorphic type system 

does not allow a value to be member of more than one type (i.e. ideal).  On the other hand a 

type system that allows a value to be a member of different types is a polymorphic type 

system. 
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4.3.5 Object-Oriented Data Typing 

Two evident data-type characteristics with the object-oriented paradigm are subtyping and 

polymorphism; actually these two are related.  The overlying principle is that of data type 

substitutability; can an object, of a different and perhaps related type, be used instead of 

the expected one without a type error being flagged?  There are many shades of 

substitutability; Liskov in [LISKO87] & [LISKO99] claims that substitutability is meant to 

maintain semantic properties rather than a weaker subtyping constraint through a 

properties’ signature. 

With our notation of sets as types we can map the idea of subsets to sub-types.  The 

expression that a data type B is a subtype of data type A (B   A) implies the data type-set of 

B is in a sub-set relation to the data-type set A.  This is a very elementary notion but 

applicable for explaining sub-range types and some subtyping manifestations. 

Yet another example extensively used by Cardelli [CARDE84] is the type inclusion between 

record structures with functions; these represent attributes and methods.  Incidentally this 

representation has since been used by many others to study “inheritance” between records. 

A record type A is a sub-type of a record type B if A has all the attributes of B, and possibly 

more, and the common attributes are in a sub-type relation (Ai denote attribute names, and 

Ti and Ui are data types): 

IF {A1:T1, … ,AN:TN, … ,AM:TM}   {A1:U1, … , AN:UN}    TI     UI  FOR I = 1 .. N 

THEN A   B 

In terms of substitutability based on attribute signature it is evident that A can take the 

place of B.  Every type is a subtype of itself; A   A. 

Subtyping for a function is: 

IF S’   S AND T   T’ 
THEN F:S -> T   F:S’ -> T’ 

Two important characteristics to note are the variance of the domain (the sub-typing 

between S’ and S) and the contra-variance of the range (the sub-typing between T and T’). 

One of the basic characteristics of object-oriented systems is data polymorphism.  Data type 

polymorphism comes in many disguises and one of the first researchers to classify data 

polymorphism was Strachey [STRAC67].  Strachey divided polymorphism into two sections 

with the first called universal polymorphism (actually Strachey called this parametric) and 
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the second called ad hoc polymorphism.  Later Cardelli and Wegner in [CARDE85] refined 

this classification by adding polymorphism with subtyping. 

4.3.5.1 Universal polymorphism 

In universal polymorphism we have a method whose code is applicable over a collection of 

data types that have some common characteristics.  This category is divided in two 

overlapping sections basically parametric and inclusion polymorphism.  In parametric 

polymorphism a function definition is adorned with a type variable that has to be 

instantiated with a data type during a data-type checking of an expression involving this 

function.  In this example the swap function arguments are assigned a type FLOAT when 

being applied over variables HIGH and LOW. 

Remark:  parametric polymorphism example 

Remark:  using c++ templates 

 

template <typename DT> 

void swap(DT& left, DT& right) 

{  DT temp = left; 

   left    = right; 

   right   = temp; 

} 

    

Remark:  in use i.e. declaration and invocation 

 

float high, low; 

 

swap(high, low); 

 

Universal quantification implements data type polymorphism at a second-order level.  

During data-type checking and inferring the procedure for binding of parameters to actual 

values needs to be done at two levels of abstraction.  The first is for data types and the 

second is for values. 

In the case of a recursive data type it is understood that parametric types are not expanded 

by a macro replacement scheme (i.e. that leads to an infinite expansion).  There exist 

problems when trying to establish when two parametric recursive type definitions are of 

the same type.  Typically one solves these problems by placing syntactic restrictions on the 

parametric type definition. 

4.3.5.2 Existentially quantified polymorphism 

Type expressions that are existentially quantified assume the availability of a type that 

satisfies them.  There may be many types that satisfy an existentially typed expression and 

therefore interesting solutions to these are those expressions that are somewhat restricted 
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by other explicit data-type annotations in the expression being solved.  Consequently, the 

existential quantification alters the whole body of a data type.  Existential type expressions 

are useful and especially if they contain enough structure.  Most ADTs are considered as 

existentially quantified [MITCH88].  These types manage to hide some structure of an object 

instance but still show enough structure to allow manipulation of objects through the 

operations these data types themselves provide. 

Remark:  existential quantified types example 

 

Remark:  declaration of a module with an attribute and a 

         function with Boolean as its range 

 

EQDType  =  dt { attr:dt; f(dt  Boolean); } 

 

Remark:  a possible implementation of EQDType follows 

 

stringDT = { attr:string; f(string  Boolean); } 

 

Some data-type expressions can use both universal and existential quantification for 

pronounced flexibility.  Cardelli and Wegner [CARDE85] give an example of a parameterised 

stack whose data type expression includes existentially and universally quantified type 

variables. 

4.3.5.3 Universal Bounded polymorphism 

Bounded quantification in a data-type expression allows the provision of replacing data 

type variables with explicit sub-types of the parameterised data types.  Inheritance is 

modelled by explicit parametric specialisation of types to the sub-type for which the 

semantics will be evaluated.  The earlier presentation of sub-types based on subsets has 

opened a variety of interpretations dependent on the type constructor used in the data-type 

expression 

The “for all” capability of universally quantified type variables in a generic function might 

actually be more than we would want to bargain for.  In some cases we want to restrict the 

quantification over a restricted set of subsets (e.g. to those that are sub-types of a given 

data type).  Bounded universal quantification helps us express these data type expressions.  

Not only is this a useful specification technique but it makes our type system even more 

expressive. When we apply a function on a bounded universal quantification data type 

expression the “extra” data type characteristics are not stripped off. 
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Remark:  bounded quantification in java  

Remark:  source Angelika Langar’s Java Generics FAQ at  

Remark:  www.angelikalanger.com 

 

class ClassI {} 

 

class ClassJ < DT extends ClassI >    # datatype DT is ClassI or any 

descendent 

{     public ClassJ identity( DT whatever ) 

      {    return whatever; } 

} 

 

Similarly existentially quantified type parameters in expressions can be bounded with the 

sub-type relations.  In some systems with bounded quantification type checking has been 

shown to be un-decidable [PIERC92]. 

4.3.5.4 F-Bounded polymorphism 

Unfortunately there is a lurking problem within bounded quantification over type 

expressions with recursive types.  In Canning et al. [CANNI89] this problem together with its 

solution were investigated.  Namely the authors showed how type-checking perfectly 

common object-oriented expressions couldn’t be typed with the data-type theory presented 

in Cardelli and Wegner [CARDE85].  The expressiveness of bounded quantification drastically 

diminishes in the presence of recursive data types because some methods are not 

“inherited” over the data-type quantification because of subtype violation.  The solution 

presented by Canning et al. entails the introduction of another sub-type relationship in the 

data type expression so as to relate the necessary methods through the sub-type 

relationship.  Their method is called F-bounded polymorphism and an example follows. 

Remark:  f bounded quantification as in Canning et al. [CANNI89]  

 

integer {…, lte:integer->Boolean, …}   # note integer is recursive 

porder  { lte:porder->Boolean }        #      porder is recursive too 

 

min: dt dt   porder  (dt, dt) -> dt;  # is a method for porder 

 

We claim: 

if ( integer   porder ) 

then { …, lte:integer->Boolean, … }   { lte:porder->Boolean }         

 

In which case the subtype relationship between functions gives: 

i)    Range:  Boolean   Boolean        # No problem 

 

ii)   Domain: porder   integer         # By argument contravariance 

                                       # Problem contradiction 

 

Therefore either two types are the same or original claim is wrong.  

 

F-Bound solution starts to redefine porder and create integer 

fb-porder[dt]  { lte:dt->Boolean }        # porder is not recursive 

 

fb-porder[integer]  { lte:integer->Boolean }  
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Hence: 

integer   fb-porder[integer] 

 

and the new function min works as expected 

min: dt dt   fb-porder[dt] (dt, dt) -> dt 

Java’s later versions [GOSLI05] compilers support F-bounded quantification. 

Remark:  F-bounded quantification in java  

Remark:  source Angelika Langar’s Java Generics FAQ at  

Remark:  www.angelikalanger.com 

 

class ClassI< DT > {} 

 

class ClassJ <  DT extends ClassI< DT >  >  

{     public ClassJ identity( DT whatever ) 

      {    return whatever; } 

} 

Serendipitously F-bounded quantification indicates another important observation about 

the relationship between inheritance and sub-typing, that is two types that satisfy the F-

bound might not be in an inheritance relationship [CANNI89]. 

In inclusion polymorphism a function’s data type variable can be satisfied by a data type 

and other data types somehow related to the former characteristics.  The introduction of 

inclusion polymorphism addresses some of the pragmatic notions of object-orientation, 

namely inheritance and sub-typing.   

Remark:  inclusion polymorphism using c++ classes in humans.h 

 

class person 

{   public: 

    virtual void title() = 0; 

}; 

 

class employee : public person 

{   public: 

    void title() 

    {  std::cout << “employee! \n”; } 

}; 

 

class consultant : public person 

{   public: 

    void title() 

    {  std::cout << “consultant! \n”; } 

}; 

 

Remark:  in sillyapp.cpp 

 

#include <iostream> 

#include “humans.h” 

 

void print_title(person *employee) 

{    employee->title(); 

} 

 

int main() 

{    empl employee; 

     cons consultant: 

     print_title(&empl);                # prints employee! 

     print_title(&cons);                # prints consultant! 

} 
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4.3.5.5 Ad hoc polymorphism 

In ad hoc polymorphism a function works on a number of data types but the function’s code 

is typically re-written for each data type.  The data types on which an ad hoc polymorphic 

function operates don’t in general need to have any common characteristics.  The 

behavioural meaning of an ad hoc polymorphic function is usually different for each data 

type instantiation it can be invoked on.  This “apparent” polymorphism manifests itself into 

two main disguises (that aren’t entirely distinct).   

The first form is called overloading; and this has been previously described.  The second 

example is called coercion and this involves inserting clear procedures of how to force a data 

value of a certain domain into a value of another domain that is being expected by the 

function.  Cardelli and Wegner warn the readers with the following “ALGOL68 is well 

known for its baroque coercion scheme” [CARDE85].  In C and C++ [STROU92] explicit type 

coercion, for example, is done with (INT) and STATIC_CAST. 

4.3.6 Advantages of data types 

What are the advantages of having a well embedded and a well-grounded type system in 

the object-oriented paradigm?  Danforth and Tomlinson in [DANFO88] iterate the following: 

1) Types provide a uniform framework with which to understand the objects. 

2) Within declarative languages (where denotations are the means of guiding 

computation and few explicit type expressions are given) it is advantageous to 

have a type theory capable of explaining and representing the meanings of 

expressions. 

3) A high-level typing theory aids the construction of efficient, useful and 

understandable software. 

4) Inter-object communication trends can be invaluable in achieving locality of 

access in parallel systems and can also be useful in load balancing.  Typing 

systems could help compiler optimisation. 

5) Type secure modules could be achieved by dynamic or static typing checking (see 

later definitions). 

What are the disadvantages of a type system?  Firstly, while all programming languages 

have the same power, as each is Turing complete, each language compilable source is 
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affected by its type system.  Secondly, the opportunities presented by object-oriented 

polymorphism, their resolution and the eventual pruning took its time to develop, be 

accepted, and be implemented. 

4.3.7 Inheritance, Sub Typing and Sub Classing are not the same thing 

We have just argued that sub-typing is one of the mechanisms found in the object-oriented 

paradigm that realises data-type polymorphism.  We have also seen how a certain 

interpretation of sub-typing can partially order data types into a hierarchy.  Also the data 

type system aims at making type checking of expressions reliable and efficient. 

When we considered classes, as a composition of properties, with a semantic relationship 

(i.e. instance-of) with its instantiations a basic hint given was that each class was 

implementing a data type.  After our exposition of data types it is obvious that each class 

has an association with a data type.  Classes too have been organised in a hierarchy 

through a class ISA relationship.  We must reiterate that the underlying motivation for this 

hierarchy is code re-use.  It was made apparent that specialisation (i.e. a conceptual design 

feature) and pragmatic re-use machinations are not entirely compatible. 

One of the first literature sources to start affirming this disparity was Brachman in 

[BRACH83].  As for prototypical research projects the first that practised what it preached, 

namely inheritance and “sub-typing” are different, was the POOL language ([AMERI87] and 

[AMERI90B]).  At a later time pragmatic (e.g. Porter in [PORTE92]) and theoretical work on F-

bounded polymorphism showed that sub-typing and inheritance were not always in 

harmony. 

If we had to survey some of the current object-oriented programming systems it transpires 

that these systems adopted a single hierarchy system (either type or class based – and 

these are not exactly in line with our definitions here) and inheritance is controlled by sub-

typing rules.  The current stable of object-oriented data type systems offer a strong and 

effective facilities; as exemplified in Self (Smith and Ungar [SMITH95]), Java (Gosling 

[GOSLI05]), Scala (Odersky et al. [ODERS10]), C# (Hejlsberg et al. [HEJLS10]), and Links 

(Cooper et al. [COOPE06]). 
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Given that we accept the need for the two hierarchies what would be the major hurdles.  

Basically the complexity of the system becomes harder still.  This hurdle was significant for 

the paradigm at an early start [BERLI90] but is nowadays attenuated with much better 

language design and education.  Also the fact we have separated the two semantic 

structures does not mean that their developers and users would not “abuse” of these and 

there-by constricting the pros of the dual system.  On the other hand the best advantage of 

de-coupling the two hierarchies (but keeping a class associated with a data type) is the 

resolution of many sticky problems when coercing classes onto types or types onto classes. 

Figure 4.8:  De-coupling Sub-classing and Sub-typing 

4.4 Summary 

If one adopts the class theme in an object-oriented database then a number of data 

modelling possibilities are possible.  These include classification of the object collection, 

composition of a class’ properties, specialisation and generalisation through the ISA 

relationship between classes; and build-up of involved structures through aggregation.  

Classes are also used to implement data types through, for example, the declaration of their 

properties’ data type signatures. 

The inheritance mechanism is an effective technique for sharing properties to achieve 

artefact re-use.  For example, it is used to re-use code through incremental code build-up.  

Data-type systems are concerned with the correct application of data to expressions.  Data 

type checking models include static and dynamic systems.  In many object-oriented systems 

dynamic typing is employed and it is coupled with data-type inference to work out the type 
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correctness of expressions at runtime.  Also subtyping, a specific category of data-type 

polymorphism, is used to improve data typing specification and implementation.  

Furthermore the paradigm offers a variety of other data-type polymorphisms and given 

that known type transformations are used, like F-bounded polymorphism, allows the 

designer to build more robust data-type regimes to support the class hierarchy 

implementation. 

After this last two-chapter into object-oriented themes and variations the next step is to 

complete the survey with an emphasis on databases and the ODMG standard. 
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5 – Object-Oriented Paradigm –  

      OODB and the ODMG Standard 

The first major research efforts in object databases started in the late-eighties, these 

include Postgres [STONE90A], Orion [KIMWO90C], Iris (OpenDB) [KENTW91A] and O2 [DEUXO91, 

ATKIN92], and each had their own data model.  It was natural that the database research 

community and the product’s suppliers wanted to harmonise the object database diversity.  

The first major effort toward this harmony came from Atkinson’s et al. [ATKIN90] and in it 

the authors enumerate important themes and features.   

There are advantages when modelling through object orientation for example, objects 

include details of state and behaviour and also the state includes more details of its 

relationship with other objects. 

In this chapter we build a definition of a class-based, object-oriented database and it has a 

basis from the previous chapters (i.e. three and four) on object-oriented themes.  Also a 

subsection presents collective knowledge of path expressions.  The final section is a detailed 

study, exposition, and critical overview of the ODMG data and query model.  (Further 

details are found in Appendix – ODMG Data Dictionary).  Also in the final section an 

OODBMS, EyeDB, which has a good coverage of the ODMG standard, is presented.  EyeDB 

also offers OODBMS features not included in the ODMG standard. 

In coming chapters the EyeDB is used as a test OODBMS to translate an EERM diagram 

into a schema specification that has both structures and constraints. 

5.1 OODB schema and instance 

In this chapter we tie in classes, types and objects with object databases through schemas.  

An object database schema is split into two parts: one structural and the other behavioural.  

With the structural schema we define each object’s collection that satisfies its constraints 

including the ISA relationship. 

The formalism here, and in earlier section (i.e. 3.2-3.4, 4.1.1, and 4.1.5), follows Kannelkalis 

[KANNE92], Abiteboul [ABITE93A], and Straube [STRAU90A].  Well known textbooks include 

Delobel et al. [DELOB95], Lausen et al. [LAUSE97], and Abiteboaul et al. [ABITE95].  
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We can assume that we have a class that is arbitrary set to be the ancestor of all classes – 

variously called ‘root class’ or ‘object’.  Correspondingly we also assume the presence of a 

type ANY. 

As for the behavioural schema we indicate the implementation and name resolution 

requirements.  

The structural schema, is SS = ( C, ISA, Type ) 

The structural schema is a triplet of classes, ISA relationship between classes, and a 

mapping called Type from a class to its data type definition.  Type is based on type depicted 

earlier, e.g. figure 4.8, but it reflects any sub-typing specified and the fact that a type is 

assigned to each class. 

 (      )             

    (  )       (  )      (   )        (   ) 

and  

 (      )                (  )       (   ) 

An instance, I, of a structural schema just given, is a pair of extent mappings and object 

states (i.e. obj). 

I(SS) = (, obj ) 

Where  must ensure: 

    (  )          ( )   ‖    (  )‖  

Also note that V(o) is not v(o) in that V(o) includes inherited attributes, for class Cn, and 

assigned values to these.  

In figure 5.1 we can appreciate schematically the mappings between classes, types and 

instances. 

   
     

  
    

⟦ ⟧ 

   
    

 

Fig.  5.1 – Mapping of Classes, Types, and Objects with Inheritance 
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The behavioural schema is defined through a set of methods, each of which is assigned to a 

class.  To describe a method its name (i.e Mn), and type of arguments and return data type 

are given.  The schema is a triplet of Classes, the ISA between classes, and the set of 

method signatures, S.  The return data type can be a set of or scalar. 

The behavioural schema is BS = (C, ISA, S). 

The signature set, therefore there are no duplicates, is made up of entries that have the 

following form (slightly different from previous notation as now we have a class as one of 

the arguments): 

                 

As described in the earlier section data types (i.e. 4.3), method signatures are expected to 

uphold the variance and contravariance of the argument and return type data type. 

Consequently a method, say mth, is executed if: 

   (          ) 

    ∏         ‖  ‖  

Instances of behaviour schema are expressed as a triplet of class extent, method 

implementation, and method resolution. 

I(BS) = (, mthImplement, mthResolution ) 

For method implementation we have a partial function: 

       (                )   

                  ⟦  ⟧  ⟦  ⟧    ⟦  ⟧  ⟦ ⟧  

For method resolution we have another partial function from methods and classes to a 

signature: 

       (                ) 

And if: 

            

and no   (                 ) 
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is found then any of the following is adequate to resolve the method call: 

  (                 ) 

5.2 Path Expressions 

In earlier sections we pointed out that direct- and value based access to an object is possible 

in the object-oriented paradigm. Given that an object structure is rich and includes implicit 

inter object relationships, could we use this structure to access embedded objects?  

Similarly we are also interested to know which object is related to which other objects and 

under which circumstances.  Ideally when we are holding an object’s reference, e.g. a team 

instance called TEAM_TEN, then through its MANAGED_BY property we can then access its 

office PHONE (see figure 4.5).  A common notation uses the dot to specify the following object 

chasing:  

Remark: example i) 

team_ten.managed_by.phone         # e.g. return value is 9922 4455 

 

Remark: example ii) 

team_ten.managed_by               # e.g. return value is #id2233 

 

Remark: example iii) 

team_ten.managed_by.bonus         # e.g. return value is 20000 

This notation of denoting objects is called path expression and is accredited to Zaniolo’s 

work on GEM [ZANIO83].  The leftmost artefact, i.e. TEAM_TEN, is called the selector and it is 

usually either a class or an object identifier (e.g. even a named object as in this case).  The 

rightmost artefact is called the return value of the path expression.  A path expression 

evaluation can return null, one or many values or identifiers.  The intermediate artefacts 

are attributes that follow a path from the selector to the return value along its class 

composition hierarchy (see figure 4.5).  A path expression is really an implicit join (e.g. 

implemented through part-of relationship or a complete referential constraint) and 

qualified by the instance-of and ISA relationships.  For the third example we start from 

class TEAM instance named TEAM_TEN, traverse through MANAGED_BY to class MANAGER, 

and return the Manager’s BONUS value. 

Path expressions are extensively used in object-oriented databases and are a fundamental 

requisite of query modelling.  Important references include the following:  Orion project 

[KIMWO90D] and later additions with XSQL [KIFER92A], Bertino’s [BERTI89], and Frohn’s 

[FROHN94]).  Path expressions are the basis of the XPath [BENED08] language and many 
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semi-structured data models and implementations.  Another interesting addition to UML is 

its Object Constraint Language; visible contributors to this effort are Warner and Kleppe 

[WARNE03]. 

5.2.1 Path Expressions in more Detail 

An object’s properties include attributes, relationships and methods.  If we collapse 

attributes and relationships into methods as methods that take no parameters then we 

have a convenient notation (i.e. methods with typed parameters and typed result) to 

express the capabilities of path expressions.  We have to be particular on the type 

constructor of a method’s result type.  Namely whether it is a single object (value) in which 

case we call the method result data type constructor scalar or whether the method returns 

a set of objects (values) in which its result data type is a set. 

5.2.1.1 Scalar Path Expressions 

The above examples (i, ii & iii) are of the scalar path expression type.  In the following 

example two path expressions are checking whether the team’s manager phone number is 

the same as that of object being referenced by THE_BOSS: 

team_ten.managed_by.phone == the_boss.phone    Remark: returns a Boolean 

Scalar path expressions can also make use of methods.  For example assume that the 

EMPLOYEE class has a method called BASIC_SALARY (a partial function) that returns a 

year’s salary given that particular year (an integer) is passed as a parameter. 

the_boss.basic_salary(2013)                   Remark: returns 25000 

 
5.2.1.2 Set Path Expressions 

A simple example of a set path expression follows (based on figure 4.5); this expression 

denotes a number of skill objects (instances from the class SKILL) that a particular 

EMPLOYEE (whose identifier is EMPLOYEE_15) holds.  It is worth noting that expression 

evaluation includes instances from the deep extent of class SKILL (i.e. classes ADMIN and 

TECH skills).  Therefore the data type of the return expression is heterogeneous (albeit 

associated through ISA relationship and possibly through data type compatibility). 

employee_15.skills                Remark: returns ‘coding’ and ‘testing’ 

Set path expressions are more varied than scalar path expressions.  For example a set path 

can be compared with another set path or compared with a scalar type.  Here follows some 

examples. 
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Is EMPLOYEE_15 part of TEAM_TEN.  The “includes” operator’s structure is “set includes 

item” and its meaning is true if “item” is found in “set”. 

team_ten.members include employee_15    Remark: returns Boolean 

Are all of TEAM_TEN employees with a SALARY greater than 10000.  The “all>” operator’s 

structure is “set all> item” and its semantics implies that all of the set’s elements are 

greater in value than item (for example the expression “{3,4,5} all> 2” is true).  This is an 

example of universal quantification. 

team_ten.members.salary all> 10000      Remark: returns Boolean 

Is there an employee on TEAM_TEN that has the same PHONE number as their manager.  

The “any=” operator’s structure is “set any= item” and its meaning is true if there is at least 

one item that is equal to an element found in the set.  This is an example of existential 

quantification. 

team_ten.members.phone any= team_ten.managed_by.phone Rem.: ret. Boolean 

In a set path expression methods have a role too; for example if we are interested in 

collecting the salaries for the year 2013 of EMPLOYEES associated with TEAM_TEN. 

team_ten.members.basic_salary(2013)       Remark: returns Boolean 

As a method’s parameters could be any object expression (so long as the data type is 

compatible) then even the year could be substituted by a path expression (in this case a 

scalar one that returns an integer). 

team_ten.members.basic_salary(team_ten.year_started) Rem.: ret. Boolean  

5.2.2 Variables in Path Expressions 

Embedding variables in a path expression is a useful tactic.  In fact a variable, enclosed in 

square brackets, can replace the selector (the first object reference of a path) or can be 

appended to any method invocation along the path’s composition.  The following examples 

help to pragmatically explore the usefulness of variables in path expressions. 

The first example has the variable is bound to age value of employees having the same age 

as their manager in selected team. 

team_ten.members.age[X] and team_ten.managed_by.age[x] 

The second example will bind a manager object to the variable X only if the manager of the 

selected team has a salary greater than 20000.  For each instantiation of the path 

expression an object is bound to the variable X. 
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team_ten.managed_by[X].salary >= 20000 

The third example relates employees (through variable X) and their technical skills through 

variable Y.  (Assume ISA is an infix relationship and AND a Boolean expression constructor).  

For each instantiation of the path expression objects are bound to the variables X (bound to 

employee) and Y (bound to skills). 

[X].skills[Y] and [X] isa employee and [Y] isa tech 

5.2.3 Heterogeneous set of objects 

We have already stated that path expressions can return a set of heterogeneous objects 

through the deep extent relationship.  The following expression does build a heterogeneous 

set and in general one expects the items not to be in any deep extent relationship). 

team_ten.desc 

This path expression, if evaluated in an appropriate data typing regime, returns all those 

objects that have a property called DESC from TEAM_TEN.  In our example it would imply 

having the combined deep extents of classes SKILL and TEAM. 

5.2.4 Physical Implementation of Path Expressions 

A naïve implementation of path expression at data-access level would be to convert the 

expression into a cascade of identifier lookups and also create an index for each component 

of a path expression instance.  This is expensive not only in terms of storing the excessively 

high number of possible paths in a class composition hierarchy but also in terms of 

maintaining these indexes up-to date.  An access based on this naïve model would consume 

disk accesses in direct proportion to the number of components in a path expression.  A 

number of valid proposals have been made to address indexing of path expression 

instantiations and the most significant are still references of Bertino’s work on the Orion 

OODB prototype [BERTI89] and Valduriez seminal paper [VALDU87] on join indexes.  In 

Bertino’s work a number of indexes were proposed and the most popular two were the 

nested indexes and the path index. 

In the case of a nested index a direct association is built between the selector object and the 

return object of a path expression.  An index entry is made up of two values / objects 

references with the return object as the left most entry.  This index is quite efficient for 

access paths that have an expression similar to the associations found in the path index.  
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Maintaining the index up-to-date if a large number of updates over an object collection 

materialise is a significant effort. 

A path index is built by concatenating the selector object with the rest of the of path 

expression except the return value; the return value is used as the other partner of the 

index association.  Updating this index is also an expensive operation but this structure is 

more flexible than path indexes as it can match against a larger number of path 

expressions.  Therefore this index has a higher re-use potential. 

5.2.5 Path Expression and Other Possibilities 

Previously in the example of a path expression that is able to create a heterogeneous 

collection of objects that are not generally data-type compatible offered a glimpse of an 

interesting set of path expression – namely database schema exploratory expressions. 

For example we might want to specify the starting attribute and the last attribute and 

allow the system to instantiate a minimum path between these two properties.  In this case 

the variable is bound to a sequence of methods rather than actual instances.  In fact we can 

therefore specialise the sort of the variables in a path expression to a sequence of either 

object instances, or object properties, or classes (this was introduced in Kifer’s et al. 

[KIFER92A]).  In this case there are two main techniques in place.  First is the use of pattern 

matching (similar to regular expressions) to expand the path expression onto a schema’s 

structures.  Second is to use of deduction based on the semantics and composition of the 

schema (that include both implicit and explicit knowledge) to satisfy or infer a path 

expression 

Another interesting short hand was proposed by Frohn et al. [FROHN94] that claimed an 

improved syntax and semantics of path expressions over those of Kifer et al.  The authors 

propose the possibility of having “branches”, called introducing the second dimension; in a 

path expression and consequently path expressions become more concise (view the two 

versions of the same path expression). 

Remark:  Normal path expression 

team_ten.members[X] and [X].age > 25 and [X].sex = ‘female’ 

 

Remark:  Path expression with branches 

team_ten.members.{age > 25 or sex = ‘female’} 
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5.3 The Object Data Standard: ODMG 3.0 

The Object Data Management Group (ODMG) was formed in 1991.  Its participants were 

then a handful of people, led by Rick Cattell [CATTE94], interested in the development of 

object-oriented databases and their management systems.  Their intentions were focused 

on the quick development of a set of specifications, loosely branded as a “standard”, that 

would describe the data modelling and query modelling language primitives of 

interoperable object-oriented databases.  Later ODMG aligned itself with standardisation 

efforts the Object Management Group (OMG); specifically the data. 

The standard’s first publication came in 1992 and it was called “The Object Database 

Standard: ODMG – 93” [CATTE94].  ODMG justified the flaunting of “rigorous” procedures, 

as adopted with other standard’s committees, on the premise that a specification could 

address two important aspects of reality at that point in time.  The first was so that 

analysts and designers thinking of using an object-oriented database for a back-end would 

have peace of mind that the product chosen if ODMG compliant too different from the other 

contenders.  The second was so that developers of OODBMS could concentrate on 

implementing the specification and improving on specific issues, like performance or data 

security.  Quickly following the first publication versions 1.1 and 1.2 came.  In the version 

2.0 of 1997 Java binding API was added to the standard.  Version 3.0 was published in 2000 

[CATTE00] and the then board, now more numerous and having three types of members, 

assures us that version 3.0 should be with us for some time.  The ODMG board claim on 

numerous occasions (e.g. on page 1) that theirs is a “de facto standard for this (OODBMS) 

industry”.  Indeed a good number of software producers claim membership to the ODMG.  

Also ODMG’s web site had a page explaining what ODMG compliant and ODMG certified 

mean but no indication what the test suites are.  It is not clear either when and up to what 

breadth are ODMG members and OODBMS producers implementing the ODMG 3.0 

specification. 

Although ODMG has ceased to exist, the Object Management Group in 2008 pledged to 

revive the standard with the 4th and next generation standard to include recent changes 

and realities of databases and computing.  Consequently a group of academics and industry 

players, called the ODBMS.ORG, have also united efforts to carry on and distribute 
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research and products that aid ODG efforts.  These have been attenuated, if not halted, 

after the financial crises of 2008. 

5.3.1 The Generic Chapters 

The ODMG specification is divided into a number of chapters (each with a specific scope).  

The main ones are the Object Model, the Object Specification Language, the Object Query 

Language, and a number of Language Binding chapters. 

The object model on which ODMG’s data and query models have their basis is a super-set of 

the Object Management Group’s (OMG) object model [OMGRP08].  The additions to the 

OMG’s Interface Definition Language (IDL) are artefacts that are typically present in 

databases but not in programming environments.  ODMG believes that OMG’s portability 

claim and industry wide support makes their object model a gratuitous lowest common 

denominator.  Also OMG has eventually shown credence in part of ODMG specification; i.e. 

the Object Query Language. 

The object specification language chapter deals with languages that are used to specify first 

the database structures, relationships, and constraints and second the up-loading and 

downloading of objects from the object database to the computational environment which is 

of no interest here.  The first language is the object definition language (ODL) and must 

adhere to OMG’s object model [OMGRP08]. 

The object query language (OQL) chapter presents a declarative language for querying.  

Along its development the structure and meaning of the retrieval query constructs have 

been respectively aligned with the syntax and meaning of SQL’s SELECT statement 

[ANSIT86]. 

There are three chapters for language binding; one each for C++, Smalltalk and Java.  Each 

chapter describes how to reconcile the host language data model with that of ODMG, write 

portable code (i.e. a repository is manipulated by any language that adheres to the binding 

rules), move objects to and from the repository and the programming language 

environment, and ways to invoke object queries.  It also specifies what each binding should 

provide in terms of persistence (e.g. garbage collections and object locking) and 

functionality (e.g. transaction models). 
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5.3.2 The OMDG Object and Data Model 

The core object model is used to represent the meaning of objects, object identifiers, object 

structures, intra-object relationships and methods.  The principal constructs of the model 

are therefore: 

A literal is a structured value complaint with the definition found in the previous 

sections; 

An object has an identity in contrast to a literal and a structured value; 

A type has a representation of a structure, of a set of constraints, and of a number of 

methods.  A number of object instances can have the same type.  The types 

specified for the design of an information system are the user-defined types; 

An object’s state value changes within the structure and constraints of the object’s 

type.  The state comprises attribute values and relationship instances; 

A method implements part of an object’s behaviour and it is qualified by the number 

and the type of arguments and the type of its result; 

A meta-structure, or database schema, is a collection of object types and other 

features related to an OODB realisation and OODBMS mechanisms. 

5.3.2.1 Types, Inheritance and Sub-typing 

The OMDG’s type has two aspects.  The first is specification of its external characteristics 

(or properties) that are implementation independent.  The specification includes attributes, 

relationships, methods and exceptions (i.e. error handler routines).  This specification is 

realised by two language constructs: the INTERFACE and the CLASS.  An interface definition 

predominantly specifies “abstract behaviour” only – i.e. for ODMG it is a method’s 

signature.  For each method we specify its name, its arguments and their respective type, 

and the return type of the method.  A class definition specifies abstract behaviour (as just 

seen) and “abstract state” – i.e. methods, attributes, relationships, constraints and 

exceptions.  In this context an abstract literal specification describes the state of each basic 

domain (e.g. Boolean, char, long, float, string) and the construction of values (e.g. collection, 

enumeration, union).  There are structured abstract literals too (for example a ‘date’ data 

type). 
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The following is an example interface for HOTELROOM. 

interface Hotelroom  

    ( extent Hotelrooms 

      keys   htl_roomnr, htl_roomnom 

    ): persistent 

    { attribute Unsigned Short htl_roomNr; 

      relationship Set<Booking> is_booked_in_booking 

           inverse Booking::is_for_hotelroom; 

      attribute String htl_roomnom; 

      attribute Unsigned Short number_of_beds; 

      attribute Unsigned Short rate_per_night; 

      }; 

The second aspect of ODMG’s type is implementation.  Each specification can have many 

and different implementations.  For example the implementation includes a data structure 

which implements the abstract behaviour and a code segment to implement a method’s 

semantics.  It is important to understand the context of the language bindings here.  These 

two aspects of types enable the ODMG to justify their claim that encapsulation is attained 

through their object model and programming language bindings. 

In ODMG’s object model inheritance is implemented through sub-typing.  This relationship 

is regulated by two modalities.  The first being that an object is also an instantiation of any 

ancestral type associated with its type.  The second being that characteristics of the sub-

type (e.g. methods and attributes) are modifiable, and the introduction of new property is 

allowed.  The working standard does not provide for the purging of characteristics in the 

sub-type; so we have assumed that it is prohibited. 

The inheritance (or sub-typing) relationship has two guises.  The first manifestation being 

inheritance between interfaces (and classes) and the second is between classes.  In the first 

case it is intended that inheritance affects only the abstract behaviour (i.e. methods) 

between interfaces only.  Multiple inheritance is allowed but any eventual method name 

collision is to be resolved by the analyst.  It is important to emphasise two points: first, 

these interfaces are not a complete specification (they could have missing attribute and 

relationship specifications); and second, interfaces cannot instantiate objects.  The second 

manifestation of inheritance is the mechanism built-in with classes, called extends; classes 

inherit from an interface or another class.  Only single inheritance is allowed in the 

‘extends’ mode of inheritance.  Classes do instantiate objects and implement their interface 

too. 
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If the designer needs to collect all instances of a type into an extent then she must explicitly 

associate an extent with a type.  Because classes are the constructs that really instantiate 

objects then we expect to see an extent declaration tied to a class specification.  Once an 

extent has been specified, and therefore the OODBMS is indexing the objects by their type, 

then it is also possible to specify “value-based keys” through the type’s attributes.  The key 

value, or values in the case of multi attribute key, has to be unique in the extent they are 

specified in.  Also there could be a number of keys specified in a single extent. 

interface Hotelroom  

    ( extent Hotelrooms 

      keys   htl_roomnr, htl_roomnom 

    ): persistent 

    { attribute Unsigned Short htl_roomNr; 

      … 

      }; 

5.3.2.2 Object Database, Object Creation, Objects, and “Collection Objects” 

According to the working standard, an object-oriented database is the principal scope for all 

objects of an information system.  In this database all objects are instances of a user-

defined type that has been introduced to meet the requirements of the system.  Closely 

associated with a database is ODMG’s introduction of a module as a unit of declaration and 

specification of the database in which schema and application objects have a scope.  A 

number of exception flags are specified for this module (for example INTEGRITYERROR and 

DATABASECLOSED). 

An interface that is inherited by all other user-defined interfaces is the OBJECT interface.  

A few of the behaviours it bestows to all inheritors are the COPY (make a copy of the 

receiver object), the DELETE (purge the object from the collection unless referential integrity 

problems occur – in which case raise the INTEGRITYERROR handler), and the SAME_AS (to 

be explained shortly) methods.  To create an object one must use the OBJECTFACTORY 

interface that provides the new method for this purpose.  Note the language bindings would 

need to have their own implementation of the OBJECTFACTORY interface. 

The ODMG specification of an object includes three parts.  The first deals with identity, the 

second indicates an object’s lifetime, and the third its value. 

All objects have an identifier.  This identifier is unique (with respect to the scope of the 

collection) and immutable. The standard bestows the responsibility of providing the 
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identifiers on the OODBMS.  All interfaces and classes, as we have stated previously, 

respond to the SAME_AS method that returns a Boolean result on checking the identifier of 

the receiver object’s to that of another object (passed as an argument) in the collection. 

Relationship instances use these identifiers. 

Also the standard provides for naming of any object (over and above identifiers).  These 

names are useful database entry points; but their management should not be taken lightly 

(both from the aspect of OODBMS design and from a DBA aspect).  Homonyms are not 

allowed. 

While it is obvious that a database stores objects for a period of time that is independent of 

the processes that create or access them (i.e. we are very much interested in object 

persistence) there are scenarios where some objects should purge when their process ends 

(the standard calls these transient objects).  These transient objects are common in an 

application front-end and closely associated with the programming-language environment.  

The type of lifetime an object has, the standard wants us to understand, is independent of 

the object’s type. 

The standard makes use of the term collection to denote a number of distinct “elements” 

and therefore a type generator.  There are some structural restrictions on the standard’s 

collections.  The most important restriction being that these “elements” must be of the same 

type – i.e. homogenous sets.  If the “elements” are literals then the literals must be all of 

the same type.  If the “elements” are user defined type instances then the objects must be of 

the same type.  If the “elements” are collections of “elements” then the collections of 

“elements” must all be of the same type. 

The specified behaviour of a user defined collection, which is a specialisation of the Object 

interface, includes CARDINALITY (returns the number of elements in the receiver 

collection), CONTAINS_ELEMENT (returns a Boolean flag if the identifier passed to the 

receiver is present in the collection), INSERT_ELEMENT, and SELECT_ELEMENT (returns an 

item from the collection that satisfies the query passed to the receiver collection).  Some 

methods yield dynamic information on the collection’s state (e.g. CARDINALITY and 

IS_EMPTY methods). 
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A useful companion to the collection interface is the iterator interface that allows access 

and traversal of a collection’s elements.  Other than the obvious methods AT_END, RESET, 

and GET_ELEMENT, there is an interesting Boolean method called IS_STABLE which 

indicates whether this iterator traversal is to be insulated from traversal processing side-

effects over the same collection. 

Collections can be specialised to a number of other particular collection types (for example 

set, bag, list, array and dictionary).  For example the set is an un-ordered and collection of 

unique elements.  The SET class (note the shift from interface to class here), which is a sub-

type of COLLECTION, has a VALUE attribute whose type is parameterised with a type and a 

number of common set operations (e.g. CREATE_UNION, CREATE_INTERSECTION, 

IS_SUBSET_OF, and IS_SUPER_SET_OF).  Some methods, for example the 

INSERT_ELEMENT, are incrementally modified to reflect the uniqueness semantics of set 

over those of a collection. 

5.3.2.3 Literals 

The standard specifies a good number of types whose values do not have an identifier; these 

we have seen are called literals.  These types are an exact equivalence of OMG’s IDL own 

values.  The most basic – called atomic, and very close to our basic domains of the previous 

section, include the following list; long, long long, short, unsigned long, unsigned long, 

unsigned short, float, double, Boolean, octet, character, string and enumeration.  The last is 

really a type generator as a definition is required to specify the list of literals making up an 

enumerate type.  For example to specify sex type one could define the enumerated type 

gender with the literals “male” and “female”. 

Another set of literal type generators is the collection of literals (with the same variety as 

the collections just presented but restricted to literals). 

We can also use the record data type generator (the standard calls these structures).  Each 

structure has a name and a fixed number of components, with each of these having a name 

and a literal data type.  A text book example being an address with its components street, 

city and postcode.  There are a number of structures pre-defined too: e.g. date and time. 
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Since literals do not have an identifier then the use of SAME_AS is not compatible.  To 

compare two literals one uses the EQUALS method.  The standard lists a number of rules, 

related to the data type that gives the exact meaning of two literals being equal.  This is 

based on structure and values.  An almost verbatim reproduction of a selection of these 

rules follows. 

Two literals, x and y, are considered equivalent if they have the same literal type and: 

 are both atomic and contain the same value; 

 are both sets, have the same parameter type t, and each element of x is in y 

and each element of y is in x; 

 are both structures of the same type and for each component j then x.j and 

y.j are equivalent. 

5.3.2.4 Data Typing and Type System 

The ODMG claim that their model is “strongly typed” and the standard explains that 

consequently all objects and literals have a type and every method has its arguments and 

result typed too.  Two types are equal or compatible according to the following paragraph 

from the standard. 

“Two objects or literals have the same type if and only if they have been declared to 

be instances of the same named type.  Objects or literals that have been declared 

to be instances of two different types are not of the same type, even if the types in 

question define the same set of properties and operations.  Type compatibility 

follows the sub-typing relationship defined by the type hierarchy.  If TS is a 

subtype of T, then an object of type TS can be assigned to a variable of type T, 

but the reverse is not possible. 

          Two atomic literals have the same type if they belong to the same set of literals.” 

It is very important to note that significant work has been done to iron out issues with the 

type system and type inference required for expressions in this standard especially for 

queries and language binding API.  Two papers that stand out are Alagic’s work [ALAGI99] 

and Bierman and Trigoni [BIERM00]. 
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5.3.2.5 State Properties 

The attributes and relationships of an object are typically defined through a class construct.  

Each attribute is associated with a data type and each relationship has a cardinality 

qualifier and an indication (through a mention of a class) of which instances can satisfy it.  

While literal values are “copied” for each attribute’s value slot, relationships and attributes 

whose values are instances of a class have the instance identifier bestowed on them. 

In some examples found throughout the standard one finds use of a readonly attribute.  

This attribute qualifier is indeed a legal construct according to the standard’s ODL 

grammar.  An exact meaning of this qualifier is found in references on the IDL language 

(e.g. Baker’s introduction to CORBA in [BAKER97]).  A READONLY ATTRIBUTE’s value is only 

available for access (for example the language binding implementation will not provide a 

setting method for the attribute).  None the less other methods are able to access and 

change the value of a read-only attribute. 

If an “attribute” is considered to be part of an abstract behaviour then an interface can have 

both attribute and relationship definitions.  One definitely has to respect the standard’s 

requirement that interfaces must be non-instantiating constructs.  The general syntax is: 

ATTRIBUTE < TYPE | CLASS > < ATTRIBUTE NAME >; 

Relationships are specified with the RELATIONSHIP construct and require some more 

explaining in terms of the ODMG specification.  The general syntax is: 

RELATIONSHIP < TYPE CONSTRUCTOR > < RELATIONSHIP NAME> 

        INVERSE <RELATIONSHIP NAME>; 

Firstly relationships are only binary.  These are more “expressive” than the ERM’s binary 

ones because the type constructor (which is a singleton or normal set in the ERM) could be 

any of ODMG’s collection data types (e.g. a list type constructor implies order).  Secondly 

each relationship is annotated with backward traversal information (i.e. the standard calls 

these traversal paths and uses the INVERSE construct to implement these) and therefore 

each binary relationship is specified in two classes (or interfaces) that participate in it. The 

following code constructs show how an ‘employs’ 1:N relationship between team and 

employee is specified. 
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Reamrk:  code template to implement the one-to-many relationship between 

           team and employee 

 

CLASS team { 

    Remark:  other specifications 

    RELATIONSHIP SET<employee> employs 

    INVERSE employee::employee_of; 

}; 

 

CLASS employee { 

    Remark:  other specifications 

    RELATIONSHIP team employee_of 

    INVERSE team::employs; 

}; 

In ODMG’s relationship construct the many part is resolved by using the set data type 

constructor with the data type parameter being the class of the objects the relationship is 

qualified with.  The one part is resolved by using the class of the objects the relationship is 

qualified with.  In the case of the M-N relationship each side of the relationship would have 

a set data type constructor qualified with the name of the opposite class (in the 

relationship). 

It has to be noted that ODMG relationships are binary and take no attributes. 

The standard requires the OODBMS to maintain referential integrity for all relationships 

declared through the RELATIONSHIP construct.  If an operation jeopardises the referential 

integrity then the INTEGRITYERROR exception is raised.  If there is an attribute definition 

whose domain is in another class instance then the OODBMS is not responsible for 

maintaining its referential integrity; consequently the application developer would need to 

write in the referential-integrity code. 

The OMG’s IDL does not have the concept of a relationship.  We have already remarked 

that ODMG object model is conformant to OMG’s IDL, therefore the RELATIONSHIP 

construct is mapped onto a sequence of IDL constructs (i.e. read-only attributes, methods to 

form and maintain a relationship, and exception flags). 

5.3.2.6 Operations & Exceptions 

Each type has a range of behavioural aspects associated with it.  Each of these is 

implemented by a method.  And each method has a name, type signature for its arguments 

and return values, plus an explicit indication of which exceptions the method’s 

implementation may raise during its execution.  Also each argument may have a qualifier 

(e.g. IN, OUT and INOUT) that indicates whether the value of the argument is read only, 
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return only, or read and return.  The programming-language bindings provide the language 

through which the implementation details are coded to provide these aspects of the 

method’s signature. The following examples show two methods.  The first method 

EXPECTED_BONUS returns a sum (of type float) of an employee given his performance as 

expressed in the ‘level’ argument and other instance details.  If the method has insufficient 

details a named exception is raised and consequently an exception handler can cater for the 

occurrence.  The second method, RETIRE, requires a termination date for the computation 

of the behaviour in the ‘end_date’ argument.  An employment-termination process is a 

contrived procedure and therefore a number of distinct exceptions might be flagged.  

Methods that don’t return values are qualified with the VOID keyword. 

Remark:  part of an interface for employee 

Remark:     describing methods 

CLASS employee 

   (EXTENT employees) 

   { Remark: some other properties 

     float expected_bonus(IN short level) 

     RAISES (bonus_not_applicable); 

     VOID retire(IN data end_date) 

     RAISES (employee_already_gone, employee_retire_date_incorrect); 

}; 

There is no syntactic distinction between methods that have an effect on a database state 

and those that don’t. 

The following example shows how the EMPLOYEE_ALREADY_GONE is defined and adorned 

with properties (i.e. the employee’s already recorded date of termination).  The properties of 

an exception are a concise approach for passing values between the exception raising the 

computation and the error handler. 

Remark:  part of an interface for employee 

Remark:    defining exceptions 

CLASS employee 

   (EXTENT employees) 

   {  Remark some other properties 

      EXCEPTION employee_already_gone 

      {date when}; 

}; 

There is another aspect of methods that needs telling.  The ODMG’s claim that “the object 

model assumes sequential execution of operation” (i.e. in section 2.7 of [CATTE00]).  

Consequently the object invoking a method is blocked until the receiving object has 

completed its execution.  Yet a look at the relevant part of the ODMG’s ODL grammar one 

finds the ONEWAY method definition qualifier.  If an object calls a message to a “one-way” 
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method then the calling object is not blocked (according to OMG’s IDL a one-way method 

should be termed as “a best effort semantics of message passing”).  Also such one-way 

methods have structural restrictions, specifically no return types, no OUT and INOUT 

arguments mode and no exception raising capabilities.  This explanation is completely 

missing from ODMG’s object model specification. 

5.3.2.7 Data Dictionary (or Metadata Hierarchy) 

The application program’s data requirements in a database environment are recorded in 

the schema definition, as we have seen in the first chapter.  The ODMG calls this the 

metadata and it is stored in the ODL Schema Repository.  The ODMG metadata is a 

superset of ODM’s IDL Interface Repository because of the richer “structures” (e.g. 

relationships) found in it.  The standard specifies the interface of each constituent part of 

the metadata and provides a terse textual description of the properties and methods.  The 

exact semantics of the operations are missing. 

There are thirty-two interfaces with thirty inheritance relationships between them.  Most 

of these inheritance relationships are of the single-inheritance type but four rely on 

multiple inheritance.  The longest depth of the ISA relationship is of four (e.g. DICTIONARY 

/ COLLECTION / TYPE / METAOBJECT / REPOSITORYOBJECT). 

Rather than giving a sequential description of each interface we are presenting the data 

dictionary in a different perspective; namely as a description of a database.  This 

description is found in Appendix – ODMG Data Dictionary attached. 

5.3.2.8 Concurrency Control and Transactions 

Database updates change its state.  In operational databases this is a principal activity.  An 

important abstraction used to describe this activity is the transaction model (a number of 

related retrievals and updates are grouped as a logical whole) and there are a number of 

basic principles that guide the meaning and implementation of this model (a common group 

of principles are the ACID – Atomicity, Consistency, Isolation and Durability).  Each 

transaction model’s implementation’s correctness, safety, and efficiency are of fundamental 

importance to all operating databases (our bible here would be Gray and Reuter [GRAYJ92]).  

Each DBMS (and even transaction processing monitors) do come with their own 
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implementation variants to cater for different manifestations of sharing of data and 

automated recovery from failure. 

OMG categorically state that all updates must be through a transaction.  The standard 

does not specify the type of transaction model (e.g. nested transaction model) but 

emphasises that serialisability has to be upheld within the ACID context.  If the 

implementers are interested in distributed transactions then the standard expects the 

implementator to adhere to the ISO XA  code standard in respect to this issue. 

Transactions are objects for the ODMG standard.  To create a transaction a NEW message 

needs to be sent to the implementation of the TRANSACTIONFACTORY interface (we need to 

recall that factory interfaces are host programming language implementations).  The 

transaction becomes an instance of the TRANSACTION implementation and can respond to a 

usual variety of transaction processing operations.  These include BEGIN, COMMIT and 

ABORT.  As already stated each update has to be done through a transaction and therefore 

these changes are to be made through it, consequently these updates operations must first 

obtain an association with a transaction instance. 

Our description of ODMG’s transaction processing methods has been a high-level one and 

would leave a wide range of implementation possibilities.  This is not exactly so because the 

standard states that the object model uses a locking based approach.  The type of locks it 

requires are the typical “read”, “write” and “upgrade” locks.  The standard also gives brief 

descriptions of implicit and explicit locks.  The duration of locks is associated with the 

transaction termination state (i.e. committed or aborted).  The ODMG committee stress 

that the lock’s semantics and lock’s duration are taken from other standards.  Namely 

OMG’s Concurrency Control Service and SQL-92 definition of transaction isolation level 3 

[CANNA93] respectively.  Unfortunately the link between transaction serialisability and 

isolation levels is not obvious (see Berenson et al. [BEREN95]). 

5.3.2.9 Query model & Path Expressions 

OQL uses the structures and relationships created by the ODL and applies the same type 

checking for object expressions too. 



Object-Oriented Data and Query Models 

OOP – OODB and the ODMG Standard- Page [ 113 ] 

Path expressions are made from a sequence of attributes and relationships emanating from 

either a named object or an object identifier.  Two types of results can be returned by a 

path: either a scalar object, or a collection of objects.  The data type of a path is determined 

by its last attribute.  There is a restriction on the construction of a path expression namely 

that a collection type (e.g. set, bag, list) can only appear at the end of a path. 

OQL’s query specification follows SQL’s “SELECT FROM WHERE” structure.  The FROM clause 

is made up of a sequence of object collections and has a facility for renaming their 

instances.  Object collections are either a collection path expression or a class.  The WHERE 

clause is a logical predicate that determines which objects from the named collections are 

passed to the output–that is the SELECT clause.  The WHERE clause allows for nested 

queries, existential, and universal quantification queries.  The WHERE’s predicate is built 

from a number of Boolean returning conditions and composed through logical connectives 

(e.g. AND, OR).  The SELECT clause, in its simplest form, returns a bag of structures and the 

structure must have at least one attribute.  If the query requires other type constructors, 

like set and list, then the SELECT clause requires additional qualifiers.  For example to 

return a set of structures the DISTINCT qualifier is added to the SELECT clause.  For a list of 

structures one adds an ORDER BY < attribute name + > qualifier. 

Aggregate queries are possible and follow the GROUP BY HAVING syntax found in SQL. 

5.3.2.10 Databases 

The ODMG standard uses an instance to describe the whole database (i.e. a database 

instance behaviour is described in the DATABASE interface and an instance is created 

through the new operation of the DATABASEFACTORY interface).  The database interface is 

specified by the standard and includes the database administrator commands start-up and 

shut down operations (these are called, somewhat confusingly, OPEN and CLOSE).  No 

database access is allowed unless the database is open and shutdowns are allowed if no 

database transaction is in progress.  Although admirable, pragmatically this is not usually 

a good idea.  An important set of operations caters for object naming of the database 

instance (these are the BIND, UNBIND and LOOKUP).  An important method in the database 

interface is the SCHEMA.  The SCHEMA operation associates the database instance with its 

schema “root” object (i.e. an instance of the module in the data dictionary). 
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5.3.3 Critique of ODMG’s Object Model and ODL 

One basic problem with the standard was that it was a long time in coming.  Worst still was 

the timing of the better version 3 publication (year 2000) as it coincided with a cooling down 

period for object-oriented databases.  

Another gross disadvantage, and an unfortunate situation, is the standard’s unclear 

description in a number of parts of the text.  This is unfortunate as object-orientation 

themes did not have an unambiguous nature both in academia and in industry.   The 

standard has a large number of missing features (as we have seen in data modelling).  This 

is obvious in other specialised areas as: views, data security, integrity constraints, and 

triggers are totally consigned to the ‘implementation features and options’ of the vendors. 

The standard needs a good polishing up in terms of the transaction model too.  There are 

some problems in the data typing of expression and seriously affect the structure and 

meaning of query expression, for example. 

Ironically the companies that were on the standard committee have not adopted much of 

the standard other than the programming-language mappings. 

5.3.4 EyeDB 

Object databases and their management tools had started with a number of research 

prototypes.  These include Orion, Iris, Postgres and O2.  Currently the stronger and 

commercially available object databases are from Actian’s Versant {WWW.ACTIAN.COM}, 

Objectivity {WWW.OBJECTIVITY.COM} and Progress Objectstore {WWW.OBJECTSTORE.COM}.  All of 

these claim their success is based on adoption in niche application domains and in their 

performance.  Performance is based on writing queries (e.g. C++) over their object stores 

In these last ten years a number of store management tool sets for objects have emerged 

but although they offer persistence they all lack any adherence to ODMG data model and 

language bindings.  Examples include: MongoDB {WWW.MONGODB.ORG}, db4o {WWW.DB40.COM}, 

Caché {WWW.INTERSYSTEMS.COM/CACHE}, and CouchDB {WWW.COUCHDB.APACHE.ORG}. 

Another interesting option albeit lacking presence, and one adopted in this research is 

called EyeDB; with Genethon Laboratories {WWW.GENETHON.FR} being the initial developers.  

The object database was required for the Genome project.  EyeDB is still very strong in the 

http://www.genethon.fr/
http://www.genethon.fr/
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bioinformatics community.  The current version is effectively its third rewrite and is ODMG 

version 3 compliant [VIERA99] with ODL and OQL.  It provides an extensive object model 

with inheritance, collections, methods, triggers, and constraints.  It also offers language 

bindings to C++ and Java and has a scripting language that codes the object database 

methods and triggers. 

EyeDB has been made available as open source since 2006.  Support is available mostly 

through direct communication with authors. 

5.3.5 ODL & OQL Interactive Session 

The following is a sequence of ODL, OQL, scripts for an EyeDB-based object collection.  The 

artefacts were executed on EyeDB CLIs. 

Remark Define a class called person 

class Person { 

        attribute string fname; 

        attribute set<tel*> telno; 

        … 

        relationship set<Project*> workson 

             inverse Project::staff;}; 

 

Remark Define a class called student which is a subclass of person 

class Student extends Person { 

        attribute string stage; 

        attribute set<result*> results; 

        relationship Course* enrolon 

             inverse Course::candidates;}; 

 

Remark Define a class called lecturer which is a subclass of person 

class Lecturer extends Person { 

        attribute integer salary; 

        … }; 

 

Remark Define a class called course 

class Course { 

        attribute string cname; 

        attribute integer cnum; 

        … }; 

 

Remark Define an enumerated list for gender domain 

enum gender { 

        male   = 1, 

        female = 2 }; 

 

Remark Run a script to generate test objects for course  

Remark (? Is command prompt) 

? for (x in 1000 <= 1999) 

{ varname  := "course" + string(x); 

  nw  :=  

  " := Course(cname:\"name"+string(x)+ "\", cnum:"+ string(x)+ ");"; 

   cmd := varname + nw; 

   eval (cmd); }; 

? \commit 

 

Remark Extent and deep extent queries 

Remark (= is response prompt and – start a remark) 

-- Includes instance of person class and 

-- all its subclasses 

 

? count(select x from Person x); 

= 1390 

 

? select x.class.name from Person x 

   where x.fname = "fn 6002"; 

= bag("Student") 
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-- Find Person instances that are instance 

-- of class Lecturer 

? select x.fname from Person x 

  where classof(x) = "Lecturer"; 

= bag("fn 5025", "fn 5022", … 

 

? count(select x from Person x 

   where classof(x) = "Person"); 

= 350 

 

? count(select x from Person x where classof(x)="Lecturer"); 

= 10 

 

Remark Simple queries to check test objects 

-- count is an aggregate function 

? count (select Course); 

= 1000 

 

-- course10 is a variable points at an object 

? select course10.cname; 

= "name10" 

 

-- first is function that returns 1st 

-- instance of a collection 

? first(select Course.cname); 

= "name183" 

 

Remark Controlling the output data type 

 

-- return a bag of … 

? select Student; 

= bag(8831.3.17414:oid, 8803.3.1005572:oid,… 

 

-- return a set of … 

? select distinct Student; 

= set(8831.3.17414:oid, 8803.3.1005572:oid,… 

 

-- return a list of … 

? select s.fname from Student s 

  order by s.fname; 

= list(8831.3.17414:oid, 8803.3.1005572:oid,… 

 

-- return a set of structures 

? select distinct  

  struct(student:s.fname,level:s.stage) 

  from Student s; 

= set(struct(student:”stud 11”,level:”s”),… 

 

Remark Selection Queries with path expressions 

-- conjunction 

? select p.fname from Lecturer p  

  where p.addr.town="town 511"  

    and p.salary > 45000; 

= bag("fn 5050", "fn 5037") 

 

-- disjunction 

? select p.fname from Lecturer p 

  where  p.addr.town="town 511" 

     or  p.salary > 45000; 

= bag("fn 5050", "fn 5011", … "fn 5037", "fn 5041") 

 

Remark Projection query 

? select bag(s.fname, s.enrolon.cname) 

  from Student s 

  order by s.fname; 

= list(bag("fn 5048",”f”), bag("fn 5112",”f”), bag("fn 5260",”f”), … 

 

Remark Implicit join query 

-- find which students and persons share 

-- the same town but not name (the last  

-- condition rids us of spurious instances) 

 

? select struct(cons:s.fname, 

         emp:p.fname, town:p.addr.town) 

 from Student s, Person p 

 where s.addr.town=p.addr.town 

   and s.fname != p.fname; 

= bag(struct(cons: "fn 4013", emp: "fn 4000", town: "town 500"), 

struct(cons: "fn 4006", emp: "fn 4019", town: "town 506"), … 
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Remark Query over data dictionary – direct subclasses of class Person 

? select struct(cn:x.name,cp:x.parent.name) 

  from class x where x.parent.name="Person" 

= bag(struct(cn: "Student", cp: "Person"), …) 

 

Remark Stored procedure: recursively traverse the class hierarchy for 

subclasses 

-- definition 

  function subclasses(cn) { 

  clist  := bag();  cclist := bag(); 

  cmd := "clist:= (select x.name”+ 

  “ from class x”+ 

  “where x.parent.name = \"" + cn + "\");"; 

  eval cmd; 

  if ( clist[!]=0 ) { return clist; } 

  else 

  { cclist := clist; 

    for ( c in clist ) 

    { cclist += subclasses(c); } 

  return cclist;  }}; 

 

-- invocation of function 

? select subclasses("Person"); 

=bag("Student", … ) 

 

Remark Stored procedure: generate a random digit 

-- definition 

function rnddigit() { 

  dseq := 0; 

  dseq :=  

   (select time_stamp::local_time_stamp()). 

   usecs; 

  s := string(dseq); 

  l := s[!]; 

return s[l-1]; }; 

 

-- invocation of function 

? select rnddigit(); 

= '9' 

 

 

5.4 Summary 

Interest in object-oriented databases started in the early Nineties with much diversity in 

the data models and clearly an alignment effort was required.  In this chapter we have 

synthesised a data model that provides a basis for an object-oriented database with a 

practical and effective selection of features.  Our object-oriented data model has classes, ISA 

relationship, data types, and objects composed of value, identity and instance-of 

relationship.  We emphasise that there are two separate relationships from classes to 

inheritance and data types. 

A section was dedicated to path expressions; these are constructs that abbreviate object 

navigation expressions.  Path expressions implement what are called implicit joins over the 

database schema.  Advanced path expression can be adorned with universal quantification 

and pattern matching. 

The standardisation process by ODMG finished in the early Naughties; its object and query 

model was a focal point in this chapter.  Their final version is a good standard.  We have 
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given a critical look at its data model and how it is used as a basis to its query model.  The 

main critical points were: it took a long time to produce; its quality took too long to pick up; 

although adequately thorough in its object and query model it lacks precision and 

completeness in substantial parts (e.g. views, integrity constraints).  Also some features, for 

example relationships, need more and wider capabilities. 

EyeDB is an open-source OODBMS and has a good level of compliance with ODMG’s ODL 

and OQL.  This level of conformance is hard to find and was the main reason for its 

adoption here.  EyeDB is used to read and creates schemas generated from a framework we 

developed that reads an EERM and create a sequence of ODL and EyeDB constructs (e.g. 

integrity constraints not catered for in ODMG) to implement the design. 

During the progression of this chapter a number of side references were made to other 

technologies that can be considered to have a basis in one of the object-oriented database 

features presented; e.g. Xpath and path expressions. 

Nonetheless we still have to resolve a basic requirement made earlier on; i.e. to have a 

declarative and a procedural language that operates on our synthesised object-oriented 

data model.  In the following two chapters we show how a deductive database caters for the 

declarative query modelling; furthermore the same logic can describe an array of structural 

constraints.  Once the logic is in place we can present our framework and an algebra that 

operates on an object-oriented database. 
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6 – Deductive & Object-Oriented Databases 

We have defined a class-based object-oriented data model we need a calculus that can be its 

basis.  Since the eighties a large body of work developed about adding logic programming to 

the relational model; i.e. Datalog.  These databases have been named as deductive 

databases.  Through Datalog a number of important results have been established: these 

include methods of evaluation, query complexity analysis, and algebraic equivalence.  

Furthermore various “additions” to Datalog, for example ‘function’ symbols and ‘logical’ 

identifiers, were proposed. 

A logic that has attracted our attention is called F-logic [KIFER95]; it offers first-order 

semantics, a number of axioms for object-oriented features, and the possibility of logic 

programming.  The implementation of F-logic adopted here is Flora-2 [YANGG08].   

Another important requirement for the calculus selected is to represented and enforce 

database-integrity constraints which are described in the chapter seven. 

 

6.1 Deductive Databases and Datalog 

It was indicated that the relational data model comes with a number of query languages.  

In particular one example is the relational algebra, which is a “constructive” equivalent of 

relational domain calculus and tuple calculus.  Either calculus is a declarative language.  

These two declarative languages are a sub-set of first order-logic that has been in use for 

many years. 

As regards our synthesised object-oriented data model we are yet to introduce a “logic” for 

it.  This is an important aspect as it will enable us to describe and specify 1) database 

structural and behavioural rules, 2) access patterns to the database (e.g. queries), 3) 

programs.  There is really a shortage of a logic that caters for an object-oriented data model 

in the same way as relational calculus caters for the relational model.  Despite some work 

in this area, there is still a need to develop a query logic that truly captures the flavour of 

the object-oriented paradigm.  Broadly speaking this area came to be known as deductive 

object-oriented databases (DOODs) – clearly trying to create a synergy between deductive 

databases and the object-oriented paradigm. 
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During the nineties there have been a reasonable number of proposals and even prototypes 

of these logics but no clear “winner” has materialised.  If we had to describe the proposals 

at a meta-level the spectrum spreads from extending a known model (e.g. relational) with 

object-oriented features, to axiomisation of object-oriented themes into the semantics of the 

language.  Each strategy has its advantages and negative aspects. 

The proposal adopted here comes from Kifer, Lausen and Wu and is called F-logic (or 

Frame Logic) [KIFER95].  F-logic can be placed at one extreme of the above spectrum; i.e. F-

logic has object-oriented data modelling features entrenched in its formal semantics.  Major 

influences on F-logic are from Ait-Kaci [KACIA94], Maeir [MAEIR86] and HiLog [CHENW89].  

Parts of F-logic have been implemented in a number of systems, and in particular in two 

projects.  The first is called Florid [MAYWO00] from the University of Freiburg, and the 

second is called Flora-2 from the Stony Brook University.  Other than the database field, F-

Logic has overlaps with Artificial Intelligence. 

6.1.1 Logic and Databases 

In the very first sentence of Gallarie and Minker’s seminal compilation on logic and 

databases [GALLA78] they state “Mathematical logic has been applied to many different 

areas, including that of databases”.  Indeed the authors project this classical reference, 

based on the then recent development of relational logic, on database related problems.  In 

a later compilation by Minker [MINKE87], the editor explains that automated theorem 

proving not only unifies but also propels databases and logic programming.  One of the 

differences between these two references is the enabling of database design with 

computational programs (i.e. expressed in logic).  Effectively deductive databases became a 

reality and have been present with us since then. 

6.1.2 Logic Programming 

The high interest and activity in automated deduction system culminated in the 1960s with 

Robinson’s [ROBIN65] publication of the resolution rule as a sole rule of inference.  

Consequently the inference rule is well suited for a computerised system.   

An excellent example of the workings of the resolution rule is found in tutorial hosted at the 

following URL { WWW-RCI.RUTGERS.EDU/~CFS/305_HTML/DEDUCTION/RESOLUTIONTP.HTML } maintained by 
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Charles F. Schmidt.  For a given first-order knowledge base it proves, through iterative 

resolution, that “Marcus hates Caesar”. 

Shortly afterwards Kowalski [KOWAL74] and Colmerauer [COLME96] introduced logic 

programming whose inference system is based on the resolution rule.  The first logic-

programming prototype was conceived at Marseille by Colmeruaer and Roussel; this 

prototype is the basis of Prolog.  

Kowalski described a logic program as a collection of clauses.  These clauses are usually a 

sub-set of first order predicate calculus sentences (or rules) and have the following form: 

A <- B1, B2, … , Bn. 

The symbol A is called the head of the rule, and the Bi’s are a conjunction of predicates–

collectively called the body of the rule.  The meaning of the rule is straightforward: if an 

instantiation of the body’s predicates through the rule’s variables evaluates to true then as 

a consequence we have established the truth of the head predicate. 

Each of these clauses can have a procedural interpretation.  A program is invoked through 

a goal (a rule without a head): 

 <- G1, G2, … , Gk.  

Each clause in the goal (i.e. Gi) is similar to a procedure call.  If we are evaluating Gj then 

we need to find either a predicate (a rule without a body) or a rule with the same name, 

unify (a process that passes argument values or selects data), and continue evaluating the 

goal.  Note that, if the goal predicate Gj is to be unified with A above, and the ‘new’ goal is: 

<- G1, G2, … , Gj-i, (B1, … , Bn), Gj+1, … , Gk. 

Remark:   is the unification substitution. 

The evaluation terminates when the empty goal is produced.  Typically the logic 

programmer specifies what the problem is and the ‘in-built’ control specification solves the 

program.  Although most logic programming control is through resolution theorem proving, 

there are some other alternatives.  The realisation of Kowalski’s “Logic + Control = Logic 

Programming” was for all to see [KOWAL79]. 

6.1.3 Deductive Databases  

Once logic programming became a reality and the relational data model had an established 

formal foundation then it was inevitable that deductive databases would become their 

cornerstone. 
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Furthermore it was immediately apparent that the relational query language could not 

describe basic database queries, for example recursive union, whereas the logic 

programming stream does oblige.  Finally some researchers claimed that the use of one 

language (i.e. for data and query modelling and procedural computation) would address the 

nagging ‘impedance mismatch’ problems–Maier’s work is credited with the introduction of 

the term [MAEIR86]. 

For the record we need to introduce the meaning of a deductive database.  A deductive 

database is a collection of clauses.  These clauses are first order predicate calculus 

formulae.  A clause could describe a fact, a rule to derive or compute data, or an integrity 

constraint.  Facts are typically called the database extension (EDB), while derivations 

through rules are called the database intension (IDB).  There is actually nothing different 

in the structure of logic programs and deductive database clauses.  At this point one has to 

substantiate the differences between deductive databases and logic programming.   

6.1.3.1 Differences between DD and LP 

These differences are not absolute, but do indicate the relative placing of the two 

techniques. 

 In deductive databases the number of facts heavily outnumbers the rules.  

This isn’t in general the case in logic programming.  Consequently there is a 

shift in the optimisation techniques implemented in each respective field 

(e.g. in databases the management of data is predominant while in logic 

programming the efficiency of inference takes the first priority).  Yet another 

facet of this is that in databases one tends to map different physical 

implementation (e.g. indexes) for items having different characteristics (e.g. 

access patterns or integrity constraints). 

 In deductive databases the role of integrity constraints is significant.  In 

logic programming these techniques are almost non-existent. 

 The structure of the response to goals is different.  In deductive systems one 

expects the set at a time method while in logic programming one expects an 

instantiation at a time method (i.e. the result of a resolution-based 

refutation procedure). 
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 In databases, the goals (or queries) are typically meant to find patterns that 

actually match, rather than all possible candidates that can be generated to 

match. 

 In logic programming we expect to use certain artifacts, e.g. functions and 

incomplete data structures, freely whereas these are not generally allowed 

in deductive database languages.  The implication of this is profound:  logic 

programming can compute more queries than deductive database languages 

(e.g. known as Datalog). 

 When executing programs over a deductive database the underlying schema 

also determines what the programs mean.  In logic programming the set of 

constants, functions, and predicates in the program suffice. 

6.1.4 Datalog 

One of the most researched languages in deductive databases must be Datalog; a term 

introduced by Maier and Warren in [MAIER88].  Basically Datalog started as a simplified 

version of Prolog with database friendly features.  Datalog is a rule-based language for 

relational predicates (i.e. value based), but functions are not allowed in arguments which is 

not the case in Prolog.  The semantics of Datalog programs is formalised and well defined.  

Since its inception Datalog has been used as a yardstick against which to compare in terms 

of theoretical properties and also as a reference language to state significant results. 

We therefore need to describe the language, associated evaluation techniques and some 

results.  This exposition is based on Ullman’s textbooks ([ULLMA90]) and Ceri, Gottlob, 

Tanca’s survey [CERIS89]. 

A good and useful implementation is DES (Datalog Educational Systems) by F Perez of 

Universidad Complutense de Madrid { WWW.FDI.UCM.ES/PROFESOR/FERNAN/DES/  }. 

6.1.4.1 Datalog – the language 

A simple program in Datalog is (line numbers on the left are not part of Datalog): 

 1. anc(X, Y) <- parent(X, Y). 

 2. anc(X, Y) <- anc(X,Z),parent(Z, Y). 

 3. parent(X, Y) <- father(X, Y). 

 4. parent(X, Y) <- mother(X, Y). 

 5. father(eric, mario). 

 6. mother(alice, simon). 

 7. mother(alice, mario). 

www.fdi.ucm.es/profesor/fernan/des/
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Lines 5, 6 and 7 denote facts with the last line relating ‘alice is the mother of mario’.  Lines 

1, 2, 3, and 4 have rules through which other facts can be inferred.  Rule 4 says that if ‘X is 

the mother of Y’ then ‘X is a parent of Y’.  Note that the scope of variables is the rule and 

the multiple occurrence of a variable in a rule implies that the same constant is substituted 

in each occurrence. 

A query is an expression; the “?-“ symbol is used prior to the query as a command prompt. 

For example the following tries to find the father and mother of objects. 

?- mother(X,C), father(Y, C). 

A possible response to the query would be X=alice, Y=eric and C=mario. 

6.1.4.2 Syntax 

The basic elements of Datalog syntax are constants, predicates, variables (starting in 

uppercase), and terms (i.e. a variable or a constant).  Also the usual logical connectives (e.g. 

‘and’, ‘or’, ‘not’, and ‘implication’) and quantifiers (universal and existential) are used. 

A Datalog term is a constant or a variable. 

A Datalog well formed formula (i.e. wff) is defined inductively as: 

 If p is a n-ary predicate and t1, … , tn are terms then p(t1, … , tn) is an atomic wff. 

 If A and B are wffs then so are the following: 

 not A 

 A and B 

 A or B 

 A <- B 

 A -> B 

 A <-> B 

 If A is a wff and X is a variable then so are the following: 

  X (A)     Remark: X is bound within A. 

  X (A)     Remark: X is bound within A. 

Those wff that contain no variables (e.g. facts) are called ground wff.  A wff is closed if every 

variable in the formula is quantified.  Conversely if there is a variable in a wff that is not 

quantified then the wff is not closed. 

A clause in Datalog is a closed wff of the following form: 

  X1, … ,  X2 ( A1 or … or Ak or not B1 or … or not Bl ) 

             Remark: where Ai and Bi are atomic wffs. 

A definite clause is a Datalog clause with one positive atomic wff and zero or many negative 

atomic wffs (another name for these is Horn clauses).  In this structure called a rule the 
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positive clause is the head and any negative wffs form the body.  A rule with an empty body 

is sometimes called a unit clause and a unit clause without any variables is a fact.  A 

definite clause program (or positive Datalog logic program) is a collection of definite clauses. 

6.1.4.3 Semantics 

It is interesting to note that there are three different, but equivalent, ways on how to 

describe the semantics of a definite clause program.  These are the model theoretic, the 

proof theoretic, and the operational.  (Ullman in [ULLMA90] mentions also the ad hoc 

semantics (e.g. like Prolog) but quickly loses interest in it).  In essence the model theoretic 

provides a declarative meaning to a program and the operational semantics provide a 

coupling between a program’s evaluation (i.e. bottom-up) to deductive databases.  These are 

the two semantics descriptions of interest in this study.  Out of completeness, the proof 

theoretic interpretation is related to the SLD-resolution and top-down program evaluation. 

The model theoretic semantics often called Tarskian semantics has two main aims: the first 

is to enumerate the objects (or individuals) comprising the domain of discourse and their 

interrelationships; and the second is a mapping from a language’s symbols to those objects 

in the discourse.  Consequently the semantics of the language depends both on the world 

one is trying to represent and on how the constants and predicate symbols in the syntax 

correspond to individuals and properties of the world.  This is the interpretation.  We are 

interested in interpretations that make a Datalog program true; in which case the 

interpretation is called a model of the program.  To give a formal cladding to these ideas the 

following steps are required. 

Given that L is our language (e.g. Datalog) and P is a positive Datalog program then we 

initially select a non-empty set of elements U, called the domain of interpretation.  Then an 

interpretation of L is defined as: 

1. For each constant in L, an assignment of an element in U. 

2. For every predicate p in L, an assignment of a mapping from Un into {TRUE, FALSE} 

(where n is the arity of p). 

It is important to state that for definite programs it suffices to assume that constants 

represent themselves in the interpretation (an observation due to Lowenheim, Skolem and 

Herbrand) – these particular interpretations are called Herbrand Interpretations.  The 
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Herbrand universe for L, denoted UL, is the set of all terms that can be built from L (if L is 

devoid of constants then one introduces a single constant).  The Herbrand base of L, 

denoted by BL, is the set of atoms that can be generated by assigning objects of UL to the 

arguments of predicates found in P. 

For a Datalog program P, the Herbrand universe, Up, and the Herbrand base, Bp, are 

respectively, defined as UL and BL of language L that has constants and predicates identical 

with those appearing in P.  

It quickly becomes apparent to us the astronomical number of possible interpretations.  In 

our example, with just four predicates (with each having two arguments), and four 

constants, the size of Bp is 64 (i.e. 4 * 4 * 4).  Since any subset of Bp is an interpretation, 

then there are 264 Herbrand interpretations. 

Let us now consider the ground instances of a rule, e.g. p, in P.  If ground(p) represents the 

ground instances of a rule p (obtained by assigning constants from UB to the variables in p) 

then the set ground(P) denotes all the program’s predicate ground instances assigned 

constants from UB. 

Given the enumeration of P through ground(P), then one is able to check whether the 

elements of ground(P) are in an interpretation of P.  If the instance is in the interpretation 

then the ground atom is said to be satisfied otherwise it is not.  An interpretation that 

satisfies all rules in P is called a model for P.  The following interpretations for the program 

used earlier gives a tangible idea of the definitions here. 

 Remark:interpretation one 

 I1 = { father(eric, mario), 

           mother(alice, simon),  

           mother(alice, mario)}. 

 

 Comment:- Is I1 an interpretation?  Rules 5, 6 & 7 are 

alright.  But what about 4?  The body is in this 

interpretation but the head is not.  Therefore I1 is not an 

interpretation of the above P. 

 

 Remark: interpretation two 

 I2 = {  father(eric, mario),  mother(alice, simon), 

            mother(alice, mario), parent(eric, mario),  

            parent(alice, simon), parent(alice, mario), 

            anc(eric, mario),     anc(alice, simon),  

            anc(alice, mario),    anc(simon, mario)}. 

 

Comment:- Is I2 an interpretation?  Rules 5, 6 & 7 are 

satisfied.  Also rules 3 and 4 are easily verified too.  With 
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some perseverance rules 1 and 2 are also satisfied by I2.  

Note that the interpretation item anc(simon, mario) does not 

contradict any rule or imply that parent(simon, mario) should 

be present – which in fact it is not.  I2 is a model of the 

above P. 

 

 Remark: interpretation three 

 I3  = I2 – { anc(simon, mario) }. 

 

Remark:  I3 is a model of the above P. 

Clearly, there can be many interpretations of a program that are a model.  A useful result 

is that the intersection of two models is another model.  A further observation (i.e. resulting 

from this result) is that there are models that on subtracting an element from them will not 

remain a model.  For example by taking off any element from interpretation I3 disables its 

status of a model for the program.  Models with this property are called minimal models.  

Furthermore if there is a model that is contained by all other models then it is called the 

least model.  At this point one can easily prove an important result for positive Datalog 

programs: every program has a least model (one can follow the proof in [ULLMA90]). 

6.1.5 Queries and Safe Answers 

Having compiled a program (e.g. a deductive database) and its interpretation is a model 

then it is natural to expect an interaction with the model. Some of these interactions are 

called queries.  A query allows the system to verify whether, or not, a clause is implied by 

the model of the program.  In a closed query the response required is true or false.  For 

example (and using Prolog’s style for queries ?query) the query “? father(eric, mario).” 

would return true. In other queries, and where variables are introduced in the clause, the 

response includes all the facts that match the query.  An example of an open query is “? 

father(X,Y).” that would return all matches for variables X and Y in the model.  Note that 

variables in queries are implicitly universally quantified and their scope is the query 

clause. 

Queries present us with an intriguing problem related to the finiteness of their answers.  

Can we have a query that returns an infinite response?  The direct and correct answer is a 

yes.  The use of built-in predicates can easily make a query answer infinite.  Common built-

in predicates over the infinite integer domain include equality of integers, the greater than, 

and the greater than or equal, and these are not usually represented with finite relations.  

Also representation is difficult as our predicate’s arguments are not sorted (e.g. typed to an 
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integer) and therefore the domain to range has to be made clear.  An example of a query 

that generates an infinite response is “? X >= 16.” (i.e. find instances that are greater or 

equal to 16).  On the other hand the following query “? age(peter, X), X >= 16.” does not 

return an infinite response.  Another subtle way to generate infinteness is to introduce a 

rule that has a free variable present in its head but not in its body.  An example from 

Ullman [ULLMA90] is the rule: “loves(X,Y) <- lover(Y).” – all the world loves a lover.  The 

relation loves is infinite if variable X ranges over an infinite world. 

One solution is to disallow variables in built-in predicates or rule heads that are not 

anchored down in a program’s predicates (i.e. an atomic wff).  Queries and rules that have 

all their variables anchored (or limited) are safe.  The standard practice for identifying safe 

rules is to use syntax-oriented constraints on a program’s rules.  These constraints are (as 

Ullman specifies [ULLMA90]): 

“1.  Any variable that appears as an argument in a predicate of the body is 

limited;  

2. Any variable X that appears in a sub-goal X=a or a=X, where a is a constant, 

is limited;  

3. Variable X is limited if it appears in a sub-goal X=Y or Y=X, where Y is a 

variable already known to be limited.” 

6.1.6 Datalog Evaluation: Datalog to Algebra 

The model-theoretic semantics provides for understanding the meaning of a Datalog 

program.  This understanding is closely associated with the declarative meaning and 

consequently, from a processor point of view, we would like to have a mapping from 

declarative constructs to procedural constructs to enable an evaluation of the program.  A 

likely target is the relational algebra.  It is a straightforward algorithm to translate a 

simple sub-set of Datalog programs into algebraic expressions (whose input is an EDB) that 

evaluate the program. 

Let us describe the sub-set of Datalog programs we can provide an algebraic evaluation for.  

The limitations are: positive Datalog programs; each variable appearing in a rule is limited; 

and no intentional predicate (i.e. rule) is recursive.  For these types of programs our model 

theoretic semantics, proof theoretic semantics, and the algebraic computation evaluation 
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coincide.  Indeed the Datalog programs in this category are simple (i.e. the example above is 

recursive and therefore not applicable to the following conversion). 

The general outline of the evaluation algorithm depends on initially re-ordering the 

predicates in a program by their evaluation dependency; which is easily extracted by 

examining each predicates sub-goals.  For example the evaluation of predicate PARENT (in 

the above example) depends on having evaluated its sub-goals; i.e. the predicates MOTHER 

and FATHER.  The EDB predicates, like MOTHER and FATHER, do not depend on any other 

predicate.  Some predicates do depend on themselves to be evaluated (i.e. recursive) with 

predicate ANC being such–this is a reason why we are proposing this evaluation method on 

non-recursive programs.  Through this dependency relation one can build a graph – called a 

dependency graph.  In a dependency graph each program-defined predicate is represented 

as a node, and each dependency relation is depicted through a directed edge.  The 

dependency graph of the example program is presented in figure 6.1. 

mother(x,y) father(x,y)

parent(x,y)

anc(x,y)

 

Figure 6.1 – Predicate dependency graph – negated sub-goals are adorned with a 

negation symbol 

According to the predicate dependency graph of a programs one starts by identify rules that 

depend on predicates that have already been evaluated.  For each of these one then needs 

to extract from the program all the rules in which this predicate is its head.  And for each of 

these rules we need to form a relation that is the natural join of the sub-goal’s relations 

(which from the dependency graph we know have already been evaluated).  During this 

process one also needs to restrict the extent of the new relation through any constants or 

built-in predicates found in the sub-goals.  The next step is to project attributes required by 
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the rule head from the natural join created.  If the predicate being evaluated has a number 

of rules then one must union each evaluation.  Some technical details are left out here; but 

the interested reader can refer to the whole procedure as found in Ullman’s textbook 

[ULLMA90] (algorithm 3.1 p.109, V. I). 

How to evaluate query parent(x,y)?   

 eval(parent(x,y)) == UNION(mother(x,y),father(x,y)). 

Assume we have another rule to introduce the predicate grandparent(x,y), then rule and a 

query evaluation follow: 

grandparent(x,y) <- parent(x,z), parent(z,y). 

The evaluation of query grandparent(x,y)  follow: 

eval(grandparent(x,y)) ==   

    PROJECT([1st,4th], SELECT([2nd=3rd],PRODUCT(PARENT,PARENT))). 

 

Remark: 2
nd
 and 3

rd
 represent the second and third column 

Remark:   of PRODUCT result 

It is relatively easy to show that this algorithm produces the facts that can be proved from 

the database and that these facts (i.e. IDB and EDB) correspond to the unique minimal 

model. 

6.1.6.1 Recursive Datalog Evaluation 

We now need to consider an algorithm to compute the minimal model for a positive and 

recursive Datalog program.  It is not hard to accept that the IDB rules are a basis for 

constructive build-up of the IDB relations.  This observation, together with our previous 

evaluation algorithm for non-recursive programs form a framework of the required 

computation.  Understandably the crucial point of this framework is that in recursive rules 

a predicate is mentioned both in the head and in the body.  The technique used to solve 

recursive rules evaluation is the fixpoint mapping.  In the fixpoint evaluation of a recursive 

rule we start with an empty relation, and execute an assignment from the EDB to the IDB 

and hence derive new facts for the recursive relation from new assignments until no new 

facts are derived through the recursive rule.  This technique is usually referred to as the 

naïve evaluation and is attributed to Chang [CHANG88].  The pseudo code that follows is 

from [ULLMA90]. 

remark: let us assume that the datalog program has k EDB predicates 

remark: and M IDB relations 

FOR I: = 1 to M DO 

 Pi := 0;        -- set predicate extent to null 

REPEAT 
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 For I := 1 to M do 

  Qi := Pi; 

 For I := 1 to M do 

  Pi := eval(pi, R1, …, Rk, Q1, … , Qm); 

UNTIL Pi = Qi for all I, 1 <= I <= M; 

OUTPUT Pi’s 

The fixed point of a program given an EDB and the derived IDB relations form a model of 

the program.  It is a well-known result that Datalog programs have a unique minimal 

model and this coincides with their unique minimal fixed point.  At this point an important 

bridge is our requirement that the naïve evaluation of a program relative to an EDB does 

reach a fixed point and that this fixed point coincides with the minimal model of the 

program. 

To show that the naïve evaluation converges to a fixed point we need to establish that our 

call to the evaluation round is monotonic (the output is not smaller than the input) and that 

there is an upper limit of rounds.  The relational algebraic operations of ‘union’, ‘select’, 

‘project’ and ‘product’ are monotonic (but the ‘diff’ operator is non-monotonic).  As the 

algebraic expression built by the evaluation round is based on these operands then the 

evaluation call per round is monotonic.  To establish that there is indeed an upper limit to 

the number of rounds one can use the number of constants and predicates in the program to 

establish the limit’s magnitude (i.e. each evaluation’s increment fact’s arguments are 

constants from the program and the number of predicates and arities are known).  The final 

point of the proof is the establishment that the fixed point reached is indeed the least fixed 

point. 

The naïve evaluation approach is greatly improved by the semi naïve evaluation which 

basically prunes the search space in each round to the newly derived facts (i.e. new facts 

generated in the previous round) – Bancilhon is credited with its introduction [BANCI85].  A 

totally different approach is the magic set approach [BANCI86] that combines bottom up and 

top down approaches by passing evaluation information sideways and rewriting the original 

program to reflect this.  Also a control algorithm is required to drive the evaluation – 

should result be a set at a time or fact at a time. 

6.1.7 Extending Datalog with Negation  

It is a fact that certain rules (or queries) are not representable through Horn clauses.  A 

particular class of these includes the use of negation on a predicate.  Through negation a 
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rule can express inferences on exceptions and on differences (e.g. universal quantification).  

Strictly speaking a Horn clause structure does not allow negated predicates in its body.  

Datalogneg is the language of Datalog programs that allows negation in rules. 

A rule with a negated predicate that could be augmented to the above example is: 

 true_anc(X, Y)  <- anc(X,Y), not parent(X, Y). 

An algebraic equivalent would be: 

 true_anc(X, Y) := diff( anc(X,Y), parent(X,Y)). 

Another algebraic expression that evaluates the same rule is: 

 true_anx(X,Y) := product( anc(X, Y), 

                     comp_parent(X,Y)). 

 Remark: - Where comp_parent(X,Y) is the compliment of relation parent 

      with respect to the constants appearing in the discourse (i.e. U). 

      Therefore comp_parent(X, Y) = diff ( product(U,U), parent(X, Y) ). 

Although complementation seems innocuous it does create problems for our evaluation 

algorithm if the complemented relation has an infinite extent.  Furthermore not all rules 

with negated sub-goals can use the complementation approach (note that predicates ANC 

and PARENT are union compatible and all variables are restricted).  One of the first 

problems to consider is rules with variables instantiated only in negated sub-goals.  An 

example of such a rule is: 

 Remark:  predicates male and married are EDB relations 

 bachelor(X) <- male(X), not married(X,Y). 

The complementation of married is all pairs of objects that are not married to each other.  

Projecting the MALES from this complement one finds males who aren’t married to anyone.  

A good fix is to re-write the rule as: 

 remark: re-writing bachelor 

 husband(X)  <- married(X, Y). 

 bachelor(X)  <- male(X), not husband(X). 

An important observation is therefore to prohibit Datalogneg programs rules with variables 

appearing only in negated sub-goals.  Given the above re-writing technique for such rules 

this is not an impossible restriction to achieve. 

Still not all is clear with Datalogneg.  It is a well-known result that such programs might 

have a number of minimum fixpoints but no least fixed point.  The choice of which meaning 

is correct becomes critical.  Over the years it has become customary to choose a minimum 

fixpoint derived from yet another Datalog program restriction – the Datalogneg programs 
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with stratified negation.  One has to quickly point out that the fixpoint chosen from a 

stratified Datalogneg is not necessarily a least fixpoint. 

What is a stratified Datalogneg program?  A program’s rule is stratified whenever there is no 

path (in the program dependency graph) between the head and its negated sub-goal(s).  

Negated sub-goals in a dependency graph are represented as for any sub-goal but the edge 

is adorned with the negation sign.  There are a number of algorithms to test for 

stratification, but some are more interesting as they could produce a number of rules 

strata.  The stack of rule’s strata is ordered in such a way that a rule with a negated sub-

goal is in a higher startum then the sub-goal stratum.  Consequently ascending with the 

order of the starta allows our rule’s evaluation of interpret negated sub-gaols as if these are 

EDBs. 

We are now in a position to give a framework for evaluating Datalogneg programs.  It is 

reasonable to assume we are evaluating a program whose rules are safe and stratifiable.  

We effectively use the strata to guide our evaluation of the program as each level is 

dependent on the current stratum and the lower ones – therefore the evaluation of each 

stratum through the naïve evaluation is possible.  There is of course the requirement to 

evaluate a negated sub-goal.  Toward this end we need to define a set of symbols, e.g. called 

DOM, to be the union of the symbols appearing in the EDB relations and the program.  If pi 

is the negated sub-goal (i.e. not pi), we know that pi has been evaluated in a lower stratum, 

and therefore the n-way product Pi (where n is the arity of Pi) less the tuples of Pi is the 

required compliment of pi.  This hinges on the fact that since the rules are safe; therefore no 

new constants can be generated and all variables appear in a non-negated sub-goal.  The 

fixpoint reached through this evaluation is called the perfect fixed point. 

6.1.8 Extending Datalog with Functions 

There are a number of advantages to be had if our Datalog language is allowed to use 

functions to recursively define terms.  For example Datalogfunc allows us to identify objects 

through their components rather than with explicit constants.  As a result our domain of 

objects need not be finite or fixed for each program prior to evaluation.  Another use of 

functions is to build data structures (other than tuples)–an excellent example is the list.  
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The list data structure requires functions and recursive Datalog.  Of course introducing 

functions has a bearing on the safety of Datalog programs. 

The syntax of Datalog has to be extended to accept functions.  In Datalog’s wff with 

functions the terms are now defined as a constant, a variable, or a function (i.e. f(t1, … , tn) 

where ti are terms and f is the function’s name). 

The semantics of Datalog has to be appended with an interpretation for functions.  In 

Datalogfunc there is a mapping for each n-ary function from Un to U. 

The evaluation of a Datalogfunc program has a basis in the evlaution of Datalog presented 

earlier.  It is interesting though, to show how simple Datalogfunc programs offer some 

difficulties. For example, the following program defines an infinite relation.  This program’s 

evaluation never ends, as the fixed point is never quite reached.  Nonetheless we can 

heartily ascertain that this relation is well behaved in terms of the fixpoint evaluation.  In 

fact the naïve evaluation could be “fixed” to allow the instantiation of a solution in finite 

time (e.g. is a tuple in the relation – i.e. “-? int(suc(suc( …(suc(0)) … )))” ).  

  int(0). 

  int( succ (X) ) <- int(X). 

 Remark: Where succ is a function (from integer to integer) that maps 

a 

           successor to the argument supplied. 

The basic technique used for upgrading the naïve evaluation is “term matching” that is 

required between a sub-goal’s variables and ground atoms.  This term matching is used to 

instantiate objects during the naïve evaluation rounds.  In essence the naïve evaluation 

takes a Datalogfunc program whose rules are safe, and the EDB predicates.  On invoking the 

algorithm, if the result is finite then the least fixed point is found.  If the least fixed point is 

infinite, it produces an infinite sequence of approximations with the fixed point the limit.  

6.1.9 Datalog and Relational Algebra 

We have seen that the relational algebra is not able to express transitive closure–[AHOAL79].  

On the other hand Datalogneg can do what the algebra does and more.  Yet there are some 

queries that Datalogneg cannot do, but using Datalogneg+func shrinks further this class of 

queries. 



Object-Oriented Data and Query Models 

Deductive & Object-Oriented Databases - Page [ 136 ]  

6.2 Algebras as a Target for Declarative Languages 

There has also been an interest, i.e. since relational calculus and algebra, in mapping 

declarative programs, e.g. Datalog programs, into algebraic constructs.  A number of 

reasons exist: the first being that algebra can express the semantics of the Datalog 

program; and second is that after translating a program into algebraic expression, query 

rewriting and optimisation is possible.  In the following section we describe the evolution of 

database algebras; furthermore chapters eleven through thirteen describe this research’s 

effort to supplement declarative queries with algebraic ones. 

6.2.1 Relational Algebra, Nested Relational Algebras & Object Algebras 

An algebra is a well-known mathematical structure and it is defined through a pair.  The 

pair consists of a set of objects and a set of operators.  Every operator has its own set of 

algebraic properties; these include commutativity, associativity, and distributivity. 

In most database retrieval algebras the operators take either one range of objects or two.  

Database algebras are procedural.  The kinds of algebraic properties an operator has affects 

how it may be manipulated during query rewriting (which is essential in query 

optimisation). 

Codd’s relational algebra is considered to be the watershed for database languages 

[CODDE70, CODDE72].  The algebra has five operators, at minimum, works over a relational 

data model, and it is closed as it produces a relational table for each algebraic expression.  

The five basic operators are union, diff, product, project, and select.  A number of other 

operands like intersect and division are a composition of the listed five.  The language 

constructs possible from relational algebra are a sub-set of computational functions: 

therefore it is computationally incomplete.  The algebra is equipollent to and convertible to 

relational calculus; which is a declarative language. 

After Makinouchi’s [MAKIN77] work on un-normalised relations other algebras, based on the 

nested model, started to appear in the mid-eighties.  One cluster of papers appertains to 

Scheck and Scholl in [SCHEK85], [SCHEK86] and [SCHOO86].  The data model was nested 

relational (see figure 3.2 in chapter 3) and the operators supplement the relational ones 

with nest and unnest.  The algebra was closed within the nested relational model.  Over 
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this data model Thomas and Fisher [THOMA86] seminal paper introduced the algebraic 

properties of composing nest and unnests operands. 

The group led by Roth and Korth (references [ROTHM87] and [ROTHM88]) used the nested 

relational model too.  A good technique found in their operands is the recursive unravelling 

of nested tuples to retrieve the inner tuples of a nested relation; for example in union and in 

projection.  Also their predicate in the select operand allows for set comparison.  Roth et al. 

papers include a declarative language. 

Pioneering database algebra for the complex object model came from Abiteboul and Beeri 

[ABITE95].  The data model uses the set and tuple for structure constructors without any 

restriction on their ordering.  The database is value based and all sets are homogeneous.  

The algebra had the power-set operator and a replace operand (i.e. it applies a 

restructuring or mapping operation on an indicated range of values). 

One of the first object algebras was by Shaw and Zdonik in [SHAWS90].  The data model 

included object identity, inheritance, and methods.  The operators are influenced by the 

nested algebras but also an influence from functional programming is evident.  The 

introduction of functional programming, which is very effective to restructure object 

structure, requires that some of the algebra’s operators are higher order.  The operators 

include: select, image, project, union, difference, flatten, duplicate elimination, coalesce 

duplicates at a level of nesting, nest, and unnest.  These authors have been criticised for 

having higher-order features in first order systems; i.e. many of the algebras presented 

were not higher order [SUBIE98]. 

An early and thorough proposal was of Straube and Ozsu [STRAUB90].  In their work there is 

a calculus, algebra, and query processing. Their data model has basic object-oriented 

features but depends on higher-order operations. 

An extensive object algebra is that from Leung et al. [LEUNG93] AQUA proposal; the 

researchers behind this proposal had already contributed to other algebras.  Also AQUA 

anticipates supporting a wide array of data type constructors over their explicitly stated set 

and multi-set data type constructors.  AQUA comes with twenty operations.  For example 

there is a separated operator for join, outer join, and tuple join.  Furthermore one can pass 



Object-Oriented Data and Query Models 

Deductive & Object-Oriented Databases - Page [ 138 ]  

a function as the join condition between two ranges of objects.  It also includes an 

aggregation operation. 

One of the neater object algebras is QAL by Savnik et al. [SAVNI99].  Again its origin is the 

relational and functional models.  A novel introduction is that in the apply operator a path 

expression is an argument and is used as the query range rather than a class extent.  This 

can eliminate a number of projects and unnesting operands from a query expression.  Also 

the range of the operands can include the ‘data dictionary’ collection too.  QAL operands 

include: union, difference, select, tuple, close, apply and ‘applt at’, nest and unnest, and 

group.  A similar approach, based on a many sorted algebra, has also been developed by 

Lellahi and Zamulin in [LELLA01] and [ZAMUL02]. 

An interesting trend is that some of these algebras have more recently been re-packaged for 

use with XML databases.  Buneman et al. [BUNEM96] paper in SIGMOD is a very early 

paper that set an early path to this area. 

6.3 F-logic 

Are there any object-oriented extensions to Datalog?  Indeed there are such language 

extensions.  An excellent example is Abiteboul and Kanellakis IQL [ABITE89] proposal which 

includes Datalog, negation, object creation, and inflationary fixpoint semantics (rather than 

the above perfect model semantics) as its basic characteristics.  In general the connection 

between logic programming and the object-oriented model was through these support 

mechanisms: complex terms (i.e. in logic programming) to complex values (i.e. in object-

orientation); predicates and their extensions to classes and their instances; object 

identifiers in predicate as labels to object identity; object-identifier-based sharing to object 

based sharing; and unification through term generalisation for inheritance.  One problem is 

the “encoding” blurs the distinction between the paradigm’s features and the implemented 

program. 

Yet another approach is to couple (loosely or tightly) between a logical programming 

language and an object-oriented language.  An excellent example of these genera is the 

proposal by Dinn et al. [DINNA95] (and later a working version) for ROCK & ROLL.  Here 

the data model is based on a semantic data model.  ROLL allows rule specification while 
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ROCK is a procedural language.  This project is a success on a number of points: usage, 

implementation and extending ROCK & ROLL’s capabilities (i.e. Active and Spatial 

additions exist).    A criticism that one usually levels at this approach is how well does its 

extensions match – there could be an impedance mismatch occurrence between the 

“internal” components. 

As we had already anticipated earlier in this section, there is yet another approach to 

defining deductive object-oriented databases whereby basic notions of object-orientation are 

entrenched (or canonised) in the underlying language.  From the onset, one must state that 

a tangible difficulty is to include features (e.g. object-oriented themes and variations) but 

remain within the confines of first-order logic theory (i.e. technically the semantics are first 

order).  

F-logic offers objects, object-identity, ISA relationships, methods (e.g. scalar or multi 

valued), non-monotonic inheritance (i.e. structural and behavioural), and typing.  Schema 

and objects in F-logic are homogenous.  The syntax is higher order; but the semantics are 

first order (in fact, for F-logic a model-theoretic semantics and a sound and complete proof 

theory exist).  Another proposal along this path includes Orlog [JAMIL92].  The general 

problems of this approach are: remaining within first-order semantics; evaluation 

efficiency; and the complexity when using the language (e.g. by application programmers). 

6.3.1 F-logic: the Language 

F-logic language, F-L, alphabet comprises: 

 The set of object constructors, F has the role of functions.  In F-logic 

functions of arity 0 are constants, while functions of greater arity denote 

larger terms that have been built from simpler ones; 

 An infinite set of variables, V, (we use Prolog’s practice of using uppercase to 

identify these more easily); 

 A number of auxiliary symbols – e.g. ( , ), 6, 7, 8, 9, 4, 5, etc; 

 The customary set of logical connectives and quantifiers, Ú, Ù, Ø, ¬, ", $. 
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An id-term is a term (as in Datalog) and is composed of functions and variables.  The 

Herbrand Universe, U(F), is the set of all ground terms.  These ground terms are the logical 

object identifiers. 

In F-L we have molecules (rather than atomic formula – i.e. a collection of facts) to build wff.  

The structure of molecules follows. 

i) An ISA assertion takes the form: 

Remark: object denoted by id-term b is a subclass of object  

            denoted by id term a 

 

  b :: a. 

 

 Remark: object denoted by id-term o is an instance of object 

            denoted by id term a. 

 

  o : a.   

 

ii) An object molecule for an object denoted by id-term O takes the form: 

Remark: 1: the object will respond to methods available in the list 

Remark: 2: there is no implied order in the list 

 

  o[ a semi-colon delimited list of method expressions ]. 

iii) A number of method expressions are possible. 

 A scalar (i.e. single headed arrows) and set (i.e. double headed arrows) non-

inheritable data expressions are represented as: 

 Remark: 1: scalar_method, set_method, Ai, R, Si are id-terms 

 Remark: 2: the Ai are the method's arguments and R is the result 

              for scalar methods, while the result of a set method 

              are Si id-terms  

 

  scalar_Method@(A1, …, An) -> R  where n >= 0 

  set_Method@(A1, …. , An) ->> { S1, … , Sm}   where n >= 0, m >= 0 

 An inheritable method allows F-logic to pass a method through the ISA relationship 

(i.e. :: and : ).  An inheritable data expression are represented as (i.e. add the star to 

the single and set symbols): 

scalar_Method@(A1, …, An) *-> R where n >= 0 

set_Method@(A1, … , An) *->> { S1, … , Sm } where n >= 0 and m>=0 

 A scalar and set-valued signature expression is represented as: 

  Remark: 1: the id-terms Ai denote the type of the arguments 

  Remark: 2: the id-terms of Ti denote the type of the result, 

                 and if m > 1 then the return object has to have 

                 all the listed types 

 

scalar_Method@(A1, …, An) => ( T1, … , Tm )  where n >= 0 and m >= 0 

 set_Method@(A1, … , An) =>> ( T1, … , Tm )  where n >=0 and m >= 0 
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After considering the basic structures in an F-molecule it is worth emphasising some other 

points on how these are built.  An object's attributes are given through data expressions: 

i.e. details on an object denoted by id-term "peter" could be given as: 

 peter [ name -> "PETER" ; sex -> male ; work -> manager ; tels ->> {25, 21}]. 

The signature of persons, ISA and instance-of assertions could be given as: 

 person [ name => string ; sex => sextype ; work => jobtype ; tels =>> int ]. 

peter : employee. 

 employee :: person. 

For the data type constraints to be satisfied (we shall see later what we actually mean here) 

we need to add the following instance-of facts: 

 male:sextype. female:sextype. 

 manager:jobtype. other:jobtype. 

If we change the signature molecule with the following and re-evaluate: 

person [ name => string ; status *-> employed ]. 

Then the following query will confirm that "peter" is still an employee. 

 ?- peter [ status -> employed ]. 

If we fire the following query notice how F-logic responds (note two solutions are offered 

rather than one for a set): 

 ?- peter [ tels ->> N ]. 

 N / 2503 

 N / 2131 

If "peter's” details are changed (and the program is then re-evaluated) and then we fire the 

same query it returns false.  This is because the methods defined for an object over-ride the 

inherited ones.  Also to note is that through the instance relationship the type of molecule 

changes from an inheritable to a non-inheritable type.  

 peter [ name -> "PETER" ; status -> unengaged ]. 

F-molecules are allowed to have a nested structure.  For example: 

 peter [ addr -> petehome [ str -> "main"; city -> "cosmo" ] ]. 

The following query would bind “cosmo” to variable Y: 

 ? peter [ addr -> X [ city -> Y ] ]. 

Clearly this technique goes some way towards implementing complex objects.  (In a later 

sub-section, where F-logic predicates are introduced, one can combine F-molecules and 

predicates to represent more naturally a wide variety of complex objects). 

An interesting example is the following wff data definition (i.e. with id-term "atr" repeated): 

 o[atr -> a1; atr ->> {a2,b2}; atr *-> a3].  
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How are rules specified?  The following rule derives a new attribute for any person who 

shares a phone with another person (e.g. including herself): 

P[shares@(T)->>P2] <- P:person , P[tels->> T] , P2:person , P2[tels->>T]. 

The commas are used for denoting conjunctions between F-molecules.  It is also appropriate 

to note that id-terms denote either an object (an entity instance) or a method.  The context 

is determined by the placing in the wff and the type of arrow. 

F-logic's wff (or F-formulas) are built in terms of other F-formulas.  F-formulas are 

therefore generated iteratively from: molecular data expressions are F-formulas; F-

formulas using the logical connectives; and F-formulas built from quantifiers (e.g. if F is a 

F-formula and X a variable then forall X F).  A literal is an F-formula or a negated F-

formula. 

6.3.2 F-logic's Semantics 

The standard reference on F-logic [KIFER95] explains the semantic structures through a 

model-theoretic approach.  In the same reference these are called F-structures.  An 

interpretation for F-logic language is a ten-tuple.  The first attribute is the domain of the 

interpretation.  The second is an irreflexive partial order on U that captures the subclass 

relationship (i.e. :: ).  The third is the binary relationship to model the instance-of 

relationship (i.e. : ).  There is a relationship between these structures as it enforces the deep 

extent relationship (i.e. if a is an instance of b and b ISA c then a is an instance of c).  It is 

important to mention that there are no other restrictions on the instances of the ISA 

structures.  This allows, for example, an object to be an instance of itself (e.g. useful in AI 

for depicting the typical object).  A fundamental point to understand with F-logic is that in 

the "a is an instance of b" assertion b is not a subset of U but b is an element in U denoting 

a set.  The claim that F-logic has a first-order semantics is thus satisfied.  The forth 

attribute interprets each n-ary object constructor (i.e. functions) – just like the first-order 

predicate calculus [ENDER72].  The other six attributes of the interpretation of F-logic deal 

with method expressions (i.e. the different arrows). 

While the deep extent relationship is entrenched in the interpretation; the relationship 

between a method and its signature is not and it is defined elsewhere (i.e. at a meta level 

through type correctness rules).  It suffices to note, at this point, that methods have a 
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functional form and the structures for scalar and set method signatures map with the 

properties of Cardelli's semantics of multiple inheritance [CARDE88]. 

As in predicate calculus variable assignment is straightforward.  It is defined as a mapping 

v from the set of variables V  to the domain U.  This extends to id-terms. 

How are F-molecules satisfied?  A molecule T[ … ] is true under an interpretation I given a 

variable assignment v if object v(T) in I has the properties of molecule T[ … ].  This is 

succinctly represented as: I |= v T [ … ]. Of course this notion is specialised for each type of 

F-molecule.  Also the meaning of F-formulas with logical connectives, for example  AND ,  

is defined as I |= v   AND  if and only if I |= v  and I |= v . The meaning of F-formulas 

with quantifiers is, I |= v X  iff I |= u  for every u that matches v (except possibly on X).  

An interpretation I of F-logic is a model of a closed formula  if and only if I |= . 

6.3.3 F-logic and Predicates 

F-logic can simulate Datalog.  One technique reported in the reference paper is to encode an 

n-ary predicate p as instances of a class p.  Specifically: 

 p(T1, … , Tn)[arg1 -> T1; … ; argn -> Tn] and p(T1, … , Tn):p. 

The report also shows how predicates could form part of the interpretation of F-Logc 

programs.  Basically we set to introduce a set of predicates, P, and a meaning for these in 

the language interpretation (i.e. the eleventh entry).  With this introduction Datalog and 

logic programming (as presented earlier) become a sub-set of F-logic.   

6.3.4 F-logic's Proof Theory 

It is important to state that F-logic has a sound and complete proof theory for logical 

entailment of F-molecules (the statisfiability requirement defined earlier).  The theory has 

a high number of inference rules – twelve and an axiom in all.  Logic's programming 

resolution, factoring and paramodulation are present here too.  The higher number of 

inference rules is due to the number of features entrenched in the semantics of the 

language. 

6.3.5 Logic Programming with F-logic 

In a previous example we have shown how F-logic can use rules to derive the value of an 

object's attributes (e.g. share@(tels)->>integer).  It is evident then that Horn clauses are 

allowed in F-molecules.  If an F-logic program's rules are Horn clauses then the model 



Object-Oriented Data and Query Models 

Deductive & Object-Oriented Databases - Page [ 144 ]  

intersection property holds (i.e. the least model).  If the rules are recursive then the 

evaluation technique shown for Datalog (the use of the fixpoint operator) is also applicable 

here and gives the same result. 

If in our F-logic methods their derivation require general programs (e.g. use of negation) 

then the coincidences between fixpoints, minimal models and satisfiability is lost.  If a 

program's stratification is reached then the program's evaluation is a perfect model. 

Whereas in Datalog it was possible and acceptable to assume two objects are equal if they 

were assigned the same constant it is not possible to entertain this approach in F-logic.  

The reason being that we assign functions for id-term and also the semantics of the 

language will interpret that two object's id-term must be representing the same object.  For 

example if we have two ISA assertions like person :: human and human :: person then 

person and human are equal.  This is because of the class hierarchy acyclicity semantics.  

One suggestion from Kifer et al. is to split the program into two.  The first part will allow 

inferences about equality (as in the example of person :: human), while the other part will 

prohibit inferences on equality unless it is specified explicitly (id-term of person and of 

human are denoting the same object).  

One last point in this section is about queries.  In F-logic a query as the form of "?- Q", 

where Q is an F-molecule.  As is common to logic programming the answer to the query, 

with respect to an evaluated F-program, is the smallest set of F-molecules that are found in 

the program's model.  There is a second condition in F-logic that needs attention.  Let us re-

examine a query and its response we had written about: 

 ?- peter [ tels ->> N ]. 

 N / 2503 

 N / 2131 

If we syntactly change the query into the following we do not get "true": 

 ?- peter [ tels ->> { 2503, 2131 } ]. 

 To solve this we must check our model for closure (i.e. |= ) with respect to satisfiability.  

Therefore our queries must be closed with respect to |= . 

6.3.6 F-logic and Typing 

In F-logic the data expressions (i.e. methods) are functional and there is a possibility of 

passing arguments and returning either an object or a set of objects.  It comes as no 
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surprise that arity polymorphism is allowed in F-molecules.  An example of arity 

polymorphism is the method salary in the following F-molecule: 

person [ name => string; sal@(1995) -> 500; sal@(1995, manager)-> 350 ]. 

We have also seen that an F-logic program can specify a method's signature; but we 

commented (in the semantics section 6.3.2) that the typing enforcement is not entrenched 

in the semantics.  To rectify this F-logic provides "well-typing conditions" at a meta-level.  

The first condition is dedicated to non-inheritable methods and states that every such 

method has to be covered by a signature found in an object (whose context would be of a 

class).  If we have the molecule a[m 6 r] and an assertion a:c then there must be a 

signature in c that covers m (e.g. c[m 4 t] ).  The second deals with inheritable methods 

(i.e. 8 ) and its mode is different from the first.  If we have a molecule c1[m 8 t] and 

assertions c1::c and a:c1 then the signature that covers method m in object a is found in c1.  

A general F-logic program interpretation is typed if these two conditions are satisfied. 

In general this result is not strong enough for some F-logic programs (i.e. a sub-set of 

general F-logic programs) as static type checking is not possible.  For example if in a 

general F-logic program there is a rule that can generate new sub-class relationships then 

static type checking is not possible.  Another occurrence of typing errors comes from rules 

that never fire (e.g. type errors in the body of the rule).  Although this is lethal from some 

aspects (Kifer and Wu state that it is un-decidable to type check a general F-logic program 

[KIFER90]) there are some countermeasure possibilities.  For example after program 

evaluation additional rules can then do the required static checks (we can use stratification 

techniques toward this end).  Clearly some way to bridge the gap between logic 

programming and programming languages in terms of type checking is required (this line 

of research is attributed to Mishra's [MISHR84] work on introducing type inference in 

Prolog).  We can even take some advantage of this situation.  First the typing rules are 

written by us and therefore can address a range of typing formalism. And secondly we can 

focus type checking onto a sub-set of the program's interpretation (e.g. type-check those 

methods that are dependent on type matching to external object definitions). 
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We typically need to make two checks for establishing type correctness.  One is type safety 

that checks that there is no method without a covering signature in the interpretation.  The 

other is type correctness that checks every signature covering a method is satisfied in the 

interpretation.  Remember if there are a number of result types specified in a method 

signature (i.e. m 4 {A,B}) then the resulting object must be in the extent of each type.  A 

set of rules that check simple methods (scalar and without arguments) follow: 

 remark: assume a general f-logic program follows 

 … 

 type_safe_sm(O, M, R)  <- O[M -> R] , O:C , C[M=>( )}. 

 type_unsafe_sm(O,M,R) <- O[M-> R] , not type_safe_sm(O, M, R). 

 type_incorrect_sm(O, M, R) <- O[M -> R] , O:C , C[M=>D] , not R:D. 

 remark:  after the final re-evaluation fire the following queries 

 ?- type_unsafe_sm(O,M,R). 

 ?- type_incorrect_sm(O,M,R). 

The typing modality in F-logic is therefore to apply typing rules on a meaningful program 

(i.e. but untyped) and then check for safety and correctness.  The general approach is to 

consider the F-Program's signatures, introduce type inference rules (for un-typed methods) 

and then do type checking by evaluation.  Effectively write rules and queries to type check. 

6.3.7 F-logic and Inheritance 

F-logic supports both structural and behavioural inheritance through the constructs :: , 8, 

and 9 respectively.  Furthermore F-logic semantics has structural inheritance and its 

proof theory is sound and complete for the same semantics.  The problematic part is the 

behavioural inheritance and its modality (e.g. overriding and multiple inheritance). 

A good example of overriding (from [KIFER95]) is describing clyde (an elephant!).  Consider 

the following F-Program: 

 royalElephant::elephant. 

 cylde:royalElephant. 

 elephant[ colour *-> "grey" ; group *-> mammal ]. 

 royalElephant[ colour *-> "white"]. 
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Since clyde is a member of the royalElephant class it inherits the inheritable method (i.e. 

colour 8 "grey") as a data method (i.e. colour 6 "grey"), and does not take the inheritance 

from elephant (i.e. colour 6 "white" is overridden).  Also to note is that sub-class 

royalElephant does not take the colour inheritable method, but does inherit the group as an 

inheritable method (i.e. royalElephant [group 8 mammal ] is true). 

A classic example of multiple inheritance (also included in Kifer et al. reference [KIFER95]) is 

Nixon's Diamond.  Consider the following F-program: 

 nixon:quaker. 

 nixon:republican. 

 quaker[ policy *-> pacifist ]. 

 republican[ policy *-> hawk ]. 

Having an association with both quakers and republicans our Nixon is spoilt to choose 

between either inheritable method (i.e. policy).  But note that once Nixon accepts a policy 

then he excludes the other policy (i.e. either pacifist or hawk).  Therefore the instantiation 

of the query "?- nixon[policy6 X]" is determined by which inheritance has been taken first. 

In both cases our concern that logical satisfiability becomes non-monotonic is a reality.  The 

F-logic language takes a non-deterministic approach (with the choice criteria being fair).  

The idea is to choose one of the possible worlds since each possibility is really a canonical 

model.  This mode of inheritance is known as the "credulous" variety.  Other regimes, and 

sometimes less ambitious, have also been introduced by Kifer and others. 

To integrate inheritance into a deductive object-oriented database, as presented through F-

logic, a number of issues have to be understood and controlled.  For example, how are 

inheritance and logical deduction to interact?  Furthermore how are set valued data 

methods or ISA assertions to react in the presence of inheritance?  The difficulty of these 

issues stem from an assertion derived through an inheritance that causes a chain-reaction 

of other deductions.  The scope of inheritance (and its effects) is both the source and the 

recipient of the inheritance.  Consider the following simple program: 

 a:b. 
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b[attr *->> c]. 

b[attr *->> d] <- a[attr ->> c]. 

Through inheritance a[attr 7 c] is derived.  Consequently the rule deduces that b[ attr 9 

d] is true.  If we re-write object b's data molecule attr we get: attr 9 {c,d}. The question is 

should we re-inherit in object a from b?  F-logic does not undo the first inheritance, but does 

not enable the inheritance of derived set-based inheritable methods.  The justification for 

this decision seems to be twofold: reduce the amount of backtracking during evaluation and 

secondly it yields semantic simplicity (albeit procedural).  The formal method proven by the 

authors is based on two steps: in the first we fire the inheritance occurrence from source to 

recipient objects and disable the inheritable method; while in the second phase we get the 

state reached through inheritance into a model.  The inheritance firing, or triggering, stops 

when there are no more inheritable methods in the original program.  An important point 

to emphasise is that inheritance triggering starts after the evaluation finds a model for the 

F-program less the inheritable methods.  In practice the Nixon diamond example becomes 

amenable in this scenario. 

It is an interesting exercise to consider how F-logic can mimic the inheritance modality of 

other systems.  One example would be to model user-controlled inheritance.  In this 

scenario the user (rather than F-logic) wants to decide which inheritance to allow triggering 

in the circumstance of multiple inheritance conflicts.  A case in point is Eiffel's explicit 

multiple inheritance conflict resolution.  Let us assume there is an inheritable method, it is 

scalar and includes an argument, and it is attached to a number of classes (these are c1, … , 

cn and say variable Class ranges over these), then we need a rule that parameterises the 

method for each of these classes. 

 Class [ method(Class) @ X *-> Y ] <- Class [ method @ X *-> Y ]. 

If we have an object (e.g. o) that inherits from c1, … , cn then this object will have inherited 

all the definitions of “method” – but each is different because of the “Class” parameter.  

Consequently if the programmer wants to invoke the method attached to class identified by 

c3 will need to write a query so: 

 ?- o [ method(c3) @ X -> Y ]. 
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6.3.8 F-logic Implementation: Flora-2 

Flora-2 [YANGG08] is a deductive and object-oriented database (DOOD) development 

framework.  It is based on F-logic, Hi-Log [CHENW89] and Transaction Logic [BONNE94] and 

is coded in XSB Prolog.  Hi-Log and Transaction Logic features are available for meta 

programming and knowledge-base updates respectively. 

Flora-2 implements most of F-logic but has some syntactic changes and a number of 

additions to it.   The most obvious syntactic difference is that whereas in F-logic there is a 

difference in notation between scalar and set methods these have been generalised into set 

methods with cardinality constraints.  Also some symbols like “;” and “@” have been 

replaced to align better with the underlying Prolog system.  Path expressions are part of F-

molecules and F-formulas.  Additional facilities to F-logic found in Flora-2 include 

aggregates, for example count instances that satisfy a query, and more meta programming 

facilities that are very useful in database environments.  A useful feature Flora-2 has is the 

generation of id-terms on demand. 

It is also possible to configure the Flora-2 inference engine prior to an evaluation of a 

program.  For example, one has a choice of options for equality maintenance and 

inheritance semantics. 

One can install Flora-2 on Linux and Windows, and both XSB Prolog and Flora-2 are open-

source.  Plug-ins for Eclipse IDE and EMACS also exist.  XSB Prolog, which is accessible 

from Flora-2 programs, has access to data managed by a DBMS through data connectivity 

facilities and protocols. 

6.3.9 Flora-2 Session 

The following is a sequence of interactions with a deductive database within a Flora-2 

environment. 

Remark Identify classes as an instance of ‘class’  

person      :class. 

course      :class. 

dept        :class. 

lecturer    :class. 

 

Remark ISA facts 

student     ::person. 

lecturer    ::person. 

 

Remark Instances of person, lecturer and student 

barbara     :person.  

betty       :person.  

mark        :lecturer.  

mary        :student.  
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michael     :student. 

 

Remark Creating an enumerated type 

sex        [enum-> {'m','f'}]. 

unitgrade  [enum-> {'a', 'b', 'c', 'd', 'f', 'abs'}]. 

assessment [enum->{'assign', 'test', 'exam', 'interview'}]. 

 

Remark Adding attributes to objects 

barbara  [fname->'barbara', telno->{t123}]. 

betty    [fname->'betty',   telno->{t456},  workson->{proj1,proj2,proj21}]. 

mark     [fname->'mark',    telno->{t5,t9}, degrees->{'b','d'},  

          worksat->eeng, 

         teach(2000)->intprog, teach(2001)->intprog,teach(2002)->intprog, 

         teach(2001)->javaprog,  

         coord->{intprog,softeng},  

          prolead->{proj3, proj11, proj21}, 

         workson->{proj3,proj11}]. 

michael  [fname->'michael',  telno->{t9012,t3456},  

          enrolon->bsc_comp, stage->'f']. 

michael  [result('c')->dsa, result('c')->softeng, result('c')->pdb, 

          result('c')->intprog]. 

 

Remark Declaring object signatures  

       (including Flora-2 cardinality constraints) 

lecturer [degrees*=>string,  worksat{1:1}*=>dept,       coord{1:3}*=>unit, 

          prolead{0:*}* => project, teach(integer){0:*}*=>unit]. 

person   [fname*=>string,           telno{0:*}*=>telephone, 

          workson{0:*}*=>project]. 

student  [enrolon{1:1}*=>course,    stage*=>string, 

          result(string)*=>unit]. 

 

Remark Instances of ‘class’are? 

?- ?Any:class. 

?Any = course 

?Any = person 

… 

 

Remark: Deep extent query 

?- michael:?C. 

?C = person 

?C = student 

 

Remark: Deep extent query 

?-?Who:person. 

?Who = barbara 

?Who = mark 

… 

 

Remark: A queries with an and (,) 

?- mary[result(a)->?_U1 ,result(f)->?_U2]. 

No. 

 

Remark: A query with an or (;) 

?- mary[result(a)->?_U1;result(f)->?_U2]. 

Yes. 

 

Remark: Path expressions – who got an A in a 2 credit unit? 

?- ?X.result('a').credits=2. 

?X = susan 

 

Remark: To who & what type of assessment was awarded an A in a 2 credit unit 

?- ?X.result('a').credits=2, ?X.result(?_G).ass=?T. 

?X = susan, ?T = assignment 

?X = susan, ?T = exam 

 

Remark Constraint Denial - Uniqueness 

?- ?P1.fname = ?P2.fname, not ?P1:=:?P2. 

 

Remark Functional dependence 

?- ?I1:unit[credits->?V,assessment->?A1],  

   ?I2:unit[credits->?V,assessment->?A2], 

    \+ ?I1 :=: ?I2, not ?A1 :=: ?A2. 

 

Remark Who & what type of assessments does one take if got an A in a 2 

credit unit 

?- ?X.result('a').credits=2, ?X.result(?_G).ass=?T. 

?X = susan, ?T = assignment 

?X = susan, ?T = exam 
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Remark Invoke XSB Prolog from Flora-2 using call 

?- call(sort([a,s,d],?S)@_prolog). 

?S = [a, d, s]. 

 

Remark Aggregate query – degrees per person 

?- ?P:person,?C = count{?P|?P[degrees ->?C]}. 

?P = linda, ?C = 0 

?P = lisa, ?C = 3  

… 

 

Remark Aggregate query – years during which a unit was taught 

?- ?C = collectset{?Y[?U]|?U[taughtby(?Y)->?L]}. 

?C = [2000, 2001, 2002], ?U = ddb, … 

?C = [2000, 2001, 2002], ?U = dsa, … 

… 

 

6.4 Summary 

In this chapter we surveyed the research area of deductive and deductive object-oriented 

databases.  For many years Datalog has been used as a yardstick and model to study 

interesting problems related to databases, query processing and recursive query processing.  

An interesting feature of this research is the use of algebraic languages to evaluate, and 

optimise, Datalog programs. 

An notable occurrence is that there has been, in the last three years, a resurgence of 

research in Datalog.  Furthermore industrial applications are adopting Datalog based 

systems [HUANG11] in the following areas: declarative networking, data integration, and 

program verification. 

Here have read about F-logic–a logic that is object-oriented friendly.  Technically it has a 

first order semantics, has a complete proof theory, resolution-based proof procedure, and 

higher-order syntax.  Flora-2, an F-logic implementation, appeared later.  Interestingly F-

logic has gained popularity not only in database theory and deductive databases but also in 

for example the semantic web.  F-logic is an ideal target language for data-modelling 

languages and to execute declarative queries against an F-logic program (i.e. rules and 

facts).  Given the current hardware trends, like very high computer processing throughput 

and large arrays of main memory, one can propose F-logic as an exciting option as it offers a 

strong basis for a deductive database. 

Unfortunately this option has shortfalls.  For example sharing is a problem (but it is not of 

interest in this research).  Another problem is data size; inevitable there are databases 

whose size is greater than main memory available and therefore secondary storage is in 

need.  Consequently F-logic queries need optimisation and it is in our interest to find 
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evaluation methods, at least for a subset of F-logic queries, that can be optimised much like 

relational tuple calculus is converted to relational algebra and then optimised.  We present 

a procedural execution program for a subset of F-logic queries (or ODMG OQL queries) 

defined on an ODMG ODL data model that is optimisable and for which optimisation is 

more sensitive to the computational platform available at runtime. 
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7 Integrity Constraints 

Integrity constraints are rules that any instance of a database structure must uphold. 

Therefore, integrity constraints are properties of the schema.  Also integrity constraints 

supplement a number of other database related aspects.  For example state changing 

operations over a database have to adhere to and respect these rules. 

Here are some common examples of integrity constraints.  The first is the basic primary key 

constraint on a database structure.  In a value based model the constraint requires that the 

concatenation of a number of attributes’ value is unique for any set of instances of the 

structure.  A second example is the check constraint which deals with what values a 

structure’s attribute can take.  A case in point is restricting the grade of a student to one of 

the following values (from 0 to 5).  In databases explicit relationships between instances are 

ubiquitous and our third example is referential constraint (or inclusion dependency); each 

employee instance is related to a department instance.  Our forth example deals with 

expressing the “business rule” that there can be at most four students with a grade level 5 

classification.  Finally our fifth example associates a constraint to a database operation in 

the following manner; on changing a student’s details their name value must not change – 

this is an example of transitional constraints. 

Once we have a representation of a database and its integrity constraints then we are in a 

position to deduce whether a database state violates any integrity constraint 

From a pedagogical perspective it is useful to give a coarse classification of integrity 

constraints in data modelling (see figure 7.1).  The first categorisation is whether the 

constraint deals with rules that the structure’s instances must obey or whether the 

constraint is applicable when a database operation is applied in due course and restricted 

to the instances affected by the operation.  The former are the static constraints while the 

latter are the transitional constraints (fifth example above).  The operations of interest in 

the transitional case are either the insert, or the update, or the delete, or any permutation 

of the previous three. 
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primary key (~)

check (~)

not null (~)

mvd (~)

referential (~)
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non aggregate
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sequence of #

aggregate

Static

insert (*)

update (*)

delete (*)

sequence of *

Transitional

Integrity

Constraints

 

Figure 7.1:  An Integrity Constraints Classification for Data Modelling 

The static constraints are neatly divisible in two branches if we classify the integrity rules 

by whether the test is based on an instance value, or whether the test is applicable to an 

aggregate function on a collection of instances.  The former are the non-aggregate 

constraints while the latter are the aggregate constraints. 

Specifically the fourth example above is an aggregate constraint as it is based on comparing 

a value against the count of first class students from a set of instances (i.e. all students). 

There is a good variety of non-aggregate static constraints of which one finds the primary 

key, the check, and the referential constraints (these are the first, second and third 

examples given above).   

7.1 Integrity Constraints Representation 

The leverage of using data-modelling constructs that are representable with a logical 

language is seen through the capabilities of describing and inferring on data, relationships, 

queries and constraints.  Within this we are going to give a representation of integrity 

constraints through predicate logic closed formula. 

The non-aggregate static integrity constraints are the easier to give a formal representation 

of, and also a basis for a presentation on the advantages of being able to depict and reason 
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about databases and constraints.  Before we present the logical forms of these constraints 

we first need to present some notation and definitions.  Let us assume our database is a 

collection of structures and these are relations – generally depicted as rel().  Each relation 

is made up of a number of attributes (identified as an offset in the structure or as Ai) to 

which a domain is associated with dom(Ai).  Also with each relation we associate a 

collection of integrity constraints applicable to the relation’s instances.  A relation’s 

declaration and property, an instance’s definition and a set of instances are presented as: 
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7.1.1 Check Constraint 

Relation STUDENT is made up of three attributes: NAME, CLASS and DEGREE subject.  If we 

want to “ensure that each student has one classification from a list of values” then we 

would need to introduce a check constraint on the CLASS attribute (i.e. the second attribute 

in STUDENT).  To represent this constraint we specify: 

student( , , )
.

0 1 5

x y z
x y x

y y y

 
    

      
 

7.1.2 Primary Key Constraint 

If we take the same relation and we need to specify that “NAME (in the first attribute in 

STUDENT) is the primary key attribute” then we specify: 

   student , , student ', ', '

' ' ' ' .

' '

x y z x y z

x y z x y z x x

y y z z

  
 

       
    
 

 

7.1.3 Not Null Constraint 

To enforce the rule that “all students must be assigned to a degree course” (the third 

attribute of STUDENT is DEGREE) we use the not null constraint.  This is specified with the 

rule: 

    student , .x y z x, y z isnull z     

This representation requires clarification in that checking if an argument of a predicate is 

null requires delving into and requiring certain implementation details. 
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7.1.4 Referential Constraint 

If we would want to enforce the rule that “each student must enroll with at least one 

department” (the relation DEPT_STUD_LIST is made up of attributes DEPARTMENT name 

and STUDENT name) then we specify: 

    student dept_stud_list .x y z x, y,z d d,x     

7.1.5 Functional Dependency and Multi-Valued Dependency 

The last type of our generic static constraint is the multi-valued dependency and this, as 

already mentioned, subsumes functional dependency.  Actually a primary key constraint is 

a form of functional dependency – i.e. the key set determines all the relation’s attributes. 

An example of a functional dependency on the relation student is “for each student name 

and degree then there could be only one degree classification”.  The specification of a 

functional dependency is: 

student( ) student( ', ', ')
' ' ' .

x, y,z x y z x x' z z'
x y z x y z

y y'

     
       

  
 

For a presentation of the more general multi-valued dependency it is best to consider a few 

example structures.  For example, if we want to represent the fact that a student has a 

number of contact points and a number of certificates (both contact points and certificates 

in possession are mutually independent).  To represent this in a relation, called STUD_C_H, 

we opt for a predicate with three attributes named NAME, CONTACT and DIPLOMA.  For 

consistency we have to include a tuple for each combination of contact points and 

certificates that are held by each student (i.e. introduce redundancy).  An integrity 

constraint specification to support this is: 
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7.1.6 Aggregate Constraint 

To give a representation of a static aggregate constraint we can use the student relation.  A 

specification of the forth example is: 

   count student 5 , 4 .y t x z x, ,z t t       

This requires some explaining.  First we need a digression about predicate logic with 

function symbols and the satisfiability of this system. It is a well-known result that in such 

a case the system is not logically satisfiable.  Therefore our representation avoids using any 

function symbols.  In fact the method of representation above uses the symbol COUNT as an 

aggregate predicate with the following conditions and meaning (see [DASSK90] for a full 

discussion and formal justification).  Each literal is composable either from first order 

literals or from aggregate predicates (e.g. the predicate count, sum, min and max are the 

typical examples mentioned).  The meaning of COUNT(F,x) is the number of different true 

responses to the query q  F in a normal database returning the number x in their 

response.  An aggregate constraint is a closed aggregate formula. 

7.1.7 Transitional Constraint 

Representing transitional constraints also requires a technique to enable harmonisation 

with static and aggregate constraints.  The introduction or purging of a fact in a database, 

and especially with deductive databases, causes a number of updates coded as a sequence of 

deletions and insertions.   One technique is based on the pioneering paper of Nicolas and 

Yazdanian [NICOL78], entails the introduction of action predicates adorned with the 

transitional constraints.  For example to implement the constraint that a student’s name 

cannot change on an update operation we introduce an action predicate called 

UPD_STUDENT that has six attributes, namely the before and after values of student’s 

original attributes.  This update transitional constraint is specifiable as: 

  upd_student , .1 1 1 1 1 1 1x y z x y z x, y,z,x y ,z x x         

Our direct interest in integrity constraints for data modelling focuses more on static, than 

transitional constraints as the latter deal more with transaction processing. 
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7.2 Integrity Constraints and Databases 

The previous examples, although motivated by data modelling, are only a small aspect of 

how integrity constraints and databases intertwine.  In this section we intend to specialise 

this facet further.  The main points are:  

i. the huge number of instances relative to the number of constraints make 

executing database operations a computationally expensive activity; 

ii. the data modelling of relationships are typically more complex than bare 

referential constraints shown previously; 

iii. the conversion of integrity constraints into database queries of denial; 

iv. the scope of an integrity constraint (e.g. is it an attribute, a relation or a schema 

constraint) and the right place to attach the constraint to. 

7.2.1 Efficiency 

In a deductive database we expect to have a good number of rules and for some of the 

predicates a huge number of instances.  Also an introduction of a single instance to the 

database can generate (by applying the present rules) a huge amount of logical 

consequents.  Maintaining and enforcing integrity constraints, judging by the procedural 

equivalent of the declarative representation just given, over a reasonably populated 

database is a significant computational task.  This looks, from a shallow perspective, like 

an operational problem.  In fact if a predictable multi-dimensional data index is available it 

goes a long way to make integrity-constraint enforcement computationally acceptable. 

From a more theoretical aspect we can reduce the scope of integrity constraint enforcement 

to checking only a minimum number of instances (i.e. those instances that are affected by 

the changes to the database state and the present integrity constraints).  This technique is 

referred to as simplification and is motivated by the fact that if a database is consistent 

with respect to a set of integrity constraints then given an update to the database a set of 

simplified conditions (derived from the constraints and the update) have to be satisfied.  

The success of this technique lies in proving that the transformation of the constraints into 

simplified rules is safe and is complete for a given data-model building rules.  There are 

three principle techniques cited in the literature: Nicolas et al. [NICOL78] and Lloyd et al. 
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[LLOYD85] for the theorem view, Kowalski et al. [KOWAL87] for the consistency view and 

Aquilino et al. [AQUIL97] adding new and restrictive rules to the deductive database. 

7.2.2 Data Modelling Relationships 

Relationships are an important element of any database.  Like any other instances of the 

database, relationship instances are introduced, updated and purged – therefore a 

relationship instance has a life-span too.  There are a number of relationship types each 

with a number of relationship properties, like for example a) arity, b) cardinalities and c) 

participation.  The previous exposition of integrity constraints and relationships dealt with 

referential integrity.  Some aspects of relationships are representable through combinations 

of integrity constraints; including referential constraints. 

A basic representation of relationships and its set of instances follow.  Let RLSHP be the 

name of a relationship, ri one of the relations forming the relationship (the order of the 

names is to be used as a placeholder), and ai one of the attributes that appertain to the 

relationship, also the dompk(ri) reflects the primary key set of relation ri: 
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7.2.2.1 Relationship Arity and Attributes 

The arity of a relationship reflects the number of relations taking part and in the example 

it is m.  Due to the relations and relationship method of representation chosen and the 

varied meaning of relationships we need to introduce a number of constraints for getting 

the exact meaning of a relationship under investigation.  For example, a) primary-key 

constraint on each of the participating relations, b) primary-key constraint on the 

relationship relations, c) referential constraints between the relationship and each of the 

participating relations and d) other constraints on the relationship attributes – i.e. domain 

constraint on n attributes. 
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Each relationship can have any number of attributes that describes the relationship.  Each 

relationship attribute has to have a domain associated with it and there might also be some 

integrity constraints.  

In an n-ary relationship there are n cardinalities; one associated with each participating 

relation.  For binary relationship the possible cardinalities are one-to-many (1-M), many-to-

one (M-1), one-to-one (1-1) and many-to-many (M-N).  An example of a binary 1-M follows, 

we have two relations namely department and student (i.e. DEPT and STUD), and a 

registration relationships (i.e. REL_DEPT_STUD) between their instances that requires each 

student instance to be related to one department instance.  The structures and integrity 

constraints for specifying the example relationship follows: 
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Remark: the actual relationship constraint that relates student to department instances follows

              a student is registered in one department but 

              many students are allowed to re

   

gister with a department

rel_stud_dept_reg , rel_stud_dept_reg ', 's d,rn s d',rn' s s
s d rn s' d' rn'

d d'

   
          

 

An example of a binary 1-1 relationship follows, we have the same two relations and a 

student representative relationship between their instances where this requires that each 

department is represented by single student and one student can represent one department 

only.  The structures and integrity constraints for specifying this example are basically 

identical to the previous one except for the need to add other constraints to limit the 

oneness of the relationship from the department’s side: 



Object-Oriented Data and Query Models 

Integrity Constraints - Page [ 162 ]  
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nt that relates student to department instances follows

              a student represents one department and 

              a department is represented by one student

rel_stud_dept_rep s
s d rn s' d' rn'     

   

   

, rel_stud_dept_rep ', '
.

rel_stud_dept_reg , rel_stud_dept_reg ',
.

'

d,rn s d',rn' s s

d d'

s d,rn s d',rn' d d'
s d rn s' d' rn'

s s

   
    

   
          

 

As an example of a M-N relationship between relations student and department we can 

introduce the relationship of any student being able to register to any department’s library.  

If we re-use the structure and integrity constraints found in the previous 1-N relationship 

we just need to do the following: a) introduce a relation for the relationship (e.g. 

REL_STUD_DEPT_LIB) and its relative primary and referential constraints; b) remove the 

last constraint that enforces the 1-N relationship. 

To represent a ternary relationship requires more work.  An example of a ternary 

relationship is: “Each student taking a unit sits at only one Lecture Theater and weekly 

time slot but can be at a different theater / slot for different units.  For a given theater / 

slot, a student sits for only one unit.  At a particular theater / slot there can be many 

students taking the same unit.”  Basically we have three relations (namely STUDENT, 

LECTUREROOM and UNIT) and one relation to enforce this N-1-1 relationship (i.e. 

REL_S_LR_U_ASG).  We need the following constraints: a) primary key for each relation and 

a candidate key for the relationship; b) referential constraints from the relationship to each 

participating relations; and c) integrity constraints’ that implement the meaning of the 

relationship. 
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Remark: unit, stud and lect_slot are three relation structures and 

Remark: rel_u_s_lr_asg a relationship structure

unit .

stud .

lect_slot( , ).

rel_u_s_lr_asg , .

Remark: primary key set constr

u, un

s,sn

l lsn

u s,l

    

    

   

aint for unit, stud and lect_slot (attribute u, s, l respectively)

unit unit .

stud stud .

lect_slot lect_slot

u un u' un' u,un u',un' u u' un un'

s sn s' sn' s,sn s',sn' s s' sn sn'

l ln l' ln' l,ln l',ln' l l'

        

        

       

 

        

.

Remark: referential constraints between relationship instances and unit, student and lect_slot instances

rel_u_s_lr_asg ,
.

unit stud lect_slot

Remark:  th

ln ln'

u s,l
u s l

un u,un sn s,sn lsn l,lsn

 

 
   
    
 

   

e actual ternary relationship constraint is expressed through two candidate key constraint

rel_u_s_lr_asg , rel_stud_dept_reg ', ' '
.

rel_u_s_lr_

u s,l u s',l' u u s s
u s l u' s' l'

l l'

u s l u' s' l'

     
          

     
   asg , rel_stud_dept_reg ', ' '

.
u s,l u s',l' s s l l

u u'

     
    

 

Relationships have another important property and this deals with specifying whether each 

instance of the relationship participating relation is to take part in a relationship instance 

or not–total versus partial participation.  For a 1-N relationship there are four 

combinations: a) 1(total)-N(total); b) 1(total)-N(partial); c) 1(partial)-N(total); and d) 

1(partial)-N(partial). 

In the previous example between the relations student and department for the registration 

relationship it is reasonable to envisage that all students have to be registered but not all 

departments need to have students registered with them.  To add the total condition to a 

relationship we need to introduce the following constraint to the relation that is in total 

participation:  all instances of the student relation have to be registered with at least a 

department.  The constraint in predicate calculus would be: 

    stud rel_stud_dept_reg , .s sn s,sn d rn s d,rn     

Without any loss of generality this template is applicable to all types of binary 

relationships.  A similar template is also available for ternary, and indeed n-ary, 

relationships. 
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7.3 Converting Integrity Constraints into Queries of Denials 

To evaluate the static non-aggregated constraints as a database query we need to convert 

the integrity constraint representation (a closed first order predicate calculus) into a range-

restricted denial in the form of (note that each Li is a literal and variables are assumed to 

be universally quantified over the whole expression): 

          

Examples of the denials for the integrity constraints previously listed follow (these are 

based on transformation rules given in [LLOYD84]).  In the case of the check constraint the 

integrity rule is converted into a query of denial as so: 

        (     )           

The use of denials is important, for example, during a design process.  Assume we have the 

student relation and some instances that satisfy its basic specifications and we would like 

to introduce the check constraint.  The evaluation of the query (of denial) would determine 

if the current state of the relation is already consistent with the specification of the check 

constraint or otherwise. 

For the primary key set constraint we have: 

     

   

   

, ' ' ' .

Remark: which is equivalent to the two queries

, ' '.

, ' '.

student x, y,z sudent x', y' z' x x y y z z

student x, y,z sudent x', y' z' x x y y

student x, y,z sudent x', y' z' x x z z

       

     

     

 

As for the functional dependence conversion into a denial we have: 

   student , , studentx y z x', y',z' x x' z z' y y'.         

In the case of constraint specification in which a literal contains free variables then another 

rule has to introduced to range restrict the denial.  For example one of the constraints to 

specify a relationship was: 

    stud rel_stud_dept_reg , .s sn s,sn d rn s d,rn     
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The denial of this is: 

   

 

stud rel_stud_dept_reg , .

Remark: note variable s is free in the second literal.

Remark: we need to introduce a rule for this literal, namely

rr_rel_stud_dept_reg s rel_stud_dept_reg

s,sn d rn s d,rn

d rn s,

  

    

   

.

Remark: rewrite the denial as a range restricted query

stud rr_rel_stud_dept_reg .

d,rn

s,sn s 

 

7.4 Other Issues 

There are a number of issues regarding design and implementation of integrity constraints.  

These include collective consistency of a set of constraints and redundancy of a subset of 

constraints.  Furthermore integrity constraints, a topic of interest in this research can 

provide added knowledge to a query optimization process.  Also of interest in this research 

is the extraction and encoding of constraints from design models, e.g. EERM. 

7.4.1 Where to “attach” ICs 

Given the way we have specified integrity constraints (i.e. to relations and to relationships 

without mentioning objects) it is questionable that although we have specified what we 

require we still need to convince ourselves that it is an acceptable representation.  

Specifically, if we want to up-hold the object homogeneity principle (mentioned in earlier 

chapters three and five) and modular design methodology then having integrity-constraint 

specifications spread over many artifacts does not augur well.  Therefore if object 

encapsulation is to be respected then within an object’s definition we need to include all of 

its constraints (static and aggregate, transitional and relationship constraints).  This 

methodology does stretch other important aspects: a) redundancy is on the increase, for 

example in a binary relationships between two objects requires us to maintain two aspects 

of this relationship at each end; b) although our representation requires the introduction of 

another relation for each relationship it is not an absolute fact that the avoidance of this 

third relation is computationally cheaper; c)  we are maintaining relations as first class 

citizens (i.e. objects) but reducing relationships (and their properties) as part of an object’s 

composition. 

7.4.2 Intra-IC Consistency 

The way we have presented integrity constraints (i.e. a database state must be consistent to 

a set of schema’s constraints) hide another facet of database consistency.  Basically, are the 
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current sets of constraints consistent within themselves?  In fact it is reasonable to expect 

that there exists a database state that satisfies the set of constraints.  If no such database 

state is found or two constraints contradict each other then we have a set of unsatisfiable 

constraints. 

Given that we have a logical representation of integrity constraints (through closed first 

order rules) then the resolution method is applied to the set of integrity constraints.  If the 

empty clause is resolved then that means the set of constraints is inconsistent.  There are 

two basic approaches to formalise this satisfiability (one due to Lloyd while the other due to 

Sadri and Kowalski is more general [SADRI87]).  Let D be a database with a consistent 

completion comp(D).  Constraint W is satisfied by D if W is a logical consequence of 

comp(D).  W violates D if W is not a logical consequence of comp(D).  If IC is a set of 

constraints (i.e. W) then IC is satisfied by D if each constraint in IC satisfies D.  Note the 

theory framework is augmented with truth equality predicates.   

In the following example shows two check integrity constraints in contradiction. 

Remark:  our example database has a single relation student with two attributes name (n) and sex (s)

Remark:  stud( , ) for this example there are no instances!

Remark: there are two integrity constrain

n s 

  

  

 

 

ts on stud relation structure

stud male .

stud male .

Remark: the denials of the integrity constraints are

stud male.

stud male.

Remark: the completion of the database is

stu

n s n,s s

n s n,s s

n,s s

n,s s

n s

   

   

  

  

     

   

 

 

d .

Remark: apply the resolution (SLDNF) to the above expressions (comp(D) I)

stud male stud male unify on stud

male stud male

n,s

n,s s n,s s n,s

s n,s s



   

   



 

7.4.3 Redundancy of ICs 

A set of consistent integrity constraints may still not be optimal (or a minimal set).  For 

example assume we have the student relation and two check constraints, e.g. 

STUD(X,Y,Z), Z=A and STUD(X,Y,Z), (Z=A OR Z=B)), then the latter subsumes the 

former.   Basically we would want to avoid having a number of constraints derivable from 

others.  This has a profound effect on the database operational and computational 
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requirements rather than on the logical consistency of the database state.  The general 

problem is to reduce the original set of constraints into a logically equivalent set.  The new 

set has to have the following properties:  a) the original constraints are derivable from the 

new set; and b) evaluating the new set over the current database state is cheaper.  

Although parts of the general problem are easy to solve the problem itself, we conjecture, is 

a very hard computational problem.  Furthermore, note that in general a reduction of 

constraints is applicable to a database state and not to all database states. 

7.4.4 When to Apply IC Enforcement 

It is expected that the state of a database is subject to frequent changes.  This has a 

number of effects on enforcing the integrity constraints entrenched in the schema.  Two 

effects of special interest are a) the mode and timing of checking a constraint during 

changes and b) the other is how computationally efficient can enforcement be. 

 The first effect deals with whether the integrity constraint is to be checked at the end of a 

database transaction or throughout the processing of the transaction.  For example if we 

have a transaction that involves the introduction of a new department instance, a number 

of new student instances, and some registration relationship instances (some of which 

involve the new department) then if the referential constraint is to be checked on each 

instance introduction then it is apparent that the department’s instance introduction has to 

be taken care of before the related students are introduced.  Rather than try to resolve a 

transaction’s dependencies it is best to reduce the problem of when to check for constraint 

violation.  For example in this transaction it would be best to check it once at the end of the 

whole transaction.  This is called the deferred approach.  Likewise it is sometimes required 

that during a transaction some constraints are never broken.  The check constraint on 

credit limit not being breached is a valid example of an immediate constraint violation 

requirement. 

7.4.5 ICs in Query Processing 

We have already presented the framework in which integrity constraint specification is an 

integral part of a database schema.  A useful input into a schema includes a) physical 

storage requirements planning; and b) query processing and optimisation.  For example, 

primary key and referential constraints point at the need for index structures that facilitate 
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introduction and maintenance of these constraints.   As for query processing we want to use 

the knowledge about the schema, through structural dependencies, to reduce a query into a 

simpler (in terms of computational requirements) version of the original. 

Let us consider a simple database with one relation, which has some structural constraints 

and a query over the same. 

 

    

    

    '.s_d_tus_d_tu

query following  thecompute  tointerested are  we:Remark

.s_d_tus_d_tu

d determines that sbetween  dependency functional a is  there:Remark

.s_d_tus_d_tu

u and s attributes of made isset key primary   the:Remark

.s_d_tu

(u)unit  ain  enrolled is (d) department from s) (attribute Students :Remark

ssu',d',s'ud,s,

d'ds'ss',d',u's,d,uu'd's'uds

d'du'us'ss',d',u's,d,uu'd's'uds

s,d,u






 

As the query is currently written a simplistic implementation is to run a double nested loop 

over the same relation; in relational database this is a join between two tables and 

specifically a ‘self join’.  If we consider the present functional dependency then we really do 

not need a join as the above query reduces into (e.g. a full relation scan): 

 .s_d_tu ud,s,  

This optimisation technique is based on representing the query in tableau form and 

applying the chase technique over the tableau (the above query’s tableau is shown next -see 

[AHOAV79] and [MAIER79]).   
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21

42

1
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41  

In the first step we convert the original query into the standard form: i.e. the distinguished 

variables (those that are used in joins) are denoted by the ai variables while the non-

distinguished variables (or constants) are represented by bi variables.  For each introduced 

literal a row is created and absorbs the third literal as a join condition between the first 

two.  The variable with the double underscore represents the query’s output variables.  

Note that there should be at most one distinguished variable in each column.  In the second 

step we apply the functional dependency (i.e. s determines d) by the chase rule since the 

two tableau lines have the same distinguished variables in column s and therefore makes 
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b1 = b3 and therefore b1 = b3 = a2.  Since the chase rule has yielded two rows that are 

identical in terms of their distinguished variables then the third step reduces these 

“duplicate” rows into a single line.  The third matrix is indeed an equivalent query without 

any joins. 

The chase over the table given a set of dependencies, we have just seen, reduces the number 

of rows (i.e. joins) of a query.  Is there a general procedure that guarantees this?  The 

answer is negative and in fact it is a NP-complete problem.  But if we restrict the 

dependencies to the functional ones only then the chase will yield a tableau, which is at 

most as expensive as the original query.  It is important to emphasise that this technique 

applies to all of the query expression and therefore in contrast with the localised framework 

of other query optimisation techniques (most of these results are given in and attributed to 

[MAIER83]). 

7.4.6 Other Issues - IC in CASE Tools / Database Design 

One would expect to find some of these useful modelling and representation features 

available in prototypes and even more in commercial DBMS.  This is not entirely the case.  

A case in point is integrity constraints where although the data definition language 

includes the constructs to specify constraints there is little support (or nothing) for the 

database administrator or database designer to reason and optimise the set of integrity 

constraints attached to a repository.  Such an omission has effects not only on the logical 

validity of the design but also on the performance of the activities over the database. 

7.5 Summary 

Integrity constraints are an important element in database design.  Furthermore many of 

these, especially the static ones, are easy to encode into first-order predicates and include 

them in denial queries.  But their usefulness is not only limited to address data quality, as 

important as it is, but also aid in query optimisation for example. 

In our study the extraction of constraints from design diagrams, inference of constraints 

from certain design patterns (e.g. n-ary relationships can have an array of functional 

dependencies), encoding in F-logic, are issues we address in the forthcoming chapters. 
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8 –Framework for an Object Database Design 

In the previous chapters we have synthesised an object-oriented data model, introduced the 

Datalog and logical programming, and gave details on database integrity constraints through 

their specification in first order logic. 

In this chapter we give a specification of and implement a framework for an object database 

that supports the above synthesised data model.  In the framework we find both an object base 

and support structures that maintain the object base. Furthermore static constraints are 

specifiable and enforceable by the framework.  Toward this end F-logic is used for the design of 

a framework.  F-logic allows for describing the structural schema including integrity 

constraints, the implementation of object’s behaviour, and specifies the object base (i.e. the 

data of the database).  Flora-2, a faithful interpretation of F-logic, has strong object-oriented 

features and logic programming that is extensively used to build the framework. 

There are three aims for this platform.  The first aim is for the object-oriented data model 

implementation.  This entails an object with identity and its values in NF2 with logical 

identifiers, classes and object relationships through instance-of, classes and ISA relationships, 

data-type signatures, methods, and message passing.  The second aim is for the framework to 

read an EERM diagram, validate it, and generate a schema in ODMG ODL’s.  (This is the 

scope of the following chapter).  The third aim is to have a basis for more involved features 

that an object base requires: e.g. data-type checking and inference and query modelling. 

The chapter uses data-modelling constructs described in chapters 2 through 5 as a foundation 

to build an object database.  This foundation is also used as a basis for the all of the 

forthcoming chapters on data and query modelling work. 

8.1 Basic Object Database Framework 

The framework data requirements are best described top down.  In it there are a few objects 

that are predefined and to which EERM design artefacts are made instances of; i.e. attached.  

Consequently the framework object base is partitioned through them.  These objects’ 

identifiers are: SCHEMA, CLASS, STRUCTURE, BD, DOMAIN, and CONSTRAINT. 
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The SCHEMA object is composed of a property to hold a schema name and a number of 

procedures, expressed in declarative Flora-2 [YANGG08].  These procedures take care of 

mapping schemas for example. 

schema[ schemaname -> 'AfterScott' ]. 

An important object is CLASS whose instances are the design’s classes and implemented with 

F-logic instance-of relationship (i.e. “:“ ).  In turn if an application’s domain class has instances 

of its own then these are related with an instance-of relationship too. 

course      :class.       Remark course & dept are classes 

dept        :class. 

math        :dept.        Remark math & cs are instances of class dept 

cs          :dept. 

Furthermore if the application domain’s classes have any ISA relationship between them then 

F-logic ISA relationship is used (i.e. “::“ ).  As F-logic ISA allows for multiple inheritance and 

if this is not practised in the application domain design then a further constraint on the ISA 

between instances of CLASS has to be introduced.  It has to be noted that F-logic semantics 

implement the directed graph nature of the ISA relationship. 

student    ::person.      Remark student ISA person 

lecturer   ::person. 

ptstudent  ::student. 

Another object is the STRUCTURE and it is used for building a complex value of an object.  As 

seen in an earlier chapter description of F-logic an object composition is a set of properties and 

if a nested structure is required then a property needs to return another object.  In this 

framework the later object is called a STRUCTURE.  A STRUCTURE does have properties and an 

identity but it is part of the “holding” object.  This nesting is not limited and therefore one can 

stimulate the NF2 with identifier structures explained earlier in Chapter 3 (section 3.3.2).  

These structures are also useful to implement weak instances as the weak instances actually 

depend on the controlling object.  The following says that JOB is an instance-of STRUCTURE 

and two of its properties are given their signature. 

job        :structure. 

job        [jname{1:1}   *=> string,  

            jbudget{1:1} *=> float]. 

The BD & DOMAIN objects basically partitions domains that are entertained in a design.  In 

this framework the instances of BD are INTEGER, FLOAT, STRING, and DATE_TIME; these too 

are the basic domains mentioned in previous chapters.  Enumerated domains are also 

entertained and are instances-of DOMAIN but have an added property called ENUM that hold its 
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elements as a set of strings.  In the following example SEX is an instance-of DOMAIN while the 

second statement specifies what values are in its enumeration. 

sex        :domain. 

sex        [enum->{'male','female'}]. 

At this point we need to mention properties (or attributes and methods) and their attachment 

to instances of CLASS through signatures.  The following states that object reference DEPT, an 

instance-of CLASS, has four inheritable attributes namely DNAME, STAFF, SPONSORS and 

MAINOFFICE.  Their return data type is STRING, LECTURER, COURSE and ADDRESS 

respectively.  The first is a basic domain, the next two are classes and the last a structure (i.e. 

ADDRESS). The braces directive, a slight deviation from F-logic syntax, explains the attribute’s 

cardinality; e.g. “1:1” is one and only one, while “0:*” is any count from zero and upwards 

which corresponds to a set’s cardinality. 

dept     [dname{1:1}      *=> string,     

          staff{0:*}      *=> lecturer,  

          sponsors{0:*}   *=> course,  

          mainoffice{0:1} *=> address]. 

Another object is called INTEGRITY and it partitions integrity constraints into a number of 

generic types: the most obvious are primary key (PKCONSTRAINT), functional dependence 

(FDCONSTRAINT), and referential integrity (RFCONSTRAINT).  All of these are really 

constraints from the application domain and every generic constraint is expected to have a 

number of instances that are required by the application domain.  Any other constraints of the 

framework, for example enforcing a single inheritance regime between instances of CLASS, 

should be implemented as rules instantiating the object INTEGRITY. 

pkconstraint    ::constraint.  

 

pkconstraint    [classname{1:1} *=> class,  

                 attrlist{1:*}  *=> string]. 

 

pk2:pkconstraint[consname  -> 'dept pk',  

                 classname -> dept,  

                 attrlist  -> {dname}]. 

A useful addition to the framework, recommended by Kifer et al. [KIFER95], is to have a rule 

that returns on object’s identity as a value.  This syntactic sugar at times makes expressions 

more concise.  Also it is useful in path expressions.  

?X[self->?X]. 

In Flora-2 rules and queries any token starting with “?”, for example “?X”, is a variable. While 

token “?-“ at the beginning of a line denotes the start of a query and the latter terminates 
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with a full stop, for example “?- ?X:CLASS.“.  The token “REMARK” denotes verbose 

comments and is delimited by end of line.  The “Yes” denotes successful query evaluation. 

A number of ‘views’ are available in the framework too.  For example the following rule makes 

instances of CLASS have a property, called DIRECTASC, which contains a direct ancestor if 

present.  The query then asks for CLASSES that have DIRECTASC defined and what are the 

pairs. 

?D[directasc  -> ?C]   :-                      Remark Rule definition for  

     ?D::?C, ?D:class, ?C:class,               Remark  directasc 

     If ( ?T:class, ?D::?T, ?T::?C )  

     then (false)  

     else (true). 

 

?- ?C:class, ?C[directasc->?A]. 

?C = lecturer  ?A = person 

?C = ptstudent ?A = student 

?C = student   ?A = person 

Yes. 

Similar to DIRECTASC is DIRECTDESC which lists a CLASS instance direct descendants.  This 

property is useful to define the instantiating class of an object; for example an instance-of 

PTSTUDENT is also an instance-of STUDENT and PERSON by inference, but an instance-of 

STUDENT is not a PTSTUDENT.  To know the class which created an instance we have an 

INSTCLASS property which is define by the following rule.  We reiterate that in F-logic: the 

query A:C implies that A is in the deep extent of C; and the query C2::C1 implies that C2 is a 

subclass of C1 directly or by transitivity of the ISA relationship. 

?I[instclass->?C]:-?I:?C,?C:class, not ?I:?C.directdesc. 

 

?- poca:?C,?C:class.    Remark object id poca is an instance-of which class? 

?C = person 

?C = ptstudent 

?C = student 

Yes. 

 

?- poca[instclass->?C]. Remark poca is an instance-of which instant. class? 

?C = ptstudent 

Yes. 

8.1.1 Data Requirements of Framework 

The framework objects and their instances are related in a number of ways.  The following is a 

description and figure 8.1 contains an EERM that depicts these. 

Each instance of a class and structure has many attributes while an attribute must be related 

to only one instance of a class or a structure.  Also some instances of a class are related by a 

specialisation relationship; but a class instance can only have at most one ancestor. Each 

attribute has a signature that includes name, cardinalities and return type details.  The 
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return types can be any one of the following: a class, a structure, a basic domain, and an 

enumerated domain. 

A constraint is specialised into primary key (marked PK in figure 8.1), functional dependence 

(marked FD), referential constraint (binary and no attributes – marked RC ODMG), and 

referential constraint (other than binary with no attributes – marked RC).  This EERM ISA 

relation is disjoint and total. 

The primary key constraint instances are related to attributes through a one-to-many (but all 

attributes must be from the same class or structure). 

Either referential constraint is composed of exclusive elements that represent each degree.  

For example a binary relationship has two element components whereas a ternary has three.  

If the referential constraint is binary and without attributes (i.e. RC ODMG) then each 

element is related to a class attribute (i.e. the foreign key) and a relationship to the class it is 

pointing to.  Each element has properties for its cardinalities range, lower and upper limits, 

and an arbitrary sequential number.   

In the case of a binary referential constraint (i.e. RC) element (other than binary with no 

attributes) they are related by structures through a many-to-one relationship and also have 

two additional details.  The first is the attribute in the structure that is a foreign key and the 

second is to which class or structure it is pointing to.  Also each element has its cardinalities 

range, lower and upper limits, and an arbitrary sequential number.   

In the case of an n-ary referential constraint with attributes the entity (i.e. RC) is related with 

a weak relationship to many attribute signatures.  

The functional dependence (i.e. FD) between attributes is implemented with a many-to-many 

relationship adorned with an attribute that indicates whether each attribute is on the left or 

right of a functional dependence.  

8.1.2 Logic Programming 

Logic programming, based on the resolution inference, is available in Flora-2.  The following 

example highlights its use to develop our object-database framework.  As an example, an 

implementation of an integrity check denial is described; the constraint deals with our 
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insistence that any instance of a class has to be an instance of at most one class.  The main 

part of the denial checks for an object instance (?I) being related (i.e. by “:”) to two objects.  

The latter objects are distinct class instances and are not related through the ISA relationship 

(i.e. “::”).  If such instances exist then the method collects and reports them and finally fails. 
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Figure 8.1 – High-level Data relationships for Object Database Framework 

constraint[%ic_schema_no_mio]:- 

    write('-- ic schema no multiple instance-of ')@_prolog, 

    writeln('relationships for instances of classes:')@_prolog, 

 ?C1:class, ?C2:class, ?C1!=?C2, not(?C1::?C2), not(?C2::?C1),  

 if (?I:?C1, ?I:?C2) 

 then (?L=collectset{?I | ?C1:class,?C2:class, ?C1!=?C2,  

                             not(?C1::?C2), not(?C2::?C1), ?I:?C1, ?I:?C2 },  

       writeln('IC Broken! Problem with: ')@_prolog, 

          writeln(?L)@_prolog, 

       false) 

    else (writeln('OK!')@_prolog). 

The following session script shows how one can use this method to sift out such instances. 

 

andy:ptstudent.                       Remark object andy is an instance of  

andy:unit.                            Remark  ptstudent and unit 

javaprog:project. 

javaprog:unit. 

 

?- constraint[%ic_schema_no_mio]. 

-- ic schema no multiple instance-of relationships for class instances: 

IC Broken! Problem with: 

[andy, javaprog] 

No. 
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8.2 Schema in F-logic 

An example schema is required to encode in the object database framework.  The application 

domain deals with a university setup that caters for courses and projects.  Colloquially we call 

this schema ‘afterScott’.  The main requirements follow and a graphical interpretation is in 

figure 8.2. 

The main players are lecturers, students and part-time students.  These are related with two 

disjoint and partial ISA relationships.  Also each person has a set of communication lines but 

some communication lines can be unassigned.  Each lecturer can have a number of degrees.  A 

project is composed of a number of jobs and each job has a budget.  Project instances have a 

number of relationships: a lecturer can lead a number of projects and each must have one 

leader; each project can have a number of persons working on it and conversely a person can 

work on many projects; some projects are a continuation of other projects. 

The university is split into departments and each department has a number of lecturers but 

each lecturer works in one department.  A department has an exclusive address.  Each 

department can co-sponsor, with other departments, a number of courses for students to enrol 

on.  Each student can enrol in one course at a time.  It is expected that many students enrol on 

a course.  Also a course has a number of units that students are required to take up and a unit 

is included in many courses.  Each unit has one coordinator, a lecturer, but many lecturers can 

be involved in teaching it from year to year. 

Every student’s performance for a transcript is to be kept: that’s a student registers for many 

units and a unit is taken by many students.  For each registration the grade awarded is 

recorded. 

8.2.1 Asserting EERM Constructs into Flora-2 

Each EERM diagram is encoded into some syntax along the artefacts given in Fig. 8.1 above.  

Many EERM design tools offer a function to export a diagram into an ASCII file and an XML 

encodings.  The encoded syntax has to be read into the framework and assigned into its 

structures (e.g. CLASS, STRUCTURE, CONSTRAINTS).  In this case the encodings are hard coded 

into the framework rather than read from some exported file. 
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Figure 8.2 – High-level example object database design – ‘AfterScott’ 

What follows is a sequence of EERM encodings into Flora-2 facts and assertions.  We start 

with entities and attributes, ISA relationships, primary constraints, weak entities, and finally 

EERM relationships. 

8.2.1.1 Entity template 

Every diagram entity is asserted as an instance-of object CLASS.  The name of each entity, 

which is unique in a diagram, is transcribed as its logical identifier.  The template for each 

entity is: 

entity_name : class. 

8.2.1.2 Attribute’s template 

As we had presented earlier an entity’s attributes can be classified by three selectors: simple 

vs structured, single vs. multiple, and stored vs. computed.  We assume to require only stored 

attributes and computed ones are taken care of by query constructs. 

A simple attribute, in an EERM diagram, would have a name and a data type (first template 

below).  If the data type is not a basic domain but an enumerated type then the latter needs to 

be defined (second template).  It is assumed that an enumerated type is a set of strings.   All 

simple attributes are assigned as inheritable attributes (i.e. “*=>”).  In this template it is being 
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assumed that attribute is a single value – i.e. takes one and only one value (denoted by {1:1} 

for lower and upper cardinality constraints). 

entity_name [ attribute_name{1:1} *=> basic_domain ]. 

 
enumerated_domain_name : domain. 

enumerated_domain_name [ enum -> {‘element1’, … , ‘elementN’} ]. 

 

entity_name [ attribute_name{1:1} *=> enumerated_domain_name ]. 

If an attribute takes a structured nature then we need to introduce a structure definition for it 

and assign it to the attribute’s return type.  Recall that an ERM diagram only allows one level 

of nesting in a structure.  The following template shows the artefacts required; note that 

domain is either a basic domain or an enumerated domain (in which case the enumerated 

domain template is used). 

structure_name : structure. 

structure_name [ attr_name1{1:1} *=> domain1, … ,  

                 attr_nameN{1:1} *=> domainN ]. 

 

entity_name [ attribute_name{1:1} *=> structure_name ]. 

It was assumed above that attributes take a single value but it is known that the ERM 

attributes can take a set of values from a domain.  To support this an attribute ’s cardinality is 

changed from “{1:1}” to “{0:*}” with the latter reflecting zero to many values assignable to an 

attribute.  The following templates show the difference between single and multiple valued 

attributes.  This construct is applicable to both simple and structured attributes. 

entity_name [ attribute_name{1:1} *=> domain ]. 

 

entity_name [ attribute_name{0:*} *=> domain ]. 

8.2.1.3 ISA template 

The ISA relationship is between entities but its varieties really constrain what relationships 

are taken up and what affect it has on the instance-of relationship.  The basic ISA relationship 

template is a quite straightforward assertion in Flora-2. 

entity_name1 :: entity_name2. 

As it is our opinion that an EERM entity hierarchy is expressed in single inheritance only and 

that both EERM and F-logic allows multiple inheritance then instances of CLASS should be 

checked against taking up multiple inheritance.  The multiple inheritance denial check is 

attached to the object CONSTRAINT and is embedded in a method called %IC_SCHEMA_NO_MI.  

On its invocation the ISA assertions are tested and if it is found to be the case that any CLASS 

instance inherits from more than one CLASS instance the situation is flagged (i.e. failed) and 



Object-Oriented Data and Query Models 

Framework for an Object Database - [ 181 ] 
  

any CLASSES with multiple inheritance are listed–this is taken care of by Flora-2 aggregate 

construct collectset.  The pattern that catches multiple inheritance is simple: is there a CLASS 

(?C)  that inherits from two non ISA related CLASSES (?P1 and ?P2)?  Additional conjuncts are 

used to address distinctness:  limit scope as ?C, ?P1 and ?P2 need to be CLASSES; that 

symmetrical instantiations are attenuated; and the spurious case ignored (i.e. where ?P1 and 

?P2 are identical).  The procedure uses the syntactic sugar implementation of the ‘if then else’ 

rule found in Flora-2. 

constraint[%ic_schema_no_mi] :-  

 writeln('-- ic schema no multiple inheritance between classes:')@_p, 

 ?C:class, ?P1:class, ?P2:class, ?C::?P1, ?C::?P2, ?P1!=?P2, 

 if ( not(?P1::?P2), not(?P2::?P1) ) 

 then ( ?L=collectset{?C | ?C:class, ?P1:class,  

                         ?P2:class, ?C::?P1, ?C::?P2, 

                             ?P1!=?P2, \+(?P1::?P2), \+(?P2::?P1)},  

    writeln('IC Broken! Problem with: ')@_prolog, 

             writeln(?L)@_prolog, 

    false) 

 else (   writeln('OK!')@_prolog). 

To test the procedure one needs to adjust the class ISA assertions with a multiple inheritance 

class; e.g. say PTSTUDENT inherits from STUDENT and DEPT. 

student    :: person. 

lecturer   :: person. 

ptstudent  :: student. 

ptstudent  :: dept. 

The procedure invocation would output the offending classes with multiple inheritance and 

then fail. 

?- constraint[%ic_schema_no_mi]. 

// ic schema no multiple inheritance between classes: 

IC Broken! Problem with: [ptstudent] 

No. 

The EERM description of ISA includes three varieties: whether it is disjoint vs overlapping, 

total vs partial, and semantic vs predicated defined. 

The overlapping ISA, without doubt a useful design construct, requires extensive DBMS 

support to implement.  For example, in the relational data model, one implementation would 

need views with triggers that can update a view’s base tables.  ODMG is still inadequate in 

this area and consequently overlapping ISAs are to be rejected for the time being.  To enforce 

disjointness between sibling classes an integrity constraint is implemented with a method 

called %IC_CLASS_DISTINCT_ISA found in object CLASS.  The method works by checking if 

any two distinct and direct subclasses, say ?C1 and ?C2,  of a given class ?C, share any 
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instance – i.e. object ?I.  This constraint is really a more specific example of 

%IC_SCHEMA_NO_MIO found in object CONSTRAINT and described earlier. 

class[%ic_class_distinct_isa(?C)] :- 

 ?C1:class, ?C2:class, ?C1!=?C2, ?C1.directasc=?C, ?C2.directasc=?C,  

 if (?I:?C1,?I:?C2,!) 

 then (  ?L=collectset{?I2 | ?C11:class, ?C22:class, ?C11!=?C22, 

                        ?C11.directasc=?C, ?C22.directasc=?C, 

                        ?I2:?C11,?I2:?C22 }, 

    writeln('IC Broken! Problem for class: ')@_prolog, 

             writeln(?L)@_prolog, 

    false) 

 else (   writeln('OK!')@_prolog). 

Another ISA constraint is the total.  This implies that the superclass cannot have instances.  

The generic constraint for the denial of this pattern is implemented in method 

%IC_CLASS_TOTAL_ISA in object CLASS.  The method checks if a given CLASS instance, 

method argument ?C, has any subclasses (actually this shouldn’t be necessary) and if there are 

instances that have ?C as their instantiating class then the constraint is broken. 

class[%ic_class_total_isa(?C)] :- 

 if ( ?C:class, ?C1:class, ?C!=?C1, ?C1::?C, ?I:?C, ?I.instclass = ?C, !) 

 then ( ?L=collectset{?I2 |  ?I2:?C, ?I2.instclass = ?C },  

   writeln('IC Broken! ISA implies it must not create objs: ')@_p, 

            writeln(?L)@_prolog, 

   false ) 

 else ( writeln('OK!')@_prolog ). 

For predicate defined ISA we need to add a broader template to the ISA assertions.  First we 

need to identify the attribute on which the predicate is defined, and the respective expression 

(here we assume the predicate has the form – i.e. ATTRIBUTE = CONSTANT).  Secondly we 

have to ensure that instances do not change this value – this is implemented with a check 

constraint.  The following constructs show what the templates need to produce for having a 

class PERSON specialized into MALE and FEMALE with instances of subclasses determined by 

predicate GENDER.  Of special significance here is the inheritance properties (i.e. “*->”) which 

implies that any instance-of MALE, for example, would inherit the property GENDER -> 

‘MALE’.   The last two lines represent the denial queries for the check constraint.   

person [ gender{1:1} *=> sex ]. 

 

male::person.                   female::person. 

male   [ gender *-> ’male’].    female [ gender *-> ’female’]. 

 

?- ?I:male,?I[gender->?S],?S!=’male’. 

?- ?I:female,?I[gender->?S],?S!=’female’. 
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The template, including ISA assertions presented earlier, follows. Note that object CHECK is a 

subclass of constraint and CH_ENTITY11, for example, is an instance-of CHECK object.  The 

CHECK object signature follows: 

check [classname{1:1} *=> class,  

       attrlist{1:1}  *=> string,  

       value{1:1}     *=> string]. 

The CH_ENTITY11 constraint enforces the rule that ENTITY11 has an attribute ATTRNAME 

whose value must be ‘STRING11’. 

entity11 :: entity1. 

entity12 :: entity1. 

 

entity1  [ attrname{1:1}*=>string ]. 

 

entity11 [ attrname *-> ‘string11’ ]. 

entity12 [ attrname *-> ‘string12’ ]. 

 

ch_entity11 : check.  

ch_entity11 [ classname->entity11, attr->attrname, value->’string11’ ]. 

 

ch_entity12 : check. 

ch_entity12 [ classname->entity12, attr->attrname, value->’string12’ ]. 

 

For scrutinising the above check constraint a method, called %CHECK_CONS, of object CHECK is 

called.  The method takes an argument that represents the actual check constraint to be 

checked.  The check constraint implement here is trivial and is based on string equality.  The 

idea is to take the details from a check instance, e.g. CH_CHECK11, and see if any object breaks 

this constraint.  The following invocation checks if all TELEPHONE instances are of ‘CELL’. 

check :: constraint. 

constraint[consname{1:1}*=>string]. 

check [classname{1:1}*=>class, attrlist{1:1}*=>string, value{1:1}*=>string]. 

 

check[%check_cons(?Ch)] :-  

 writeln('-- check cons  attr = value ')@_prolog, 

 if   ( ?I:?Ch.classname,?I[?Ch.attr->?T],?T != ?Ch.value, ! ) 

 then ( ?L=collectset{?I2 | ?I2:?Ch.classname,?I2[?Ch.attr->?T2], 

                               ?T2 != ?Ch.value },  

  writeln('IC Broken! Problem with: ')@_prolog, 

  writeln(?Ch)@_prolog, 

           writeln(?L)@_prolog, 

  false) 

 else ( writeln('OK!')@_prolog). 

 

ch1:check[consname-> 'is cell', 

          classname-> telephone, attr->tptype, value->'cell']. 

 

t789012:telephone  [ tpname->'t789012',  tptype->'cell'  ]. 

t901234:telephone  [ tpname->'t901234',  tptype->'xcell' ]. 

 

?- check[%check_cons(ch1)]. 

-- check cons  attr = value 

IC Broken! Problem with: 

ch1 

[t901234,t99123456] 

No. 



Object-Oriented Data and Query Models 

Framework for an Object Database - [ 184 ] 
  

Although the ISA assertion templates have been given, what is still required are details of the 

ISA varieties that are read from the EERM designer.  An object has been created, called 

ISAPROPERTY, which is a subclass of CONSTRAINT and with a signature that follows.  Single 

valued attribute PARENTCLASS and set based attribute ISACLASS holds the ISA relationship, 

the next three attributes denote the specific variety of the ISA relationship.  The last two 

attributes are optional and used only to describe a predicate define ISA relationship. 

isaproperty  [ parentclass{1:1}            *=> class,  

               isaclass{1:*}               *=> class, 

               disj_over_flag{1:1}         *=> string, 

               totl_part_flag{1:1}         *=> string,  

               sema_pred_flag{1:1}         *=> string, 

               predicate{0:1}              *=> string,  

               pred_value_list(class){0:*} *=> string ]. 

An instantiation of ISAPROPERTY class to implement a partial and semantic ISA relationship 

anchored at PERSON follows: 

isaperson:isaproperty [ parentclass->person, isaclass->{lecturer, student},  

                        disj_over_flag -> 'disjoint', 

                        totl_part_flag -> 'partial', 

                        sema_pred_flag -> 'semantic' ]. 

In case of a predicate defined ISA relationship, as exemplified with PERSON, MALE and FEMALE 

given previously, an instantiation ISAPROPERTY object would be: 

isapersongender:isaproperty 

     [ parentclass -> person, 

       isaclass -> {male, female},  

       disj_over_flag->'disjoint', 

       totl_part_flag->’total’, 

       sema_pred_flag->'predicate', 

       predicate -> gender, 

       pred_value_list(male)->’m’, 

       pred_value_list(female)->’f’]. 

Another two restrictions are required to maintain a reasonable class hierarchy.  Firstly, we 

can arbitrarily disallow instances of structures to participate in ISA relationships.  Secondly, a 

class instance can only be a parent class of one ISA relationship. 

8.2.1.4 Primary Key constraint template 

Each entity has a primary key made up from a set of its attributes.  Keys are a constraint too 

and therefore PKCONSTRAINT ISA CONSTRAINT.  PKCONSTRAINT signature follows: 

pkconstraint    [classname{1:1}*=>class, attrlist{1:*}*=>string]. 

A definition of a primary key has a name, a class to which it is applicable, and the set of 

attributes it is made from.  These details are readily available in an ERM diagram.  The 

following says that object PK1 is an instance-of PKCONSTRAINT and it describes entity COURSE 

primary key set as being made up of a single attribute CNAME. 
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pk1:pkconstraint. 

pk1 [ consname  -> 'course pk',  

      classname -> course,  

      attrlist  -> {cname} ]. 

To check that indeed for the deep extent of a class, e.g. COURSE, has no key duplication a 

general method called %PK_CONS_ONE is invoked and takes a primary key instance identifier 

as an argument.  The method checks if any two distinct instances of the relevant deep extent, 

denoted by the path expression ?PK.CLASSNAME, have their primary key attribute values, 

denoted by path ?IN.?PK.ATTRLIST , equal. 

pkconstraint[%pk_cons_one(?Pk)]:- 

 writeln('-- pk cons (one) ')@_prolog, 

 if   (?I1:?Pk.classname, ?I2:?Pk.classname, ?I1 != ?I2, 

          ?A=?Pk.attrlist, ?I1.?A = ?I2.?A, ! ) 

 then (?L=collectset{?Key | ?I11:?Pk.classname, ?I21:?Pk.classname,  

                               ?I11 != ?I21, ?A1=?Pk.attrlist,  

                               ?Key=?I11.?A1 , ?I11.?A1 = ?I21.?A1  }, 

  writeln('IC Broken! Problem with: ')@_prolog, 

  writeln(?Pk)@_prolog, 

           writeln(?L)@_prolog, 

  false) 

 else (writeln('OK!')@_prolog). 

A typical runtime session using PK1 above would be: 

?- pkconstraint[%pk_cons_one(pk1)]. 

-- pk cons (one) 

OK! 

Yes. 

Say we pollute the sample data with incorrect data, for example two courses have the same 

name, and then this invocation would run and response on the following lines: 

?- pkconstraint[%pk_cons_one(pk1)]. 

-- pk cons (one) 

IC Broken! Problem with: 

pk1 

[BSc Engineering] 

No. 

Unfortunately %PK_CONS_ONE has a flaw; it provides for singleton attribute set which is not 

the general case.  Another method, %PK_CONS_MANY, is available that takes care of this and 

follows the structure of a universal quantification query (i.e. three levels and double negation).  

Basically we are looking to show that for primary key violation it is not the case that any two 

instances do not have a different value in any attribute of the key set.  The technique of 

reading and appending path expressions, adopted in the first version, is kept in this method 

too. 
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pkconstraint[%pk_cons_many(?Pk)]:- 

 writeln('-- pk cons (many) ')@_prolog, 

 if (not %pk_cons_many_mid(?Pk)) 

 then (writeln('Ok ')@_prolog) 

 else (writeln('-- problem with (many) ')@_prolog).                    

 

    %pk_cons_many_mid(?Pk):- 

     ?I1:?Pk.classname, 

     ?I2:?Pk.classname, 

     ?I1 != ?I2,                       

     not %pk_cons_many_in(?I1,?I2,?Pk). 

  

        %pk_cons_many_in(?I1,?I2,?Pk):-   

          ?A=?Pk.attrlist, 

          ?I1.?A != ?I2.?A. 

 

It has to be confirmed that a primary key definition is applicable to a class deep extent. 

In this section we implicitly assumed that a key’s attributes are value based; that is an 

attribute takes a value from a defined basic domain.  But this need not be the case in this data 

model as an attribute can take an object reference (a logical identifier) that is an instance-of a 

class rather than a basic domain.  In this situation the above routines still implement the 

primary key constraint even if any of the attributes take an identifier. 

Candidate keys, although not depicted in the EERM diagram, are very useful in logical design.  

There specification and checking is identical to primary key other than their instantiating 

class which is CKCONSTRAINT. 

8.2.1.5 Weak entities and weak relationships template 

Weak entity instances have a dependent existence on a ‘normal’ entity instance through a 

weak relationship.  A solution adopted here for this data pattern is to relate weak instances by 

an attribute those return data type is a tuple structure.  In our framework we have a specific 

object, called STRUCTURE, whose structure instances are tuple definitions. 

Our example schema has some weak entities such as JOB, UNITYEAR and ADDRESS, and JOB 

is weakly related to entity PROJECT.  The following shows the ERM encoding required through 

instance-of and signatures assertions, and also some data examples.  Since this weak 

relationship is 1(p)-N(t) (or 1(t)-N(t) ), then on the side of PROJECT the attributes JOBS 

implements a zero to many cardinality; while on the side of JOB structure it takes one, and 

only one, reference to a PROJECT instance. 
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project : class. 

job     : structure. 

 

project  [ pname{1:1} *=> string, jobs{0:*}    *=> job   ]. 

job      [ jname{1:1} *=> string, jbudget{1:1} *=> float, 

           jproj{1:1} *=> project ]. 

 

proj1    [ pname -> 'Project 1',  jobs    -> { j1, j2 } ]. 

j1:job   [ jname -> 'Job 1',      jbudget -> 123.4,  jproj -> proj1 ]. 

The reader can notice that there is a missing referential constraint to enforce the weak 

relationship present.  The ERM designer tool needs to export this constraint too and the 

framework reads it into a referential constraint whose partial signature is provided below.  

The RELTYPE attribute is qualified with a ‘weak’ string.  The attribute RELSEQ, which is a 

string, uniquely identifies EERM relationships.  Since a weak relationship is binary then two 

COMP (i.e. components) attributes values are defined.  As for the single side COMP attribute it 

takes six arguments and returns a STRUCTURE instance (where the weak entity structure is 

defined); whereas the many side takes the six arguments too but returns a class.  The 

arguments are the name of the entity (or weak entity); the attribute that holds the 

relationship instance, role name, the lower and upper cardinality of the relationship, and 

finally a distinctive sequence number.  The following is an ISA and referential constraint 

signature. 

refconstraint::constraint. 

 

refconstraint [ reltype{1:1} *=> string, relseq{1:1} *=> string, 

                comp(class, string, string, 

                    cardinality, cardinality, integer){0:1} *=> class, 

                comp(class, string, string, 

                    cardinality, cardinality, integer){0:1} *=> structure ]. 

To encode the weak relationship for JOB the following object in Flora-2 is required. 

rc12:refconstraint. 

rc12[ consname-> 'project jobs', relseq->'x1']. 

rc12[ reltype-> 'weak', comp(project, jobs, 'hasJobs', 0, '*', 1) -> job, 

                        comp(job, jproj, 'isPartOf', 1, 1, 2) -> project ]. 

The next section gives details as to how referential constraints in our framework are checked 

against the object collection. 

To ensure that no weak entity instance lives on its own, a transitional constraint is indicated 

over a static constraint.  In practice this is embedded in a database trigger associated with the 

entity that controls the weak entity.  In the above example the class PROJECT would have a 

trigger that on deletion of a PROJECT instance a cascade of deletes are executed for purging 

the weak instances of JOB assigned in the JOBS attribute.  ODMG does not directly support 
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triggers; a workable solution is for the designer to add incremental code (i.e. to delete any 

related JOB instances) to the PROJECT’s delete method inherited from ODMG’s ancestral class. 

There is another scenario that needs addressing; since in our framework instances of a 

STRUCTURE are objects, referential constraints are not sufficient to inhibit ‘loose’ instances.  If 

a STRUCTURE is not a return type of a method, i.e. not listed in a weak relationship, then it can 

have instances without breaking any referential constraint.  What is required is an integrity 

constraint that searches for STRUCTURES not mentioned in any relationship and then checks if 

it contains any instances.  The method %IC_STRUCTURE_NOLOOSEEND of object STRUCTURE 

checks if any instance-of STRUCTURE’s that is not covered by any return data type of an 

inheritable attribute (i.e. in a signature of the form ?C[ ?A *=> ?S ] ) and has instances.  It 

is important to note the versatility of mixing signature, instance-of, and class based predicates 

in a single query. 

structure[%ic_structure_nolooseend]:- 

    writeln('-- ic weak entity instances cannot live on their own')@_p, 

    if   ( ?S:structure, ?_IS:?S, not ?_C:class[?_A*=>?S], !) 

       then ( ?L=collectset{?Ss | ?Ss:structure, ?_ISs:?Ss,  

                                  not ?_Cs:class[?_As*=>?Ss]},  

     writeln('IC Broken! Problem with: ')@_prolog, 

              writeln(?L)@_prolog, 

     false ) 

       else ( writeln('OK!')@_prolog). 

(Note: variables starting with an underscore, e.g. “?_C” above, denote anonymous variables.) 

The invocation of the method that follows derives that a structure called LOOSENED has 

instances and yet it is not being referred to by any inheritable attributes. 

?- structure[%ic_structure_nolooseend]. 

-- ic no structure instance is not assigned to an attribute 

IC Broken! Problem with: 

[looseend] 

No. 

The last issue is the primary key definition of a weak entity.  If the STRUCTURE’s instances 

have a primary key set that ensures uniqueness across all its extent then a normal primary 

key constraint definition, as presented in a previous section, is adequate.  If it is not the case 

then one solution is to append the object identifier of latter to each weak instance.  For 

example in weak entity JOB the attribute JNAME, although unique in any PROJECT instance, it 

is not unique across all instances of JOB.  To rectify one appends JPROJ attribute to the key set 

– recall its signature enforces {1:1} cardinality. 
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pk8:pkconstraint [consname-> 'job w pk',  

                  classname-> job, attrlist->{jname, jpoj]}]. 

8.2.1.6 Binary Relationship templates 

Relationships are an important part of ERM diagrams.  These have many varieties and 

therefore need a flexible approach to encode and generic methods to enforce.  In this 

subsection we start with a binary relationship without any attributes and then consider the 

effects of adding attributes to it.  In subsequent sections the more involved relationship 

designs are encoded.  We also need to subsume the previously introduced template for a weak 

relationship. 

The signature for a referential constraint has already been given (i.e. in the weak entity 

section).  For a normal relationship, for example the ‘has phone’ relationship between entities 

PERSON and TELEPHONE is a 1(p)-N(p), the encoding that an ERM tool has to provide would be: 

rc1 [reltype->'normal', relseq->'x453', 

  comp(person,telno,'hasPhone',0,'*',1)             -> telephone,     

  comp(telephone,tpisof,'isOf',0,1,2)               -> person ]. 

In this relationship one component has entity PERSON with an attribute TELNO that can take 

zero to many identifiers of TELEPHONE.  The other entity TELEPHONE has an attribute TPISOF 

that can take zero to one PERSON identifier.  Note that the RELTYPE attribute of the referential 

constraint object RC1 is ‘NORMAL’ and its sequence number is ‘X453’. 

Another binary relationship example, this time a 1(p)-N(t), is that a PROJECT must be led by a 

LECTURER.  Its encoding is: 

rc3 [reltype->'normal', relseq->'x683', 

  comp(lecturer, prolead, 'leads', 0,'*',1)           -> project,     

  comp(project,  leader,  'isLead',1,1,2)             -> lecturer ].   

For the correctness of relationship instances we need check for two things.  The first is that 

there should be no dangling references; that is an attribute is assigned a non-instantiated 

identifier and more so not being an instance-of the right class or structure.  The second is its 

respect of the cardinality constraint mentioned in each of its component. 

To check for dangling identifiers in a relationship structure a method, called 

%RC_CONS_DANGLING_ID, which takes two arguments namely a reference of a constraint and 

its type (e.g. ‘normal’ or ‘weak’) is called.  The method reports any instance references which 

are not of the expected class or structure.  To determine this each component of the 

relationship is read and from it three objects are used: the class (?C), attribute (?A) and artifact 
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being pointed to (?Rt).  If there exists an instance-of ?C, called ?I, such that path expression 

?I.?A is not an instance-of ?Rt then we have a dangling reference and possibly a type 

mismatch.  The following is the generic method: 

  %rf_cons_dangling_id(?Rc, ?Type) :- 

     ?Rc[reltype->?Type], 

     ?Rc[comp(?C,?A,?_1,?_2,?_3,?_4)->?Rt], ?I:?C, ?I.?A=?Obj, not ?Obj:?Rt, 

     write('-- rf cons dangling, problem with ')@_prolog, 

     write(?A)@_prolog, write(' assigned ')@_prolog, writeln(?Obj)@_prolog, 

     false. 

Use of the procedure on referentially inconsistent data follows: 

barbara:person     [fname->'barbara',     telno->{t123, 9999}]. 

 

?- %rf_cons_dangling_id(rc1,'normal'). 

-- rf cons dangling, problem with telno assigned 9999 

No. 

By assigning the lower and upper limits there are four possible cardinality settings in a COMP 

definition (see table 8.1).  If for each occurrence we indicate if either a ‘not null’ or an ‘at most 

one’ constraint is required then each relationship cardinality is really a composition of these 

two.  These conditions are sufficient and necessary.  

 

Cardinality Not Null At most one 

0:1  One & only 

0:*   

1:1 Not null One & only 

1:* Not null  

Table 8.1: Cardinality constraints composition of binary relationships 

It quickly transpires that if the lower limit is “1” then a ‘not null’ has to be adhered to.  Also if 

the upper limit is “1” then the ‘at most one’ constraint has to be maintained.  Therefore to 

implement a “{0:1}” one needs to invoke ‘one and only one’ constraint while for “{1:1}” both ‘not 

null’ and ‘one and only one’’ need to be respected. 

In Flora-2 one way to implement the ‘not null’ constraint uses the negation as failure 

technique; i.e. if an attribute does not have a value assigned in an object then one can assume 

that the attribute value is null.  The generic procedure to check if a relationship attribute is 

not null, called %RF_CONS_NN, is given here: 
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   %rf_cons_nn(?Rc):- 

 ?Rc[comp(?C,?A,?_1,1,?_3,?_4)->?_Rt],?I:?C,not ?I[?A->?_11], 

       write('-- rf cons nn, problem with ')@_prolog, 

    write(?I)@_prolog, write(' not assigned in ')@_prolog,  

       writeln(?A)@_prolog, 

       false. 

The method finds the referential constraint of interest, i.e. through argument ?RC, then if the 

component’s lower limit (forth argument of COMP) is equal to ‘1’ then any instance (?I) of class 

(?C) which does not have its attribute (?A) assigned to a value is breaking the constraint. 

The method to check if an attribute is not being assigned more than one value is called 

%RF_CONS_ONEONLY.  To detect attributes being assigned not more than one value we first sift 

components (i.e. COMP) with their upper limit set to ‘1’, and then check if ?I.?A takes two 

distinctive values. 

%rf_cons_oneonly(?Rc):- 

 ?Rc[comp(?C,?A,?_1,?_2,1,?_4)->?_Rt], 

       ?I:?C,?I.?A=?V1, ?I.?A=?V2, ?V1!=?V2, 

       write('-- rf cons oneonly, problem with ')@_prolog, 

    write(?I)@_prolog, write(' assigned more than once in ')@_prolog, 

       writeln(?A)@_prolog, 

       false. 

To run these three checks together a single method, called %RF_CONS of object 

REFCONSTRAINT, is provided.  The method takes two arguments – a reference to a constraint 

and its type and then invokes the methods just described (actually without the false goal).  The 

method is applicable on weak relationships too.  The following is its code: 

rfconstraint[%rf_cons(?Rc,?Type)]:- 

 ?Rc[consname->?N], write('Ref cons name ')@_prolog, write(?N)@_prolog,  

    write(' of type ')@_prolog, writeln(?Type)@_prolog, 

 %rf_cons_seq(?Rc, ?Type). 

 

%rf_cons_seq(?Rc,?Type):-   %rf_cons_dangling_id(?Rc,?Type), false. 

%rf_cons_seq(?Rc,?_):-      %rf_cons_nn(?Rc),                false. 

%rf_cons_seq(?Rc,?_):-      %rf_cons_oneonly(?Rc),           false. 

The class of binary relationships with no attributes is distinctive for a practical reason.  This 

class includes 1:1, 1:N and M:N, and recursive and weak style of relationships.  Specifically 

this class of relationships is the one, and only, that ODMG ODL can implement with its 

relationship construct. 

How can we encode relationship’s attributes to a binary relationship?  It is a well-known 

method for the cases of 1:N and 1:1 one can move the relationship attributes to one of the 

entities.  In the case of 1:N the attributes are placed on to the many side entity.  In the case of 
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the 1:1 it can be placed to either entity unless one component is in a total relationship in 

which case it is moved on to a total side.  

For a binary many-to-many relationship with attributes there is a popular solution, which is 

adopted here, where a new class that will have a many-to-one referential constraint for each 

component class and an attribute for each relationship attribute.  This new class is sometimes 

called the resolving class.  This technique is found in text books such as El Masri [ELMAS10] 

and Teorey [TEORE05].  Its disadvantages are mainly two: the first is the creation of a class to 

implement a relationship and this is especially the case in binary relationships; and the second 

is that an n-ary relationship is spread over a number of binary relationships emanating from 

the resolving class. 

Assume we have a M(P)-N(P) relationship, called R1, between classes C1 and C2 and the 

relationship attribute is called A and of type integer, then the corresponding encodings for 

classes and relationships would be: 

C1:class     [ c1name{1:1} *=> string, c1_r1s{0:*} *=> C1C2r1 ]. 

C2:class     [ c2name{1:1} *=> string, c2_r1s{0:*} *=> C1C2r1 ]. 

 

C1C2r1:class [ c1s{1:1}    *=> C1, c2s{1:1}    *=> C2,  

               A *=> integer]. 

 

r1_c1:refconstraint. 

r1_c1[ consname-> 'r1 c1 desc']. 

r1_c1[ reltype->  'normal', relseq->'x633', 

               comp(C1, c1_r1s, 'r1 from c1', 0, '*', 1) -> C1C2r1, 

               comp(C1C2r1, c1s, 'r1 to c1', 1, 1, 2) -> C1 ]. 

 

r1_c2:refconstraint. 

r1_c2[ consname-> 'r1 c2 desc']. 

r1_c2[ reltype->  'normal', relseq->'x633', 

               comp(C2, c2_r1s, 'r1 from c2', 0, '*', 1) -> C1C2r1, 

               comp(C1C2r1, c2s, 'r1 to c2', 1, 1, 2) -> C2 ]. 

It has to be noted that the participation constraints of a binary many-to-many relationship do 

not affect the participation constraint in the resolving class attributes, i.e. the {1:1} 

constraints in attributes C1S and C2S of class C1C2R1 are always set so. 

Another point to note is that our encoding is using attribute RELSEQ to relate the generated 

binary relationships with the original relationship.  For example the two many-to-one 

relationships have the same value for RELSEQ i.e. ‘X633’. 

What remains to be discussed is the primary key constraint of the relationship’s resolving 

class.  Previously in the primary key encoding we have shown that attributes forming part of 
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the key set can be of type reference to objects of a class.  In our encoding here we use this to 

our advantage, which is ignoring the respective primary key set of component classes when 

defining the key set for the new class.  In the case of binary many-to-many the key set would 

be composed of both references; i.e. in the case of R1 above the key set is composed of C1S and 

C2S for C1C2R1. 

pk1:pkconstraint. 

pk1 [ consname  -> C1C2r1pk', classname -> C1C2r1,  

      attrlist  -> {c1s, c2s} ]. 

C2

SUPPLYC1 C3
PM

N

A

C1name

C2name

C3name
 

Figure 8.3 – Ternary relationship ERM  

8.2.1.7 General n way Relationship templates (with n > 2) 

For any n-ary relationship, with n greater than two, its encoding requires that a class is 

created to resolve the relationship.  The new class will have a referential constraint to each of 

the participating entities.  If the n-ary relationship has attributes then these are assimilated 

in the resolving class.  For example a ternary relationship R1 in figure 8.3 is a N(P)-M(P)-

P(P) and is encoded into four classes with the forth (e.g. class C1C2C3R1 in the following code) 

being the resolving class and it has a many-to-one binary relationship to each of the three 

participating classes.  Note that each referential constraint related to the ternary relationship 

has the same value for attribute RELSEQ.  This ensures one can recompose the n way 

relationship from its parts. 

C1:class     [ c1name{1:1} *=> string, c1_r1s{0:*} *=> C1C2C3r1 ]. 

C2:class     [ c2name{1:1} *=> string, c2_r1s{0:*} *=> C1C2C3r1 ]. 

C3:class     [ c3name{1:1} *=> string, c3_r1s{0:*} *=> C1C2C3r1 ]. 

 

C1C2C3r1:class 

             [ c1s{1:1} *=> C1, c2s{1:1} *=> C2, c3s{1:1} *=> C3, 

               A *=> integer]. 
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r1_c1:refconstraint. 

r1_c1[ consname-> 'r1 c1 desc']. 

r1_c1[ reltype->  'normal', relseq->'x8933', 

               comp(C1, c1_r1s, 'r1 from c1', 0, '*', 1) -> C1C2C3r1, 

               comp(C1C2C3r1, c1s, 'r1 to c1', 1, 1, 2) -> C1 ]. 

 

r1_c2:refconstraint. 

r2_c2[ consname-> 'r1 c2 desc']. 

r2_c2[ reltype->  'normal', relseq->'x8933', 

               comp(C2, c2_r1s, 'r1 from c2', 0, '*', 1) -> C1C2C3r1, 

               comp(C1C2C3r1, c2s, 'r1 to c2', 1, 1, 2) -> C2 ].  

 

r1_c3:refconstraint. 

r2_c3[ consname-> 'r1 c3 desc']. 

r2_c3[ reltype->  'normal', relseq->'x8933', 

               comp(C3, c3_r1s, 'r1 from c3', 0, '*', 1) -> C1C2C3r1, 

               comp(C1C2C3r1, c3s, 'r1 to c3', 1, 1, 2) -> C3 ]. 

The primary key attribute set participants, for the resolving class, are dependent on the 

relationship’s cardinalities constraint.  Also, as presented in Chapter seven, primary key sets 

are a specialisation of a functional dependency constraint as a primary key set of attributes 

functionally determines all other attributes (i.e. not part of the primary key set) – in such a 

case the left hand side of a functional dependency is a candidate key.  In the case of a binary 

N-M relationship, as just explained, the primary key set was composed of both references.  

Likewise for a ternary N-M-P the primary key set is a made of three references.  The last row 

of table 8.2 depicts this.  But the primary key set in other cardinality permutations doesn’t 

need all three references composing the primary key set.  Furthermore there is possibly that 

more than one candidate key set exists, for example in a 1-1-1 relationship, the resolving class 

can choose any primary key set from the following candidate keys: {C1, C2}, {C2, C3} and 

{C1, C3}. 

Ternary Relationship 

(between C1, C2, C3) 

Functional dependencies 

1-1-1 {C1, C2}  C3 {C1, C3}  C2 {C2, C3}  C1 

1-1-N {C1, C3}  C2 {C2, C3}  C1  

1-N-M {C2, C3}  C1   

N-M-P {C1, C2, C3}     

Table 8.2 – Functional dependencies present in ternary relationship by cardinalities 

What is required is a general pattern that helps us enumerate all candidate keys for any n-ary 

relationship given its cardinalities and from which we can elect any one as primary.  The 

remaining key sets are actually declared as candidate key constraints. 
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In the cases of N-M and N-M-P their primary key set is easy to derive, i.e. it includes all 

references, and there is only one pattern.  It is easy to scale up for any n-ary relationship 

where the primary key set is made up of all entity references; i.e. n attributes. 

In the case of an n-ary relationship where at least one of the cardinalities is a ‘1’ then a 

reference to that class is placed on the right hand side of a functional dependence.  On the left 

hand side of the dependence we append a reference of each of the remaining participants in 

the relationship.  For example in a 1-N-M, between C1, C2, and C3, C1 is a ‘1’ component and is 

placed on the right of expression, whereas classes C1 and C2 are placed on the left hand side.  

Therefore the functional dependence built is {C2, C3}  C1.  If a relationship has more 

than one ‘1’ component a functional dependence is built for each. (Refer to table 8.2).  This rule 

scales for n.   

The following procedures and code snippets show how to, starting from an n-ary description of 

a relationship (e.g. figure 8.3), build the resolving class and enumerate its functional 

dependence and assert any one of these as the primary key and the rest as candidate keys.  

(For simplicity of implementation when we assert a primary key constraint, it is not asserted 

as a candidate key too).  It needs to be remarked that during an actual exercise the invocation 

of this transformation has to be exposed to the designer; if incorrect or incomplete then the 

designer has to rectify the original input diagram. 

It is reasonable to assume that in the case of an n-ary relationship the encoding requires more 

involved reading from the EERM tool.  The encoding has a class for every participating entity 

together with their attributes and primary key.  Something different is the reading of a class 

which is the resolving class for the n-ary relationship; the only attributes it should have are 

any relationship’s attributes (i.e. GRADE).  Also the n-ary relationship needs to be encoded as n 

binary relationships between the participating classes and the resolving class; the 

cardinalities and participation constraints on the side of each participating class are not 

changed.  Every other side, i.e. from resolving to participating class, is assigned the same 

‘many and total’.  Each of these binary relationships must have a common identifier in the 

RELSEQ attribute (e.g. 'X613').   The following code shows one participating class (STUDENT) 

and the resolving class (named arbitrarily SUL_TERNARY) for figure 8.3. 
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student:class [sname{1:1} *=> string, sul_ternaries_s{0:*} *=> sul_ternary]. 

sul_ternary:class[t3student_id{1:1} *=> student, t3unit_id{1:1} *=> unit,  

                  t3lecturer_id{1:1} *=> lecturer, grade{1:1} *=> integer ]. 

 

nmp_givenstud:refconstraint. 

nmp_givenstud 

  [reltype  -> 'normal',relseq->'x613', 

   consname -> 'given student', 

   comp( sul_ternary, t3student_id, 'from student',   1,   1, 1) -> student, 

   comp( student, sul_ternaries, 'to sul ternary', 0, 1, 2) -> sul_ternary]. 

Once the ERM’s n-ary relationship is read the framework needs to compute two procedures to 

implement the meaning of the n-ary relationship.  The first builds all functional dependences 

in the resolving class to implement the relationship and the second is to assert a primary key 

and any other candidate keys to enforce the functional dependence just built. 

The data characteristic in the framework of an n-ary is determined by a common value in the 

RELSEQ attribute across referential constraints instances – the variable ?RS is used.  For our 

example, there are three relationship instances with a common RELSEQ value; i.e. 'X613'. 

?- ?R:refconstraint[relseq->'x613']. 

?R = nmp_givenlect 

?R = nmp_givenstud 

?R = nmp_givenunit 

Yes. 

Each of these constraint instances has two components and across all these is a component 

that points to their resolving class – the variable ?RESCLASS is used.  Therefore the class that 

is common across the constraint’s components is the resolving class and to compute this one 

needs a ‘for all’ query – universal quantification.  The following procedures compute this: 

%rel_resolve_class(?Rs, ?ResClass):- 

  ?R:refconstraint, 

  ?R[relseq->?Rs,comp(?_11,?_12,?_13,?_14,?_15,?_16)->?ResClass], 

  (not %rel_resolve_class_mid(?Rs, ?ResClass)), 

  !. 

     

    %rel_resolve_class_mid(?Rs, ?OutResClass):- 

      ?R:refconstraint, 

      ?R[relseq->?Rs, comp(?_21,?_22,?_23,?_24,?_25,?_26)->?_ResClass], 

      (not %rel_resolve_class_in(?Rs, ?OutResClass, ?R)). 

 

        %rel_resolve_class_in(?Rs, ?OutResClass, ?MidR):- 

          ?R:refconstraint, 

          ?R[relseq->?Rs, comp(?_31,?_32,?_33,?_34,?_35,?_36)->?ResClass], 

          ?R=?MidR, ?ResClass=?OutResClass. 

 

?- %rel_resolve_class('x613',?Rc). 

    ?Rc = sul_ternary 

Yes. 

Once a resolving class of a relationship constraint is found then the computation of functional 

dependency needed to implement the n-ary relationship is done by the procedure 

%REL_RESOLVE_FDS.  The procedure takes three input arguments and outputs a list of 
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dependencies (in ?FDELST).  The procedure starts by building two lists through the 

COLLECTSET aggregate function of Flora-2: the first being the list of participating classes in n-

ary relationship (i.e. ?FDALLLST); while the second is a list of classes that have at most a ‘one’ 

for an upper participation (i.e. ?FDRIGHTLST).  If the second set is empty then the procedure 

terminates and returns a list of fds.  The following code explains: 

%rel_resolve_fds(?Rs,?ResvClass,?FdSlst,?FdElst):- 

  ?FdAlllst   = collectset{?C|?_R:refconstraint[relseq->?Rs, 

                              comp(?ResvClass,?_2,?_3,?_4,?_5,?_6)->?C]}, 

  ?FdRightlst = collectset{?C|?_R:refconstraint[relseq->?Rs, 

                              comp(?C,?_2,?_3,?_4,1,?_6)->?ResvClass]}, 

     if   (?FdRightlst=[])  

  then (?FdElst=[?FdAlllst-[]])  

  else (%rel_resolve_fds_gen(?FdAlllst,?FdRightlst,?FdSlst,?FdElst)). 

 

     %rel_resolve_fds_gen(?FdAlllst,[?Rh|?FdRightlst],?FdSlst,?FdElst):- 

     %loid_diff(?FdAlllst,[?Rh],[],?Lh), 

     ?FdIlst = [?Lh-?Rh|?FdSlst], 

        %rel_resolve_fds_gen(?FdAlllst,?FdRightlst,?FdIlst,?FdElst). 

     %rel_resolve_fds_gen(?_FdAlllst,[],?FdElst,?FdElst). 

If the ternary relationship is an N-M-P then there is only one functional dependency as the 

following invocation illustrates this.  The response, bound to variable ?A, says that LECTURER, 

STUDENT and UNIT identifiers determine all. 

?-  %rel_resolve_fds('x613',sul_ternary,[],?A). 

 

?A = [[lecturer, student, unit] - [] ] 

 

If the second set is not empty (i.e. ?FDRIGHTLST) then procedure %REL_RESOLVE_FDS_GEN is 

called iteratively for each element in this set.  For each element the left hand side of the fd is 

built by extracting the difference from the set ?FDALLLST by using the procedure 

%LOID_DIFF. If the ternary relationship is 1-1-1 then there is a list of fds and the following 

invocation illustrates this.  The response, bound to variable ?A, says there are three fds and 

the first says that student and lecturer identifiers determine the unit’s identifier. 

?-  %rel_resolve_fds('x613',sul_ternary,[],?A). 

 

?A = [[student, lecturer] - unit, [unit, lecturer] - student, [unit, 

student] – lecturer ] 

 

Given a non-empty set of fds one needs to convert these into constraints – the procedure 

%REL_RESOLVE_KEYS takes care of this.  The first fd is arbitrarily converted into a primary 

key and any remaining fds into candidate key constraints.  Because the framework considers a 

constraint as an object it is imperative that the generated fds are asserted as objects in the 

framework’s knowledge base.  To generate objects from rules Flora-2 offers reification 
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mechanism based on Yang and Kifer’s work [YANGG03]; the rules with un-instantiated 

placeholders are assigned as values to methods of the generic constraint object (and enclosed 

within ${ and } tokens) and when required to instantiate a constraint the place holders are 

filled and the rule fired to create a new object. Other than reification we also need a predicate 

that when instantiated returns a logical identifier which is new and unique; the directive is 

called NEWOID{}.  The following code snippets illustrate how constraints are generated. 

The generic object PKCONSTRAINT, and similarly for candidate key object, have two methods 

and each of which take two arguments and whose value is a reified rule.  For example when 

method CREATE_PK_INSTANCE is invoked with a new identifier and a class identifier the rule 

is bound with the arguments and ready to fire; that is create a new PKCONSTRAINT instance 

with the new identifier and it is CLASSNAME attribute assigned the class identifier provided as 

an argument.  The second method, CREATE_PK_INSTANCE_ATTR, is responsible to assign 

attributes that make up the primary key constraint through the attribute ATTRLIST. 

Once the rules are in place, then the procedure %REL_RESOLVE_KEYS drives the instantiation 

by taking the first fd from the list and passing it to generate the primary key at 

%REL_RESOLVE_KEYS_PK which generates a new identifier, instantiates the rule to fire, and 

finally fires the rule with INSERTRULE{…} directive.  A similar treatment is applied for 

candidate keys but with the difference that procedure iterates until all fds have an object 

instantiation. 

pkconstraint[create_pk_instance(?Loid, ?Cn) ->  

     ${ ( ?Loid:pkconstraint[classname->?Cn] :- true) } ]. 

pkconstraint[create_pk_instance_attr(?Loid, ?Attr) ->  

     ${ ( ?Loid[attrlist->?Attr] :- true ) } ]. 

ckconstraint[create_ck_instance(?Loid, ?Cn)  ->  

     ${ ( ?Loid:ckconstraint[classname->?Cn] :- true) } ]. 

ckconstraint[create_ck_instance_attr(?Loid, ?Attr) -> 

     ${ ( ?Loid[attrlist->?Attr] :- true ) } ]. 

 

%rel_resolve_keys(?_Rs,?ResvClass,[?H|?RFdlst]):-  

    %rel_resolve_keys_pk(?ResvClass,?H), 

       %rel_resolve_candkeys(?ResvClass,?RFdlst). 

%rel_resolve_keys(?_Rs,?_ResvClass,[]). 

 

 

    %rel_resolve_keys_pk(?Cn,?Alst-?_Rh):- 

       newoid{?Loid},  

       pkconstraint[create_pk_instance(?Loid,?Cn) -> ?Rules1], 

          insertrule { ?Rules1 }, 

          %rel_resolve_keys_pk_attr(?Loid,?Alst). 
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          %rel_resolve_keys_pk_attr(?Loid,[?H|?Alst]):- 

                pkconstraint[create_pk_instance_attr(?Loid,?H) -> ?Rules1], 

                insertrule { ?Rules1 }, 

                %rel_resolve_keys_pk_attr(?Loid,?Alst). 

          %rel_resolve_keys_pk_attr(?_Loid,[]). 

 

 

    %rel_resolve_candkeys(?ResvClass,[?H-?_Rh|?RFdlst]):- 

       newoid{?Loid}, 

       ckconstraint[create_ck_instance(?Loid,?ResvClass) -> ?Rules1], 

          insertrule { ?Rules1 }, 

          %rel_resolve_candkeys_attr(?Loid,?H), 

          %rel_resolve_candkeys(?ResvClass,?RFdlst). 

    %rel_resolve_candkeys(?_ResvClass,[]). 

 

          %rel_resolve_candkeys_attr(?Loid,[?H|?Alst]):- 

           ckconstraint[create_ck_instance_attr(?Loid,?H) -> ?Rules1], 

              insertrule { ?Rules1 }, 

              %rel_resolve_candkeys_attr(?Loid,?Alst). 

          %rel_resolve_candkeys_attr(?_Loid,[]). 

The three top level procedures just described are wrapped within a generic object procedure – 

namely RFCONSTRAINT[%FD_GENERATE(ARG1, ARG2, ARG3)] which follows.  Also a query 

to check the primary and candidate keys generated is appended to the code below.  (Note: 

identifier starting with ‘_#’ are identifiers generated by calling NEWOID{…} ). 

rfconstraint[%fd_generate(?Rs,?ResvClass,?Fdlst)]:- 

 %rel_resolve_class(?Rs,?ResvClass), 

    %rel_resolve_fds(?Rs,?ResvClass,[],?Fdlst), 

    %rel_resolve_keys(?Rs,?ResvClass,?Fdlst). 

 

?- rfconstraint[%fd_generate('x613',?ResvClass,?Fdlst)]. 

?ResvClass = sul_ternary 

?Fdlst = [[student, lecturer] - unit, [unit, lecturer] - student, [unit, 

student] - lecturer] 

 

?- ?Pk:pkconstraint[attrlist->?L]. 

 

?Pk = _#'10318  ?L = lecturer 

?Pk = _#'10318  ?L = student 

 

?- ?Ck:ckconstraint[attrlist->?L]. 

 

?Ck = _#'10319  ?L = lecturer 

?Ck = _#'10319  ?L = unit 

?Ck = _#'10320  ?L = student 

?Ck = _#'10320  ?L = unit 

For n-ary relationships we have used the ternary as an example. In fact the structures, 

procedures and output are independent of degree 3 and are really applicable to n ≥ 2. 

8.2.1.8 Other relationship templates 

In the previous sections a number of relationships have been encoded into structures and their 

semantics enforced through integrity constraints.  Some of these relationships needed a 

transformation into other structures and additional constraints to enforce them.  In summary 

static constraints and structural artefacts are sufficient to encode them. 
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Other relationships, mentioned in an chapter two like aggregation, require more than 

structures and static constraints to implement them in full.  Specifically aggregation 

constructs need transitional constraints; these are typically implemented with database 

triggers.  (In fact an earlier paper by the author [VELLA97] aggregation design depended on 

their presence).  In ODMG ODL and OQL no mention of triggers is forthcoming.  Consequently 

it is best left as a post mapping exercise rather than part of the database schema generated 

here; in fact both in this research and in our contribution to ICOODB 2009 [VELLA09]. 

8.3 Summary 

This chapter builds a framework in which an object-oriented database is defined and 

maintained in terms of its data model.  The language used for implementation is Flora-2 and 

much of the programming is declarative.  These procedures are attached to framework objects.  

The “meta” structures in our framework include: classes, weak entities, composite object parts, 

attributes (including functional ones), domains, relationships, and constraints (e.g. primary 

key, referential, check, not null, and functional dependency).  Each artefact is supported, 

safeguarded, and enforced through rules and methods defined for each of them.  In all the 

programming mixing of attribute values and their data type signatures is extensive. 

The framework also offers methods to aid database designers in some of their activities.  For 

example there is a method that for an n-ary relationship instance (with n>2) is capable of 

converting it into the equivalent binary relationships, a resolving class, and constraints. 

The framework is now able to accept a variety of schema designs.  In fact in the next chapter 

we see how we can convert an EERM diagram encoding into our framework artefacts. 
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9 Translating an EERM into an ODL Schema 

The chapter starts by presenting an encoding of an EERM design into our framework meta 

structures.  That is the entities, relationships, and constraints encoded in an EERM diagram 

are asserted as facts in the framework.  Together with these design facts the framework has a 

number of rules that encode and check properties that an object database must satisfy. 

Once the EERM diagram is encoded as facts it is mapped into a sequence of ODMG ODL 

constructs.  These constructs, albeit in an ODMG ODL dialect, are directly used by EyeDB to 

create its own object schema.  EyeDB constructs used are classes with attributes and 

relationships, ISA assertions, and integrity constraints (e.g. primary key and not null).  

Through the mapping other constructs, not found in the original EERM, are introduced to 

enable a wider coverage of our mapping to ODMG data model; for example in non-binary 

relationships. 

Other than the logical encoding of EERM diagrams in Flora-2, we also present a 

straightforward utility that redraws an EERM in a graphical form as new constructs may be 

added.  It is useful to have a visualisation of the EERM model encoded in our framework.  This 

is similar to the actual EERM but some differences have been introduced.  For example an 

EERM n-ary relationship is converted into n binary relationships and an addition of a 

resolving class. 

There is a point worth emphasising here is that specification made in the EERM diagram are 

to remain present with different functionalities applied to the object-database; for example an 

object query language is to make use of these EERM relationship artefacts. 

9.1 The Problem Definition 

Drawing a graph is a non-trivial computational task as any projection, even if correctly 

representing an underlying mathematically defined graph, can give different clues to its 

reader.  A number of software packages that take a graph specification, spruced up with 

drawing attributes, and then output a diagram into raster and vector formats exist.  Vector 

formats are useful as they allow editing of a generated diagram.  Most packages offer 

command-line and graphical-user interfaces. 
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Two packages that have a good following, active revision process and proper documentation 

are GraphViz { WWW.GRAPHVIZ.ORG } and yEd { WWW.YWORKS.COM }.   For this work GraphViz, a 

product originating from AT&T Labs Research, has been chosen mainly for its reliability, 

availability of packages and support, and finally because it is able to meet this project’s 

requirements.  

The idea is to faithfully convert the conceptual design elements into a diagram’s artefacts.  

The mapping has to have a high-level completeness and correctness.  Completeness is in the 

sense all elements of the EERM must be present in the output (or accounted for), and 

correctness implies that any artefact’s meaning is not changed by the mapping. 

The main input for the diagraming tool are nodes and edges.  Both take a variety of properties 

that define their structure, name and caption, and formatting style.  The package also allows 

for generic instructions that cover the whole diagram.  In our mapping the nodes will 

represent the entities, weak entities, and all types of attributes.  Edges will represent 

relationships: the binary ones are undirected edges but are adorned with role name, 

participation and cardinality constraints; the ISA ones use directed edges. 

Since the framework is repository for an EERM graph and a number of checks and constraints 

are enabled then it is a rather straightforward procedure to implement.  There are two issues 

that make the process slightly tricky.  The first concerns inheritance: in most representations 

one shows the additional properties rather than all properties including those inherited.  In F-

logic, if one asks for an object’s properties then one gets both inherited and non-inherited 

attributes.  The second concerns binary relationships:  the double ended nature of a binary 

relationship makes every relationship be represented twice; albeit having different 

perspectives. 

9.1.1 General Procedure 

An object SCHEMA method, called %VIZ_SCHEMA, specifies the schema encoding drawing.  

Prior to calling %VIZ_SCHEMA one has to confirm that all integrity constraints entrenched in 

the framework are adhered to otherwise this mapping is vitiated. 

A high-level description of the method follows:  the first part takes care of listing the header 

part of the specification file, and the second part enumerates the entities, ISA relationship, 

http://www.yworks.com/
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attributes, and relationships and converts them to into graphical equivalents.  Thirdly the 

edges are introduced that link the nodes just produced.  In the following description of the 

translation the procedures have been stripped to their bare essentials for readability in the 

text. 

The procedure %VIZ_HEADER is called by %VIZ_SCHEMA.  It starts by writing basic details in a 

remark, for example schema name, and then sets graphical properties of the diagram.  One of 

these is DIGRAPH directive which asks Dot, one of GraphViz’s engines, to render a directed 

graph; this is required as the ISA relationship is directed.  Also the directive names the 

diagram and opens the specification list with a brace token. 

  %viz_header :- 

 write  ('    //  schema name & version: ')@_prolog,  

 write  (schema.schemaname)@_prolog,  

 writeln('digraph FlogicEncode {')@_prolog. 

The procedure %VIZ_FOOTER, called at the end of %VIZ_SCHEMA just closes in the input 

specification and therefore is called at the end of the process.  

The generated code looks as follows (the ellipsis, i.e. …, indicates further text has been omitted 

for brevity). 

/* flogic schema for visualisation */ 

    ##  schema name & version: AfterScott (alpha) 

digraph FlogicSchema { 

ranksep=1.25; 

…} 

9.1.2 Entities, and Weak Entities 

The main nodes of the diagram are classes and weak entities and both of which are instances 

of CLASS and STRUCTURE in the framework.  To print these into a diagram specification two 

procedures are called in sequence.  The first is called %VIZ_CLASS and the second is 

%VIZ_STRUCTURE. 

%VIZ_CLASS unifies with a list of classes, i.e. using view ALLCLASSES.CLASSLIST, and 

recursively calls method %VIZ_CLASS_ENTRY with the CLASS instances list, each method 

invocation uses a class instance at a time to print it out as a Dot specification.  The output 

includes the class name and its shape attributes (e.g. SHAPE=BOX).  Dot, unless otherwise 

instructed, includes the class name as the node’s caption within the box drawn. 
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allclasses[classlist->?L]  :- ?L = collectset{ ?C | ?C:class }. 

 

%viz_class :-  

  %viz_class_entry(allclasses.classlist). 

 

  %viz_class_entry([?C|?Clrest]):- 

    write(?C)@_prolog, 

 writeln('[shape=box];')@_prolog, 

 %viz_class_entry(?Clrest). 

  %viz_class_entry([]):- true. 

The next method to be called is %VIZ_STRUCTURE and is very similar to %VIZ_CLASS.  The 

differences being: first it uses a list of STRUCTURES; second each STRUCTURE is checked if it is 

involved in a WEAK relationship instance (i.e. ?_RF:REFCONSTRAINT [RELTYPE->'WEAK', 

COMP(?S,?_,?_,?_,?_,?_)->?_]); and thirdly the shape is different in that a weak entity 

is represented with a double edged box (i.e. SHAPE=BOX, PERIPHERIES=2).   

allstructures[structlist->?L]  :- ?L = collectset{ ?S | ?S:structure }. 

 

 %viz_structure :-  

  %viz_structure_entry(allstructures.structlist). 

 %viz_structure :- true. 

 

    %viz_structure_entry([?S|?Sl]):- 

   if ( ?_Rf:refconstraint[reltype->'weak',comp(?S,?_,?_,?_,?_,?_)->?_] ) 

   then ( write(?S)@_prolog,  

          writeln('[shape=box, peripheries=2];')@_prolog ), 

   %viz_structure_entry(?Sl). 

    %viz_structure_entry([]):- true. 

The generated code looks as follows: 

… 

/* classes */ 

    course[shape=box,height=.75,width=1.5]; 

… 

/* structures - weak entities */ 

    address[shape=box,height=.75,width=1.4,peripheries=2]; 

… 

9.1.3 ISA Relationship 

The next method call from %VIZ_SCHEMA is to %VIZ_ISA that draws all ISA relationships from 

a class to its direct descendent.  The latter calls procedure %VIZ_ISA_ENTRY twice; the first 

time it is called with the CLASSES list and the second time with the STRUCTURES list.  In 

%VIZ_ISA_ENTRY a list of ISA relationship objects whose parent object is the head of the list 

passed as an argument is created (i.e. COLLECTSET { ?I| ?I:ISAPROPERTY, 

?I[PARENTCLASS->?C ] }).   The CLASS object and its list of ISA instances are passed to 

method %VIZ_ISA_ENTRY_DETAIL.  When invoked this procedure extracts data of one ISA 

relationship instance at a time and starts the drawing process.  (Actually there is a constraint 

in the framework that enforces an upper limit of one ISA relationship). 
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We recall that the ISA relationship drawing requires a circle to annotate its details (i.e. 

disjoint versus over-lapping, and total versus partial) and two types of edges.  The first type of 

edge is from the parent class to the circle, and the second type of edge is from the circle to each 

descendent of the parent class.  The line drawing from the circle to the descendants is done by 

procedure %VIZ_ISA_ENTRY_DETAIL_DESC.  The edges have annotations that were extracted 

from the relative ISA relationship instance. 

Each procedure mentioned above is recursive, except for %VIZ_ISA.  Some code follows and 

within it one notes that FWRITE procedure does not really exist but makes reading easier. 

%viz_isa_entry([?C|?Rl]):- 

  ?Isa=collectset{?I|?I:isaproperty, ?I[parentclass->?C]}, 

  %viz_isa_entry_detail(?C,?Isa), 

  %viz_isa_entry(?Rl). 

%viz_isa_entry([]):- true. 

 

  %viz_isa_entry_detail(?C,[?I|?Rest]):- 

    ?I[disj_over_flag->?doF, totl_part_flag-> ?tpF, sema_pred_flag->?spFl], 

    fwrite(?I, '[shape=circle, label="', ?doF, '"];'), 

 fwrite(?C, '->', ?I,'[label="',?tpF,'", dir="both",’,  

           ‘arrowhead=none, arrowtail="vee", color="gray:gray"];'), 

 ?Ldesc=collectset{?D|?I[isaclass->?D]}, 

%viz_isa_entry_detail_desc(?I,?Ldesc,?spF), 

 %viz_isa_entry_detail(?C,?Rest). 

  %viz_isa_entry_detail(?_C,[]). 

 

 %viz_isa_entry_detail_desc(?I,[?D|?Rest],?spF):- 

   fwrite(?I,'->',?D, '[label="', ?spF, '", arrowhead=none];'), 

   %viz_isa_entry_detail_desc(?I,?Rest,?spF).     

    %viz_isa_entry_detail_desc(?_I,[],?_spFlag). 

The generated code looks as follows.  Node ISAPERSON is representing the ISA relationship 

instance descriptor (i.e. denoted in the EERM as a circle) and is captioned with ‘disjoint’, node 

PERSON is a parent class and nodes LECTURER and STUDENT are its sub-classes connected 

through ISAPERSON with two types of edges.  The first is from PERSON to ISAPERSON and is 

captioned with ‘partial’, and the second is from ISAPERSON to a sub-class and each of them is 

captioned with ‘semantic’. 

… 

isaperson 

  [shape=circle, height=.5, width=.5, 

   fontsize=12, fixedsize=true, label="disjoint"]; 

person -> isaperson 

  [label="partial", fontsize=10, dir="both", arrowhead=none, 

   arrowtail="vee", color="gray:gray", weight=10]; 

isaperson -> lecturer 

  [label="semantic", arrowhead=none, color="gray:gray", fontsize=10];  

isaperson -> student 

  [label="semantic", arrowhead=none, color="gray:gray", fontsize=10]; 

… 



Object-Oriented Data and Query Models 

Translating EERM into an ODL Schema - [ 207 ] 
  

Since asserting ISA facts in F-logic implies inference of its closure on program evaluation one 

needs, for drawing purposes, to weed off this closure.  In procedure %VIZ_ISA we choose to 

enumerate ISA facts through the specific relationship encoding rather than creating a list 

through the pattern ?C:CLASS, ?CD:CLASS, ?CD::?C. 

9.1.4 Binary Relationships 

The framework has all EERM relationships encoded as binary and all referential constraints 

manifest themselves as of three types: either normal, or weak, or structure (for building 

composite objects).  The former two are mapped in this section’s code.  The called procedure 

%VIZ_RELATIONSHIP invokes %VIZ_REL_NORMAL twice, first with all CLASS instances and 

then with all STRUCTURE instances.  The method %VIZ_REL_NORMAL is a recursive procedure 

over the list of object references in its argument.   

On each invocation of %VIZ_REL_NORMAL the method builds a list of relationships that are 

involved with the current object reference being evaluated.  The respective filter for normal 

relationships follows:  ?R:REFCONSTRAINT, ?R[RELTYPE -> 'NORMAL'], 

?R[COMP(?CL,?_,?_,?_,?_,1) -> ?_ ].  Also note the “1” value in the last argument of a 

relationship component that ensure each relationship instance, being of double ended nature, 

only appears once as this argument is a serial number.  The method then calls 

%VIZ_REL_NORMAL_EDGE with two arguments: the first being the current CLASS instance (or 

STRUCTURE instance) and the second is a list of relationships just computed. 

  %viz_relationship :-  

  %viz_rel_normal(allclasses.classlist), 

  %viz_rel_normal(allstructures.structlist).   

 

  %viz_rel_normal([?Cl|?Rl])       :-  

     ?Rel=collectset{?R|?R:refconstraint,?R[reltype->'normal'],  

                           ?R[comp(?Cl,?_,?_,?_,?_,1)->?_]}, 

        %viz_rel_normal_edge(?Cl,?Rel), 

        %viz_rel_normal(?Rl). 

  %viz_rel_normal([])              :- true. 

 

        %viz_rel_normal_edge(?Cleft,[?R|?Rest])   :- 

            ?R[comp(?Cleft ,?_,?Label,?Lmin,?Lmax,1)->?_], // left side 

         %viz_rel_edge_lu(?Lmin,?Lmax,?Aleft), 

         ?R[comp(?Cright,?_,?_,    ?Rmin,?Rmax,2)->?Cleft], // right side 

         %viz_rel_edge_lu(?Rmin,?Rmax,?Aright), 

            // drawing 

         write(?Cleft)@_prolog, write('->')@_prolog, write(?Cright)@_p, 

         write('[label="')@_prolog, write(?Label)@_prolog,  

            write('",dir="both"')@_prolog, 

         write(',arrowtail=')@_prolog,write(?Aleft)@_prolog,  

         write(',arrowhead=')@_prolog,write(?Aright)@_prolog, 

         writeln('];')@_prolog, 

            %viz_rel_normal_edge(?Cleft,?Rest). 
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        %viz_rel_normal_edge(?_,[]):- true. 

 

         %viz_rel_edge_lu(0,1,  ?E) :- ?E = '"teeodot"',!. 

         %viz_rel_edge_lu(0,'*',?E) :- ?E = '"crowodot"',!. 

         %viz_rel_edge_lu(0,?_,?E)  :- ?E = '"crowodot"',!. 

 

         %viz_rel_edge_lu(1,1,  ?E) :- ?E = '"teetee"',!. 

         %viz_rel_edge_lu(1,'*',?E) :- ?E = '"crowtee"',!. 

         %viz_rel_edge_lu(1,?_,?E)  :- ?E = '"crowtee"',!. 

The method %VIZ_REL_NORMAL_EDGE is recursive too and needs to be called for each element 

of the relationship instances list; i.e. second argument.  For each instance the method needs to 

draw an edge from the first component to the second of the current relationship instance.  

(These have been arbitrarily named as left and right in the code).  The matching with a 

relationship instance allows the extraction of other data: namely lower and upper limits for 

each component and a caption for the edge drawn.  For the left side these are called ?LMIN, 

?LMAX, and ?LABEL.  There are four possible types of edges to draw for each end of an edge 

and calling method %VIZ_REL_EDGE_LU with the respective lower and upper limits returns 

the type of edge for Dot to draw.  The pictograms selected from Dot’s library are depicted in 

figure 9.1 and are assigned to edge properties ARROWHEAD and ARROWTAIL for the edge being 

drawn. 

 

Figure 9.1 – Depicting cardinality and participation constraints of a relationship. 

The generated code looks as follows: 

… 

/* relationships */ 

    course->student[label="enrolled on", 

                    dir="both", arrowtail="crowodot", arrowhead="teetee"]; 

… 

The procedure to draw a weak relationship called %VIZ_WEAK_RELATIONSHIP is almost 

identical to the previous.  The only difference is in the query to collect weak relationships in a 

list.  The rest re-uses the procedures used for normal relationships. 
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  %viz_weak_relationship :-  

  %viz_rel_weak(allclasses.classlist), 

  %viz_rel_weak(allstructures.structlist). 

 

  %viz_rel_weak([?Cl|?Rl])       :-  

     ?Rel=collectset{?R|?R:refconstraint,?R[reltype->'weak'], 

                           ?R[comp(?Cl,?_,?_,?_,?_,1)->?_]}, 

        %viz_rel_normal_edge(?Cl,?Rel), 

        %viz_rel_weak(?Rl). 

  %viz_rel_weak([])              :- true. 

9.1.5 Entity Attributes 

There are four types of attributes we need to depict; namely single-simple, set-simple, single-

structure and set-structure.  These attributes in an EERM diagram are found in entities, weak 

entities, and relationships.  In our framework there is a reduction of n-ary relationships into a 

set of binary ones and relationships are disarmed of any attributes.  This leaves only the 

former two for drawing.  Furthermore in our framework a structured attribute forming part of 

an entity is implemented with a binary relation (of type structure - RELTYPE->'STRUCTURE').   

To draw attributes we partition these into two main groups.  The first is earmarked to 

generate the drawing for a structured attribute and its parts that is encoded in the framework 

as a structure instance and related with a relationship instance-of type structure (i.e. 

RELTYPE->'STRUCTURE').  This procedure is called %VIZ_STRUCT_RELATIONSHIP.   The 

second group takes care of the other attributes, specifically attributes for entities and weak 

entities that are not structured attributes supported by the first procedure.  This procedure is 

called %VIZ_ATTRIBUTE.   

On each invocation of %VIZ_ATTRIBUTE it calls another four procedures to take care of single-

simple, set-simple, single-structure, and set-structure attributes.  These are named 

%VIZ_ATTR_ELLIPSE, %VIZ_ATTR_DOUBLE_ELLIPSE, %VIZ_ATTR_STRUCTURE, and 

%VIZ_ATTR_DOUBLE_STRUCTURE respectively.  These procedures have a common thread and 

differ mainly in their rendering of shapes. 

The procedure %VIZ_ATTR_ELLIPSE calls %VIZ_ATTR_ALL_ELLIPSES twice first with a list 

of classes and then a list of structures.  In %VIZ_ATTR_ALL_ELLIPSES the head of the list, e.g. 

a CLASS instance, is used to create a new list of ATTRIBUTES attached to this CLASS instance.  

As stated previously we expect to have only ATTRIBUTES that are defined in this CLASS 

instance and exclude any inherited ones as these are shown in their defining CLASS instance.  
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To compute this list the framework has a number of views (i.e. rules) that derive these 

attributes.  For simple and single attributes the following views are created: 

?C(?A,'attr'):gviz[attrtype -> ?Dt, attrcard -> 'single'] :-    

    ?C:class[?A{?_:?Up}*=>?Dt], 

    ?Up=1, (?Dt='string';?Dt='integer';?Dt='float';?Dt:domain), 

    if ( ?C::?Sc,?Sc:class[?A{?_:?Up}*=>?Dt] )  

    then ( false )  

    else ( true  ). 

 

?S(?A,'attr'):gviz[attrtype -> ?Dt, attrcard -> 'single'] :-  

    ?S:structure[?A{?Low:?Up}*=>?Dt], 

    ?Up=1, (?Dt='string';?Dt='integer';?Dt='float';?Dt:domain),      

    if ( ?S::?Sc,?Sc:structure[?A{?Low:?Up}*=>?Dt] )  

    then ( false )  

    else ( true  ). 

The body of the first rule looks for CLASS instance attributes whose signature matches the 

following conditions: upper limit is one, and return data type is a basic domain.  Furthermore 

we are interested in attributes defined in current class and not inherited; this is taken care of 

by the pattern ?C::?SC,?SC:CLASS[?A{?_:?UP}*=>?DT] that is if instantiated it indicates 

that the method is defined in an ancestor CLASS.  If the body is true the head creates a new 

object as an instance-of GVIZ with an identifier of ?C(?A,’ATTR’).  The object created also 

has two properties assigned: namely ATTRTYPE and ATTRCARD.  The second rule is very 

similar to the first except its scope is over instances of STRUCTURES. 

The procedure %VIZ_ATTR_ALL_ELLIPSE collects for the currently instantiated CLASS 

instance all of its attributes that have ‘ATTR’ in part of their identifier in the GVIZ view.  The 

current class instance and this list of attributes are passed to procedure 

%VIZ_ATTR_ONE_ELLIPSE to draw an oval and an edge for each attribute in the list.  The 

procedures outputs two directives to Dot: the first for the oval as a node and the second as an 

edge from the class instance to the attribute (i.e. the oval).  This procedure has to figure out if 

the current attribute queued for printing is actually part of the class instance primary key set 

(i.e. ?_PK:PKCONSTRAINT[CLASSNAME->?E, ATTRLIST->?A]) because in which case the 

oval is printed in bold rather than in plain style.  The relative procedures declarative code 

follows: 

%viz_attr_all_ellipses([?E|?Re]):- 

  ?Cssa = collectset{ ?A | ?E(?A,'attr'):gviz },  

  %viz_attr_one_ellipse(?E,?Cssa), 

  %viz_attr_all_ellipses(?Re). 

%viz_attr_all_ellipses([]):-  true. 

 

  %viz_attr_one_ellipse(?E,[?A|?Ra]):- 

    write(?E)@_prolog, write(?A)@_prolog, 
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    write('[shape=ellipse, label=')@_prolog, 

    write(?A)@_prolog, 

    if  (?_Pk:pkconstraint[classname->?E, attrlist->?A]) 

    then ( writeln(',style=bold];')@_prolog ) 

    else ( writeln('];')@_prolog ), 

    write(?E)@_prolog, write('->')@_prolog, 

    write(?E)@_prolog, write(?A)@_prolog, writeln('[arrowhead=none]; ')@_p, 

    %viz_attr_one_ellipse(?E,?Ra). 

  %viz_attr_one_ellipse(?_,[]):-  true. 

Typical output follows: 

… 

/* attributes – single and simple (and part of pk)  */ 

coursecname[shape=ellipse,width=.75,height=.5,label=cname,style=bold]; 

course->coursecname[arrowhead=none]; 

… 

The procedure %VIZ_ATTR_DOUBLE_ELLIPSE takes care of set-simple attributes and is very 

similar to the previous one just described.  The first differences is the upper bound of an 

attribute (i.e. ?UP) is bound to a value not equal to one; for example when an upper bound is 

equal to ‘*’.   The second difference concerns the identifier of the view created to relate with 

the relevant set attributes associated with a class instance is ‘SETATTR’ rather than ‘ATTR”.  

Thirdly the shape is an ellipse but has a double border that is specified with a Dot qualifier 

called “PERIPHERALS=2”. 

The procedure to cater for single-structure attributes but not involved in a relationship 

instance-of type structure is called %VIZ_ATTR_STRUCTURE.  The views associated with this 

procedure checks for CLASSes and STRUCTUREs attribute signature whose upper limit (i.e. 

?UP) is set one and its return data type is not a basic domain.  Furthermore the body of the 

rule checks for two cases that inhibit firing the rule head.  The first being that there is no 

relationship instance that uses this CLASS and ATTRIBUTE, and secondly that there is no 

ancestral class that has this attribute signature already defined.  Once fired the following 

rules will populate the views ?C(?A,’ATTR’) and  ?S(?A,’ATTR’).   

?C(?A,'structattr'):gviz[ attrtype->?Dt, attrcard->'single'] :-  

    ?C:class[?A{?Low:?Up}*=>?Dt], 

    ?Up=1, not(?Dt=?C;?Dt='string';?Dt='integer';?Dt='float';?Dt:domain), 

    if   (not ?_:refconstraint[comp(?C,?A,?_,?_,?_,?_) -> ?_])  

    then ( if  (?C::?Sc,?Sc:class[?A{?Low:?Up}*=>?Dt])  

           then ( false ) )  

    else ( false ). 

 

?S(?A,'structattr'):gviz[ attrtype -> ?Dt, attrcard->'single'] :-  

    ?S:structure[?A{?Low:?Up}*=>?Dt], 

    ?Up=1, not(?Dt=?S;?Dt='string';?Dt='integer';?Dt='float';?Dt:domain), 

    if   (not ?_:refconstraint[comp(?S,?_,?_,?_,?_,?_) -> ?_])  

    then ( if   (?S::?Sc,?Sc:structure[?A{?Low:?Up}*=>?Dt])  

           then ( false ) ) 

    else ( false ). 
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For each CLASS and STRUCTURE instance the procedure generates a list of ATTRIBUTES that 

need to be attached to them and a call is made to procedure %VIZ_ATTR_ONE_STRUCTURE with 

these two as arguments.   In the later procedure it first builds a node for the attribute whose 

shape is an ellipse and named as a concatenation of class and attribute names, and then builds 

an edge from the class instance to the node just defined (i.e. class and method names 

concatenation).  The procedure calls itself until all attributes attached to the CLASS instance 

have node and an edge built.  The code follows: 

  %viz_attr_all_structures([?E|?Re]):- 

    ?Cssa = collectset{ ?A | ?E(?A,'structattr'):gviz },  

    %viz_attr_one_structure(?E,?Cssa), 

    %viz_attr_all_structures(?Re). 

  %viz_attr_all_structures([]):- true. 

 

    %viz_attr_one_structure(?E,[?A|?Ra]):- 

      write(?E)@_prolog, write(?A)@_prolog, 

      write('[shape=ellipse,,label=')@_prolog, write(?A)@_prolog, 

      if   (?_Pk:pkconstraint[classname->?E, attrlist->?A]) 

      then ( writeln(',style=bold];')@_prolog ) 

      else ( writeln('];')@_prolog ), 

      write(?E)@_prolog, write('->')@_prolog, 

      write(?E)@_prolog, write(?A)@_prolog,  

      writeln('[arrowhead=none]; ')@_prolog, 

      %viz_attr_one_structure(?E,?Ra). 

    %viz_attr_one_structure(?_,[]):- true. 

The procedure %VIZ_ATTR_DOUBLE_STRUCTURE is similar to the previous but applies a double 

perimeter if the upper limit is not equal to one.  The previous procedure 

%VIZ_ATTR_DOUBLE_ELLIPSE is a basis for it. 

What remains to describe is the composite structure attributes that are also constrained by a 

relationship instance.  The procedure %VIZ_STRUCT_RELATIONSHIP ensures that a composite 

object is depicted in the diagram.  The procedure in turn calls 

%VIZ_STRUCT_RELATIONSHIP_COMP twice with a list of all classes and then with list of all 

structures.  In the latter procedure, which recurses on the list of identifiers passed as 

argument, it computes a list of referential constraint instances that are first of type structure 

(i.e. RELTYPE->'STRUCTURE'), and second have a relationship component that maps from the 

procedure’s argument to a structure instance (i.e. COMP( ?C1, ?_, ?_, ?_, ?_, ?_) -> 

?S).  For this list of referential identifiers and relative class instances the procedure 

%VIZ_STRUCT_RELATIONSHIP_COMP_EDGE is called to build the required nodes and edge.  

The procedure does three things: first it extracts details from the relative referential 

constraint instance, second it introduces the structure instance as an ellipse node (rather than 
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a rectangle) with the right number of perimeters (e.g. double for set), and thirdly draws an 

edge from object just created denoting its class instance.  The components of the structure are 

taken care of by the other procedures described earlier.  The following code applies: 

%viz_struct_relationship :- 

  %viz_struct_relationship_comp(allclasses.classlist), 

  %viz_struct_relationship_comp(allstructures.structlist). 

 

  %viz_struct_relationship_comp([?Cl|?Rl]) :-  

    ?Rel=collectset{?R|?R:refconstraint, ?R[reltype->'structure',  

                       comp(?Cl,?_,?_,?_,?_,?_)->?S],?S:structure}, 

    %viz_struct_relationship_comp_edge(?Cl,?Rel), 

    %viz_struct_relationship_comp(?Rl). 

  %viz_struct_relationship_comp([]) :- true.     

 

     %viz_struct_relationship_comp_edge(?Cleft,[?R|?Rest]) :- 

        ?R:refconstraint[reltype->'structure', 

                         comp(?Cleft,?A,?_,?_,?Up,?_)->?S], ?S:structure, 

        fwrite(?S,'[shape=ellipse, label=',?A), 

        if   (?Up=1) 

        then (writeln(']; ')@_prolog) 

        else (writeln(',peripheries=2]; ')@_prolog), 

        fwrite(?Cleft, '->', ?S), 

        writeln('[arrowhead=none]; ')@_prolog, 

        %viz_struct_relationship_comp_edge(?Cleft,?Rest). 

      %viz_struct_relationship_comp_edge(?_,[]):- true. 

The output in Dot syntax follows: 

… 

/* composite relationship */ 

    deptrole[shape=ellipse,width=.75,height=.5,label=drole]; 

    dept->deptrole[arrowhead=none]; 

… 

9.2 Sample Output 

To generate the diagram in Dot one needs to invoke the procedure %VIZ_SCHEMA over some 

schema, e.g. ‘afterScott’, and direct its output into GraphViz for dot to render.  The result of 

%VIZ_SCHEMA is shown in Appendix “GraphVIZ / Dot Specification (afterScott)”.  This is 

rendered by Dot and its graphical output is in figure 9.2. 
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Figure 9.2 – Rendering of schema instance 

9.3 Completeness and Correctness 

The described framework encodes an EERM diagram through a number of assertions that 

describe the latter’s structures and relationships.  Furthermore a number of methods 

implement integrity constraints and other checks that support both the EERM encoding and 

the framework itself.  Some of these have been presented earlier.  The method %VIZ_SCHEMA 

of object SCHEMA generates a graph of the encoding in Dot syntax.  This section will sketch a 

calculated consideration of this graphing process. 
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The consideration needs to address two issues: namely correctness and completeness.  Of 

course an indicative measure of the mapping quality is running the GraphViz tool on the 

generated specification, to see if it is accepted.  Specifically if a generated specification does 

not render then there is a problem.  On the other hand, one cannot conclude from a valid 

drawing that the mapping is complete and correct. 

9.3.1 The ISA relationship 

For completeness of the ISA relationship mapping we need to show two things: first there are 

no F-logic ISA assertions (i.e. ::) in the framework and the scope of EERM encoding that are 

not in the diagram generated, and the second is that there is no ISA relationship in the 

diagram that is not encoded in the framework. 

If one fires the query ?- ?C:CLASS, ?CD:CLASS, ?C::?CD on our example schema then one 

gets the instantiations for ISA assertions related to CLASS instances.  Clearly the second row is 

correct but not needed for drawing. 

?C = lecturer     ?Cd = person 

?C = ptstudent    ?Cd = person 

?C = ptstudent    ?Cd = student 

?C = student      ?Cd = person 

The following query and its result show how it weeds out any inferences by transitivity. 

?- ?C:class, ?Cd:class, ?Cd::?C, \+((?_Ci:class, ?Cd::?_Ci, ?_Ci::?C)). 

?C = person   ?Cd = lecturer 

?C = student  ?Cd = ptstudent 

?C = person   ?Cd = student 

On the other hand the following query and its result show instances of the constraint 

ISAPROPERTY, clearly giving the same response as the previous query but having a different 

data source.  (The same check could be expressed with the earlier predicate defined: i.e. 

?C:CLASS[DIRECTASC->?C1] ). 

?- ?_Isa:isaproperty[parentclass->?C, isaclass->?Cd]. 

?C = person   ?Cd = lecturer 

?C = person   ?Cd = student 

?C = student  ?Cd = ptstudent 

Consequently we need to have the following two queries not instantiating. 

?- ?_Isa:isaproperty[ parentclass ->? C, isaclass -> ?Cd],  

   not((?C:class,?Cd:class,?Cd::?C)). 

No. 

?- ?C:class, ?Cd:class, ?Cd::?C, 

   \+((?_Ci:class, ?Cd::?_Ci, ?_Ci::?C)), 

   not((?_Isa:isaproperty[ parentclass -> ?C,isaclass -> ?Cd])). 

No. 
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In procedure %VIZ_ISA_ENTRY the list of ISA instances is generated from the ISAPROPERTY 

and therefore the last two queries can safeguard the completeness of the ISA mapping. 

There are a number of issues concerning the correctness of the ISA mapping.  Firstly the 

ISAPROPERTY instances’ properties (e.g. PARENTCLASS and DISJ_OVER_FLAG) need to have 

proper values assigned to them.  This was explained in a previous section called “ISA template” 

(section 8.2.1.3).  Secondly the drawing should be correct and legible.  Going through the code 

it is, if not tedious, simple to go through the combinations and explain how each instantiation 

of arguments values produces the relative and unambiguous drawing fragment.  Thirdly the 

relative nodes and edges are properly connected. 

9.3.2 Classes, Structures & Attributes 

The list of classes and structures are available as views in the framework: as 

ALLCLASSES.CLASSLIST and ALLSTRUCTURES.STRUCTLIST respectively.  

The completeness and correctness of class instance drawing is relatively straightforward.  The 

procedure %VIZ_CLASS uses the CLASS list as an argument when it calls %VIZ_CLASS_ENTRY 

and therefore it is complete.  In terms of correctness the recursive procedure 

%VIZ_CLASS_ENTRY just prints the head of the CLASS list as a named box (i.e. a node) on each 

call until the list is exhausted. 

The completeness and correctness of structure instances drawing is straightforward but comes 

in two batches.  The procedure %VIZ_STRUCTURE does use the STRUCTURE list as an argument 

when it calls recursive procedure %VIZ_STRUCTURE_ENTRY but the latter only prints a double 

perimeter box if the argument’s head is involved in a ‘weak’ relationship instance.  The 

STRUCTURE instances that are not ‘weak’ have to be involved in a relationship instance-of type 

‘structure’ and these are taken care of in procedure %VIZ_STRUCT_RELATIONSHIP_COMP and 

printed as an ellipse and connected to its entity in procedure 

%VIZ_STRUCT_RELATIONSHIP_COMP_EDGE.  To check that all structures are involved in 

either ‘weak’ or ‘structure’ relationship instances the following denial query works.  

?- ?S:structure,  

   \+((?C:class,  

       ?_Rc:refconstraint[(reltype->'structure'; reltype->'weak'), 

       comp(?C,?_,?_,?_,?_,?_)->?S])). 

No. 
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The query to check that all ‘weak’ and ‘structure’ relationship instances use structure 

instances follows: 

?- ?C:class, 

   ?_Rc:refconstraint[(reltype->'structure'; reltype->'weak'),   

                       comp(?C,?_,?_,?_,?_,?_)->?S], 

   \+((?S:structure)). 

No. 

The correctness of drawing the structures involved in ‘weak’ relationship instances is clear as 

the procedure checks the relationship type and if needs be prints the node details.  (The weak 

relationship instance edge comes later).  The correctness of drawing the composite artefact in a 

‘structure’ relationship instance involves introducing the node as an ellipse and also an edge 

from the entity to this composite object (i.e. encoded as a structure). 

The mapping of attributes is also straightforward and it is best to enumerate the two sources 

of attributes: these are CLASS and STRUCTURE instances.  The mapping uses views, described 

earlier, to enumerate the attributes to draw – for example those that are declared in a class 

rather than inherited.  These include the CLASS and STRUCTURE lists, and instances of object 

GVIZ.  The procedure that caters for attribute drawing is called %VIZ_ATTRIBUTE and in turn 

calls procedure to draw single and multi-value attributes.  For completeness one invokes a 

denial query that checks all CLASS and STRUCTURE instances are present (e.g. as GVIZ 

instances).  Correctness has to deal with the depiction of each attribute and verify that the 

code does partition according to the signature declarations of CLASS and STRUCTURE 

instances.  Correctness therefore also depends on the CLASS and STRUCTURE data signature 

too.  Once a CLASS instance, or a STRUCTURE instance, is associated with a set of attributes, 

the latter are created as nodes whose properties also determine their rendition (e.g. oval, 

double oval, bold perimeter for primary key participation), and also an edge is built from the 

specific attribute to its CLASS instance. 

9.3.3 Binary Relationships 

This section considers the completeness and correctness of drawing relationship instances of 

type ‘normal’ and ‘weak’.  We recall that the framework converts, or expects the import, an n-

ary relationship instance (with n >= 3) into n binary relationships.  This transformation’s 

validity was described in section 8.2.1.7 of chapter 8.  Consequently only binary relationships 

are examined. 
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All relationship instances are instantiated by object REFCONSTRAINT and therefore for a 

binary relationship it has to have two components and each is arbitrarily assigned a ‘1’ or a ‘2’ 

– i.e. a serial number.  Also, for each of its components it must hold that if a component starts 

at a class instance, for example, and leads to a second class instance, then the second 

component must have these instances inverted.  Furthermore the lower and upper limits in 

each component must have one of of six possible values, without loss of generality.  First note 

that object UDO is a direct ancestor of objects CLASS and STRUCTURE.  The first denial queries 

below checks the serial number compliance of the relative relationship instance and that the 

relationships components go forward and back in terms of CLASS and STRUCTURE instances.  

The second denial query checks that the lower and upper limits of each relationship instance 

component take a proper combination of values (i.e. supported by procedure 

%VIZ_REL_EDGE_LU that has been described earlier).  

?- ?I::udo. 

?I = class 

?I = structure 

Yes. 

?- ?R:refconstraint[reltype->'normal'; reltype->'weak'], 

   \+(( ?R[comp(?C1,?_,?_,?_,?_,1)->?C2,  

           comp(?C2,?_,?_,?_,?_,2)->?C1], 

        ?C1:udo, ?C2:udo )). 

No. 

?- ?R:refconstraint[reltype->'normal'; reltype->'weak'], 

   \+(( ?R[comp(?_,?_,?_,?L,?U,?_)->?_], 

        %viz_rel_edge_lu(?L,?U,?_) )). 

No. 

The checking by the first denial ensures that each relationship instance has a component with 

serial number ‘1’ assigned and completeness is ensured by enumerating through procedures 

%VIZ_REL_NORMAL and %VIZ_REL_WEAK.  Since the restriction is made on serial number 

being assigned ‘1’ then it is obvious that a relationship instance is only invoked once and 

therefore only one edge is drawn for it. 

The correctness of the edge drawing is given by the fact that a relationship instance 

component’s lower and upper limits are what are being expected and an unambiguous drawing 

is generated for each.  Without loss of generality only one component contributes for the 

caption on an edge.  Also the nodes, i.e. entities of weak entities, are present and already have 

had their properties defined in an earlier part. 

Although ‘normal’ and ‘weak’ relationships instances are catered by different procedures they 

actually only differ in their data collection part and therefore share common procedures. 
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9.4 EERM to ODMG ODL mapping 

In structured methodologies for system design the step between logical to physical data design 

has to have high adequacy cover, if not complete, and be correct.  Another aspect is the 

reversibility of the translation.  Unfortunately in practice this conversion is mostly 

unidirectional; i.e. from diagram to schema. 

In this research conceptual data design is represented with an EERM model, and it has been 

indicated earlier that our EERM model is built and exported from a CASE tool.  As for the 

logical and physical data design it is through an object-oriented data model that specifically 

uses ODMG ODL constructs. 

This section explains an automated procedure that converts an EERM model encoded, verified, 

and validated in our framework into a schema expressed with ODL constructs.  These are then 

executed by an OODBMS and an object database is created with a schema instantiated from a 

conversion output. 

The reasons for automating this conversion are as follows.  Firstly, the process is quick 

especially when compared to hand coding.  Secondly, the conversion is systematic and 

disciplined, for example, in terms of the design patterns it creates, and in naming schema 

artefacts.  Thirdly, the conversion is a basis on which the structural conversion is augmented 

with transitional artefacts (e.g. triggers and procedures).  Fourthly, the conversion can provide 

comments and indicators that the data designer reads and then addresses.  Another advantage 

for automated conversion is that it is relatively straightforward to cater for minor 

idiosyncrasies in the ODL syntax due to different implementations. 

The dialect of ODMG ODL chosen as a target for this conversion is EyeDB [VIERA99].  The 

EyeDB provides decent compliance with ODMG ODL and has also implemented ODMG OQL.  

EyeDB has support and programming interfaces with C++ and Java.  Currently EyeDB is in 

an open-source development regime. 

9.4.1 The Problem Definition 

The aim of the conversion is to build a schema with object-oriented data model constructs that 

implements the EERM diagram by reading it, validating it and mapping it into our 

framework.  The conversion has to have a high-level of completeness and correctness.  
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The main construct in the ODL is the class.  In an ODL class one implements: the ISA 

relationships, attributes, binary relationships, constraints (for example unique and not null), 

and indices (physical constructs).  Useful constructs in ODL for this conversion are the forward 

directive and enumerated type definition. 

In our framework, which is a systematic repository for an EERM diagram, a number of checks, 

conversions, and constraints are enabled.  Furthermore our framework builds a number of 

views (i.e. instantiating rules) that make the conversion easier to manage.  Also, and as was 

the case when generating a diagram with GraphViz, one had to bear in mind two things 

during conversion:  that inherited properties are excluded from a new class specification; 

referential constraints for binary relationships have to be implemented differently in each 

respective class. 

Finally, if there is a construct in the EERM diagram that is not convertible into EyeDB ODL 

then the conversion is to make it clear whether to continue with an “approximation” or to halt 

altogether. 

9.4.1.1 General Procedure 

An object schema method, called %ODL_SCHEMA, generates the ODL constructs that are 

faithful to the encoded EERM.  Prior to calling this method one has to confirm that all of the 

integrity constraints entrenched in the framework and EERM diagram encoding are adhered 

to for the mapping to start.  Also, and if applicable, any n-ary relationship with n > 2 needs to 

be converted prior to start of conversion with the patterns illustrated in an earlier and any 

relationship attributes are home in an appropriate entity. 

A high-level description of the method %ODL_SCHEMA follows.  First the conversion starts with 

basic schema details dumped into the leading part of the output.  The second part ensures that 

the user-defined enumerated types are specified, and all classes are ‘forward’ referenced (e.g. 

needed to address the reciprocal nature of any relationship construct).  The final part creates 

the ODL’s class constructs that implement the EERM’s entities, weak entities, ISA 

relationships, relationship constraints, and other constraints.  During the latter phase the 

conversion makes use of a number of instantiated rules that generate objects each of which is 

an instance-of object ODMG. 
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There are two techniques on how to apply EyeDB ODL constructs to build the object base.  A 

rather straightforward one is to compose all constructs and then submit as a whole (e.g. batch 

mode).  Another technique is to build classes incrementally in the following sequence classes, 

attributes, convert relative attributes to relationships, and introduce constraints one at a time.  

ODMG ODL standard does not cater for these types of constructs – i.e. in SQL these would be 

the ALTER TABLE and ALTER CONSTRAINT constructs.  Although EyeDB does allow 

incremental build up in its ODL processing, but not by using the like of an ALTER command, it 

has occasional issues.  Consequently the batch mode had to be used. 

When the procedure runs successfully its output is directed into a text file.  EyeDB’s ODL 

utility, called EYEDBODL, is invoked and takes as input the database name to build the schema 

in, and the schema specification file just created by %ODL_SCHEMA.  The EyeDB tool to create a 

database is called EYEDBADMIN.  The following is a script, with most output stripped, on a 

Linux system that illustrates this.   (Also Appendix “EyeDB ODL Specifications (afterScott)” 

and “EyeDB processing of afterScott schema Specifications” have a copy of the full ODL file 

specs and the output of the EYEDBODL utility run for the ODL file spec).  

j@a1:~/.../eyedb/afterscott$ eyedbadmin database create afterscott 

… 

Done 

j@a1:~/.../eyedb/afterscott$ eyedbodl -d afterscott -u ascottschema.odl 

Updating ' ascottschema ' schema in database afterscott... 

Adding class person 

… 

Done 

The leading part of the conversion process is taken care of by a procedure called 

%ODL_HEADER.  It just reads schema details from the framework title objects and prints them.  

Its code follows: 

  %odl_header :- 

 write('// schema name & version: ')@_prolog,  

 write(schema.schemaname)@_prolog,  

 writeln (schema.schemaversion)@_prolog. 

9.4.1.2 Domains and Forward references 

ODMG ODL allows for enumerated types definition through the ENUM directive.  Our 

framework allows for such artefacts and these are called domains and are instances of object 

DOMAIN.  The following is an example of a domain instance in our framework: 

sex:domain [ enum -> {'male','female'} ]. 
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There are two restrictions to cater for: firstly our framework bestows a string data type of each 

domain instance enumeration; secondly EyeDB assumes that all strings are unique across all 

domain instances.  In our framework there is a view with a list of all DOMAIN instances and is 

called ALLDOMAINS.DOMAINLIST.  The following code explains its instantiation. 

alldomains[domainlist->?L]  :- ?L = collectset{ ?D | ?D:domain }. 

The outermost method calls %ODL_ENUM with ALLDOMAINS.DOMAINLIST as an argument.  

The latter procedure reclusively builds an ENUM directive for each DOMAIN instance in the 

argument list.  The enumerated type’s content is built by a COLLECTSET predicate (and unified 

with the variable ?EL) and is individually printed by calling another recursive procedure 

%ODL_ENUM_BODY on these list of values (i.e. in ?EL).  This procedure needs to build a comma 

delimitated list of values that comprise the ENUM instance and this explains the three rules 

required to define %ODL_ENUM_BODY rather than the usual two (i.e. last entry does not require 

a comma). 

  %odl_enum([?Head|?List]) :- 

 write('  enum ')@_prolog, write(?Head)@_prolog, writeln(' { ')@_prolog, 

 ?El=collectset{ ?I |?I=?Head.enum }, 

 %odl_enum_body(?El), 

 writeln('  }; ')@_prolog, 

    %odl_enum(?List). 

  %odl_enum([]) :- true. 

 

    %odl_enum_body([?Enum|[]]):- !, 

   writeln(?Enum)@_prolog. 

    %odl_enum_body([?Enum|?List]):- 

   write(?Enum)@_prolog, writeln(',')@_prolog, 

   %odl_enum_body(?List). 

    %odl_enum_body([]) :- true. 

The procedure generates the following ODL code for the SEX DOMAIN above. 

  enum sex {    female,     male   }; 

The ODMG standard specification allows for pre-definition of classes and interfaces; that is 

only their name is defined.  This allows for a class specification to have references to another 

class that has not, at that point in time, been defined fully to the compiler.  These are called 

‘forward declarations’ in the ODL specifications.  The outermost method calls the recursive 

%ODL_FORWARD procedure with a list of CLASS instances to build their forward declaration (see 

below).  Actually the procedure is called twice: the first time will all CLASSES and the second 

time with all STRUCTURES.   We recall that the latter list has both weak entities and 

structures used to build composite objects.  Although ODMG ODL has its own ‘structure’ 
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construct to build composite objects EyeDB builds these through references to other classes so 

the code to generate is identical (more detail in the contiguous sections). 

  %odl_forward_ref([?Cl|?Rl]) :-  

   write('class ')@_prolog,write(?Cl)@_prolog,writeln(';')@_prolog, 

      %odl_forward_ref(?Rl). 

  %odl_forward_ref([]) :- true. 

The following is part of the forward declarations generated. 

class course; 

class dept; 

class lecturer; 

9.4.1.3 ODL Class Head 

The method %ODL_SCHEMA calls the recursive procedure %ODL_PRINT_CLASSES twice to print 

the ODL class constructs with the procedure’s sole argument being a list of EERM artifacts.  

In the first case it is a list of entities that are found in ALLCLASSES.CLASSLIST, and in the 

second case it is the list of ALLSTRUCTURES.STRUCTLIST where sifting of the weak entities 

and composite structures is possible.  The procedure is invoked on a list of entities and on each 

item of this list it calls procedure %ODL_PRINT_CLASS_HEAD with the entity instance as its 

sole argument. 

In %ODL_PRINT_CLASS_HEAD a simple decision is taken on whether the current item being 

processed has a descendent or not (i.e. is path expression ?HEAD.DIRECTASC[] defined?).  If it 

is then the single and direct ancestor is included with ODL’s EXTENDS directive.  In either case 

the procedure calls %ODL_PRINT_CLASS_BODY with the current item as the sole argument to 

print the class properties (e.g. attributes and relationships) within the mandatory brace 

tokens.  The following is the procedure’s declarative code: 

    %odl_print_class_head(?Head):- 

    if   ( ?Head.directasc[] ) 

       then ( write('class ')@_prolog,  write(?Head)@_prolog,  

              write(' extends ')@_prolog, write(?Head.directasc)@_prolog, 

              writeln(' { ')@_prolog,  

     %odl_print_class_body(?Head), 

     writeln(' } ;')@_prolog  ) 

       else ( write('class ')@_prolog, write(?Head)@_prolog, 

              writeln(' { ')@_prolog, 

     %odl_print_class_body(?Head), 

     writeln(' } ;')@_prolog ). 

It is to be noted that ODMG ODL does not offer distinctive artefacts for entities and weak 

entities.  Consequently the ODL CLASS artefact is used for both.  ODMG ODL does provide the 

STRUCTURE artefact and it is useful to build composite objects; but EyeDB ODL does not 

support this syntax and instead uses the CLASS artefacts for these too (next subsection 
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explains exactly how). As regards inheritance ODMG ODL only supports single inheritance 

between its CLASSES.  Furthermore the ISA constraint implementation in ODMG ODL is 

limited to disjoint, semantic and partial.  Therefore all other combinations are not supported 

directly; i.e. triggers can address some variants but these are not found in the ODMG ODL 

standard. 

Examples of the code generated by %ODL_PRINT_CLASS_HEAD follows (but without any output 

from %ODL_PRINT_CLASS_BODY): 

class job { … }; 

class lecturer extends person { … }; 

9.4.1.4 ODL Class body – Attributes 

The procedure %ODL_PRINT_CLASS_BODY takes an EERM entity as an argument one at a 

time (i.e. and it is the same one as that of the calling procedure - ?HEAD).  The procedure then 

systematically sifts for its simple & single attributes, simple & set attributes, structure & 

single attributes, structure & set attributes, ‘one’ side of a binary relationships, ‘many’ side of 

a binary relationships, primary key constraints, and ‘not null’ constraints.  The procedure 

coding follows but it is to be noted that the second argument of each call passes a keyword for 

each type of class property to generate (e.g. ‘SETATTR’ for simple & set).  The procedures for 

finding and directing the printing of properties of a class are kept as straightforward as 

possible.  In fact in each of these procedures there is a heavy dependence on a view specifically 

built for it.  In this section only the first four procedures are of interest. 

  %odl_print_class_body(?Head):- 

    %odl_print_class_simple_single_attr(?Head,'attr'), 

    %odl_print_class_simple_set_attr(?Head,'setattr'), 

    %odl_print_class_structure_single_attr(?Head,'structattr'), 

    %odl_print_class_structure_set_attr(?Head,'setstructattr'), 

    %odl_print_class_oneside_relationship(?Head,'onesiderel'), 

    %odl_print_class_manyside_relationship(?Head,'manysiderel'), 

    %odl_print_class_pk(?Head), 

    %odl_print_class_notnull_constraint(?Head,'notnull'). 

 

The procedure %ODL_PRINT_CLASS_SIMPLE_SINGLE_ATTR  takes two arguments.  The first 

is the EERM entity and the second the type of property being sifted; i.e. ?PT unifies with 

‘ATTR’.  The procedure then builds a list of properties of the entity, passed as the first 

argument, that are simple & single through the COLLECTSET aggregate predicate.  This list 

and the two arguments of the calling procedures are passed on to a recursive procedure named 

%ODL_PCSA_ATTRLIST and for each item on the simple & single list it prints ODMG ODL 
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attribute directive.  (Please recall that FWRITE predicate is shorthand for a list of WRITE 

predicates).  Before the data type of an attribute is printed a procedure, named %DT_MAP, is 

called to map the entity’s attribute data type and cardinality annotations into the closest data 

type in ODMG (and EyeDB) ODL.  Further below there is an example attribute – ODL class 

DEPARTMENT and attribute DNAME. 

  %odl_print_class_simple_single_attr(?Head,?Pt) :- 

       ?Cssa = collectset{ ?A | ?Head(?A,?Pt):odmg }, 

       %odl_pcsa_attrlist(?Head,?Pt,?Cssa). 

  %odl_print_class_simple_single_attr(?_,?_):- true. 

            

    %odl_pcsa_attrlist(?Head,?Pt,[?Ha|?Rlist]) :- 

       ?Head(?Ha,?Pt):odmg[attrtype->?Dt,attrcard->?Ac], 

       %dt_map(?Dt,?Ac,?Dtm), 

       fwrite('attribute ', ?Dtm, ?Ha, ';'),  

       %odl_pcsa_attrlist(?Head,?Pt,?Rlist). 

     %odl_pcsa_attrlist(?_,?_,[]) :- true. 

 

%dt_map(integer, single, int)        :- !,true. 

%dt_map(integer, set,    int)        :- !,true. 

%dt_map(float,   single, double)     :- !,true. 

%dt_map(float,   set,    double)     :- !,true. 

%dt_map(string,  single, string)     :- !,true. 

%dt_map(string,  set,    'char[50]') :- !,true. 

%dt_map(?Dt1,    ?_Card, ?Dt2)       :- ?Dt1=?Dt2,!,true. 

In the case of attributes that are simple & set the procedures, whose head is 

%ODL_PRINT_CLASS_SIMPLE_SET_ATTR, are very similar to those of simple & single.  The 

views have instances whose identifier contains ‘SETATTR’.  The main difference is that the 

output pattern, to implement the set part, in ODL, requires “SET < DATA TYPE > 

ATTRIBUTE_NAME;”.  This is aided by the data type mapping procedure %DT_MAP explained 

earlier.  Further below there is an example attribute – ODL class LECTURER and attribute 

DEGREES. 

It is important to specify the views that support these procedures.  For each class attribute its 

data type signature is used to extract required details.  For ‘ATTR’ and ‘SETATTR’ type of 

ODMG instances (rules definition follow) the query of each view is similar and their distinction 

is based on the upper limit of an attribute; i.e. if it is ‘1’ then it forms part of the ‘ATTR’ view 

otherwise it is in the ‘SETATTR’ view.  In either view two further tests are made: first the data 

type of the attribute must be a basic data type or an instance-of DOMAIN (e.g. enumerated 

type); second that the attribute is not inherited from an ancestral entity.  When the procedure 

is invoked on instances of ALLSTRUCTURE.STRUCTLIST similar views exists for STRUCTURES; 

i.e. these are defined with instances of STRUCTURE rather than CLASS. 
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?C(?A,'attr'):odmg[attrtype->?Dt,attrcard->'single'] :-  // single attribute 

    ?C:class[?A{?Low:?Up}*=>?Dt], 

    ?Up=1,(?Dt='string';?Dt='integer';?Dt='float';?Dt:domain), 

    if ( ?C::?Sc,?Sc:class[?A{?Low:?Up}*=>?Dt] ) then ( false ) else ( true 

). 

 

?C(?A,'setattr'):odmg[attrtype->?Dt, attrcard->'set'] :- // set attribute 

  ?C:class[?A{?Low:?Up}*=>?Dt], 

  ?Up!=1, (?Dt='string';?Dt='integer';?Dt='float';?Dt:domain), 

  if ( ?C::?Sc,?Sc:class[?A{?Low:?Up}*=>?Dt] ) then ( false ) else ( true ). 

 

?C(?A,'structattr'):odmg[ attrtype->?Dt, attrcard->'single']:- // single str 

  ?C:class[?A{?Low:?Up}*=>?Dt], 

  ?Up=1, not(?Dt=?C;?Dt='string';?Dt='integer';?Dt='float';?Dt:domain), 

  if (?_:refconstraint[reltype->'structure', comp(?C,?A,?_,?_,?_,?_) -> ?S],  

      ?S:structure)  

  then ( if (?C::?Sc,?Sc:class[?A{?Low:?Up}*=>?Dt])  

         then ( false )  

         else ( true  ) )  

  else ( false ). 

 

?C(?A,'setstructattr'):odmg[ attrtype->?Dt, attrcard->'set' ] :- // set str 

  ?C:class[?A{?Low:?Up}*=>?Dt], 

  ?Up!=1, not(?Dt=?C;?Dt='string';?Dt='integer';?Dt='float';?Dt:domain), 

  if (?_:refconstraint[reltype->'structure', comp(?C,?A,?_,?_,?_,?_) -> ?S], 

      ?S:structure) 

  then ( if (?C::?Sc,?Sc:class[?A{?Low:?Up}*=>?Dt])  

         then ( false )  

         else ( true  ) )  

  else ( false ). 

The views for STRUCTATTR and SETSTRUCTATTR are slightly more involved (rules definition 

are found above).  Apart from checking that an attribute’s return data type is not a basic type 

nor an instance-of DOMAIN the rules instantiation demands that there is a REFCONSTRAINT 

instance, of type structure as in ?_:REFCONSTRAINT [RELTYPE -> ’STRUCTURE’], that 

relates the composition between a CLASS attribute and a STRUCTURE (taking the role of a 

composite object part).  If the attribute appertains to a STRUCTURE then views are slightly 

different as the return type of a REFCONSTRAINT composition is either a CLASS or a 

STRUCTURE instance (i.e. ?_:REFCONSTRAINT [COMP(?S,?A,?_,?_,?_,1) -> ?SR ], ( 

?SR:STRUCTURE;?SR:CLASS ) ). 

To print the entity’s structure attributes whether set or singleton, the procedure collects these 

for every CLASS and STRUCTURE and then recursively processes these to print the respective 

ODL attribute directive.  The code for set & structure is given next: 

  %odl_print_class_structure_set_attr(?Head,?Pt) :- 

      ?Cssa = collectset{ ?A | ?Head(?A,?Pt):odmg }, 

      %odl_pcssa3_attrlist(?Head,?Pt,?Cssa). 

      %odl_print_class_structure_set_attr(?_,?_):- true.  

 

      %odl_pcssa3_attrlist(?Head,?Pt,[?Ha|?Rlist]) :- 

          ?Head(?Ha,?Pt):odmg[attrtype->?Dt, attrcard->?Ac], 

          fwrite(' attribute ', ?Ac,' < ',?Dt, '* > ', ?Ha, ‘; '), 

          %odl_pcssa3_attrlist(?Head,?Pt,?Rlist). 

      %odl_pcssa2_attrlist(?_,?_,[]) :- true. 
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An example of the code generated for these cases is found below in class DEPARTMENT and 

attribute DROLE.  As remarked earlier EyeDB does not support structures of ODMG ODL but 

implements them with classes.  In EyeDB we convert an ODMG “structure” into a class, say 

class CS, and when this CS is required for an attribute’s type, called ACS in class CM, then we 

specify the attribute as a literal set of CS object identifiers.  This implies that although 

instances of CS have identity, the set of CS in attribute ACS of class CM is inline (i.e. stored as a 

literal value). 

class dept { 

  attribute string dname; 

  attribute set < deptrole * > drole; 

class lecturer extends person { 

  attribute set <degree> degrees; … }; 

9.4.1.5 ODL Class body – Relationships 

To generate a binary relationship construct in ODMG requires two definitions: one on each 

participating CLASS instance.  Also each participation of these instances has only two options 

in terms of cardinality: that is either ‘one’ or ‘many’.  Along these lines, two views are defined 

to support a class participation in binary relationships. To determine whether participation is 

of type ‘one’ or ‘many’ one checks an attribute’s upper limit in its data type signature.  For an 

attribute to be included in a relationship view it needs to be covered by an instance-of 

REFCONSTRAINT whose type is either ‘normal’ or ‘weak’. 

?C(?A,'onesiderel'):odmg 

[relcard->'one',reltoclass->?Dt,reltoattr->?A2,relref(?Line)->?Rc, 

 reltype->?Rt] 

:- ?C:class[?A{?_:?Up}*=>?Dt], ?Up=1, 

   ?Rc:refconstraint 

   [reltype->?Rt, (?Rt='normal';?Rt='weak'),  

    comp(?C,?A,?_,?_,?_,?Line)->?Dt, 

    comp(?Dt,?A2,?_,?_,?_,?_)->?C],  

    ?A!=?A2. 

 

?C(?A,'manysiderel'):odmg 

[relcard->'many',reltoclass->?Dt,reltoattr->?A2,relref(?Line)->?Rc, 

 reltype->?Rt] 

:- ?C:class[?A{?_:?Up}*=>?Dt], ?Up!=1, 

   ?Rc:refconstraint 

   [reltype->?Rt, (?Rt='normal';?Rt='weak'),  

    comp(?C,?A,?_,?_,?_,?Line)->?Dt,  

    comp(?Dt,?A2,?_,?_,?_,?_)->?C], 

    ?A!=?A2. 

The two heading procedures are applied to every CLASS and STRUCTURE instance.  For 

example, when a CLASS instance (i.e. unified to ?HEAD) and view type (i.e. ‘MANYSIDEREL’ is 

unified to ?PT) are passed to procedure %ODL_PRINT_CLASS_MANYSIDE_RELATIONSHIP it 

creates a list of ODMG instances of type ‘MANYSIDEREL’ through the respective view.  The same 
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procedure then calls a recursive procedure, called %ODL_PCOMR_RELLIST, with three 

arguments: namely a CLASS instance, the component cardinality unified to ?PT, and the list of 

relationships instances associated with this class and cardinality.  In %ODL_PCOMR_RELLIST 

details from the ODMG view instance are extracted and consequently the syntactic structure of 

the RELATIONSHIP and its INVERSE construct are printed.  

  %odl_print_class_oneside_relationship(?Head,?Pt) :- 

      ?Cssa = collectset{ ?A | ?Head(?A,?Pt):odmg }, 

      %odl_pcosr_rellist(?Head,?Pt,?Cssa). 

  %odl_print_class_oneside_relationship(?_,?_) :- true. 

 

    %odl_pcosr_rellist(?Head,?Pt,[?Ha|?Rlist]) :- 

       ?Head(?Ha,?Pt):odmg 

       [reltoclass->?C2, reltoattr->?A2, relref(?Line)->?Rc], 

       fwrite('relationship ', ?C2, ' * ', ?Ha) 

       fwrite('inverse ', ?C2, '::', ?A2, '; '), 

       %odl_pcosr_rellist(?Head,?Pt,?Rlist). 

    %odl_pcosr_rellist(?_,?_,[]) :- true. 

 

 

  %odl_print_class_manyside_relationship(?Head,?Pt):- 

      ?Cssa = collectset{ ?A | ?Head(?A,?Pt):odmg }, 

      %odl_pcomr_rellist(?Head,?Pt,?Cssa). 

  %odl_print_class_manyside_relationship(?_,?_):- true.   

 

    %odl_pcomr_rellist(?Head,?Pt,[?Ha|?Rlist]) :- 

       ?Head(?Ha,?Pt):odmg 

       [reltoclass->?C2, reltoattr->?A2, relref(?Line)->?Rc], 

       fwrite('relationship set < ', ?C2,' * > ', ?Ha), 

       fwrite('inverse ', ?C2, '::', ?A2, '; '), 

       %odl_pcomr_rellist(?Head,?Pt,?Rlist). 

    %odl_pcomr_rellist(?_,?_,[]) :- true. 

Examples of the code generated by procedures to generate binary relationship constructs 

follow: 

class dept { … 

  relationship address * mainoffice inverse address::adept; 

  relationship set < course * > sponsors  inverse course::sponsorer; }; 

9.4.1.6 ODL Class body – Constraints 

The framework supports a number of constraints and in this section we address two that are 

directly supported by ODMG and EyeDB ODL namely the primary key set and the ‘not null’. 

To print the primary key set of a class a procedure is invoked, called %ODL_PRINT_CLASS_PK, 

for every class and structure in the framework.  The invocation then builds a list of attributes 

that compose the primary key set of the class being processed and calls the recursive 

procedure %ODL_PRINT_CLASS to print this list in a comma delimited format as required by 

the ODMG ODL syntax. Unfortunately EyeDB only accepts primary key set with a single 

attribute.  Also the constraint, implemented as UNIQUE in EyeDB, requires a corresponding 

physical index definition to be effective.  The following procedure is tailored for EyeDB reality 
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but requires minimal changes to properly define primary key constraints with a set of 

attributes. 

  %odl_print_class_pk(?C) :-  

    ?Pkl=collectset{?A|?Pk:pkconstraint,?Pk.classname=?C,?Pk.attrlist=?A }, 

    %odl_print_class_pk_line(?Pkl). 

 

    %odl_print_class_pk_line([?Pk|?_L]) :- 

          write('  constraint<unique> on ')@_prolog, 

          write(?Pk)@_prolog,write('; ')@_prolog, 

          write('index on ')@_prolog, write(?Pk)@_prolog, writeln(';')@_p. 

    %odl_print_class_pk_line([]) :- true. 

Examples of the code generated by %ODL_PRINT_CLASS_PK follows: 

  class course { … 

    constraint <unique> on cname; index on cname; 

    constraint <notnull> on sponsorer; }; 

The framework supports candidate key constraints too.  The conversion is almost identical to 

the procedure used for primary key except the collection aggregate looks for instances of 

CKCONSTRAINT.  In EyeDB the candidate key has to be defined with the same construct as 

that of the primary key set. 

In the example above there is an instance-of the ‘not null’ constraint.  To generate the 

respective ‘not null’ constraints in each ODMG class we need to populate two views.  The rule 

checks each attribute signature for a lower cardinality limit set to ‘1’ and it ensures that it is 

not an inherited attribute.  This applies to all attributes – even those taking part in referential 

constraints.  The rule for CLASSES follows: 

?C(?A,'notnull'):odmg[ consname -> 'notnull' ]  // not null constraints 

:- ?C:class[?A{?Low:?Up}*=>?Dt], ?Low=1,  

   if ( ?C::?Sc,?Sc:class[?A{?Low:?Up}*=>?Dt] ) then ( false ) else ( true 

). 

To print the ‘not null’ constraint the procedure %ODL_PRINT_CLASS_NOTNULL_CONSTRAINT is 

called and it creates a list of attributes from the view just defined that require the ‘not null’ 

constraint in a class instance passed as an argument.  The procedure then calls a recursive 

procedure, called %ODL_PCNNC_CONSLIST, to print the ODMG ODL NOTNULL constraint. 

     %odl_print_class_notnull_constraint(?Head, ?Pt):- 

         ?Cssa = collectset{ ?A | ?Head(?A,?Pt):odmg }, 

         %odl_pcnnc_conslist(?Head,?Pt,?Cssa). 

      %odl_print_class_notnull_constraint(?_,?_):- true.  

 

         %odl_pcnnc_conslist(?Head,?Pt,[?Ha|?Rlist]) :- 

              ?Head(?Ha,?Pt):odmg, 

              write('  constraint<notnull> on ')@_prolog, 

              write(?Ha)@_prolog,  writeln('; ')@_prolog, 

              %odl_pcnnc_conslist(?Head,?Pt,?Rlist). 

         %odl_pcnnc_conslist(?_,?_,[]) :- true. 
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9.4.2 %odl_schema Output 

Once the %ODL_SCHEMA method, of object SCHEMA, is invoked the EyeDB ODL specifications 

are generated.  These specifications are based on what the framework has read in and 

encoded, and in turn applying transformations and checks carried on the EERM model.  The 

specifications are written into a text file and passed, as a script, to EyeDB ODL program. 

The actual output (i.e. specification) for our non-trivial schema test EERM is found in 

Appendix “EyeDB ODL Specifications (afterScott)”.  In Appendix “EyeDB processing of 

afterScott schema Specifications ”one finds the verbose comments of EYEDBODL on processing 

this specification file. 

9.4.3 Completeness and Correctness 

The framework developed here encodes an EERM diagram through a number of facts and 

rules that describe the diagram’s structures and relationships.  Furthermore a number of 

procedures implement integrity constraints and other checks that support both the EERM 

encoding and the framework itself.  Some of these have been presented earlier.  The method 

%ODL_SCHEMA of object SCHEMA generates a script with EyeDB ODL constructs.  In this section 

intends to sketch an evaluation of this conversion process. 

The evaluation needs to address two issues: namely correctness and completeness.  An 

indicative measure of the conversion quality is running the EyeDB parser on the ODL syntax 

generated.  Specifically if syntax does not pass then surely there is a problem.  On the other 

hand if it compiles it is nonetheless insufficient to state the conversion is either complete or 

correct. 

9.4.3.1 Converting the domains, entities, and weak entities   

The completeness and correctness of the list of all domain instances defined in the framework 

is self-evident from the query used to build it.  Nonetheless there are two correctness issues 

that need discussion other than the correctness of the procedures.  First is the fact that each 

DOMAIN instance has a set of values and these values have to be of string data type.  Therefore 

data typing checks, discussed in the next section, have to validate this.  Second and this is 

more a requirement of the target environment, i.e. EyeDB ODL, requires that an element of a 

DOMAIN instance is distinct over all domain instances.  This check requires the following 
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denial query, i.e. there are no two elements that are the same if domain instances are 

different, to fail: 

?- ?D1:domain, ?D1.enum=?I1, ?D2:domain, ?D2.enum=?I2, (?D1!=?D2,?I1=?I2). 

The forward reference directive is a rather simple procedure that converts two lists of artefacts 

(i.e. CLASS and STRUCTURE instances) into an ODL class definition but devoid of any details 

(e.g. attributes, and constraints).  The procedure is recursive and traverses the list passed to 

print a keyword (i.e. CLASS) and the current head of the list.  It is important to make a point 

about treating the CLASS and STRUCTURE list with the same ODL artefact – i.e. class.  

Inevitably once the EERM’s entity and weak entities are defined with the same construct their 

distinction is lost on conversion. That is one cannot state that a CLASS is an entity or a weak 

entity from its ODL definition.  (This is discussed in a following section on reverse engineering 

an ODL schema). 

To generate a complete CLASS definition that comprises ISA relationships, attributes, binary 

relationships, and constraints, the procedure starts in a similar way to the forward declaration 

just discussed.  We know that for each item on the CLASS and STRUCTURE list an ODL class 

has to be generated.  To do this each list is passed as an argument to a simple recursive 

procedure, %ODL_PRINT_CLASSES, which for each invocation invokes another procedure to 

systematically add the ODL class properties on the head item of its argument list and relating 

to relevant ODMG objects.  Clearly the union of these two lists covers all of our EERM 

artefacts.  Also, given our acceptance of choice, the conversion is correct.  

9.4.3.2 Converting the ISA relationship 

The first argument is on the modality of inheritance in our encoded framework model of an 

EERM diagram and in ODMG ODL CLASS construct.  Since both implement single inheritance 

there is no issue and therefore ODMG ODL correctly specifies single inheritance.  What is an 

issue is the fact that ODMG inheritance mechanism is of type disjoint, partial and semantic.  

If an ISA constraint is specified in the EERM model that is not encoded so then coercion into a 

mode acceptable by ODMG ODL is not tenable.  The following denial if successful implies non-

completeness: 

?- ?Isa:isaproperty, \+(( ?Isa[disj_over_flag -> 'disjoint', totl_part_flag 

-> 'partial', sema_pred_flag -> 'semantic'])). 

No. 



Object-Oriented Data and Query Models 

Translating EERM into an ODL Schema - [ 232 ] 
  

What can be done to improve conversion and leave ‘hand coding’ as a last resort?  Some 

aspects are addressed by improving the ODMG ISA mechanism and also introduce a wider 

range of constraints (e.g. CHECK constraint).  Also, and as stated earlier, a trigger specification 

language is useful to implement the ISA specification details.  At this point any ISA constraint 

that is not disjoint, partial and semantic is reported during conversion. 

For completeness of the ISA relationship conversion we need to show two things: first there are 

no F-logic ISA assertions (i.e. ::) in the framework and the scope of EERM encoding that are 

not in the CLASS generated, and the second is that there is no ISA relationship in the 

conversion but not encoded in the framework.  Consequently we need to have the following two 

queries not instantiating. 

?- ?_Isa:isaproperty[ parentclass ->? C, isaclass -> ?Cd],  

   not((?C:class,?Cd:class,?Cd::?C)). 

No. 

?- ?C:class, ?Cd:class, ?Cd::?C, 

   \+((?_Ci:class, ?Cd::?_Ci, ?_Ci::?C)), 

   not((?_Isa:isaproperty[ parentclass -> ?C, isaclass -> ?Cd])). 

No. 

In procedure %ODL_PRINT_CLASS_HEAD each instance-of class or structure is checked if its 

direct ancestor is define so as to introduce the ODL ISA assertion (i.e. ?HEAD.DIRECTASC[]).  

Therefore one needs to ascertain that all ISA assertions are indeed caught with this filter. 

?- ?C:class, ?Cd:class, ?Cd::?C, \+((?_Ci:class, ?Cd::?_Ci, ?_Ci::?C)),     

   \+((?Cd.directasc=?C)). 

No. 

9.4.3.3 Converting the attributes 

Two groups of procedures to print a class attribute, one for singleton and the other for ‘set of’ 

are mostly identical to each other and they differ only in output and on which views they read 

from.  The outer procedure take two arguments that limit the scope on which ODMG objects are 

of interest, and then builds the relevant list to recursively processed and convert into ODL 

attributes. 

For the completeness property we need to investigate two data sources.  First is the familiar 

CLASS and STRUCTURE list of instances and this has been purported to be correct.  Second is 

the list of relative ODMG objects per CLASS instance.  The rule that generates the ODMG objects 

for singleton and non-inherited attributes of a CLASS instance follows (the others having been 

listed earlier):   
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?C(?A,'attr'):odmg[attrtype->?Dt,attrcard->'single'] :-  // single attribute 

    ?C:class[?A{?Low:?Up}*=>?Dt], 

    ?Up=1,(?Dt='string';?Dt='integer';?Dt='float';?Dt:domain), 

    if ( ?C::?Sc,?Sc:class[?A{?Low:?Up}*=>?Dt] ) then ( false ) else ( true 

). 

What remains to be seem is that there are no instances of ODMG that are not assumed by the 

above rule.  The following query checks for this: 

?- ?C(?A,'attr'):odmg, ?C:class[ ?A{?_L:?U}*=>?Dt],  \+((?U=1, 

(?Dt='string'; ?Dt='integer'; ?Dt='float'; ?Dt:domain) )). 

No. 

A similar check is done for every CLASS and STRUCTURE instance and for qualifier ‘ATTR’ and 

‘SETATTR’. 

The correctness of the generated code requires a last check, namely the mapping from the 

EERM annotated data type of an attribute to an equivalent data type in ODMG ODL.  This 

mapping is taken care of by procedure %DT_MAP.  If the EERM annotation is data-type checked 

for appropriate values then this part of the conversion is complete and correct too. 

Another two sets of procedures take care of single & structure and set & structure attributes.  

These two groups are very similar to those just described but each has its own view and code 

generating bit.  In particular, the data view definition checks for a REFCONSTRAINT instance 

of type structure.  The completeness tests just described are applicable here to.  As for 

correctness the distinctive part is the code generation and this requires explanation.  Firstly 

the composite object building has to be done through the EyeDB ODL CLASS construct; 

implying that the EERM structure is converted to a CLASS.  Secondly although the composite 

part is considered as a ‘part-of’ the holding object, and consequently the former is a literal (i.e. 

no need of an object identifier), object identifiers are still bestowed.  This extra specification is 

an idiosyncratic part of EyeDB ODL. 

Finally, a similar query to one presented earlier checks that there are no ODMG instances (of 

type ‘STRUCTATTR’ and ‘SETSTRUCTATTR’) that are not covered by the respective rules firing. 

9.4.3.4 Converting the relationships 

This section considers the completeness and correctness of converting relationship instances of 

type ‘normal’ and ‘weak’; instances of type ‘structure’ are taken care on structured attributes.  

We recall that the framework, or expects the import, to convert an n-ary relationship instance 
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(with n >= 3) into n binary relationships.  Consequently only binary relationships are 

examined. 

All relationship instances are instances of object REFCONSTRAINT and therefore for a binary 

relationship it has to have two components.  To build a complete list of relationship instances 

we use the aggregate COLLECTSET predicate. 

In each of a relation’s instance components it must hold that if a component starts at a class 

instance then the second component must return to it.  Furthermore, the lower and upper 

limits in each component must have one of six possible values, without loss of generality.  The 

denial queries required here are identical to those used for drawing the relationship with 

GraphViz. 

We need to invoke a check that verifies that it is that’s not the case that an ODMG instance is 

not caught by the relative view; e.g. ?C(?A,’ONESIDEREL’):ODMG.  This check is similar to 

one presented in the previous section. 

The correctness of the conversion is given by the fact that a relationship instance’s 

component’s lower and upper limits are what would be expected and an unambiguous code 

fragment is generated for each.  Although ‘normal’ and ‘weak’ relationships instances are 

catered by different group of procedures they actually only differ in their data collection part 

and therefore share common procedures. 

?C(?A,'onesiderel'):odmg 

[relcard->'one',reltoclass->?Dt,reltoattr->?A2,relref(?Line)->?Rc, 

 reltype->?Rt] 

:- ?C:class[?A{?_:?Up}*=>?Dt], ?Up=1, 

   ?Rc:refconstraint 

   [reltype->?Rt, (?Rt='normal';?Rt='weak'),  

    comp(?C,?A,?_,?_,?_,?Line)->?Dt, 

    comp(?Dt,?A2,?_,?_,?_,?_)->?C],  

    ?A!=?A2. 

9.4.3.5 Converting the constraints 

The framework supports a number of constraints (the following query lists these). 

?- ?Cl=collectset{?C|?C::constraint}. 

 

?Cl = [check, ckconstraint, fdconstraint, isaproperty, notnull, oneonly, 

pkconstraint, refconstraint] 

Yes. 

EyeDB and ODMG ODL does not cover all of these, in particular the CHECK, FDCONSTRAINT, 

and ONEONLY.  Consequently completeness is lost.  In this section we consider the 
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completeness and correctness properties of two constraints, i.e. ‘not null’ and ‘primary key’ 

that are supported by EyeDB ODL but have not yet been discussed. 

The ‘not null’ constraint is easy to check for completeness.  The relative views hold attribute 

whose definition has lower cardinality limit set to ‘1’; this applies to attributes that include 

binary relationships.  One can then check that indeed any attribute with lower cardinality set 

to ‘1’ is implied by the respective view.  The procedure to generate the ‘not null’ constraint is 

quite simple and the code it generates is trivial to check for correctness. 

EERM construct Framework EyeDB ODL EERM-ODL map issues 

Entity class class  

Weak entity structure class  

Relationship 

(n=2) w/o attr 

refconstraint 

(i.e.normal, 

weak) & classes  

class relationship and 

inverse construct, 

and not null constraint 

 

Relationship 

(n=2) + attr 

refconstraint 

(i.e.normal, 

weak) & class 

class relationship and 

inverse construct, 

attribute, and not 

null constraint 

With resolving 

class introduced 

for many to many 

Relationship 

(n>2) 

refconstraint is 

converted to 

class & n binary 

relationships 

 Not supported 

Attribute – 

simple & single 

class | 

structure 

class attribute  

Attribute – 

simple & set 

class | 

structure 

class attribute  

Attribute – 

structure & 

simple 

class | 

structure 

refconstraint 

(i.e. structure) 

class attribute whose 

type is an identifier 

to class (that 

implements the 

structure) 

 

Attribute – 

structure & set 

class | 

structure 

refconstraint 

(i.e. structure) 

class attribute whose 

type is set of 

identifiers to class 

(that implements the 

structure) 

 

Possible notes domain enumerated types  

Primary key pkconstraint class unique constraint Partial (single 

attribute) 

n/a ckconstraint class unique constraint Partial (single 

attribute) 

n/a fdconstraint class unique 

constraints 

Partial (simple 

and single 

attribute) 

ISA relationship ISA constraint class with constraint Only disjoint, 

semantic and 

partial are 

implemented. 

 Check constraint  Not directly 

supported 

 Triggers trigger Not supported by 

ODMG ODL 

n/a Basic data types basic data type  

Table: 9.1 – Summary of EERM, framework, and EyeDB ODL objects 

The primary key constraint is relatively easy to check for completeness and correctness. If a 

constraint exists for a current class instance then its participating attributes are collected 
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from the relative constraint construct and ODL unique is built by a recursive procedure.  

Unfortunately in EyeDB ODL the UNIQUE construct takes one and only one attribute.  

Consequently it is not complete.  The correctness, limited to a singleton, of the construct is 

straightforward to verify as the syntax is simple – it uses the UNIQUE construct.  Another 

requirement is that a physical artefact, i.e. an index, is built with every UNIQUE constraint. 

Candidate key set constraints, where one can assert that a primary-key constraint is its 

specialization, has the same arguments as primary-key set.  On top of that there is an issue in 

EyeDB’s implementation regarding correctness, this relates to the fact that there is no 

distinction between primary and candidate key definitions in the class definition.   

9.4.3.6 Conversion summary 

In table 9.1 one finds a summary of the objects, constructs and conversion from one to its 

corresponding artefact.  It is important, at this point, to repeat the importance of having a 

high level of completeness because this will attenuate any coding required to address missing 

design artefacts.  

9.4.4 Reverse Engineer an EERM Diagram from an ODL Schema 

What about converting an ODL schema into an EERM diagram?  It is an important question, 

or better still a pressing requirement from data designers, as a number of activities greatly 

benefit from this reverse engineering.  For example, in database integration, i.e. between as 

yet independent data sources, this reverse engineering aids in quickly building a prototype 

schema.  Unfortunately there are two issues.  First it is not given that if an EERM is mapped 

into a schema and then immediately reverse engineer it into an EERM the later EERM has 

anything to do with the original EERM.  (We are not referring to layout problems as perfidious 

as these can be).  This is mostly to do with assumptions taken in the conversion, and the fact 

that some target constructs are overloaded.  The second problem is that the schema in an 

active database would have a large number of artefacts that aid software development and 

data management.  For example, the introduction of lookup tables raises the data quality of 

some attribute’s assigned values. 

In this study it is important to ask what is ‘lost in translation’, and effectively evaluate 

another aspect of the conversion.  The previous table (i.e. 9.1) does give immediate indications.   
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One genera of loss comes for relationships with an order greater than two where it is converted 

into n binary relationships.  While converting relationship there is another technique which is 

lossy and occurs when relationship attributes are lumped with other class attributes.  Frankly 

there is little to do with these patterns and in fact many types of data models suffer this. 

Another general type of loss appertains to ODMG and EyeDB ODL.  For example an EERM’s 

entities and weak entities are generally converted into respective class constructs.  In EyeDB 

matters are more pronounced as ODMG’s ODL structures are implemented with classes too 

and this effectively fudges further the distinction between weak entity and composite object.  

Another example is the ISA relationship implementation in OMG ODL which accepts no 

variety found in EERM diagrams. 

There are some other issues, reported earlier, with the use of EyeDB ODL unique construct to 

implement primary key, candidate key and uniqueness constraint.  Consequently there is no 

clue in the EyeDB data dictionary as to a constraint’s real provenance. 

At this point we assert that to attenuate the conversion and translation lossyness requires 

ODMG ODL to acquire better and wider constructs (e.g. triggers with incremental coding).  

Also conceptual design constructs, read from an EERM diagram, are read and maintained 

within the object base data dictionary. 

9.5 Summary 

This chapter has shown how this framework can accommodate a wide variety of EERM 

designs created, for example, in a CASE tool.  The EERM constructs are an input to the 

framework.  The framework allows a transformation of valid EERM artefacts into constructs 

that DBMSs are capable to handle.  For example an n-ary relationship is converted into a 

resolving class instance, n binary relationships, and a set of constraints (e.g. primary and 

candidate keys).  Another important feature is that additional artefacts are added to 

supplement the EERM model when it is read in.  Two examples are functional dependences 

and candidate keys.  Some issues with EERM do hinder its fuller utility and two need 

addressing: the first is some constructs require better, wider and more acceptable notation and 

meaning (e.g. aggregation).  Also transitional constraints, not really part of traditional ERM, 

are a must with more involved modelling. 
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At this point the framework is capable to aid in database design.  For example an EERM 

encoded, or read from an ASCII file, is converted in an ODMG ODL schema.  In this study we 

have tailored the output to an ODMG dialect offered by EyeDB; but it is easy to convert to 

other ODMG ODL syntax flavours.  The conversion has a wide coverage and takes non-trivial 

examples as shown with the schema on which it was tested on.  Furthermore the conversion is 

aided by an extensive range of pre-conversion tests.  Nonetheless there are some issues due to 

EyeDB idiosyncrasies and limitations, but an acceptable solution for meeting most of them 

was presented.  Two issues with ODMG are its almost lame relationship construct, and 

absence of triggers to implement transitional constraints.  In the case of relationships shortfall 

the translation and framework offers a lot.  In the case of triggers we believe substantial 

progress needs to be introduced to their definition, maintenance, and management before 

automating the process of their coding.  

Functionality possible through our framework is to redraw an EERM that has been read.  The 

graphing package is sent a specification file, that includes design artefacts, and in turn it 

produces an image.  This feature is most useful when an original EERM design is worked on in 

the framework; as in improving it or when integrating two designs (i.e. during a data-

integration exercise).   

In both mappings, apart from rigorousness and detail that is not available in database design 

literature for object-oriented databases, we presented issues of correctness and completeness 

for each mapping.  Also we have shown the inadequacy of reverse engineering an ODMG ODL 

schema back to the original EERM model. 

This work has had it start in Vella’s [VELLA97] then with an early version of ODMG ODL; the 

latest publication is in [VELLA09].  Similar work is too general as can be seen in standard 

works; as El Masri [ELMAS10] and Teorey [TEORE05].  Another advantage of this work is its 

integration with other features of the framework; query modelling is dependent on structures 

read from an EERM model. 
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10 Type Checking in Object Database Framework 

In chapter four we have asserted, through literature reviews, that data typing and data type 

checking help develop readable, reliable, and efficient software.  The object-oriented paradigm 

is strongly associated with a number of sophisticated data-typing features, and most of its 

adopters expect to have these.  We have also reported how a mix of typing modalities, 

specifications, and checking have been tested for the object-oriented paradigm. 

In F-logic one can associate data-type signatures with objects and there exists a number of 

data typing axioms.  More interestingly the type signatures, applicable to inheritable and non-

inheritable methods, are part of the inference process; e.g. data-typing rules and assertions 

interact with other objects assertions like those of ISA and instance-of. 

In Flora-2 the data-type signature specifications are accepted but no implicit type checking is 

available and some type-inference rules are not evaluated; furthermore some F-logic axioms 

are not entrenched in its semantics – an example being a method’s attribute contra-variance 

and co-variance.  As regards type checking Flora-2 nonetheless does have a strong potential; 

we have already seen how F-logic and Flora-2 higher-order syntax mixes data and structure in 

query expressions.  In fact the framework adopted here builds run-time type-checking 

procedures to implement basic data checking and inference. 

In this section we start by describing a number of views that aid the type-checking process.  

The first type checking has to do with the cardinality constraints of methods.   The next 

section deals with data-type checking of methods of user defined classes (e.g. classes and 

structures) and their instances.  The later sections discuss object polymorphism type checking 

and F-bounded polymorphism. 

10.1 Problem Definition 

What are the data typing and inference requirements of our framework?  Firstly, we need to 

check that the data expressions of our object base are proper in terms of the data signatures 

provided.  Furthermore, because of the nature of F-logic we expect some form of overloading 

and parametric polymorphism.  Within this requirement we have to include a check to ensure 

that all object assertions, especially instances of user-defined objects, are covered by at least 
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one signature.  Secondly, we need to accommodate recursive data types and also recursive data 

structures (e.g. like lists of objects).  Thirdly, we need the framework to work out the 

intricacies of data specification and typing in the presence of recursive types and subtyping 

realities. 

10.2 Views and Flora-2 Data-Type Signatures 

In our framework the most common data signature used for CLASS and STRUCTURE instances 

is the type *=>.  These are called inheritable methods.  In the following script the instance 

GRAND has a method signature for FNAME.  Instance GO1, related to GRAND with the instance-of 

relationship (i.e. :), inherits the signature => and FNAME takes a string through the -> 

assignment.  Methods denoted by => are called non-inheritable methods.  (The same applies to 

object PO1 but inheriting from the CLASS instance PERSON). 

The class PARENT, related to GRAND with an ISA relationship (i.e. ::), inherits all the data 

signatures of the latter.  Consequently any instance-of CLASS and STRUCTURE inherits its data 

signature and remains denoted with *=>.  Any CLASS method denoted by => is not inherited by 

the ISA relationship but passed on to its instances – e.g. these are useful for class attributes 

described in earlier chapters. 

      grand : class[ fname{1:1} *=> string]. 

 

      go1:grand [fname -> "g1name"^^_string]. 

 

      parent::grand. 

      child::parent. 

 

      ?- parent[ fname *=> string ]. 

      Yes. 

 

      parent[ livesat{1:1}  *=> string ]. 

 

      ?- parent[ ?M *=> ?Rt ]. 

      ?M = fname    ?Rt = string 

      ?M = livesat  ?Rt = string 

      Yes. 

 

      po1:parent[fname -> "p1name"^^_string, livesat -> "p1home"^^_string]. 

 

      ?- po1[ ?M => ?Dt ]. 

      ?M = fname    ?Dt = string 

      ?M = livesat  ?Dt = string 

      Yes 

Another feature of a Flora-2 data signature is the cardinality constraints of a method.  For 

example, in the method FNAME above the cardinality constraints specify a lower and upper 

constraint of ‘1’ (one and only one) – i.e. {1:1}.  Both limits take any integer with the lower 
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having to be less than, or equal, to the upper.  Cardinality constraints in Flora-2 are more 

flexible than F-logic as the latter only allows singleton or set cardinality. 

In F-logic one can also specify methods with arguments together with their data signature.  

The following script gives a simple example where a CLASS instance called CC has a method, 

called CMTH5, that takes one argument of type PARENT and returns an instance-of type 

PARENT.  The effects of the instance-of and ISA relationships are identical for methods without 

arguments (and as presented earlier).  Methods without an argument type in their signature 

are called scalar methods and those with arguments, as is CMTH5, are called arity methods. 

    cc:class. 

    cc[ cmth5(parent) *=> parent ]. 

 

      cco1:cc[ cmth5(po1) -> co1 ]. 

      cco2:cc[ cmth5(go1) -> po1 ]. 

F-logic allows data signatures to be overloaded too.  In the following example, method 

OVERLOAD has two distinct signatures specified.  Methods with arguments can also be 

overloaded. 

    c1:class[ overload *=> integer, overload *=> string]. 

 

    ?- c1[overload*=>?Dt]. 

    ?Dt = integer 

    ?Dt = string 

    Yes. 

10.2.1 Views for Classifying Methods for Data-Type Checking 

The first set of views enumerates the scalar methods; methods that come without an argument 

in their signature.  These capture either the inheritable and non-inheritable methods for 

instances of CLASSES and STRUCTURES – collectively instances of UDO.  The following two rules 

build SCALARMETHOD and INHSCALARMETHOD property of each user defined instance (i.e. 

instances of CLASS or STRUCTURE). 

    ?C[scalarmethod->?M]     :- ?C:udo[?M =>?_ ],  not compound(?M)@_prolog. 

    ?C[inhscalarmethod->?M]  :- ?C:udo[?M *=>?_ ], not compound(?M)@_prolog. 

The predicate COMPOUND returns true if the term (denoted by ?M) is a composite term; in this 

case it would imply that the method comes with an argument.  The partitioning is controlled 

by a difference in the data signature for inheritable (*=>) and non-inheritable (=>) methods.  

The following query lists the inheritable methods of CLASS instance PARENT. 

    ?- ?C=parent,?C[inhscalarmethod->?L]. 

    ?C = parent   ?L = fname 

    ?C = parent   ?L = livesat 

    Yes. 
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Each of these methods is complemented with another property wherein the methods are 

included in a list (named SCALARMETHODS and INHSCALARMETHODS).  For example: 

    ?C[inhscalarmethods->?Mlst :-  

        ?C:udo, ?Mlst=collectset{?M|?C[?M*=>?_], not compound(?M)@_prolog}. 

    ?- ?C=parent,?C[inhscalarmethods->?L]. 

    ?C = parent  ?L = [fname, livesat] 

    Yes. 

The second set of views enumerates arity methods for instances of UDO; methods that come 

with an argument in their signature.  These capture either of the inheritable and non-

inheritable methods.  The following two rules build ARITYMETHOD and INHARITYMETHOD 

property of each user defined instance (i.e. CLASS or STRUCTURE). 

?C[aritymethod->?Mth]    :- ?C:udo[?M=>?_],  

compound(?M)@_prolog,?M=?Mth(?_). 

?C[inharitymethod->?Mth] :- ?C:udo[?M*=>?_], 

compound(?M)@_prolog,?M=?Mth(?_). 

The predicate COMPOUND for method, i.e. ?M, must be true.  Also note that method name 

assigned in the view is stripped of its argument data type (i.e. ?MTH rather than ?M).  The 

partitioning is controlled by the different data signature for inheritable (*=>) and non-

inheritable (=>) methods.  The following query checks whether CMTH5 is an arity and 

inheritable method of CLASS instance CC. 

?- cc[ inharitymethod -> cmth5 ]. 

Yes. 

Each method is complemented with another property wherein the methods are included in a 

list (named ARITYMETHODS and INHARITYMETHODS).   

For each instance-of UDO there are collective views that gather its inheritable and non-

inheritable methods; these views are called INHMETHODS and METHODS and the property is set 

based. 

?C[methods -> ?M]    :- ?C:udo[scalarmethod -> ?M]; 

                        ?C:udo[aritymethod -> ?M]. 

?C[inhmethods -> ?M] :- ?C:udo[inhscalarmethod -> ?M]; 

                        ?C:udo[inharitymethod -> ?M]. 

The third set of views enumerate the overloaded methods for instances of UDO; methods that 

come with more than one return data type signature or one argument data type.  These 

capture either of the inheritable and non-inheritable methods.  The following four rules build 

the respective properties of each user defined instance (i.e. CLASS or STRUCTURE).  The rules 

identify methods (i.e. ?M) through previously defined views that have for example a different 

return data type. 
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?C[nameoverloadedmethods->?M]    :- 

    ?C:udo[methods->?M], 

    ?C[?M=>?D1], ?C[?M=>?D2], ?D1!=?D2. 

?C[nameoverloadedmethods->?M]    :-  

    ?C:udo[aritymethod->?M], 

    ?M=?Mth(?_Pdt),?C[?Mth(?Pdt1)*=>?_], ?C[?Mth(?Pdt2)*=>?_],?Pdt1!=?Pdt2. 

?C[nonnameoverloadedmethods->?M] :-   

    ?C:udo[methods->?M], 

    not ?C[nameoverloadedmethods->?M]. 

 

?C[inhnameoverloadedmethods->?M] :-  

    ?C:udo[inhmethods->?M], ?C[?M*=>?D1], ?C[?M*=>?D2], ?D1!=?D2. 

?C[inhnameoverloadedmethods->?M] :- 

    ?C:udo[inharitymethod->?M],  

   ?M=?Mth(?_Pdt), ?C[?Mth(?Pdt1)*=>?_], ?C[?Mth(?Pdt2)*=>?_], ?Pdt1!=?Pdt2. 

?C[inhnonnameoverloadedmethods->?M]:-  

    ?C:udo[inhmethods->?M], 

    not ?C[inhnameoverloadedmethods->?M]. 

The following query checks if method OVERLOAD of CLASS instance C1 is listed as overloaded. 

    ?- ?C=c1, ?C[inhnameoverloadedmethods->?M]. 

    ?C = c1     ?M = overload 

    Yes. 

The last set of views address a method’s argument and return data type contra-variance and 

co-variance.  This is all the more necessary as Flora-2 does not support contra-variance and 

variance for methods.  The two rules create objects whose identifiers are AS(…) and some of its 

properties include CLASS and METHOD. 

as(?C,?M,?Pdt2,?Rdt,"noninh") 

  [class->?C, method->?M, pdt->?Pdt2, rdt->?Rdt, inhtype->"noninh"] 

  :- ?C:udo[aritymethods->?Mlst], member(?M,?Mlst)@_prolog(basics),  

     ?C[?M(?Pdt)=>?Rdt], (?Pdt2::?Pdt;?Pdt2=?Pdt).  

 

as(?C,?M,?Pdt2,?Rdt,"inh") 

  [class->?C, method->?M, pdt->?Pdt2, rdt->?Rdt, inhtype->"inh"] 

  :- ?C:udo[inharitymethods->?Mlst], member(?M,?Mlst)@_prolog(basics), 

     ?C[?M(?Pdt)*=>?Rdt], (?Pdt2::?Pdt;?Pdt2=?Pdt). 

An object is created for each arity method of a user-defined object instance.  Furthermore if the 

return data type, i.e. ?RDT, is a descendent of a CLASS instance then an AS(…) object is 

created for each of its ancestors and the ?RDT  property replaced by the ISA inference.  For 

example, if the return type, ?PDT2, is CLASS PARENT then another AS(…) object is created for 

CLASS GRAND.  In the case when the argument data type is an ancestor of other CLASS 

instances then an AS(…) object needs to be created for each of its descendants.  For example if 

an argument data type is CLASS instance PARENT then another AS(…) object needs to be 

instantiated for argument data type CHILD CLASS.  The following query shows this view’s 

evaluation. 
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?- ?C=cc,?M=cmth5, 

   as(?C,?M,?Pdt2,?Rdt,"inh") 

      [class->?C, method->?M, pdt->?Pdt2, rdt->?Rdt, inhtype->"inh"]. 

?C = cc    ?M = cmth5    ?Pdt2 = child    ?Rdt = grand 

?C = cc    ?M = cmth5    ?Pdt2 = child    ?Rdt = parent 

?C = cc    ?M = cmth5    ?Pdt2 = parent   ?Rdt = grand 

?C = cc    ?M = cmth5    ?Pdt2 = parent   ?Rdt = parent 

Yes. 

It is important to check that any method of a defined object (i.e. class and structure instance) 

with a signature defined is included in one of the views just defined.  In fact the union of 

?C[METHODS->?M] and ?C[INHMETHODS->?M] are all of the properties that are covered by 

the views.  The following denial query checks whether there exists a method, of a user defined 

object, that is not included in a view. 

?- ?C:udo[ ?M*=>?_Dt ; ?M=>?_Dt ],  

   not  (?C[methods->?M; inhmethods->?M] ; 

         (?M=?Ms(?_P),?C[methods->?Ms; inhmethods->?Ms]) ). 

No. 

The converse denial, that is there a method included in a view’s list but no signature is present 

in the user defined object instances, follows:  

?- ?C:udo[methods->?M; inhmethods->?M],  

   not (?C[?M*=>?_Dt;?M(?_P)*=>?_Dt, ?M=>?_Dt;?M(?_P)=>?_Dt]). 

No. 

This method names coverage needs to be complete because a number of data typing and 

inference techniques and procedures use these views repeatedly. 

10.3 Method Signature’s Cardinality 

In earlier parts of our framework the cardinality constraints attached to properties in CLASS 

and STRUCTURE definitions were used extensively.  In one area these were used to guide and 

enforce inter-object relationships.  In this section we present ways to check if an object 

instance attributes and methods is respecting the data-type signature and the cardinality 

constraints associated with it. 

Flora-2 does not implicitly check and enforce these although it does offer some methods to aid 

in explicitly doing these at runtime; these are found in its typecheck module.  Also the manual 

states two important points [YANGG08]: firstly, “it is theoretically impossible to have a query 

that will flag a violation of a cardinality constraint if and only if one violation existss and will 

terminate”; secondly, relative Flora-2 methods “may trigger run-time errors if there are rules 

that use non-logical features or certain built-ins in their bodies”; (an example of built-ins are 
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arithmetic comparisons over integers).  The first argument was presented in our earlier 

literature review on data type checking,  

How can we check a property’s cardinality limits?  A generic procedure called 

%TYPE_ERROR_CHECK is invoked with two arguments: the first is the CLASS or STRUCTURE 

instance and the second the type of check required.  The idea behind the procedure is to check 

for each method definition if there are any object instances that have an assignment outside 

the cardinality limits.  The following invocation checks a selection of methods applicable to 

class instance PERSON for cardinality issues; specifically in inheritable methods.  No issues are 

actually reported and the FALSE result aids in traversing all possible values. 

?- %type_error_check(person,"cardinality const.s – inherit. scalar mthds"). 

No. 

The workings of the procedure start by first extracting the list of inheritable methods from the 

appropriate view (e.g. ?C[INSCALARMETHODS->?M]).  The cardinality checks are actually 

done in recursive procedure %CC_INHSCALAR that takes four arguments.  The first and second 

arguments are the CLASS instance and the respective method list while the last two are the 

start and return list of objects with cardinality outside the permitted range.  According to the 

content of the return list the procedure %TYPE_ERROR_CHECK invocation prints results. 

%type_error_check(?C,"cardinality constraints – inherit. scalar methods"):-  

    ?C[inhscalarmethods->?Mlst], %cc_inhscalar(?C, ?Mlst,[], ?Broken), 

    if not ( ?Broken = [] )  

    then ( write('cardinality constraints - )@_prolog, 

           write('inheritable scalar methods - broken list')@_prolog, 

           write(?C)@_prolog, write(' - ')@_prolog, writeln(?Mlst)@_prolog, 

           writeln(?Broken)@_prolog, 

           false ) 

    else ( writeln('nothing broken!?')@_prolog, 

           false ). 

     

    %cc_inhscalar(?C,[?M|?Mlst],?Ilst,?Flst):- 

        ?Lst=collectset  

             {?I|Cardinality[%_check(?O[?M{?L:?H}=>?_])]@_typecheck, 

                             ?O:?C,?C:udo,?I=[?C,?O,?M,'n/a',?L,?H]}, 

        if (?Lst=[])  

        then (%cc_inhscalar(?C,?Mlst,?Ilst,?Flst)) 

        else (%cc_inhscalar(?C,?Mlst,[?Lst|?Ilst],?Flst)). 

    %cc_inhscalar(?_C,[],?Flst,?Flst). 

The recursion of procedure %CC_INHSCALAR is controlled by the second argument; specifically 

the method list.  On each invocation the respective method name is passed to Flora-2 type 

check module to search for any instances which are outside the permitted range; the type 

check method is called %_CHECK and takes a signature as input; for inheritable methods it is 

?O[?M{?L:?H}=>?_].  The return values from %_CHECK are further filtered for instances of a 
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user-defined objects and are assigned to a list of tuples that is appended to the third argument 

of procedure.  Each tuple appended to the list has details of specific infringement found.  

Recursion stops when no more methods are left (i.e. in second argument) and the final list is 

unified to the forth argument. 

The following is a simple example of cardinality issues that are captured.  Assume we have 

another CLASS instance, called CHILD, which is ISA related to PARENT (given earlier in this 

section).  Also note the CHILD instances data assignments (i.e. CO1, CO2, and C03).   

child:class. 

child::parent 

 

child [schoolat{1:1} *=> string, kids{1:1} *=> integer ]. 

 

co1:child [fname->"c1name", livesat->"c1home", schoolat->"c1school"]. 

co2:child [fname->{"c2name","c2n"}, livesat->"c2h", schoolat->"c2s", 

           kids->2]. 

co3:child [fname->"c3name", livesat->"c3h", schoolat->"c3s", 

           kids->0]. 

On invoking the procedure on CLASS instance CHILD one gets the following reporting related 

to cardinalities issues.  The list of CHILD inheritable method is printed and then the lists of 

instances outside the acceptable values.  The first list says method KIDS in instances CO1 and 

CO2 have their lower limit broken (but higher limit is ‘ok’), and the second list says that upper 

limit of method FNAME is broken in instance CO1.  These are easily verified with the above 

instances. 

?- %type_error_check(child,"cardinality constraints–inherit. scalar mthds"). 

cardinality constraints - inheritable scalar methods - broken list 

child - [fname,kids,livesat,schoolat] 

[[[child,co1,kids,n/a,1,ok], [child,co2,kids,n/a,1,ok], 

 [[child,co2,fname,n/a,ok,1]]] 

No. 

There are three other procedures to cater for cardinality constraints: namely inheritable 

methods with an argument, and non-inheritable methods with and without arguments.   Other 

than the view to use there is only one other main difference between each; specifically it is the 

argument of the %_CHECK procedure invocation to match the methods and cardinalities of 

interest. 

There are some technical issues to discuss.  First and foremost cardinality checking comes at a 

computational cost which is significant.  Second there is an issue with checking the lower 

cardinality constraint of methods with an argument; the check reports an error when there are 

none.  Flora-2’s maintainers confirmed this and at this point there seems little to do to address 
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it through the current %_CHECK procedure implementation (pers. comm. Kifer, M [2013]).  Yet 

another issue is that evaluation of %_CHECK is disrupted when recursive data assignments are 

found (e.g. list of CLASS instances). 

10.4 Scalar Method Data Type Checking 

In F-logic method signatures and data expressions are enforced through its typing constraints.  

An important result is that of well typing of an F-logic program is un-decidable.  In this logical 

language type checking takes more the role of data-type coverage. 

In Flora-2 type denotations are read but type checking is not implicitly checked on loading and 

evaluation.  As in the case of method’s cardinality run-time checks for well typeness are 

possible if the program is equipped with data-type checking procedures that are invoked at 

run-time.  Although Flora-2 offers a procedure to test type correctness this framework opted to 

implement its own procedure and object structures (e.g. rules for views).  The main reason for 

opting out is to favour flexibility, coverage, and control of the data-typing regime that we 

implement.  For example, Flora-2 does not type check input restriction and relaxation of 

methods. 

The type-checking of a signature against objects is done through five high-level procedures; 

with the first two presented in this section, another two that data type check methods with an 

argument, and the last dedicated to type checking a list of objects (i.e. a polymorphic and 

recursive data structure). 

The high-level call to %TYPE_ERROR_CHECK is supplemented with two arguments: the first is 

the user defined object to type check and the second is the string that qualifies which check to 

run (i.e. inheritable scalar methods).  From the following script it transpires that CLASS 

instance CHILD has three attributes of interest: namely FNAME, LIVESAT, and SCHOOLAT all of 

which are strings.  For each CHILD instance and attribute a list of values assigned are listed.  

It transpires that all values are of the type expected. 

?- ?C=child , 

   %type_error_check(?C,"case – inhe. scalar methods with result poly."). 

UDO / inh scalar method / data type list / result data list: 

child 

fname 

[string] 

[ _datatype(_string(c1name),_string), … 

  _datatype(_string(c4name),_string)   ] 
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* 

UDO / inh scalar method / data type list / result data list: 

child 

livesat 

[string] 

[ _datatype(_string(c1home),_string), … 

  _datatype(_string(c4home),_string)   ] 

* 

UDO / inh scalar method / data type list / result data list: 

child 

schoolat 

[string] 

[ _datatype(_string(c1school),_string), … 

  _datatype(_string(c4school),_string)] 

* 

?C = child 

Yes. 

If the following CHILD fact is added and the same type check is invoked then a type check 

error is expected as attribute SCHOOLAT is assigned an integer. 

co9:child 

[fname->"c9name"^^_string, livesat->"c9home"^^_string,  

 schoolat->"9"^^_integer]. 

In fact this transpires in the following sterilised output.  At this point semantic action is 

required to rectify data type error detected. 

?- ?C=child , 

   %type_error_check(?C,"case – inhe. scalar methods with result poly."). 

… 

UDO / inh scalar method / data type list / result data list: 

child 

schoolat 

[string] 

[ _datatype(_string(c1school),_string, … ,  

  _datatype(_datatype(_integer,[57]),_integer)] 

* 

--- data type error - inh scalar - class / scalar method / result data 

child 

schoolat 

_datatype(_datatype(_integer,[57]),_integer) 

* 

?C = child 

Yes. 

The procedure %TYPE_ERROR_CHECK for an inheritable scalar method needs to compare two 

sets.  The first set comprises possible data types that the method returns (e.g. there could be 

more than one incomparable data type because signatures allow method overloading of result 

type).  The second set are objects that are return values of the current method being 

investigated (but only objects that are instances of the current class and not of any of its 

subclass).  The comparison is a universal quantification: there is no element in the second set 

that is not an instance-of any element in the first set.  Otherwise we have a data-type error 

between the method and the data value.  The only added feature is to ensure that we can 

favourably compare objects that are instances of the current class or any of its super classes. 
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The procedure starts by retrieving all inheritable and scalar attributes of the CLASS instance 

through the appropriate view and then calls recursive procedure %TEC_INHSCALARPOLY with 

two arguments: namely the CLASS instance and its method list retrieved.  %TEC_ 

INHSCALARPOLY terminates when all methods are processed.  In %TEC_INHSCALARPOLY the 

two lists are built one of instances that match the method and the other the return data types 

of the same method.  These two lists are passed to another recursive procedure, called 

%TEC_INHSCALARPOLY_DT_O to compare the two sets.  The comparison is done with another 

recursive procedure called %TEC_INHSCALARPOLY_DT_O_CHECK that compares an object with 

the list of possible data types.  The comparison is broken down into two cases: the first is for 

basic domains and this requires a mapping for a basic domain into a Flora-2 domain and check 

for membership; and the second case caters for output relaxation of the instance-of.  These 

cases are encoded in procedure %TEC_OUTPUTRELAX.  The respective procedures follows: 

%type_error_check(?C,"case - inher scalar methods with result poly.") :- 

  ?C[inhscalarmethods->?Mlst], %tec_inhscalarpoly(?C,?Mlst).  

     

  %tec_inhscalarpoly(?C,[?M|?Mlst]):- 

    ?Rdtlst  = {?Rdt | ?C[?M*=>?Rdt],  not compound(?M)@_prolog}, 

    ?Ordalst = collectset{?Ro  | ?O:?C[?M->?Ro], not compound(?M)@_prolog, 

                                 if (?Sc::?C) then (not ?O:?Sc[?M->?Ro]) }, 

    writeln('UDO / inh scalar method / data type lst / result data lst: '), 

    writeln(?C)@_prolog, 

    writeln(?M)@_prolog, 

    writeln(?Rdtlst)@_prolog, 

    writeln(?Ordalst)@_prolog, 

    writeln('*')@_prolog,   

    %tec_inhscalarpoly_dt_o(?C,?M,?Rdtlst,?Ordalst), 

    %tec_inhscalarpoly(?C,?Mlst). 

  %tec_inhscalarpoly(?_,[]). 

 

    %tec_inhscalarpoly_dt_o(?C,?M,?Rdtlst,[?Orda|?Ordalst]) :- 

      %tec_inhscalarpoly_dt_o_check(?C,?M,?Rdtlst,?Orda), 

      %tec_inhscalarpoly_dt_o(?C,?M,?Rdtlst,?Ordalst). 

    %tec_inhscalarpoly_dt_o(?_,?_,?_,[]). 

 

      %tec_inhscalarpoly_dt_o_check(?C,?M,[?Rdt|?Rdtlst],?Od):-  

        if ( %tec_outputrelax(?Od,?Rdt) ) 

        then ( true ) 

        else ( %tec_inhscalarpoly_dt_o_check(?C,?M,?Rdtlst,?Od) ). 

 

      %tec_inhscalarpoly_dt_o_check(?C,?M,[],?Od) :- 

        ?Odte = collectset{?O|?O:?C[?M->?Od],?Sc::?C,not ?O:?Sc[?M->?Od] }, 

        w('--- data type err. - inh scalar - class/scalar mth/result data'), 

        writeln(?C)@_prolog, 

        writeln(?Odte)@_prolog,   

        writeln(?M)@_prolog, 

        writeln(?Od)@_prolog, 

        writeln('*')@_prolog.    

 

      %tec_outputrelax(?O,?U):-  

        ?U:udo, ?O:?U, 

        if (?_Sc:udo, ?_Sc::?U, ?O:?_Sc ) then (false) else (!). 

      %tec_outputrelax(?O,?U):- not ?U:udo, dt(?U,?Rdt1), ?O:?Rdt1, !. 
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As an example with output relaxation polymorphism for the result data type consider the 

following addition to the CLASS instance CHILD.  The attribute FAVINLAW is denoted by a 

PARENT data type.  The following objects have been assigned to the CHILD class and a type 

check invoked on it.  The following scripts show the execution trail of the type check; 

specifically note the type check complaining about instance CO1 when an instance-of PARENT 

or GRAND is expected. 

child [favinlaw{1:1}*=>parent ]. 

 

co1:child [favinlaw-> go1]. 

co2:child [favinlaw-> po1]. 

co3:child [favinlaw-> po2]. 

co4:child [favinlaw-> co1]. 

 

?- ?C=child, 

   %type_error_check(?C,"case – inhe. scalar methods with result poly."). 

UDO / inh scalar method / data type list / result data list: 

child 

favinlaw 

[grand,parent] 

[co1,go1,po1,po2] 

* 

--- data type error - inh scalar - class / scalar method / result data 

child 

[] 

favinlaw 

co1 

* … 

?C = child 

Yes. 

To data type check for scalar and non-inheritable methods a procedure, very similar to the 

above exists. 

10.5 Arity Method Data Type Checking 

In this section we deal with methods that return data and also take an argument.  (Without 

much loss of generality we are limiting the number of arguments to one).  The procedure to 

type check such a method is very similar to the one adopted for scalar methods.  A basic 

difference is that we need to type check the argument too rather than just the return type.  

Also the argument data type expected is substitutable by any subclass of the argument – i.e. 

input restriction. 

The %TYPE_ERROR_CHECK procedure takes two arguments: the first is the class instance and 

the second is a string that identifies the check required.  Once invoked the procedure retrieves 

a list of inheritable with arity methods and calls the recursive procedure 

%TEC_INHARITYPOLY with this list of methods.  In this procedure two lists are generated: the 
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first is all possible type signatures that satisfy the current method by considering argument 

data type restriction and return data type relaxation (note that this is available to us in view 

AS(…) ); the second is a list of tuples (where the each tuple holds the argument and return 

value for the current method definition).  These two lists are passed to another recursive 

procedure, called %TEC_INHARITYPOLY_DT_O, to run a universal quantification between the 

two sets; namely there is not data tuple that is not an instance-of an argument and return 

data type tuple.  If it is not the case we have established a type error and it is reported.  To 

determine if two tuples from the respective list equate there are two procedures that cater for 

this.  The first, called %TEC_INHARITYPOLY_DT_O_CHECK scans over the data items pair to 

every data type pair and the second procedure does the actual comparison between for each 

part of each pair. 

%type_error_check(?C,"case–inher. mths with parameter and result poly") 

  :-  ?C[inharitymethods->?Mlst], %tec_inharitypoly(?C,?Mlst).  

 

  %tec_inharitypoly(?C,[?M|?Mlst]):- 

    ?Rpdtlst  = collectset{?I1|as(?C,?M,?Pdt1,?Rdt1,"inh")[class->?C], 

                               ?I1=[?Pdt1,?Rdt1]}, 

    ?Orpdalst = collectset{?I2|?O:?C[?M(?Po)->?Ro],  

                               if  (?Sc::?C) 

                               then (not ?O:?Sc[?M(?Po)->?Ro]), 

                               ?I2=[?Po,?Ro]},      

    w ('class / inher arity method / result & para. '), 

    w ('data type list / result and parameter data list '), 

    writeln(?C)@_prolog, 

    writeln(?M)@_prolog, 

    writeln(?Rpdtlst)@_prolog, 

    writeln(?Orpdalst)@_prolog, 

    writeln('*')@_prolog,   

    %tec_inharitypoly_dt_o(?C,?M,?Rpdtlst,?Orpdalst), 

    %tec_inharitypoly(?C,?Mlst). 

  %tec_inharitypoly(?_,[]). 

 

    %tec_inharitypoly_dt_o(?C,?M,?Rpdtlst,[?Orpda|?Orpdalst]):- 

      %tec_inharitypoly_dt_o_check(?C,?M,?Rpdtlst,?Orpda), 

      %tec_inharitypoly_dt_o(?C,?M,?Rpdtlst,?Orpdalst). 

    %tec_inharitypoly_dt_o(?_,?_,?_,[]). 

 

      %tec_inharitypoly_dt_o_check(?C,?M,[?Rpdt|?Rpdtlst],[?Op,?Od]):- 

        ?Rpdt=[?Pdt,?Rdt], 

        dt(?Pdt,?Pdt1), 

        dt(?Rdt,?Rdt1), 

        if   ( %tec_instanceofonly(?Op,?Pdt1), 

               %tec_instanceofonly(?Od, ?Rdt1) ) 

        then ( true ) 

        else ( %tec_inharitypoly_dt_o_check(?C,?M,?Rpdtlst,[?Op,?Od])). 

 

      %tec_inharitypoly_dt_o_check(?C,?M,[],[?Op,?Od]):- 

        ?Odte = collectset{?O | ?O:?C[?M(?Op)->?Od], ?Sc::?C, 

                                 not ?O:?Sc[?M(?Op)->?Od] }, 

        w('--- data type error - inher poly arity ), 

        w(' - class / method / parameter data / result data'),                 

        writeln(?C)@_prolog, 

        writeln(?Odte)@_prolog, 

        writeln(?M)@_prolog, 

        writeln(?Op)@_prolog, 
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        writeln(?Od)@_prolog, 

        writeln('*')@_prolog.    

                              

      %tec_instanceofonly(?I,?C) :- 

        if   ( ?C:udo )  

        then ( ?I:?C, if ( ?Sc::?C, ?I:?Sc ) then ( false )) 

        else ( ?I:?C ).     

As an example consider a CLASS instance called CC with one arity and inheritable method, 

called CMTH5, defined.  A number of instances of CLASS CC are defined too.  On running the 

type check on CC it transpires from the check that two type errors have been detected and 

therefore these need addressing. 

cc:class[ cmth5(parent){1:1}*=>parent ]. 

  cco1:cc[ cmth5(po1)->co1 ]. 

  cco2:cc[ cmth5(go1)->po1 ]. 

  cco3:cc[ cmth5(po2)->po3 ]. 

  cco4:cc[ cmth5(co1)->go1 ]. 

 

?- ?C=cc, 

   %type_error_check(?C,"case - inher mths with param. and result poly."). 

… 

class / inher arity method / result & parameter data type list / result and 

parameter data list 

cc 

cmth5 

[[child,grand],[child,parent],[parent,grand],[parent,parent]] 

[[co1,go1],[go1,po1],[po1,co1],[po2,po3]] 

* 

--- data type error - inher poly arity - class / method / parameter data / 

result data 

cc 

[] 

cmth5 

go1 

po1 

* 

--- data type error - inher poly arity - class / method / parameter data / 

result data 

cc 

[] 

cmth5 

po1 

co1 

* 

?C = cc 

Yes. 

A similar procedure for arity methods, but non inheritable, is also available.  The basic 

difference is the view that is used to generate the methods to type check. 

10.6 Recursive Data Type Checking 

The list data structure has been extensively used in our framework.  In F-logic lists are used to 

create parameterised families of classes too by bounded polymorphism.  Flora-2 supports these 

too.  What follows are the general definitions required to integrate lists into our framework by 

having the possibility of creating a list of objects as a CLASS instance.  (Most of the signature 
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definitions are adopted from F-logic paper [KIFER95] and Flora-2 manual [YANGG08]).  A logical 

program that adopts the following definitions has to ensure that the program evaluation does 

not enter into infiniteness; i.e. the evaluation never terminates.  Clearly this is a concern too 

as we want type checking to terminate. 

The following rules help structure lists.  If ?H represent an instance-of an object (?C) and there 

exists a list of objects of ?C then their concatenation is also a list of objects ?C.  The null list, 

i.e. [], is by definition a list of objects ?C.  Also if two CLASS instances are related through the 

ISA relationship then so is the list of respective CLASSES. 

[]:list(?C). 

[?H|?Rlst]:list(?C) :-  ?H:?C,  ?Rlst:list(?C). 

list(?T)::list(?S)  :-  ?T:udo, ?S:udo, ?T::?S. 

The following are lists of objects that are instances of CLASS.  For example list of integers is an 

instance-of a CLASS (e.g. LIST(INTEGER) ).   

list(integer):class. 

list(integer)[ on{1:1} *=> Boolean ]. 

 

[1,2,3]:list(integer).  [1,2,3][on->true].  

[4,5]:list(integer).    [4,5][on->true]. 

Examples of lists of a user defined object PERSON follows.  Each list instance has in turn its 

instances (e.g. [PO1, PO2, PO3] is an instance-of LIST(PERSON) ).    Note the logical 

identifier of a list is its content; i.e. the identifier of the first list is [PO1]. 

list(parent):class. 

list(parent)[on{1:1}*=>boolean].  

 

[po1]:list(parent).         [po1][on->true]. 

[po2]:list(parent).         [po2][on->true]. 

[po1,po2,po3]:list(parent). [po1,po2,po3][on->true]. 

[po1,go1]:list(parent).     [po1,go1][on->true]. 

[po1,co1]:list(parent).     [po1,co1][on->true]. 

  The following is an example of a list of lists of a CLASS instance PERSON. 

list(list(parent)):class. 

list(list(parent))[on{1:1}*=>boolean]. 

 

[[po1]]:list(list(parent)).                   [[po1]][on->true]. 

[[po1],[po1,co1]]:list(list(parent)).         [[po1],[po1,co1]][on->true]. 

[[po1],[po1,go1]]:list(list(parent)).         [[po1],[po1,go1]][on->true]. 

Since the query ?I:LIST(PARENT) is not computable due to infiniteness one can try to control 

evaluation from entering an infinite loop.  There are a number of techniques:  first one can 

control the engine that runs Flora-2 inference to stop on such evaluation patterns (i.e. XSB 

Prolog evaluation is tweaked); secondly one can ensure that each query avoids this evaluation 

branch by instantiating a list instance to a variable with a standard expression that does not 
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trigger a spiral behaviour (e.g. using ?I[ON->TRUE] where this ground molecule has to be 

found in each list instance).  For the second case the query becomes ?I[ON->TRUE], 

?I:LIST(PARENT).  At this point of the research the latter is preferred.  In the near future 

this is to be revisited as dedicated control of XSB evaluation for Flora-2 programs has been 

incorporated in a 2012 concurrent versioning system update of XSB Prolog distribution.  (XSB 

and Flora-2 CVS are on SourceForge – { FLORA.SOURCEFORGE.NET }). 

One can attach a signature and logic to the polymorphic LIST(?) object and through the 

instance-of relationship both signature and logic are inherited.  Basic methods for lists include 

FIRST, REST, and APPEND.  These and other definitions follow: 

list(?T)[ first*=>?T, rest*=>list(?T),  

    append(list(?T))*=>list(?T),  

    lteinl(List(?T))*=>boolean,  

    mininl(list(?T))*=>list(?T) ]. 

 

?Lst[first->?H, rest->?R] :-      // head and tail of list 

    ?Lst:list(?_T),?Lst=[?H|?R]. 

 

?Lst[append(?Taillst)->?Newlst]:- // append a list to a list 

   ?Taillst:list(?T), 

   ?Lst:list(?T),  

   ?Lst[_append(?Taillst)->?Newlst]@_basetype. 

 

?Lst[lteinl(?Plst)->?BFlag] :-    // less than in length of list 

    ?Lst:list(?T), 

    ?Plst:list(?T),  

    ?Lst[_length -> ?Slst]@_basetype, 

    ?Plst[_length -> ?Splst]@_basetype, 

 if ( ?Splst > ?Slst ) then ( ?BFlag=true ) else ( ?BFlag=false ). 

 

?Lst[mininl(?Plst)->?Result] :-   //  which is the minimal (shortest) list 

    ?Lst:list(?T), 

    ?Plst:list(?T),  

    if ( ?Lst[lteinl(?Plst)->true] ) 

    then ( ?Result=?Lst ) 

    else ( ?Result=?Plst ). 

The following is an example of using polymorphic methods (e.g. FIRST and MININL) against 

list of PARENTS.  

?- ?I[on->true],?I:list(parent),?I[first->?F]. 

?I = [co1, co2]   ?F = co1 

?I = [po1]      ?F = po1 

... 

Yes. 

?- ?I1[on->true], ?I1:list(parent),  

   ?I2[on->true], ?I2:list(parent),  

   ?I1[ mininl(?I2)->?Minlst ]. 

?I1 = [co1, co2] 

?I2 = [co1, co2] 

?Minlst = [co1, co2] 

?I1 = [co1, co2] 

?I2 = [po1] 

?Minlst = [po1] 

... 

Yes. 
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In our type checking of scalar and arity methods the basic check was that an object is an 

instance-of any of the types indicated.  Consequently lists, if properly asserted through an 

instance-of on the lines just presented, can be type checked.  But there lies a caveat.  The 

assertion that an object is an instance-of a LIST(?C) object does not imply in Flora-2, together 

with our LIST(?C) signatures, that all of its constituents are indeed an instance-of ?C.  To 

type check an expression which includes a list requires not only the checks mentioned earlier 

but also a check on the content of specific LIST(?C) instance.  For this purpose another type 

of error-check procedure is introduced.  Lists’ being recursive structures in definition and 

content forces such a procedure to cope with list of list recursively.  The following script shows 

an invocation on lists presented earlier on LIST(PARENT) and LIST(LIST(PARENT)).  Note 

the type check flagging of infringements. 

?- ?L=list(parent),%type_error_check(?L,"case - list(?T) instances are of 

type ?T (or deep extent): "). 

case - list(?T) instances are of type ?T (or deep extent): 

flapply(list,parent) 

[[co1,co2],[po1],[po1,co1],[po1,go1],[po1,po2,po3],[po2]] 

tec_listof  true 

--- data type error - case - list(?T) instances are of type ?T (or deep 

extent): 

flapply(list,parent) 

parent 

[po1,go1] 

go1 

* 

?L = list(parent) 

Yes. 

?- %type_error_check(list(list(parent)),"case - list(?T) instances are of 

type ?T (or deep extent): "). 

case - list(?T) instances are of type ?T (or deep extent): 

tec_listof  false 

flapply(list,parent) 

[[[po1]],[[po1],[po1,co1]],[[po1],[po1,go1]]] 

--- tec_listof_recurse >>>> 

… 

--- data type error - case - list(?T) instances are of type ?T (or deep 

extent): 

flapply(list,parent) 

parent 

[po1,go1] 

go1 

* 

Yes 

The type-error check for testing the content of any recursive list is similar for those presented 

earlier except for the possibility that a list’s elements are themselves a list (and possibly with 

more depth).  The procedure invocation requires two arguments the first is a list-based 

structure (?L) and the second is the customary string to identify the task.  The first task of the 

procedure is to check that the first argument is indeed a list and if so it builds a list of objects 
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that are instance-of the list structure (i.e. ?L) and then passes ?L and the list of its instances 

to procedure %TEC_LISTOF.  This procedure has to check whether ?L, when unified with 

LIST(?DT), is defined through another list.  If it is not the case and ?DT is either a basic 

domain or an instance-of CLASS (but not of LIST(?C) nature) then procedure 

%TEC_LISTOF_DT is called with three arguments.  The arguments are ?L, ?DT, and the 

LIST(?) instances.  A universal quantification query checks if each LIST(?) instance 

element is an instance-of ?DT.  The remaining procedures are similar to the previous type 

error check own procedures from this point on. 

If the initial check in %TEC_LISTOF ?L unifies with LIST(LIST(?_DDT)) then basically we 

need to call another recursive branch of %TEC_LISTOF through procedure 

%TEC_LISTIF_RECURSE.  The later has to be recursive to ensure that depth of list within a list 

is catered for. 

%type_error_check(?L,"case - list(?T) inst are of type ?T (or deep extent): 

"):- 

  w('case - list(?T) instances are of type ?T (or deep extent): '), 

  if ( ?L = list(?_Dt) ) 

  then ( ?Ilst=collectset{?I|?I[on->true],?I:?L,?L:udo}, 

         %tec_listof(?L,?Ilst)) 

  else ( w('--- data type error – arg. provided is not a list(?T) type!'), 

         writeln(?L)@_prolog, 

         fail). 

 

  %tec_listof(?L,?Ilst) :-  

    if   ( ?L = list(?Dt), 

           (?Dt:udo;?Dt=integer;?Dt=string), 

           not ?Dt=list(?_Ddt) ) 

    then ( writeln(?L)@_prolog, 

           writeln(?Ilst)@_prolog, 

           %tec_listof_dt(?L,?Dt,?Ilst) ) 

    else ( if   ( ?L = list(?Dt2), ?Dt2=list(?_Ddt) ) 

            then ( writeln(?Dt2)@_prolog, 

                   writeln(?Ilst)@_prolog, 

                  %tec_listof_recurse(?Dt2,?Ilst)) 

           else ( w('--- data type error ‘), 

                  w(‘– arg. provided is not a list(?T)'), 

                  writeln(?L)@_prolog, 

                  fail) ). 

 

      %tec_listof_recurse(?Dt,[?Hl|?RIlst]):-  

         writeln('--- tec_listof_recurse >>>>')@_prolog, 

         writeln(?Dt)@_prolog, 

         writeln(?Hl)@_prolog, 

         %tec_listof(?Dt,?Hl), 

         %tec_listof_recurse(?Dt,?RIlst). 

      %tec_listof_recurse(?_Dt,[]):- !. 

 

         %tec_listof_dt(?L,?Dt,[?Lst|?Ilst]):- 

           %tec_listdt_dt_o(?L,?Dt,?Lst,?Lst), 

           %tec_listof_dt(?L,?Dt,?Ilst). 

        %tec_listof_dt(?_L,?_Dt,[]) :- !. 

 

           %tec_listdt_dt_o(?L,?Dt,?OLst,[?H|?Lst]):- 

             if   (%tec_listoutputrelax(?H,?Dt)) 
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             then (%tec_listdt_dt_o(?L,?Dt,?OLst,?Lst)) 

             else ( w('--- data type error - case - list(?T)'), 

                    writeln(?L)@_prolog, 

                    writeln(?Dt)@_prolog, 

                    writeln(?OLst)@_prolog, 

                    writeln(?H)@_prolog, 

                    writeln('*')@_prolog ). 

           %tec_listdt_dt_o(?_L,?_Dt,?_Lst,[]):- !. 

10.7 F-Bounded Polymorphism 

In the preceding sections we have seen how objects having a data-type signature and ISA 

relationship assertions are type checked, during run time, and where checking can identify a 

good range of data-typing errors.  The type checking dealt with attributes data type, arity 

methods with variance and contra-variance data type, and recursive structures (i.e. list). 

In our literature review it was stated that a subset of universally quantified polymorphism, i.e. 

bounded quantification, does not properly type check in the presence of recursive types.  In the 

same review a solution was indicated and it is called F-bounded quantification.  

To check if any user-defined object instance that has a type signature with self-reference one 

uses the following query.  The pattern is looking for any UDO instances that have a signature 

component which is the same UDO instance; the query is restricted to inheritable methods only. 

?- ?Clst=collectset{?C|?C:udo,(?C[?M*=>?C];?C[?M(?C)*=>?Rt])}. 

?Clst = [po, list(integer), list(parent), list(pt), list(list(parent))] 

… 

Yes. 

If one wants to identify recursive methods of classes (point (PT) and partial order (PO)) then 

following query will oblige: 

?- ?C=list(pt),?C[?M*=>?C;?M(?C)*=>?Rt;?M(?Pt)*=>?C]. 

… 

?C = list(pt)    ?M = append    ?Rt = ?_h5642    ?Pt = list(pt) 

?C = list(pt)    ?M = append    ?Rt = list(pt)   ?Pt = ?_h5594 

?C = list(pt)    ?M = rest      ?Rt = ?_h5499    ?Pt = ?_h5504 

… 

Yes. 

 

?- ?C=po,?C[?M*=>?C;?M(?C)*=>?Rt;?M(?Pt)*=>?C]. 

?C = po   ?M = leqinl   ?Rt = Boolean   ?Pt = ?_h5165 

?C = po   ?M = min      ?Rt = ?_h5204   ?Pt = po 

?C = po   ?M = min      ?Rt = po        ?Pt = ?_h5187 

?C = po   ?M = min(po)  ?Rt = ?_h5138   ?Pt = ?_h5143 

Yes 

If CLASS instance partial order (PO) has a sub-class called number (NB) then we expect the 

latter LEQINL method to have LEQINL(NB)*=>BOOLEAN rather than 

LEQINL(PO)*=>BOOLEAN to fit the contra-variance between these functional methods.  To get 

this pattern the CLASS instances PO and NB need to be re-cast as follows.  First create a 
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parametric class instance with data signature (i.e. FB_PO(?T) ), then create a parametric 

class instance with a data type instantiating the ?T variable for each type required, (e.g. 

FB_PO(PO) ).  Then the substituted types are in an ISA relationship this is reflected in the 

data signature of each respective parametric class instance.  Consequently, is the method 

LEQINL in the right subtype order? 

fb_po(?T)[leqinl(?T)*=>Boolean]. 

 

fb_po(po):class. 

fb_po(nb):class. 

 

po:class. 

nb:class. 

 

nb::po. 

 

?- fb_po(?T)[?M*=>?Rt]. 

?T = ?_h2514     ?M = leqinl(?_h2514)    ?Rt = Boolean 

Yes. 

 

?- fb_po(po)[?M*=>?Rt]. 

?M = leqinl(po)  ?Rt = boolean 

Yes. 

 

?- fb_po(nb)[?M*=>?Rt]. 

?M = leqinl(nb)  ?Rt = boolean 

Yes. 

At this point, where the designer needs to revise the class structure (and possibly migrate 

objects from a CLASS instance to another) the following query helps to establish which 

artefacts depend on a “deprecated” class:  

?- ?Deprecated=list(pt),?C[?M*=>?Deprecated;?M(?Deprecated)*=>?_Dt]. 

… 

?Deprecated = list(pt)    ?C = fb_po(list(pt))    ?M = leqinl 

Yes. 

10.8 Data Type Checking & Inference in our Framework 

In the previous sections we have been type checking the state of our object base.  Before that 

we presented a number of integrity-constraint specifications and enforcement procedures that 

maintain a consistent object base.  Nonetheless there are still possibilities that type errors are 

present.  There are three main sources:  first, our type system is not complete and neither 

completely adequate; second, the framework procedures themselves can develop type errors; 

and thirdly, think there are rules in the object base that have not fired because these are not 

satisfied within an object state. 

Another important activity undertaken here is the building of new data types through type 

inference and identifying and applying fixes to known data types (e.g. F-bounded fix in 
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recursive data types).  This has to be done post translation as EERM diagrams no not indicate 

constructs that map to parametric classes. 

Nonetheless to attenuate the problems with type checking it must be noted that rules and 

procedures make extensive use of meta-programming that in turn type restricts the firing of 

rules.  The expense of run-time checking and data-type inference is a useful technique for 

developing software even if strong typing is not adopted. 

10.9 Summary 

F-logic allows its objects to be associated with a variety of data type signatures and its 

evaluation is affected by type inference and its relationships (e.g. ISA and instance-of).  But we 

have seen how Flora-2 does not implement these type checking and inference in its evaluation.  

In the context of deductive systems we develop type checking that caters for methods that are, 

static, arity methods, polymorphic (e.g. overloaded and bounded), and recursive structures (e.g. 

lists).  All type checking and type inference is done through coding with Flora-2. 

Flora-2 procedures type check a user-defined object instances’ attributes, methods with one 

argument, and recursive data type (e.g. lists).  These checks are based on making sure an 

object is covered by a type signature, and is done at run-time.  Any type errors found are listed 

and explained. Other than specific type-checking procedures much of the code, presented in 

earlier sections, makes extensive use of signature expression when executing rules and 

procedures – i.e. it is less prone to data type errors because objects are filtered.  This also 

makes writing software somewhat more disciplined. 

The type checking also data checks properties overloading, parametric classes, and bounded 

polymorphism.  The framework also identifies signatures that require F-bounded 

polymorphism transformation and suggest possible solutions.  Also views are available to 

enumerate other object signatures that depend on a class that needs this transformation. 

The type system implemented is not complete; the scope of the data-type checking is instances 

for classes and structures; secondly, only single argument arity methods are checked.  This 

regime, as expected, is computationally expensive.  Also some expressions can easily take an 

evaluation into an infinite process; e.g. queries related to lists. 
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11 – Object-Oriented Query Model (I) 

This chapter and the next introduce query modelling over our object database and its 

supporting framework.  Query modelling is the design of language constructs that specify 

retrieval over an object base.  A query specification includes a range, properties that any 

output must satisfy, and the structure of its output.  It then needs to be processed and 

results made available. 

Query modelling aspects presented in this chapter and the next include: instantiation of 

queries and their results; introduction of an object algebra as a query language to 

manipulate an object base; working out the data type of a query result; and a logic 

programming implementation of the algebra’s semantics. 

Our object algebra has the following characteristics: firstly, it is totally procedural in 

contrast to declarative constructs presented so far; secondly, its input are objects, including 

schema objects like data-type signatures, and its outputs are also objects (i.e. with logical 

identifier, value, data type signature); thirdly, it is value and identifier based; fourthly, its 

semantics are given in Flora-2 with important parts in declarative constructs.  Another 

interesting characteristics is that the operators, unlike other algebras proposed, do not 

overlap much in their functionality. 

The central theme here is our object algebra and its close coupling with data-modelling 

constructs.  What justification exists for our algebra when a declarative system is present 

and workable?  Firstly, database algebras are procedural and are optimisable.  Secondly, 

with each algebraic query one can determine the correctness of the query and associate 

each query with a subset of declarative queries.  Thirdly, if the size of the data is greater 

than available RAM then procedural techniques based on storage access are required.  

Furthermore algebra aids in our understanding of complex queries, and is an excellent 

teaching tool in itself. 

There are a good number of algebraic operators and many have their origin in the 

relational algebra.  These include ‘union’, ‘difference’, ‘product’, ‘project’, and ‘select’; their 

implementation and integration in our data model necessitate a wider semantics due to the 
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data model’s rich constructs.  Other operators include ‘nest’, ‘unnest’, ‘rename’, ‘aggregate’, 

and ‘map’ (and are described in the next chapter).  Our algebra does have a basis in other 

proposals, see section 6.2 in chapter six, but has a number of additions and characteristics 

which makes it a distinct effort. 

11.1 Basic Query Modelling 

The traditional scope of query modelling is the retrieval, update, creation, and purging of 

objects from a database.  Here we focus on the retrieval from an object base; nonetheless 

retrieval is part of other aspects of query modelling.  For example it is a common operation 

to retrieve a set of objects and then purge these. 

Retrieval of objects in an object-oriented data model is based both on navigation (i.e. logical 

identifier traversal) and on matching values that make up an object’s value.  Also the 

retrieval specifications have a high-level nature.  Another important characteristic is that 

the query constructs cover a good portion of known query expression types; for a start a 

query model expresses all the queries of Codd’s relational language – technically called 

Codd’s completness. 

Another of Codd’s influence on query modelling is having both a declarative and a 

procedural language.  Examples of declarative queries, found in this study, include F-logic 

and ODMG OQL queries.  Ideally these languages should firstly be equipollent, and 

secondly, there should be a straightforward conversion from the declarative to the 

procedural language.  Once a procedural construct is at hand one has a basis for query 

optimisation. 

A query language is closed when a query’s output can be input to another query.  The 

relational model is a closed query language.  Open query languages do not allow the output 

of the first query to be the input of a second.  There are practical advantages for closed 

languages:  firstly, one can write a cascade of queries; secondly, one can build dependences 

in composite query evaluation.  There is another issue concerning the output of a query: 

what data-type signature should it take up.  There are some possibilities for the output’s 

data-type signature: it could be a set of identifiers; or a relation (i.e. like the relational 
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model); or a new object structure built from the input objects and the type of query 

operator.  The output could also be a homogenous or heterogeneous collection. 

If the queries themselves and the objects created from processing a query are objects in the 

framework too, then another level of object homogeneity has been achieved.  Furthermore, 

a query language should integrate with object-oriented themes such as instance-of, 

integrity constraints, and data-type signatures.  When integrating with an object-oriented 

paradigm a difficult issue is dealing with method invocations that change the state of an 

object during the processing of a query construct. 

11.2 Object Algebra and an Object Framework (I) 

This section presents an algebra we have purposely developed for our framework.  We want 

this algebra to be the target of a subset of OQL queries, and also be able to query process 

and optimise the algebraic expressions.  The set of operators are, collectively unique, and 

are tightly coupled with the underlying data model.  An important consideration is that 

these algebraic operators are implemented with declarative constructs to describe their 

semantics.  Another unique feature of the operators here is their capability to carry 

integrity constraints from the operator’s ranges to the query output, if applicable. 

We start with a short requirements specification for an object algebra to implement a query 

model.  Therefore the algebra complements the framework and object-database data 

modelling found in the previous chapters.  

The algebraic operators are to handle objects and object-oriented themes found in the 

framework as much as possible.  The algebraic operators have to allow both value-based 

and logical-identifier based access methods.  A number of the operators have relational data 

model origin, some to build object relationships, and some to unpack an object from its 

composite parts.  In terms of ranges (of objects) for the algebraic operands these can be 

classes, structures, and query instances. 

In terms of expressibility the algebra is to be at least Codd complete and offer a wide 

overlap with ODMG OQL.  Furthermore the object algebra’s output is closed; in the sense it 

creates objects (with identity, instance-of, and composite object). 
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In this exercise method invocations that change the state of an object during the processing 

of a query constructs are not acceptable.  Since we are dealing with retrieval it is assumed 

that such methods are not within the scope of the study.  Also the processing of a cascade of 

queries assumes that the underlying object base remains.  

The algebra too requires its development through a logic programming language; i.e. Flora-

2.  The object algebra is to have run-time and interactive capabilities in aspects of query 

specification, query processing, and data-type inference of the results. 

11.2.1 Our Algebra 

The algebra comes with ten operators: union, difference, project, product, rename, select, 

map, aggregate, nest, and unnest.  The operators work on an object-oriented collection.  

They have been described as value-based because the operands are cognisant of an object’s 

state value, class instantiation, and its logical identifier.  The operators have a common 

template for implementation: in general it is pre-condition satisfaction, instantiating the 

query instance and its details, instantiation query instance data type signature, 

implementation of the semantics, instantiating the result as instance-of the query at hand, 

and post check satisfaction (e.g. duplicate elimination).  The framework supports the 

algebra with an array of methods that are shared across operators’ implementation, and 

objects associated to each algebraic operator (e.g. object identified by WVF for map operator). 

It has to be noted that the algebraic operators are tightly coupled with the framework, the 

data-model encoding, and a schema definition.  For example, the range of an operand is 

either the deep extent of a class instance or limited to its immediate extent.  Another 

example, is the data type checking and inference follows that which has been done in an 

earlier chapter.  An important observation is that the operators are “shallow” in that they 

consider the top most structure of a range; the exceptions being select and map operators.  

The algebraic objects make extensive use of the framework as each query expression has an 

instance which is adorned by the query’s details. 

The input of an algebraic expression, as regards its range, is technically any extent of 

schema artefacts.  In our framework the most evident ranges are instances of CLASS, 

STRUCTURE, and ALGQUERY.  In chapter ten we have seen how parameterised classes of 
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lists were instances of CLASS or STRUCTURE; consequently a collection of lists are a range to 

these queries (albeit this requires more control in our coding when enumerating a query’s 

range extent).  The operand only works on the properties of ranges that have a data-type 

signature; therefore method overloading is catered for.  The map operator requires a “side” 

input of the specification of the function to apply; the end user has the possibility of 

supplying it at run time.  No operator is meant to invoke methods that change the input 

range while the query is being evaluated. 

The output of an algebraic operand is set of objects whose state structure is a tuple and 

which is covered by data-type signatures.  The tuple’s data-type signatures are derived 

from the operands input ranges.  Also the query output includes an assertion that the query 

is an instance of ALGQUERY object, and an assertion that the query results are an instance 

of the query instance.  As the outputs of an expression are objects, and part of the 

framework, this implies that our algebra has the property of closure. 

11.2.2 Object Algebra Constructs and their Realisation in the Framework 

A dedicated object, identified as ALGEBRA, holds a number of procedures related to our 

object algebra, for example each operator has a dedicated procedure attached to it.  Also for 

each algebraic operator an object is instantiated that contains reified rules required by that 

operator.  These reified rules cover query instantiation, query-data type signature, 

generation of logical identifier for a query’s instances, and materialising the data for the 

query’s instances.  For example the procedure for the operator union by value, %UV, is 

specified in ALGEBRA[%UV(?C1,?C2,?PARAM)] and takes three arguments – denoted by 

variables ?C1, ?C2, and ?PARAM.  The reified rules associated with it are found in object 

UVF with template UVF[ MTH(…) -> ${ … } ].   

Each algebraic query execution generates its objects (i.e. that satisfy it).  At a meta level 

each query is made an instance-of ALGQUERY; much like classes were instances of CLASS 

and STRUCTURE in an Chapter eight.  Each query needs an identifier whose composition 

follows the following template: OPERATOR([ARG]+).  For example the assertion 

UV(CLASS1,CLASS2,”DEEPEXTENT”):ALGQUERY states that we have an algebraic query 
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based on union by value between classes 1 and 2; the third argument is a parameter.  

Instances-of UV(…), i.e. the query, are identified by the following assertion: 

 

  

iuv(class1,class2,”deepextent”,objectN,1):uv(class1,class2,”deepextent”). 

 

Also each UV(…) has a data signature associated with it.  This is inferred from the classes 1 

and 2 instances.  Consequently it is expected that the input are covered by a data-type 

signature, and data type checked.  Three such constructs are instances-of CLASS, 

STRUCTURE, and ALGQUERY.  The following scripts shows three queries: the first query 

interrogates the object base for instance of ALGQUERY; the second query works out how 

many instances have been created for each ALGQUERY instance; and the third show 

instances of one particular ALGQUERY instance. 

?- ?Q:algquery. 

?Q = uv(person,postgrad,"extent") 

?Q = uv(student,exstudent,"deepextent") 

?Q = uv(student,exstudent,"extent") 

Yes. 

 

?- ?Qi=count{?I[?Q]|?Q:algquery,?I:?Q}. 

?Qi = 5    ?Q = uv(person,postgrad,"extent") 

?Qi = 9    ?Q = uv(student,exstudent,"extent") 

?Qi = 10   ?Q = uv(student,exstudent,"deepextent") 

Yes. 

 

?- ?I:uv(person,postgrad,"extent"). 

?I = iuv(person,postgrad,"extent",dri,1) 

… 

?I = iuv(person,postgrad,"extent",susan,2) 

Yes. 

Database algebras are sometimes classified by the number of ranges they have in their 

input.  In our algebra the operators are either unary (i.e. take a single range) or binary (i.e. 

take two ranges).  Some operators take a name of a function as an argument but by “habit” 

these are ignored when classifying by number of ranges. 

There are a large number of methods that are used across all operators.  For example since 

the operators are value based then duplicate detection and elimination is required; 

consequently the methods %DUPLICATES(…) and %DELDUPLICATE(…) of object ALGEBRA 

are accessible across the framework. 

11.2.3 Union and Difference 

Union and difference operators are binary operators and are set theoretic in meaning.  In 

this framework we insist that the operands are union compatible; i.e. the operators take 
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homogeneous and comparable lists of objects.  The output of the operators is also data-type 

homogeneous and it is inferred from the operands’ data type signatures.  Also these two 

operators are adequate to derive other set operators, for example intersection. 

Each of these operators has algebraic properties that are given in each respective sub-

section. 

11.2.3.1 Union Compatible 

The idea of union compatibility in the relational data model is that two operands in an 

algebraic operation have the same arity and domains match one to one between the 

operand’s attributes.  Attribute names are indispensable.  Not all algebraic operators 

require their operands to be union compatible. 

In our object-oriented data and query model we have to develop this to cater for operands 

that are in a sub-class relation (i.e. ISA), and for the possibility that attributes take 

arguments.  Also property names are used but generality is not lost as a renaming 

algebraic operation is available in this query model (see later section). 

The object ALGEBRA has a procedure called %UNIONCOMP that takes two arguments and 

returns a result string.  The procedure takes care of four cases through the invocation of 

procedure %UC.  The first deals with the spurious case when two input arguments are 

identical.  The second and third cases deal with arguments being in an explicit ISA 

relationship. For the fourth case another procedure is called, named %UCT, that checks that 

there is no method data signature in the first argument that is not in the second argument, 

and conversely there is no method in the second argument that is not in the first.  The 

method’s data type compatibility is done on name, cardinality constraints, and data type of 

a method argument and return data type.  This implementation of union compatibility 

between two object data signatures does not determine proper implicit subtype relationship 

between two operands. 

algebra[%unioncomp(?C1,?C2,?Text)]:- 

  if (%uc(?C1,?C2,?Text)) 

  then ( writeln('union compatible')@_prolog, true ) 

  else ( writeln('not union compatible')@_prolog, false ). 

 

  %uc(?C1,?C2,?Text) :- ?C1=?C2, ?Text="UC: Self",!. 

  %uc(?C1,?C2,?Text) :- ?C1::?C2,?Text="UC: $1 ISA $2 related",!. 

  %uc(?C1,?C2,?Text) :- ?C2::?C1,?Text="UC: $2 ISA $1 related",!. 
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  %uc(?C1,?C2,?Text) :- 

    if   (%uct(?C1,?C2),%uct(?C2,?C1))  

    then (false)  

    else (?Text="UC: all properties match",true). 

 

    %uct(?C1,?C2) :- ?C1[?M{?B:?T}*=>?D], \+ ?C2[?M{?B:?T}*=>?D]. 

    %uct(?C1,?C2) :- ?C2[?M{?B:?T}*=>?D], \+ ?C1[?M{?B:?T}*=>?D]. 

    %uct(?C1,?C2) :- ?C1[?M{?B:?T}=>?D],  \+ ?C2[?M{?B:?T}=>?D]. 

    %uct(?C1,?C2) :- ?C2[?M{?B:?T}=>?D],  \+ ?C1[?M{?B:?T}=>?D]. 

The following interactive script shows the use of union compatibility.  The first deals with 

checking union compatibility with itself.  The second call confirms that STUDENT (i.e. 

second argument) ISA PERSON.  The third check confirms that EXSTUDENT and STUDENT are 

union compatible even though they are not in an ISA relationship. 

?- algebra[%unioncomp(person,person,?T)]. 

union compatible 

?T = "UC: Self" 

Yes. 

?- student::person. 

Yes. 

?- algebra[%unioncomp(person,student,?T)]. 

union compatible 

?T = "UC: $2 ISA $1 related" 

Yes. 

?- exstudent::student. 

No. 

?- student::exstudent. 

No. 

?- algebra[%unioncomp(exstudent,student,?T)]. 

union compatible 

?T = "UC: all properties match" 

Yes. 

11.2.3.2 Union 

The binary union algebraic operator meaning for union compatible arguments is 

straightforward.  Any object that is an instance-of either argument is included in the result.  

Also the data type signature of the output is determined by a data type signature 

relationship of input arguments.  There are two issues specific to our data and query model: 

the first is whether the extent or deep extent of the arguments is required; the second being 

the demands that this operator is value based and produces a set (i.e. requires duplicate 

check and elimination). 

In the first example a spurious union between instances of CLASS PERSON is requested.  

The operator is conditioned to query only the extent of CLASS PERSON.  The verbose output 

confirms the union compatibility and indicates correctly that duplicates are present.  The 

verbose confirm duplicate deletion from the output too.  The query’s meta instance (i.e. 

instance-of ALGQUERY) and query result are shown in the script below (e.g. instances-of 
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UV(PERSON,PERSON,”EXTENT”), the verbose output of the algebraic operation, are shown 

too). 

?- algebra[%uv(person,person,"extent")]. 

union compatible 

UC: ok 

UC Self 

algquery instance created 

signatures created 

data loid and move done 

duplicate 

list[flapply(iuv,person,person,joe,1),flapply(iuv,person,person,jv,1),fla

pply(iuv,person,person,jv,1)] 

duplicate deletion done 

Yes. 

?- ?Q:algquery,?I:?Q. 

?Q = uv(person,person,"extent")     ?I = 

iuv(person,person,"extent",dri,1) 

?Q = uv(person,person,"extent")     ?I = iuv(person,person,"extent",j,1) 

?Q = uv(person,person,"extent")     ?I = iuv(person,person,"extent",p1,1) 

?Q = uv(person,person,"extent")     ?I = iuv(person,person,"extent",p2,1) 

Yes. 

?- ?I:person, not ?I:student. 

?I = dri 

?I = j 

?I = joe 

?I = jv 

?I = p1 

?I = p2 

Yes. 

In the following example a union between CLASS instance STUDENT and EXSTUDENT is 

requested.  The operation is adorned with a deep extent directive.  The verbose notes that 

arguments are union compatible as their properties match and no duplicates are detected 

on computation.  The result includes all instances coming from CLASSES EXSTUDENT, and 

STUDENT, (and POSTGRAD by ISA inference). 

?- algebra[%uv(student,exstudent,"deepextent")]. 

union compatible 

UC: ok 

UC: all properties match 

algquery instance created 

signatures created 

data loid and move done 

duplicate list[] 

Yes. 

?- ?Q:algquery,?I:?Q. 

?Q=uv(student,exstudent,"deep…") ?I=iuv(student,exstudent,"deep…",mary,1) 

… 

?Q=uv(student,exstudent,"deep…") 

?I=iuv(student,exstudent,"deep…",susan,1) 

Yes.?- ?I:postgrad. 

?I = susan 

Yes. 

For the union operator implementation two reified rules are used.  These are attached to an 

object identified with UVF. 
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The property ALGQUERYINSTANCE takes care to have a parameterised version and thus 

assert a UV(…) object is an instance-of ALGQUERY.  The method takes four arguments: the 

first two are the collections on which the union is to be executed.  The third contains an 

indicator to state whether a deep extent or an extent is required for the result. The forth 

contains the mode of union compatibility if indeed the first two arguments are compatible. 

  uvf  [algqueryinstance(?C1,?C2,?Param1,?Text) -> 

    ${ (  uv(?C1,?C2,?Param1):algquery[ uctext->?Text ] :- true  ) }]. 

Therefore for the above second example this reification invocation produces the following 

fact: 

uv(student,exstudent,"deepextent"):algquery[uctext->”UC: all prop. 

match”]. 

The second reification concerns the data-type signature of the result.  This is actually 

related to the union compatibility result.  For example if its two arguments are the same 

then the data signature of the result is the same too.  Also if all properties match then the 

result data-type signature is the same too.  If the two arguments are in an ISA relationship 

then the data-type signature is of the ancestral one.  In all cases the deep-extent directive 

does not affect these inferences; i.e. data-type signature of the output is of the data type 

signature of the arguments and not their descendants.  

The UVF object uses the ALGQUERYDT property and it takes four parameters: the first two 

denote the collections to union, the third for extent selection, and the forth the union 

compatible string.  The ALGQUERYDT has four instantiations each related to a different 

union compatible result string.  In each instantiation four rules are inserted into the 

framework to cater for inheritable (i.e. *=> ) and non-inheritable (i.e. => ) methods, and 

arity and non-arity (i.e. NOT COMPOUND(?M)) methods.  Each rule has the same pattern but 

each fire for a particular data signature type.  If there is a method signature in an 

argument class then it needs to be asserted in the output data type signature (i.e. of UV(…) 

object).  Actually there are two generic reification patterns: the first deals with ‘self’ and ‘all 

properties match’, and the second deals with ISA relationship (i.e. whether C1::C2 or 

C2::C1).   

 

 



Object-Oriented Data and Query Models 

Object-Oriented Query Model (I) - Page [ 272 ] 
 

uvf[ 

  algquerydt(?C1,?C2,?Param1,"UC: Self") -> 

  ${ (uv(?C1,?C2,?Param1)[?M{?B:?T}*=>?D] 

        :- ?C1[?M{?B:?T}*=>?D], not compound(?M)@_prolog), 

     (uv(?C1,?C2,?Param1)[?M{?B:?T}=>?D]       

        :-?C1[?M{?B:?T}=>?D],  not compound(?M)@_prolog), 

     (uv(?C1,?C2,?Param1)[?M(?P){?B:?T}*=>?D] 

        :-?C1[?M(?P){?B:?T}*=>?D]), 

     (uv(?C1,?C2,?Param1)[?M(?P){?B:?T}=>?D] 

        :-?C1[?M(?P){?B:?T}=>?D] ) }, 

 

  algquerydt(?C1,?C2,?Param1,"UC: $1 ISA $2 related") -> 

  ${ (uv(?C1,?C2,?Param1)[?M{?B:?T}*=>?D] 

        :- ?C2[?M{?B:?T}*=>?D], not compound(?M)@_prolog), 

     (uv(?C1,?C2,?Param1)[?M{?B:?T}=>?D] 

        :- ?C2[?M{?B:?T}=>?D],  not compound(?M)@_prolog ), 

     (uv(?C1,?C2,?Param1)[?M(?P){?B:?T}*=>?D] 

        :-?C2[?M(?P){?B:?T}*=>?D]), 

     (uv(?C1,?C2,?Param1)[?M(?P){?B:?T}=>?D] 

        :-?C2[?M(?P){?B:?T}=>?D] )  },     

 

  algquerydt(?C1,?C2,?Param1,"UC: $2 ISA $1 related") -> ${ … },         

 

  algquerydt(?C1,?C2,?Param1,"UC: all properties match") -> ${ … } 

]. 

In the following query example, where classes have union compatibility on a common data 

type signature, the data-type signature of the operation’s result is shown. 

?- uv(student,exstudent,"deepextent")[?M*=>?Dt;?M=>?Dt]. 

?M = enrolon        ?Dt = course 

?M = fname          ?Dt = string 

?M = stage          ?Dt = string 

?M = telno          ?Dt = integer 

?M = result(string) ?Dt = unit 

Yes. 

The reification of ALGQUERYDT for the above query creates the following rules that in turn 

create the data type signatures: 

  uv(student,exstudent,”UC: all properties match”)[?M{?B:?T}*=>?D] 

    :- student[?M{?B:?T}*=>?D], not compound(?M)@_prolog). 

  uv(student,exstudent,”UC: all properties match”)[?M{?B:?T}=>?D] 

    :- student[?M{?B:?T}=>?D],  not compound(?M)@_prolog. 

  uv(student,exstudent,”UC: all properties match”)[?M(?P){?B:?T}*=>?D] 

    :-? student[?M(?P){?B:?T}*=>?D]. 

  uv(student,exstudent,”UC: all properties match”)[?M(?P){?B:?T}=>?D] 

    :- student[?M(?P){?B:?T}=>?D]. 

The actual evaluation of union by value is done through procedure %UV in object ALGEBRA.  

The procedure %UV takes three arguments: the first two are the classes’ whose instances are 

to union (i.e. unified to variables ?C1 and ?C2) and the third is an indicator on the extent 

required (i.e. unified to  variable ?DEEP).  The first task is to determine if the input 

operands are union compatible by calling procedure %UNIONCOMP.  If successful its third 

argument that denotes the mode of union compatibility is unified to variable ?TEXT.  The 

next step is to create a union by value instance (i.e. UV(…) as an instance-of ALGQUERY), 

this is done through reification of ALGQUERYINSTANCE (and as explained earlier) and then 
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inserting these rules into the object base (i.e. Flora-2 INSERTRULE predicate).  To the object 

just created, i.e. UV(…), the data type signature is assigned through the reification of rules 

found in the property ALGQUERYDT and qualified by the mode of union compatibility (i.e. 

?DEEP).  The rules created need to be inserted in the object base too.  After instantiating 

the query’s meta structures it is time to materialise the instances of the query and this is 

done through three steps.  The first ensures that the output’s object has an identifier and is 

an instance-of the query instance (i.e. IUV(…):UV(…))–procedure %UVDATALOID is called.  

The second ensures that every object instance-of UV(…) just created has its properties 

assigned values from the argument’s instances. 

The procedure %UVDATA covers this.  The last step requires that the result is checked for 

value duplicates and if any are present then any extra instance is deleted from the 

framework object base – object ALGEBRA procedures DUPLICATES and DELDUPLICATE 

(these are explained in section 11.2.2.4 below). 

  algebra[%uv(?C1,?C2,?Deep)] :- 

    algebra[%unioncomp(?C1,?C2,?Text)], 

    writeln('UC: ok')@_prolog,   

    writeln(?Text)@_prolog, 

    uvf[ algqueryinstance(?C1,?C2,?Deep,?Text) -> ?Rules1 ], 

    insertrule { ?Rules1 }, 

    writeln('algquery instance created')@_prolog, 

    uvf[ algquerydt(?C1,?C2,?Deep,?Text)-> ?Rules2 ],  

    insertrule { ?Rules2 }, 

    writeln('signatures created')@_prolog, 

    %uvdataloid(?C1,?C2,?Deep), 

    writeln('data loid done')@_prolog, 

    %uvdata(?C1,?C2,?Deep), 

    writeln('move done')@_prolog,  

    algebra[%duplicates(uv(?C1,?C2,?Deep),?Duplst)], 

    write('duplicate list')@_prolog, writeln(?Duplst)@_prolog, 

    algebra[%delduplicate(?Duplst,uv(?C1,?C2,?Deep))], 

    writeln('duplicate deletion done')@_prolog. 

The procedure %UVDATALOID, listed below, takes three arguments which are unified in the 

calling procedure %UV.  Basically the procedure needs to create an identifier for each 

instance-of related to the procedure’s first two arguments.  For this the COLLECTSET 

predicate is used.  Because the operator has control on what extent to include in the output 

this is reflected in the qualifier inside each COLLECTSET invocation.  Since F-logic asserts 

the deep extent by inference than the ‘extent’ directive needs to weed off instances of any of 

its sub classes.  Once the required COLLECTSET is bound to each CLASS instance then each 

set is passed on its respective procedure to create the IUV(…) identifiers; these are called 
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%UVINSERTLEFT and %UVINSERTRIGHT.  Actually these procedures are very similar to each 

other and only differ in the composition of the logical identifier created. 

  %uvdataloid(?C1,?C2,?Deep) :-  

    if   (?Deep="extent") 

    then (?Ileftlst=collectset{?Ileft|  ?Ileft:?C1, 

                                        if (?Sc::?C1, ?Ileft:?Sc) 

                                        then (false) 

                                        else (true)}) 

    else (?Ileftlst=collectset{?Ileft|?Ileft:?C1}), 

    %uvinsertleft(?Ileftlst,?C1,?C2,?Deep), 

    if   (?Deep="extent") 

    then (?Irightlst=collectset{?Iright|?Iright:?C2, 

                                        if (?Sc::?C2, ?Iright:?Sc) 

                                        then (false) 

                                        else (true)}) 

    else (?Irightlst=collectset{?Iright|?Iright:?C2}), 

    %uvinsertright(?Irightlst,?C1,?C2,?Deep). 

 

    %uvinsertleft([?H|?Ileft],?C1,?C2,?Deep):- 

      insert { iuv(?C1,?C2,?Deep,?H, 1):uv(?C1,?C2,?Deep) }, 

      %uvinsertleft(?Ileft,?C1,?C2,?Deep). 

    %uvinsertleft([],?_,?_,?_).  

    %uvinsertright([?H|?Iright],?C1,?C2,?Deep):- 

      insert { iuv(?C1,?C2,?Deep,?H, 2):uv(?C1,?C2,?Deep) }, 

      %uvinsertright(?Iright,?C1,?C2,?Deep). 

    %uvinsertright([],?_,?_,?_). 

Procedure %UVINSERTLEFT (and UVINSERTRIGHT) is recursive and takes four arguments 

where all of which are instantiated in %UVDATALOID, i.e. the calling procedure.  The first 

argument, that drives the recursion, is the list of objects to create an identifier for.  On each 

procedure invocation an object instance-of assertion is inserted into the object base (i.e. 

IUV(…):UV(…) ).  The instance identifier, IUV(…) is a composition of class instances, 

extent indicator, the head of the list (i.e. first argument), and an arbitrary number.  The 

latter is the only difference between %UVINSERTLEFT and %UVINSERTRIGHT with values ‘1’ 

and ‘2’ respectively.  An example logical identifier is: 

iuv(student,exstudent,"deepextent",mary,1) 

The procedure %UVDATA also has three arguments that are unified in procedure %UV; these 

are the class instances and the extent directive.  The main idea of this procedure is to 

‘move’ properties from either argument instances to the result collection.  Since there are 

four properties of interest (two related to inheritance and two to arity) and two arguments 

(i.e. arbitrary mapped with ‘1’ and ‘2’) then each of the eight cases are collected and an 

appropriate recursive procedure is invoked; these are called %UNISERTPMETHOF and 

%UNISERTSMETHOD and deal with arity and nonarity methods.  The collection predicate for 

inheritable but non arity methods is unified to variable ?LEFTISMLST which loops over all 



Object-Oriented Data and Query Models 

Object-Oriented Query Model (I) - Page [ 275 ] 
 

objects that have their fifth parameter set to ‘1’ (i.e. an instance of ?C1) and are in an 

instance-of the union operation being computed, loops over all inheritable but non arity 

methods (i.e. ?M*=>?D, NOT COMPOUND(?M) ), and it finally relates actual instances-of 

?C1 (i.e. ?I) property values and is bound to ?R.  The ?WL structure is used to build a tuple 

and it is actually this tuple that the COLLECTSET aggregates. 

  %uvdata(?C1,?C2,?Deep):- 

     ?LeftIsmlst=collectset{ ?Wl |  

         iuv(?C1,?C2,?Deep,?I,1)[], 

         uv(?C1,?C2,?Deep)[?M*=>?D], 

         not compound(?M)@_prolog, 

          ?I:?C1[?M->?R], 

         dt(?D,?Dt), 

         ?R:?Dt, 

         ?Wl=f(?C1,?C2,?Deep,?I,1,?M,?R) }, 

     %uvinsertsmethod(?LeftIsmlst), 

    … 

    ?LeftIpmlst=collectset{ ?Yl |  

         iuv(?C1,?C2,?Deep,?I,1)[], 

         uv(?C1,?C2,?Deep)[?M(?Pd)*=>?D], 

         ?I:?C1[?M(?Pr)->?R], 

         dt(?D,?Dt), 

         ?R:?Dt, 

         dt(?Pd,?Pdt), 

         ?Pr:?Pdt, 

         ?Yl=f(?C1,?C2,?Deep,?I,1,?M,?Pr,?R) }, 

    %uvinsertpmethod(?LeftIpmlst), 

    … . 

 

        %uvinsertsmethod([?H|?Rlst]):- 

              ?H=f(?C1,?C2,?Deep,?I,?N,?M,?R), 

              insert{ iuv(?C1,?C2,?Deep,?I,?N)[?M->?R] }, 

              %uvinsertsmethod(?Rlst). 

        %uvinsertsmethod([]).      

 

        %uvinsertpmethod([?H|?Rlst]):- 

              ?H=f(?C1,?C2,?Deep,?I,?N,?M,?Pr,?R), 

              insert{ iuv(?C1,?C2,?Deep,?I,?N)[?M(?Pr)->?R] }, 

              %uvinsertpmethod(?Rlst). 

        %uvinsertpmethod([]). 

 

The procedures %UNISERTPMETHOF and %UNISERTSMETHOD are identical except for 

asserting methods with arity.  Each invocation of the procedure is passed a list of tuples – 

those just created with COLLECTSET and built the ?WL tuple, which has to be iteratively 

traversed to assert the proper object property: i.e. IUV(?C1,?C2,?DEEP,?I,?N)[?M-

>?R]. 

Properties of the union operator 

An important property of this union operator here is that it is value based.  As a 

consequence of being value based there is a possibility that the operator is lossy; for 

example processing a self union produces an output which is not equal to the input.  (In a 
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previous example we have seen that a number of person objects, with different identifiers, 

had common property values and consequently these duplicates had to be eliminated). 

Every relational operator has a number of algebraic properties: for example union is 

commutative, associative, and idempotent.  In our algebra the union is commutative, 

idempotent, and mostly associative.  These properties give an algebra a number of 

equivalence transformation rules that are based on structure.  We first describe 

commutatively and then associativity. We briefly state its idempotent properties. 

The structural equivalence of union by commutative state that the order of the operands is 

non- influential to the result (where Ei is a range – e.g. CLASS instance): 

     
 
⇔      

Commutativity implies, in our framework, that if the following is computed: 

?- algebra[%uv(student,exstudent,"extent")]. 

Then it implies the following (and therefore no need to re-compute it): 

?- algebra[%uv(exstudent,student,"extent")]. 

We propose a solution through F-logic (and Flora-2) use of identity (i.e. :=: operator).  In 

Flora-2 manual [YANGG08] it is made amply clear that the implementation of this 

congruence axiom is limited due to its computational costs; nonetheless what is available is 

within adequate requirement of this project.  Basically we want to assert the fact that the 

following two logical identifiers represent the same object and therefore each object has the 

same extent (i.e. result).  

?- uv(exstudent,student,"extent"):=:uv(student,exstudent,"extent"). 

Yes 

?- ?I:uv(student,exstudent,"extent"). 

?I = iuv(exstudent,student,"extent",mary,2) 

… 

?I = iuv(exstudent,student,"extent",william,1) 

Yes 

?- ?I:uv(exstudent,student,"extent"). 

?I = iuv(exstudent,student,"extent",mary,2) 

… 

?I = iuv(exstudent,student,"extent",william,1) 

Yes. 

To assert this equality we need a reified rule and an additional step in the union 

evaluation.  The rule is attached to UVF.ALGQUERYCOMMU and states that if there is an 

UV(C1,C2,”…”) object which is an instance-of ALGQUERY then there is an identical object 

reference with its classes juxtaposed; i.e. UV(C2,C1,”…”). 
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uvf[ algquerycommu(?C1,?C2,?Param1) ->  

     ${ (  uv(?C1,?C2,?Param1):=:uv(?C2,?C1,?Param1) :-  

                  uv(?C1,?C2,?Param1):algquery[uctext->?_Text]  ) }]. 

The code of the union by value procedure then needs alterations: basically a pre-test and a 

post-action.  The pre-test needs to check, whether the union query is an instance-of 

ALGQUERY; i.e. already computed.  While the post-action entails the materialisation of the 

reified rule in UVF.ALGQUERYCOMMU and inserting the rule into the object base. 

The structural equivalence of union by associativity state that the order of doing two unions 

in cascade is non - influential to the result: 

(     )    
 
⇔   (     )  

Within this framework union associativity has limitations.  The above identity works if the 

union compatibility mode is ‘self’ or ‘all properties match’ in either union.  If the mode is an 

ISA there are issues: the main one is that although each pair can be in an ISA relationship, 

it might not be the case in both expressions.  (Specifically, if E1::E2 and E3::E2 then E1 

and E3 are not ISA related).  An improvement is possible if the union compatibility check 

confirms implicit ISA relationships (and as indicated earlier).  Also it is expected that each 

union has the same extent for the associativity to compute.   

The reified rule follows: 

uvf[ algqueryassoc(?C1,?C2,?Param1) -> ${ (  

  

uv(uv(?C1,?C11,?Param1),?C2,?Param1):=:uv(?C1,uv(?C11,?C2,?Param1),?Param

1):-  

  uv(uv(?C1,?C11,?Param1),?C2,?Param1):algquery, 

  uv(uv(?C1,?C11,?Param1),?C2,?Param1)[uctext->"UC: Self";uctext->"All 

match"]) } ]. 

The following script indicates an example: 

?- algebra[%uv(person,operson,"extent")]. 

Yes. 

?- algebra[%uv(yperson,uv(person,operson,"extent"),"extent")]. 

Yes. 

?- ?Q:algquery. 

?Q = uv(person,operson,"extent") 

?Q = uv(yperson,uv(person,operson,"extent"),"extent") 

Yes. 

?- ?Q:algquery,?I:?Q. 

?Q = uv(person,operson,"extent") 

?I = iuv(person,operson,"extent",dri,1) 

… 

?Q = uv(yperson,uv(person,operson,"extent"),"extent") 

?I = 

iuv(yperson,uv(person,operson,"…"),"extent",iuv(person,operson,"…",p2,1),

2) 

Yes 

?- uv(?C11,?C3,?Param1):algquery[uctext->"UC: Self";uctext->"UC: all 

properties match"],?C11=uv(?C1,?C2,?Param1) . 
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?C11 = uv(person,operson,"extent") 

?C3 = yperson 

?Param1 = "extent" 

?C1 = person 

?C2 = operson 

Yes.  

The union by value operator is idempotent in the sense that repeated application of union 

on the same operands does not change the output. 

11.2.3.3 Difference 

The binary difference algebraic operator meaning for union compatible arguments is such 

that any object that is an instance-of the first argument but not of the second argument is 

included in the result.  The operator is not commutative.  The data-type signature of the 

output is determined by a data-type signature relationship of the input arguments.  Set 

difference is colloquially known as minus.  There are two issues specific to our data and 

query model: the first is whether the extent or deep extent of the arguments is required; the 

second being the demands that this operator is value based and produces a set (i.e. requires 

a value-based comparison and a duplicate check with elimination). 

An example of value-based difference is finding value-based instances of CLASS PERSON 

that are not instances of STUDENT CLASS; the example is expecting ISA inference.  The 

verbose output confirms union compatibility, and query related instantiations proceed very 

much like what happen in the union operation.  The operator has to take a turn for its own 

because it needs to remove instances; first it removes common instances by value with the 

second operand range, and secondly any duplicate objects, by value, present in the result’s 

computation.  The latter duplication check is identical to the one found in union by value. 

?- algebra[%mv(person,student,"deepextent")]. 

union compatible 

UC: ok 

UC: $2 ISA $1 related 

algquery instance created 

signatures created 

data loid done 

data move done 

?C1lst […]  

?C2lst […] 

Diff to purge list: […] 

Diff deletion done 

duplicate list[…] 

duplicate deletion done 

Yes. 

?- ?Q:algquery,?I:?Q. 

?Q = mv(person,student,"deepextent") ?I = 

imv(person,student,"deepextent",dri,1) 

?Q = mv(person,student,"deepextent") ?I = 

imv(person,student,"deepextent",j,1) 
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?Q = mv(person,student,"deepextent") ?I = 

imv(person,student,"deepextent",p1,1) 

?Q = mv(person,student,"deepextent") ?I = 

imv(person,student,"deepextent",p2,1) 

Yes. 

The second part of the script shows that difference by value is an instance-of ALGQUERY 

object and is identified by a template of %MV(ARG1,ARG2,PARMA1) structure and its 

instances are identified by IMV(…) template.  Again this is similar to the union by value 

except for the functors. 

The difference operator uses reified rules too.  The first two, ALGQUERYINSTANCE and 

ALGQUERYDT, deal with ALGQUERY instantiation and data type signature creation.  The 

following code snippet shows that these rules are properties of object MVF; i.e. the 

supporting object for difference operator. (Note there are actually four instantiations of 

ALGQUERYDT and each related to one positive union compatible determination).  The 

methods that are assigned reified rules take arguments and these have an identical 

meaning to that of the union by value presented in an earlier section. 

  mvf[algqueryinstance(?C1,?C2,?Param1,?Text) -> 

      ${ (  mv(?C1,?C2,?Param1):algquery[uctext->?Text]:- true  ) }, 

       

      algquerydt(?C1,?C2,?Param1,"UC:  all properties match") -> 

      ${ (  mv(?C1,?C2,?Param1)[?M{?B:?T}*=>?D] :- 

              ?C1[?M{?B:?T}*=>?D], not compound(?M)@_prolog), 

         (  mv(?C1,?C2,?Param1)[?M{?B:?T}=>?D]  :- 

              ?C1[?M{?B:?T}=>?D],  not compound(?M)@_prolog), 

         (  mv(?C1,?C2,?Param1)[?M(?P){?B:?T}*=>?D] :- 

              ?C1[?M(?P){?B:?T}*=>?D]), 

         (  mv(?C1,?C2,?Param1)[?M(?P){?B:?T}=>?D]  :- 

              ?C1[?M(?P){?B:?T}=>?D] ) }]. 

The following query shows the data signature of the example difference query just 

presented. 

?- ?Q:algquery[?M*=>?Dt;?M=>?Dt]. 

?Q = mv(person,student,"deepextent") ?M = fname  ?Dt = string 

?Q = mv(person,student,"deepextent") ?M = telno  ?Dt = integer 

… 

Yes. 

The operation difference by value implementation, ALGEBRA[%MV(…)], is similar to union.  

First union compatibility is checked and its mode determined; then the query instance and 

output signature are created through the procedure’s arguments and rule reification.  The 

semantics of procedure %MVDATALOID is a one sided copy of %UVDATALOID as only the left 

hand side instances, i.e. of ?C1, need instantiating.  Basically the procedure creates an 

instance-of assertion for the query object in the form of IMV(…):MV(…).  Likewise 
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procedure %MVDATA is a one sided copy of %UVDATA; the procedure copies property values 

from instances of the CLASS ?C1 to instances of MV(…).   

  algebra[%mv(?C1,?C2,?Deep)] :- 

    algebra[%unioncomp(?C1,?C2,?Text)], 

    writeln('UC: ok')@_prolog,  

    writeln(?Text)@_prolog, 

    mvf[ algqueryinstance(?C1,?C2,?Deep,?Text) -> ?Rules1 ], 

    insertrule { ?Rules1 }, 

    writeln('algquery instance created')@_prolog, 

    mvf[ algquerydt(?C1,?C2,?Deep,?Text)-> ?Rules2 ], 

    insertrule { ?Rules2 }, 

    writeln('signatures created')@_prolog, 

    %mvdataloid(?C1,?C2,?Deep), 

    writeln('data loid done')@_prolog, 

    %mvdata(?C1,?C2,?Deep), 

    writeln('data move done')@_prolog, 

    %mvdatadiffpurge(?C1,?C2,?Deep,[],?Difflst), 

    write('Diff to purge list: ')@_prolog,writeln(?Difflst)@_prolog, 

    algebra[%delduplicate(?Difflst,mv(?C1,?C2,?Deep))], 

    writeln('Diff deletion done')@_prolog, 

    algebra[%duplicates(mv(?C1,?C2,?Deep),?Duplst)], 

    write('duplicate list')@_prolog, writeln(?Duplst)@_prolog, 

    algebra[%delduplicate(?Duplst,mv(?C1,?C2,?Deep))], 

    writeln('duplicate deletion done')@_prolog.  

The coding takes a distinct slant in procedure %MVDATADIFFPURGE which is responsible for 

finding and purging instances moved to MV(…) but are also in ?C2 – i.e. should not be in the 

operation’s output.  The procedure takes five arguments: the first three are the two 

operands and the ISA inference indicator; the last two arguments are the start and end lists 

of instances-of MV(…) that need retracting.  The calling procedure, ALGEBRA[%MV(…)], 

binds the first four arguments.  On invocation the procedure creates two lists reflecting 

instances-of relationships:  the first is of IMV(…):MV(…) just created–?C1LST, and the 

second is of instances-of ?C2 (i.e. the second operand)–?C2LIST.  This procedure calls 

%MINUSLOID that takes five arguments: the first is the class instance ?C1, the next two are 

the lists just created, and the last two are the start and end list of instances that are to be 

retracted.  Procedure %MINUSLOID is recursive and iterates on the list of ?C1 instances; on 

each of its invocation the it calls another recursive procedure called %MINUSLOIDINNER 

that for the current instance of ?C1 all instances of ?C2 are checked for value duplication.  

The duplicate check is done to ALGEBRA[%DUPLICATE(…)] procedure 

%DUPL_CHK_COMP_DIFF that compares two instances by value.  (The procedure 

ALGEBRA[%DUPLICATE(…)] explanation is forthcoming).  If there is duplication then we 

halt comparison with ?C2 instances and push the duplicate object (i.e. an instance of ?C1) 

onto the duplicate list.  Once a duplicate list is built, in %MINUSLOID, it is passed back to 
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calling ALGEBRA[%MV(…)] to continue the final steps.  Of course the next step is to retract 

instances identified in %MVDATADIFFPURGE.  The last step of the operator is to ensure that 

their no duplicates in the result set – basically it is possible that there are duplicates in 

instances of ?C1 too. 

  %mvdatadiffpurge(?C1,?C2,?Deep,?Sduplst,?Duplst) :- 

    ?C1lst=collectset{?Ii|imv(?C1,?C2,?Deep,?I,1):mv(?C1,?C2,?Deep), 

                          ?Ii=imv(?C1,?C2,?Deep,?I,1)}, 

    if  ( ?Deep = "extent" ) 

    then (?C2lst=collectset{?H|?H:?C2, if (?Sc::?C2, ?H:?Sc) 

                                       then (false) 

                                       else (true)}) 

    else (?C2lst=collectset{?H|?H:?C2}), 

    write('?C1lst ')@_prolog,writeln(?C1lst)@_prolog, 

    write('?C2lst ')@_prolog,writeln(?C2lst)@_prolog, 

    %minusloid(?C1,?C1lst,?C2lst,?Sduplst,?Duplst). 

 

     %minusloid(?C1,[?I|?C1lst],?C2lst,?Sduplst,?Duplst) :- 

       %minusloidinner(?C1,?I,?C2lst,?Result), 

       if   (?Result=[]) 

       then (%minusloid(?C1,?C1lst,?C2lst,?Sduplst,?Duplst)) 

       else (%minusloid(?C1,?C1lst,?C2lst,[?I|?Sduplst],?Duplst)). 

     %minusloid(?_,[],?_,?Duplst,?Duplst):- !. 

 

       %minusloidinner(?C1,?I,[?H|?C2lst],?Result) :- 

         if   ( \+ %dupl_chk_comp_diff(?C1,?I,?H) ) 

         then ( ?Result=[?I] ) 

         else ( %minusloidinner(?C1,?I,?C2lst,?Result) ). 

       %minusloidinner( ?_,?_,[],[] ):- !. 

Properties of the difference operator 

The difference by value is neither commutative nor associative.  Nonetheless it is an 

important operator to express queries.  On the other hand it is a non-monotonic operator.  

At a computational level it is expensive to compute. 

11.2.3.4 Duplicate Elimination 

The high-level requirements for duplicate identification and purging are: given a CLASS 

instance-of (or STRUCTURE, or ALGQUERY), do any of its instances have value equivalence; 

and for any duplicates instances needs to be purged (but leaving one representation). 

The procedure %DUPLICATES, attached to object ALGEBRA, takes two arguments.  The first 

is a CLASS instance (i.e. ?C), and is bound in the calling procedure, and the second 

argument is a list of objects (?DUPLST) that are duplicate and this is its output.  The 

procedure starts by checking that the CLASS instance is a user-defined object or an 

ALGQUERY object, it creates a list of all its instances, and then calls a recursive procedure 

%DUPL_CHK that takes four arguments.  This procedure iterates on the list of instances, i.e. 

the second argument, and invokes a procedure %DUPL_CHK_COMP to check if any instance-of 
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the first argument has a value based copy to the head of the list (i.e. ?I).  Each invocation 

of %DUPL_CHK_COMP returns a list of duplicates and this is appended to %DUPL_CHK third 

argument.  When recursion for %DUPL_CHK ends because list of instances is exhausted then 

its third and fourth argument are unified. 

In procedure %DUPL_CHK_COMP it needs to determine if all properties match in value.  The 

pattern to determine this is in double negative: it is not the case that two instances have a 

different value in a property.  It is to be noted that ?I is compare not to all instances of the 

class but what is left of the list; note how the head and rest of list in %DUPL_CHK second 

argument are passed separately in %DUPL_CHK_COMP second and third arguments.  To 

check for this %DUPL_CHK_COMP calls procedure %DUPL_CHK_COMP_DIFF. The latter has 

four versions to take care of the four different data type signatures of interest. 

algebra[%duplicates(?C,?Duplst)] :- 

    (?C:class;?C:structure;?C:algquery), 

    ?Ilst=collectset{?I|?I:?C}, 

    %dupl_chk(?C,?Ilst,[],?Duplst). 

 

    %dupl_chk(?C,[?I|?Rlst],?Blst,?Flst):-  

      %dupl_chk_comp(?C,?I,?Rlst,[],?Dlsti), 

      ?Blst[_append(?Dlsti)->?Ilst]@_basetype, 

      %dupl_chk(?C,?Rlst,?Ilst,?Flst). 

    %dupl_chk(?_,[],?Flst,?Flst):- !. 

 

      %dupl_chk_comp(?C,?I,[?H|?Rlst],?Blst,?Dlsti):- 

        if   ( \+ %dupl_chk_comp_diff(?C,?I,?H) ) 

        then ( ?Blst[_append([?H])->?Ilst]@_basetype,  

               %dupl_chk_comp(?C,?I,?Rlst,?Ilst,?Dlsti)) 

        else ( %dupl_chk_comp(?C,?I,?Rlst,?Blst,?Dlsti)). 

      %dupl_chk_comp(?_,?_,[],?Dlsti,?Dlsti):- !.  

 

        %dupl_chk_comp_diff(?C,?I,?H) :-  

          ?C[?M*=>?D], not compound(?M)@_p, ?I[?M->?R1], ?H[?M->?R2],  

          ?R1 != ?R2, (not ?I[?M->?R2] ; not ?H[?M->?R1]). 

        %dupl_chk_comp_diff(?C,?I,?H) :-  

          ?C[?M=>?D],not compound(?M)@_prolog, ?I[?M->?R1], ?H[?M->?R2], 

          ?R1 != ?R2, 

          (not ?I[?M->?R2] ; not ?H[?M->?R1]), 

          not(?R1=?R2). 

        %dupl_chk_comp_diff(?C,?I,?H) :-  

          ?C[?M(?P)*=>?D],?I[?M(?P1)->?R1],?H[?M(?P2)->?R2], 

          ( ?R1 != ?R2 ; ?P1 != ?P2 ), 

          (not ?I[?M(?P2)->?R2]; not ?H[?M(?P1)->?R1] ). 

        %dupl_chk_comp_diff(?C,?I,?H) :-  

          ?C[?M(?P)=>?D],?I[?M(?P1)->?R1],?H[?M(?P2)->?R2], 

          ( ?R1 != ?R2 ; ?P1 != ?P2 ), 

          (not ?I[?M(?P2)->?R2]; not ?H[?M(?P1)->?R1] ). 

This procedure is computationally expensive even though coding tries to minimise 

comparisons.  In later sections techniques are shown on how decrease its computation cost 

or avoid its evaluation. 
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The purging of duplicates once identified is straight forward.  The procedure 

%DELDUPLICATE is attached to object algebra and takes two arguments.  The first 

argument is a list of objects to delete and the second argument is the CLASS instance.  The 

procedure calls a recursive procedure %PROC_DELDUPLICATE to iterate on the list of objects 

and for each invocation deletes the head of the list by retracting the instance-of assertion 

(i.e. ?H:?C).  The retraction is done through Flora-2 object base operation DELETEALL{…}. 

  algebra[%delduplicate(?Duplst,?C)] :- %proc_delduplicate(?Duplst,?C). 

 

    %proc_delduplicate([?H|?Duplst],?C) :-   

      deleteall{?H:?C}, 

      %proc_delduplicate(?Duplst,?C). 

    %proc_delduplicate([],?_). 

11.2.3.5 Intersection 

The binary intersection algebraic operator meaning for union compatible classes insists 

that any object included in the result must have an instance-of in both arguments.  Also the 

data type signature of the output is determined by a data type signature relationship of its 

input arguments.  There are two issues specific to our data and query model: the first is 

whether the extent or deep extent of the arguments is required; the second being the 

demands that this operator is value based and produces a set (i.e. requires duplicate check 

and elimination). 

Also it is well known that intersection is derived from difference and union, or difference 

operators.  The following identity holds (where Ei is for example a CLASS instance): 

     
 
⇔ (    (     )) 

Intersection, like union by value, is commutative and associative.  Also, as discussed for the 

union operator, interaction by value is lossy. 

In our framework this works as follows:  objects STUDENT and POSTGRAD are instances-of 

CLASS and furthermore POSTGRAD is ISA related to STUDENT.  The intersection of their 

deep extent is equal to POSTGRAD’S deep extent.  The following script shows that the 

intersection of these deep extents produces does produce postgrad deep extent (i.e. derived 

from object SUSAN).  Note the output’s data signature and its properties assignment. 
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?- algebra[%mv(student,postgrad,"deepextent")]. 

Yes. 

?- ?Q:algquery. 

?Q = mv(exstudent,student,"deepextent") 

… 

Yes. 

 

?- ?I:mv(student,postgrad,"deepextent"). 

?I = imv(student,postgrad,"deepextent",mary,1) 

… 

?I = imv(student,postgrad,"deepextent",robert,1) 

Yes. 

?- algebra[%mv(student,mv(student,postgrad,"deepextent"),"deepextent")]. 

?- ?I:mv(student,mv(student,postgrad,"deepextent"),"deepextent"). 

?I = imv(student,mv(student,postgrad,"deepextent"),"deepextent",susan,1) 

Yes. 

?- ?I:postgrad. 

?I = susan 

Yes.  

?- 

mv(student,mv(student,postgrad,"deepextent"),"deepextent")[?M*=>?Dt;?M=>?

Dt]. 

?M = enrolon         ?Dt = course 

?M = fname           ?Dt = string 

?M = stage           ?Dt = string 

?M = telno           ?Dt = integer 

?M = result(string)  ?Dt = unit 

Yes. 

?- ?I:mv(student,mv(student,postgrad,"deepextent"),"deepextent")[?M->?R]. 

?I = imv(…)   ?M = enrolon  ?R = bsc_eng 

?I = imv(…)   ?M = fname    ?R = "susan"^^_string 

?I = imv(…)   ?M = stage    ?R = "s"^^_string 

… 

Yes. 

11.2.4 Project 

The unary project by value operator produces a set of objects from a range whose properties 

are the ones passed on to the operator.  The operand takes an indicator as to whether deep 

extent or extent of a range is required.  Other than ignoring non-listed properties from the 

target class instance the operator has to ensure the output is devoid of duplicates by value.  

The project operator is known to be a constructor operator in database algebras as it builds 

a structure from the input structure; albeit with fewer properties.  Also the data-type 

signature of the output is determined by a data-type signature relationship of input 

argument and the list of properties to project. 

A basic example that projects by value on two attributes follows: project properties FNAME 

and TELNO from CLASS instance PERSON’S deep extent.  The invocation of operator called 

ALGEBRA[%PV(…)] shows it takes three arguments: the class range, ISA indicator, and the 

list of properties to project.  The script shows that no projected properties are undefined for 

CLASS PERSON, and finally the duplicate test has passed.  The query instance and query’s 
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instances-of are also shown.  In the last query the projected values are shown (with output 

heavily sanitised). 

?- algebra[%pv(person,"deepextent",[fname,telno])]. 

method not found list: [] 

Methods exist: ok 

algquery instance created 

signatures created 

data loid and move done 

duplicate list[…] 

duplicate deletion done 

 

Yes. 

?- ?Q:algquery,?I:?Q. 

?Q=pv(person,"deepextent",_#'17253)  

?I=ipv(person,"deepextent",_#'17253,dri) 

?Q=pv(person,"deepextent",_#'17253)..?I=ipv(person,"deepextent",_#'17253,

j) 

… 

?Q=pv(person,"deepextent",_#'17253)..?I=ipv(person,"deepextent",_#'17253,

susan) 

Yes. 

?- ?_Q:algquery,?I:?_Q[?M->?Rt]. 

?I = ipv(person,"deepextent",_#'17253,dri)  ?M = fname  ?Rt = 

"dri"^^_string 

?I = ipv(person,"deepextent",_#'17253,dri)  ?M = telno  ?Rt = 

"238751"^^_integer 

?I = ipv(person,"deepextent",_#'17253,j)    ?M = fname  ?Rt = 

"joe"^^_string 

?I = ipv(person,"deepextent",_#'17253,j)    ?M = telno  ?Rt = 

"224502"^^_integer 

… 

Yes. 

The following example shows project by value on properties that include a method with an 

argument:  project out the FNAME and RESULT(…) properties for all instances-of STUDENT 

(but not its deep extent).  The three queries in the following script depict: first the project 

by value operation, second the data signature of the result instance-of query, and the third 

being the output of the query (i.e. sanitised). 

?- algebra[%pv(student,"extent",[fname,result(string)])]. 

method not found list: [] 

Methods exist: ok 

… 

Yes. 

?- ?Q:algquery[?M*=>?Rt;?M=>?Rt]. 

?Q = pv(student,"extent",_#'17254)   ?M = fname   ?Rt = string 

?Q = pv(student,"extent",_#'17254)   ?M = result(string) ?Rt = unit 

… 

Yes 

?- ?Q:algquery,?I:?Q[?M->?Rt]. 

?Q = pv(…)   ?I = ipv(…)   ?M = fname                 ?Rt = 

"mary"^^_string 

?Q = pv(…)   ?I = ipv(…)   ?M = result("a"^^_string)  ?Rt = idb 

?Q = pv(…)   ?I = ipv(…)   ?M = result("b"^^_string)  ?Rt = javaprog 

?Q = pv(…)   ?I = ipv(…)   ?M = result("b"^^_string)  ?Rt = pdb 

?Q = pv(…)   ?I = ipv(…)   ?M = result("c"^^_string)  ?Rt = dsa 

The project by value also uses two reified rules; these are attached to an ad hoc object with 

identifier PVF.  In property ALGQUERYINSTANCE the reified rule creates the ALGQUERY 
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instance in the form of PV(…):ALGQUERY.  The method actually takes four arguments: the 

first being the class instance, the second is the ISA indicator, the third argument is the list 

of properties to project, and the forth is a unique identifier (to be explained later).  Note 

that the projected list is added to property PROJECTION of object PV(…) just created. 

pvf  [algqueryinstance(?C1,?Param1,?Mthlst,?Tag) -> 

  ${ (  pv(?C1,?Param1,?Tag):algquery [projection->?Mthlst] :- true )}]. 

The second reification concerns the data type signature of the result and it is attached to 

property ALGQUERYDT.  The data type of a projection is determined by the method list to 

project.  The invocation requires four arguments: the first is the CLASS range, second is the 

ISA indicator, the third is a property list, and the forth is a unique identifier. Once an 

instantiation of a reified rule is requested it builds a rule that for each property, in the list, 

it copies its data type signature from ?C1 instance to a PV(…) instance.  The rule uses a 

procedure called %LMEMBER to recursively iterate the method list.  Actually four rules are 

created for four possible data signatures of interest here (i.e. ?M*=>?DT, ?M(?A)*=>?DT, 

?M=>?DT, AND ?M(?A)=>?DT). 

  pvf  [algquerydt(?C1,?Param1,?Mthlst,?Tag)  -> 

        ${ (pv(?C1,?Param1,?Tag)[?M{?B:?T}*=>?D] 

              :-  pv(?C1,?Param1,?Tag):algquery, 

                  %lmember(?M,?Mthlst), 

                  ?C1[?M{?B:?T}*=>?D], 

                  not compound(?M)@_prolog), 

        …  }]. 

The actual evaluation of project by value is done through procedure %PV in object ALGEBRA.  

The procedure %PV takes three arguments: the first is a class instance from which to project 

(i.e. unified to variable ?C1), the second is an indicator on the extent required (i.e. unified to  

variable ?DEEP), and the third argument being the list of properties to project.  The first 

task is to ascertain that the methods in the list properties are indeed found in the class 

instance data type signature.  An ad hoc ALGEBRA object method is responsible for this and 

it is called ALGEBRA[%METHODSEXIST(…)] – see section 11.2.3.1 for its explanation.  To 

use this method a call is made with a CLASS instance, i.e. ?C1, and method list, i.e. 

?USMTHLAST, and if all methods have a data type signature in CLASS instance, then an 

empty list is returned in the third argument; otherwise the return list would have the 

offending methods without a data type signature.  The next actions are to sort the method 

list and use Flora-2 meta-level construct to generate a unique identifier; it is called newoid 
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– these are required together with the operator invocation in the two reification rules 

ALGQUERYINSTANCE and ALGQUERDT of object PVF.  These rules are instantiated are 

inserted into the object base.  The next action is to create the query object instance-of 

assertions and this is done through calling procedure %PVDATALOID(…).   The assertions 

are of the form IPV(…):PV(…).  Once an identifier is created for an instance then the next 

step is to assigned values to the projected properties – the procedure %PVDATA(…) takes 

care of this and is explained soon.  The last step require that any value duplicates in the 

result set are identified and retracted: as usual these are taken care by object algebra 

methods %DUPLICATES(…) and %DELDUPLICATES(…). 

  algebra[%pv(?C1,?Deep,?Usmthlst)] :- 

      algebra[%methodsexist (?C1,?Usmthlst,?Nomthlst)], 

      if   ( ?Nomthlst = [] ) 

      then ( writeln('Methods exist: ok')@_prolog ) 

      else ( write('Methods list: problem; missing attributes - ')@_p, 

             writeln(?Nomthlst)@_prolog, 

             fail), 

      call(sort(?Usmthlst,?Mthlst)@_prolog), 

      newoid{?Tag}, 

      pvf[ algqueryinstance(?C1,?Deep,?Mthlst,?Tag) -> ?Rules1 ], 

      insertrule { ?Rules1 }, 

      writeln('algquery instance created')@_prolog, 

      pvf[ algquerydt(?C1,?Deep,?Mthlst,?Tag)-> ?Rules2 ], 

      insertrule { ?Rules2 }, 

      writeln('signatures created')@_prolog, 

      %pvdataloid(?C1,?Deep,?Mthlst,?Tag), 

      %pvdata(?C1,?Deep,?Mthlst,?Tag), 

      writeln('data loid and move done')@_prolog, 

      algebra[%duplicates(pv(?C1,?Deep,?Tag),?Duplst)], 

      write('duplicate list')@_prolog, writeln(?Duplst)@_prolog, 

      algebra[%delduplicate(?Duplst,pv(?C1,?Deep,?Tag))], 

      writeln('duplicate deletion done')@_prolog. 

The procedure %PVDATA is called with its four arguments unified by the calling procedure.  

In %PVDATA a list of tuples is created for each of the four types of data-type signature 

considered in the framework and related to the arguments passed to the procedure.  The 

aggregate COLLECTSET predicate uses %LMEMBER predicate to ensure that only methods in 

the projection list are of interest.  Once the list of tuples is created, ?WL, and aggregated 

then this list is passed to recursive procedure %PVINSERTSMETHOD(…) to assert arity less 

methods values. 

    %pvdata(?C1,?Deep,?Mthlst,?Tag) :- 

       ?LeftIsmlst=collectset{  

         ?Wl | pv(?C1,?Deep,?Tag):algquery, %lmember(?M,?Mthlst), 

               ipv(?C1,?Deep,?Tag,?I)[],  pv(?C1,?Deep,?Tag)[?M*=>?D], 

               not compound(?M)@_prolog, 

               ?I:?C1[?M->?R],dt(?D,?Dt),?R:?Dt,  

               ?Wl=f(?C1,?Deep,?Tag,?I,?M,?R) }, 

       %pvinsertsmethod(?LeftIsmlst), 

      …  . 
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      %pvinsertsmethod([?H|?Rlst]):- 

        ?H=f(?C1,?Deep,?Tag,?I,?M,?R), 

        insert{ ipv(?C1,?Deep,?Tag,?I)[?M->?R] }, 

        %pvinsertsmethod(?Rlst). 

      %pvinsertsmethod([]). 

Properties of the project operator 

One of the few relevant properties is that projection by value is idempotent. Another 

property is that successive projects on the same class are equal to the last project; of course 

each successive projected method list must be a subset of the previous: (Pi in caps is the 

customary symbol for projection and class denotes ranges – e.g. CLASS instance). 

∏ (∏  (∏ (     )
  

) 
    

)
  

 ∏ (     )
  

 

                    

11.2.4.1 Check existence of methods in a data type signature 

The procedure to check if a methods list exists is found in object ALGEBRA and is called 

%METHODSEXIST.  The procedure takes three arguments the first two are the class instance 

and the method list to check while the third is a list of methods that have not been found in 

the current class instance.  While the first two arguments are unified by the calling 

procedure the third is return my procedure %METHODSEXIST.  To iterate over the methods 

in the list the procedure calls a recursive procedure %PROC_METHODSEXIST with the first 

three arguments unified and a forth for the return result.  The first two correspond to the 

class instance and the methods list to check.  A simple conjunctive test checks if data type 

signature for method exists; if not it is appended to the not found list.  Once all methods are 

tested the recursion terminates and result is unified and passed on to calling procedures. 

algebra[%methodsexist(?C1,?Mthlst,?Nomthlst)]:-                   

           %proc_methodsexist(?C1,?Mthlst,[],?Nomthlst), 

           write('method not found list: ')@_prolog, 

           writeln(?Nomthlst)@_prolog. 

 

   %proc_methodsexist(?C1,[?M|?Mthlst],?S,?Nomthlst):- 

       if (?C1[?M*=>?_];?C1[?M=>?_]) 

       then (%proc_methodsexist(?C1,?Mthlst,?S,     ?Nomthlst)) 

       else (%proc_methodsexist(?C1,?Mthlst,[?M|?S],?Nomthlst)).  

   %proc_methodsexist(?C1,[],?Nomthlst,?Nomthlst) :- !. 

The following script shows an invocation of the procedure with an arbitrary list of methods 

that are checked for presence in CLASS instance STUDENT.  The script shows that method 

RESULT is not present but RESULT(STRING) is. 
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?- ?C=student, ?C[?M*=>?Dt; ?M=>?Dt]. 

?C = student   ?M = fname            ?Dt = string 

… 

?C = student   ?M = result(string)   ?Dt = unit 

Yes. 

?- ?C=student, ?Mthlst=[fname, result, result(string)],  

   algebra[%methodsexist(?C,?Mthlst,?Nogood)]. 

method not found list: [result] 

?C = student   ?Mthlst = [fname, result, result(string)]  ?Nogood = 

[result] 

Yes. 

11.2.5 Product 

Product by value is based on the set theoretic operand (i.e. Cartesian product), it is a binary 

operation between two classes, and it is used to build other structures.  For product by 

value to work there must be no property name in common in its two input classes.  The 

result’s structure of a product by value is a concatenation of both arguments’ respective 

structures.  The result’s content is the pairing of every instance of one argument with every 

instance of the second argument.  There are two issues specific to our data and query 

model: the first is whether the extent or deep extent of the arguments is required; the 

second being the demands that this operator is value based and produces a set (i.e. requires 

duplicate check and elimination). Another particular issue is self product, which is a basis 

of self join, and its evaluation.  As explained this is not allowed unless one operand has its 

properties renamed to avoid naming clash in the result. 

In the following example a product by value is executed for CLASS instances UNIT and 

STUDENT.  The operator is asked to consider the deep extent.  The verbose output confirms 

no property, by name and data type, is found in both CLASS instances, and indicates that no 

duplicates by value are present either.  The query’s meta instance (i.e. instance-of 

ALGQUERY) and query result are shown in the script below (e.g. instances-of 

XV(UNIT,STUDENT,"DEEPEXTENT").  In the middle part of the script the data type 

signature of the result is indicated.  Also the aggregate queries at the end of the script, and 

given there are no duplicates, confirm the output size, i.e. the cardinality of the output, is 

equal to the multiplication of the cardinality of the arguments. 

?- algebra[%xv(unit,student,"deepextent")]. 

Nameclash: none / ok 

algquery instance created 

signatures created 

data loid and move done 

duplicate list[] 

duplicate deletion done 

Yes. 

?- ?Q:algquery,?Q[?M*=>?Dt;?M=>?Dt]. 
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?Q = xv(unit,student,"deepextent") ?M = applicableto ?Dt = course 

?Q = xv(unit,student,"deepextent") ?M = assessment   ?Dt = string 

?Q = xv(unit,student,"deepextent") ?M = coordby      ?Dt = person 

?Q = xv(unit,student,"deepextent") ?M = credits      ?Dt = integer 

?Q = xv(unit,student,"deepextent") ?M = enrolon      ?Dt = course 

?Q = xv(unit,student,"deepextent") ?M = fname        ?Dt = string 

… 

Yes. 

?- ?_Q:algquery,?I:?_Q, ?I[uname->?U,fname->?N]. 

?I = ixv(…)   ?U = "group work"^^_string     ?N = "mary"^^_string 

?I = ixv(…)   ?U = "group work"^^_string     ?N = "michael"^^_string 

?I = ixv(…)   ?U = "group work"^^_string     ?N = "nancy"^^_string 

… 

?I = ixv(…)   ?U = "dist db"^^_string        ?N = "nancy"^^_string 

… 

72 solution(s) in 0.0000 seconds 

Yes. 

?- ?Q:algquery,?Icnt=count{?I|?I:?Q}. 

?Q = xv(unit,student,"deepextent")  ?Icnt = 72   ?I = ?_h3814 

Yes. 

?- ?C=student,?Ic=count{?I|?I:?C}. 

?C = student                        ?Ic = 8      ?I = ?_h3687 

Yes. 

?- ?C=unit,?Ic=count{?I|?I:?C}. 

?C = unit                           ?Ic = 9      ?I = ?_h3675 

Yes. 

The following script is based around an example of a self product on CLASS instance 

COURSE.  The verbose output notes that signatures created for the result are cognisant of 

self product and duplication check is executed but without any occurrence.  The first query 

lists the instances, while the next two compare the data-type signature of COURSE and its 

self product (at least for inheritable methods).  In the data-type signature of the product 

result note that the method names have been renamed to avoid any name conflict.  The last 

query shows a part of the output. 

?- algebra[%xv(course,course,"deepextent")]. 

Nameclash: none / ok 

algquery instance created 

signatures created (for self product) 

data loid and move done 

duplicate list[] 

duplicate deletion done 

Yes. 

?- ?Q:algquery,?I:?Q. 

?Q = xv(…) ?I = ixv(course,course,"deepextent",ba_english,ba_english) 

?Q = xv(…) ?I = ixv(course,course,"deepextent",ba_english,bsc_comp) 

?Q = xv(…) ?I = ixv(course,course,"deepextent",ba_english,bsc_eng) 

… 

Yes. 

?- course[?M*=>?Rt]. 

?M = cdesc     ?Rt = string 

?M = cname     ?Rt = string 

Yes. 

?- ?Q:algquery,?Q[?M*=>?Dt]. 

?Q = xv(course,course,"deepextent")  ?M = lf_cdesc  ?Dt = string 

?Q = xv(course,course,"deepextent")  ?M = lf_cname  ?Dt = string 

?Q = xv(course,course,"deepextent")  ?M = rt_cdesc  ?Dt = string 

?Q = xv(course,course,"deepextent")  ?M = rt_cname  ?Dt = string 

Yes. 
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?- ?_Q:algquery,?I:?_Q[?M->?R]. 

?I = ixv(course,course,"deepextent",ba_english,ba_english) 

?M = lf_cdesc   ?R = "desc english"^^_string 

 

?I = ixv(course,course,"deepextent",ba_english,ba_english) 

?M = lf_cname   ?R = "english"^^_string 

 

?I = ixv(course,course,"deepextent",ba_english,bsc_comp) 

?M = lf_cdesc   ?R = "desc english"^^_string 

 

?I = ixv(course,course,"deepextent",ba_english,bsc_comp) 

?M = lf_cname   ?R = "english"^^_string 

… 

Yes. 

For the product operator implementation two types of reified rules are needed.  These are 

attached to an object identified with XVF. 

The property ALGQUERYINSTANCE has a parameterised version and thus allows an 

assertion that object XV(…)is an instance-of ALGQUERY.  The method takes three 

arguments: the first two are the collections on which the product is to be executed, and the 

third contains an indicator to state whether a deep extent or an extent is required for the 

result. 

  xvf  [algqueryinstance(?C1,?C2,?Deep) ->  

    ${ (  xv(?C1,?C2,?Deep):algquery :- true  ) } ]. 

The second reification concerns the data type signature of the result.  As stated earlier the 

result’s data type signature is a concatenation of the two classes’ own data-type signatures.  

For clarity let’s call these classes the left and right arguments.  We have two cases: the first 

when the left and right are distinct in data type signatures; and the second when they are 

identical as in self product (at the logical-identifier level).  In the implementation here we 

have opted to have two sets of rules that correspond to the cases just noted. 

For the first case we need a set of rules to copy from the right data type signature, and 

another set to copy from the left.  We have previously indicated that we are interested in 

four types of signature in each class declaration; consequently we need eight rules to cover 

the product by value result data type signatures.  The method ALGQUERYDT takes three 

arguments, that are instantiated by a calling procedure, and these are the left class, right 

class, and ISA indicator.  For each argument CLASS instance and method signature of 

interest the rules copy the method signature from a class instance and asserts it for the 

result’s data type.  The following, a fragment of the whole, depicts the reified rules that 
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cater for the left class.  For example all inheritable methods without arity of left class, i.e. 

?C1, are included in the product’s objects; i.e. XV(…). 

xvf[  

  algquerydt(?C1,?C2,?Deep) -> 

  ${  (xv(?C1,?C2,?Deep)[?M{?B:?T}*=>?D] 

         :- ?C1[?M{?B:?T}*=>?D], not compound(?M)@_prolog), 

      (xv(?C1,?C2,?Deep)[?M{?B:?T}=>?D] 

         :- ?C1[?M{?B:?T}=>?D],  not compound(?M)@_prolog), 

      (xv(?C1,?C2,?Deep)[?M(?P){?B:?T}*=>?D] 

         :- ?C1[?M(?P){?B:?T}*=>?D]), 

      (xv(?C1,?C2,?Deep)[?M(?P){?B:?T}=>?D] 

         :- ?C1[?M(?P){?B:?T}=>?D] ), 

      … ]. 

The reified rules for the second case are similar to the first except we need to rename the 

properties to avoid a name clash; in fact there are eight rules to instantiate.  We have 

implemented the following renaming action through procedure ADDPREFIX(…):  properties 

of the left class have ‘LF_’ prefixed to its name, and properties of the right class have ‘RT_’ 

prefixed to its name.  

xvf[ 

  algquerydtself(?C1,?C2,?Deep) -> 

  ${  (xv(?C1,?C2,?Deep)[?Mp{?B:?T}*=>?D] 

    :- ?C1[?M{?B:?T}*=>?D], not compound(?M)@_p, 

       addprefix('lf_',?M,?Mp)), 

      (xv(?C1,?C2,?Deep)[?Mp{?B:?T}*=>?D] 

    :- ?C2[?M{?B:?T}*=>?D], not compound(?M)@_p, 

       addprefix('rt_',?M,?Mp)), 

       … ]. 

The actual evaluation of product by value is done through procedure %XV in object 

ALGEBRA.  The procedure %XV takes three arguments: the first two are the CLASSES’ 

instances to operate on (i.e. unified to variables ?C1 and ?C2), and the third is an indicator 

on the extent required (i.e. unified to  variable ?DEEP).  The first task is to determine if the 

input operands have distinct property names by calling procedure %NAMECLASH of object 

ALGEBRA.  If a property name clash exists then the operand fails; for clarity a procedure 

%NAMECLASHLIST is called to get the offending properties in a list and output just before 

failing.  (%NAMECLASH and %NAMECLASLIST of algebra are explained in section 11.2.4.1).  

The implementation continues by calling, passing arguments, and instantiating the two 

reified rules in object XVF for query instance (i.e. ALGQUERYINSTANCE) and query instance 

data type signature (i.e. ALGQUERYDT).  The next job is to create the extent of the current 

query instance (i.e. IXV(…):XV(…) instance-of assertions), and build each instance-of 

properties values.  As in the previous operators implementation two appropriate 
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procedures, called %XVDATALOID and %XVDATA, are invoked.  Once the query’s instance 

values are instantiated then a duplicate by value check on the result is done and if need be 

duplicates are eliminated. 

  algebra[%xv(?C1,?C2,?Deep)] :- 

 if   ( ?C1!=?C2, algebra[%nameclash(?C1,?C2)] ) 

 then ( algebra[%nameclashlist(?C1,?C2,?Lc1c2smdmd)], 

        write('Nameclash: problem - ')@_prolog, 

        writeln(?Lc1c2smdmd)@_prolog, 

        fail )   

 else ( writeln('Nameclash: none / ok')@_prolog ), 

    xvf[ algqueryinstance(?C1,?C2,?Deep) -> ?Rules1 ],  

         insertrule { ?Rules1 }, 

    writeln('algquery instance created')@_prolog, 

 if   ( ?C1!=?C2 ) 

 then ( xvf[ algquerydt(?C1,?C2,?Deep)-> ?Rules2 ], 

           insertrule { ?Rules2 }, 

        writeln('signatures created')@_prolog) 

 else ( xvf[ algquerydtself(?C1,?C2,?Deep)-> ?Rules22 ], 

           insertrule { ?Rules22 }, 

        writeln('signatures created (for self product)')@_prolog),    

    writeln('signatures created')@_prolog, 

    %xvdataloid(?C1,?C2,?Deep), 

    %xvdata(?C1,?C2,?Deep), 

    writeln('data loid and move done')@_prolog, 

    algebra[%duplicates(xv(?C1,?C2,?Deep),?Duplst)], 

    write('duplicate list')@_prolog, writeln(?Duplst)@_prolog, 

    algebra[%delduplicate(?Duplst,xv(?C1,?C2,?Deep))], 

    writeln('duplicate deletion done')@_prolog. 

The procedure %XVDATALOID, listed below, takes three arguments which are unified in the 

calling procedure %XV of the object algebra.  Basically the procedure needs to create an 

identifier for each instance-of related to the procedure’s first of two arguments.  For this the 

COLLECTSET predicate is used.  Because the operator has control on what extent to include 

in the output, i.e. ?DEEP, this is reflected in the qualifier inside each COLLECTSET 

invocation.  Once the required COLLECTSET is bound to each CLASS instance then the two 

sets are passed on to procedure %XVINSERT to create the IXV(…) identifiers and instance-of 

assertion.  The procedure is recursive on the list of instances of the left class instance list 

and once invoked calls yet another recursive procedure, called %XVINSERTINNER, to iterate 

over the instances-of found in the right list.  In it asserts are made, through an INSERT{…} 

directive, of the relative fact.  Once the left class argument is done a similar computation is 

done for the right class instances. 

  %xvdataloid(?C1,?C2,?Deep) :- 

    if   ( ?Deep = "extent" ) 

    then ( ?Ileftlst=collectset{?Ileft|?Ileft:?C1, 

                                if (?Sc::?C1, ?Ileft:?Sc) 

                                then (false) 

                                else (true)}) 

    else ( ?Ileftlst=collectset{?Ileft|?Ileft:?C1}), 
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    if   (?Deep="extent") 

    then (?Irightlst=collectset{?Iright|?Iright:?C2, 

                                if (?Sc::?C2, ?Iright:?Sc) 

                                then (false) 

                                else (true)}) 

    else (?Irightlst=collectset{?Iright|?Iright:?C2}), 

    %xvinsert(?Ileftlst, ?Irightlst, ?C1,?C2,?Deep). 

 

   %xvinsert([?I|?Ileftlst],?Irightlst,?C1,?C2,?Deep) :- 

     %xvinsertinner(?I,?Irightlst,?C1,?C2,?Deep), 

     %xvinsert(?Ileftlst,?Irightlst,?C1,?C2,?Deep). 

   %xvinsert([],?_,?_,?_,?_). 

 

     %xvinsertinner(?I,[?H|?Irightlst],?C1,?C2,?Deep) :-  

        insert { ixv(?C1,?C2,?Deep,?I,?H):xv(?C1,?C2,?Deep) }, 

        %xvinsertinner(?I,?Irightlst,?C1,?C2,?Deep). 

     %xvinsertinner(?_,[],?_,?_,?_). 

The procedure %XVDATANORM, parts of which are listed here under, is long but 

straightforward.  (Also there are two versions that correspond to self product and other 

products).  In sequence it creates eight lists of IXV(…) instances.  Each list is relative to the 

two classes and four types of methods of interest.  In each list a collection of tuples are 

created, e.g. ?WL in ?LEFTISMLST, that contains details to copy from source to target.  Each 

collection’s is composed from relative data type signatures and also cater for name 

overloading as a method data type signature and data expression must match.  Once a list 

is created it is passed on to procedure %XVINSERTSMETHOD for it to iteratively insert each 

method property value through an INSERT{…} directive.  There is another method called 

%XVINSERTPMETHOD that caters for copy values of methods with a parameter. 

  %xvdata(?C1,?C2,?Deep):- 

    ?LeftIsmlst=collectset{ ?Wl | ixv(?C1,?C2,?Deep,?I,?H)[], 

                                  xv(?C1,?C2,?Deep)[?M*=>?D], 

                                  not compound(?M)@_prolog, 

                                   ?I:?C1[?M->?R], dt(?D,?Dt), ?R:?Dt, 

                                  ?Wl=f(?C1,?C2,?Deep,?I,?H,?M,?R) }, 

     %xvinsertsmethod(?LeftIsmlst), 

    … , 

    ?LeftIpmlst=collectset{ ?Yl | ixv(?C1,?C2,?Deep,?I,?H)[], 

                                  xv(?C1,?C2,?Deep)[?M(?Pd)*=>?D], 

                                  ?I:?C1[?M(?Pr)->?R], dt(?D,?Dt), 

                                  ?R:?Dt,dt(?Pd,?Pdt),?Pr:?Pdt, 

                                  ?Yl=f(?C1,?C2,?Deep,?I,?H,?M,?Pr,?R) }, 

    %xvinsertpmethod(?LeftIpmlst), 

    … . 

 

    %xvinsertsmethod([?H|?Rlst]):- 

      ?H=f(?C1,?C2,?Deep,?I,?N,?M,?R), 

      insert{ ixv(?C1,?C2,?Deep,?I,?N)[?M->?R] }, 

      %xvinsertsmethod(?Rlst). 

    %xvinsertsmethod([]). 

 

    %xvinsertpmethod([?H|?Rlst]):- 

      ?H=f(?C1,?C2,?Deep,?I,?N,?M,?Pr,?R), 

      insert{ ixv(?C1,?C2,?Deep,?I,?N)[?M(?Pr)->?R] }, 

      %xvinsertpmethod(?Rlst). 

    %xvinsertpmethod([]). 
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Properties of the product operator 

An important property of this product operator here is that it is value based.  Algebraic 

properties of product on its own are its commutativity and associativity.   

From commutativity of product we have that the order of operands does not affect the 

result: 

     
 
⇔      

Therefore if the following query is computed: 

?- algebra[%xv(unit,student,"deepextent")]. 

Then it is result equivalent to: 

?- algebra[%xv(student,unit,"deepextent")]. 

The technique based on equality of query instance used in the union by value section (i.e. 

11.2.2.2) is applicable here too. To assert this equality we need a reified rule and an 

additional step in the product evaluation.  The rule is attached to XVF.ALGQUERYCOMMU 

and states that if there is an XV(C1,C2,…) object which is an instance-of ALGQUERY then 

there is an identical object reference with its classes juxtaposed; i.e. UV(C2,C1,…). 

xvf[ algquerycommu(?C1,?C2,?Param1) ->  

     ${ (  xv(?C1,?C2,?Param1):=:xv(?C2,?C1,?Param1) :-  

                  xv(?C1,?C2,?Param1):algquery  ) }]. 

The code of the product by value procedure then needs alterations: basically a pre-test and 

a post-action.  The pre-test needs to check if the product query is an instance-of ALGQUERY; 

i.e. already computed.  While the post-action entails the materialisation of the reified rule 

in XVF.ALGQUERYCOMMU and inserting the rule into the object base. 

The structural equivalence of product by associativity states that the order of doing two 

products in cascade is not significant to the result: 

(     )    
 
⇔   (     )  

The reified rule for implementing the product by value associativity follows: 

xvf[ algqueryassoc(?C1,?C2,?Param1) -> ${ (  

  

xv(xv(?C1,?C11,?Param1),?C2,?Param1):=:xv(?C1,xv(?C11,?C2,?Param1),?Param1):-  

  xv(xv(?C1,?C11,?Param1),?C2,?Param1):algquery, 

  xv(xv(?C1,?C11,?Param1),?C2,?Param1)) } ]. 

11.2.5.1 Property Name clash 

It is sometimes necessary to have two CLASSES’ set of properties distinct at their name 

level.  Specifically we have operations that presume that two CLASS instances, for example, 
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do not have a property in common by name.  Procedure %NAMECLASH of object ALGEBRA, 

that takes two arguments, succeeds if indeed such a commonly named property exists 

within each argument.  The procedure calls another procedure called %NC that succeeds if a 

data-type signature coincides in each argument structure.  There are four %NC rules, each 

case dealing with a mode of data-type signature.  It is important to note that name overlap 

tolerates data type signature name overloading; i.e. for a method to name clash it must 

have same name and return data type.   The code of mentioned procedures follows. 

algebra[%nameclash(?C1,?C2)]:- 

    if (%nc(?C1,?C2)) 

    then ( writeln('name clash')@_prolog, true ) 

    else ( writeln('no name clash')@_prolog, false ). 

 

  %nc(?C1,?C2) :- 

      ?C1[?M{?Low:?High}*=>?D],?C2[?M{?Low:?High}*=>?D],!. 

  %nc(?C1,?C2) :-  

      ?C1[?M(?P){?Low:?High}*=>?D],?C2[?M(?P){?Low:?High}*=>?D],!. 

 

  %nc(?C1,?C2) :- ?C1[?M{?Low:?High}=>?D],?C2[?M{?Low:?High}=>?D],!. 

  %nc(?C1,?C2) :- ?C1[?M(?P){?Lo:?Hi}=>?D],?C2[?M(?P){?Lo:?Hi}=>?D],!. 

If indeed there is a name clash between two CLASS instances and a list of specific clashes is 

required then one can call procedure %NAMECLASHLIST in object ALGEBRA with the two 

CLASS instances as arguments.  The name clashes list, called ?LC1C2SMDMD, is created in 

two steps: the first deals with inheritable methods and the second with non-inheritable 

methods.  For inheritable methods a list of pairs, the method name and its return type, is 

built through a COLLECTSET predicate.  This list together with the two class instances are 

passed in to procedure %MDOVERLAPSTAR that recursively checks each element in the list 

for data type signature overlap between the classes.  If it is the case the property name is 

appended.  After the inheritable list is checked a similar process is run on non-inheritable 

properties.  Any overlap is appended to the result.  The final list is then passed to the main 

procedure %NAMECLASHLIST of object algebra in its third argument.   

algebra[%nameclashlist(?C1,?C2,?Lc1c2smdmd)]:- 

    ?L11=collectbag{?M|?C1[?M*=>?D]}, 

    ?L12=collectbag{?D|?C1[?M*=>?D]}, 

    %merge2list(?L11,?L12,[],?Lc1smd), 

    %mdoverlapstar(?C1,?C2,?Lc1smd,[],?Lc1c2smd),  

    ?L21=collectbag{?M|?C1[?M=>?D]}, 

    ?L22=collectbag{?D|?C1[?M=>?D]}, 

    %merge2list(?L21,?L22,[],?Lc1md), 

    %mdoverlap(?C1,?C2,?Lc1md,[],?Lc1c2md),  

    ?Lc1c2smd[_append(?Lc1c2md)->?Lc1c2smdmd]@_basetype, 

    true. 
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  %mdoverlapstar(?C1,?C2,[?M,?D|?R],?I,?F) :-  

    if (?C1[?M{?Low:?High}*=>?D], ?C2[?M{?Low:?High}*=>?D]) 

    then (%mdoverlapstar(?C1,?C2,?R,[?M,?D|?I],?F)) 

    else (%mdoverlapstar(?C1,?C2,?R,?I,?F)). 

  %mdoverlapstar(?_, ?_, [],?I, ?F) :- ?I=?F. 

 

 

  %mdoverlap(?C1,?C2,[?M,?D|?R],?I,?F) :-  

    if (?C1[?M{?Low:?High}=>?D], ?C2[?M{?Low:?High}=>?D]) 

    then (%mdoverlap(?C1,?C2,?R,[?M,?D|?I],?F)) 

    else (%mdoverlap(?C1,?C2,?R,?I,?F)). 

  %mdoverlap(?_, ?_, [],?I, ?F) :- ?I=?F. 

11.2.6 Select 

The select by value operator is unary and its output data type signatures are identical to its 

input.  Associated with the select operator’s application are a single class instance and a 

predicate.  An instance of the input is part of the query instance, i.e. output, if the predicate 

evaluation is true for it.  It is important to note that the predicate needs to be evaluated on 

every input argument instance-of and its result is independent of any other instance-of 

evaluation.  There are two issues specific to our data and query model: the first is whether 

the extent or deep extent of the arguments is required; the second being the demands that 

this operator is value based and produces a set (i.e. requires duplicate check and 

elimination). 

The following are examples of using the select by value operator, identified by %SV in object 

algebra.  The first query sifts for PERSON instances whose FNAME property is equal to string 

“MARY” (string “MARY” is not identifier MARY).  The first two arguments of the operator list 

the range and the deep extent requirement.  The third argument is the predicate encoded 

as a functor; the predicate is path expression FNAME concatenated to PERSON is equal to a 

string atom whose value is “MARY”.  The result data type signature and the result extent, 

i.e. single object identified as MARY, together with some properties value is given. 

algebra[%sv(person,”deepextent”,eqop(ipe,fname,a(string),"mary"^^_str))]. 

algquery instance created 

signatures created 

parsing: 

flapply(eqop,ipe,fname,flapply(a,string),_datatype(_string(mary),_string)

) 

parsed term (%sbvp_comp_predicate / single_var) : 

flapply(eqop,ipe,fname,flapply(a,string),_datatype(_string(mary),_string)

) 

data typing: 

flapply(eqop,ipe,fname,flapply(a,string),_datatype(_string(mary),_string)

) 

data type ok. 

filter evaluation 

evaluation results (from) to: 

[dri,j,joe,jv,mary,michael,nancy,p1,p2,patricia,paul,richard,robert,susan

] 
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[mary] 

data loid and selection done 

data copying done 

duplicate list[] 

duplicate deletion done 

Yes. 

?- ?Q:algquery. 

?Q = sv(person,"deepextent",_#'18673) 

Yes. 

?- ?Q:algquery[?M*=>?Dt]. 

?Q = sv(person,"deepextent",_#'18673)    ?M = fname    ?Dt = string 

?Q = sv(person,"deepextent",_#'18673)    ?M = telno    ?Dt = integer 

Yes. 

?- ?Q:algquery,?I:?Q. 

?Q = sv(person,"deepextent",_#'18673)?I = 

isv(person,"deepextent",_#'18673,mary) 

Yes. 

?- ?Q:algquery,?I:?Q[?M->?R]. 

?Q = sv(…,_#'18673) ?I = isv(…,mary) ?M = fname ?R = "mary"^^_string 

?Q = sv(…,_#'18673) ?I = isv(…,mary) ?M = telno ?R = "1234"^^_integer 

?Q = sv(…,_#'18673) ?I = isv(…,mary) ?M = telno ?R = "5678"^^_integer 

Yes. 

The following example shows how the select predicate uses logical identifier, i.e. object 

identifier MARY, to filter the CLASS STUDENT instance-of collection with.  Also note the 

predicate is unified to a property called SELECTION of ALGQUERY instance.  (Note: all 

ISV(…) identifiers are identical in the following script and therefore the properties 

appertain to the same object). 

?- algebra[%sv(student,”deepextent”,eqop(loid,mary,loid,self))]. 

… 

Yes. 

?- ?_Q:algquery,?I:?_Q,?I[?M->?R]. 

?I = isv(…)   ?M = enrolon              ?R = bsc_eng 

?I = isv(…)   ?M = fname                ?R = "mary"^^_string 

?I = isv(…)   ?M = stage                ?R = "g"^^_string 

?I = isv(…)   ?M = telno                ?R = "1234"^^_integer 

?I = isv(…)   ?M = telno                ?R = "5678"^^_integer 

?I = isv(…)   ?M = result("a"^^_string) ?R = idb 

?I = isv(…)   ?M = result("b"^^_string) ?R = javaprog 

?I = isv(…)   ?M = result("b"^^_string) ?R = pdb 

?I = isv(…)   ?M = result("c"^^_string) ?R = dsa 

Yes. 

?- ?Q:algquery,?Q[?M->?R]. 

?Q = sv(…)    ?M = selection            ?R = eqop(loid,mary,loid,self) 

Yes. 

The following select by value example shows a predicate over student instances that is a 

conjunction of conditions: i.e. STUDENT’S FNAME is equal to string “MARY” and instance 

identifier is MARY. 

?- algebra[%sv(student,”deepextent”, 

     and( eqop(ipe,fname,a(string),"mary"^^_string), 

          eqop(loid,mary,loid,self) ) ) ]. 

… 

Yes. 

?- ?_Q:algquery,?I:?_Q,?I[?M->?R]. 

?I = isv(…) ?M = enrolon ?R = bsc_eng 

?I = isv(…) ?M = fname   ?R = "mary"^^_string 

… 

Yes. 
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The following is a very common use of select by value in queries and it involves doing a 

product by value and then a select on their result; specifically it is called an equi-join.  The 

first operation is a product between CLASS instances UNIT and COURSE.  Both classes have 

a property called colour, i.e. CCOLOUR and UCOLOUR respectively, which are assigned 

strings.  The second operation is a select by value and the predicate checks that these two 

attributes have the same colour value.   The example result show that “OLIVE” colour is a 

common value in instances named “ENGLISH” and “FINAL YEAR PROJECT (FYP)”.  The 

third query shows two tuples from the product that satisfies the select predicate. 

?- algebra[%xv(unit,course,"extent")]. 

?- algebra[%sv(xv(unit,course,"extent"),”extent”,  

           eqop(ipe,ccolour,ipe,ucolour))]. 

… 

Yes. 

?- ?_Q:algquery,?_Q=sv(?_1,?_2,?_3), 

   ?I:?_Q[cname->?Cn,uname->?Un,ucolour->?Uc]. 

?I=isv(…) ?Cn="computing"^^_s ?Un="dist db"^^_s            ?Uc = 

"crimson"^^_s 

?I=isv(…) ?Cn="english"^^_s   ?Un="final year project"^^_s ?Uc = 

"olive"^^_s 

Yes. 

A join between two ranges that has its predicate not based on equality but any comparison 

is a called theta join. 

For the select operator implementation two reified rules are used.  These are attached to an 

object identified with SVF. 

The property ALGQUERYINSTANCE takes care to have a parameterised version and thus 

assert a SV(…) object is an instance-of ALGQUERY.  The method takes four arguments: the 

first one is the collection on which the select predicate is to be executed.  The second 

contains an indicator to state whether a deep extent or an extent is required for the result.  

The third is unifies the encoded predicate.  The fourth has the select by value instance 

identifier that is uniquely generated for each query instance.  

  svf[algqueryinstance(?C1,?Deep,?Filterlst,?Tag) -> 

    ${ (  sv(?C1,?Deep,?Tag):algquery [selection->?Filterlst] :- true  ) }]. 

The second reification concerns the data type signature of the result.  Actually the output 

data type signatures remain intact.  The SVF object uses the ALGQUERYDT property and it 

takes four parameters: the same set of arguments as ALGQUERYINSTANCE.  The 

ALGQUERYDT has four instantiations each related to a different properties mode–to cater for 

inheritable (i.e. *=> ) and non-inheritable (i.e. => ) methods, and arity and non-arity (i.e. 
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NOT COMPOUND(?M)) methods.  Each rule has the same pattern but each fire for a 

particular data signature type. 

  svf[algquerydt(?C1,?Deep,?Tag) -> 

    ${ (  sv(?C1,?Deep,?Tag)[?M{?B:?T}*=>?D] :- 

                sv(?C1,?Deep,?Tag):algquery,  

                ?C1[?M{?B:?T}*=>?D], 

                not compound(?M)@_prolog), 

          … ]. 

The object ALGEBRA has procedure %SV to implement select by value and its invocation 

requires three variables to be unified.  The arguments are the class instance, the ISA 

indicator, and the filtering predicate.  This operator has the longest source code listing due 

to the parser required to read and interpret the predicate. 

Procedure %SV starts by generating a logical identifier, by invoking NEWOID{…} predicate, 

and unifying it with variable ?TAG.  The two reified rules are invoked, reified, and inserted 

into the object base – these take care of instance-of assertion (i.e. ISV(…):SV(…) ) and data 

type signatures of query instance class.  At this point the extent, or deep extent, of the class 

instance unified to the first argument is created; i.e. ?EXTLST.  The focal part of the 

implementation is the predicate parser.  The procedure that starts the recursive descent 

parsing is called %SBVP and takes six arguments: the first three are identical to the calling 

procedure %SV, the fourth is ?TAG, the fifth is the extent just generated, and the sixth, 

?RESULTLST, is the list of objects from the extent provided that satisfy the predicate.  (The 

procedure is explained in detail lower down the text).  Once parsing and evaluation is the 

?RESULTLST is passed to %SVDATALOID to create instance-of assertions and then call 

procedure %SVDATA to move the relative object values from ?C instance-of objects to 

ISV(…).  Both procedures %SVDATALOID and %SVDATA follow the same implementation 

patterns of other operators.  The operator ends by checking for value duplicates and purges 

any present. 

  algebra[%sv(?C1,?Deep,?Filter)] :- 

    newoid{?Tag}, 

    svf[ algqueryinstance(?C1,?Deep,?Filter,?Tag) -> ?Rules1 ],  

    insertrule { ?Rules1 }, 

    writeln('algquery instance created')@_prolog, 

    svf[ algquerydt(?C1,?Deep,?Tag)-> ?Rules2 ], 

    insertrule { ?Rules2 }, 

    writeln('signatures created')@_prolog, 

    if   (?Deep="extent") 

    then (?Extlst= 

          collectset{?Ileft|?Ileft:?C1, 

                            if (?Sc::?C1, ?Ileft:?Sc) 
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                            then (false) else (true)}) 

    else (?Extlst=collectset{?Ileft|?Ileft:?C1}), 

    %sbvp(?C1,?Deep,?Filter,?Tag,?Extlst,?Resultlst), 

    %svdataloid(?C1,?Deep,?Tag,?Resultlst), 

    writeln('data loid and selection done')@_prolog, 

    %svdata(?C1,?Deep,?Tag), 

    writeln('data copying done')@_prolog, 

    algebra[%duplicates(sv(?C1,?Deep,?Tag),?Duplst)], 

    write('duplicate list')@_prolog, writeln(?Duplst)@_prolog, 

    algebra[%delduplicate(?Duplst,sv(?C1,?Deep,?Tag))], 

    writeln('duplicate deletion done')@_prolog.  

The parser and evaluator is the most complex set of procedures in our algebra: it entails, 

parsing, data type checking, evaluation, and collating results.  To leave it as simple as 

possible the parser and evaluator were designed on a recursive descent parsing mode that 

unfolds the grammar with successive recursive procedures.  There is a procedure for each 

production rule.  Also the evaluation actions are interspersed with and within the 

production rules.  The grammar implemented is given in the following listing (based on 

basic BNF but has been truncated in depth).  The predicate, of which some examples have 

been given, is a tree structure and Prolog’s functors are used.  The grammar shows that a 

predicate is built from a number of conjuncts that use conjunction and disjunction to weave 

together.  Every conjunct, conjunction and disjunction can be negated too.  In turn 

conjuncts are broken down to comparison, ISA and instance-of, and “in”.  The keywords in 

caps and within inverted commas are functor symbol.   

search_cond           ::== boolean_term | 

                           boolean_term 'OR' search_cond 

                            

boolean_term          ::== boolean_factor | 

                           boolean_factor 'AND' boolean_term 

                            

boolean_factor        ::== 'NOT' boolean_primary | 

                           boolean_primary 

 

boolean_primary       ::== predicate | 

                           '(' search_cond ')' 

                            

predicate             ::== isa_predicate    | 

                           exists_predicate | 

                           in_predicate     | 

                           comp_predicate 

 

exists_predicate      ::== 'EXISTS' '(' simple_subquery ')' 

 

in_predicate          ::== simple_var 'NOT IN' '(' simple_subquery ')' | 

                           simple_var 'NOT'    '(' simple_subquery ')' | 

                           simple_var 'NOT IN' '(' atom_list ')'       | 

                           simple_var 'NOT'    '(' atom_list ')' 

 

atom_list             ::== atom | 

                           atom | atom_list 

                            

atom                  ::== value   | 

                           identifier 
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comp_predicate        ::== single_var comparison single_var      | 

                           multi_var  comparison multi_var       | 

                           single_var comparison simple_subquery | 

                           multi_var  comparison simple_subquery 

                            

comparison            ::== '=' | '!=' | 

                           '>' | '>=' | 

                           '<' | '<=' 

 

simple_subquery       ::== 'SELECT' select_vars 

                           'FROM' expressions 

 

single_var            ::== identifier |   

                           path_expression rooted at class | 

                           atom 

                            

multi_var             ::== path_expression rooted at class  | 

                           atom_list  

The parsing and evaluation routine, %SBVP, takes six arguments and all except the last are 

unified by the calling routine.  The evaluation parses the filter and for each of its functors 

there is a production rule that matches and executes the relation evaluation to filter 

instances in argument ?EXTLST; instances that satisfy the predicate are appended to list 

?RESULTLST. 

The top most parsing rule is ‘search condition’, and a procedure named 

%SBVP_SEARCH_COND implements the rule that has two rules:  Boolean term or Boolean 

term in disjunction with search condition (recursive call).  At this point the predicate root 

must have an ‘or’ functor, i.e. OR(TERM1,TERM2) and within its brackets are two terms.  

Note the calling of %SBVP_BOOLEAN_TERM and %SBVP_SEARCH_COND with respective terms 

and the appending of their results.  Prior to succeeding with the appended list it is passed 

through duplicate elimination – the procedure %LOID_UNIQ eliminates by logical identifier.  

%sbvp(?C1,?Deep,?Term,?Tag,?Extlst,?Resultlst) :- 

  write('parsing: ')@_prolog,writeln(?Term)@_prolog, 

  %sbvp_search_cond(?C1,?Term,?Tag,?Extlst,?Resultlst). 

 

  %sbvp_search_cond(?C1,?Term,?Tag,?Extlst,?Resultlst) :- 

    %sbvp_boolean_term(?C1,?Term,?Tag,?Extlst,?Resultlst). 

  %sbvp_search_cond(?C1,?Term,?Tag,?Extlst,?Resultlst) :- 

    ?Term=or(?Interm1,?Interm2), 

    %sbvp_boolean_term(?C1,?Interm1,?Tag,?Extlst,?Resultlst1), 

    %sbvp_search_cond (?C1,?Interm2,?Tag,?Extlst,?Resultlst2), 

    ?Resultlst1[_append(?Resultlst2)->?New]@_basetype, 

    %loid_uniq(?New,[],?Resultlst). 

The procedure %SBVP_BOOLEAN_TERM, on each of its calls a new list of ?EXLIST is unified, 

has two rules: Boolean factor or a conjunction of Boolean factors.  In the case of a 

conjunction procedure for Boolean factor and Boolean term are called and the term’s functor 

that identifies it is AND(…).  In %SBVP_BOOLEAN_TERM that caters for the 
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AND(TERM1,TERM2) functor the procedures %SBVP_BOOLEAN_FACTOR and 

%SBVP_BOOLEAN_TERM (recursive call) are called and their respective results are checked 

for conjunction by logical identifier.  The %LOID_AND procedure creates list ?NEW which is 

then passed for duplicate elimination by logical identifier. 

 

    %sbvp_boolean_term(?C1,?Term,?Tag,?Extlst,?Resultlst) :- 

      %sbvp_boolean_factor(?C1,?Term,?Tag,?Extlst,?Resultlst). 

    %sbvp_boolean_term(?C1,?Term,?Tag,?Extlst,?Resultlst) :- 

      ?Term=and(?Interm1, ?Interm2), 

      %sbvp_boolean_factor(?C1,?Interm1,?Tag,?Extlst,?Resultlst1), 

      %sbvp_boolean_term(?C1,?Interm2,?Tag,?Extlst,?Resultlst2), 

      %loid_and(?Resultlst1,?Resultlst2,[],?New), 

      %loid_uniq(?New,[],?Resultlst). 

The negation functor is structured as a NOT(…) functor.  If the predicate, or a part of it, 

unify with it then %SBVP_BOOLEAN_PRIMARY is called and its result is subtracted from 

?EXTLST.  The logical identifier based %LOID_DIFF procedure takes care of this.   

      %sbvp_boolean_factor(?C1,?Term,?Tag,?Extlst,?Resultlst) :- 

        ?Term=not(?Interm), 

        %sbvp_boolean_primary(?C1,?Interm,?Tag,?Extlst,?NotResultlst), 

        %loid_diff(?Extlst,?NotResultlst,[],?Resultlst). 

      %sbvp_boolean_factor(?C1,?Term,?Tag,?Extlst,?Resultlst) :- 

        %sbvp_boolean_primary(?C1,?Term,?Tag,?Extlst,?Resultlst). 

A fundamental building block of a selection filter is the comparison operator.  It comes into 

two generic productions: the first is when single value is compared with a single value 

(subject to comparison data-type conformance); and second is when a value is compared 

with a set of values (again subject to data-type conformance).  The equality operator and 

the not-equal is applicable to all basic data domains and logical identifiers and in our 

predicates these are denoted by functors EQOP(…) and NEQOP(…) respectively.  The 

following example shows a conjunction of two comparison operators by single values.  The 

procedure that takes care of the comparison operators is called %SBVP_COMP_PREDICATE 

and each of its many implementations unifies different version.   

    and(   eqop(ipe,fname,a(string),"mary"^^_string),  

           eqop(loid,mary,loid,self) ) ) 

The right rule is chosen according to the first line of the procedure where term, ?TERM, is 

unified with, for example, EPOQ(…) functor, and if ?COMP is an acceptable functor, checked 

with procedure %SBVP_COMPARISON(…) then %SBVP_SINGLE_VAR is called for the left and 

right hand side of the comparison.  Procedure %SBVP_SINGLE_VAR is intended to return 

the upper cardinality and the data type of the left and right hand side expressions.  The 
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keyword IPE in functors indicate a path expression that is built by appending to the CLASS 

instance, ?C1, the expression in ?ARG2.  For the above first EQOP functor example it works 

as: STUDENT.FNAME.  The procedure returns upper cardinality ‘1’ and string data type for 

this case.  %SBVP_SINGLE_VAR handles various type of methods (the usual four types), an 

‘atom’ that is an element of a basic data type, and logical identifier.  The next procedure 

%SBVP_DD_COMPARISON evaluates if the comparison operator between the left and right 

data types is executable.  For example while equality and not equal comparison works for 

all domains and identifiers; on the other hand it does not work for greater than or equal 

when comparing logical identifiers.  The next sequence in the procedure is to check the data 

typing of the left and right hand side of the comparison and checking that cardinality is 

singular and data type conformity.  If all is well in parsing and data typing the last 

procedure call, to %SBVP_COMP_PREDICATE_EVAL_SINGLE, is made so to evaluate this 

comparison on every instance.  The actual comparison at instance level is done in procedure 

%SBVP_COMP_PREDICATE_EVAL_SINGLE_CASE. 

  %sbvp_comp_predicate(?C1,?Term,?Tag,?Extlst,?Resultlst) :- 

    ?Term=?Comp(?Arg1,?Arg2,?Arg3,?Arg4), 

    %sbvp_comparison(?Comp), 

    %sbvp_single_var(?C1,?Arg1,?Arg2,?U1,?Dt1), 

    %sbvp_single_var(?C1,?Arg3,?Arg4,?U2,?Dt2), 

    %sbvp_dd_comparison(?Comp,?Dt1,?CompFlag), 

    write('parsed term (%sbvp_comp_predicate / single_var) : ')@_prolog, 

    writeln(?Term)@_prolog, 

    write('data typing: ')@_prolog,writeln(?Term)@_prolog, 

    if   ( ?U1=1,?U2=1,?Dt1=?Dt2,?CompFlag='OK' ) 

    then ( writeln('data type ok.')@_prolog          ) 

    else ( writeln('data type error!')@_prolog, 

           writeln('- ?U1 ?U2 ?Dt1 ?Dt2 ?CompFlag ')@_prolog, 

           writeln(?U1)@_prolog,  writeln(?U2)@_prolog, 

           writeln(?Dt1)@_prolog, writeln(?Dt2)@_prolog, 

           writeln(?CompFlag)@_prolog, 

           false ), 

    writeln('filter evaluation')@_prolog, 

    

%sbvp_comp_predicate_eval_single(?C1,?Term,?Tag,?Extlst,[],?Resultlst), 

    write('evaluation results (from) to: ')@_prolog,  

    writeln(?Extlst)@_prolog,writeln(?Resultlst)@_prolog. 

 

      %sbvp_comparison(eqop) :- true. 

      … 

 

      %sbvp_single_var(?C1,?Key,?Arg,?U,?Dt) :-  

        not compound(?Arg)@_prolog,  

        ?Key=ipe, ?C1[?Arg{?_:?U}*=>?Dt1], dt(?Dt1,?Dt). 

      %sbvp_single_var(?C1,?Key,?Arg,?U,?Dt) :-  

        compound(?Arg)@_prolog,  

        ?Arg=?M(?P),?Key=ipe,?C1[?M(?Pt1){?_:?U}*=>?Dt1], 

        dt(?Pt1,?Pt),?P:?Pt,dt(?Dt1,?Dt). 

      %sbvp_single_var(?C1,?Key,?I,?U,?Dt)  :- 

        ?Key=loid,?I=self,?U=1,?Dt=?C1. 

 

        %sbvp_dd_comparison(eqop, ?_,'OK')    :- true,!. 
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        %sbvp_dd_comparison(neqop,?_,'OK')    :- true,!. 

        %sbvp_dd_comparison(?Comp,?Dt1,?Flag) :-  

           if   (?Comp=gtop;?Comp=gteop;?Comp=ltop;?Comp=lteop) 

           then ( if   ( ?Dt1=_integer;?Dt1=_decimal;?Dt1=_string )  

                  then ( ?Flag='OK',true   )  

                  else ( ?Flag='ERR',false )  ) 

           else ( ?Flag='ERR',false,!). 

 

           %sbvp_comp_predicate_eval_single 

               (?C1,?Term,?Tag,[?I|?Extlst],?SResultlst,?FResultlst) :- … 

. 

                 

           %sbvp_comp_predicate_eval_single_case    

             (?C1,eqop,?Arg1,?Arg2,?Arg3,?Arg4,?I)  :- 

                 %sbvp_cpesc_v(?Arg1,?Arg2,?I,?Left), 

                 %sbvp_cpesc_v(?Arg3,?Arg4,?I,?Right), 

                 if   ( ?Left=?Right  ) 

                 then ( true          ) 

                 else ( false         ). 

 

The above example deals with simple comparison; but the parser deals with parsing and 

evaluation of predicates that contain singleton to set comparison too.  For example, 

implementation of universal and existential quantification over set value properties follows: 

// reification rules for equality, and greater and less than comparisons 

 

equery [test -> ${(totest(?Head,?Value):-?Head = ?Value)}]. 

gtquery[test -> ${(totest(?Head,?Value):-?Head @>= ?Value)}]. 

ltquery[test -> ${(totest(?Head,?Value):-?Head @=< ?Value)}]. 

… 

 

//  universal quantification and existential quantification routines 

 

forall([],            ?_Query,?_Value  )  :- true. 

forall([?Head|?List], ?Query, ?Value   )  :- 

    if ( ?Query[test -> ?Rules], insertrule{?Rules}, totest(?Head,?Value) 

) 

    then ( forall(?List,?Query,?Value) ) 

    else ( false ). 

 

forsome([],            ?_Query,?_Value  ) :- false. 

forsome([?Head|?List], ?Query, ?Value   ) :- 

    if   ( ?Query[test -> ?Rule],insertrule{?Rule},totest(?Head,?Value) ) 

    then ( true ) 

    else ( forsome(?List,?Query,?Value) ). 

The first sample of reification above, attached to instances EQUERY for example, deals with 

simple comparison based on identifier equality or basic domain comparison.  Universal and 

existential quantification are catered for by rules whose heads are denoted by FORALL and 

FORSOME respectively.  The following script shows a high-level use of these generalised 

quantification operations.  The first query’s purpose is to display the sample data for each 

STUDENT instance and their GRADES – note that the conversion of a set into a list does not 

change the generality of the solution.  The second query fires for STUDENT instances whose 

GRADES collated have a universal quantification that requires all of the GRADES are string 

‘C’.  The third query, similar to the second, asks for STUDENT instances who’s GRADES are 



Object-Oriented Data and Query Models 

Object-Oriented Query Model (I) - Page [ 306 ] 
 

all string greater than or equal string ‘C’.  (Note: string ‘D’ is greater than string ‘C’).  

The forth query sifts for STUDENT instances that have at least one GRADE ‘C’. 

?- ?S:student, ?Sglst=collectset{?W|?S[result(?W)->?G]}. 

?S = mary      ?Sglst = ["a"^^_string, "b"^^_string, "c"^^_string] 

?S = michael   ?Sglst = ["c"^^_string] 

?S = nancy     ?Sglst = ["b"^^_string, "d"^^_string] 

?S = patricia  ?Sglst = ["a"^^_string, "c"^^_string, "f"^^_string]  

?S = paul      ?Sglst = ["b"^^_string 

?S = richard   ?Sglst = ["d"^^_string, "f"^^_string] 

?S = robert    ?Sglst = ["c"^^_string] 

?S = susan     ?Sglst = ["a"^^_string] 

Yes. 

?- ?S:student, ?Sglst=collectset{?W|?S[result(?W)->?G]}, 

   forall(?Sglst,equery,"c"^^_string). 

?S = michael    ?Sglst = ["c"^^_string] 

 

?S = robert    ?Sglst = ["c"^^_string] 

Yes. 

?- ?S:student, ?Sglst=collectset{?W|?S[result(?W)->?G]},  

   forall(?Sglst,gtquery,"c"^^_string). 

?S = michael   ?Sglst = ["c"^^_string] 

?S = richard   ?Sglst = ["d"^^_string, "f"^^_string] 

?S = robert    ?Sglst = ["c"^^_string] 

Yes. 

?- ?S:student, ?Sglst=collectset{?W|?S[result(?W)->?G]},  

   forsome(?Sglst,equery,"c"^^_string). 

?S = mary      ?Sglst = ["a"^^_string, "b"^^_string, "c"^^_string] 

?S = michael   ?Sglst = ["c"^^_string] 

?S = patricia  ?Sglst = ["a"^^_string, "c"^^_string, "f"^^_string] 

?S = robert    ?Sglst = ["c"^^_string] 

Yes. 

The parsing and evaluation coding of predicates in a select-by-value statement is the 

longest and most demanding; demanding in terms of coding innovation (albeit this is a 

qualitative measure).  Nonetheless, even if kept somehow limited in range when compared 

to ODMG OQL predicates, the coding and implementation through Flora-2 does not 

indicate it cannot suffice.   

Properties of the Select operator 

As in most of the operators, select by value is lossy.  Every relational operator has a 

number of algebraic properties: for example select by value is commutative, and 

idempotent. 

   (   ( ))
 
⇔   (   ( )) 

Also a sequence of select predicates is equal to their conjunction. 

      ( )
 
⇔   (   ( )) 



Object-Oriented Data and Query Models 

Object-Oriented Query Model (I) - Page [ 307 ] 
 

We can easily follow the pattern used earlier for commutativity by introducing appropriate 

reified rules.  But at this point it is best to see the differences here.  Firstly, the 

commutativity previously encountered was between binary operators; in this case it is 

commutativity in the predicate conjunctive parts.  Secondly, it is a tenable assumption that 

the string of conjuncts in a predicate is more than a few (i.e. the more numerous are the 

number of properties in the query extent the more conjuncts to expect).  If, for the sake of 

simplicity, a selection predicate has only predicates in a conjunct combination then the 

selection predicate is much like a binary tree with AND() in root and inner nodes of the 

tree.  The number of permutations in a binary tree through conjunction commutativity and 

cascading of select operations grows most aggressively with the number of predicates.  

These numbers are within the genera of numbers called Catalan Numbers and, for 

example, seven predicates have 429 permutations and thirteen predicates have 742900 

permutations.  An associahedron for four predicates is given here in figure 12.1 below.  In 

view of this it is best to keep re-ordering of predicates as a later part of query optimisation 

rather than at the initial structural equivalence part.  Re-ordering in later parts of query 

optimisations is common in DBMSs with algebraic like access plans: 

Oracle { WWW.ORACLE.COM/US/PRODUCTS/DATABASE/OVERVIEW/INDEX.HTML }; 

DB2 { WWW-01.IBM.COM/ SOFTWARE/ DATA/DB2 }; 

MS SQL Server { WWW.MICROSOFT.COM/EN-US/SQLSERVER/PRODUCT-INFO.ASPX }; and 

PostgreSQL { WWW.POSTGRESQL.ORG }. 

Select by value has a number of equivalence relationships with other operators too.  

www.oracle.com/us/products/database/overview/index.html
www.microsoft.com/en-us/sqlserver/product-info.aspx
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Figure 12.1:  The different permutations of 4 predicates – diagram is called an 

associahedron and is credited to David Eppstein { WWW.ICS.UCI.EDU/~EPPSTEIN }. 

 

11.3 Summary 

In this chapter we provided details of our query model, some algebraic operators, and how 

these are integrated and aided by our framework.  In the next chapter we continue with the 

other five operators.  Consequently we leave a summary of the operators here for the next 

chapter (section 12.3). 
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12 Object-Oriented Query Model (II) 

This chapter continues from the previous chapter in describing algebraic operators that form part 

of our query model.  In this chapter the operators’ origin is not really relational, although such 

operators have been advocated for the relational model.  In fact their origin is more from the 

functional and nested model.  

12.1 Object Algebra and an Object Framework (II) 

The five operators described here are represented and have been implemented in a similar 

method as was used in the previous chapter.  Also the interaction with the underlying framework 

is similar. 

12.1.1 Map and Aggregate 

The operators introduced so far do not offer any possibility to compute functions on objects in the 

collections.  Neither is it possible to restructure the query instance data-type signature outside 

the input ranges.  The unary operators map and aggregate address this deficiency.  The map 

operator applies a function to each object’s property value and returns another; for example a 

map function on CLASS STUDENT is converting each FNAME property value into its upper case.  On 

the other hand the aggregate operator collects object instances that share a common value for a 

property and applies a function collectively on this partition; for example an aggregate function 

on CLASS STUDENT for each distinct STAGE property value is counting the instances in each 

STAGE partition.  In our implementation projection is included in the operator’s implementation. 

12.1.1.1 Map 

The unary map algebraic operator applies a function, passed in as an argument, to an indicated 

object property of every instance-of a class.  The data type of the function’s domain must be type 

compatible with the data type of the property it is being applied to.  Path expression traversal is 

considered as a function.  There are two issues specific to our data and query model: the first is 

whether the extent or deep extent of the arguments is required; the second being the demands 

that this operator is value based and produces a set (i.e. requires duplicate check and 

elimination). 

In the first two queries of the following script we first map a string into its reverse and in the 

second we leave the output the same as the input: the mapping functions are called REV and 
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IDENTITY respectively and defined through rules in the framework.  The third query shows the 

data-type signature of properties FNAME and TELNO in CLASS STUDENT.   The forth query shows 

the application of the algebraic map operator on STUDENT’S deep extent two properties, FNAME 

and TELNO, with the REV and IDENTITY mappings.  The data type signature of the query instance 

show two attributes named IDENTITYTELNO and REVFNAME; clearly the respective mapping 

functions are not in data-type error.  The last query shows the data output of the query instance.   

?- ?Msg="Hello world"^^_string, rev(?Msg,?Rmsg). 

?Msg = "Hello world"^^_string   ?Rmsg = "dlrow olleH"^^_string 

Yes. 

?- ?Msg="Hello world"^^_string, identity(?Msg,?Imsg). 

?Msg = "Hello world"^^_string   ?Imsg = "Hello world"^^_string 

Yes. 

?- student[fname*=>?Dt1;telno*=>?Dt1]. 

?Dt1 = integer     

?Dt1 = string 

Yes. 

?- algebra[%wv(student,"deepextent",[fname,telno],[rev,identity])]. 

method not found list: [] 

Methods exist: ok 

map not found list: [] 

Maps exist: ok 

Method dtype & Maps dtype match: OK 

algquery instance created 

signatures created 

data loid and move done 

duplicate deletion done 

Yes. 

?- ?Q:algquery,?Q[?M*=>?Dt]. 

?Q = wv(student,"deepextent",_#'19684)  ?M = identitytelno   ?Dt = integer 

?Q = wv(student,"deepextent",_#'19684)  ?M = revfname        ?Dt = string 

Yes. 

?- ?_Q:algquery,?I:?_Q[?M->?V]. 

?I = iwv(…,mary)    ?M = identitytelno  ?V = "1234"^^_integer 

?I = iwv(…,mary)    ?M = identitytelno  ?V = "5678"^^_integer 

?I = iwv(…,mary)    ?M = revfname       ?V = "yram"^^_string 

?I = iwv(…,michael) ?M = identitytelno  ?V = "3456"^^_integer 

… 

Yes. 

In a later part of this section another example of using the map operand to traverse path 

expressions is given. 

For the map operator’s implementation two reified rules are used.  These are attached to an 

object identified with WVF. 

The property ALGQUERYINSTANCE takes care to have a parameterised version and thus assert a 

WV(…) object is an instance-of ALGQUERY.  The method takes five arguments: the first two are the 

collections on which the mapping is to be executed and an indicator to state whether a deep 

extent or an extent is required for the result.  The third and fourth contains two equi-numerous 

lists – one with property names to map and the other functions to apply.  The fifth argument is a 
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unique identifier.  Note that object WV(…) instantiated has two properties that unify with the list 

of properties and the functions applied; called PROPERTY and MAP. 

  wvf  [algqueryinstance(?C1,?Deep,?Usmthlst,?Usmaplst,?Tag) ->  

    ${ (  wv(?C1,?Deep,?Tag):algquery 

          [property->?Usmthlst, map->?Usmaplst] :- true  ) }]. 

Before we describe the second reification definition it is important to describe necessary details 

appertaining to mapping functions.  We need to encode their name, instance-of a MAP, data type 

signature, and the implementation of the mapping function.  An object MAP is defined in the 

framework and has three data type signatures: the first to record the mapping’s SOURCE, the 

second to record the mapping’s TARGET data type, and the third to record the mapping’s 

FUNCTION name.  A mapping function is defined as an instance of object MAP.  The mapping 

functions used previously are in fact an instance-of MAP, and for example object REV has the same 

function name.  The implementation of REV is found in predicate MAPF with REV as its first 

argument. 

map[ source*=>object, target*=>object, function*=>string ]. 

 

rev:map     [ source->string,   target->string,  function->rev      ]. 

identity:map[ source->_object,  target->_object, function->identity ]. 

incone:map  [ source->integer,  target->integer, function->incone   ]. 

 

mapf(rev,      ?S, ?R) :- ?S[_reverse->?R]@_basetype.  

mapf(identity, ?V, ?R) :- ?V=?R. 

mapf(incone,   ?V, ?R) :- ?R is ?V+1. 

 

The second reification concerns the building of rules for creating data type signature of the result.  

The data type signature of the query result is mainly determined by the target data type of the 

involved mapping functions.  Also required is the creation of a name for each new property: in 

this case it was elected that the MAP instance name is made a prefix of the original property 

name.  So for example applying REV to FNAME produces the name REVFNAME.  The data type 

reification starts by sifting for the relative ALGQUERY instance of, i.,e. WV(…).  For each property 

in the method list bound to ?USMTHLST we search for all non-compound inheritable methods and 

bind it to ?M.  For this method we find its corresponding mapping function, i.e. ?MAPM, in the list 

bound to variable ?USMAPLST.  Details of the mapping are found in the relative instance-of MAP; 

i.e. the TARGET property holds the data type of the mapping result.  The last action is the creation 

of a new name for the mapped property.  At this point the data-type signature derived from ?M 
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can be asserted.  There are, as usual, four rules based on the property’s mode (e.g. inheritable or 

not) and arity. 

  wvf  [algquerydt(?C1,?Deep,?Usmthlst,?Usmaplst,?Tag) ->  

    ${ (  wv(?C1,?Deep,?Tag)[?Nm{?B:?T}*=>?Md]  :-     

            wv(?C1,?Deep,?Tag):algquery, 

            %lmember(?M,?Usmthlst), 

            ?C1[?M{?B:?T}*=>?D], not compound(?M)@_prolog, 

            %lookup121(?Usmthlst,?Usmaplst,?M,?Mapm), 

            ?Mapm:map[target->?Md2], 

            if   (?Md2=_object) 

            then (?Md=?D) 

            else (?Md=?Md2), 

            addprefix(?Mapm,?M,?Nm)  ), … ]. 

The actual evaluation of mapping by value is done through procedure %UV in the object ALGEBRA.  

The procedure %UV takes four arguments: the first two are the classes’ instances and an indicator 

on the extent required (i.e. unified to variable ?DEEP).  The last two arguments are equi-

numerous lists of method names and mapping functions.  The first part of the implementation 

deals with pre-checks:  for example both methods and mapping list have their content correct – 

i.e. properties and map instances exist.  A significant check, in procedure %WVDATACHECKMAPLST, 

needs to ensure that the data type of a method is compatible with the source data type of 

mapping function being applied over it.  The procedure is recursive and uses data type signatures 

from the CLASS extent of the query and the relative MAP instance-of.  The actual processing starts 

by creating a unique identifier, unified with ?TAG, and the reifications of the query instance and 

the query’s data type signature.  The next procedure call, to %WVDATALOID, is very similar to 

previous operators’ implementation.  On the other hand the implementation of %WVDATA is more 

involved but follows the sequence of logical steps to create the map-query results data-type 

signature.  Once the instances are created than the query instance collection is checked for 

duplicates and if need be duplicate copies are purged. 

  algebra[%wv(?C1,?Deep,?Usmthlst,?Usmaplst)] :-   

    algebra[%methodsexist (?C1,?Usmthlst,?Nomthlst)], 

    if ( ?Nomthlst = [] ) …              

    algebra[%mapsexist(?Usmaplst,?Nomaplst)], 

    if ( ?Nomaplst = [] ) …  

    if ( not %wvdatacheckmaplst(?C1,?Usmthlst,?Usmaplst,?_Comment) ) 

    then (writeln('Method dtype & Maps dtype match: Error!')@_prolog, fail) 

    else (writeln('Method dtype & Maps dtype match: OK')@_prolog), 

    newoid{?Tag}, 

    wvf[ algqueryinstance(?C1,?Deep,?Usmthlst,?Usmaplst,?Tag) -> ?Rules1 ], 

    insertrule { ?Rules1 }, 

    writeln('algquery instance created')@_prolog, 

    wvf[ algquerydt(?C1,?Deep,?Usmthlst,?Usmaplst,?Tag)-> ?Rules2 ], 

    insertrule { ?Rules2 }, 

    writeln('signatures created')@_prolog, 

    %wvdataloid(?C1,?Deep,?Tag), 

    %wvdata(?C1,?Deep,?Usmthlst,?Usmaplst,?Tag), 

    writeln('data loid and move done')@_prolog,  



Object-Oriented Data and Query Models 

Object-Oriented Query Model (II) - Page [ 314 ] 
 

    algebra[%duplicates(wv(?C1,?Deep,?Tag),?Duplst)], 

    write('duplicate list')@_prolog, writeln(?Duplst)@_prolog, 

    algebra[%delduplicate(?Duplst,wv(?C1,?Deep,?Tag))], 

    writeln('duplicate deletion done')@_prolog. 

The procedure %WVDATA, called from the main procedure %WV, moves data from the query instance 

source, i.e. bound to ?C1, to instances-of WV(…).  For each property in the method list bound to 

?USMTHLST we search for all non-compound inheritable methods and bind them to ?M.  For this 

method we find its corresponding mapping function, i.e. ?MAPM, in the list bound to variable 

?USMAPLST, through procedure call to %LOOKUP121.  The next action is the creation of a new 

name for the mapped property – i.e. bound to ?NM.  The final part is the application of the 

mapping function to the original values; where the original identifier, bound to ?I, is part of the 

query instance-of identifier.  The actual mapping is done through procedure MAPF that given the 

mapping function and original value return the mapping – i.e. bound to ?V.  This data is passed to 

usual procedure to insert the assertion.  This procedure has to be repeated for the other three 

types of methods, e.g. inheritable or non-inheritable. 

    %wvdata(?C1,?Deep,?Usmthlst,?Usmaplst,?Tag):- 

       ?LeftIsmlst= 

      collectset{ ?Wl | wv(?C1,?Deep,?Tag):algquery, 

                        %lmember(?M,?Usmthlst), 

                        ?C1[?M{?B:?T}*=>?_D], 

                        not compound(?M)@_prolog, 

                        %lookup121(?Usmthlst, ?Usmaplst, ?M, ?Mapm), 

                        ?Mapm:map, 

                        addprefix(?Mapm,?M,?Nm), 

                        iwv(?C1,?Deep,?Tag,?I)[],  

                        ?I:?C1[?M->?R], 

                        mapf(?Mapm,?R,?V), 

                        ?Wl=f(?C1,?Deep,?Tag,?I,?Nm,?V) }, 

      %wvinsertsmethod(?LeftIsmlst), … . 

 

        %wvinsertsmethod([?H|?Rlst]):- 

          ?H=f(?C1,?Deep,?Tag,?I,?M,?R), 

          insert{ iwv(?C1,?Deep,?Tag,?I)[?M->?R] }, 

          %wvinsertsmethod(?Rlst). 

        %wvinsertsmethod([]). 

Map and path expressions 

The map operator is useful to implement expressions involving path expression too.  For example 

if a range contains a property whose value is a logical identifier it is advantageous to be able 

traverse to it rather than join the two ranges.  In the following example we are interested to 

retrieve a student’s course name (i.e. CNAME), through its ENROLON property.   The first query 

works out the data type signature of the path expression (i.e. STUDENT.ENROLON.CNAME).  The 

second query shows the results of applying the same path expression on STUDENT’S instances.  
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The third query shows how the same result, as the second query, can be achieved through a user-

defined map function; e.g. called STUDCNAME.   

?- student[enrolon *=> ?Dt1[cname *=> ?Fdt]]. 

?Dt1 = course     ?Fdt = string 

Yes. 

?- ?I:student, ?I.enrolon.cname=?R. 

?I = mary         ?R = "engineering"^^_string 

… 

Yes. 

?- ?I:student,mapf(studcname,?I.enrolon,?R). 

?I = mary         ?R = "engineering"^^_string 

… 

Yes. 

Consequently if we want to output the student’s name and the name of the course she is following 

then we map FNAME and ENROLON with IDENTITY and STUDCNAME for STUDENT’S instances of 

interest. 

?- algebra[%wv(student,"deepextent",[fname,enrolon],[identity,studcname])]. 

The map function STUDCNAME definition follows: 

studcname:map[ source->integer, target-> string, function->studcname]. 

 

mapf(studcname, ?V, ?R) :- ?V:course, ?V[cname->?R]. 

In our framework there are data-type routines to verify a path expression existence in our schema 

and work out its full data type characteristics.  These should be used in the definition of any 

mapping function over and above the data-type checks inbuilt in the data type construction of the 

mapping operand.  Also it is expected that when asserting an instance-of map its SOURCE and 

TARGET properties are worked out. 

Properties of Map operator 

The main property of mapping is its functional composition; that if g and f are mappings then 

their composition is equal to their sequential application (class denotes ranges – e.g. CLASS 

instance). 

(     )(     )    ( (     )) 

In general composition is associative but not commutative. 

12.1.1.2 Aggregate 

The unary aggregate operator first partitions the extent on an indicated property’s distinct values 

and then applies an aggregate function to a specified property for every partition.  The aggregate 

functions supported are sum, minimum, maximum, and count; also all except count expect the 

function to be applied to a numeric property.  The output data type of all aggregate functions is 
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numeric.  There is an issue specific to our data and query model: i.e. whether the extent or deep 

extent of the arguments is required. 

The following examples are based on a class called TRAN (for transaction) whose property’s data 

type signatures are listed in the first example query.   Properties QTY, SALE and COST are for 

used as input to aggregate functions, and properties MONTH, YEAR and UNITCHARGE are used to 

partition the extent.  (Note this is an arbitrary selection for example queries).  

The second example query below shows a simple aggregate operation over the deep extent of class 

TRAN.  The partitioning is being requested on a single property, i.e. YEAR.  That is the query deep 

extent is ‘converted’ into partitions based on unique values of YEAR property values.  For example 

if TRAN’S YEAR property projection yields three distinct year values then a partition is built for 

each of these.  On each of these partitions the operator applies the aggregate function maximum, 

i.e. MAX, on all of the partition’s SALE property values.   The interesting bit is the data-type 

signature of the query instance: the third query shows that it has two data-type signatures.  

There is a data-type signature for the partitioning attribute, in this case YEAR, and another that 

holds the result of applying the MAX aggregate function to property SALE, it is called MAXSALE.  

The last query shows the query instance extent on test data. 

?- tran[?M*=>?Dt]. 

?M = cost      ?Dt = integer 

?M = month     ?Dt = integer 

?M = qty       ?Dt = integer 

?M = sale      ?Dt = integer 

?M = unitchg   ?Dt = unit 

?M = year      ?Dt = integer 

Yes. 

?- algebra[%gv(tran,"deepextent",[year],[sale],[max])]. 

Aggregate arguments match: ok 

method not found list: [] 

Methods exist: ok 

method not found list: [] 

Agg. Methods exist: ok 

aggregate not found list: [] 

Aggregates exist: ok 

algquery instance created 

signatures created 

aggregate loid and data ok. 

Yes. 

?- ?Q:algquery[?M*=>?Dt]. 

?Q = gv(tran,"deepextent",…)    ?M = maxsale   ?Dt = double 

?Q = gv(tran,"deepextent",…)    ?M = year      ?Dt = integer 

?- ?_Q:algquery,?I:?_Q[year->?Y,maxsale->?M]. 

?I=igv(…)   ?Y = 2010  ?M = 400 

?I=igv(…)   ?Y = 2011  ?M = 550 

?I=igv(…)   ?Y = 2012  ?M = 550 

Yes. 
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The following example is a more ambitious use of the aggregate operator.  For example the 

partitioning request is now a combination of three properties, i.e. for the projection of YEAR, 

MONTH, and UNITCHG, and two aggregates are requested on each partition namely SUM on each 

property cost and sale.  The query for the data type signature of the query instance show that it 

has five signatures: three for the partitioning properties and one each for the aggregate function.  

The last query shows the values assigned to property SUMCOST; e.g. partition for 2010, JANUARY 

(i.e. 1), and IDB has a summed cost of 10.   

?- algebra[%gv(tran,"deepextent",[year,month,unitchg],[cost,sale],[sum,sum])]. 

Aggregate arguments match: ok 

method not found list: [] 

Methods exist: ok 

method not found list: [] 

Agg. Methods exist: ok 

aggregate not found list: [] 

Aggregates exist: ok 

algquery instance created 

signatures created 

signatures created 

aggregate loid and data ok. 

?- ?Q:algquery,?I:?Q. 

?Q = gv(tran,"deepextent",…)    ?I = igv(tran,"deepextent",…,2010,1,idb) 

?Q = gv(tran,"deepextent",…)    ?I = igv(tran,"deepextent",…,2010,2,pdb) 

… 

?- ?Q:algquery,?Q[?M*=>?Dt]. 

?Q = gv(tran,"deepextent",…)  ?M = month    ?Dt = integer 

?Q = gv(tran,"deepextent",…)  ?M = sumcost  ?Dt = double 

?Q = gv(tran,"deepextent",…)  ?M = sumsale  ?Dt = double 

?Q = gv(tran,"deepextent",…)  ?M = unitchg  ?Dt = unit 

?Q = gv(tran,"deepextent",…)  ?M = year     ?Dt = integer 

Yes. 

?- ?Q:algquery,?I:?Q[sumcost->?A]. 

?Q = gv(tran,"deepextent",…)   ?I = igv(…,2010,1,idb)      ?A = 10 

?Q = gv(tran,"deepextent",…)   ?I = igv(…,2010,2,pdb)      ?A = 10 

?Q = gv(tran,"deepextent",…)   ?I = igv(…,2010,3,ddb)      ?A = 20 

?Q = gv(tran,"deepextent",…)   ?I = igv(…,2010,4,dsa)      ?A = 20 

?Q = gv(tran,"deepextent",…)   ?I = igv(…,2010,5,javaprog) ?A = 40 

?Q = gv(tran,"deepextent",…)   ?I = igv(…,2010,6,softeng)  ?A = 40 

… 

Yes. 

For the map operator implementation two reified rules are used.  These are attached to an object 

identified with GVF. 

The property ALGQUERYINSTANCE takes care to have a parameterised version and thus assert 

that GV(…) object is an instance-of ALGQUERY.  The method takes six arguments: the first two are 

the collections on which the mapping is to be executed and an indicator to state whether a deep 

extent or an extent is required for the input.  The third parameter is a list of property names, of 

CLASS instance unified in the first argument, on which partitioning is to be done.  The fourth and 

fifth contains two equi-numerous lists – one with property names on which an aggregate is to be 

executed, and the other is the aggregate functions to apply.  The sixth argument is a unique 
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identifier.  Note that object GV(…) instantiated has three properties that unify with the list of 

properties to partition with, the list of properties to apply the aggregates to, and the aggregate 

functions applied. 

  gvf  [algqueryinstance(?C1,?Deep,?Usmthlst,?Aggmthlst,?Aggfunclst,?Tag) -> 

    ${ (  gv(?C1,?Deep,?Tag):algquery 

          [groupby  -> ?Usmthlst,  

           aggoutput-> ?Aggmthlst, 

           funcaggout->?Aggfunclst] :- true  ) }]. 

The second reification concerns the building of rules for creating data type signature of the result.  

The data type signature of the query result is mainly determined by the partitioning properties 

and the target data type of the involved aggregate functions.  Also required is the creation of a 

name for each new property: in this case it was elected that the aggregate function name is made 

a prefix of the original property name.  The data type reification starts by sifting for the relative 

ALGQUERY instance of, i.,e. GV(…).  For each partitioning property in the method list bound to 

?USMTHLST we search for all non-compound inheritable methods and bind it to ?M.  The rule 

simply copies their data-type signatures.  In the case of the aggregate properties we start as for 

partitioning properties but then investigate the aggregating function to work out its data type 

and a new property name.  For this method we find its corresponding aggregate function, i.e. 

?MAAGF, in the list bound to variable ?AGGFUNCLST.  The last action is the creation of a new 

name for the mapped property.  At this point the data-type signature that is derived from ?M can 

be asserted; note that its data type is DOUBLE as all aggregate functions allowed return a DOUBLE.  

There are, as usual, four rules based on the property’s mode (e.g. inheritable or not) in two pairs; 

i.e. the aggregating and functional methods. 

  gvf[  algquerydt(?C1,?Deep,?Usmthlst,?Aggmthlst,?Aggfunclst,?Tag)  ->  

     ${ // group by attributes 

        (  gv(?C1,?Deep,?Tag)[?M{?B:?T}*=>?D]     :-   

                gv(?C1,?Deep,?Tag):algquery, 

                %lmember(?M,?Usmthlst), 

                ?C1[?M{?B:?T}*=>?D], not compound(?M)@_prolog ), 

               …,  

       // aggregate functions attributes (all numeric ie double) 

       (  gv(?C1,?Deep,?Tag)[ ?Maggr{1:1}*=>double]     :-   

                  gv(?C1,?Deep,?Tag):algquery, 

                 %lmember(?M,?Aggmthlst), 

                 ?C1[?M*=>?_D], not compound(?M)@_prolog,   

                 %lookup121(?Aggmthlst,?Aggfunclst,?M,?Maggf), 

                 addprefix(?Maggf,?M,?Maggr) 

        ), … 

       } ]. 

The actual evaluation of aggregation by value is done through procedure %GV in object ALGEBRA.  

The procedure %GV takes five arguments: the first two are the classes’ instances and an indicator 
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on the extent required (i.e. unified to variable ?DEEP).  The third is a list of properties, from the 

class instance bound in the first argument, on which partitioning is to be done.  The last two 

arguments are equi-numerous lists of method names and aggregating functions.  The first part of 

the implementation deals with pre-checks:  a) there needs to be at least one partitioning property; 

b) for every property to aggregate there needs to be one, and only one, aggregating function; c) the 

list of aggregating properties is made up of methods present in the class being aggregated and 

they are single valued – ALGEBRA object has procedure %SINGLEMETHODSEXIST to check this; d) 

the properties being aggregated must be present and singular (not sets); e) the functions listed in 

the aggregate function list are instances of the ones allowed.  After the checks succeed a unique 

identifier is generated and the two reification rules are instantiated and inserted into the object 

base.  These rules assert a query instance (i.e. GV(…):ALGQUERY[…]) and the data type signature 

of the query instance.  Since the output of the aggregate operator is not 1-1 to the extent instances 

then the instance–of and actual copying is done through a single procedure called 

%GVAGGLOIDDATA. The procedure takes the same arguments as the operator plus the unique 

identifier generated (i.e. bound to ?TAG). 

  algebra[%gv(?C1,?Deep,?Usmthlst,?Aggmthlst,?Aggfunclst)] :- 

    ?Nigb =count{?Igb | %lmember(?Igb, ?Usmthlst)   }, 

     ?Niae =count{?Iae | %lmember(?Iae, ?Aggmthlst)  }, 

     ?Niaf =count{?Iaf | %lmember(?Iaf, ?Aggfunclst) }, 

    if   ( ( ?Nigb > 0 ), ( ?Niae=?Niaf )  )  … , 

    algebra[%singlemethodsexist (?C1,?Usmthlst,?Nousmthlst)], 

    if ( ?Nousmthlst = [] ) … , 

    algebra[%singlemethodsexist(?C1,?Aggmthlst,?Noaggmthlst)], 

    if ( ?Noaggmthlst = [] ) … , 

    algebra[%aggsexist(?Aggfunclst,?Noaggfunclst)], 

    if ( ?Noaggfunclst = [] ) … , 

    newoid{?Tag}, 

    gvf[ algqueryinstance(?C1,?Deep,?Usmthlst,?Aggmthlst,?Aggfunclst,?Tag) 

         -> ?Rules1 ], 

    insertrule { ?Rules1 }, 

    writeln('algquery instance created')@_prolog, 

    gvf[ algquerydt(?C1,?Deep,?Usmthlst,?Aggmthlst,?Aggfunclst,?Tag) 

         -> ?Rules2 ],  

    insertrule { ?Rules2 }, 

    writeln('signatures created')@_prolog, 

    //generate aggregate loid and data from partitioning 

    if ?Deep="deepextent" then (?Deepc='deepextent') else (?Deepc='extent'), 

    %gvaggloiddata(?C1,?Deepc,?Usmthlst,?Aggmthlst,?Aggfunclst,?Tag), 

    writeln('data loid and aggregate done')@_prolog. 

Procedure %GVAGGLOIDDATA is tedious if not straightforward.  The procedure needs to build a 

rule that implements the aggregation function on the partitioning properties provided for every 

instance of the aggregating function list.  The procedure needs to build the syntax of the rule on 

the lines shown in the following template. 
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?Agg = aggfunction { property_to_agg [ partitioning_methods+ ]| 

                 ?I:class_extent, 

                 ?I[property_to_agg, 

                    partitioning_methods+] 

                } 

To help out with the string construction the procedure uses three other procedures to help with 

concatenation (e.g. SC(..) with various arities, ML2SC, and MV12SC).   Rather than using 

reification to instantiate and update the object base one has to pass to the underlying engine the 

rule, in string format, to parse and then evaluate.  The reason is that coding the various 

combinations of inputs in lists with reification is not possible.  Flora-2 has a special predicate in 

module parse to read a string and after parsing it evaluates it in the object base, i.e. 

%READALL(…)@_PARSE.  In procedure INSERTRULEBYPARSEANDEVAL(…) this %READALL(…) 

predicate is called. 

  

%gvaggloiddata(?C1,?Deep,?Usmthlst,[?Hmth|?Aggmthlst],[?Hf|?Aggfunclst],?Tag) 

  :-  sc('"',?Deep,'"',?Deepe), 

      ?T0='igv(', ?L1=[?C1,?Deepe,?Tag],l2sc(?L1,?T0,?T1), 

      sc(?T1,',',?T2), 

      ml2sc(?Usmthlst,?T2,?T3), 

      ?T4='):gv(', sc(?T3,?T4,?T5), 

      ?L2=[?C1,?Deepe,?Tag],l2sc(?L2,?T5,?T6), 

      ?T7=')[',sc(?T6,?T7,?T8), 

      sc(?T8,?Hf,?Hmth,?T9), 

      sc(?T9,'->?Agg] :- ?Agg = ',?Hf,?T10), 

      sc(?T10,' {?',?Hmth,?T11), 

      sc(?T11,'[',?T12), 

      ml2sc(?Usmthlst,?T12,?T13),sc(?T13,']|?I:',?C1,',?I[',?T14), 

      mvl2sc(?Usmthlst,?T14,?T15), 

      sc(?T15,',',?Hmth,'->?',?Hmth,?T16), 

      sc(?T16,']}.',?T17), 

      writeln('')@_prolog, 

      writeln(?T17)@_prolog, 

      insertrulebyparseandeval( ?T17 ), 

      %gvaggloiddata(?C1,?Deep,?Usmthlst,?Aggmthlst,?Aggfunclst,?Tag). 

  %gvaggloiddata(?_C1,?_Deep,?_Usmthlst,[],[],?_Tag). 

The following listing shows a rule constructed for one case of aggregating function.   

Remark    Example query 

Remark    algebra[%gv(tran,"deepextent", 

Remark            [year,month,unitchg],[cost,sale],[sum,sum])]. 

 

Remark    Rule generated for cost by year, month & unitchg and sum aggregate 

 

igv(tran,"deepextent", …,?year,?month,?unitchg): 

 gv(tran,"deepextent", … )[sumcost->?Agg] 

  :- ?Agg = sum {?cost[?year,?month,?uitchg]| 

                 ?I:tran, 

                 ?I[year->?year, 

                    month->?month, 

                    unitchg->?unitchg, 

                    cost->?cost] 

                }. 
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Properties of Map and Aggregate operators 

An interesting property of the sequence application of the same aggregate operator, given that the 

partitioning property lists are in a sequential subset relationship too, is that the sequence is 

equal to the last application (and vice versa). 

∑(∑  (∑(     )

  

) 

    

)

  

 ∑(     )

  

 

                    

    ∑                                  

Another useful observation is some aggregate functions are derivable from other aggregates.  For 

example the aggregate average is equal to aggregate sum divide by aggregate count. 

12.1.2 Nest and Unnest 

The nest and unnest by value operands are capable of building composite objects and flattening 

out a level of composition from a target CLASS instances.  These restructuring operands are 

particular and required in the presence of data models capable of building composite structures.  

These operands have their origin to the introduction of non-first normal form relational models.  

In our implementation projection is included in the operator’s implementation. 

12.1.2.1 Nest 

The unary nest by value algebraic operator partitions the class instances according to a list of 

properties, which is passed as an argument, and collects the distinct values of another property 

into a new set based property.  Therefore from every partition of the partitioning properties a set 

of values of the nesting property is built.  While the list of partitioning properties and nesting 

property has a single cardinality data type requirement, the cardinality of the nested attribute of 

the output is a set.  Consequently the data type signature of a nest by value operand has the 

same signatures for the partitioning attributes but it changes the name and cardinality (i.e. to 

set) of the nested property.  There is a specific point to our data and query model that needs 

addressing is whether the extent or deep extent of the arguments is required. 

The following example partitions the CLASS TRAN’S deep extent by property YEAR’S distinct 

values and nests the SALE property.  That is for every YEAR’S distinct value, all values of SALE 
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coming from objects that have the same YEAR’ instance value are collated into a set; which is 

renamed to NESTSALE.  The third query shows the data type signature of the query instance: 

while the YEAR signature is identical to TRAN’S, the property NESTSALE has a different name and 

upper cardinality from the property SALE of TRAN.  The last query shows some of the set element 

values of NESTSALE for different partitions. 

?- algebra[%nv(tran,"deepextent",[year],sale)]. 

Nesting arguments exist: ok 

method not found list: [] 

Nesting methods exist: ok 

method not found list: [] 

Attr to nest exist: ok 

algquery instance created 

signatures created 

data loid and aggregate done 

Yes. 

?- ?Q:algquery. 

?Q = nv(tran,"deepextent",555) 

Yes. 

?- ?Q:algquery[?M{?L:?U}*=>?Dt;?M{?L:?U}=>?Dt]. 

?Q = nv(tran,"deepextent",555)  ?M = nestsale   ?Dt = integer   ?L = 0  ?U = * 

?Q = nv(tran,"deepextent",555)  ?M = year       ?Dt = integer   ?L = 1  ?U = 1 

Yes. 

 

?- ?I:nv(tran,"deepextent",555)[?M->?D]. 

?I = inv(tran,"deepextent",555,2010)   ?M = nestsale   ?D = 100 

?I = inv(tran,"deepextent",555,2010)   ?M = nestsale   ?D = 200 

… 

?I = inv(tran,"deepextent",555,2012)   ?M = nestsale   ?D = 250 

?I = inv(tran,"deepextent",555,2012)   ?M = nestsale   ?D = 350 

?I = inv(tran,"deepextent",555,2012)   ?M = nestsale   ?D = 450 

?I = inv(tran,"deepextent",555,2012)   ?M = nestsale   ?D = 550 

?I = inv(tran,"deepextent",555,2012)   ?M = year       ?D = 2012 

Yes. 

For the nest operator implementation two reified rules are used.  These are attached to an object 

identified with NVF. 

The property ALGQUERYINSTANCE takes care to have a parameterised version and thus assert a 

NV(…) object is an instance-of ALGQUERY.  The method takes five arguments: the first two are the 

collections on which the nesting is to be executed and an indicator to state whether a deep extent 

or an extent is required for the result.  The third contains a list of property names to partition on.  

The forth argument is bound to a class property which is to be nested.  The fifth argument is a 

unique identifier.  Note that object NV(…) instantiated has two properties that unify with the list 

of partitioning properties and the property to be nested. 

  nvf   [algqueryinstance(?C1,?Deep,?Usmthlst,?Nestattr,?Tag) -> 

    ${  (  nv(?C1,?Deep,?Tag):algquery[nestby->?Usmthlst, nestatr->?Nestattr] 

           :- true  ) }]. 

The second reification concerns the building of rules for creating data type signature of the 

nesting result.  The data type signature of the query result is determined by the list of 
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partitioning properties and the property to be nested.  Also required is the creation of a name for 

the nested property.  For example nested property SALE is renamed to NESTSALE.  The data type 

reification starts by sifting for the relative ALGQUERY instance of, i.e. NV(…).  For each property in 

the method list bound to ?USMTHLST we search for all non-compound inheritable methods and 

bind it to ?M.  This property data-type signature is instantiated to the query instance.  In the case 

of the nested attribute we need to do two things once the nested property is unified to variable ?M 

(this is the second reification instance).  The first is renaming, and the second is setting the upper 

bound from 1 to ‘*’ (i.e. many).  There are eight rules based on the property’s mode (e.g. 

inheritable or not) and whether part of the partitioning set or nesting attribute. 

  nvf[algquerydt(?C1,?Deep,?Usmthlst,?Nestattr,?Tag)  ->  

    ${                                                  // nest by attributes 

       (  nv(?C1,?Deep,?Tag)[?M{?B:?T}*=>?D]  :-  

             nv(?C1,?Deep,?Tag):algquery, 

             %lmember(?M,?Usmthlst), 

             ?C1[?M{?B:?T}*=>?D], not compound(?M)@_prolog 

        ), … , 

                                                       // nested attribute 

       (  nv(?C1,?Deep,?Tag)[ ?Maggr{0:*}*=>?D]  :-   

              nv(?C1,?Deep,?Tag):algquery, ?Nestattr=?M, 

              ?C1[?M*=>?D], not compound(?M)@_prolog,   

               addprefix('nest',?M,?Maggr) 

        ), …  

      }]. 

The actual evaluation of nesting by value is done through procedure %NV in object ALGEBRA.  The 

procedure %NV takes four arguments: the first two are the classes’ instances and an indicator on 

the extent required (i.e. unified to variable ?DEEP).  The third argument is a list of properties on 

which to nest.  The final argument is bound to the property to be nested.  The first part of the 

implementation deals with pre-checks:  for example the partitioning properties list contains at 

least one property and every property exists and has singular cardinality.  Another check is done 

on the nested attribute – again it must exist and has singular cardinality too.  Once the checks 

are confirmed an identifier is generated and it is unified with ?TAG.  The procedure then creates 

the query instance and the query instance data-type signature; as usual these are handled by the 

reification of the rules and inserting them into the object base.  The instantiation of the query 

instance objects is slightly different here:  first, but as in aggregate operator, the insert of a fact 

into the object base is done through the Flora-2 parse module; and second, the fact instantiation 

is split into two parts (i.e. one deals with partitioning values and the other deals with the nested 
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property).  Two separate procedures are called, namely %NVLOIDDATA11 and %NVLOIDDATA12, in 

sequence.   

algebra[%nv(?C1,?Deep,?Usmthlst,?Nestattr)] :- 

    ?Nigb =count{?Igb | %lmember(?Igb, ?Usmthlst)   }, 

    if ( ?Nigb > 0 ) …, 

    algebra[%singlemethodsexist (?C1,?Usmthlst,?Nousmthlst)], 

    if ( ?Nousmthlst = [] ) …, 

    algebra[%singlemethodsexist(?C1,[?Nestattr],?Nonestattr)], 

    newoid{?Tag},                                   // get a tag     

    nvf[ algqueryinstance(?C1,?Deep,?Usmthlst,?Nestattr,?Tag) -> ?Rules1 ], 

    insertrule { ?Rules1 },                         // create query instance 

    writeln('algquery instance created')@_prolog, 

    nvf[ algquerydt(?C1,?Deep,?Usmthlst,?Nestattr,?Tag)-> ?Rules2 ], 

    insertrule { ?Rules2 }, 

    writeln('signatures created')@_prolog, 

    //generate aggregate loid and data from nesting 

    if ?Deep="deepextent" then (?Deepc='deepextent') else (?Deepc='extent'), 

    %nvloiddata11(?C1,?Deepc,?Usmthlst,?Nestattr,?Tag), 

    %nvloiddata12(?C1,?Deepc,?Usmthlst,?Nestattr,?Tag),  

    writeln('data loid and aggregate done')@_prolog. 

The two procedures share a common logic based on incrementally building a string, from the 

arguments provided, to build a rule.  Once this rule is built it is parsed and inserted into the 

object base for evaluation.  The procedure, actually both of them, takes the same arguments as 

the calling procedure.   

    %nvloiddata11(?C1,?Deep,?Usmthlst,?_Nestattr,?Tag):- 

      sc('"',?Deep,'"',?Deepe), 

      ?T0='inv(', ?L1=[?C1,?Deepe,?Tag],l2sc(?L1,?T0,?T1), 

      sc(?T1,',',?T2), 

      ml2sc(?Usmthlst,?T2,?T3), 

      ?T4='):nv(', sc(?T3,?T4,?T5), 

      ?L2=[?C1,?Deepe,?Tag],l2sc(?L2,?T5,?T6), 

      ?T7=')[',sc(?T6,?T7,?T8), 

      mvl2sc(?Usmthlst,?T8,?T9), 

      sc(?T9,'] :- ?I:',?C1,' , ?I[',?T10), 

      mvl2sc(?Usmthlst,?T10,?T11), 

      sc(?T11,'].',?T12), 

      %insertrulebyparseandeval(?T12). 

In the following listing the rules generated for a query are given: 

Remark    Example query 

Remark    algebra[%nv(tran,"deepextent",[year],sale)]. 

 

Remark    Two rules generated for nesting sale by year 

 

inv(tran,"deepextent",…,?year):nv(tran,"deepextent",…)[year -> ?year]  

   :-    ?I:tran , ?I[year -> ?year]. 

 

inv(tran,"deepextent",…,?year)[nestsale -> ?sale] 

   :-    ?I:tran , ?I[year -> ?year, sale -> ?sale]. 

 

12.1.2.2 Unnest 

The unary unnest operator unfolds a set valued property into single valued property; each 

element of the set of values is ‘joined’ to a set of values pertaining to list of properties passed as 

arguments to the operator.  It needs to be stated that while the unnesting property has set 

cardinality the other properties have single cardinality.  In simple terms it undoes what nest 
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operator does; but more of this later.  Consequently the data-type signature of an unnest by value 

operand has the same signatures for the repeating attributes but it changes the name and 

cardinality (i.e. to single cardinality) of the unnested property.  There is a specific point for our 

data and query model that needs addressing as to whether the extent or deep extent of the 

arguments is required.  Also a duplicate post evaluation check needs to be run and any duplicates 

eliminated. 

The following script shows an unnesting example.  The first query actually show two attribute 

values of object identified as MARY:  FNAME is a singular property and takes a string “MARY”, 

while TELNO is set valued property and it takes two numbers 1234 and 5678.  The second query 

fires the unnest operator on set value property TELNO and with property FNAME as the repeating 

value in output object.  The verbose output lists the evaluation progress including comments from 

the pre and post checks.  The next query extracts the data type signature of the query instance 

created for the unnesting by value operation.  Note the renaming of the unnested attribute – i.e. 

UNTELNO.  The next query shows the properties of the query instance: i.e. the query arguments.  

The result of the operation is shown in the last query (i.e. sanitised output); it has to be noted 

that there two instances of OV(…) that hold the string “MARY”, i.e. repeating property, and the 

telephone number 1234 and 5678 respectively.  Indication that these are two separate instances 

is given in the functor logical identifier of relative instances – e.g. IOV(…).  

?- mary[fname->?F, telno->?T]. 

?F = "mary"^^_string   ?T = "1234"^^_integer 

?F = "mary"^^_string   ?T = "5678"^^_integer 

Yes. 

?- algebra[%ov(student,"deepextent",[fname],telno)]. 

Unnesting arguments exist: ok 

method not found list: [] 

Unnesting methods exist: ok 

method not found list: [] 

Attr. to unnest exist: ok 

algquery instance created 

signatures created 

data loid and unnesting done 

duplicate list[] 

duplicate deletion done 

Yes. 

?- ?Q:algquery[?M*=>?Dt;?M=>?Dt]. 

?Q = ov(student,"deepextent",…)   ?M = fname       ?Dt = string 

?Q = ov(student,"deepextent",159) ?M = untelno     ?Dt = integer 

Yes. 

?- ?Q:algquery[?M->?V]. 

?Q = ov(student,"deepextent",159)   ?M = unnestatr   ?V = telno 

?Q = ov(student,"deepextent",159)   ?M = unnestby    ?V = [fname] 

Yes. 
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?- ?I:ov(…)[?M->?V]. 

?I = iov(…,"mary"^^_s,"1234"^^_i)    ?M = fname    ?V = "mary"^^_s 

?I = iov(…,"mary"^^_s,"1234"^^_i)    ?M = untelno  ?V = "1234"^^_i 

?I = iov(…,"mary"^^_s,"5678"^^_i)    ?M = fname    ?V = "mary"^^_s 

?I = iov(…,"mary"^^_s,"5678"^^_i)    ?M = untelno  ?V = "5678"^^_i 

?I = iov(…,"michael"^^_s,"3456"^^_i) ?M = fname    ?V = "michael"^^_s 

?I = iov(…,"michael"^^_s,"3456"^^_i) ?M = untelno  ?V = "3456"^^_i 

?I = iov(…,"michael"^^_s,"9012"^^_i) ?M = fname    ?V = "michael"^^_s 

?I = iov(…,"michael"^^_s,"9012"^^_i) ?M = untelno  ?V = "9012"^^_i 

… 

Yes. 

For the unnest operator implementation two reified rules are used.  These are attached to an 

object identified with OVF. 

The property ALGQUERYINSTANCE takes care to have a parameterised version and thus assert an 

OV(…) object is an instance-of ALGQUERY.  The method takes five arguments: the first two are the 

collections on which the mapping is to be executed and an indicator to state whether a deep 

extent or an extent is required for the result.  The third contains a list of property names to 

repeat on.  The forth argument is bound to class property which is to be unnested.  The fifth 

argument is a unique identifier.  Note that object OV(…) instantiated has two properties that 

unify with the list of repeating properties and the property to be unnested. 

  ovf[ algqueryinstance(?C1,?Deep,?Usmthlst,?Unnestattr,?Tag) -> 

    ${(  ov(?C1,?Deep,?Tag):algquery [nestby->?Usmthlst, nestatr->?Unnestattr] 

           :- true  )  }]. 

The second reification concerns the building of rules for creating the data-type signature of the 

unnesting result.  The data type signature of the query result is determined by the list of 

repeating properties and the property to be unnested.  Also required is the renaming of the 

unnested property.  For example unnested property TELNO is renamed to UNTELNO.  The data 

type reification starts by sifting for the relative ALGQUERY instance of, i.e. OV(…).  For each 

property in the method list bound to ?USMTHLST we search for all non-compound inheritable 

methods and bind each to ?M.  This property data-type signature is instantiated to the query 

instance.  In the case of the unnesting attribute we need to do two things once the unnested 

property is unified to variable ?M (this is the second reification instance).  The first is renaming, 

and the second is setting the upper bound from ‘*’ to 1 (i.e. one).  There are, as usual, four rules 

based on the property’s mode (e.g. inheritable or not) for repeating properties and four for the 

unnesting attribute. 
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  ovf[ algquerydt(?C1,?Deep,?Usmthlst,?Unnestattr,?Tag)  ->  

    ${                                                 // unnest by attributes 

        (  ov(?C1,?Deep,?Tag)[?M{?B:?T}*=>?D]  :- 

                ov(?C1,?Deep,?Tag):algquery, 

                %lmember(?M,?Usmthlst), 

                ?C1[?M{?B:?T}*=>?D],  

                not compound(?M)@_prolog ), … 

 

        (  ov(?C1,?Deep,?Tag)[ ?Maggr{0:*}*=>?D]     :- 

                ov(?C1,?Deep,?Tag):algquery, 

                ?Unnestattr=?M, 

                ?C1[?M=>?D], 

                not compound(?M)@_prolog,   

                addprefix('un',?M,?Maggr) … 

     }  ]. 

The actual evaluation of unnesting by value is done through procedure %OV in object ALGEBRA.  

The procedure %OV takes four arguments: the first two are the classes’ instances and an indicator 

on the extent required (i.e. unified to variable ?DEEP).  The third argument is a list of properties 

on which to repeat the unnesting property.  The fourth and final argument is bound to the 

property to be unnested.  The first part of the implementation deals with pre-checks:  for example 

the repeating properties list contains at least one property and every property exists and has 

singular cardinality.  Another check is done on the unnesting attribute through method 

%SETMETHODSEXIST of object ALGEBRA – again it must exist and has set cardinality too.  Once 

the checks are confirmed an identifier is generated; it is unified with ?TAG.  The procedure than 

creates the query instance and the query instance data type signature; these are handled by the 

reification of the rules and inserting them into the object base.  The instantiation of the query 

instance objects is slightly different of the nest operator:  the rule to generate the instances is 

constructed into a string and then the string is parsed and evaluated into an object base through 

the parse module.  Procedure is %OVLOIDDATA called.  A post check for duplicates is made. 

  algebra[%ov(?C1,?Deep,?Usmthlst,?Unnestattr)] :-  

    ?Nigb =count{?Igb | %lmember(?Igb, ?Usmthlst)   }, 

    if ( ?Nigb > 0 ) … , 

    algebra[%singlemethodsexist (?C1,?Usmthlst,?Nousmthlst)], 

    if ( ?Nousmthlst = [] ) … , 

    algebra[%setmethodsexist(?C1,[?Unnestattr],?Nounnestattr)], 

    if ( ?Nounnestattr = [] ) … , 

    newoid{?Tag}, 

    ovf[ algqueryinstance(?C1,?Deep,?Usmthlst,?Unnestattr,?Tag) -> ?Rules1 ], 

    insertrule { ?Rules1 }, 

    writeln('algquery instance created')@_prolog, 

    ovf[ algquerydt(?C1,?Deep,?Usmthlst,?Unnestattr,?Tag)-> ?Rules2 ], 

    insertrule { ?Rules2 }, 

    writeln('signatures created')@_prolog, 

    // generate aggregate loid and data from aggregation 

    if ?Deep="deepextent" then (?Deepc='deepextent') else (?Deepc='extent'), 

    %ovloiddata(?C1,?Deepc,?Usmthlst,?Unnestattr,?Tag), 

    writeln('data loid and unnesting done')@_prolog, 

    algebra[%duplicates( ov(?C1,?Deep,?Tag),?Duplst)], 

    write('duplicate list')@_prolog, writeln(?Duplst)@_prolog, 

    algebra[%delduplicate(?Duplst, ov(?C1,?Deep,?Tag))]. 
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The calling of procedure %OVLOIDDATA produces a string which is a rule: for this example the rule 

says if a student instance-of whose properties FNAME and TELNO values are unified to variables 

?FNAME and ?TELNO exist then create an IOV(…) object, that is an instance-of OV(…), and whose 

properties FNAME and UNTELNO are unified to variables ?FNAME and ?TELNO.  Note how the rule 

takes care of building the identifier, especially that of IOV(…), by including the values of two 

variables ?FNAME and ?TELNO in its functor. 

Remark    Example query 

Remark    algebra[%ov(student,"deepextent",[fname],telno)]. 

 

Remark    A  rule generated for unnesting of telno and repeating year 

 

iov(student,"deepextent",159,?fname,?telno):ov(student,"deepextent",159) 

[fname->?fname, untelno->?telno] :-  

         ?I:student, ?I[fname->?fname,telno->?telno]. 

12.1.2.3 Properties of Nest and Unnest operators 

The application of a nesting to an unnesting and the application of unnesting to nest have well 

known properties; these are attributed to many sources but are mainly credited to Roth, Korth & 

Silberschatz in [ROTHM88], and Thomas and Fischer in [THOMA86]. 

In general unnest (denoted by ) is the inverse of nest (denoted by  ): 

  (  (     ))          

In general it is not the case that nest is the inverse of unnest: 

  (  (     ))          

(‘class’ denotes ranges – e.g. CLASS instance). 

For nesting to be the inverse of unnest the grouping properties must functionally determine the 

nesting property. 

12.1.3 Rename Operator 

The unary rename operator changes the names of a class instance properties.  The rename 

operator, for example, can get two non-union compatible arguments compatible, if only their 

property names are different.  In the following script we show how to “join” together the names of 

units and student (i.e. UNAME and FNAME respectively) in one query instance output.  In the first 

two queries each expression projects out the relative properties of UNAME and FNAME.  Then a 

union by value is attempted but fails as the input arguments are not union compatible because 

the property name does not match.  The rename operator is called twice and renames each 
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attribute, of the projected output query instance results, into RNAME.  At this point the union by 

values is executed and succeeds.  Some of the last query’s output is included. 

?- algebra[%pv(student,"extent",[fname])]. 

Yes. 

?- algebra[%pv(unit,"extent",[uname])]. 

Yes. 

?- ?Q:algquery, ?I:?Q. 

?Q = pv(student,"extent",_#'18219)   ?I = ipv(student,"extent",_#'18219,mary) 

?Q = pv(student,"extent",_#'18219)   ?I = ipv(student,"extent",_#'18219,michael) 

?Q = pv(student,"extent",_#'18219)   ?I = ipv(student,"extent",_#'18219,nancy) 

… 

?Q = pv(unit,"extent",_#'18220)      ?I = ipv(unit,"extent",_#'18220,fyp) 

Yes. 

?- ?Rt=pv(unit,"extent",?_1), 

   ?Lf=pv(student,"extent",?_2),  

   algebra[%uv(?Lf,?Rt,"extent")]. 

not union compatible 

No. 

?- ?Rt=pv(unit,"extent",?_1), algebra[%rv(?Rt,"extent",[uname],[rname])]. 

Yes. 

?- ?Lf=pv(student,"extent",?_2), algebra[%rv(?Lf,"extent",[fname],[rname])]. 

Yes. 

?- ?Lf:algquery, ?Lf=rv(pv(student,"extent",?_1),"extent",?_2), 

   ?Rt:algquery, ?Rt=rv(pv(unit,"extent",?_3),"extent",?_4),  

   algebra[%uv(?Lf,?Rt,"extent")]. 

union compatible 

UC: ok 

… 

Yes. 

?- ?_Q:algquery, ?_Q=uv(?_1,?_2,?_3), ?_I:?_Q, ?_I[rname->?N]. 

?N = "data struct & algo"^^_string 

?N = "dist db"^^_string 

… 

?N = "robert"^^_string 

?N = "soft eng"^^_string 

Yes. 

For the rename operator implementation two reified rules are used.  These are attached to an 

object identified with RVF. 

The property ALGQUERYINSTANCE takes care to have a parameterised version and thus assert a 

RV(…) object is an instance-of ALGQUERY.  The method takes five arguments: the first one is a 

collection on which the rename is to be executed; e.g. a class name.  The second contains an 

indicator to state whether a deep extent or an extent is required for the result.  The third and 

fourth contains lists of methods to rename (i.e. from old to new names – henceforth called ‘from’ 

and ‘to’ lists).  The fifth is an auto-generated logical identifier.  Other than creating an instance-

of, the reification of the rule includes instantiation of two properties: these are assigned the ‘from’ 

and the ‘to’ lists (i.e. in RENAMEFROM and RENAMETO in RV(…) ). 

  rvf  [algqueryinstance(?C1,?Deep,?Fmthlst,?Tmthlst,?Tag) ->  

    ${ (rv(?C1,?Deep,?Tag):algquery [renamefrom->?Fmthlst, renameto->?Tmthlst] 

            :- true  ) }]. 

It has been just stated that ‘from’ and ‘to’ lists are two arguments that govern the renaming 

operation.  A simple predicate is required to map a property name in the ‘from’ list to the 
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corresponding name in the ‘to’ list.  The predicate is called %LOOKUP212 and takes four 

arguments: the first two are the ‘from’ and ‘to’ lists, the third is a name in the ‘from’ list and the 

forth being the item in the ‘to’ list that comes in the same sequence as the third argument.  The 

following shows how the procedure unifies ‘C’ from the ‘to’ list for the item ‘3’ in the ‘from’ list. 

?- ?Source=[1,2,3,4],?Dest=[a,b,c,d],%lookup121(?Source,?Dest,3,?M). 

?Source = [1, 2, 3, 4]    ?Dest = [a, b, c, d]    ?M = c 

Yes. 

The second reification concerns the data type signature of the result.  Actually the data type 

signature remains intact except for the renaming of some property’s name.  The RVF object uses 

the ALGQUERYDT property and it takes five parameters: the same set as ALGQUERYINSTANCE.  

The ALGQUERYDT has four instantiations each related to a different properties mode–cater for 

inheritable (i.e. *=> ) and non-inheritable (i.e. => ) methods, and arity and non-arity (i.e. NOT 

COMPOUND(?M)) methods.  Each rule has the same pattern but each fire for a particular data 

signature type.  If there is a method signature in an argument class then it needs to be asserted 

in the output data type signature (i.e. of RV(…) object).  What is particular here is the part where 

if a property being evaluated, i.e. ?M, is a member of the ‘from’ list, i.e. ?FMTHLST, then a look up 

to its corresponding ‘to’ list entry is made through predicate %LOOKUP121. 

  rvf  [algquerydt(?C1,?Deep,?Fmthlst,?Tmthlst,?Tag)  -> 

    ${ (  rv(?C1,?Deep,?Tag)[?Rm{?B:?T}*=>?D]   :-  

             rv(?C1,?Deep,?Tag):algquery, 

             ?C1[?M{?B:?T}*=>?D], not compound(?M)@_prolog, 

             if   ( %lmember(?M,?Fmthlst) )  

             then ( %lookup121(?Fmthlst,?Tmthlst,?M,?Rm) )  

             else ( ?M=?Rm ) ), 

       … ]. 

The object ALGEBRA has procedure %RV to implement rename by value; also the procedure takes 

four arguments.  The actual implementation of rename operation is long; this is due to a number 

of preconditions to be tested for proper application of the ‘from’ and ‘to’ renaming – these are the 

third and fourth arguments of %RV.  The first test is whether the two lists have the same number 

of elements.  The second test ensures that all elements in the ‘from’ list are actually methods 

found in the class instance, this is the first argument of procedure.  The method used is the same 

one used in the project by value operator: %METHODEXIST of object algebra.  The third check 

ensures that no name in the ‘to’ list is already found in the class instance – again using procedure 

%METHODSEXIST.  The fourth check, and final pre-check, needs to check that if a property to be 

renamed is compound then only the name is changed; i.e. the argument data type is not.  An 
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appropriate procedure, called %RVNOMTHPARAMCHANGE and explained later, is invoked with the 

‘from’ and ‘to’ lists.  It fails if there is such an issue.  After the pre-checks the %RV procedure 

generates a unique logical identifier; which is unified to ?TAG.  The two reified rules are invoked, 

reified, and inserted into the object base – these take care of instance-of assertion (i.e. 

IRV(…):RV(…) ) and data type signatures of query instance class.  As is common across most 

operators, the next actions are to call procedures %RVDATALOID and %RVDATA so as to create the 

query extent and transfer data onto the query instance collection.  The operator ends by checking 

for duplicates and purges any present. 

  algebra[%rv(?C1,?Deep,?Usfmthlst,?Ustmthlst)] :- 

    ?Nfmth=count{ ?Ifmth | %lmember(?Ifmth, ?Usfmthlst) }, 

    ?Ntmth=count{ ?Itmth | %lmember(?Itmth, ?Ustmthlst) }, 

    if   ( ?Nfmth = ?Ntmth )  

    then ( writeln('From and To Methods list number of elements: ok')@_p)  

    else ( writeln('From and To Methods list have diff number of ele.')@_p, 

           fail ), 

    algebra[%methodsexist (?C1,?Usfmthlst,?Nofmthlst)], 

    if   ( ?Nofmthlst = [] ) 

    then ( writeln('From Methods exist: ok')@_prolog) 

    else ( write('From Methods list: problem; missing attributes - ')@_prolog, 

           writeln(?Nofmthlst)@_prolog, 

           fail ),  

    algebra[%methodsexist(?C1,?Ustmthlst,?Notmthlst)], 

    if   ( ?Notmthlst = ?Ustmthlst ) 

    then ( writeln('To Methods have no clash: ok')@_prolog) 

    else ( write('To Methods list: problem clashing attributes - ')@_prolog, 

           writeln(?Ustmthlst)@_prolog, 

           fail), 

    %rvnomthparamchange(?Usfmthlst,?Ustmthlst), 

    newoid{?Tag}, 

    rvf[ algqueryinstance(?C1,?Deep,?Usfmthlst,?Ustmthlst,?Tag) -> ?Rules1 ], 

    insertrule { ?Rules1 }, 

    writeln('algquery instance created')@_prolog, 

    rvf[ algquerydt(?C1,?Deep,?Usfmthlst,?Ustmthlst,?Tag)-> ?Rules2 ], 

    insertrule { ?Rules2 }, 

    writeln('signatures created')@_prolog, 

    %rvdataloid(?C1,?Deep?Usfmthlst,?Ustmthlst,?Tag), 

    %rvdata(?C1,?Deep,?Usfmthlst,?Ustmthlst,?Tag), 

    writeln('data loid and move done')@_prolog, 

    algebra[%duplicates(rv(?C1,?Deep,?Tag),?Duplst)], 

    write('duplicate list')@_prolog, writeln(?Duplst)@_prolog, 

     algebra[%delduplicate(?Duplst,rv(?C1,?Deep,?Tag))], 

    writeln('duplicate deletion done')@_prolog. 

The procedure %RVDATALOID, called from %RV builds a list of objects that need to instantiated as 

instances of RV(…) – these are instances-of ?C1.  The list is passed to recursive procedure 

%RVINSERTLEFT that iteratively inserts clauses of the form IRV(…):RV(…) into the object base.  

    %rvdataloid(?C1,?Deep,?Fmthlst,?Tmthlst,?Tag) :- 

      if   (?Deep="extent") 

      then (?Ileftlst=collectset{?Ileft|?Ileft:?C1, 

                                        if (?Sc::?C1, ?Ileft:?Sc) 

                                        then (false) else (true)}) 

      else (?Ileftlst=collectset{?Ileft|?Ileft:?C1}), 

      %rvinsertleft(?Ileftlst,?C1,?Deep,?Fmthlst,?Tmthlst,?Tag). 
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The %RVDATA although similar to other operators’ implementation, like four sections to deal with 

each type of method signature, has some differences.  The basic difference is that if the method 

whose value is being copied into is in the ‘to’ list then the corresponding ‘from’ list method is 

sought and data copied from class instance ?C1.  Once the collection is built it is passed on to 

procedure %RVINSERTMETHOD (or %RVINSERTPMETHOD for arity properties) for it to assert the 

property’s values.  

    %rvdata(?C1,?Deep,?Fmthlst,?Tmthlst,?Tag) :- 

       ?LeftIsmlst =  

        collectset{ ?Wl | rv(?C1,?Deep,?Tag):algquery,  

                          rv(?C1,?Deep,?Tag)[?M*=>?D],  

                           not compound(?M)@_prolog, 

                          irv(?C1,?Deep,?Tag,?I)[], 

                          if   ( %lmember(?M,?Tmthlst) ) 

                          then ( %lookup121(?Fmthlst,?Tmthlst,?Oldm,?M), 

                                 ?I:?C1[?Oldm->?R],dt(?D,?Dt),?R:?Dt,  

                                 ?Wl=f(?C1,?Deep,?Tag,?I,?M,?R) ) 

                           else ( ?I:?C1[?M->?R], dt(?D,?Dt), ?R:?Dt, 

                                 ?Wl=f(?C1,?Deep,?Tag,?I,?M,?R) ) }, 

      %rvinsertsmethod(?LeftIsmlst), 

      … . 

 

      %rvinsertsmethod([?H|?Rlst]):- 

        ?H=f(?C1,?Deep,?Tag,?I,?M,?R), 

        insert{ irv(?C1,?Deep,?Tag,?I)[?M->?R] }, 

        %rvinsertsmethod(?Rlst). 

      %rvinsertsmethod([]). 

The procedure %RVNOMTHPARAMCHANGE is called with two list unified to it; i.e. ‘from’ and ‘to’ lists.  

The procedure recurs over every item of lists, actually one each at a time, and in each case does 

three checks.  The first check, if both items are compound – i.e. methods with an argument, 

entails ensuring that both arguments are identical and if it’s not the case then the procedure 

fails.  The second and third checks if one is a compound term whilst the other is not and if it is the 

case then procedure fails. 

     %rvnomthparamchange([?Fmth|?Fmthlst],[?Tmth|?Tmthlst]) :- 

       if   ( compound(?Fmth)@_prolog,  

              compound(?Tmth)@_prolog,  

              ?Tmth=?_T(?Pt), 

              ?Fmth=?_F(?Pf) )  

       then ( if ( ?Pt!=?Pf )  

              then ( wf('method’s parameters dont match in from and to lst.'),  

                     fail ) )  

       else ( %rvnomthparamchange(?Fmthlst,?Tmthlst) ), 

       if   ( compound(?Fmth)@_prolog, 

              not compound(?Tmth)@_prolog )  

       then ( wf('method’s parameters dont match in from and to lists.'), 

              fail ) 

       else ( %rvnomthparamchange(?Fmthlst,?Tmthlst) ), 

       if   ( not compound(?Fmth)@_prolog, compound(?Tmth)@_prolog )  

       then ( wf('method’s parameters dont match in from and to lists.'), 

              fail ) 

       else ( %rvnomthparamchange(?Fmthlst,?Tmthlst) ). 

     %rvnomthparamchange([],[]) :- !. 
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Properties of the rename operator 

The operator is lossy as a duplicate scan and removal is specified.  Also a sequence of renames, on 

the same property, is equivalent to the last rename. 

12.2 Cross Algebraic Operators Properties 

The algebraic operators have properties across other operands.  (Many advanced database text 

books have these – e.g. in Silberschatz et al. [SILBE10] and they are applicable here).  For example 

select operand can be combined with product and theta joins (i.e. joins not based on equality but 

any other comparison).  Conversely a select predicate made out of a number of conjunctions can 

be disengaged. 

  (     )  
 
⇔        

and 

   (       )
 
⇔           

The following are some of the more useful transformations: 

 Natural joins are associative; 

 Theta joins are also associative (under certain structural limitations); 

 Selection operand is distributive over theta joins; 

 Projection operand is distributive over theta joins. 

As we have previously stated there are a number of techniques that the framework adopts to 

implement these:  the first is reification and instantiation of rules; the second is the technique of 

equality over logical identifiers; and the third is inserting rules into the object base through 

Flora-2 parsing module.  Furthermore some transformations are better left for later parts of 

query optimisation because, for example, the numbers of permutations generated are prohibitive 

and therefore pruning the search space while transforming is inevitable. 

12.3 Summary 

This chapter built a query model based on an algebra specially developed for our object-database 

framework.  The query model is procedural, closed, typed, and at least Codd complete.  The 

algebra has ten operators which are relational and nested relational in origin, except for one 

which has a functional origin. 
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Every operator implemented is sensitive to the underlying object-oriented data model.  Each 

operator takes a collection of objects as input; in our framework this is a class, structure or a 

query instance.  Furthermore each algebraic operator makes extensive use of the underlying meta 

data available in the framework; e.g. to work out the data type of the result.  It needs to be 

emphasised that operators are value based and yet able to work with logical identifiers.   

Each operator has its algebraic properties; these include commutativity, associativity, and 

distributivity.  Through identity equality most of these are implemented in our framework.  

Furthermore these operators, when composed, derive other known algebraic operators; e.g. 

intersection and join. 

The output of the algebraic expression is an object collection and its objects are made an instance-

of an object that represents the query invocation; i.e. the query instance itself is an instance of 

ALGQUERY object.  In the query instance complete details of the original query are kept.  As stated 

earlier the query instance collections are then available as operands to other query expressions.  

(Of course a query instance extent is valid until the range to which it was applied to ceases to 

remain current). 

The implementation of all algebraic operands is in Flora-2.  Many important parts of an 

operator’s implementation are declarative; for example working out the data type of the result, 

and working out the extent.  A good number of methods supplement the algebraic operations.  

Flora-2 features, some of which are advanced, have been used extensively.  These features include 

identity with functors, identity equality, rule reifications, rule parsing from generated strings, 

inserting and retracting facts from the object base.  Some underlying XSB Prolog predicates have 

been used too.  Other methods developed in the object-oriented data modelling are used here too; 

for example data-type inference and checking methods. 

As regards comparison of this algebra to relational algebra in terms of what queries can be 

specified we assert that ours is a super set; clearly there are no equivalents of aggregate and map.  

Nonetheless our algebra is not a complete programming language.  Notably missing operand in 

our algebra is the fix-point for recursion. 

A possible drawback here could be the shallowness of most operands over the object structures 

(two operations are an exception – i.e. select and map which both accept path expressions that 
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navigate deeply into structures); this is actually a consequence of our data model’s object 

constructor choice.  For example, when we project on a class extent, only the properties visible at 

the level of that class are seen.  If a property is a composition of another class, or structure, then 

only its identifier is projected out.  There are two contrasting issues.  On one side, if operators are 

shallow they are easy to implement, unambiguous, and each operator’s scope does not overlap 

with another.  On the other side, for example in other algebras, some non-shallow projections 

replace a query based on select, product, and project.  

A drawback of our algebra is that it does not handle multi-dimensional arrays and multi-sets (e.g. 

bags).  Also each set or collection is typed: i.e. no collection is heterogeneous in terms of instance-

of.  There is no reason why the framework, algebra and Flora-2 system cannot offer support for 

multi-dimensional arrays and multi-sets other than time.  A similar problem is the 

implementation of the operand’s result properties: while the procedures to imply associativity and 

commutativity have been implemented in many cases, in some cases these haven’t been 

implemented.  A justification, for most cases, was given in terms of the number of permutations 

possible.  Another limitation, inherited from data-type checking and inference module, is our 

consideration of methods with one argument.  It is possible to include methods with any number 

of arguments but our coding needs a different approach; nonetheless it is doable. 

A qualitative argument that many do well to question about programming languages is their 

readability and writeability.  We do not think it is overly complex to read the algebraic query 

constructs and results; but it is acceptable when a criticism is levelled at identifier’s more 

involved structures (e.g. identifiers with involved functors).  Clearly a decent integrated 

development environment with folding and unpacking over the framework’s object base is 

required. 

We have many times shown a query composed from other queries.  We have implied that each 

query has been materialised – i.e. asserted as instances of the query instance.  It must be stated 

that none of the query instances maintain its currency after evaluation; i.e. it is assumed that the 

object base, especially the parts the query instances have been computed from has not changed.  

If changes are made a re-evaluation of the queries is required if still in demand.  As we shall see 
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in the next chapters the assumption that an object bases state does not change, except from query 

processing is not prohibitive or pointless in some circumstances. 

The framework and algebraic operators have been implemented with Flora-2.  Flora-2 

implements logic programming with F-logic and the latter’s distinctive higher-order syntax, first 

order semantics, and object-oriented semantics ingrained in its inference. Flora-2 advanced 

features, like rule reification, parsing strings for rules and evaluating them in the object base, 

equality of logical identifiers, have contributed immensely to the implementation of the algebraic 

operators.  Many of the implementations have high level and declarative constructs.  Nonetheless 

it is reasonable to find parts of the code base that are procedural and in need of a code refactoring 

exercises. 

This chapter and the previous has the opportunity to merge a number of trends developed in this 

study:  firstly, the integration of a conceptual design encoding into the framework, development of 

type checking and type inference, and finally query language constructs that work over the 

framework.  The next chapter shows how the algebra is used as a procedural target of a real 

declarative object query language and shows that the design and query model can aid query 

processing and optimisation. 
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13 Query Processing and Optimisation 

In this chapter a qualitative structural translation for a subset of ODMG OQL constructs to the 

algebra developed earlier is illustrated.  The subset includes: constructs whose output constructor 

is a set; constructs that restructure the output through packing and unpacking of object database 

structures; constructs that include a sequence of target sets (of objects); a selection of filter 

constructs; and group by queries.   

There are a number of ODMG OQL features that are not implemented.  These include bag 

structure for output results, some filter conditions, the having clause in the group by; and the 

sorting clause.  A special section for these shortcomings had to be surveyed.  This is a long list 

and it is mainly due to two causes: the first is time required to implement; and the second is the 

fact that ODMG query model does have an extensive list of features. 

The latter half of this chapter shows how algebraic expressions, possibly encoded expressions of 

OQL queries, are optimised.  Various optimisation techniques are presented; most of which are 

heavily reliant on the underlying object-oriented data model and framework facilities.  These 

techniques include join reductions, semantic optimisation, view materialisation, and avoiding 

running the duplicate detection and elimination process from query execution. 

13.1 ODMG OQL and our Algebra translation 

The OQL construct is based on the “select from where” structure popular in SQL.  With our 

algebra a canonical translation of this is a composition of a sequence of product, with possible 

renaming, selection, and finally a project. 

The considerations and translations follow the sequence of ODMG OQL standard’s text (i.e. 

chapter four of [CATTE90]).  Each section indicates the key features missing in our algebra and 

shallow indications on how one can address these.  Also we have named the following sub-sections 

as they are named in the standard’s chapter four. 

13.1.1 Query Input and Result (4.3) 

The main OQL input range is a class.  In our algebra the input ranges are supported by CLASS, 

STRUCTURE, and ALGQUERY instances.  The output from the following OQL is exactly what output 

structure our algebra provides: 
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SELECT DISTINCT STRUCT(a: x.age, s: x.sex) 

  FROM Persons x 

 WHERE x.name=”Pat”; 

The algebra query would be a select on CLASS instance PERSONS followed by a rename of 

properties AGE and SEX into A and S respectively.  

In the following table 13.1 are items mentioned in the relative OQL section but not implemented. 

OQL Feature Severity Possible resolution Implemen- 

tation effort 

Concept of a 

named object 

Low Identifier equality in F-logic between object identifier and name, 

and check against homonyms 

Low 

Output of a multi-

set 

High Introduce multi-set data type constructor and their semantics.  

Also have conversion from to and from sets. 

Very High 

Output not a set of 

structure 

Medium Have to introduce the notion of values that are distinct from 

objects. 

Very high 

Table 13.1:  Query input and result 

13.1.2 Dealing with Object Identity (4.4) 

Like the standard our algebraic operators can access by identifier or by property value. 

This section deals with creating objects through query processing; if their nature is transient 

rather than persistent their query instances of the algebra suffice.  Also the OQL standard gives 

examples of how to access objects in the object database: by property equal to a literal; by object’s 

logical identifier; by projecting an object’s property value.  All of these are supported by our 

algebra.  

In the following table 13.2 is an item mentioned in relative OQL section but not implemented. 

OQL Feature Severity Possible resolution Implemen- 

tation effort 

Creating objects Low Assert persistent objects, if not affecting current query, and have 

to re-evaluate object base; e.g. clear any query instances and their 

extent. 

Low 

Table 13.2: Dealing with object identity 
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13.1.3 Path Expressions (4.5) 

In ODMG OQL path expressions must traverse singular properties.  In our algebra two operators 

depend heavily on path expressions: namely select and map.  For example in the map operand 

section we indicated that the complete data type signature, i.e. including cardinality, is computed 

for any path expression.  It is anticipated that if the OQL select list has path expressions, a very 

common design pattern, then the algebraic map operator is used rather than the algebraic 

project. 

The following table 13.3 is an item mentioned in relative OQL section but not implemented in our 

algebra: 

OQL Feature Severity Possible resolution Implemen- 

tation effort 

andthen and orelse  Low These Boolean operators are somehow not in loop with query 

rewriting as their use, for example, drops the commutativity 

properties of Boolean conjunction. Consequently one may expect 

their usefulness in ‘hand coded’ programs that access the object 

base. 

High 

Table 13.3: Path expressions 

13.1.4 Undefined Values (4.6) 

The standard has a specially defined literal called UNDEFINED.  Also a predicate called 

IS_DEFINED(…) is explained.  In our algebra there is a similar predicate and it is used in the 

algebraic select operator’s predicate.  In our algebraic map operator we expect that the user 

defined value tackles null values.  For example Oracle and PostgreSQL have functions that 

replace a null with an expression’s result; these are called NVL() and COALESCE() respectively.  

In the following table 13.4 are values mentioned in relative OQL section but not implemented. 

OQL Feature Severity Possible resolution Implemen- 

tation effort 

UNDEFINED 

literal for all basic 

domains.  

Medium Need to revisit and rewrite the data-typing rules of our object 

collection. 

High 

Nulls in aggregate 

functions 

Low Redesign and or replace Flora-2 aggregate primitives. High 
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Table 13.4: Undefined values 

13.1.5 Method Invoking (4.7) 

OQL expects to call a property, i.e. a method, with or without arguments.  In our data model and 

query model properties with an argument are supported too.  But note that only one argument is 

supported.  We can state that the limitation is really with coding efficiency rather than 

impossibility. 

13.1.6 Polymorphism (4.8) 

The standard asserts that OQL is a typed query language.  Also it is expected that polymorphic 

collections are indicated as ranges to query expressions. 

In our framework the data-type checking and inference supports polymorphism and the object 

collection state is checked for type errors.  Each operator uses type checking not only to type the 

output but also when evaluating the operand’s semantics. 

In this section reference is made to the extent and deep extent of a query range.  In OQL the 

default is deep extent.  Furthermore the standard introduces a predicate that checks, at runtime, 

the instance-of relationship within a deep extent. – called the class indicator.  For example 

STUDENT ISA PERSON, and if one sets the range of a query to be PERSON’S deep extent one can 

then check the instantiating class of each object.  In our algebra, specifically, in the select 

operator, there is a predicate that checks for the instantiating class.  It is also possible to have it 

in a map function too.  But there is a difference in our algebra: the methods in the scope of the 

extent or deep extent are identical; i.e. STUDENT’S own methods, i.e. not inherited, are not visible 

by the range.  If this is required then one can go around this issue by rewriting the query.  The 

use of our algebraic operators union and difference is essential and useful. 

13.1.7 Operator Composition (4.9) 

The standard claims that OQL is a purely functional language.  It introduces the construct 

DEFINE to name a query.  Defined names can then form part of another query’s range. 

In our framework algebraic queries are all automatically named and made an instance of object 

ALGQUERY. 
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13.1.8 Language Definition (4.10) 

The main purpose of the section is to ensure that any expression, i.e. query, in OQL is type 

checked and the output’s data type is worked out.  OQL uses many type constructors: set, bag, list 

and array.  The section starts by defining type compatibility.  It continues by giving typing rules 

for queries, named query definition, and atomic literals.  The next section is a substantial part 

and deals with data typing of constructor artefacts (e.g. constructing sets, bags, lists).  The next 

section deals with atomic expressions (e.g. binary, string, object identity expressions).  There is a 

section devoted to universal and existential quantification over collections; this is followed by 

aggregate functions. 

In our framework data type and inference there are similar rules but there is no support for bag 

and array type constructors (as already indicated earlier).  In our algebra there is no provision to 

construct artefacts other than those created through query processing.  Ideally this is rectified; an 

indication of this solution is given in other algebras where a tuple constructor addresses some of 

these shortcomings.  As for aggregate the type of functions available match.   

13.1.9 Select Expression–Language Definition (4.10.9) 

In OQL the general structure of a retrieval query follows: 

select [distinct] f(x1, x2,...,xn, xn+1, xn+2,...,xn+p) 

  from x1 in e1(xn+1, xn+2,...,xn+p) 

       x2 in e2(x1, xn+1, xn+2,...,xn+p) 

       x3 in e3(x1, x2, xn+1, xn+2,...,xn+p) 

       … 

       xn in en(x1, x2,...,xn-1, xn+1, xn+2,...,xn+p) 

[where p(x1, x2,...,xn, xn+1, xn+2,...,xn+p)] 

Each expression, i.e. ei, in the form clause is a collection or set type.  The predicate P(…) in the 

where clause is a Boolean expression.  The data type of the output is determined by the return 

type of F(..); if return type is struct(t) then it is a collection of struct(t). 

To compute the above OQL expression in our algebra there are three canonical steps.  Some steps 

have alternatives and these are identified by query’s design pattern.   

The first does a binary product through the from clause entries (i.e. e1 to en) to generate a 

collection of objects.  There are alternatives to running a sequence of products: one option deals 

with singular path expressions in select operands; and another deals with set path expressions 

and using the unnest algebraic operator.  For the first alternative to match a subset of 

expressions e1 to en must convert into a singular path expression (i.e. singular because OQL 
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recognises only single result path expressions).  For example if e1, e2, and e3 connect into a 

singular path expression then their product is replaced by a single expression with a select based 

on the path expression.  For the second alternative to become effective a subset of e1 to en must 

convert into a set path expression.  It is recommended that for these cases the product operator 

present is replaced by unnesting. 

The second is to sift this collection for objects that fit the query pattern, the Boolean predicate 

P(…)is applied to every object found in the first step and only those that satisfy it are on the 

output.  If deep extent is indicated in the query expression then certain operations between class 

instances related through the ISA relationships require the use of union and difference operands. 

In the third step every object for output is passed to function F(…).  If DISTINCT keyword is 

indicated, and we expect so because of our query model, then output has to have duplicates 

purged and the data-type constructor is formally a set rather then a collection.  The structure of 

function F(…) is realised by a combination of project, map, nest, and unnest operands. 

Therefore the canonical translation, or better still the naïve translation, of the OQL structure 

above with DISTINCT mandatory follows.  First the product operator is repeatedly called to create 

the Cartesian product of all expressions.  The operands must be instance of objects CLASS, 

STRUCTURE and ALGQUERY.  The second is using the query instance of the last product done in 

the first step as an input operand to a select operation with a predicate that is a translation of 

P(…) – there is a wide coverage of our algebra’s possible predicates to those of ODL but it is not 

complete.  The output is then determined by a project, mapping and nesting operations.  It needs 

to be noted that our map operand functions take one argument at a time, which could be a tuple 

structure.  Henceforth, we are using very short syntactic representation of our operator: for 

example rather than ALGEBRA[%SV(C1,”DEEPEXTENT”, EQOP(…)] we are using SV(C1, 

EQOP(…)). 

 wv(sv( 

       xv(xv(xv( ...xv(en-1, en), … ,e3) ,e2), e1), 

       p(…)), 

    [ x1, …, xn+p ], [f1, …, fn+p] ). 

Following a where clause in OQL select statement is the optional sorting directive; i.e. ORDER BY.  

In our algebra this is not implemented, and it is left as a query instance manipulation feature. 
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In OQL aggregates are done through the addition of the GROUP BY … [HAVING … ] construct 

and it is placed after a where clause and before sorting directive.  Variables yi determining the 

partitioning and function FF(…) can output the partitioning instances and aggregate function on 

distinct attributes values in PARTITION; PARTITION is a set of attributes.  The optional HAVING 

clause sifts partitions according to predicate H(…) satisfaction; it is expected that the H(…) 

predicate has an aggregate comparison; e.g. consider only partitions that have more than five 

instances (COUNT(*)>5).  In OQL the general structure of an aggregate retrieval query follows: 

select [distinct] ff(y1, y2,..., yn-1, yn, partition) 

  from x1 in e1(x1) 

       x2 in e2(x1, x2) 

       ... 

       xm in em(x1, x2,..., xm-1, xm) 

[where p(x1, x2,..., xm-1, xm)] 

[group by y1:g1(x1, ..., xm),     y2:g2(x1, ..., xm), ...,  

          yn-1:gn-1(x1, ..., xm), yn:gn(x1, ..., xm) 

[having h(y1, y2,..., yn-1, yn, partition)] 

] 

In our algebra the GROUP BY is implemented by using aggregate operator (i.e. GV) and possibly 

mapping (i.e. WV), and is very close to ODMG’s specification.  However the optional HAVING clause 

is not implemented as already stated; the aggregate filtering needs the select operator parser and 

evaluator to be developed further to take care of aggregate comparisons. 

The following is a canonical translation for OQL’s GROUP BY queries; properties g1 to gk are the 

grouping attributes and are a subset from x1 to xn+p, and aggfi are aggregate functions (i.e. sum, 

min, max, count, and avg). 

gv(sv( 

       xv(xv(xv( ...xv(en-1, en), … ,e3) ,e2), e1), 

       p(…)), 

   [ g1, …, gk ], [ aggf1, …, aggfk ] ). 

13.1.10 OQL and Algebra 

A common use of database algebras, at least didactically, is of a target language for declarative 

language queries.  The ODMG’s OQL is an object-oriented and declarative query language whose 

representation is based on “select from where” structure.   

In this section we showed qualitatively two things: firstly how and how much our query and data 

model compare and cover with ODMG’s OQL; and secondly a canonical conversion from OQL 

constructs into algebraic expressions composed from our operators.  Therefore our algebraic 

expressions are closed, and at least Codd complete. 
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In many cases the translation is clean and effective.  In other cases our handing of a concept or 

technique subsumes the one of OQL; for example in path expressions.  Clearly the algebra 

developed here has an adequate and useful contribution for the procedural study of OQL queries. 

The list of short falls and non-coverage is wide; this is expected as OQL standard has had a long 

evolution and is feature rich.  In our defence even production systems do not implement OQL 

standard; for example the Spartan EyeDB as shortcoming in its excellent implementation.  The 

most significant missing features in our algebra are: no multiset data type constructor; does not 

create objects during query processing other than related to object ALGQUERY and its instances; 

and not implementing the HAVING filtering clause for the aggregate operator.  We repeat these 

are more because of time constraint than inability. 

Also some issues need better treatment and these include:  better treatment of the perfidious null; 

rethink of the late binding for deep extent queries; once multiset and array constructors are 

available the ODMG typing rules (and their adjustment as in Bierman and Trigoni [BIERM00], and 

Alagic [ALAGI00]) are revisited; finally the select operator parser should be one to one with OQL’s 

grammar. 

13.2 Query Processing and Optimisation in our Framework 

In the relational data model SQL construct formed through the “select from where” are 

declarative queries over a relational model.  These queries are based on the select, project and 

join operations (viz. SPJ) of relational algebra.  Declarative queries have to be translated into a 

procedural program, or an access plan, that computes and then executes a plan (see figure 13.1).  

This translation must be correct and complete, and the translation is also expected to generate a 

good access plan for execution.  The effort put into the translation process has to be marginal. 

During the translation and execution of access plans, called query processing, there are a number 

of aspects that make up its context.  One aspect is the hardware available in terms of CPU, RAM 

and disks arrays.  Hard disks have two relevant constraints: access is paged and is at a very slow 

speed (approximately 1500 times slower than direct access in RAM), and a disk provides a limited 

transfer throughput.  Another aspect is the logical and physical design.  For example a single 

item access based on a key is strongly facilitated if it is indexed; otherwise an expensive serial 

scan is required to find the item. 
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In reality the expectation of the best access plan generation for any declarative SPJ query is 

impossible to satisfy all the time.  Finding a general solution to SPJ query optimisation is not 

only complicated by contextual aspects but has been shown to be NP-complete by Ibaraki and 

Kameda [IBARK84].  Yet query processing and optimisation is still done with the main justification 

being the difference between a bad plan and a good one (even if not an optimal one) could be 

dramatic in terms of time and resources [IOANN96].  It is important to set and have a single 

optimisation goal as an objective, such as either query running time or reducing hard disk reads 

and writes. 
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Figure 13.1: Query processing & optimisation schematic diagram 

How is optimisation of declarative queries attempted?  The seminal paper is Selinger’s [SELIN78] 

on the System R optimiser.  In this she introduced the technique of creating a search space of 

query plans, drastically pruning it for the more promising ones by applying basic heuristics, and 

then after estimating each of these remaining query plan’s costs, choosing one which has the least 

of cost.  The space pruning heuristics include: look only at left-deep plans for joins (for N way join 

reduce from enumeration from N! to N.2N-1 ); and choose sort-merge join over nested loop as the 

result maintains an “interesting order” (i.e. eliminates the sorting of a consequent sort-merge 

join).  An intermediate step in System R optimisation prior to costing is also heuristically driven 

and it moves selections down and projections up a join processing tree.  It has to be repeated that 

the chosen plan is not guaranteed to be an optimal plan as it could have been excluded from 

search space – neither is it possible to claim that no false negatives are pruned out. 

For costing plans, the System R optimiser maintains discontinuous statistics on the state of the 

database; for example, the number of tuples per relation, and cardinality and selectivity of 

attribute values feed its costing formula.  To attenuate optimisation costs, System R opts to 
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compile a query and save once and then run it many times until it remains valid.  There are now 

other statistics gathering regimes, use of histograms rather than counts, more frequent collection, 

and sample rather than total coverage.  It is worth mentioning that an early paper by Kumar 

[KUMAR87] says “an optimal plan for most queries is very insensitive to selectivity inaccuracies”.   

The System R compiler came to be called Cost Based Optimiser (CBO) and it introduced an 

important new interdependence between logical and physical perspective of database activities. 

For teaching purposes it makes sense to translate into relational algebra operands as query plan 

primitives but in actual implementation of System R, basic file and index routines are used 

instead.  CBOs are the dominant RDBMS compiler and can be found in MS SQL Server, Oracle 

and Postgres SQL. 

13.2.1 Query Processing and Optimisation in Deductive Databases 

In deductive systems the predominant technique for query optimisation is based on ‘magic sets’ 

rewriting [BANCI86].  In Flora-2 it is implemented with tabling which the authors claim is better 

suited for optimisation on Prolog engines [YANGG08].  Another ‘optimisation’ is using main memory 

space to hold the object base; with the resurgence of main-memory databases and the availability 

of impressive amount of SSD devices it is no longer considered far-fetched, on the contrary it is 

becoming common. 

13.2.2 Physical Query Processing and Optimisation 

Today a wide array of hardware devices is available for a DBMS to manage and optimise.  These 

include the traditional CPUs, RAM, hard disk arrays and tape.  Other devices that are gaining 

prominence are the solid state disk (SSD), and multi-core CPUs.  For example SSD have 

comparable read and write performance to disks but are 100 times faster in seeking [AGRAW08] 

and [GRAEF09].  Given that a conceptual design of a database has a huge number of possible 

physical implementations it is inevitable that some optimisation is required to utilise the 

resources available. 

Currently the database designer has to add physical indicators through high level definition 

commands – for example the class instance person is to build a B+ tree index [KIMWO89] and 

[COMER79] on ‘family name’ attribute and a hash-based index on his ‘address of residence’.  Once 

these decisions are made and implemented then a number of consequences are fixed and leave the 
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query optimiser with fewer options even though an index is advantageous in many cases.  Also 

any index created carries a cost to be kept up to date. 

During an access plan design by the RDBMS the operations constructs that are seemingly not our 

algebraic operands; actually these are physically supported operators (or example B+ tree and 

Hash index).  For example the algebraic select operand has some thirty different physical selects 

operands in Oracle.  These are typically of iterative nature and examples include ‘get next record’, 

‘restart’ [GRAEF09].  Also it is as important to define ‘physical’ functions available but which do not 

have any algebraic equivalent; these include disk-based sorting and temporary result storage and 

retrieval. 

13.2.3 OODB Query Processing (QP) and Optimisation (QO) 

There are issues in which object-oriented query processing differs from relational query 

processing.  These arise from different data types available, complex object structures, class 

hierarchy, and methods invocation during query processing. 

Given an object database schema is richer than a relational schema, then there is scope for more 

semantic optimisation (i.e. rewriting a query into a form that is easier to compute but returns the 

same answer [HAMMA80]).  Use of semantic optimisation can also aid better access plan 

generation. 

Nonetheless there are common approaches.  For example both algebraic transformation (as seen 

earlier with our object algebra) and CBO are both a good basis for building of a query processor 

and optimiser for an object-oriented database.  The first optimisers originate in Orion [KIMWO90C] 

and O2 [ATKIN92].  Orion’s approach was to reduce a query into a logical graph and its sibling leaf 

vertices are identified and processed (e.g. reduced) and then replaced, leading to a unique 

evaluation of the graph.  Two heuristics were used: one for preferring indexes and the second, 

used if no index were found, to opt for any object clustering on disk. 

Indexing on objects and convenient object placement are useful techniques available to a query 

processor to attempt efficient execution queries.  In OODB indexing and object placement (the 

fixed type is called clustering and temporary type is called interesting order in System R) have 

more varied application as we need to index on the instance-of and ISA relationship (e.g. class 

hierarchy index) and the object composition (e.g. path expressions).  Also logical identifiers are 
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unidirectional. What to index and how much each index costs are extremely important decisions 

and the two main references for costing these structures in OODB are Bertino [BERTI00] and 

Galdarin [GARDA95]. 

Class hierarchy indexes are usually implemented with B+ tree – these are robust and widely 

known artefacts that allow direct access and consequent sequential scans on key values (e.g. 

range queries).  An even faster direct mechanism for indexing an object (but without consequent 

sequential scans – range queries) does exist and it is based on external hashing.  In the case of 

indexes for path expressions a number of structures have been advocated for speeding up their 

evaluation – mainly by Bertino [BERT94] and are called nested, path and multi index.   

13.2.4 Framework Support for QP and QO 

There are a number of features in our framework that supplement the query processing and 

optimisation of algebraic queries.  Clearly the algebraic operands, their supporting procedures 

and the object base are fundamental.  While executing the queries we have utilised the data type 

signature of the underlying ranges found in the schema encoding; being CLASS, STRUCTURE or 

ALGQUERY instances.  Part of the algebraic operator’s execution included adding properties to the 

query instance that is derivable from the ranges’ details; for example the query instance data-

type signatures. 

There are other features that our framework can provide to enable better query processing and 

execution.  Firstly there are a number of properties attached to ranges, for example a class-

instance primary-key constraint set, which can be moved to the query instance.  The idea of 

moving the integrity constraints is not for their enforcement at query instance level but to give 

the query optimiser an insight into the query instance extent data properties.  For example if a 

range of the select query has a primary key set defined on its range then there is no need to run 

the duplicate detection and removal effort.  Not all constraints can be moved to a query instance. 

A second support is to introduce features into our framework that are useful for query processing.  

For example we have mentioned earlier that CBO relay on database statistics to prune the 

sample search space.  This is really required when we have a long sequence of product operations 

and also long-winded select predicates.  The database statistics can either be part of a range 
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definition, for example part of a class instance definition, or part of an in-built statistical data 

dictionary. 

13.2.5 QP and QO – Reduction of Products 

One of the most often cited advantages of expected query optimisation in object-oriented queries 

is the reduction in costs of joins.  For example consider the following query construct in OQL 

which returns a set of student names taught by a full professor: 

  select distinct x.sname 

    from students as x, 

         x.takes as y, 

         y.taught_by as z 

   where z.rank = "full professor"; 

A canonical translation of this into our algebra follows (note the abbreviated naming of our 

operands) and it is characterised with two products, three selects and a project.  Clearly this is 

not what is anticipated. 

  pv(  

     sv (  

          sv(  

              xv (  

                   sv ( 

                        xv ( student, section ),  

                        epop( ipe,takes,loid,section,loid) ), 

                   professor ),  

              epop( ipe,taught_by,loid,professor,loid)  ),  

           eqop( ipe,rank,string,”full professor”,string ) 

         ),  

      [sname] ). 

How can we reduce the number of products and selects?  An effective technique is to encode parts 

of the OQL query into what is called a connection graph where each “from” expression and 

“where” conjugant are depicted into a graph as a node.  The graph’s edges represent the bindings 

between the nodes or to literals (e.g. in the where clause).  During the building of the connection 

graph additional data from the underlying framework is extracted and shown as shaded labels 

(e.g. implicit class names and a property’s cardinality constraint).  The following build-up 

represents the connection graph for the above OQL.  

It is relatively easy to identify any leading node (have no incoming edge) and in this case it is 

STUDENT.  If all upper limits of the connections are ‘1’ except the last then follow the path to an 

end node (e.g. STRING=”…”) to generate the following path expression: 

X.TAKES.TAUGHT_BY.RANK = STRING(“…”).  Now we can re-write the original OQL as: 

  select distinct x.sname 

    from students as x, 

   where takes.taught_by.rank = "full professor"; 
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This has now been reduced to a select, albeit with logical identifier chasing, and a project. 
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Figure 13.2 - Building a connection graph for an OQL query 

If in a path there is an internal node with an upper limit of more than ‘1’, as is actually the case 

in figure 13.2, then the path needs to be broken into two.  (This is a limitation of OCL’s use of 

paths – see section 13.1.3).  The OQL select statement follows: 

  select distinct x.sname 

    from students as x, 

         x.takes  as z 

   where z.taught_by.rank = "full professor"; 

The connection graph can tell us a number of things: for example, if the graph is made of two 

networks then there really is a Cartesian product; if there is a directed loop in a path expression 

then recursion is possible.  Since our algebra does not support recursion then there are issues to 

resolve prior to executing the query. 

Another level of path expression handling from a connection graph is a consideration of physical 

indexes present.  For example if an index exists for STUDENT.TAKES.TAUGHT_BY then during 

query optimisation the path expression is broken into a conjunction of two: X.TAKES.TAUGHT_BY 

AS Y AND Y.RANK. 

13.2.6 QP and QO – View Materialisation 

Materialised views are data views and query results that are stored [VALDU87].  Furthermore 

current DBMSs have facilities to keep the materialised view up-to-date or completely refresh on 

demand.  Dependence can exist between materialised views as a view can be defined in terms of 

other views.  In which case the query processing does not need to re-compute the dependent views 

as these are already stored; consequently query processing time and disk bandwidth is drastically 

reduced.   Query optimisation by materialised views is popular in OLAP and data warehousing 

queries.  The main issue of course is what, when, where and how to materialise views [HARIN96].  
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In our paper, Vella and Musu [VELLA00], we presented a break-even analysis between 

materialising and re-query of a sample of data warehouse queries. 

In our framework query results are materialised.  It is natural then to think about using this 

aggressive optimisation technique when optimising our algebraic queries.   

A popular OLAP query is rollup; i.e. applying consecutive summaries onto a data cube.  The 

dimensions of a data cube are the partitioning attributes of aggregate operator.  The content of 

each cell in the cube is the result of the aggregating function. Consider the following rather 

simple cube whose dimensions are customer, product, and region.  The content of each cell is the 

sum of all sales relative to CUSTOMER, PRODUCT, and REGION recorded in the previous financial 

year.  Assume we had a large number of transactions and typically the cube is sparse (i.e. not all 

combinations exists).  The cube is built by the following aggregate query: 

  gv(sales,"deepextent",[customer,product,region],[amount],[sum]). 

  -- remark the algquery instance is id. by gv(sales,”deepextent”,8811) 

Assume a rollup is requested and the following is submitted: 

  gv(sales,"deepextent",[product,region],[amount],[sum]). 

The query instance does compute the proper answer but all the source data, i.e. in SALES, is re-

visited.  This is not necessary at all because the following query, whose range is changed as a 

result of the first query, computes the same answer: 

gv( 

  gv(sales,”deepextent”,8811), 

  "deepextent", 

  [product,region], 

  [sumamount], 

  [sum]). 

To realise this optimisation technique the aggregate operator needs to do the following: first find 

an instance of ALGQUERY whose identifier functor unifies with GV(SALES,”DEEPEXTENT”,?_); 

second and if so is the current partitioning list of properties a subset of the GV(…).GROUPBY list 

of partitioning list of properties; third if so do the attribute and aggregating function match (i.e. 

examine properties AGGOUT and FUNCAGGOUT).  If positive then enough is at hand to rewrite 

second query above into the third. 

Therefore on the first query, we can use the result to compute seven other partitions; i.e. on {a,b,c} 

we can materialise on partitions {a,b}, {a,c}, {b,c}, {a}, {b}, {c}, { }.  If view materialisation is 
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structured it is best to stop at first level (i.e. two element sets), and compute the second (i.e. one 

element sets) from the first.  The same procedure applies for the third level.    

In our previous paper [VELLA00] it was found that widening aggregate function list is generally 

useful and gives the materialised view higher reusability.  In our previous example, if other than 

aggregate function sum we compute in parallel count, max, and min, then the materialised view 

would work out these and the average too (as average is derived from sum divided by count). 

There are other view materialisation techniques and all are relatively easy to implement.  One 

design problem is to ensure that queries are monotonic increasing; in which case view 

materialisation might not be possible or best indicated technique. 

13.2.7 QP and QO – Simplification of the Select Predicate 

In the presentation of the select operator we commented on the structure of its predicate.  We also 

delayed the manipulation of the predicate even when we stated its properties; e.g. commutativity 

of conjugants.  The justification being that the number of equivalent rewrites possible quickly 

expands.  In fact the basic technique is to write predicate in a standard form, actually conjunctive 

normal form (CNF) is preferred, and then the predicate tree is traversed and certain patterns, if 

present, are developed.  That is these patterns become unmoveable while the others can be 

juxtaposed.  The pruning of the search space could also be aided by the database statistics, e.g. 

conjugants with high selectivity given priority to compute first, and knowledge of physical 

artefacts (e.g. presence of an index that covers a conjugant). 

During the traversing of the predicate tree, which by now is in CNF, one can test for patterns 

that do not need access to the object collection to compute.  For example if property SNAME is a 

single valued string then two conjugants of the form SNAME=’JACK’ and SNAME=’RICK’ are false 

Another optimisation method which can be applied at this point falls under the semantic 

optimisation title.  In our framework we have constraints attached to CLASSES and STRUCTURE 

instances.  Two examples are the not null and the check constraints.  In the case of a select both 

of these constraint instances related to the select range remain invariant and could be copied to 

the query instance, much as we copy the data-type signature. 
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Say SNAME has a not null constraint, then any part of the predicate of the form SNAME IS NOT 

NULL is always true.  On the contrary a conjugant of the form SNAME IS NULL is always false.  In 

either case the predicate can be simplified before evaluating any data. 

Similarly say we have a check constraint on SNAME that insists that the string has to be upper 

case, and then any string comparison with SNAME that is not in caps is false.  Again there is no 

need to look at any of the target collection. 

The following table, i.e. table 13.5, describes what and how constraints can be copied from range 

collections to query instances for each algebraic operator.  In some cases the constraint can be 

asserted even when not present in the algebraic operator operand; e.g. the not null constraint in 

the aggregate operator.  

Algebraic 

Operator 

Not null constraint 

(pre / action / post condition) 

Check constraint (row level) 

(pre / action / post condition) 

union if in both classes / ok / none if in both classes / ok / none 

diff if in both classes / ok / none if in both classes / ok / none 

product none / ok / none none / ok / none 

project if in project list / ok / none if in project list / ok / none 

select none / ok /none none / ok / none 

aggregate (on grouping) none / ok  / if not present assert for each 

attr 

none / ok / none 

aggregate (result) none / none / assert none / none / none 

Map (1 to 1) none / ok /none none / none / none 

nest (on grouping) none / none / assert for each attr none / ok / none 

nest (result) none / none / assert for each attr none / none / none 

unnest (on repeating) none / ok / if not present assert for each 

attr 

none / ok / none 

unnest (result) none / none /assert for each attribute none / none / none 

Table 13.5: Moving not null and check constraints to ALGQUERY instances 

13.2.8 QP and QO – Duplicate Elimination 

During the description of the algebraic operators the duplicate detection and removal procedure 

was required in many operators; like in project and select operators.  Duplicate detection and 

removal is a computationally expensive operation.  This does not need to be always the case.  

Consider a select operation over a class instance STUDENT which has a primary key set on 
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property STUDENT_ID.  The select predicate does not change the value of any property and 

therefore any result of the select operation still respect the primary key constraint.  Consequently 

there is no need to run a duplicate detection and removal on the select result set if primary key 

set is present. 

To introduce this optimisation into our framework there is a need the following additions:  first 

the copying of integrity constraint, according to the table 13.6 below for each algebraic operator, 

from the target class instance into the relative query instance.  This could be done with reification 

rules instantiation.  Second is check whether the duplicate procedures need calling; this could be 

done in the operator logic or in the duplicate procedures themselves. 

Algebraic 

Operator 

Primary key & Cand. Key constraint 

(pre / action / post condition) 

union none / none / none 

diff none / none / none 

product if exists in both targets / none / concat both pks to assert 

new pk 

project if in project list / ok / none 

select none / ok / none 

aggregate (on grouping) none / none / assert pk of all attr 

aggregate (result) none / none / none 

Map (1 to 1) if map is 1:1 / ok / none 

nest (on grouping) none / none / assert pk of all attr 

nest (result) none / none / none 

unnest (on repeating) none / none / assert pk of all attr 

unnest (result) none / none / none 

Table 13.6: Moving primary key and candidate key constraints to ALGQUERY instances 

In table 13.6 the pre-action, action, and post-action for copying the primary key set and candidate 

key are given.  It is important to note that union and difference operators remain impervious to 

optimisation.  It can be remarked though, that if the union compatibility is based on self and sub-
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type and a primary key set is present in the parent class then duplication elimination avoidance 

is, in some cases, possible. 

More elaborate semantic optimisation is possible in the presence of a functional dependency.  

From section 7.4.5 in integrity constraint chapter an example shows how query predicates 

demanding a product and a select operation is reduced, in the presence proper functional 

dependency, into a select operation only. 

13.2.9 Query Processing and Optimisation 

Query optimisation is still following the seminal work of Selinger et al. [SELIN78] from the early 

eighties with CBO and search space pruning its distinctive features.  We have indicated works 

and studies that extend Selinger’s work into object-oriented databases too.  We have shown how 

our algebraic expressions can built around this model too.  Keeping details of a query in a query 

instance make some sophisticated optimisation techniques easier and less likely to miss; for 

example in materialising aggregates keeping the partitioning and aggregate function details 

makes the technique easy to identify and use.  Furthermore we have shown how our framework 

not only integrates with best practices in query optimisation but is also capable to implement 

specialised optimisations techniques: these include view materialisation, join reduction, and 

semantic optimisation.  Another important aspect was the recognition of physical artefacts, for 

example index systems, by the framework through which optimisation can be enhanced and 

improved. 

During this section we also gave details on how to move constraints from schema features into 

query instances.  The tables, i.e. 13.5 and 13.6, are detailed and offer an interesting array of 

possibilities for optimisation. 

Implementations of these routines are all in Flora-2 and form part of our framework.  

Furthermore we assert that the computational cost of our query optimisations is indeed marginal 

as it only involves the schema rather than the actual object ranges of the query expression. 

13.3 Summary 

An important declarative query language for object databases is ODMG OQL.  The last published 

version, i.e. 3, is based on a long history and has many features.  In this chapter we gave a 

qualitative study on how OQL declarative constructs can be converted into an expression 
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composed of our algebraic operators through a procedure we outlined.  Although the procedure is 

naïve some translation tricks are introduced to make it more effective.  Also a comparison of 

ODMG’s query model and ours was undertaken; the results are positive.  Nonetheless a number 

of ODMG features are missing; these are mostly time related rather than difficulty to implement 

into our query model.  The most notable missing features are data type constructors, e.g. multi-

set, and not implementing OQL having clause in group by. 

Once a mapping from a declarative OQL to our procedural constructs is made then our algebraic 

expressions can be manipulated to find an expectedly lower cost access method.  This query 

optimisation is essential and it is expected that traditional methods are implementable in our 

framework.  In this section we also showed examples of aggressive and specialised techniques in 

query optimisation such as semantic optimisation and view materialisation.  Also the use of data 

model constructs like integrity constraints, to address computationally expensive operations was 

explained.  In fact this is possible when a query instance inherits not only the data type signature 

but also the constraints found in its operands. 

This chapter has shown the importance of integrating more tightly the translation from 

conceptual schema design right up to query processing and optimisation.  For example data type 

signatures inferred in the schema mapping are used in query optimisation.  Another example is 

the primary-key declaration at the EERM level is still in use during query optimisation.  The 

push for object homogeneity helps organise development and dependences between a systems 

components even if these are at a schema level.  Also the technique of leaving details at a meta 

level of operations that converted or created an object is effective and makes application 

development easier to manage.  An example is query optimisation with view materialisation uses 

the details of the original query to compute other but related queries with a lighter footprint. 
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14 – Conclusions 

The efficacy of our goal to tightly couple conceptual design, object-oriented data modelling 

and object-oriented query modelling is best seen in Chapter thirteen, i.e. in query 

processing and optimisation.  Firstly, a declarative query is translated into an algebraic 

equivalent.  Secondly, although the generic optimisation examples are in join reduction, 

view materialisation and semantic rewriting, in each case there is an important input from 

the data modelling constructs during the query optimisation phase.  Thirdly, our decision to 

materialise a query into an object and its result set an instance of the query object created 

allows for the query’s instances to retain any applicable data modelling constructs from the 

target set, e.g. primary key constraint. Therefore the algebra does not only have closure but 

if the result set is in turn involved in another query then the optimisation can still consider 

any of the ‘inherited’ constraints. 

The query model’s effective dependence on the data model is a result of the careful and 

viable design decisions taken when surveying database technology and object-oriented 

themes and variations.  Furthermore the query model has strong object-oriented features 

too: e.g. a query being an object and having a class role too, a query has a data type 

signature for its extent, and a query operates on either the deep or shallow extent of its 

target set.  Finally the query model has both declarative and procedural languages. 

The persuasive framework developed with Flora-2 integrated conceptual design, data and 

query modelling, and data typing and inference.  The framework is not only indispensible to 

translate from one ‘language’ into another, but also very good in aiding development.  For 

example, when translating from conceptual to logical a framework’s method determines 

how best to convert a conceptual n-ary relationship into its proper set of constraints in the 

logical model.  Finally the framework was used to make good for any shortages in other 

structures or tools.  For example Flora-2 allows data type specifications in a program but 

these are not typed check on a program’s evaluation.  Consequently data type checking and 

inference has to be coded and invoked in the framework. 
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Development of the framework with Flora-2 has another important facet: each method 

developed, e.g. the algebraic operators, is coded in declarative constructs.  This effectively 

makes the semantic description stronger. 

14.1 Strengths and Weaknesses 

The strength of this work, in summary, lies with the use of the object-oriented paradigm to 

construct a tightly-coupled data and query model for an object-oriented database.  The 

query model is interpreted in either a declarative or a procedural query; the latter is 

expressed in our specially constructed algebra.  Our framework manages, controls, and is 

able to improve aspects in the development of an object-oriented database.  Furthermore we 

see our framework as a basis to other DBMS related facilities; for example, cost based 

query optimisation. 

There are a number of weaknesses that need addressing and the following points elucidate 

a few: 

Firstly, a query’s result set is currently of a homogenous data type even if the query 

target set is the deep extent of a class.  For taking up of heterogeneous result set, all 

of our algebraic operators need to be revised and it is expected that extensive 

knowledge in data type checking and inference at run-time need to be implemented.  

Most of these techniques have been developed and verified in the very recent years; 

i.e. post 2005. 

 A related second weakness deals with the limited range of available data type 

constructers, i.e. tuple, set and list, in our data and query model.  The techniques 

used here, for example F-bounded polymorphism in type checking list and ISA, are 

well known and have been developed and proven effective by the year 2000.  An 

example of a missing data type constructor is a bag (i.e. multi-set).  Again this 

entails a major rewrite of all algebraic operators to handle the different semantics of 

each data type constructor.   

The third weakness is found in the query optimiser; as no cost-based model is 

implemented it is therefore impossible to give quantitative cost estimates on of 

query plans. 
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The fourth weakness is the total absence of a transaction model.   

A fifth weakness, related to the EERM, is that its more advanced constructs require 

extensive support by transitional constraints.  The research community, in 

conceptual design and DBMS facilities, should address this too. 

A sixth weakness is the tenable perception, or specifically the effective benefit, of 

materialising the query result as pointless because of its currency and thee 

computationally heavy copying of result sets.  As much as we accept this criticism, 

we do repeat our argument that for some domains of discourses this technique is 

useful. 

14.2 How have the tools fared 

The simplest tool used was GraphVIZ.  The package is flexible and neat; it also has a gentle 

learning curve.  There was no requirement of ours that GraphVIZ did not cater for. 

EyeDB, an OODBMS, was a pleasant surprise and it does work.  Even though its 

implementation is not 100% compliant with the ODMG standard it still offers a good 

spectrum of ODMG and OODB facilities.  It does not have any auxiliary tools one expects. 

Flora-2 is a very good system.  User interface, other than its CLI, is in Emacs.  We feel that 

this project, if proof was ever needed, shows that F-logic has an interesting and effective set 

of features and that Flora-2 implementation offers designers and developers with facilities 

that enable large-scale projects to be realised.  An extensive list of features have been used 

to implement our framework: identity equality, reification of rules and their evaluation, 

parsing a string and evaluating it on the knowledge base, path expressions, complex 

identifier structure, and updating the knowledge base.  Nonetheless it does have a learning 

curve. 

14.3 Future Additions 

There are many points that with hindsight could have been done better.  The following is a 

list of what the next efforts should be or what has to be addressed. 

 EERM drawing has to resolve some diagrammatic issues (e.g. aggregation); 
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 EERM encoding in the framework should add some heuristic checks, for example 

to attempt flagging connection traps; 

 For EERM to ODL mapping to achieve higher completeness we need to encode 

transitional actions and constraints associated with sophisticated design 

requirements (e.g. aggregation) in the framework, and have facilities in ODL 

(e.g. triggers and view update mechanisms); 

 The framework needs to have sophisticated methods to check consistency and 

redundancy within the integrity constraints collection; 

 The framework needs a rewrite of procedures involving path expressions; 

 Better and cleaner use of ‘self’ and ‘null’ in our framework; 

 EyeDB – addition of data dictionary views (otherwise automated conversion of 

OQL queries to algebra are hampered); 

 EyeDB – addition of the equivalent of SQL’s “ALTER TABLE” commands; 

 Data type check the schema objects too; 

 The algebra should handle and output heterogeneous sets and then bags of.  

Consequently use the better of data typing rules which have surfaced in the last 

ten years; 

 The algebra needs to align closer to more OQL features (e.g. select predicate and 

OQL where clause); 

 QP-QO needs abstraction of physical database operations and artefacts (e.g. 

indexes for path expressions); 

 QP-QO in the framework needs to build object database statistics profile and 

consequently are used as a basis in cost based optimization; 

 QP-QO simpler techniques that are known to be popular and cost effective are 

introduced. 

 The framework could be adopted to ‘export’ to other data modelling languages, 

including graph and document based models found in some NoSQL systems. 
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Appendix – GraphVIZ/Dot Specification (afterScott) 

/* FLOGIC SCHEMA FOR VISUALISATION */ 

// SCHEMA NAME & VERSION: AFTERSCOTT (ALPHA) 

/* HEADER */ 

DIGRAPH FLOGICENCODE { 

RANKSEP=1.25; 

/* CLASSES */ 

COURSE[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

DEPT[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

LECTURER[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

PERSON[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

PROJECT[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

PTSTUDENT[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

STUDENT[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

STUDUNITGRADE[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

TELEPHONE[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

UNIT[SHAPE=BOX,HEIGHT=.75,WIDTH=1.5]; 

/* STRUCTURES - WEAK ENTITIES */ 

ADDRESS[SHAPE=BOX,HEIGHT=.75,WIDTH=1.4,PERIPHERIES=2]; 

JOB[SHAPE=BOX,HEIGHT=.75,WIDTH=1.4,PERIPHERIES=2]; 

UNITYEAR[SHAPE=BOX,HEIGHT=.75,WIDTH=1.4,PERIPHERIES=2]; 

/* ISA GRAPH */ 

ISAPERSON[SHAPE=CIRCLE,HEIGHT=.5, WIDTH=.5, FONTSIZE=12, FIXEDSIZE=TRUE, 

LABEL="DISJOINT"]; 

PERSON-

>ISAPERSON[LABEL="PARTIAL",FONTSIZE=10,DIR="BOTH",ARROWHEAD=NONE,ARROWTAIL="VEE",COLOR="

GRAY:GRAY",WEIGHT=10]; 

ISAPERSON->LECTURER[LABEL="SEMANTIC",ARROWHEAD=NONE,COLOR="GRAY:GRAY",FONTSIZE=10]; 

ISAPERSON->STUDENT[LABEL="SEMANTIC",ARROWHEAD=NONE,COLOR="GRAY:GRAY",FONTSIZE=10]; 

ISASTUDENT[SHAPE=CIRCLE,HEIGHT=.5, WIDTH=.5, FONTSIZE=12, FIXEDSIZE=TRUE, 

LABEL="DISJOINT"]; 

STUDENT-

>ISASTUDENT[LABEL="PARTIAL",FONTSIZE=10,DIR="BOTH",ARROWHEAD=NONE,ARROWTAIL="VEE",COLOR=

"GRAY:GRAY",WEIGHT=10]; 

ISASTUDENT->PTSTUDENT[LABEL="SEMANTIC",ARROWHEAD=NONE,COLOR="GRAY:GRAY",FONTSIZE=10]; 

/* ATTRIBUTES */ 

COURSECNAME[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=CNAME,STYLE=BOLD]; 

COURSE->COURSECNAME[ARROWHEAD=NONE]; 

DEPTDNAME[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=DNAME,STYLE=BOLD]; 

DEPT->DEPTDNAME[ARROWHEAD=NONE]; 

PERSONFNAME[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=FNAME,STYLE=BOLD]; 

PERSON->PERSONFNAME[ARROWHEAD=NONE]; 

PERSONGENDER[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=GENDER]; 

PERSON->PERSONGENDER[ARROWHEAD=NONE]; 

PROJECTPNAME[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=PNAME,STYLE=BOLD]; 

PROJECT->PROJECTPNAME[ARROWHEAD=NONE]; 

PTSTUDENTLOADRATIO[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=LOADRATIO]; 

PTSTUDENT->PTSTUDENTLOADRATIO[ARROWHEAD=NONE]; 

STUDENTSTAGE[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=STAGE]; 

STUDENT->STUDENTSTAGE[ARROWHEAD=NONE]; 

STUDUNITGRADEGRADE[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=GRADE]; 

STUDUNITGRADE->STUDUNITGRADEGRADE[ARROWHEAD=NONE]; 

TELEPHONETPNAME[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=TPNAME,STYLE=BOLD]; 

TELEPHONE->TELEPHONETPNAME[ARROWHEAD=NONE]; 

TELEPHONETPSTATE[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=TPSTATE]; 

TELEPHONE->TELEPHONETPSTATE[ARROWHEAD=NONE]; 

TELEPHONETPTYPE[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=TPTYPE]; 

TELEPHONE->TELEPHONETPTYPE[ARROWHEAD=NONE]; 

UNITASSESSTYPE[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=ASSESSTYPE]; 

UNIT->UNITASSESSTYPE[ARROWHEAD=NONE]; 

UNITCREDITS[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=CREDITS]; 

UNIT->UNITCREDITS[ARROWHEAD=NONE]; 

UNITUNAME[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=UNAME,STYLE=BOLD]; 

UNIT->UNITUNAME[ARROWHEAD=NONE]; 

ADDRESSALINE1[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=ALINE1]; 

ADDRESS->ADDRESSALINE1[ARROWHEAD=NONE]; 

ADDRESSALINE2[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=ALINE2]; 

ADDRESS->ADDRESSALINE2[ARROWHEAD=NONE]; 

ADDRESSASERNO[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=ASERNO,STYLE=BOLD]; 

ADDRESS->ADDRESSASERNO[ARROWHEAD=NONE]; 

DEPTROLEFIRSTROLE[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=FIRSTROLE]; 

DEPTROLE->DEPTROLEFIRSTROLE[ARROWHEAD=NONE]; 

DEPTROLEOTHERROLE[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=OTHERROLE]; 

DEPTROLE->DEPTROLEOTHERROLE[ARROWHEAD=NONE]; 

JOBJBUDGET[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=JBUDGET]; 

JOB->JOBJBUDGET[ARROWHEAD=NONE]; 

JOBJNAME[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=JNAME,STYLE=BOLD]; 

JOB->JOBJNAME[ARROWHEAD=NONE]; 

UNITYEARUSEMESTER[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=USEMESTER]; 
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UNITYEAR->UNITYEARUSEMESTER[ARROWHEAD=NONE]; 

UNITYEARUSERNO[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=USERNO,STYLE=BOLD]; 

UNITYEAR->UNITYEARUSERNO[ARROWHEAD=NONE]; 

UNITYEARUYEAR[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=UYEAR]; 

UNITYEAR->UNITYEARUYEAR[ARROWHEAD=NONE]; 

LECTURERDEGREES[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,PERIPHERIES=2,LABEL=DEGREES]; 

LECTURER->LECTURERDEGREES[ARROWHEAD=NONE]; 

/* COMPOSITE RELATIONSHIP */ 

DEPTROLE[SHAPE=ELLIPSE,WIDTH=.75,HEIGHT=.5,LABEL=DROLE,PERIPHERIES=2]; 

DEPT->DEPTROLE[ARROWHEAD=NONE]; 

/* RELATIONSHIPS */ 

COURSE->STUDENT[LABEL="ENROLLED ON",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEETEE"]; 

COURSE->DEPT[LABEL="SPONSOSER",DIR="BOTH",ARROWTAIL="CROWTEE",ARROWHEAD="CROWODOT"]; 

COURSE->UNIT[LABEL="REQUIRES",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="CROWODOT"]; 

DEPT->LECTURER[LABEL="EMPLOYS",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEETEE"]; 

LECTURER->UNITYEAR[LABEL="TEACH",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEETEE"]; 

LECTURER->PROJECT[LABEL="LEADS",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEETEE"]; 

LECTURER->UNIT[LABEL="COORDINATES",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEETEE"]; 

PERSON->TELEPHONE[LABEL="HASPHONE",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEEODOT"]; 

PERSON->PROJECT[LABEL="WORKSON",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="CROWODOT"]; 

PROJECT->PROJECT[LABEL="CONTINOF",DIR="BOTH",ARROWTAIL="TEEODOT",ARROWHEAD="CROWODOT"]; 

STUDENT->STUDUNITGRADE[LABEL="TOOK 

UNIT",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEETEE"]; 

UNITYEAR->STUDUNITGRADE[LABEL="TOOK 

STUDENT",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEETEE"]; 

/* WEAK RELATIONSHIPS */ 

DEPT->ADDRESS[LABEL="LOCATES AT",DIR="BOTH",ARROWTAIL="TEEODOT",ARROWHEAD="TEETEE"]; 

PROJECT->JOB[LABEL="HASJOBS",DIR="BOTH",ARROWTAIL="CROWODOT",ARROWHEAD="TEETEE"]; 

UNIT->UNITYEAR[LABEL="VERSION OF",DIR="BOTH",ARROWTAIL="TEEODOT",ARROWHEAD="TEETEE"]; 

} 
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Appendix - EyeDB ODL Specifications (afterScott) 

// SCHEMA 

 

// ENUMERATED TYPES (DOMAINS) 

  ENUM ASSESSMENT { 

    ASSIGN, 

    EXAM, 

    INTERVIEW, 

    TEST 

  }; 

  ENUM DEGREE { 

    BAT, 

    DOC, 

    MASTER, 

    POSTDOC 

  }; 

  ENUM LOAD { 

    FOURTH, 

    HALF, 

    THIRD, 

    TWELFTH 

  }; 

  ENUM SEX { 

    FEMALE, 

    MALE 

  }; 

  ENUM UNITGRADE { 

    A, 

    ABS, 

    B, 

    C, 

    D, 

    F 

  }; 

 

// FORWARD REFERENCES 

CLASS COURSE; 

CLASS DEPT; 

CLASS LECTURER; 

CLASS PERSON; 

CLASS PROJECT; 

CLASS PTSTUDENT; 

CLASS STUDENT; 

CLASS STUDUNITGRADE; 

CLASS TELEPHONE; 

CLASS UNIT; 

CLASS ADDRESS; 
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CLASS DEPTROLE; 

CLASS JOB; 

CLASS UNITYEAR; 

 

// STRUCTURES (WEAK ENTITIES) 

CLASS ADDRESS { 

  ATTRIBUTE STRING ALINE1; 

  ATTRIBUTE STRING ALINE2; 

  ATTRIBUTE INT ASERNO; 

  // RC11 2 

  RELATIONSHIP DEPT * ADEPT INVERSE DEPT::MAINOFFICE; 

  // PRI KEY IS [ASERNO] 

  CONSTRAINT<UNIQUE> ON ASERNO; INDEX ON ASERNO; 

  CONSTRAINT<NOTNULL> ON ADEPT; 

  CONSTRAINT<NOTNULL> ON ALINE1; 

  CONSTRAINT<NOTNULL> ON ALINE2; 

  CONSTRAINT<NOTNULL> ON ASERNO; 

 } ; 

CLASS DEPTROLE { 

  ATTRIBUTE STRING FIRSTROLE; 

  ATTRIBUTE STRING OTHERROLE; 

  // PRI KEY IS [] 

  CONSTRAINT<NOTNULL> ON FIRSTROLE; 

  CONSTRAINT<NOTNULL> ON OTHERROLE; 

 } ; 

CLASS JOB { 

  ATTRIBUTE DOUBLE JBUDGET; 

  ATTRIBUTE STRING JNAME; 

  // RC12 2 

  RELATIONSHIP PROJECT * JPROJ INVERSE PROJECT::JOBS; 

  // PRI KEY IS [JNAME] 

  CONSTRAINT<UNIQUE> ON JNAME; INDEX ON JNAME; 

  CONSTRAINT<NOTNULL> ON JBUDGET; 

  CONSTRAINT<NOTNULL> ON JNAME; 

  CONSTRAINT<NOTNULL> ON JPROJ; 

 } ; 

CLASS UNITYEAR { 

  ATTRIBUTE INT USEMESTER; 

  ATTRIBUTE INT USERNO; 

  ATTRIBUTE INT UYEAR; 

  // RC10 2 

  RELATIONSHIP LECTURER * ULECTURER INVERSE LECTURER::TEACHES; 

  // RC14 2 

  RELATIONSHIP UNIT * UUNIT INVERSE UNIT::UVERSION; 

  // RC72 1 

  RELATIONSHIP SET < STUDUNITGRADE * > USTUDGRADES  INVERSE STUDUNITGRADE::GRADEUNIT; 

  // PRI KEY IS [USERNO] 

  CONSTRAINT<UNIQUE> ON USERNO; INDEX ON USERNO; 
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  CONSTRAINT<NOTNULL> ON ULECTURER; 

  CONSTRAINT<NOTNULL> ON USEMESTER; 

  CONSTRAINT<NOTNULL> ON USERNO; 

  CONSTRAINT<NOTNULL> ON UUNIT; 

  CONSTRAINT<NOTNULL> ON UYEAR; 

 } ; 

 

// CLASSES 

CLASS COURSE { 

  ATTRIBUTE STRING CNAME; 

  // RC8 1 

  RELATIONSHIP SET < UNIT * > REQUIRE  INVERSE UNIT::APPLICABLETO; 

  // RC6 1 

  RELATIONSHIP SET < DEPT * > SPONSORER  INVERSE DEPT::SPONSORS; 

  // RC13 1 

  RELATIONSHIP SET < STUDENT * > STUDENTS  INVERSE STUDENT::ENROLON; 

  // PRI KEY IS [CNAME] 

  CONSTRAINT<UNIQUE> ON CNAME; INDEX ON CNAME; 

  CONSTRAINT<NOTNULL> ON CNAME; 

  CONSTRAINT<NOTNULL> ON SPONSORER; 

 } ; 

CLASS DEPT { 

  ATTRIBUTE STRING DNAME; 

  ATTRIBUTE SET < DEPTROLE * > DROLE; 

  // RC11 1 

  RELATIONSHIP ADDRESS * MAINOFFICE INVERSE ADDRESS::ADEPT; 

  // RC6 2 

  RELATIONSHIP SET < COURSE * > SPONSORS  INVERSE COURSE::SPONSORER; 

  // RC5 1 

  RELATIONSHIP SET < LECTURER * > STAFF  INVERSE LECTURER::WORKSAT; 

  // PRI KEY IS [DNAME] 

  CONSTRAINT<UNIQUE> ON DNAME; INDEX ON DNAME; 

  CONSTRAINT<NOTNULL> ON DNAME; 

 } ; 

CLASS PERSON { 

  ATTRIBUTE STRING FNAME; 

  ATTRIBUTE SEX GENDER; 

  // RC1 1 

  RELATIONSHIP SET < TELEPHONE * > TELNO  INVERSE TELEPHONE::TPISOF; 

  // RC2 1 

  RELATIONSHIP SET < PROJECT * > WORKSON  INVERSE PROJECT::STAFF; 

  // PRI KEY IS [FNAME] 

  CONSTRAINT<UNIQUE> ON FNAME; INDEX ON FNAME; 

  CONSTRAINT<NOTNULL> ON FNAME; 

  CONSTRAINT<NOTNULL> ON GENDER; 

 } ; 

CLASS LECTURER EXTENDS PERSON { 

  ATTRIBUTE SET <DEGREE> DEGREES; 
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  // RC5 2 

  RELATIONSHIP DEPT * WORKSAT INVERSE DEPT::STAFF; 

  // RC9 1 

  RELATIONSHIP SET < UNIT * > COORD  INVERSE UNIT::COORDBY; 

  // RC3 1 

  RELATIONSHIP SET < PROJECT * > PROLEAD  INVERSE PROJECT::LEADER; 

  // RC10 1 

  RELATIONSHIP SET < UNITYEAR * > TEACHES  INVERSE UNITYEAR::ULECTURER; 

  // PRI KEY IS [] 

  CONSTRAINT<NOTNULL> ON COORD; 

  CONSTRAINT<NOTNULL> ON WORKSAT; 

 } ; 

CLASS PROJECT { 

  ATTRIBUTE STRING PNAME; 

  // RC4 1 

  RELATIONSHIP PROJECT * CONTINOF INVERSE PROJECT::CARRIESONIN; 

  // RC3 2 

  RELATIONSHIP LECTURER * LEADER INVERSE LECTURER::PROLEAD; 

  // RC4 2 

  RELATIONSHIP SET < PROJECT * > CARRIESONIN  INVERSE PROJECT::CONTINOF; 

  // RC12 1 

  RELATIONSHIP SET < JOB * > JOBS  INVERSE JOB::JPROJ; 

  // RC2 2 

  RELATIONSHIP SET < PERSON * > STAFF  INVERSE PERSON::WORKSON; 

  // PRI KEY IS [PNAME] 

  CONSTRAINT<UNIQUE> ON PNAME; INDEX ON PNAME; 

  CONSTRAINT<NOTNULL> ON LEADER; 

  CONSTRAINT<NOTNULL> ON PNAME; 

 } ; 

CLASS STUDENT EXTENDS PERSON { 

  ATTRIBUTE STRING STAGE; 

  // RC13 2 

  RELATIONSHIP COURSE * ENROLON INVERSE COURSE::STUDENTS; 

  // RC71 1 

  RELATIONSHIP SET < STUDUNITGRADE * > UNITGRADES  INVERSE STUDUNITGRADE::GRADESTUDENT; 

  // PRI KEY IS [] 

  CONSTRAINT<NOTNULL> ON ENROLON; 

 } ; 

CLASS PTSTUDENT EXTENDS STUDENT { 

  ATTRIBUTE LOAD LOADRATIO; 

  // PRI KEY IS [] 

  CONSTRAINT<NOTNULL> ON LOADRATIO; 

 } ; 

CLASS STUDUNITGRADE { 

  ATTRIBUTE UNITGRADE GRADE; 

  // RC71 2 

  RELATIONSHIP STUDENT * GRADESTUDENT INVERSE STUDENT::UNITGRADES; 

  // RC72 2 
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  RELATIONSHIP UNITYEAR * GRADEUNIT INVERSE UNITYEAR::USTUDGRADES; 

  // PRI KEY IS [GRADESTUDENT,GRADEUNIT] 

  CONSTRAINT<UNIQUE> ON GRADESTUDENT; INDEX ON GRADESTUDENT; 

  CONSTRAINT<NOTNULL> ON GRADE; 

  CONSTRAINT<NOTNULL> ON GRADESTUDENT; 

 } ; 

CLASS TELEPHONE { 

  ATTRIBUTE STRING TPNAME; 

  ATTRIBUTE STRING TPSTATE; 

  ATTRIBUTE STRING TPTYPE; 

  // RC1 2 

  RELATIONSHIP PERSON * TPISOF INVERSE PERSON::TELNO; 

  // PRI KEY IS [TPNAME] 

  CONSTRAINT<UNIQUE> ON TPNAME; INDEX ON TPNAME; 

  CONSTRAINT<NOTNULL> ON TPNAME; 

  CONSTRAINT<NOTNULL> ON TPTYPE; 

 } ; 

CLASS UNIT { 

  ATTRIBUTE ASSESSMENT ASSESSTYPE; 

  ATTRIBUTE INT CREDITS; 

  ATTRIBUTE STRING UNAME; 

  // RC9 2 

  RELATIONSHIP LECTURER * COORDBY INVERSE LECTURER::COORD; 

  // RC8 2 

  RELATIONSHIP SET < COURSE * > APPLICABLETO  INVERSE COURSE::REQUIRE; 

  // RC14 1 

  RELATIONSHIP SET < UNITYEAR * > UVERSION  INVERSE UNITYEAR::UUNIT; 

  // PRI KEY IS [UNAME] 

  CONSTRAINT<UNIQUE> ON UNAME; INDEX ON UNAME; 

  CONSTRAINT<NOTNULL> ON ASSESSTYPE; 

  CONSTRAINT<NOTNULL> ON COORDBY; 

  CONSTRAINT<NOTNULL> ON CREDITS; 

  CONSTRAINT<NOTNULL> ON UNAME; 

 }  
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Appendix - EyeDB processing of afterScott schema Specifications 

JOSEPH@ASPIREONE:~/WORKBENCH/EYEDB/FUFU$ CP $HOME/DROPBOX/SCOTT_2.ODL . 

JOSEPH@ASPIREONE:~/WORKBENCH/EYEDB/FUFU$ SUDO EYEDBADMIN DATABASE DELETE FUFU 

[SUDO] PASSWORD FOR JOSEPH: 

JOSEPH@ASPIREONE:~/WORKBENCH/EYEDB/FUFU$ SUDO EYEDBADMIN DATABASE CREATE FUFU 

JOSEPH@ASPIREONE:~/WORKBENCH/EYEDB/FUFU$ SUDO EYEDBODL -D FUFU -U SCOTT_2.ODL 

UPDATING 'SCOTT_2' SCHEMA IN DATABASE FUFU... 

ADDING CLASS COURSE 

ADDING CLASS DEPT 

ADDING CLASS LECTURER 

ADDING CLASS PERSON 

ADDING CLASS PROJECT 

ADDING CLASS PTSTUDENT 

ADDING CLASS STUDENT 

ADDING CLASS STUDUNITGRADE 

ADDING CLASS TELEPHONE 

ADDING CLASS UNIT 

ADDING CLASS ADDRESS 

ADDING CLASS DEPTROLE 

ADDING CLASS JOB 

ADDING CLASS UNITYEAR 

ADDING ATTRIBUTE ADDRESS::ALINE1 

ADDING ATTRIBUTE ADDRESS::ALINE2 

ADDING ATTRIBUTE ADDRESS::ASERNO 

ADDING ATTRIBUTE ADDRESS::ADEPT 

ADDING ATTRIBUTE DEPTROLE::FIRSTROLE 

ADDING ATTRIBUTE DEPTROLE::OTHERROLE 

ADDING ATTRIBUTE JOB::JBUDGET 

ADDING ATTRIBUTE JOB::JNAME 

ADDING ATTRIBUTE JOB::JPROJ 

ADDING ATTRIBUTE UNITYEAR::USEMESTER 

ADDING ATTRIBUTE UNITYEAR::USERNO 

ADDING ATTRIBUTE UNITYEAR::UYEAR 

ADDING ATTRIBUTE UNITYEAR::ULECTURER 

ADDING ATTRIBUTE UNITYEAR::UUNIT 

ADDING ATTRIBUTE UNITYEAR::USTUDGRADES 

ADDING ATTRIBUTE COURSE::CNAME 

ADDING ATTRIBUTE COURSE::REQUIRE 

ADDING ATTRIBUTE COURSE::SPONSORER 

ADDING ATTRIBUTE COURSE::STUDENTS 

ADDING ATTRIBUTE DEPT::DNAME 

ADDING ATTRIBUTE DEPT::DROLE 

ADDING ATTRIBUTE DEPT::MAINOFFICE 

ADDING ATTRIBUTE DEPT::SPONSORS 

ADDING ATTRIBUTE DEPT::STAFF 

ADDING ATTRIBUTE PERSON::FNAME 

ADDING ATTRIBUTE PERSON::GENDER 
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ADDING ATTRIBUTE PERSON::TELNO 

ADDING ATTRIBUTE PERSON::WORKSON 

ADDING ATTRIBUTE LECTURER::FNAME 

ADDING ATTRIBUTE LECTURER::GENDER 

ADDING ATTRIBUTE LECTURER::TELNO 

ADDING ATTRIBUTE LECTURER::WORKSON 

ADDING ATTRIBUTE LECTURER::DEGREES 

ADDING ATTRIBUTE LECTURER::WORKSAT 

ADDING ATTRIBUTE LECTURER::COORD 

ADDING ATTRIBUTE LECTURER::PROLEAD 

ADDING ATTRIBUTE LECTURER::TEACHES 

ADDING ATTRIBUTE PROJECT::PNAME 

ADDING ATTRIBUTE PROJECT::CONTINOF 

ADDING ATTRIBUTE PROJECT::LEADER 

ADDING ATTRIBUTE PROJECT::CARRIESONIN 

ADDING ATTRIBUTE PROJECT::JOBS 

ADDING ATTRIBUTE PROJECT::STAFF 

ADDING ATTRIBUTE STUDENT::FNAME 

ADDING ATTRIBUTE STUDENT::GENDER 

ADDING ATTRIBUTE STUDENT::TELNO 

ADDING ATTRIBUTE STUDENT::WORKSON 

ADDING ATTRIBUTE STUDENT::STAGE 

ADDING ATTRIBUTE STUDENT::ENROLON 

ADDING ATTRIBUTE STUDENT::UNITGRADES 

ADDING ATTRIBUTE PTSTUDENT::FNAME 

ADDING ATTRIBUTE PTSTUDENT::GENDER 

ADDING ATTRIBUTE PTSTUDENT::TELNO 

ADDING ATTRIBUTE PTSTUDENT::WORKSON 

ADDING ATTRIBUTE PTSTUDENT::STAGE 

ADDING ATTRIBUTE PTSTUDENT::ENROLON 

ADDING ATTRIBUTE PTSTUDENT::UNITGRADES 

ADDING ATTRIBUTE PTSTUDENT::LOADRATIO 

ADDING ATTRIBUTE STUDUNITGRADE::GRADE 

ADDING ATTRIBUTE STUDUNITGRADE::GRADESTUDENT 

ADDING ATTRIBUTE STUDUNITGRADE::GRADEUNIT 

ADDING ATTRIBUTE TELEPHONE::TPNAME 

ADDING ATTRIBUTE TELEPHONE::TPSTATE 

ADDING ATTRIBUTE TELEPHONE::TPTYPE 

ADDING ATTRIBUTE TELEPHONE::TPISOF 

ADDING ATTRIBUTE UNIT::ASSESSTYPE 

ADDING ATTRIBUTE UNIT::CREDITS 

ADDING ATTRIBUTE UNIT::UNAME 

ADDING ATTRIBUTE UNIT::COORDBY 

ADDING ATTRIBUTE UNIT::APPLICABLETO 

ADDING ATTRIBUTE UNIT::UVERSION 

CREATING BTREEINDEX 'INDEX<TYPE = BTREE, PROPAGATE = ON> ON ADDRESS.ASERNO' ON CLASS 

'ADDRESS'... 

CREATING HASHINDEX 'INDEX<TYPE = HASH, HINTS = "INITIAL_SIZE = 0; INITIAL_OBJECT_COUNT = 

0; EXTEND_COEF = 0; SIZE_MAX = 0; DATA_GROU 
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PED_BY_KEY = 0;", PROPAGATE = ON> ON JOB.JNAME' ON CLASS 'JOB'... 

CREATING BTREEINDEX 'INDEX<TYPE = BTREE, PROPAGATE = ON> ON UNITYEAR.USERNO' ON CLASS 

'UNITYEAR'... 

CREATING HASHINDEX 'INDEX<TYPE = HASH, HINTS = "INITIAL_SIZE = 0; INITIAL_OBJECT_COUNT = 

0; EXTEND_COEF = 0; SIZE_MAX = 0; DATA_GROU 

PED_BY_KEY = 0;", PROPAGATE = ON> ON COURSE.CNAME' ON CLASS 'COURSE'... 

CREATING HASHINDEX 'INDEX<TYPE = HASH, HINTS = "INITIAL_SIZE = 0; INITIAL_OBJECT_COUNT = 

0; EXTEND_COEF = 0; SIZE_MAX = 0; DATA_GROU 

PED_BY_KEY = 0;", PROPAGATE = ON> ON DEPT.DNAME' ON CLASS 'DEPT'... 

CREATING HASHINDEX 'INDEX<TYPE = HASH, HINTS = "INITIAL_SIZE = 0; INITIAL_OBJECT_COUNT = 

0; EXTEND_COEF = 0; SIZE_MAX = 0; DATA_GROU 

PED_BY_KEY = 0;", PROPAGATE = ON> ON PERSON.FNAME' ON CLASS 'PERSON'... 

CREATING HASHINDEX 'INDEX<TYPE = HASH, HINTS = "INITIAL_SIZE = 0; INITIAL_OBJECT_COUNT = 

0; EXTEND_COEF = 0; SIZE_MAX = 0; DATA_GROU 

PED_BY_KEY = 0;", PROPAGATE = ON> ON PROJECT.PNAME' ON CLASS 'PROJECT'... 

CREATING HASHINDEX 'INDEX<TYPE = HASH, HINTS = "INITIAL_SIZE = 0; INITIAL_OBJECT_COUNT = 

0; EXTEND_COEF = 0; SIZE_MAX = 0; DATA_GROU 

PED_BY_KEY = 0;", PROPAGATE = ON> ON STUDUNITGRADE.GRADESTUDENT' ON CLASS 

'STUDUNITGRADE'... 

CREATING HASHINDEX 'INDEX<TYPE = HASH, HINTS = "INITIAL_SIZE = 0; INITIAL_OBJECT_COUNT = 

0; EXTEND_COEF = 0; SIZE_MAX = 0; DATA_GROU 

PED_BY_KEY = 0;", PROPAGATE = ON> ON TELEPHONE.TPNAME' ON CLASS 'TELEPHONE'... 

CREATING HASHINDEX 'INDEX<TYPE = HASH, HINTS = "INITIAL_SIZE = 0; INITIAL_OBJECT_COUNT = 

0; EXTEND_COEF = 0; SIZE_MAX = 0; DATA_GROU 

PED_BY_KEY = 0;", PROPAGATE = ON> ON UNIT.UNAME' ON CLASS 'UNIT'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON ADDRESS.ASERNO' ON 

CLASS 'ADDRESS'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON ADDRESS.ADEPT' ON 

CLASS 'ADDRESS'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON ADDRESS.ALINE1' ON 

CLASS 'ADDRESS'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON ADDRESS.ALINE2' ON 

CLASS 'ADDRESS'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON ADDRESS.ASERNO' ON 

CLASS 'ADDRESS'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON DEPTROLE.FIRSTROLE' 

ON CLASS 'DEPTROLE'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON DEPTROLE.OTHERROLE' 

ON CLASS 'DEPTROLE'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON JOB.JNAME' ON CLASS 

'JOB'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON JOB.JBUDGET' ON 

CLASS 'JOB'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON JOB.JNAME' ON CLASS 

'JOB'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON JOB.JPROJ' ON CLASS 

'JOB'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON UNITYEAR.USERNO' ON 

CLASS 'UNITYEAR'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNITYEAR.ULECTURER' 

ON CLASS 'UNITYEAR'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNITYEAR.USEMESTER' 

ON CLASS 'UNITYEAR'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNITYEAR.USERNO' ON 

CLASS 'UNITYEAR'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNITYEAR.UUNIT' ON 

CLASS 'UNITYEAR'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNITYEAR.UYEAR' ON 

CLASS 'UNITYEAR'... 
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CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON COURSE.CNAME' ON CLASS 

'COURSE'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON COURSE.CNAME' ON 

CLASS 'COURSE'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON COURSE.SPONSORER' ON 

CLASS 'COURSE'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON DEPT.DNAME' ON CLASS 

'DEPT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON DEPT.DNAME' ON CLASS 

'DEPT'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON PERSON.FNAME' ON CLASS 

'PERSON'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON PERSON.FNAME' ON 

CLASS 'PERSON'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON PERSON.GENDER' ON 

CLASS 'PERSON'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON LECTURER.COORD' ON 

CLASS 'LECTURER'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON LECTURER.WORKSAT' ON 

CLASS 'LECTURER'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON PROJECT.PNAME' ON 

CLASS 'PROJECT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON PROJECT.LEADER' ON 

CLASS 'PROJECT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON PROJECT.PNAME' ON 

CLASS 'PROJECT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON STUDENT.ENROLON' ON 

CLASS 'STUDENT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON PTSTUDENT.LOADRATIO' 

ON CLASS 'PTSTUDENT'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON 

STUDUNITGRADE.GRADESTUDENT' ON CLASS 'STUDUNITGRADE'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON STUDUNITGRADE.GRADE' 

ON CLASS 'STUDUNITGRADE'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON 

STUDUNITGRADE.GRADESTUDENT' ON CLASS 'STUDUNITGRADE'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON TELEPHONE.TPNAME' ON 

CLASS 'TELEPHONE'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON TELEPHONE.TPNAME' ON 

CLASS 'TELEPHONE'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON TELEPHONE.TPTYPE' ON 

CLASS 'TELEPHONE'... 

CREATING UNIQUE_CONSTRAINT 'CONSTRAINT<UNIQUE, PROPAGATE = ON> ON UNIT.UNAME' ON CLASS 

'UNIT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNIT.ASSESSTYPE' ON 

CLASS 'UNIT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNIT.COORDBY' ON 

CLASS 'UNIT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNIT.CREDITS' ON 

CLASS 'UNIT'... 

CREATING NOTNULL_CONSTRAINT 'CONSTRAINT<NOTNULL, PROPAGATE = ON> ON UNIT.UNAME' ON CLASS 

'UNIT'... 

CREATING ONE-TO-ONE RELATIONSHIP ADDRESS::ADEPT <-> DEPT::MAINOFFICE 

CREATING ONE-TO-MANY RELATIONSHIP JOB::JPROJ <-> PROJECT::JOBS 

CREATING ONE-TO-MANY RELATIONSHIP UNITYEAR::ULECTURER <-> LECTURER::TEACHES 

CREATING ONE-TO-MANY RELATIONSHIP UNITYEAR::UUNIT <-> UNIT::UVERSION 

CREATING MANY-TO-ONE RELATIONSHIP UNITYEAR::USTUDGRADES <-> STUDUNITGRADE::GRADEUNIT 

CREATING MANY-TO-MANY RELATIONSHIP COURSE::REQUIRE <-> UNIT::APPLICABLETO 

CREATING MANY-TO-MANY RELATIONSHIP COURSE::SPONSORER <-> DEPT::SPONSORS 
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CREATING MANY-TO-ONE RELATIONSHIP COURSE::STUDENTS <-> STUDENT::ENROLON 

CREATING ONE-TO-ONE RELATIONSHIP DEPT::MAINOFFICE <-> ADDRESS::ADEPT 

CREATING MANY-TO-MANY RELATIONSHIP DEPT::SPONSORS <-> COURSE::SPONSORER 

CREATING MANY-TO-ONE RELATIONSHIP DEPT::STAFF <-> LECTURER::WORKSAT 

CREATING MANY-TO-ONE RELATIONSHIP PERSON::TELNO <-> TELEPHONE::TPISOF 

CREATING MANY-TO-MANY RELATIONSHIP PERSON::WORKSON <-> PROJECT::STAFF 

CREATING MANY-TO-ONE RELATIONSHIP PERSON::TELNO <-> TELEPHONE::TPISOF 

CREATING MANY-TO-MANY RELATIONSHIP PERSON::WORKSON <-> PROJECT::STAFF 

CREATING ONE-TO-MANY RELATIONSHIP LECTURER::WORKSAT <-> DEPT::STAFF 

CREATING MANY-TO-ONE RELATIONSHIP LECTURER::COORD <-> UNIT::COORDBY 

CREATING MANY-TO-ONE RELATIONSHIP LECTURER::PROLEAD <-> PROJECT::LEADER 

CREATING MANY-TO-ONE RELATIONSHIP LECTURER::TEACHES <-> UNITYEAR::ULECTURER 

CREATING ONE-TO-MANY RELATIONSHIP PROJECT::CONTINOF <-> PROJECT::CARRIESONIN 

CREATING ONE-TO-MANY RELATIONSHIP PROJECT::LEADER <-> LECTURER::PROLEAD 

CREATING MANY-TO-ONE RELATIONSHIP PROJECT::CARRIESONIN <-> PROJECT::CONTINOF 

CREATING MANY-TO-ONE RELATIONSHIP PROJECT::JOBS <-> JOB::JPROJ 

CREATING MANY-TO-MANY RELATIONSHIP PROJECT::STAFF <-> PERSON::WORKSON 

CREATING MANY-TO-ONE RELATIONSHIP PERSON::TELNO <-> TELEPHONE::TPISOF 

CREATING MANY-TO-MANY RELATIONSHIP PERSON::WORKSON <-> PROJECT::STAFF 

CREATING ONE-TO-MANY RELATIONSHIP STUDENT::ENROLON <-> COURSE::STUDENTS 

CREATING MANY-TO-ONE RELATIONSHIP STUDENT::UNITGRADES <-> STUDUNITGRADE::GRADESTUDENT 

CREATING MANY-TO-ONE RELATIONSHIP PERSON::TELNO <-> TELEPHONE::TPISOF 

CREATING MANY-TO-MANY RELATIONSHIP PERSON::WORKSON <-> PROJECT::STAFF 

CREATING ONE-TO-MANY RELATIONSHIP STUDENT::ENROLON <-> COURSE::STUDENTS 

CREATING MANY-TO-ONE RELATIONSHIP STUDENT::UNITGRADES <-> STUDUNITGRADE::GRADESTUDENT 

CREATING ONE-TO-MANY RELATIONSHIP STUDUNITGRADE::GRADESTUDENT <-> STUDENT::UNITGRADES 

CREATING ONE-TO-MANY RELATIONSHIP STUDUNITGRADE::GRADEUNIT <-> UNITYEAR::USTUDGRADES 

CREATING ONE-TO-MANY RELATIONSHIP TELEPHONE::TPISOF <-> PERSON::TELNO 

CREATING ONE-TO-MANY RELATIONSHIP UNIT::COORDBY <-> LECTURER::COORD 

CREATING MANY-TO-MANY RELATIONSHIP UNIT::APPLICABLETO <-> COURSE::REQUIRE 

CREATING MANY-TO-ONE RELATIONSHIP UNIT::UVERSION <-> UNITYEAR::UUNIT 

 

DONE 
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Appendix - ODMG Data Dictionary 

The application program data requirements in a database environment are recorded in the 

schema definition, we have seen in the first chapter.  The ODMG calls this the metadata 

and it is stored in the ODL Schema Repository.  The ODMG metadata is a superset of 

ODM’s IDL Interface Repository because of the richer “structures” (e.g. relationships) found 

in it.  The standard specifies the interface of each constituent part of the metadata and 

provides a terse textual description of the properties and methods.  The exact semantics of 

the operations are missing. 

There are thirty-two interfaces with thirty inheritance relationships between them.  Most 

of these inheritance relationships are of the single inheritance type but four relay on 

multiple inheritance.  The longest depth of the ISA relationship is of four (e.g. DICTIONARY / 

COLLECTION / TYPE / METAOBJECT / REPOSITORYOBJECT). 

A focal point is the METAOBJECT interface, and it has two descriptive attributes - NAME and 

COMMENT.  The meta-object emanates a number of other specialised interfaces; namely 

EXCEPTION, CONSTANT, PROPERTY (that itself emanate the interfaces ATTRIBUTE and 

RELATIONSHIP), and TYPE.  The TYPE interface is specialised into three other interfaces; 

namely TYPEDEFINITION, PRIMITIVETYPE, and COLLECTION. 

In the case of EXCEPTIONs, the interface specifies a N-M relationship with OPERATIONs 

that can actually raise them (i.e. note that although relationships do flag exceptions these 

are really encoded into the ‘form’ and ‘to’ methods), and a 1-1 relationship to a STRUCTURE 

data type definition for the information being passed out by the exception handler. 

The interface CONSTANT provides a look-up structure for statically associating values with 

names.  The value is either a literal, or a reference to another constant or a constant 

expression and in either case we relate to the respective interface (i.e. OPERAND, 

CONSTOPERAND, and ENUMERATION respectively).  Each constant has a TYPE and a VALUE. 

The PROPERTY interface is divided (in totality) into the ATTRIBUTE and RELATIONSHIP 

interfaces.  Each property instance is related to a data TYPE in a M-1 relationship.  As some 

attribute instances are read-only this is shown though a Boolean method called 
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IS_READ_ONLY.  In the case of relationship instances we need to keep details on the role of 

the relationship (i.e. GET_CARDINALITY) and the back traversal path (this is a 1-1 

recursive relationship called TRAVERSAL). 

The data TYPE interface holds information on data types and a myriad range of 1-N 

relationships to interfaces that require a data type quantification (i.e. COLLECTION, 

DICTIONARY, SPECIFIER, UNION, OPERATION, PROPERTY, CONSTANT and 

TYPEDEFINITION).  Because the standard allows the introduction of new names for defined 

data types (i.e. instances of TYPE) then a specialised interface of type called 

TYPEDEFINITION is introduced.  The TYPEDEFINITION interface has a N-1 relationship 

with the TYPE interface.  Another specialisation of the data type interface is the 

PRIMITIVETYPE interface.  This interface adds a read-only attribute called 

PRIMITIVE_KIND whose value is to be chosen from an enumerated list of primitive types 

recognised by the standard (e.g. Boolean, char, date, etc).  An important specialisation of 

data type is the COLLECTION interface.  The collection interface has a read-only attribute 

(i.e. COLLECTIONKIND) that takes a value from a list of collection types allowed by the 

standard (e.g. list, array, bag, set, etc), and an association to a data type to represented the 

collection item’s data type.  Two methods are specified to cater for the sizing and ordering 

property of the collection.  The DICTIONARY interface is a specialisation of the collection 

interface. 

We have seen that ODMG allows us to “scope” our definition of objects and names.  To 

record these themes in the data dictionary the SCOPE interface is introduced.  The 

operation BIND takes a METAOBJECT instance, and a name to establish the given object 

scope in the repository.  A sub-class of scope is DEFININGSCOPE.  This has an important 1-

N relationship with METAOBJECTS, called DEFINES, that enumerates which objects are in 

the same scope.  There is also an array of methods to create, add and remove different 

REPOSITORYOBJECT (more on this interface later).  Examples of such methods include 

CREATE_COLLECTION, ADD_UNION, and REMOVE_CONSTANT. 

We have already stated that some interfaces have a multiple inheritance and one example 

is the OPERATION interface that inherits from SCOPE and METAOBJECT.  An operation is 
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(like an interface’s attribute) a METAOBJECT but due to the affects of dynamic dispatching 

require an operation to have a scope (thus the need to inherit from SCOPE).  An operation 

instance needs to hold information about the data type of its parameters, the data type of 

its result and the list of exceptions that can be raised by the operation instance.  This 

information is recorded through three relationships called SIGNATURE (to interface 

PARAMETER in a 1-N), RESULT (to interface TYPE in a N-1), and EXCEPTIONS (to interface 

EXCEPTION in a N-M). 

Other important METAOBJECTs are the INTERFACE (itself) and the CLASS.  The CLASS 

inherits from the INTERFACE while the INTERFACE inherits (through multiple inheritance 

mechanism) from TYPE and DEFININGSCOPE.  The interface meta description (i.e. its 

interface!) include a recursive N-M relationship to depict the inheritance graph (this is 

implemented through the two relationships INHERITS and DERIVES).  Also a number of 

methods are available to add and remove attributes, relationships and methods from an 

interface.  These are called the ADD_ATTRIBUTE, ADD_RELATIONSHIP and 

ADD_OPERATION methods (and their ‘remove’ counterpart).  In the CLASS interface we find 

a recursive N-1 relationship to implement the class extends graph (through the 

relationships EXTENDER and EXTENSIONS) and attributes to record the extents and keys 

associated with the class instances.  In the case of the keys attribute it should really be a 

relationship to the attribute interface! 

The ODMG’s object model allows the designer to introduce new data types composed from 

other data types.  The generic interface for these is the SCOPEDTYPE and it inherits from 

TYPE and SCOPE.  Three possible SCOPEDTYPEs are catered here and these are the data 

structures, the enumerated types and the union data type (through the STRUCTURE, 

ENUMERATION, and UNION TYPE).  The speciality of STRUCTURE is the list of typed 

attributes that compose it.  The speciality of the ENUMERATION interface is a list of 

constants that comprise the particular instance (through the 1-N ELEMENTS relationship to 

the CONSTANT interface). 

A module, and its specialisation repository, is a collection of meta-objects within a context 

of a defining scope.  Note that the data dictionary is an instance of the repository interface.  
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This interface has a number of important methods for creating and removing modules 

(themselves), interfaces and classes. 

In some contexts a data type requires naming, for example the name of an argument in a 

method.  A generic class is the SPECIFIER, a subclass of REPOSITORYOBJECT, which has 

the following sub-classes; MEMBER, UNIONCASE and PARAMETER.  Each specifier has a N-1 

relationship to the TYPE interface.  Interesting to note is the case of PARAMETERs where we 

need to annotate each argument with its argument-passing mode (i.e. IN, OUT or INOUT). 

The REPOSITORYOBJECT interface has another ramification starting with the OPERAND 

interface.  OPERANDs are an interface whose instances would be all the constant values in 

the object collection.  These constant values can be literals (i.e. LITERAL interface inherits 

from operand), constant operands (i.e. CONSTOPERAND interface inherits form operand), and 

constant expressions (i.e. EXPRESSION interface inherits from operand). 

One of the first interfaces described was the METAOBJECT (which inherits from 

REPOSITORYOBJECT interface); yet the description was incomplete.  In fact each 

METAOBJECT instance is related to a DEFININGSCOPE instance through the DEFINEDLN N-1 

relationship. 

What’s Missing From ODG’s Meta Data 

The most obvious missing “item” is detail; for example many of the methods mentioned 

have a short textual phrase for each and its signature. 

Other significant items found in a data dictionary but not present in ODMG’s proposal 

include: logical views, users, security profiles, and data constraints.  We iterate that this is 

a significant shortfall that cannot be attributed to implementation dependency. 

 




