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Abstract

Different dynamical phenomena in the solar corona are investigated in the
present Thesis. We aim to investigate using a semi-analytical approach of the
effect of the surrounding environment on the period ratio of the fundamental
to first harmonic of a thin coronal loop. Investigation of geometrical effects are
taken into account, namely asymmetry of the coronal loop, i.e. its deviation
from a semi-circular shape.

It is found that if we are to obtain more accurate estimates on the effect
of the environment on the transversal oscillations of a coronal loop, we have
to take into account that in reality a coronal loop depends on more than one
coordinate, secondly, isothermal supposition of the loop and its environment
also need refinement, as observations show that the loops are not always in
hydrostatic equilibrium. The study on the expansion of a coronal loop indicates
that in order to have more realistic results one would need to include damping
processes, resonant absorption and cooling processes. Further in an expanding
loop, the growth of the amplitude due to emergence and decay of amplitude due
to resonant damping or cooling will be competing processes. When it expands,
a loop can also have accelerated motion upwards in the corona with cross section
modification of the flux tube.

The final piece of work in this thesis is a numerical investigation into a 2D
magnetic reconnection process, where we study reconnection rates and how dif-
ferent parameters such as resistivity and Hall term affect the process of field line
reconnection. The Hall effect does speed up the reconnection process, but it
depends significantly on the initial conditions of the problem. These initial con-
ditions, i.e. different magnetic field configuration, density stratification, gravity
play an important role in the reconnection process.
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Chapter 1

Introduction

1.1 Our Sun

Our Sun was formed around 4.5 billion years ago in a cloud of interstellar gas

that slowly collapsed under its own gravity rotating faster and faster until the

cloud shrunk into a flat disc with a very hot core where, through thermonuclear

processes over a few million years, a heated star began to shine. Our Sun is an

ordinary GeV-type star estimated to live for an extra 5 billion years.

In the last twenty years we have seen exciting insight into our Sun. High

resolution ground-based instruments and space satellites such as the Transition

Region and Coronal Explorer (TRACE), Solar and Heliospheric Observatory

(SOHO), Hinode and Solar Dynamic Observatory (SDO) have revealed a highly

complex and dynamic nature of our star. Traditionally, the Sun is structured

in two main parts: inner layers (core, radiative zone, tachocline, convective

zone) and outer layers (photosphere, chromosphere, transition layer, corona,

solar wind) as shown in Figure 1.1.

The dynamical and thermal state as well as the stability of outer atmosphere

is driven and controlled by the magnetic field which is generated in the solar

interior by the dynamo effect. Magnetic fields in the solar atmosphere can form

distinctive features with varied dimensions from a few kilometers to hundreds

of Megameters with intensities varying from a few gauss (G) in the quiet Sun

to kilogauss (kG) in sunspots.

1
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t

tachocline

Figure 1.1: A composite image of the solar structure highlighting the solar
exterior: photosphere, transition region, chromosphere, solar corona and solar
interior: core, radiative zone, tahocline, convective zone (background image
credits to NASA (SDO))

1.1.1 The Solar interior

The Solar interior is separated in four regions according to the dominant pro-

cesses that occur here. The core generates through nuclear fusion 99% of the

Sun’s energy. In the solar core the temperatures reach 14 − 15 million Kelvin

(K) and densities are of the order of 1.6× 106 kg m−3, 10 times the density of

gold.

The radiative zone is characterized by the energy being transported by ra-

diation. Energy produced in the core is carried by photons that bounce from

particle to particle through the radiative zone through ionisation/recombination

processes. A photon will take around 107 years to reach the surface. Density
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1.1

will drop from 2 × 104 kg m−3 (approx. density of gold) to only 0.2 × 104 kg

m−3 (close to water density) from 0.25 to 0.75 solar radia.

Just above the radiative zone is the tachocline region where Sun’s magnetic

field is believed to be generated by a magnetic dynamo. The convection zone

extends from a depth of 2 × 104 km up to the visible surface. Temperatures

in this region decrease from 2 MK to 6000 K. The plasma in this layer is more

opaque due to heavy ions (carbon, nitrogen, calcium, iron, oxygen) holding

onto their electrons. Hence the heat is trapped here making the fluid unstable

and convective. Convection will occur when the temperature gradient becomes

larger than the adiabatic gradient or ratio of specific heats, i.e. the ratio of the

heat capacity at constant pressure to heat capacity at constant volume. This

convective motion will carry heat rapidly to the surface expanding the fluid as

it rises. At the surface these convective cells are visible and called granules and

supergranules with typical diameters of 103 km to 3× 104 km, respectively.

3
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1.1.2 The Solar exterior

At the top of the convection zone lies a dense and thin (500 km) layer of plasma,

the photosphere. The temperature in this region decreases with height from

6000 K at the base of this layer to a minimum of 4300 K near the chromosphere.

The magnetic field is not dispersed uniformly, instead it tends to accumulate

in entities known as flux tubes. The process of emergence of flux tubes is

believed to be caused by massive convective motions and instabilities below

photosphere. In this region one of the most obvious magnetic features is the

sunspot (dark cool region) with strong magnetic field strengths (∼ 3 kG), with

typical diameters of 104 km and an average temperature of 4000 K. These

entities are not homogeneous and exhibit an irregular pattern of bright points

(umbral dots). More details can be found in the reviews of umbral fine structure

by, e.g Bray and Loughhead (1964), Parker (1979), Knobloch and Weiss (1984),

Grossmann-Doerth et al. (1986), Garcia de la Rosa (1987), Weiss et al. (1990,

2002), Lites et al ( 1991), Solanki (2003), Sobotka (2006) and Bharti (2007). In

addition to sunspots the rest of the photosphere is far from being homogeneous,

magnetic field is concentrated in structures ranging from small flux tubes (≈ 100

km, 1 kG) to knots and pores (500-1000 km, 1-2kG).

Above the photosphere, the pressure and density begin to decrease while the

temperature increases to approximate 5 × 104 K. Emission at chromospheric

region temperatures reveals the existence of numerous spatial inhomogeneities

along the solar limb, named spicules. These features were discovered first by

Secchi (1877). Spicules are seen in strong chromospheric lines as columns of gas

protruding out of the solar limb with a typical height of 104 km and width of 103

km (see e.g. Roberts 1945). The base of spicules lies above the photosphere and

so, their roots are apparently seen disconnected from the solar surface (see, e.g.

Lorrain and Koutchmy 1996). These features consist of chromospheric plasma

(relatively cool plasma with typical temperature of ∼ 104 K) which is ejected

upwards towards the corona. The material is accelerated in less than 30 seconds

over the first 103 km to a speed of ∼ 25 km s−1. Afterwards, ejected plasma is

slowed down, reaching its maximum height in about 5 min (see, e.g. Wilhem

2000). From this point on, material either falls back towards the chromosphere

4



1.1

or disappears from the visible part of the spectra. The life time average of

these features is 5-10 min. There are variations in these observed velocities

along spicules which occur almost instantaneously within their volume (see,

e.g. Beckers 1972). Spicules are not necessarily straight or vertical. In most

cases, they are associated with magnetic elements (fibrils and threads) of the

chromospheric network, and tend to cluster in either ’bushes’ (Pikel′ner 1969), or

’rosettes’ (Uchida 1969). They also exhibit very irregular shapes near the edges

of coronal hole (see, e.g. Wilhelm 2000). With regard to the relevant physical

interpretation, it is thought that the spicules are formed by the interaction

of the plasma with the strongly concentrated magnetic fields at the granular

boundaries, however, there is still no satisfactory theoretical models of spicule

formation (see Porter et al. 1987, Ballegooijen & Nilsen 1999, Wilhem 2000,

Takeuchi & Shibata 2001, De Pontieu & Erdélyi, 2006, Zaqarashvili, 2009 for

reviews).

Above chromosphere, in the very thin transition region the density drops to

around 10−10 kg m−3 and the temperature rises very fast to 106K. Long lasting

upflows were observed in the upper transition region (see, e.g. De Pontieu et al.

2009, Tian et al. 2009), which is a direct signature of mass supply to coronal

loops that extend to solar corona.

Finally, the solar corona is the extended region characterized by a myriad of

open and closed magnetic structures with temperatures in excess of 106 K. One

of the most intriguing problems of solar physics is the existence and maintenance

of very high temperature in the corona. It is widely recognized that the heating

of this important solar layer is of magnetic nature, regions of high emissivity in

Extreme Ultraviolet (EUV) are associated with considerable accumulations of

magnetic fields in the lower regions of the atmosphere.

The solar corona exhibits a variety of magnetic features such as loops,

plumes, coronal holes, coronal mass ejections (CMEs) and others. Using high-

resolution satellites (e.g. SOHO, TRACE, Hinode, SDO) solar physicists iden-

tified several manifestations of the coronal magnetic field from small patches

covering the entire Sun to bright and large magnetic field loops in active re-

gions. More active magnetic regions appear during periods of solar maxima

and almost disappear when the cycle goes towards solar minima. Coronal loops

5
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populate both active and quiet regions of the solar surface. They can extend

to heights up to 100 − 200 Mm in length with densities of 10−10 − 10−12 kg

m−3 (Vernazza et al. 1981) and temperatures 107 K. A coronal loop is a mag-

netic flux tube fixed at both ends, threading through the solar body, protruding

into the solar atmosphere. They are ideal structures to observe when trying to

understand the transfer of energy from the solar body through the transition

region, chromosphere and into the solar corona. Coronal loops, and in general

coronal magnetic structures, are the focus of extended theoretical and obser-

vational studies. Despite significant progress in coronal physics over several

decades, a number of fundamental questions, for instance, what are the physi-

cal mechanisms responsible for the coronal heating, the solar wind acceleration,

and solar flares, remain to be answered. All these questions, however, require

detailed knowledge of physical conditions and parameters in the corona, which

cannot yet be measured accurately enough. In particular, the exact value of

the coronal magnetic field remains unknown, because of a number of intrinsic

difficulties with applications of direct methods (e.g. based upon the Zeeman

splitting and gyroresonant emission), as well as indirect (e.g. based upon ex-

trapolation of chromospheric magnetic sources). Also, the coronal transport

coefficients, such as volume and shear viscosity, resistivity, and thermal conduc-

tion, which play a crucial role in coronal physics, are not measured even within

an order of magnitude and are usually obtained from theoretical estimations.

Other obscured parameters are the heating function and filling factors. The

detection of coronal waves provides us with a new tool for the determination of

the unknown parameters of the corona - Magnetohydrodinamics (MHD) seis-

mology of the corona. Oscillations of magnetic structures were and are used as a

basic ingredient in coronal seismology, where observations of wavelength, prop-

agation speed, damping time, amplitude, etc. are corroborated with theoretical

modeling (MHD) to derive different quantities that cannot be directly mea-

sured (e.g. magnetic field, heating functions, stratification parameters, etc.).

Further details of research on oscillations of coronal loops and the impact of

solar environment on them will be discussed in Chapter 3.

The problem of coronal heating comprises a number of sub-questions, some

of them being already answered (where and how is the energy generated, how
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is it transported to the corona, how it is converted into heat and how it is

dissipated). One of the most viable mechanisms to convert energy is the mag-

netic reconnection (see Chapter 6). Through magnetic reconnection process the

magnetic energy stored in magnetic field lines is converted into heat and kinetic

energy, thus providing the high temperature of the corona. Large scale dis-

turbances generated by coronal mass ejections (CMEs) and flares can interact

with coronal loops as seen by many (e.g. Ramsey and Smith 1966, Eto et al.

2002, Jing et al. 2003, Okamoto et al. 2007, Isobe and Tripathi 2007, Pintér

2008), generating oscillations that exhibit periodic movement about the loop’s

symmetry axis (kink modes), see representation of kink oscillations in Figure

1.2.

Global waves are generated by powerful energy releases (flares/CMEs). We

still do not fully understand how exactly these global waves are generated,

however it is widely accepted that these disturbances are similar to the cir-

cular expanding bubble-like shocks after atomic bomb explosions. Thanks to

the available observational facilities, global waves were observed in a range of

wavelengths in different layers of the solar atmosphere. A pressure pulse can

generate seismic waves in the solar photosphere propagating with speeds of 200

- 300 km s−1 (Kosovichev and Zharkova 1998; Donea et al. 2006). Higher up in

the atmosphere, a flare generates very fast super-Alfvénic shock waves known

as Moreton waves (Moreton and Ramsey, 1960), best seen in the wings of Hα

images, propagating with speeds of 1000 - 2000 km s−1 . In the corona, a flare

or CME can generate an Extreme-ultraviolet Imaging Telescope (EIT) wave

(Thompson et al. 1999), first seen by the SOHO/EIT instrument or an X-ray

wave seen in soft X-ray telescope SXT (see, e.g. Narukage et al. 2002). There

is still a vigorous debate how this variety of global waves are connected (if they

are, at all). Co-spatial and co-temporal investigations of various global waves

have been carried out but without the final consent.

Unambiguous evidence for large-scale coronal impulses initiated during the

early stage of a flare and/or CME has been provided by the EIT observations

on-board SOHO and by TRACE/EUV see Figure 1.2. EIT waves propagate in

the quiet Sun with speeds of 250 - 400 km s−1 at an almost constant altitude.

At a later stage in their propagation EIT waves can be considered as a freely
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Figure 1.2: Left: SOHO/EIT 195 image of the Sun on 12 May 1997 at 05:24 0
UT. Right: SOHO/EIT image at 05:07 UT with the pre-event image at 04:34
UT digitally subtracted from it. White (black) regions denote increase (de-
crease) in emission. The dark regions near the active region visible in both im-
ages are darkened regions associated with a coronal mass ejection. The bright
circular ring of emission outside the darkened regions in the right image corre-
sponds to an increase in emission propagating at 250 km s−1.

propagating wavefront which is observed to interact with coronal loops (see, e.g.

Wills-Davey and Thompson 1999). Using TRACE/EUV, Ballai et al. (2005)

have shown that EIT waves (seen in this wavelength) are waves with average

periods of the order of 400 s. Since at this height, the magnetic field in the quiet

Sun can be considered vertical, EIT waves were interpreted as fast MHD waves.

This conclusion is further supported by other observations (see, e.g. Long et al.

2008, Patsourakos et al. 2009).
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1.2 Main features in the solar corona

1.2.1 Coronal loop oscillations

Our knowledge about the dynamics of the solar atmosphere was shaped to a

large extent by the observational results provided by the high-resolution satel-

lites of the last two decades (SOHO, TRACE, Hinode, STEREO and later

SDO).

Energy releases in the solar atmosphere are known to generate large scale

global waves that propagate over long distances (see, e.g. Moreton and Ram-

sey 1960, Uchida 1970, Thompson et al. 1999, Ballai et al. 2005) and can

interact with magnetic structures such as coronal loops, prominence fibrils as

observed by e.g. Eto et al. (2002), Jing et al. (2003), Isobe and Tripathi

(2007), Pintér et al. (2008), etc. The energy stored in these global waves can

be released by dissipative mechanisms or can be transferred to coronal loops

generating periodic movement about the symmetry axis, i.e. kink oscillations

(see e.g. Wills-Davey and Thompson 1999, Ballai et al. 2005, Jess et al. 2008).

Hasan et al. (2003) argued that horizontal motion of magnetic elements in the

Sym
metry

 axis

Coronal loop oscillation

Figure 1.3: Periodic movement about the loop’s symmetry axis, first two modes
i.e. kink modes

photosphere can generate enough energy to heat the magnetized chromosphere.

They found, based on numerical modeling, that granular buffeting generates

kink oscillations and, through mode coupling, longitudinal oscillations. This
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was confirmed by Musielak and Ulmschneider (2003b). From the observational

point-of-view, Volkmer et al. (1995), using high spatial and temporal resolution

spectropolarimetric data, detected short-period longitudinal waves (P ∼ 100 s)

in small magnetic elements in the solar photosphere and estimated the energy

flux they carried to be sufficient for the heating of the bright structures observed

in the chromospheric network. Mart́ınez González et al. (2011) have found, us-

ing SUNRISE/IMaX data, magnetic flux density oscillations in internetwork

magnetic elements, which they interpreted to be due to granular forcing.

Recent CoMP observations (Tomczyk et al. 2007) showed that the predom-

inant motion of coronal loops is the transverse kink oscillation and that this is

the easiest to generate. Based on Hinode data, Ofman and Wang (2008) showed

the first evidence on transverse waves in coronal multi-threaded loops with cool

plasma ejected from chromosphere flowing along the threads. STEREO data

was used to determine the 3-D geometry of the loop (see, e.g. Verwichte et al.

2009) and SDO/AIA was used to prove coupling of the kink mode and cross-

sectional oscillations explained as a consequence for the loop length variation

in the vertically polarized mode (see e.g. Aschwanden and Schrijver 2011).

The first theoretical models used to describe a coronal loop considered a

straight homogeneous magnetic cylinder where the magnetic field lines are con-

sidered frozen in a dense photospheric plasma. Since then, considerable ad-

vances were made in representing a coronal loop (see, e.g. Roberts et al. 1984,

Nakariakov et al. 1999, Nakariakov et al. 2001, Ruderman and Roberts 2002,

Andries et al. 2995,2009, Ballai et al. 2005, 2011, Verth et al. 2007, 2008,

Ruderman et al. 2008, Van Doorsselaere et al. 2008, Morton and Erdélyi 2009,

Ruderman and Erdélyi 2009, Morton and Ruderman 2011). The dispersion

relations for plasma waves under the assumptions of ideal magnetohydrody-

namics (MHD) were derived long before EUV observations (see, e.g. Edwin

and Roberts 1983, Roberts et al. 1984).

The realistic interpretation of many observations is often made difficult by

the poor spatial and temporal resolution of present satellites. Even so, consid-

erable amount of direct and indirect information about dynamical and thermo-

dynamical state of plasma, and the structure of coronal magnetic field, can still

be obtained.
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The waves and oscillations in the solar atmosphere are strongly influenced by

magnetic fields. Waves are generated, in general, by buoyancy forces (gravity,

magnetic field, pressure gradients, etc.) but also due to the convection motion

in the sub-surface region and due to energetic phenomena occurring at different

heights in the solar atmosphere. Depending on interaction with the magnetic

structure we can distinguish between local and global waves. Even though they

may seem separate phenomena, they are very much related in the sense that

often global waves can generate local waves and oscillations.

Given the complex structure of coronal loops it is expected that these mag-

netic entities will support a rich variety of waves and oscillations. Pure magnetic

waves (Alvén waves) are transversal waves which propagate along magnetic field

lines and are very little influenced by non-ideal effects such as ohmic resistivity

and Hall effect. The second class is magnetoacoustic waves and they are the

most studied type of waves: the so-called kink wave which propagates along

a magnetic flux tube so that the symmetry axis of the tube is distorted (see,

e.g. Aschwanden et al. 1999, Nakariakov et al. 1999) and sausage modes (i.e.

oscillations that occur such that the symmetry axis of loops is not dislocated),

observed by Aschwanden et al. (2003a), Taroyan (2008). It is believed that

kink waves and oscillations are the result of the interaction between an exter-

nal driver (a global wave or CME) and the coronal loop (Selwa et al. 2006,

Ogrodowczyk and Murawski 2007, Hindman and Jain 2008, Ballai et al. 2009).

Kink oscillations in coronal loops and their very rapid damping allowed the

estimations of magnetic fields, density scale-heights, sub-resolution structure,

etc. (see, e.g. Nakariakov et al. 1999, Andries et al. 2005; Verth et al. 2008).

A very powerful diagnostic of the coronal field and plasma procedure is

the so-called P1/P2 seismology which has its roots in the realization that in

an inhomogeneous medium the ratio of periods of overtones differs from their

canonical values.

Within the context of coronal physics Andries et al. (2005) showed that

the longitudinal stratification (i.e. along the longitudinal symmetry axis of the

magnetic field) modifies the periods of kink oscillations of coronal loops (kink

waves). These authors showed that the deviation of P1/P2 (where P1 refers to

the period of the fundamental transverse oscillation, while P2 describes the pe-
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riod of the first overtone of the same oscillation) can differ considerably from the

canonical value of 2 (that would be recovered if the loops were homogeneous).

They also showed that the deviation of P1/P2 from 2 is proportional to the

degree of stratification. This problem was also discussed in other studies such

as Dymova and Ruderman (2006), Diaz et al. (2007), McEwan et al. (2008),

Ballai et al. (2011). Recently Ballai et al. (2011) discussed the ambiguity of

the period ratio seismology, as some other effects could result in the observa-

tion of multiple periods and each interpretation results in different value for the

magnetic field and degree of stratification. The period ratio other than 2 was

already observed in coronal loops by, e.g. Verwichte et al. (2004), De Moortel

and Brady (2007), Pintér et al. (2008), Van Doorsselaere et al. (2009).

Jain and Hindman (2012) found that direct sensitivity of its eigenfrequencies

to density is rather weak. They proved that through the waves speed, we can

determine the mode frequencies. Due to the fact that individual coronal loops

with identical speed but different densities are seismically indistinguishable,

coronal seismology is an insufficient tool for differentiating between coronal

loops with the same magnetic field strengths, densities and kink speed but

with different flaring rates. Combined with independent observations of loop

properties e.g. temperature and field strength, MHD seismology can be used

to constrain density. Jain and Hindman (2012) pointed out that from the

measurement of only two frequencies, one deduce more than two broad spatial

averages of the kink speed along the loop (around apex and footpoints).

1.2.2 Alternative mechanisms for loop oscillations

The idea that a coronal loop is twisted and then carries an electric current

gave rise to several alternative mechanisms for the loop oscillations. An induc-

tance, capacitance, resistance (LRC)-circuit model developed by Zaitsev et al.

(1998) explains the loop oscillations in terms of eigen-oscillations of an equiva-

lent electric circuit, where the current is associated with the loop twist. As one

of the physical quantities perturbed by this effect is the current (or the twist),

its periodic pulsations would be observed through the direct modulation of the

gyrosynchrotron emission by the period change of the angle between the line of
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sight (LOS) and the magnetic field in the emitting region. They also showed

that the periodic twist is accompanied by perturbations of density, the oscil-

lations would modulate thermal emission as well. The decay of oscillations is

normally estimated by this model to be very small. Khodachenko et al. (2003)

applied the idea of inductive interaction of electric currents in a group of neigh-

bouring loops to an alternative interpretation of kink oscillations, suggesting

that they are caused by the ponderomotoric interaction of currents in groups of

inductively coupled current-carrying loops. More specifically, the ponderomo-

toric interaction of current-carrying magnetic loops can lead to the oscillatory

change of the loops inclination. The efficiency of coupling, the period of oscil-

lations and the decay time are connected with mutual inductance of different

loops in the active region analysed. It was pointed out that the interaction of

the oscillating loop with neighbouring loops can lead to strong damping of the

oscillations.

1.2.3 Magnetic reconnection

One of the questions still left to answer is coronal heating: how does the temper-

ature increase as you go further up in the solar atmosphere?. As we previously

discussed the coronal loop oscillations can occur due to the fact that EIT waves

or other large scale perturbations could interact with coronal loops. These EIT

waves are generated by coronal mass ejections (CMEs) and/or flares in active

regions of the Sun. It is believed that the dissipation of waves in the solar

corona must contribute to localised heating. In addition the field lines in active

regions in opposite polarity in the presence of resistivity, may reconnect and

release magnetic energy, providing another source of localised heating in the

corona. We still don’t have an answer to the coronal heating problem but mag-

netic reconnection and waves all together might give us a broader perspective,

of what’s really happening up there.

Magnetic reconnection is considered to be at the very core of solar flares,

coronal mass ejection, and interaction of solar winds with the Earth’s magneto-

sphere (see, e.g. Parker, 1979, Kulsrud 1998, Biskamp, 2000, Priest and Forbes,

2000). Magnetic reconnection involves a topology change of a set of field lines,
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which leads to a new equilibrium configuration of lower magnetic energy.

Magnetic reconnection provides an elegant, and so far the only, explanation

for the motion of chromospheric ribbons and flare loops during solar flares. At

the same time, it also accounts for the enormous energy release in solar flares

(see, e.g. Shibata et al 1997). To date, there are extensive numerical studies of

phenomena associated with active regions (such as solar flares, X-ray jets, etc.),

involving magnetic reconnection (see Ugain & Tsuda 1977, Forbes & Priest

1984; Yokoyama & Shibata 1996; Chen et al. 1999, Forbes 2000, Birn et al.

2001, Huba, 2003 Birn and Priest, 2007, Priest and Horning 2009, Baty et al.

2009a,b, Priest and Pontin 2009,).

These models successfully predict most of the observational signatures of

violent flare events found in recent X-ray observations by Hinode. Observed

Doppler shifts indicate bulk motions with velocities comparable to the local

Alfvén speed (see, e.g. Dere et al. 1991, Innes et al. 1997, and later Wilhelm

et al. 1998) suggested that the spatial and temporal evolution of observed line

profiles during solar explosive events is consistent with physical interpretation

involving bi-directional plasma flows. Thus, magnetic reconnection has become

the strongest candidate capable of explaining the observational signatures of

these events.

In an ideal medium plasma elements preserve their magnetic connections,

but the presence of a localised region of length (� Le) (see Figure 1.4), where

nonideal effects are important, can lead to a change of connectivity of plasma

elements -i.e., to magnetic reconnection (see Figure 1.4). The reconnection may

be fast or slow (as we are going to describe in the next few paragraphs), although

in many astrophysical situations fast magnetic reconnection is believed to occur

such as in solar flares where resistive reconnection time-scales are too slow to

explain the observed energy release times.

The main effects of magnetic reconnection are: to convert some of the mag-

netic energy into heat by ohmic dissipation; to accelerate plasma by converting

magnetic energy into bulk kinetic energy; to generate strong electric currents

and electric fields, as well as shock waves and current filamentation, all of which

may accelerate fast particles; to change the global connections of the field lines

and so affect the paths of fast particles and heat, which are directed mainly
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along the magnetic field.

D DD B

CC

Figure 1.4: Breaking and reconnection of magnetic field lines when a localised
diffusion region (shaded) leads to a change of connectivity of plasma elements
(AB to AC).

In the low solar atmosphere, reconnection is generally modeled by resistive

MHD with classical ohmic dissipation. However, in the outer corona, Hall MHD

with a two-fluid approach or a kinetic model are more appropriate (see Birn and

Priest, 2007).

Dungey (1953) was the first to suggest that lines of force can be broken and

rejoined was. In 1958, Sweet presented a model of a current sheet at an X-

type neutral point when two bipolar regions come together. The magnetic field

squeezes out the plasma between them in a process of steady-state reconnection.

Parker (1957) came up with scaling laws for the model and coined the phrase

reconnection of field lines.

The Sweet-Parker model (Sweet 1958, Parker 1957, 1963) yields a reconnec-

tion rate (or inflow plasma speed) of vi = vAi/R
1/2
m , proportional to the inflow

Alfvén speed vAi. The magnetic Reynolds number, Rm = LvAi/η, is based on

the length L of the current sheet and resistivity parameter η. This rate of re-

connection is a small fraction of the Alfvén speed if the Reynolds number is

much greater than 1 and is much too slow for solar flares so that it is referred

to as slow reconnection.

Furthermore, Petschek (1964) realised that slow-mode shock waves also con-

vert magnetic energy into heat and kinetic energy and are naturally generated
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by a tiny diffusion region. His (steady) mechanism (at typically 0.01-0.1 vA)

is indeed rapid enough for a flare. It possesses four standing slow-mode shock

waves extending from a tiny central Sweet-Parker current sheet and is the first

to discuss regimes of fast reconnection.

Petschek′s mechanism was widely accepted as the answer to fast flare en-

ergy release, especially when self-similar solutions for the external region were

discovered (Soward and Priest, 1977). Numerical experiments (Biskamp, 1986)

revealed solutions that are very different from Petschek′s and so, at first, they

seemed to cast doubt on the validity of the Petschek mechanism. However,

Priest and Forbes (1986) realised that the reason for the discrepancy, was the

different boundary conditions being imposed by Biskamp. Priest and Forbes

(1986), also discovered a whole family of Almost-Uniform solutions for fast re-

connection, including the solutions of both Petschek and Biskamp as special

cases. It is now well established that, when the magnetic diffusivity is en-

hanced at the X-point, Petschek′s mechanism and the other Almost-Uniform

reconnection regimes can indeed occur, and that an enhancement of diffusivity

is a common effect in practice. However, what happens when the magnetic dif-

fusivity is spatially uniform is not yet clear. The suspicion from high-resolution

numerical experiments (see, e.g. Baty et al. 2009a,b) is that the case of uni-

form diffusivity is neutrally stable such that fast reconnection is stable when

the diffusion region diffusivity is enhanced and is unstable (to some, as yet

unidentified, instability) when it is reduced.

Fast collisionless reconnection may be assisted by the Hall effect (Shay and

Drake, 1998; Huba, 2003). Numerical studies show that the Hall term in the

generalized Ohm’s law may play a key role in the process of rapid magnetic

reconnection. It was shown by Cowling (1975) that when the strength of the

magnetic field is very large, Ohm’s law must be modified to include Hall cur-

rents. The mechanism of conduction in ionized gases in the presence of strong

magnetic field is different from that in metallic substance. The electric current

in ionized gases is generally carried by electrons, which undergo successive colli-

sions with other charged or neutral particles. In the ionized gases the current is

not proportional to the applied potential except when the field is very weak. In

an ionized gas where the density is low and the magnetic field is very strong, the
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conductivity normal to the magnetic field is reduced due to the free spiraling of

electrons and ions about the magnetic lines of force before suffering collisions

and a current is induced in a direction normal to both electric and magnetic

fields. This phenomenon, well known in the literature, is called the Hall effect.

As long as the Hall effect is taken into consideration, simulations predict

enhanced reconnection rates that appear to be virtually independent of other

model assumptions and the codes employed (Birn et al. 2001, 2005). Recent

numerical studies focus on the dynamics and energetics of Hall MHD reconnec-

tion in various magnetic geometries (see, e.g. Bhattacharjee et al. 2005; Cassak

et al. 2006; Craig & Litvinenko 2008). Analytical models can help in developing

some insight into how fast reconnection occurs in weakly collisional plasmas. Of

particular interest would be the interpretation of space and laboratory observa-

tions that have already revealed distinct features of Hall magnetic reconnection

(Mozer et al. 2002; Ren et al. 2005). Although exact steady solutions for Hall

MHD reconnection are available, they are limited to one-dimensional current

sheets (Dorelli 2003; Craig & Watson 2003, 2005).

Most of the attention is now focussed on 3D reconnnection, which is com-

pletely different from 2D reconnection in ways identified by Priest et al. (2003).

A landmark paper by Schindler et al. (1988) proposed a concept of General

Magnetic Reconnection, in which reconnection can occur either at null points

(locations where magnetic field vanishes) or in the absence of null points when-

ever a parallel electric field, E||, is produced by any localised non-ideal region.

The condition for reconnection to occur is simply that the integral of parallel

electric field, E||, evaluated along a magnetic field line that passes through the

region of local nonidealness (integral different from value of zero): indeed, the

maximum value of this integral gives the rate of reconnection.
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1.3 Outline

The focus of this Thesis is to study the main features observed in the solar

corona namely, how transversal oscillations are affected by temperature of the

environment and differences in the coronal loop, geometrical effects (expansions

of coronal loops and asymmetrical loops), and also to study 2D magnetic re-

connection in a stratified plasma using this Lagrangian code Lare2D. Although

these two physical phenomena seem distinct, in reality they are very much con-

nected. A magnetic reconnection in the solar corona can generate global coronal

waves that can interact with coronal loops, eventually leading to oscillations in

loops.

Chapter 2 introduces a tool, for studying coronal seismology using the frame-

work of Magnetohydrodynamics (MHD).

Chapter 3 aims to investigate the P1/P2 period ratio of transversal loop os-

cillations for the diagnostics of longitudinal structuring of coronal loops. So far,

all the studies considered that the density stratification (related to scale-height)

is identical inside and outside the magnetic structure. However, the scale-height

is directly linked to the temperature through the sound speed. Thus, in chapter

3, the effects of different scale heights are considered and following the derivation

of the governing equations the period ratio of fundamental to the first overtone

is investigated. These are also discussed in the context of relevant observational

measurements.

It is likely that the asymmetric behavior of plasma dynamics is connected

to the deviation of coronal loop from a perfect semi-circular shape. In Chapter

4 we aim to investigate this geometrical effect and present our findings related

to the effect of loop asymmetry on the P1/P2 period ratio.

Studies by Verth et al. (2007), showed that the loop’s cross section area has

also an effect on the period ratio. If density stratification tends to decrease the

period ratio, the modification of the tubes cross section (magnetic field opening

as we approach the apex) will increase the P1/P2 value. Morton and Erdélyi

(2009) and Morton et al. (2010) studied the effect of cooling (plasma tempera-

ture depends on time) on the dynamics of kink oscillations and traveling waves.

These authors found that the cooling of the plasma results in period decrease
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and that energy stored in waves propagating in an unbounded plasma can be

dissipated. Morton et al. (2011) used the same idea to study the properties

of torsional Alfvén waves in coronal loops. Ruderman (2011a,b) examined this

cooling and found that it generates an amplification of kink oscillations that

appears to compete with the damping due to resonant absorption. In Chapter

5 we investigate the effect of the loop expansion through the solar corona on the

period ratio P1/P2 and the the consequences of the inclusion of the length of

the loop as a dynamical parameter on the estimations of the degree of density

stratification.

Chapter 6 presents 2D magnetic reconnection in a stratified atmosphere

using a Lagrangian code Lare2D. Following a model proposed by Roussev et

al. (2002) we study magnetic reconnection in a 2D environment, focusing on

the aspects of how different intial conditions, resitive terms and the inclusion

of Hall term impact on the actual reconnection process.

In Chapter 7 we will summarize our conclusions and suggest new paths along

which the present study can be expanded.
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Chapter 2

Magnetohydrodynamics

In what follows we will present the mathematical equations and the approx-

imations used in this thesis for modelling various physical mechanisms. All

waves of interest can be described using the framework of magnetohydrody-

namics (MHD), which describes the dynamics of magnetized fluids through a

set of highly nonlinear equations combining the fluid equations, the continuity

equations with Maxwell system of equations (interaction between electrically

conducting fluid and magnetic field) where plasma is considered a continuous

medium.

2.1 Derivation of MHD equations

We start by presenting the hydrodynamic equations, continuing with Maxwell’s

equations that describe the change in electric field, E, magnetic field, B, with

current density, J, and electric charge density, e combined with equations of

mass continuity, motion, Ohm’s law and ideal gas law. The combination of

hydrodynamics and electromagnetism has formulated a theory that describes

the motion of plasma permeated by magnetic field. There are two approaches

when deriving the equations of MHD for the solar plasma. First, plasma can be

described by its macroscopic properties, e.g. magnetic field, pressure, density,

temperature, called single fluid approach. The second is using two-fluid model

approach, where ions and electrons as charged particles are treated as two sep-

arate fluids which results into two sets of equations similar to the ones in the
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single fluid approach. However, the present Thesis will assume the plasma to

be electrically neutral with the temperature of different species equal, so the

plasma will be treated as a single fluid, also the relative velocity of electrons

and ions is considered small.

2.1.1 Equation of mass conservation

The stream of water is fatter near the mouth of the faucet, and skinnier lower

down. This observational fact can be understood using conservation of mass.

Since water is being neither created nor destroyed, the mass of the water that

leaves the faucet in one second must be the same as the amount that flows past

a lower point in the same time interval. The water speeds up as it falls, so

the two quantities of water can only be equal if the stream is narrower at the

bottom.

In mathematical terms the equation of mass conservation becomes

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the mass density and u is the velocity. Using Lagrangian time-

derivate we can rewrite equation (2.1) in a equivalent form

Dρ

Dt
= −ρ∇ · u, (2.2)

where
D

Dt
=

∂

∂t
+ u · ∇.

is the material (total) time derivative.

2.1.2 Energy conservation

Suppose that a drop of water falls the faucet, at the beginning it has only

potential energy, however, as it falls, it gains kinetic energy and its velocity

increases. When it hits the sink the drop has only kinetic energy. Through its

motion the initial potential energy is totally converted into kinetic energy, i.e.

the energy of the system is always constant. The drop of water can change its
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form but the amount of total energy does not change.

For an ideal fluid with no pressure perturbation the energy (entropy) equa-

tion has the form (Priest, 1982)

ργ

γ − 1

D

Dt

(
p

ργ

)
= −L, (2.3)

with ρ density and γ the ratio of the specific heats at constant pressure and

volume (also known as the adiabatic index) and L, the energy loss function

due to thermal conduction, radiation, viscosity, etc. If this loss function (heat

losses/gains, radiative loss, and other heating sources) is zero (i.e. energy is

conserved) then equation (2.3) can be written as (adiabatic limit)

Dp

Dt
=
γp

ρ

Dρ

Dt
= −γp∇ · u. (2.4)

An incompressible fluid leads to Dρ/Dt = 0, implying ∇ · u = 0. This approx-

imation eliminates acoustic phenomena from the dynamics.

2.1.3 Ideal gas law

An ideal gas can be characterized by three variables that can fully describe the

thermodynamic state of the gas: pressure (p), volume per unit mass (V = 1/ρ),

and absolute temperature (T ). The relationship between them may be deduced

from kinetic gas theory and it constitute the ideal gas law, expressed as

P =
R

µ
ρT =

kBρT

m
(2.5)

where R is the universal gas constant, µ is the mean atomic weight, kB is the

Boltzmann constant, m is the mean particle mass.

2.1.4 Lorentz forces

The Lorentz force is the force exerted on a particle with charge q moving with

velocity u through an electric field, E, and magnetic field, B. The total electro-

magnetic force, F, acting upon the charged particle is called the Lorentz force
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(after the Dutch physicist Hendrik A. Lorentz) and is given by

F = qE + q(u×B). (2.6)

The first term is contributed by the electric field while the second term is the

magnetic force and has a direction perpendicular to both the velocity and the

magnetic field.

A fluid carrying a current density J in a magnetic field, B, experiences a bulk

Lorentz force per unit volume

F = J×B =
1

µ0

(∇×B)×B (2.7)

where µ0 represents the magnetic permeability of free space. Using the vector

identity

∇
(

1

2
B ·B

)
= B× (∇×B) + (B · ∇)B

we can rearrange equation (2.7) as

F = j×B =
1

µ0

(B · ∇)B−∇
(
B2

2µ0

)
. (2.8)

The first term represents the effect of a tension of magnitude B2/µ0 parallel

to B and appears whenever the magnetic field lines are curved. The second

term is due to the effect of a magnetic pressure of magnitude B2/2µ0 per unit

area. This force will be present when magnetic field, B, varies from position to

position. The interpretation of the first term µ−10 (B · ∇)B is more tricky. Let

us write B = Bŝ where ŝ is the unit vector in the direction of B. Hence we can

write

(B · ∇)B = (Bŝ · ∇)(Bŝ) = B
d

ds
(Bŝ) = B

dB

ds
ŝ+B2dŝ

ds

with s representing the coordinate measured along B. Now |ŝ| = 1 so

0 =
d

ds
(ŝ · ŝ) = 2ŝ · dŝ

ds
.
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Hence dŝ/ds is perpendicular to ŝ, which means we can write

dŝ

ds
=

1

Rc

n,

where n is perpendicular to ŝ and Rc represents the radius of curvature (which

is constant).

We can then write

1

µ
(B · ∇)B =

d

ds

(
B2

2µ0

)
ŝ+

B2

µ0

1

Rc

n.

This is what we interpret as a magnetic tension. There is a net tension force

when the field lines are curved.

2.1.5 Equation of motion

The fundamental law used to determine motion in magnetic fluids is Newton’s

second Law. The equation of motion derives from this law states that

ρ
Du

Dt
= −∇p+

1

µ0

(∇×B)×B + F, (2.9)

where

F = ρg + Fe + Fu.

represents external forces that act on the plasma, ρg is the gravitational force,

Fe and Fu are the electrostatic and viscous forces respectively. The first term

of equation (2.9) is due to pressure gradients and the second one represents the

Lorentz force.

2.1.6 Induction equation

In MHD, the evolution and connection of electromagnetic fields, E and B, are

governed by Maxwell’s equations, were we neglect the displacement current (we

neglect electromagnetic waves of classical electrodynamics).

∂B

∂t
= −∇× E, (2.10)
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∇ ·B = 0, (2.11)

∇×B = µ0J. (2.12)

Taken in conjunction with Ohm’s law which states that the current is propor-

tional to the total electric field, neglecting, in the first instance Hall term, the

current can be written as

J = σ(E + u×B), (2.13)

were the u×B term is due to the current induced by the Lorentz force on the

charge carriers and σ representing the electrical conductivity. A more general

form of this equation could include: the Hall term (j×B/en), (electron) pressure

term and inertial terms. We can rewrite equation (2.10) using ∇×E = −∂B/∂t

with Ohm’s law (2.13) to obtain the induction equation as

∂B

∂t
= ∇× (u×B)−∇× (η∇×B), (2.14)

where η = 1/(µ0σ) is the magnetic diffusivity. Assuming η constant and using

the identity ∇× (∇×B) = ∇(∇ ·B)− (∇ ·∇)B, together with the solenoidal

condition (2.11), we transform the induction equation into

∂B

∂t
= ∇× (u×B) + η∇2B. (2.15)

If V0, L0 are typical velocity and length-scales, the ratio of the first to the second

term on the RHS of equation (2.15) is, in order of magnitude, the magnetic

Reynolds number defined as

Rm =
V0L0

η
. (2.16)

The importance of resistivity (and in general all dissipative coefficients) depend

on the location of physical mechanism under investigation and the mechanism

itself. After all, transport coefficients depend on the density and temperature of

the plasma. While for, e.g. the purpose of effective wave damping, the magnetic

resistivity is far too small, for physical effects requiring the dissipation over short

length scales (phase mixing, reconnection), magnetic resistivity is crucial. For
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example in the solar corona above active region, where T ≈ 106K, we find

Rm ≈ 109, and so the second term on the RHS of equation (2.15) is completely

negligible.

Further neglecting magnetic resistivity (i.e. η = 0) we obtain the ideal

induction equation
∂B

∂t
= ∇× (u×B). (2.17)

In this limit Alfvén frozen flux theorem holds, which states that magnetic field

lines are frozen in the plasma. Plasma motion along the field line does not

affect the magnetic field but transverse motions tend to drag the field lines with

it. Equal lateral movement of field lines may push the plasma. This theorem

breaks down when small length scales are considered.

2.2 Summary of ideal MHD equations and as-

sumptions

The basic equations of MHD used for the work presented in this thesis are

the equations of mass continuity, energy, ideal gas law, momentum equation,

Ampere’s law in the MHD limit and the induction equation (see equations

(2.18-2.24). In order to employ the equations of hydrodynamics we must treat

plasma as a continuum which requires typical length scales to be much greater

that the internal plasma scales (gyro radii, electron inertia length, skin depth).

Typical time scales are much larger than kinetic time scales. Plasma motion

and characteristic speeds are much smaller than the speed of light, c, leading

to relativistic effects being ignored. For the work in Chapter 3, Hall effects

were ignored using a simplified Ohm’s law (wave frequency much lower than

ion cyclotron frequency).

We consider a fully neutral plasma, assuming that electron and ion number

density are identical. Magnetic permeability, µ0 and diffusivity, η, are taken as

constant functions.

In the light of the above assumptions, we are going to deal with slow pro-

cesses on a very large scale, described within the framework of ideal MHD theory

that gives a good qualitative description of dynamics of the solar processes (see,
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e.g. Priest 1982).
Dρ

Dt
= −ρ∇ · u, (2.18)

Dp

Dt
=
γp

ρ

Dρ

Dt
= −γp∇ · u, (2.19)

p =
R

µ0

ρT =
kBρT

m
, (2.20)

ρ
Du

Dt
= −∇p+

1

µ0

(∇×B)×B + F, (2.21)

j =
∇×B

µ0

, (2.22)

∂B

∂t
= ∇× (u×B), (2.23)

∇ ·B = 0. (2.24)

In the following chapters we will also use one important parameter, plasma beta,

denoted by (β), that represents the gas pressure of the plasma, p, divided by

the magnetic pressure, B2/2µ0, i.e.

β =
2µ0p

B2
(2.25)

In the solar corona, the magnetic pressure B2/(2µ0) greatly dominates the gas

pressure, so we can consider the plasma to be ’cold’. Typical plasma β in the

solar corona with magnetic field of B ≈ 10G, electron number ne ≈ 1×109cm−3

and temperature T = 106K, is of the order of β ≈ 0.07.

To a good approximation the magnetic field in the solar corona is force-free

since the plasma beta is much smaller than unity. This is not the case in the

convection zone and photosphere where the plasma beta is usually much larger

than unity (β � 1) and gas pressure dominates over magnetic pressure. When

β � 1, magnetic forces dominate over pressure gradients, while in the β � 1

case the dynamics is driven by the force created by pressure gradient (Gary et.

al 2001).
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2.3 MHD wave modes in structured atmosphere

2.3.1 Ideal MHD solution

Using the ideal MHD equations described in the previous section we derive

the governing equations of fundamental MHD waves modes propagating in a

cylindrical tube of plasma (approximation made to represent a coronal loop). In

the first instance we neglect gravity and viscous effects, i.e. in equation (2.21)

we consider F = 0. The equilibrium magnetic field, B0, density, ρ0, pressure,

p0, are assumed uniform, with the magnetic field along z-axis (B0 = B0ẑ), ẑ

representing the unit vector in the z-direction.

We examine the wave-like properties of the above mentioned atmosphere

by using linear perturbation theory. Waves and oscillations can arise due to a

perturbation of the equilibrium. Physical quantities are written as a sum of the

equilibrium and their Eulerian perturbation i.e.

B = B0 + B1(r, t),

p = p0 + p1(r, t),

ρ = ρ0 + ρ1(r, t),

u = 0 + u1(r, t).

where r represents the coordinate. In a cartesian reference system, r = f(x, y, z).

Since we assume that amplitudes of the waves are small, we can neglect the

products of perturbed quantities in the MHD equations.

By substituting these forms into the equations for mass continuity, induction,

energy and momentum, using also the solenoidal condition, yields the following

linearised equations
∂ρ1
∂t

+ ρ0∇ · u1 = 0, (2.26)

∂B1

∂t
= ∇× (u1 ×B0), (2.27)

∂p1
∂t

= c2s
∂ρ1
∂t

, (2.28)
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ρ0
∂u1

∂t
= −∇p1 +

1

µ
(∇×B1)×B0, (2.29)

with cs =
√
γp0/ρ0 representing the sound speed.

Differentiating (2.29) with respect to time and eliminating perturbed quan-

tities of magnetic field and pressure using equations (2.26), (2.27) and (2.28),

we obtain a single equation for the velocity perturbation u1 = (ux, uy, uz), given

by (see, e.g. Lighthill 1960, Roberts 1981)

∂4∆

∂t4
− (c2s + v2A)

∂2

∂t2
∇2∆ + c2sv

2
A

∂2

∂z2
∇2∆ = 0. (2.30)

where v2A = B2
0/(µ0ρ0) is the Alfvén speed (see, e.g. Alfvén 1942), ∆ = ∇ · u1,

and ∇2 is the Laplacian operator in Cartesian coordinates.

In the last sub-section, the MHD theory of a homogeneous plasma and mag-

netic field was discussed. However, in the solar corona the plasma fine structure

is highly inhomogeneous. The plasma is confined to large structures such as

loops, prominences and streamers which can be grouped into open and closed

magnetic structures. The inhomogeneity and structuring arise from tempera-

ture gradients, density variations, a complicated magnetic field, gravitational

forces and other effects. It is necessary to consider how these effects alter wave

propagation. Further we are going to concentrate on particular type of magnetic

structuring and ignoring the other effects.

2.3.2 Waves in a magnetic cylinder

The magnetic structuring takes the form of a uniform cylindrical tube of plasma

with internal magnetic field Bi, density ρi, pressure pi confined to a region of

radius a embedded in an external magnetic field Be, density ρe and pressure

pe (see Figure 2.1). Due to the requirement that stresses (Maxwell-Reynolds)

must be continuous across the boundary, the total pressure, PT , (kinetic and

magnetic) is conserved. In order to relate the two media (internal/external)

across the discontinuity, the solution of MHD equations need to satisfy the

continuity conditions for the velocity normal to the magnetic surface (i.e. [ur] =
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Figure 2.1: Equilibrium configuration for the magnetic cylinder with polar co-
ordinates.

0) and total pressure ([PT ] = 0) across the discontinuity, i.e.

uri = ure,

and

pi +
B2
i

2µ
= pe +

B2
e

2µ
, (2.31)

at the boundary r = a. (Note the brackets [ ] denotes the jump of quantity at

r = a).

In the absence of a magnetic field, i.e. setting vA = 0, equation (2.30)

becomes a one-dimensional wave equation describing purely acoustic waves

∂2uz
∂t2

= c2s
∂2uz
∂z2

. (2.32)

Equation (2.30) describes the propagation of fundamental MHD modes. De-
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coupling Alfvén waves from equation (2.30) we obtain(
∂2

∂t2
− v2A

∂2

∂z2

)
(ẑ · ∇ × u1) = 0. (2.33)

Equation (2.30), has been solved in various contexts (see, e.g. Spruit, 1982 and

Edwin & Roberts, 1983) and yields

ρi(k
2v2Ai − ω2)me

K ′n(mea)

Kn(mea)
= ρe(k

2v2Ae − ω2)mi
I ′n(mia)

In(mia)
, (2.34)

where equation (2.34) constitutes the dispersion relation for surface waves (m2
i >

0), with (k,n,ω) representing the longitudinal wave number, the azimuthal wave

number, and frequency, respectively. If mi ≤ 0, (so that m2
i = −n2

i ≤ 0) the

dispersion relation transforms into

ρi(k
2v2Ai − ω2)me

K ′n(mea)

Kn(mea)
= ρe(k

2v2Ae − ω2)ni
J ′n(nia)

Jn(nia)
, (2.35)

describing the propagation of body waves.

Figure 2.2: Body and surface waves in a flux tube. The body waves occupy the
whole of the tube, whereas surface waves are largely confined to the region near
the boundary of the tube.
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Body modes are of oscillatory nature inside the tube and evanescent outside,

while surface modes are evanescent both inside and outside of the tube. Here

Jn(x) is the Bessel function, In(x) is the modified Bessel function of the first

kind, with Kn(x) the modified Bessel function of the second kind. I ′n represent

the derivative of Bessel function with respect to its argument i.e. I ′n(x) =

(d/dx)In(x). The quantities mi and me are defined as (Roberts, 1981a)

m2
i =

(k2c2i − ω2)(k2v2Ai − ω2)

(c2i + v2Ai)(k
2c2T − ω2)

; m2
e =

(k2c2e − ω2)(k2v2Ae − ω2)

(c2e + v2Ae)(k
2c2Te − ω2)

,

where cT = civA/(c
2
i+v

2
Ai)

1/2 is the internal tube speed, vAi is the internal Alfvén

speed, ci is the internal sound speed for r < a and cTe = cevAe/(c
2
e + v2Ae)

1/2 the

external tube speed, vAe is the Alfvén speed outside the tube, ce is the external

sound speed for r > a.

The azimuthal wave number, n, describes the shape of the tube. The n =

0 case refers to symmetrical pulsations where the central axis of the tube is

undisturbed (sausage modes), n = 1 corresponds to anti-symmetric pulsation

such that the tube supports lateral snake-like displacements from the axis of

the tube (kink-modes), see Figure 2.3. For n ≥ 2 we have the fluting modes

which ripple the tube’s boundary.

Figure 2.3: Asymmetric (n = 1) and symmetric (n = 0) mode.

Figure 2.4 presents the solutions for the dispersion relations (2.35) and (2.34)

in the solar corona with speeds ordered as vAe > vA > cs > cT > ce > cTe.
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Figure 2.4: Solutions to Equations (2.35 and (2.34) under coronal conditions
(adopted from Edwin and Roberts 1983)

Notice that under coronal conditions there are no surface waves. We can observe

that the phase speeds of these modes split into fast and slow waves.

Fast modes are strongly dispersive and will exist if vAe > vAi. In the long

wavelength limit (ka� 1) a cut-off frequency will trap the sausage modes with

the kink and flute modes tending to ck, the kink speed (see Edwin and Roberts

1983).

As Figure 2.4 shows, the solar corona is able to support a large number of

different wave types. In the next section we are going to discuss about these

fast and slow waves.

2.3.3 Fast waves

The sausage mode does not perturb the wave guide axis (in our case the cylin-

der axis), so no spatial displacement of the axis occurs. The cross section of the

cylinder does experience an expansion and contraction (see Figure 2.3 symmet-
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ric) due to the sausage mode. This leads to a number of different observational

signatures.

If the loop cross section is perpendicular or almost perpendicular to the line of

sight a periodic variation in the cross sectional area will be seen.

If the loop cross section is not perpendicular to the line of sight, then a periodic

broadening of the line profile due to Doppler shifts can occur.

Periodic variation in the magnetic field leads to periodic patterns in syn-

chrotron emission and can be detected in, e.g. radio waves or x-rays (Aschwan-

den, 1987).

The fast sausage mode has the cut-off which is dependent upon the radius,

length and density of the magnetic cylinder (see, e.g. Nakariakov et al. 2003).

Below this cut-off value, the sausage oscillations are classed as leaky. From

equation (2.35) when n = 0 the condition for the cut-off of the sausage modes

is given by

kca = j0

[
(c2s + v2A)(v2Ae − c2T )

(v2Ae − v2A)(v2Ae − c2s)

]1/2
(2.36)

with kc representing the cut-off wavenumber and j0 ≈ 2.40 is the first zero of

the Bessel Function of the first kind. If ρi � ρe then equation (2.36) reduces to

kca ≈ j0
vA
vAe

. (2.37)

with period of the sausage mode in the corona as

Psm <
2π

kcvAe
≈ 2πa

j0vA
. (2.38)

The period of the global sausage mode (also known as standing mode) when

k → kc is given by P = 2L/vAe, where L is the loop length. Substituting this

into equation (2.38) we obtain the final condition for the existence of sausage

modes
L

2a
<

πvAe
2j0vA

≈ 0.65

√
ρi
ρe
. (2.39)

The above equation shows that most likely candidates to observe fast sausage

wave in the solar atmosphere will be magnetic structures with large radii, large

density contrast with the exterior plasma and structures with short lengths.
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The fast kink mode in the long wavelength is highly incompressible (unlike

the sausage mode) and displaces the magnetic cylinder axis (wave guide). A con-

sequence of this is that fast kink oscillations are best identified by instruments

that can observe spatial displacement of the loop axis. Due to incompressibility

of this mode no variation in the intensity of the loop emission can be detected.

It will cause modulation in the intensity emission if there is a component of the

loop displacement in the line of sight of the observing instrument (Cooper et

al. 2003). Also signatures in the Doppler shift can be detected if the motion of

the magnetic structure is in the line of sight.

2.3.4 Slow waves

These slow waves waves are polarised parallel to the magnetic field and are

acoustic in nature (they are still modified by the magnetic field). Slow waves

are difficult to detected with current imagers available due to the longitudinal

nature (the modulation of structure cross section due to the sausage mode and

displacement of the loop axis due to the kink mode will be small wehn cs � vA).

The phase speed for the mode also needs to be close to the local sound speed.

It is possible to distinguish observationally between the slow propagating and

standing modes. The propagating mode will cause the intensity variations to

move along the supporting magnetic structure with a velocity close to the sound

speed of the local plasma. On the other hand, for the standing mode the density

and velocity perturbations should be out of phase by a quarter of the wave

period (see, e.g. Sakurai et al. 2002). Owen et al. (2009) found that the value

of the phase shift was also dependent on local plasma properties and thermal

conduction.

2.3.5 Transverse oscillations in a magnetic cylinder

Transverse waves transfer energy in a direction perpendicular to the direction of

the disturbance in the medium. A vibrating string is an example of a transverse

wave. Although all points on the string itself are constrained to move only up

and down, wave pulses move perpendicularly along the length of the string.

The wave speed is the speed with which a pulse moves along the string. When

35



Chapter 2: Magnetohydrodynamics 2.3

the motion of the masses is in a direction perpendicular to the direction of the

springs in the equilibrium state, the oscillations are said to be transverse.

Let us derive the dispersion relation of these waves for a kink mode in a

slender tube (a different method can be found in Ryutov and Ryutova 1976).

By slender tube we refer here to a thin flux tube. We take the total pressure

PT = P for simplicity.

In the following derivation we choose to work with the plasma displacement

perturbation ξ = (ξr, ξφ, ξz), instead of the velocity u1 = (ur, uφ, uz), since

it simplifies the algebra involved (see, e.g. Goossens et al. 1992). First we

introduce the Lagrangian displacement ξ0 + ξ, where ξ0 is the Lagrangian dis-

placement in the unperturbed state as in (Ruderman 2010). The quantity ξ

represents the perturbation of the Lagrangian displacement. In the initial po-

sition the Lagrangian description is used to label a plasma element. Following

Goossens et al. (1992) the plasma element is labeled by the position where it

would be if the flow had not been perturbed (quasi-Lagrangian). In this de-

scription ξ is called the plasma displacement. An invariant representation of

the relation between ξ and u1 is

u1 =
∂ξ

∂t
+∇× (ξ × u0)− ξ∇ · u0 + u0∇× ξ. (2.40)

If the equilibrium flow is incompressible, the third term in the right-hand side

of equation (2.40) vanishes. The components of the Eulerian perturbation of

velocity are then related to the components of Lagrangian displacement as

ur =
∂ξr
∂t

(2.41)

uφ =
∂ξφ
∂t
− ξrr

d

dr

(uz
r

)
(2.42)

uz =
∂ξz
∂t
− ξr

duz
dr

(2.43)
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Equations (2.26)-(2.29), then can be reduced to

∂4P

∂t4
− (c2s + v2A)∇2∂

2P

∂t2
+ c2sv

2
A∇2∂

2P

∂z2
= 0, (2.44)

∂2ξr
∂t2
− v2A

∂2ξr
∂z2

= − 1

ρ0

∂P

∂r
, (2.45)

∂2ξφ
∂t2
− v2A

∂2ξφ
∂z2

= − 1

rρ0

∂P

∂φ
, (2.46)

∂2ξz
∂t2
− c2T

∂2ξz
∂z2

= − c2T
ρv2A

∂P

∂z
, (2.47)

br = B0
∂ξr
∂z

, bφ = B0
∂ξφ
∂z

, bz = −B0

r

(
∂(rξr)

∂r
+
∂ξφ
∂φ

)
, (2.48)

ρ = −ρ0
(
∂(rξr)

∂r
+

1

r

∂ξφ
∂φ

+
∂ξz
∂z

)
, p = c2sρ, (2.49)

with ∇2 representing the Laplacian operator in cylindrical coordinates

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂φ2
+

∂2

∂z2
. (2.50)

Taking variables proportional to exp(i(nφ + kz − ωt)), equations (2.44-2.49)

transform into
d2P

dr2
+

1

r

dP

dr
−
(
m2 +

n2

r2

)
P = 0, (2.51)

(ω2 − v2Ak2)ξr =
1

ρ0

dP

dr
, (2.52)

(ω2 − v2Ak2)ξφ =
inP

rρ0
, (2.53)

(ω2 − v2Ak2)ξz =
ic2TkP

ρ0v2A
(2.54)

with

m2 =
(c2sk

2 − ω2)(v2Ak
2 − ω2)

(c2s + v2A)(c2Tk
2 − ω2)

(2.55)

We work in cold plasma approximation with plasma pressure much smaller

than the magnetic pressure, i.e. Alfvén speed is much larger than the sound

37



Chapter 2: Magnetohydrodynamics 2.3

speed. For n = 1 mode, and for cs = cT = 0 and equation (2.55) reduces to

m2 = k2 − ω2

v2A
. (2.56)

Assuming that the loop length, L, is much larger than the size of the system in

the transverse direction, we can introduce the parameter ε = a/L � 1, where

a represents the width of the loop. The other components of the wave-number

(k, ω) are proportional to (1/λ, λ), which leads to ka ∼ a/λ. If this is true,

then ka is of order of ε which leads to ω(a/vA) ∼ ε. The quantity a/vA is the

Alfvénic time in the transverse direction.

For the system configuration as provided in the early Figure 2.1 we solve the

problem in the internal and external regions and then match the solutions

asymptotically together in a narrow intermediate region where both expan-

sions are valid.

In the outer region we take the pressure to be

Pe = AeK1(meεr), (2.57)

with

m2
e =

k2

ε2
− ω2

ε2v2Ae
(2.58)

SincemeR ∼ 1, we can expand the modified Bessel functionK1(z) in (Abramowitz

and Stegun 1964)

K1(z) =
1

z
+ ln

(z
2

)
I1(z)− 1

4

∞∑
k=0

[ψ(k + 1) + ψ(k + 2)]
(1/4)kz2k

k!(1 + k)!
, (2.59)

where the expansion form of I1(z) is given by

I1(z) =
1

2
z
∞∑
k=0

(1/4)kz2k

k!Γ(k + 2)
, (2.60)

with Γ(z) =
∫∞
0
tz−1e−tdt and ψ(z) representing the Digamma function defined
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as

ψ(z) =
d

dz
lnΓ(z) =

Γ′(z)

Γ(z)
.

With z = meεr, since r ∼ a and ε is small, we can neglect terms of the order of

ε2 or higher, i.e. neglect terms O(z2), K1 therefore becomes

K1(z) =
1

z
+

1

2
z ln

(z
2

)
− 1

4
[ψ(1) + ψ(2)]z, (2.61)

where ψ(1) + ψ(2) = 0.0386.

The pressure in the outer region for r ∼ R, to order ε is

Pe = Âe

[
1

mer
+

1

2
meε

2 ln(ε)r +
1

2
meε

2r ln(mer/2)− ψmeε
2r

]
. (2.62)

where Âe = Ae

ε
and ψ = 1/4[ψ(1) + ψ(2)]. Next we solve the problem in the

 I

Figure 2.5: A graph showing the three regions, the core, intermediate and outer
regions.

intermediate region, neglecting terms in O(ε2ln(ε)) or greater. Using equation

(2.51) we obtain
d2P

dr2
+

1

r

dP

dr
− P

r2
= 0 (2.63)
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with the solution

P = Ar +
B

r
(2.64)

where A and B are constants.

Matching the inner and outer solution we find that A = 0 so the solution of the

intermediate pressure, PI , is given by

PI =
B

r
. (2.65)

We now turn our attention to internal pressure, Pi. Inside the loop the 1/r

term is neglected to avoid singularities, hence we can write

Pi = Air (2.66)

In order to find the frequency, ω, at the tube boundary we use the previously

discussed jump conditions for pressure and plasma displacement ξ = (ξr, ξφ, ξz)

i.e.

[P ] = 0, [ξr] = 0, (2.67)

where the jump condition can be expressed generally as

[f ] = lim
ε←+0

f(a+ ε)− f(a− ε). (2.68)

From equation (2.52), we obtain that

ξr =
1

ρ(ω2 − v2Ak2)
dP

dr
. (2.69)

Using the jump condition for the total pressure at r = R, yields

BI

R
= RAi. (2.70)

Imposing the continuity of the radial displacement for the pressure term using
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jump conditions at the tube boundary we derive

− BI

R2ρe(ω2 − v2Aek2)
=

Ai
ρi(ω2 − v2Aik2)

(2.71)

The system of equation has a non-trivial solution only when its denominator

is zero. Hence we derive the dispersion relation,

ω = kck, (2.72)

with ck the kink speed given by

c2k =
ρev

2
Ae + ρiv

2
Ai

ρe + ρi
. (2.73)

This speed represents the phase speed of a fast kink mode in a slender tube

of cylindrical geometry, result first obtained by Ryutov and Ryutova (1976),

valid only in the lowest order approximations in ε. The kink speed can also be

interpreted as a density weighted Alfvén speed. This expression also tells us

that the kink speed is situated between the internal and external Alfvén speed.

2.4 Magnetic reconnection

In what follows we will present the mathematical formalism used in magnetic

reconnection theory, emphasizing the approximations usually employed in the

analysis of the magnetic reconnection. MHD equations are represented by equa-

tions (2.18)-(2.24), which are now extended so that the induction equation in-

cludes a resistive term and for the energy conservation we use the equation for

internal energy, which includes non-ideal terms.

The requirement for induction equation is

∂B

∂t
= ∇× (v×B) + η∇2B, (2.74)

∇ ·B = 0, (2.75)
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while internal energy conservation requires

ρ
de

dt
+ p∇ · v = ∇ · (K · ∇T) + (ηe · j) · j +Qv −Qr. (2.76)

In the above equations, η is the electrical resistivity. In equation (2.76) e is the

internal energy per unit mass, K is the thermal conductivity tensor, ηe is the

electrical resistivity tensor, Qv is the heating by viscous dissipation and Qr is

the radiative energy loss.

There are several different ways one can classify magnetic reconnection, the

primary way being the classification in terms of its rate, while other aspects,

such as the collisional or collisionless character of the plasma, can be viewed in

terms of their effect on the reconnection rate. There are also other subtle issues

to be considered here as to: how do the different terms in the energy equation

affect reconnection, what are the properties of turbulent or impulsive bursty

reconnection and how does reconnection occur in a collisionless plasma?

During the process of reconnection, pairs of magnetic field lines are brought

in towards the X-point, they then lie along the separatrices (curved surfaces in

space that divide different bundles of flux) and are broken and reconnected. A

schematic picture of reconnecting magnetic field lines is given in Figure 2.6.

2.4.1 Sweet-Parker approximation

The Sweet-Parker model consists of a simple diffusion region of length L and

width 2l, lying between oppositely directed magnetic fields (see Figure 2.6), for

which an order-of-magnitude analysis may be easily conducted. For a steady

state, the plasma must carry the field lines inward at the same speed as they

are trying to diffuse outward, so that

vi =
η

l
, (2.77)

where vi represents the internal flow. Since the electric field is uniform for a

steady state, its value may be found by evaluating the expression E+v×B = j/σ
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where Ampère′s Law states that

j = ∇×B/µ0. (2.78)

The conservation of mass implies that the rate (4ρLvi) at which mass is entering

the sheet from both sides must equal the rate (4ρlv0) at which it is leaving

through both ends, so that

Lvi = lvA, (2.79)

where v0 = vA is the outflow speed. The half width (l) may now be eliminated

between our two basic Sweet-Parker equations, (2.77) and (2.79), to give the

square of the inflow speed as :

v2i =
ηvA
L
. (2.80)

In dimensionless variable equation (2.80) may be rewritten as

Mi =
(vA/vAi)

1/2

(Rmi)1/2
, (2.81)

where vAi is the Alfvén speed at the inflow and

Mi =
vi
vAi

, (2.82)

is the inflow Alfvén Mach number (or dimensionless reconnection rate) and

Rmi =
LvAi
η

, (2.83)

is the magnetic Reynolds number based on the inflow Alfvén speed. Once vA

and vi are known for a given L, the sheet half width can be obtained using

l = L
vi
vA
, (2.84)
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and the outflow magnetic field strength (Ba) is determined from flux conserva-

tion

viBi = vABa, (2.85)

as

Ba = Bi
vi
vA
. (2.86)

From equation (2.78) the order-of-magnitude electric current is j ≈ Bi/(µ0l)

and so the Lorentz force along the sheet is (j × B)x ≈ jBa=BiBa/(µ0l). This

force accelerates the plasma from rest at the neutral point to vA over a distance

L and so, by equating the magnitude of the inertial term ρ(v ·∇)vx to the above

Lorentz force and neglecting the plasma pressure gradient, we have

ρ
v2A
L
≈ BiBa

µl
. (2.87)

However, from the condition ∇ ·B = 0 we obtain

Ba

l
≈ Bi

L
, (2.88)

and so the right-hand side of equation (2.87) may be rewritten as B2
i /(µL) and

we have

vA =
Bi

(µρ)1/2
≡ vAi. (2.89)

Not surprisingly, we have found that the magnetic forces accelerate the plasma

to the Alvén speed.

The fields therefore reconnect for this basic model at a speed given by equa-

tion (2.81) as

vi =
vAi

R
1/2
mi

. (2.90)

in terms of the (inflow) Alfvén speed (vAi) and magnetic Reynolds number

(Rmi = LvAi/η). The plasma is ejected from the sheet of half width

l =
L

R
1/2
mi

, (2.91)
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at speed vA = vAi and with a magnetic field strength

Ba =
Bi

R
1/2
mi

. (2.92)

Since Rmi � 1, we therefore have vi � vAi, Ba � Bi and l� L, the reconnec-

tion rate is very small, the fields reconnect at 10−3 to 10−6 of the Alfvén speed

- much too slow for a solar or stellar flare. One way to improve this situation

is to take into account other mechanisms in order to have a more realistic re-

connection rate (see Petschesk′s model) and also take into account the effect of

Hall term which may act towards accelerating the process.

Figure 2.6: A simple diffusion region of length L and width 2l, lying between
oppositely directed magnetic fields in which a Sweet-Parker type reconnection
takes place.

For a steady-state two-dimensional configuration with a zero-gradient (∂/∂x =

∂/∂y = 0) with flow and field components (vx, vy) and (Bx, By) depending on x
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and y, the electric field (E0) has only a z-component.

It can be calculated how reconnection can be expressed in terms of the

plasma flow at any point in the plane as

E0 = vyBx − vxBy +
j

σ
,

where E0 is the uniform electric field and σ is the electrical conductivity.

The following three characteristic speeds are therefore important in the

steady two-dimensional reconnection: the external flow speed, ve, at a fixed

global distance from the neutral point; the Alfvén speed, vAe = Be/(µρ)1/2,

in terms of the corresponding magnetic field Be; and the global magnetic dif-

fusion speed (vde = η/Le). Using these three characteristic speeds we may

construct two independent dimensionless parameters which characterize steady,

two-dimensional magnetic reconnection, namely the external Alfvén Mach num-

ber

Me =
ve
vAe

, (2.93)

and the global magnetic Reynolds number,

Rme = vAe/vde. (2.94)

based on the Alfvén speed.

Now for a simple X-line (see Figure 2.6) in which the current density is very

small outside the diffusion region, the reconnection rate can be expressed in

terms of the velocity (ve) of the plasma flowing towards the neutral line as

E0 = veBe = MevAeBe.

at the distance Le from the X-point, where vy = ve, Bx = Be, vx = 0, j=0, and

vAe and Be are regarded as fixed. Thus, for a steady-state system, the Alfvén

Mach number (Me) at the boundary of the system is a dimensionless measure

of the rate of reconnection.

In a steady-state system the reconnection is super-slow, slow, or fast depend-

ing on the magnitude of the reconnection rate (Me) relative to the magnetic
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Reynolds number (Rme). The magnetic Reynolds number is the key parameter,

because it measures the ability of magnetic field lines to diffuse through the

plasma.
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Chapter 3

Environment effect on the P1/P2

kink oscillations period ratio

The aim of this Chapter is to investigate, using a semi-analytical approach,

the effect of the surrounding environment on the period ratio P1/P2 and the

consequences of including a distinct environment on estimations of the density

stratification. This work has also been published in A&A by Orza et al. (2012).
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3.1 Introduction

The P1/P2 period ratio of transversal loop oscillations is currently used for the

diagnostics of longitudinal structuring of coronal loops as its deviation from 2

is intrinsically connected to the density scale-height along coronal loops and/or

the sub-resolution structure of the magnetic field. The same technique can be

applied not only to coronal structures, but also to other oscillating magnetic

structures. The oscillations in magnetic structures are described by differential

equations whose coefficients depend on the longitudinal structure of the plasma.

Using the method developed by McEwan et al. (2008), we investigate how the

temperature of the environment compared to the temperature of the magnetic

structure influences the P1/P2 ratio for coronal and prominence conditions.

Reviews by Patsourakos & Vial (2002), Labrosse et al. (2010), and Mackay

et al. (2010) provide a detailed information about the physics of solar promi-

nences. Although prominences are located in the corona, they possess tempera-

tures a hundred times lower and densities a hundred or a thousand times larger

than typical coronal values. The fact that their physical conditions are akin to

those in the chromosphere suggests one possible scenario for prominence forma-

tion, in which prominences are made of chromospheric material which has been

lifted up into the corona. Although the processes that lead to prominence for-

mation are still under investigation, another proposed scenario to explain how

prominences acquire their mass is condensation and cooling of plasma from the

surrounding corona. In eclipse or coronagraph pictures, prominences appear as

bright (in emission) structures at the limb, but in Hα-images of the disc they

show up as dark (in absorption) ribbons, which are called filaments. One must

bear in mind that both structures, prominences and filaments, are the same

phenomenon observed from two different points of view, the two names remain-

ing because of historical reasons. In this work, we indistinctly use both names

to refer to such magnetic structures. The possible changes of P1/P2 are trans-

lated into quantities that are used in the process of remote plasma diagnostics

in the solar atmosphere.

We will restrict our attention only to the effect of density stratification (see

Figure 3.1). All previous studies (see e.g. Andries et al. 2005 McEwan et
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Figure 3.1: Temperature difference between inside and outside of a coronal loop,
image from Hinode SDO (upper image). Density stratification for our coronal
loop of length 2L with 0 representing the apex and L the footpoint of the loop.

al. 2006, Van Doorsselaere et al. 2007, Verth et al. 2007, Ballai et al. 2011),

considered that the density stratification (indirectly the scale-height) is identical

inside and outside the magnetic structure. However, the scale-height is directly

linked to the temperature (via the sound speed) and an equal scale-height would

mean an equal temperature, clearly not applicable for, e.g. coronal loops and/or

prominence fibrils. EUV observations made by the recent high-resolution space

satellites (SOHO, TRACE, STEREO, Hinode, SDO) showed that, after all,

coronal loops are enhancements of plasma and the density of a typical loop

can be as much as 10 times larger than the density of its environment (see e.g.

Warren et al. 2002; Winebarger et al. 2003; Winebarger and Warren 2005;

Ugarte-Urra et al. 2006, 2009; Mulu-Moore et al. 2011; Viall & Klimchuk

2011). The heating of these coronal structures - according to accepted theories

(see, e.g. Klimchuk 2006, Erdélyi and Ballai 2007 and references therein)-

occurs at the footpoints, while thermal conduction, flows, waves, instabilities

and turbulences will help the heat to propagate along the full length of the loop.

It is also obvious (as seen in X-ray by, e.g. Hinode/XRT) that the temperature

of the loop exceeds the temperature of the environment. The typical length of

a coronal loop is 20-200 Mm (see e.g. Reale 2002a, 2003), which means that
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the density inside the loop (seen in EUV) can vary by an order of magnitude,

leading to the necessity of studying the effect of density stratification on the

oscillations of coronal loops.

As pointed out for the first time by Dymova and Ruderman (2005, 2006),

the propagation of kink waves in a straight tube in the thin tube approximation

can be described by
∂2vr
∂t2
− c2k(z)

∂2vr
∂z2

= 0, (3.1)

where vr denotes the radial (transversal) component of the velocity vector and

the quantity ck is the propagation speed of kink waves defined by equation

(2.73)

For identical magnetic field inside and outside the tube, the fact that ρi > ρe

means that vAe > vAi since vA = B/(
√
µ0ρ) with µ0 representing the magnetic

permeability. If we lift the thin flux tube restriction, then equation (3.1) must

be complemented by terms that would describe dispersion. As we specified, our

approach is using the cold plasma approximation in which the dynamics of kink

oscillations in a coronal loop is described by equation (3.1).

3.2 Mathematical method

Assuming that all temporal changes occur with the same frequency, ω, we can

consider that the temporal dependence of variables (including vr) has the form

∼ exp(iωt), which means that the PDE given by equation (3.1) transforms into

d2vr
dz2

+
ω2

c2k(z)
vr = 0. (3.2)

In reality the kink speed does not depend only on the longitudinal coordinate, z,

but on radial coordinate too. It is known that the dependence on the transver-

sal coordinate, r, leads to the phenomena requiring the development of short

transversal length scales (resonant absorption, phase mixing, turbulence, wave

leakage), possibly responsible for the rapid damping of kink oscillations (see, e.g.

Ofman and Aschwanden 2002, Ruderman and Roberts 2002, Dymova and Rud-

erman 2006, etc). Equation (3.2) implies that the eigenfunctions, vr, are driven
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by certain forms of ck(z), through the particular profile of the quantities that

make up the kink speed (density, magnetic field). Inspired by the eigenvalue

problem of Rayleigh-Ritz procedure, McEwan et al. (2008) used a variational

principle that allows the calculation of eigenvalues, ω, a method we will also

employ in our analysis. Let us multiply equation (3.2) by vr and integrate from

the apex (z = 0) to the footpoint (z = L) of the loop as∫ L

0

vr
d2vr
dz2

dz + ω2

∫ L

0

v2r
c2k(z)

dz = 0. (3.3)

where L is the half-length of the loop. Using integration by parts in the first

integral we obtain ∫ L

0

vr
d2vr
dz2

dz = vr
dvr
dz

∣∣∣∣L
0

−
∫ L

0

dvr
dz

dvr
dz

dz (3.4)

Taking into account only the fundamental mode, we need to satisfy the bound-

ary conditions

vr(L) =
dvr(0)

dz
= 0,

while for the first harmonic we have

vr(0) = vr(L) = 0.

As a consequence, the first term on the RHS of equation (3.4) disappears and

equation (3.3) simplifies to

ω2

∫ L

0

v2r
c2k(z)

dz =

∫ L

0

(
dvr
dz

)2

dz. (3.5)

This equation is similar to the equation derived by McEwan et al. (2008), and

we can write

ω2 =
Ψ1

Ψ2

, (3.6)

where

Ψ1 =

∫ L

0

(
dvr
dz

)2

dz, Ψ2 =

∫ L

0

v2r
c2k(z)

dz.
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In order to express the eigenvalues of such problem, we consider some trial

functions for vr that satisfy the boundary conditions imposed at the footpoints

and the apex of the loop. Since we are interested only in the characteristics of

the fundamental mode of kink oscillations and its first harmonic, we will assume

that vr(z) will be proportional to cos(πz/2L) for the fundamental mode and

sin(πz/L) for the first harmonic. These choices for eigenfunctions correspond to

the homogeneous plasma, however - as we show in the Appendix - the corrections

to the eigenfunction due to density stratification are small.
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3.3 Density profile

The problem of how the kink speed depends on the longitudinal coordinate, z,

is a rather interesting problem and only simplified cases can be solved analyti-

cally. For simplicity, let us consider that the magnetic field inside and outside

of the coronal loop are identical and homogeneous, while the density varies

exponentially according to

ρi(z) = ρi(0) exp

(
2L

πHi

sin
πz

2L

)
,

ρe(z) = ρe(0) exp

(
2L

πHe

sin
πz

2L

)
, (3.7)

where ρi(0) and ρe(0) are the densities inside and outside the loop at z = 0,

i.e. at the the loop apex and Hi and He are the density scale-heights inside and

outside the loop. Obviously the choice of density reflects a simplified description

of the coronal loop model where plasma is isothermal and other further effects

such as gravity and magnetic field dependence on cartesian coordinates (instead

of a constant) are neglected. A realistic description would require taking into

account that the plasma is not isothermal (inside and outside the loop), the loop

is curved and the density can depend on other coordinates, as well. This form

of density dependence on the z coordinate was earlier used by, e.g. Verth et al.

2007, McEwan et al. 2008, Morton and Erdélyi 2009, Morton and Ruderman

2011, Morton et al. 2011. With our chosen density profiles, the kink speed as

in (3.1) becomes

c2k(z) =
ρi

B2
0

µ20ρi
+ ρe

B2
0

µ20ρe

µ)02[ρi(z) + ρe(z)]
=

2B2
0

µ2
0[ρi(z) + ρe(z)]

=

=
2v2Ai(0)

exp
(

2L
πHi

sin πz
2L

)
+ ξ−1 exp

(
2L
πHiχ

sin πz
2L

) , (3.8)

where B0 is the magnitude of the magnetic field, vAi(0) is the Alfvén speed at

the apex of the loop (0), and ξ is the density ratio, i.e. ρi(0)/ρe(0). Since the

density outside the coronal loop is smaller than inside, we will consider that
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ξ ≥ 1. The quantities Hi and He are the density scale-heights and they are

proportional to the temperature of the plasma. Here we denoted χ = He/Hi.

Since the temperature of the loop is larger than its environment, we will take

χ ≤ 1; the value χ = 1 corresponds to an identical density variation with height

inside and outside the loop and identical temperatures. The limit χ → ∞
indicates a constant density in the environment of the loop, while the limit

χ→ 0 represents a case when the plasma inside the loop is homogeneous.

3.4 Solutions

Symmetry
 axis

Fundamental mode – cos function

First Harmonic – sin function

0

L

0

0

Figure 3.2: Fundamental and First harmonic modes of oscillations.

Using the particular form of vr ∼ cos(πz/2L) for the fundamental mode and

vr ∼ sin(πz/2L) for first harmonic (see Figure 3.2), we obtain that in the case

of the fundamental mode

Ψf
1 =

∫ L

0

(
dcos(πz/2L)

dz

)2

dz =
π2

8L
,

Ψf
2 =

∫ L

0

cos2
(πz

2L

)
·

exp
(

2L
πHi

sin πz
2L

)
+ ξ−1 exp

(
2L
πHiχ

sin πz
2L

)
2v2Ai(0)

dz =
π

8yv2Ai(0)
×

×
{
I1(2y) + L1(2y) + ξ−1χ

[
I1

(
2y

χ

)
+ L1

(
2y

χ

)]}
, (3.9)
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where we introduced the dimensionless variable y = L/πHi, Iν(x) is the mod-

ified Bessel function of order ν, Lν(x) is the modified Struve function of order

ν, and the index f stands for the fundamental mode. For the first harmonic we

obtain that

Ψ1
1 =

∫ L

0

(
dsin(πz/2L)

dz

)2

dz
π2

2L
,

Ψ1
2 =

π

4y2v2Ai(0)

{
3 + 2y2

y
[I1(2y) + L1(2y)]− 3 [I0(2y)+]

+L0(2y) +
4y

π
+ ξ−1χ2

[
χ

y

(
3 +

2y2

χ2

)(
I1

(
2y

χ

)
+ L1

(
2y

χ

))
−3

(
I0

(
2y

χ

)
+ L0

(
2y

χ

))
+

4y

πχ

]}
, (3.10)

where the superscript 1 in the expressions of Ψ1
1 and Ψ1

2 stands for the first

harmonic. Now using equation (3.6) for both modes,

P1

P2

=

√
Ψf

2Ψ1
1

Ψf
1Ψ1

2

. (3.11)

Inspecting the above relations, we can see that the period ratio P1/P2 does

not depend on Alfvén speed or loop length (they cancel out when calculating

equation 3.11). The above approximation for P1/P2 is valid only when the

density is almost constant. For coronal conditions we plot the period ratio

given by equation (3.11) for ξ = 2 with the variable y varying between 0 and

10, although the larger values of y are rather unrealistic since y = 10 would

correspond to a scale-height of 30 times shorter than the loop length (the scale-

height corresponding to a typical temperature of 1 MK is 47 Mm). Another

variable in our problem is the ratio of scale-heights (i.e. temperature ratio), χ.

This will be varied in the interval 0 to 1.

The dependence of the P1/P2 period ratio on χ and the ratio L/πHi, for

coronal conditions (ξ = 2) is shown in Figure 3.3 with the case discussed earlier

by, e.g. Andries et al. (2005) corresponding to the value χ = 1. In addition to

the ratio L/πHi, our model prescribes a possible diagnostic of the temperature

difference between the loop and its environment. The importance of changes
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Figure 3.3: The variation of the P1/P2 period ratio with the temperature pa-
rameter, χ, and the ratio, L/πHi, for the case of a typical coronal loop (here
the density ratio, ξ, is 2).

when the different temperature of the environment is taken into account can be

shown in a relative percentage plot shown in Figure 3.4. The relative change was

calculated as the percentage change of the results of our investigation compared

to the case when χ = 1. As we can see, the changes in the domain corresponding

to values of χ close to 1 are not significant. However, as the temperature

of the environment becomes lower than the temperature inside the loop, this

difference shows changes of the order of 10-20 % for values of χ of up to 0.5,

while for the cases with χ near zero, the difference can be even 40 % (for

χ = 0.2 and L/πHi = 2). Since the relative change is negative, it means that

for the same value of P1/P2 calculated assuming the same temperature the

ratio, L/πHi is overestimated. A change of 25% in the period ratio occurring

at approximate values of L/πHi = 0.8 and χ = 0.65 would mean that for

environment temperature is 35 % less than the loop temperature, the scale-

height is underestimated by about 25%. It is important to note that the density

ratio, ξ, has an important effect on the variation of period ratio. An increase
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Figure 3.4: The relative variation of the P1/P2 period ratio with the temperature
parameter, χ, and the ratio L/πHi for the case of a typical coronal loop (the
density ratio, ξ, is taken to be 2).

in ξ to the value of 10 would result in relative percentage change reduction and

the maximum value of the change is attaining its maximum value at 33 % (for

χ ≈ 0.2 and L/πHi = 1).

The same analysis was repeated for prominence structures. These structures

are known to be of chromospheric origin and show rather long stability. Promi-

nence fibrils are surrounded by much hotter and less denser corona. For these

structures we suppose that the density of the prominence is two orders of mag-

nitude higher, i.e. we take ξ = 100. The typical temperature of prominences

varies between 5× 103 and 104 K (see, e.g. Lin et al. 2003), while the temper-

ature of the surrounding corona can be even two orders of magnitude higher.

Thus, the value of χ is chosen to change in the interval 50-150. As we can see

in Figure 3.5, the changes of the period ratio P1/P2 for prominences does not

show large variation with χ and an analysis of the relative change (compared

to the case corresponding to χ = 50) would reveal that these changes are of the

order of 0.1 %.
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Figure 3.5: The same as in Figure 3.3 but we plot the variation of P1/P2 for
prominences where ξ = 100 and χ varies between 50 and 150.

3.5 Implications for magneto-seismology

The immediate implication upon magneto-seismology of the solar corona of our

calculations is that the P1/P2 period ratio has no one-to-one correspondence

with the internal stratification of the magnetic structure, but depends also on

the temperature ratio between the interior and exterior of the magnetic struc-

ture, i.e. an observed period ratio allows the diagnostics of the temperature

ratio, too. Our analysis shows that the effect of temperature difference is more

pronounced for those cases where the temperature inside the waveguide is larger

than outside (e.g. coronal loops) and, in general, negligible in prominence cases.

For coronal loops it is also evident that noticeable effects of the temperature

difference on the P1/P2 ratio are encountered for relative small values of L/πHi

(say, below 5) and temperature ratio that are smaller than 70%.

Our analysis also opens a new way of diagnosing the multi-temperature loops

and their environment. The relations derived in the present study show that

the physical parameters entering the problem are the density ratio, temperature
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ratio and the ratio of loop length to the scale-height. Out of these quantities,

the density is the parameter that can be determined (although with errors) from

emission measurements, so we will suppose that the value of ξ is known. The

diagnostics of the loop in the light of the new introduced parameter becomes

possible once we specify an additional relation connecting the temperature ratio

and the density scale-height measured against the length of the loop. As a

possibility we investigate the case when for the same loop we can determine not

only the period of the fundamental mode (P1) and its first harmonic (P2) but

also the period of the second harmonic, here denoted by P3. Now we can form

a new ratio, P1/P3, which can be determined in a similar way as above. Since

the measurement of the three periods refer to the same loop we can estimate

the value of χ and L/πHi in a relatively easy way.

= 2

Figure 3.6: An example on how the period ratio of the first three harmonics of
a coronal loop kink oscillations can be used to diagnose the density scale-height
of the loop and the temperature difference between the coronal loop and its
environment. Here the P1/P2 dependence is shown by the dotted line while the
solid line stands for the value of P1/P3.
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In Figure 3.6 we illustrate such a case. We suppose that for a loop of half-

length of 150 Mm with an Alfvén speed at the apex of the loop of 1000 km s−1

we measure the period ratio of 1.72 for P1/P2 and 2.67 for P1/P3 (two arbitrary

values for this study). By specifying the value of the period measurement

means that in a dependence similar to the one shown in Figure 3.3 we obtain

an arc which in a (L/πHi, χ) coordinate system will look like the dotted line

curve in Figure 3.6. In a similar way, for the value of P1/P3 = 2.67 we would

obtain another curve, here shown by the solid line (here the curves are the

projections of the intersection of similar surfaces as in Fig 3.3 with the horizontal

surface corresponding to the specified period ratio). Since the two measurements

correspond to the same loop, their intersection point will give us the exact value

of L/πHi and χ. For the particular example used here we obtain L/πHi = 0.57

and χ = 0.67. Our results show very little sensitivity with the density ratio, for

example, if the ratio would be 10 then the intersection point would change to

L/πHi = 0.54 and χ = 0.66.

3.6 Summary

In order to carry out coronal seismology it is imperative to know the relationship

between the composition of a plasma structure and the oscillations supported by

the coronal loop. High resolution observations may allow an accurate diagnostic

of not only the magnetic field strength, but also the thermodynamical state of

the plasma.

The period ratio P1/P2 (and its deviation for the canonical value of 2) be-

longing to the period of transversal fundamental kink mode and its first har-

monic is a useful tool for diagnosing the longitudinal structure of magnetic

regions. In our study we investigated the effect of the environment on the pe-

riod ratio assuming that the density scale-heights (implicitly the temperature)

inside and outside magnetic structures are different.

Using a simple mathematical method first applied in the context of loop

oscillations by McEwan et al. (2008), we derived for the first time an analyt-

ical expression that connects the value of the period of kink oscillations and

parameters of the loop. We showed that in the case of coronal loops, the effect
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of temperature difference between the loop interior and exterior can lead to

changes of the order of 30-40% that could have significant implications on the

diagnosis of longitudinal density structuring of the coronal loop. In the case of

prominences, given the very large density and temperature difference between

the prominence and coronal plasma, the changes in P1/P2 due to the different

temperature are very small.

Since our model introduces a new variable in the process of plasma diagnostic

a new relation is needed that connects the parameters of interest. To illustrate

the possibilities hidden in our analysis we have chosen the case when the same

loop shows the presence of the additional second harmonic. Superimposing the

dependencies of the P1/P2 and P1/P3 ratios with respect to the temperature

ratio factor, χ and L/πHi we could find the set of the values that satisfies a

hypothetical measurement.

Finally we need to emphasize that our approach supposes a certain degree of

simplification, therefore our results do not provide an absolute qualitative and

quantitative conclusion. First we assumed that the loop is thin, and equation

(3.1) can be applied to describe the dynamics of kink oscillations in coronal

loops. It is obvious that this statement is not true for very short loops (the

ratio of the loop ratio and its length is not very small) in which case, the

governing equation has to be supplemented by an extra term. Secondly, our

isothermal supposition of the loop and its environment does need refinement,

as observations (see, e.g. Winebarger et al. 2003, Warren et al. 2008, Berger

et al. 2011, Mulu-Moore 2011) show that the loops are not always in hydro-

static equilibrium nor isothermal. Here we assumed the idealistic situation of

a static background, however recent analysis by Ruderman (2011) showed that

the temporal dependence of density through flow and cooling can also influence

the ratio of the two periods.
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The P1/P2 period ratio for kink

oscillations of an asymmetrical

coronal loop

In This Chapter we aim to investigate another geometrical effect, namely the

asymmetry of the coronal loop, i.e. its deviation from a semi-circular shape used

by most of previous studies on the periods of oscillation. Our aim is to study

the fundamental and first kink eigenmodes of an asymmetric coronal loop with

fixed ends in the dense photosphere. In order to make analytical progress, we

consider cold plasma approximations and take into account the effect of density

stratification, so the change in the value of P1/P2 ratio is connected to the

density scale-height that quantifies the variation of density along the magnetic

structure. This chapter is based on the results published by Orza and Ballai

(2013) .
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4.1 Introduction

Observed asymmetries of coronal loops were found as early as 1970s (see Kjeld-

seth Moe & Nicolas 1977). Later Dere & Mason (1993) observed a large range

of velocities associated with non-thermal components in the quiet and active

regions of the Sun. Recent observations of asymmetries in coronal line profiles

by Peter (2001), Hara et al. (2008), De Pontieu et al. (2009), De Pontieu &

McIntosh (2010a), Peter (2010), Mart́ınez et al. (2011) show that information

hidden in details of spectral line profiles can exhibit significant deviations from

a single Gaussian in coronal lines formed in active regions. These observations

consisted in the discovery of a strongly blueshifted component in the coronal

lines at the footpoints of the loop (Hara et al. 2008). The blueward asymmetries

found were of the order of 5%-10% in spectral lines in the low corona. Observed

asymmetries were also interpreted in terms of nanoflare models where nanoflares

at coronal heights lead to high speed evaporative upflows (see e.g. Patsourakos

& Klimchuk 2006). Mart́ınez et al. (2011) found that asymmetrical line pro-

files can arise from the convolution along the line of sight of emission from

different parcels of plasma with different Doppler velocity and/or temperatures

dominating the different emission sources.

In the present Chapter we will assume that the observed asymmetric be-

haviour of plasma dynamics is connected to the deviation of the coronal loop

from a perfect semi-circular shape. Obviously there are many other mechanisms

that can act as a source of asymmetry (different cooling/ heating rate) but here,

for the sake of simplicity, we will concentrate on one single aspect.

4.2 Initial set-up

We start by considering MHD kink oscillations in the thin tube approximation

whose dynamics is given by equation (3.1) (see, e.g. Dymova and Ruderman

2005, 2006). Following Ruderman (2010), we use the Lagrangian displacement

ξ = (ξr, ξθ, ξz), as described in Chapter 2, to find the displacement of the tube

64



4.2

axis (asymmetry). Hence we can write here

∂2ξr
∂t2
− c2k(z)

∂2ξr
∂z2

= 0, ξr(0) = ξr(L) = 0, (4.1)

where ξr is the plasma displacement, defined as in equation (2.40).

In order to study the asymmetry of a coronal loop, we introduce a new

parameter, α, that is connected to the loop displacement or distorsion (deviation

from a semi-circular loop). To pursue further with analytics, we change our

coordinate system from loop plane coordinate system (x, z, Cartesian) to a new

polar coordinate system (r, θ) with θ ∈ [0, π] as in Figure 4.1.

x

z

Figure 4.1: The polar coordinate system, with r (the radial coordinate) and θ
(the angular coordinate, often called the polar angle)

The new coordinates, r, and θ, are defined in terms of Cartesian coordinates

through

z = r sin θ,

x = r cos θ,

where r is the radial distance from the origin, and θ is the counterclockwise

angle from the x-axis.

In terms of x and z we have,

r =
√
x2 + z2, (4.2)

θ = tan−1
(z
x

)
. (4.3)
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The arc length of a polar curve given by r = r(θ) is

s =

∫ θ2

θ1

√
r2 +

(
dr

dθ

)2

dθ, (4.4)

and the line element is given as

ds2 = dr2 + r2dθ2. (4.5)

Denoting H1 to be the loop height, and introducing the asymmetry (distorsion)

of the loop (see Figure 4.2) through a parameter, α, that quantifies the loop

displacement, we have that:

z = H1 sin θ,

x = H1 cos θ + αH1 cos 2θ − αH1.

We consider that the temporal dependence of variables has the form exp(iωt)

1

1

distorsion

Figure 4.2: The loop shape for different distorsion parameter α. For α = 0.0
the loop is symmetric (semi-circular), the height of the loop is the same for
asymmetric loop profiles.

and we express the z-derivative from equation (4.1) in terms of the arc length,
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s as,
d

dz2
=

d

ds2

(
ds

dz

)2

,

from equation (4.5) it follows that

ds2 = dx2 + dz2 + r2dθ2.

The propagation of kink waves in a loop in the thin flux tube approximation

becomes
d2ξr
ds2

+
ω2

c2k(s)
ξr = 0, ξr(0) = ξr(π) = 0. (4.6)

We are working in thin flux tube approximation and by changing to the coor-

dinate along the loop we simplify equations involved further. There are two

possible scenarios one could assume for an asymmetric loop: (i) constant height

and (ii) constant length. Case (ii) is more complex because for a constant loop

length with deviation from a semi-circular shape we increase the magnetic ten-

sion in one leg of the loop at the expense of the other one and equation (4.6)

would not anymore be valid.

Further we are interested in the geometrical effects, so we consider that the

loop has a constant height, i.e. we are dealing with case (i) and we are going to

study coronal loops with different α parameter rather than study the real time

asymmetry of a loop, which would implicate more complex analysis, i.e. case

(ii).

Under the above assumptions the arc length from equation (4.4) can then

be calculated as (
ds

dθ

)2

=

(
dz

dθ

)2

+

(
dx

dθ

)2

=

H2
1 (1 + 4α sin θ sin 2θ + 4α2sin22θ).

In order to solve equation (4.6) we would require the kink speed as ck(s), which

is difficult to express. It turns out that equation (4.6) becomes easier to solve

in terms of coordinate θ
dξr
ds

=
dξr
dθ
· dθ
ds
.
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It is straightforward to show that

dθ

ds
=

1

H1

√
1 + 4α sin θ sin 2θ + 4α2sin22θ

,

therefore the first term of equation (4.6) can be written as:

d2ξr
ds2

=
d2ξr
dθ2

(
dθ

ds

)2

+
dξr
dθ

d

dθ

(
dθ

ds

)
dθ

ds

As a result, equation (4.6) in the new variable becomes

A(θ)
d2ξr
dθ2
−B(θ)

dξ

dθ
+

ω2

c2k(θ)
ξr = 0, (4.7)

where the coefficients A(θ) and B(θ) are given by

A(θ) =
1

H2
1 (1 + 4α sin θ sin 2θ + 4α2sin22θ)

,

and

B(θ) =
1

2

4α sin 2θ(cos θ + 2 cos 2θ + 4α cos 2θ)

H2
1 (1 + 4α sin θ sin 2θ + 4α2sin22θ)2

.

Next we consider that the inside and outside magnetic field of the coronal

loop are identical, while the density varies exponentially according to (see, e.g.

Verth et al. 2007, McEwan et al. 2008, Morton and Erdélyi 2009, Morton and

Ruderman 2011, Morton et al. 2011):

ρi = ρfi exp
[
− z

H

]
= ρfi exp

[
−H1 sin(θ)

H

]
,

ρe = ρfe exp
[
− z

H

]
= ρfe exp

[
−H1 sin(θ)

H

]
. (4.8)

According to these relations, the density decreases from ρfi , ρfe at footpoint

(θ = 0, with ’i’ referring to interior and ’e’ referring to exterior) to the apex

(θ = π/2) and then increases back to ρfi , ρfe at the other footpoint (θ = π). In

the above relation H is the density scale-height for an isothermal plasma (the

same value inside and outside the loop), and ρfi, ρfe, are the densities inside
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and outside the loop at the footpoints.

In the new variable, equation (2.73) becomes

c2k(θ) =
c2k(θ = 0)

exp
[
−πyH1

L
sin(θ)

] , (4.9)

where ck(θ = 0) is the kink speed at the footpoints of the loop and can be

expressed as

c2k(θ = 0) =
2B2

0

ρfi + ρfe
=

2v2Ai(f)

1 +D
,

where D = ρfe/ρfi is a density ratio parameter, B0 is the magnetic field in the

loop, y = L/(πH) and vAi(f) is the Alfvén speed at the footpoints of the loop.

We consider that D < 1 (density outside the loop is smaller than inside).

The above density profile is valid for a simplified model of a coronal loop

where we considered plasma to be isothermal and all other effects related to this

are neglected. A more realistic profile would require a non-isothermal plasma

description.

4.3 Results

For coronal conditions we consider the density ratio parameter ρe/ρi = D = 0.5

(same as in chapter 3), D = ρe(0)/ρi(0) with the density stratification parameter

L/(πH) varying between 0 and 4. Larger values of y would correspond to

unrealistic scale-heights. Another variable in our problem is α that quantifies

the loop distorsion. The quantity vAi(f) represents the Alfvén speed at the

footpoints and in our analysis we assume it to be 5 × 104 m s−1. The coronal

loop considered here is of length L = 150 Mm, that gives us H1 to be H1 ≈ 50

Mm (loop height at the apex). Accordingly the displacement of the apex is

95.48α Mm.

Having defined all quantities, we solve equation (4.7) numerically, for ξ,

using the shooting method, assuming that the footpoints of the loop are fixed

in the dense photosphere, i.e. ξr = 0 at s = 0, L or ξr = 0 at α = 0 and α = π.

The P1/P2 period ratio with respect to the displacement parameter α and

the ratio L/(πH) for coronal conditions (D = 0.5) is shown in Figure 4.3 with
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the case discussed earlier by, e.g. Andries et al. (2005) corresponding to the

value α = 0.0.

Figure 4.3: The variation of the P1/P2 period ratio with parameter α, and the
ratio L/(πH) for the case of a typical coronal loop (the density ratio here is
D = 0.5 and half loop length L = 150 Mm).

Figure 4.3 shows that the changes in P1/P2 period ratio due to the distorsion

parameter, α, varied between 0.01 and 1.3. Typically a change of 5% in the

period ratio is obtained for approximate values of L/πH = 2 and α = 0.6.

Further changes of the order of 10− 15% can be achieved for rather unrealistic

values of L/πH = 4 and α = 1.0 (see Figure 4.4). The relative change was

calculated as the percentage change of our results (see, Figure 4.4) compared to

the case when α = 0.0. In the vicinity of α = 0.0, the change is not significant,

but as the loop distorsion increases, this difference shows a change in P1/P2 of

the order of 5 − 8% for values of α from 0.45 to 0.9. The relative change is

negative, which means that the P1/P2 period ratio, assuming the loop to be
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Figure 4.4: The relative variation of the P1/P2 period ratio with parameter α,
and the ratio L/(πH) for the case of a typical coronal loop (the density ratio
here is D = 0.5 and L = 150 Mm). The reference value is obtained for α = 0.0.

semi-circular, could be overestimated. The density ratio, D, does not have any

important effect of the variation of period ratio, changes brought are of the

order of 0.1%.

4.4 Summary

The P1/P2 period ratio of transverse fundamental kink mode and its first har-

monic is an ideal tool for diagnosing the longitudinal structure of magnetic

structures. In this Chapter we investigated the P1/P2 ratio for an asymmet-

ric(distorted) coronal loop assuming that the magnetic field and temperature

are the same inside and outside the loop, and that the loop dynamics is treated

in the cold plasma approximation. We showed that in the case of non semi-
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circular coronal loops, the change in the P1/P2 period ratio for realistic values

is of the order of 5 − 8%. This value can significantly grow to values of over

20% if we assume that there is a temperature difference between the plasma

inside and outside the coronal loop, as we saw in Chapter 3. For this analysis,

we used the thin flux tube approximation, which allowed us to employ equation

(3.1) to describe the dynamics of oscillations. We also supposed the idealistic

situation of a static background, however recent analysis by Ruderman (2011)

showed that the temporal dependence of density through flow and cooling can

also influence the ratio of the two periods.

Our results prove the robustness of seismological techniques developed ear-

lier but also confirm that the effects that significantly influence the P1/P2 period

ratio are connected to the intrinsic properties of the plasma, i.e. magnetic field

structuring, density (and through it, the temperature). Effects such as geomet-

rical (asymmetry, non-circular cross section, non-planaricity, loop curvature) all

have limited effect on P1/P2.
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Kink oscillations in expanding

coronal loops

We investigate the effect of the loop expansion through the solar corona on the

period ratio P1/P2 and the consequences of the inclusion of the length of the loop

as a dynamical parameter on estimations of the degree of density stratification.

First we assume that the expansion occurs at the same rate in the vertical and

horizontal direction. This motion preserves the initial semi-circular shape of

the loop. Later this assumption is relaxed and the properties of kink oscillations

will be investigated in a loop that moves so that the initial semi-circular shape

transforms gradually into a semi-elliptical loop. The temporal evolution of pe-

riods of kink oscillations and their ratio is studied in both cases. The present

Chapter is based on the published results of Ballai and Orza (2012).
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5.1 Observational facts

The problem of loop emergence and expansion through the solar atmosphere

is one of the most challenging topics of solar physics as it involves the analysis

of the evolution of the magnetic field in different regions of the solar interior

and atmosphere, where conditions can change from region to region. According

to the standard theory, the magnetic field produced by the dynamo action in

the tachocline is transported through the solar convective zone towards the

solar surface by magnetic buoyancy coupled with convective motion (Parker

1955, 1988). Once at the surface, the emerged flux tube creates sunspots and

bipolar active regions (Zwaan 1987). In the solar atmosphere the rise of the flux

tube continues due to an excess of the magnetic pressure inside the loop (e.g.

Archontis et al. 2004). For the purpose of our investigation, we will assume that

this excess is balanced at the transition region (TR) and from this height, the

expansion is not a driven problem any longer, instead, the loop moves through

the corona in the virtue of its inertia. During the emergence and expansion

phase, the flux tube can interact with existing magnetic structures in the solar

atmosphere, and this might be responsible for the appearance of small-scale

(e.g. compact flares, plasmoids, X-point brightenings) and large-scale events

(flares and CMEs) as suggested by Archontis (2004). Loop emergence often is

associated with strong upflows as observed by, e.g. Harra et al. (2010, 2012).

Since we are interested in the dynamics of a single loop, we will assume that

the expansion of the loop through the solar atmosphere takes place in such a

way that the reconnection events (or other effects that perturb the morphology

and topology of the field lines) do not appear.

It is rather straightforward to imagine what happens with oscillations in

a loop when the length of the loop is increasing. As the length of the loop

becomes larger, the frequency of oscillations becomes smaller, i.e. the periods

of oscillations are expected to grow, however, in an inhomogeneous waveguide,

particular periods will be differently affected by the combined effect of inhomo-

geneity and loop length increase. Therefore, we expect that the period ratio

of oscillations will change with the degree of inhomogeneity that also changes

with time.
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5.2 Mathematical formalism

In our analysis we will capture the dynamical behaviour of the loop once reached

the transition region (TR). At this height, the loop can interact with a global

blast wave propagating in the low solar corona. This instigator could be easily

identified with an EIT wave that propagates in the low corona over very large

distances and they are known to be one of the major source for kink oscillations

of coronal loops (see, e.g. Ballai 2007). We assume that the height at which the

loop starts its journey through the corona is at 3 Mm above the solar surface.

A typical loop length is of the order of 300 Mm. For practical reasons, we are

going to consider that the height of the loop in its final position would be about

97 Mm resulting in a loop length of about 306 Mm.

The raising speed of loops is generally taken to be 10-15 km s−1 (Chou and

Zirin 1988, Archiontis 2008), therefore the time needed for the loop to travel the

distance from the TR to its steady position is easily estimated to be between

3.4 and 5.2 hours. This time is at least two order of magnitude larger than a

typical period of kink oscillations, so there is enough time for the development of

oscillations. Higher rising speeds are also possible, recently Schmidt and Ofman

(2011) reported expansions of a post-flare loop with speeds of hundreds km s−1.

Standing waves are formed if the speed of change in the length of the loop is

smaller than the period of oscillations. This condition is easily satisfied for fast

kink oscillations. We assume that the loop expands into the ’empty’ corona,

i.e. it will not encounter any interaction with existing magnetic elements.

In the first instance we assume that the semi-circular shape of the loop at the

TR is preserved throughout the expansion. Assuming an initial height of 3 Mm

above the surface, the distance between the footpoints of the loop is 6 Mm.

When reaching the final height of 97 Mm, the each of the footpoints travel

over a distance of 150 Mm. In addition we assume that the expansion occurs at

constant temperature (isothermal process). Due to the increase in the volume of

the loop, a pressure difference is generated meaning that the plasma flows along

magnetic field lines resulting in a density that depends not only on the height,

z, but also on time. As it raises through the solar corona, the tangent to the

loop is also changing monotonically (see Figure 5.1), therefore the momentum
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Figure 5.1: The projection on the direction tangent to the loop, where the angle
β is a function depending on time and space.

equation in an unperturbed state becomes

ρ0
∂u

∂t
+ ρ0u

∂u

∂z
= −∂p0

∂z
− gρ0 cos β(z, t), (5.1)

where the angle β is a function depending on time and space, u is the equilibrium

flow of the plasma, ρ0 and p0 are the equilibrium density and pressure, and g is

the gravitational acceleration.

5.3 Density profile

In coronal loops, the flows are of the order of a few tens of km s−1, therefore in

equation (5.1) we can neglect the terms on the left hand side since

u
∂u

∂z
∼ u2

L
≈ 108

108
= O(1) =

∂u

∂t
,

that is two order of magnitude smaller than terms on the right hand side. We

can write pressure as

p0(z, t) =
kBT0ρ0(z, t)

m
,

where kB is the Boltzman constant, T0 is the constant temperature and m is

the mean atomic mass per particle. Introducing this expression into the RHS
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of equation (5.1) we obtain that

1

ρ0

∂ρ0
∂z

+
cos β(z, t)

H
= 0, (5.2)

where H is the constant density scale-height. Focusing on the density distribu-

tion inside the loop, we can integrate the above equation to obtain

ρi = ρf exp

[
−
∫ z

0

cos β(z′, t)

H
dz′
]
. (5.3)

Assuming that the loop is semicircular we obtain that β(z, t) = πz/L(t), there-

fore the density inside the coronal loop becomes

ρi = ρf exp

[
−L(t)

πH
sin

πz

L(t)

]
, (5.4)

where ρf is the density of the plasma at the footpoint of the loop. For simplicity

we will assume that the external density can simply be written as ρe = Dρi,

where throughout our calculations we consider D = 0.5. Figure 5.2 depicts

schematically the change of the equilibrium density, both in space and time.

Here length was normalised to the length of the loop at the start of the emer-

gence (considered L0 = 3π Mm) and time (here denoted by τ) was normalised

to the quantity L0/vris, where vris is the vertical rising speed of the loop consid-

ered vris = 15 km s−1. According to our expectations, the density of the loop

decreases with time. We assume that the flux tube is thin even at the beginning

of its expansion.
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Figure 5.2: A schematic representation of the evolution of the equilibrium den-
sity measured on the vertical axis in the units of density at the footpoint. Here
lengths are given in units of the loop length at the start of the expansion in
the corona (L0) and time is given in units of L0/vris, where vris is the constant
rising speed in the vertical direction, here taken to be 15 km s−1

5.4 Kink oscillations of a coronal loop with non-

stationary density and plasma flow

We consider that the tube is not expanding in transversal direction, so that the

cross-section radius remains constant and equal to a constant a. The plasma

density in the tube and in the surrounding plasma can vary along the tube z

and with time t. For cylindrical coordinates (r, ϕ, z) with the z-axis coinciding

with the tube axis the unperturbed density is ρ(z, t). Initially, there is a plasma

flow along the tube with the velocity U(z, t).

Here we do not take into account physical processes that cause the density

variation, so we don’t use the momentum and energy equations for the unper-

turbed quantities. The unperturbed magnetic field is everywhere in the z -

78



5.4

direction and has constant magnitude B0(z, t).

Let us consider the perturbed quantities of magnetic field B and velocity u,

B = B0(z, t) + B1(r, ϕ, z, t),

u = u0 + u1(r, ϕ, z, t)

where the perturbation of velocity u1 has the components u1 = (vr, vϕ, vz) and

the components of the perturbation of magnetic field B1 are B1 = (br, bϕ, bz).

To describe the plasma motion we use the ideal linearised MHD equations for

a cold plasma, i.e.

∂u1

∂t
+ (U · ∇)u1 + (u1 · ∇)U =

1

µ0ρ
[(∇×B1)×B0 + (∇×B0)×B1] , (5.5)

∂B1

∂t
= ∇× (u1 ×B0 + u1 ×B1), (5.6)

∇ ·B1 = 0. (5.7)

along with the mass conservation equation,

∂ρ

∂t
=
∂(ρU)

∂z
= 0. (5.8)

From equation (5.5) with B0(z, t), U(z, t) we obtain that vz = 0.

At the tube boundary the dynamic and kinematic boundary conditions have

to be satisfied. The linearized dynamic boundary condition is that the pertur-

bation of the magnetic pressure, P = B0bz/µ0, has to be continuous,

[P ] = 0 at r = a, (5.9)

where [f ] indicates the jump of a function f across the boundary.

If we take the equation of the perturbed tube boundary to be r = a +

η(t, ϕ, z), then the linearized kinematic boundary condition becomes

vr =
∂η

∂t
+ U

∂η

∂z
at r = a. (5.10)

79



Chapter 5: Kink oscillations in expanding coronal loops 5.4

Since the tube surface is tangential discontinuity, the normal component of the

magnetic field at the tube surface is zero. This condition can be written as

br −B0
∂η

∂z
= 0 at r = a. (5.11)

The boundary condition (5.11) follows from (5.10) using equation (5.6). We used

the fact that the magnetic field lines are frozen in the dense photospheric plasma

to obtain the boundary conditions at z = 0, L. When there is no equilibrium

flow these conditions become u1 = 0. In the presence of equilibrium flow they

become more complicated. In ideal MHD, the electrical field, E, is given by

E = −(U + u1)× (B0 + B1). (5.12)

In the regions z < 0 and z > L the magnetic field lines are straight and plasma

will flow along the magnetic field lines, so E = 0 in these regions, which implies

that Er = 0 at z = 0, L. Then, linearizing these boundary conditions and

taking into account that both U and B0 are parallel to the z - direction, we

immediately obtain that

B0u1 − U(B1 − ezbz) = 0 at z = 0, L, (5.13)

Since the tube boundary consists of magnetic field lines which are frozen in the

dense plasma in the regions z ≤ 0 and z ≥ L, it follows that

η = 0 at z = 0, L. (5.14)

This condition is consistent with (5.13) and (5.10).

The system of equations (5.5)-(5.7) can be transformed into

∂u1

∂t
+ U

∂u1

∂z
= −1

ρ
∇P− ez

∂P

∂z
+

B0

µ0ρ

∂B1⊥

∂z
, (5.15)

∂B1⊥

∂t
+
∂(UB1⊥)

∂z
= B0

∂u1

∂z
, (5.16)
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∂P

∂z
= −B0

µ0

∇⊥ ·B1⊥. (5.17)

where the perpendicular component of magnetic field perturbation is defined as

B1⊥ = B1 − ezbz,

and the perpendicular gradient operator ∇⊥ is

∇⊥ = ∇− ez
∂

∂z
.

The characteristic spatial scale of variation of all variables in the z- direction is

L and in the r - direction is a. Since the tube is thin, a/L = ε � 1. To take

this difference into account one can introduce the stretching variable σ = ε−1r.

Further, eliminating u1 from equations (5.15) and (5.16), we obtain(
∂

∂t
+

∂

∂z
U

)2

B1⊥ −
∂

∂z

(
V 2
A

∂B1⊥

∂z

)
= −ε−1 ∂

∂z

(
B0

ρ
∇̃⊥P

)
, (5.18)

with ∇̃⊥ = ε∇⊥. Equation (5.18), in particular, implies that P ∼ ε(B0/mu0)/|B1⊥|.
The ratio of the left-hand side of equation (5.17) to is right-hand side is of the

order of ε2, which implies that we can neglect the left-hand side of equation

(5.17) when comparing it to the right-hand side, reducing it to

∇̃⊥ ·B1⊥ = 0. (5.19)

Appying the operator ∇̃⊥· to equation (5.16) and using (5.19) we obtain

∂

∂z
∇̃⊥ · u1 = 0. (5.20)

Applying ∇̃⊥· to equation (5.11) and use (5.19) we obtain

∇̃⊥ · u1 = 0 z = 0, L (5.21)
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From equations (5.20) and (5.21) it follows that

∇̃⊥ · u1 = 0. (5.22)

Next, applying the same operator to equation (5.15) rewritten in terms of the

new independent variable σ and using equations (5.19) and (5.22) results in

∇̃2
⊥P = 0. (5.23)

If we consider the kink oscillations and take only perturbation of all variables

proportional with exp(iϕ), equation (5.23) reduces to

r
∂

r
∂r
∂P

∂r
− P = 0. (5.24)

Note for the above result we used the stretching variable σ to neglect small

terms. The solution to equation (5.24) is regular inside the tube, decaying far

from the tube and satisfying boundary condition (5.9) is

P = f(t, z)r, r < a; P = f(t, z)a2/r, r > a. (5.25)

with f(t, z) an arbitrary function.

Writing the r-component of equation (5.15) at the tube boundary inside and

outside the tube and use equation (5.25) we obtain

∂vri
∂t

+ Ui
∂vri
∂z

= − f
ρi

+
B0

µ0ρi

∂bri
∂z

(5.26)

∂vre
∂t

+ Ue
∂vre
∂z

=
f

ρe
+

B0

µ0ρe

∂bre
∂z

(5.27)

Since bri = bre with multiplying equation (5.26) by ρi, equation (5.27) by ρe,

adding the results and using equations (5.10) and (5.11) we arrive at an equation

for η.

ρi

(
∂

∂t
+ Ui

∂

∂z

)2

η + ρe

(
∂

∂t
+ Ue

∂

∂z

)2

η − 2B2

µ0

∂2η

∂z2
= 0, (5.28)
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an equation describing the displacement of the tube axis. Since we canceled out

the dependence on ϕ by assuming that the perturbations of all variables are

proportional to exp(iϕ) this implies that η(z, t) is a complex-valued function,

i.e. η = ηR + iηI . For a real value function we need to take R(η) instead of η,

that leads to

η = ηR cosϕ− ηI sinϕ.

In Cartesian coordinates the loop’s displacement in the x = r cosϕ and y =

r sinϕ directions, ξx and ξy, are given by (see, e.g. Ruderman 2010)

ξx = ηR, ξy = −ηI .

We assume a quasi-stationary equilibrium, so that the characteristic time vari-

ation of equilibrium quantities (tch) is much longer than the period of kink

oscillations (P ) and introduce the small parameter ε � 1 so that P = εtch.

Using the definition of the period of oscillations we can write

L(µ0ρch)
1/2

B0

= εtch =⇒ B0 = ε−1
L(µ0ρch)

1/2

tch
, (5.29)

meaning that we can introduce a scaled magnetic field, so that B̃0 = εB0. As

a result, the equation describing the dynamics of the kink oscillations can be

written as

ρi

(
∂

∂t
+ Ui

∂

∂z

)2

η + ρe

(
∂

∂t
+ Ue

∂

∂z

)2

η − 2ε−2B̃2

µ0

∂2η

∂z2
= 0. (5.30)

The above equation must be solved subject to the standard boundary conditions

(5.14), i.e.

η(z = 0, z = L) = 0.

Following the solution method proposed by Ruderman (2011a), we will solve

equation (5.30) using the Wentzel-Kramers-Brillouin (WKB) method (see, e.g.

Bender and Ország 1987) and assume that the solution of the equation will be
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of the form

η =
∞∑
k=0

εkSk(z, t) exp

[
i

ε
Φ(t)

]
. (5.31)

Expanding S in series

S = S0 + εS1 + ..., (5.32)

substituting equations (5.31) and (5.32) into equation (5.30), and collecting

terms of the order of ε−2 we obtain

∂2S0

∂z2
+

Ω2

c̃2k
S0 = 0, (5.33)

where

Ω =
dΦ(t)

dt
, c̃2k =

2B̃2

µ0[ρi(z, t) + ρe(z, t)]
.

This approximation is sometimes called the approximation of geometrical optics.

Equation (5.33) must be solved subject to the boundary condition S0 = 0 when

z = 0 and z = L. Equation (5.33) together with the line-tying condition form

an eigenvalue problem in which Ω is the eigenvalue and Ω2 is a real function.

In the next order of approximation (also called the approximation of physical

optics), we collect the terms of the order of ε−1 and equation (5.30) reduces to

∂2S1

∂z2
+

Ω2

c̃2k
S1 =

2iΩ

c̃2k

[
∂S0

∂t
+
S0

2Ω

dΩ

dt
+
ρiUi + ρeUe
ρi + ρe

∂S0

∂z

]
, (5.34)

that has to be solved subject to the boundary condition S1(z = 0, z = L) = 0.

The boundary-value problem determining S1 has a solution only when the RHS

of equation (5.34) satisfies the compatibility condition, i.e. the orthogonality to

S0. After multiplying the RHS of equation (5.34) by S0 and integrating with

respect to z in the interval (0, L) we obtain (similar to Ruderman 2011a) that

the compatibility condition reduces to

ω

∫ L

0

S2
0

c2k
dz = const., (5.35)

where

ω = ε−1Ω, ck = ε−1c̃k.
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As a consequence, the dynamics of kink oscillations in coronal loops is fully

described by the system of equations (5.33) and (5.35). In deriving equation

(5.35) we took into account the mass conservation equation, relating the plasma

flow and its density
∂ρ

∂t
+
∂(ρU)

∂z
= 0.

5.5 Time dependent density

This density profile would correspond to an initial expansion of the loop when

the height of the loop is less than the scale-height (assuming expansion into an

isothermal 1 MK corona, this height would correspond to 47 Mm). In this case,

we may expect that the amplitude of oscillations increases as the loop expands.

The function S0 = A(t) sin(πz/L(t)) is a solution for equation (5.33). Were

by A(t) we refer to the amplitude of oscillations at a given time t. Using

equation (5.35) we find the following relation,

ω

2

A2(t)

c2K(t)
L(t) = ct.

where ω = πcK(t)/L(t), so the relation simplifies into

π

2

A2(t)

cK(t)
= ct.

Rewriting this into a different form we obtain the following statement

A2(t)

cK(t)
=
A2(0)

cK(0)

Hence, the amplitude of oscillations behaves like

A(t) = A(0)

(
ck(t)

ck(0)

)1/2

= A(0)

(
L(t)

L(0)

)1/2

(5.36)

where A(0), ck(0) and L0 are the amplitude of oscillations, the kink speed and

the length of the loop at t = 0.
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A particular case to discuss is when the expansion of the loop occurs linearly

with time and we write that

L(t) = L0 + vrist (5.37)

where L0 is the length of the loop at the initial time and vris is the rising speed,

i.e. at the TR level (L0 = 3π Mm) and vr is the rising speed, here assumed

constant. Accordingly, the kink speed becomes

c2k = c2kf exp

[
L0 + πvrist

πH
sin

πz

L0 + vrt

]
(5.38)

where

c2kf =
2B2

µ0ρf (1 +D)
.

Returning to the general case, the equations describing the dynamics of kink

oscillations are

∂2S0

∂z2
+
ω2

ck2
S0 = 0, ω

∫ L

0

S2
0

c2k
dz = const. (5.39)

Let us introduce a new set of dimensionless quantities

ξ =
z

L0

, τ =
πvrist

L0

, ω̃ =
ωL0

ckf
, S̃0 =

S0

L0

. (5.40)

In the new variables the equations to be solved transform into

∂2S̃0

∂ξ2
+ exp

[
−L0(1 + τ)

πH
sin

πξ

1 + τ

]
ω̃2S̃0 = 0, (5.41)

and

ω̃

∫ 1+τ

0

S̃2
0 exp

[
−L0(1 + τ)

πH
sin

πξ

1 + τ

]
dξ = const. (5.42)

that should be solved subject to the boundary conditions S0(ξ = 0; ξ = 1+τ) =

0. The solution of equation (5.41) can be found numerically using, e.g. the

shooting method. In Figure 5.3 we display first the variation of periods of oscil-

lations of the fundamental mode and its first harmonic for three different values
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Figure 5.3: The variation of the periods of the fundamental mode and its first
harmonic with the dimensionless time variable τ for three different values of
stratification: H=70.5 Mm (dotted line), H=47 Mm (solid line), and H=23.5
Mm (dashed line)

of H in terms of the dimensionless time variable, τ . The bands for each period

are clearly labeled in the figure. The three distinct value of periods were ob-

tained for three values of scale-height keeping the initial length of the loop at 3π

Mm. The dotted line represents the case of a scale-height of 70.5 Mm, which,

assuming a plasma in hydrostatic equilibrium, would correspond to a plasma

temperature of 1.5 MK. The solid line is plotted for a loop expanding into a

corona where the constant scale-height is 47 Mm, that would correspond to a 1

MK hot plasma. Finally, the dashed line stands for an expansion of the loop into

a plasma where the density scale-height is 23.5 Mm, corresponding to a plasma

temperature of 0.5 MK. The two bands for the periods clearly show that the two

oscillations are differently affected by the expansion, i.e. change in the length

of the loop. This is also obvious in Figure 5.4 where we plotted the ratio of the

periods of the fundamental and first harmonic as a function of the time variable,

τ . The plot clearly shows that the oscillations of a loop expanding into a ’hot’

plasma (i.e. large scale-height) are the least affected, but in all three cases the
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Figure 5.4: The variation of the P1/P2 period ratio with respect to the dimen-
sionless parameter τ , for a loop expanding in the solar corona with persisting
semi-circular shape. The meaning of each line-style is identical to Figure 5.3.

period ratio decreases with time. We should note here that the periods shown in

Figure 5.4 do not start at the value of 2 because at the start of their expansion

through the solar corona, loops are already stratified and the least stratified is

the case that corresponds to H = 1.5 MK. Let us make a final note: in observa-

tions, the identification of periods in coronal loops is a dynamical process. i.e.

in EUV the intensity is measured in one location (or mega-pixel to reduce er-

rors) for a long time-period. The duration of observation vary, and mostly they

are driven either by the availability of the instrument or by the limited life-time

of oscillations before they are damped by, e.g. resonant absorption, although

observations show that not all loop oscillations damp (probably these oscilla-

tions are maintained by a constant lateral buffeting). Typically, for damped

oscillations, the detection time is a few periods with a range of 6.7-90 minutes

(Aschwanden 2004). In terms of the dimensionless quantity τ , this range would

correspond to τ = 0.64− 8.6. Although the lower limit is too small to count in

the effect of expansion, a duration of τ = 8.6 would add an important effect in
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studying the transverse kink oscillations. Figure 5.4 shows that for one given

value of internal structuring, the value of the period ratio can change also be-

cause of the expansion of the loop. Although the periods shown in Figure 5.3

display a monotonic increase with the parameter τ , in reality these values will

saturate, the saturation occurring faster for those modes that propagate in a

highly structured plasma (e.g. for the case of H=23.5 Mm, the saturation value

of periods is about 400 seconds and the saturation starts at about τ = 20). In

addition, the period ratio for all cases discussed here tend to same value (near

1) for large values of τ . We need to mention here the very important fact that

the effect of increase on the periods of oscillations and the decrease of the period

ratio is relevant only in the expansion phase of the loop.

Analytical solutions of the equations. (5.41) can be obtained for the limiting

case of a loop at the beginning of its expansion through the solar corona, i.e.

small values of τ , see Section 5.7.

5.6 Solutions to the wave equation in the case

of the loop at the beginning of its expan-

sion

An interesting insight into the character of the solution of the governing equation

can be obtained analytically in the limiting case of

ζ = L0(1 + τ)/πH � 1,

i.e. we restrict ourself to the first part of the emergence into the solar corona.

In this case the argument of the exponential function in equation (5.41) can

be expanded (keeping only the first two terms) and the equation to be solved

reduces to
∂2S̃0

∂ξ2
+ ω̃2S̃0 = − sin

πξ

1 + τ
ζS̃0, (5.43)

Since we are looking for periodic solutions and we expect that both the ampli-

tude and frequency will depend on time, we will employ the Poincaré-Lindstedt
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method (Meirovitch 1970) to find corrections to the eigenfunctions and eigen-

frequencies (it can be shown that this method is similar to the re-normalization

technique used by Ballai et al 2007 in the case of dispersive shocks). We are

looking for solutions in the form of series and write

S̃0 =
∞∑
k=1

ζkS̃
(k)
0 , ω̃ =

∞∑
k=1

ζkω̃(k), (5.44)

where the functions Si are periodic functions. We first concentrate on the

fundamental mode. After inserting the expansions (5.44) into the governing

equation (5.43), we collect terms proportional to subsequent powers of ζ. In

the first order of approximation, collecting terms ∼ O(ζ0), results in

∂2S̃
(0)
0

∂ξ2
+ ω̃(0)2S̃

(0)
0 = 0. (5.45)

Solving this equation, subject to the mentioned boundary conditions, yields in

the case of the fundamental mode

S̃
(0)
0 ∼ sin

πξ

1 + τ
, ω̃(0) =

π

1 + τ
. (5.46)

In the next order of approximation (i.e. terms ∼ O(ζ)) we obtain

∂2S̃
(1)
0

∂ξ2
+ ω̃(0)2S̃

(1)
0 = − π2

(1 + τ)2
sin2 πξ

1 + τ
−

− 2π

1 + τ
ω̃(1) sin

πξ

1 + τ
, (5.47)

that has to be solved subject to the boundary conditions

S̃
(1)
0 (ξ = 0, ξ = 1 + η) = 0. (5.48)

The last term in equation (5.47) will cause secular growth of the solution, there-

fore rendering the solution S1 non-periodic. To suppress this possibility, we

choose ω̃1 = 0. As a result, the solution of equation (5.47) together with the
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boundary conditions is simply written as

S̃
(1)
0 ∼ sin

πξ

1 + τ
+

3

2
cos

πξ

1 + τ
− 1

6

(
3 + cos

2πξ

1 + τ

)
. (5.49)

In the next order of approximation we collect terms O(ζ2) and obtain

∂S̃
(2)
0

∂ξ
+ ω̃(0)2S̃

(2)
0 = −ω̃(0)2S̃

(1)
0 sin

(
πξ

1 + τ

)
−

2ω̃(0)ω̃(1)S̃
(0)
0 . (5.50)

Using the expression of ω̃(0), S̃
(0)
0 and S̃

(1)
0 determined earlier, the RHS of the

above equation can be written as

RHS =

[
π2

3(1 + τ)2
− 2πω̃(2)

1 + τ

]
sin

πξ

1 + τ
+ A sin2 πξ

1 + τ
+

B sin
2πξ

1 + τ
+ C sin

3πξ

1 + τ
, (5.51)

where the coefficients of higher harmonics (A, B and C) are not needed for our

discussion. In order to prevent non-periodic behaviour we need to impose the

condition that the coefficient of the first term is zero, leading to

ω̃(2) =
π

6(1 + τ)
. (5.52)

As a result, the eigenfunction and eigenfrequency of fundamental mode oscilla-

tions can be written as

S̃0 = sin
πξ

1 + τ
+ ζ

[
3

2
cos

πξ

1 + τ
− 1

6

(
3 + cos

2πξ

1 + τ

)]
,

ω̃ =
π

1 + τ
+ ζ2

π

6(1 + τ)
, (5.53)

meaning that the change in the frequency due to expansion is a second order

effect. It is easy to show that the period of the fundamental mode in this
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approximation can be written as

P1 =
12(1 + τ)

6 + ζ2
, (5.54)

proving the increase of the period P1 with τ seen in Fig 5.3.

Repeating the same method for the first harmonic, where the eigenfunction

and eigenfrequency in the zeroth-order approximation are

S̃0 = sin
2πξ

1 + τ
, ω̃(0) =

2π

1 + τ
,

we obtain that

ω̃ =
2π

1 + τ
+ ζ2

2π

15(1 + τ)
, (5.55)

meaning that the period of the first harmonic in this approximation behaves

like

P2 =
15(1 + τ)

15 + ζ2
, (5.56)

showing an increasing tendency with respect to τ . Now, using equations (5.54)

and (5.56) we can calculate the period ratio of the fundamental mode and its

first harmonic as

P1

P2

≈ 2

(
1− ζ2

60

)
= 2

[
1− L2

0(1 + τ)2

60π2H2

]
, (5.57)

so that the change in the period ratio is very small but decreases with ζ.

The results confirm the tendency of periods to increase with time and of the

period ratio to decrease with time.
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5.7 Non-circular emergence

In reality, the expansion of a loop in the empty corona so that the semi-circular

shape is preserved is unlikely since the footpoints have to move in a much denser

plasma than the apex of the loop. That is why in this section we will assume

that the expansion rate in the vertical direction is larger than the expansion of

footpoints in the horizontal direction. The expansion still starts at the TR level

where the shape of the loop is semi-circular and assume that the process remains

isothermal. As a result of different expansion rates, the loop evolves so that the

shape becomes more elliptical. The properties of transverse loop oscillations in

an elliptical coronal loop were studied recently by Morton and Erdélyi (2009)

assuming that the semi-elliptical shape is reached in the emerging stage, before

reaching a semi-circular shape. They found that the difference in P1/P2 period

ratio between the circular and elliptical shape is up to 6%.

Since the dynamics is going to be different over the two directions, it is more

convenient to introduce a polar coordinate system in which

x = a(t) cos θ, z = b(t) sin θ, (5.58)

with ȧ(t) < ḃ(t), the over-dot denoting the derivative with respect to time. The

length of the loop is covered by the parameter θ that varies now between 0 and

π. It is more convenient to use the coordinate along the loop, s, therefore the

dynamics of transverse kink oscillations is described by

ρi

(
∂

∂t
+ Ui

∂

∂s

)2

η + ρe

(
∂

∂t
+ Ue

∂

∂s

)2

η − 2B2

µ0

∂2η

∂s2
= 0, (5.59)

A key parameter in our discussion is going to be the arc-length that is defined

as
∂s

∂θ
=
√
a(t)2 sin2 θ + b(t)2 cos2 θ = α(θ, t). (5.60)

In order to solve equation (5.59) we would need to express the density as function

of s and t. However, it turns out that it is much easier to deal with the variable
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θ instead. Therefore we express the derivatives in the governing equation as

∂

∂s
=

1

α

∂

∂θ
,

∂2

∂s2
=

1

α2

∂2

∂θ2
− sin 2θ(a(t)2 − b(t)2)

2α4

∂

∂θ
. (5.61)

Assuming again a quasi-stationary equilibrium, similar as in the previous sec-

tion, and introducing the small parameter, ε, in the same way as presented in

equation (5.6) the governing equation for transverse kink oscillations can be

written as

∂2η

∂t2
+

2

α

(
ρiUi + ρeUe
ρi + ρe

)
∂2η

∂θ∂t
+

1

α2

[
ρiU

2
i + ρeU

2
e

ρi + ρe
−

2ε−2B2
0

µ0(ρi + ρe)

]
∂2η

∂θ2
−

[
2
ρiUi + ρeUe
ρi + ρe

aȧ sin2 θ + bḃ cos2 θ

α3
+

+
ρiU

2
i + ρeU

2
e

ρi + ρe

sin 2θ(a(t)2 − b(t)2)
2α4

−

2
ε−2B2

0

µ0(ρi + ρe)

sin 2θ(a(t)2 − b(t)2)
2α4

]
∂η

∂θ
= 0, (5.62)

that has to be solved subject to the boundary conditions η(θ = 0, θ = π) = 0.

Again, we will solve this equation using the WKB approximation presented

earlier and suppose a solution of the form

η =
∞∑
k=0

εkSk(θ, t) exp

[
i

ε
Φ(θ)

]
. (5.63)

In the first order of approximation equation (5.62) reduces to

∂2S0

∂θ2
− sin 2θ(a2 − b2)

2α2

∂S0

∂θ
+
α2Ω2

c̃2K
S0 = 0, (5.64)

together with the usual boundary conditions at the two ends of the loop. In

the next order of approximation we obtain

∂2S1

∂θ2
− sin 2θ(a2 − b2)

2α2

∂S1

∂θ
+
α2Ω2

c̃2k
S1 =
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=
2iαΩ

c̃2k

[
∂S0

∂t
+
αS0

2Ω

∂Ω

∂t
+
ρiUi + ρeUe
ρi + ρe

∂S0

∂θ

]
. (5.65)

This equation has to be solved subject to the boundary condition S1(θ = 0, θ =

π) = 0. Again, the equation for S1 will have solution if the right-hand side of

the above equation satisfies the compatibility condition, i.e. the orthogonality

to S0. Following the same solving procedure as presented earlier, it is easy to

show that the compatibility condition reduces to

ωα

∫ π

0

S2
0

c2k
dθ = 0 (5.66)

Therefore, the system of equations (5.64) and (5.66) will determine completely

the dynamics of the expanding coronal loop.

Let us assume that at t = 0 the loop is semi-circular and its length is L0. In

order to reproduce the different movement over the two directions, we introduce

two different expansion speeds in the horizontal (vh) and vertical (vv) direction,

so that vh < vv. Again, we suppose that the motion occurs linearly in time and

write the dynamics over the two axes as

x =

(
L0

π
+ vht

)
cos θ, z =

(
L0

π
+ vvt

)
sin θ. (5.67)

Let us introduce a new set of dimensionless quantities

τ =
vvt

L0

, ω̃ =
ωL0

ckf
, α̃ =

α

L0

, V =
vh
vv
, S̃0 =

S0

L0

. (5.68)

In the new variables, the governing equations become

∂2S̃0

∂θ2
+ α̃2ω̃2 exp

[
−L0(1 + τπ)

πH
sin θ

]
S̃0+

sin θ cos θ[τ 2π2(1− V 2) + 2τπ(1− V )]

1 + τ 2π2(sin2 θ + V 2 cos2 θ) + 2τπ(sin2 θ + V cos2 θ)
× ∂S̃0

∂θ
= 0, (5.69)

and

ω̃α̃

∫ π

0

(
S̃2
0

c̄2k

)
dθ = 0, (5.70)
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Figure 5.5: The same as in Figure 5.3, but here we assume that the expansion
of the loop occurs such that the loop evolves into a loop with a semi-elliptical
shape. The meaning of different line-styles is identical to Fig 5.3.

where c̄k = ck/vv.

Figure 5.5 displays the evolution of the period of oscillations for the funda-

mental mode and its first harmonic for three different values of L0/H, similar

values as used in the previous section. Comparing the findings in Figure 5.3

and Figure 5.5, the effect of the expansion into an elliptical shape compared

to the constant semi-circular shape is evident. As time progresses the period

of oscillations tend to a higher value for elliptical shape, however this conclu-

sion is more true for the fundamental mode. The period of the fundamental

mode corresponding to an expansion in a solar corona where scale height is only

23.5 Mm (corresponding to a temperature of 0.5 MK in a loop in hydrostatic

equilibrium) saturates rather quickly.

A more significant change is evident when comparing the P1/P2 period ratio

of the expansion into an elliptical shape shown in Figure 5.5 to the variation

of the period ratio for a semi-circular shape. For the same time interval the

decrease of the period ratio is much more significant, and similar to the previous
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Figure 5.6: The same as in Figure 5.4, but here we assume that the expansion
of the loop occurs such that the loop evolves into a loop with a semi-elliptical
shape. The meaning of different line-styles is identical to Fig 5.3.

case, the period ratio is more affected for the case of strong stratification, i.e.

small H.

We ought to mention here that the temporal dependence of the length of

the loop (linear variation with time) would mean that the increase in the size

of the loop occurs at a constant rate, i.e. dL/dt = ct.

5.8 Conclusions

The solar corona is a very dynamical environment where changes in the dynam-

ical state of the plasma and field occur on all sort of time scales. In the present

study we combined for the first time two kinds of dynamical events: the time-

evolution of a coronal loop through its expansion into the ’empty’ corona and

the transverse kink oscillations of coronal loops. The emergence and expansion

of a coronal loop through the solar atmosphere is a very complex phenomenon,

but here we reduced our model to a simplified process, where the expansion
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is solely described by the change in the length of the loop with an associated

temporal equilibrium density variation.

The governing equation for kink oscillations was solved in the WKB approx-

imation when the boundary conditions are time-dependent. As expected, due

to the change in the length of the loop, the amplitude and periods of oscillations

increase with time, however, the period ratio of the fundamental mode and its

first overtone decreases. This last physical parameter is of paramount impor-

tance for the remote determination of density structuring of coronal loops with

the help of seismological approaches. In the first instance we regarded the loop

to have an initial semi-circular shape that is maintained through the expan-

sion phase. Later, this restriction was lifted based on the natural assumption

that the expansion into the vertical direction (i.e. in the direction of density

decrease) occurs much easier than in the horizontal direction. In this limit, the

loop evolves into a semi-ellipse, with the major axis in the vertical direction.

Comparing the results of the two approaches it is clear that the behaviour of the

period ratio is sensitive to the geometrical shape of the loop, a more significant

drop in the P1/P2 ratio being achieved in the second case. Although our numer-

ical results were obtained for three different structuring degrees (measured by

the ratio of the initial loop length to the density scale-height) it is also evident

that both the temporal change in the loop length and the stratification will

have the same effect upon the period ratio resulting in a mutual amplification

of the effect.

Our model predicts that the amplitude of oscillations increases with time,

however due to the particular choice of density, damping processes were ne-

glected. Once the density is allowed to vary also in radial direction, according

to the theory of resonant absorption (see, e.g. Goossens et al. 1992, Rudeman

and Roberts 2002), loops will damp very quickly with the resonant position

displaying a steady motion due to the change of the length of the loop. The

amplitude of oscillations can also be damped due to the cooling of the plasma

(Morton et al. 2010), an effect that was also neglected here. In an expanding

loop, the growth of the amplitude due to emergence and decay of amplitude due

to resonant damping or cooling will be competing processes and the competition

between these two effects.
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Chapter 6

2D Magnetic reconnection in

stratified atmosphere

6.1 Introduction

Magnetic reconnection, observed under many different conditions, is one of the

key physical processes that allow coherent self-organization and relaxation on

time-scales faster than the global dissipation time in magnetized plasmas. What

is magnetic reconnection? One could describe it as local reconfiguration and

annihilation of magnetic field resulting in relaxation of the global topology of

the magnetic configuration and transfer of the energy stored in the magnetic

field into kinetic and thermal energy of the plasma. In the ideal MHD approxi-

mation of a magnetized plasma, the Lorentz force perfectly binds both ions and

electrons to magnetic field-lines by assuming the Larmor radii of particles’ gy-

ration around the field-lines to be infinitely small. Then, Faraday’s law insures

that the magnetic field-lines move together with the quasi-neutral plasma i.e.,

the magnetic field is frozen into the plasma fluid when collisional and inertial

effects are ignored. As a result, ideal MHD allows no change in the topology

of magnetic field immersed in plasma fluid and is therefore incapable of de-

scribing the process of magnetic reconnection. In order to allow the magnetic

field to reconnect, dissipative and other physical processes become important

locally on spatial scales smaller than the system size have to be included in

the plasma description. Depending on the magnitude of the ambient magnetic

99



Chapter 6: 2D Magnetic reconnection in stratified
atmosphere 6.1

field, surrounding plasma temperature and density, various ’non-ideal’ effects

can become the main mechanism for breaking the magnetic field lines. These in-

clude, but are not limited to, collisional resistivity, inertial separation of ion and

electron fluids due to their mass density difference, anisotropy due to finite ion

and electron Larmor radius effects, and combinations thereof. Below, we briefly

describe what is known to date about the magnetic reconnection phenomenon.

In nature, the phenomenon has been directly measured in the solar wind

see, e.g. Phan (2006), the Earth’s magnetotail (Oieroset et al. 2002) and mag-

netopause (Frey et al. 2003), Vaivads et al. 2004). There is much evidence

that magnetic reconnection is responsible for the generation and evolution of

solar flares, see e.g. Linton & Priest (2003), Nandy et al. (2003) and coronal

mass ejections (CMEs) (Linker et al. 2003), while it has also been proposed as

the mechanism for solar coronal heating by Falconer et al. (1997). Although

presently there is much less astrophysical data available, magnetic reconnection

processes have been conjectured to play an important role in heating of the

interstellar, intergalactic and intracluster media, acceleration and relaxation of

jets, and dynamics of accreting systems see, e.g. Gary (2002), Colgate et al.

(2001). Jet-like events, first reported by Brueckner & Bartoe (1983), are char-

acterised by non-Gaussian spectral line profiles. Dere et al. (1991) suggested

that they are produced by bi-directional jets as a result of magnetic reconnec-

tion. To date, these jetlike events (often called explosive events) are mainly

observed in spectral lines formed at transition region temperatures as reported

in studies by Dere (1994), Chae et al. (1998), Innes et al. (2001), Madjarska

& Doyle (2003), although observations of explosive events in chromospheric

lines are also reported. For example, Madjarska & Doyle (2002) presented the

temporal evolution of different plasma temperature using high-cadence (10 s)

observations obtained with the Solar Ultraviolet Measurement of Emitted Ra-

diation (SUMER) spectrometer, and found a time delay in the response of the

S VI 933 A (2105K) line with respect to Ly 6 (2104K), with the Ly 6 line

responding earlier. They concluded that the jet-like events may first appear

at chromospheric temperatures. In a follow-up work, Doyle et al. (2005) re-

ported on a joint SUMER, Coronal Diagnostic Spectrometer (CDS) on board

the SOHO) and TRACE imager study, confirming the possibility that some jet-
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like events originate in the chromosphere. They further suggested that jet-like

events could be divided into two types: one formed in the chromosphere and

the other formed in the transition region. Some of the observed features are the

result of spicules and/or macrospicules (Madjarska & Doyle 2003; Madjarska

et al. 2006), while others are the result of high velocity flows in small loops

(Teriaca et al. 2004). In a more recent work, Madjarska et al. (2009) presented

observational data relating explosive events to a surge and demonstrated that

the division of small-scale transient events into a number of different subgroups,

for instance explosive events, blinkers, spicules, surges or just brightenings, is

ambiguous, implying that the definition of a feature based only on either spec-

troscopic or imaging characteristics as well as insufficient spectral and spatial

resolution can be incomplete.

Several numerical models were developed to study jet-like events. Sarro

et al. (1999) used a 1D magnetic flux-tube model to simulate the temporal

evolution of UV emission line profiles, e.g. C IV 1548.2 A, in response to

energy perturbations located below the transition-region. The maximum blue-

shifts they obtained reach values of the order of 100 km s−1.

Though magnetic reconnection is undoubtedly a three-dimensional (3D)

phenomenon, to date, no true 3D phenomenological description of magnetic

reconnection agreed upon exists in the community. Since we investigate only

two-dimensional (2D) systems in this work, here we limit the discussion to that

of 2D magnetic reconnection, as well. Two phenomenological descriptions of 2D

steady-state magnetic reconnection in the resistive MHD limit were proposed

early on. One, by Sweet (1957) and Parker (1963), known as Sweet-Parker re-

connection, describes evolution of a long and thin current layer, whose length

is of the order of the system size and width is proportional to square root

of resistivity. The other, by Petschek, proposed a localized reconnection region

(Petschek proposed that such localization would be accomplished by slow shocks

along the magnetic field separatrices) which would allow for faster plasma inflow

and faster reconnection of magnetic field lines. The Sweet-Parker description of

resistive reconnection has been confirmed by numerous numerical simulations

i.e Uzdensky et al (2000), however its predicted reconnection rate is too slow for

that observed both in space (Birn et al. 2001) and in laboratory experiments
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(Cothran et al. 2005), Yamada et al. 2006). On the other hand, while there is

no experimental or computational evidence of slow shocks emanating from the

reconnection region, as proposed by Petschek, localization of the reconnection

layer appears to be the key to the so-called ’fast reconnection’ , which allows for

release of magnetic energy in a period of time consistent with observations (see,

e.g. Linker et al. 2003, Shay et al. 2004). Numerical simulations have confirmed

that both of the mechanisms proposed to produce such instability-induced lo-

cally enhanced resistivity (Malyshkin et al. 2005) and two fluid and/or kinetic

effects (Birn et al. 2001) lead to fast reconnection (Breslau et al. 2003).

Innes & Tóth (1999) presented a 2D MHD study on jet-like events with

different initial conditions, representative of different regions in which the re-

connection occurs, e.g. the corona and chromosphere. Their conclusion was

that high-velocity components in the profiles of lines formed around 105 K can

be obtained in both cases, irrespective of the initial conditions. However, heat

conduction was not included, and no brightening was found at the zero velocity

position of the spectral line. In their model, the initial equilibrium state consists

of two regions of oppositely directed magnetic field lines, with a narrow current

sheet between the two regions.

Yokoyama & Shibata (1995, 1996) performed 2D magnetic reconnection to

study coronal X-ray jets using both oblique and vertical initial coronal mag-

netic fields. The temperature of the hot X-ray jets they obtained reach 3 times

the coronal temperature. Moreno-Insertis et al. (2008) considered magnetic

reconnection triggered by flux emergence from below the photosphere using a

3D MHD model. Very strong X-ray jets with high temperature (3×107K at the

reconnection site) and high velocity (peak velocity 400 km s−1) were produced.

In their model, the flux emergence is very strong (maximum field strength 3.8

kG), which plays a very important role in forming such strong jets. Isobe et

al. (2008) focused on the process of magnetic flux emergence, and presented

simulations of magnetic flux emergence driven by the upward convective mo-

tion. They found that small-scale horizontal magnetic fields could be produced

even when the initial magnetic field is uniform and vertical. The horizontal

magnetic fields emerging from the convection zone into the photosphere un-

dergoes magnetic reconnection with the background vertical field, which is a
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source of high-frequency MHD waves that may contribute to coronal heating or

solar wind acceleration. Murray et al. (2009) presented another simulation of

magnetic flux emergence, where the long-term evolution of magnetic reconnec-

tion was initiated by flux emergence. All the flux emergence studies mentioned

above did not include heat conduction and radiative effects. The latter will

reduce both the temperature and the velocity of the outflow jets. Litvinenko

& Chae (2009) discussed magnetic reconnection at different heights in the solar

atmosphere, and found that the temperature and speed of the outflow jets vary

by several orders. Their study was based on an extended Sweet-Parker model

(Parker 1957, 1963), assuming that the inflowing magnetic energy is completely

converted in the current sheet into the thermal and kinetic energies of the out-

flowing plasma.

Magnetic reconnection at the current sheet is initiated by introducing lo-

calized anomalous resistivity. Roussev et al. (2001) carried out 2D MHD

simulations, where jet-like events are formed during the process of magnetic

reconnection. In their model, the initial magnetic field is parallel to the yaxis

(vertical), and there is a thin current concentration formed along the y-axis.

Magnetic reconnection is initiated by a localized increase of the magnetic diffu-

sivity in the current concentration. Blue-shifts of the order of 100 kms−1 were

obtained. By using the same model, they further extended the work and per-

formed simulations under different physical conditions (Roussev et al. 2001a,

2001b). In order to investigate the events they used a 2D MHD model from an

unstratified to a stratified Sun by introducing gravity and resistivity in their

initial magneto-hydrostatic solution. Studying mangnetic reconnection in this

2D environment the dynamics change from an initial stage, straight magnetic

field lines to a more complex 2D X-point reconnection due to magnetic field

expansion by inclusion of gravity in the initial states. They studied several

cases where the magnetic field expands faster or slower with height. The faster

it expands the slower and more complex the magnetic reconnection becomes at

the early stages of the evolution.

Inspired by the work of Rousev et al. (2002) (hereafter, referred to as

ROU02) we decided to study a similar reconnection process but taking into

account a different magnetic field and a more complex stratified environment
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where the reconnection process is not confined to a a very small region in the

middle of the simulation box. In this work, we also attempt to advance the

understanding of the fast reconnection phenomenon through Hall MHD and its

relevance to the reconnection process. We are going to use LARE2D (see Arber

et al. 2001) in order to solve the system of equations.

Lare2D is a Lagrangian remap codes for solving the MHD equations in 2D.

The code uses a staggered grid and is second order accurate in space and time.

The use of shock viscosity and gradient limiters make the code ideally suited

to shock calculations. It solves nonlinear MHD equations with user controlled

viscosity, resistivity, gravity, Hall term, partially ionised hydrogen equation of

state, Cowling resistivity and parallel thermal conductivity. IN ROU02 the

induced resistivity was considered as nonuniform. Here, we take resitivity to be

constant, and compare with ROU02 study for various values of resistivity.

6.2 Physical setup of the problem

In this section we present our 2D model for magnetic reconnection in stratified

atmospheres. The MHD equations including gravity and resistivity are given in

section 6.2.1. In section 6.2.2 we provide the set of initial conditions followed

by numerical experiments in 6.3.

6.2.1 MHD equations

The MHD equations that include gravity and resistivity terms are

Dρ

Dt
= −ρ∇ ·U, (6.1)

ρ
DU

Dt
= −∇ρ+ j×B + ρg−∇ · τ, (6.2)

∇ ·B = 0, (6.3)

DB

Dt
= (B · ∇)U−B∇ ·U−∇× [η∇×B], (6.4)

De

Dt
= −γe∇ ·U +Q. (6.5)
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Table 6.1:
Phys. quantity Notation Typical Value
Length L0 1.5× 106(m)
Velocity VA0 1.293× 105(ms−1)
Time tA0 11.6(s)
Gravity g0 2.7× 102(ms−2 )
Density ρ0 5.02× 10−11(kgm−3)
Temperature T0 1× 105(K)
Magnetic field B0 0.0008(T)

where D/Dt = ∂/∂t + U · ∇, and γ, ρ, p, e, U, B, j, g, η, τ , Q denote

the adiabatic index, mass density, kinetic gas pressure, thermal energy, fluid

velocity, magnetic field, electric current density, the field of gravity, magnetic

diffusion coefficient, viscous stress tensor and dissipation term. The current, j,

and pressure, p, are given by

j = ∇×B, p = e(γ − 1) = ρT. (6.6)

6.2.2 Initial states

We start by denoting a typical length scale, velocity, time scale, mass density,

temperature, kinetic gas pressure, thermal energy, magnetic field strength, and

electric current density, by L0, VA0, tA0, ρ0, T0, p0, e0, B0, and j0, respectively.

All these parameters are chosen to represent the quiet solar transition region.

Assigned values for these parameters can be found in Table 6.1 (in SI units).

Dimensionless quantities are denoted by t∗, u, b, g∗, ρ∗, T ∗, p∗, e∗ and j∗.

Relations between the physical quantities and normalised variables are given

by

t∗ =
t

tA0
,u =

U

VA0
,b =

B

B0

,

g∗ = g
tA0
VA0

, ρ∗ =
ρ

ρ0
, T ∗ =

T

T0
,

p∗ =
p

p0
, e∗ =

e

e0
, j∗ =

j

j0
.
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Tthe normalised coordinates x∗ and y∗ are

x∗ = x/L0, y
∗ = y/L0,

where we have x∗min ≤ x∗ ≤ x∗max and y∗min ≤ y∗ ≤ y∗max with x∗min = −x∗max and

y∗min = −y∗max. Initially the plasma is static, i.e. u = 0, and the initial magnetic

field, b = (bx, by), is prescribed by

bx(x
∗, y∗) = b0

(
xsc
ysc

) x∗
xsc

arcsinh

 x∗

xsc
−

√
1 +

(
x∗

xsc

)2
 exp

(
− y

∗

ysc

)
,

(6.7)

and

by(x
∗, y∗) = arcsinh

(
x∗

xsc

)[
b1 + b0exp

(
− y

∗

ysc

)]
(6.8)

The variables xsc and ysc are two free model parameters, where xsc - controls the

width of the current concentration around the symmetry axis x∗ and ysc controls

the scale height of the magnetic field. The constants b0 and b1 are chosen in

such a way that the magnetic field lines of opposite polarity are straight.

Initially we have a static equilibrium so the Lorentz and gravity forces have

to be balanced by the pressure gradient in the entire physical domain, deter-

mined by the momentum equation

∂p∗

∂x∗
+ j∗by = 0, (6.9)

∂p∗

∂y∗
− j∗bx + ρ∗g∗ = 0. (6.10)

Here j∗ = (0, 0, j∗z ) is the only non-zero component of the electric current den-

sity. These equations are solved by means of Lare2D in order to find the corre-

sponding mass density, ρ∗, and kinetic gas pressure, p∗, using the magnetic field

given by equations (6.7) and (6.8). The corresponding plasma temperature is

determined by T ∗ = p∗/ρ∗.

Once all the initial parameters, γ, xsc, ysc, b0, b1, g are given, we can start our

simulation using Lare2D. The plasma ’beta’ parameter depends on both spatial

coordinates and is constant with height. The actual dependence is controlled
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by the value of the ysc parameter. The smaller ysc, the faster β will increase.

Once the scale-height has higher values, β tends to be uniform with height (see

Figure 6.1).

Figure 6.1: Initial plasma β in the simulation domain for ysc = 10 and η = 0.005.

6.3 Set of experiments

Further we explore the dynamical evolution of magnetic reconnection in various

physical conditions representing a 2D stratified solar atmosphere. Based on the

initial setup we are going to study three different states (see Table 2).

Experiments are carried out by using Lare2D MHD code, equations are

solved in a 2D domain with the centre of diffusion region moved down by y∗0 =

0.5 in order to have faster upward propagation. The numerical grid-size is

Nx ×Ny = 1500× 2000, with the computational domain chosen to be the size

of [2x∗max, 2y
∗
max] = [6, 10]. In all experiments, we choose γ = 5/3, g∗ = 0.0242,

xsc = 0.05, ysc = 10, b0 = 0.1, b1 = 0.75 in such a way that the magnetic

field has straight field lines inside the box and we vary η. We also carry out
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simultaneously, simulations using Lare2D code for another similar magnetic

field profile studied in detail by ROU02 and compare the two cases.

We first show the distribution of equilibrium plasma parameters for our

initial set-up with η = 0.005 and compare with the initial setup parameters from

ROU02. We can spot that the density profile of ROU02, is less stratified than

ours as shown in Figures 6.2 and 6.3. The density stratification shown here has

Figure 6.2: Density profile for ROU02 case η = 0.005 t∗ = 0

this shape because in our case magnetic field lines are straight and in ROU02

case they flare out. The stratification can be seen better if we represent the

surface plots of the initial Jz for both cases in Figure 6.5 for our case and Figure

6.4 for ROU02 profile. Initial temperature profile shown in Figure 6.6 can also

be compared with Figure 6.7 for ROU02. We can see that in regions with higher

densities we have lower temperatures compared to regions with lower densities.

For both cases, the only noticeable difference is that initial temperature, as in

our case is higher mainly due to different density stratification. (see Figures 6.8

and 6.9).
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Figure 6.3: Density profile for our case η = 0.005 t∗ = 0

Figure 6.4: Jz for ROU02 case η = 0.005, t∗ = 0
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Figure 6.5: Jz for our case η = 0.005, t∗ = 0

Figure 6.6: Temperature profile for our magnetic field with respect to x at
y = −0.5, nx = 300 represents x∗ = 0.

110



6.3

Figure 6.7: Temperature profile for ROU02 with respect to x at y = −0.5,
where nx = 300 represents x∗ = 0.

Figure 6.8: Temperature profile for our magnetic field with respect to y at
x = 0, and t∗ = 0, where ny = 400 represents y∗ = −0.5.
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Figure 6.9: Temperature profile for ROU02 with respect to x at x = 0 and
t∗ = 0, where ny = 400 represents y∗ = −0.5.
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6.4 Reconnection process

Once we’ve started the simulations we find that the magnetic field lines start to

reconnect at around t∗ = 6. Once this process starts, both magnetic pressure

and kinetic gas pressure decrease in the region of localised magnetic diffusion.

This initiates pressure-driven inflow of plasma in the diffusion region from out-

side. This is followed by two reconnection jets that are naturally formed. The

faster the magnetic field strength decreases with height, the further the jets will

expand in horizontal direction, x∗.

Comparison with ROU02, at the reconnection point reveals some differences

due to the magnetic field profile, differences related to current sheet width (wider

jet’s for ROU02). As we would expect in ROU02, due to opening of the magnetic

field lines, reconnection jets expand faster in horizontal x∗ direction (see Figure

6.10) compared to our ’straight’ magnetic field line case (see Figure 6.11). A

Figure 6.10: ROU02 representation of Jz and jets through velocity vector plots
at t∗ = 5

better way to see this difference is through magnetic field line reconnection (see

Figure 6.13 and Figure 6.12)
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Figure 6.11: Straight case Jz for experiment Exp2 at t∗ = 6
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Figure 6.12: Exp2 our ’straight’ case representation of B∗ top left, p∗ to right,
ρ∗ bottom left and T ∗ bottom right at t∗ = 6

The wider the jets are the smaller the pressure difference between inside and

outside of the jets. The standing slow-mode shocks are recognised as locations of

strong positive current concentrations (bright lanes). They occur because of the

steep gradient of the parallel magnetic field component across the shocks, with

the after-shock field strength being decreased. These are recognised in Figure

6.14 for ROU02 and Figure 6.15 for our magnetic field profile as negative current

densities (dark lanes).
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Figure 6.13: ROU02 case representation of B∗ top left, p∗ to right, ρ∗ bottom
left and T ∗ bottom right at t∗ = 5
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Figure 6.14: The vorticity in the ROU02 case at t∗ = 6.

Figure 6.15: The vorticity for our ’straight’ case in Exp2 at t∗ = 6.
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6.5 Time evolution of reconnection processes

By comparing the graphs showing the peak jet velocity versus position and

time (y, t∗) and plotting the reference density and temperature, we can see that

the parameter η changes the dynamics of the reconnecting magnetic field lines

substantially. We can see that in ROU02, maximum jet velocity changes with

Figure 6.16: ROU02 Maximum Jet Velocity vs. time for different values of η

an order of 20% when η varies from 0.005 to 0.001 (see Figure 6.16). Whereas

for η = 0.0001, the change in velocity is even more pronounced. Maximum

jet velocity was calculated by taking the maximum value of absolute velocity

vector in the entire simulation box.
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Figure 6.17: Straight case Maximum Jet Velocity vs. time for various η

When comparing to a straight magnetic field line profile, the same pat-

tern appears (see Figure 6.17). Maximum jet velocity is higher in the Exp2

(η = 0.005) than Exp. 1 and 3. It is worth mentioning that these values are

significantly smaller than in the ones found by ROU02 (see Figure 6.16). In

Figure 6.16 we can spot several peaks compared to Figure 6.17 where you only

see a broad Gaussian shape, this is due to density stratification in our case.

Density is more stratified in x∗-direction (see Figure 6.2) when compared to

ROU02 (Figure 6.3), where the density stratification is mainly present in the

middle of the simulation box, hence we will see more occurrences of magnetic

islands than in our case for the same period of time.

Maximum jet velocity as a function of position along y∗ also increases with

time (see Figure 6.19 for our case and Figure 6.18 for ROU02 case); η = 0.005

results in higher values for velocities for both profiles.

Velocity is increasing from the reconnection point (x = 0, y = −0.5) out-
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Figure 6.18: ROU02 Maximum Jet Velocity vs. y∗ for various values of η

wards in y∗ direction as one would expect (see Figure 6.18 and 6.19). The only

difference here is that the amplitude is larger in ROU02 case. When it comes

to densities at reconnection point region, density evacuates faster in ROU02

compared to our model (see Figures 6.20 and 6.21) and due to constant pres-

sure in ROU02 study, temperature is increasing with decreasing density (see

Figure 6.22). This is not the case for our profile (see Figure 6.23).
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Figure 6.19: Straight case Maximum Jet Velocity vs. y∗ for different η param-
eters

Figure 6.20: ROU02 case density at the reconnection point (x∗ = 0, y∗ = −0.5)
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Figure 6.21: Our ’straight’ case density at the reconnection point (x∗ = 0, y∗ =
−0.5)

Figure 6.22: ROU02 case temperature at the reconnection point (x∗ = 0)
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Figure 6.23: Our ’straight’ case temperature at reconnection point (x∗ = 0, y∗ =
−0.5)
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Figure 6.24: ROU02 case reconnection rate for η = 0.005

Figure 6.25: Our ’straight’ case reconnection rate for η = 0.005
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Figure 6.26: ROU02 case inflow velocity at (x∗ = 0, y∗ = −0.5) for η = 0.005

Figure 6.27: Our ’straight’ case inflow velocity at (x∗ = 0, y∗ = −0.5) for
η = 0.005

Reconnection rates (inflow/outflow velocities) for both cases (ROU02 and

our profile) show a small increase between t∗ ≈ 4 − 6 (see Figures 6.24 and

6.25). However in our case the speeds are of 2-3 orders of magnitude smaller

due to the density and magnetic configuration that we proposed (see Figure

6.27 compared to Figure 6.26).
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6.6 Hall MHD

Recent computational work by Birn et al. (2001) has demonstrated that the Hall

term is important for collisionless reconnection. The relevant Hall phenomena

is the decoupling of the ions from the magnetic field on length scales of the

order of the ion inertial depth or less (see Arber 2006). This effect is included

by using a generalized Ohms law in which the Hall term couples the motion

of magnetic flux to the electrons rather than the ions. Introducing this term

in a resistive simulation also generates Hall currents in regions where both the

Hall term and resistivity are significant. However, these currents are always in

the plane of the simulation and play no direct role in the reconnection process.

Furthermore, Birn et al. (2001) treats fully ionized plasmas so that ion-neutral

collisions, often important in other applications of the Hall physics of plasmas,

are absent. Provided that the ion inertial length, λi = c/ωpi, where ωpi is

the ion plasma frequency and c is the vacuum speed of light, is larger than

the scale on which the frozen-in condition is broken, the reconnection rate is

insensitive to the precise mechanism responsible for reconnecting the magnetic

field at a 2D X point (see, e.g. Hesse et al. 1999, Cassak et al. 2005). The ion

inertial length is the length scale at which the Hall term becomes important

in the generalized Ohm′s law. Thus, Hall MHD gets approximately the correct

collisionless Petschek reconnection rate, provided the width of the central Sweet-

Parker resistive region in the standard Petschek model is much less than the

ion inertial length. When this condition is satisfied it has been shown that

the Petschek reconnection rate is insensitive to the value of the resistivity (see,

e.g. Bessho & Bhattacharjee 2007) and that the Hall reconnection rate is larger

than the equivalent resistive MHD rate (see Lottermoser & Scholer 1997). The

small η Hall reconnection rate is broadly in agreement with the steady Hall

reconnection rate found with η = 0 (Huba and Rudakov 2004), i.e., numerical

resistivity on grid scale, and the consensus view is therefore that for small

resistivity, the Hall reconnection rate is the same as the collisionless result and

is a constant. Here we do not deal with the general problem of collisionless

reconnection but only the collisionless limit of the Hall MHD model. In addition,

when we include the effect of the Hall term in our simulation, we can see that
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Figure 6.28: Reconnection rate for η = 0.005, dashed line represents recon-
nection rate with Hall term included and λi = 0.005, solid line represents the
previous case without Hall effect.

the reconnection rate increases with parameter λi (dotted line see Figure 6.28).

For values of λi = 0.005, the rate of reconnection increases with about 10%.

Further investigation with higher values of λi, would be more interesting.

Unfortunately due to the limited resolution of the grids, when λ ∼ λi, is to

small, the simulation code leads too numerical instability. Future work with

better resolution will be undertaken to fully explore the effects of Hall term.

6.7 Summary

We have examined the dynamical consequences of magnetic reconnection in a

2D stratified environment representing the ’quiet’ Sun transition region. In a

similar manner to Rousev et al. (2002), we investigated different initial states.
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They were constructed by assigning different values of the resistivity parameter,

η. In all the cases, the scale-height was kept constant unlike in Roussev et al.

(2002). We focused, instead, on enhancing the stratification in density, which

led to a change in the temperature profile for a slightly different magnetic field

configuration, and studied the effect of resistivity and non-ideal effects (inclusion

of Hall term) on the reconnection process.

In the early phases of the reconnection process, we discovered the same

complicated double-oscillatory (’chess-mate’ like) pattern of the vorticity like in

ROU2. This is caused by initial deviations in the force balance, since the mag-

netic field is diffused away faster than the pressure gradient reacts on changes

in the Lorentz force. As a result, the Lorentz force gets a double-wave pattern

in the horizontal x-direction. This, combined with the very initial compressing

effect of the Lorentz force in the vertical y direction, produces a complex pat-

tern of the vorticity. The alternating signs of the vorticity were found to follow

those of the Lorentz forces with respect to the x∗ and y∗ coordinates (see Figure

6.29). This initial phase is eventually suppressed and ultimately vanishes. This

Figure 6.29: Reconnection rate for η = 0.005, at early stages t∗ = 0.5
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occurs at about the time when the advective term in the induction equation

becomes comparable in magnitude to the diffusive term.

By comparing the three different experiments with η = 0.0001, η = 0.005,

η = 0.001, we found that for resistivity η = 0.005 the reconnection process was

faster, however, this rate was slower than in ROU2, due to strong stratification.

The reconnection was triggered at about the same time t∗ = 6, in both cases but

the evolution was completely different mostly due to the fact that in our model

the plasma β was constant with height unlike in ROU02. If the reconnection

rates for both cases showed a small increase between t∗ = 4 − 6, in our case

the speeds were of 2-3 orders of magnitude smaller because of the magnetic

field configuration and density stratification. Different values of η substantially

change the dynamics of the reconnection process.

The inclusion of Hall term in the MHD equations did bring changes to the

reconnection process with an increase of ∼ 10% in the reconnection rates. In

order to obtain a considerable increase in the reconnection rate, one would

need to increase the ion inertial depth, λi. An extension of the model to 2.5D

or 3D, could in principle change the behaviour of plasma β into decreasing

function with height and also due to different gravity and density stratification

reconnection could be faster. Such extensions should be investigated in future

models.

In conclusion, we believe that our results give a different physical insight

to the dynamical consequences of magnetic reconnection in stratified physical

environment. Although our investigation involved 2D MHD in ’quiet’ chromo-

sphere, it can be expanded for other magnetic regions, by including a more

realistic 3D profile. Pressure difference between the top and bottom of the

magnetic configurations lead to plasma flows. It would be interesting to include

such plasma flows in the equilibrium state and study the various regions and

parameters for which the Kelvin-Helmholtz instability dominates the tearing

instability and vice-versa.
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Discussions and Future Work

Motivated by earlier related studies, i.e. Andreis et al. (2005, 2009) & Roussev

et al. (2001,2002), the present thesis work was dedicated to further explore

the relationship between the composition of a plasma structure and the oscilla-

tions supported by the coronal loop and their link with magnetic reconnection

through various 2-dimensional physical environments approximating the solar

atmosphere.

The examined model situations differ from ideal MHD environment for the

study of oscillations to those where the effects of gravity, resistivity and Hall

term were taken into consideration for the study of magnetic reconnection.

Ideal MHD was taken in consideration for the investigation of the effect of the

environment, geometry on the period ratio, assuming that the density scale-

heights (implicitly the temperature) inside and outside magnetic structures were

different (Chapters 3 and 4). The same ideal MHD equations were used for

the study of the emergence and expansion of a coronal loop through the solar

atmosphere, which is a very complex phenomenon, but here we reduced our

model to a simplified process, where the expansion was solely described by the

change in the length of the loop with an associated temporal equilibrium density

variation (in Chapter 5).

Using a simple mathematical method first applied in the context of loop

oscillations by McEwan et al. (2008), we derived for the first time an analyt-

ical expression that connects the value of the period of kink oscillations and

parameters of the loop. We found that in the case of coronal loops, the effect
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of temperature difference between the loop interior and exterior can lead to

changes of the order of 30-40%, that could have significant implications on the

diagnosis of longitudinal density structure of the coronal loop. In the case of

prominences, given the very large density and temperature difference between

the prominence and coronal plasma, the changes in P1/P2 due to the different

temperature are very small. For the study of expansion on coronal loop os-

cillations, our model predicts that the amplitude of oscillations increases with

time, however due to the particular choice of density, damping processes were

neglected. Once the density is allowed to vary also in radial direction, according

to the theory of resonant absorption (see, e.g. Goossens et al. 1992, Rudeman

and Roberts 2002), loops will damp very quickly with the resonant position,

displaying a steady motion due to the change of the length of the loop. The

amplitude of oscillations can also be damped due to the cooling of the plasma

(Morton et al. 2010), an effect that was also neglected here. In an expanding

loop, the growth of the amplitude due to emergence and decay of amplitude due

to resonant damping or cooling will be competing processes and the competition

between these two effects.

Once dispersive effects are taken into account the domain of applicability

of P1/P2 seismology in the case of coronal loops becomes restricted and physi-

cally accepted solutions can not be found for any temperature ratio. For this one

would need to consider that initial parameters (magnetic field, density, pressure,

etc.) depend on more than one variable, therefore including extra dimensions

will lead to non-trivial system of MHD equations. In such circumstances, the

ideal MHD equations would not qualify for the description of a 3D magnetic

field. We admit that our experiments are rather artificial, as the physical con-

siderations involved in the study of P1/P2 seismology are not realistic. First we

supposed that the loop is thin, and equation (3.1) can be applied to describe the

dynamics of kink oscillations in coronal loops. It is obvious that this statement

is not true for very short loops (the ratio of the loop ratio and its length is not

very small) in which case, the governing equation has to be supplemented by an

extra term. Secondly, our isothermal supposition of the loop and its environ-

ment is also that needs refinement as observations (see, e.g. Winebarger et al.

2003, Warren et al. 2008, Berger et al. 2011, Mulu-Moore 2011) show that the
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loops are not always in hydrostatic equilibrium nor isothermal. Here we sup-

posed the idealistic situation of a static background, however recent analysis by

Ruderman (2011) showed that the the temporal dependence of density through

flow and cooling can also influence the ratio of the two periods. This is a first

step in the development of more advance non-ideal MHD experiments.

Further in Chapter 6, we examined the impact of resistivity on the dynam-

ics of 2D magnetic reconnection. We adopted a rather simplified form of the

resistivity (i.e. constant) due to limitation of the numerical code used in the

simulations Lare2D, changed the initial parameters (magnetic field line, den-

sity, pressure, plasma beta) in such a way the are close to reality. Experiments

have been conducted to investigate the impact of various resistivity on the time-

dependent evolution of the magnetic reconnection process. Later we included

a dispersive effect (Hall effect) and compared the differences between the two

cases. The physical situations examined here are far too simplistic to mach any

set of observations, as we did not take into consideration a 3D MHD. Never-

theless, we believe these results provide some of the essential physical intuition

needed to assess the meaning of observations in terms of physical properties of

the emitting plasma.

As for future work of relevance to coronal seismology, we intend to further in-

vestigate the expansion of a coronal loop in non-ideal environment. Starting off

with consideration of non constant acceleration, inclusion of non-constant cross

section, also taking into account that the coronal loop is not in an ’empty’ envi-

ronment and can interact with other entities throughout its expansion. Further

use a different numerical approach in constructing a 2D and then a 3D coro-

nal loop, then study the oscillation of this loop in a numerical environment,

using wavelet analysis and trying to detect the difference between the values of

periods detected here with compared to the previous studies.

On the magnetic reconnection process, we would try to develop a different

initial state, first with a straight magnetic field, then with an open field line

profile and later with an arcade, and study the time-depended evolution of mag-

netic reconnection. Inclusion of an initial incompressible flow profile would be

considered, as pressure difference between the top and bottom of the magnetic

configuration leads to plasma flows. We expect for this to observe tearing in-
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stabilities in the reconnection process as well as formation of violently, unstable

long current sheets and multiple plasmoid formation. A further analysis will be

the study of magnetic reconnection in turbulent background.
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.1 Corrections to the eigenfunctions due to the

density stratification

In the Appendix we estimate the corrections to the chosen eigenfunctions due

to the density stratification. Analytical progress can be made in the small y/χ

limit. Since χ is a value smaller than one, this condition would automatically

mean that we work in the small y limit, provided χ is not becoming too small.

We are interested only in the characteristics of fundamental mode of kink os-

cillations and its first harmonic. Following equation (5.60) with the boundary

conditions vr(L) = dvr(0)/dz = 0 and vr(0) = vr(L) = 0 for the fundamental

mode and first harmonic, we introduce a new variable so that

ζ =
z

L
, with

ωL√
2vAi

= Ω.

In the new notations the density inside the loop can be written as

ρi(ζ) = ρi(0) exp

[
h

Hi

sin
πζ

2

]
, (1)

where h is the loop height above the solar atmosphere (a similar equation can

be written for the external density). Next, we are working in the approximation

h/Hi = ε� 1, so equation (5.60) becomes

d2vr(ζ)

dζ2
+ Ω2

[
1 + εsin

(
πζ

2

)
+

1

ξ

(
1 +

ε

χ
sin

(
πζ

2

))]
vr(ζ) = 0, (2)

where ξ = ρi(0)/ρe(0) > 1 is the density ratio and χ = He/Hi < 1, with He

and Hi being the density scale heights inside and outside the loop. Let us we

write vr and Ω as

vr(ζ) = v(0)r (ζ) + εv(1)r (ζ) +O(ε2), Ω = Ω0 + εΩ1 +O(ε2). (3)
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Substituting these expansions into equation (2) and collecting terms propor-

tional to subsequent powers of ε we obtain

d2v
(0)
r

dζ2
+ (1 + ξ−1)Ω2

0v
(0)
r = 0, (4)

d2v
(1)
r

dζ2
+ (1 + ξ−1)Ω2

0v
(1)
r + 2(1 + ξ−1)Ω0Ω1v

(0)
r +

+Ω2
0v

(0)
r

(
1 +

1

ξχ

)
sin

(
πζ

2

)
= 0. (5)

These equations must be solved separately for the fundamental mode and its

first harmonic taking into account the boundary conditions

• For the fundamental mode

vr(ζ = 1) = 0,
dvr
dζ

(ζ = 0) = 0

• For the first harmonic

vr(ζ = 1) = vr(ζ = 0) = 0

Let us first calculate the correction to the fundamental mode. It is easy to

show that the solution of equation (4) taking into account the above boundary

condition becomes

v(0)r (ζ) = cos

(
πζ

2

)
, (6)

and

Ω0 =
π

2
√

1 + ξ−1
. (7)

It is important to note that the form of the above solution is exactly the same

as the solution we employed for the eigenfunction, vr. In the next order of

approximation we obtain equation (5) which can be written as

d2v
(1)
r

dζ2
+ (1 + ξ−1)Ω2

0v
(1)
r =
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−2(1 + ξ−1)Ω0Ω1v
(0)
r − Ω2

0v
(0)
r

(
1 +

1

ξχ

)
sin

(
πζ

2

)
. (8)

This boundary value problem will permit solutions only if the right-hand side

satisfies the compatibility condition that can be obtained after multiplying the

left-hand side by the expression of v
(0)
r and integrating with respect to the

variable ζ between 0 and 1, or∫ 1

0

v(0)r

[
2(1 + ξ−1)Ω0Ω1v

(0)
r + Ω2

0v
(0)
r

(
1 +

ξ−1

χ

)
sin

(
πζ

2

)]
dζ = 0.

After some straightforward calculus we can find that

Ω1 = − 1

3(1 + ξ−1)3/2

(
1 +

1

ξχ

)
. (9)

As a result, equation (5) becomes

d2v
(1)
r

dζ2
+
π2

4
v(1)r =

π
(
ξ + 1

χ

)
(1 + ξ)

[
1

3
cos

(
πζ

2

)
−

−π
4

sin

(
πζ

2

)
cos

(
πζ

2

)]
= 0. (10)

This differential equation will have the solution

v(1)r (ζ) = C1 sin

(
πζ

2

)
+ C2 cos

(
πζ

2

)

+

(
ξ + 1

χ

)
3π

2 cos
(
πζ
2

)
+ πζ sin

(
πζ
2

)
+ π

2
sin(πζ)

(1 + ξ)
. (11)

Applying the boundary condition v
(1)
r (ζ = 1) = 0, we find the constant

C1 = −

(
ξ + 1

χ

)
3(1 + ξ)

.
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In order to find the value of C2, we use the property of orthogonality, i.e.∫ 1

0

v(0)r v(1)r dζ = 0,

which result in

C2 = −7

9

(
ξ + 1

χ

)
(1 + ξ)π

.

As a result, the first order correction to vr corresponding to the fundamental

mode is

v(1)r =

(
ξ + 1

χ

)
(1 + ξ)

[
−1

3
sin

(
πζ

2

)
− 7

9π
cos

(
πζ

2

)]
+

+

(
ξ + 1

χ

)
(1 + ξ)

[
1

3π
2 cos

(
πζ

2

)
+ πζ sin

(
πζ

2

)
+
π

2
sin(πζ)

]
. (12)

In Figure 1 we plot the correction to the eigenfunction for ε = 0.1, χ = 0.9, and

ξ = 10. Figure (1) shows that we can approximate vr(z) by cos(πz/2L) since

the first order correction brings changes of about 1(%), i.e. insignificant.
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Figure 1: Correction to the eigenfunction for the fundamental mode kink oscil-
lation when ε = 0.1. Here L = 1.5× 108 m represents the loop length

.2 Corrections to the first harmonic

The same analysis can be repeated for the first harmonic, taking into account

the right boundary conditions. After a straightforward calculation it is easy to

show that

v(0)r (ζ) = sin(πζ), (13)

v(1)r (ζ) =
ξ + 1/χ

1 + ξ
·
[
− 176

225π
sin(πζ) +

4

15
cos(πζ)

]
− 16

15π

ξ + 1/χ

1 + ξ

[
5π

32
cos

(
πζ

2

)
+

3π

32
cos

(
3πζ

2

)]
− 16

15π

ξ + 1/χ

1 + ξ

[
πζ

2
cos(πζ)− 1

2
sin(πζ)

]
. (14)

The correction to the eigenfunction corresponding to the first harmonic has

been plotted in Figure 2 for the same values as before. It is obvious that the

changes introduced by stratification in the value of the eigenfunction are of the
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Figure 2: The same as Figure 1 but here we represent the correction to the
eigenfunction for the first harmonic kink oscillation.

order of 2(%), i.e. negligably small. The two figures show that the effect of

density stratification becomes more important for higher harmonics. Given the

very large values of χ we used for prominences, the approximations used in this

Appendix will always be valid. For the graphical representation of corrections

in Figs 1 and 2 we used χ = 1. If we lower this value to, e.g. 0.7 the corrections

would still be small since the maximum relative change in the eigenfunction

describing the fundamental mode would be 1.1 %, while for the first harmonic,

this would increase to 3.5 %.

The robustness of our analysis was checked using a full numerical investiga-

tion for arbitrary values of χ and y. A typical dependence of the P1/P2 period

ratio with respect to L/πHi for one value of χ is shown in Figure 3 where

the solid line corresponds to the analytical and the dotted line represent the
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Figure 3: Comparison of the analytical (solid line) and numerical (dotted line)
results for the P1/P2 variation with L/πHi for coronal case corresponding to
χ = 0.53.

numerical results, in both cases the density is inhomogeneous with respect to

the coordinate z. The loop is set into motion using a Gaussian-shaped source

and we use a full reflective boundary conditions at the two footpoints of the

loop. After the oscillations are formed, we use the FFT procedure to obtain the

values of periods. Our analysis shows that the differences between the results

obtained using the variational method and a full numerical investigation are of

the order of 7% but towards the large range of L/πHi. Restricting ourself to

realistic values, i.e. L/πHi < 5, we see that the results obtained with the two

methods coincide with great accuracy.
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[192] Ruderman, M. S., & Erdélyi, R., 2009, Space Science Rev., 149, 199

[193] Ruderman, M. S. 2010, Sol. Phys., 267, 377

[194] Ruderman, M. S., 2011, Sol. Phys., 271, 41

152



.2

[195] Ruderman, M. S. 2011b, A&A, 534, 78

[196] Ryutov, D. A., & Ryutova, M. P., 1976, Soviet Phys. JETP, 43, 491

[197] Sakurai, T., Ichimoto, K., Raju, K. P., & Singh, J., 2002, Sol. Phys., 209,

265
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