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Abstract 

This thesis investigates the application of Reinforcement Learning (RL) on 

Medium Access Control (MAC) for Wireless Sensor Networks (WSNs). RL is 

applied as an intelligent slot selection strategy to Framed ALOHA, along with 

analytical and experimental performance evaluation. Informed Receiving (IR) and 

ping packets are applied to multi-hop WSNs to avoid idle listening and 

overhearing, thereby further improving the energy efficiency.  

 

The low computational complexity and signalling overheads of the ALOHA 

schemes meet the design requirement of energy constraint WSNs, but suffer 

collisions from the random access strategy. RL is applied to solve this problem 

and to achieve perfect scheduling. Results show that the RL scheme achieves over 

0.9 Erlangs maximum throughput in single-hop networks. For multi-hop WSNs, 

IR and ping packets are applied to appropriately switch the relay nodes between 

active and sleep state, to reserve as much energy as possible while ensuring no 

information loss.  

 

The RL algorithms require certain time to converge to steady state to achieve the 

optimum performance. The convergence behaviour is investigated in this thesis. A 

Markov model is proposed to describe a learning process, and the model produces 

the proof of the convergence of the learning process and the estimated 

convergence time. The channel performance before convergence is also evaluated. 
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1.1. Motivation 

Medium Access Control (MAC) has a significant impact on the energy efficiency 

and channel performance of Wireless Sensor Networks (WSNs). As a result of the 

constrained energy supply of WSNs, specific MAC protocols are required to 

ensure the network meets its intended application goals. Based on the principle of 

periodically switching nodes between sleep and active states, MAC protocols can 

significantly improve the lifetime of WSNs.  

 

Researchers have proposed many MAC protocols for WSNs, which have achieved 

considerable improvements in lifetime, throughput and delay performance. 

However, tradeoffs exist between these energy efficiency benefits and the 

expenses of higher overheads and ever increasing complexity (e.g. some protocols 

require periodic update of the scheduling information of one-hop or even two-hop 

neighbours). A much simpler MAC protocol with energy efficiency, appropriate 

delay and throughput is potentially promising, and is well suited to extremely 

small and basic sensor nodes for future applications. 

 

ALOHA based schemes have the advantages of simplicity and low overheads, but 

poor throughput performance resulting from their blind transmission strategy. This 
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thesis proposes Reinforcement Learning (RL) as an intelligent slot selection 

strategy to avoid collisions and retransmissions, thereby improving throughput 

and energy efficiency. For single-hop networks, nearly perfect slot scheduling can 

be achieved by RL, with the only overheads required being acknowledgement 

(ACK) packets. For multi-hop networks, considering the node density and 

network size, further changes need to be made to adjust to different topologies and 

sleeping schedules. Results show that RL algorithms increase the maximum 

throughput to almost three times the throughput of the schemes without 

intelligence, with much lower delay and reduced energy cost. A detailed 

investigation and evaluation of novel Reinforcement Learning based MAC 

protocols are presented in Chapter 4 and Chapter 6. 

 

1.2. Thesis Structure 

This thesis comprises 8 chapters and the remainder of the thesis is organised as 

follows. 

 

Chapter 2 provides an overview of WSNs, including their development history, 

purpose and requirements. This chapter briefly introduces the applications and 

devices, and states the constraints to which they are subject. As the primary 

research topic in this thesis, the basic principles of MAC protocols are presented 

in this chapter, as well as the RL techniques used in subsequent protocol design. 

 

Chapter 3 provides background information and a survey of work related to the 

research in this thesis. The principles of medium access control and multiple 

access are discussed, as well as the design requirements for MAC protocols for 

WSNs. An extensive literature review is provided in this chapter and categorises 

the MAC protocols into contention-based and schedule-based, or a combination of 
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both. 

 

 

Chapter 4 provides a detailed description of applying Reinforcement Learning to 

ALOHA by considering single-hop network topologies. Weights are applied to the 

slots of frame-based ALOHA, with successful transmissions and collisions all 

contributing to the weight update. Results show that a steady state of nearly 

perfect scheduling is achieved by nodes learning from their transmission history, 

given appropriate frame sizes. The achievable throughput is close to the 

theoretical maximum without introducing additional overheads. 

 

Chapter 5 focuses on the behaviour of RL schemes during the learning period 

before reaching steady state. According to the special characteristic of 

learning-based protocols, a certain time is required for the network to converge to 

an optimal steady state. The convergence time can be considered as the 

initialisation time of the network, and the network does not perform optimally 

during the learning period. The convergence time can be affected by many factors 

such as the node density, communication radius, network topology routing and 

learning strategy. This chapter proposes a Markov model to estimate the 

convergence time for single-hop networks and validate it by simulations. A 

discussion about channel performance during the learning process is also provided 

in this chapter. 

 

Chapter 6 extends the work in Chapter 4 to multi-hop networks. The constraints of 

multi-hop networks are discussed and the work in this chapter mainly focuses on 

linear networks and random networks. Informed Receiving (IR) and ping packets 

are applied to appropriately switch the nodes between active and sleep modes, 

thereby improving energy efficiency and channel performance. Results show that 
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the throughput is significantly improved by applying learning, and the 

unnecessary energy costs and overheads are kept at low levels. 

 

 

Chapter 7 describes potential further research to extend this thesis. The 

convergence time and steady state performance can be improved by applying 

different RL algorithms. In WSNs it is difficult to implement global 

synchronisation, so it is important to consider the adaptability of WSN MAC 

protocols to unsynchronised conditions. Introducing RL to frame size selection 

makes the schemes applicable to networks with different topologies and adaptive 

to changing scenarios (e.g. new nodes introduced, old nodes dying, changing 

propagation conditions, variable traffic requirements), and eliminates the 

requirements for prior frame size estimation.  

 

Chapter 8 summarises the work in this thesis. The novelty and original 

contributions are highlighted along with publications developed as a result of the 

work undertaken. 
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Wireless Sensor Networks (WSNs) are designed for the purpose of completing 

different monitoring tasks under various environmental conditions at low cost [1]. 

With an increasing demand for precise observation of physical phenomena, 

conventional detection and monitoring techniques become cost-prohibitive 

especially for long-term tasks. WSNs with cost effective nodes are a viable 

solution for these tasks. Cost effective nodes can be deployed in different sensing 

areas and complete the tasks by collaboration. The development of 

micro-electro-mechanical systems (MEMS) brings various capabilities to sensor 

nodes. Therefore, WSNs have a wide range of applications in military 

environments, for medical treatments, industry, security and environmental 

monitoring [1].  

 

A WSN is usually a self-organising network consisting of a large number of 

sensor nodes which are able to sense and process environmental data through 

multi-hop communication and coordination. Sensor nodes are usually supplied by 
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limited power sources (such as AA batteries) but are designed so the failure of 

single nodes will not affect the task of the network. However according to the 

application goals, sensor nodes may be deployed in unreachable areas (such as 

animal bodies, contaminated regions or battle fields [1]) which makes charging or 

replacing batteries difficult. Therefore the lifetime of the network will mainly rely 

on energy efficiency. Given the limited channel resources in WSNs, nodes within 

a certain range have to share the same medium, which makes Medium Access 

Control (MAC) very important. The energy consumed by radio transceivers is 

mostly from transmitting, receiving, idle listening and over hearing. In addition to 

the useful throughput, energy is consumed by packet collisions, retransmissions, 

control packet overheads, idle listening and over hearing [2]. A well designed 

MAC protocol should keep these energy waste mechanisms to a low level, while 

achieving good throughput and delay performance. 

 

Due to the special characteristics of WSNS, conventional MAC protocols may not 

be directly applicable to them. The communication range of a node is usually 

much smaller than the range of the network, which makes global control very 

difficult. Conventional MAC protocols usually focus on how to provide better 

quality of service (QoS), achieve higher bandwidth efficiency and deal with user 

mobility. However in WSNs, energy efficiency is considered to be the priority 

rather than QoS. MAC protocols for WSNs also need to be adaptable to topology 

changes [2]. 

 

Researchers have proposed many MAC protocols for WSNs and achieved 

significant improvements on energy efficiency and channel performance. 

However, these improvements have been introduced at the expense of higher 

overheads and increasing complexity. Given the long-term vision of huge numbers 

of devices embedded into machines everywhere, there is a need to develop much 
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simpler protocols which can nonetheless provide energy-efficient communication, 

good throughput and adequate delay. ALOHA based schemes have the benefits of 

simplicity, low computation and overheads, but suffer collisions as a result of the 

blind transmission strategy. Intelligent slot selection strategies can significantly 

improve the channel performance and energy efficiency. In this thesis, 

Reinforcement Learning (RL) is applied to ALOHA for this purpose, to enable 

nodes to develop an effective transmission strategy based on their prior experience 

on the channel.  

 

Reinforcement Learning (RL) is a technique where users learn effective strategies 

through trial-and-error interactions in a dynamic environment, with future actions 

determined by prior experience [3]. It has been widely used in research on 

Artificial Intelligence (AI), and has recently been applied to communication 

problems and MAC layer protocols. In [4] and [5] several Reinforcement 

Learning based MAC protocols are proposed. Although they are not specifically 

designed for WSNs, a similar strategy can be brought to the design of MAC 

protocols for WSNs.  

 

2.1. Overview of Wireless Sensor Networks 

With their characteristics of low cost, self-organisation and multi-hop 

communication, WSNs have unique capabilities and design requirements. This 

section provides a brief introduction to WSNs including their applications, 

existing devices, system architecture and design constraints. 
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2.1.1. Applications of WSNs 

During the 1980s, research on sensor networks was started by the Distributed 

Sensor Network (DSN) program at the Defence Advanced Research Projects 

Agency (DARPA), and WSNs were initially produced to detect enemy submarines 

and aircraft in the Cold War [5]. Compared to the traditional detection and 

tracking methods such as radar, sonar and satellite, a sensor network has a lot of 

advantages. Easy deployment improves tracking precision and detection range, 

with destruction of a proportion of sensor nodes not particularly significant 

because of the low device costs, the distributed processing and redundancy among 

sensor nodes. WSNs provide many possibilities for the military and home land 

security. By carrying sensors, units can report their location and situation 

anywhere, any time. Sensors can be deployed in critical terrains for 

reconnaissance, or in friendly regions to detect and warn people of nuclear, 

biological and chemical attack [6].  

 

WSNs can be deployed and complete long-term tasks in areas which are difficult 

to reach for manual monitoring, which makes WSNs suitable for environmental 

monitoring tasks. In 2004 and 2005, a team of scientists from Harvard University, 

the University of North Carolina and the University of New Hampshire built a 

WSN for monitoring an active volcano [7]. They deployed a WSN with 16 nodes, 

which collected data for three days and recorded 230 volcanic events. In 2002 a 

group of scientists from The College of the Atlantic deployed a WSN on Great 

Duck Island to observe the breeding and living of the Leach’s Storm Petrel [8]. 

The sensor nodes were deployed near the nesting burrows of the Petrels and they 

obtained the daily patterns of presence and absence of the adult birds by sensing 

temperature differences. Using WSNs only requires at most two visits: 

deployment and recycling, which keeps the disturbance to the individual 
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ecosystem very low. WSNs can also be deployed in bridges for structural health 

monitoring to detect and locate damage and estimate their lifetime [9]. Compared 

to conventional wired sensing systems, WSNs have lower cost, greater density 

and coverage,  

 

With their remote monitoring and wireless features, WSNs can be applied to the 

oil and gas industry [10]. Report [11] shows the capability of WSNs for these 

industries. With secure and reliable communications, WSNs have advantages that 

wired systems cannot achieve. WSNs can provide real-time data for monitoring 

pipeline integrity, tank levels, equipment condition, pipeline pressure and refinery 

pressure. By removing wires, WSNs also significantly cut down the cost of 

monitoring huge pipeline networks. The work in [12] presents the application of 

WSNs to machinery fault diagnosis. Sensors cause minimum disturbance to the 

normal production of enterprises by removing the wire. WSNs monitor the 

condition of the machines by collecting vibration, noise and temperature data. 

 

2.1.2. Devices 

Each sensor node includes four basic subsystems: the sensing subsystem, the 

processing subsystem, the communication subsystem and the power supply 

subsystem [13]. The sensing subsystem contains one or more sensors with 

analogue-to-digital convertors which can collect various types of environmental 

data and quantise them into digital signals. The processing subsystem consists of a 

microcontroller, which is the core component in charge of data and protocol 

processing. The communication subsystem includes a transceiver, which could be 

radio frequency, optical or infrared. This subsystem is the most power consuming 

component. The power supply subsystem usually has a battery as the power 

source, and its capacity determines the lifetime of the sensor node. 
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There are two popular options for the communication technique: radio frequency 

(RF) and optical transmissions. With respect to RF, the size of the node only offers 

limited space for antennas and requires high frequency (short wave length) 

transmissions. RF also needs modulation, demodulation and band pass filtering 

which require complex circuitry and lead to difficulties in reducing power 

consumption [14]. However, since a clear line-of-sight cannot be guaranteed most 

of the time in typical WSN environments, RF are preferred for the nodes 

considered in this thesis.  

 

Most of the RF transceivers are designed for the ISM bands because these 

frequencies do not require license and offer more possibilities for power efficient 

designs [15]. Considering the energy consumption, size and cost of a sensor node, 

the processor, storage and data rate are all limited. For example, the CITRIS node 

[16] has only a 4 MHz CPU and 8-bit processor. The storage is only 8 kB 

instruction flash and 512 B RAM, and the RF transceiver operates on 916 MHz 

ISM band with a bandwidth of only 10 kbps. Mica motes [17] have only 128 kB 

flash, 4 kB data storage and 20 kbps data rate. Table 2.1 gives a list of the 

characteristics of some existing commercial sensor nodes [18]. Some simulation 

parameters in other sections are taken from the nodes in this table.  
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Node 

name 
Controller Transceiver 

Program 

and 

Data 

memory 

External 

memory 
Programming Platform 

BTnode 

[19] 

Atmel 

ATmega 128L 

Chipcon CC1000 

and Bluetooth 

64+180K 

RAM 

128K 

FLASH 

ROM, 4K 

EEPROM 

C and nes C 
BTnut and 

TinyOS 

EPIC mote 

[20] 

Texas 

Instruments 

MSP430 

250 kbit/s 2.4 GHz 

IEEE 802.15.4 

Chipcon 

10 K 

RAM 
48 K flash   TinyOS 

FlatMesh 

[21] 
16 MHz 802.15.4-compliant  

660 sensor 

readings 

Over-air 

control 

Commercial 

system 

GWnode 

[22] 
PIC18LF8722 

BiM (173 MHz) 

FSK 

64K 

RAM 
128K flash C Custom OS 

IMote [23] 
ARM core 12 

MHz 
Bluetooth 

64K 

SRAM 
512K flash  TinyOS 

Iris Mote 

[24] 
ATmega 128 

Atmel AT86RF230 

802.15.4/ZigBee 
8K RAM 128K flash nesC 

TinyOS, 

MoteWorks 

Mica [25] ATmega 103 RFM TR1000 
128+4K 

RAM 
512K flash nesC TinyOS 

MicaZ[26] ATmega 128 
TI CC2420 

802.15.4/ZigBe 
4K RAM 128K flash nesC 

TinyOS, SOS, 

MantisOS and 

Nano-RK 

Mulle [27] 
Renesas 

M16C 

Atmel AT86RF230 

802.15.4 / Bluetooth 

2.0 

31K 

RAM 

384K+4K 

Flash, 2 

MB 

EEPROM 

nesC, C 
Contiki, 

TinyOS, lwIP 

NeoMote 

[28] 
ATmega 128L 

TI CC2420 

802.15.4/ZigBe 
4K RAM 128K flash nesC 

TinyOS, SOS, 

MantisOS, 

Nano-RK and 

Xmesh 

Firefly 

[29] 
ATmega 1281 Chipcon CC2420 8K RAM 

128K 

FLASH 

ROM, 4K 

EEPROM 

C 
Nano-RK 

RTOS 

Table 2.1 Some existing commercial sensor nodes 
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2.1.3. System Architecture 

A WSN consists of five basic architectural layers: application layer, transport layer, 

network layer, data link layer and physical layer [1]. The application layer 

determines the relevant data according to the application tasks and informs the 

lower layers of these interests. In data-centric sensor networks, the application 

layer can also identify the nodes by the data they sense. The transport layer is in 

charge of connecting WSNs to other networks when required for specific 

applications. The network layer forwards data through chosen directions (known 

as routes) to the sink nodes. Medium Access Control (MAC) protocols in the data 

link layer manage channel sharing between neighbouring nodes. The physical 

layer provides signal transmission and reception, modulation and coding. 

 

The research work in this thesis focuses on MAC protocols in the data link layer, 

but routing protocols in the network layer is a highly related research area and 

cross-layer protocols are also developed. The routing protocol is in charge of 

achieving energy efficiency on setting up the network topology and routing the 

data from the source to the sink nodes or the base station.  

 

Routing protocols categorise the network topology into two basic types, flat and 

hierarchical. In flat routing, all nodes in the network have the same status and they 

can communicate with each other without crossing a level boundary in a network 

hierarchy. The routing protocol routes data to the sink nodes through one-hop or 

multi-hop paths, choosing the optimal path by analysing the characteristics of the 

nodes on different routes. In hierarchical routing the network is usually cluster 

based, and a cluster usually consists of several nodes and a cluster head. Nodes in 

one cluster only talk to the cluster head, and the cluster head does not need to take 

on sensing tasks. However, it will collect data from other nodes in the cluster, 



Background 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

24 

aggregate the data and send it back to the base station. Low Energy Adaptive 

Clustering Hierarchy (LEACH) is a classic hierarchical routing strategy [30] for 

WSNs, which reduces and evenly distributes the energy consumption among the 

nodes in the network. LEACH is a cluster based routing strategy, with the cluster 

head in charge of collecting and aggregating data and sending it back to the base 

station. It can be considered as a cross-layer protocol because it also schedules 

transmissions in each individual clusters. 

 

2.1.4. Constraints of WSNs 

Given the various application goals of WSNs, sensors can be deployed in 

unreachable areas such as contaminated areas, animal bodies, battle fields and 

under water, which causes difficulties in replacing or recharging their batteries. 

With limited energy sources, WSN lifetimes can become a problem especially for 

long-term tasks. To improve the lifetime, nodes either carry larger batteries or 

external energy sources which sacrifice size and weight advantages, or apply 

specific protocols to keep the energy waste to a minimum. As a result, for most 

applications energy efficiency will always be the priority unless much better 

energy sources are found.  

 

The energy constraints of WSNs bring special requirements for the design of 

routing and MAC protocols. Conventional routing protocols usually select routes 

by considering QoS (available bandwidth, data rate and delay), however for 

WSNs such principles will drain the energy of nodes on a certain route much 

faster than others and cause a gap in the network. With limited communication 

range and no global control, nodes can hardly forward information to other nodes 

more than one-hop away. This causes difficulties for MAC protocols in scheduling 

transmissions and avoiding collisions. 
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2.2. Overview of MAC protocols for WSNs 

According to the energy constraints of WSNs, sensor nodes usually have limited 

hardware and communication radius, which makes Medium Access Control 

(MAC) important in ensuring that the network remains operational. The special 

characteristics of WSNs cause many difficulties to the design of MAC protocols. 

The multi-hop topology brings hidden terminal problems [2] which lead to 

collisions and retransmissions. Sensor nodes usually switch between active 

(transmitting, receiving or listening) and sleep modes (turning off the radio) to 

save energy, which requires the MAC scheduling to be precise and effective.  

However, forwarding scheduling information to nodes more than one-hop away is 

energy consuming for WSNs supporting a large coverage area because of the 

limited communication radius. A well designed MAC protocol needs find 

solutions to these problems and keep the unnecessary energy consumption to a 

minimum.  

 

MAC protocols are in charge of setting up the network infrastructure and 

assigning channel resources. MAC protocols for WSNs usually belong to one of 

two categorises: contention based and schedule based [2]. For contention based 

MAC protocols, nodes do not have pre-scheduled transmissions and they need to 

contend for the channel when they have data to transmit. Schedule based MAC 

protocols usually assign channel resources through reservations, with transmission 

slots reserved for each node according to the node’s traffic flow. In most 

monitoring applications, nodes need to continue collecting data for weeks or even 

months, so MAC protocols also need to improve the lifetime of the network. 

Many MAC protocols introduce a duty cycle to achieve a longer lifetime [2]: a 

node has a wake and a sleep mode, and during the wake periods the nodes 

exchange data with the others and during the sleep periods the nodes turn off their 
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radio to reduce the power consumption. With different sleeping schedules, there 

will always be a certain amount of active nodes in the network. Long network 

lifetime can ensure the completion of the sensing task by only one deployment 

(replacing or recharging of the battery is not required). A more detailed literature 

review of MAC protocols for WSNs is provided in Chapter 3. 

 

2.3. Background of Reinforcement Learning 

The idea of Reinforcement Learning (RL) first appeared in 1979 when machine 

learning and neuron-like elements for artificial adaptive intelligence were 

developed. The potential of RL was rapidly explored in psychology, control theory, 

neuroscience, optimal control and dynamic programming [29]. RL was developed 

from an understanding from human interactions with the environment, and how 

we make decisions in response to the environment. RL records historical 

experience built up by rewards and punishments, learning behaviour and 

determines future actions through trial-and-error interactions with a dynamic 

environment. Many mathematical approaches (such as dynamic programming, 

Monte Carlo methods and temporal difference learning [29]) have been developed 

to solve different problems. 

 

Based on the trial-and-error interaction with the environment, RL usually 

quantises the environment to different states, and agents learn their behaviours 

through actions and rewards. Each state has a subset of actions, and the actions are 

independent for different states. Agents receive rewards after each action, and the 

rewards only affect the current action and state pair. The received rewards usually 

depend on the goal of the RL process. Actions that push the process to the goal 

can have positive rewards and vice versa. Each action and state pair has an 

associated weight, which is updated by received rewards and indicates the 
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preference with which they are selected.  

 

Figure 2.1 shows how RL can be used in a simple square maze. A person stands at 

point A in a square maze, and the destination is B. The position of this person is 

considered as the state of the RL algorithm, and there are 36 squares in this maze 

so the associated RL process has 36 states. In each state, the person can take four 

possible actions: move to the four neighbour squares (up, down, left and right). 

Each action receives a reward of -1, unless the person falls off the edge (eg. 

moves down from point A) when the reward becomes -100. Reaching the 

destination B returns a reward of +100. In each state the agent selects the action 

with the highest weight, or if several actions have the same highest weight, it 

selects a random one. After many trials, the RL process produces an optimum 

route, the two solid routes in Figure 2.1 can possibly be obtained. The optimum 

routes must have 7 steps (which is minimum), but the dashed route will not be 

selected by the RL process (although it is an optimum route), because it is close to 

the edge and the actions have a higher probability of receiving negative rewards.  

 

 

Fig. 2.1 An example of Reinforcement Learning 

 

The trade off between exploration and exploitation is an important challenge in 

RL. To achieve higher weights and rewards, agents usually select actions based on 



Background 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

28 

their current experience and history, so the actions which receive good rewards 

will always be preferred. However, it is possible that the preferred action is a 

sub-optimal solution. The agent needs to explore different actions to find an 

optimum solution in the future, but the current experience cannot tell the existence 

of a better solution and there is a risk that the cost of exploration produces nothing. 

Determining the balance between exploration and exploitation has a significant 

impact on RL.  

 

Figure 2.2 shows an example of exploration and exploitation. A person stands at 

point A in a similar square maze as in Figure 2.1, and the destination is point B. 

This maze has the same actions, states and rewards as the previous one except for 

the grey area. Once the person moves into the grey area, a -100 reward will be 

returned, same as falling off the edge of the maze. For the RL algorithm without 

exploration, the solid route will be selected, but it is a sub-optimal solution with 9 

steps to the destination. The dashed route will not be selected because the actions 

in these states have a large probability of receiving a -100 reward. Through 

exploration (eg. try a sub-optimal action with a low probability in each state), the 

optimum dashed route can be found, which is 7 steps to the destination.  

 

 

Fig. 2.2 Exploration and Exploitation 
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From the communication aspect, RL has recently been used in cognitive radio 

research. In [4] and [5] RL brings intelligence to the channel selection strategy 

and adaptability to environmental changes. In this thesis, we primarily consider 

channel sharing under single channel conditions. We apply RL as an intelligent 

slot selection strategy which requires minimal overheads and computation, 

thereby improving the energy efficiency and lifetime of WSNs. The detailed RL 

strategies are introduced in Chapters 4 to 6. 

 

2.4. Summary 

This chapter provides background information relevant to the research reported in 

this thesis. WSNs are briefly introduced, including applications, devices, system 

structure and design requirements. MAC protocols for WSNs are the main subject 

investigated in this thesis, and a detailed literature review about MAC protocols 

for WSNs are provided in Chapter 3. This chapter also introduces Reinforcement 

Learning, which is an important technique used in the implementation of the 

intelligent slot selection strategies in later chapters. 
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3. MAC Protocols for WSNs – Literature Review 

Contents 

3.1. Introduction .................................................................................... 30 

3.2. Multiple Access Techniques .......................................................... 32 

3.2.1. Frequency Division Multiple Access (FDMA) ................................. 32 

3.2.2. Time Division Multiple Access (TDMA) .......................................... 33 

3.2.3. Code Division Multiple Access (CDMA) ......................................... 34 

3.2.4. Space Division Multiple Access (SDMA) ......................................... 34 

3.2.5. Random Multiple Access .................................................................. 35 

3.3. MAC Protocols for WSNs .............................................................. 35 

3.3.1. Contention-based MAC Protocols ................................................... 36 

3.3.2. Schedule-based MAC Protocols ....................................................... 45 

3.3.3. Other MAC Protocols....................................................................... 49 

3.4. Discussions and Conclusions ......................................................... 53 

 

 

 

This chapter provides background information on Medium Access Control (MAC) 

protocols for WSNs and an extensive literature review. Firstly, basic multiple 

access techniques are introduced, which demonstrate important principles of 

medium access control. Then, existing MAC protocols are categorised as 

contention-based, schedule-based, and a combination of both. A brief introduction 

to each protocol is provided.  

 

3.1. Introduction 

MAC protocols control the way that users access a shared channel resource. MAC 
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protocols have a variety of design purposes depending on their intended goals. For 

conventional communication systems such as cellular mobile phone networks, ad 

hoc networks and Bluetooth, MAC protocols usually focus on how to provide 

better Quality of Service (QoS), achieve higher bandwidth efficiency, and deal 

with user mobility. For WSNs, energy consumption is almost always the priority. 

WSNs MAC protocols therefore need to achieve better energy efficiency and 

adaptability to frequent topology changes, with other issues secondary to these 

priorities [2]. Due to these differences in design purposes between WSNs-specific 

MAC protocols and general MAC protocols, some of the existing MAC protocols 

are inappropriate to directly apply to WSNs. Therefore, specific MAC protocols 

must be developed to achieve the best performance in WSNs.  

 

MAC protocols have a significant impact on the energy consumed by the radio 

transceiver. Typically energy consuming behaviours include transmission, 

reception and idle listening. The energy consumption of transceivers during their 

sleep state can be neglected comparing to other states [31]. Necessary energy 

consumption refers to energy consumed by useful throughput; unnecessary energy 

consumption mainly comes from retransmissions, idle listening, overhearing and 

control packet overheads [2]. To improve the energy efficiency and lifetime of the 

network, unnecessary energy consumption must be minimised.  

 

The specific features of WSNs cause many difficulties in the design of MAC 

protocols. As a result of the limited radio hardware of WSNs, MAC protocols 

usually consider time-sharing under single channel conditions, which makes 

collision avoidance important to achieve energy efficiency. Reservations can be 

used to avoid most collisions, however this approach increases the overheads of 

the protocol. MAC protocols for WSNs have to switch nodes between sleep and 

active modes to save energy. However the intended receiver sleeping will block 
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the incoming transmissions and lose information. On the other hand, idle listening 

and channel sensing can ensure reception and collision avoidance but lead to more 

energy consumption. Generally, the principle for MAC protocols is simple: switch 

nodes to active mode when they need to transmit or receive data and switch them 

to sleep mode between transmissions and receptions, but this is a complicated 

goal to achieve. A well designed MAC protocol needs to find solutions for the 

issues above to achieve appropriate channel performance. 

 

3.2. Multiple Access Techniques 

Multiple access techniques control how users share the same medium. Several 

basic multiple access techniques are introduced in this section. Considering the 

design characteristics described for WSNs, the focus of this thesis is upon Time 

Division Multiple Access (TDMA). 

 

3.2.1. Frequency Division Multiple Access (FDMA) 

In an FDMA based network, different frequency bands are assigned to users to 

continuously transmit data. Users require a precise local oscillator and frequency 

synchronisation. Otherwise, adjacent-channel interference due to carrier 

frequency shift may cause the failure of transmissions as shown in Figure 3.1. 

Many nodes in Table 2.1 use FDMA as their multiple access techniques. 

Orthogonal Frequency Division Multiple Access (OFDMA) is an advanced form 

of FDMA, which assigns subcarriers to different users to achieve simultaneous 

low data rate transmissions, but OFDMA has high peak to average power ratio 

(PAPR) which is energy consuming, resulting in its limited applicability in WSNs. 
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Fig. 3.1 An example of FDMA 

3.2.2. Time Division Multiple Access (TDMA) 

In a TDMA based network, unique time periods are assigned to users to avoid 

collisions. TDMA is commonly used in MAC protocols for WSNs. TDMA can 

assign time periods of different lengths to users to satisfy their various capacity 

requirements. The potential for asymmetric channel assignment is the major 

advantage of TDMA. TDMA requires a precise local timer for synchronisation, 

with large time shifts causing collisions as shown in Figure 3.2. Low Energy 

Adaptive Clustering Hierarchy (LEACH) [30] uses TDMA for in-cluster 

communication: nodes in the same cluster (except the cluster head) send data to 

the cluster head by TDMA. Further discussions about TDMA schemes are 

provided in later chapters. 

 

Fig. 3.2 An example of TDMA and collision 
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3.2.3. Code Division Multiple Access (CDMA) 

CDMA assigns unique spreading codes to the users in the network, known also by 

the receiver. Users transmit data as spread spectrum signals and the receiver can 

demodulate particular signals by using the associated spreading code. The 

orthogonality among different spreading codes implies that other spreading codes 

are considered as random noise and filtered out at demodulation. CDMA allows a 

large number of simultaneous transmissions in the network, but it performs the 

best when the number of users is low. With an increasing number of users, the 

noise level at the receiver also increases, thereby reducing communication range 

within the channel, which is called the breathing effect of CDMA. IRIS [31] and 

Micaz [32] nodes use direct sequence spread spectrum to reduce RF (radio 

frequency) interference and provide data security. 

 

3.2.4. Space Division Multiple Access (SDMA) 

In traditional communication systems, base stations usually have no location 

information for the connected users. All downlink transmissions are radiated 

broadly in order to provide necessary coverage and ensure reception, which 

causes energy waste and interference. By applying smart antenna and 

beamforming techniques, base stations can focus the power of their signals in the 

directions of associated users, thereby improving energy efficiency and reducing 

interference. Considering the limited communication ranges and unknown 

physical positions of nodes in WSNs, SDMA is usually not applied to the design 

of WSNs. 
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3.2.5. Random Multiple Access  

In distributed WSNs, users usually transmit at a low data rate with unpredictable 

packet arrival times. Random multiple access schemes support the variable arrival 

patterns of packets by contending at transmission time for access to the channel, 

thereby improving the channel performance when packet arrival times are 

unpredictable. Carrier Sense Multiple Access (CSMA) [33] and ALOHA [34] are 

representative random multiple access techniques. In CSMA based schemes, a 

user first listens to the carrier before transmitting any packets. If the carrier is not 

occupied, the user can send the data, otherwise it has to wait to avoid collision. 

There are two basic CSMA schemes: persistent and non-persistent CSMA. In 

persistent CSMA, if a user senses the channel idle, it sends data. If the channel is 

occupied, it waits until the channel is clear and sends data with probability p. In 

non-persistent CSMA, if the user senses the channel idle, it transmits the data. If 

the channel is busy it follows the retransmission delay distribution to schedule a 

delayed transmission (using carrier sense as well) [33]. ALOHA is another 

random access scheme, in which users access the channel immediately after the 

packets are generated [34].  

3.3. MAC Protocols for WSNs 

This section categorises MAC protocols for WSNs as contention-based, 

schedule-based, or the combination of both. In order to efficiently access the 

channel resources, certain types of MAC protocols can be matched to the WSNs 

with different topologies and applications. Considering flat routing (without 

control nodes such as a cluster head) protocols, centralised control is mostly not 

applicable. Therefore contention-based MAC protocols are a natural distributed 

solution with throughput and delay performance benefits through their relatively 

independent transmission scheduling and collision avoidance mechanisms. For 
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hierarchical routing protocols, schedule-based MAC protocols can take advantage 

of the topology to use cluster heads for scheduling, thereby avoiding in-cluster 

collisions and achieving greater channel efficiency [35]. In long-term applications 

(such as environmental and agricultural monitoring tasks) with low data rates, 

contention-based MAC protocols achieve energy efficiency through their low 

overheads and avoidance of idle listening. For applications with heavy traffic load 

and real-time requirement (such as WSNs for fire rescue and battle field 

surveillance), schedule-based MAC protocols benefit delay and throughput 

performance. There are a huge number of MAC schemes developed for WSNs. 

This thesis selected the well established and represented MAC protocols to 

introduce in this literature review. Figure 3.3 categories some existing MAC 

protocols into different types. These protocols are introduced in the subsequent 

sections.  

 

 
Fig. 3.3 Categories of some existing MAC protocols 

 

3.3.1. Contention-based MAC Protocols  

Contention-based scheme are a natural approach for distributed multi-hop 

networks and most of the contention-based MAC protocols are based upon CSMA. 

Sensor – MAC (SMAC) [36] has explored the classic periodic listen/sleep duty 
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cycle which becomes the basis of a series of protocols. An overview of several 

representative contention-based MAC protocols is provided in this section. 

 

A. SMAC 

To improve energy efficiency and the lifetime of a sensor network, SMAC [36] is 

a well known contention-based scheme which periodically switches nodes 

between sleep and listening modes. It is designed for long-term non-real-time 

applications which prioritise network lifetime rather than throughput and delay 

performance. To avoid unnecessary energy consumption, SMAC applies three 

operations: period listening, collision avoidance and overhearing avoidance, and 

message passing. 

 

The duty cycle of SMAC has listen and sleep periods. During the listen period, 

nodes exchange data and control information. During the sleep period, nodes 

initiate their scheduled transmissions and receptions or turn off their radio in order 

to save energy. Nodes are willing to use the same sleeping timetable as their 

neighbours to reduce control overheads [36]. However neighbouring nodes may 

have different sleep schedules because they have different nodes in their 

neighbourhood. Nodes receiving different sleep schedules will ensure they only 

sleep when permitted by all schedules. This ensures receivers do not miss any 

information, but leads to additional energy consumption.  

 

In the listening period, nodes exchange schedule information and control packets. 

The data transmission is the same as IEEE 802.11 [36], which is contention-based 

and uses Request to Send (RTS) packets and Clear to Send (CTS) packets. When 

the first RTS packet arrives at an idle receiver, that node wins access to the 

medium and a CTS packet is returned to the winning node to indicate that it may 

now send. The synchronisation is done by exchanging SYNC packets which are 
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quite short and include the sender’s address and its next sleep schedule.  

 

Collision avoidance in SMAC is done by physical and virtual carrier sensing with 

RTS/CTS packets. A duration field is included in each transmitted packet which 

records the time the transmission will last. Once a node overhears a packet 

destined for another node, it knows how long the channel will be captured for and 

records this time in its network allocation vector (NAV) [37]. The NAV is a timer 

that is decremented by one every slot until it reaches zero. Every time a node 

wants to send data, it first checks the NAV, and the channel is considered busy if 

NAV is not zero. This is called virtual carrier sensing. The channel will not be 

considered clear unless both physical and virtual carrier sensing determine it is 

free.  

 

In summary, SMAC improves energy efficiency by reducing idle listening, 

collision and overhearing. Synchronisation is performed by broadcasting SYNC 

packets.  The collision of SYNC packets may cause synchronisation errors but 

since the listen and sleep periods are quite long, SMAC is not very sensitive to 

synchronisation problems. The predefined duty cycle introduces some delay and 

inefficiency to the network, however this can be improved as described in further 

research [38].  

 

B. Timeout – MAC (T - MAC) 

T-MAC is a contention-based MAC protocol based on SMAC which introduces 

adaptive duty cycling to reduce the energy consumption caused by idle listening 

[35]. Given that SMAC has a fixed duty cycle, the listen period must be long 

enough to handle the largest traffic level. If the output traffic level fluctuates 

significantly, the listening period will be too long for lower traffic loads and 

energy will be wasted by idle listening. The main idea of T-MAC is to reduce idle 
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listening by transmitting all messages in bursts of variable length, and by sleeping 

between bursts.  

 

In T-MAC, a node will end the listen period if it hears nothing and has no data to 

send after a certain time TA [39]. The threshold TA determines the minimum 

amount of idle listening in each duty cycle. The TA is longer than the sum of the 

lengths of the contention interval, the RTS packet and the propagation time to 

avoid missing any transmissions. T-MAC introduces Future Request to Send 

(FRTS) packets to solve the early sleeping problem. Early sleeping means that 

when a node fails to contend with another node, its destination node will switch to 

sleep mode for the rest of the current duty cycle. In T-MAC, a node sends a short 

FRTS to its destination node after it fails contending a slot. FRTS includes the 

time the source node will wake up, which is also the time the current transmission 

will last. The FRTS increases throughput but also energy consumption, therefore 

T-MAC has better energy efficiency under high traffic levels [39]. Compared with 

SMAC, T-MAC improves energy efficiency by reducing idle listening in the listen 

period, but has similar delay issues to SMAC. 

 

C. Dynamic Sensor MAC (DSMAC) 

The fixed duty cycle is always a problem in SMAC which affects delay and 

throughput performance and adaptability to different levels of traffic load. 

DSMAC [40] extends SMAC, introducing a dynamic duty cycle to achieve better 

balance between the latency and the energy consumption with different traffic 

levels.  

 

Packets in DSMAC have a field which records the one-hop latency [40]. The 

one-hop latency is defined as the delay between the time a packet is generated and 

the time it is successfully transmitted. This value can be retrieved at the receiver 
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node. The average latency is calculated to estimate the current traffic level. Nodes 

also keep track of their energy consumption per packet and which is delivered as 

an indicator of energy efficiency. If the latency of a node exceeds a certain level, it 

doubles its duty cycle by retaining the same listen period but reducing its sleep 

period. Similar to T-MAC, DSMAC has better performance than S-MAC under 

high traffic levels. 

 

D. Demand Wakeup MAC (DW-MAC) 

Demand Wakeup MAC (DW-MAC) [41] is a contention-based MAC protocol 

which applies a low-overhead scheduling algorithm to wake up the nodes when 

they need to transmit or receive in order to increase the effective channel capacity 

and adapt the network to a variety of traffic loads. 

 

Similar to SMAC and T-MAC, DW-MAC has a duty cycle and neighbour nodes 

use the same sleeping schedule. One duty cycle includes three periods: Sync, Data 

and Sleep. Nodes exchange synchronisation information in the Sync period. The 

Data period is reserved for scheduling frames (SCH) and scheduled data is 

transmitted during the Sleep period. Nodes which do not need to transmit or 

receive switch to low power mode during the Sleep period [41]. 

 

In the Data period, nodes contend for channel access using CSMA/CA but instead 

of RTS and CTS, DW-MAC uses SCH for scheduling. Similar to RTS, SCH 

contains the destination address but not any timing information. The time that the 

node starts to transmit/receive SCH provides the scheduling information. The ratio 

of the length of SCH to the length of the data packet indicates the time that nodes 

start to transmit/receive packet, because it is the same as the ratio of the time 

interval between the start of the Data period and the start of the 

transmission/reception of SCH to the time interval between the start of Sleep 
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period and the start of transmission/reception of data.  So after a node 

successfully transmits/receives a SCH, a period of time in the Sleep period will be 

reserved for data transmission/reception [41].  

 

DW-MAC introduces multi-hop forwarding. A node routes the SCH to the next 

hop after it receives the SCH from the previous hop. A data reception and data 

transmission period in its Sleep period are automatically reserved. Generally, 

DW-MAC integrates scheduling and access control to achieve low latency and 

high power efficiency, delivering performance benefits under high traffic levels. 

However, this feature also makes DW-MAC very sensitive to synchronisation 

errors [41]. 

 

E. Correlation-Based Collaborative MAC (CC-MAC) 

In order to reduce redundant transmissions from nodes which detect the same 

events, CC-MAC [48] proposes improving energy efficiency by exploiting spatial 

correlation. CC-MAC is a contention-based cross-layer protocol which selects 

representative nodes within a certain radius to transmit data, and routes the 

representative data to the sink with a higher priority. CC-MAC has two 

sub-protocols, Event-MAC (E-MAC) and Network-MAC (N-MAC). 

 

CC-MAC requires global information and network statistics for network 

initialisation. A spatial correlation model is proposed to determine the minimum 

number of representative nodes that achieve the distortion constraint given by the 

application layer [48]. CC-MAC introduces Vector Quantisation (VQ) and 

Iterative Node Selection (INS). These distributed processes determine the number 

and location of representative nodes using topology information, the network 

density and type of distribution. Only the representative nodes are allowed to 

transmit sensing data in the associated correlation region.  
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Packet transmissions in CC-MAC are based upon CSMA/CA, using RTS/CTS 

packets with embedded correlation information [48]. E-MAC filters out the 

correlated event information of the nodes in the same correlation region. When 

nodes detect an event, they contend for the channel using RTS/CTS packets. The 

winner becomes the representative node and continues transmitting data. Upon 

overhearing packets from representative nodes, other nodes calculate their 

distance to the representative nodes and determine if they are in the correlation 

region. Nodes in the correlation region switch to the sleep state for a certain time 

and nodes outside the correlation region keep contending for the channel if they 

have packets to transmit. Since the correlation is filtered out by E-MAC, packets 

from the representative nodes have priority over other packets in the network. 

N-MAC switches nodes in the random listening period in sleep mode into active 

mode when they hear RTS packets, to receive data packets from representative 

nodes.  

 

CC-MAC therefore achieves energy efficiency by considering the spatial structure 

of the topology, but this also makes CC-MAC sensitive to topology changes. The 

correlation radius and representative nodes need to be re-determined once the 

network topology changes. The performance of E-MAC may also be affected by 

network dynamics. E-MAC performs different sleep schedules depending upon 

whether the correlation radius is larger than the reception range, or vice versa. 

Applying incorrect sleep schedules due to change in this parameter may block 

transmissions and cause additional energy consumption. 

 

F. Quorum-Based MAC (Q-MAC) 

The fixed duty cycle and frame sizes in SMAC cause inefficiency when handling 

different levels of traffic load. Q-MAC [50] introduces the concept of a quorum to 
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adapt the sleep schedules to improve the energy efficiency and delay performance. 

The quorum-based wake up scheme determines the wake-up frequency by 

considering the current traffic load upon an individual node. Nodes with a light 

load switch into sleep mode more frequently. To reduce the delay caused by a long 

sleep period, Q-MAC considers the next-hop topology structure to increase the 

transmission opportunities when relaying packets 

 

Q-MAC divides the network into adjacent coronas (concentric circles) centred at 

the sink by broadcasting packets with hop count during initialisation [50]. Frames 

are quantised to an     grid and      frames (one row and one column) are 

randomly selected as the quorum frames in which the nodes switch to the active 

mode. Nodes with the same grid size definitely intersect so that they can maintain 

communication. To solve the problem of asymmetric traffic caused by the 

increasing relay burden from more central nodes, grid sizes are assigned to the 

nodes in different coronas based on the ratio between the areas of the circles. 

Therefore, nodes in the inner coronas have smaller grids and more frequent access 

to the channel.  

 

To reduce the latency caused by sleeping nodes, Q-MAC allows nodes to obtain a 

list of nodes which are potentially their next hop (nodes of the inner-adjacent 

coronas). When a node has data to transmit, it first multicasts RTS packets to 

nodes in the list, and nodes receiving RTS packets send back CTS packets with a 

certain backoff determined by the remaining energy. Nodes overhearing data 

transmissions switch to sleep mode to avoid collisions and save energy. Q-MAC 

alleviates the asymmetric traffic conditions caused by packet relaying and 

improves the energy efficiency of both the MAC and routing layers. However it 

presents limits for the traffic model and applications. If the sensing field is located 

at the far side of the network to the sink and most of nodes in the network are 
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relay nodes, different grid sizes may cause additional delays in the packet 

transmissions. 

 

G. Game-Theoretic MAC (G-MAC) 

Based on SMAC, [50] proposes an incomplete cooperative game-theoretic 

heuristic-based constraint optimisation algorithm to adaptively adjust the duty 

cycle to the current traffic in the network, thereby achieving better energy 

efficiency, throughput and delay performance.  

 

In [50] a game-based optimisation algorithm is proposed to estimate the 

simultaneous competing nodes in the network. The algorithm requires complete 

schedule information and explicit cooperation of nodes. It is then simplified to 

adjust to WSNs by using virtual saturated traffic conditions (assuming packet 

collision/success based on carrier sensing rather than sending real packets) to 

satisfy the requirements of the algorithm without additional control packet 

overheads.  

 

G-MAC achieves better energy efficiency and channel performance than SMAC. 

However the hidden terminal problem [36] in multi-hop networks may affect the 

performance of G-MAC. The virtual collision/success situation in virtually 

saturated traffic conditions is determined by local carrier sensing, which can be 

inaccurate when hidden terminals exist. 

 

H. Schedule Unifying Algorithm (SUA) for SMAC  

To solve the problem of high energy consumption of border nodes in SMAC, [51] 

proposes a schedule unifying algorithm for network-wide synchronisation of the 

sleep schedules. In SMAC, a node either follows a sleep schedule received from a 

neighbour or broadcasts its own sleep schedule. But if it receives multiple 
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schedules it synchronises to all of them, which increases the length of the listening 

period and causes more energy consumption. These nodes are called border nodes. 

SUA introduces synchroniser ID in each SYNC packets and nodes follow the 

sleep schedule of the highest synchroniser ID. Nodes also record their neighbours’ 

sleep schedules and unicast their own sleep schedule (after following the highest 

synchroniser ID) to the nodes with different schedules, therefore the network has 

the same sleep schedule after a certain time. 

 

SUA enhances the sleep schedule of SMAC and alleviates the additional energy 

consumption of border nodes. However the convergence of the algorithm requires 

more time in larger networks, and SUA is incompatible with networks with 

multiple sink nodes. 

 

3.3.2. Schedule-based MAC Protocols  

Schedule-based schemes represent an alternative approach to the medium access 

control problem, although this is difficult to achieve in a distributed fashion. The 

improved throughput and delay performance are mostly offset by the increased 

complexity and overheads. Compared with contention-based MAC protocols, 

schedule-based protocols have better general performance at high traffic levels. 

 

A. Traffic-Adaptive medium access control (TRAMA) 

Traffic-Adaptive Medium Access Control (TRAMA) protocol is a TDMA-based 

energy-efficient schedule-based MAC protocol [37]. TRAMA is similar to Node 

Activation Multiple Access (NAMA) [42] which uses a distributed election 

algorithm to make sure only one node can transmit in two hops to avoid the 

hidden terminal problem. TRAMA is better than NAMA because it introduces a 

low-power mode to reduce energy consumption when the node is not transmitting 
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or receiving. A difference with SMAC is that the listen/sleep schedule is not 

predefined but dynamically calculated from the current traffic level, thereby 

achieving better energy efficiency. It provides transmissions without collisions, 

idle listening and idle senders [37].  

 

In TRAMA, nodes exchange their two-hop information and transmission 

schedules periodically, with transmitter and receiver nodes of each time slot 

determined by this information. The neighbour and transmission schedule 

information exchange is done by the Neighbour protocol (NP) and the Schedule 

Exchange Protocol (SEP). The selection of transmitters and receivers is done by 

Adaptive Election Algorithm (AEA), which can also switch other nodes into 

low-power mode [37].  

 

The duty cycle of TRAMA consists of the random access period and the 

scheduled access period. The scheduled access period is seven times longer than 

the random access period [37]. The random access period includes signalling slots 

for the NP to exchange one-hop information. In the random access period, all 

transmissions are contention-based, with ACKs and retransmissions introduced to 

ensure the reception of information. Node additions, deletion and synchronisation 

are also performed in this period. In the scheduled access period, nodes use the 

information obtained in random access period and transmit packets without 

collisions.  

 

The control packet overheads are a problem in TRAMA. At least 12.5% of the 

channel capacity is consumed exchanging control information. A certain type of 

hidden terminal problem also exits in TRAMA. Suppose a node has data to send 

and it has the highest priority in the current slot. The other nodes in its two-hop 

neighbourhood all switch to low power mode. At this moment, if a node three 
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hops away has data to send to a two-hop neighbour, its transmission will certainly 

fail to be received because the destination node has turned off its radio [37]. 

 

B. Low Energy Adaptive Clustering Hierarchy (LEACH) 

Low Energy Adaptive Clustering Hierarchy (LEACH) [30] is a schedule-based 

cross-layer protocol which reduces and evenly distributes the energy consumption 

of the nodes in the network. LEACH is a cluster-based protocol. Periodically, 

nodes in the network are randomly elected to be cluster heads. Each cluster head 

gathers and aggregates the data in its own cluster and sends the data back to the 

base station. After a certain period of time, nodes will elect new cluster heads. 

Periodically switching cluster heads reduces the consumption of single nodes and 

prolongs the lifetime of the entire network because a cluster head consumes more 

energy than the ordinary nodes. 

 

The process of LEACH has two phases: the set up phase and the steady phase [43]. 

In the set up phase, nodes randomly select a number between 0 and 1. If the 

number is less than the threshold T(n), the node becomes the cluster head in the 

current round. After the election, the selected cluster heads broadcast 

advertisements to all the nodes in the network to notify that they became the new 

cluster heads. Nodes receiving the advertisement will send back messages to 

confirm that they are members of the certain clusters. After receiving all the 

replies from the nodes belonging to the cluster, the cluster head will assign 

transmission times to the nodes based on the number of nodes in the cluster to 

ensure TDMA-based data transmission in the steady phase. The transmissions 

within each individual cluster use different CDMA codes to avoid interference 

between neighbouring clusters [43]. 

 

LEACH is difficult to apply to large-area applications, because every node has the 
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possibility of being a cluster head and the cluster heads need to communicate with 

the base station, which requires that all the nodes are able to contact the base 

station. Nodes also should require the capabilities (and sufficient resources) to 

complete the potentially complicated task of a cluster head. The probability of 

being a cluster head is uniformly distributed. Therefore, in some rounds, cluster 

heads can appear on one side of the network and nodes one the other side of the 

network have no cluster heads in their communication range. 

 

C. PairWise 

PairWise [55] is a TDMA schedule-based MAC protocol which establishes 

transmissions between pairs of nodes and does not require global synchronisation. 

The channels (not frequency but time) of node pairs hop pseudo randomly in time 

according to a seed and maximum rendezvous period (MRP) to avoid collisions 

and adapt different traffic loads. Before transmitting data packets, nodes need to 

perform neighbour discovery, channel establishment and synchronisation.  

 

Neighbour discovery is implemented by exchanging invite messages, channel 

request messages (CRM) and channel acknowledgment messages (CAM) [55]. 

After a node switches on, it first waits a certain time for an invite message. If no 

invite message arrives, the node broadcasts its own invite message which includes 

the MRP, available seeds and constants for calculating rendezvous periods (RPs) 

for uplink and downlink channels. Nodes receiving an invite message return a 

CRM which includes the selected seeds and constants for both nodes to calculate 

the RP (in which nodes wake up to exchange data packets) according to the 

channel establishment algorithm. Nodes receiving multiple invite messages do not 

return the CRM but broadcast their own invite message after certain time. 

 

In the case that the same seeds result in the same RPs, to avoid collisions, 
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PairWise provides a large number of available seeds in the invite message to 

reduce the probability of overlapping. Nodes also record the seeds used by their 

neighbours and broadcast them in their invite messages for nodes which overhear 

the messages to calculate the reserved RPs and select their own RPs with the 

lowest overlap. PairWise achieves good throughput, delay performance and very 

few collisions. However it requires constant exchange of two-hop information 

which increases the control packet overheads. 

 

3.3.3. Other MAC Protocols  

By combining the features of both contention-based and schedule-based protocols, 

MAC protocols can achieve better throughput, delay performance and improved 

energy efficiency. But these protocols usually have higher complexity and require 

more calculation, which also leads to additional energy consumption. 

 

A. Z-MAC 

Z-MAC [44] combines the advantages of TDMA and CSMA to achieve better 

channel utilisation and lower latency under different traffic levels. It has a setup 

phase of neighbour discovery, slot assignment, local frame exchange and global 

time synchronisation. Neighbour discovery is applied by broadcasting ping 

messages to the neighbours periodically [44]. After obtaining one-hop neighbour 

information, it is used as the input parameters to a time slot assignment algorithm 

DRAND [45]. DRAND can assign unique slots to the neighbour nodes and avoid 

the hidden terminal problem.  

 

Nodes in Z-MAC can be in one of two modes: low contention level (LCL) or high 

contention level (HCL) [44]. A node is in HCL only when it receives an explicit 

contention notification (ECN) from a two-hop neighbour. In LCL, any node can 
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contend to transmit in any slot. However, in HCL, only the owners of the current 

slot and their one-hop neighbours are allowed to contend for the channel. The 

owner of the slot always has the highest priority but if it does not have any data to 

send, other nodes can steal the slot [44].  

 

Z-MAC is a complicated frame-based and collision-free MAC protocol which 

differs from other protocols. It has the advantages of TDMA under high traffic 

levels and the benefits of CSMA under low traffic levels. Compared to CSMA, it 

has similar performance under low contention levels and better performance when 

the contention level is medium or high [44]. 

 

B. Global Time Synchronised MAC (GMAC) 

Global Time Synchronised MAC (GMAC) [46] is a contention-based and 

schedule-based MAC protocol using TDMA and FDMA. The network topology of 

GMAC is tree-based, with each node assigned to a parent closer to the sink node 

with the smallest number of children. Nodes only send data to their parents and 

the parents then relay data to the sink nodes.  

 

GMAC divides the time into super-frames. Each super-frame includes a control 

frame and several data frames. In control frames, nodes broadcast their 

synchronisation information, selected frequencies, time slots, neighbour, children 

and parent lists to their neighbours using CSMA. In data frames, the child nodes 

wake up on their selected slots and send data on certain frequencies. The parent 

nodes wake up during their slots assigned to their children, and tune to the right 

frequencies to receive data [46]. 

 

GMAC uses a resource allocation algorithm to avoid collisions with neighbouring 

nodes. Generally, each node has a “blacklist” of resource units (frequencies and 
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time slots) that it cannot use. When a node joins the network, it first listens and 

collects information to obtain its “blacklist”. The resource units of its parent’s 

neighbour nodes, its neighbours’ child nodes and the time slots of its parents and 

brothers are recorded in the “blacklist” [46]. 

 

GMAC performs well when the traffic level is high, but its energy efficiency 

declines when the traffic level decreases. Latency is the biggest problem for 

GMAC especially when the sources are densely distributed. The “blacklist” is 

obtained at initialisation which can be out of date considering the dynamics of 

typical network, thereby limiting the throughput and delay performance. 

 

C. Y-MAC 

Y-MAC [47] is similar to GMAC, it divides time into frames which have a 

broadcast period and a unicast period, both of which contain a number of time 

slots. The number of slots in the unicast period is configurable and depends on the 

QoS requirements.  

 

During the broadcast period, neighbour nodes contend to broadcast their control 

information. The occupied slots of the nodes’ one-hop neighbours are included in 

the control information, so all nodes can obtain a slot allocation vector of their 

two-hop neighbours to avoid collisions and the hidden terminal problem. If a node 

does not receive the control information from a neighbour after certain time, this 

neighbour will be deleted to release the time slots [47].  

 

Y-MAC uses frequency hopping to adapt to high traffic load situations. Each node 

has several available frequencies, of which one is considered to be the basic 

frequency.  The exchange of control information only happens on the basic 

frequency. Data transmitted during the unicast period is usually on the basic 
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frequency but can also hop to other frequencies. If too many packets are queued to 

the same destination, the nodes can hop to another available frequency and then 

contend to send the data [47]. The use of frequency hopping reduces the delay 

experienced by the packets. 

 

By applying frequency hopping, Y-MAC maintains low delivery latency and high 

data reception rate when the traffic load is high, but under low traffic conditions, 

frequency hopping is usually unnecessary. Moreover, when sensor nodes are 

densely deployed, the control packet overhead becomes a problem for the energy 

efficiency. 

 

D. MAC for WSNs with Energy Harvesting (EH) 

Energy harvesting (EH) devices alleviate certain fixed energy constraints typically 

in conventional WSNs. The sustainable energy supply and temporary energy 

shortages bring new concerns for MAC protocol research. The work in [52] 

proposes dynamic-framed-ALOHA (DFA) for WSNs with EH devices which aim 

to improve the packet delivery probability.  

 

Instead of using repeated frames with fixed length, DFA categorises nodes with 

new packets and certain remaining energy which suffer continuous collisions into 

a backlog set. The sink schedules extended frames for nodes in the backlog set to 

transmit their data. The size of the backlog set is estimated at the sink by using the 

distribution of the energy storage and prior channel outcomes without obtaining 

any information from nodes in the network [52]. DFA has low overheads and 

achieves good delivery probability. However the protocol is implemented based 

on single-hop networks which have no problems with network-wide scheduling. 

The protocol needs to be extended and applied to multi-hop networks where 

centralised control is not available.  
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3.4. Discussions and Conclusions 

The MAC protocol is an important component in a WSN and has a significant 

impact on energy efficiency, network lifetime and channel performance. This 

chapter presents a brief overview of the existing MAC protocols and categorises 

them into contention-based, schedule-based and the combination of both. The 

general principle used in the MAC schemes explored is switching nodes between 

active and sleep modes appropriately to save energy, and ensuring transmissions 

and avoiding collisions by channel contending or scheduling.  

 

SMAC explores the concept of a duty cycle, switching nodes between active and 

sleep modes periodically. A series of extended protocols are developed based on 

SMAC and CSMA to further improve the energy efficiency and adaptability. 

Contention-based MAC protocols usually contend for the channel by transmitting 

short RTS packets instead of long data packets and avoid collisions by channel 

sensing and overhearing. Contention-based protocols are natural approaches for 

low-traffic distributed networks and have the advantages of low overheads and 

delay, and the performance has certain robustness to topological changes. 

However, the performance of contention-based protocols degrades under high 

traffic levels, and collision avoidance through channel sensing is sensitive to 

hidden terminal problems. In this thesis we intend to develop a collision 

avoidance mechanism (without using CSMA) robust to hidden terminal problems 

to improve the performance of the MAC protocol for multi-hop networks. 

 

Schedule-based protocols are alternative approaches for WSNs MAC protocols, 

although scheduling is difficult to achieve in a distributed fashion. TRAMA and 

LEACH are representative schedule-based protocols which ensure no collisions 

by exchanging two-hop scheduling information or in-cluster scheduling. 
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Schedule-based protocols alleviate the impact of collisions and achieve high 

throughput performance, but the overheads become an issue for energy efficiency 

especially under low traffic conditions. Some protocols combine the advantages of 

both contention and schedule-based schemes to improve energy efficiency and 

achieve good performance under different traffic conditions. However the 

complexity and overheads are still problems for overall performance. Simpler 

schemes with less overhead but similar performance are better alternatives for 

MAC protocols for WSNs. Instead of exchanging scheduling information within 

two-hop, later chapters of this thesis focus on developing schemes which only 

require communication between the associated transmitter node and receiver node 

pair, thereby alleviating redundant traffic in the network and achieving energy 

efficiency. 

 

Instead of using the same protocols, MAC protocols for WSNs are usually 

application-specific because the network topology and application requirements 

have significant impact on the design of MAC protocols. Contention-based 

protocols are typically favoured for long term monitoring tasks because these 

applications usually have low traffic loads and prioritise network lifetime rather 

than throughput and delay performance. For applications requiring real-time data 

flows (such as fire rescue and battlefield surveillance), schedule-based protocols 

are better options because the good throughput and delay performance under high 

traffic load conditions.  
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4. Reinforcement Learning and ALOHA for 

Single-hop WSNs 
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This chapter presents the basic principles of applying Reinforcement Learning 

(RL) and ALOHA to implement MAC protocols for WSNs. Framed ALOHA is 

the basic protocol to which RL is applied. In this chapter we consider the 

performance of framed ALOHA with random access and compare it to the scheme 

with RL slot selection strategy. Results show that RL significantly increases the 

throughput and delay performance of ALOHA and achieves perfect scheduling 

with appropriate system configuration.  

 



Reinforcement Learning and ALOHA for Single-hop WSNs 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

56 

4.1. Introduction 

Given the energy limitations of WSNs, MAC protocols for most of their 

applications usually focus on improving energy efficiency (unless the applications 

do not concern network lifetime). However, it is not necessary to seek better 

energy efficiency by sacrificing too much Quality of Service (QoS), or vice versa. 

Maintaining the balance between energy efficiency and QoS is crucial in 

developing MAC protocols for WSNs. In current MAC protocol research, there is 

a trend towards raising complexity to achieve better channel performance, at the 

cost of adding overheads. Improving performance is the right principle but the 

applicability of complex protocols to simple WSNs devices is questionable. The 

ALOHA schemes have low complexity and overheads, but suffer poor throughput 

performance as a result of the blind transmission strategy (only 37% of channel 

can be used for useful throughput when the offered traffic is equal to the channel 

capacity).  This chapter shows that by applying an intelligent slot selection 

strategy, ALOHA can become a promising MAC protocol which has low 

complexity and overheads while maintaining good channel performance. 

 

This chapter introduces the basic principles of a novel approach which applies RL 

to ALOHA schemes. In framed ALOHA, weights are given to each slot in the 

repeating frame and updated by successful transmissions or failures. Nodes 

determine their preferred slots using the weights and optimal slots can be found 

when RL converges. When the frame size is appropriately configured, perfect 

scheduling can be achieved at convergence.  

 

4.2. Reinforcement Learning on Framed ALOHA 

RL is the process through which a node determines its optimal transmission 
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schedule by learning from its transmission history. We first implement RL based 

on Framed ALOHA with exponential backoff and maximum retry limit (EB-F-M) 

described in the appendices. In EB-F-M, the transmission slot is selected in two 

steps: first randomly select a frame in the current contention window then 

schedule a packet transmission in a random slot in that frame. Exponential backoff 

with Reinforcement Learning (EB-RL) has a similar two-step structure but a 

different second step. The in-frame slot selection is performed based upon the 

results of the RL process. It has a similar backoff scheme to the original EB-M 

when a packet collides, EB-RL exponentially backoff the retransmission and it 

also has a maximum retransmission limit (EB-RL-M) of 6 according to the IEEE 

standard [74]. 

 

Specifically, each node in EB-RL records an array of weights, one per slot, based 

on the number of slots in the repeating frame. The weights represent the 

preference of transmitting in each slot in a frame. If a collision occurs in a certain 

slot, the associated weight is decreased by one, and if a packet is successfully 

transmitted in a slot, then that weight is increased by one. At the beginning of 

each contention window, the slot with the largest weight is selected as the 

transmission slot. If multiple slots have the largest weight, the node randomly 

selects one from them. The pseudo code below describes this learning algorithm. 

A scheduled slot denotes the preferred slot selected to send a data packet, and a 

scheduled frame indicates the frame when the node has the contention window 

size of one frame, or the frame selected to send a data packet when the node is in 

retransmission mode (contention window size larger than one frame). 

 

loop sleep until the next scheduled frame 

     if multiple slots have the same greatest weight 

       randomly select one of these slots as scheduled slot 

     else  

       scheduled slot = the slot with the greatest weight 
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     sleep until the next scheduled slot 

     if one or more packets in the queue 

       send the packet at the queue head 

     if ACK successfully arrives 

       return +1 reward and update the associated weight 

       contention window = 1 frame 

       retry number = 0 

else 

       return -1 reward and update the associated weight 

       contention window = contention window * 2 

       retry number = retry number + 1 

       if retry number > retry limit 

         contention window = 1 frame 

         discard the packet 

       else 

         scheduled frame = a random frame in the current contention window 

end loop 

 

Figure 4.1 shows an example of EB-RL. In this example one frame contains two 

slots and the initial contention window is one frame. In frame 1, the node 

randomly selects slot 1 to send a packet and the transmission succeeds. In frame 2 

and 3, the node sends a packet in slot 1 because it has the largest weight. The 

transmission in frame 3 fails, the node enters retransmission mode and doubles the 

contention window to two frames which are frame 4 and 5. Frame 5 is randomly 

selected and the node sends a packet in slot 1 because it still has the largest weight. 

The transmission fails again and the contention window becomes four frames 

(frame 6 to 9). Frame 8 and slot 2 are randomly selected and the transmission 

succeeds. The node starts a new contention window with the initial length at 

frame 9 and then sends a packet in slot 2. 

 

Fig. 4.1 An example of EB-RL 
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The principle of RL described above is simple and novel, and it requires no 

additional packet exchange with other nodes compared with the original framed 

ALOHA. Based only on whether the ACK (acknowledgement packet) is received 

or not, RL updates the weights and determines future slot selections. With 

appropriate frame length, RL can achieve perfect scheduling and significantly 

increase the throughput performance. The simplicity and low computation of the 

RL scheme make it ideally suited to WSNs (especially to long-term monitoring 

applications), and this RL scheme can also be an alternative to other distributed 

networks with similar requirements. 

 

4.3. Modelling and Performance Results 

In this section, the performance of EB-RL-M is evaluated by starting with a 

simple but commonly used single-hop network topology. This topology can also 

represent a one-hop sub-network or in-cluster communication in hierarchical 

WSNs (eg. WSNs using LEACH). As the initial evaluations, this section fully 

explores the potential of EB-RL-M under various environmental conditions 

(different propagation delays and synchronisation shifts) and considers its optimal 

configuration. 

4.3.1. Topology and Assumptions 

We consider a single-hop network in which nodes only communicate with the sink. 

Consider the worst case of packet reception that any partial or entire overlap of 

multiple packets causes the failure of these packets. All nodes maintain 

synchronisation. It is not necessary to synchronise the start of each frame among 

nodes because RL can perform properly as long as the start of each slot is 
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synchronised. A full set of simulation parameters can be found in Table 4.1. Each 

data packet consists of 1024 bits for data, 8 bits each for destination/source 

address and 4 bits for packet type. Each ACK packet consists of 8 bits each for 

destination/source address and 4 bits for packet type. 

 

The results in this chapter are collected through the whole simulation including 

the learning process. To show the best performance of EB-RL requires 

consideration of the performance after the system converges. Different frame sizes 

are considered in the simulations, and simulations with small frame sizes may not 

have optimal convergence because there are insufficient slots for all nodes to have 

their unique slots (the network can easily be overloaded). So to be fair to all 

schemes, results of all simulation time (from the start of each simulation to the 

end) is considered. In Chapter 5 and Chapter 6, the optimal frame size is 

considered and therefore results are collected after the network converges. Later 

chapters provide more study on convergence behaviour and this section mainly 

focuses on channel performance evaluation.  

 

Parameter Value 

Transmitter Data Rate 250 kbits/sec 

Receiver Data Rate 250 kbits/sec 

Data Packet Size 1044 bits 

ACK Packet Size 20 bits 

 

 

Slot Length 0.0044 sec 

Backoff Factor 2 

Maximum Retry Limit 6 

Simulation Period 500,000 slots 

Table 4.1 Simulation Parameters 
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4.3.2. Traffic Models 

Two traffic models are used to evaluate the performance of EB-RL-M. A saturated 

traffic model (nodes always have packets to send) is used to determine the 

performance of EB-RL-M under full contention. The other traffic model is more 

practical, in which the packet inter-arrival time is exponentially distributed. All 

nodes in the network have the same average packet inter-arrival time (same traffic 

level). The overall generated traffic and offered traffic of the network can be 

controlled by setting different packet inter-arrival times, thereby evaluating the 

performance of EB-RL-M with different traffic levels.  

 

4.3.3. Performance with the Saturated Traffic Model 

Figure 4.2 compares the normalised throughput between EB-RL-M and EB-F-M 

with the saturated traffic model. The results show that EB-RL-M has a much 

higher maximum throughput than EB-F-M and the peak point usually exists when 

the initial contention window   is close to the number of nodes. When the 

number of nodes is much larger than the frame size, EB-RL-M has similar 

performance to EB-F because there are insufficient slots for all the nodes, 

therefore transmissions keep failing and the network acts like random access. 

When the number of nodes is smaller than the frame size, EB-RL-M has lower 

throughput (but still better than EB-F-M) because a node can send one packet 

each frame and there are always unused slots in each frame. The improvement in 

maximum throughput with EB-RL-M is significant, considering that it is over 0.9 

Erlangs which is over twice the maximum throughput of EB-F-M (0.37 Erlangs) 

and close to the theoretical maximum (approximately 0.95 Erlangs considering 5% 

overheads). 
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To validate the connection between frame size and number of nodes, Figure 4.3 

compares the throughput and offered traffic when   is set the same as the 

number of nodes. It shows that EB-RL-M has throughput over 0.9 Erlangs for 

most traffic levels. The throughput of EB-RL-M is very similar to the offered 

traffic. This means that most packets are received without collisions, while about 

40% of the packets are lost in EB-F-M. The lower throughput with higher 

numbers of nodes is caused by the longer convergence time, because in this 

chapter the results are collected from the whole simulations considering the 

fairness comparison (schemes with frame sizes lower than number of nodes may 

not converge to a steady state). In later chapters we will focus on the results of 

two different states (learning/convergence states). The throughput does not reach 

1 Erlang because a certain proportion of each slot is reserved for ACK packets and 

other overheads. In the simulations, the slot length is set to the time needed to 

transmit/receive 1100 bits of data. The size of a data packet is 1044 bits, therefore 

the maximum possible throughput is approximately 0.95 Erlang. In Figure 4.3, 

EB-RL-M approaches the theoretical maximum when there are few nodes in the 

network. EB-RL-M also has a much lower average delay than EB-F-M under this 

situation as Figure 4.4 shows. For all different network sizes, the delay is kept 

under 1 second. Both schemes have the trend of increasing delay with the rising 

number of nodes, which is caused by larger frame sizes. 
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Fig. 4.2 Throughput of EB-RL-M with saturated traffic model 

 

 
Fig. 4.3 Delay of EB-RL-M                Fig. 4.4 Throughput of EB-RL-M  

 

4.3.4. Performance with unsynchronised Conditions 

In this section the performance of EB-RL-M with synchronisation shifts is 

evaluated to testify its robustness. After initialisation, nodes start the first slot at a 

uniform randomly distributed time, within the range of zero to the length of one 

frame. Under unsynchronised conditions, the theoretical probability of collision 
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for EB-F-M is double the collision probability of synchronised conditions. 

Therefore, the expected throughput can be reduced by half. However, according to 

the collision avoidance performed by RL, a less than half throughput loss for 

EB-RL-M can be expected compared with EB-F-M. Figure 4.5 shows the 

throughput with synchronisation shift under the saturated traffic model. In 

accordance with the theory, the throughput of EB-F-M decreases to about half of 

the throughput in Figure 4.2 with the maximum at about 0.19 Erlangs. The 

throughput of EB-RL-M drops but is still more than half of the throughput shown 

in Figure 4.2, as expected. EB-RL-M has a maximum throughput of about 0.64 

Erlangs when the frame size is set appropriately. Considering the existence of 

backoff, nodes enter backoff mode more frequently under unsynchronised 

conditions, which declines the offered traffic of each node and allows RL to select 

slots with relatively lower probabilities of collision across frames. Therefore the 

throughput loss is less than half compared with the EB-F-M. 

 

Figure 4.6 compares the delay of EB-RL-M and EB-F-M under unsynchronised 

conditions. Similar to the throughput results, EB-RL-M has a better delay 

performance than EB-F-M when the number of nodes is not much larger than the 

frame size. Under the conditions of heavy contention and small frame size, 

EB-RL-M has similar performance as EB-F-M, because RL acts like random 

access and is difficult to benefit throughput with large probability of collisions. 

The results in Figures 4.5 and 4.6 demonstrate that EB-RL-M has certain 

robustness to synchronisation errors and still achieves necessary performance 

without synchronisation. 
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Fig. 4.5 Throughput of EB-RL-M under unsynchronised condition 

 

 

Fig. 4.6 ETE delay of EB-RL-M under unsynchronised condition 

 



Reinforcement Learning and ALOHA for Single-hop WSNs 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

66 

4.3.5. Performance with Exponentially Distributed Traffic Model 

In this section we assume the network is synchronised, consists of 100 nodes and 

that the generated traffic is evenly allocated across all the nodes in the network (as 

a common WSNs environmental monitoring application). In addition to the 

original EB-M, two more frame-based EB schemes (EB-HOP and EB-STAY) with 

certain intelligence are also simulated for comparison. Nodes in EB-HOP starts 

with random access, keep using the slot with the first success until a packet 

transmission fails, and return to random access. Nodes in EB-STAY keep using 

the slot (forever) in which the first successful transmission occurs. Through 

comparison with these schemes, it shows the benefits of RL and the performance 

that RL can achieve. 

 

Figure 4.7(a) compares the normalized throughput of four EB schemes with 

different initial contention window sizes. The results show that EB-RL has much 

higher throughput than the other schemes and the best performance exists when 

the initial contention window size is the same as the number of nodes. The 

throughput increases linearly with the generated traffic. In Figure 4.7(a), when the 

initial contention window size is set to 100, it achieves throughput of 0.92 Erlangs. 

When the generated traffic is equal to or larger than 1 Erlangs, this performance is 

quite close to the theoretical maximum of 0.95 Erlangs. It also shows that the 

configuration of the initial contention window size is very important for the 

EB-RL scheme. The original EB-M achieves maximum throughput of 0.32 

Erlangs, the two less intelligent schemes (EB-HOP and EB-STAY) achieve 

maximum throughputs of 0.45 Erlangs and 0.51 Erlangs respectively. Compared 

with these schemes, EB-RL has much higher throughput performance but no 

additional overheads.  
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Figure 4.7(b) compares the energy efficiency between EB-RL and EB-M by 

calculating the average number of transmissions per success. When the contention 

level is relatively low, EB-RL has similar energy efficiency as EB-M. However 

with increasing generated traffic, the energy efficiency benefits from EB-RL 

become more and more significant. The figures show that with the initial 

contention window size of 100, the average number of transmissions per success 

is very close to 1 when the generated traffic is more than 0.5 Erlang. These results 

show that EB-RL generally obtains much better energy efficiency at medium and 

high contention levels. The larger energy cost at low traffic levels is caused by the 

larger convergence time (because of fewer learning opportunities). It is worthy to 

be noted that there is a peak of the number of transmissions per success for 

EB-RL with 100 frame size, and this effect is amplified when the frame size is 50. 

This effect is caused by the balance between the lower probability of collision 

under low traffic levels and more learning opportunities provided by high traffic 

levels. Both extreme conditions (low and high traffic levels) offer the RL faster 

convergence and benefit the energy performance, which cause the effect in Figure 

4.7(b). Chapters 5 and 6 will provide a comprehensive study of the convergence 

and present a solution for different convergence times under various traffic levels. 
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                       (a)                                                (b) 

Fig. 4.7 Throughput and efficiency of EB-RL 

 

4.3.6. Performance with Various Propagation Delays 

In previous simulations, the propagation delay is assumed to be zero (in a typical 

WSN the propagation delay is less than     s considering neighbour nodes are 

100m apart). In this section we evaluate the performance of EB-RL-M with 

different propagation delay to testify its robustness. The network consists of 50 

nodes and the frame size is set to optimum (50 slots/frame). The maximum 

propagation delay is calculated from the ratio of the time needed to transmit or 

receive a data packet. For example, propagation delay of 0.1 represents 0.1 times 

the length of a data packet. The propagation delay of each packet is uniformly 

distributed between 0 and the maximum propagation delay. For different 

maximum propagation delay levels, the slot length is enlarged by twice the 

maximum propagation delay to reserve enough time for the transmission and 

reception of the data and ACK packets. According to the simulation parameters, 

the theoretical maximum throughput can be calculated as: 
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where 1044 is the data packet length, 1100 is the original slot length and 

           is the maximum propagation delay ratio. By using the equation, the 

maximum throughput of five different maximum propagation delay levels can be 

obtained as 0.9314, 0.8668, 0.6879, 0.4437 and 0.3275 Erlang, which are shown 

as the dashed lines in Figure 4.8. The results clarify the robustness of EB-RL to 

propagation delay and that its performance is still close to the theoretical 

maximum. 

 

 

Fig. 4.8 EB-RL-M with different propagation delay 

 

4.4. Conclusions 

Due to the issues arising from increasing overheads and complexity, ALOHA 

becomes suitable alternative MAC protocol for WSNs, motivated by its 
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advantages of simplicity and low overheads. However the ALOHA schemes suffer 

low throughput problems as a results of their blind transmission strategy. This 

chapter introduced the principles of implementing RL on framed ALOHA as an 

intelligent slot selection strategy, thereby improving the throughput and delay 

performance. Results show that EB-RL-M significantly improves the throughput 

and delay performance without additional overheads, and that the performance is 

robust under various conditions (with different traffic models, synchronisation 

shifts and propagation delay). 

 

The basic idea of EB-RL-M is to assign weights to each slot of the repeating 

frame in framed ALOHA. Weights are updated by success and failures, and the 

slots with higher weights are selected. However, the weight can become a large 

value after many successful transmission, which may affect the performance after 

the environment changes (the preferred slot becomes unavailable). In later 

chapters, Q-Learning is applied as the slot selection strategy. The weights (Q 

values) of Q-Learning are bounded by the rewards to prevent the nodes from 

using sub-optimal slot selections. 

 

The RL slot selection strategy only requires ACK packets without the overhead of 

any additional transmissions or fields in any packets (ACK packets are also 

required in any other MAC protocols including retransmission). Results show that 

the maximum throughput reaches 0.92 Erlangs (the theoretical maximum is 0.95 

Erlangs) which is over twice compared with the scheme without intelligence 

(EB-F-M). It is notable that, for fairness, the data is collected from the whole 

simulation including the learning period (during which the performance is not 

optimum). A comprehensive study is provided on these separated network states 

(learning/convergence) in later chapters. 
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The frame size (initial contention window size) is an important parameter to 

EB-RL-M, which has a significant impact on the performance. Results indicate 

that the optimal frame size should be equal to the number of nodes in the network, 

so each node can own a unique slot after the RL algorithm converges. Setting the 

frame size too small will cause the network to never reach an optimum 

convergence. However, if frame size is larger than the number of nodes, RL can 

still converge but the maximum throughput decreases. In a practical WSNs task, 

the network size is usually known to the users. However, if the size of a network 

is unknown, it is better to set the frame size large enough to suit the largest 

expected network size.  

 

Simulations in this chapter evaluated the performance of EB-RL-M with saturated 

traffic conditions, exponentially distributed traffic conditions, unsynchronised 

conditions and various propagation delay conditions. EB-RL-M significantly 

improves the performance under different condition compared with EB-F-M. 

Results bring confidence that it is a promising MAC technique for single-hop 

networks. In later chapters, similar protocols are applied to multi-hop networks, 

and more study is conducted upon its convergence behaviour. 
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5. Convergence Behaviour of RL Algorithms 
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In previous chapters, greater emphasis was placed on steady state performance 

because it shows the fundamental capability of our protocols. On the other hand, 

the convergence time is also important, since it indicates the initialisation time of 

the network and the network performs sub-optimally before convergence. The 

convergence time is related to many factors such as the learning algorithm, 

learning rate, returning reward and environment. To a WSN, the network topology, 

communication range of the nodes and traffic level all have an impact on the 

convergence time.  
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5.1. Introduction  

Based on the experience of prior protocol implementation, ALOHA-Q is proposed 

in this chapter as a simple MAC protocol for single-hop WSNs which consists of 

the basic Q-Learning and slot selection algorithm described in Chapter 4. 

ALOHA-Q is applied to study the convergence behaviour of such schemes. A 

Markov model is implemented for the scheme based on the assumptions of a 

certain learning rate and starting Q values (learning rate is 1 and the Q values start 

at -1). The Markov states are built based on the number of nodes which have 

found their preferred slots, and state transitions are considered every slot. The 

convergence to the optimal steady state (all nodes find their preferred slots) is 

proved by calculating the state transition probabilities over infinite time. The 

expected convergence time is obtained from the Marko model and simulations are 

implemented to match the results. Results on real-time throughput are also 

provided during the RL process to show the performance of the scheme while 

learning.  

5.1.1. Introduction to Markov Chains 

Markov Chains and Markov processes were first implemented by Russian 

mathematician Andrey Markov in 1906 [63]. Different forms of Markov Chains 

are widely used for analysis in physics, chemistry, information science and 

queuing theory [64]. Discrete-time discrete-state Markov chains are the type 

mainly considered in this thesis, and will be used in this chapter to describe a 

learning process and obtain the expected convergence time. 

 

A Markov Chain is a mathematical system which usually consists of a finite 

number of states with transitions between them [65]. These states are usually 

represented by numbers for the convenient expression of state transition 



Convergence Behaviour of RL Algorithms 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

74 

probabilities. For example,      represents the one-step transition probability 

from state   to state  , and     
    represents the two-step transition probability 

(via two transitions) from state   to state  . The transition probabilities are 

numbers between 0 and 1, and the transition probabilities out from a state 

(including the probabilities of returning to the same state and transferring to other 

states) must sum to 1 [66]. In this thesis we consider a Markov Chain as a 

memoryless random process in which the next state only depends on the current 

state and the associated state transmission probabilities. A Markov chain in which 

the transition probability from one state to itself equals to unity is defined as an 

absorbing Markov chain and the associated state an absorbing state [67]. This 

definition is used later in this chapter. 

 

As an example, a Markov chain can be used to describe the customer checkout 

lanes in a supermarket store. Assuming that the average customer arrival rate is   

(number of customers per second) and the average service rate is   (customers 

per second). Suppose the customers do not select the checkout lanes, with 5 other 

customers queuing. By using the number of queued customers as the states and 

considering the state transitions in every second (assuming only one event can 

occur in one second), a Markov Chain can be formulated to describe these events. 

Figure 5.1 shows the Markov chain with associated state transitions and transition 

probabilities.  

 

 

Fig. 5.1 An example of Markov chain 
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5.2. ALOHA-Q Protocol Design  

5.2.1. Basic Principles 

A similar scheme to those described in Chapters 4 is used. Nodes in the network 

all start with random access (all Q values are 0), learn through transmission, and 

finally reach their optimal transmission strategy in which the majority of nodes 

have found unique slots and subsequently experience few collisions. Q values are 

denoted        , indicating the current preference of node i to transmit a packet 

in slot k. The previous Q values and current reward contribute to the future Q 

value (         ) update according to equation (5.1) after every data packet 

transmission: 

                                                             (5.1) 

Where            is the learning rate and     -     is the current reward.  

 

If succeeds data packet and the associated ACK are both correctly received, a 

reward of +1 is returned otherwise the reward is -1. Slots with higher Q values are 

preferred but if multiple slots have the same higher Q value, one (or more) will be 

randomly selected from the set. The pseudo code below demonstrates this learning 

algorithm. 

 

loop sleep until the next frame 

     if multiple slots have the same greatest weight 

       randomly select one of these slots as scheduled slot 

     else  

       scheduled slot = the slot with the greatest weight 

     sleep until the next scheduled slot 

     if one or more packets in the queue 

       send the packet at the queue head 

     if ACK successfully arrives 
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       return +1 reward and update the associated Q value 

       retry number = 0 

     else 

       return -1 reward and update the associated Q value 

       retry number = retry number + 1 

       if retry number > retry limit 

         discard the packet 

end loop 

 

Figure 5.2 shows an example of the frame structure and Q-Learning algorithm. 

One of the Q values of a node is updated after each data packet transmission. Idle 

listening is not used in ALOHA-Q (except the sink node). Time references for 

synchronisation are embedded in the ACK packets sent from the sink node, so that 

the transmitting nodes are able to maintain synchronisation with the sink node as 

long as they transmit data packets to the sink and receive ACK packets. 

 

 
Fig. 5.2 Example of Q values and the repeating frame 

 

5.2.2. Learning Process and Steady State 

The learning process results in a node having different Q values for each time slot 

in the repeating frames. According to (5.1), a negative reward will have a greater 

impact on the current Q value, when the Q value is positive and vice versa. A slot 

which regularly receives a negative reward is therefore unlikely to be the 

preferred slot. This results in the node seeking a slot which will continually return 

a positive reward. Through this learning process the network tends towards to the 

optimal steady state condition where all nodes have unique slots. It behaves like a 

schedule-based network but without the need for scheduling information 



Convergence Behaviour of RL Algorithms 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

77 

exchange or determination of node priorities in each slot, which is critical in 

WSNs without centralised control. 

 

To reach the optimal steady state, the parameters need to be appropriately set. The 

learning rate         controls the speed at which a Q value converges to the 

current reward. The higher  , the faster the Q value converges to reward r.   is 

usually set to a small value so that the steady state will exhibit some robustness to 

small changes in channel conditions (e.g. infrequent collisions). Another 

important parameter is the frame size N. Nodes will be unable to find unique slots 

if there are insufficient slots in a frame. N should be just large enough to ensure 

this. Overestimating N will introduce additional latency and reduce the maximum 

achievable throughput. In a single hop network, the number of nodes deployed is 

often known. In a multi-hop network, an appropriate value for N can be 

determined by estimating the number of nodes within communication range, 

based on the deployment density.  

 

The learning algorithm is able to adapt to changes in the network topology should 

nodes die or additional nodes be deployed. When a node dies, its preferred slots 

automatically become available for others to use. New nodes will learn from 

scratch, but reach the optimal steady state much more quickly than if the whole 

network is initialised, because they are learning from a steady environment and 

can more easily find unique slots. The learning schemes can achieve perfect 

scheduling in the steady state following a period of convergence. The time taken 

to converge is important to the network and it varies due to the random slot 

selection process when multiple slots have the same maximum Q value. In the 

next section an analytical model is developed to estimate the convergence time of 

a simple learning process. 
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5.2.3. Fairness on Quality of Service 

When the network converges to the steady state, nodes achieve perfect scheduling 

and experience an equal Quality of Service (QoS). However, during the learning 

process, nodes usually find their preferred slots sequentially, which means that 

some nodes obtain better QoS earlier than others, resulting in an imbalance in 

fairness between the nodes. Such fairness issues exist in the majority of the 

learning based MAC schemes, for example the two intelligent CSMA schemes 

proposed in [81] and [82]. By applying slots and repeating frames to CSMA, the 

scheme described in [81] starts with random access, and users continually select 

slots with successful transmissions until two consecutive collisions. Similarly, the 

scheme presented in [82] is initialised to random access, and the user keeps using 

the slot with correct packet reception until a collision, then this slots have a 

decreasing probability of reselection (other slots have equal probability of 

selection). In both schemes, nodes obtain their slots after different periods of time, 

and nodes have different probabilities of success before the network converges, 

which makes the network convergence time an important measurement.  

 

Compared with the learning schemes proposed in [81] and [82] which have an 

equal probability of selecting other slots when a collision occurs in one slot, 

Q-Learning has certain advantages and benefits from recording the transmission 

history. When only a minority of nodes has not converged, they have experience 

with regard to slot choice based on their transmission history, and the probability 

of them finding their preferred slots increases as time passes. Consider, for 

example, a network with 100 nodes where 99 nodes have found their preferred 

slots and one node is searching for its own unique slot. Assuming the worst case 

that it has no prior transmission experience (all Q values are zero), it needs a 

maximum of 100 transmissions (99 collisions and one success) to find its 
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preferred slot and the probabilities of locating its preferred slot during each 

transmission are 1/100, 1/99, 1/98…etc until the 100
th

 transmission is reached and 

the probability becomes 1. In later sections a Markov model is presented to 

estimate the convergence time and present simulations results of convergence time 

with different learning rates. Note that the convergence time is that measured 

when all nodes in the network find their preferred slots (not the average 

convergence across all nodes). 

 

5.3. Convergence Time of ALOHA-Q  

5.3.1. Markov Model 

For the theoretical analysis, we consider a single-hop network with N nodes and 

saturated traffic conditions (nodes always have packets to transmit). The learning 

rate () is set to 1 and the Q values are all initialized to -1, so that they can either 

be +1 or -1. The frame size is set equal to the number of nodes N and each node is 

allowed to transmit one packet per frame. Figure 5.3 depicts the Markov process 

which describes this scheme. State k represents the current number of steady-state 

nodes (nodes which have a Q value of +1 for a particular slot) in the network. 

State transitions take place in every slot, and the process can only move forwards 

or backwards or stay in the same state after each slot. A node which has reached 

steady-state is referred to as a steady node whereas a node still learning is referred 

to as a hopping node.  When the process absorbs at state N (the absorbing state), 

all nodes have found their unique slots and the system is deemed to have 

converged. 
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Fig. 5.3 Markov model of ALOHA-Q 

 

Let     denote the state transition probability from state             to state 

           . For the model in Figure 5.3, the relevant transition probabilities 

are:     ,        and                 , which arise from the following 

situations:  

     : success of a steady node in an occupied slot; collision of two or more 

hopping nodes in an unoccupied slot; this slot is empty. 

       : collision of a steady node in an occupied slot. 

       : success of a hopping node in an unoccupied slot. 

 

where an occupied slot represents a slot for which only one node has a +1 Q value. 

An unoccupied slot is a slot for which all nodes have a -1 Q value. Based on the 

previous definition, a hopping node is a node which has a -1 Q value for all slots. 

 

More specifically, to stay in the same state (      either: 

 The current slot is occupied and no hopping nodes select the current slot. 

 The current slot is unoccupied and two or more hopping nodes transmit 

packets in it. 

 The current slot is unoccupied and there are no transmissions in it.  

 

To move down one state (       : 

 The current slot is occupied and one or more hopping nodes transmit packets 

in it. 

 

To move up one state          : 
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 The current slot is unoccupied and only one hopping node transmits a packet 

in it. 

 

For a given value of   and knowing  , the state transition probabilities can be 

obtained as: 
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                                              (5.3) 

         
   

 
 
 

 
   

 
 
     

                                       (5.4) 

 

5.3.2. Average Convergence Time  

The convergence time for this scheme is the accumulated time the system spends 

in all states before reaching state N, because once the process reaches state N it 

will never move back to the previous states. Consider   as the state transition 

probability matrix which has the elements:                . In this model,   

is a sparse matrix. Defining       , the matrix element: 

    
          

 
                                                    (5.5) 

represents the probability that the process visits state   via state   (where   

represents any state) starting in state  .  

 

The elements in   : 

    
          

    
                                                  (5.6) 
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denote the probabilities that the process visits state   via all possible states after 

two transitions from state        , via any two transition states. 

 

So, from (5.5) and (5.6),    is the matrix of visit probabilities between any state 

and all others via n arbitrary transitions. The element     
    is the probability 

that the process visits state   after n transitions, starting in state  . Alternatively, 

    
    can be described as the expected number of visits to state   at the n

th
 state 

transition starting from state  , or the expected number of slots the process stays 

in state   at the n
th

 state transition starting at state  . As with  , each row sum of 

   will always equal unity. 

 

Convergence of the scheme (unity probability of reaching state N) can be proved 

if: 

          
                                                  (5.7) 

Proof: 

We base our proof on the relationship between   and its Jordan normal form [77] 

 , and invoking the associated similarity transform property: 

                                                         (5.8) 

To obtain the Jordan normal form  , we need to calculate the eigenvalues of   

by solving its characteristic equation: 

                                                            (5.9) 

Where   is the identity matrix and   is an       square matrix which has 

only one non-zero element in the last row.  

 

Using conventional matrix indexing: 
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                                                       (5.10) 

We expand (5.9) by using the last row according to the Laplace Expansion [78]: 

                                                           (5.11) 

where          is the determinant of the         minor matrix of  , 

which is the     matrix resulting from removing the last column and row of 

 . 

 

Clearly     is one eigenvalue of  . To determine the range of the remaining 

eigenvalues, we employ the Gershgorin Circle Theorem [79]. Begin by 

calculating absolute row sums excluding non-diagonal elements over  : 

                                                            (5.12) 

Then a set of Gershgorin discs can be drawn, centered at     with radius    in 

the complex domain as           . The Gershgorin Circle Theorem states that the 

eigenvalues of   lie within the relevant Gershgorin disc. Except for     , the 

eigenvalues associated with all other diagonal elements have an absolute value 

less than unity, because each row sum of   equals unity.  

 

Suppose   has   Jordan blocks and   can be represented by            

where: 

    

 
 
 
 
 
 
   
   

  
  

  
  

  
  

   
  

  
  

  
  

  
  

   
    

 
 
 
 
 

     

                                    (5.13) 

where    is the multiplicity of eigenvalue   .  
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We know that     . The matrix    can be calculated by diagonally 

aggregating the individual Jordan Blocks   
         , each of which can be 

obtained from: 

  
  

 
 
 
 
 
   

  
 
 
   

   

   
 

   
 

    
   

       

   

 
  

 
 
   

   

   
  

 
 
 
 
 

     

                   (5.14) 

From the calculated bound on the eigenvalues above, with    , we can see 

that    is an       square matrix with the           indexed element 

equal to unity and all others equal to zero. 

 

We calculate the matrix   from                . Suppose the last 

column of   is               , then calculate the last column of   as 

              . From      we get: 

                    
   
                                             (5.15) 

From      we can get: 

                                                                    (5.16) 

Moreover, we have        
   
             . By substituting (5.16) into 

(5.15) the last column of   can be obtained as all 1s: 

                                                            (5.17) 

The last row of   is               . Calculating the last row of   as 

              . From      we can get: 

                                                           (5.18) 

From      we can get: 
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                                           (5.19) 

Substituting (5.18) into (5.19) we have                    , where       is 

non-zero (see the proof in the appendix), so         . Then we have 

                   , so         … and we can calculate the rest:        

       . The matrix   has its last column all 1 and last row all 0 except for 

          : 

   
       
   
   

 

           

                                    (5.20) 

Then we calculate     by using: 

    
  

       
                                                      (5.21) 

Where    is the adjoint matrix of  . By expanding the last row of  , we can 

get                  .  
 can be represented by the transpose matrix of a 

matrix which has its element equal to                         , the 

cofactors of  .      is the determinant of the     minor matrix of  . The last 

row of    are:                        , and we also know that 

              ,                          . So the last row of  

    has zero entries except for the final one which is unity. Finally we calculate 

       
         using the previous results as: 

       
    

   
    
   

 

           

                                   (5.22) 

This proves the convergence of the learning scheme. 

 

To calculate the time before convergence we need the expected time that this 

process stays in all states except state N, which is equal to the expected number of 

visits to these states across all     transitions where           : 
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                               (5.23) 

Which is the expected convergence time starting with state  .  

 

The expected convergence time from the initialisation of the process can be 

obtained by calculating. 

                          
     

   
 
                                   (5.24) 

 

5.4. Performance Evaluation  

The convergence time obtained from the Markov model is compared to 

simulations from OPNET for the purpose of validation. The steady-state 

performance characteristics of ALOHA-Q are then evaluated in OPNET and 

compared with slotted ALOHA, S-MAC and Z-MAC to show the improvements 

achieved by applying learning and the overall capability of the scheme compared 

to a well established scheme for WSNs. For the performance evaluation, a 

single-hop network is considered with 200 nodes that all generate data packets 

and send them directly to the sink. All nodes have the same mean packet 

inter-arrival time and the inter-arrival time is exponentially distributed. A list of 

simulation parameters can be found in Table 5.1. All schemes are assumed to be 

synchronised. 

 

Parameter Value 

Channel Data Rate 250 kbits/sec 

Data Packet Size 1044 bits 

ACK Packet Size 20 bits 

 

 

Slot Length 0.0044 sec 

Table 5.1 Simulation Parameters 



Convergence Behaviour of RL Algorithms 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

87 

5.4.1. Convergence Results 

Experiments have been undertaken which match all the assumptions made in the 

analysis in the previous section. Figure 5.4 shows the average convergence time 

with different numbers of nodes in the network and each marker represents the 

average of 200 simulations. The convergence time has been determined for a 

maximum of 15 nodes in Figure 5.4 since this demonstrates a close match 

between the analytical model and simulation, and the theoretical computation 

becomes prohibitive for larger numbers of nodes. Theoretically, the expected 

convergence time requires a large number of computations, as (5.24) shows with 

   . When the convergence time is calculated for 15 nodes,       so that 

   converges. This requires multiplication of two       matrices     times 

and it takes about 6 hours to obtain the results. Moreover, the time required to 

calculate the convergence time increases exponentially with each additional node, 

so results cannot be easily provided for larger number of nodes.  The 95% 

confidence interval for the simulation results associated with 3 nodes is about ±

3%, and the confidence interval increases with the number of nodes. The 

confidence interval for 15 nodes is approximately ±12%. The confidence 

intervals are not shown on the figure as they are almost invisible given the 

logarithmic scale of convergence time on the y axis. 
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Fig. 5.4 Average convergence time 

 

Figure 5.5 shows the Cumulative Distribution Function (CDF) [80] of the 

convergence time of the networks with different number of nodes in the network. 

Each curve shows the results of 1000 simulations. The dotted lines are produced 

by the Markov model and the circle markers are samples of the simulation results. 

The results show that the distribution of the convergence time matches the 

analysis. The discrepancy in the curve for 3 nodes is caused by the particularly 

small convergence times which are therefore sensitive to minor fluctuations. The 

simulation model determines whether convergence has been achieved at the 

beginning of each frame, so the reported convergence time is restricted to 

multiples of the frame length and usually larger than the estimated convergence 

time obtained from the Markov model. This discrepancy does not exist for larger 

number of nodes. 
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Fig. 5.5 CDF of convergence time measured through analysis and simulation 

 

It can be seen that the convergence times increase rapidly with an increasing 

number of nodes in the network, but the observed times need placing in context. 

In the majority of sensor network applications, the intention is to deploy a set of 

nodes for long periods of times (potentially years). In this respect, an initial 

convergence time of minutes (or even hours) is not a significant problem. It is also 

important to note that the protocol operates in a perfectly adequate fashion and 

offers performance benefits prior to convergence. To demonstrate this, Figure 5.6 

shows the real-time running throughput (the throughput from the start of the 

simulation to different time points) achieved from initialisation to each time step 

with different learning rates. Each curve represents the average of 100 simulations. 

The network comprises 200 nodes, the frame size is 200 slots and the generated 

traffic load is 0.7 Erlangs. The running throughput is calculated at the beginning 

of each frame. It can be seen that a learning rate of 0.5 performs worse than the 

smaller learning rates, with suboptimal throughput for about 400 seconds before 

rising and reaching 0.7 Erlangs after about 1500 seconds. Learning rates equal to 

or less than 0.1 provide much more rapid convergence and almost identical 
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performance characteristics. Throughput increases with time and reaches 0.7 

Erlangs about 100 seconds after initialization. The experienced throughput 

exceeds that obtainable with conventional slotted ALOHA after just 10 seconds. It 

is worth noting that Z-MAC requires a similar set up phase where nodes are 

unable to transmit data packets before it is completed [44]. According to the 

analysis in [45], DRAND requires approximately 600 seconds to determine the 

owner of each slot for a network with 200 nodes. ALOHA is able to provide 

substantial data throughput, approaching its maximum of 0.7 Erlangs after 200 

seconds. 

 

 

Fig. 5.6 Real-time throughput 

 

Note that the first group of experiments (results in Figure 5.4 and 5.5) are based 

on the Markov model in section 5.3.1, and the second group of experiments 

(results in Figure 5.6) are acquired from the ALOHA-Q protocol described in 

section 5.2.1. To implement the analytical model, we made some assumptions and 

set certain parameters to the protocol. As the result, the convergence time of the 

analytical model is much larger than the capability of this scheme. For a network 
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with 15 nodes, it requires on average 1000 seconds to converge, and the 

convergence time is doubled (approximately, by considering the trend) with each 

extra node in the network. On the other hand, the full ALOHA-Q protocol 

converges within 100 seconds with the network consisting 100 nodes, which is the 

capability of this scheme.  

 

Compare the full ALOHA-Q protocol with the Markov model, the ALOHA-Q has 

much lower probability of returning to the previous state (the probability       ), 

because once the Q values build up, it tolerates a few failures before hopping to 

another preferred slot, unless the nodes just hops to the current slot with low Q 

values. The probability of moving forward one state (the probability       ) in 

ALOHA-Q is also higher because the Q values of the slots once have collisions 

are lower and the node can avoid using them. However it is very difficult to 

implement a similar Markov for ALOHA-Q because of the memory feature of the 

RL algorithm. The Q values of each node are determined by all prior actions of 

the network, it is difficult to quantise the network conditions to states because it 

could have infinite number of states, and the probabilities of the node and network 

actions vary through time. In each simulation, the RL algorithm has independent 

and different convergence process, resulting in the wide spreading convergence 

time mentioned in Chapter 6. For our knowledge, there are few analytical results 

on completed RL algorithms, because of the complexity of the analysis and 

requirements of manipulating wide range of mathematical skills. It can potentially 

be a future research topic to explore the understanding of RL and estimate the 

convergence capability not only by simulations.  

 

5.4.2. Steady State Simulation Results 

ALOHA-Q, Slotted ALOHA with exponential back-off [74], S-MAC and Z-MAC 
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have been simulated in OPNET to evaluate and compare their performance in 

terms of throughput, end-to-end delay and energy cost per bit throughput. A 

single-hop network with 200 nodes is used in the simulations. A 10% duty cycle is 

used for S-MAC as commonly employed [36]. Each contention slot of Z-MAC 

has a length of 0.5 bits, and we use the same contention window size employed in 

[44] (8 contention slots for slot owners and extra 32 contention slots for 

non-owners) for the simulations of Z-MAC in this chapter. We turn off the LCL, 

HCL and Explicit Contention Notification (ECN) because they make no 

difference in a single-hop network, in accordance with [44], which assumes that 

all nodes in the network can transmit packets to and receive packets from each 

other, so that there are no hidden node problems and the channel sensing provides 

correct information. Note that this assumption (all nodes are within one-hop range) 

is not required for ALOHA-Q, and hidden nodes may exist even in a practical 

single-hop network, which will affect the channel performance. According to the 

experiments in [44], a 250 slots frame length is used for Z-MAC, which is 

typically larger than the number of nodes in the network. 

 

Figure 5.7 shows the throughput performance. It can be seen that the throughput 

of ALOHA-Q with 200 slots/frame increases linearly with the generated traffic 

load and reaches a maximum close to 0.95 Erlangs, which is the theoretical 

maximum for the simulation parameters in Table 5.1 (1044 data bits/1100 bit slot 

length   0.95). S-MAC has a slightly lower maximum throughput capability 

because of the fixed overheads present in the listening period (10% in the 

simulations). The performance of ALOHA-Q with 250 slots/frame is shown to 

demonstrate the impact of overestimating the number of nodes in the network. 

The throughput exhibits a similar linear increase but to a lower maximum, 

because the frame is oversized and some slots remain unused. Slotted ALOHA 

achieves a maximum throughput of 0.27 Erlangs, one third of that achievable with 
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ALOHA-Q given the marginal increase in complexity, demonstrating the 

effectiveness of intelligent slot selection through learning. Z-MAC achieves a 

throughput of about 80% of the channel capacity, which is similar to the results 

observed in [44]. Its performance is limited by the contention windows (8 slots for 

owners and additional 32 slots for non-owners) used for channel sensing. When 

the network comprises a large number of nodes, the probability of two or more 

nodes applying channel sensing in the same slot is high under high traffic 

conditions, which causes more collisions and limits the throughput performance. 

Therefore, Z-MAC usually has better performance than S-MAC for multi-hop 

networks, but under this scenario it is not optimum. 

 

 

Fig. 5.7 Throughput 

 

The average end-to-end delay experienced by packets is shown in Figure 5.8 as a 

function of generated traffic load. When the traffic load is low, Slotted ALOHA 

offers the lowest delay because nodes are able to access the channel almost 

immediately after packets are generated and relatively few experience a collision. 

Z-MAC has good delay performance under low traffic conditions, because it is 
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similar to Slotted ALOHA in allowing a node to transmit a packet straight after it 

has been generated when the channel is clear. All ALOHA-Q schemes offer less 

than 3 seconds delay before reaching the maximum traffic level. The slightly 

higher delay of S-MAC is caused by the long frame structure and sleep period. 

 

 

Fig. 5.8 End-to-end delay 

 

Figure 5.9 presents the energy efficiency results. The total energy cost is the sum 

of energy consumed by transmitting/receiving packets, idle listening and 

overhearing. The energy cost per bit throughput is calculated by dividing the total 

energy cost (mJ) by the amount of data received at the sink (in bits). Slotted 

ALOHA has the best energy efficiency at low traffic loads because of the low 

probability of collision, but energy costs rises rapidly with increasing traffic load 

due to the overheads of retransmission. The two ALOHA-Q schemes have similar 

performance characteristics as a function of traffic load and better performance at 

higher traffic levels. S-MAC exhibits the same performance trend but generally 

higher energy costs resulting from the additional overheads in the frame and idle 

listening. Z-MAC has slightly higher energy cost than ALOHA-Q because of 
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channel sensing (a node applies channel sensing in every Z-MAC slot when it has 

packets to send).  

 

 

Fig. 5.9 Energy cost per bit throughput 

 

5.5. Conclusions 

In this chapter, ALOHA-Q is proposed as a low complexity MAC protocol 

capable of providing high energy-efficiency performance combined with high 

throughput and adequate delay. The main contribution of this protocol is its 

simplicity and low overheads compared with the majority of current schemes. 

Q-Learning is employed as an intelligent slot selection strategy in a frame based 

Slotted ALOHA scheme which results in migration from random access to perfect 

scheduling in steady state conditions. A detailed study of the convergence 

properties of the approach has been evaluated through a Markov model of the 

learning process. Based on the Markov model, we prove the convergence to the 

optimal steady state of ALOHA-Q and obtain the expected convergence time. 
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Results for a single hop network demonstrate that ALOHA-Q is able to provide 

rapid convergence to steady-state conditions and improved energy-efficiency, 

comparable throughput and delay to S-MAC and Z-MAC despite being much 

simpler.  
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6. Reinforcement Learning for Multi-hop WSNs 
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Chapter 4 introduced the principles of applying RL to WSNs based on a 

single-hop network topology and initially explored the potential performance of 

RL. A typical WSN usually has a multi-hop topology in which nodes cannot reach 

all other nodes in the network, especially in environmental monitoring tasks 

which have large sensing area (and limited communication range of sensor nodes). 

The scheme in Chapter 4 is based on the sink node constantly listening; however, 

in multi-hop networks the relay nodes must switch to sleep mode to save energy. 

In this chapter, techniques are introduced to solve these problems, extending the 

protocol for application to multi-hop WSNs.  

 

6.1. Introduction 

In single-hop networks, nodes directly communicate with the sink node which 

constantly listens to the channel, so packet loss can only be caused by collisions 

(at least in the simulations). However, in a typical multi-hop WSN, nodes have 

limited power resources and must switch between active and sleep modes to 

extend the network lifetime. This brings additional packet loss through channel 

closure due to unavailability of the intended receiver (since the intended receiver 

has switched into a sleep mode). To maintain low overheads and complexity, we 

aim to solve these problems without using traditional channel sensing and 

handshake mechanisms (eg. RTS/CTS).  

 

This chapter introduces two methods to reduce packet loss caused by channel 

closure, while offering nodes as many opportunities to sleep as possible. Informed 
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receiving (IR) uses information embedded in data packets to inform the receiver 

about future slot selection, so that the receiver can wake up when the transmitter 

sends packets. When the traffic load is low, nodes send data packets relatively 

infrequently, which makes the IR information out of date. Therefore the receiver 

does not know whether the absence of the traffic is due to collisions or silence of 

the transmitter. At low traffic levels, nodes send ping packets to the next hop 

receiver to keep them informed about their slot selection when they have no data 

packets to send, and nodes switch to sleep mode after receiving ping packets. A 

ping packet is tiny and it uses “owned” slots so that it only causes minimal 

overheads and no collision (in steady state).  

 

This chapter extends the scheme introduced in Chapter 4 by introducing IR and 

ping packets and evaluates them in a linear chain multi-hop network and a random 

multi-hop network. Different RL algorithms are also applied to achieve better 

convergence performance. Results show that our schemes significantly improve 

throughput, delay and energy efficiency performance compared with the original 

ALOHA scheme, and considerable performance gain compared with other MAC 

protocols for WSNs. Under very light traffic conditions, our scheme achieves over 

60% energy cost by transmitting/receiving data packets and at high traffic 

conditions it achieves nearly 100% energy efficiency (almost all the energy cost 

results from transmitting/receiving data packets). The initialisation time 

(convergence time) of the network remains at an acceptable level, from seconds to 

a few minutes, depending on the size of the network.  

 

6.2. Network Topologies 

In this chapter, we apply our scheme to two multi-hop topologies: a linear chain 

multi-hop network and a random multi-hop network. This section describes these 
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topologies and associated assumptions. 

 

6.2.1. Linear Chain Network 

To adapt and apply our scheme to multi-hop networks, consider as the first 

topology case study a simple linear chain network. Figure 6.1 shows the network 

topology. The chain consists of 9 nodes, where node 1 generates data packets and 

node 9 is the sink. All other nodes are relay nodes. Data packets are transmitted 

via 8 hops from node 1 to node 9. A node can only receive packets from its 

one-hop neighbours, but packet reception can be interfered with based on the 

transmissions from two-hop neighbours. For example, while node 3 is sending a 

packet to node 4, simultaneous transmissions initiated by nodes 2, 5, or 6 can 

collide with the packet from node 3 and cause failures of its transmission. This 

interference situation indicates that one in four neighbour nodes can transmit in 

the same slot without any collisions, therefore the theoretical maximum 

throughput at the sink node will be 0.25 Erlangs (4 slots per frame) without 

counting any overheads. This theoretical maximum throughput can also apply to 

other similar chain networks (source and sink nodes at both ends of the chain) 

unless the number of nodes is less than 5. With 4 or less nodes in the network, the 

number of contenders in the neighbourhood of each node becomes less, therefore 

the maximum throughput of node numbers from 4 to 2 become 0.33 Erlangs, 0.5 

Erlangs and 1 Erlang.  

 

 
Fig. 6.1 Linear chain network 
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6.2.2. Random Network 

In most current WSNs applications, nodes are randomly deployed (usually by 

vehicles or aircraft throughout the deployment region) and have an unknown 

number of neighbours and random locations. Figure 6.2 shows an example of a 

part of a random WSN. We assume that packets from nodes within the radius    

can be correctly received and decoded and that simultaneous transmissions from 

nodes within the radius    can interfere the current reception and cause failures. 

We consider a simple Most Forward Routing (MFR, or shortest path) [75] for 

nodes to relay packets to the sink. Nodes select the neighbour within    with the 

shortest distance to the sink node as the next hop to transmit packets. All nodes 

generate packets (a node is both a source and a relay), which causes higher 

contention levels for nodes close to the sink. In the simulations in this chapter, we 

use randomly deployed nodes over a square sensing area. The sink node is located 

at the centre of the sensing area. 

 

Fig. 6.2 Random network 
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6.2.3. Constraints of Multi-hop Networks 

Multi-hop networks have much more complicated network topologies than the 

single-hop network considered in Chapter 4, which leads to difficulties in the 

design of MAC protocols. It is possible to deploy a more powerful node as the 

sink which is capable of constantly listening to the channel. However, most nodes 

in the network are still energy constrained and have to switch between active and 

sleep modes to save energy. Packet loss can be caused by collisions or radio 

closure at the receiver node. The previously considered RL algorithm can avoid 

the majority collisions (potentially all collisions in steady state), however it 

consumes prohibitive amount of energy because it requires the receiver node to 

listen to the channel constantly (because the transmission slot can change during 

operation) and the impact in single-hop networks is not obvious because the only 

receiver node is the sink node. Moreover, any form of global control has very high 

energy costs in multi-hop networks because of the limited communication range 

of each node, therefore frequent global information exchange is not practical. This 

chapter presents techniques to solve these problems while maintaining the 

favourable properties of ALOHA (distributed scheduling, absence of sensing and 

negotiation). 

 

6.3. Techniques to Improve the Energy Efficiency 

6.3.1. Informed Receiving (IR) 

The RL algorithm always prefers to select slots with higher weights to send 

packets. When a preferred slot suffers a collision, the weight is reduced and the 

node may hop to other preferred slots. If the associated receiver node is not 

constantly listening to the channel, it fails to receive packets when the transmitter 
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hops to another preferred slot. The information obtained by the learning process is 

unknown to the receiver node, but some of the learning information can be 

provided to the receiver node while transmitting data packets, allowing the 

receiver node to listen more efficiently. This section defines this process, which is 

known as Informed Receiving. 

 

Assume that a node sends at most one packet in each frame. Considering the 

worst case that all transmissions fail, we can calculate the number of future frames 

that the node will keep using the current preferred slot from the highest weight 

and the second highest weight (and the associated learning algorithm). As part of 

the IR process, each data packet piggybacks this information and the receiver 

node uses this number to set up and update a timer. This timer indicates the 

number of future frames that the receiver should keep listening to the same 

preferred slot (and sleep in other slots). This timer is updated after receiving each 

data packet, or decremented by 1 if not updated in a frame. When the timer 

reaches zero, the receiver node switches to full listening mode, in which it listens 

constantly in every slot to locate the new preferred slot of the associated 

transmitter node and start a new listen/sleep schedule. The implementation details 

IR are provided in Sections 6.4.2 and 6.6.2. 

 

6.3.2. Ping Packets 

IR provides a basis for efficiently switching nodes between listening and sleeping, 

but it has one weakness. Under light traffic conditions, a transmitter node may 

remain silent for a few frames between two packet transmissions. During these 

frames, the IR timers (details are explained in Section 6.4.2) are not updated; the 

timers may reach zero and receiver nodes switch to full-listening mode, while the 

associated transmitter node still intends to use the same preferred slot. For the 
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receiver nodes, the idle listening in the preferred slots of the associated transmitter 

nodes when they have no packet to send is energy consuming as well.  

 

To avoid this frequent timeout (a timer reaches zero) problem under low traffic 

levels, ping packets are introduced, which carry the same IR information. When a 

node reaches its preferred slot in a frame and has no data packets to send, it 

transmits a ping packet to the next hop receiver node instead, indicating its current 

IR information. When a node receives a ping packet, it updates the timer, sends 

back an ACK and switches to sleep mode immediately. A ping packet is tiny (only 

28 bits) and therefore only introduces minimal overheads. It uses the available 

channel capacity (preferred slots in which there is no data to send) to significantly 

reduce the energy consumption through idle listening. Non-acknowledged ping 

packets can be considered as failures and used to update the RL weights. The 

successful ping packets can also contribute to the RL algorithm (depending on the 

length of ping packets). More details of ping packets will be introduced in 

Sections 6.4.2 and 6.6.2. 

 

6.4. RL-ALOHA for a Linear Chain Network 

6.4.1. Protocol Design 

A repeating frame structure is applied to Slotted ALOHA to implement RL. A 

frame consists of N slots, and each node is allowed to transmit at most one data 

packet per frame. The slots in the repeating frame are given unique weights which 

are initialised to zero and updated by successful transmissions (+1) and failures 

(-1). At the beginning of each frame, the node selects the slot with the highest 

weight as the current preferred slot and sends a packet in this slot if it has any 

queued. If multiple slots have the same highest weight the node will select one 
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randomly. The number of slots per frame N is an important parameter for this 

scheme, and is usually set to the number of contenders. Therefore each node can 

own a unique slot in steady state conditions and collision can be avoided as long 

as the network has sufficient capacity. In Chapter 4 we considered Exponential 

Backoff (EB) for retransmissions, but here EB is removed because this work 

considers the optimal frame size (or larger) and the backoff is no longer needed to 

decrease the offered traffic of each node. EB is useful when the frame size is 

smaller than the optimum, however, it introduces extra delay and reduces 

convergence speed (less learning opportunities in the same amount of time) when 

frame size is equal to or larger than the optimum. Figure 6.3 shows the structure 

of the frames and the RL algorithm, and provides an example of the slot selection 

strategy of one node. In this example N equals 3. 

 

 
Fig. 6.3 Example of the Reinforcement Learning algorithm 

 

Arriving packets are put in a first-in-first-out queue and only the packet at the 

queue head can be transmitted to the next hop. Once a packet arrives, it needs to 

wait at least until the next preferred slot to be sent (depending on the number of 

packets in the queue). If a collision occurs, the packet will be retransmitted based 

on the same slot selection strategy in future frames until it succeeds or reaches the 

maximum retry limit (M=6 according to the IEEE 802.11 specification [74]). 

Every slot accommodates a data packet and the associated acknowledgement 

packet, therefore one data packet can only collide with another entire data packet 

as long as the system is synchronised. 

 

In the steady state, one node intends to transmit packets in a fixed preferred slot to 
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avoid collisions with the other nodes. However, this preferred slot assignment can 

possibly be impaired by sudden interference caused by other nodes being 

introduced to the network or external devices causing interference from outside 

the system. The weights are limited to the range of -1 to 10, to allow the scheme 

to adapt to environmental changes, because infinite weight values may cause a 

constant collisions Without these limits the system would underperform, for the 

following reason: once a node has had many successes in a preferred slot, if the 

current preferred slot became unavailable, it would take a huge amount of trials to 

reduce the weight sufficiently before the RL algorithm would hop to another 

alternative slot.  

 

The RL algorithm can effectively reduce the probability of collision in the 

network. However this result is achieved based on the assumption that all nodes 

keep listening to the channel, leading to high energy consumption which is not 

acceptable in energy constrained WSNs. IR and ping packets are applied to avoid 

idle listening and overhearing, and allow nodes to sleep for as long as possible 

when they are not transmitting or receiving. 

 

6.4.2. Informed Receiving (IR) and Ping Packets 

A. IR 

Given the frame-based structure of this protocol, a node can send at most one 

packet per frame. Therefore, for each transmitter and receiver pair the most energy 

efficient way for the receiver to operate is by only listening to the transmitter’s 

current preferred slot. However the nodes may switch to different slots during a 

task based on changes in the dynamic environment, which means that the nodes 

can have various preferred slots in different time periods. IR is applied to provide 

the receiver recent information about the associated transmitter so that the 
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receiver can follow the transmission pattern and listen efficiently.  

 

When a node switches on, it listens to all the slots and waits for arriving packets. 

The transmitter piggybacks the weight advantage (the weight of the current 

preferred slot minus the second highest weight) onto each data packet to give the 

receiver knowledge of its recent transmission pattern. The receiver has a timer 

which is decremented by 1 at the beginning of each frame, and its value is updated 

based on the weight advantage from the transmitter. The timer will be updated to 

the weight advantage plus 2 as its current value and this value indicates the 

number of future frames in which the transmitter will keep using the same slot. To 

explain the timer update: the weight advantage of the transmitter is the advantage 

before the transmission, and as long as the data packet is successfully received the 

weight of the current preferred slot will increase by 1. Since the timer decreases 

by one every frame, the +2 timer update can recover the offset caused by the two 

issues above and the value of the timer equals to the weight advantage in the next 

frame. 

 

After switching on, the receiver listens to all the slots until its timer has a value 

equal or greater than 2 (the weight advantage of the transmitter is equal or larger 

than 1), indicating that the transmitter node will use the same slot for the next 

packet transmission. Then it only listens to the preferred slot and switches off the 

radio in other slots unless it has packets to transmit. The receiver will listen to all 

the slots again if the timer reaches zero, which indicates that the transmitter may 

start to use another preferred slot. This IR process offers the receivers a lot of 

sleep time with only very small additional overheads: an 8-bit field in each data 

packet which contains the weight advantage. 
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B. Ping Packets 

The optimal potential performance of IR is that a node listens to one slot per 

frame and sleeps in all others. If the transmitter always has a packet to transmit in 

every frame, IR will work efficiency. However if the traffic level is low, the 

transmitter may keep quiet for several frames between two transmissions, which 

means that the receiver will waste energy listening to these empty slots in blank 

frames. Moreover, the timer will not stop in a blank frame, regardless of whether 

the blank frame is caused by a collision or by the idleness of the transmitter. 

Under low traffic levels the timer times out frequently because the transmitter 

rarely transmits. However, the receiver must then listen to all slots in a frame, 

which wastes energy.  

 

Ping packets are applied to improve energy efficiency under low traffic levels. 

Once a transmitter reaches its preferred slot, if it has no data packet in its queue it 

sends a tiny ping packet which also carries the weight advantage to the associated 

receiver. The receiver then updates its timer, sends back an ACK packet and 

switches to sleep mode immediately. If the ping packet is not acknowledged, the 

transmitter will consider it as a failure and update its weights (-1). But the weights 

will not be updated if the ping packet succeeds, because the ping packet is tiny 

and practically its success does not indicate that the data packet can succeed in the 

same slot (ping packets from two neighbours can both success in the same slot if 

there is a certain synchronisation shift).  

 

6.5. Performance of RL-ALOHA 

6.5.1. Scenarios and Parameters 

This scheme is implemented using the OPNET simulator. Two other different 
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schemes are simulated for comparison: RL-ALOHA with IR (but not ping packets) 

and basic Slotted ALOHA with Binary Exponential Backoff (BEB). Table 6.1 

shows the simulation settings of all schemes. The parameters of the radio 

transceiver are based on the IRIS nodes [31]. The power levels are calculated by 

multiplying the current levels by the average voltage 3V. The sleep power level is 

set to zero because the energy cost by sleeping is considered negligible. The idle 

listening power is considered to be the same as the receive power [36]. The source 

node 1 is the only node which generates data packets. The packet inter-arrival 

time is exponentially distributed which models typical traffic statistics in realistic 

scenario (eg. in long-term monitoring tasks all nodes constantly generate packets 

with rate [1]) and the generated traffic is calculated based on the average packet 

inter-arrival time. All nodes in the network are assumed to be synchronised. 

SMAC and Z-MAC are also simulated for comparison. SMAC is set to 50 slots 

per frame and a 10% duty cycle as commonly employed [8]. Z-MAC has 6 slots 

per frame, which is typically larger than the number of contenders in one 

neighbourhood [13]. Each contention slot of Z-MAC has a length of 0.5 bits, and 

8 contention slots for slot owners and extra 32 contention slots for non-owners 

(same as [13]). 

 

Parameters Value 

Transmitter Data Rate 250 kbits/sec 

Receiver Data Rate 250 kbits/sec 

Transmit Power 51mW 

Receive Power 48mW 

Data Packet Size 1044 bits 

ACK Packet Size 20 bits 

Ping Packet Size 28 bits 

Slot Length 1100 bits 

Number of Slots per Frame 4 

Simulation Period 500,000 slots 

Table 6.1 Simulation parameters 
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6.5.2. Delay Analysis 

According to the scheme described in Chapter 4, nodes schedule a packet at the 

beginning of each frame, if there are packets ready to be sent. If no packets exist, 

a node sleeps in the current frame and all packets generated in this frame have to 

wait at least until the next frame to be transmitted. However, this introduces 

additional delay. Here we consider that a node determines the preferred slot at the 

beginning of each frame whether there are any packets ready or not. If a packet is 

generated before the preferred slot the node sends it, otherwise if no packets are 

generated it sleeps.  

 

Considering the network shown in Figure 6.1 with 4 slots per frame, the nodes 

must have a slot selection pattern of reusing slots of nodes four hops away to 

reach the optimal steady state. As Figure 6.4 shows, there exists an optimal slot 

selection in which the packet can be relayed immediately in the next slot after it is 

received and the queuing time in each hop is minimised. There are 24 

permutations (4!) of slot selections, and four of them are optimum. With the 

optimal slot selections, considering only one packet in the queue, each packet has 

an average of 2 slots queuing time at the source node and 1 slot relay time through 

each hop, so the total delay of the optimum slot selection is 10 slots, which is 

0.044 seconds (            ). However it is difficult to achieve this optimum 

slot selection without additional negotiation amongst several hops, so in the 

current scheme the slot selection is random (for each simulation) after 

convergence and the network has the probability of 16.7% (4/24) of convergence 

to the optimum. 
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Fig. 6.4 Optimum slot selection 

 

Considering another slot selection pattern of slots 1, 2, 4, 3, the estimated delay 

through 8 hops is: 

    

    
                                                     (6.1) 

For the slot selection pattern 1, 3, 2, 4, the delay is: 

    

    
                                                     (6.2) 

For the slot selection pattern 1, 3, 4, 2, the delay is: 

    

    
                                                     (6.3) 

For the slot selection pattern 1, 4, 2, 3, the delay is: 

    

    
                                                     (6.4) 

For the slot selection pattern 1, 4, 3, 2, the delay is: 

    

    
                                                     (6.5) 

So the average estimated delay of this topology is 0.085 seconds.  

 

6.5.3. Channel Performance 

The simulation results of throughput and end to end delay are shown in Figures 
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6.5 and 6.6 respectively. The results are collected after the simulations are 

initiated for 4000 slots, in order to precisely show the performance in steady state. 

The theoretical maximum throughput of the topology described at the sink node is 

0.25 Erlangs. Based on the parameters given in Table 6.1, including the overheads, 

the maximum throughput in the simulation is approximately 0.2373 Erlangs. 

Figure 6.5 shows that the RL-ALOHA with IR provides good throughput, with all 

the input traffic successfully flowing to the sink until it reaches the limit. The 

basic Slotted ALOHA can only achieve 0.1 Erlangs throughput due to the blind 

transmission strategy, and the use of ping packets does not affect the throughput 

performance at all (the overheads caused by ping packets only exist when there is 

available channel capacity). The throughput stabilises at 0.237 Erlangs when node 

1 generates more traffic, because the traffic on the chain is limited by the frame 

structure. SMAC has the maximum throughput of about 0.157 Erlangs, because its 

collisions avoidance through RTS/CTS and channel sensing (overhearing) is 

limited by the two-hop interference conditions. Z-MAC achieves less maximum 

throughput (0.204 Erlangs) than RL-ALOHA due to more overhead and more 

potential contention (nodes can potentially contend for their non-owned slots). 

Figure 6.6 shows that both RL-ALOHA schemes maintain an end-to-end delay 

less than or around 0.1 seconds with most traffic levels. The delay results for each 

marker are obtained from the average values of 50 simulations, and they are close 

to the estimated average delay when the traffic is lower than the capacity. The use 

of ping packets does not affect the delay performance. The delay of the original 

Slotted ALOHA increases significantly with the traffic level, due to the collisions 

caused by its blind slot selection strategy. SMAC has a higher overall delay than 

RL-ALOHA and Z-MAC according to the larger frame structure and packet 

losses/retransmissions caused by two-hop interference. Z-MAC achieves better 

delay performance at low traffic levels due to its random access feature at low 

contention level (LCL), however when the traffic load increases, Z-MAC has 
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similar delay performance as RL-ALOHA. 

 

 

Fig. 6.5 Throughput Comparison 

 

 

Fig. 6.6 End to end delay 

 

6.5.4. Energy Efficiency 

The average energy consumption per bit useful throughput, the average energy 



Reinforcement Learning for Multi-hop WSNs 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

114 

consumption per second and the detailed energy consumption of the radio 

transceivers are shown in Figure 6.7, Figure 6.8 and Figure 6.9 respectively. All 

the results are network-wide (i.e. not for a single node). Figure 6.7 and Figure 6.8 

show that both RL-ALOHA schemes have much better performance in terms of 

energy efficiency than Slotted ALOHA, and they have similar energy efficiency 

when the generated traffic is close to the throughput limit (0.237 Erlangs). 

However huge differences are appeared between these two schemes when the 

traffic is low. The use of ping packets can save approximately 90% of the energy 

compared with RL-ALOHA with IR when the traffic level is very low (0.02 

Erlangs). Figure 6.7 shows that RL-ALOHA with IR and ping packets maintains 

similar and low energy consumption per bit throughput with different traffic levels. 

Both SMAC and Z-MAC achieve stable energy efficiency across different traffic 

levels, but less efficient than RL-ALOHA due to more energy consumed by 

overheads, retransmissions and idle listening (SMAC has constant listening period 

and Z-MAC uses low power listening to ensure not missing any packets). Figure 

6.8 shows that its energy consumption per second increases linearly with the 

traffic level and remains at a certain level when the input traffic is larger than the 

limit. The energy cost of Slotted ALOHA increases with the traffic level 

(transmitting is more energy consuming than receiving/listening) and reaches a 

limit when the generated traffic its maximum throughput 0.1 Erlangs. 

RL-ALOHA with IR has high energy consumption at low traffic levels because of 

the idle listening caused by the non-frequently updated IR information. The 

energy consumption caused by idle listening decreases with the increasing traffic 

level, and the total energy consumption becomes dominated by transmitting and 

receiving rather than listening, as Figure 6.8 shows. The performance of SMAC 

and Z-MAC has the similar trend as RL-ALOHA, but higher values.  
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Fig. 6.7 Energy consumption per bit throughput 

 

 
Fig. 6.8 Energy consumption per second 

 

Figure 6.9 provides detailed energy consumption results and demonstrates the 

energy efficiency benefits of RL-ALOHA more clearly. The energy consumed by 

transmitting and receiving for both schemes is similar with different traffic levels, 

and the energy consumed in idle listening in both is very low when the traffic is 

high. This explains why the two schemes have similar energy efficiency with high 

traffic. The difference in energy efficiency at low traffic levels is caused by idle 
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listening. In Figure 6.9, RL-ALOHA with IR and ping packets maintains low 

energy consumption due to idle listening with different traffic levels. However if 

ping packets are not used by this scheme, the network consumes a huge amount of 

energy on idle listening at low traffic levels. When the nodes rarely transmit 

packets, the receivers are seldom updated so their timers time out frequently and 

they have to listen during all the slots to make sure they will not miss any 

information. The ping packets solve this problem by frequently updating the 

weight advantages. The use of ping packets therefore creates significant 

improvements in energy efficiency, and only introduces 48-bits overhead (an ACK 

packet plus a ping packet) in each blank frame. Similar to RL-ALOHA, SMAC 

and Z-MAC have much lower proportion of energy cost on data at low traffic 

levels, due to the larger ratio of energy consumed by overheads and idle listening. 

When the traffic load increases to their maximum throughputs, SMAC and 

Z-MAC achieve the proportion of 82% and 91% respectively, but still lower than 

the performance of RL-ALOHA (which is over 97%). 

 

 

Fig. 6.9 Proportion of energy cost by transmitting and receiving data packets 
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6.5.5. Convergence Time 

Recording the statistics under a steady state conditions is necessary to evaluate the 

long-term throughput, delay and energy performance. However, in realistic 

deployments the time that the system needs to converge to the steady state is also 

important. Figure 6.10 shows the Cumulative Distribution Function (CDF) of the 

number of frames that the system takes before converging to steady state (all 

nodes find their unique slots and never hop again) at three different traffic levels. 

The results of 100 individual simulations are included. The results are spread 

within a quite wide range due to the random nature of the learning process, and 

the system may take less than 20 frames or even more than 1000 frames to 

converge.  

 

The results show that under medium and high traffic conditions approximately 90 

percent of the simulations have converged within 1000 frames. This corresponds 

to 17.6 seconds, which is negligible time cost in most WSNs monitoring tasks. 

The results also indicate that the system converges faster with higher traffic loads, 

because more frequent packet transmissions give the nodes more information 

about the channel and thus accelerate the speed of learning. 
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Fig. 6.10 CDF of the converging speed 

 

6.6. ALOHA-QIR for Random Networks 

6.6.1. ALOHA-QIR Protocol Design 

In this section ALOHA with Q-Learning and Informed Receiving (ALOHA-QIR) 

is introduced and applied to a more practical network topology: a random 

deployed network with all nodes (except the sink node) operate as both a source 

and a relay node. To alleviate the potential problems caused by asymmetric traffic 

(nodes closer to the sink node have higher traffic levels due to more relay packets), 

nodes are allowed to use multiple slots per frame. Each frame contains N slots and 

node   is allowed to use    slots per frame. N is the same for all the nodes in the 

network but    is determined from the number of sources that the node needs to 

relay, plus one to account for its own packets. For example, if node   relays 

packets from two other nodes as well as sending packets itself,    will be 3. 

 

Stateless Q-Learning [29] is used as the basis of the learning process. Compared 



Reinforcement Learning for Multi-hop WSNs 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

119 

with the RL algorithm used in Chapter 4 and the previous section, the weight 

values of Q-Learning are within the range of the rewards (+1 for success and -1 

for failure) when the learning rate is between 0 and 1 [29]. The learning rate 

controls the size of the step of the Q value towards the current reward during each 

Q value update. If the learning rate is 1, the updated Q value is equal to the current 

reward. Each node has individual Q values for every slot, which represent the 

preference of the slot selections. The Q value is denoted       , which represents 

node i taking an action on slot k. The previous Q values and the current reward all 

contribute to the Q value update. The Q value is updated as below after the reward 

is returned (same to equation 5.1). 

                                                             (6.6) 

In equation 6.6   represents the learning rate and r the current reward. If the 

transmission succeeds, the current reward will be +1 and if the transmission fails, 

the current reward will be -1. The slots with higher Q values will always be 

preferred for use. If multiple slots have the same Q value, the node will randomly 

select one (or more) from them. All the Q values are initialised to zero at the very 

beginning. The pseudo code below describes this learning algorithm. n indicates 

the number of slots the node can access per frame. 

 

loop sleep until the next frame 

     set the Q values to decreasing order, as well as the slots 

     if multiple slots have the same Q value 

       randomly reset their order 

     select the first n slots as scheduled slots 

     loop sleep until the next scheduled slot 

       if one or more packets in the queue 

         send the packet at the queue head 

       if ACK successfully arrives 

         return +1 reward and update the associated Q value 

         retry number = 0 

       else 
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         return -1 reward and update the associated Q value 

         retry number = retry number + 1 

         if retry number > retry limit 

           discard the packet 

     end loop 

end loop 

Figure 6.11 shows an example of the frame structure and the operation of the 

Q-Learning algorithm. In this example, N equals 3 and    equals 2. 

 

 

Fig. 6.11 Example of Q values and repeated frames 

 

After a packet is generated by the upper layer or arrives from the previous hop, it 

will be put into a first-in-first-out queue and only the packet at the queue head can 

be transmitted. A packet needs to wait until the next preferred slot to be sent after 

its arrival or a collision occurring. A maximum retry limit M = 6 is defined 

according to the IEEE 802.11 specification [76]. A packet will be discarded if it 

exceeds the retry limit. 

 

After the learning process, each node will find a unique slot (or multiple slots 

depending on the number of nodes it needs to relay) to transmit packets if N is set 

appropriately. N is an important parameter for this scheme, and its optimum value 

is related to the network topology, the density of the nodes and the number of 

source nodes. Generally, N needs to be set higher when the network has more 

source nodes and higher density. But if N is too large, some slots might be wasted 

and the delay will increase. To improve the performance of ALOHA-QIR, general 

knowledge of the network size and topology are essential. In next section, an 

estimation of the optimum frame size for a random deployed network is provided. 
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6.6.2. IR and Ping Packets 

A. IR 

A similar Informed Receiving (IR) as described in Section 6.4.2 A is applied in 

this scheme, with some different details. When a node switches on, it listens 

constantly and waits for the packets from potential transmitters for a certain time 

period. After this time period, the receiver decides which slot (or slots) to listen in 

based on the information obtained from the transmitters. The transmitter 

piggybacks a number m on each data packet to inform the receiver its 

transmission pattern. m represents the number of future frames the transmitter will 

keep using the current preferred slot i, and it is calculated by the number of 

iterations of (6.1). An example is given below to clearly demonstrate the 

calculation of m. 

 

Given that N = 4,      and the Q values of node 1 are             , 

             ,              and              Slot 1 and 2 are the 

current preferred slots for node 1 according to the Q values. Considering the worst 

case that the future transmissions will all fail, the returned reward r will always be 

-1.        is the smallest value of the current preferred slots, and        is the 

largest value of the slots which are currently not preferred. Suppose that after 5 

iterations of (7.6) (with the reward of -1)        falls less than       , then the 

current value of m will be 5. It represents the number of future frames that the 

node will keep using the same set of preferred slots. m is calculated before every 

data packet is transmitted. To avoid unnecessary calculation (when the Q value of 

the preferred slot is much larger than the second highest Q value), m is given a 

maximum value of 20. 

 

The receiver has a group of timers T: 

                                                              (6.7) 

The timer group T has one timer every slot in the frame (the size of the timer 
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group is equal to N), and the timers represent the number of future frames the 

associated transmitters of different slots will use (one node may receive data 

packets from multiple nodes). The timers are updated at the beginning of each 

frame (they are all reduced by 1) and after the arrival of the data packets in the 

associate slots (set to m of the transmitter plus 1 to accommodate the offset caused 

by the other update). Because each node knows the number of sources it relays, 

then it needs to listen to the same number of slots per frame    (if the node is a 

source the number will be     ). If the   
   largest timer is larger than 1, the 

node will only listen to the    slots with larger timers. And if the   
   largest 

timer is equal or lower than 1, the node will listen to all the slots to see if the 

transmitters will switch to other slots. 

 

Based on the previous example, suppose node 3 is the next hop of node 1, and 

node 2 also selects node 3 as its next hop. Suppose    1 and node 3 is not a 

source node, so      and node 3 listens 3 slots per frame. Suppose the 

preferred slot of node 2 is slot 4 and m of node 2 is 3, and the preferred slots of 

node 1 are slot 1 and 2 and m is 5, so the timers of node 3 are     ,     , 

     and     . Node 3 will only listen to slot 1, 2 and 4 until anyone of   , 

   and    falls below 2. 

 

B. Ping Packets 

Similar ping packets as described in 6.4.2 B are used in this scheme. The results in 

Figure 6.10 show that the convergence varies with generated traffic, and it takes 

more time to converge under low traffic levels because there are fewer learning 

opportunities. Here we apply a different ping packet to accelerate the learning 

process and reduce the convergence time at low traffic levels. For the original 

short ping packets, their collisions indicate that the data packets cannot succeed as 

well, but their success does not mean the data packets can get through the channel 
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in the same slot because the ping packets are tiny and have a lower probability of 

collision. So, while updating the weights the original ping packets only contribute 

to negative reward but not positive reward. In this scheme we introduce long ping 

packets which have the same length as data packets. When a node is learning and 

not in relatively steady state (using the same preferred slots in less than 20 frames), 

it sends long ping packets instead of short ping packets. After receiving long ping 

packets, both positive and negative rewards can be returned just the same as after 

receiving data packets. So the weights can be updated every frame and nodes can 

find optimum transmission slots faster. The overheads caused by long ping 

packets only exist while learning, and the steady state performance is not affected.  

 

To help understand the protocol design, Figures 6.12 and 6.13 provide to describe 

the protocol as a transmitter node and a receiver node respectively. The two 

processes operate simultaneously for each node, but a node does not listen or 

receive packets when it is scheduled for transmitting. 
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Fig. 6.12 Flow chart of the transmitter node 
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Fig. 6.13 Flow chart of the receiver node 

 

6.7. Performance of ALOHA-QIR  

6.7.1. Scenarios and Parameters 

This scheme ALOHA-QIR is simulated and evaluated in OPNET. 50 nodes are 

randomly deployed in a 50m×50m square area and all the nodes are sharing the 

same channel (they all transmit and receive on the same channel). All nodes sense 

the environmental data, fragment the data into packets with the same length and 

forward them to the sink. The scenario has one sink node and it is deployed at the 

centre of the sensing area. All the schemes in the simulations are assumed to be 

synchronised to slots. 
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All the nodes are given the same average packet inter-arrival time which is 

calculated from the overall generated traffic load (Erlangs) given as a simulation 

parameter. 1 Erlang generated traffic represents the amount of traffic when a node 

transmits with full channel capacity. The average packet inter-arrival time is 

obtained as below, 

  
   

   
                                                      (6.8) 

  denotes the average packet inter-arrival time (seconds), L denotes the length of 

a data packet (bits), S represents the number of source nodes in the network, G is 

the generated traffic of the network (Erlangs) and R denotes the data rate of the 

channel (bits/second). In the simulations each node can store a maximum of 200 

packets in the buffer, and any more incoming packets beyond this will be 

discarded directly. For example an IRIS node [31] has a flash memory of 128 

Kbytes, which is able to save a maximum of about 1000 data packets. We set this 

buffer size to a relatively low value to avoid inaccurate performance in steady 

state caused by too many queued packets during the learning process.  

 

Considering the complexity of implementing a full interference model, the radio 

transceiver in the OPNET models operates under following assumptions. During 

packet reception, any partial or entire overlap of the packet will be considered as a 

failure. The propagation delay is ignored because the nodes are close to each other, 

and the propagation delay is tiny compared with the queuing delay of a packet and 

the packet duration. Only packets within a certain radius of a node can be 

correctly received, but transmissions within a larger radius of the node can cause 

interference and collisions. Some radio transceiver parameters are obtained from 

the IRIS motes datasheet [31]. Slotted ALOHA with BEB, SMAC and Z-MAC are 

used for comparison. Simulation parameters are given in Table 6.2. SMAC uses 

200 slots per frame and 10% duty cycle. Z-MAC has 120 slots per frame, 0.5 bits 

contention slots, 8 contention slots for slot owners and 32 slots for non-owners. 
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Parameters Values 

 Channel bit rate 250 Kbits/s 

Data packet length 1044 bits 

ACK packet length 20 bits 

Ping packet length 28 bits 

Slot length 1100 bits 

Transmit power 51 mW 

Receive power 48 mW 

Interference range 30 m 

Receive range 15 m 

Simulation length   10
6
 slots 

Table 6.2 Simulation parameters 

 

6.7.2. Optimal Frame Size and Maximum Throughput Estimation 

Figure 6.14 shows a simple overhead view of the network described in section 

6.7.1. The square is the sensing area where nodes are randomly deployed, the 

inner circle is the reception range of the sink node and the outer circle is the 

interference range of the sink node. According to section 6.6.1 nodes can access 

multiple slots per frame based on the number of sources they relay. Therefore, 

nodes in the inner circle must have the heaviest contention in the network and the 

optimum frame size can be estimated based on these nodes. 

 

According to the number of nodes and the area of the sensing field, the node 

density is              . The nodes in the inner circle need 1 hop to the sink, 

nodes in the area between the inner circle and outer circle need 2 hops, and nodes 

outside the outer circle need 3 hops. We need to calculate the area to determine the 

average number of nodes with different hops to the sink. The area of the inner 

circle is      , so the average number of nodes 1hop to the sink is 14.14 

(28.28%). The area of the nodes 3 hops to the sink can be represented by     
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(the area of the four corners). We can obtain that: 

                                                            (6.9) 

         
   

    
 

  
         

     

  
                              (6.10) 

  
 

 
                                                      (6.11) 

     
  

 

  
                                                 (6.12) 

        
                                                   (6.13) 

So there are on average 4.48 (8.96%) nodes needing 3 hops to the sink, and 31.38 

(62.76%) nodes needing 2 hops to the sink. Suppose all nodes generate 1 packet, 

then 3-hop nodes need to relay 4.48 packets, 2-hop nodes need to relay 35.86 

packets, 1-hop nodes need to relay 50 packets. So there are 85.86 packets 

contending within the interference range of the sink node, and it is also the 

theoretical optimum frame size. However considering the random deployment (a 

part of the network could have larger density than the average) and our previous 

experience (the scheme performs worse with small frame size, but has acceptable 

performance with a larger frame size), we expect the optimum frame size in the 

simulations to be larger than the theoretical value 85.86. And the maximum 

throughput will be about 0.5 Erlangs (depending upon the frame size) without 

considering any overheads. 
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Fig. 6.14 Network structure 

 

6.7.3. Channel Performance 

Figure 6.15 compares the throughput performance of ALOHA-QIR to basic 

Slotted ALOHA with different frame sizes N and varying traffic levels. The 

throughput of the four schemes grows with the traffic linearly (which indicates 

that all generated data is delivered) before the generated traffic reaches certain 

levels. As the traffic increases, the throughput of the four schemes converges to 

different limits. ALOHA-QIR (N=100) is the optimum and has a maximum 

throughput of approximately 0.47 Erlangs, which is over twice that of the Slotted 

ALOHA (0.22 Erlangs) and close to the theoretical maximum of about 0.5 

Erlangs. Frame size N is an important parameter for ALOHA-QIR, and affects the 

performance significantly. According to the learning algorithm each node i will 

own    unique slots of its next hop in steady state to avoid collisions. However if 

N is smaller than the optimum, some nodes may find their unique slots while 

others have to share, which causes collisions (it has been evaluated in Chapter 4). 

If N is larger than the optimum, the system can reach a steady state and have no 

collisions but some slots may never be used, which wastes the channel capacity. 
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Therefore ALOHA-QIR with 120 slots per frame has lower throughput than 0.47 

Erlangs, and the throughput stays the same as the increasing generated traffic until 

about 0.39 Erlangs. SMAC achieves the throughput of about 0.36 Erlangs because 

the collision avoidance of SMAC suffers severely from two-hop interference. 

Z-MAC has less maximum throughput than ALOHA-QIR with 100 slots per 

frame but better than the ALOHA-QIR with same 120 slots per frame, due to its 

larger overheads but more flexible slot selection strategy. 

 

 

Fig. 6.15 Throughput under different traffic levels 

 

Figure 6.16 shows the end to end delay of the four schemes. ALOHA-QIR with 

N=100 maintains a delay of less than 1 second under most traffic levels. N=120 

has slightly higher delay because of the larger frame size. ALOHA-BEB has the 

lowest delay when the traffic is very low because it immediately sends the packet 

in the next slot after the packet is generated or received and does not have to wait 

until the next preferred slot. SMAC has high overall delay because of the larger 

frame and duty cycle. Z-MAC achieves best delay performance at low traffic 

levels, resulted by its immediate access to the channel at LCL. When the traffic 

load increases, Z-MAC has similar delay as the ALOHA-QIR schemes.  
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Fig. 6.16 Delay under different traffic levels 

 

6.7.4. Energy Efficiency 

Figure 6.17 to 6.19 demonstrate the energy efficiency of ALOHA-QIR. In Figure 

6.17, ALOHA-QIR with N=100 and 120 has similar energy cost per bit because 

they all avoid most of the collisions and achieve perfect scheduling. The slightly 

higher energy cost at low traffic levels is caused by the ping packets, because 

nodes transmit many ping packets instead of the data packets under low traffic 

conditions. It is shown more clearly in Figure 6.19 that the network consumes 70% 

energy on data under low traffic and over 95% energy when the traffic is high. 

ALOHA-BEB has the highest energy cost because it consumes a large amount 

through idle listening, just as Figure 6.19 shows, only a tiny proportion of energy 

is consumed by data. SMAC and Z-MAC achieve steady energy cost per bit at 

different traffic levels, but higher cost than ALOHA-QIR due to their larger 

overheads and idle listening, especially SMAC suffers more collisions and 

retransmissions. Figure 6.18 shows the energy cost per second of the five schemes. 

The energy cost of ALOHA-QIR with N=100 and 120 is dominated by data so 
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that their energy cost per second increases linearly with the traffic. SMAC and 

Z-MAC have the similar trend but higher values compared with ALOHA-QIR. 

Moreover, when the traffic is 0.5 Erlang, ALOHA-QIR with N=100 consumes 

about 95 mW and ALOHA-BEB 2476 mW, which means that the network can 

survive at least 25 times longer.  

 

 

Fig. 6.17 Energy cost of the network per bit throughput 

 

Fig. 6.18 Energy cost of the network per second 
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Fig. 6.19 Proportion of energy cost on data transmission and reception 

 

6.7.5. Convergence Time 

Figure 6.20 shows the CDF of the number of frames elapsed before converging to 

the optimum solution under different traffic levels, with each curve containing 100 

simulation results. The scheme in this Figure does not include long ping packets. 

All the simulations converge within 3000 frames (300,000 slots), so simulation 

data collection is started after 500,000 slots to make sure the system is under 

steady state. Under medium traffic (0.2 Erlangs) about 90% of simulations 

converge within 500 frames (about 220 seconds) which is quite tolerable for the 

initialisation of a network. The scheme with light traffic (0.05 Erlangs) takes more 

time to converge due to the less learning opportunities under such low traffic 

level. 
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Fig. 6.20 CDF of the convergence time under different traffic levels without long ping 

packets 

 

To solve the slow convergence problem under low traffic conditions, long ping 

packets are introduced. Figure 6.21 shows the CDF of the convergence time under 

different traffic levels with long ping packets. Each curve contains 400 simulation 

results. Results show that the two curves almost overlap, which indicates that the 

traffic level does not affect convergence time any more. Over 90% of the 

simulations converge within 500 frames (220 seconds) which is acceptable for the 

initialisation time of a WSN. 
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Fig. 6.21 CDF of the convergence time under different traffic levels with long ping packets 

 

6.8. Conclusions  

This chapter has provided a detailed study of applying RL and ALOHA to 

multi-hop WSNs. In a multi-hop network, it is important to consider not only the 

channel performance but also the energy constraint. Our original RL algorithm in 

Chapter 4 relies on constant listening of the receiver radio, which is not acceptable 

in multi-hop WSNs. RL and ping packets are applied to efficiently switch nodes 

between sleep and active modes by providing receiver nodes with the learning 

information of the associated transmitter nodes, thereby maintaining the channel 

performance and improve the energy efficiency.  

 

Two protocols are proposed in this chapter. RL-ALOHA was first applied in a 

linear chain network, also exploring the idea of IR and ping packets. Then the RL 

algorithm was applied with IR and ping packets in a random network, presenting 

ALOHA-QIR. Results show that both schemes significantly improve the 

throughput and delay results compared with schemes without intelligence, 

demonstrating that the throughput approaches the theoretical maximum. Both 
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schemes achieve over 60% energy cost on data under very low traffic and almost 

100% energy cost on data under high traffic conditions.  

 

This chapter focused on steady state performance rather than the learning process 

prior to convergence. For the schemes with only short ping packets, the traffic 

level has a significant impact on convergence time because it directly affects the 

learning opportunities. With the introduction of long ping packets, schemes with 

different traffic have similar convergence time, and 90% of the simulations 

converge within 220 seconds, which is acceptable given the initialisation time of a 

WSN.  
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This chapter discusses potential further research related to the work in this thesis, 

to explore various capabilities of the protocols, and to analyse more complicated 

schemes. 

 

7.1. Different RL algorithms 

In Chapter 4 to Chapter 6, RL and Q-Learning have been applied as the intelligent 

slot selection algorithms. According to the experiments and simulations, both 

schemes have been shown to converge to a steady state and achieve significant 

improvements in channel performance compared with the non-intelligent schemes. 

However, the current RL algorithms are based upon single-agent learning where 

nodes learn independently from the environment without cooperation or 

information exchange. Multi-agent RL is a potential technique to improve the 

convergence time and steady state performance. For example in Chapter 6, 

optimum delay performance exists in certain slot selection patterns (packets are 

always relayed in the next slot). The current RL schemes ensure no collisions but 

are not optimised for delay performance. Through multi-agent RL, nodes can 
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cooperatively select slots to achieve optimal steady state. On the other hand, the 

extra negotiation and information exchange increases overheads, so the trade off 

between the gain and costs would need to be considered. 

 

7.2. Robustness to Synchronisation Errors 

In Chapter 4, the robustness of the RL scheme to synchronisation errors was 

evaluated in a single-hop network. Results show that the maximum throughput 

decreases from 0.9 Erlangs to about 0.6 Erlangs. Global synchronisation was 

assumed when implementing protocols in multi-hop networks in order to obtain 

the capabilities of RL schemes. Practically, it may be difficult to achieve global 

synchronisation in a WSN. Instead of seeking global synchronisation, improving 

the robustness and adaptability of the protocols to synchronisation errors is 

another alternative, because it introduces less overhead and has lower complexity. 

The initial idea is to use the same RL algorithms for slot selection and packet 

transmission, and to adjust the nodes’ sleep and wake up schedules to the clock of 

the associated transmitters to avoid idle listening and overhearing. Performance 

reduction is inevitable under unsynchronised conditions but it should be kept as 

low as possible.  

 

7.3. Cross-Layer Protocols 

MAC of the data link layer and routing at the network layer both have a 

significant impact on energy efficiency of WSNs. MAC protocols and routing 

protocols are highly related and can be integrated to one protocol with the 

functions of them both. Researchers have proposed some cross-layer protocols 

(for example LEACH) which aim to improve energy efficiency and channel 
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performance from a different perspective. Except for collision avoidance at the 

MAC layer, cross-layer protocols also determine the topology of the network as 

the routing protocol. From the network layer point of view, network lifetime can 

be improved by evenly assigning relay routes to avoid draining energy of single 

nodes, and selecting routes based on nodes’ remaining energy or traffic load. With 

a known network topology, the MAC protocol can work more efficiently and 

cooperatively. In the simulations of our protocols, we use MFR (most forward 

routing, or shortest path) for routing which is simple but offers no improvement to 

energy efficiency. With more topology information, selecting an optimal frame 

size will be easier, channel performance and energy efficiency can be improved by 

adjusting the MAC layer option to the current topology. Note that dynamic 

routing may cause inefficiency because nodes need to relearn to reach steady state. 

The trade-off between the performance loss before convergence and the gain of 

new routes needs to be considered. 

 

7.4. Mathematical Analysis for RL 

In Chapter 5 a Markov model was proposed for a certain RL scheme, the 

convergence was proved and the expected convergence time was obtained. 

However, to implement the Markov model we set constraints and limitations on 

the scheme so that it has no memory and time-relevance. The simulation results 

matched the analysis, which confirmed the correctness of the Markov model. 

Analytical models can be developed for other RL schemes based on the prior 

experience to obtain a more in depth understanding of learning.  

7.5. RL on Frame Size 

Frame size is an important parameter to our protocols and it significantly affects 
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channel performance and energy efficiency. Note that nodes are allowed to use 

certain number of slots per frame (1 slot per frame in single-hop networks, the slot 

number in multi-hop networks depends on the number of sources each node relays 

for). The total number of slots which can be used in each frame is fixed 

(considering the nodes in a certain neighbourhood), such that an insufficiently 

short frame size causes collisions and a large frame size brings additional delay 

and reduction in maximum throughput. The optimal frame size is determined by 

many factors. In early simulations, the optimal frame size was based on the 

topology and set manually. It would be beneficial to apply RL to determine the 

frame size dynamically so that the protocol does not need to rely on prior frame 

size estimation. By considering the past throughput, delay and collision 

probability (could be a certain time window or certain number of frames), nodes 

can adjust their frame size individually, and a certain technique is required to 

make sure that nodes in the same neighbourhood all converge to the same frame 

size. RL applied to slot selection can work on parallel, but the change of frame 

size may affect the learning results and nodes need to relearn. The convergence 

time of two parallel RL schemes is expected to be larger, but the protocol can 

adapt to different topologies.  
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8. Summary and Conclusions 

Contents 

10.1. Novel Contributions ..................................................................... 143 

10.2. Publications ................................................................................... 145 

 

 

 

This thesis has presented the research work undertaking during Ph.D. study from 

2009 to 2012 at the University of York. The early chapters introduced the purpose 

of the research, background knowledge and related work, and necessary research 

methodology. The later chapters demonstrate the detailed research work, which 

mainly focuses on developing energy efficient MAC protocols for WSNs, based 

on the ALOHA schemes and Reinforcement Learning.  

 

According to the energy and hardware restrictions of WSNs, the research work in 

this thesis focuses on the principles of energy efficiency, low computational 

complexity and low signalling overheads. The ALOHA schemes meet the 

requirements of low complexity and overheads, but suffer low throughput and 

energy efficiency from the random transmission strategy. RL techniques are 

applied as intelligent slot selection strategies to avoid collisions and improve 

energy efficiency, and perfect scheduling is achieved in both single-hop and 

multi-hop WSNs without additional overheads. IR and ping packets are applied to 

multi-hop WSNs to avoid idle listening and overhearing, and further improve the 

energy efficiency. A Markov model is provided to estimate the convergence time 

of the learning process. 

 

General background information of the WSNs is provided in Chapter 2. WSNs are 

usually self-organised distributed networks which can be used in a wide range of 
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applications. This chapter briefly introduces the history, network structure, 

applications, design requirements, devices and constraints of WSNs, as well as 

general information of RL, which is the main technique applied in MAC protocol 

development in later chapters. 

 

Background information and a related literature review of MAC protocols for 

WSNs are provided in Chapter 3. The basic MAC schemes are introduced, along 

with the specific design requirements of protocols for WSNs. Contention-based 

protocols are natural approaches for distributed networks, and usually have good 

performance under low traffic conditions. Schedule-based schemes are the 

alternative, which ensure no collisions and have good performance under high 

traffic conditions, but with greater overheads. Several representative MAC 

protocols for WSNs are introduced in this chapter and categorised into three main 

types. 

 

 

To avoid collisions and improve energy efficiency of the ALOHA schemes, 

Chapter 4 introduces RL as an intelligent slot selection strategy to framed 

ALOHA. Nodes select transmission slots by considering their prior transmission 

history, as long as they have enough trials and on appropriate frame size, 

collisions can be avoided and perfect scheduling can be achieved. Results show 

that the maximum throughput is improved to almost three times compare to the 

random access scheme. 

 

In Chapter 5, ALOHA and RL are applied to single-hop WSNs, Chapter 6 extends 

the work and explores it to multi-hop networks. Two network topologies are 

considered in this chapter: a linear chain network and a randomly deployed 

network. IR and ping packets are applied to avoid idle listening and overhearing, 
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thereby switching nodes to a sleep state as long as possible without missing any 

information and improve the energy efficiency. Results show significant 

improvement in both channel performance and energy efficiency. Compared with 

S-MAC and Z-MAC, the RL schemes have achieved greater maximum 

throughput lower end to end delay over most traffic levels (except that Z-MAC 

has better delay performance under very low traffic levels).  

 

RL algorithms provide perfect scheduling in steady state, but they require a 

certain time for convergence and the performance before convergence is not 

optimum. Chapter 5 focuses on the understanding to the convergence behaviour of 

RL algorithms. The convergence time is related to many factors including network 

size, network topology, routing protocols, node density and communication range. 

According to the uncertain environment in the learning period (where the 

environment is all other nodes which are also learning), the convergence time 

spreads over a large range in every individual trial. This chapter provides a 

Markov model to estimate the convergence time of a simple RL algorithm in a 

single-hop network, and validates it by simulations. Performance results during 

the learning period are also provided and discussed in this chapter. 

 

8.1. Novel Contributions 

As far as we know, this thesis has first explored the application of RL and 

ALOHA to MAC protocols for WSNs. The main contributions are summarised as 

follows: 

 

8.1.1. Intelligent Slot Selection Strategy Based on RL 

Applying RL as an intelligent slot selection strategy is a novel concept to solving 
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the collision and low throughput problems in random access schemes. Nodes learn 

their own slot selections through trial-and-error interactions to avoid collisions. 

Perfect scheduling can be achieved in steady state with an appropriate 

configuration. No additional packet exchanges are introduced by the learning 

algorithm. Chapter 4 has evaluated the performance of RL algorithms in a 

single-hop network. Results show that the protocol achieves over 0.9 Erlangs 

throughput, which is almost three times (less than 0.36 Erlangs) compared to the 

scheme without intelligence. This chapter has also evaluated the performance of 

the RL scheme under high propagation delay and unsynchronised conditions. The 

throughput drops with longer propagation delay but is still close to the theoretical 

maximum. The maximum throughput decreases by about 30% when the network 

is not synchronised.  

 

8.1.2. IR and Ping Packets for Multi-hop Networks 

The work in Chapter 4 ensures no collisions in the steady state but it is based on 

the assumption that the sink node is always listening. In multi-hop WSNs, the 

relay nodes must switch to sleep state considering the energy and lifetime issues 

of WSNs. In Chapter 6 IR is applied for the transmitter nodes to provide the 

recent learning information to the associated receiver nodes through usual data 

packets, so that they can switch to active state necessarily and sleep as long as 

possible. Ping packets are applied to provide the receiver nodes IR information 

when the transmitter nodes have low traffic. The long ping packets can also add 

more trials under low traffic conditions to accelerate the learning process and 

improve the convergence time. These contributions have been presented at the 

IET Conference on Wireless Sensor Systems (WSS2012) and the International 

Symposium on Wireless Communication Systems (ISWCS2012). 

 



Summary and Conclusions 

Yi Chu Ph.D. Thesis                      Department of Electronics, University of York 

 

145 

8.1.3. Average Convergence Time of RL 

Perfect scheduling can be achieved by the RL algorithms but they require a certain 

time to converge to the steady state. During the learning process the system 

performs suboptimal and this learning period can be considered as the 

initialisation stage of the network. Chapter 5 provides the research of the learning 

behaviour, based on the example of a simple RL process. A Markov model is 

proposed to describe this learning process. The convergence is proved through this 

model, and the average convergence time is obtained. The channel performance in 

learning stage is also provided, and to show the convergence behaviour of the RL 

algorithm in Chapter 6. These contributions have been submitted to IEEE 

Transactions on Wireless Communications. 
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Appendices 

I. Modelling Techniques and Validation Methods 

This section provides an overview of the simulation tools and mathematical 

validation methods which are used in the thesis. This section also introduces the 

important performance measurements which are used in protocol performance 

analysis. 

 

The primary simulation tool used is OPNET modeller. OPNET is an event-based 

network simulation tool which constructs the network through three levels of 

models: process models, node models and network models. Network topology, 

device functions and protocols of different layers of the Open System 

Interconnection (OSI) stack [1] can all be described by these three models. With 

its kernel procedures and transceiver pipeline stages, OPNET is capable of 

simulating a close-to-real communication environment [53]. The event-driven and 

interrupt based operations of OPNET are well suited the MAC protocol 

simulations. 

 

MATLAB is well-known scientific computing software which is widely used in 

academic, research and industry. It is able to perform sophisticated matrix 

computation, implement algorithms and plot data [54]. With various extended 

toolbox functions, it can also directly control hardware and perform more tasks 

such as transmission, reception and analysis of acoustic signals, fragmentation and 

synthesis of images. The advantage of MATLAB is its potential for matrix 

calculation and the variety of tool box functions provided. It is widely used in 

communication research. The data analysis capability of MATLAB is very 
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important to the work in this thesis. The analytical results generation and matrix 

computation in Chapter 5 are all performed by MATLAB. 

 

II. OPNET Radio Transceiver Pipeline Stages 

All the transmissions in the network can be subject to various adverse effects due 

to channel fading, interference, noise and transceiver hardware problems. The 

radio transceiver pipeline simulates the basic influences upon a transmission 

including physical phenomenon (such as distance and noise) and characteristics of 

the physical layer (such as the channel and error correction). In OPNET models, 

packets go through 14 stages from transmission to reception to determine if this 

packet is correctly received. Some stages are modified for simulations in this 

thesis. 

  

Stage 0 is usually determined at initialisation state, and stages 1 to 13 are applied 

at every packet transmission to determine whether the packet is correctly received. 

The failure of certain stages will cancel the rest of the stages, which will be 

considered as the failure of the transmission.  

 Stage 0 receiver group: this is not a real part of the dynamic pipeline 

stages [61]. It provides a virtual receiver group to the transmitter and 

determines the nodes that can receive packets from it. In practical systems 

this can correspond to frequency distinction or physical separation. 

 Stage 1 transmission delay: calculates the time needed to complete the 

entire packet transmission. 

 Stage 2 link closure: determines whether the signal can reach the receiver 

channel and whether the receiver channel can accept it. 

 Stage 3 channel match: it is operated at each individual receiver channel 

and it classifies the transmission with respect to the receiver channel, one 

of three states will be assigned to the received packets, valid, noise or 
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ignored.  

 Stage 4 transmitter antenna gain: executed for each destination channel 

and it computes the transmitter antenna gain based on the vector between 

the transmitter and the receiver. 

 Stage 5 propagation delay: calculated from the time from the packet 

leaving the transmitter to arriving at the receiver. 

 Stage 6 receiver antenna gain: executed for each destination channel and it 

computes the receiver antenna gain based on the vector between the 

transmitter and the receiver. 

 Stage 7 received power: computes the received power of the signal by 

considering the distance and shadowing. 

 Stage 8 interference noise: calculates the interaction among the 

transmission simultaneously arrived at each receiver channel. 

 Stage 9 background noise: counts all the environmental noise except the 

interference caused by other transmissions. 

 Stage 10 signal-to-noise ratio: calculates the average power SNR of the 

arriving packets by substituting the results obtained in the prior stages. 

 Stage 11 bit error rate: derives the probability of bit errors during the past 

interval of constant SNR. 

 Stage 12 error allocation: estimates the number of bit errors in a packet 

segment where the bit error probability is constant. 

 Stage 13 error correction: the final stage to determine whether the arriving 

packet can be accepted and forwarded to the neighbour modules of the 

receiver nodes.  

 

Modified pipeline stages are applied to meet assumptions in the simulations in 

later chapters. The default receiver group (stage 0) is all other nodes in the 

network. In the multi-hop network simulations in Chapter 6, one-hop reception 
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and two-hop interference (nodes can only receive packets from their one-hop 

neighbours but the simultaneous transmissions from the two-hop neighbours can 

cause interference and collisions) are applied by modifying the receiver group. 

The receiver group of a node consists of other nodes within the distance of 

two-hop radius, which can physically receive its packets and potentially cause 

collisions. Each node also has a group of node addresses which consists of the 

address of all its one-hop neighbours. After receiving a packet the node first 

checks the address of the source node, if the source node is not a one-hop 

neighbour the packet will be destroyed directly to meet the one-hop reception and 

two-hop interference assumption described above. According to the short 

communication range of sensor nodes [31], the propagation delay of a packet is 

negligible to the packet length. So the propagation delay (stage 5) is set to zero in 

most of the simulations in this thesis, except for the simulations in Section 4.3.6 in 

which the robustness of the scheme against different propagation delays is tested. 

The default error correction (stage 13) is to determine whether the packet is 

correctly received by considering the number of error bits. To meet the theoretical 

assumption that any partial or entire overlap of multiple packets causes failure of 

all packet receptions, the error correction is modified to consider the packet 

reception failed if it has one or multiple number of collisions. This assumption 

considers the worst case during the packet reception to obtain the precise 

simulated performance, because the data part of a packet can potentially be 

correctly received if the packet is partially overlapped (for example the preamble 

is collided).  

 

III. Performance Metrics 

To quantify system performance, many performance metrics are collected and 

calculated during simulations. These metrics will be used in later chapters to 

evaluate the system QoS, energy efficiency and convergence performance. 
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 Throughput 

Throughput is the successful traffic arriving at the sink and it is an important 

metric for the system QoS. In this thesis we consider the throughput including all 

overheads, which has the maximum of 1 Erlang (however, this is not achievable in 

a practical system because overheads are essential to ensure the correct reception 

of data). Where 1 Erlang means the throughput achieves the channel capacity. The 

throughput is calculated as below: 

  
 

   
                                                          (1) 

R is the total amount of data (bits) received by the sink node.   is the data rate 

(bits/sec) of the receiver channel (the channel capacity), and   is the period of 

time (sec) during which to calculate the throughput   (Erlangs). In Chapter 5 we 

calculate the throughputs over different time periods, which are the throughputs of 

different time windows, where each window starts at the beginning of the 

simulation and ends at different time points. 

 Delay 

Delay is another important QoS metric for communication systems, which 

indicates the timeliness of the data. Delay is a critical measurement in systems 

with real-time applications such as cell phone networks, live video flows and 

security systems. In this thesis we use end-to-end delay, which is the time between 

the generation of the packet and the time that the packet successfully arrives at the 

sink node. Network size, density, routing and MAC all have a significant impact 

on delay performance. 

 Channel Capacity 

Channel capacity is the maximum amount of traffic that can be transmitted on the 
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channel. In this thesis the same data rate is set for the transmitter and receiver 

channels, so the data rate becomes the channel capacity. In the results analysis we 

usually define channel capacity as 1 Erlang. 

 Offered Traffic 

Offered traffic is the amount of traffic that users transmit on the channel. For a 

single-hop network it is the total output traffic of all users including overheads. 

For a multi-hop network it is difficult to define due to many reasons. For example 

the packets have different destinations, the nodes have different communication 

coverage and the repeating packets in the network (relayed packets). We use 

generated traffic instead, which is the traffic consisting of new packets generated 

by the source users. These metrics use Erlangs as their unit as well. 

 Channel Efficiency 

Channel efficiency is the ratio of dividing the throughput by the offered traffic, 

which is relevant to packet delivery rate and shows the proportion of useful traffic 

successfully received by the receiver. 

 Energy Efficiency 

We use four metrics to show the energy efficiency of a system. The number of 

transmissions per success the number of transmission attempts (data packets) 

divided by the number of received packets at the sink node. It is used to indicate 

the energy efficiency in single-hop networks in Chapter 4 and is relevant to packet 

delivery rate. However this definition is not practical in multi-hop networks 

according to the same issues of measuring offered traffic, so three other metrics 

are defined. The energy cost per bit useful throughput (mJ/bit) is calculated by 

total energy consumption (use mJ as unit, including energy consumed by 

transmitting and receiving packets, idle listening and overhearing) divided by the 
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amount of data (bits) received at the sink node, which directly shows the energy 

efficiency. The proportion of energy cost on data is obtained by energy consumed 

on transmitting/receiving data packets divided by total energy consumption, 

which indicates the amount of overheads during the transmissions. The energy 

cost per second (mW) is calculated by total energy consumption divided by 

simulation time, which shows the network lifetime. Note that all energy metrics 

are calculated network-wide, which includes the energy consumption of all nodes 

in the network. 

 Convergence Time 

Convergence time is an important metric to our learning schemes, with a detailed 

study of convergence behaviour provided in Chapter 5. Convergence time can be 

considered as the initialisation time of a network (the time the network requires to 

obtain optimal performance), but before convergence the network still provides a 

certain suboptimal QoS. Specifically for our learning schemes, convergence time 

is the time the network takes for all nodes to find their unique slots and transmit 

without collisions. 

 

IV. Framed ALOHA with Exponential Backoff 

Framed ALOHA applies repeating frames to slotted ALOHA, and it is the basis of 

applying Reinforcement Learning in this thesis. Each frame consists of a certain 

number of slots, and nodes can access different numbers of slots each frame to 

solve the asymmetric traffic problem (packets can be queued with equal access 

when the nodes have different traffic levels). A user checks the number of packets 

in its queue and randomly schedules slots for them at the beginning of each frame. 

The packets generated during a frame need to be queued at least until the next 

frame. To achieve better channel performance, the frame length and number of 

packets allowed to be transmitted in each frame need to be set properly. Generally, 
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networks with a high density of nodes and contention require large frame lengths, 

and users with more traffic can access a greater number of slots per frame. Framed 

ALOHA is the basis of applying RL in Chapter 4, 5 and 6, simulations.  

 

Figure 9.1 shows an example of framed ALOHA. User A has a packet generated 

before frame 1, and it is successfully transmitted in frame 1. User B has a packet 

generated in frame 1 and this packet is successfully transmitted in frame 2. Both A 

and B have packets generated in frame 2 and they collide when transmitted in the 

same slot in frame 3. A and B then select different slots in frame 4 to retransmit 

their packets. Framed ALOHA is also sensitive to synchronisation errors as 

described previously for slotted ALOHA. 

 

Fig. 9.1 An example of framed ALOHA 

Framed ALOHA with Binary Exponential Backoff and Maximum Retry Limit 

(EB-F-M) is used for performance comparison in Chapter 4. Binary Exponential 

Backoff (BEB) is a retransmission strategy. Each node has an initial contention 

window. Once it suffers a collision, the window size is doubled to backoff its 

traffic flow, and the window size returns to the initial value one after successful 

retransmission. The offered traffic decreases according to the backoff, thereby 

reducing the probability of collision. To avoid large queuing time, packets that 
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Receiver
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exceed a certain maximum retry limit are dropped and the window size returns to 

its initial value. For EB-F-M, the initial contention window size is set to the length 

of one frame, and the maximum retry limit is set to 6 according to the IEEE 

standard [74]. 

 

Figure 9.2 shows an example of EB-F. The frame length is 4 slots and the backoff 

factor is 2. In the first frame, nodes A and B do not schedule transmissions for 

arriving packets because the contention window cannot start in the middle of a 

frame. After the packets arrive (packets are kept in a first-in-first-out queue in 

each node) in the first frame, both of them start a contention window from the 

start of frame 2. The packets arrive in the middle of a frame have to wait at least 

until the next frame to be sent because nodes schedule transmissions at the 

beginning of each frame. As Figure 9.2 shows, the two transmissions in the 

second frame all succeed. As a result of the queuing packets, the two nodes start 

another contention window from frame 3. Unfortunately the transmissions in the 

third frame collide, so nodes double their current contention window to two 

frames. Node A schedules a retransmission in the fourth frame and node B 

schedules one in the fifth. 

 

Fig. 9.2 An example of EB-F 
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V. Proof in 5.3.2 below (5.19) 

To prove the diagonal elements of the Jordan form of   are all positive (or the 

eigenvalues of   are all positive), it needs to be proven that the diagonal 

elements of   are all larger than 0.5, so that according to the Gershgorin Circle 

Theorem the eigenvalues will lie within the disc centered between 0.5 and 1 with 

the radius of less than 0.5, which means the eigenvalues are positive. We need to 

prove: 

     
 

 
 
   

 
 
   

  
   

 
   

   

 
 
   

 
 
     

                        (2) 

Where N is and integer larger than 2, and k is an integer between 0 and    . 

Move 0.5 to the left: 

  

 
 
   

 
 
   

 
    

 
   

   

 
 
 

 
   

 
 
     

                          (3) 

Multiply        on both sides: 

                                                        (4) 

We enlarge the first part of (4) by multiplying 
   

   
 assuming      , then 

we have: 

                                                   (5) 

Transform (5) to: 
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                                                       (6) 

For the situation that       , (6) becomes: 

                                                            (7) 

Which is obviously true. For the situation that       , (6) becomes: 

                                                            (8) 

By using       , (8) can be rewritten as: 

        
 

   
                                                         (9) 

To prove (9) we need to use the inequality that: 

 

   
                                                        (10) 

Where      and    . (10) can be proved as follow:  

Proof of the right side: 

                      
 

   
                               (11) 

When            , and        because       . When   

          and        because       .  

Proof of the left side: 

     
 

   
               

  

      
                             (12) 

When            , and        because       . When   

          and        because       .  
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Go back to the proof of (9), we assume   
 

   
, then we have : 

 

 
   

 

   
 

 

   
                                                 (13) 

And (9) becomes: 

         
   

   
                                                 (14) 

By using the minimum value of   
   

 
, (14) becomes: 

 
 

 
                                                               (15) 

And         , (15) is proved. So we can say that (2) is true when        
 

 
 

(when N is even). 

For the situation that    , (2) becomes: 

    
   

 
 
   

                                                      (16) 

  
   

 
 
   

      
       

   

       
     

  

                         (17) 

For the situation that   
 

 
, (2) becomes: 

 

 
 
   

 
 

 

 
 

 

 
 
   

 
 

 

 
  

                                            (18) 

Multiply both sides of (18) by   
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                                                       (19) 

Which is obviously true because N is larger than 2. 
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Glossary 

ACK Acknowledgement 

AEA Adaptive Election Algorithm 

AI Artificial Intelligence 

BEB Binary Exponential Backoff 

CA Collision Avoidance 

CAM Channel Acknowledgment Message 

CC-MAC Correlation-Based Collaborative MAC 

CDF Cumulative Distribution Function 

CDMA Code Division Multiple Access 

CRM Channel Request Message 

CSMA Carrier Sense Multiple Access 

CTS Clear to Send 

DARPA Defence Advanced Research Projects Agency 

DFA Dynamic-Framed-ALOHA 

DSMAC Dynamic Sensor MAC 

DSN Distributed Sensor Network 

DW-MAC Demand Wakeup MAC 

EB Exponential Backoff 

EB-F Framed ALOHA with Exponential Backoff 

EB-F-M EB-F with Maximum Retry 

ECN Explicit Contention Notification 

EH Energy Harvesting 

E-MAC Event-MAC 

FDMA Frequency Division Multiple Access 

FFT Fast Fourier Transform 
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FRTS Future Request to Send 

FSM Finite State Machine 

GMAC Global Time Synchronised MAC 

G-MAC Game-Theoretic MAC 

HCL High Contention Level 

IEEE Institute of Electrical and Electronics Engineers 

IET Institute of Electronic Engineers 

INS Iterative Node Selection 

IR Informed Receiving 

ISWCS International Symposium on Wireless Communication Systems 

LCL Low Contention Level 

LEACH Low Energy Adaptive Clustering Hierarchy 

MAC Medium Access Control 

MEMS Micro-Electro-Mechanical System 

MFR Most Forward Routing 

MIT Massachusetts Institute of Technology 

MRP Maximum Rendezvous Period 

NAMA Node Activation Multiple Access 

NAV Network Allocation Vector 

NP Neighbour protocol 

N-MAC Network-MAC 

OFDMA Orthogonal Frequency Division Multiple Access 

Q-MAC Quorum-Based MAC 

QoS Quality of Service 

RF Radio Frequency 

RL Reinforcement Learning 

RPs Rendezvous Periods 
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RTS Request to Send 

SCH Scheduling Frames 

SDMA Space Division Multiple Access 

SEP Schedule Exchange Protocol 

SMAC Sensor MAC 

SUA Schedule Unifying Algorithm 

SYNC Synchronisation 

TDMA Time Division Multiple Access 

TRAMA Traffic-Adaptive medium access control 

T-MAC Timeout-MAC 

VQ Vector Quantisation 

WSNs Wireless Sensor Networks 

WSS Wireless Sensor Systems 
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