
Data Clustering and Graph-Based
Image Matching Methods

Yan Fang

Submitted for the degree of Doctor of Philosophy

The University of York
Department of Computer Science

June 2012

Abstract

This thesis describes our novel methods for data clustering, graph characterizing

and image matching.

In Chapter 3, our main contribution is the M1NN agglomerative clustering

method with a new parallel merging algorithm. A cluster characterizing quantity

is derived from the path-based dissimilarity measure.

In Chapter 4, our main contribution is the modified log-likelihood model for

quantitative clustering analysis. The energy of a graph is adopted to define the

description length to measure the complexity of a clustering.

In Chapter 5, our main contribution is an image matching method based on

Delaunay graph characterization and node selection. A normalized Euclidean

distance on Delaunay graphs is found useful to estimate pairwise distances.

Contents

1 Introduction 1

1.1 The Problems . 1

1.2 The Objectives . 3

1.3 Thesis Outline . 4

2 Literature Review 5

2.1 Data Clustering . 5

2.1.1 Hierarchical Clustering . 5

2.1.2 Partitional Clustering . 8

2.1.3 Clustering Methods . 10

2.2 Graph Representation . 19

2.2.1 Basic Graphs . 20

2.2.2 Matrix Representation . 22

2.3 Spectral Graph Theory . 24

2.4 Minimum Description Length . 25

2.5 Graph Characterization and Node Selection 27

2.5.1 Spectral Characterization of Graphs 27

2.5.2 Graph Characterization by Heat Kernel 28

2.5.3 Graph Characterization by Commute Time 30

2.5.4 Node Selection by Centralities 31

i

2.6 Feature Detecting and Image Matching 34

2.6.1 Harris Corner Detecting . 34

2.6.2 SIFT Image Matching . 36

2.7 Summary . 37

3 M1NN Agglomerative Clustering 39

3.1 M1NN Principle . 39

3.2 Parallel Agglomerative Clustering 42

3.2.1 Classical Single-Link Agglomerative Clustering 42

3.2.2 Parallel Clustering with M1NN Principle 43

3.2.3 MST-Based Parallel Clustering 44

3.3 Path-Based Dissimilarity Measure 45

3.4 M1NN Agglomerative Clustering . 50

3.4.1 CP to CQ Expansion . 50

3.4.2 CQ Merging Rules . 51

3.4.3 M1NN Agglomerative Clustering with Strong Merging Rule 53

3.5 Algorithm Description . 55

3.6 Experimental Analysis . 57

3.6.1 Clustering Process Demonstration 57

3.6.2 Chaining Phenomenon . 57

3.6.3 York2012 . 60

3.6.4 Experimental Comparison . 62

3.6.5 Noise Test . 73

3.7 Advanced Applications . 73

3.7.1 Data Mining . 77

3.7.2 Image Segmentation . 77

3.7.3 Manifold Learning . 81

3.8 Conclusion . 82

ii

4 Modified Log-likelihood Clustering 83

4.1 MDL Principle for Clustering . 83

4.1.1 Relationship to Log-likelihood Function 85

4.1.2 Relationship to Graph Energy 85

4.2 Algorithm Description . 89

4.3 Experimental Analysis . 90

4.3.1 Toy Graph Partitioning Selection 90

4.3.2 Clustering Selection . 90

4.3.3 Image Segmentation Comparison 91

4.3.4 Clustering Method Comparison 91

4.3.5 Further Discussion on MLL and ML 96

4.4 Conclusion . 99

5 Delaunay Graph Characterization and Graph-Based Image Matching 100

5.1 Heat Diffusion on Delaunay Graphs 100

5.1.1 Critical Time of Heat Diffusion 101

5.1.2 Delaunay Graph Characterization by Heat Diffusion 102

5.2 Graph-Based Image Matching . 107

5.2.1 Delaunay Graph Selection for Image Matching 107

5.2.2 Graph Node Selection for Image Matching 109

5.3 Algorithm Description . 118

5.4 Experimental Analysis . 118

5.5 Conclusion . 124

6 Conclusions and Future Work 125

6.1 Contributions . 125

6.1.1 M1NN Agglomerative Clustering 125

6.1.2 Modified Log-likelihood Clustering 126

iii

6.1.3 Delaunay Graph Characterization and Graph-Based Image

Matching . 127

6.2 Limitations . 127

6.3 Future Work . 129

iv

List of Figures

2.1 Dendrogram example (from [66]) . 11

2.2 Responsibility and availability illustration (from [45]) 18

2.3 A simple and undirected graph . 20

2.4 k-NN graph example . 21

2.5 Delaunay graph and Voronoi tessellation (from [88]) 22

2.6 Minimum spanning tree example (from [91]) 22

2.7 Graph and Laplacian matrix representation (from [93]) 24

2.8 MDL for linear regression problem 26

2.9 SIFT descriptor representation (from [143]) 37

2.10 SIFT image matching example . 37

3.1 Observation 2 demonstration . 40

3.2 M1NN principle for clustering demonstration 41

3.3 CPs in a complex data set . 42

3.4 The problem of the classical agglomerative clustering 43

3.5 Dendrogram comparison of two clustering methods 44

3.6 Improper merging from parallel clustering 45

3.7 Segment removal demonstration . 47

3.8 Delaunay graph after removing triangles 48

3.9 The bottleneck edges demonstration 49

3.10 CP to CQ expansion . 51

v

3.11 Pseudocode of CQ merging algorithm 54

3.12 CQ merging result . 55

3.13 Pseudocode of strong merging algorithm 56

3.14 Strong merging result . 56

3.15 Clustering demonstration 1 . 58

3.16 Clustering demonstration 2 . 59

3.17 Chaining phenomenon demonstration 60

3.18 York2012 clustering comparison 1 . 63

3.19 York2012 clustering comparison 2 . 64

3.20 York2012 clustering comparison 3 . 65

3.21 Noisy York2012 clustering comparison 66

3.22 Pairwise distance matrix (Shape25) for clustering 74

3.23 Clustering comparison for Shape25 75

3.24 Clusterings of M1NN and DBSCAN under heavy noise 75

3.25 Air travel clusters by AP . 78

3.26 Key air travel clusters by M1NN . 79

3.27 Image segmentation comparison . 80

3.28 Manifold learning . 81

4.1 Graph energy demonstration . 87

4.2 Graph energy inspection . 88

4.3 Toy graph partitionings . 91

4.4 KM clusterings on 7G (7 Gaussian clusters) 92

4.5 KM clusterings on York2012 . 93

4.6 Toy image segmentation . 94

4.7 DL of KM clusterings on 7G . 95

4.8 DL of KM clusterings on York2012 95

4.9 DL of image segmentations . 95

vi

4.10 Bipartitioned toy graph 1 . 97

4.11 Bipartitioned toy graph 2 . 97

5.1 The distance matrices of NC1 . 104

5.2 The distance matrices of Complex8 105

5.3 Delaunay graphs with different tc on a face image 108

5.4 Hot node evolution on a graph by increasing time 111

5.5 Hot node selection by using heat diffusion at tc 112

5.6 Node selection by using degree centrality 113

5.7 Node selection by using closeness centrality 114

5.8 Node selection by using betweenness centrality 115

5.9 Node selection by using eigenvector centrality 116

5.10 Node selection by using the dominant set 117

5.11 Image matching by our method . 119

5.12 Image matching by SIFT . 120

5.13 COIL-20 database (from [201]) . 121

5.14 COIL duck images (from [201]) . 121

5.15 Face matching comparison . 122

vii

List of Tables

3.1 The characteristics of data sets . 68

3.2 RI of clustering methods . 69

3.3 MER of clustering methods . 70

3.4 RI of clustering methods . 71

3.5 MER of clustering methods . 72

3.6 Noise test between M1NN and DBSCAN 76

4.1 Description length for clustering methods 98

4.2 Log-likelihood for clustering methods 98

4.3 MLL and ML comparison . 98

5.1 Critical times for the Delaunay graphs 106

5.2 Image matching average error comparison 123

viii

Acknowledgments

I would like to thank my supervisor Professor Edwin Hancock for his support

and suggestions on my PhD study.

I would like to thank my assessor Professor Richard Wilson for his patience

and kindness in many long and enlightening conversations.

I would like to thank my colleagues and the department of computer science.

Finally, I really would like to thank my parents for their unconditional support

and endless love.

ix

Declaration

I declare that all the work in this thesis is solely my own except where attributed

and cited to another author.

x

Chapter 1

Introduction

In this chapter, the computer vision and pattern recognition problems studied in

this thesis are briefly introduced. The motivation and objectives of our work are

presented and followed by the thesis outline at the end of the chapter.

1.1 The Problems

Clustering is the process of organizing similar objects into groups. For example,

apples and pears form different clusters. The Golden Delicious and Red Delicious,

though not closely related [1], are both botanically more like an apple than a

pear. In computer science, the aim of clustering is to discover such clusters from

given data for further analysis. Clustering methods are widely used in image

segmentation [2], information access and retrieval [3], genome study [4], etc.

There are two types of clustering problems: semi-supervised clustering and

unsupervised clustering. Semi-supervised clustering contains a few auxiliary

constraints, e.g. the pairwise must-link and cannot-link constraints between objects

[5]. Unsupervised clustering is of an exploratory nature since data are unlabeled

and unconstrained [6]. In this thesis, unsupervised clustering is researched. Un-

1

less stated otherwise, the term clustering means specifically unsupervised clus-

tering.

As cluster analysis is fundamentally important for learning and understand-

ing data, a large number of clustering methods had been proposed in the past.

However some critical issues remain unresolved. The first and main problem is

the lack of a single and general method that can cope with varied clustering tasks

and unspecific data sets [7]. The second problem is that many current clustering

algorithms are controlled by a set of internal parameters, which are decided em-

pirically for optimal performance. When Jain reviewed the state-of-the-art data

clustering methods in 2010, he commented, ’in spite of the fact that K-means was

proposed over 50 years ago and thousands of clustering algorithms have been published

since then, K-means is still widely used’ [8]. However, K-means can only provide

very basic clustering for real applications.

Meanwhile, spectral graph theory had been used for clustering for a long time.

As objects are represented by vertices of a graph and their relations are denoted

by edges, a data clustering problem becomes a graph partitioning problem [9].

The best known spectral clustering method is probably the so-called normalized

cut [2]. It is fast, accurate and is extended to image segmentation and other appli-

cations, but counterexamples alert us there is possibly an inside theoretical flaw

as it cannot cope with some simple examples [10]. Besides using eigenvectors,

the number of eigenvalues of magnitude 1 is equal to the number of clusters in

an ideal case when clusters are infinitely separated. In a more complex and real-

istic situation, the eigenvalues are no longer reliable [11].

There are also problems with graph matching methods applying to image

matching. Basically, image matching is the process of detecting and matching

similar features on different images, e.g. edges, corners, ridges and valleys [12].

Unlike the methods using only coordinates or descriptors of feature points [13,

2

14], graph matching methods construct graphs on feature points and then match

the graphs with advanced mathematical tools, e.g. spectral graph theory [15].

Ideally, robust image matching should be achieved by using this graph-based

strategy. In practice however, an affine transformation could bring a radical

change to the size or structure of a graph. An image matching method based

on graph matching only cannot perform stably and accurately [16].

1.2 The Objectives

In this thesis, our main research interests are data clustering and image matching.

For data clustering, we aim to design a single and general clustering method:

1. Compatible with any data types. For data points in two or three dimen-

sions, our method works with the principle of gestalt perception [17] as the data

points are collectively recognized having meaningful shapes by our vision system

in this case [18].

2. Robust to outliers. Currently, very few clustering methods can deal with

outliers effectively. On the other hand, it is very unlikely to get clean data with-

out outliers. Our method will maximally retrieve true clusters whilst identify as

many outliers as possible.

For graph-based image matching, we aim to:

1. Build Delaunay graphs on images by a new criterion. Critical time is in-

troduced as a measure of the diameter of a graph to limit the number of feature

points so that all graphs to be matched will have a similar size.

2. Characterize Delaunay graphs with heat diffusion. The heat kernel at the

critical time captures stable graph partitions across a series of images. Matching

these partitions is much easier and cheaper than matching whole graphs.

3. Assign image information to graph nodes for accurate matching. Many

3

graph-based methods use solely graph structures for matching and many image

matching methods compare only feature descriptors. We add feature descriptors

to selected graph nodes to enhance the performance.

1.3 Thesis Outline

The remainder of the thesis is organized as follows: Chapter 2 reviews the lit-

erature. The background knowledge on clustering and graph characterizing are

provided. Chapter 3 presents an adaptive hierarchical clustering method. Chap-

ter 4 describes a clustering comparison method. Chapter 5 brings a graph-based

image matching method. Chapter 6 summarizes the work in this thesis and the

possible directions for future research.

4

Chapter 2

Literature Review

This chapter reviews the research literature on data clustering, graph character-

ization and image matching. The clustering and image processing algorithms

widely used in science and industry are briefly introduced. The mathematical

knowledge needed to understand this thesis is also included in this chapter.

2.1 Data Clustering

In the literature, data clustering methods can be divided into two types: hierar-

chical and partitional clustering [19]. For large scale data sets, these two types of

methods are often integrated to improve processing speed and accuracy [20].

2.1.1 Hierarchical Clustering

There are two strategies for hierarchical clustering. The first one is an agglom-

erative bottom-up strategy, which starts with taking each data point as a cluster

and merges them successively until all the data points are in only one cluster. The

second one is a divisive top-down strategy, which assigns all the data points to

one cluster initially and splits each cluster into smaller ones recursively [21].

5

For any clustering method, a distance measure is needed to quantify the sim-

ilarity of objects. For hierarchical clustering methods, some popular metrics are

used, e.g. Euclidean distance, squared Euclidean distance, Manhattan distance

[22] and Mahalanobis distance [23]. For text or non-numeric data, Hamming dis-

tance [24] and Levenshtein distance [25] are preferred [26].

A linkage criterion is also required to define the distance between clusters. A

linkage is normally a function on the pairwise distances of the data points from

different clusters. Linkage options include single-linkage [27], complete-linkage

[28] or average-linkage [29]. Single-linkage is massively used for clustering as

it is capable with non-isotropic clusters [27]. But it has a drawback called the

chaining phenomenon [30]: two clusters may be joined together because of some

scattered points between them, even there are many more points well separated

from one cluster to the other. As a result, clustering may contain just a few large

but incorrect clusters and many trivial ones.

Developed on the classical hierarchical clustering algorithm, BIRCH (Balanced

Iterative Reducing and Clustering using Hierarchies) [31] uses a hierarchical data

structure called CF-tree to partition data points. BIRCH can find a good cluster-

ing with a single scan of the data. However as BIRCH uses a diameter parameter

to control the boundary of a cluster, data including non-spherical clusters are not

supported very well. It is also inconvenient that BIRCH may generate different

clusters for the same data input in different orders.

CURE (Clustering Using REpresentatives) [32] is another hierarchical cluster-

ing method. CURE uses a constant number of points inside a cluster to represent

that cluster. The similarity of two clusters is measured by the smallest distance

between two representative points from each cluster. CURE can find clusters of

arbitrary shape and size but cannot be applied directly to large data sets.

CHAMELEON [33] is a two-phase clustering method. CHAMELEON begins

6

with a k-NN graph [34] constructed on data points. The data points are then

assigned to a large number of relatively small sub-clusters by graph partition-

ing algorithms. The small sub-clusters are merged using a dynamic framework.

CHAMELEON is generally recognized as a better clustering method than BIRCH

or CURE [35].

More recently, a novel hierarchical clustering method was developed on lossy

data compression [36]. The cluster structure is characterized by coding length.

At each iteration, two clusters are merged to maximize the decrease of the coding

length. The process terminates when the coding length cannot be reduced by

merging any pair of clusters. Although this method is similar to the classical

agglomerative clustering method, its performance is significantly improved by

using coding length as a new distance measure between clusters. However it

is assumed that data are drawn from multiple low-dimensional linear or affine

subspaces, other types of data are not supported [37].

To cluster complex data, Zell was proposed as a hierarchical method based

on Zeta function of graphs [38]. A cluster descriptor is defined as the integra-

tion of all cycles in a cluster. The popularity of a cluster is conceptualized as the

global fusion of variations of a cluster descriptor and is computed by means of

the leave-one-out strategy. At each so-called Zeta merging iteration, two clusters

with the maximum incremental popularity are merged. As Zell uses a directed

k-NN graph, choosing the ’right’ k is obviously very important. Otherwise the

number of cycles may be too small to characterize a cluster. Zell also requires

manually setting three other internal parameters, which limits its use for general

cluster analysis.

7

2.1.2 Partitional Clustering

A partitional clustering method returns a set of flat partitions rather than a nested

structure. Usually a partitional method generates clusters by minimizing an ob-

jective function. K-means as an old and simple partitional method [39], where k

denotes the number of clusters, is still widely used for cluster analysis. However

there are some problems with K-means. For example, an inappropriate k could

result poor clustering. And there is not a guaranteed globally optimal solution

for K-means. The clustering process is also dependent on initial means [40]. Fur-

thermore, concentric clusters are not detectable because it is assumed clusters are

spherical and well separated [41].

Fuzzy C-means soft clustering method [42] improves K-means by associating

every data point with all the clusters using a membership function. The charac-

teristic points are defined in every cluster, which are considered as the centers

of the clusters. The core algorithm of C-means is actually an EM (Expectation-

Maximization) algorithm [43]. An EM algorithm starts with guessing a number

of parameters. The clustering probabilities of a data point are calculated from

these parameters. Then the parameters are re-estimated from the probabilities.

Since this process usually repeats for hundreds or thousands of times, C-means

is computationally expensive to use and is affected by the over-fitting problem [44].

As both K-means and C-means are sensitive to the random initialization of

means, AP (Affinity Propagation) [45] was proposed to address this issue. Con-

cisely, AP views each data point as an exemplar at the beginning of clustering.

Exemplar-to-member and member-to-exemplar messages transmit competitively

among all data points until stable exemplars emerge. The exemplars and their

members form the clusters. AP is capable of clustering large scale data at a high

computational cost.

Lately, AP is extended to WAP (Weighted AP) [46] by integrating neighbor-

8

ing points together and keeping spatial structure between them. WAP generates

identical clustering as AP but the empirical complexity of WAP is much lower

[47]. Based on WAP, HI-AP as a hierarchical clustering method was proposed

[48]. The basic idea of HI-AP is partitioning data into subsets randomly and then

launching AP on each subset to find exemplars. The exemplars are processed by

WAP to further construct a hierarchy.

In partitional clustering, there is another group of methods detecting clusters

based on the density of data points in a region [49]. DBSCAN [50], as the best

known density-based clustering method, is capable of discovering clusters of ar-

bitrary shape. DBSCAN also classifies data points as core points, border points

and noise points, which is quite useful for data analysis. To deal with the data

containing both numerical and categorical attributes, DBSCAN was further gen-

eralized to GDBSCAN [51].

Both DBSCAN and GDBSCAN need to tune a set of internal parameters. To

tackle this problem, nonparametric DBCLASD (Distribution Based Clustering of

LArge Spatial Databases) was proposed [52]. DBCLASD assumes data points are

uniformly distributed in every cluster. An initial cluster is incrementally aug-

mented by its neighboring points as long as the nearest neighbor distance set of

the cluster still fits the expected distance distribution.

OPTICS (Ordering Points To Identify the Clustering Structure) [53] is another

density-based clustering method specialized in clustering data of varying density.

In this method, data points are ordered so that spatially closest points become

neighbors to each other. Additionally, a special distance representing the den-

sity is stored for each data point. Two data points will belong to a same cluster

only if their distance is accepted by the cluster. OPTICS is also used for building

hierarchical clustering methods [54].

Graph-theoretic approaches are intensively studied for partitional clustering

9

as well. The earliest attempt [55] built an MST (Minimum Spanning Tree) to bi-

partition data points. In 1973, the Fiedler vector of a graph Laplacian was found

useful for graph partitioning problems [56]. The discovery bloomed a family

of graph-theoretic clustering methods based on eigenvectors and eigenvalues,

which are called spectral clustering. The best known spectral clustering method is

the normalized cut [2]. Later the normalized cut was developed with the Markov

random walk [57]. Meanwhile a multi-class normalized cut was also proposed

[58], in which k largest eigenvectors of a transition matrix are used to embed data

points into an eigen-space and K-means is invoked to cluster the data points.

The major drawbacks of spectral clustering are running speed and numerical

stability. The isoperimetric method [59] was proposed as a fast and stable sub-

stitute. Solving an optimal partitioning problem is transformed to minimizing

the isoperimetric number of a graph. The main problem of this method is the

selection of a ground node. There are some suggested grounding strategies, e.g.

grounding the maximum degree node or a random node [60].

More recently, a new graph-theoretic approach [61] for pairwise clustering

was developed on the analogy between a cluster and a dominant set of vertices.

The dominant set of a graph generalizes the maximal complete subgraph of an

unweighted graph. It can be computed straightforward using continuous op-

timization techniques called replicator dynamics [62]. This method can also be

used for hierarchical clustering [63].

2.1.3 Clustering Methods

In this section, some classical and effective clustering methods are introduced.

For each method, a brief step-by-step algorithm is also given as a reference.

10

FIGURE 2.1: DENDROGRAM EXAMPLE (FROM [66])

Single-Link Agglomerative Clustering

The single-link agglomerative clustering method may be the simplest and most

intuitive hierarchical clustering method. In this method, the linkage does not

have to be distance based. A variance increase (Ward’s method [64]) or marginal

likelihood [65] can also be adopted. When the Euclidean distance is used as the

metric, the single-linkage for two sets A and B is defined as

sl(A,B) = min{d(a, b)|a ∈ A, b ∈ B} (2.1)

where d(a, b) denotes the Euclidean distance between points a and b.

Basically clusters are formed in a greedy manner. In Figure 2.1, the clustering

process is demonstrated by a dendrogram [66].

The single-link clustering algorithm is given as:

1. Set each data point as its own cluster and compute a single-linkage matrix.

2. Merge two clusters with the minimum single-linkage and update the single-

linkage matrix.

3. Repeat step 2 until all data points are grouped into one cluster.

11

K-means and K-medoids

Given n data points x = (x1, x2, ...xn) in the same dimensions and k clusters Ω =

(w1, w2, ..., wk), K-means aims to minimize the within-cluster sum of squares

arg min
Ω

k∑
i=1

∑
xj∈wi

‖xj − µi‖2 (2.2)

where µi is the mean of points in wi.

The algorithm of K-means combines an assignment step and an update step.

It is an iterative refinement approach and will converge to a local minimum as

minimizing the objective function is NP-hard even for k = 2 [67]. A concise

description of the algorithm [68] is given as:

1. Initialization. Set k means to random values m(1)
1 ,m

(1)
2 , ...,m

(1)
k .

2. Assignment step. Each data point is assigned to the nearest mean

w
(t)
i = {xp : ‖xp −m(t)

i ‖ ≤ ‖xp −m
(t)
j ‖∀1 ≤ j ≤ k} (2.3)

3. Update step. Calculate the new mean as the centroid of the data points in a

cluster

m
(t+1)
i =

1

|w(t)
i |

∑
xj∈w

(t)
i

xj (2.4)

4. Repeat step 2 and 3 until assignments do not change.

Because of the randomness in initialization, K-means may not give the same

clustering each time. In practice, K-means is normally run for multiple times for

a possibly right clustering [69].

K-medoids is another partitional clustering method quite similar to K-means.

The main difference is the centers (medoids or exemplars) have to be on the data

points [70]. K-medoids is more robust to noise and outliers than K-means but is

computationally more expensive.

12

DBSCAN

DBSCAN (Density Based Spatial Clustering of Applications with Noise) is a den-

sity based data clustering method proposed in 1996 [50]. The inspiration is from

the observation that inside each spatial cluster, the density of points is consid-

erably higher than outside. A cluster is defined by DBSCAN on the notion of

density reachability. There are two parameters required: an ε or k to define the

neighborhood size and a MinPts to control the minimum number of points in a

cluster. Given distance d(a, b) between points a and b, a is said to be directly den-

sity reachable from b if satisfying d(a, b) < ε. Otherwise if they are not directly

reachable, but there is a sequence of points {a, p1, p2, ..., pn, b} that pi+1 and pi are

directly reachable, then a and b are defined as being density reachable to each

other. In a cluster, all the data points are considered mutually density reachable

and connected.

The algorithm is given as:

1. Start with an arbitrary unvisited point p.

2. Compare the parameter MinPts with the number of data points in p’s ε-

neighborhood, if MinPts is smaller, p and its neighborhood are identified

as a cluster; otherwise, p is regarded as a noise point.

3. Run step 2 on all the neighborhood points of p and their neighborhood

points and so on until no new cluster is generated. All the clusters origi-

nated from p are merged as one.

4. Repeat step 1 until all the data points are visited.

Normalized Cut

The normalized cut method is probably the best known spectral clustering method

based on a new graph-theoretic criterion [2]. The minimization of the normalized

cut is formulated as a generalized eigenvalue problem.

13

Given a graph G(V,E), it can be partitioned into two disjoint sets A and B, i.e.

A∪B = V andA∩B = ∅. In this case, the edges connectingA andB are removed

and the total weight of the edges is called a cut

cut(A,B) =
∑

a∈A,b∈B

w(a,b) (2.5)

Finding the minimum cut corresponds to optimally bipartitioning a graph.

However the minimum cut favors cutting small sets of isolated vertices [71]. To

solve this problem, the normalized cut is defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)
(2.6)

where assoc(A, V) =
∑

a∈A,v∈V w(a,v) is the total association from nodes in set A to

all the nodes in the whole graph.

Directly minimizing the normalized cut is NP-complete [72]. So the definition

(2.6) is rearranged and the objective is changed to minimize the scalar expression

arg min
y

yT (D−A)y

yTDy
(2.7)

subject to y(i) ∈ {1,−b} and yTD1 = 0. y(i) denotes the i-th element of vector y,

b =
∑

i∈A deg(i)∑
j∈B deg(j)

and 1 is the |V | × 1 vector of all ones. D is the degree matrix and A

is the adjacency matrix.

The expression (2.7) is actually the Rayleigh quotient [73]. If y is relaxed to real

values, it is equivalent to solving a generalized eigenvalue problem

(D−A)y = λDy (2.8)

by L = D−A, it can be rewritten as

Ly = λDy (2.9)

defining y = D−
1
2z, then we have

D−
1
2LD−

1
2z = λz (2.10)

14

where D−
1
2LD−

1
2 is called the normalized Laplacian and is denoted by L, so we

have

Lz = λz (2.11)

Comparing with Equation (2.31), z is indeed the eigenvectors of the normal-

ized Laplacian L. The smallest eigenvector z0 = D
1
21 corresponds to λ0 = 0. The

constraint yTD1 = 0 can be rewritten as zTz0 = 0, from which we can deduce the

range of y as {D− 1
2z1,D

− 1
2z2, ...,D

− 1
2zn}.

Replacing y with z in (2.7), it becomes minimizing the scalar expression

arg min
z

zTLz
zTz

(2.12)

The solution is the second smallest eigenvector z1 corresponding to the small-

est non-zero value λ1, which is similar to the Fiedler vector of an unnormalized

Laplacian [74]. The original constraint y(i) ∈ {1,−b} is relaxed to y1 = D−
1
2z1 to

include real valued elements.

The normalized cut clustering algorithm is given as [2]:

1. Build a graph and compute the pairwise similarity matrix A for given data.

2. Solve (D−A)x = λDx for eigenvectors.

3. Use the second smallest eigenvector to bipartition the graph.

4. Recursively subdivide the segments if necessary.

Isoperimetric Partitioning

The isoperimetric partitioning method was proposed to compete with other global

partitioning methods in terms of quality [59]. It is motivated by the isoperimetric

constant on continuous manifolds [75]. The isoperimetric constant h of a manifold

is defined by Cheeger as

h = inf
S

|∂S|
VolS

(2.13)

15

where S is a region in the manifold, Vol is the volume of the region and |∂S| is

the area of the boundary of the region. Hence h is the infimum of the ratio over

all possible regions in the manifold.

In finite graphs, this constant is termed the isoperimetric number hG [76] and is

defined as

hG = min
S

|∂S|
VolS

(2.14)

where |∂S| is actually the cut(S, S) =
∑

i∈S,j∈S w(i,j). VolS = |S| is the combinato-

rial volume.

Given a set of nodes on a graph, the ratio of its boundary to its volume is

called the isoperimetric ratio. The isoperimetric partitioning method aims to find

the partitions with the minimum isoperimetric ratio.

By defining an indicator variable x, which is 0 when node i is in S and 1 when

i is in S, we have

|∂S| = xTLx (2.15)

where L is the Laplacian matrix. As we also have VolS = xT1, where 1 denotes a

vector with all entries one, the isoperimetric ratio in (2.14) can be rewritten as

hG = min
x

xTLx

xT1
(2.16)

By setting VolS = xT1 = k, relaxing x to real nonnegative values and intro-

ducing a Lagrange multiplier µ [77], it is equivalent to minimizing the function

Q(x) = xTLx− µ(xT1− k) (2.17)

Differentiating Q(x) against x and setting the derivative to zero yield

2Lx = µ1 (2.18)

Ignoring all scalars does not affect x as a partitioning indicator, so we have

Lx = 1. Because L is singular, its inverse is undefined. If we arbitrarily designate

16

a node vg to be included in S, then x(g) = 0. Thus we can remove the g-th row

and column of L and have

L0x0 = 10 (2.19)

where x0 and 10 denote x and 1 with their g-th elements being removed.

Equation (2.19) is now a nonsingular system. The partitioning indicator can

be obtained by solving x0 plus x(g) = 0.

The isoperimetric partitioning algorithm is given as:

1. Choose a ground node vg.

2. Solve L0x0 = 10 to have the indicator vector x = {x0, x(g)}.

3. Cut x by a threshold to bipartition the graph.

4. Recursively subdivide the segments if necessary.

Affinity Propagation

The affinity propagation method was published in Science 2007 [45] as a novel

data clustering method. It takes all the data points as exemplars simultaneously

at the beginning. Deterministic messages (affinities) are exchanged among the

points until a number of exemplars gradually emerge to form clusters with the

points around them. Unlike K-means, the affinity propagation method is a deter-

ministic method [78].

The similarity between data points i and j is defined as a negative distance, i.e.

s(i, j) = −d(i, j). For each point k, s(k, k) is referred as a priori preference that k is

an exemplar. If we assume all points are equally suitable to be exemplars, we can

initialize s(k, k) by the median or minimum value of all the pairwise similarities.

There are two kinds of messages exchanged between data points. The respon-

sibility r(i, k) is sent from point i to the candidate exemplar point k to indicate

how strongly i favors k over other candidate exemplars. The availability a(i, k) is

17

FIGURE 2.2: RESPONSIBILITY AND AVAILABILITY ILLUSTRATION (FROM [45])

sent from k to i to reflect how appropriately k will be the exemplar for i, taking

account of the support from other points that k should be an exemplar. The two

messages are demonstrated in Figure 2.2.

Initially we set a(i, k) = 0. The update rule of r(i, k) is

r(i, k)← s(i, k)−max
k′ 6=k
{a(i, k′) + s(i, k′)} (2.20)

where in the first iteration, r(i, k) is in fact the similarity of i and k minus the

largest similarity between i and other exemplars.

Then a(i, k) is updated by

a(i, k)← min

{
0, r(k, k) +

∑
i′,i′ /∈{i,k}

max {0, r(i′, k)}
}

(2.21)

The self-availability a(k, k) is updated in a different way

a(k, k)←
∑

i′,i′ /∈{i,k}

max {0, r(i′, k)} (2.22)

During affinities propagating, availabilities and responsibilities are combined

to identify exemplars. For example, if k maximizes a(i, k) + r(i, k), then k is the

exemplar for i.

In practice, unstable dynamics from numerical oscillation are avoided by damp-

ing messages

r(i, k)∗ = λr(i, k) + (1− λ)r(i, k)old (2.23)

18

a(i, k)∗ = λa(i, k) + (1− λ)a(i, k)old (2.24)

where λ = 0.5 in the algorithm, and λ = 0.9 in the implementation code [79].

The affinity propagation clustering algorithm is given as:

1. Build the similarity matrix using s(i, j) = −d(i, j) and s(k, k) = mini,j{s(i, j)}.

2. Initialize r(i, k) = 0 and a(i, k) = 0.

3. Update all responsibilities using Equation (2.20).

4. Update all availabilities using Equation (2.21) and (2.22).

5. Combine the outcomes from step 3 and 4 to monitor exemplar decisions.

6. Repeat step 3, 4 and 5 for at least 10 times until the exemplar decisions are

not changed.

2.2 Graph Representation

A graph is probably the most ubiquitous representation to reflect both natural

and human-made structures. In computer science, a graph can conveniently rep-

resent networks of communication, data organization, computational devices,

flows of computation and so on. It is defined on a collection of vertices and

edges that connect pairs of vertices [80, 81], and is expressed mathematically as

an ordered pair G = (V,E). V denotes vertices and |V | is the number of ver-

tices. E ⊆ V × V stands for edges and |E| is the number of edges. For example,

when we are given a graph in Figure 2.3, we will have V = {1, 2, 3, 4, 5, 6} and

E =
{
{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}

}
.

Precisely speaking, graphs can be distinguished as finite or infinite, directed

or undirected, simple or multiple, weighted or unweighted, etc. Comparing with an

infinite graph, a finite graph has countable vertices and edges. Edges in an undi-

rected graph have no orientations, i.e. {a, b} is identical to {b, a}. On the other

hand, in a directed graph {a, b} is not equal to {b, a}, both {a, b} and {b, a} may

19

FIGURE 2.3: A SIMPLE AND UNDIRECTED GRAPH

coexist between a and b. A graph is simple if the graph is undirected without

loops and there is only one edge between any two different vertices. A loop is an

edge starting and ending on a same vertex [82]. A graph is weighted if a value

other than 0 or 1 is assigned to an edge. The weight can present distance, time,

cost, etc.

2.2.1 Basic Graphs

There are some very basic and commonly used graphs for computer vision and

pattern recognition problems. For data points in n-dimensional vector space, i.e.

a = (a1, a2, ..., an) or denoted by a ∈ Rn, a k-NN (k-Nearest Neighbor) graph is

often used. A k-NN graph is built from connecting vertex u with v if v is one of

k nearest neighbors of u. Because neighborhood relations are not always sym-

metric, some nodes may be linked with more than k nodes. A graph with only

the edges connecting mutual neighbors is called a mutual k-NN graph, which is a

subgraph of the corresponding k-NN graph.

A k-NN graph with k = 10 is shown in Figure 2.4. The collection of red edges

denotes the mutual 10-NN graph. The red and blue edges together correspond to

the 10-NN graph. Generally a k-NN graph is not a planar graph [83]. If k = n−1,

where n is the total number of data points, we will have a complete graph or say

fully connected graph. An ε-neighborhood graph [84], defined similar to a k-NN

20

FIGURE 2.4: k-NN GRAPH EXAMPLE

graph, can also been seen in the literature.

A Delaunay graph [85] is another widely used graph. It is constructed by a

Delaunay triangulation. In a Delaunay graph, there is no point inside the circum-

circle of any triangles. To have a unique Delaunay graph, it is required all the

nodes are in general positions [86], i.e. no three nodes lying on a same straight line

and no four nodes on a same circle. Its dual graph is called a Voronoi tessellation

[87] produced by connecting the centers of the circumcircles of triangles. In Fig-

ure 2.5, a Delaunay graph is plotted in black with all the circumcirles and their

centers in red. A Voronoi tessellation is shown in red polygons overlapped the

Delaunay graph.

Besides k-NN and Delaunay graphs, an MST (Minimum Spanning Tree) is

also seen in many applications. In graph theory, a tree is defined as an undirected

and connected graph without cycles [89]. There is only one path connecting each

two vertices in a tree. A spanning tree is a subgraph connecting all the vertices of

the original graph. One graph can have many spanning trees but only one MST

21

FIGURE 2.5: DELAUNAY GRAPH AND VORONOI TESSELLATION (FROM [88])

FIGURE 2.6: MINIMUM SPANNING TREE EXAMPLE (FROM [91])

if each edge has a distinct weight [90]. An MST is demonstrated in Figure 2.6.

2.2.2 Matrix Representation

A graph is usually stored as a list or matrix in computer systems. To understand

the content of this thesis, there are some basic and important matrices to learn.

One of them is called an adjacency matrix and is denoted by A. It is an n × n

square matrix, where n is the number of the vertices of a graph.

22

An unweighted adjacency matrix is defined as

Auv =

{
1, if {u, v} ∈ E (2.25)

0, otherwise

where 1 indicates there is an edge between node u and v whilst 0 means u and v

are unconnected in a graph.

A weighted adjacency matrix is defined as

Auv =

{
w(u, v), if {u, v} ∈ E (2.26)

0, otherwise

where w(u, v) ∈ [0, 1] is the weight assigned to an edge {u, v}.

The degree of a node u, denoted by deg(u), is defined as

deg(u) =
∑

v:{v,u}∈E

w(u, v) (2.27)

For an unweighted graph, the degree of a node is the number of its neigh-

boring nodes. The degree matrix, denoted by D, is defined as Dii = deg(vi) and

Dij = 0. In other words, the diagonal elements of D are the degrees of nodes and

non-diagonal elements are set to zero.

A Laplacian matrix, denoted by L and also called an admittance matrix or a

Kirchhoff matrix [92], is defined as the difference between a degree matrix and an

adjacency matrix, i.e. L = D − A. For an unweighted graph, it is

L =


deg(u), if u = v

−1, if u 6= v and (u, v) ∈ E (2.28)

0, otherwise

For a weighted graph, it is

L =


deg(u), if u = v

−w(u, v), if u 6= v and (u, v) ∈ E (2.29)

0, otherwise

23

FIGURE 2.7: GRAPH AND LAPLACIAN MATRIX REPRESENTATION (FROM [93])

An unweighted graph and its Laplacian matrix are shown in Figure 2.7.

A distance matrix, also called a dissimilarity matrix in the literature [94], con-

tains the pairwise distances between data points. Depending on the definition of

a distance, the matrix may not be symmetric.

2.3 Spectral Graph Theory

Spectral graph theory studies the properties of the eigenvalues and eigenvectors [95]

of graph matrices, for example the adjacency matrix A or Laplacian matrix L.

Given an n× n square matrix A, the characteristic equation is defined as

det(A− λI) = 0 (2.30)

where det is an operator to have the determinant of a matrix and I is the identity

matrix. λ stands for the eigenvalues. The solutions of the characteristic equation

are exactly the eigenvalues of A. The set of all eigenvalues is called the spectrum

[96], which is invariant to the ordering of nodes. Because the spectrum of a graph

is not unique, cospectral graphs may not be isomorphic [97].

By evaluating the determinant, the characteristic polynomial is expressed as a

function of λ. The corresponding eigenvectors are defined from

Av = λv (2.31)

24

A square, symmetric and real matrix has real eigenvalues and a set of or-

thonormal eigenvectors. The eigen-decomposition of A can be expressed as

A = ΦΛΦT (2.32)

where Φ is a square matrix whose columns are the eigenvectors ofA and Λ is a di-

agonal matrix that stores the corresponding eigenvalues in its diagonal elements.

The Laplacian matrix L can also be expressed in this way. Since L is a positive

semi-definite matrix [98], all of its eigenvalues are non-negative.

2.4 Minimum Description Length

MDL (Minimum Description Length) was first introduced by Rissanen in 1978

[99]. He believed data are maximally compressed by the best hypothesis. Based

on MDL, universal codes are connected with the problems of statistical prediction

[100], density estimation by stochastic complexity [101] and denoise [102]. In last

few years, MDL is widely accepted as a useful mathematical tool for computer

science research [103].

In principle, MDL is a trade-off theory between the goodness-of-fit and the

complexity of a model [104]. The cost for coding the data by a specific hypothesis

and the cost for coding the hypothesis itself are both taken into account. Mathe-

matically, a crude 2-part MDL [105] is defined as

min{Lc1(H) + Lc2(D|H)} (2.33)

where Lc1(H) is the description length function of coding a hypothesis. Lc2(D|H)

is the description length function of coding the data with the help of a specific

hypothesis. In general, description length functions are chosen according to the

optimal Shannon-Fano code [106, 107]

Lc1(H) = − log2 P (H) (bits) (2.34)

25

FIGURE 2.8: MDL FOR LINEAR REGRESSION PROBLEM

and

Lc2(D|H) = − log2 P (D|H) (bits) (2.35)

Figure 2.8 demonstrates using MDL for a linear regression problem. As shown,

the blue straight line is the simplest and cheapest hypothesis and data points are

not well accommodated. The red sine function goes through most points with a

small offset. The green curve can perfectly fit the data but is overly complicated

and expensive to calculate. In this example, the red sine function is the optimal

hypothesis. Thus it can be seen that the 2-part MDL tends to select the hypothesis

which is not too simple nor too complex.

MDL was also adopted for merging clusters in a hierarchical manner [36].

As it has been reviewed, given a fixed coding scheme with its associated coding

length function, an optimal clustering is the one that minimizes the total cod-

ing lengths over all possible clusters. Finding the global minimum of the overall

coding lengths is a daunting combinatorial optimization problem and is often

intractable for large data sets, hence an agglomerative clustering algorithm is

proposed to effectively minimize the coding length in steepest descent fashion.

The algorithm terminates when the coding length cannot be further reduced by

merging any pair of clusters.

26

2.5 Graph Characterization and Node Selection

In this section, the research on the spectral characterization of graphs is reviewed

briefly. Graph characterization methods by using the heat kernel and commute

time are presented. Centralities of a graph are also introduced as the measures

useful for characterizing the graph and selecting its most important nodes.

2.5.1 Spectral Characterization of Graphs

In the literature, the widely used characteristics of graphs are the topological

properties, for example vertex set cardinality, edge density, graph perimeter and

volume [108]. However topological features are of an exponentially computa-

tional complexity [109], which limits their use for graph characterization.

For the past twenty years, spectral graph theory has been applied to graph

characterizing and matching problems. The same-size graph matching method

was proposed by Umeyama using eigendecomposition technique [110]. The fea-

ture correspondence was established by Shapiro and Brady using the eigenvec-

tors of a weighted pairwise distance matrix [111]. Juvan and Mohar applied the

Fiedler vector of a graph Laplacian to realize spectral sequencing from ranking

vector components [112]. Atkins et al. used the Fiedler vector to sequence rela-

tional data [113]. A new graph retrieval method was also proposed by Shoko-

ufandeh et al. using an indexing mechanism which maps the topological struc-

ture of shock-trees to a low-dimensional vector space [114].

More recently, Robles-Kelly and Hancock proposed a spectral seriation method

to recover a graph path with edge connectivity constraints [115]. They also de-

fined the serial ordering of the nodes in a graph by using the leading eigenvec-

tor of a transition matrix [116]. In the meantime, Luo et al. adopted a spectral

approach to learn the structural variations in graphs [117]. Qiu and Hancock de-

27

veloped an inexact graph matching method by using the commute time matrix

and its spectral properties [118, 119]. The heat kernel was also used for graph

characterizing and matching [120, 121].

2.5.2 Graph Characterization by Heat Kernel

The heat kernel represents the evolution of temperature in a region around a

point with initial unit of heat energy at time t = 0. For a graph G(V,E), the

heat kernel depicts how information flows through edges over time. Given an

unnormalized weighted Laplacian L, a normalized weighted Laplacian matrix

L = D−1/2LD−1/2 is expressed concretely

L =


1, if u = v

− wuv√
dudv

, if u 6= v and (u, v) ∈ E (2.36)

0, otherwise

L can be decomposed to ΦΛΦT , where Λ = diag(λ1, λ2, ..., λ|V |) is a diagonal

matrix having the ordered eigenvalues 0 = λ1 ≤ λ2... ≤ λ|V | ≤ 2 [96] and Φ =

(φ1|φ2|...|φ|V |) is a square matrix with the ordered eigenvectors in columns.

The heat equation associated with L is given as

∂Ht

∂t
= −LHt (2.37)

where t is the time and the heat kernel Ht is the solution of the heat equation

Ht = e−tL (2.38)

Ht can also be expressed as

Ht = Φe−tΛΦT (2.39)

The element Ht(u, v) is

Ht(u, v) =

|V |∑
i=1

e−λitφi(u)φi(v) (2.40)

28

A normalized adjacency matrix is defined as A = D−1/2AD−1/2. The relation-

ship between L and A is

A = I − L (2.41)

where I is the identity matrix.

Thus Ht can be expressed as

Ht = e−t(I−A) = e−tetA (2.42)

The trace of Ht is

Tr[Ht] =

|V |∑
i=1

e−λit (2.43)

The zeta function is defined with the eigenvalues of L

ζ(s) =
∑
λi 6=0

λi
−s (2.44)

The zeta function and the trace of Ht are linked via the Mellin transform [122]

ζ(s) =
1

Γ(s)

∫ ∞
0

ts−1

{
Tr[Ht]− C

}
dt (2.45)

where C is the number of eigenvalues which are equal to zero and Γ(s) is the

gamma function defined as

Γ(s) =

∫ ∞
0

ts−1e−tdt (2.46)

A feature vector of the moments of the zeta function z = (ζ(1), ζ(2), ..., ζ(k))T

was taken to characterize a graph, where k = 6 [120].

The graph characterization algorithm is given as:

1. Compute the normalized Laplacian matrix L for a graph.

2. Eigen-decompose L for non-zero eigenvalues.

3. Compute the zeta function ζ(s) using Equation (2.44).

4. Use the feature vector z of a selection of ζ(s) to characterize the graph.

29

2.5.3 Graph Characterization by Commute Time

The commute time is closely related to the Green’s function [123]. Given the Laplace

operator ∆ = D−1/2LD1/2 on a graph, where D is the degree matrix and L is the

normalized Laplacian, the Green’s function G is the left inverse operator of ∆

G∆ = I (2.47)

The normalized Green’s function is defined as G = D1/2GD−1/2, so we have

GL = LG = I (2.48)

The normalized Green’s function and the heat kernel are related as

G =

∫ ∞
0

Htdt (2.49)

For the unnormalized Green’s function, the relationship between G(u, v) and

Ht(u, v) is

G(u, v) =

∫ ∞
0

d1/2
u Ht(u, v)d−1/2

v dt (2.50)

where du is the degree of node u.

Since
∫∞

0
e−tλidt = 1/λi, Equation (2.50) can be further written as

G(u, v) =

|V |∑
i=2

1

λi
d1/2
u φi(u)φi(v)d−1/2

v (2.51)

where φi and λi are the i-th eigenvector and eigenvalue of L.

The Green’s functions with no boundaries are slightly different as

G(u, v) =

|V |∑
i=2

1

λi
φi(u)φi(v) (2.52)

and

G(u, v) =

∫ ∞
0

d1/2
u (Ht(u, v)− φ1(u)φ1(v))d−1/2

v dt (2.53)

30

The hitting time Q(u, v) between nodes u and v is defined as the expected

number of steps of a random walk from u to v on a graph [119]

Q(u, v) =
vol

dv
G(v, v)− vol

du
G(u, v) (2.54)

where vol is the sum of all degrees in the graph.

The commute time between u and v is defined as CT (u, v) = Q(u, v) +Q(v, u)

and concretely

CT (u, v) =
vol

du
G(u, u) +

vol

dv
G(v, v)− vol

du
G(u, v)− vol

dv
G(v, u) (2.55)

The commute time on a graph is a metric [124]. If a pair of nodes are close

or connected by many paths, the commute time between them is small. Thus a

commute time matrix is also regarded as a distance matrix.

The commute time can be used to embed a graph to a Hilbert subspace via

rewriting CT (u, v) as [118]

CT (u, v) =

|V |∑
i=2

(√
vol

λidu
φi(u)−

√
vol

λidv
φi(v)

)2

(2.56)

where
√

vol
λidu

φi(u) is regarded as the i-th coordinate of node u in the new space.

The commute time embedding algorithm is summarized as:

1. Compute the normalized Laplacian matrix L for a graph.

2. Eigen-decompose L to have non-zero eigenvalues and eigenvectors.

3. Compute the coordinates of nodes in the new space using Equation (2.56).

2.5.4 Node Selection by Centralities

In graph theory, the centrality of a vertex measures its relative importance within

a graph. There are four main measures of centrality: degree, closeness, between-

ness and eigenvector [125].

31

Degree Centrality

Degree centrality is defined as the number of edges incident upon a node [126].

In the case of a directed graph, two separate measures of degree centrality are

defined, namely indegree and outdegree. Accordingly, indegree is the number of

edges directed to the node and outdegree is the number of edges that the node di-

rects to others. Mathematically, the degree centrality of a node u for an undirected

graph G = (V,E) with |V | vertices and |E| edges is

CD(u) = deg(u) (2.57)

Closeness Centrality

In connected graphs, the distance between a pair of nodes can be defined by the

length of their shortest path, which is also called a graph geodesic [127]. The

farness of a node u is defined as the sum of its distances to all other nodes, and

closeness centrality is defined as the inverse of the farness [128]. Thus, the more

central a node is, the lower its total distance to all other nodes. Closeness central-

ity can be regarded as a measure of the time taken to spread information from u

to all other nodes sequentially. Mathematically, the closeness centrality of a node

u is defined as

CC(u) =
1∑

t∈V dG(u, t)
(2.58)

where dG(u, t) denotes the graph geodesic from node u to t.

Betweenness Centrality

Betweenness is a centrality measure of a node within a graph which quantifies

the number of times the node acts as a bridge along the shortest path between

two other nodes [129]. Hence, nodes that have a high probability to occur on a

32

randomly chosen shortest path between two randomly chosen nodes have a high

betweenness. The mathematical expression of betweenness centrality is

CB(u) =
∑

(s,t)∈V

σst(u)

σst
(2.59)

where σst is the total number of shortest paths from node s to t and σst(u) is the

number of those paths that pass through u.

Eigenvector Centrality

Eigenvector centrality was proposed to measure the influence of a node in a graph

[130]. Relative scores are assigned to all nodes in the graph based on the concept

that for the node in question, connections to high-scoring nodes contribute more

than equal connections to low-scoring nodes. Google’s PageRank is a variant of

the eigenvector centrality measure [131]. Given the graph G and its adjacency

matrix A, the eigenvector centrality score of a node u is defined as

CE(u) =
1

λ

∑
v∈G

AuvCE(v) (2.60)

where λ is a constant. Rewrite (2.60) in vector notation with x replacing CE

Ax = λx (2.61)

In general, there are many different eigenvalues λ for which an eigenvector

solution exists. However, as it is additionally required that all the entries in the

eigenvector are positive, only the greatest eigenvalue results in the desired cen-

trality measure [132]. The uth component of the eigenvector gives the centrality

score of node u in the graph.

33

2.6 Feature Detecting and Image Matching

This section, although peripheral to the main topic of the graph-based image

matching chapter, briefly introduces two image matching techniques which are

used in our method in the hope that the thesis can be more self-contained.

2.6.1 Harris Corner Detecting

An image is matched by its feature points, which can be visually meaningful,

e.g. edges [133] and corners [134], or more abstractly defined, e.g. blobs [135]

and ridges [12]. A corner is regarded as the point with low self-similarity by an

early corner detection algorithm Moravec [136]. Harris and Stephens improved

Moravec by adopting the differential of a corner score with respect to directions

[137].

Given a two dimensional grayscale image I , an image patch is taken over

the area (u, v) and shifted by (x, y) pixels, the weighted SSD (Sum of Squared

Differences) between these two patches is defined as

S(x, y) =
∑
u

∑
v

w(u, v)(I(u+ x, v + y)− I(u, v))2 (2.62)

where it is better for w(u, v) to be a smooth circular window rather than a square

patch so that it will be insensitive to an in-plane image rotation. A Gaussian filter

is such a perfect smooth circular window

w(u, v) = e−(u2+v2)/2σ2

(2.63)

When performing corner detection in practice, the information of local fea-

tures are missing, so we can only compute the difference with respect to small

variations in position, i.e. (x y) = (∆u ∆v). As a result, Equation (2.62) is

transformed to an auto-correlation function [138].

34

Let Ix and Iy denote the partial derivatives of I , via the Taylor expansion [139]

I(u+ x, v + y) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y (2.64)

Hence S(x, y) can be approximated as

S(x, y) ≈
∑
u

∑
v

w(u, v)(Ix(u, v)x+ Iy(u, v)y)2 (2.65)

In matrix form

S(x, y) ≈ (x y) A (x y)T (2.66)

where A is called the Harris matrix [140]

A =
∑
u

∑
v

w(u, v)

 Ix2 IxIy

IxIy Ix
2

 (2.67)

A corner is characterized as causing a large variation of S in all directions of

(x y). This is equally interpreted as that if A has two large positive eigenvalues,

the area (u, v) must contain a corner point.

To measure the quality of corners for selection, a response function is defined

R = det(A)− k[Tr(A)]2 = λ1λ2 − k(λ1 + λ2)2 (2.68)

where R is positive for corners and negative for edges. k is set empirically in the

range of [0.04 0.15] for the best performance. To express λ1 � 0 and λ2 � 0 by R,

we can define R = min(λ1, λ2) [134] or R = det(A)
Tr(A)

= λ1λ2

λ1+λ2
[141].

There is a problem with this method as sometimes in regions of higher con-

trast, there are too many corners than other areas. To solve it, the non-maximal

suppression [142] is proposed to only keep the corners which are local maxima

and have R value significantly greater than their ε-neighbors, where ε is a radius.

In this way, corners are uniformly distributed across an image.

35

2.6.2 SIFT Image Matching

SIFT (Scale-Invariant Feature Transform) image matching method was proposed

by Lowe in 1999 [14]. This method was soon acknowledged as one of the most

effective and successful mainstream matching methods. The main steps of the

method to detect and describe image features can be summarized as [143]:

1. Scale-space extrema detection. At this stage the potential interest points

are identified by using a DoG (Difference-of-Gaussian) function, which are

invariant to scale and orientation.

2. Keypoint localization. At this stage keypoints are selected from candidate

points based on a stability measure.

3. Orientation assignment. At this stage local image gradient orientations are

assigned to each keypoint.

4. Keypoint descriptor. At this stage local image gradients are measured at se-

lected scales in the region around each keypoint. A vector representation of

the descriptor is built to allow for significant levels of local shape distortion

and change in illumination.

The SIFT keypoint descriptor is inspired by a biological vision study [144].

A SIFT descriptor is illustrated in Figure 2.9. On the left, the gradient magnitude

and orientation at each image pixel in the region around a keypoint are computed

and then weighted by a Gaussian window (the blue overlaid circle). On the right,

the contents of accumulated orientation histograms are summarized over 4 × 4

subregions. There are 8 orientation bins and the length of each arrow corresponds

to the sum of the gradient magnitudes near that direction.

A SIFT image matching is demonstrated in Figure 2.10. The left and right

images have 874 and 849 keypoints respectively. Totally there are 402 matches

36

FIGURE 2.9: SIFT DESCRIPTOR REPRESENTATION (FROM [143])

FIGURE 2.10: SIFT IMAGE MATCHING EXAMPLE

found and only a small portion is shown here. The matching accuracy in this

example is 99.99%.

2.7 Summary

In this chapter, the research literature on data clustering is reviewed. The back-

ground knowledge and clustering methods related to our work are introduced. It

is noticeable that most current clustering methods are not capable of dealing with

37

different data types. Many of them require a set of internal parameters to work

properly. However, the parameter tuning process is often experiment-based and

sometimes complicated. Noise can also affect the clustering performance signifi-

cantly. These problems should be addressed for better cluster analysis.

The literature on spectral characterization of graphs is also briefly reviewed.

The graph characterization and node selection methods using heat kernel, com-

mute time and centrality measures are presented. Two popular techniques for

image matching, namely the Harris corner detector and SIFT descriptor, are also

introduced since they are adopted in our image matching method.

38

Chapter 3

M1NN Agglomerative Clustering

In this chapter, we present a novel agglomerative clustering method based on

the M1NN principle and parallel clustering algorithm. The M1NN principle em-

phasizes that a pair of nodes in a mutual 1-NN graph forms the basic unit of a

cluster. This method is robust to outliers and could be adapted for data mining,

image segmentation and manifold learning tasks.

3.1 M1NN Principle

What is a cluster? This is a fundamentally important question for cluster analy-

sis. Many clustering methods have their own definitions. For example, K-means

takes clusters as non-intersected convex balls [8] whilst DBSCAN picks them

from spatially denser regions [51]. Clusters are also defined as the subgraphs

called maximal cliques [145] or dominant sets [61] by the clustering methods

based on graph theory. Because there is not a universally and mathematically

precise description of clusters, and designing a general algorithm for different

types of data is particularly difficult, clustering is considered as an ill-posed and

challenging problem [146].

39

(a) Clique for right cluster (b) No clique (c) Clique for wrong cluster

FIGURE 3.1: OBSERVATION 2 DEMONSTRATION

Essentially, there are two criteria for defining a cluster. The internal criterion

requires all the objects inside a cluster are highly similar. The external criterion

demands all the objects outside a cluster are highly dissimilar to the objects inside

the cluster [147]. These criteria highlight the importance of the similarity between

members in a cluster, which is observed and understood as follows.

First, two mutually nearest objects are most likely from the same cluster. This

pair of objects can be treated as an indicator of a cluster. In the literature, a clus-

tering method was developed on a mutual k-NN graph [148]. For multivariate

mixed data, this may not be true as these two nearest objects could come from

different Gaussian distributions (clusters) [149].

Second, for a set of n points and its k-NN graph, the clique of size k + 1 with

bi-directional edges (i.e. k + 1 mutually nearest points) may not be found in the

graph when 1 < k < n−1. Even there is such a clique, it may not indicate a cluster

properly. In Figure 3.1, 2-NN and 3-NN graphs are plotted for a data set in which

{a, b, c} is a cluster. Figure 3.1(a) shows a clique of size 3 corresponding to cluster

{a, b, c}, which is unlikely to be found in practice. More often as shown in Figure

3.1(b), there is no 3-mutually-nearest-node structure to represent {a, b, c} since a

is not a nearest neighbor for c. In Figure 3.1(c), as d may be the nearest neighbor

of {a, b, c}, clique {a, b, c, d} can be misperceived as a cluster.

40

(a) Clustering (1, 2, 2) (b) Clustering (1, 1, 3) (c) Incorrect clustering

FIGURE 3.2: M1NN PRINCIPLE FOR CLUSTERING DEMONSTRATION

Thus it seems only the mutual 1-NN graph can indicate clusters accurately by

a number of M1NN pairs, and each cluster should have at least one such pair.

This is called the M1NN principle and the pair is termed a CP (abbr. for couple).

To ensure the M1NN principle works properly, metrics should be used as non-

symmetric distances may result circles in the data and there could be no CPs.

Singleton clusters are excluded by the M1NN principle as a cluster should have

at least two objects.

To demonstrate how to apply the M1NN principle to clustering, we assume

there are 5 CPs and 3 clusters in a data set. The possible clusterings (1, 2, 2) and

(1, 1, 3) are shown in Figure 3.2, in which numbers indicate how many CPs in

each cluster. The CPs are denoted by the linked small black circles. The clusters

are denoted by the big red circles. An incorrect clustering is shown in Figure

3.2(c) that a broken CP is assigned to two different clusters, which is against the

M1NN principle.

CPs in a complex data set are demonstrated in Figure 3.3. The data set consists

of 303 objects and 96 CPs. Two denser areas (clusters) are magnified to show the

CPs inside. Interestingly, some of the CPs outside are even bigger than these two

clusters.

41

FIGURE 3.3: CPS IN A COMPLEX DATA SET

3.2 Parallel Agglomerative Clustering

The classical single-link agglomerative clustering algorithm is ’single threaded’.

Based on the M1NN principle, a parallel agglomerative clustering algorithm is

proposed for improved performance.

3.2.1 Classical Single-Link Agglomerative Clustering

The classical single-link agglomerative clustering algorithm merges two clusters

with the minimum single-linkage in each iteration until all objects are grouped in

one cluster. This process is visualized by a dendrogram. To have k clusters, we

can cut the dendrogram for corresponding branches. However, apparently this

strategy may cause main clusters being merged earlier than supposed because

of outliers and density distributions. For example, a toy data set is clustered

in Figure 3.4. The sparse area negatively impacts the clustering that two long

clusters are merged together at an early stage.

42

(a) Toy data set (b) Classical agglomerative clustering

FIGURE 3.4: THE PROBLEM OF THE CLASSICAL AGGLOMERATIVE CLUSTERING

3.2.2 Parallel Clustering with M1NN Principle

The parallel clustering algorithm inherits single-linkage as the distance measure

between clusters from the classical algorithm whilst changes the order of merging

by adopting the M1NN principle. In Figure 3.5, these two different algorithms

are compared. There are three clusters {a, b, c}, {d, e, f} and {g, h, i} denoted by

blue, green and red nodes in Figure 3.5(a). The classical clustering algorithm is

demonstrated in Figure 3.5(b). As shown, a and b are merged at t = 1 then d and

e at t = 2. Next c is added to {a, b} and f to {d, e}. When t = 5, cluster {a, b, c}

and {d, e, f} are grouped together. In following steps, g and h are merged into

a cluster and i is added to the cluster. In the end when t = 8, all nodes are in

one cluster. As mentioned before, there is a serious problem with the classical

algorithm. When the dendrogram is cut at t = 6 for three clusters, the result is a

large one {a, b, c, d, e, f}, a small one {g, h} and a trivial one {i}.

On the other hand, the parallel algorithm identifies all CPs {a, b}, {d, e} and

{g, h} simultaneously in the first round as shown in Figure 3.5(c). Nodes not in

CPs, i.e. c, f and i, are called free nodes and denoted by Nf . When t = 2, all the

CPs are expanded to merge the free nodes nearby. For instance, node c is added to

{a, b} and f to {d, e}. An expanded CP is called a CQ, which are {a, b, c}, {d, e, f}

43

(a) Clusters (b) Classical (c) Parallel

FIGURE 3.5: DENDROGRAM COMPARISON OF TWO CLUSTERING METHODS

and {g, h, i} in this example. The expansion of a CQ continues until any two CQs

are adjacent to each other. Then CQs start to merge one another (and neighboring

free nodes if any). In Figure 3.5(c), {a, b, c} and {d, e, f} are merged at t = 3 and

there comes only one cluster at t = 4. Again when the dendrogram is cut at t = 2

for three clusters, this time the result is correct. This comparison demonstrates

the advantage of using the parallel algorithm with the M1NN principle instead

of using the classical algorithm for clustering analysis.

3.2.3 MST-Based Parallel Clustering

The classical single-link algorithm is equivalent to the Kruskal’s algorithm [150],

which is used for finding an MST [151]. Therefore we can retrieve the single-link

clusters from an MST easily [152].

Given n data points, the single-linkage set is defined as SL = {sl1, sl2, ..., sln−1},

where the element sli is the minimum weight connecting two clusters in the i-th

iteration of merging and sli < sli+1. For simplicity, we assume the MST of the

data is unique. Then we have SL = EMST, where EMST denotes the edge set of

the MST sorted in ascending order. Hence the classical algorithm is realized by

44

FIGURE 3.6: IMPROPER MERGING FROM PARALLEL CLUSTERING

optimally merging the data points following the order ofEMST along the branches

of the MST.

On the other hand, the parallel algorithm is also based on MST optimization

but the edge sequencing follows the M1NN principle. The clustering process can

be pictured as that the CPs grow along the branches simultaneously, meeting and

merging each other, forming bigger clusters until being terminated.

In practice, because of outliers, some mergings should not be allowed. For

example, in Figure 3.6, a radical change will be introduced to the cluster structure

if the black point is merged to the red CP. To solve this problem, the parallel

algorithm is modified by adding a cluster characterizing quantity derived from

the path-based dissimilarity measure.

3.3 Path-Based Dissimilarity Measure

The path-based dissimilarity measure was proposed by Fischer and Buhmann

[153]. The idea is if data points i and j are far from each other, but there is a

path connecting them and other points such that the distances between any two

successive points are small, then the effective distance between i and j should be

adjusted to a smaller value to reflect this connectedness. The density reachability

[51] is actually quantified by the path-based dissimilarity measure.

45

To describe the path-based dissimilarity measure more formally, we assume

a data set containing n objects is given and the pairwise distances are stored in

an n × n matrix D. Cluster labels are denoted by Ω = {w1, w2, ..., wk}. siw is a

cluster membership indicator. siw = 1 means object i is in cluster w, otherwise

siw = 0. sw = (s1w, s2w, ..., snw)T is the vector of indicator variables for cluster w.

S = (s1|s2|...|sk) is the cluster membership matrix.

The path-based effective dissimilarity between i and j is defined as

Deff
ij (S,D) = min

p∈Pij(S)

{
max

h∈{1,...,|p|−1}
{Dp[h]p[h+1]}

}
(3.1)

where p is a path and h ∈ {1, ..., |p| − 1} denotes the labels of nodes on the path.

Dp[h]p[h+1] is the length of the path segment between node p[h] and p[h+ 1]. Pij(S)

is the set of all the paths from i to j, defined as

Pij(S) =

{
p ∈ {1, ..., n}l

∣∣∣∣∃w :
l∏

h=1

sp[h]w = 1 ∧ l ≤ n ∧ p[1] = i ∧ p[l] = j}
}

(3.2)

To better understand the effective dissimilarity, we assume i and j are from the

same cluster and they are connected by two paths p1 and p2. On p1, we assume

the segment between node a and b is the longest segment along the path, i.e.

Dp1[a]p1[b] = maxh∈{1,...,|p1|−1}{Dp1[h]p1[h+1]}. Similarly on p2, we have Dp2[m]p2[n] =

maxh∈{1,...,|p2|−1}{Dp2[h]p2[h+1]}. The effective dissimilarity between i and j is given

as Deff
ij (S,D) = minp1,p2{Dp1[a]p1[b], Dp2[m]p2[n]} by the definition (3.1).

More generally, when i and j are connected by multiple paths, the longest

segments of each path are compared. The effective dissimilarity corresponds to

the length of the shortest. For all the data points, the effective dissimilarity matrix

is denoted by Deff(S,D) and Deff
ij (S,D) is its (i, j)-element.

It was believed computing the path-based dissimilarity matrix Deff(S,D) is

equivalent to solving an all-pairs-shortest-path problem [154]. Here we prove that

Deff(S,D) is actually obtained by solving an MST problem (for the difference,

please refer to [155]). Thus the computational complexity is greatly reduced.

46

(a) Common largest segment (b) Different largest segments

FIGURE 3.7: SEGMENT REMOVAL DEMONSTRATION

Generally for two data points i and j in a cluster, the set of paths connecting

them is denoted by Pij = {p1, p2, ..., pk}. First we consider a simple situation that

there are only two paths from i to j, i.e. k = 2. A cycle is formed between p1

and p2. Dp1[a]p1[b] and Dp2[m]p2[n] still denote the largest segments of each path. If

we assume Deff
ij (S,D) = Dp1[a]p1[b], then Dp2[m]p2[n] can be safely removed from the

cycle without affecting the computation of effective dissimilarities between the

nodes on the cycle.

Similarly when i and j are connected by multiple paths, there are many more

cycles. On each cycle, the largest segment can be safely dropped. This is because

even if the dropped segment is not the largest on another cycle, for the nodes on

that cycle there must be a path on which the largest segment is smaller than this

one. In Figure 3.7, the procedure of segment removal is demonstrated. In Figure

3.7(a), edge m is the common largest segment of cycle Ca and Cb. Upon removing

edge m, edge n becomes the largest segment of the joint cycle and is removed

as well. In Figure 3.7(b), edge m is the largest segment for Cb only. However

its deletion does not affect either removing edge n or computing the effective

dissimilarities between the nodes on Ca. Clearly for node i and j, in both cases,

their effective dissimilarity is decided by the longest path along Ca and Cb.

47

FIGURE 3.8: DELAUNAY GRAPH AFTER REMOVING TRIANGLES

Further for all the points, if all the cycles are broken on their largest segments,

there remains a tree. The tree is exactly an MST according to the cycle property:

for any cycle in a graph, if the weight of an edge of the cycle is larger than the

weights of other edges of the cycle, this edge cannot belong to an MST [156].

Figure 3.8 demonstrates a weighted Delaunay graph with the largest edges

of all the triangles removed. For any two nodes i and j on the simpler graph,

Deff
ij (S,D) does not change. When all the cycles are broken, an MST will appear

in the end. The effective dissimilarityDeff
ij (S,D) can be computed from the largest

segment of the path from i to j on the MST.

For a cluster of data points, the characterizing quantity κ is defined as

κ(w) = max
{i,j}∈w

{
Deff
ij (S,D)

}
(3.3)

where i and j denote the objects in cluster w.

Since we have proved the path-based effective dissimilarity can be obtained

from an MST, κ as the maximum dissimilarity, is equal to the bottleneck edge of

the MST. In Figure 3.9, the clusters are shown in the first row. The corresponding

MSTs are plotted in the second row. The bottleneck edges are highlighted in green

color.

48

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) MST 1 (e) MST 2 (f) MST 3

FIGURE 3.9: THE BOTTLENECK EDGES DEMONSTRATION

49

3.4 M1NN Agglomerative Clustering

The M1NN agglomerative clustering method is based on the parallel clustering

algorithm with the cluster characterizing quantity κ as a structural constraint.

There are three main steps which are described explicitly in each section below.

3.4.1 CP to CQ Expansion

Given a cluster w and a node i from Nf , the distance between them is defined in

a similar way to single-linkage

d(i, w) = min
j∈w

{
dij

}
(3.4)

where j is a node in cluster w and d denotes a metric measure, e.g. Euclidean

distance in our method.

The CP to CQ expansion is guided by the M1NN principle and κ condition. If

we assume node p and CPi are mutually nearest and p is not the nearest node for

another CPj , i.e. (CPi ↔ p 8 CPj), then p is merged to CPi if it satisfies

α ∗ κ(CPi) ≥ d(p, CPi) (3.5)

where α is a parameter to control the expansion. For example in Figure 3.6, the

red CP will not merge the black node if α < 5. In our experiments, α is set to 2.

On the other hand, if we assume p is the nearest node for both CPi and CPj ,

or CPi is nearest to p but p is nearest to CPj , i.e. (CPi → p ← CPj) or (CPi →

p → CPj → q) where q denotes another node, then p is defined as a boundary

node and cannot be merged to the CPs. The expansions of CPi and CPj are then

terminated. Essentially we aim to expand all the CPs to have as many small and

adjacent clusters as possible in this step so that the single-linkage can capture the

distances between these clusters more accurately.

50

(a) CP to CQ expansion (b) CP expansion on a complex data set

FIGURE 3.10: CP TO CQ EXPANSION

The expansion is demonstrated in Figure 3.10(a) when the κ condition is as-

sumed to be satisfied with a proper α value for all the CPs. As shown, CP1 and

CP2 have a common nearest node n1, therefore they are not expanded and n1 is

taken as a boundary node. CP3 and CP4 are not expanded as well because of the

boundary node n2. CP5 is expanded to merge n3 and n4, then the expansion is

stopped because n5 as the next nearest node for CP5 is itself nearest to CP1. Fig-

ure 3.10(b) shows CP expansion on the complex data set from Figure 3.3. Crossed

nodes denote the boundary nodes. Unmarked nodes are not visited yet.

3.4.2 CQ Merging Rules

The CQ merging process corresponds to the steps from t ≥ 3 in Figure 3.5(c).

Similar to CP expansion, CQs are merged following the M1NN principle and κ

condition. If we assume a CQ set is given as Ω = {CQ1, CQ2, ..., CQk}, in which

51

CQi and CQj are two mutually nearest CQs, we have sl(CQi, CQj) < {sl(CQi, CQu)|∀CQu ∈ Ω ∧ u 6= j}

sl(CQj, CQi) < {sl(CQj, CQv)|∀CQv ∈ Ω ∧ v 6= i}
(3.6)

where sl is the single-linkage between two CQs. In the meantime if the κ condi-

tion is satisfied  β ∗ κ(CQi) ≥ sl(CQi, CQj)

β ∗ κ(CQj) ≥ sl(CQi, CQj)
(3.7)

where β is a parameter similar to α (we also set β = 2 in our experiments), then

CQi and CQj will be merged and the new cluster is called an MCQ. Given all

m new clusters generated from merging mutually nearest CQs at one iteration,

Ωm = {MCQ1,MCQ2, ...,MCQm} is defined as the set of all MCQs. A remaining

cluster which is not merged at the iteration is called a RCQ. For all n remaining

clusters, Ωr = {RCQ1, RCQ2, ..., RCQn} is defined as the set of all RCQs.

Once an MCQ is generated, it is updated by merging free nodes nearby. There

are two update rules for the nodes ’inside’ and ’outside’ an MCQ. Given p as the

nearest node for MCQi, it will be merged to MCQi if it satisfies

κ(MCQi) > κ({p,MCQi}) (3.8)

which indicates p is inside MCQi. Otherwise the κ condition applies to decide if

p is merged to MCQi

α ∗ κ(MCQi) ≥ d(p,MCQi) (3.9)

The CQ set is updated as Ω = {Ωm ∪ Ωr}. This merging process repeats until

|Ω(x)
m | < k (3.10)

where k is the user-defined cluster number and Ω
(x)
m is the MCQ set on x-th itera-

tion. The final cluster number is |Ω(x−1)
m |+ |Ω(x−1)

r |, which is usually bigger than k.

52

The expression (3.10) is used as a terminating condition as we assume the main

clusters are contained in the final MCQ set. Ideally the MCQs will be the true

clusters. The worst case is that all the MCQs are from one cluster which could

result ’under’ clustering.

Inspired by DBSCAN, the parameter MinPts is adopted to set a size limit to

clusters. Any final clusters smaller than MinPts are broken and their nodes are

freed for other clusters to merge. The pseudocode of the CQ merging algorithm

is shown in Figure 3.11. The CQ merging result for Figure 3.10(b) is shown in

Figure 3.12 where MinPts = 2.

3.4.3 M1NN Agglomerative Clustering with Strong Merging Rule

The clustering from CQ merging is a little sparse as shown in Figure 3.12. This

’under’ clustering is appropriate when accurate cluster types or numbers are un-

known, in which case the main clusters are captured with minimum errors based

on the MST optimization and M1NN principle.

However sometimes, the exact number of clusters is expected. A strong merg-

ing rule is proposed to further process the clustering from CQ merging step until

there are approximately k clusters. The algorithm is realized by using the classical

algorithm with a compatibility function.

Given a CQ set, each CQ is taken as a node and a k-NN graph is constructed

to connect all the CQs where k is the cluster number and N (CQi) denotes neigh-

boring CQs of CQi. The compatibility function between CQi and CQj is defined

as

R(CQi, CQj) = max
CQj∈N (CQi)

{
sl(CQi, CQj)

κ(CQi)
,
sl(CQi, CQj)

κ(CQj)

}
(3.11)

where sl(CQi, CQj) is the single-linkage between CQi and CQj , which is larger

than either κ(CQi) or κ(CQj). This function emphasizes the impact of the cluster

53

FIGURE 3.11: PSEUDOCODE OF CQ MERGING ALGORITHM

54

FIGURE 3.12: CQ MERGING RESULT

with a smaller κ. In other words, R(CQi, CQj) is a dissimilarity measure as a

quotient of the single-linkage by the more decisive κ.

The CQ set is updated by merging two clusters with the minimum R

min
{CQj∈N (CQi)∨CQi∈N (CQj)}

{
R(CQi, CQj)

}
(3.12)

The pseudocode of the strong merging algorithm is shown in Figure 3.13. The

clustering is shown in Figure 3.14. There are 4 clusters and 1 noise node. If we set

MinPts = 6, the yellow cluster will be broken and merged to the blue cluster.

3.5 Algorithm Description

The M1NN agglomerative clustering algorithm is given as:

1. Given the data set and cluster number k, find all the CPs.

2. Expand CPs to CQs by the algorithm described in section 3.4.1.

3. Update the CQ set by the CQ merging algorithm in Figure 3.11.

4. Apply the strong merging rule in Figure 3.13 for approximately k clusters.

55

FIGURE 3.13: PSEUDOCODE OF STRONG MERGING ALGORITHM

FIGURE 3.14: STRONG MERGING RESULT

56

3.6 Experimental Analysis

In this section, the experimental analysis of the M1NN agglomerative cluster-

ing method is presented. The clustering process is demonstrated on two chal-

lenging data sets. The clustering performance is investigated for chaining phe-

nomenon and data variations. The clustering methods introduced earlier, i.e.

KM (K-means) [68], AP (Affinity Propagation) [45], NCUT (Normalized Cut) [2],

ISOPM (Isoperimetric Partitioning) [59], HC (Hierarchical Clustering) [27], CHA

(CHAMELEON) [33] and DBSCAN [50], are quantitatively compared with our

method on different types of data.

3.6.1 Clustering Process Demonstration

In this section, the clustering process is visualized. Figure 3.15 shows the merging

steps for a complex data set. As can be seen, there are hundreds of small CQs at

the beginning of clustering. The CQs are merged iteratively by our method and 3

spiral clusters become visible gradually. In this demonstration, MCQs and RCQs

are denoted by colorful nodes and circles respectively.

Figure 3.16 shows the clustering process on a data set containing two three-

dimensional intervened rings and many outliers around. A semi-supervised re-

laxation labeling method [157] was also applied to this data set but only 60% of

all data points were correctly clustered.

3.6.2 Chaining Phenomenon

In this section, clustering methods are applied to a data set with the chaining

phenomenon problem [30]. The clustering results are shown in Figure 3.17. Our

method without the strong merging rule gives a correct but slightly sparse clus-

tering. The strong merging rule improves the clustering for exactly 3 clusters as

57

FIGURE 3.15: CLUSTERING DEMONSTRATION 1

58

FIGURE 3.16: CLUSTERING DEMONSTRATION 2

59

(a) Data (b) M1NN

(c) M1NN (Strong Merging Rule) (d) NCUT

(e) AP (f) KM

(g) HC (h) CHA

FIGURE 3.17: CHAINING PHENOMENON DEMONSTRATION

shown in Figure 3.17(c). NCUT has the second best performance. KM and AP

find the same clusters and are marginally outperformed by NCUT. On the other

hand, the classical HC suffers heavily from the chaining phenomenon whilst

CHA as an enhanced hierarchical clustering method has a better result, although

which is still not good enough in comparison with the other methods.

3.6.3 York2012

In this section, a toy data set York2012 is created. It contains simple variations

to test the consistency of the clustering methods. The first experiment is shown

60

in Figure 3.18. While most methods, e.g. ISOPM and CHA, are capable of this

easy task, KM and AP generate quite erroneous results. In Figure 3.18(c), ’O’ is

divided into two parts which are assigned to ’Y’ and ’R’, and ’0’ is split as two

clusters. The incorrectness is possibly caused by the random initialization of KM.

In Figure 3.18(d), some nodes of ’O’ and ’0’ are grabbed by the exemplars in ’Y’

and ’1’, which are identified by AP as centers therefore are strongly attractive to

the other nodes in a certain range.

In the second experiment, an elongated cluster is added at the bottom which

affects KM, AP, NCUT and CHA badly. Figure 3.19(c) shows the cluster is cut

into two pieces by KM, which are merged into ’2’ and the lower half of ’0’. In

the meantime, the upper half of ’0’ is grouped together with ’1’. Figure 3.19(d)

demonstrates AP is unable to handle elongated clusters thus its performance is

worsened by the new setting. NCUT is less influenced although the left end of

the additional cluster is taken off and wrongly assigned to ’2’ as shown in Figure

3.19(e). Surprisingly, as Figure 3.19(h) shows, CHA is only slightly better than

AP and is worse than HC. This result may imply the advantage of using a k-NN

graph in a hierarchical clustering method is not always obvious, the failure of

which could sometimes cause more problems.

In the third experiment, a hollow rectangular cluster is further added. Due

to their nature, KM and AP cannot detect co-centric clusters as shown in Figure

3.20(c) and 3.20(d). Meanwhile, Figure 3.20(e) indicates that NCUT has degener-

ated massively and can only capture very few clusters, i.e. ’K’ and some segments

of the rectangle. On the other hand, Figure 3.20(h) shows that CHA outperforms

NCUT greatly by having many correct clusters, although the numbers ′2′, ′1′ and
′2′ are still heavily mixed with the elongated cluster.

In the fourth experiment, 50 uniformly distributed nodes are added. Figure

3.21(b) shows that M1NN works satisfactorily. Figure 3.21(c) presents the second

61

best method DBSCAN and its clustering, in which detected outliers are marked

with red circles. Apparently, M1NN outperforms DBSCAN by accurately identi-

fying the outliers close to ’Y’, ’1’ and the last ’2’. ISOPM cannot distinguish out-

liers from cluster members however the clustering is reasonably good, although

a little sparse as shown in Figure 3.21(f). Figure 3.21(h) shows CHA is still strug-

gling with the elongated cluster, nevertheless its performance is better than HC

by separating the first ′2′ from ’0’. As can be seen in Figure 3.21(g), there are also

3 trivial clusters generated by HC due to its defect illustrated in Figure 3.5(b).

Comparing with the unusable AP, NCUT has ’O’ and ’K’ correctly clustered at its

best.

3.6.4 Experimental Comparison

In this section, the quantitative comparison of clustering methods is presented.

RI (Rand Index) [158] is used to assess a clustering against the ground truth and

is defined as

RI =
TP + TN

TP + TN + FP + FN
(3.13)

where TP is the number of true positives. TN is the number of true negatives. FP

is the number of false positives and FN is the number of false negatives. TP and TN

together are termed agreement. FP and FN together are called disagreement. RI = 1

means the clustering is identical to the ground truth.

Since using one index may not be enough [159], MER (Mean Error Rate) is

proposed to quantitatively measure the errors in a clustering. Given a cluster

of size m, in which n data points are mis-assigned, the error rate is n/m for the

cluster. For k clusters, MER is defined as

MER =
1

k

k∑
i=1

ni
mi

(3.14)

62

(a) Data (b) M1NN

(c) KM (d) AP

(e) NCUT (f) ISOPM

(g) HC (h) CHA

FIGURE 3.18: YORK2012 CLUSTERING COMPARISON 1

63

(a) Data (b) M1NN

(c) KM (d) AP

(e) NCUT (f) ISOPM

(g) HC (h) CHA

FIGURE 3.19: YORK2012 CLUSTERING COMPARISON 2

64

(a) Data (b) M1NN

(c) KM (d) AP

(e) NCUT (f) ISOPM

(g) HC (h) CHA

FIGURE 3.20: YORK2012 CLUSTERING COMPARISON 3

65

(a) Data (b) M1NN

(c) DBSCAN (k=6) (d) AP

(e) NCUT (f) ISOPM

(g) HC (h) CHA

FIGURE 3.21: NOISY YORK2012 CLUSTERING COMPARISON

66

In the first experiment, test data are point patterns in the Euclidean space,

which are listed in Table 3.1. The data sets NC1, NC2 and NC3 are used for data

clustering demonstration by NCUT [2]. The data set Complex8 is built to test

clustering of 2-D patterns with variable structure [160]. The other data sets [161]

are used for spectral [162, 163] and kernel K-means clustering or relaxed label-

ing [157]. The RI and MER values are drawn in Table 3.2 and 3.3. As can be

seen, our method has the best performance overall. In Table 3.2, the RI scores

of M1NN are close to 1 for most data sets. NCUT, ISOPM and CHA are in the

second tier. NCUT beats the other two methods in NC2, NC3, Caltech3 and Cal-

tech5. ISOPM performs better in Caltech2, Caltech4, Complex8 and RG. In the

meantime, CHA outdoes NCUT and ISOPM in Caltech1, Caltech6 and 2R. HC

has some best marks but its performance drops radically due to the chaining phe-

nomenon problem, which is found in Caltech2 and Caltech4. KM and AP have

similar clusterings and are ranked the least useful clustering methods by their RI

scores. In Table 3.3, the MER scores of M1NN are lowest in general. ISOPM, as

the second best method, is followed by CHA, HC and NCUT which have low

and acceptable error rates on average and are in the same group. The last two

methods are still KM and AP.

In the second experiment, non-Euclidean data sets in the form of long feature

vectors and pairwise distance matrices are tested, e.g. Shape25 in Figure 3.22

which is used for learning shape-classes [164]. Because the strong merging rule

does not work properly in a non-Euclidean space, the input cluster number for

the other methods is set equal to the output of our method, which is bigger than

the user-defined cluster number k. KM is also replaced by KMD (K-medoids).

Table 3.4 shows that our method achieves the highest RI scores overall. KMD,

AP, CHA and NCUT are in the second class with similar results. HC outperforms

ISOPM marginally but both are reckoned inappropriate for non-Euclidean data.

67

TABLE 3.1: THE CHARACTERISTICS OF DATA SETS

Data Icon Number of clusters Number of objects in each cluster

NC1 2 [40,50]

NC2 3 [80,10,10]

NC3 4 [80,10,20,20]

Caltech1 3 [61,139,99]

Caltech2 3 [106,102,95]

Caltech3 3 [118,75,73]

Caltech4 5 [136,116,111,150,109]

Caltech5 4 [117,123,150,122]

Caltech6 3 [56,82,100]

Complex8 8 [10,200,200,100,100,50,50,29]

2S 2 [193,193]

RD 2 [500,100]

RG 3 [100,150,40]

2R 2 [305,295]

68

TABLE 3.2: RI OF CLUSTERING METHODS

M1NN KM AP NCUT ISOPM HC CHA

NC1 0.95 1 1 1 0.87 1 1

NC2 1 0.47 0.45 0.78 0.46 1 0.49

NC3 1 0.67 0.66 1 0.70 1 0.92

Caltech1 1 0.56 0.58 0.73 0.69 1 0.85

Caltech2 0.99 0.75 0.74 0.74 0.85 0.36 0.83

Caltech3 1 0.73 0.72 1 0.83 1 0.93

Caltech4 0.99 0.88 0.89 0.89 0.91 0.23 0.86

Caltech5 1 0.80 0.80 1 0.97 1 0.92

Caltech6 0.996 0.83 0.83 0.90 0.86 0.80 0.98

Complex8 0.98 0.80 0.81 0.81 0.996 0.79 0.91

2S 1 0.50 0.50 0.50 0.54 1 0.50

RD 0.997 0.50 0.50 0.997 0.33 0.72 0.997

RG 1 0.62 0.62 0.55 0.99 0.41 0.64

2R 0.95 0.56 0.56 0.60 0.82 0.50 0.98

69

TABLE 3.3: MER OF CLUSTERING METHODS

M1NN KM AP NCUT ISOPM HC CHA

NC1 0 0 0 0 0 0 0

NC2 0 0.18 0.19 0.14 0 0 0.10

NC3 0 0.20 0.21 0 0 0 0.20

Caltech1 0 0.49 0.49 0.19 0.06 0 0.09

Caltech2 0 0.19 0.19 0.20 0.02 0.22 0.10

Caltech3 0 0.21 0.22 0 0 0 0

Caltech4 0 0.16 0.15 0.14 0.04 0.15 0.09

Caltech5 0 0.18 0.19 0 0 0 0

Caltech6 0 0.12 0.13 0.07 0.07 0.15 0.01

Complex8 0 0.44 0.30 0.31 0.02 0.20 0.02

2S 0 0.50 0.50 0.50 0.20 0 0.50

RD 0.001 0.16 0.16 0.001 0.007 0.08 0.001

RG 0 0.27 0.27 0.47 0.004 0.16 0.12

2R 0.02 0.33 0.32 0.24 0.03 0.24 0.01

70

TABLE 3.4: RI OF CLUSTERING METHODS

M1NN KMD AP NCUT ISOPM HC CHA

Iris 0.83 0.74 0.74 0.71 0.77 0.77 0.76

Wine 0.80 0.72 0.72 0.71 0.34 0.40 0.74

Shape25 0.90 0.83 0.84 0.85 0.08 0.63 0.97

ChickenPieces1 0.83 0.79 0.78 0.81 0.21 0.33 0.75

ChickenPieces2 0.82 0.79 0.80 0.81 0.21 0.39 0.80

ChickenPieces3 0.84 0.81 0.81 0.81 0.21 0.37 0.78

ChickenPieces4 0.86 0.82 0.81 0.81 0.21 0.38 0.82

PenDigits1 0.913 0.909 0.909 0.907 0.10 0.38 0.909

PenDigits2 0.914 0.911 0.913 0.908 0.10 0.43 0.909

PenDigits3 0.914 0.910 0.910 0.905 0.10 0.45 0.909

PenDigits4 0.908 0.903 0.903 0.903 0.10 0.38 0.909

71

TABLE 3.5: MER OF CLUSTERING METHODS

M1NN KMD AP NCUT ISOPM HC CHA

Iris 0.02 0.05 0.04 0.14 0.26 0.03 0.08

Wine 0.02 0.06 0.08 0.12 0.60 0.03 0.03

Shape25 0.10 0.38 0.39 0.41 0.88 0.27 0.06

ChickenPieces1 0.04 0.25 0.14 0.31 0.74 0.02 0.21

ChickenPieces2 0.02 0.12 0.10 0.23 0.74 0.01 0.05

ChickenPieces3 0.01 0.10 0.05 0.19 0.74 0.02 0.05

ChickenPieces4 0.002 0.11 0.06 0.20 0.74 0.02 0.04

PenDigits1 0.04 0.10 0.07 0.18 0.90 0.01 0.09

PenDigits2 0.01 0.04 0.02 0.12 0.90 0.01 0.08

PenDigits3 0.02 0.07 0.05 0.16 0.90 0.01 0.08

PenDigits4 0.12 0.24 0.17 0.26 0.90 0.02 0.08

72

On the other hand, Table 3.5 shows the MER scores of M1NN are the lowest

generally. HC, AP, KMD and CHA also have lower error rates comparing with

NCUT. ISOPM gives the worst performance in this experiment.

The clusterings of Iris and Shape25 from M1NN are further inspected. For

Iris, our method has the same problem as Mercer kernel based clustering method

[146]. The error could be caused by the non-numeric distance definition rather

than clustering algorithms. For Shape25, the clustering by our method is com-

pared with the original work [165] in Figure 3.23. The incorrect cluster members

are marked in squares.

3.6.5 Noise Test

In this section, a noise test is conducted on Caltech1 to compare the clustering

methods M1NN and DBSCAN. Each time 10 more uniformly distributed nodes

are added to the data set. Since there are no labels with noise nodes and RI and

MER cannot be used, two new measures are proposed. The first counts the num-

ber of errors when a cluster is partially merged into another. If such a merging

is avoidable by breaking a cluster (’under’ clustering), the number of total clus-

ters is shown in the parenthesis. The second counts the number of noise nodes

detected. The result is shown in Table 3.6. The clusterings of Caltech1 with 150

noise nodes from both methods are demonstrated in Figure 3.24. Obviously, our

method outperforms DBSCAN on detecting the central cluster whilst keeping the

outer ring cluster against heavy noise.

3.7 Advanced Applications

In this section, our method is adapted for advanced applications, e.g. data min-

ing, image segmentation and manifold learning. For each application, our method

73

FIGURE 3.22: PAIRWISE DISTANCE MATRIX (SHAPE25) FOR CLUSTERING

74

(a) M1NN (b) Original

FIGURE 3.23: CLUSTERING COMPARISON FOR SHAPE25

(a) M1NN (b) DBSCAN

FIGURE 3.24: CLUSTERINGS OF M1NN AND DBSCAN UNDER HEAVY NOISE

75

TABLE 3.6: NOISE TEST BETWEEN M1NN AND DBSCAN

Caltech1 (299 nodes) M1NN DBSCAN

Error Noise Error Noise

0 nodes added 0 6 0 0

10 nodes added 0 7 0 1

20 nodes added 0 4 0 2

30 nodes added 0 5 0 3

40 nodes added 0 6 0 6

50 nodes added 0 12 0(7) 25

60 nodes added 0 11 0(7) 22

70 nodes added 0 11 0(16) 48

80 nodes added 0 9 0(17) 55

90 nodes added 0 7 0(16) 59

100 nodes added 0 11 0(16) 63

110 nodes added 0 11 0(17) 68

120 nodes added 0 6 0(17) 66

130 nodes added 0 9 0(17) 76

140 nodes added 0 10 0(16) 82

150 nodes added 0 12 0(18) 74

76

outperforms the standard method and demonstrates promising potential.

3.7.1 Data Mining

A flight routing problem was studied by Frey and Dueck [45] using their AP clus-

tering method. They identified a number of Canadian and American cities that

are most easily accessible by large subsets of other cities in terms of estimated

commercial airline travel time. These pivotal cities are Seattle, Calgary, Min-

neapolis, Denver, Toronto, Philadelphia and Atlanta, which are the exemplars

of 7 clusters. The pivotal cities and clusters are shown in Figure 3.25.

On the other hand, a number of clusters are detected as the most vibrant ar-

eas for air travel by M1NN. The first 10 clusters are shown in Figure 3.26. The

CA cities, which are split and assigned to different clusters centered at Denver

and Seattle by AP, are correctly grouped in one cluster by M1NN. The AK and

FL clusters are also accurately recognized by M1NN, in contrast they are mixed

with other cities in bigger clusters by AP. Taking a single city for inspection, for

example Chicago, it is assigned to the pivotal city Minneapolis by M1NN and to

Philadelphia by AP. Geographically, Chicago is much closer to Minneapolis and

they are directly connected by several airlines. Hence our method provides more

useful and correct information.

3.7.2 Image Segmentation

Literally, any clustering method can be adapted for image segmentation tasks.

In practice however, only a limited number of clustering methods have achieved

good performance. Figure 3.27 shows the comparison of our method with NCUT

and ISOPM in segmenting a variety of images. As shown in Figure 3.27(i), 3.27(q)

and 3.27(u), M1NN beats NCUT and ISOPM by having more details segmented

77

(a) (b)

(c)

FIGURE 3.25: AIR TRAVEL CLUSTERS BY AP

78

FIGURE 3.26: KEY AIR TRAVEL CLUSTERS BY M1NN

79

(a) Baboon (b) M1NN (c) NCUT (d) ISOPM

(e) Baseball (f) M1NN (g) NCUT (h) ISOPM

(i) Lena (j) M1NN (k) NCUT (l) ISOPM

(m) Park (n) M1NN (o) NCUT (p) ISOPM

(q) RHand (r) M1NN (s) NCUT (t) ISOPM

(u) Vivi (v) M1NN (w) NCUT (x) ISOPM

FIGURE 3.27: IMAGE SEGMENTATION COMPARISON

80

(a) M1NN (b) (k=2)-NN

FIGURE 3.28: MANIFOLD LEARNING

correctly. In Figure 3.27(a), M1NN and ISOPM have quite similar segmentations.

In Figure 3.27(e) and 3.27(m), M1NN gives a few redundant segmentations since

it is not adequately optimized for image segmentation. In general, our method

outperforms the other two methods with its promising potential demonstrated.

3.7.3 Manifold Learning

A manifold learning method is usually quite sensitive to noise, e.g. Isomap [166],

as noise could remarkably affect the structure of a k-NN graph and the geodesic

distance defined on the graph. To solve this problem, our method can be used

to preprocess the data with heavy noise. By setting the cluster number k to 2

and discarding small clusters, the structure of the data can be retrieved from the

remaining large clusters effectively. Figure 3.28 shows an example of learning a

three dimensional Swiss roll (400 nodes) which is mixed with 200 noise nodes.

In Figure 3.28(a), the spiral structure of the Swiss roll is preserved by the uncon-

nected main clusters which are along the surface of the Swiss roll. On the other

hand in Figure 3.28(b), the k-NN graph cannot work properly even with k = 2

81

because of the ’short circuit’ problem. Thus the methods based on the k-NN graph

are unable to capture the surface of the Swiss roll correctly.

3.8 Conclusion

In this chapter, we propose a new agglomerative clustering method based on

the M1NN principle and parallel clustering algorithm. The experimental analy-

sis demonstrates our method outperforms many other clustering methods. Our

method can also be adapted for advanced applications, such as data mining, im-

age segmentation and manifold learning.

For future work, There are three directions. First we want to investigate the

strong merging rule for data sets in a non-Euclidean space. Second we want to

improve our method for large scale data sets. Third we want to optimize our

method for image segmentation.

82

Chapter 4

Modified Log-likelihood Clustering

In this chapter, we propose an intuitive MLL (Modified Log-Likelihood) model

in the spirit of MDL for quantitative clustering analysis, which is developed on

a probabilistic spectral framework [167]. The graph energy and log-likelihood

function are adopted to define description lengths of clusterings for selecting the

optimal clustering with the minimum description length.

4.1 MDL Principle for Clustering

MDL principle is a mathematical formalization of Occam’s Razor. This principle

asserts simpler theories are preferred until simplicity can be traded for greater ex-

planatory power [168]. As reviewed in the previous chapter, MDL is a trade-off

theory useful for choosing a specific hypothesis which minimizes the sum of the

cost of coding the data by the hypothesis and the cost of coding the hypothesis

itself. Considering the one-to-one correspondence between code length functions

and probability distributions, MDL is viewed as equivalent to Bayesian inference

by some researchers [68] (although non-Bayesian codes can also be accommo-

dated [169]).

83

Clustering is the process of assigning a set of cluster labels Ω = {w1, w2, ..., wk}

to a set of objects X = {x1, x2, ..., xn}. Usually the preliminary knowledge of an

adjacency matrix A, a corresponding graph G and an estimated cluster number

k are provided. On an unweighted graph, Aij = 1 means there is an edge con-

necting node i and j, otherwise Aij = 0. To represent the assignment between

object i and cluster w, the cluster membership indicator siw is adopted. In hard

clustering, siw = 1 denotes object i is in cluster w, otherwise siw = 0. The vector

of indicator variables for cluster w is given as sw = (s1w, s2w, ..., snw)T . The cluster

membership matrix S = (s1|s2|...|sk) can be used to indicate a hypothetical clus-

tering from the hypothesis space Θ, where sk denotes the vector of indicators for

the k-th cluster.

Based on the MDL principle and the ML (Maximum Likelihood) clustering

framework developed by Robles-Kelly and Hancock [167], we define the optimal

clustering SMLL as

SMLL = arg min
S∈Θ∗

{
β
∑
w∈Ω

∑
i∈Vw

|λw(i)| −
∑
w∈Ω

∑
(i,j)∈Φ

siwsjw ln
Aij

1−Aij

}
(4.1)

where Φ = V × V − {(i, i)|i ∈ V } is the set of non-diagonal elements of A and

V denotes the vertices of the graph G. Θ∗ denotes a subspace of clusterings

which all contain the same number of clusters since our MLL model is intended

to be used to compare the clusterings with equal number of clusters. β is the

inverse temperature [170] and is set to 1 in experiments. λw(i) is the i-th eigen-

value of the adjacency matrix Aw of the induced subgraph [171] of G partitioned

by the cluster w and Vw denotes the vertices of the induced subgraph. The term

−
∑

w∈Ω

∑
(i,j)∈Φsiwsjw ln

Aij

1−Aij
measures the consistency of a clustering and the ad-

jacency and β
∑

w∈Ω

∑
i∈V |λw(i)|measures the complexity of the clustering.

Thus the description length function DL (A, S) is defined as

DL (A, S) = β
∑
w∈Ω

∑
i∈Vw

|λw(i)| −
∑
w∈Ω

∑
(i,j)∈Φ

siwsjw ln
Aij

1−Aij (4.2)

84

4.1.1 Relationship to Log-likelihood Function

The pairwise clustering process was modeled by Robles-Kelly and Hancock as

the outcome of a series of independent Bernoulli trials over all pairs of nodes,

which is called a Bernoulli process [172]. Based on this model, they defined the

log-likelihood function L (A, S) [167]

L (A, S) =
∑
w∈Ω

∑
(i,j)∈Φ

{
siwsjw ln

Aij

1−Aij
+ ln(1− Aij)

}
(4.3)

The log-likelihood function was maximized with respect to the adjacency Aij

and cluster membership variable siw in their iterative clustering method to refine

the modal structure of the adjacency matrix. In our method, it is embedded to

measure the consistency of a clustering and the adjacency. In the definition (4.3),∑
w∈Ω

∑
(i,j)∈Φ ln(1−Aij) = |Ω|

∑
(i,j)∈Φ ln(1−Aij) where |Ω| denotes the number of

clusters, is a constant term in our model as the clusterings to be compared consist

of equal number of clusters, thus it is safely dropped from the description length

function.

Classically, the association of the cluster w is defined as [2]

assoc(w) =
∑

(i,j)∈Φ

siwsjwAij (4.4)

From this aspect, the term −
∑

w∈Ω

∑
(i,j)∈Φsiwsjw ln

Aij

1−Aij
in our model corre-

sponds to the negative sum of the individual cluster associations for the logarith-

mically transformed adjacency matrix ln
Aij

1−Aij
. Minimizing this term is equivalent

to maximizing the total associations, which is widely thought to work well with

compact and well separated clusters [163].

4.1.2 Relationship to Graph Energy

The parameter cost of an MDL model is usually measured by an entropic quan-

tity, which corresponds to the spectral term β
∑

w∈Ω

∑
i∈Vw
|λw(i)| in our model.

85

In mathematics, the sum of the absolute values of the eigenvalues of the ad-

jacency matrix of a graph is called the energy of the graph [173]. More formally,

let G be a simple graph of n vertices which does not contain loops or multiple

edges and A the adjacency matrix of G, the eigenvalues of A are denoted by

λi, i = 1, ..., n, the graph energy is defined as

E(G) =
n∑
i=1

|λi| (4.5)

A simple upper bound of graph energy was given as [174]

E(G) ≤
√

2mn (4.6)

where m is the number of edges and n is the number of vertices.

A lower bound was proposed for graphs without isolated vertices [175]

E(G) ≥ 2
√
n− 1 (4.7)

with equality for star graphs. As can be seen, the energy of a graph is bounded

by the number of edges and vertices of the graph. In theoretical chemistry, the

π-electron energy of a conjugated carbon molecule coincides with the energy of

its molecular graph [176]. The latest research reveals the connection between the

energy and the dominating set of a graph [177]. The Laplacian energy of a graph

[178] is even used in learning invariant structure for object identification [179].

In our method, the energy of a graph is used to define the complexity of the

graph, which means a graph has lower complexity if the value of its energy is

smaller. For example, Figure 4.1(a)-4.1(f) show the values of graph energy for

a star graph, a line graph, a ring graph, a Delaunay graph, a k-NN graph with

k = dkDGewhere kDG is the average degree of the corresponding Delaunay graph

and a complete graph, which all consist of 7 vertices. Based on our definition, in

this example the star graph has the lowest complexity and the complete graph

comes with the highest complexity.

86

(a) E = 4.89 (b) E = 8.05 (c) E = 8.98

(d) E = 10.17 (e) E = 11.23 (f) E = 12

FIGURE 4.1: GRAPH ENERGY DEMONSTRATION

To further inspect the relationship between the energy and the number of

nodes or edges of a graph, we construct star graphs, ring graphs, Delaunay

graphs, k-NN graphs and ER random graphs [180] on the randomly generated

nodes in the range of 30 to 100. As shown in Figure 4.2(a), the graph energy is

monotonically proportional to the node number for all types of graphs. Also with

the number of nodes increasing, ER random graphs have the highest energy and

24-NN graphs have the second highest energy whilst star graphs have the lowest

energy. Since the edge number of a star graph is equal to its node number mi-

nus one, the edge number of a ring graph is equal to its node number and the

edge number of a k-NN graph is approximately equal to its node number times

k/2, Figure 4.2(b)-4.2(c) demonstrate only the relationships between graph en-

ergy and the edge number of Delaunay graphs and ER graphs, apparently which

are highly linear as well. Thus it seems the graph energy, as a graph invariant, is

closely related to the number of nodes and edges of each class of graphs.

87

(a) Graph energy versus node number

(b) Delaunay graph energy versus edge number (c) ER graph energy versus edge number

FIGURE 4.2: GRAPH ENERGY INSPECTION

88

Intuitively, low complexity corresponds to simple graph structure, by simple

we mean the graph may have less edges, vertices or cycles as shown in Figure

4.1 and 4.2. Thus the simplest clustering is considered as the graph partitioning

which contains a number of simple subgraphs that the total complexity of the

subgraphs is the lowest. Based on this idea, Esw as the energy of a cluster w,

is defined by using the eigenvalues of Aw which is the corresponding principle

submatrix of A

Esw =

|Vw|∑
i=1

|λw(i)| (4.8)

Hence
∑

w∈Ω

∑
i∈Vw
|λw(i)| =

∑
w∈ΩEsw = E(S) denotes the total energy of the

clustering S. Because clusters are complementary induced subgraphs of G in

hard clustering, we have E(S) ≤ E(G) [171], which implies the clustering with

minimum total graph energy is the one that maximizes the loss of original graph

energy.

4.2 Algorithm Description

The MLL clustering selection algorithm is given as:

1. Given the adjacency matrix A and the clustering space Θ∗ = {S1, ..., Sm},

compute the principle submatrix Aw for each cluster w of a clustering S.

2. Eigen-decompose Aw to have the eigenvalues λw.

3. Compute the description length DL (A, S) for each clustering S using Equa-

tion (4.2).

4. Choose the optimal clustering SMLL with the minimum DL (A, S).

89

4.3 Experimental Analysis

In this section, our clustering model is tested for graph partitioning selection and

image segmentation comparison. The experiments on real data sets demonstrate

that the optimal clusterings are correctly selected by using our model whilst the

clustering methods can be quantitatively compared. Our model is also compared

against the simpler ML (Maximum Likelihood) criterion on some clustering ex-

amples.

4.3.1 Toy Graph Partitioning Selection

In this section, different cuts [181] on a toy graph are quantitatively measured

and compared. The graph partitionings are shown in Figure 4.3. The DL val-

ues of the graph partitionings are {685, 180, 108, 324, 180, 232}. Apparently, graph

partitioning 3 is considered optimal by our clustering model. Graph partitioning

1 is the poorest and is actually identical to the partitioning from the minimum cut

[181]. Graph partitioning 2 and 5 are basically the same, which is detected by our

method.

4.3.2 Clustering Selection

In this section, our method is applied to the clustering spaces generated by KM on

the data sets 7G and York2012. There are 7 compact and well separated clusters

contained in 7G, the clusterings of which are shown in Figure 4.4. The DL scores

are plotted in Figure 4.7. The optimal clusterings 1 and 3 are shown in Figure

4.4(a) and 4.4(c), which are actually the same and close to the true clustering.

Similarly for York2012, the DL scores are plotted in Figure 4.8. The optimal

clusterings 5 and 8 are correctly detected as shown in Figure 4.5(e) and 4.5(h).

90

(a) Graph partitioning 1 (b) Graph partitioning 2 (c) Graph partitioning 3

(d) Graph partitioning 4 (e) Graph partitioning 5 (f) Graph partitioning 6

FIGURE 4.3: TOY GRAPH PARTITIONINGS

4.3.3 Image Segmentation Comparison

In this section, our method is applied to the image segmentations from NCUT by

using the partitioning eigenvectors. The test image is from Figure 3.27(e) and is

bipartitioned by 9 leading eigenvectors as shown in Figure 4.6. The DL values

are plotted in Figure 4.9. The optimal segmentations 7 and 9 are shown in Figure

4.6(g) and 4.6(i). Figure 4.6(b) shows the segmentation from the second smallest

eigenvector, which has the third smallest DL score. Since NCUT uses a recursive

2-way algorithm for image segmentation, our model may be helpful for NCUT to

choose the proper eigenvectors with better performance.

4.3.4 Clustering Method Comparison

In this section, our method is applied to the clusterings generated from different

clustering methods. The result is compared against GT (Ground Truth). The test

data sets are from Table 3.1 and the DL values are shown in Table 4.1. For each

91

(a) KM clustering 1 (b) KM clustering 2 (c) KM clustering 3

(d) KM clustering 4 (e) KM clustering 5 (f) KM clustering 6

(g) KM clustering 7 (h) KM clustering 8 (i) KM clustering 9

FIGURE 4.4: KM CLUSTERINGS ON 7G (7 GAUSSIAN CLUSTERS)

92

(a) KM clustering 1 (b) KM clustering 2 (c) KM clustering 3

(d) KM clustering 4 (e) KM clustering 5 (f) KM clustering 6

(g) KM clustering 7 (h) KM clustering 8 (i) KM clustering 9

FIGURE 4.5: KM CLUSTERINGS ON YORK2012

93

(a) Image segmentation 1 (b) Image segmentation 2 (c) Image segmentation 3

(d) Image segmentation 4 (e) Image segmentation 5 (f) Image segmentation 6

(g) Image segmentation 7 (h) Image segmentation 8 (i) Image segmentation 9

FIGURE 4.6: TOY IMAGE SEGMENTATION

94

FIGURE 4.7: DL OF KM CLUSTERINGS ON 7G

FIGURE 4.8: DL OF KM CLUSTERINGS ON YORK2012

FIGURE 4.9: DL OF IMAGE SEGMENTATIONS

95

data set, the methods which could create sparse clusterings are not compared as

our clustering model is based on assuming clusterings are comprised of the same

number of clusters. Apparently, M1NN has the best performance overall. NCUT

is generally better than AP and KM. HC performs very unstably and has extreme

results in many cases, which has been observed previously.

4.3.5 Further Discussion on MLL and ML

The ML framework developed by Robles-Kelly and Hancock is adapted to a more

complicated form, namely the MLL model, in which one part corresponds to the

negative log-likelihood which measures the total associations for the logarithmi-

cally transformed adjacency matrix, and the other part measures the complexity

of a clustering in terms of graph energy. On the other hand, the MLL model can

only be used to compare the clusterings with equal number of clusters, which

limits its usefulness for clustering analysis.

Nevertheless in practice, it is found these two criteria behave very similarly in

most experiments as shown in Table 4.1 and 4.2. However in some circumstances,

the MLL model can make a decision by the additional information whilst ML

cannot. For example in Figure 4.10(a) and 4.10(b), a toy graph is bipartitioned by

Cut1 and Cut2. Both MLL and ML choose the optimal partitioning S2. But when

node 11 is further connected to 14 and 19 as shown in Figure 4.11, ML cannot

select the optimal partitioning between S1 and S2 since they have the same score

as shown in Table 4.3. In the meantime, MLL can still make the choice of picking

the partitioning S1 in Figure 4.11(a), which appears to be appropriate as there are

relatively more links between node 11 and the smaller cluster.

96

(a) S1 (b) S2

FIGURE 4.10: BIPARTITIONED TOY GRAPH 1

(a) S1 (b) S2

FIGURE 4.11: BIPARTITIONED TOY GRAPH 2

97

TABLE 4.1: DESCRIPTION LENGTH FOR CLUSTERING METHODS

Unit: ×105nit

M1NN KM AP NCUT ISOPM HC CHA GT

Caltech2 - 12.82 12.88 13.16 - 28.98 - 9.72

Caltech3 7.82 8.19 8.28 7.82 - 7.82 - 7.82

Caltech4 - 30.93 30.15 25.95 - 129.14 - 25.64

Caltech5 21.62 26.24 26.07 21.62 - 21.62 - 21.62

Caltech6 - 8.14 8.14 6.88 - 8.96 6.23 6.18

2S 26.16 26.17 26.17 29.39 39.10 26.16 44.62 26.16

TABLE 4.2: LOG-LIKELIHOOD FOR CLUSTERING METHODS

Unit: ×105nit

M1NN KM AP NCUT ISOPM HC CHA GT

Caltech2 - -14.75 -14.80 -15.09 - -30.91 - -11.65

Caltech3 -9.50 -9.87 -9.95 -9.50 - -9.50 - -9.50

Caltech4 - -37.59 -36.98 -36.81 - -135.80 - -32.29

Caltech5 -26.00 -30.62 -30.45 -26.00 - -26.00 - -26.00

Caltech6 - -9.62 -9.62 -8.36 - -10.44 -7.71 -7.66

2S -26.71 -26.72 -26.72 -29.95 -39.65 -26.71 -45.17 -26.71

TABLE 4.3: MLL AND ML COMPARISON

S1

Figure 4.10(a)

S2

Figure 4.10(b)

S1

Figure 4.11(a)

S2

Figure 4.11(b)

DL 2981 2693 2692 2693

L -6560 -6272 -6560 -6560

98

4.4 Conclusion

In this chapter, we propose a modified log-likelihood model in the spirit of MDL

to select the optimal clustering based on its description length. The experimental

analysis demonstrates our method is able to correctly detect such an optimal clus-

tering from the clustering space. Our method can also be used to select proper

eigenvectors for efficient image segmentation and quantitatively compare clus-

tering methods.

For future work, There are two directions. First we want to improve this

model for overlapped clusterings and relaxed cluster membership values. Second

we are interested to develop a feature selection algorithm based on our method.

99

Chapter 5

Delaunay Graph Characterization

and Graph-Based Image Matching

In this chapter, graph characterization methods are investigated for characteriz-

ing Delaunay graphs. The normalized Euclidean distance formulated from heat

diffusion on a Delaunay graph is found particularly useful to estimate pairwise

distances. A graph-based matching method is proposed for images under slight

translation, scaling and rotation.

5.1 Heat Diffusion on Delaunay Graphs

In the literature, the heat kernel was used to approximate geodesic distances be-

tween nodes but its performance dropped rapidly when a critical value of time

was exceeded [120]. HKS (Heat Kernel Signature), as a vector containing the trace

of the heat kernel matrix, can only work properly with correct time parameter

[182]. In this section, the critical time tc is proposed as a measure of the diameter

of a Delaunay graph. We use tc to calculate the heat kernel and estimate pairwise

distances. This method is proved more accurate than commute time.

100

5.1.1 Critical Time of Heat Diffusion

The concept of time in the heat kernel was synonymously expressed as the in-

verse temperature β from the Estrada index [183, 184, 185]. When β → 0, interac-

tion strength tends to zero and a graph is disconnected to own a ’gas’ like state.

When β →∞, the graph is most ’solid’ at the lowest temperature.

The heat diffusion was also used to define the thermodynamic depth [186] for

characterizing network complexity. The depth of a graph relies on the variability

of causal trajectories, which are characterized by the heat flow complexity Fβ(G).

When β → 0, Fβ(G) = 0. When β → ∞, it corresponds to the equilibrium state

and Fβ(G) = 1.

The heat kernel can also be expressed with a Poisson distribution [187, 188],

where time is the expected number of steps for all random walks with a certain

length. This can be seen by rewriting the heat kernel

Ht(u, v) =
∞∑
k=0

e−ttk

k!
Ak(u, v) (5.1)

where Ak(u, v) is the sum of all random walks of length k from node u to node

v on a graph G. In this expression, the weighting for each Ak(u, v) is adjusted by

the Poisson distribution. A small time will favor short walks and the localized

commuting also presents a ’gas’ like graph.

Thus it seems a critical time should be neither too small nor too big to charac-

terize a Delaunay graph. In the literature, Euclidean graphs were approximated

by unweighted Delaunay graphs [189, 190, 191] for solving the geometric span-

ner problem [192]. If the pairwise distances on a Delaunay graph can be well

estimated by heat diffusion at a certain time, that time is considered critical for

Delaunay graph characterization.

The critical time tc is defined as

tc = min

{
k
∣∣ ∀Ak(i, j) 6= 0, i 6= j

}
(5.2)

101

whereAk(i, j) is the (i, j)-th element of the matrixAk. In other words, a Delaunay

graph is converted by tc to a weighted complete graph that any two nodes are

directly connected.

5.1.2 Delaunay Graph Characterization by Heat Diffusion

A Delaunay graph is usually shown on top of an object which brings the illu-

sion that shape information or pairwise distances between nodes are contained

in the Delaunay graph. In the literature, effort has been made to roughly estimate

pairwise distances for a Delaunay graph [118, 193]. In this section, the distances

computed from heat diffusion at different times are investigated for Delaunay

graph characterization.

The geodesic distance of node x and y is formulated from heat diffusion as

[194, 195]

d2
G(x, y) = −4t ln

{
(4πt)

n
2Ht(x, y)

}
(5.3)

where t is the time parameter and n is the dimension of a data space. For a planar

Delaunay graph, n = 2. The Euclidean distance between two nodes on a graph

plane can be approximated by their geodesic distance [196, 197]

d2
E(x, y) ∼= d2

G(x, y) = −4t ln

{
4πtHt(x, y)

}
(5.4)

where t needs to be small enough. Also the term 4πtHt(x, y) inside the logarithm

needs to be between 0 and 1 for the squared distance to be meaningful. Therefore

we introduce a normalization step

d2
EN(x, y) =

d2
G(x, y)− d2

Gmin

d2
Gmax − d2

Gmin
=

ln{Ht(x, y)/Htmax}
ln{Htmin/Htmax}

(5.5)

In this way the logarithmic term is always negative and the normalized distance

d2
EN(x, y) ∈ [0, 1] all the time. Essentially this relative distance measure is fully

dependent on the ratio of heat kernel values, of which both the maximum and

102

minimum are taken as references. The advantage of using this distance measure

instead of the graph geodesic which was defined as the shortest path on a graph

[198] is quite obvious that the distance from heat diffusion does not rely on just

the shortest path therefore is more robust and efficient to use.

To see if the normalized Euclidean distance is useful for Delaunay graph char-

acterization, firstly a Delaunay graph is built for the data set NC1 from Table 3.1.

Figure 5.1(a) shows the sparse adjacency matrix. Figure 5.1(b) shows the distance

matrix which has a clear block structure. The distance matrix is computed from

the spatial coordinates of data points in the Euclidean space and is regarded as

the ground truth. In Figure 5.1(c), the commute time matrix has a weakly visible

block structure. Figures from 5.1(d) to 5.1(i) demonstrate the normalized distance

matrices which are computed from the heat kernel with increasing time. Clearly

the distance matrix from the critical time is the best approximation to the ground

truth as shown in Figure 5.1(f). It outperforms the commute time matrix and the

distance matrices from other times.

Secondly, a more sophisticated data set Complex8 is tested, which is also from

Table 3.1. The commute time matrix is shown in Figure 5.2(c), which presents the

clusters of the data set in vaguely apparent blocks. The normalized distance ma-

trices are shown from Figure 5.2(d) to 5.2(i). Comparing with the ground truth in

Figure 5.2(b), the normalized distance matrix from the critical time is still the best

approximation and evidently beats the commute time matrix. In the meantime,

Complex8 is found to own a larger critical time than NC1 because there are much

more data points contained in it. The critical times for the data sets from Table 3.1

are summarized in Table 5.1.

In general, as demonstrated by these experiments, the pairwise distance on

a Delaunay graph can be effectively estimated by the normalized Euclidean dis-

tance at the critical time, which is more accurate than commute time.

103

(a) Adjacency matrix (b) Distance matrix (c) Commute time matrix

(d) d2
EN (t = 1) (e) d2

EN (t = 4) (f) d2
EN (t = tc = 8)

(g) d2
EN (t = 24) (h) d2

EN (t = 40) (i) d2
EN (t = 80)

FIGURE 5.1: THE DISTANCE MATRICES OF NC1

104

(a) Adjacency matrix (b) Distance matrix (c) Commute time matrix

(d) d2
EN (t = 1) (e) d2

EN (t = 8) (f) d2
EN (t = tc = 16)

(g) d2
EN (t = 40) (h) d2

EN (t = 88) (i) d2
EN (t = 160)

FIGURE 5.2: THE DISTANCE MATRICES OF COMPLEX8

105

TABLE 5.1: CRITICAL TIMES FOR THE DELAUNAY GRAPHS

Data Graph node number Critical time

NC1 90 8

NC2 100 8

NC3 130 9

Caltech1 299 13

Caltech2 303 14

Caltech3 266 11

Caltech4 622 16

Caltech5 512 13

Caltech6 238 14

Complex8 739 16

2S 386 14

RD 600 16

RG 290 12

106

5.2 Graph-Based Image Matching

Graph-based image matching could be more robust and accurate than point pat-

tern (pixel) matching [199] since the graph representation can provide additional

information about neighborhood for each feature point. In this section, we pro-

pose a graph-based image matching method, which uses the result of diffusion

process on a Delaunay graph studied previously.

5.2.1 Delaunay Graph Selection for Image Matching

When parameters are set, a Harris corner detector [137] can automatically find

a number of feature points on an image. These points become the vertices of a

Delaunay graph for matching. But the parameters cannot guarantee there are

enough vertices to properly represent the image, or there may be much more

vertices than needed. Conventionally the parameters are manually adjusted to

select the best graph representation.

On the other hand, the critical time tc as a meaningful measure for Delaunay

graphs, can be directly used for graph selection. In Figure 5.3, Delaunay graphs

with various tc are plotted on a face image [200]. Figure 5.3(a) shows when tc

is small, the graph cannot adequately cover the face. Figure 5.3(d) demonstrates

the graph with large tc has too many redundant feature points, which is overly

descriptive for the face and results an increase in computational cost. For this face

image, Figure 5.3(b) is the most appropriate graph.

To investigate if there is a tc generally suitable for any image of normal size,

e.g. 300×300 pixels, experiments are run on image databases including the COIL-

20 toys [201], the Max Planck faces [200], the CMU house sequences [202], etc. It

is found a Delaunay graph with tc = 6 or 7 can optimally represent an image.

Thus we set tc = 7 in our image matching method.

107

(a) tc = 3 (b) tc = 7

(c) tc = 13 (d) tc = 21

FIGURE 5.3: DELAUNAY GRAPHS WITH DIFFERENT tc ON A FACE IMAGE

108

In practice, the Delaunay graph with tc = 7 can be generated automatically by

initially setting the parameter of non-maximal suppression of the Harris corner

detector to a lower value, triangulating the feature points and computing the tc

of the graph, then increasing the value of the parameter accordingly. Normally

this process takes 3 to 4 iterations in our experiments.

5.2.2 Graph Node Selection for Image Matching

Inexact graph matching methods, e.g. the random walks [203] or discrete relax-

ation [204], had been used for graph-based image matching. However a slight

affine transformation on an image plane could change the local graph structure

radically, in which case graph matching methods may not match images correctly.

To solve this problem, we propose a method to select the hot nodes of graphs. The

hot nodes are then matched by their feature descriptors.

Hot nodes are defined based on heat diffusion on a Delaunay graph. Given a

graph with m vertices, the heat kernel matrix Ht has m2 entries. The hot node is

defined as

nh =
{
i|Ht(i, i) > µ

}
(5.6)

where µ is a threshold, which is set equal to the m + 1-th maximum entry of Ht

in our work. In other words, we select the first m biggest entries from the heat

kernel matrix, which may include nodes and edges. Then we further select the

nodes from these entries.

Figure 5.4 shows the Delaunay graphs for an image of a duck toy [201]. The

heat of hot nodes is visualized by red color, e.g. hottest nodes are marked lightest

red. When t = 1, all nodes are hot as shown in Figure 5.4(a). When t = 25, there

are only 8 hot nodes left. By experiment, it is found the critical time tc is useful

for selecting a proper number of stable nodes on a graph. This is demonstrated

in Figure 5.5 for a sequence of duck images. For any two sequential images, e.g.

109

Figure 5.5(d) and 5.5(e), the correspondence can always be set up between some

stable hot nodes even the graph structure is altered mildly.

To demonstrate the nodes selected by our method are stable and reliable for

matching, a comparison of our method against centrality measures is presented

on the same graphs. For each graph, 20% of total nodes with the largest centrali-

ties are chosen and highlighted in red color as shown in Figure 5.6-5.9. As can be

seen, our method outperforms centrality measures marginally by selecting more

useful nodes for matching. For example, there are 7 nodes to match between Fig-

ure 5.6(d) and 5.6(e) by degree centrality, 8 nodes between Figure 5.7(d) and 5.7(e)

by closeness centrality, 8 nodes between Figure 5.8(d) and 5.8(e) by betweenness

centrality, 6 nodes between Figure 5.9(d) and 5.9(e) by eigenvector centrality and

9 nodes between Figure 5.5(d) and 5.5(e) by our method. For the full COIL-20

database, our method has a better overall performance.

The dominant set partitioning method [63] is also tested to investigate whether

graph partitions can be used for node selection. The maximum iteration is set to

1000 and selected nodes are marked red. As shown in Figure 5.10, the node selec-

tion process is, to a great extent, affected by the structural variations in graphs.

For example, there are 5 nodes valid for matching between Figure 5.10(a) and

5.10(c), on the other hand there are 8 nodes between Figure 5.6(a) and 5.6(c) by

degree centrality, 7 nodes between Figure 5.7(a) and 5.7(c) by closeness central-

ity, 9 nodes between Figure 5.8(a) and 5.8(c) by betweenness centrality, 7 nodes

between Figure 5.9(a) and 5.9(c) by eigenvector centrality and 10 nodes between

Figure 5.5(a) and 5.5(c) by our method. Apparently the dominant set partition-

ing method may not work properly for node selection since it is not designed for

such a purpose. For the full COIL-20 database, the performance of this method

cannot match ours.

110

(a) t = 1 (b) t = 4 (c) t = 7

(d) t = 10 (e) t = 13 (f) t = 16

(g) t = 19 (h) t = 22 (i) t = 25

FIGURE 5.4: HOT NODE EVOLUTION ON A GRAPH BY INCREASING TIME

111

(a) Img1 (b) Img2 (c) Img3

(d) Img4 (e) Img5 (f) Img6

(g) Img7 (h) Img8 (i) Img9

FIGURE 5.5: HOT NODE SELECTION BY USING HEAT DIFFUSION AT tc

112

(a) Img1 (b) Img2 (c) Img3

(d) Img4 (e) Img5 (f) Img6

(g) Img7 (h) Img8 (i) Img9

FIGURE 5.6: NODE SELECTION BY USING DEGREE CENTRALITY

113

(a) Img1 (b) Img2 (c) Img3

(d) Img4 (e) Img5 (f) Img6

(g) Img7 (h) Img8 (i) Img9

FIGURE 5.7: NODE SELECTION BY USING CLOSENESS CENTRALITY

114

(a) Img1 (b) Img2 (c) Img3

(d) Img4 (e) Img5 (f) Img6

(g) Img7 (h) Img8 (i) Img9

FIGURE 5.8: NODE SELECTION BY USING BETWEENNESS CENTRALITY

115

(a) Img1 (b) Img2 (c) Img3

(d) Img4 (e) Img5 (f) Img6

(g) Img7 (h) Img8 (i) Img9

FIGURE 5.9: NODE SELECTION BY USING EIGENVECTOR CENTRALITY

116

(a) Img1 (b) Img2 (c) Img3

(d) Img4 (e) Img5 (f) Img6

(g) Img7 (h) Img8 (i) Img9

FIGURE 5.10: NODE SELECTION BY USING THE DOMINANT SET

117

5.3 Algorithm Description

The graph-based image matching algorithm can be described as:

1. For given images, select the Delaunay graphs with the critical time tc = 7.

2. Compute the heat kernel Ht at tc = 7 from an adjacency matrix or Laplacian

matrix using Equation (2.42) or (2.38).

3. Select hot nodes using Definition (5.6).

4. Assign SIFT descriptors to the hot nodes.

5. Match the hot nodes by graph and SIFT matching algorithms.

5.4 Experimental Analysis

In this section, our method is tested on some benchmark images [16, 205, 206].

The images are taken at different views of objects against a black background.

Illumination and scale are almost constant.

Firstly, some image matching examples are shown in Figure 5.11. The yellow

circles denote graph nodes and the red squares denote hot nodes. The white lines

denote the matches between images. As can be seen, new feature points are gen-

erated in subsequent images and some old feature points become undetectable

because of the rotation of objects. This changes the graph structure slightly but

visibly. However, the hot nodes are comparatively stable on a graph. As a result,

our method is more accurate and faster than a full graph matching method.

Secondly, the SIFT matching method [14] is applied to the same images shown

in Figure 5.12. In Figure 5.12(a) and 5.12(f), only 10% of total matches are drawn

for a better demonstration. The blue lines denote mismatches. In Figure 5.12(a),

there are 3 mismatches. Figure 5.12(b) shows 10 matches including 3 meaning-

less background matches and 1 mismatch, whilst Figure 5.11(b) shows 5 correct

matches and 0 mismatch by our method.

118

(a) CMU House (b) COIL Duck

(c) COIL Pig (d) COIL Anacin

(e) COIL Car (f) Toy Lobster

FIGURE 5.11: IMAGE MATCHING BY OUR METHOD

119

(a) CMU House (b) COIL Duck

(c) COIL Pig (d) COIL Anacin

(e) COIL Car (f) Toy Lobster

FIGURE 5.12: IMAGE MATCHING BY SIFT

120

FIGURE 5.13: COIL-20 DATABASE (FROM [201])

FIGURE 5.14: COIL DUCK IMAGES (FROM [201])

121

(a) Our method (b) SIFT

(c) Our method (d) SIFT

(e) Our method (f) SIFT

(g) Our method (h) SIFT

FIGURE 5.15: FACE MATCHING COMPARISON

122

TABLE 5.2: IMAGE MATCHING AVERAGE ERROR COMPARISON

Object number

1 2 3 4 5 6 7 8 9 10

Our method 0.8 1.3 0.4 0.3 0.2 0 0.6 0.1 0 0.2

SIFT 2.1 1.4 0.8 0.5 0.5 0.3 0.5 0.3 0 0.4

Object number

11 12 13 14 15 16 17 18 19 20

Our method 1.7 1.3 0.8 0.6 1.8 1.4 1.3 1.3 0.3 0.5

SIFT 2.2 2 1.4 1.4 1.8 2 1.6 1.8 0.7 0.5

To quantitatively compare these two methods, experiments are conducted on

COIL-20 images [201]. The objects of the full database and a set of duck images

are shown in Figure 5.13 and 5.14. For each object, we randomly pick an image Ii,

and then match it with one of its neighboring images in the range of Ii−4 to Ii+4.

This matching process is repeated 10 times for each object. The result is shown in

Table 5.2. Clearly, the SIFT matching method generates more mismatches.

The Max Planck faces [200] are also used for comparison. The database con-

tains images of 7 views of 200 laser-scanned heads. The heads are without hair

and are further synthesized to not resemble any individuals. The result is shown

in Figure 5.15. The faces matched in each row are from different persons. Ob-

viously, our method has a better performance in detecting and matching same

features from different faces. Especially in Figure 5.15(g) and 5.15(h), due to fa-

cial variances, there is only 1 background match by SIFT matching, in contrast to

4 correct matches by our method.

123

5.5 Conclusion

In this chapter, Delaunay graph characterization is studied. The diffusion process

on a Delaunay graph is investigated and a node selection algorithm is proposed

for graph-based image matching. The experimental analysis shows our method

could select feature points and match images correctly and efficiently.

For future work, there are two directions. First, we want to extend our method

to three-dimensional object matching. Second, we want to develop a graph-based

motion tracking application.

124

Chapter 6

Conclusions and Future Work

In this chapter, our main contributions in data clustering and image matching

are summarized. The strength and weakness of each method are discussed. The

possible directions are also drawn for future work.

6.1 Contributions

6.1.1 M1NN Agglomerative Clustering

In Chapter 3, our first contribution is the M1NN agglomerative clustering method.

This method is compatible with different types of data and robust to noise. For

normal agglomerative methods, the chaining phenomenon could cause ’over’

clustering. Our parallel merging algorithm solves this problem effectively since

outliers are excluded in merging steps.

Our second contribution is a cluster characterizing quantity derived from the

path-based dissimilarity measure. The complexity of the path-based pairwise

clustering algorithm was reckoned the same as that of an all-pairs-shortest-path

problem. We proved it is actually much lower and equal to the complexity of an

125

MST problem. The cluster characterizing quantity is redefined from the bottle-

neck edge of the MST with its computational cost greatly reduced by our work.

Comparing with the state-of-the-art hierarchical clustering methods, clearly

our method is more sophisticated and advanced. In our method, a new agglomer-

ative clustering framework, rather than a similarity measure, is proposed. The el-

ementary units of clusters are defined by CPs instead of single nodes. During the

process of clustering, a parallel merging algorithm is applied to effectively pre-

vent early merging of large clusters. Owing to these special features, our method

has a better clustering performance and is extendable to many applications, e.g.

data mining, image segmentation and manifolding learning.

6.1.2 Modified Log-likelihood Clustering

In Chapter 4, our first contribution is the MLL clustering expression based on the

pioneering work of Robles-Kelly and Hancock. The new MLL clustering model,

comparing with the ML criterion, contains additional information to measure and

compare clusterings quantitatively and accurately.

Our second contribution is using the energy of a graph to measure the com-

plexity of a clustering. The energy is computed by using the eigenvalues of the

adjacency matrix of the clustering, hence the spectral property of the clustering is

effectively added into the MLL model.

Apparently, our method is more convenient to use when clusterings need to

be quantitatively compared without knowing the ground truth, i.e. the correct

labels of the data points. Our method is also useful for selecting eigenvectors for

optimized image segmentation or comparing graph partitions for the best cut.

126

6.1.3 Delaunay Graph Characterization and Graph-Based Image

Matching

In Chapter 5, our first contribution is a Delaunay graph characterization method

based on diffusion process. The pairwise distances between graph nodes are esti-

mated properly by normalized Euclidean distances derived from the heat kernel

at the critical time.

Our second contribution is a graph-based image matching method. Hot nodes

are defined on heat diffusion at the critical time. The comparison against other

node selection methods shows that hot nodes are more stable and reliable for

matching. SIFT descriptors are assigned to the hot nodes to develop a hybrid

method for enhanced matching performance.

Essentially, our study contributes to a better understanding of Delaunay graph

characterization. The critical time, as demonstrated, is a very interesting property

of a Delaunay graph. Comparing with the commute time, which was considered

as a fine approximation of the pairwise distance, our method provides a more

accurate approximation computed from the heat kernel at the critical time. The

critical time criterion is also useful for selecting the proper Delaunay graph repre-

sentation for an image. In our graph-based image matching method, the critical

time is used to define the hot nodes of a Delaunay graph, which are relatively

stable across the graphs of a series of images and are suitable for establishing

correspondences between images. As a result in the experiment, our method out-

performs SIFT matching method by a lower error rate.

6.2 Limitations

Generally our methods perform better than the state-of-the-art methods, but there

are still some limitations to be mentioned.

127

In the M1NN clustering method, merging processes are controlled by the clus-

ter characterizing quantity with a user-defined parameter. Once the parameter is

set properly, merging errors can be greatly reduced and the impact of chaining

phenomenon is minimized. However in most cases, clusters are generated more

than expected. To solve this problem, a strong merging rule is derived from the

classical agglomerative clustering algorithm to further process the clustering for

the exact number of clusters. The experimental analysis demonstrates that the

data points in an Euclidean space are grouped correctly by the strong merging

rule. On the other hand, non-Euclidean data sets are not adequately supported.

As a result, the clustering of such a data set is a little sparse although main clus-

ters are located effectively. In the meantime, the input of cluster number is still

required by our method, whilst there are many other methods attempting to au-

tomatically detect clusters without this number.

In the MLL clustering comparison method, since assumptions were made to

simplify the probability and construct the Bernoulli model in the correspond-

ing ML framework, our method may not work satisfactorily in practice when

the assumptions cannot hold true. And because the assumptions were made for

hard clustering problems, it is difficult to extend our method for soft clustering.

Moreover, our method is limited by the condition that it can only compare the

clusterings with the same number of clusters, which seems less practical some-

times. Also, our method may have slightly varied performance for the same data

in different graph representations.

In the graph-based image matching method, a common critical time is set to

select Delaunay graphs for matching a sequence of images. As demonstrated,

all the graphs with the same and proper critical time are of similar size and op-

timally represent the images. However the appropriate critical time is currently

decided heuristically without being justified. Furthermore, the critical time used

128

for hot node selection is also decided by experiments. Thus the performance of

our method is not theoretically guaranteed. Comparing with the SIFT matching

method, our method has a lower error rate. However because SIFT descriptors

are used by our method to provide additional information for the graph nodes

which are extracted from an image by the Harris corner detector, the number of

matches is sometimes much lower too.

6.3 Future Work

Apparently there are a lot of work to do to improve our methods for the limita-

tions addressed in last section.

For the M1NN clustering method, the strong merging rule needs to be inves-

tigated for the data sets in non-Euclidean spaces. The problem may be caused by

the distance measure which is defined differently from the Euclidean distance,

then the structure of a cluster cannot be fully captured. As the cluster number is

currently a terminating condition for the CQ merging algorithm, it will be neces-

sary to replace this condition so that our clustering method can work automati-

cally without this number. Our method should also be optimized for data mining

and image segmentation.

For the MLL clustering comparison method, the assumptions should be fur-

ther inspected and changed for overlapped clusters and relaxed values of cluster

memberships. Research should be conducted to modify the MLL model for the

clusterings with different number of clusters. Other definitions of graph energy

could be used so that the performance may become more stable and less sensi-

tive to the graph representation. Our method could also be adapted to develop a

feature selection algorithm in future.

For the graph-based image matching method, the critical time still needs more

129

research from the aspects of graph theory and complex networks. In the mean-

time, different feature detectors and descriptors can be adopted to improve the

matching accuracy and increase the number of matches. It is also feasible to ex-

tend our method for three-dimensional object matching since the surface of an

object is usually meshed with triangles that our current research can be migrated

smoothly. A graph-based motion tracking application could be developed based

on our method too.

130

Glossary of Notation

G(V,E) Graph with vertex set V and edge set E

A Adjacency matrix

A Normalized adjacency matrix

deg(u) Degree of the vertex u

D Degree matrix or data, see context

L Laplacian matrix

L Normalized Laplacian matrix

I Identity matrix or image, see context

Φ Eigenvector matrix

Λ Eigenvalue matrix

φi The i-th smallest eigenvector

λi The i-th smallest eigenvalue

Ω Set of clusters

H Hypothesis

Lc Coding length

P Probability

Ht Heat kernel

Tr Trace operator

det Determinant operator

131

CP Couple, the two mutually nearest points

κ Cluster characterizing quantity

ζ Zeta function

Γ Gamma function

∆ Laplace operator

G Green’s function

G Normalized Green’s function

Q Hitting time

CT Commute time

k Parameter, see context for exact meaning

siw Cluster membership indicator

S Clustering matrix to denote a clustering

Θ Clustering space

Esw Graph energy of the cluster w

β Inverse temperature

DL (A, S) Description length function

L (A, S) Log-likelihood function

dG Geodesic distance

dEN Normalized Euclidean distance

nh Hot node

132

References

[1] D. A. M. Noiton and P. A. Alspach. Founding clones, inbreeding, coancestry,

and status number of modern apple cultivars. Journal of the American Society for

Horticultural Science, 121(5):773-782, 1996.

[2] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.

PAMI, 22(8):888-905, 2000.

[3] M. Iwayama and T. Tokunaga. Cluster-based text categorization: A com-

parison of category search strategies. SIGIR ’95 Proceedings of the 18th annual

international ACM SIGIR conference on Research and development in information

retrieval, pp.273-280, 1995.

[4] P. Baldi and G. W. Hatfield. DNA microarrays and gene expression. Cambridge

University Press, 2002.

[5] S. Basu, I. David and K. Wagstaff. Constrained clustering: Advances in algo-

rithms,theory and applications. Chapman and Hall/CRC, 2008.

[6] R. Duda, P. Hart and D. Stock. Pattern Classification. New York: John Wiley &

Sons, 2001.

[7] J. He, A. H. Tan, S. Y. Sung and C. L. Tan. On quantitative evaluation of

clustering systems. Information Retrieval and Clustering, 2002.

133

[8] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition

Letters, 31(8):651-666, 2010.

[9] U. von. Luxburg, M. Belkin and O. Bousquet. Consistency of spectral cluster-

ing. The Annals of Statistics, 36(2):555-586, 2008.

[10] S. Guattery and G. L. Miller. On the quality of spectral separators. SIAM

Journal on Matrix Analysis and Applications, pp.701-719, 1998.

[11] T. Xiang and S. Gong. Spectral clustering with eigenvector selection. Pattern

Recognition, 41(3):1012-1029, 2008.

[12] R. Haralick. Ridges and valleys on digital images. Computer Vision, Graphics

and Image Processing, 22(1):28-38, 1983.

[13] B. Luo and E. R. Hancock. Iterative procrustes alignment and the EM algo-

rithm. Image Vision Computing, 20(5-6):377-396, 2002.

[14] D. G. Lowe. Object recognition from local scale-invariant features. Proceed-

ings of the International Conference on Computer Vision, Vol.2, p.1150, 1999

[15] H. Qiu and E. R. Hancock. Graph matching and clustering using spectral

partitions. Pattern Recognition, 39(1):22-34, 2006.

[16] P. Ren. Structural learning based on Ihara coefficients and hypergraphs. PhD

Thesis, University of York, 2010.

[17] R. J. Sternberg. Cognitive psychology. Thomson Wadsworth, 2003.

[18] N. Ahuja and M. Tuceryan. Extraction of early perceptual structure in

dot patterns: Integrating region, boundary, and component gestalt. CVGIP,

48(3):304-356, 1989.

134

[19] J. Han and M. Kamber. Data mining: Concepts and techniques. Morgan

Kaufmann, 2006.

[20] C. R. Lin and M. S. Chen. Combining partitional and hierarchical algorithms

for robust and efficient data clustering with cohesion self-merging. IEEE Trans-

actions on Knowledge and Data Engineering, 17(2):145-159, 2005.

[21] P. Tan, M. Steinbach and V. Kumar. Introduction to data mining. Addison-

Wesley Longman, 2005.

[22] E. F. Krause. Taxicab geometry. Dover, 1987.

[23] P. C. Mahalanobis. On the generalised distance in statistics. Proceedings of the

National Institute of Sciences of India, 2(1):49-55, 1936.

[24] R. W. Hamming. Error detecting and error correcting codes. Bell System

Technical Journal, 26(2):147-160, 1950.

[25] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics Doklady, 10(8):707-710, 1966.

[26] G. J. Székely and M. L. Rizzo. Hierarchical clustering via joint between-

within distances: Extending Ward’s minimum variance method. Journal of

Classification, 22(2):151-183, 2005.

[27] R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster

method. The Computer Journal (British Computer Society), 16(1):30-34, 1973.

[28] T. Sorensen. A method of establishing groups of equal amplitude in plant

sociology based on similarity of species and its application to analyses of the

vegetation on Danish commons. Biologiske Skrifter, Vol.5, pp.1-34, 1948.

135

[29] P. H. A. Sneath and R. R. Sokal. Numerical taxonomy: The principles and

practice of numerical classification. San Francisco: Freeman, 1973.

[30] A. K. Jain, M. N. Murty and P. J. Flynn. Data clustering: A review. ACM

Computing Surveys, 31(3):264-323, 1999.

[31] T. Zhang, R. Ramakrishnan, and M. Linvy. BIRCH: An efficient data cluster-

ing method for very large data sets. Proceedings of the ACM SIGMOD Conference,

pp.103-114, 1996.

[32] S. Guha, R. Rastogi and K. Shim. CURE: An efficient clustering algorithm

for large data sets. Proceedings of the ACM SIGMOD Conference, pp.73-84, 1998.

[33] G. Karypis, E. H. Han and V. Kumar. CHAMELEON: A hierarchical cluster-

ing algorithm using dynamic modeling. IEEE Computer, 32(8):68-75, 1999.

[34] V. Gaede and O. Gunther. Multidimensional access methods. ACM Comput-

ing Surveys, 30(2):170-231, 1998.

[35] P. Berkhin. A survey of clustering data mining techniques. Grouping Multi-

dimensional Data, pp.25-71, 2006.

[36] Y. Ma, H. Derksen, W. Hong and J. Wright. Segmentation of multivari-

ate mixed data via lossy data coding and compression. IEEE Trans. PAMI,

29(9):1546-1562, 2007.

[37] A. Y. Yang, J. Wright, Y. Ma and S. S. Sastry. Unsupervised segmentation of

natural images via lossy data compression. Computer Vision and Image Under-

standing, 110(2):212-225, 2008.

[38] D. Zhao and X. Tang. Cyclizing clusters via Zeta function of a graph. NIPS,

pp.1953-1960, 2008.

136

[39] J. B. MacQueen. Some methods for classification and analysis of multivariate

observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics

and Probability, Vol.1, pp.281-297, 1967.

[40] G. P. Babu and M. N. Murty. Simulated annealing for selecting optimal initial

seeds in the k-means algorithm. Indian J. pure appl. Math, 25(1-2):85-94, 1994.

[41] A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey and M. A. Ramadan. K-

means for spherical clusters with large variance in sizes. Engineering and Tech-

nology, pp.177-182, 2008.

[42] M. Sato, Y. Sato and L. C. Jain. Fuzzy clustering models and applications.

Physica-Verlag, 1997.

[43] G. J. McLachlan and T. Krishnan. The EM algorithm and extensions. John

Wiley & Sons, 1997.

[44] J. Y. Choi. Unsupervised learning of finite mixture models with determinis-

tic annealing for large-scale data analysis. PhD thesis, Indiana University, 2012.

[45] B. J. Frey and D. Dueck. Clustering by passing messages between data

points. J. Science, Vol.315, pp.972-977, 2007.

[46] X. Zhang. Contributions to large scale data clustering and streaming with

affinity propagation. Application to autonomic grids. PhD thesis, Université

Paris-Sud, 2010.

[47] X. Zhang, C. Furtlehner and M. Sebag. Data streaming with affinity prop-

agation. In European Conference on Machine Learning and Practice of Knowledge

Discovery in Databases, pp.628-643, 2008.

137

[48] X. Zhang, M. Sebag and C. Germain-Renaud. Multi-scale real-time grid

monitoring with job stream mining. In 9th IEEE International Symposium on

Cluster Computing and the Grid, pp.420-427, 2009.

[49] J. Han, M. Kamber and A. K. H. Tung. Spatial clustering methods in data

mining: A survey. Geographic Data Mining and Knowledge Discovery, 2001.

[50] M. Ester, H. Kriegel, J. Sander and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. Proceedings of the

Second International Conference on Knowledge Discovery and Data Mining, pp.226-

231, 1996.

[51] J. Sander, M. Ester, H. Kriegel and X. Xu. Density-based clustering in spatial

databases: The algorithm GDBSCAN and its applications. Data Mining and

Knowledge Discovery, 2(2):169-194, 1998

[52] X. Xu, M. Ester, H. Kriegel, and J. O. Sander. A nonparametric clustering

algorithm for knowledge discovery in large spatial data sets. Proc. IEEE Int.

Conf. on Data Engineering, 1998.

[53] M. Ankerst, M. M. Breunig, H. Kriegel and J. O. Sander. OPTICS: Ordering

points to identify the clustering structure. ACM SIGMOD international confer-

ence on Management of data, pp.49-60, 1999.

[54] E. Achtert, C. Böhm, H. Kriegel, P. Kröger, I. Müller-Gorman and A. Zimek.

Finding hierarchies of subspace clusters. LNCS: Knowledge Discovery in

Databases, 2006.

[55] C. Zahn. Graph-theoretical methods for detecting and describing gestalt

clusters. IEEE Trans. On Computer, 20(1):68-86, 1971.

138

[56] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Jour-

nal, 23(98):298-305, 1973.

[57] M. Meila and J. Shi. A random walks view of spectral segmentation. Confer-

ence in AI and Statistics, 2001.

[58] S. Yu and J. Shi. Multiclass spectral clustering. International Conference on

Computer Vision, Vol.2, p.313, 2001.

[59] L. Grady and E. L. Schwartz. Isoperimetric graph partitioning for image

segmentation. IEEE Trans. PAMI, 28(3):469-475, 2006.

[60] W. N. Anderson and T. D. Morley. Eigenvalues of the Laplacian of a graph.

Linear and Multilinear Algebra, 1985.

[61] M. Pavan and M. Pelillo. Dominant sets and pairwise clustering. IEEE Trans.

PAMI, 29(1):167-172, 2007.

[62] J. W. Weibull. Evolutionary game theory. MIT Press, 1995.

[63] M. Pavan and M. Pelillo. Dominant sets and hierarhical clustering. Proc.

IEEE Intl Conf. Computer Vision, Vol.2, p.362, 2003.

[64] J. H. Ward. Hierarchical grouping to optimize an objective function. Journal

of the American Statistical Association, 58(301):236-244, 1963.

[65] K. A. Heller and Z. Ghahramani. Bayesian hierarchical clustering. ICML ’05

Proceedings of the 22nd international conference on Machine learning, pp.297-304,

2005.

[66] Dendrogram.

http://www.mathworks.co.uk/help/toolbox/stats/dendrogram.html

139

[67] P. Drineas, A. Frieze, R. Kannan, S. Vempala and V. Vinay. Clustering large

graphs via the singular value decomposition. Machine learning, 56(1-3):9-33,

1999.

[68] D. C. MacKay. Information theory, inference and learning algorithms. Cam-

bridge University Press, 2003.

[69] J. M. Peña, J. A. Lozano and P. Larrañaga. An empirical comparison of four

initialization methods for the k-means algorithm. Pattern Recognition Letters,

20(10):1027-1040, 1999.

[70] L. Kaufmann and P. J. Rousseeuw. Finding groups in data: An introduction

to cluster analysis. John Wiley, 1990.

[71] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clus-

tering: Theory and its application to image segmentation. IEEE Trans. PAMI,

15(11):1101-1113, 1993.

[72] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[73] G. H. Golub and C. F. Van Loan. Matrix computations. John Hopkins Press,

1989.

[74] M. Fiedler. Laplacian of graphs and algebraic connectivity. Combinatorics and

Graph Theory, Vol.25, pp.57-70, 1989.

[75] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian.

Princeton University Press, 1970.

[76] B. Mohar. Isoperimetric numbers of graphs. J. Combin. Theory Ser. B,

47(3):274-291, 1989.

140

[77] J. Arfken and H. J. Weber. Mathematical methods for physicists. J. Academic

Press, New York, 1985.

[78] B. J. Frey and D. Dueck. Mixture modeling by affinity propagation. J. NIPS,

pp.379-386, 2005.

[79] B. J. Frey. Affinity propagation: New algorithms, results and applications. J.

International Workshop on Cognitive Dynamic Systems and Their Application, 2008.

[80] V. K. Balakrishnan. Graph Theory. McGraw-Hill, 1997.

[81] N. L. Biggs, E. K. Lloyd and R. J. Wilson. Graph Theory, 1736-1936. Oxford

University Press, 1986.

[82] D. Zwillinger. CRC Standard Mathematical Tables and Formulae. Chapman

& Hall/CRC, 2002.

[83] C. Chen, W. K. Härdle and A. Unwin. Handbook of data visualization.

Springer Handbooks of Computational Statistics, 2008.

[84] F. Buckley and F. Harary. Distance in graphs. Redwood City, CA: Addison-

Wesley, 1990.

[85] B. Delaunay. Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie

Matematicheskikh i Estestvennykh Nauk, pp.793-800, 1934.

[86] M. Abellanas, P. Bose, J. Garcı́a, F. Hurtado, C. M. Nicolás and P. Ramos. On

structural and graph theoretic properties of higher order Delaunay graphs. Int.

J. Comput. Geometry Appl., 19(6):595-615, 2009.

[87] A. Okabe, B. Boots, K. Sugihara and S. N. Chiu. Spatial tessellations C con-

cepts and applications of Voronoi diagrams. John Wiley, 2000.

141

[88] Delaunay graph and voronoi tessellation.

http://www.wikipedia.org/wiki/Delaunaycircumcircles

http://www.wikipedia.org/wiki/DelaunayVoronoi

[89] R. Diestel. Graph theory. Berlin, New York: Springer-Verlag, 2005.

[90] R. G. Gallager, P. A. Humblet and P. M. Spira. A distributed algorithm for

minimum-weight spanning trees. ACM Transactions on Programming Languages

and Systems, 5(1):66-77, 1983.

[91] Minimum spanning tree.

http://www.wikipedia.org/wiki/Minimumspanningtree

[92] D. M. Cvetkovic and H. Sachs. Spectra of graphs: Theory and applications.

New York: Wiley, 1998.

[93] Laplacian matrix.

http://en.wikipedia.org/wiki/Laplacianmatrix.

[94] P. McCullagh. Marginal likelihood for distance matrices. Statistica Sinica,

2009.

[95] J. Aldrich. Eigenvalue, eigenfunction, eigenvector, and related terms. Earliest

Known Uses of Some of the Words of Mathematics, 2006.

[96] F. R. K. Chung. Spectral graph theory. CBMS Regional Conference Series in

Mathematics, 1996.

[97] N. L. Biggs. Algebraic graph theory. Cambridge, England: Cambridge Univer-

sity Press, 1993.

142

[98] A. Pothen, H. D. Simon and K. P. Liou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM J. Matrix Analytical Applications, 11(3):430-452,

1990.

[99] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465-

471, 1978.

[100] J. Rissanen. Universal coding, information, prediction and estimation. IEEE

Transactions on Information Theory, 30(4):629-636, 1984.

[101] J. Rissanen, T. P. Speed and B. Yu. Density estimation by stochastic com-

plexity. IEEE Transactions on Information Theory, 38(2):315-323, 1992.

[102] J. Rissanen. MDL denoising. IEEE Transactions on Information Theory,

46(7):2537-2543, 2000.

[103] A. Torsello and E. Hancock. Learning mixtures of tree-unions by minimiz-

ing description length. EMMCVPR’03, pp.130-146, 2003.

[104] P. Grünwald. The minimum description length principle. MIT Press, 2007.

[105] P. Grünwald et al. Advances in minimum description length. MIT Press,

2005.

[106] C. E. Shannon. A mathematical theory of communication. Bell System Tech-

nical Journal, 1948.

[107] R. M. Fano. The transmission of information. Technical Report No. 65 USA:

Research Laboratory of Electronics at MIT, 1949.

[108] B. Luo, R. C. Wilson and E. R. Hancock. Spectral embedding of graphs.

Pattern Recognition, 36(10):2213-2230, 2003.

143

[109] K. Riesen and H. Bunke. Approximate graph edit distance computation by

means of bipartite graph matching. Image and Vision Computing, 27(7):950-959 ,

2009.

[110] S. Umeyama. An eigendecomposition approach to weighted graph match-

ing problems. IEEE Trans. PAMI, 10(5):695-703, 1988.

[111] L. Shapiro and J. Brady. Feature-based correspondence: an eigenvector ap-

proach. Image Vision Computing, 10(5):283-288, 1992.

[112] M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of

graphs. Disc. Appl. Math, 36(2):153-168, 1992.

[113] J. E. Atkins, E. G. Boman and B. Hendrickson. A spectral algorithm for seri-

ation and the consecutive ones problem. SIAM Journal on Computing, 28(1):297-

310, 1998.

[114] A. Shokoufandeh, S. J. Dickinson, K. Siddiqi and S. W. Zucker. Indexing

using a spectral encoding of topological structure. In Proc. of the IEEE Conf. on

Computer Vision and Pattern Recognition, pp.2491-2497, 1999.

[115] A. Robles-Kelly and E. R. Hancock. Graph edit distance from spectral seri-

ation. IEEE Trans. PAMI, 27(3):365-378, 2005.

[116] A. Robles-Kelly and E. R. Hancock. String edit distance, random walks and

graph matching. IJPRAI, 18(3):315-327, 2004.

[117] B. Luo, R. C.Wilson and E. R. Hancock. A spectral approach to learning

structural variations in graphs. Pattern Recognition, 39(6):1188-1198, 2006.

[118] H. Qiu and E. R. Hancock. Commute times, discrete Green’s functions and

graph matching. 13th International Conference on Image Analysis and Processing,

pp.454-462, 2005.

144

[119] H. Qiu and E. R. Hancock. Commute times for graph spectral clustering.

CAIP, pp.128-136, 2005.

[120] X. Bai, R. C. Wilson and E. R. Hancock. Characterising graphs using the

heat kernel. BMVC, 2005

[121] Xiao Bai, E. R. Hancock and R. C. Wilson. Graph characteristics from the

heat kernel trace. Pattern Recognition, 42(11):2589-2606, 2009.

[122] P. Flajolet, X. Gourdon and P. Dumas. Mellin transforms and asymptotics:

Harmonic sums. Theoretical Computer Science, 144(1-2):3-58, 1995.

[123] F. R. K. Chung and S. T. Yau. Discrete green’s functions. In J. Combinatorial

Theory, 91(1-2):191-214, 2000.

[124] H. Qiu and E. R. Hancock. Spanning trees from the commute times of

random walks on graphs. ICIAR, pp.375-385, 2006.

[125] J. Nieminen. On the centrality in a graph. Scandinavian Journal of Psychology,

15(1):332-336, 1974.

[126] L. C. Freeman. Centrality in social networks: Conceptual clarification. So-

cial Networks 1, 1(3):215-239, 1979.

[127] S. Skiena. Implementing discrete mathematics: Combinatorics and graph

theory with Mathematica. Reading, MA:Addison-Wesley, pp. 225-253, 1990.

[128] G. Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581-603,

1966.

[129] L. C. Freeman. A set of measures of centrality based on betweenness. So-

ciometry, 40(1):35-41, 1977.

145

[130] P. Bonacich Power and centrality: A family of measures. The American

Journal of Sociology, 92(5):1170-1182, 1987.

[131] S. Brin and L. Page. The PageRank citation ranking: Bringing order to the

web. Stanford InfoLab, 1998.

[132] J. P. Keener. The Perron-Frobenius Theorem and the ranking of football

teams. SIAM Review, 35(1):80-93, 1993.

[133] J. Canny. A computational approach to edge detection. IEEE Trans. PAMI,

8(6):679-698, 1986.

[134] J. Shi and C. Tomasi. Good features to track. 9th IEEE Conference on Com-

puter Vision and Pattern Recognition, pp.593-600, 1994.

[135] T. Lindeberg. Detecting salient blob-like image structures and their scales

with a scale-space primal sketch: A method for focus-of-attention. International

Journal of Computer Vision, 11(3):283-318, 1993.

[136] H. Moravec. Obstacle avoidance and navigation in the real world by a

seeing robot rover. Tech Report CMU-RI-TR-3 Carnegie-Mellon University, 1980.

[137] C. G. Harris and M. J. Stephens. A combined corner and edge detector. In

Proceedings of Fourth Alvey Vision Conference, pp.147-151, 1988.

[138] R. Szeliski. Computer vision: Algorithms and applications. Springer, 2011.

[139] W. Feller. An introduction to probability theory and its applications. Wiley,

1971.

[140] K. Mikolajcyk and C. Schmid. An affine invariant interest point detector.

In Proceedings of the 8th International Conference on Computer Vision, pp.128-142,

2002.

146

[141] J. A. Noble. Descriptions of image surfaces. PhD thesis, Dept. of Engineering

Science, Oxford Univversity, 1989

[142] M. Brown, R. Szeliski and S. Winder. Multi-image matching using multi-

scale oriented patches. CVPR, Vol.1, pp.510-517, 2005

[143] D. G. Lowe. Distinctive image features from scale-invariant keypoints. In-

ternational Journal of Computer Vision, 60(2):91-110, 2004.

[144] S. Edelman, N. Intrator and T. Poggio. Complex cells and object recogni-

tion. Unpublished manuscript: http://kybele.psych.cornell.edu/edelman/archive.html,

1997.

[145] J. G. Auguston and J. Minker. An analysis of some graph theoretical clus-

tering techniques. J. ACM, 17(4):571-588, 1970.

[146] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Trans. Neural

Networks, 16(3):645-678, 2005.

[147] M. Pelillo. What is a clustering? Perspectives from game theory. NIPS

Workshop, 2009.

[148] K. C. Gowda and G. Krishna. Agglomerative clustering using the concept

of mutual nearest neighbourhood. PR, 10(2):105-112, 1978.

[149] J. Francos, H. Permuter and I. H. Jermyn. Gaussian mixture models of

texture and colour for image database retrieval. ICASSP, pp.25-88, 2003.

[150] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proc. Amer. Math. Soc., 7(1):48-50, 1956.

[151] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage

cluster analysis. Journal of the Royal Statistical Society, 18(1):54-64, 1969.

147

[152] F. J. Rohlf. Single-link clustering algorithms. Handbook of Statistics, 1982.

[153] B. Fischer and J. M. Buhmann. Path-based clustering for grouping of

smooth curves and texture segmentation. IEEE Trans. PAMI, 25(4):513-518,

2003.

[154] B. Fischer, T. Zöller, and J. M. Buhmann. Path based pairwise data cluster-

ing with application to texture segmentation. EMMCVPR, pp.235-250, 2001.

[155] S. Pettie. On the shortest path and minimum spanning tree problems. Doc-

toral Dissertation, The University of Texas at Austin, 2003.

[156] A. K. Nemani and R. K. Ahuja. Minimum spanning trees. Wiley Encyclopedia

of Operations Research and Management Science, 2011.

[157] H. Wang and E. Hancock. Probabilistic relaxation labelling using the

fokker-planck equation. Pattern Recognition, 41(11):3393-3411, 2008.

[158] W. M. Rand. Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66(336):846-850, 1971.

[159] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification,

2(1):193-218, 1985.

[160] A. L. N. Fred and J. M. N. Leitão. A new cluster isolation criterion based on

dissimilarity increments. IEEE Trans. on PAMI, 25(8):944-958, 2003.

[161] C. B. D. J. Newman, S. Hettich and C. Merz. UCI repository of machine

learning databases, 1998.

[162] I. Fischer and J. Poland. New methods for spectral clustering. Technical

Report IDSIA-12-04, 2004.

148

[163] S. Sarkar and K. L. Boyer. Quantitative measures of change based on fea-

ture organization: Eigenvalues and eigenvectors. Computer Vision Image Un-

derstanding, 71(1):110-136, 1998.

[164] A. Torsello. Matching hierarchical structures for shape recognition. PhD

Thesis, University of York, 2004.

[165] A. Robles-Kelly and E. R. Hancock. A maximum likelihood framework for

iterative eigendecomposition. In Proc. Int. Conf. Computer Vision, pp.654-661,

2001.

[166] V. Silva, J. B. Tenenbaum and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

[167] A. Robles-Kelly and E. Hancock. A probabilistic spectral framework for

grouping and segmentation. Pattern Recognition, 37(7):1387-1405, 2004.

[168] E. Sober. Let’s razor Occam’s razor. Explanation and Its Limits, Cambridge

University Press, 1994.

[169] J. Rissanen. Information and complexity in statistical modeling. Springer,

2007.

[170] C. Kittel and H. Kroemer. Thermal physics. United States of America: W. H.

Freeman and Company, 1980.

[171] J. Day and W. So. Graph energy change due to edge deletion. Linear Algebra

and its Applications, 428(8-9):2070-2078, 2008.

[172] P. McCullagh and J. Nelder. Generalized linear models. Boca Raton: Chap-

man and Hall/CRC, 1989.

149

[173] I. Gutman. The energy of a graph. Ber. Math. Stat. Sekt. Forschungszentrum

Graz., Vol.103, pp.1-22, 1978.

[174] B. J. McClelland. Properties of the latent roots of a matrix: The estimation

of π-electron energies. J. Chem. Phys., Vol.54, pp.640-643, 1971.

[175] I. Gutman. The energy of a graph: Old and new results. A. Betten, A. Kohn-

ert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications,

Springer-Verlag, Berlin, pp.196C211, 2001.

[176] R. Balakrishnan. The energy of a graph. Linear Algebra and its Applications,

387:287-295, 2004.

[177] M. Kamal Kumar. Relation between domination number, energy of grpah

and rank. International Journal of Mathematics and Scientific Computing, 1(1):58-

61, 2011.

[178] I. Gutman and B. Zhou. Laplacian energy of a graph. Linear Algebra and its

Applications, 44:29-37, 2006.

[179] B. Xiao, Y. Z. Song and P. Hall. Learning invariant structure for object iden-

tification by using graph methods. Computer Vision and Image Understanding,

115(7):1023-1031, 2011.

[180] P. Erdős and A. Rényi. On the evolution of random graphs. Publications of

the Mathematical Institute of the Hungarian Academy of Sciences, 5:17-61, 1960.

[181] C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine and C. Stein. Ex-

perimental study of minimum cut algorithms. Proc. 8th Annual ACM-SIAM

Symp. on Discrete Algorithms, pp.324-333, 1997.

150

[182] J. Sun, M. Ovsjanikov and L. Guibas. A concise and provably informa-

tive multi-scale signature-based on heat diffusion. Computer Graphics Forum,

pp.1383-1392, 2009.

[183] E. Estrada and J. A. Rodriguez-Velazquez. Subgraph centrality in complex

networks. Phys.Lett 319, Vol.71, No.5, 2005.

[184] E. Estrada and N. Hatano. Statistical-mechanical approach to subgraph

centrality in complex networks. Chemical Physics Letter, pp. 247-251, 2009.

[185] D. J. Higham, E. Estrada and N. Hatano. Communicability and multipar-

tite structure in complex networks at negative absolute temperatures. Physical

Review, Vol.78, No.2, 2008.

[186] F. Escolano, E. R. Hancock and M. A. Lozano. Heat diffusion: Thermody-

namic depth complexity of networks. Physical Review, Vol.85, No.3, 2012.

[187] F. A. Haight. Handbook of the Poisson distribution. New York: John Wiley

& Sons, 1967.

[188] M. Volt. Asymptotics of heat kernels on projective spaces of large dimen-

sions and on disk hypergroups. Math. Nachr., pp.225-238, 1998.

[189] L. P. Chew. There is a planar graph almost as good as the complete graph.

Proceedings of the Second Symposium on Computational Geometry, pp.169-177,

1986.

[190] D. P. Dobkin, S. J. Friedman and K. J. Supowit. Delaunay graphs are almost

as good as complete graphs. Journal Discrete & Computational Geometry, pp.20-

26, 1990.

[191] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the com-

plete Euclidean graph. Discrete and Computational Geometry, 7(1):13-28, 1992.

151

[192] G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge

University Press, 2007.

[193] X. Bai. Heat kernel analysis on graphs. PhD Thesis, University of York, 2007.

[194] S. R. S. Varadhan On the behavior of the fundamental solution of the heat

equation with variable coefficients. Communications on Pure and Applied Mathe-

matics, 20(2):431-455, 1967.

[195] S. T. Yau and R. M. Schoen. Differential geometry. Science Publication, 1988.

[196] X. Bai, E. R. Hancock and R. C. Wilson. Geometric characterization and

clustering of graphs using heat kernel embeddings. Image and Vision Comput-

ing, 28(6):1003-1021, 2010.

[197] A. Grigor’yan. Heat kernels on manifolds, graphs and fractals. Progress in

Mathematics, pp.393-406, 2001.

[198] E. F. Moore. The shortest path through a maze. In Proc. Internat. Symp.

Switching Th., Part II. Cambridge. MA: Harvard University Press, pp.285-292,

1959.

[199] B. Luo. Statistical methods for point pattern matching. PhD Thesis, Univer-

sity of York, 2001.

[200] Face database of the Max Planck Institute for biological cybernetics.

http://faces.kyb.tuebingen.mpg.de

[201] S. A. Nene, S. K. Nayar and H. Murase. Columbia Object Image Library

(COIL-20). Technical Report CUCS-005-96, 1996.

[202] CMU house sequence.

http://vasc.ri.cmu.edu/idb/html/motion/house/index.html.

152

[203] M. Gori, M. Maggini and L. Sarti. Graph matching using random walks.

ICPR, pp.394-397, 2004.

[204] R. C. Wilson and E. R. Hancock. Graph matching by discrete relaxation.

Pattern Recognition in Practice, Vol.16, pp.165-176, 1994.

[205] P. Ren, R. C. Wilson and E. R. Hancock. Pattern vectors from the Ihara zeta

function. ICPR, pp.1-4, 2008.

[206] L. Han, R. C. Wilson and E. R. Hancock. A supergraph-based generative

model. ICPR, pp.1566-1569, 2010.

153

