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Abstract

Bayesian Approach to Investigating Supersymmetric Models
Andrew Fowlie

With Bayesian statistics, constrained and phenomenological supersymmetric mod-
els are examined and compared with the strongest contemporary experimental
results, including the Higgs discovery, Large Hadron Collider (LHC) searches for
supersymmetry, dark matter relic density measurements, rare decays and elec-
troweak precision tests. Preliminary introductions to relevant supersymmetry phe-
nomenology, Bayesian statistics and algorithms, and comprehensive descriptions
of likelihood functions for experimental results are provided. Likelihood functions
for searches for supersymmetry at the LHC are built at the event-level fromMonte-
Carlo simulations, including CMS 35pb−1, 1.1 fb−1 and 4.4 fb−1 searches. Five
studies of different supersymmetric models, including the Constrained Minimal
Supersymmetric Standard Model (CMSSM), the Non-Universal Higgs Model, the
Non-Universal Gaugino Model and phenomenological MSSM models, and for dif-
ferent states of knowledge, including hypothetical benchmark scenarios, and pre-
and post-Higgs discovery, are comprehensively presented. Credible regions for
model parameters, Bayesian evidences, best-fit points and p-values are calculated
in each study. We demonstrate that the CMSSM’s soft-breakingmasses could be de-
termined fromLHC searcheswith 100 fb−1 at

√
s = 14TeV for a specific favourable

choice of parameters consistent with all current constraints. The favoured soft-
breaking scale in the CMSSM increases to MSUSY ∼ 1TeVwith stau-coannihilation
and MSUSY ∼ 3TeV with A-funnel annihilation. Agreement with the anomalous
magnetic moment of the muon (δaµ) is difficult in the CMSSM, and, without δaµ,
µ < 0 is insignificantly preferred. The CMSSM struggles to simultaneously agree
with experimental results — its p-value is ostensibly significant. In our pMSSM
model with nine free parameters, if the mass of the lightest neutralino is between
200GeV and 500GeV, agreement with δaµ and electroweakino searches at the LHC
is possible.
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Chapter 1

Theory

This thesis charts the changing status of supersymmetry (SUSY) during an historic
period in high-energy physics — the early years of the Large Hadron Collider
(LHC) and its discovery of the Higgs boson. Whilst the Standard Model [1–4]
describes most phenomena with extraordinary precision, technical and conceptual
problems and puzzles suggest that it might be extended by supersymmetry. With
Bayesian statistics, we investigate the best regions of supersymmetric models’
parameter spaces, and the models’ viabilities, considering various experimental
results, including those from the LHC. We review supersymmetry, our Bayesian
methodology and relevant experimental results.

1.1 SUSY motivation

The motivations for supersymmetry [5–7] are manifold; we review an incomplete
selection of the three strongest arguments [8].

1.1.1 The hierarchy problem

The “hierarchy problem” is a technical problem concerning the hierarchy between
the electroweak scale MEW ∼ 103 GeV and the Planck scale MP ∼ 1019 GeV, at
which gravity is relevant. Although the existence of this hierarchy is itself a prob-
lem [9–11], the “hierarchy problem” is that in the Standard Model this hierarchy is
destroyed by quantum corrections to the electroweak scale.

The destruction of the hierarchy is facilitated by the Standard Model’s scalar
field; scalar fields are pathological in a quantum field theory without a supersym-

1



2 Chapter 1. Theory

metry [40]. The Standard Model’s scalar potential,

V(φ) = m2
φφ2 + λφ4, (1.1)

results in electroweak symmetry breaking via the famous Higgs mechanism. The
predicted electroweak scale is v2 = −m2

φ/λ. From µ-decay, we know that v ≈
246GeV.

Consider the quantum loop corrections to fermion and scalarmasses in the Stan-
dard Model in Fig. 1.1.1. The fermions’ masses are protected by chiral symmetry
in the massless limit via the mass insertion in Fig. 1.1.1a,

δm f ∼ m f ln

(
MP
m f

)
, (1.2)

where MP is the Standard Model’s ultraviolet cutoff; the scale at which gravity
becomes important. The gauge bosons’ masses are similarly protected by their
gauge symmetries. The scalar, however, has no gauge or chiral symmetry to protect
its mass [40]; the quantum loop in Fig. 1.1.1b is quadratic in the Planck scale,

δm2
φ ∼ M2

P. (1.3)

Our expression for the electroweak scale including quantum loop corrections,

m2
φ + δm2

φ = −λv2, (1.4)

m2
φ + M2

P ≈ −λ (246GeV)2

requires a miraculous cancellation between the tree-level scalar mass, its correc-
tions and the quartic coupling. Were we to interpret the Standard Model as the
“ultimate,” fundamental theory, we could renormalise the scalar mass and remove
the quadratic corrections via counterterms. The hierarchy problem is that quantum
corrections drag the electroweak scale to the highest mass scale in the theory; it
is a sensitivity to new physics, which must truncate the loop corrections or else
require an incredible degree of cancellations.

There are three contributions to the one-loop quantum corrections to the scalar
mass in Eq. 1.4: gauge couplings, Yukawa couplings and the scalar’s self-interaction
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from the quartic coupling in the scalar potential,

m2
φ +

1
16π2

[
CW g2 + Cφλ−∑

f
C f y2

f

]
M2

P = −λ (246GeV)2 , (1.5)

where the C’s are numerical coefficients. We would like the loop corrections in
brackets to sum to zero, though not by a miraculous cancellation, but naturally.
We might try:

Introducing extra scalar fields for each fermionic degree of freedom with
couplings λs = −y2

f ; the original Yukawa couplings cancel with these new
scalar field couplings if the extra scalars’ masses equal the fermions’ masses.

Introducing extra fermionic fields for each boson with identical gauge cou-
plings; the original quartic and gauge couplings cancel if the quartic coupling
and the gauge couplings are suitably related.

This prescription is “supersymmetry;” supersymmetry relates bosonic and
fermionic degrees of freedom and couplings in such a way that the electroweak
scale is stable from quantum loop corrections [29]. By utilising the difference in
sign between fermionic and bosonic loops, supersymmetry protects the scalar’s
mass. Other solutions to this problem exist, including strong dynamics [12], extra
dimensions [13] and conformal symmetries [14].

1.1.2 Dark matter

“Dark matter” is an experimental motivation for supersymmetry. The evidence
that non-luminous, non-baryonic matter pervades the Universe with substantial
abundance — “dark matter” — is overwhelming [15–18]. This evidence stems
from independent techniques to infer the mass of luminous and non-luminous
matter:

An early example of such an inference was that of Zwicky (1933) [19]; he
found that the mass of the Coma cluster from the virial theorem was sub-
stantially greater than that of the luminous matter, and posited the existence
of dark matter within the cluster.



4 Chapter 1. Theory

Luminous matter is concentrated at the centre of galaxies. Within individual
galaxies, in the absence of dark matter, stars ought to orbit with “Keple-
rian” velocity curves — their rotation velocities ought to decrease with their
distance from the galactic centre. The observed velocity curves, however,
are constant with distance from the galactic centre, indicating the presence
of dark matter within galaxies, evenly-distributed with distance from the
galactic centre.

“Lensing” is a modern technique to infer dark matter, independently from
kinematic techniques. From general relativity, geodesics — and hence light
rays — ought to be bent by matter. If dark matter is present between us
and a bright galaxy, the light from the galaxy ought to be distorted [20].
This distortion was observed, indicating dark matter between galaxies, with
substantial mass. “Micro-lensing,” however, was not observed at a sufficient
rate, indicating the absence of a substantial number of non-luminous baryonic
objects in the Universe [21].

Cosmology, independently, indicates dark matter; the Universe’s large-scale
structure requires neutral matter so that structure can conglomerate before re-
combination [22]. Furthermore, dark and baryonic matter behave differently
in cosmology; because baryonicmatter coupleswith light, its “photon-baryon
fluid” causes fluctuations in the cosmic microwave background (baryon
acoustic oscillations).

Recent compelling evidence for non-baryonic dark matter is from collisions
between galaxy clusters; the “bullet” cluster resulted from such a collision. A
cluster’s baryonicmass is dominated by its intergalactic gas. During collisions
between galaxy clusters, this gas is heated, and we observe its location from
its X-ray radiation. Lensing of light by the bullet cluster ought to occur at
these locations. The mass distributions inferred from X-ray radiation and
from lensing, however, disagree, suggesting that the majority of the matter
in the bullet cluster is dark matter [23].

In summary, experiments with a variety of techniques and distance-scales
within the Universe are in concordance and find overwhelming evidence for dark
matter which is approximately 80% of the Universe’s mass density, 20% of its
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energy density, non-baryonic, electrically neutral, weakly interacting, and cold. Su-
persymmetry with R-parity (forthcoming, Sec. 1.5) includes a particle that satisfies
these desiderata; no such particle exists in the Standard Model.

1.1.3 Gauge coupling unification

A popular proposal is that the Standard Model gauge groups are embedded in
a single, simple Lie group, which is spontaneously broken down to the known
Standard Model semi-simple product gauge group (grand unification) [24,25]. Be-
cause this model is described by a single non-Abelian group, all quantum numbers
are discrete eigenvalues and charges, including hypercharge, are quantised. The
grand unified theory (GUT) has a single gauge coupling, common to its subgroups,
but, after symmetry breaking, the subgroups’ couplings deviate as heavy gauge
bosons decouple from the renormalisation group evolution. This explains the
different subgroup couplings observed at low energies. Because the couplings
differ considerably at low energy but their running is logarithmic, we anticipate
that the GUT scale must be high.

This proposal, unfortunately, fails in the Standard Model. When the Standard
Model gauge couplings are ran from their measured infrared values to the ultra-
violet, they fail to unify. However, including supersymmetric particle content in
the group flow at . 10TeV results in unification at MGUT ∼ 1016 GeV, because
the loop coefficients are suitably altered by an additional Higgs doublet [26]. The
qualitative behaviour of the couplings is unaffected, only SUc(3) has asymptotic
freedom.

1.2 SUSY algebra

We consider the SUSY algebra, that is, the SUSY transformations, their generators
and their commutation and anti-commutation rules. The Coleman-Mandula theo-
rem [27] forbids conserved charges with non-trivial Lorentz transformations. A
simplified argument considers a 1 + 2→ 3 + 4 scattering process with Poincaré
invariance, in which one attempts to construct an additional tensor symmetry
generator. We find a no-go theorem; we cannot construct such a generator, because
the additional symmetry prohibits non-trivial scattering. We find, however, that
the no-go theorem is evaded if the new charges transform as spinors and modify
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f

φ

f

(a) Fermion mass correction with
mass insertion.

φ

f

f
φ

(b) Scalar mass correction from a
fermion loop.

φ φ

W

φ

(c) Scalar mass correction from a
boson loop.

φ φ

φ φ

(d) Scalar mass correction from a
quartic self-interaction.

Figure 1.1.1: (a) Scalar one-loop correction to fermion mass and one-loop corrections to the scalar
mass in the Standard Model from (b) fermions, (c) bosons and (d) a quartic self-interaction.
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spin by half a unit [42],
Qα | j〉 =| j± 1/2〉. (1.6)

Because spin is not modified in a 1 + 2→ 3 + 4 scattering process, the Coleman-
Mandula argument is stopped.

The symmetry’s charges and thus their anti-commutator must commute with
the Hamiltonian, the generator of time translations,

[Qα, H] = [{Qα, Qβ}, H] = 0, (1.7)

where Qα is a two-component left-handed Weyl spinor with undotted left-handed
spinor index α = 1, 2. Because, by its symmetry, the anti-commutator has three
independent components, we suspect it transforms as vector. Combined with our
knowledge that it commutes with the Hamiltonian from Coleman-Mandula type
arguments, we suspect that

{Qα, Qβ} ∼ Pµ, (1.8)

where Pµ, the four-momentum generator of space-time translations, is the only
available conserved four-vector. We later find that this informal reasoning is slightly
wrong.

We construct a simple toy Lagrangian (the Wess-Zumino model [5]) with a
Weyl spinor and a complex scalar,

LWess-Zumino = −∂µφ∗∂µφ− iψ†σµ∂µψ. (1.9)

where σµ are two-by-two matrices (1,−σi) where σi are two-by-two Pauli matrices.

The Weyl spinor, ψ, has two (four) on-shell (off-shell) degrees of freedom and
the complex scalar, φ, has two degrees of freedom. We know from Eq. 1.6 and from
our motivations that SUSY transformations ought to relate bosons with fermions.
In fact, the infinitesimal transformations are [41]:

δφ = εαψα, (1.10)

δφ∗ = ε†α̇ψ†
α̇,

δψα = iσµ
αα̇ε†α̇∂µφ,

δψ†
α̇ = −iεασ

µ
αα̇∂µφ∗,
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where ε is an infinitesimal Weyl spinor that parameterises the transformation.

The Wess-Zumino Lagrangian is invariant under these transformations (to
within a total derivative). The algebra, however, only closes on-shell, that is, if we
use the Euler-Lagrange equations of motion. This is not surprising — the number
of off-shell bosonic degrees of freedom and the number of off-shell fermionic
degrees of freedom were not equal. To remedy this, we introduce an “auxiliary”
complex scalar field F, with transformations that close the algebra and with zero
(two) on-shell (off-shell) degrees of freedom. From the Noether procedure, we find
the conserved charges and their algebras [41]:

{Qα, Q†
β̇
} = 2σ

µ

αβ̇
Pµ, (1.11)

{Qα, Qβ} = 0,

[Qα, Pµ] = 0.

This algebra differs from that which we anticipated in Eq. 1.8.

TheWess-Zumino model, with a complex scalar, Weyl fermion and an auxiliary
complex scalar to close the algebra, is a “chiral supermultiplet” representation of
the algebra. Our ultimate goal is to “supersymmetrise” the Standard Model, but
chiral supermultiplets cannot contain gauge bosons. Gauge bosons live in a “gauge
supermultiplet.” The gauge supermultiplet contains gauge bosons Aa

µ, where the
adjoint index a = 1, . . . , N2 − 1 for SU(N), and a Weyl fermion (gaugino) λa, with
transformations in the Wess-Zumino gauge [41]:

δAa
µ =

1√
2
(ε†

α̇σαα̇
µ λa

α + λ†a
α̇ σαα̇

µ εα), (1.12)

δλa
α =

i
2
√

2
σ

µ
αα̇σαα̇

µ εαFa
µµ +

1√
2

εαDa.

The gauge boson has two (three) on-shell (off-shell) degrees of freedom and the
gaugino has two (four) on-shell (off-shell) degrees of freedom. Similarly to the
chiral supermultiplet, the gauge supermultiplet requires an auxiliary real scalar
field Da to close the algebra.
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1.3 SUSY Lagrangian

In Sec. 1.1 and Sec. 1.2, we discussed ourmotivations for constructing SUSY theories
and their underlying algebras; we now construct a full supersymmetric Lagrangian
in left-handed Weyl spinors. The kinetic and gauge interactions for a scalar, a Weyl
fermion and a gauge boson are:

Lscalar = −Dµφ∗Dµφ, (1.13)

Lfermion = −iψ†σµDµψ, (1.14)

Lgauge = −
1
4

Fa
µνFµν

a , (1.15)

where Fa
µν is a field-strength tensor with adjoint index a = 1, . . . , N2− 1, and Dµ is

a covariant derivative, including relevant gauge interactions.
In addition, the auxiliary fields, F and D, have kinetic pieces,

Laux = F∗F +
1
2

DaDa, (1.16)

where Da must not be confused with the covariant derivative Dµ. The auxiliary
fields are ultimately eliminated by their trivial equations of motion.

We are, however, permitted interactions between the scalars and the fermions in
the chiral supermultiplets and gauge interactions between the scalar and fermion
within a chiral supermultiplet and gauginos, in addition to the gauge interactions
in the covariant derivatives. The permitted supersymmetric interactions between
scalars and fermions are generalised by the “superpotential,” W, a holomorphic
polynomial in the scalar fields, with a maximum operator dimension of three for
renormalisable interactions,

W = Liφi +
1
2

Mijφiφj +
1
6

yijkφiφjφk, (1.17)

where the Latin indices represent distinct fields and not, e.g., weak isospin indices.
This must, of course, respect Standard Model gauge symmetries. Because the
Standard Model has no gauge singlets, the linear term is forbidden in minimal
models. The quadratic and cubic terms are permitted only if the combination
of scalars is a singlet. The superpotential’s functional derivatives specify new
interactions,

Lchiral int =

(
−1

2
W ijψiψj + W iFi

)
+ c.c., (1.18)
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where only for the superpotential superscripts and subscripts indicate functional
differentiation with respect to the scalar field with that index, e.g.,

W i =
δW
δφi

. (1.19)

The superpotential includes Yukawa interactions for Standard Model fields in the
W ijψiψj terms. It does not, however, specify their values.

The superpotential contributes additional interactions via so-called F-terms.
The Euler-Lagrange equation for the auxiliary field F is trivial; it contains no
derivatives, and hence F is a non-propagating, unphysical field. We find Fi = −W∗i ,
resulting in interactions from Eq. 1.16 and Eq. 1.18,

LF-terms = F∗i Fi + WiFi + W∗i Fi∗ = −W iW∗i (1.20)

= −M∗ik Mkjφ∗iφj −
1
2

Miny∗jknφiφ
∗jφk

− 1
2

M∗inyjknφ∗iφjφk −
1
4

yijny∗klnφiφjφ
∗kφ∗l.

In the Standard Model, gauge interactions result from replacing the derivative
with the covariant derivative, ∂µ → Dµ, but this substitution cannot generate
interactions between gaugino fields (or gauge supermultiplet auxiliary fields) and
scalar or fermion fields. The additional supersymmetric, gauge invariant and
renormalisable interactions are:

Lgauge int = −
√

2 ga (φ
∗Taψ) λa −

√
2 gaλ†a

(
ψ†Taφ

)
+ ga (φ

∗Taφ) Da, (1.21)

where supersymmetry requires that the couplings are the Standard Model gauge
couplings, and Ta are the generators associated with a field’s adjoint index a. The
fields φ and ψ must belong to the same chiral supermultiplet and must transform
in the fundamental representation of the gauge group with generators Ta. We
eliminate Da by its trivial equation of motion, Da = −g(φ∗Taφ), resulting in
D-terms from Eq. 1.16 and Eq. 1.21,

LD-terms =
1
2

DaDa − DaDa = −
1
2

DaDa =
1
2

g2
a(φ
∗Taφ)2, (1.22)

where a sums the adjoint index of every Standard Model gauge group and ga is
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the associated gauge coupling (although a = 1, . . . , N2 − 1 for each gauge group
SU(N), ga only represents one of the three gauge group couplings).

To check that a Lagrangian is supersymmetric, we check that δL = 0 modulo
a total derivative from our transformation laws in Eq. 1.10 and Eq. 1.12. This
laborious procedure is simplified with “superspace” formalism, in which regular
spacetime xµ is extended with spinor dimensions {xµ, θα, θ β̇} that have Grassman
algebra [26, 28, 29]. Supersymmetric invariance is manifest in constructions in
superspace.

A “superfield” is an expansion in θα and θ β̇. Because θα and θ β̇ are Grassman
numbers, a superfield terminates at θθθθ. The co-efficients in a superfield’s Grass-
man expansion are identified with fields in chiral and gauge supermultiplets. The
chiral and gauge superfields are irreducible representations of the supersymmetry
algebra. The superpotential in Eq. 1.17 can be rewritten in chiral superfields, Φ̂;

Ŵ = LiΦ̂i +
1
2

MijΦ̂iΦ̂j +
1
6

yijkΦ̂iΦ̂jΦ̂k. (1.23)

Because Ŵ is a chiral superfield, its F-term transforms as a total derivative under a
supersymmetry transformation. In fact, the F-term of Ŵ in Eq. 1.23 is W in Eq. 1.17.

1.4 SUSY breaking

Unbroken SUSY posits a “mirror” of the Standard Model. Because, however, we
observe no e.g., massless photino or gluino, supersymmetry must be broken. If
SUSY is to solve the hierarchy problem, the breaking scale cannot be much greater
than the electroweak symmetry breaking scale.

Electroweak symmetry breaking would simultaneously break supersymmetry,
because Higgs VEVs in F-terms (Eq. 1.20) and D-terms (Eq. 1.22) induce mass
splittings between superpartners. The linear algebra is such, however, that some
sparticles would be lighter than their Standard Model superpartners. We need an
additional mechanism for supersymmetry breaking at a mass scale heavier than
the electroweak scale for phenomenologically viable sparticle masses.

Supersymmetry is spontaneously broken if, although the Lagrangian respects
SUSY, the vacuum breaks SUSY,

Qα |0〉 6= 0. (1.24)
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With Eq. 1.11, we find that if SUSY is broken by the vacuum,

〈0 |H| 0〉 = 〈0 |V| 0〉 > 0. (1.25)

Unfortunately, SUSY breaking in the scalar potential cannot work, because there are
no singlet fields for F-term breaking and D-term breaking would break colour or
electromagnetism. The “supertrace” theorem demonstrates that if SUSY is broken
by tree-level renormalisable interactions, within a supermultiplet,

m2
φ1
+ m2

φ2
= 2m2

ψ. (1.26)

SUSY must, therefore, be broken radiatively from a “hidden sector” [41]. An inter-
action mediates SUSY breaking from this “hidden sector” to our “visible sector.”
Because experiments restrict flavour changing neutral currents, the interactions
ought to be approximately flavour blind, as depicted in Fig. 1.4.1. Gravity and
gauge interactions are popular choices for the interactions [30].

These breaking masses must be “soft” — by “softly” breaking supersymmetry,
by the non-renormalisability theorem [29], no quadratic corrections to the elec-
troweak scale are reintroduced, though logarithmic corrections are introduced.
The soft-breaking operators must have dimension three or less.

1.5 The MSSM

The “Minimal Supersymmetric Standard Model” (MSSM) supersymmetrises the
Standard Model with minimal additional fields and with minimal additional
interactions [31,32]. The MSSM includes explicit soft-breaking masses, but posits
no mechanism for supersymmetry breaking; it is phenomenological. We define the
MSSM by its superpotential and by the structure of its soft-breaking terms. The
MSSM has two Higgs-doublets — a necessity in supersymmetry to prevent a chiral
anomaly (a single higgsino would result in Tr(Q) 6= 0) and for Yukawa interactions
for up-type and down-type quarks (the superpotential must be holomorphic —
the iτH∗ construction of the Standard Model, with the correct hypercharge for
coupling with down-type quarks, is forbidden). The literature inMSSMweak-scale
phenomenology is vast; see e.g., [33–44].

The particles in the MSSM’s chiral and gauge supermultiplets are listed in Ta-
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ble 1.5.1 and Table 1.5.2 respectively, in left-handedWeyl spinors and in interaction
eigenstates. We denote the right-handed chiral supermultiplets by bars, e.g., ū,
and the superparticle within a supermultiplet with a tilde, e.g., ũ. Supermultiplets
and Standard Model content within a supermultiplet should be distinguished by
context. The superparticle fields and their Standard Model partners transform
in identical representations of the Standard Model gauge groups. The MSSM
contains minimal particle content — it does not include right-handed neutrinos.

The MSSM superpotential is

WMSSM = ũyuQ̃Hu − d̃ydQ̃Hd − ẽye L̃Hd − µHuHd, (1.27)

where the Yukawa matrices differ from those in the Standard Model, because
the MSSM has two Higgs-doublets, and µ, the bilinear, is the only dimensionful
coupling. The Yukawa matrices are divided by factors of sin β and cos β relative
to the Standard Model Yukawa couplings. Requiring perturbativity in the t- and
b-Yukawa couplings below the GUT scale results in 1.2 . tan β . 63.∗ Because
the superpotential must be holomorphic, the iτH∗ transformation, present in the
Standard Model’s Yukawa interaction for the down-type quarks, is forbidden; we
instead introduce a second Higgs doublet.

The MSSM superpotential omits the lepton and baryon number violating oper-
ators

W∆L=1 = λijk L̃i L̃j ẽk + λ′ijk L̃iQ̃jd̃k + µ′i L̃iHu, (1.28)

W∆B=1 = λ′′ijkũid̃jd̃k.

In the Standard Model, lepton and baryon number violating operators are for-
bidden by an accidental symmetry. If λ′ and λ′′ were present, the proton would
decay at a rate much faster than that which is observed. In the MSSM, the op-
erators in Eq. 1.28 are forbidden by “R-parity:” a discrete Z2 symmetry with a
multiplicatively conserved quantum number,

PR = (−1)3(B−L)+2s . (1.29)

With this prescription, Standard Model particles have even parity (PR = 1) and

∗ The definition of tan β is forthcoming; see Eq. 1.35.
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“Hidden
sector,”
����SUSY

MSSM,
“visible
sector”

“Flavour-blind”
interactions

Figure 1.4.1: Schematic of flavour-blind interactions transmitting supersymmetry breaking from a
“hidden sector” to the MSSM.

Supermultiplet Spin-1
2 Spin-0

Quarks and squarks Q Q = (uL, dL)
T Q̃ =

(
ũL, d̃L

)T

ū ū = u†
R ũ = ũ∗R

d̄ d̄ = d†
R d̃ = d̃∗R

Leptons and sleptons L L = (ν, eL)
T L̃ = (ν̃, ẽL)

T

ē ē = e†
R ẽ = ẽ∗R

higgsinos and Higgs Hu H̃u =
(

H̃+
u , H̃0

u
)T Hu =

(
H+

u , H0
u
)T

Hd H̃d =
(

H̃0
d , H̃−d

)T Hd =
(

H0
d , H−d

)T

Table 1.5.1: The interaction eigenstates in chiral supermultiplets in the MSSM in left-handed
Weyl spinors.

Spin-1 Spin-1
2

Gluon and gluino g g̃
W-bosons and winos W i=1,2,3 W̃

i=1,2,3

B-boson and bino B B̃

Table 1.5.2: The interaction eigenstates in gauge supermultiplets in the MSSM.
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their superpartners have odd parity (PR = −1). This discrete symmetry could
be a subgroup of a broken symmetry; it is phenomenologically and theoretically
motivated.

R-parity has an astounding cosmological implication; in conjunction with
conservation of energy, it prohibits decays of the lightest supersymmetric particle
(LSP). The LSP’s potential decays to Standard Model particles are forbidden by
R-parity and its potential decays to an odd number of superparticles and Standard
Model particles are forbidden by conservation of energy. With an R-parity, the
LSP is, therefore, stable and, if it is weakly interacting, could be dark matter. If the
LSP is electrically charged in the MSSM, the model is forbidden.

In the MSSM, the neutral sparticles are neutralinos and sneutrinos. Sneutrinos,
however, cannot be all of the dark matter. Sneutrinos would scatter with nucleons
via a Z-boson in the t-channel [45]. If sneutrinos dominated the local density
of dark matter, they would have been detected in dark matter direct detection
searches (forthcoming in Sec. 3.3.4). The neutralino, however, could be all of the
dark matter or a subdominant component of dark matter.

Within the approximation that the Yukawa matrices are dominated by the
entries from the third families, we can approximate the MSSM superpotential;

WMSSM ≈yt

(
t̃ t̃H0

u − t̃ b̃H+
u

)
− yb

(
b̃ t̃H−d − b̃b̃H0

d

)
− yτ

(
τ̃ ν̃τ H−d − τ̃ τ̃ H0

d

)

(1.30)

+ µ
(

H+
u H−d − H0

uH0
d

)
.

In the MSSM, we include explicit soft-breaking masses, though posit no mecha-
nism for their origin or their scale. The soft-breaking Lagrangian in the MSSM is
minimal, in that in omits non-analytic scalar-cubed couplings φ∗φφ. Without loss
of generality,

Lsoft =−
1
2
(

M3 g̃ g̃ + M2W̃W̃ + M1B̃B̃ + c.c.
)

(1.31)

−
(

ũauQ̃Hu − d̃adQ̃Hd − ẽae L̃Hd + c.c.
)

− Q̃†m2
QQ̃ − L̃†m2

L L̃ + ũm2
ūũ†

+ d̃m2
d̄d̃

†
+ ẽm2

ē ẽ†

−m2
Hu

H∗u Hu −m2
Hd

H∗d Hd − (bHuHd + c.c.) .

The breaking parameters are matrices in quark and lepton family space, which
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could be complex, though must be Hermitian. Whilst such explicit masses break
supersymmetry, because only part of each supermultiplet is granted a mass, elec-
troweak symmetry is preserved. These parameters have an implicit scale de-
pendence; their behaviour is determined by their beta-functions (forthcoming,
Sec. 1.5.5).

1.5.1 The MSSM particle spectrum

Sparticles in the MSSM receive contributions to their masses from electroweak
symmetry breaking and supersymmetry breaking, including contributions that
mix sparticles’ interaction eigenstates in mass eigenstates.

Squarks and sleptons

The left- and right-handed squarks∗ receive contributions to their masses from elec-
troweak symmetry breaking via diagonal soft-breaking masses (Eq. 1.31), diagonal
F-term Yukawa couplings (Eq. 1.20), resulting in contributions equal to Standard
Model quark masses, diagonal D-terms (Eq. 1.22), ∆,† off-diagonal soft-breaking
trilinears (Eq. 1.31) after electroweak symmetry breaking and off-diagonal F-terms
after electroweak symmetry breaking. For the top-squark,

M2
t̃ =


 m2

Q̃3
+ M2

t + ∆ ũL
v(a∗t sin β− µyt cos β)

v(at sin β− µ∗yt cos β) m2
ũ3
+ M2

t + ∆ ũR


 . (1.32)

Because off-diagonal elements are proportional to the Yukawa couplings (if at is
assumed to be proportional to yt), left- and right-handed squarks are significantly
mixed only for third-generation squarks and sleptons. In fact, we neglect mixing
for first- and second-generation squarks and sleptons. The diagonal contribution
equal to the Standard Model mass is present for all squarks and sleptons, but only
important for the top-squark.

The left- and right-handed sleptons are mixed in a similar fashion. For the

∗ A scalar’s “handedness” is the chirality of its fermionic superpartner.
† The D-term contribution to any sfermion’s mass is ∆ = M2

Z cos 2β(T3 −Q) sin2 θW where θW
is the Weinberg angle, Q is the sfermion’s electric charge and T3 is the sfermion’s weak isospin.
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τ-slepton,

M2
τ̃ =


 m2

L̃3
+ ∆ ẽL

v(a∗τ cos β− µyτ sin β)

v(aτ cos β− µ∗yτ sin β) m2
ẽ3
+ ∆ ẽR


 . (1.33)

We diagonalise these mass matrices to obtain the physical states, which are linear
superpositions of left- and right-handed states. This mixing, however, is neglected
for the first- and second-generation squarks and sleptons, for which the physical
states are identical to the interaction states. Because squark and slepton mixing in
the third-generation splits the mass eigenvalues, the lightest top-squark and the
lightest τ-slepton are often the lightest squark and slepton, respectively.

Higgs bosons

Supersymmetry requires twoHiggs-doublets, so the structure of its scalar potential
is more complicated than that of the Standard Model. The quartic Higgs coupling
in the MSSM results from D-terms in Eq. 1.22, λ = 1/8(g2 + g′2), where g and g′

are the SUL(2) and UY(1) gauge couplings respectively (as was required to cancel
quadratic corrections to the Higgs mass in Sec. 1.1.1), unlike in the StandardModel,
in which it is an unspecified free parameter. The quadratic Higgs couplings are
|µ|2 from F-terms (Eq. 1.20), and m2

Hu,d
and b from the soft-breaking masses. We

sum quadratic and quartic terms to obtain the neutral scalar potential

V =(|µ|2 + m2
Hu
)|H0

u|2 + (|µ|2 + m2
Hd
)|H0

d |2 − (bH0
uH0

d + c.c.) (1.34)

+ 1/8(g2 + g′2)(|H0
u|2 − |H0

d |2).

In the MSSM, the electroweak symmetry-breaking mechanism is that the
MSSM’s two Higgs-doublets receive VEVs, vu and vd, related to the Standard
Model VEV by v2 = v2

u + v2
d by the gauge bosons’ masses. We parameterise the

VEVs by

tan β =
vu

vd
, (1.35)

vu = v sin β,

vd = v cos β.
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The fermion masses in the MSSM from electroweak symmetry breaking are, for
example,

Mt = ytvu = ytv sin β⇒ yt =
Mt

v sin β
=

ySMt
sin β

, (1.36)

mb = ybvd = ybv cos β⇒ yb =
mb

v cos β
=

ySMb
cos β

.

The Yukawa couplings in the MSSM superpotential are those in the Standard
Model, though scaled so that StandardModel masses are those measured. Because
we want the Yukawa couplings to be perturbative up to the GUT scale, neither
sin β nor cos β can be small; consequently, it must be that 1.2 . tan β . 63.

Prior to electroweak symmetry breaking, the Higgs doublets have 8 real degrees
of freedom. When electroweak symmetry is broken, the three broken generators
“eat” three degrees of freedom, resulting in three massive gauge bosons and in
five massive Higgs bosons: light and heavy CP-even Higgs, h and H, a CP-odd
Higgs, A and a charged Higgs, H±. The lightest Higgs is an admixture of neutral
H0

u and H0
d , mixed by an angle α, that results from diagonalising a mass matrix.

Within the “decoupling regime,” in which mA � MZ, we obtain α ≈ β− π/2 and
the lightest Higgs h couples with Standard Model fields identically to the Higgs
in the Standard Model. At tree-level, its mass is mh . MZ| cos 2β|, but it receives
significant contributions from self-energy diagrams, particularly those involving
top squarks or quarks. Including one-loop corrections,

m2
h ≈ M2

Z cos2 2β +
3

4π2 sin2 β y2
t

[
ln
(

M2
SUSY
M2

t

)
+

(
X2

t
M2

SUSY

)(
1− X2

t
12M2

SUSY

)]
,

(1.37)
where

Xt = at − µ cot β (1.38)

is proportional to the off-diagonal element of the stop mass matrix (and hence stop
mixing) in Eq. 1.32 and

MSUSY =
√

mt̃1
mt̃2

(1.39)

is the SUSY breaking scale. Despite these corrections, mh . 135GeV, if the SUSY
scale is less than ∼ 1TeV [41].

Because the loop corrections are logarithmic in the SUSY breaking scale, the
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SUSY breaking scale must be increased exponentially if it is to result in moderate
increases in Higgs mass. For a given MSUSY, we can maximise the Higgs mass by
fine-tuning the parameter Xt,

∂m2
h

∂X2
t
≈ 3

4π2 sin2 β y2
t

1
M2

SUSY

(
1− X2

t
6M2

SUSY

)
= 0,⇒ Xt = ±

√
6 MSUSY. (1.40)

We refer to this as “maximal mixing”; we have fine-tuned stop mixing, via Xt,
to maximise the Higgs mass (though stop mixing itself is not maximised). The
maximal mixing condition in Eq. 1.40 is modified at higher orders.

The mass spectrum for the five Higgs bosons at tree-level is

m2
A = 2µ2 + m2

Hu
+ m2

Hd
, (1.41)

m2
H± = m2

A + M2
W , (1.42)

m2
h,H =

1
2

(
m2

A + M2
Z ∓

√(
m2

A −M2
Z
)
+ 4M2

Zm2
A sin2 2β

)
, (1.43)

evaluated with running soft-breaking mass parameters at the electroweak scale.
Notice that the CP-odd pseudoscalar Higgs mass is approximately degenerate with
the charged Higgs mass, and that the CP-odd pseudoscalar Higgs mass, charged
Higgsmass and heavyHiggsmass are approximately degenerate in the decoupling
regime.

Neutralinos and charginos

The masses for the neutral wino, the bino and the neutral higgsinos result in a
rich phenomenology. After electroweak symmetry breaking, these interaction
eigenstates share quantum numbers and are “mixed” by off-diagonal mass terms:

Lneutralino mass = −
1
2

(
ψ0
)T

Mχ0ψ0 + c.c., (1.44)
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where
(
ψ0)T

=
(

B̃, W̃3, H̃u, H̃d
)
and

Mχ0 =




M1 0 −g′vd/
√

2 g′vu/
√

2
· M2 gvu/

√
2 −gvd/

√
2

· · 0 −µ

· · · 0




(1.45)

=




M1 0 −MZ sin θW cos β MZ sin θW sin β

· M2 MZ cos θW cos β −MZ cos θW sin β

· · 0 −µ

· · · 0




,

with parameters at the electroweak scale. The diagonal elements are soft-breaking
masses in Eq. 1.31, the off-diagonal µ elements result from chiral interactions from
the superpotential (Eq. 1.18) and the off-diagonal MZ elements result from gauge
interactions in Eq. 1.21 after electroweak symmetry breaking.

The physical mass eigenstates that diagonalise Eq. 1.45 are called neutralinos,

Mχ0χ0
i = mχ0

i
χ0

i . (1.46)

The neutralinos are orthonormal combinations of the neutral wino, the bino and the
neutral higgsinos, labelled χ0

i=1,...,4, χ0
1 ≡ χ, with masses mχ < mχ0

2
< mχ0

3
< mχ0

4
.

In theMSSMwith gaugino mass unification, the bino mass at the electroweak scale
is approximately half that of the wino,

M1 ≈ 0.5M2. (1.47)

In the MSSM, if M1, M2 � |µ|, the lightest neutralino is approximately bino-like
in its composition with mχ ≈ M1, the second lightest is approximately wino-like
with mχ0

2
≈ 2mχ, and the heavier neutralinos are even and odd (with respect to

interchanging up- and down-type neutral higgsinos) admixtures of up- and down-
type neutral higgsinos. The neutralinos’ masses in this regime are approximately

mχ0
1,2
≈ M1,2 −

M2
Z sin2 θW(M1,2 + µ sin 2β)

µ2 −M2
1,2

, (1.48)

mχ0
3,4
≈ |µ|+ M2

Z(sgn µ∓ sin 2β)(µ±M1 cos2 θW ±M2 sin2 θW)

2(µ±M1)(µ±M2)
.
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Similarly to the neutral gauginos and neutral higgsinos, the charged wino and
the charged higgsino interaction eigenstates are mixed in so-called charginos. The
winos rewritten in the W-boson mass eigenstates are

W̃± =
1√
2

(
W̃1 ∓ iW̃2

)
, (1.49)

W̃0 = W̃3. (1.50)

The wino soft-breaking Lagrangian is

Lsoft ⊃ −
1
2

M2W̃W̃ + c.c. (1.51)

= −1
2

M2(W̃1W̃1 + W̃2W̃2 + W̃3W̃3) + c.c.

= −1
2

M2(W̃0W̃0 + W̃+W̃− + W̃−W̃+) + c.c..

The first term contributes to the neutralino mass matrix in Eq. 1.45 and the second
and third terms contribute to the chargino mass matrix,

Lchargino mass = −
1
2
(
ψ±
)T Mχ±ψ± + c.c., (1.52)

where (ψ±)T
=
(
W̃+, H̃+

u , W̃−, H̃−d
)
and

Mχ± =

(
0 XT

X 0

)
, (1.53)

with

X =

(
M2 gvu

gvd µ

)
=

(
M2

√
2 sin βMW√

2 cos βMW µ

)
. (1.54)

The diagonal µ element results from chiral interactions from the superpotential
(Eq. 1.18) and the off-diagonal MW elements result from gauge interactions in
Eq. 1.21 after electroweak symmetry breaking.

We rewrite Eq. 1.52 as

Lchargino mass = −
1
2

(
φTXTη + ηTXφ

)
+ c.c., (1.55)
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where (ψ±)T
=
(
φT, ηT). We rotate our physical states to interaction eigenstates,

χ+ = Vφ, (1.56)

χ− = Uη, (1.57)

where χ±are our physical states, positive and negative charginos,

Lchargino mass =−
1
2
(
χ+
)T
[(

XV−1
)T

U−1
]

χ− (1.58)

− 1
2
(
χ−
)T
[(

XTU−1
)T

V−1
]

χ+ + c.c..

We require that masses are diagonal,

(
XV−1

)T
U−1 =

(
XTU−1

)T
V−1 =

(
mχ±1

0

0 mχ±2

)
, (1.59)

and that U and V are unitary, so that probability is conserved. We find that

VXTXV† = UXXTU† =


 m2

χ±1
0

0 m2
χ±2


 , (1.60)

i.e., positively charged (negatively charged) charginos are two eigenvectors of the
symmetric XTX (XXT) matrix. Negative charginos are orthonormal combinations
of W̃− and H̃−d and positive charginos are orthonormal combinations of W̃+ and
H̃+

u . Whilst the i-th positive and i-th negative charginos are different admixtures
of wino and higgsino, their masses are degenerate.

Within the regime M2 � |µ|, the composition of the lighter charginos is pre-
dominantly charged wino, and that of the heavier chargino is predominantly
charged higgsino, and their masses are approximately:

mχ±1
≈ M2 −

M2
W(M2 + µ sin 2β)

µ2 −M2
2

, (1.61)

mχ±2
≈ |µ|+ sgn µM2

W(M2 + µ sin 2β)

µ2 −M2
2

.

If M2 and |µ| in Eq. 1.54 are much larger than MW or if tan β = 1, because
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X ≈ XT, the positive and negative chargino compositions are approximately
identical.

Unlike the other wino and bino gauginos, the gluino cannot mix in a mass state,
because it is a colour octet of the unbroken SUc(3) gauge symmetry. The gluino’s
soft-breaking mass M3 has a strong scale dependence; its physical mass in the
CMSSM is

mg̃ ≈ 2.7m1/2. (1.62)

The gluino is frequently the heaviest sparticle in the CMSSM.

1.5.2 The CMSSM

The soft-breaking MSSM Lagrangian in Eq. 1.31 includes an exorbitant number of
parameters: 105 parameters that cannot be rendered trivial by field rotations and
that have no equivalent in the Standard Model. We want to construct a simpler,
tractable model. Because experiments constrain flavour-changes in, for example,
µ→ eγ and kaon mixing, we neglect soft-breaking masses that are off-diagonal
in flavour space that could induce such changes. Because experiments constrain
CP-violation in electric dipole moments, we neglect CP-violating phases in the
soft-breaking Lagrangian.

We finally assume that the gauginos and scalars have common soft-breaking
masses at the GUT scale,

m1/2 = M1 = M2 = M3, (1.63)

m2
01 = m2

Hu
1 = m2

Hd
1 = m2

Q = m2
L = m2

ū = m2
d̄ = m2

ē,

and that the trilinear couplings are equal to their respective Yukawa couplings
multiplied by a common trilinear mass, which limits flavour-changing in quarks
and leptons:

A0yu = au, (1.64)

A0yd = ad,

A0ye = ae.

We define the “Constrained Minimal Supersymmetric Standard Model”
(CMSSM) as theMSSMwith relations Eq. 1.63 and Eq. 1.64 imposed. The CMSSM’s
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parameters are Yukawa couplings and µ in the superpotential, m0, m1/2, A0 and
a bilinear soft-breaking mass in the soft-breaking Lagrangian and the Standard
Model gauge group couplings.

Electroweak symmetry breaking requires particular relations between soft-
breaking and superpotential parameters; that the scalar potentials for Hu and Hd

are minimised imposes

b =
1
2

[
tan 2β

(
m2

Hu
−m2

Hd

)
−M2

Z

]
, (1.65)

µ2 =
1
2

[
tan 2β

(
m2

Hu
tan β−m2

Hd
cot β

)
−M2

Z

]
, (1.65′)

where M2
Z =

(
g2 + g′2

)
v2/2. We choose to trade µ2 and b for MZ and tan β via

these relations. This is a convenience; within the “natural” b-µ2 parameterisation,
we might struggle to satisfy Eq. 1.65. Within the “pragmatic” tan β-MZ parameter-
isation, we axiomatically satisfy Eq. 1.65. The sign of µ, sgn µ, however, remains
ambiguous. Rewriting Eq. 1.65, we obtain an expression for MZ,

1
2

M2
Z = −µ2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β− 1
. (1.66)

The CMSSM’s input parameters in our “pragmatic” parameterisation are

m0, m1/2, A0, tan β, sgn µ. (1.67)

The value of MZ (see Sec. 3.2.5) and the Standard Model fermion masses are∗

experimentally measured with high precision, and we neglect these in our pa-
rameterisation. The Standard Model, however, has “nuisance” parameters that
are experimentally measured with limited precision (see Sec. 3.2), and which we
consider unknown input parameters: the top-quark mass, the bottom-quark mass,
the fine-structure constant and the strong coupling,

Mt, mb(mb)
MS, 1/αem(MZ)

MS, αs(MZ)
MS. (1.68)

The soft-breaking parameters in Eq. 1.67 are running parameters with an im-
plicit scale dependence within the dimensional reduction renormalisation scheme

∗ With the exception of the top-quark mass and the bottom-quark mass, forthcoming.
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with modified minimal subtraction (DR). The common dimensional regularisation
scheme breaks supersymmetric Ward identities. The soft-breaking parameters
are defined at the GUT scale: the scale at which the extrapolated gauge couplings
unify, typically MGUT ∼ 1016 GeV. The unification relations are broken by the
renormalisation group evolution of the soft-breaking parameters. The CMSSM is
a framework that can accommodate specific models at the Planck scale, including
minimal supergravity (mSUGRA), in which supersymmetry is a local symmetry,
related by the commutation relations of its generators to the generator of local
space-time translations, i.e., gravity. Gravitational interactions transmit super-
symmetry breaking from a hidden sector. The universality and unification of
soft-breaking masses is a minimal assumption, resulting in CMSSM boundary
condition

1.5.3 Other MSSM-type models

The CMSSM imposes stringent boundary conditions on the soft-breakingmasses in
the MSSM. We investigate tractable models in which these conditions are relaxed:

In the “Non-Universal Higgs Model” (NUHM), the soft-breaking Higgs
masses do not unify with a common scalar mass, because the Higgs’ su-
permultiplets differ from those of the leptons and quarks, and because the
Higgs, squarks and sleptons might belong to different representations of a
GUT group. The NUHM has additional mHu and mHd soft-breaking input
parameters.

In the “Non-Universal Gaugino Model” (NUG), we permit the gaugino soft-
breaking masses to differ from each other; the NUG has two additional
parameters, because m1/2 is replaced by M1, M2 and M3.

We also consider phenomenological MSSM (pMSSM) models in which soft-
breaking masses are defined at the scale MSUSY =

√mt̃1
mt̃2

, rather than at the
GUT scale. We eliminate soft-breaking masses by assuming ad hoc degeneracies
between parameters at the SUSY scale:

Our 9 parameter pMSSM (p9MSSM) is defined by

M2, M3, mQ̃3
, mL̃3

, At, Aτ, mA, µ, tan β. (1.69)
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Our 12 parameter pMSSM (p12MSSM) is defined by

M2, mL̃1,2,3
, mẽ1,2,3

, mQ̃1,2,3
, mũ1,2,3

, m
d̃1,2,3

, Au,c,t, Ad,s,b, Ae,µ,τ, mA, µ, tan β,
(1.70)

with separately degenerate up-type, down-type and slepton trilinears and a
gaugino mass unification relation applied at the SUSY scale.

Our 14 parameter pMSSM (p14MSSM) drops the unification of gaugino
masses, resulting in additional M1 and M3 parameters.

Finally, a popular pMSSM— the p19MSSM [46] — is defined by

M1, M2, M3, (1.71)

mQ̃1,2
, mQ̃3

, mũ1,2
, mũ3

, m
d̃1,2

, m
d̃3

,

mL̃1,2
, mL̃3

, mẽ1,2
, mẽ3

,

At, Ab, Aτ, A f 6=t,b,τ = 0,

µ, mA, tan β.

1.5.4 Singlet extensions of the MSSM

Although I will not investigate extensions of the MSSM, I introduce singlet ex-
tensions of the MSSM for completeness. The MSSM superpotential in Eq. 1.27
contains a single dimensionful parameter, µ, that must be∼ MSUSY for electroweak
symmetry breaking (Eq. 1.66). A priori, however, the µ parameter knows nothing
of supersymmetry breaking; why should it be small compared with e.g., MP? This
is considered unnatural [47]. A popular solution is that µ is generated sponta-
neously [48,49]. The µ-term in the MSSM superpotential in Eq. 1.27 is replaced by
a gauge singlet scalar S,

W = WMSSM|µ=0 + λSHuHd, (1.72)

where λ is a dimensionless parameter. The original µ-term is forbidden by a
discrete Z3 symmetry. Electroweak symmetry breaking generates an effective
µ-term, µeff. = λ〈S〉, because the gauge singlet scalar S obtains a non-zero VEV.
Singlet extensions include an extra scalar and fermionic singletino, resulting in a
fifth neutralino and a tree-level contribution to the mass of the lightest Higgs.
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The superpotential in Eq. 1.72 is, however, problematical, because it is invariant
under a global UPQ(1) symmetry [50]. After electroweak symmetry breaking, it
would result in a massless axion. Three singlet extensions of the MSSM that solve
this problem are:

The “Next-to-Minimal Supersymmetric Standard Model” [48,49] (NMSSM)
with superpotential

W = WMSSM|µ=0 + λSHuHd +
1
3

κS3. (1.73)

The κ-term explicitly breaks the UPQ(1) symmetry.

The “U(1)′ Supersymmetric Standard Model” [51] (U(1)′SSM), in which the
UPQ(1) symmetry is gauged, resulting in amassive Z′ boson after electroweak
symmetry breaking.

The “E6 Supersymmetric StandardModel” [52] (E6SSM), a GUT in which the
Standard Model gauge groups are embedded in the exceptional E6 Lie group.
The UPQ(1) symmetry is gauged and is a remnant of the broken E6. The
E6SSM requires extra fields to complete the fundamental 27 representation
of E6. The E6 group is motivated by string theory and the extra fields cancel
anomalies present in the U(1)′SSM.

1.5.5 Renormalisation group equations for soft-breakingmasses

To minimise missing orders in the electroweak symmetry breaking condition in
Eq. 1.66, which is a boundary condition for the CMSSM parameters, we calculate
the supersymmetric mass spectrum with soft-breaking parameters at the scale
MSUSY. This requires renormalisation group (RG) equations, which are found
from the renormalisation scale µ-independence of physical quantities (via the
independence of unrenormalised vertex functions [53]). If only the third-generation
Yukawa couplings are significant, at one loop the β-functions and anomalous
dimensions γ are relatively simple. The soft-breaking gaugino masses evolve as

dMi

dt
=

1
8π2 big2

i Mi, (1.74)
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where i indicates the gauge group, t = ln(µ/µ0) with µ0 a reference scale and, for
MSSM-type models, bi = (33/5, 1,−3). These functions are similar in structure to
the β-functions for the gauge couplings at one-loop (the gauge couplings do not,
however, unify with only one-loop β-functions as foreshadowed in Sec. 1.1.3),

βgi =
1

16π2 big3
i . (1.75)

Consequently, dMi/g2
i

dt = 0 and Mi/g2
i is a renormalisation group invariant. If the

gaugino masses are unified at MGUT to m1/2, as they are in the CMSSM, at the
electroweak scale they are approximately:

M1 ≈ 0.4m1/2, (1.76)

M2 ≈ 0.8m1/2,

M3 ≈ 2.7m1/2.

The RG equations for the soft-breaking scalar masses are of the form

dm2
φ

dt
=

1
16π2

[
BtZt + BbZb + BτZτ − 8 ∑

i
Ci(φ)g2

i M2
i + BYYφg2

1S

]
, (1.77)

where Yφ is the hypercharge of field φ, Ci(φ) is the Casimir invariant for the field
φ, which is dependent on the field’s representation under the gauge group i, the
B’s are numerical coefficients, S = Tr(Yφk m2

φk
) and the Z’s are

Zt = 2|yt|2(m2
Hu

+ m2
Q̃3

+ m2
ũ3
) + 2|at|2, (1.78)

Zb = 2|yb|2(m2
Hd

+ m2
Q̃3

+ m2
d̃3
) + 2|ab|2,

Zτ = 2|yτ|2(m2
Hd

+ m2
L̃3
+ m2

ẽ3
) + 2|aτ|2.

The Yukawa couplings and trilinears, and thus these factors, are important for
only third-generation scalars and for the Higgs. The RG equations for the MSSM
scalars are given by the coefficients in Table 1.5.3 in conjunction with the general
formula Eq. 1.77. Fig. 1.5.1 illustrates the evolution of the soft-breakingmasses from
MGUT to MSUSY. The quadratic couplings in the Higgs potential, µ2 + m2

0, bifurcate
and the up-type Higgs quadratic coefficient runs negative at MSUSY, triggering
electroweak symmetry breaking (radiative electroweak symmetry breaking).
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φ Bt Bb Bτ (C3, C2, C1) BY

Q̃1,2 0 0 0 (4/3, 3/4, 1/60) 6/5
ũ1,2 0 0 0 (4/3, 0, 4/15) 6/5
d̃1,2 0 0 0 (4/3, 0, 1/5) 6/5
L̃1,2 0 0 0 (0, 3/4, 3/20) 6/5
ẽ1,2 0 0 0 (0, 0, 3/5) 6/5
Hu 3 0 0 (0, 3/4, 3/20) 3/5
Hd 0 3 1 (0, 3/4, 3/20) -3/5
Q̃3 1 1 0 (4/3, 3/4, 1/60) 1/5
ũ3 2 0 0 (4/3, 0, 4/15) -4/5
d̃3 0 2 0 (4/3, 0, 1/5) 2/5
L̃3 0 0 1 (0, 3/4, 3/20) -3/5
ẽ3 0 0 2 (0, 0, 3/5) 6/5

Table 1.5.3: MSSMRG equation coefficients for Eq. 1.77. The Ci are the Casimir invariants, except
for the Higgs, in which case they are the Casimir invariants scaled by 1/4.

Figure 1.5.1: The RG evolution of the MSSM soft-breaking masses from Ref. [41].



Chapter 2

Statistics

Wewish to compare the predictions of MSSM-type models with experimental data
in a formal, probabilistic manner, to find the “best” regions of their parameter
spaces, and, perhaps, to exclude or favour particular models with a meaning-
ful, well-defined test. For this we require a statistical methodology. There are
two classes of statistical methodologies (and hybrids), built upon complementary
interpretations of probability.

A “frequentist” methodology defines a probability as the frequency with which
an event occurs, in the limit of an infinite number of identical experiments [54].
This is problematical: we cannot realise either the limit, an infinite number of
experiments, or that the experiments are identical. Nevertheless, this axiom is the
foundation of the frequentist interpretation of probability.

A Bayesian methodology, in contrast, defines probability as a (numerical) mea-
sure of the plausibility of a proposition, and is built upon Bayes’ theorem [55],

P (A|B) ≡ P (A, B)
P (B)

=
P (B|A)× P (A)

P (B)
, (2.1)

where P is a probability and A and B are propositions. We manipulate Eq. 2.1 by

30
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writing B→ B, C;

P (A|B, C) = P (B, C|A)× P (A)× 1
P (B, C)

= P (B, C|A)× P (A)× 1
P (B|C) P (C)

= P (B, C|A)× P (A)

P (C)
× 1

P (B|C)

= P (B, C|A)× P (A|C)
P (C|A)

× 1
P (B|C)

=
P (B, C|A)

P (C|A)
× P (A|C)× 1

P (B|C)

=
P (B|A, C)× P (A|C)

P (B|C) . (2.2)

If A and B are continuous variables, however, we rewrite Eq. 2.2with probability
density functions (pdf);

p (A|B, C) =
p (B|A, C)× p (A|C)

p (B|C) , (2.3)

where p is a pdf. If we have a model M with parameters x1, . . . , xN, for which
we have obtained experimental data D, the Bayesian posterior pdf (henceforth
posterior) for the model’s parameters is given by Bayes’ theorem in the form in
Eq. 2.3;

p (x1, . . . , xN|D, M)︸ ︷︷ ︸
Bayesian posterior

=
p (D|x1, . . . , xN, M)× p (x1, . . . , xN|M)

p (D|M)

≡

Likelihood︷ ︸︸ ︷
L (x1, . . . , xN)×

Prior︷ ︸︸ ︷
π (x1, . . . , xN)

Z︸︷︷︸
Evidence

, (2.4)

where L is the likelihood, π is the prior pdf, our prior belief in the hypothesis,
and Z is the evidence. The posterior, p (x1, . . . , xN|D, M), does not imply that
x1, . . . , xN are random variables.

The likelihood is p (D|x1, . . . , xN, M) as a function of x1, . . . , xN — it is the
probability of measuring a particular outcome of an experiment given the theory
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that governs the experiment as a function of the theory’s parameters. The likelihood
is not a pdf. If p (D|x1, . . . , xN, M) is interpreted as a function of the outcomes or
data, it is called the sampling distribution (which is a pdf). In contrast, a prime
advantage of Bayesian statistics is that the posterior reflects the plausibility of the
proposition of interest. The prior is our beliefs on the plausibility of the proposition
before the experimental data (discussed in detail in Sec. 2.5). The evidence reflects
the viability of the model, though individual evidences lack meaning, and so
evidences must be compared.

We review the relevant Bayesian and frequentist statistical quantities and tests,
with emphasis on parameter inference and model comparison. The Bayesian and
frequentist objects are identical in purpose but have conceptual differences in their
interpretation and meaning.

2.1 Posteriors and likelihoods

We wish the quantify whether a region of a model’s parameter space is in agree-
ment with experiments and, in the Bayesian methodology, our prior beliefs about
the model’s parameter space. This requires that we calculate the posterior den-
sity function in the Bayesian methodology and the likelihood in the frequentist
methodology.

The posterior and the likelihood, though, are functions of all of the model’s
parameters. This is inconvenient — we often wish to examine only a subset of
the model’s parameters, typically either one or two, so that the objects can be
visualised.

The posterior density, however, is problematical in that, as a pdf, it is dependent
on the model’s parameterisation. If we changed the parameterisation of the pdf, it
would be altered by a Jacobian. It would be desirable, then, if statistics derived
from the posterior were independent of this choice of parameterisation.∗

We can make use of the posterior’s properties as a pdf and integrate or
marginalise parameters which are of no interest, resulting in a marginalised poste-

∗ Strictly speaking, we ought to require only that “decisions” are not dependent on our parame-
terisation, for example, whether to reject a model, or whether to build a new experiment.
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rior pdf for only the desired subset of parameters, that is,

p (xN+1, . . . , xM|D) =
∫

p (x1, . . . , xM|D)
N

∏
i=1

dxi (2.5)

where p is a pdf and the first N parameters (x1, . . . , xN) were marginalised.
In contrast, the likelihood is “profiled” — parameters of no interest are set to

the values for which the likelihood is maximised. The profile likelihood is

L (xN+1, . . . , xM) = max
x1,...,xN

L (x1, . . . , xM) , (2.6)

where the first N parameters (x1, . . . , xN) were profiled. The desirable feature of
this method is that it facilitates an application of Wilkes’s theorem in determining
confidence intervals (forthcoming, Sec. 2.2), though it lacks meaning, since the
profile likelihood is not a sampling distribution.

These procedures are contrasted in Fig. 2.1.1. It illustrates that marginalisa-
tion results in modes in posterior distributions that are not present in the profile
likelihood.

It is unfortunate that the quantity −2 lnL is often synonymous with χ2,

− 2 lnL = χ2 (2.7)

This is strictly true, though, only if L is Gaussian. I will, however, repeat this
misnomer, but beware that χ2 defined in this way are not necessarily χ2-distributed
(forthcoming, Sec. 2.2).

The notation is henceforth such that marginalisation of the posterior and profil-
ing of the likelihood and χ2 are implicit. Missing arguments are eithermarginalised
or profiled.

2.1.1 Derived quantities

We often want posterior densities and profile likelihoods as functions of derived
quantities that are functions of the model’s parameters, rather than the model’s
parameters themselves. Fortunately, this is trivial. The profile likelihood is not
a pdf, and can be written as a function of derived quantities. Because the pos-
terior density is a pdf, we check its transformation. Suppose we transform our
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(a) Marginalised pdf and profile likelihood contrasted in a
simple two-dimensional example.
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(b) Marginalised pdf and profile likelihood contrasted in a
three-dimensional example.

Figure 2.1.1: Marginalised pdf and profile likelihood contrasted. The two-dimensional plots show
posterior pdf, or equivalently, with flat priors, the likelihood. The one-dimensional plots show
marginalised pdf in blue and profile likelihood in red. The best-fit point, marked with a star,
equivalent, with flat priors, to the MAP in the two-dimensional plots, does not correspond to the
MAP in the one-dimensional plots. Modes are present in the marginalised posterior that are not
present in the profile likelihood, as a result of marginalisation. The distributions are normalised so
that their maximum values are unity.
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parameters,
x1, . . . , xN → f1(x1, . . . , xN), . . . , fN(x1, . . . , xN), (2.8)

where the functions fi define a well-behaved change of variables. We can write,
without loss of generality, that

p
(

f ′1|D
)
=
∫

p ( f1|D) δ
(

f1 − f ′1
)
d f1 (2.9)

=
∫

p ( f1, . . . , fN|D) δ
(

f1 − f ′1
) N

∏
i=1

d fi

=
∫

p (x1, . . . , xN|D) δ
(

f1(x1, . . . , xN)− f ′1
) N

∏
i=1

dxi.

Our posterior densities transform trivially to a derived quantity; we integrate
our densities whilst fixing our derived quantity via the delta function, without
invoking complicated Jacobians.

2.2 Confidence intervals and credible regions

We wish to find intervals in parameter space which we believe contain the true
parameters. We construct either frequentist confidence intervals, which reflect
properties of the method — we can be sure that method captures the true parame-
ters with a particular frequency and the interval is constructed “in the data,” or
Bayesian credible regions, which reflect our degree of belief in the region and are
constructed “in the model.”

Confidence intervals have a “frequentist” definition — a (1− α) confidence
interval for a parameter will contain the parameter’s true value at a frequency
of (1− α), were the experiment repeated identically ad infinitum. Conversely,
the interval will not contain the true value at a frequency of α. This violates the
“likelihood principle:” that information is in the data alone, rather than pseudo-
data. Confidence intervals may be found from likelihoods via an application of
Wilkes’s theorem, that asymptotically

χ2 (x1, . . . , xN)− χ2
Min ∼ χ2

N, (2.10)

where χ2
N is a χ2-distributionwith N degrees of freedom, where N is the dimension
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of the confidence interval and x1, . . . , xN are the parameters of interest. A χ2-
distributionwith N degrees of freedom is how χ2 = ∑N

i (xi− µi)
2/σ2

i is distributed
if xi follow Gaussian distributions with means µi and variances σ2

i .

We find the critical ∆χ2 values — the values of χ2 for which there is only an α

probability of obtaining a ∆χ2 that large or larger. We apply a profile likelihood
test (PL):

If χ2 (x1, . . . , xN)− χ2
Min > ∆χ2

Crit, x1, . . . , xN outside (1− α) confidence interval,

If χ2 (x1, . . . , xN)− χ2
Min ≤ ∆χ2

Crit, x1, . . . , xN inside (1− α) confidence interval.
(2.11)

The ∆χ2
Crit values are such that

F
(

∆χ2
Crit, N

)
= 1− α, (2.12)

where F is a cumulative χ2-distributionwith N degrees of freedom. We are typically
interested in (1− α) = 68% or 95% with N = 1 or 2, these ∆χ2

Crit values are listed
in Table 2.2.1. The χ2-distribution is illustrated in Fig. 2.2.1.

Confidence intervals found in this way are not necessarily contiguous but they
are unique, always include the best-fit point, and may be of any dimension. If our
model had a single parameter, we could find our confidence interval via a Neyman
or Feldman-Cousins construction.

In our Bayesianmethodology, we againmake use of the posterior’s properties as
a pdf, and find its credible regions — regions that contain (1− α) of our posterior.
These regions, though, are not unique, and credible regions are chosen via a choice
of so-called “ordering rule.” As noted in Sec. 2.1, it would be desirable if our
statistical measures were invariant under reparameterisations.

For a (1− α) one-dimensional credible region, we choose an equal-tail-
probabilities ordering rule (ETP), in which α/2 of the posterior is below the region
and α/2 of the posterior is above the region,

L∫

−∞

p (x|D) dx =

∞∫

U

p (x|D) dx = α/2. (2.13)

These one-dimensional regions from U to L are invariant under reparameterisa-
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Dimension of interval, N Confidence level, (1− α) ∆χ2
Crit

1 68% 0.99
95% 3.84

2 68% 2.28
95% 5.99

Table 2.2.1: The critical χ2 values, ∆χ2
Crit, for constructing one-dimensional and two-dimensional

68% and 95% confidence intervals.
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Figure 2.2.1: χ2-distributions with 1, 5 and 10 degrees of freedom, showing 32% and 5% tails,
mode, mean and median.
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tions, always include the median (but not necessarily the mode or the best-fit point,
forthcoming, Sec. 2.3) and are contiguous. If we were to choose x = f (y), the limits
U and L for x would change trivially to f−1(U) and f−1(L) for y. This prescription,
however, is ill-suited to distributions in which a posterior mode is at the edge of
the prior distribution.

Unfortunately, this construction cannot be readily generalised to higher dimen-
sions. We choose a different ordering rule for two-dimensional credible regions:
the credible region is the smallest region R (in the “pragmatic” parameterisation)
that contains (1− α) of the posterior,

∫

R

p (x1, x2|D) dx1 dx2 = 1− α. (2.14)

These highest posterior density (HPD) multidimensional regions are not invariant
under reparameterisations, not necessarily contiguous, and always include the
mode (but not necessarily the best-fit point, forthcoming, Sec. 2.3). Although,
of course, integrals are invariant under reparameterisations, the domain of this
integral is parameterisation dependent, because the size of a region of parameter
space depends on parameterisation. I know of no multidimensional ordering rule
with entirely satisfactory properties. One, then, should be careful in interpreting
two-dimensional credible regions (and pdfs), because they change non-trivially
under reparameterisations.

2.3 Posterior means and best-fit points

Wewant to present a single point in themodel’s parameter spacewhich summarises
the results of a statistical analysis. These “best estimates” ought to be invariant
under reparameterisations (suppose xB is declared to be the best estimate of x, it
would be desirable if the best estimate for y = f (x) was f

(
xB), but this is difficult

to achieve), consistent (asymptotically equal the parameter’s true value as more
experiments are performed), and unbiased (with a finite number of experiments,
its expectation should be equal to the parameter’s true value).

Since the posterior is a pdf, we can calculate the expectation value for each
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parameter — the “posterior mean,”

x̄ =
∫

x× p (x|D) dx. (2.15)

The resulting posterior mean might, however, lie outside the credible region, par-
ticularly if the posterior is multimodal, in which case it may lie between twomodes,
may have a large χ2 or may even be unphysical. The posterior mean does not
satisfy our invariance criteria for a best estimate; if we were to choose x = f (y),
x̄ 6= f (ȳ), but it is consistent and axiomatically unbiased.

The reader might wonder why a point with maximum posterior density is not
identified (maximum a posteriori probability or MAP) — as mentioned previously,
densities are parameterisation dependent, violating our invariance criteria. We
could choose the posterior median, which is parameterisation invariant in that if
we were to choose x = f (y), Me (x) = f (Me (y)).

We choose the posterior mean as our best estimator, since, despite it failing
parameterisation invariance, it has a meaningful interpretation as the expectation
of a parameter and is representative of distributions with more than one mode
or large tails, unlike the mode. Clearly, constructing a best estimator from the
posterior is challenging — perhaps this is no surprise, since the result of Bayesian
inference is the posterior pdf, the distribution itself. Technically, it is recognised
that our estimator ought to minimise the expected “loss function” — a function
that measures the cost of wrongly estimating a parameter. If we were, for exam-
ple, building an expensive experiment from our analysis, we would construct an
appropriate loss function to find our best estimator [56].

We also present the point with the smallest χ2 =χ2
Min — the “best-fit” point (or

equivalently the maximum likelihood estimator or MLE). The best-fit point has
a special significance in frequentist statistics — it is from the best-fit point that
the confidence intervals are constructed, and χ2

Min is the test statistic for judging
the model. The best-fit point satisfies our parameterisation invariance criteria and
consistency, but might be biased, because, with limited data, the best-fit point
for a parameter might not coincide with the posterior mean (expectation) for that
parameter.
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2.4 Evidences and p-values

The Bayesian probability of a model M given data D can be written via Bayes’
theorem (Eq. 2.1),

P (M|D) = p (D|M)× P (M) /p (D) , (2.16)

where P is a probability and p is a pdf. This probability is proportional to our
prior belief regarding the model, P (M). This is meaningful if we consider a ratio
of probabilities for models Ma and Mb, eliminating p (D) and permitting only
relative prior belief in a model,

P (Ma|D) /P (Mb|D)︸ ︷︷ ︸
Posterior odds

= p (D|Ma) /p (D|Mb)︸ ︷︷ ︸
Bayes-factor

× P (Ma) /P (Mb)︸ ︷︷ ︸
Prior odds

. (2.17)

The Bayes-factor indicates how our prior odds ought to change because of the data,
resulting in our posterior odds. The Bayes-factor is, in fact, a ratio of evidences
found from parameter inferences in the models in the denominator in Eq. 2.4.

Individual evidences are meaningless — it is necessary to compare against a
reference model with a Bayes-factor. If the Bayes-factor is greater than (less than)
one, the model in the numerator (denominator) is favoured. The interpretation
of Bayes-factors is somewhat subjective, though a popular choice is the Jeffreys’
scale, Table 2.4.1, to ascribe qualitative meanings to Bayes-factors. Prior odds are
somewhat subjective and there might exist a spectrum of assigned prior odds
amongst investigators. All investigators, however, will make identical conclusions
from the posterior odds, if the Bayes-factor is sufficiently large.

The Bayes-factor quantitatively incorporates a principle of economy widely-
known as Occam’s razor [58] and in physics as “fine-tuning” or “naturalness” [59–
61]. It is insightful to consider the evidence Z = p (D|M) a function of the data
normalised to unity, i.e., as a sampling distribution [62,63]. Natural models “spend”
their probability mass near the obtained data — a large fraction of their parameter
space agrees with the data. Complicated models squander their probability mass
away from the obtained data. This is illustrated in Fig. 2.4.1. Whilst it might be
that a model is complicated because it has many parameters, and so makes a range
of predictions for the data, a model with many parameters can be simple. Simple
models are falsified by experiments more easily than complicated models, because
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they make sharper predictions. It might be said that Bayesian statistics reifies
Occam’s razor, “fine-tuning” and “naturalness” arguments. “Naturalness” is no
longer a nebulous, aesthetic criterion; it is formalised and justified by Bayesian
statistics [64].

The frequentist test is a χ2 test: we assume that the χ2
Min has a particular

distribution (its sampling distribution) were the experiments repeated ad infinitum,
and calculate the p-value — the probability of obtaining a χ2 as large or larger
than the observed χ2

Min:

p-value = 1− F
(

χ2
Min, N

)
, (2.18)

where F is a cumulative χ2-distribution with N degrees of freedom. We assume
that the distribution is χ2

N, where N, the number of degrees of freedom, is the
number of contributions to the χ2 minus the number of parameters that were fitted
to achieve χ2

Min. This assumption is reasonable if and only if the contributions to
the χ2 are approximately Gaussian and the parameter space completely maps the
observables space. It could, in principle, be checked via Monte Carlo — we could
repeat the following procedure many times: draw pseudo-experimental data from
the sampling distributions (assuming that the best-fit point is true), fit the model’s
parameters, and note the χ2

Min achieved, and lastly plot a histogram of the χ2
Min.

This, however, is completely unfeasible, because of the CPU time required to fit
the model’s parameters.

One solution is to treat the pseudo-experimental data as a “perturbation,” and
re-minimise the χ2 only in the vicinity of the observed best-fit point. The feasibility
of this, though, is not clear.

An easier but less robust check is to check only the sampling distribution of
the χ2 at the best-fit point, rather than the distribution of χ2

Min. The procedure
is identical, except that the parameters are not refitted. We expect the result will
be χ2-distribution with a number of degrees of freedom equal to the number of
contributions to the χ2, i.e., we do not check whether subtracting the number of
fitted parameters to account for fitting is reasonable, only that the contributions to
the χ2 are approximately Gaussian.

We will consider p-values of less than 5% to be significant. This is aggressive;
we have a appreciable chance of a type-II error.∗ One might wonder whether a

∗ A type-II error is that an hypothesis is wrongly rejected by chance.
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Grade Bayes-factor, B Interpretation

0 K > 1 Favours hypothesis in numerator.
1 1 > K > 10−0.5 Barely worth mentioning.
2 10−0.5 > K > 10−1 Substantial.
3 10−1 > K > 10−1.5 Strong.
4 10−1.5 > K > 10−2 Very strong.
5 K < 10−2 Decisive.

Table 2.4.1: The Jeffreys’ scale for interpreting Bayes-factors [57], which are ratios of evidences.
We assume that the favoured model is in the denominator, though this could be readily inverted.
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Bad simple model:
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wasted here.
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spreads probability
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”Naturalness” or Occam’s razor

Good simple model
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Figure 2.4.1: Illustration of the evidence, interpreted as a sampling distribution, originally from
Ref. [63]. The observed evidence is the evidence evaluated at the observed data. The blue line shows
a model that concentrates its probability mass at the observed data: it is a good, simple model. The
green line shows a model that concentrates its probability mass away from the observed data: it is a
bad, simple model. The red line shows a model that thinly spreads its probability mass around the
observed data: it is an OK, complicated model. The complicated model might achieve a maximum
likelihood greater than that of the good, simple model, but the simple model is favoured by the
Bayes-factor.
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prior effect has crept into our frequentist statistics; our choice of critical p-value
might depend on our prior belief in an hypothesis, even if we, of course, choose
critical p-value before the analysis.

2.5 Prior choices and effects

A common criticism of Bayesian methodologies is that the results depend on
one’s choice of priors, for which there is no objectively unique correct choice,
though there are certainly bad choices. Bayesian methodologies manipulate our
prior beliefs in a consistent manner, but give no clue as to what they ought to be.
Even “flat” priors, priors that equally weight linear intervals in the “pragmatic”
parameterisation, are a choice: we have no choice but to choose. A “sensible”
prior choice is non-informative; a prior which does not strongly influence the
posterior. Our prior choices were motivated by either our state of knowledge or
by pragmatism. If our conclusions, evidences or posteriors are dependent on our
choices of non-informative priors, it indicates that the data (in the likelihood) is
too weak on which to draw robust conclusions.

Because we decide that our prior beliefs for our models’ parameters are not
correlated, our prior pdf can be factorised,

π (x1, . . . , xN) =
N

∏
i=1

π (xi) . (2.19)

Here we make use of the relation,

p (A, B|C) = p (A|C)× p (B|C)× p (A|B, C)
p (A|C) . (2.20)

Because we decide that the priors are independent, the fraction in Eq. 2.20 is
trivially equal to unity. This can be applied recursively for an arbitrary number of
parameters.

If we are ignorant of the magnitude of a parameter, our priors must not favour
particular orders of magnitude. The “log” prior is a scale invariant Jeffreys’ prior: it
equally weights each decade or logarithmic interval. Flat priors, on the other hand,
weight each decade ten times more than the last, e.g., a flat prior for x over the
range 0− 100 will weight 10− 100 ten times more than 0− 10. This is an example
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of “pile-up.”∗ We are ignorant of the magnitudes of m0 and m1/2 in the CMSSM,
so we choose log priors.

Starting from our requirement that the prior for a scale parameter is scale
invariant,

π (λx) dλx = π (x) dx, (2.21)

we find that π(x) ∝ 1/x, which gives π(log x) = constant. The base of the
logarithm is of no consequence; the kernel for a log prior is independent of its base
and the prior pdf is normalised to unity, so the height and shape of a log prior are
independent of its base.∗

The trilinear parameter, A0, is problematical: it is scale, and we are ignorant of
its magnitude, but it may be positive or negative, or zero, contrary a scale parameter.
We choose a flat prior for A0 for these pragmatic reasons. We are not ignorant of
the magnitude of tan β — from LEP, we know that tan β > 2 and, if the top-quark
Yukawa coupling is perturbative, we must have tan β < 63. We choose a flat prior
for tan β. A flat prior for x is π(x) ∝ constant. The difference between flat and log
priors for tan β is small, because we know its magnitude.

We adopt two numerically equivalent approaches for the nuisance parameters
(Eq. 1.68):

1. Our nuisance priors are informative, Gaussian priors, representing the best
experimental estimates of the parameters. This choice maximises the ef-
ficiency of our scanning algorithm. In this case, the likelihood does not
include nuisance experiments — the profile likelihood might be distorted by
discrepant values of the nuisance parameters.

2. Our nuisance priors are flat (since we are not ignorant of the scale of these
parameters), and the nuisance experimental data is included in the likelihood
function.

The “volume effect,” common in the literature, is nothing more than marginal-
isation. This “effect” is identified when marginalisation favours regions of pa-
rameter space with a large volume of high posterior density. This is noticeable
with flat priors, for which prior probability “piles up” at infinity, or large values.
When posteriors from flat priors are marginalised, the marginalised “piled up”

∗ Similarly, log priors “pile-up” prior probability at zero.
∗ The kernel of a distribution is its shape, irrespective of normalisations.
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prior probability results in preferences in the marginalised posterior. This, in my
opinion, is not a fault, though it might not reflect our prior beliefs, in which case,
we should choose different priors.

The potential difference in posterior pdf resulting from our choice of priors is
illustrated in Fig. 2.5.1. Fig. 2.5.1a shows that, with a sharp likelihood, the choice
of priors is moot. Fig. 2.5.1b, however, shows that with a broad, weak likelihood,
the posterior pdf is dominated by the prior, rather than the likelihood.

A final remark: it is possible, though not desirable, to include “prior” beliefs
as a multiplicative component of the likelihood. This would, in general, damage
the efficiency of one’s algorithm (Sec. 2.6). We would like to include physicality
(forthcoming, Sec. 3.1) in our priors. It is, however, difficult to construct a function
to sample from only physical parts of the parameter space (in general, a numerical
algorithm requires the sampling distribution, rather than the prior distribution
itself). Consequently, we include physicality in the likelihood.

2.6 Algorithms

The statistical quantities so far discussed must, of course, be calculated numerically.
This is challenging — the model’s parameter space is large and its distributions are
multimodal and non-trivial. The first thought might be a grid-scan, in which one
evaluates the likelihoods and priors at each point on a grid that spans the whole
parameter space in the “pragmatic” parameterisation. This, though, has drawbacks:
it is computationally inefficient, particularly if the dimension of the parameter
space is large, and it might miss narrow modes in the posterior distribution and
likelihood (though this is less important for the posterior than the likelihood,
because a narrow mode might be insignificant after marginalisation).

In Ref. [204], a Markov chain Monte Carlo [65] Metropolis algorithm [66] is
constructed for the CMSSM. In Markov chain algorithms, the algorithm “steps”
through points in a model’s parameter space. The algorithm’s next point is de-
pendent on only its current point — a chain of such points is a Markov chain. The
Metropolis algorithm is [67]:

1. Begin at a point in the parameter space, xn.

2. Consider a potential “step” to a new point in the parameter space, yn, where
yn ∼ q(yn|xn), the proposal distribution.
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Figure 2.5.1: The potential difference in posterior pdf resulting from our choice of priors, in two
cases: a strong likelihood, Fig. 2.5.1a, and a weak likelihood, Fig. 2.5.1b. The pdfs are normalised so
that they integrate to unity. The profile likelihood normalisation is arbitrary.
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3. The next point is

xn+1 =





yn with probability ρ(xt, yt),

xn with probability 1− ρ(xt, yt),
(2.22)

where
ρ(x, y) = min

{
1,

p (y|D)

p (x|D)

}
(2.23)

is the acceptance probability.

The acceptance probability permits with a specified probability steps to points
with a posterior, p (xn|D), smaller than that of the current point. Steps to points
with a posterior larger than that of the current point are compulsory. The density
of the sequence xn converges to the posterior.

We, instead, use a Monte Carlo algorithm tailored to Bayesian statistics, called
nested sampling [68] and implemented in the MultiNest computer package [69,
70]. This algorithm is vastly more efficient than a grid-scan, and slightly more
efficient than traditionalMarkov chain algorithms in finding posterior distributions,
including the Metropolis algorithm.

Nested sampling is primarily for evidence calculation, but posterior distribu-
tions can be inferred from the calculation. This calculation is, a priori, slow, because
one must integrate over the whole parameter space. The insight in nested sampling
is that the algorithm finds contours of iso-likelihood that enclose a prior volume
which can be approximated from the Monte Carlo nature of the algorithm itself.
The evidence is, from Eq. 2.4,

Z = p (D|M) =
∫
L (x1, . . . , xN)× π (x1, . . . , xN)

N

∏
i=1

dxi. (2.24)

We consider, instead, prior volume with a likelihood greater than λ, X(λ),

dX = π (x1, . . . , xN)
N

∏
i=1

dxi

X (λ) =
∫

L(x1,...,xN)>λ
dX. (2.25)
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We can now rewrite Eq. 2.24 as a one-dimensional integral,

Z =
∫ 1

0
L (X) dX, (2.26)

where L (X) is the inverse of Eq. 2.25; it is the likelihood which encloses a prior
volume of X, rather than the prior volume enclosed by a likelihood λ. Numerically,
if we can evaluate L (X) for values of X, we can find the evidence with numerical
integration,

Z = ∑
1
2
[L (Xi) + L (Xi+1)]× (Xi − Xi+1) = ∑

1
2
L (Xi)× (Xi−1 − Xi+1)

(2.27)
where we have a used a trapezium rule.

We perform this numerical integration with the nested sampling algorithm in
Table 2.6.1. This algorithm is illustrated in Fig. 2.6.1.

We must calculate Xi: the prior volume enclosed by Li in the i-th iteration of
the algorithm. Let

Xi = tiXi−1. (2.28)

Because X0 = 1, recursively,
Xi = ∏ ti. (2.29)

Our N live points in the i-th iteration are sampled uniformly from the prior
volume enclosed by L > Li−1, Xi−1, though themselves enclose a prior volume Xi

with L > Li. Each live point corresponds to a likelihood that encloses a fraction of
the volume enclosed at that iteration, f . These fractions are uniformly distributed
on [0, 1]. The fraction ti is the largest of these fractions, which corresponds to the
live point with the smallest likelihood, because it encloses the largest fraction. The
pdf for ti is the probability density that a live point has f = ti multiplied by the
probability that N − 1 of our live points have f less than ti;

p (ti) = p (1 live point has f = ti)× p (N − 1 live points have f < ti) (2.30)

= Np ( f = ti)× tN−1
i

= N × tN−1
i ,

where p ( f = ti) is a pdf equal to unity, because it is a uniform distribution on
[0, 1].
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(a) The model’s parameter space, showing the likelihood func-
tion, the worst point found at each iteration of the nested
sampling algorithm, and the prior volumes enclosed by the
worst points.
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The area under the graph is the evidence.

Figure 2.6.1: An illustration of the nested sampling algorithm with four replacements applied to a
two-dimensional model with a Gaussian likelihood and with flat priors, from Ref. [68].
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We approximate Xi = exp E(ln Xi), because ln X, rather than X, dominates the
geometrical exploration. We find that E(ln ti) = −1/N and that, consequently,

Xi = exp E(ln Xi) = exp E(∑ ln ti) = exp(−i/N). (2.31)

This is the genius of the nested sampling algorithm; we can find the prior volumes
from the Monte Carlo nature of the algorithm, rather than from a time-consuming
exploration of the whole parameter space.

The algorithm stops once it has determined the evidence to sufficient precision.
The largest remaining contribution to the evidence is δZ = LMaxXi. The algorithm
stops once ln ((δZ −Z)/Z) is less than a specified tolerance.

The posterior is a by-product of the evidence calculation. We can ascribe a
posterior weight to each final live point and each inactive point,

pi = Liwi/Z , (2.32)

where i runs from 1 to the number of live points, N, plus the number of replace-
ments, M, and the weights, wi are

wi =





1
2 (Xi−1 − Xi+1) , for M replaced points

XM/N, for N final live points.
(2.33)

The replaced points have a prior volume equal to the width of their iso-likelihood
contour and the final live points share the remaining prior volume. We recall that
likelihood is a function of our model parameters x1, . . . , xN, and so too, then, are
the posterior weights in Eq. 2.32. We construct the posterior pdf numerically by
histogramming our points, with each point weighted by its posterior. We perform
integrations for marginalisation by histogramming only with respect to parameters
of interest. We can readily calculate all other aforementioned statistical quantities
numerically, from the posterior pdf and likelihood.

The algorithm has two important parameters: its tolerance and its number of
live points. The number of live points ought to be large enough to cast at least one
live point into a “basin of attraction” for each mode in the distribution — it can be
thought of as analogous to a scan “resolution.” The tolerance ought to be small
enough so that each mode is explored in sufficient detail — it can be thought of as
analogous to a scan “depth.”
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The algorithm’s performance for recovering likelihoods andfinding χ2
Min is poor.

To accurately find these frequentist quantities, one must tweak the algorithm’s
parameters and stopping conditions, to explore the model’s parameter space in
greater detail.



Chapter 3

Likelihoods

We now introduce the important observables to which we fit our model’s pa-
rameters. We detail the supersymmetric contributions to the observables, the
experiments which measure the observables and their public results, and how
we construct our likelihood functions from the results. The likelihoods are a key
ingredient in our statistical analysis. We assume that our likelihoods are indepen-
dent. This is reasonable, because the experiments are disjoint and have negligible
correlated systematic errors. From Eq. 2.20, we can factorise the K likelihoods,

L (D1, . . . , DK|x1, . . . , xN) =
K

∏
i=1
L (Di|x1, . . . , xN) . (3.1)

We interpret experimental errors δx listed as x ± δx to be 68% confidence
intervals, with Gaussian likelihoods in which δx corresponds to 1σ. If two errors
are listed, x± δa± δb, the errors are statistical and systematic respectively, and
we combine them in quadrature. We frequently include PDG [71] averages. Their
averaging procedure is such that the combined result is

x̄± δx̄ =
∑ wixi

∑ wi
± 1√

∑ wi
, (3.2)

wi =
1

(δxi)2 . (3.3)

This error is adjusted, however, if the resulting χ2 is large, because that indicates
that an error is underestimated. Occasionally, experiments measure a set of corre-

53
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lated parameters, for example, branching ratios. In these cases, PDG perform a
constrained fit to the experimental data to combine data.

Typically, our likelihood functions are Gaussian;

L = exp

[
− (x− µ)2

2σ2

]
, (3.4)

where µ is the mean experimental measurement, σ is its 1σ error and x is our
model’s prediction for the measured quantity. Because we are interested in the
kernel, we neglect the normalisation, such that −2 lnL = χ2.

Our model’s predictions, however, are imperfect. From an experiment, we
know the likelihood of obtaining data given our model’s “true” prediction, that
could be obtained in only a perfect calculation. We find the likelihood of obtaining
data given our model’s imperfect calculation with conditional probability,∗

p (D|xCalc) =
∫

p (D|xTrue)× p (xTrue|xCalc) dxTrue, (3.5)

where xCalc is our model’s imperfect calculation and xTrue is our model’s unknown
“true” prediction. If we believe that our uncertainty is Gaussian with theoretical
error τ,

p (xTrue|xCalc) = exp

[
− (xCalc − xTrue)

2

2τ2

]
, (3.6)

the familiar result from Eq. 3.5 is that the theoretical and experimental errors are
added in quadrature,† i.e., σ2 → σ2 + τ2 in Eq. 3.4.

3.1 Physicality

Our models’ parameter spaces contain regions that are “unphysical;” regions in
catastrophic conflict with theoretical principles or experiments, or in which we
cannot perform calculations. These potential physicality problems are listed in
Table 3.1.1. The common physicality problems are incorrect electroweak symmetry
breaking or that a scalar particle is tachyonic. The occurrence of these problems in

∗ Note that p (D|xTrue, xCalc) = p (D|xTrue).
† We neglect a complication; if our theoretical error is a function of the calculated value, the

normalisation factor is also a function of the calculated value. This affect, however, is moot if
σ/µ� 1.
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the CMSSM parameter space is illustrated in Fig. 3.1.1. One might expect that we
preclude unphysical regions of our parameter space via our prior distributions. It is,
however, difficult to construct such priors, because they would include non-trivial
correlations amongst a model’s parameters. Unphysical regions of parameter space
are forbidden via the likelihood; they are assigned zero likelihood. For simplicity,
we also exclude regions in which the neutralino is not the LSP, which would violate
strict limits on long-lived charged particles, in this way.

3.2 Nuisance parameters

3.2.1 Top mass

The mass of the top quark was the pen-ultimate parameter to be measured in the
Standard Model. Quark mass is a conceit; unlike leptons, quarks are confined
in hadrons in quantum chromodynamics (QCD). We must carefully define our
notion of top-quark mass, with reference to quantum field theory and particular
renormalisation schemes. We use the top quark pole mass, defined as the pole in
the top quark propagator in a perturbative regime.

Top-quark mass is measured from tt̄ production and its subsequent decay
tt̄ → W+b−W−b+. Experiments at the Tevatron [73] and the LHC [74] select
events with b-tags and leptonic, hadronic or semi-leptonic WW-decays. The top
mass is measured by fitting its mass to reconstructed kinematic distributions, with
aMonte-Carlo event generator. The Particle Data Group (PDG) averaged top-quark
mass from such measurements at the LHC and the Tevatron is [71]

Mt = 173.5± 0.6± 0.8GeV, (3.7)

where the errors are the one-sigma statistical error followed by the one-sigma
systematic error. Alarmingly, despite the high precision in this measurement, it is
not clear how to interpret the top-quark mass in the Monte-Carlo event generator.
PDG interpreted it as a pole mass, with the caveat that this interpretation might
have an associated systematic error of ∼ 1GeV [75]. Well-defined measurements,
in which the top-quark mass is extracted in a defined renormalisation scheme, are
now being performed from measurements of the top-quark pair production cross
section, but are uncompetitive in precision.
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Figure 3.1.1: Unphysical regions of the CMSSM’s (m0, m1/2) plane for tan β = 10 and A0 =
0GeV.

Physicality problems

1. Desired accuracy cannot be reached
2. Landau pole in renormalisation group evolution of gauge couplings
3. Landau pole in Yukawa coupling; infra-red quasi-fixed point breached
4. No radiative electroweak symmetry breaking; m2

3 has the wrong sign
5. No radiative electroweak symmetry breaking; µ2 has the wrong sign
6. Tachyonic sfermion
7. Cannot calculate ρ or determine gauge couplings
8. Higgs minimum is in fact a saddle point; potential unbounded from below
9. MGUT is too high
10. Higgs mass calculation non-perturbative
11. Lightest neutralino is not the LSP

Table 3.1.1: The potential physicality problems from Ref. [72]. If a point has one or more of these
problems, it is unphysical.
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We use the PDG prescription and interpret generator mass as pole mass, but
ignore their caveat, and add their statistical and systematic errors in quadrature to
obtain

Mt = 173.5± 1.0GeV, (3.8)

where the error is a combined one-sigma error. Our likelihood (or prior) for the
top mass is a Gaussian with this mean and standard deviation.

3.2.2 Bottom mass

We use the bottom mass in the MS scheme. The bottom mass in the MS scheme is
related to the physical mass by

Mb = (1 + 0.09 + 0.05 + 0.03)×mb(mb)
MS, (3.9)

where the coefficients are orders in αs. This sequence is converging slowly; the
corrections have similar magnitudes. A potential systematic error is introduced
by extracting mb(mb)

MS from an intermediate measurement of Mb or the bottom
mass in a different renormalisation scheme. The choice of scale, µ = mMS

b , is a
convention, which might be suboptimal, in that it might not minimise higher-order
coefficients in Eq. 3.9.

The precision inmeasurements of the bottommass owes to experimental results
from so-called B-meson (an anti-bottom quark and an up quark) factories, and
from advances in relating bottom quark measurements to masses in particular
schemes. The experiments (CLEO [76], BaBar [77], Belle [78] and DELPHI [79])
infer Mb from the measured energy spectra of the products of B-meson decays,
predominantly B→ Xc`ν, where Xc is a hadronic system with a charm quark. The
PDG averaged bottom-quark mass, with results converted to the MS scheme and
combined, is

mb(mb)
MS = 4.18± 0.03GeV. (3.10)

This error includes errors from such conversions. Our likelihood (or prior) for the
bottom mass is a Gaussian with this mean and standard deviation.
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3.2.3 Strong coupling

The quantum chromodynamic SUc(3) coupling strength αs = g2
s /4π (where gs is

the strong coupling) is a running parameter, with a scale dependence controlled
by its β-function. We use αs in the MS scheme at the conventional scale MZ. The
running of αs to MZ can introduce a systematic error, because the β-function is
known to a finite order in perturbation theory.

The strong coupling is measured in several processes, including deep-inelastic
scattering, τ-decay and high-energy hadron collisions. PDG evolved these mea-
surements of αs to a common scale (MZ) with its β-function and averaged the
resulting values,

αs(MZ)
MS = 0.1184± 0.0007. (3.11)

This does not include an error from the variation of the bottom-quark mass. Our
likelihood (or prior) for αs(MZ)

MS is a Gaussian with this mean and standard
deviation.

3.2.4 Fine-structure constant

The remaining nuisance parameter is the fine-structure constant αem; the coupling
strength of the unbroken electromagnetic Uem(1) interaction, which is a running
parameter. We use the reciprocal of the fine-structure constant in the MS scheme at
the conventional scale MZ. The fine-structure constant is measured at low-energy,
where it approaches a fixed-point, from the anomalous magnetic moment of the
electron and the quantum Hall effect, and ran to the desired scale. The PDG
combination of such results is

1/αem(MZ)
MS = 127.916± 0.015, (3.12)

which is found with αs(MZ)
MS = 0.120. Our likelihood (or prior) for

1/αem(MZ)
MS is a Gaussian with this mean and standard deviation.

3.2.5 Mass of the Z-boson

The mass of the Z-boson was precisely measured by LEP [80–83] in electron-
positron collisions with centre-of-mass energies

√
s ∼ MZ. “On-peak” collisions
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measured production cross sections, whereas “off-peak” collisions measured the
shape of the Z-resonance, parameterised by the Z-boson’s mass and decay-width.

The Z-boson mass was extracted from this data with no model dependent
assumptions, for example, the mass and decay width were assumed to be indepen-
dent parameters. PDG averaged such measurements, obtaining

MZ = 91.1876± 0.0021GeV. (3.13)

This is a relative precision of approximately one part in fifty-thousand. We
approximate this precision to absolute precision — MZ is an input parameter fixed
to its experimental measurement.

3.3 Dark matter

The experimental evidence for dark matter is now considered to be overwhelming.
The MSSM includes a weakly interacting massive particle (WIMP); an ideal candi-
date for dark matter. The χ is this WIMP [84,85]; its decay is forbidden by R-parity
and by kinematics. We consider three dark matter experiments. The Wilkinson
Microwave Anisotropy Probe (WMAP) [22, 86] and PLANCK [87] are the most
important; the relic density of dark matter is inferred from the cosmic microwave
background (Sec. 3.3.3). The XENON100 direct detection experiment (Sec. 3.3.4)
is important in parts of the MSSM parameter space; its null results forbid large
scattering cross sections between neutralinos and protons (Sec. 3.3.4).

3.3.1 Relic density calculation

The neutralino could be a relic of the early Universe with a substantial abundance
that explains the dark matter phenomena in Sec. 1.1.2. The early Universe cooled
and expanded from MP through symmetry breaking transitions, including transi-
tions breaking GUT, SUSY and electroweak symmetries [88]. Because interactions
were faster than the Universe’s expansion, the Universe was approximately in
thermal equilibrium [26]. If a particle’s interactions dropped with temperature,
however, such that they were slower than the Universe’s expansion, the particle
would “freeze-out” of thermal equilibrium at a temperature TF.O.. This was the
fate of the neutralino [89].
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We find a Boltzmann rate equation for the neutralino density [90];

dnχ

dt
= −3Hn +

〈
σ
(
χχ→ XiXj

)
vMøller

〉 (
n2

χ − n2
χ,Eq.

)
, (3.14)

where n is a number density, 〈·〉 is a thermal average, σ is the neutralino annihilation
cross section, H is the Hubble constant and vMøller is the Møller velocity,

vMøller ≡ c

√
(pµqµ)2 −m2

pm2
qc4

pµqµ =

√
(~v− ~u)2 − (~v× ~u)2/c2

1−~v · ~u/c2 , (3.15)

defined such that the interaction rate is Lorentz invariant. In the non-relativistic
limit, vMøller reduces to |~u − ~v|. Because in thermal equilibrium the density of
states is approximately Boltzmann, the thermal average is

〈σvMøller〉 =
∫

σvMøllere−Ep/kBTe−Eq/kBTd3pd3q∫
e−Ep/kBTe−Eq/kBTd3pd3q

. (3.16)

For insight, the result is split into an effective cross sectionmultiplied by a statistical
weight [91], each a function of energy. Note that although an annihilation would
remove two neutralinos, the cross section is divided by two because the neutralino
is a Majorana particle [89].

The neutralino abundance is expressed as a fraction of the Universe’s critical
density [26],

Ωh2 ≡ ρχ

ρCRITICAL
h2, (3.17)

where ρχ is the density of neutralinos, ρCRITICAL is the critical density of the Uni-
verse, the precise density required for the spatial geometry of the Universe to be
flat in the Friedmann equation, and h ∼ 0.7 is the Hubble constant divided by
100kms−1Mpc−1.∗

With approximate expressions for freeze-out, we find that [89]

Ωχh2 ' 3× 10−26cm3s−1
〈
σ
(
χχ→ XiXj

)
vMøller

〉 , (3.18)

which is dependent on the neutralino’s mass in only its denominator.

∗ Multiplying by the Hubble constant squared removes the uncertainly otherwise present in the
critical density.
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Three phenomena that affect 〈σvMøller〉 in Eq. 3.16 and thus the relic density
are [92]:

Resonances from s-channel diagrams in which the cross section spikes at, e.g.,√
s = mA, the pseudoscalar Higgs mass. In equilibrium, from Boltzmann

statistics, 〈s〉 ' 4m2
χ + 6mχT. If the resonance’s spike is near 〈s〉, it is critical

to relic density. Because typically TF.O. � mχ, the resonance is relevant if
mχ ' 0.5mA.

Coannihilation with a second particle species with mass m. The thermal
average in Eq. 3.16 results in an approximate Boltzmann suppression factor
for coannihilation [93],

〈σvMøller〉 ∝ e−(m−mχ)/kBTF.O . (3.19)

Coannihilation is important if m ≈ mχ, i.e., if the their densities are similar
in thermal equilibrium from Boltzmann statistics. In MicrOMEGAs, coanni-
hilation is included if m/mχ < 1.55 [93]. Coannihilation reduces the relic
density if the second species annihilates faster than the neutralino.

Thresholds in the cross section — final states forbidden at e.g.,
√

s < 2m f .
Thresholds imply that 〈σvMøller〉TF.O.

> 〈σv〉T→0.

We review dark matter annihilation for Majorana neutralinos.

3.3.2 Dark matter annihilation

The neutralino is aMajorana fermion. Majorana fermion annihilation to fermions is
“helicity suppressed.” The Majorana fermions’ spins could be asymmetric, S = 0,
or symmetric, S = 1. At threshold,

√
s = 2mχ, however, their orbital angular

momentum is L = 0. Because the Majorana fermions’ spatial wavefunction is
symmetric with L = 0 (orbital parity is (−1)L), their spin wavefunction must
be asymmetric, S = 0. The outgoing fermions, however, result from a chiral
interaction. If the fermions are massless, their helicities are parallel, S = 1. Because
orbital angular momentum is perpendicular to helicity, orbital angular momentum
in the outgoing fermions cannot balance momentum. This L = 0 partial wave
annihilation is possible, if the outgoing fermions are massive, because fermion
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mass permits a fermion to “helicity flip.” It is, however, “helicity suppressed” by a
factor ∝ m2

f .
The orbital angular momentum L > 0 partial waves are possible, in which

case the Majorana fermions’ spins are symmetric, S = 1, if L is odd. The L > 0
partial waves, however, are “p-wave suppressed” by a factor v2L, with v, the relative
velocity between the Majorana fermions, typically ∼ 10−3c [94]. In general, then,
neutralino annihilation is “helicity suppressed” in the L = 0 partial wave and
p-wave suppressed in the L > 0 partial waves. For a substantial annihilation rate,
we desire an L = 0 partial wave without helicity suppression.

With scalar Yukawa-type couplings to outgoing fermions, we avoid helicity sup-
pression, because scalars couple opposite chiralities. If the Yukawa is responsible
for fermion masses, however, its coupling is suppressed by ∝ y2

f , similar to genuine
helicity suppression. In the MSSM, the Yukawa couplings can be enhanced by
tan β. The pseudoscalar and scalar Majorana couplings contain subtleties. The par-
ity of the Majorana fermions’ is P = (−1)L+1. The P = −1 pseudoscalar coupling,
therefore, is the L = 0 partial wave, while the P = +1 scalar coupling is the L = 1
partial wave. Only the pseudoscalar coupling could, therefore, avoid helicity and
p-wave suppression, because it couples opposite chiralities in the L = 0 partial
wave [95].

In the CMSSM, the dark matter relic abundance is reduced by distinct annihila-
tion mechanisms, including:

“Stau-coannihilation” (Fig. 3.3.1a), in which mχ ≈ mτ̃1
. It occurs for m1/2 &

m0. The neutralino composition is bino-like. That mχ ≈ mτ̃1
insures that in

thermal equilibrium the density of neutralinos and staus is similar. Staus and
neutralinos annihilate via t-channel and s-channel diagrams, predominantly
via an s-channel stau-tau-bino (φ∗Taψ) λa vertex in Eq. 1.21.

“Focus-point” [96, 97] (Fig. 3.3.1b), in which the neutralino’s higgsino-
component is relevant because µ . M1, M2 and neutralinos annihilate to
WW via a t-channel chargino. It occurs for m0 � m1/2, so that µ is small.
Annihilation is via a higgsino-charged higgsino-gauge boson gauge interac-
tion in the covariant derivative in Eq. 1.14. Because higgsino-like neutralinos
annihilate too quickly, focus-point neutralino composition is predominantly
bino with a higgsino admixture.

“A-funnel” resonance (Fig. 3.3.1c), in which neutralinos annihilate via an
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s-channel pseudoscalar Higgs resonance because |2mχ −mA| . ΓA, the
pseudoscalar’s width. It occurs for m1/2 . m0 and tan β & 30, so that
2mχ ∼ mA [98] and so that ΓA is large [99]. Annihilation is via a Higgs-
higgsino-gaugino (φ∗Taψ) λa vertex in Eq. 1.21— the neutralino composition
must be an admixture of gaugino and higgsino. Because its second vertex is
a Yukawa pseudoscalar coupling between fermions with opposite chiralities,
the diagram Fig. 3.3.1c avoids helicity suppression and p-wave suppression.
In fact, neutralinos with a significant higgsino-like component annihilate too
quickly via the A-funnel. In the A-funnel, therefore, neutralinos are bino-like
and the s-channel is fractionally off-resonance.

Light/heavy Higgs resonance, in which neutralinos annihilate via an s-
channel scalar resonance, with the light or heavy scalarHiggs, with 2mχ ≈ mh

or 2mχ ≈ mH. Annihilation is via a Higgs-higgsino-gaugino (φ∗Taψ) λa ver-
tex in Eq. 1.21. In contrast with the A-funnel, this mechanism is p-wave
suppressed by the Majorana-scalar coupling. The heavy Higgs resonance,
with 2mχ ≈ mH, struggles to sufficiently reduce neutralino relic density.
If present, the heavy Higgs resonance occurs near the A-funnel, because
mA ≈ mH. The light Higgs resonance region occurs at m1/2 ∼ 100GeV,
so that mχ ∼ 50GeV, with m0 � m1/2, so that mh is heavier than LEP’s
lower limit. For the light Higgs resonance, the neutralino must be bino-like
(though with non-zero higgsino composition), because a light higgsino-like
neutralino would imply a light higgsino-like chargino, which violates LEP
bounds.

Z-resonance, in which neutralinos annihilate via an s-channel Z-boson res-
onance, with 2mχ ≈ MZ. Annihilation is via a higgsino-higgsino-Z-boson
or a wino-wino-Z-boson gauge interaction in the covariant derivative in
Eq. 1.14. Because the Z-boson is CP-even, this mechanism is p-wave sup-
pressed, and unless the final state is WW, it is also helicity suppressed. The
neutralino cannot, however, be higgsino-like, because it would violate LEP
chargino bounds. Because the wino couples strongly with the Z-boson, the
neutralino’s composition can be predominantly bino with a wino component.

“Bulk” (Fig. 3.3.1d), in which neutralinos annihilate to fermions via a
t-channel sfermion. Annihilation is via two sfermion-fermion-gaugino
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(φ∗Taψ) λa vertices in Eq. 1.21. Diagram Fig. 3.3.1d is helicity suppressed.
In the L = 0 partial wave, the annihilating neutralinos are S = 0. Because
a gauge interaction couples fermions with identical chiralities, in the mass-
less limit, the outgoing fermions have S = 1. The diagram is permitted by
a helicity flip, because fermions are massive, or at high-energies (p-wave
suppression), because at high-energies the incoming Majorana neutralinos
could have S = 1.

Because stau-coannihilation and higgsino-like annihilation to WW invoke t-
channel sparticles in 〈σv〉TF.O. , 〈σv〉TF.O. decreases if sparticle masses increase and
the relic density increases if sparticle masses increase. Ultimately, if t-channel an-
nihilation is significant, Ωχh2 measurements limit sparticle masses, and, because
sparticles must be heavier than the neutralino, the neutralino mass [100].

3.3.3 Relic density measurements

The WMAP spacecraft is in a triangular Lagrange point in the Sun and Earth’s
gravitational fields [101]. WMAP measured the power spectrum of anisotropies in
the cosmic microwave background and reported posterior mean values, best-fit
values and 68% ETP credible regions for parameters of the ΛCDM model, the
so-called Standard Model of cosmology, with flat priors, including the relic density
of cold dark matter, ΩCDMh2. WMAP was succeeded by a similar experiment,
PLANCK [87]. The latest PLANCK result is that

ζ ≡ ΩCDMh2 = 0.1199± 0.0027. (3.20)

Our likelihood function for ζ is Gaussian; however, we include a theoretical
error in the MSSM ζ calculation. We distinguish between the true value of ζ for
the model, with a perfect calculation, and the calculated ζ for the model, with an
imperfect calculation, containing approximations. From Ref. [102,103], we know
that this theoretical error can be as large as a 10% fraction of ζ in the focus-point
region,

p (ζTrue|ζCalc) = exp

[
− (ζTrue − ζCalc)

2

2× 0.012ζ2
Calc

]
. (3.21)

We combine these expressions via conditional probability in Eq. 3.5 and arrive at
our likelihood for ζ; a Gaussian with theoretical and experimental errors added
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in quadrature. This likelihood, and its broadening by the theoretical error in the
calculation, is shown in Fig. 3.3.2.

3.3.4 Direct detection

XENON100 is a terrestrial “direct detection” experiment—XENON100 is sensitive
to elastic scattering between nuclei in its detector and dark matter. The detector, by
virtue of the Sun’s motion in the galactic rest frame, experiences a “WIMP wind,”
with a relative velocity that is modulated annually by the Earth’s rotation around
the Sun, and from a direction that is modulated diurnally by the Earth’s rotation
around its axis [104]. The WIMP wind itself depends on the distribution and
velocity distribution of dark matter in our galaxy. We consider only the strongest
negative result from direct detection experiments, which is from XENON100 [105],
and ignore conflicting results from DAMA/LIBRA [106–108], which observes an
annual modulation with a significance of 8.9σ.

XENON100 is a noble liquid detector made of liquid xenon which scintillates
and ionises in scattering events. XENON100 distinguishes signal events from
background events from the time that elapses between scintillation and ionisation.
XENON100 cannot measure the direction from which an event originated, but it
can fully locate the scattering event within the detector. This enables XENON100
to reject “double strike” events — events that occur in close temporal and spatial
proximity within the detector, which are likely to be slow neutrons scattering
several times within the detector [109].

In one-hundred days of operation, XENON100 detected 3 events; statistically
insignificantly more than their expectation of 1.8± 0.6 events [105]. This null result
constrained WIMP mass and WIMP scattering cross sections with nucleons in the
XENON100 detector. The publicly available results, however, were limited to a
90% CL exclusion contour in the WIMP mass and WIMP scattering cross section
plane, reproduced in Fig. 3.3.3. We crudely constructed a likelihood function from
this exclusion contour, by approximating the 90% exclusion contour by a 100%
exclusion contour, i.e., our likelihood is constant below the exclusion contour and
zero above it. There is, however, a significant theoretical error in the calculated
scattering cross section, estimated to be a ∼ 100% fraction of the calculated cross
section [110] (see Sec. 4.6). We incorporate this uncertainty via Eq. 3.5, resulting in
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Figure 3.3.1: Feynman diagrams for dominant mechanisms by which neutralinos annihilate in the
MSSM in the early Universe, labelled by interaction eigenstates.
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Figure 3.3.2: Likelihood from WMAP’s relic density measurement, illustrating the effect of a
fractional theoretical error.
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our likelihood function on the WIMP mass and calculated WIMP scattering cross
section plane (Fig. 3.3.3).

3.3.5 Indirect detection

The possible long-lived dark matter annihilation products are photons, neutrinos,
electrons and positrons, and protons and anti-protons. Because we expect the rate
of annihilation to be proportional to ρ2

χ, searches target regions or objects in which
we expect dark matter to be abundant, including [88]:

Our galactic halo and centre, because from simulations we expect that ρχ ∝
r−α;

Our Sun, because it might capture dark matter in elastic collisions. Other
than photons, only neutrinos could escape our Sun’s gravitational field; and

Low-luminosity galaxies beyond our galaxy, including dwarf spheroidal
galaxies.

Because electrons and protons are deflected by electromagnetic fields, searches
target particular objects with photons or neutrinos. To minimise backgrounds,
searches target positrons and anti-protons, rather than electrons and protons. The
relevant prediction is 〈σv〉T→0, i.e., the thermally averaged cross section in the zero
temperature limit.

3.4 Higgs mass

The historic discovery of a Standard Model-like Higgs particle and its contempora-
neous mass measurement at the LHC was preceded by strict lower limits on the
Standard Model Higgs boson’s mass from LEP [111], upper limits on its mass from
the Tevatron [112] and by indirect constraints on its mass from electroweak preci-
sion data [113,114]. We consider only direct measurements; because we already
include electroweak precision data in our analysis, to include indirect Higgs mass
measurements from electroweak precision data would be to “double-count” this
data in our analysis. The Higgs mass measurements are summarised in Ref. [115].

The exclusion limits are applicable to only a Standard Model Higgs boson, be-
cause Higgs bosons with suppressed couplings could have evaded direct searches,
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Figure 3.3.3: Likelihood from XENON100 direct detection experiment, showing 90% exclusion
contours from XENON100 and from our likelihood, which incorporates a large fractional error.
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e
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h

Figure 3.4.1: Feynman diagram for Higgs-strahlung— the dominant Higgs production mechanism
at LEP in association with a Z-boson.

and Higgs bosons with enhanced couplings would struggle to evade searches.
We assume that the lightest MSSM Higgs is Standard Model-like, in that the con-
straints for Standard Model Higgs bosons apply to the lightest MSSMHiggs boson,
without reinterpretation. We consider constraints on only the Higgs boson’s mass,
and neglect measurements of its couplings. We, furthermore, neglect the upper
limit on the Higgs bosons mass from the Tevatron, since it is higher than that
which can be achieved in our supersymmetric models.

3.4.1 LEP

The LEP experiments searched for Higgs bosons from Higgs-strahlung production
in association with a Z-boson in electron-positron collisions at centre-of-mass
energies of less than and equal to 209GeV [111]. This production mechanism
is illustrated in Fig. 3.4.1. LEP was sensitive to Standard Model Higgs bosons
with masses of less than ∼ 115GeV, which would decay dominantly to bb̄ and ττ

(see Fig. 3.4.2). LEP searched for these decays in combination with a Z-decay to
leptons, quarks or neutrinos, but it found no significant evidence of StandardModel
Higgs boson production. The combined exclusion from the LEP experiments
(ALEPH [116], DELPHI [117], L3 [118] and OPAL [119]) was that mh < 114.4GeV
is excluded at 95% CLs [111].

There were, however, statistically insignificant hints in the LEP results. LEP saw
an excess of events at 115GeV which was consistent with a Standard Model Higgs,
but had an appreciable chance (9%) of being a fluctuation in the background, and
an excess at 98GeV which had a small chance (2%) of being a fluctuation in the
background, but was much weaker than that expected from a Standard Model
Higgs boson.

Prior to the LHC’s historic discovery, we included only this LEP upper limit
in our likelihood. It is, however, difficult to extract a likelihood from the public
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LEP results, because the pertinent quantity in their analysis was a likelihood ratio,
rather than a likelihood. Nevertheless, from the sharp behaviour of their CLs test
statistic, we can infer that their likelihood is sharp, and so approximate it to a
step-function,

p
(
LEP|mTrue

h

)
=





1 mTrue
h ≥ 114.4GeV

0 otherwise.
(3.22)

This is a likelihood function — we cannot easily approximate or parameterise
LEP’s sampling distribution, i.e., we cannot interpret Eq. 3.22 as a function of the
data. We distinguish between the “true” Higgs mass from a perfect calculation
and the “calculated” Higgs mass from the realised, approximate calculation. There
is an appreciable uncertainty in interpreting the calculated Higgs mass, calculated
to a finite order in perturbation theory, with a hypothetical “true” Higgs mass
calculation, estimated to be τ = 2GeV [121]. Our belief is that the true Higgs mass
is most likely to be the calculated Higgs mass, but that there is an appreciable and
equal probability that it is less than or greater than the calculated Higgs mass,
which diminishes asymptotically. A Gaussian distribution conveniently captures
these properties;

p
(

mTrue
h |mCalc

h

)
= exp

[
−
(
mTrue

h −mCalc
h
)2

2τ2

]
. (3.23)

We combine Eq. 3.22 and Eq. 3.23 via Eq. 3.5. The result is a convolution of a step
function with a Gaussian; a non-analytic function, which can be expressed in error
functions,

LLEP = p
(
LEP|mCalc

h

)
= 1/2

[
1− erf

(
114.4GeV−mCalc

h√
2 τ

)]
. (3.24)

This function is plotted in Fig. 3.4.3.

3.4.2 LHC

Last year (2012), the ATLAS [122] and CMS [123] experiments at the LHC dis-
covered a Higgs boson produced in pp collisions at centre-of-mass energies of√

s = 7TeV and
√

s = 8TeV. The search was conducted at a breathless pace; prior
to their discovery, CMS [124–128] and ATLAS [129–132] regularly reported con-
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lated, rather than true, Higgs mass, including a 2GeV error in the Higgs mass calculation.
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straints on the Standard Model Higgs mass which usurped previous constraints.
Our analysis was conducted during the frantic historic moments immediately
preceding and succeeding their discovery, and included publicly available Higgs
constraints that were soon surpassed. Whilst these constraints are now an historical
footnote, and their detail might seem arcane, it is necessary that they are described.
The results quoted were contemporary with this work and were since updated by
CMS and ATLAS.

At centre-of-mass energies of
√

s = 7TeV and
√

s = 8TeV, a proton’s valence
quarks are engulfed by sea quarks and sea gluons. Collisions between sea quarks
and sea gluons, rather than valence quarks, dominate Higgs boson production.
The four dominant Higgs boson production mechanisms at the LHC are gluon
fusion, vector boson fusion, Higgs-strahlung and tt̄ fusion (see Fig. 3.4.4) [133].
Standard Model Higgs boson production is on-shell, because the Standard Model
Higgs boson has a narrow width.

In the MSSM, the lightest Higgs boson’s mass must be less than ∼ 135GeV
if MSUSY . 1TeV [41] and heavier than the LEP lower bound. In this permitted
window, the Higgs boson decays through many decay modes (see Fig. 3.4.2). The
LHC experiments cannot distinguish the gg and cc̄ decay modes from Standard
Model QCD backgrounds. Whilst the WW* off-shell, bb̄ and ττ decay modes
contributed to the Higgs discovery, the discovery was primarily in the “golden”
ZZ* off-shell and γγ decay modes. The decay modes are further categorised by
their Higgs production mechanism into disjoint “channels.”

CMS, for example, saw excesses in each decay mode, with a nugatory chance
of being a fluctuation in the background (6.9σ∗ [134]), and excesses in the golden
decay modes with a combined significance of 5.8σ.

The “golden channels” are h→ ZZ* → 4` and h→ γγ — they can be entirely
reconstructed, because they have no missing energy in their final states. CMS and
ATLAS inferred the Higgs mass from these high-sensitivity channels. So that their
mass estimate is model-independent, CMS do not assume Standard Model Higgs
couplings, rather; CMS perform a simultaneous scan of mass, “signal strength
modifiers” for gg → h → γγ, qq → h → γγ and h → ZZ* → 4`, and nuisance
parameters. They report a best-fit Higgs mass and a 68% PL interval for the Higgs

∗ In ATLAS and CMS, p-values are converted to “significances” with a one-sided Gaussian tail
convention. This significance corresponds to a p-value of 3× 10−12.
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Figure 3.4.4: Feynman diagrams for dominant Standard Model Higgs production mechanisms at
the LHC.

h
t

γ

t
γ

t

(a) The diphoton mode, mediated by
a top-quark or W-boson loop.

h

`

`Z

Z
`

`

(b) The off-shell ZZ*-mode, illus-
trated with subsequent leptonic Z-
decays to a four-lepton final state.

Figure 3.4.5: Feynman diagrams for the dominant Standard Model Higgs decay modes at the LHC.
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mass of
mh = 125.8± 0.4± 0.4GeV. (3.25)

The Standard Model Higgs boson is compatible with this mass measurement; a
measurement without floating signal strength modifiers agrees with this result to
within 0.1GeV.

CMS also observed insignificant discrepancies in signal strength modifier with
respect to the Standard Model, which, by definition, predicts unity for these quan-
tities. The γγ signal strength was enhanced, with a best-fit value of 1.43, but
compatible with unity within one standard deviation. CMS saw, however, no
evidence against the Standard Model Higgs sector; the p-value that these discrep-
ancies are fluctuations in the Standard Model is 0.46. Permitted Higgs couplings
are investigated in Ref. [135–137].

ATLAS report similar results; their model independent mass measurement
from the golden channels is [138]

mh = 125.2± 0.3± 0.6GeV. (3.26)

Their results [138], however, contained a puzzle. The Higgs masses inferred in-
dependently from γγ and from ZZ* were 126.6± 0.3± 0.7GeV and 123.5± 0.8±
0.3GeV, respectively. This inconsistency had a p-value, a probability of an incon-
sistency as large or larger than that observed assuming that the Higgs mass is
identical in each channel, of . 1% (its precise value depends on whether one uses
Monte Carlo simulations or asymptotic formulae). Various explanations, including
two Higgs bosons with nearly degenerate masses [139], systematic errors, and
chance, have been posited.

Our analyses were performed during the discovery. Before either experiment
had achieved a significant result, ATLAS [127] and CMS [124] excluded at 95%
CLs Standard Model Higgs boson masses outside the intervals:

ATLAS 95% CLs, mTrue
h (GeV) ∈ {117.5, 118.5} or mTrue

h ∈ {122.5, 129} (3.27)

CMS 95% CLs, mTrue
h (GeV) ∈ {115, 127.5}

We approximated the likelihood from these experiments with box-car functions,
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taking the smallest allowed 95% regions,

p
(
LHC|mTrue

h

)
=





1 : mTrue
h (GeV) ∈ {117.5, 118.5}

1 : mTrue
h (GeV) ∈ {122.5, 127.5}

0 : elsewhere.

(3.28)

We did not attempt to combine the statistical significances of the ATLAS and CMS
results in this crude procedure, and approximated the intervals as 100%, rather
than 95%, intervals. We incorporated the significant theoretical error in the MSSM
Higgs mass calculation via Eq. 2.20, which resulted in our likelihood;

LPre-LHC = p
(
LHC|mCalc

h

)
(3.29)

= erf
(

mCalc
h − 117.5GeV/

√
2 τ
)
− erf

(
mCalc

h − 118.5GeV/
√

2 τ
)
+

erf
(

mCalc
h − 122.5GeV/

√
2 τ
)
− erf

(
mCalc

h − 127.5GeV/
√

2 τ
)

.

We ignored statistically insignificant discrepancies in signal strength modifier or
measured signal strengths within the permitted mass windows. This function
(plotted in Fig. 3.4.6) has a ridge at mh = 118GeV corresponding to the lower
permitted mass window from CMS; however, this window is disfavoured by the
convolution, because their is an appreciable chance that mCalc

h inside the lighter
window corresponds to mTrue

h outside this permitted window (the width of this
window is less than the theoretical error τ).

We were fortunate in our analysis; we anticipated the discovery of a Standard
Model-like Higgs boson with a mass of 125GeV, as indicated at that moment
by the statistically insignificant publicly available results in Ref. [124, 127]. We
estimated that its mass would be measured with a Gaussian error of σ = 2GeV —
we slightly underestimated the precision andmass. We combined this hypothetical
measurement with a theory error in the Higgs mass calculation via Eq. 3.5. Our
likelihood in this hypothetical scenario was approximately that which was later
realised by the ATLAS and CMS experiments, and, as such, we identified this
scenario and its results with reality;

LPost-LHC = p
(
LHC|mCalc

h

)
= exp

[
−
(
125GeV−mCalc

h
)2

2 (τ2 + σ2)

]
. (3.30)
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We again ignored measurements (hypothetical or real) of Higgs couplings in our
likelihoods. Updated CMS measurements of Higgs signal strengths with 5.1 fb−1

of integrated luminosity at
√

s = 7TeV and 19.6 fb−1 of integrated luminosity√
s = 8TeV [140] are shown in Fig. 3.4.7. The measurements agree with the

Standard Model; the p-value is 0.65.

3.5 Electroweak precision observables

Electroweak precision observables are loosely defined as “unfolded” observables
measured with high,. 1% relative precision with which one can test the Standard
Model orMSSM at beyond the leading-order [141]. We consider loop contributions
to the W-boson and Z-boson unrenormalised self-energies,

ΣW,Z
µν (q) =

(
−gµν +

qµqν

q2

)
ΣW,Z(q2) + . . . , (3.31)

where ΣW,Z(q2) is the transverse self-energy [142]. In fact, our electroweak preci-
sion observables are characterised by

∆ρ ≡ ΣZ(0)
M2

Z
− ΣW(0)

M2
W

. (3.32)

3.5.1 Mass of the W-boson

With our ∆ρ parameter in Eq. 3.32, sparticle loops in the Z-boson and W-boson
self-energies, predominantly stop loops [143], shift the W-boson mass by approxi-
mately [142]

δMW ≈
1
2

MW
cos2 θW

cos2 θW − sin2 θW
∆ρ. (3.33)

The mass of the W-boson was precisely measured at LEP by DELPHI [144],
OPAL [145], L3 [146] and ALEPH [147] and at the Tevatron by CDF [148] and
D∅ [149]. At LEP, W-bosons were produced in pairs from electron-positron colli-
sions, with subsequent leptonic and hadronic W-decays. The mass was inferred
by reconstructing the decay products. At the Tevatron, W-bosons were produced
in combination with initial state hadronic radiation in q′q̄→ XW. The transverse
mass and transverse momentum distributions were measured from the products
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Figure 3.4.6: Our likelihood from the LHC Standard Model Higgs searches as a function of the
calculated, rather than true, Higgs mass, including a 2GeV error in the Higgs mass calculation,
prior to its Higgs discovery.

Figure 3.4.7: CMS measurements of Higgs signal strengths for separate Higgs decay channels
from Ref. [140]. The black squares are the best-fitting signal strengths and the red lines indicate the
combined statistical and systematic 1σ errors. The vertical line and green band is the combined
measurement, σ/σSM = 0.80± 0.14.
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of the subsequent W-decay, from which the mass of the W-boson was extracted,
by fitting “templates” to these distributions, which were functions of the W-mass.

The PDG average of such measurements is [71]

MW = 80.385± 0.015GeV. (3.34)

We assume that the likelihood is Gaussian, and include a 0.015GeV theoretical
error in the W-mass calculation [150] via Eq. 3.5.

3.5.2 Weak-mixing angle

The weak-mixing angle is defined, at the tree-level, by the relation [151]

e = g sin θW = g′ cos θW , (3.35)

resulting, via electroweak symmetry breaking, in the tree-level relation

sin2 θW = 1− M2
W

M2
Z

. (3.36)

This “Sirlin” definition is the weak-mixing angle in the on-shell renormalisation
scheme in all orders. The quantity sin2,l

Eff θW , the leptonic effective weak mixing
angle, differs from the on-shell mixing angle by . 1%.

Similarly to the W-boson mass, loop contributions shift sin2,l
Eff θW by approxi-

mately [142]

δ sin2,l
Eff θW ≈

− cos2 θW sin2 θW

cos2 θW − sin2 θW
∆ρ. (3.37)

The PDG combination of measurements of sin2,l
Eff θW from the Tevatron and LEP

is [71]
sin2,l

Eff θW = 0.23146± 0.00012. (3.38)

We assume that the likelihood from this combination is Gaussian and include
a theoretical error in the sin2,l

Eff θW calculation in the MSSM of 0.00015 [150] via
Eq. 3.5.
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3.6 Direct collider searches

Superparticles, if they exist and are sufficiently light, ought to be produced in
particle collisions. If R-parity is conserved, as it is in the MSSM, this production
results in pairs of the lightest neutralino, χ, which cannot be detected, resulting in
missing energy in the event. If the collider is a hadron collider, however, because
the initial longitudinal momentum is unknown, only missing transverse energy,
/ET, is measured. A general final state from superparticle production in the MSSM
is n leptons, m jets, and /ET ≥ 2mχ; however, there are significant Standard Model
background processes with missing energy from W-boson or Z-boson decays to
neutrinos. Experiments discriminate background events from signal events via
kinematic “cuts.” Historically, the first of such direct searches was the UA1 [152]
experiment, but we considered only results from direct searches at LEP [153–157],
the Tevatron [158–161] and the LHC.

3.6.1 LEP

LEP experiments, including ALEPH, DELPHI, OPAL and L3, searched for super-
symmetry in electron-positron collisions with centre-of-mass energies of

√
s ≤

208GeV; the null results of which were combined by the LEP SUSY working group
into 95% CL lower limits on superparticle masses [162]. Superparticles could have
been produced in pairs via an s-channel Z-boson or photon, or via a t-channel
gaugino or sfermion. We constructed a likelihood from the 95% LEP sparticle mass
limits [158–161,163]

mχ ≥ 50GeV, (3.39)

mχ± ≥ 94GeV,

mẽR
≥ 100GeV,

mµ̃R
≥ 95GeV,

mτ̃1
≥ 87GeV,

mt̃1
≥ 95GeV,

mb̃1
≥ 95GeV.
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Our likelihood included a 5% Gaussian fractional error in the calculated sparticle
masses, estimated from the scale and scheme dependence of the calculated masses
in Ref. [164], via Eq. 3.5.

3.6.2 Tevatron

The Tevatron collided protons and anti-protons at centre-of-mass energies of
√

s =

1.96TeV in its search for supersymmetry and the Higgs boson [165]. The Tevatron
experiments searched for supersymmetry via distinct signatures with minimal
Standard Model backgrounds [166,167]. The direct production of a chargino and
a neutralino might have had such a signature, because it might result in a trilepton
final state with missing transverse energy, via Fig. 3.6.1. The direct production
of squarks or gluinos could have resulted in final states with multiple jets, no
leptons and missing transverse energy, or a same-sign dilepton signal from gluino
decays via a chargino. Because Tevatron searches for supersymmetry observed no
statistically significant signals, the Tevatron excluded superparticles with masses
below particular thresholds at 95% CL [158–161];

mq̃ ≥ 375GeV, (3.40)

mg̃ ≥ 289GeV.

We constructed a likelihood from these limits that included a 5% Gaussian frac-
tional error in the calculated sparticle masses, estimated from the scale and scheme
dependence of the calculated masses in Ref. [164], via Eq. 3.5.

3.6.3 LHC

During our research, the ATLAS and CMS experiments searched for supersym-
metry at the LHC at

√
s = 7TeV and

√
s = 8TeV. Because they observed no

statistically significant excesses of events over the expected Standard Model back-
grounds, ATLAS and CMS excluded light squarks and gluinos. We interpret their
results within the CMSSM in Chap. 4.
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Figure 3.6.1: Feynman diagram for a trilepton final state from direct gaugino production at a
hadron collider; the final state is a same-flavour lepton pair, a third lepton and missing energy.
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3.7 B-physics

B-physics is the study of b-flavoured hadrons, particularly their weak or rare
decays [168]. We are interested in rare decays that could be “crystal balls” for new
physics. The Standard Model forbids tree-level flavour-changing neutral currents;
these currents are permitted only via loops, and are suppressed by their additional
orders of couplings. Ordinarily, loop-level supersymmetric contributions would
be minuscule compared with the tree-level Standard Model contributions, but in
rare decays such tree-level contributions are forbidden.

3.7.1 b→ sγ

The decay B→ Xsγ, where Xs is a strange-flavoured hadron and B is a d̄b meson,
is mediated by a flavour-changing neutral current in b→ sγ, which is suppressed
by loops in the Standard Model. The loop-level supersymmetric contributions
might be significant. The dominant StandardModel and supersymmetric diagrams
(assuming MFV) that contribute to b→ sγ are shown in Fig. 3.7.1 [169]. The sum
of such diagrams is proportional to CKM-matrix elements and is schematically [29]

BR (b→ sγ) ∝
|V∗tsVtb|2
|Vcb|2

[
SM contr.+ H± contr.− sgn µ M2

t tan β

M2
SUSY

]2

, (3.41)

where the contributions in brackets are StandardModel, chargedHiggs and approx-
imate supersymmetric contributions, respectively. This approximation, however,
is a gross simplification. The BR (b→ sγ) behaviour with tan β is complicated by
mass insertions. If particular diagrams dominate BR (b→ sγ), supersymmetric
contributions can be proportional to cot β or A0.

The branching ratio BR (b→ sγ) was measured in B-factories, including
CLEO [170], BaBar [171] and Belle [172]. Because of the detector’s finite reso-
lution, the energy of the photon in the B rest frame was required to be greater than
a specified threshold. This mitigates infrared divergences in BR (b→ sγ). The
PDG average of such measurements for Eγ ≥ 1.6GeV [71],

BR (b→ sγ) = 3.60± 0.23× 10−4, (3.42)
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slightly differs from the Heavy Flavor Averaging Group (HFAG) average [173,174],

BR (b→ sγ) = 3.43± 0.21± 0.07× 10−4, (3.43)

because they average slightly different experimental data.
The Standard Model prediction at NNLO, O(α2

s ) is [175]

BR (b→ sγ) = 3.15± 0.23× 10−4. (3.44)

This uncertainty includes non-perturbative, parametric and higher-order uncer-
tainties. Whilst the Standard Model prediction is in agreement with the averaged
measurements to within 1.4 standard deviations (we add theoretical and experi-
mental errors in quadrature), this insignificant discrepancy hints that it may be
enhanced by new physics.

We include either the PDG or HFAG BR (b→ sγ) average in our likeli-
hood, with a Gaussian, including a 0.21× 10−4 [175] theory error in the MSSM
BR (b→ sγ) calculation via Eq. 3.5.∗

3.7.2 Bs→ µ+µ−

The decay Bs → µ+µ−, where Bs is an sb̄ meson, is a rare decay in the Stan-
dard Model. Standard Model tree-level flavour-changing neutral currents are
forbidden, and loop-level diagrams (Fig. 3.7.2a and Fig. 3.7.2b) are “helicity sup-
pressed” [176]. The Bs is a pseudoscalar, which, in the Standard Model, might
decay to two fermions via an electroweak interaction that separates chiralities. An-
gular momentum conservation in such a decay requires a “helicity flip,” via a mass
insertion and suppresses this decay. The supersymmetric diagram (Fig. 3.7.2c),
in contrast, is mediated via Yukawa interaction that mixes chiralities, and is not
suppressed in this way. The supersymmetric contributions to Bs → µ+µ− could
have been a “smoking gun” signal for supersymmetry in experimental searches;
however, supersymmetric contributions can interfere destructively. In the large
tan β limit of the MSSM, we neglect the light Higgs contribution in Fig. 3.7.2c
because its down-type Yukawa coupling is not enhanced [177], and approximate
mH ≈ mA, resulting in an approximate relation between BR (Bs → µ+µ−), tan β

∗ Our theoretical error for BR (b→ sγ) in theMSSM is chosen to be equal to that in the Standard
Model in Ref. [207].
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Figure 3.7.1: Leading-order Feynman diagrams for the rare decay b→ sγ in the Standard Model
and in the MSSM. Gluino loops (not shown) also contribute to b→ sγ at leading order. b→ sγ
requires at least one mass insertion (not indicated), depending on whether the chargino is a higgsino
or wino, which introduces factors of µ, mb, M2, A0 or MZ [169].
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and mA [178]

BR
(

Bs → µ+µ−
)SUSY ∝ tan6 β

(
MSUSY

mA

)4

. (3.45)

The Standard Model prediction for BR (Bs → µ+µ−) calculated in Ref. [179] is

BR
(

Bs → µ+µ−
)SM

= 3.23± 0.27× 10−9. (3.46)

This prediction requires adjustments so that it exactly matches what is measured in
experiments, including removal of direct-emission photons, and flavour averaging.
Because the Bs meson is a flavour eigenstate, rather than a mass eigenstate, the
branching ratio is flavour-averaged time-integrated over Bs to Bs oscillations [179],

〈
BR
(

Bs → µ+µ−
)〉

[t] =
1
2

∫ t

0
Γ(Bs(t′)→ µ+µ−) + Γ(Bs(t′)→ µ+µ−)dt′,

(3.47)
where 〈·〉 represents a flavour-average, [t] represents time-integration and, e.g.,
Γ(Bs(t′)→ µ+µ−) is the decay distribution at proper time t′ for a flavour eigenstate
Bs at t′ = 0.

The LHC experiment LHCb searched for the Bs → µ+µ− decay [180–182].
Their adjusted Eq. 3.46 Standard Model prediction for BR (Bs → µ+µ−) for their
experiment was [182]

〈
BR
(

Bs → µ+µ−
)〉SM

[t] = 3.54± 0.30× 10−9. (3.48)

The experiment accrued sufficient data to observe Bs → µ+µ− at a statistically
significant rate and measure [182]

BR
(

Bs → µ+µ−
)
= 3.2+1.5

−1.2 × 10−9, (3.49)

which is in agreement with the adjusted Standard Model prediction in Eq. 3.48.

We include the BR (Bs → µ+µ−) measurements in our likelihood, including a
14% [204] theory error in the MSSM BR (Bs → µ+µ−) calculation via Eq. 3.5.∗

∗ This 14% theoretical error arises from adding in quadrature a 10% parametric uncertainty
from the Bs decay constant and a 10% uncertainty from missing higher orders.



86 Chapter 3. Likelihoods

b

µ

t

W µ

s

W

νµ

(a) Standard Model box diagram,
which is helicity suppressed. In
two-Higgs doublet models, includ-
ing the MSSM, there is an addi-
tional similar diagram in which a
W-boson is replaced by a charged
Higgs.

b

µ

t

W

s

µ

W

Z, γ

(b) Standard Model penguin dia-
gram, which is helicity suppressed.
In two-Higgs doublet models, in-
cluding the MSSM, there is an ad-
ditional scalar diagram in which a
W-boson is replaced by a charged
Higgs, and the Z, γ is replaced by a
neutral Higgs.

b µ

h, H, A
µ

s

χ±

t̃
b

(c) An MSSM contribution, which
avoids helicity suppression, because
the µµ vertex is a Yukawa interac-
tion, rather than a chiral weak inter-
action.

Figure 3.7.2: Leading-order Feynman diagrams for the rare decay Bs → µ+µ− in the Standard
Model and in the MSSM.
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3.7.3 Bu→ τν

The Bu meson (ub̄) may decay leptonically at tree-level in the Standard Model via
a W-boson [183]; Bu → τν (Fig. 3.7.3a). This decay is helicity suppressed because
the Bu meson is a pseudoscalar; Bu dominantly decays to a τ, rather than a e or
µ, because it is heavier than e or µ. The branching ratio BR (Bu → τν) is propor-
tional to the |Vub|2 element of the CKM-matrix. The CKM-fitter collaboration [184]
calculate that

BR (Bu → τν)SM = 1.68± 0.31× 10−4. (3.50)

This branching ratio is altered in the MSSM by a tree-level s-channel diagram
with a charged Higgs boson (Fig. 3.7.3b). Because the couplings in this diagram
are Yukawa, it is not helicity suppressed, and the branching ratio may be enhanced
by approximately [185]

BR (Bu → τν)MSSM = BR (Bu → τν)SM ×
[

1− tan2 β

(
mBu

mH±

)2
]2

. (3.51)

This factor enhances the branching ratio if

tan β >
√

2
mH±

mBu

≈ mH±

4GeV . (3.52)

This decay was measured in B-factory experiments at CLEO [186], Belle [187]
and BaBar [188]. The experiments collide electrons with positrons at centre-of-
mass energies close to the Υ(4s) (bb̄) resonance,

√
s = 10.58GeV. The Υ(4s)meson

decays into Bu-Bu pairs. Any Bu decay is a “tag” from which the Υ(4s) decay is
inferred; a Bu → τν decay is measured from the opposite side of the event. The
Heavy Flavor Averaging Group average of such measurements [189],

BR (Bu → τν) = 1.67± 0.30× 10−4, (3.53)

is in agreement with the Standard Model prediction. We combine this measure-
ment with a 0.38× 10−4 theoretical error in the BR (Bu → τν) calculation [207] via
Eq. 3.5 to construct our Gaussian likelihood.∗

∗ The theoretical error 0.38× 10−4 in Ref. [207] results from combining parametric uncertainties
in CKMmatrix elements, the Bu meson lifetime and the Bu meson decay constant.
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3.7.4 ∆MBs

The Bs (sb̄) and Bs (s̄b) mesons are flavour eigenstates; the Bs mixes with its anti-
particle Bs, resulting in a light Bs,l mass eigenstate and a heavy Bs,h mass eigen-
state [190]. Flavour eigenstates participate in interactions, either Bs or Bs, but
oscillate in time, in a quantum mechanical superposition, between Bs–Bs. Off-
diagonal elements in the mixing matrix [191], which are induced by the diagrams
in Fig. 3.7.4, cause this mixing. The diagrams are flavour-changing neutral currents,
which are forbidden in the Standard Model at tree-level. The frequency of this
oscillation is the difference in mass between the Bs,h and Bs,l states, ∆MBs , in units
in which h̄ = 1. The Standard Model prediction is that [191]

∆MBs = 17.3± 1.5ps−1. (3.54)

Because it is so small, historically, experiments struggled to measure ∆MBs

with statistical significance [192]. The Tevatron’s D∅ [193] and LHCb [194] ex-
periments, however, measured ∆MBs . These experiments observe the production
and subsequent decay of a Bs or a Bs, which, between its production and decay,
oscillates between Bs–Bs. The final flavour and initial flavour are inferred from its
decay products and information in the opposite side of the event, respectively. The
time between production and decay is calculated from the distance between the
primary vertex and the decay vertex. The oscillation frequency ∆MBs is fitted to
these measurements.

The PDG average of such ∆MBs measurements is [71]

∆MBs = 17.69± 0.08ps−1. (3.55)

We include the PDG ∆MBs average in our likelihood with a Gaussian, including a
2.40ps−1 theory error in the MSSM ∆MBs calculation [207] via Eq. 3.5.∗

∗ Ref. [207] states that this 2.40ps−1 theory error is that in the Standard Model from the UTfit
collaboration. The electronic link cited in Ref. [207] is, however, ambiguous. The UTfit collaboration
lists 2.60ps−1 in Ref. [195].
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Figure 3.7.3: Tree-level Feynman diagrams for the rare decay Bu → τν in the Standard Model and
the MSSM.
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3.8 Anomalous magnetic moment of the muon

The anomalous magnetic moment of the muon is one of the most precisely mea-
sured observable in high-energy physics [196], with a precision of approximately
one part per million from the Brookhaven National Laboratory [197]. Particles
with spin, including the muon, have intrinsic magnetic moments,

~µ = gµ

(
e

2mµ

)
~S. (3.56)

The tree-level prediction is that gµ = 2 from the equations of motion for a muon
in an external electromagnetic field. Were this the case, the spin and the muon’s
direction would precess identically in a magnetic field. Deviations from this
prediction constitute the anomalous magnetic moment of the muon,

aµ =
1
2
(

gµ − 2
)

, (3.57)

and originate from higher-order corrections and, possibly, new physics. The
Brookhaven National Laboratory measured aµ by circulating polarised muon
beams around a torus in a uniform magnetic field. The difference between the
angular frequencies with which muons circulate the torus and with which their
spins precess is proportional to aµ. The muons decay leptonically and the electrons
are emitted predominantly in the directions of the muons’ spins, from which aµ is
determined. The Muon (g− 2) Collaboration’s final measurement was [71,197]

aµ = 11659208.9± 5.4± 3.3× 10−10. (3.58)

The higher-order corrections are computed from the full QED Lagrangian
with a classical external contribution to the photon field [198]. The one-particle
irreducible Feynman diagrams with external muons and a photon are summed to
a high-order in a perturbative expansion in the fine-structure constant.

Contributions to aµ mediate helicity-flipping (because aµ misaligns a muon’s
spin and momentum) and would be forbidden were the muon massless, because
the Standard Model has a chiral symmetry before electroweak symmetry is bro-
ken [198]. The amplitudes for helicity-flipping are, consequently, proportional
to the muon mass, and contributions to the anomalous magnetic moment of the
muon are proportional to the transition probability, that is, the muonmass squared.
This is precisely why this observable is a “crystal ball” for new physics; the muon
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is heavy and anomalous contributions might be tangible. The contributions for
the muon are (mµ/me)2 ∼ 40, 000 times larger than for the electron.

Within the MSSM, there are additional diagrams, originating from the muon
Yukawa coupling, that contribute. The dominant Standard Model and MSSM
diagrams are drawn in Fig. 3.8.1. There are, however, higher-order Standard
Model hadronic light-by-light contributions (Fig. 3.8.1b), which cannot be reliably
calculated. These contributions are instead measured in auxiliary experiments
that measure hadronic cross sections in electron-positron collisions [199]. An
approximate one-loop expression for δaµ in the MSSM [196] is

δaMSSM
µ = aMSSM

µ − aSMµ ≈ 13× 10−10
(

100GeV
mµ̃

)2

tan β sgn µ (3.59)

We use the Standard Model prediction for aµ compiled in Ref. [71],

aSMµ = 116591802± 2± 42± 26× 10−11, (3.60)

where the errors are electroweak, lower-order hadronic and higher-order hadronic,
from which the measured result is subtracted [71],

δaµ = aµ − aSMµ = 287± 80× 10−11, (3.61)

where all errors are added in quadrature. The discrepancy from zero is 3.6 standard
deviations. The probability of obtaining such a discrepant result by chance is 3×
10−4.∗ This is a “harbinger” for new physics, which contributes to the anomalous
magnetic moment of the muon [200], ameliorating the discrepancy. Historically,
precise calculations of hadronic and weak contributions shrunk this discrepancy
from 8 standard deviations [196]. The disagreement is reduced to 2.4σ if we
use ττ, rather than electron-positron, measurements of hadronic light-by-light
contributions in the Standard Model prediction [71].

Because the anomalous magnetic moment is a form-factor in a dressed QED
vertex, rather than a transition probability, there is no interference between con-
tributions, and we can separately calculate the MSSM contribution to aµ. We
approximate our likelihood for δaµ to a Gaussian, and incorporate a 1× 10−10

∗ Assuming that the associated likelihood is Gaussian.
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theoretical error the MSSM δaµ calculation [142] via Eq. 3.5,∗

Lδaµ
= exp


−

(
δaCalcµ − δaµ

)2

2 (σ2 + τ2)


 . (3.62)

∗ In Ref. [142], δaµ with two-loops is ∼ 2% different from δaµ with one-loop, from which we
estimate that the theory error is 1× 10−10.
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Results

4.1 Introduction

4.1.1 History

We briefly recapitulate the status of the CMSSM prior to the beginning of this
work and LHC operations. This work is similar to that in Ref. [201–222], Ref. [223],
which examines theNUHM, Ref. [224–232], which contain a frequentist, rather than
Bayesian, analysis, and Ref. [233–274] in which pMSSM models are considered.

Indeed, many studies attempted to assess the CMSSM’s compatibility with
indirect experimental evidence and identify its most likely regions of parameter
space, and, whilst results differed quantitatively, results were qualitatively similar.
Ref. [207], representative of the literature, showed that the CMSSMwas compatible
with existing constraints including the (g− 2)µ anomaly in particular regions of
its parameter space, characterised by the mechanism by which the neutralino
annihilates [201] (see Sec. 3.3.2). These regions are schematically illustrated in
Fig. 4.1.1. Ref. [207], however, stressed that results were dependent on the choice
of priors for the CMSSM parameters.

95
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4.1.2 Computer codes

For our likelihood functions, we calculated relevant quantities with publicly avail-
able computer programs:

With SOFTSUSY [72], we ran soft-breaking masses from MGUT to MSUSY with
the RG, and calculated sparticle and Higgs masses and mixing angles. The
Higgsmass is calculated to two-loops. From its scale and scheme dependence,
its error is estimated to be ∼ 2GeV [121]. The sparticle masses are calculated
to one-loop but include various approximations; their error is estimated to
be ∼ 10% [275,276].

With MicrOMEGAs [93], we calculated the relic density, with an approximate
10% fractional error [102,103], and σSI

p .

With FeynHiggs [277–280], we calculated our electroweak precision observ-
ables, sin2 θeff and MW , and ∆MBs .

With SuperIso [281, 282], we calculated BR (Bu → τν), BR (b→ sγ),
BR (Bs → µ+µ−) and δaµ.

Note, however, that in our CMSSM 1 fb−1 study, we calculated δaµ,
BR (Bs → µ+µ−) and BR (b→ sγ) with MicrOMEGAs, and BR (Bu → τν) and
∆MBs with B-Decay [204,283].

We returned the product of our likelihood functions to MultiNest, our scanning
algorithm. We linked MultiNest with the aforementioned publicly available com-
puter programs with a modified version of SuperBayeS [204,284] in our CMSSM
1 fb−1 study (Sec. 4.4) and low-mass golden decay study (Sec. 4.2), SuperPy [285] in
our high-mass golden decay study (Sec. 4.3), and BayesFits [219] in our CMSSM
4.4 fb−1+Higgs (Sec. 4.5) and p9MSSM (Sec. 4.6) studies.

4.2 Low-mass golden decay

The results in this section were published in Ref. [286].

4.2.1 Hypothetical mass measurements at ATLAS SU3

To evaluate prospects for discovering supersymmetry, it was convenient to iden-
tify various “benchmark” points in the MSSM’s parameter space [287], with dis-
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Figure 4.1.1: Sketch of permitted regions on the CMSSM’s (m0, m1/2) plane characterised by the
neutralino annihilation mechanism.
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tinct phenomenologies and signals. One such benchmark was ATLAS SU3 [288]
(Table 4.2.1); a low-mass scenario in the “bulk” region of the CMSSM, which is
excluded by direct searches at the LHC (Sec. 3.6).

Were this scenario realised in nature, the mass spectrum (Table 4.2.2) would
be such that sparticle decay in LHC experiments would exhibit a “golden-decay;”
a decay chain from which experiments can extract the masses of all sparticles in
the decay chain [289]. The golden decay begins from a squark, produced in a pair,
with a gluino, or from a gluino, and results in a final state with opposite-sign
same-flavour leptons, at least one jet and missing transverse energy, illustrated in
Fig. 4.2.1,

q̃ → χ0
2q→ ˜̀`q→ χ``q. (4.1)

The sleptons that contribute in theATLAS SU3 scenario are right-handed selectrons
and smuons. The final state from the opposite side of the golden decay (the final
state from the sparticle with which the squark in the golden decay was produced)
includes missing transverse energy from a second neutralino and contaminates
the golden decay with combinatorial misidentifications. This decay is spoilt if the
χ0

2 branching fractions to electron and muon lepton-slepton pairs is subdominant,
if the squark branching fraction to gluinos is dominant, or if the sparticles masses
are not such that

mχ < m ˜̀
R
< mχ0

2
< mq̃ . (4.2)

The required branching fractions imply that mq̃ < mg̃ , suppressing the q̃ → qg̃
decay mode.

This final state exhibits four kinematic “endpoints;” distinct features that arise
in histograms of the invariant masses of combinations of the leptons and jet. We
considered the endpoints in the invariant masses of the dilepton pair (m``), the
jet and either lepton (m`,low and m`,high), and the jet and both of the leptons (m``q).
Because experiments cannot ascertain the origin of the leptons, the highest (low-
est) lepton-jet invariant mass in an event populates the m`,high (m`,low) distribu-
tion. The positions of the endpoints can be predicted from the conservation of
four-momentum, and the shapes of the endpoints can be predicted from spin-
correlations or from Monte-Carlo simulations. The dilepton pair’s invariant mass
distribution is a sawtooth; because the intermediate slepton is a scalar, the an-
gular separation between the leptons is uniformly distributed in its cosine. The
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CMSSM parameter ATLAS SU3 point

m1/2 300 GeV
m0 100 GeV
tan β 6.0
A0 -300 GeV
sgn µ +

Table 4.2.1: CMSSM parameter values at the ATLAS SU3 benchmark point.

Sparticle Mass (GeV)

χ 117.9 ẽL, µ̃L 230.8 d̃L 666.2
χ0

2 223.4 ẽR, µ̃R 157.5 d̃R 639.0
χ0

3 463.8 ν̃e,ν̃µ 217.5 ũR 660.3
χ0

4 479.9 τ̃1 152.2 ũR 644.3
χ±1 224.4 τ̃2 232.4 b̃1 599.0
χ±2 476.4 ν̃τ 216.9 b̃2 636.6
g̃ 717.5 t̃1 446.9

t̃2 670.9

Table 4.2.2: The sparticle mass spectrum in the CMSSM at the ATLAS SU3 benchmark point,
calculated with SOFTSUSY.

q̃

j

χ0
2

`∓

˜̀

`±

χ0
1

Figure 4.2.1: Feynman diagram for the “golden decay” from which experiments can extract the
masses of all sparticles in the decay chain.
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predictions for the endpoints are [290]

max m2
`` =

(
m2

χ0
2
−m2

˜̀

) (
m2

˜̀ −m2
χ

)

m2
˜̀

, (4.3)

max m2
`,near =

(
m2

q̃ −m2
χ0

2

) (
m2

χ0
2
−m2

˜̀

)

m2
χ

,

max m2
`,far =

(
m2

q̃ −m2
χ0

2

) (
m2

˜̀ −m2
χ

)

m2
˜̀

,

max m2
`,low = min

(
max m2

`,near, max m2
`,far

)
,

max m2
`,high = max

(
max m2

`,near, max m2
`,far

)
,

max m2
`q = max




(
m2

q̃ −m2
χ0

2

) (
m2

χ0
2
−m2

χ

)

m2
χ0

2

,

(
m2

q̃ −m2
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) (
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χ

)
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˜̀

,

(
m2
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˜̀ −m2
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2

) (
m2

χ0
2
−m2

˜̀

)
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χ0
2




where the expressions are maximised with respect to the angular separations of
the leptons and jet, and

mq̃ =
1
4

(
mũR

+ mũL
+ md̃R

+ md̃L

)
, (4.4)

m ˜̀ = min
[
mẽR

, mẽL
, mµ̃R

, mµ̃L
, mτ̃R

, mτ̃L

]
.

Because the first-generation squarks have the largest production cross sections at
the LHC, and because typical CMSSM mass hierarchies permit third-generation
squarks to decay to lighter third-generation squarks and a gauge-boson, the squark
mass in our analysis is the average of such squarks [289]. The golden decay is
dominated by the lightest slepton, regardless of the helicity of its superpartner,
because the pertinent neutralino interaction could be bino, wino or higgsino.

From measurements of these four endpoints, an experiment could extract the
masses of the four sparticles. These measurements would, however, be correlated,
and, in an experimentwith a finite integrated luminosity, have substantial statistical
errors from the limited numbers of events populating the distributions. This was
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considered by calculating a covariance matrix describing the sampling distribution;
from repeated Monte-Carlo pseudo-experiments in the ATLAS SU3 scenario with
1 fb−1, Ref. [288] calculated the distributions of the extracted masses, and their
covariances. This procedure incorporates statistical errors, but, because the sys-
tematic nuisance parameters were fixed in the Monte-Carlo, excludes systematic
errors, which are negligible [209].

The covariance matrix, calculated in the basis

M = (mχ, mχ0
2
−mχ, mq̃ −mχ, m ˜̀ −mχ), (4.5)

in units GeV−2 is [209]

C =




3.72× 103 53.4 1.92× 103 1.075× 102

· 3.6 29.0 −1.3
· · 29.0 −1.3
· · · 14.1




. (4.6)

We approximated this sampling distribution to a multivariate Gaussian, and this
sampling distribution to our likelihood function. This assumed that, in the vicinity
of the ATLAS SU3 parameter point, the covariance matrix was approximately con-
stant, and that, further away from the ATLAS SU3 parameter point, the covariance
matrix is moot, because the likelihood is negligible. Our multivariate Gaussian
likelihood function was

LATLAS SU3 = exp
[
−1

2
(M−MATLAS SU3)C−1(M−MATLAS SU3)

T
]

, (4.7)

where MATLAS SU3 is the “Asimov” data set — M evaluated in the ATLAS SU3
benchmark scenario, and M is a function of the model’s parameters.

4.2.2 Scans

In this scenario, we investigated whether, from golden decay measurements, one
would be able to reconstruct the Lagrangian parameters of 5 models (CMSSM,
NUG,NUHM, p12MSSMandp14MSSMmodels defined in Sec. 1.5.3), andwhether,
with Bayesian evidence, a model would be preferred by the pseudo-data. A similar
analysis was conducted in gauge and anomaly mediated SUSY breaking models
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in Ref. [291]. To understand the impact that the WMAP-5 [292] experiment would
have in our scenario, we added a likelihood describing a hypothetical measurement
of dark matter abundance fromWMAP,

LATLAS SU3 = exp

[
−
(
Ωh2

ATLAS SU3 −Ωh2)2

2((0.1Ωh2)2 + σ2)

]
, (4.8)

that is, with a mean Ωh2
ATLAS SU3 = 0.2332, rather than its measured value, an

error σ = 0.0062, the true WMAP-5 experimental error [292], and a 10% theo-
retical error in the Ωh2 calculation. Ωh2

ATLAS SU3 exceeded and was in statisti-
cally significant disagreement with the WMAP-5’s contemporary measurement,
Ωh2 = 0.1099± 0.0062 [292]. ATLAS SU3, however, represented points with the
correct relic density. One could, for example, slightly increase the neutralino’s
higgsino component by increasing tan β, enhancing neutralino annihilation via
Fig. 3.3.1b and suppressing the relic density.

Whilst ATLAS SU3 is a CMSSM benchmark point, it is equivalent to points
within our five models, in that such points result in identical sparticle mass spectra.
In the NUHM, ATLAS SU3 is as it was in the CMSSM but with mHd = mHu = m0,
in the NUG, M1 = M2 = M3 = m1/2, and in the pMSSM models, ATLAS SU3
soft-breaking parameters were ran from the GUT to the SUSY scale with the RG,
and soft-breaking masses that were degenerate at the SUSY scale in our pMSSM
models were averaged.

To understand our priors, we calculated the models’ posterior densities with
logarithmic and linear priors for soft-breaking masses, and with only the physi-
cality conditions in Sec. 3.1. As discussed in Sec. 2.5, numerically, the physicality
conditions are included in our likelihood, rather than our priors, and induce non-
trivial correlations amongst our model’s parameters. The posterior density with
only physicality conditions reflects the de facto priors; that is, the priors including
physicality conditions. Because our pMSSM models have many parameters, poste-
rior density is prior dependent, and to understand the posterior density we must
understand our priors. Table B.2 in Appendix B shows the priors for the five mod-
els. Our priors covered a low-mass. 1TeV region — covering larger soft-breaking
masses would be redundant, because in our scenario ATLAS discovered� 1TeV
sparticles — and nuisance parameters within their 3σ experimental intervals.
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In summary, we find posterior densities for five models (CMSSM, NUG,
NUHM, p12MSSM and p14MSSM) with three likelihoods

1. Physicality conditions only;

2. Physicality conditions and ATLAS SU3 golden decay;

3. Physicality conditions, ATLAS SU3 golden decay and simulated WMAP-5
relic density,

and with two prior choices: logarithmic and linear priors for soft-breaking masses.
Our likelihoods are listed in Appendix A.

4.2.3 CMSSM

Because it is the most economical of our five models, the CMSSM ought to be the
easiest model in which to recover the ATLAS SU3 Lagrangian parameters. We
consider credible regions for the planes (m0, m1/2) and (A0, tan β) in Fig. 4.2.2 with
logarithmic priors for soft-breaking masses. We show posterior mean and best-fit
estimators for the reconstructed parameters, which should be compared with the
ATLAS SU3 Lagrangian parameters.

Fig. 4.2.2a shows de facto priors for the CMSSM — the likelihood vetoes un-
physical points, but is otherwise unity (case 1). By marginalisation, it is easiest to
find physical points within the credible regions. The unphysical region in which
the τ̃1 is the LSP is visible at m1/2 � m0 on the (m1/2, m0) plane. Larger m1/2 is
disfavoured, because its logarithmic prior is proportional to 1/m1/2. Larger m0,
however, is not disfavoured, despite its logarithmic prior, because larger m0 insures
sparticles are not tachyonic, regardless of substantial off-diagonal mass matrix
elements. Very small m0, m1/2 . 50GeV is plagued by physicality problems, in-
cluding tachyonic tau-sneutrinos. The tau-sneutrinos soft-breaking mass after RG
running is smaller than its negative D-term contribution.

Larger A0 is disfavoured, because it splits mass eigenvalues such that sparti-
cles are tachyonic or such that τ̃1 is the LSP. The asymmetry in A0 results from
its β-function and from our choice of sgn µ = 1. The β-function is positive —
At,b,τ(MSUSY) are less than A0. The Higgs mixing parameter µ cancels large posi-
tive A0 if sgn µ = 1, because the off-diagonal mass matrix elements are (Eq. 1.38):

Xt = at − µ cot β.
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By these two facts, |Xt| with positive A0 is smaller than that with negative A0.
Because tachyonic sparticles occur if |Xt| is large, positive A0 is preferred. Physi-
cality prefers tan β . 50 and tan β . 10 with extreme A0 (Fig. 4.2.2a), so that the
off-diagonal mass matrix elements are small.

We included a likelihood from ATLAS pseudo-measurements of sparticle
masses (case 2) in Fig. 4.2.2b. We successfully reconstruct the ATLAS SU3 param-
eters for m0 and m1/2, i.e., our credible regions closely envelope the ATLAS SU3
point, though large values of m0 are permitted. Our reconstruction of tan β and
A0 is significantly worse than that of m0 and m1/2. Our resolution of the sign of
A0 is ambiguous, and we fail to reconstruct its magnitude. Our best-fit point is
inaccurate — it lies away from the ATLAS SU3 point. This is an artefact of our
algorithm, nested sampling, which is tailored for Bayesian rather than frequentist
statistics. Our 1σ and 2σ credible regions and our posterior means agree well with
those published in Ref. [209].

Fig. 4.2.2c shows credible regions including a likelihood from a WMAP-5 relic
density pseudo-measurement (case 3). With respect to case 2 (Fig. 4.2.2b), m0 is
significantly squeezed, with m0 & 150GeV truncated — if sfermion exchange in
Fig. 3.3.1d is to reduce the relic density, sfermions must be light. The movement
of our best-fit point is a reflection of the Monte-Carlo nature of the algorithm.
Adding the WMAP-5’s pseudo-measurement did not significantly improve the
reconstruction of the CMSSM parameters, except for m0. The resolution of A0 and
tan β remains poor; sfermion exchange, unlike stau-coannihilation or the pseu-
doscalar Higgs resonance, does not require particle mass differences to be fine-
tuned. WMAP-5’s impact is less than that in Ref. [209], because our theoretical
error in the Ωh2 calculation was larger than that in Ref. [209].

4.2.4 NUHM

Compared with the CMSSM, the NUHM has two additional parameters, mHu and
mHd . These soft-breaking Higgs masses are not in the formulae for the masses of
the sparticles that are measured in our scenario, but, in conjunction with m1/2 and
tan β, determine µ via electroweak symmetry breaking conditions, which features
in formulae in the mass matrices’ off-diagonal elements.

Fig. 4.2.3 shows credible regions for the NUHM in our three likelihood cases,
in a similar fashion to that for the CMSSM in Fig. 4.2.2. Fig. 4.2.3a shows de facto
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Figure 4.2.2: Bayesian 1σ (2σ) credible regions in dark (light) blue for the CMSSM with (a)
physicality conditions only (case 1), (b) a likelihood from golden decay pseudo-measurements
(case 2), and (c) likelihoods from golden decay and WMAP pseudo-measurements (case 3). Priors
were logarithmic for m0 and m1/2, and linear otherwise. The red diamonds on the planes are the
ATLAS SU3 values.
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priors for the NUHM (case 1). Similarly to the credible regions for the CMSSM in
Fig. 4.2.2a, small m1/2 and smaller |A0| are favoured. Unlike the CMSSM, however,
small m0 is disfavoured, because with large m1/2, τ̃1 is the LSP, as in the CMSSM,
and with small m1/2, µ2 < 0.

The credible regions do not prefer particular tan β or mHu ; however, smaller
values of mHd are favoured, because its logarithmic prior is proportional to 1/mHd .
mHu is permitted to be as large as 1TeV at 1σ, whereas mHd . 0.5TeV at 1σ, be-
cause, via electroweak symmetry breaking conditions, it can reduce µ, preventing
tachyonic sparticles and insuring that the neutralino is the LSP.

In Fig. 4.2.3b, the likelihood is from a golden decay measurement (case 2).
A discernible difference between reconstruction in the NUHM and the CMSSM
is that small m0 . 100GeV is permitted in the NUHM. Small m0 . 100GeV is
compensated by large mHu and mHd via the RG equations. As in the CMSSM,
tan β and A0, are poorly reconstructed and the sign of A0 is ambiguous. mHd

and mHu , the NUHM’s additional parameters, are poorly reconstructed. mHd is
determined to within a narrower credible region than mHu , because its de facto
prior was narrower than that for mHu .

The credible regions including a likelihood from a WMAP-5 pseudo-
measurement of the relic density (case 3) are in Fig. 4.2.3c. As in the CMSSM
in Fig. 4.2.2c, m0 is squeezed, but its reconstruction remains poor in the NUHM.
Reconstruction for tan β, A0, mHd and mHu is not improved relative to that in
Fig. 4.2.3b, despite including WMAP-5.

In summary, parameter reconstruction in the NUHM for m0 (with much lower
values now allowed) is significantly poorer than it was in the CMSSM, though
for m1/2, A0 and tan β the reconstruction is similar to that in the CMSSM. The
reconstruction of mHu and mHd , the NUHM’s additional parameters, is always
poor, because the observables included in our likelihoods do not depend on the
Higgs sector, within the relevant parameter space.

4.2.5 NUG

Compared with the CMSSM, the NUG has two additional parameters; the com-
mon gaugino mass is replaced by three independent gaugino soft-breaking masses
for the bino (M1), the wino (M2) and the gluino (M3). Unlike the NUHM’s ad-
ditional parameters, the NUG’s additional gaugino masses heavily influence the
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Figure 4.2.3: Bayesian credible regions for the NUHM, with a layout and legend identical to that
in Fig. 4.2.2. Priors were logarithmic for soft-breaking masses and linear otherwise.
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masses of the sparticles that are measured in our scenario. Neutralino masses are
proportional to M1 and M2, and sfermion masses are affected by gaugino masses
via the RG.

Fig. 4.2.4 shows credible regions for the NUG in our three likelihood cases.
The de facto priors (case 1) in Fig. 4.2.4a favour smaller M1, M2 and M3, because
of their logarithmic priors, and, for M1 and M2, to insure that χ is the LSP, which
also disfavours the region in which M1 and M2 are both Large. As in the CMSSM,
small absolute values of A0 are favoured and there is no preference for tan β. Large
M3 is disfavoured if m0 is small. Large M3 contributes in the RG to mHu and mHd ,
via gluino-stop two-loop diagrams, forcing µ large by the electroweak symmetry
breaking condition in Eq. 1.66. With large µ, off-diagonal mass matrix elements
are large, and sparticles are tachyonic or χ is not the LSP.

In Fig. 4.2.4b, the posterior includes a likelihood from golden decay pseudo-
measurements (case 2). The reconstruction of m0 in the NUG is significantly
different from that in the CMSSM. Unlike in the CMSSM, small m0 is permitted
but large m0 are forbidden.

The shape of the credible regions on the (M3, m0) plane is different from that on
the (m1/2, m0) plane in the CMSSM in Fig. 4.2.2b. The NUG favours small gaugino
masses, because of their logarithmic priors, which, so that mass differences are
compatible with the ATLAS SU3 predictions, requires light sleptons, and small m0.
As in the CMSSM, tan β is poorly reconstructed and the sign of A0 is ambiguous.

An egregious prior effect is hampering reconstruction in the NUG. The NUG’s
priors favour small gaugino masses, and consequently light neutralinos. Because
the neutralino is light, the squark and slepton must be light so that the mass
differences are correct. This pushes the allowed m0 values down, so that large
values are not permitted and so that small values are favoured.

Fig. 4.2.4c shows the NUG’s credible regions with the WMAP-5 pseudo-
measurement (case 3). The reconstruction of M1, M2 and M3 is greatly improved
upon that without WMAP-5 in Fig. 4.2.4b. Whilst small m0 was permitted in
case 2, it is now forbidden. In fact, m0 larger than that in case 2 is preferred. Sur-
prisingly, the reconstruction of tan β in this case is worse than it was in case 2.
WMAP-5 strengthens the likelihood, removing the prior effect that was hampering
reconstruction. The credible regions are similar to those for the CMSSM in case 3
(Fig. 4.2.2c).

In summary, reconstruction in the NUG is poorer than it was in the CMSSM
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and the NUHM, and in no case were the credible regions independent of our
choice of logarithmic or linear priors for the soft-breaking masses. The credible
regions for M1, M2 and M3 in the NUG were wide, whereas in the CMSSM, the
credible regions for m1/2 were tightly squeezed. Furthermore, small m0, which
was excluded in the CMSSM, was permitted in the NUG. The recovery of tan β

and A0 in the NUG was comparable to that in the CMSSM.

4.2.6 Direct detection

The lightest neutralino is the dark matter in our scenario; there is no additional
subdominant component of the relic abundance. We consider direct detection
of dark matter with the credible regions on the

(
mχ, σSI

p

)
planes of the CMSSM,

NUHM, NUG and p12MSSM models (Fig. 4.2.5), with simulated golden decay
and WMAP-5 likelihoods.

ATLAS SU3 is well recovered in the CMSSM (Fig. 4.2.5a), the NUHM
(Fig. 4.2.5b) and the p12MSSM (Fig. 4.2.5d) but poorly recovered in the NUG
(Fig. 4.2.5c). This results from the poor recovery of mχ in the NUG, which resulted
from its increased freedom. The recovery in the p12MSSM is worse than it is in the
NUHM and CMSSM GUT models, but surprisingly, better than it is in the NUG.
The credible regions for the p14MSSM (not shown) are similar to, though slightly
larger than, those in the p12MSSM, and much smaller than those in the NUG.

4.2.7 Evidence

Fig. 4.2.6 compares reconstruction in the CMSSM, NUHM, NUG, p12MSSM and
p14MSSM, by plotting the various Lagrangian parameters’ posterior means and
2σ credible regions, with likelihoods from golden decay and WMAP-5 pseudo-
measurements, and with logarithmic priors for soft-breaking masses, but linear
priors otherwise.

The 2σ credible regions almost always include ATLAS SU3, and the posterior
means are, in general, close to ATLAS SU3. The exception is that the 2σ credi-
ble region for tan β in the p12MSSM Fig. 4.2.6d omits ATLAS SU3, whilst in the
p14MSSM it barely includes ATLAS SU3. Generally, tan β is overestimated with a
wide credible region. A0 is poorly reconstructed in all of the models, with credible
regions spanning −1TeV to 2TeV.
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(a) Likelihood from physicality conditions only (case 1).
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(b) Likelihood from golden decay pseudo-measurements
(case 2).
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Figure 4.2.4: Bayesian credible regions for the NUG, with a layout and legend identical to that in
Fig. 4.2.2. Priors were logarithmic for soft-breaking masses and linear otherwise.
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Figure 4.2.5: Bayesian credible regions for the
(

mχ, σSI
p

)
plane for (a) CMSSM, (b) NUG, (c)

NUHM and (d) MSSM, with a likelihood from golden decay and WMAP pseudo-measurements
(case 3). The legend is identical to that in Fig. 4.2.2. Priors were logarithmic for soft-breaking
masses and linear otherwise.
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Figure 4.2.6: 2σ Bayesian credible regions for Lagrangian parameters in the CMSSM, NUG,
NUHM and, where possible, p12MSSM and p14MSSM, with a likelihood from golden decay and
WMAP pseudo-measurements (case 3). Priors were logarithmic for soft-breaking masses and linear
otherwise. ATLAS SU3 values are indicated by horizontal dashed lines and posterior means by
unfilled diamonds.
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We investigated whether the Bayesian evidence (Sec. 2.4) decisively preferred a
particular model, either the CMSSM, the NUHM or the NUG, in likelihood case 2
or case 3. Table 4.2.3 shows Bayes-factors (Eq. 2.17); ratios of the evidences in the
CMSSM, NUHM and NUG.

By the Jeffreys’ scale (Table 2.4.1), the difference in evidences for the CMSSM
and the NUHM is “barely worth mentioning,” though the NUHM is preferred.
Because the likelihood functions were approximately independent of the NUHM’s
additional parameters, the evidence was approximately unaltered, because the
prior pdfs are normalised to unity in Eq. 2.24. The evidence for the CMSSM and
NUHM compared with the NUG is “very strong” in case 2 and “decisive” in case 3.
The NUG is a complicated model in Fig. 2.4.1; its additional parameters broaden
the CMSSM’s predictions and dilute the evidence.

The Bayes-factors, however, were not entirely robust. We repeated our calcula-
tions, identically, except that we used linear priors, rather than logarithmic priors
for the soft-breaking masses. A “substantial” preference for the CMSSM over the
NUHM emerged in case 3, because prior probability for the NUHM’s mHu and mHd

parameters “piled-up” at large values. The NUGwas still significantly disfavoured
in all cases.
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ZColumn/ZRow CMSSM NUHM NUG

ATLAS SU3 (case 2)

CMSSM 1 1.06 0.02
NUHM 0.94 1 0.02
NUG 44.26 47.00 1

ATLAS SU3 + WMAP-5 (case 3)

CMSSM 1 1.03 0.01
NUHM 0.97 1 0.01
NUG 167.34 172.43 1

Table 4.2.3: Bayes-factors (Eq. 2.17), comparing the CMSSM, NUHMandNUG, with logarithmic
priors for soft-breaking masses, and linear priors otherwise. The numbers are ratios of Bayesian
evidences, with evidence of the model in the column heading in the numerator, and the evidence of
the model in the row heading in the denominator. The ratios should be interpreted with the Jeffreys’
scale (Table 2.4.1). A Bayes-factor of greater than one indicates that the model in the column heading
is preferred over the model in the row heading.
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4.3 High-mass golden decay

The results in this section were published in Ref. [293].

Unfortunately, CMS excluded ATLAS SU3 from the null results of a multijet search
in 35pb−1 of integrated luminosity [294]. Because the scenario in Sec. 4.2 was
excluded, we considered a similar scenario with heavier soft-breaking masses,
permitted by contemporary (Spring 2013) experimental results. Our first challenge
was to find a CMSSM benchmark point that satisfied formidable experimental
limits and with a mass hierarchy that permitted the golden decay.

We knew that if sleptons were to be lighter than the second neutralino, as is
required for a golden decay, m1/2 & m0. Consequently, because we wanted to
satisfy the neutralino relic density, we had to pick our benchmark point from the
stau-coannihilation region. To find such a point, we used Minuit [295], which finds
minima with iterative Newton-Raphson methods. We minimised a χ2-function
that vetoed points without the requiredmass hierarchy, and included contributions
from PLANCK’s relic density measurement [296], the CMS Higgs mass measure-
ment [134], and the PDG top-quark pole mass [71].

In fact, we imposed stronger mass hierarchy requirements to avoid phase-space
suppression of branching ratios in the golden decay and vetoed points for which
mτ̃1
−mχ < mτ to avoid long-lived staus that violate limits on long-lived charged

particles [297]. By four-momentum conservation, for τ̃1 → χτ,

pµ
τ̃1
= pµ

χ + pµ
τ

m2
τ̃1
> (mτ + mχ)

2

mτ̃1
−mχ > mτ.

We fixed m1/2 = 750GeV, at that moment the lowest m1/2 permitted by LHC
searches [298], to maximise production cross sections, and minimised our χ2-
function with respect to m0, A0, tan β and Mt, resulting in the point in Table 4.3.1
with themass spectrum in Table 4.3.2. We checked that our benchmark point was in
agreementwith experimental constraints, except δaµ. We assume that the deviation
from experiment in δaµ is explained by other new physics or by uncertainties in
the Standard Model prediction. The Higgs mass mh = 123.2GeV is reached by
maximal stop-mixing, Xt/MSUSY = −2.1 ≈ −

√
6 and with a top pole mass,
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Mt = 175GeV, heavier than that in PDG, 173.5± 1GeV [71]. Unfortunately, our
high-mass benchmark was later excluded by an ATLAS 0`+ 2-6j + /ET search [299].

Having chosen a benchmark point, we simulated its golden decay at the LHC
with PYTHIA [300] a Monte-Carlo event generator, with a number of events equiv-
alent to ∼ 100 fb−1 at

√
s = 14TeV. In the LHC’s second phase, this integrated

luminosity could be collected in ∼ 2 years [301], although the centre-of-mass en-
ergy is now planned to begin at

√
s = 13TeV. Our analysis was crude; we included

no detector simulation (though we vetoed events in which decay products were
outside the detector) and assumed that Standard Model backgrounds were negli-
gible. We selected events with two opposite sign same flavour (OSSF) leptons, at
least one jet, and sufficient missing energy, /ET.

From this Monte-Carlo, we binned events to obtain histograms (distributions)
for the five invariant masses in Eq. 4.3. With Root [302], we fitted simple line-
shapes, which described the expected endpoints’ shapes, to the distributions with
a least-squares method, with Poisson

√
N statistical errors for the heights of each

bin in the histogram. From the positions of the fitted line-shapes, we extracted the
positions and statistical errors in the five endpoints in the distributions. Finally,
with Minuit, we simultaneously fitted four sparticle masses to our five endpoints
and statistical errors, by predicting the endpoints with Eq. 4.3 and minimising a
multivariate Gaussian χ2-function. We required five endpoints to break degenerate
solutions for the four sparticle masses.

The covariance matrix resulting from this fit, defined σij = σji = E(Xi)E(Xj)−
E(XiXj) where E(X) is the mean of X, was

σ =




1673.8 995.452 990.706 1507.58
· 595.116 592.17 899.018
· · 589.298 894.472
· · · 1363.5




, (4.9)

in units (GeV)2 and in the basis Xi = (m̂χ, m̂ ˜̀ , m̂χ0
2
, m̂q̃). m ˜̀ is the mass of the

approximately degenerate first- and second-generation left-handed sleptons, which
dominate the decay chain, and mq̃ is the average of all squark masses, because the
LHC cannot distinguish the squark in the decay chain. The non-zero off-diagonal
covariance matrix elements indicate that the mass measurements are correlated.
For insight, we diagonalise the inverse of this matrix to obtain the orthonormal
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CMSSM parameter Benchmark value SM parameter Benchmark value

m1/2 750 GeV Mt 175.0 GeV
m0 228 GeV mb(mb)

MS 4.19 GeV
tan β 8.82 αs 0.1184

A0 −2130 GeV 1/αem(MZ)
MS 127.916

sgn µ +

Table 4.3.1: High-mass benchmark CMSSM parameters with three significant figures and bench-
mark SM nuisance parameters. The SM nuisance parameters are the world-averages in [71], with
the exception of Mt.

Particle Mass (GeV)

χ 316.2 ẽL 553.5 d̃L 1546.2 h 123.2
χ0

2 603.6 ẽR 364.7 d̃R 1479.1 H 1484.9
χ0

3 1394.0 ν̃e 547.8 ũL 1546.2 A 1485.6
χ0

4 1397.9 τ̃1 318.3 ũR 1485.2 H± 1487.9
χ±1 603.8 τ̃2 543.6 b̃1 1277.9
χ±2 139.8 ν̃τ 534.6 b̃2 1463.6
g̃ 1675.1 t̃1 821.5

t̃2 1328.3

Table 4.3.2: The particle mass spectrum for our high-mass CMSSM benchmark, calculated with
SOFTSUSY [72]. The first- and second-generation sparticles are approximately degenerate in mass.
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eigenvectors — the combinations of masses that can be independently measured,
and their eigenvalues. The errors for each independent mass combination are

Vσ−1VT ≈ diag
[
(0.2GeV)−2, (1.6GeV)−2, (1.9GeV)−2, (64.9GeV)−2

]
, (4.10)

and the eigenvectors are

V1i = 0.0 · m̂χ + 0.7 · m̂ ˜̀ − 0.7 · m̂χ0
2
+ 0.0 · m̂q̃ ≈

1√
2
(m̂ ˜̀ − m̂χ0

2
) (4.11)

V2i = 0.2 · m̂χ − 0.4 · m̂ ˜̀ − 0.5 · m̂χ0
2
+ 0.8 · m̂q̃

V3i = −0.8 · m̂χ + 0.4 · m̂ ˜̀ + 0.4 · m̂χ0
2
+ 0.3 · m̂q̃

V4i = 0.6 · m̂χ − 0.4 · m̂ ˜̀ − 0.4 · m̂χ0
2
− 0.6 · m̂q̃ .

It will later be of significance that the combination (m̂ ˜̀ − m̂χ0
2
) has by far the

smallest experimental uncertainty.

Similarly to Sec. 4.2, we investigatedwhether, in this scenario, onewould be able
to reconstruct CMSSM Lagrangian parameters from golden decay measurements.
We investigated whether additional likelihoods for the Higgs mass and for the
relic density would aid reconstruction. Our choices of priors was slightly moot;
our likelihood ought to be informative enough to overcome different, sensible
choices of prior. We choose linear priors for the CMSSM parameters, but expect
our posterior to be independent of this choice. We choose fixed values for the
Standard Model parameters, because their inclusion would be computationally
expensive but have limited impact in our scenario. We fix these parameters to the
weighted averages of their experimental values in PDG [71]. The prior ranges are
listed in Table B.1 in Appendix B.

We consider three experiments: pseudo-measurements of sparticle masses
via the golden decay, CMS measurements of the Higgs-like boson’s mass [123],
which we assume to be the lightest Higgs boson in the CMSSM, and the PLANCK
measurement of the dark matter relic density [303], which we assume to be the
relic density of CMSSM neutralinos. Our likelihood function for the golden decay,
described in Sec. 4.2.1, is a multivariate Gaussian, reflecting the correlations in the
sparticle mass measurements. Our likelihood functions for the Higgs mass and
the relic density are Gaussians, though we include in quadrature theoretical errors
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in the CMSSM predictions of 3GeV [121] and 10% [102,103], respectively:

LHiggs = exp

[
− (125.8GeV−mh)

2

2((0.6GeV)2 + (3GeV)2)

]
,

LPLANCK = exp

[
−

(
0.1186−Ωh2)2

2(0.00312 + (0.1Ωh2)2)

]
, (4.12)

where the means and standard deviations are those reported by CMS [123] and
by PLANCK [303] respectively. Our benchmark point’s Higgs mass of 123.2GeV
differs, within theory errors, from the CMS measurement [123] of 125.8GeV. We,
however, include in our likelihood the measured Higgs mass, rather than the
benchmark. This is not a fault; it reflects the theoretical uncertainties in the Higgs
mass and any biases that this might introduce.

In summary, we find CMSSM posterior density with three likelihoods;

1. Golden decay pseudo-measurements;

2. Golden decay pseudo-measurements and Higgs measurement;

3. Golden decay pseudo-measurements, Higgs measurement, and PLANCK
relic density measurement;

and with linear priors for the CMSSM Lagrangian parameters. Our likelihoods
are listed in Appendix A.

4.3.1 CMSSM (m0, m1/2) plane

Fig. 4.3.1 shows credible regions on the CMSSM’s (m0, m1/2) plane, in all three
likelihood cases, from left to right. Note the narrow scales shown; the parameters
are reconstructed at 2σ to within . 10%. Indeed, the reconstruction in case 1
is successful; a single, correct solution is recovered, which closely envelopes the
benchmark point at 1σ. The major axis of the credible regions’ oval shapes indicate
positive correlation between m0 and m1/2. Recall that the (m̂ ˜̀ − m̂χ0

2
) combination

of masses was an approximate eigenvector of our inverse covariance matrix with a
small 0.2GeV uncertainty. If we apply the crude relations m ˜̀ ≈

√
m2

0 + 0.6m2
1/2

and mχ0
2
≈ 0.8m1/2, we can understand that (m0 −m1/2) is well determined com-

pared with (m0 + m1/2), and hence the positive correlation.∗ The major axis of the
∗ If we Taylor expand m̂ ˜̀ with m1/2 � m0, we find that (m̂ ˜̀ − m̂χ0

2
) ∝ m2

0/m1/2 .
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credible region is constrained, however, by the second and third eigenvectors in
Eq. 4.11, which are dominated by mχ and mq̃ respectively and which have small
experimental uncertainties. The fourth eigenvector in Eq. 4.11 is negligible, because
it has an experimental error significantly larger than the other three eigenvectors.

The credible regions shrink successively as the data is added, though two
orthogonal directions in the parameter space are visible. The major axis of the
credible regions’ oval shapes is onlymarginally shrunk by additional data, whereas
the minor axis of the credible regions’ oval shapes is squashed. In case 2, tan β

is increased to saturate the tree-level bound on the Higgs mass (Eq. 1.37), which
increases the split in the third-generation squark and slepton masses. In Fig. 4.3.1b,
the lightest stau becomes lighter than the lightest neutralino in the left-hand side
of the credible regions, which is forbidden, and hence this region is absent in
Fig. 4.3.1b. Increases in Higgs mass from increasing m1/2 and m0 to increase stop
masses are negligible. Indeed, varying m1/2 by 50GeV (10GeV) of our bench-
mark point changes the Higgs mass by only 0.5GeV (0.1GeV), which is negligible
compared with the 3GeV theory error in mh.

In case 3, when we add PLANCK’s relic density measurement, we force mτ̃1
≈

mχ, so that staus and neutralinos coannihilate effectively and reduce the relic
density to the PLANCK value. This further squashes the minor axis of the credible
regions’ oval shapes. This is rather unfortunate; PLANCK constrains the direction
of parameter space that is already well constrained by the LHC golden decay,
reducing the impact of this additional information.

The reconstruction, however, indicates some bias in the posterior mean as an
estimator, in that as data is added, we approach the correct solution (the posterior
mean is consistent), but that our distributions are not centred about the benchmark
point. This is particularly apparent for m0. If the posterior mean were an unbiased
estimator, it would equal the benchmark point in all cases, and the credible regions
would shrink around it as data was added.

4.3.2 CMSSM (A0, tan β) plane

The CMSSM’s (A0, tan β) plane in Fig. 4.3.2 tells a similar story to that of the
(m0, m1/2) plane in Fig. 4.3.1. The parameters are successfully reconstructed; our
credible regions exhibit a single mode that closely envelopes the benchmark point.
The unskewed shapes of the credible regions indicate little correlation between
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tan β and A0, though a slight positive correlation is visible. The reconstruction
is, however, significantly worse than for (m0, m1/2), especially fractionally. The
unified trilinear A0 is initially, in case 1, determined to within ∼ 500GeV at 2σ.
tan β is successfully constrained to tan β . 10 at 2σ. Adding information from the
Higgs mass, case 2 helps somewhat, with A0 pushed slightly less negative and
tan β pushed slightly higher, without exceeding tan β . 10 at 2σ established in
case 1. tan β is pushed higher to saturate the tree-level bound on the Higgs mass,
mh ≤ mZ| cos 2β|. A0 is pushed slightly less negative to tune stop-mixing so that
Xt/MSUSY ≈ −

√
6 , which maximises the Higgs mass.

Adding information from PLANCK dramatically improved parameter recon-
struction on the CMSSM’s (A0, tan β) plane, especially for tan β which is deter-
mined to within ∼ 1. The relic density is most sensitive in this region of the
CMSSM to the stau mass, in contrast to the golden decay, which is sensitive to
only the first- and second-generation sleptons. Because the τ-Yukawa coupling
is significantly larger than the e- and µ-Yukawa couplings, the stau is sensitive to
mixing between left- and right-handed states, which splits the stau mass eigenval-
ues. This mixing is proportional to tan β, and hence mτ̃1

can be driven smaller so
that is approximately mass degenerate with mχ by increasing tan β. This enhances
stau-coannihilation, thus decreasing the relic density to its measured PLANCK
value. We again notice that the posterior mean is a biased estimator, in this case it
is biased towards smaller values of tan β.

4.3.3 Observables

Lastly, we investigate experimental quantities that would be of great interest in our
scenario in which SUSY had been discovered. First, we consider dark matter direct
detection experiments, which would attempt to verify that the neutralino was dark
matter. We plot credible regions on the

(
mχ, σSI

p

)
plane in Fig. 4.3.3. The plot

shows little correlation between mχ and σSI
p , and mχ and σSI

p are both reasonably
well-determined. σSI

p is determined at 2σ to within a decade. The resolution of
σSI

p increases as data is added, especially PLANCK in case 3, but the resolution
of mχ is not much improved by the additional information. Nevertheless, the
precision of the CMSSM direct detection predictions indicate that in our discovery
scenario we would know that dark matter might be within reach of direct detection
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Figure 4.3.1: Bayesian credible regions for the CMSSM’s (m0, m1/2) plane in the high-mass
benchmark scenario, adding the data one by one from left to right, with a legend identical to that in
Fig. 4.2.2. Priors were logarithmic for soft-breaking masses and linear otherwise.
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Figure 4.3.2: Bayesian credible regions for the CMSSM’s (A0, tan β) plane in the high-mass
benchmark scenario, adding the data one by one from left to right, with a legend identical to that in
Fig. 4.2.2. Priors were logarithmic for soft-breaking masses and linear otherwise.
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experiments in the foreseeable future and be able to decide which experiments to
build accordingly.

We consider the rare decay BR (Bs → µ+µ−), which, if it deviates from its
Standard Model value, could indicate new physics. It would be an important mea-
surement with which to understand new physics were it detected as in our discov-
ery scenario. LHCb and CMS recently measured BR (Bs → µ+µ−) with statistical
significance but limited precision; their combined result is BR (Bs → µ+µ−) =

2.9± 0.7× 10−9 [304]. We found that one can make a precise CMSSM prediction
for BR (Bs → µ+µ−) in case 1, with uncertainty ∼ 10−11 at 2σ. We investigated
a parametric uncertainty from Mt by varying Mt within its experimental range
and found that it results in an additional uncertainty of at least ∼ 10−10. Other
parametric uncertainties from e.g., CKMmatrix elements can be larger than but
similar in magnitude to that from Mt [305]. Our posterior mean and mode for
BR (Bs → µ+µ−) significantly differed from its nominal benchmark value, be-
cause of the unaccounted for experimental uncertainty in Mt. In summary, in
our discovery scenario, the limiting factor for a precise CMSSM prediction for
BR (Bs → µ+µ−) is not the sparticle mass spectrum, but parametric uncertainties
in Standard Model nuisance parameters.

4.4 CMSSM with αT 1 fb−1

The results in this section were published in Ref. [211].

4.4.1 CMS αT 35pb−1

In 2011, CMS published its first search for CMSSM squarks and gluinos in 35pb−1

of integrated luminosity [294]. CMS discriminated Standard Model backgrounds
from CMSSM signals or new physics signals with a sophisticated kinematic vari-
able, αT [306]. No statistically significant signal was observed, resulting in a
2σ exclusion contour on the CMSSM’s (m0, m1/2) plane for fixed A0 and tan β

(Fig. 4.4.1b). We wanted to include a likelihood describing this experiment in
the CMSSM’s posterior density. Unfortunately, CMS published only a single 2σ

exclusion contour, whereas we wanted a likelihood at each point in the CMSSM’s
parameter space. The likelihood function could not, a priori, be approximated from
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Figure 4.3.3: Bayesian credible regions for the CMSSM’s
(

mχ, σSI
p

)
plane in the high-mass

benchmark scenario, adding the data one by one from left to right, with a legend identical to that in
Fig. 4.2.2. Priors were logarithmic for soft-breaking masses and linear otherwise.
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that single contour. CMS, in addition, published the numbers of observed and
expected events in the search, and the details of their kinematic selections.

Inspired by Ref. [213], we attempted to replicate the CMS analysis, from the
event level, and construct an approximate likelihood function. The αT search
strategy is based on dijet events, rather than a particular decay chain; it is an
inclusive search. The αT kinematic variable for a dijet event is

αT ≡
min |~pT|

MT
, (4.13)

where we minimise over our two jets, ~pT is the transverse momentum of a jet, and
MT is the transverse mass of the dijet system,

M2
T ≡

(
∑ |~pT|

)2 −
(
∑~pT

)2 , (4.14)

where we sum over our two jets. Quantities in our formulae are in the laboratory
frame but are invariant under longitudinal boosts, unless indicated otherwise. In
this dijet case, we find that

αT =
1
2

√
|~pT|
|~qT|

1
| sin θ

2 |
, (4.15)

where the jet momenta are ~pT and~qT with |~qT| > |~pT| and θ is the angle between
the dijets on the transverse plane.

We generalise this variable from a dijet to amultijet event, by clusteringmultijets
into two pseudo-jets. The jets are divided into two pseudo-jets j1 and j2 in such a
way that minimises

∆HT =

∣∣∣∣∣∑j1
|~pT| −∑

j2

|~pT|
∣∣∣∣∣ . (4.16)

Because of R-parity, sparticles should be produced in pairs, and we expect that a
signal events to result in jets with a dijet topology.

The definition of transverse mass in our pseudo-dijet system identical to that in
the genuine dijet system, except that we sum over all multijets. To rewrite Eq. 4.13,
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we introduce the variables

HT ≡∑ |~pT|, (4.17)

/HT ≡ |∑~pT|, (4.18)

such that
αT =

1−∆HT/HT

2
√

1− /H2
T/H2

T

. (4.19)

To understand the power of αT, consider three cases

1. A perfectly measured QCD dijet event, in which dijets are back-to-back
on the transverse plane. We measure that the jets have equal momentum,
|~pT| = |~qT|, and that the jets are back-to-back on the transverse plane, θ = π.
With Eq. 4.15, we find

αT =
1
2

. (4.20)

2. A mismeasured QCD dijet event. If we mismeasure transverse energy but
correctly measure that the dijets are back-to-back on the transverse plane, we
mismeasure that |~qT| = (1 + |ε|)|~pT| but correctly measure that θ = π. With
Eq. 4.15, we find

αT =
1
2

1√
1 + |ε |

<
1
2

. (4.21)

3. A signal multijet event, with genuine missing momentum, in which the
pseudo-dijets are not back-to-back on the transverse plane. Because we
construct pseudo-dijets to minimise ∆HT, the ratio of momenta in Eq. 4.15
ought to be ∼ 1. This, in conjunction θ < π, results in

αT >
1
2

. (4.22)

We therefore select events with αT > 0.55 to discriminate against QCD back-
grounds. In Eq. 4.15, if the ratio of momenta is unity, this corresponds to an angle
between the dijets on the transverse plane of θ . 3π/4. The αT search is optimised
if the squark production and decay has genuine dijet topology, so that |~pT|/|~qT| ≈ 1
in Eq. 4.15. If gluinos are heavier than squarks, squark cascade decays via gluinos
are forbidden and squarks decay dominantly to a neutralino and a jet, optimising
αT.
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The /HT variable is, however, vulnerable to “ignored” momentum; jets with
pT < 50GeV are ignored. Background events might appear unbalanced and
signal-like because of this “ignored” momentum. To minimise this vulnerability,
we require

R =
/HT

/H′T
< 1.25, (4.23)

where /H′T is /HT with a reduced transverse momentum veto. Only /HT indicates
whether the event was back-to-back — HT and ∆HT are sums of scalars, whereas
/HT is a sum of vectors. The kinematic variable R insures that θ in Eq. 4.15 is not
mismeasured because of the pT < 50GeV veto.

To search for signal events which result from massive particles, and to increase
the ratio of signal to background events, events must have HT > 350GeV. The
phase-space of the αT search is (αT, HT). αT describes the alignment of multijets
clustered into two pseudo-jets; for new physics with genuine missing momentum,
the pseudo-jets are not back-to-back. HT describes the mass scale of the event;
the mass scale of new physics ought to be higher than that of Standard Model
backgrounds.

The Standard Model background consisted of a reducible QCD multijet back-
ground, with mismeasured /ET, and an irreducible electroweak background, with
genuine /ET. The inclusive background was estimated in auxiliary counting experi-
ments in “control regions” (regions in phase space in which no signal is expected).
CMS estimated the number of background events in the signal region (αT > 0.55
and HT > 350GeV) by extrapolating results from the control regions to the signal
region. CMS observed o = 13 events in their signal region, which was consistent
with their background estimate of b = 9.3± 0.9.

The search was a counting experiment described by a Poisson, i.e., the events
were independent and the likelihood of observing events was described by a Pois-
son distribution. The total number of expected events was a sum of expected
contributions from supersymmetric processes and from Standard Model back-
grounds. The expected number of SUSY events is a product of the efficiency (the
fraction of events that survive the αT selections, including detector efficiency), ε,
the integrated luminosity,

∫
Ldt, and the total cross section for the production of

supersymmetric particles at
√

s = 7TeV, σ,

s = ε× σ×
∫

Ldt, (4.24)
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where ε and σ, and consequently s, are functions of (m0, m1/2).

The likelihood,L—the probability of observing o events given thatwe expected
s supersymmetric events and b Standard Model background events — is a Poisson
with mean λ = s + b,

L =
e−(s+b) (s + b)o

o!
. (4.25)

We neglected the error in the StandardModel background, though Eq. 4.25 includes
statistical fluctuations in the background. If its experimental error was significant,
Eq. 4.25 would be multiplied by a distribution describing the Standard Model
background [307] and it would be included as a nuisance parameter. This is not
the case for αT with 35pb−1.

Calculating the likelihood at each trial point in the CMSSM’s parameter space
with thismethod is, however, impracticable, because simulating events withMonte-
Carlo is time-consuming. The likelihood is, however, ultimately sensitive to only
(m0, m1/2), because the masses of first- and second-generation squarks and the
mass of the gluino, upon which αT is based, are insensitive to (A0, tan β). We
calculated the likelihood on an 11× 11 grid on the CMSSM’s (m0, m1/2) plane
from 0 to 500GeV in 50GeV steps, for fixed A0 and tan β. From this “likelihood
map,” we would interpolate or extrapolate a likelihood for any trial point in the
CMSSM’s parameter space, by constructing a quintic polynomial in the vicinity of
the trial point [308].

We validated our likelihood map by comparing its 2σ ∆χ2 contour (Eq. 2.11)
with that published by CMS (Fig. 4.4.1). Our approximation and the official 2σ

contour qualitatively agree, though differ by . 100GeV in places. The contour
is an approximate contour of squark mass in the CMSSM, though if squarks are
too heavy to be produced, gluino production is important, which is suboptimal
for αT. Our approximation and the CMS 2σ contour differ because we did not
include full detector simulation and we used leading order cross sections, rather
than weighting our leading order with k-factors for the next-to-leading order. We
also omitted systematics, e.g., parton distribution functions.

By the time we finished our likelihood map for αT at 35pb−1, CMS published
an αT 1.1 fb−1 exclusion on the CMSSM’s (m0, m1/2) plane [309] that surpassed
that with 35pb−1. This work, then, was a “warm-up” exercise. The methodology
and expertise established would be utilised in later studies.
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4.4.2 CMS αT 1.1fb−1

The CMS αT 1.1 fb−1 null result [309] excluded m1/2 . 600GeV for m0 . 500GeV,
and m1/2 . 200GeV for m0 & 500GeV in the CMSSM, for fixed tan β = 10, A0 = 0
(Fig. 4.4.2c). Light squarks and gluinos in the stau-coannihilation and focus-point
regions that were favoured by previous experimental results, especially δaµ, were
excluded. It was imperative that we included this experiment in the CMSSM’s
posterior density.

We repeated our “warm-up” in Sec. 4.4.1, in which we constructed a likelihood
from a similar αT search with 35pb−1, for this new result. There were, however,
complications; with 1.1 fb−1 of integrated luminosity, the expected number of
events populated a distribution in HT. To maximise the sensitivity of their experi-
ment, CMS binned their events in eight HT bins, and searched for SUSY in each
bin.

We found selection efficiencies for each HT bin on a uniform grid on the
CMSSM’s (m0, m1/2) plane. Our grids spanned m1/2 = 50-1000GeV and m0 =

50-2000GeV in 50GeV steps. The 325GeV < HT < 375GeV “efficiency map” is
shown in Fig. 4.4.2a. Our likelihood was now a product of Poisson distributions
for each HT bin — each bin was independent,

L = ∏
i

e−(si+bi) (si + bi)
oi

oi!
, (4.26)

where i = 1, . . . , 8 is the HT bin and

si = εi × σ×
∫

Ldt. (4.27)

The cross section, σ, the efficiencies, εi, and, consequently, the likelihood, L, were
functions of (m0, m1/2).

We checked that, as expected, the likelihood was approximately independent
of (A0, tan β). We calculated a likelihood map on the (m0, m1/2) plane for A0 = 0
and tan β = 10 — this choice minimised the unphysical regions in the (m0, m1/2)

plane. Our map spanned m1/2 = 50-1000GeV and m0 = 50-2000GeV in a uniform
grid with 50GeV steps.
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4.4.3 Scans

We found the posterior pdf for the CMSSM with the MultiNest algorithm, with
five choices of likelihood function:

1. To validate our likelihood map and our computer codes, the αT likelihood
map and a likelihood from the experiments that constrain the Standard
Model’s nuisance parameters;

2. A likelihood function comprised of “non-LHC” experiments; all experiments
excluding the αT direct search and the XENON100 direct detection experi-
ment, i.e., LEP and Tevatron sparticle and Higgs mass limits, experiments
that constrain nuisance parameters, Ωh2, sin2 θeff, MW , δaµ, BR (b→ sγ),
BR (Bu → τν), ∆MBs and BR (Bs → µ+µ−);

3. Likelihood from non-LHC experiments and our αT likelihood map;

4. Likelihood from the XENON100 limit, non-LHC experiments and our αT

likelihood map;

5. Likelihood from the XENON100 limit, non-LHC experiments and our αT

likelihood map, but without a likelihood from δaµ.

By adding XENON100 and αT in steps, we would assess their impact. We repeated
our calculations in case 4 for two choices of prior: linear and logarithmic priors for
the soft-breaking masses, and linear priors for soft-breaking trilinear, tan β, and
nuisance parameters. Our priors are listed in Table B.3 in Appendix B and our
likelihoods are listed in Appendix A.

Impact of αT

With our preliminary likelihood function, case 1, in Fig. 4.4.2, we verified our
approximation to the αT likelihood. Our 2σ contour (Fig. 4.4.2b) was in superb
agreement with the official CMS αT 1.1 fb−1 2σ contour (Fig. 4.4.2c). This validated
our αT methodology.

Our case 2, with non-LHC likelihoods, elucidates the impact of the αT search.
In case 2 in Fig. 4.4.3a, the (m0, m1/2) plane has two discontiguous 1σ modes: a
mode in the stau-coannihilation region at m0 ∼ 100GeV and a mode in the h-
resonance region at m0 ∼ 1500GeV. The 2σ mode at m0 & 500GeV, connected
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with the stau-coannihilation region, is the A-funnel region and the 2σ mode sur-
rounding the h-resonance is the focus-point region. Because our posterior pdf on
the (m0, m1/2) plane was bimodal, the posterior mean is between the two modes,
outside of the 1σ credible region, though closer to the stau-coannihilation 1σ re-
gion. The best-fit point is in the stau-coannihilation region, in which δaµ is poorly
satisfied with loop contributions from light smuons.

The (A0, tan β) plane (Fig. 4.4.3b) is similar to the (m0, m1/2) plane, in that it
has two discontiguous 1σ modes. The mode at tan β . 30 corresponds to the
stau-coannihilation region, that at tan β ∼ 30 to the focus-point and h-resonance
regions, and that at tan β & 40 to the A-funnel region. The credible regions on the
(m0, m1/2) plane are determined by the dark matter annihilation mechanisms, as
anticipated in Sec. 4.1.1. The behaviour on the (A0, tan β) plane is, however, more
complicated than that. The stau-coannihilation region is at tan β . 30. Within
the stau-coannihilation, this minimises destructive loop contributions from light
stops to BR (b→ sγ). The A-funnel region is at tan β & 40; large tan β decreases
the pseudoscalar Higgs’ mass so that 2mχ ∼ mA. The h-resonance is insensitive
to tan β, though large tan β is preferred to maximise δaµ. The focus point region
occurs at fairly small µ, which occurs within our m0 prior range if tan β is moderate.
Because tan β is large, destructive loop contributions reduce BR (b→ sγ) and it is
smaller than its measurement in the A-funnel and focus-point regions.

The 1σ credible region spans A0 & 0. In the A-funnel, A0 > 0 increases
BR (b→ sγ) via NLO chargino-stop contributions (Fig. 3.7.1c) proportional to
At [310] and reduces mA so that mA ' 2mχ. In the h-resonance, A0 ∼ 2TeV is
favoured, because it increases mχ±1

so that it exceeds the LEP limit [311]. Further-
more, positive A0 is favoured by physicality, especially if tan β & 30. Because
the trilinear’s RG equations are positive, positive A0 at the GUT scale ran to the
electroweak scale is smaller in magnitude than negative A0 at the GUT scale ran
to the electroweak scale. Positive A0 seldom results in tachyonic scalars, even if
tan β & 30.

Our case 3 includes αT, and should be compared with case 2. As we expected
from our likelihood map, αT bites into the low-mass region of the CMSSM’s
(m0, m1/2) plane in Fig. 4.4.3c. Credible regions below the αT 2σ contour in
Fig. 4.4.3a disappear, and credible regions above the αT 2σ contour are inflated,
because the pdf must integrate to unity. The stau-coannihilation region increases
from m1/2 & 300GeV to m1/2 & 600GeV, and the A-funnel is inflated, especially
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from m0 . 1TeV to m0 . 1.5TeV. The h-resonance region is eliminated by αT. With
heavier m1/2, the resonance is impossible, because mh increases logarithmically
with m1/2, whereas neutralino mass increases linearly. The focus-point region,
however, remains, and is present at 1σ, rather than 2σ; however, so that µ ∼ 0GeV,
m0 is much heavier than before to compensate for the heavier m1/2.

Case 3 for the (A0, tan β) plane in Fig. 4.4.3d changes from case 2 in Fig. 4.4.3c
because of correlations with (m0, m1/2), although our αT likelihood map was
independent of (A0, tan β). The elimination of the h-funnel, which was insensitive
to tan β, simplifies the behaviour to two discontiguous 1σ modes. The small tan β

mode is tan β . 20, slightly smaller than before, because the h-resonance, with
moderate tan β, was excluded by αT. The A-funnel is tan β & 45. The 2σ bridge
between these modes is the focus-point region.

Impact of XENON100

In 2011, XENON100, a direct detection experiment, published a 90% exclusion
contour the CMSSM’s

(
mχ, σSI

p

)
plane, which significantly improved previous

limits from direct detection experiments [105]. We include a likelihood from
XENON100 in case 4. We find that its impact is weak, but noticeable in Fig. 4.4.4.
The null results of XENON100’s search favour smaller scattering cross sections.

At leading order, two diagrams contribute to σSI
p : s-channel squarks and a

t-channel CP-even Higgs. With αT, however, squarks are massive and an s-channel
squark is off-resonance. σSI

p is dominated by t-channel heavy Higgs exchange
(similar to Fig. 3.3.1c) with a higgsino-bino-scalar vertex.

In Fig. 4.4.4a, compared with Fig. 4.4.3c, the focus-point region is reduced
from 1σ to 2σ and the A-funnel shrinks. In the focus-point region, because µ .
M1, the neutralino’s composition is a higgsino/bino mixture. The focus-point’s
higgsino-like neutralino enhances σSI

p and is disfavoured by XENON100. In the
A-funnel region, the neutralino’s composition must have higgsino component, so
that the A-funnel in Fig. 3.3.1c is permitted, and the pseudoscalar must be light,
so that 2mχ ' mA. The A-funnel’s light pseudoscalar enhances σSI

p , as mH ≈ mA,
and is disfavoured by XENON100. In the stau-coannihilation region, because the
neutralino is bino-like and the heavy Higgs is heavy, as tan β is small, σSI

p is small.

Fig. 4.4.5 shows credible regions on the
(

mχ, σSI
p

)
plane, with and without

XENON100, to elucidate its impact. Without XENON100, in Fig. 4.4.5a, we see
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two 1σ modes inside a 2σ mode at 200GeV . mχ . 400GeV, and a 2σ mode at
mχ ∼ 100GeV. The two 1σ modes are the stau-coannihilation region, with the
smallest σSI

p , and the A-funnel. That the A-funnel appears at 1σ, rather than at
2σ as on the (m0, m1/2) plane, is a “volume effect” — the A-funnel’s 2σ mode on
the (m0, m1/2) plane has a large volume. The 2σ mode at mχ ∼ 100GeV, above
the XENON100 exclusion contour, is the focus-point, with the largest σSI

p . Once
XENON100 is included in our likelihood, Fig. 4.4.5b, the A-funnel is reduced
to 2σ and the focus-point region shrinks, because of their large σSI

p . Because of
the appreciable theoretical error in the σSI

p calculation, the XENON100 exclusion
contour was “smeared” in our likelihood function. Consequently, the focus-point
region is not eliminated, despite lying above the XENON100 exclusion contour,
and the A-funnel is affected, despite lying below the XENON100 exclusion contour.

Our credible regions suggest that, if they are to detect CMSSM dark matter,
direct detection experiments ought to be sensitive to σSI

p . 10−10 pb. Furthermore,
the neutralino’s mass is 250GeV . mχ . 343GeV at 1σ, somewhat heavier than
that of the peak sensitivity in direct detection experiments.

Mass spectra

Because this case, case 4, includes likelihoods from all relevant experiments, we
review one-dimensional credible regions for sparticle masses in Table 4.4.1. For
comparison, we include case 2. The credible region for theHiggsmass ismarginally
heavier than it waswithout αT and XENON100, and remains close to the LEP lower
limit, mh & 112.2 at 2σ. αT andXENON100 increase squarkmasses from& 250GeV
to & 400GeV at 2σ and gaugino masses dramatically. The lightest neutralino is
heavier than 100GeV at 2σ and the gluino is & 1TeV at 2σ.

Prior dependence

We calculated the posterior density with two choices of sensible, non-informative
priors, to check whether our results were robust. Comparing the credible regions
on the (m0, m1/2) plane with linear priors in Fig. 4.4.6a to that with logarithmic
priors in Fig. 4.4.4a, we see prior dependence. The credible regions are, however,
qualitatively similar. With linear priors, the posterior pdf has three 1σ modes,
whereas with logarithmic priors, it has one 1σ mode. The second and third mode,
present at large (m0, m1/2), are absent with logarithmic priors, because logarithmic
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priors penalise large (m0, m1/2) with their 1/x dependence. With linear priors,
new 2σ modes in the pdf arise in the A-funnel and focus-point regions, which were
1σ modes with logarithmic priors. The stau-coannihilation mode is unaffected.

Although our priors for (A0, tan β) were unchanged, the posterior pdf on the
(A0, tan β) plane might change, because (m0, m1/2) are marginalised. Comparing
the credible regions on the (A0, tan β) plane with linear priors in Fig. 4.4.6b to that
with logarithmic priors in Fig. 4.4.4b, we see little prior dependence. With linear
priors, the 2σ mode at tan β ∼ 50 is enlarged. This mode corresponds to large
(m0, m1/2), in the A-funnel and focus-point regions. This enlargement, then, is a
result of a “volume effect” (Sec. 2.5).

This moderate prior dependence implies that our likelihood is too weak to over-
come differences between sensible choices of priors, in spite of new experimental
constraints from αT and XENON100. Our αT likelihood function on the (m0, m1/2)

plane, above its 2σ contour, was approximately constant, and could not overcome
sensible choices of priors (see Fig. 2.5.1).

Best-fit point

Our best-fit point (Sec. 2.3), de jure, should be independent of our priors. Because
we found it, however, with a Monte-Carlo algorithm, it is a random variable with
an error and with a weak dependence on the scanning algorithm, rather than
an exact solution. For example, with logarithmic priors, our algorithm explores
the low-mass region of the CMSSM’s (m0, m1/2) plane in greater detail than the
high-mass region.

Table 4.4.2 shows the CMSSM’s best-fit points with non-LHC likelihoods only
and with αT and XENON100 likelihoods. In each likelihood case, our best-fit
point is in the CMSSM’s stau-coannihilation region. Our best-fit point with non-
LHC likelihoods is in good agreement with best-fit points reported previously in
Ref. [204,205,207,227], which is encouraging. Our p-value, 42%, is close to that
reported in Ref. [229], 37%.

With αT and XENON100 likelihoods, our best-fit point shifts to heavier m1/2 '
600GeV, but is otherwise similar to that with non-LHC likelihoods. In con-
trast, in Ref. [229], the best-fit point moves radically to large m0 ≈ 450GeV and
m1/2 ≈ 780GeV, and large tan β ≈ 40. Large errors, however, are reported for all
parameters. The χ2-function, however, contains plateaus (regions in which it is
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flat as a function of the CMSSM’s parameters). Because χ2 similar to χ2
Min can be

found for parameters different from those at the best-fit point, the location of the
best-fit point is somewhat unstable with respect to minor changes in e.g., computer
codes.

To show which experimental constraints were satisfied at our best-fit point,
Table 4.4.3 shows a breakdown of the main contributions to the χ2 at our best-fit
point with αT and XENON100 likelihoods. Because our αT likelihood is a product
of eight likelihoods, one for each HT bin, its χ2 is distributed with 8 degrees of
freedom, and is expected to be ∼ 8. The δaµ likelihood contributes significantly to
the total χ2; our best-fit point cannot explain δaµ. At our best-fit point, the hint in
δaµ is a statistical fluctuation, rather than new physics.

Fig. 4.4.7 shows that δaµ requires that increases in m1/2, caused by αT, are
compensated by increases in tan β, which increases δaµ at one-loop by Eq. 3.59,
but necessitates an increase in m0, so that the τ̃1 is not the LSP. Our best-fit
point is, however, pulled in a different direction by BR (b→ sγ) (Fig. 4.4.8); to
enhance BR (b→ sγ), we require small tan β in the stau-coannihilation region. In
the stau-coannihilation region, δaµ and BR (b→ sγ) are affected by sparticle loops
and are proportional to tan β and ∼ (SM− tan β)2, respectively. That both must
be enhanced causes tension [206]. This tension is exacerbated by αT, because it
suppresses sparticle loop contributions.

In Table 4.4.2, including likelihoods from αT and XENON100 inevitably in-
creased the total χ2, from 16.53 to 22.21. The p-value, however, depends on the
distributions of the additional αT and XENON100 contributions to the χ2. The
χ2 from αT, a product of eight independent Poissons with moderate means, is
approximately distributed as a χ2 with eight degrees of freedom. Our p-value, in
fact, increased from 42% to 61%, though neither p-value is significant. It is difficult
to compare our p-value with that in Ref. [229], because Ref. [229] included different
likelihoods. In Ref. [229], the p-value diminished from 37% to 15%.

To aid comparison with the frequentist analysis in Ref. [229], in Fig. 4.4.4c and
Fig. 4.4.4d we show profile likelihood confidence intervals on the (m0, m1/2) and
(A0, tan β) planes. Our confidence intervals are qualitatively similar to our credible
regions. The confidence interval for the A-funnel, however, on the (m0, m1/2) plane
extends to m0 ∼ 2TeV and connects with the focus point region at 2σ and on the
(A0, tan β) omits tan β & 30 at 1σ. Indicating that, on the (m0, m1/2) plane, fine-
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tuned points with small χ2 exist, but are disfavoured by marginalisation, and that
for tan β & 30, points with moderate χ2 exist, but are favoured by marginalisation.

The confidence intervals on theCMSSM’s (m0, m1/2) plane in Ref. [229] are qual-
itatively different from our confidence intervals; they are larger and extend from
the stau-coannihilation region to heavier (m0, m1/2), but exclude the focus-point
region. We speculate that this difference is caused by our different implementations
of αT and our different calculations for BR (b→ sγ).

Dropping δaµ

We remarked in Sec. 4.4.3 that δaµ could not be interpreted as new physics at
our best-fit point, because δaµ was much smaller than its measurement. We,
therefore, repeated our analysis without the δaµ likelihood. Our credible regions
were qualitatively similar to those with a δaµ likelihood, suggesting that δaµ is not
dominant in determining credible regions, though the best-fit point increased in
m1/2.

4.5 CMSSMwith Razor 4.4 fb−1 and Higgs discovery

The results in this section were published in Ref. [218].

The experimental constraints in our CMSSM analysis in Sec. 4.4 were quickly
usurped: direct searches at the LHC with 4.4 fb−1 [312], rather than 1.1 fb−1, ex-
cluded heavier (m0, m1/2) in the CMSSM; LHCb’s search for Bs → µ+µ− excluded
BR (Bs → µ+µ−) that was ∼ 3 times less than that which was previously permit-
ted; and ATLAS and CMS reported tantalising hints of a Standard Model-like
Higgs boson. We repeated our Bayesian analysis of the CMSSM with likelihoods
describing these new experimental constraints.

4.5.1 CMS Razor 4.4 fb−1

The Razor method [313,314] is similar to αT (Sec. 4.4.1), in that it is an inclusive
search for supersymmetrywith a complicated kinematic variable that discriminates
against StandardModel backgrounds. Razor searches for events inwhich sparticles
are produced in pairs, and each sparticle decays to missing momentum and jets; it
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Figure 4.4.1: Confidence intervals for CMS αT with 35 pb−1: Fig. 4.4.1a our approximation and
Fig. 4.4.1b the official result.

Mass 1σ 2σ 1σ 2σ

Non-LHC (case 2) Non-LHC + αT + XENON100 (case 4)

mh (112.3, 116.5) (110.1, 118.4) (114.4, 117.8) (112.2, 119.4)
mχ (56, 291) (53, 356) (250, 343) (128, 390)

mχ±1
(110, 554) (104, 676) (475, 651) (181, 738)

mQ̃1,2
(326, 808) (254, 1172) (434, 761) (398, 1302)

mg̃ (403, 1576) (384, 1885) (1380, 1825) (879, 2043)

Table 4.4.1: One-dimensional credible regions, with an equal tail probability ordering rule
(Eq. 2.13), for CMSSM sparticle masses with non-LHC (case 2) and non-LHC, αT and XENON100
likelihoods (case 4), and with logarithmic priors. Masses are in GeV.
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Figure 4.4.3: Bayesian credible regions and confidence intervals for CMSSM parameters, with a
likelihood from (a)-(b) non-LHC experiments (case 2) and (c)-(d) including αT (case 3), and with
logarithmic priors for soft-breaking masses and linear priors otherwise.
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Figure 4.4.4: Bayesian credible regions and confidence intervals for CMSSM parameters, with
a likelihood from all experiments, including αT and XENON100 (case 4), and with logarithmic
priors for soft-breaking masses and linear priors otherwise.
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Figure 4.4.7: Points from nested sampling with appreciable posterior weight, coloured by their
discrepancy with δaµ, on the (a) (m0, m1/2) plane and (b) (m1/2, tan β) plane.
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Figure 4.4.8: Points from nested sampling with appreciable posterior weight, coloured by their
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Non-LHC (case 2) Non-LHC + αT + XENON100 (case 4)

Parameter Best-fit 1σ credible region Best-fit 1σ credible region

m0 122 (116, 1391) 122 (127, 741)
m1/2 343 (142, 702) 600 (608, 820)
A0 806 (236, 1514) 677 (82, 1283)
tan β 17 (13, 22) 11 (9, 16)

χ2 16.53 22.21
d.o.f. 16 25
p-value 42% 61%

Table 4.4.2: Best-fit points and one-dimensional 1σ credible regions for the CMSSM’s parameters,
calculated with the equal tail probabilities ordering rule in Eq. 2.13, with two likelihood functions
and with logarithmic priors. Masses are in GeV. Our best-fit parameters are, in some cases, excluded
by our equal tail probability ordering rule, because the best-fitting parameters lie away from the
median. We round to the nearest whole GeVor unit of tan β.

Constraint χ2

Ωh2 0.01
mh 1.32
b→ sγ 1.98
sin θeff 4.16
MW 1.49
δaµ 9.76
Bu → τν 0.03
∆MBs 0.25
αT 3.42

Total 22.21

d.o.f. 25
p-value 61%

Table 4.4.3: Breakdown of the main contributions to the χ2 for our best-fit point in a scan with
a likelihood from non-LHC experiments and the αT and XENON100 limits (case 4) and with
logarithmic priors. Note that all likelihoods are normalised to unity, including one for each HT bin.
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is an inclusive search that includes simple and complicated decay chains. Observed
jets are combined into two “megajets,” similar to the pseudo-jets in αT.

The Razor, however, utilises relativistic kinematics in a simple dijet topology, in
which a pair of squarks is produced and each squark decays to a jet and a neutralino.
We assume that the jets are massless. Unfortunately, from our laboratory frame,
we cannot reconstruct the jet’s four momentum in either the centre-of-momentum
frame, in which the squarks are back-to-back, or in its parent squark’s rest-frame.
If we could reconstruct a jet’s four momentum in its parent squark’s rest frame, we
could calculate the mass scale of the decay.

If we suppose that squarks are produced near their energy threshold,
√

s ∼
2mq̃ , the squarks are produced at rest. The centre-of-momentum frame and the
squarks’ rest frames coincide. In the squarks’ rest-frames, the jets’ momenta are
equal in magnitude. We find a longitudinal boost such that squarks with arbitrary
momentum four-vectors in the laboratory frame have equal energies in the boosted
frame. This, then, is an approximate boost to the centre-of-momentum frame. We
call this new frame the R-frame.

In a squark’s rest-frame, we solve for the jet momenta and find

pµ =
M∆

2
(1, û), (4.28)

where

M∆ ≡
m2

q̃ −m2
χ

mq̃
. (4.29)

Boosting from the squark’s rest-frame back to the centre-of-momentum frame with
−βCM,

pCM0 =
M∆

2
[γCM + γCMβCMû · v̂] . (4.30)

The dot-product between the jet’s direction in the squark’s rest frame and the boost
direction to the centre-of-mass frame ought to average to zero, because the jet is
emitted uniformly in angle.

In the laboratory frame, the jet momenta are,

pµ = (p0,~pT, pz), (4.31)

qµ = (q0,~qT, qz). (4.32)
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Boosting from the laboratory frame to our as yet undefined R-frame with an
arbitrary boost,

Λµ
ν pµ = p′ν = (γp0 − γβpz,~pT,−γβp0 + γpz), (4.33)

Λµ
νqµ = q′ν = (γq0 − γβqz,~qT,−γβq0 + γqz). (4.34)

We require that the momenta are equal in magnitude — this defines our R-frame.
Because the jets are massless, we require in fact that their energies are equal,

p′0 = q′0 ⇒ (4.35)

β =
q0 − p0

qz − pz
. (4.36)

Now, let us find the energy in this R-frame,

p′0 =

√
(qz p0 − pzq0)2

(qz − pz)2 − (q0 − p0)2 ≡
MR

2
. (4.37)

Because we assume that the centre-of-momentum frame and squarks’ rest
frames approximately coincide, we can approximate the energy in the centre-
of-momentum frame (Eq. 4.30)

MR ≈ M∆γCM. (4.38)

In summary, with our manipulations and our approximation that squarks are
produced near threshold, we approximated the Lorentz factor that boosts from the
squark’s rest frame to the centre-of-momentum frame times a function of sparticle
masses.

We neglected, however, the angle between the jets — in a QCD background
event, the jets ought to be back-to-back on the transverse plane. We include this
information in a “transverse” variable,

M2
T =

1
2

[
| ~/ET|(|pT|+ |qT|)− ~/ET · (~pT +~qT)

]
, (4.39)

which contains “back-to-backness” information in its dot-product which includes
~pT ·~qT. For a signal-like events, with θ ≈ 0 and |pT|, |qT| . M∆/2, the trans-
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verse variable MT . M∆ — the distribution of MT has an endpoint at M∆ and
approximates M∆. For QCD background events, θ ≈ π and MT ≈ 0.

Finally, we construct the dimensionless Razor variable,

R ≡ MT

MR
, (4.40)

which approximates 1/γCM. The Razor phase-space is (R, MT). R estimates the
“boostedness” of the event — the reciprocal of the Lorentz factor between the
squark’s rest frame and the centre-of-momentum frame. For a signal like event,
squarks are produced at threshold, almost at rest, and R ∼ 1. MT estimates the
“back-to-backness” of the event and the mass scale of the event. We expect, then,
that Razor is more powerful than αT, because it includes “boostedness,” “back-to-
backness” and mass scale, whereas αT omits “boostedness.”

With a methodology identical to that in Sec. 4.4, we found a “likelihood map”
for the Razor 4.4 fb−1 search on the CMSSM’s (m0, m1/2) plane. To validate our
“likelihoodmap,” we checked that our 2σ PL contour agreedwith CMS’s published
2σ contour (Fig. 4.5.1) — the agreement was superb.

4.5.2 Higgs likelihood

We considered two Higgs scenarios (see Sec. 3.4.2):

“Pessimistic:” Neither CMS or ATLAS achieved a significant result. We consid-
ered only their 95% CLs exclusions, and constructed a box-car likelihood
function by combining their exclusions with a theoretical error in the Higgs
mass, resulting in

LPre-LHC = p
(
LHC|mCalc

h

)
(4.41)

= erf
(

mCalc
h − 117.5GeV/

√
2 τ
)
− erf

(
mCalc

h − 118.5GeV/
√

2 τ
)
+

erf
(

mCalc
h − 122.5GeV/

√
2 τ
)
− erf

(
mCalc

h − 127.5GeV/
√

2 τ
)

,

which is in Fig. 3.4.6.

“Optimistic:” Results were consistent with a Standard Model Higgs boson, with
an insignificant, but appreciable, discrepancy with the background hypothe-
sis. We supposed that a discovery was “around the corner,” and constructed
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a likelihood for a pseudo-measurement of mh = 125± 2GeV. The mean is
that which was hinted by ATLAS and CMS. We combined this hypothetical
measurement with a theory error in the Higgs mass calculation via Eq. 3.5.
Our likelihood in this hypothetical scenario was approximately that which
was later realised by the ATLAS and CMS experiments, and, as such, we
identified this scenario and its results with reality;

LPost-LHC = p
(
LHC|mCalc

h

)
= exp

[
−
(
125GeV−mCalc

h
)2

2 (τ2 + σ2)

]
. (4.42)

Although we always included a likelihood for the Higgs mass, we omitted experi-
mental measurements of its couplings in our analysis.

4.5.3 Scans

We calculated the posterior pdf for the CMSSM with three likelihood functions:

1. Likelihood describing all experiments, including δaµ and our “pessimistic”
Higgs likelihood;

2. Likelihood describing all experiments, including δaµ and our “optimistic”
Higgs likelihood;

3. Likelihood describing all experiments, excluding δaµ and our “optimistic”
Higgs likelihood;

All experiments refers to experiments that constrain nuisance parameters, Ωh2,
sin2 θeff, MW , δaµ, BR (b→ sγ), BR (Bu → τν), ∆MBs , BR (Bs → µ+µ−) and Razor.
Our priors were identical in each case; we chose logarithmic priors in Table B.4 in
Appendix B. Unless stated otherwise, we chose µ > 0. Our likelihoods are listed
in Appendix A.

4.5.4 Results

“Pessimistic” Higgs likelihood

We first inspect the (m0, m1/2) plane in case 1 — with our “pessimistic” Higgs like-
lihood, Razor 4.4 fb−1 and likelihoods describing all experiments — in Fig. 4.5.2a,
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which should be compared with our previous result in Fig. 4.4.4, which included
LEP’s limit on the Higgs mass and αT 1 fb−1. Our result is similar to Fig. 4.4.4, in
that it contains three 2σ modes corresponding to the stau-coannihilation, A-funnel
and focus-point mechanisms of dark matter annihilation. Masses, however, are
heavier in each mode, the A-funnel is at 1σ rather than 2σ, and the best-fit point
is in the A-funnel region rather than the stau-coannihilation region. δaµ cannot
be satisfied in any mode; it is always smaller than its measurement with typical
χ2 & 10.

The stau-coannihilation region is heavier than it was because of the strict limit
from Razor 4.4 fb−1. Unlike in Fig. 4.4.4, the stau-coannihilation region is dis-
connected from the A-funnel at 2σ. Surprisingly, however, the 2σ mode that is
ostensibly exclusively the A-funnel contains points at m0 . 1TeV that annihilate
dark matter via an A-funnel and stau-coannihilation. These points, however, have
tan β & 30 which is typical of the A-funnel. Within the stau-coannihilation region,
achieving a heavy Higgs mass is difficult, because stops are relatively light at
∼ 1TeV. The best-fit point in the stau-coannihilation region is at m1/2 ∼ 850GeV
and is inside the first permitted window in Higgs mass at mh ∼ 118.5GeV. The
dominant contributions to χ2

Min, other than δaµ, are Higgs, sin2 θeff and Bu → τν.

The A-funnel has heavier (m0, m1/2) than in Fig. 4.4.4 and is above rather than
adjacent to the stau-coannihilation region. It is, furthermore, at 1σ rather than at
2σ. That it has heavier (m0, m1/2) is caused by our “pessimistic” Higgs likelihood
and by Bs → µ+µ−. Because our Higgs likelihood is stronger than that from LEP,
stops, and thus (m0, m1/2), must be heavier to achieve a heavier Higgs. The LHCb
upper limit on BR (Bs → µ+µ−) is especially relevant in the A-funnel, because
tan β ∼ 50 and mA is tuned to be light (see Eq. 3.45). Consequently, the A-funnel is
pushed to heavier mA to suppress BR (Bs → µ+µ−), and thus heavier (m0, m1/2).
With large (m0, m1/2), stops are heavy at ∼ 3TeV, and thus the best-fit Higgs mass
is ∼ 122GeV, in the heavier permitted interval. The dominant contributions to
χ2
Min, other than δaµ, are Higgs, BR (b→ sγ) and Bu → τν.

The focus-point region is pushed to heavier m0 and marginally heavier m1/2 ∼
600GeV than in Fig. 4.4.4. The Razor limit excludes m1/2 . 300GeV in the focus-
point region, which was previously favoured. In the focus-point region, stops
∼ 2TeV are lighter than in the A-funnel, because, although m0 is similar, m1/2 is
smaller in the focus-point region than in the A-funnel. Because achieving heavy
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Higgs masses is difficult, the best-fit Higgs mass is ∼ 118GeV. The dominant
contributions to χ2

Min, other than δaµ, are Higgs, Bu → τν, BR (b→ sγ) and ∆MBs .
The (A0, tan β) plane in case 1, which should be compared with our previous

result in Fig. 4.4.4, is in Fig. 4.5.2b. There is a single 1σ mode at tan β ∼ 50 and a
second 2σ mode at tan β ∼ 15. That at tan β ∼ 50 is the A-funnel region, which
requires large tan β to reduce the pseudoscalar’s mass and that at tan β ∼ 15 is the
stau-coannihilation region. Unlike in Fig. 4.4.4, the stau-coannihilation region is
at 2σ, because of its small volume on the marginalised (m0, m1/2) plane, but its
shape is otherwise unchanged. Extreme A0 is vetoed, because the stau would be
the LSP, or else, if m0 is simultaneously increased to insure that the stau is not
the LSP, disfavoured by δaµ. Within the A-funnel region, A0 & 0 is favoured, by
physicality, BR (b→ sγ) and by mA ≈ 2mχ.

Because of its small volume on the (m0, m1/2) plane, the focus-point is absent
after marginalisation on the (A0, tan β) plane, though it favours tan β & 15 and
0TeV . A0 . 2.5TeV to achieve µ ∼ 0 in our prior ranges for (m0, m1/2).

“Optimistic” Higgs likelihood

In Fig. 4.5.2c we reconsider the CMSSM’s (m0, m1/2) plane in case 2, with our “op-
timistic” Higgs likelihood. The credible regions marginally differ from Fig. 4.5.2a,
case 1. Notably, the bottom of the stau-coannihilation region at m1/2 ∼ 600GeV is
omitted at 1σ and the focus-point region is inflated to include heavier and, surpris-
ingly, smaller m1/2. The surprising inflation of the focus-point is caused by our
mh ∼ 125GeV likelihood function. With large m0, achieving a heavier Higgs mass
in the focus-point region is easier than in the stau-coannihilation region.

The (A0, tan β) plane in Fig. 4.5.2d is similar to that in case 1, although in-
termediate tan β ∼ 35 is at 2σ, connecting the stau-coannihilation and A-funnel
regions. Intermediate tan β is the focus-point region, inflated on the (m0, m1/2)

plane, which favours tan β & 15. Furthermore, the stau-coannihilation region at
tan . 30 prefers heavier A0 ∼ 2TeV, especially at tan β . 10, which increases the
Higgs mass via maximal mixing.

Higgs mass

In case 2, our best-fit Higgs mass is mh = 123.3GeV in the A-funnel, which incurs
a small χ2 = 0.4 penalty. The best-fit Higgs masses in the stau-coannihilation and
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focus-point regions are mh = 121.5GeV and mh = 122.0GeV, respectively, which
incur moderate, but insignificant, χ2 = 1.5 and χ2 = 1.1 penalties. Compared
with case 1, mh is increased by ∼ 1GeV in the A-funnel and by ∼ 3GeV in the
stau-coannihilation and focus-point regions.

In our analysis, because nuisance parameters including Mt were sampled from
their Gaussian priors, Mt discrepant from its measurement was not penalised in
our likelihood function. The best-fit Higgs masses were achieved with a heavy top
mass and are fine-tuned, because Mt is drawn from the tail of its Gaussian prior
distribution. We investigate whether any mode increases Higgs mass via maximal
stop mixing.

Stop mixing is examined on the (MSUSY, Xt) plane in Fig. 4.5.3, with Xt =

At − µ cot β. The 1σ mode at MSUSY ∼ 1TeV is the stau-coannihilation, with
mixing that is substantial but submaximal, Xt/MSUSY .

√
6 . Maximal mixing

cannot be achieved by tuning Xt via (A0, tan β) for a given (m0, m1/2), because Xτ

must be tuned via (A0, tan β) for mχ ≈ mτ̃1
in the stau-coannihilation region.

The mode at MSUSY ∼ 3TeV is predominantly the A-funnel. Surprisingly, in
spite of tan β ∼ 50 and moderate A0 & 0, the A-funnel achieves Xt similar to the
stau-coannihilation region, because after RG flow to MSUSY, At is negative and
similar in magnitude to that in the stau-coannihilation region. Mixing is, however,
less maximal than in the stau-coannihilation region, because MSUSY is heavier
than in the stau-coannihilation region. In the A-funnel, although decreasing A0 to
∼ −2TeV increases the Higgs mass, it spoils 2mχ ≈ mA. The focus-point region
is connected with the A-funnel at MSUSY ∼ 2.5TeV and Xt ∼ −0.5TeV. In the
focus-point, Higgs mass is comparable with that in the stau-coannihilation region,
because although MSUSY is heavier, stopmixing is submaximal. Stopmixing cannot
be increased via A0 without spoiling µ ∼ 0 in the focus-point.

Fig. 4.5.4 shows the posterior pdf and profile likelihood for the calculated Higgs
mass. Remarkably, the posterior pdf excludes mh & 123GeV at 2σ and favours
mh ∼ 121GeVwith its mean andmode. The profile likelihood includes at 1σ Higgs
masses & 123GeV that were excluded by the posterior pdf, indicating that whilst
& 123GeV is possible, it must be fine-tuned, including by fine-tuning Mt. The 2σ

confidence interval is, however, mh . 124GeV and the profile likelihood favours
mh ∼ 123GeV, i.e., less than its measurement.

In summary, finding mh ∼ 125GeV and satisfying other experimental con-
straints is difficult in the CMSSM with our prior ranges m0 ≤ 4TeV and m1/2 ≤
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2TeV. Although our scan found mh as heavy as∼ 129GeV, it was excluded at 2σ by
a combination of experiments. At 2σ, we found mh . 123GeV and mh . 124GeV
with our credible region and confidence interval, respectively. Note well, however,
that mh is the calculated rather than physical mass, with an appreciable theoretical
error. mh . 123GeV could correspond to a physical Higgs mass of ∼ 125GeV.

Dropping δaµ and considering µ < 0

In our results, as anticipated, the CMSSM cannot reproduce δaµ close to its mea-
surement in conjunction with other experimental constraints, with δaµ ∼ 10−10

rather than δaµ ∼ 30× 10−10 and, consequently, ∆χ2 ∼ 10. With an ensemble of
measurements, there is an appreciable chance of obtaining a discrepant measure-
ment. This disagreement could be a statistical fluctuation. With this interpretation,
the true δaµ is ∼ 10−10.

If, however, we insist that the discrepancy between the Standard Model pre-
diction and measurement results from new physics, rather than fluctuations, we
conclude that the CMSSM is not this new physics. If we suppose that more new
physics exists that contributes to δaµ, we should omit our δaµ likelihood. Alterna-
tively, if we suspect that the discrepancy results from an unidentified systematic
error, we should omit our δaµ likelihood. We investigate this case by dropping
δaµ from our likelihoods. With δaµ omitted from our likelihood function, there
was no motivation for exclusively picking µ > 0, which was favoured by δaµ. We
separately considered µ > 0 and µ < 0, and marginalised sgn µ.

To marginalise sgn µ, we combined our separate scans with equal prior weight
by concatenating our chains weighted by their evidences,

p =
Zµ>0pµ>0 +Zµ<0pµ<0

Zµ>0 +Zµ<0
. (4.43)

The credible regions in our three cases— µ > 0, µ < 0 and sgn µmarginalised—
are shown in Fig. 4.5.5, with our “optimistic” Higgs likelihood function but without
δaµ (case 3). Our µ > 0 results in Fig. 4.5.5a and Fig. 4.5.5b should be compared
with our µ > 0 results with δaµ in Fig. 4.5.2c and Fig. 4.5.2d. The (m0, m1/2)

planes are similar, though removing δaµ shrinks the stau-coannihilation region and
enlarges the focus-point and A-funnel regions. The stau-coannihilation, with its
light sleptons, was favoured by δaµ. Without δaµ, its χ2 is worse than it was relative
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to that of the A-funnel and focus-point regions. The A-funnel is pushed to heavier
(m0, m1/2); δaµ penalised heavier (m0, m1/2). The best-fit point moves to heavier
(m0, m1/2) in the A-funnel. Surprisingly, the best-fit Higgs mass mh = 122.6GeV
without δaµ is lighter than that with δaµ, mh = 123.3GeV, resulting in a small
∆χ2 ∼ 0.4 penalty. This is probably because our MultiNest algorithm is tailored
for Bayesian statistics and cannot reliably find the best-fit point. The posteriormean,
credible regions and confidence intervals for mh without δaµ are ∼ 1GeV heavier
than those with δaµ. The χ2 from sin2 θeff is reduced by ∆χ2 ∼ 1.1, indicating slight
tension between δaµ and sin2 θeff. On the (A0, tan β) plane, removing δaµ shrinks
the stau-coannihilation, especially at A0 ∼ 0, which corresponded to light smuons
with small stau mixing.

The sgn µ is particularly relevant in:

Off-diagonal mass matrix elements of third-generation sfermions from F-
terms, e.g., stop mixing,

Xt = At − µ cot β;

Chargino-stop loop contributions to b → sγ in Fig. 3.7.1d and Fig. 3.7.1c,
which are proportional µ because of mass insertions;

Chargino-stop loop contributions to Bs → µ+µ− in Fig. 3.7.2c, which are
proportional µ because of mass insertions;

Higgsino-mixing in the neutralino and chargino mass matrix in Eq. 1.45 and
Eq. 1.53, respectively;

Higgsino-mixing in chargino-sneutrino and neutralino-slepton loop contri-
butions to δaµ, which are proportional µ because of mass insertions. In fact,
δaµ ∝ sgn µ.

With µ < 0, the (m0, m1/2) plane in Fig. 4.5.5b is different from that with
µ > 0 in Fig. 4.5.5a. The stau-coannihilation and focus-point regions shrink,
and the A-funnel inflates at smaller (m0, m1/2), almost connecting with the
stau-coannihilation region. At m0 ∼ 800GeV, dark matter is annihilated by a
combination of stau-coannihilation and A-funnel. With µ < 0, loop contributions
to BR (Bs → µ+µ−) are destructive, and a lighter pseudoscalar Higgs and thus
smaller (m0, m1/2) is permitted. BR (Bs → µ+µ−) is particularly relevant in the
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A-funnel, because tan β is large. With µ < 0, the A-funnel inflates, and, to conserve
the integral of the pdf, the stau-coannihilation and the focus-point regions shrink.

On the (A0, tan β) plane with µ < 0, the dominant 1σ mode is the A-funnel
with tan β . 45 smaller and A0 smaller than with µ > 0. With µ > 0, the A-
funnel preferred A0 & 0 to maximise BR (b→ sγ). With µ < 0, loop contributions
to BR (b→ sγ) are constructive and with A0 � 0, BR (b→ sγ) is greater than
its measurement. With µ < 0 for points that were physical with µ > 0, the
pseudoscalar Higgs is often tachyonic, though can be made physical if tan β is
decreased. The tiny 2σ mode at A0 ∼ −2.5TeV is the stau-coannihilation region.
The stau-coannihilation regions favours negative A0 to counter the opposite sgn µ,
which cancels with Aτ and At in stau and stop mixing.

Without δaµ, the Bayes-factor in Eq. 2.17 favours µ < 0 by 2.5 to 1. With
µ < 0, CMSSM predictions for B-physics observables Bs → µ+µ− and b → sγ

are less fine-tuned than with µ > 0, though the agreement with experiment is
similar. This preference, however, is “barely worth mentioning” on the Jeffreys’
scale in Table 2.4.1. With sgn µ marginalised, because its evidence is greater, µ < 0
dominates credible regions on the (m0, m1/2) and (A0, tan β) planes in Fig. 4.5.5e
and Fig. 4.5.5f.

Best-fit point

The best-fit point in case 2 with µ > 0 is in the A-funnel with χ2 = 18.6, though
similar χ2 = 18.7 is achieved in the stau-coannihilation region. The minimum
χ2 in the focus-point region is χ2 = 20.2. The dominant contributions to the χ2

are δaµ, Razor, b → sγ and sin2 θeff. In the stau-coannihilation and focus-point
regions, χ2 from mh is substantial, whilst in the focus-point region, χ2 from sin2 θeff

is reduced. We inspect the χ2 breakdown at our best-fit points with and without
our δaµ likelihood in Fig. 4.5.6. With δaµ, the dominant contribution is that from
δaµ — it is poorly reproduced with either sgn µ —and the minimum χ2 with µ > 0
is insignificantly smaller than that with µ < 0. We see tension between δaµ and
sin2 θeff; once δaµ is removed, the χ2 from sin2 θeff is reduced. Remarkably, once
δaµ is removed, the minimum χ2 with µ < 0 is insignificantly smaller than that
with µ > 0.

To calculate the CMSSM’s p-value, we need to understand the distribution
of our χ2. Because the likelihood functions for Razor and BR (Bs → µ+µ−) were
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not Gaussian, their contributions to the χ2 are not χ2-distributed. The Razor
and Bs → µ+µ− searches would not be sensitive to our best-fit point; were the
experiments repeated, the χ2 would not change because of fluctuations in our best-
fit point’s signal, but fluctuations in the Standard Model backgrounds. We omit
Razor and BR (Bs → µ+µ−) from our p-value calculation. Our best-fit point’s χ2

is 14.6 from 8 Gaussian likelihoods. Whilst we fitted 8 parameters, the 4 nuisance
parameters weakly effect observables. Conservatively, we assume that we reduce
the degrees of freedom from 8 to 4 by fitting the CMSSM’s 4 parameters. The
p-value, the probability of obtaining such a large χ2 by chance, is 0.5%, which
is significant. In the CMSSM 1 fb−1 study in Table 4.4.2, the CMSSM’s p-value
was 61%. We find, however, that our calculation is not robust — in Ref. [217],
a similar analysis with a MultiNest scan tailored for frequentist statistics found
p-value = 21%, because it found a point in the stau-coannihilation that satisfied
δaµ. Our analysis focuses on Bayesian statistics. Because the best-fit point in
Ref. [217] is fine-tuned for δaµ, its posterior weight is negligible. We refrain from
declaring that the CMSSM is excluded at 95%, despite our p-value.

Observables

We examine correlations between B-physics and δaµ in Fig. 4.5.7. Fig. 4.5.7a in-
dicates negative correlation [206], and thus tension, between b→ sγ and δaµ; in-
creased BR (b→ sγ) results in decreased δaµ and vice-versa, though neither b→ sγ

nor δaµ agrees with its measurement in our 1σ credible region. The 1σ credible
region is predominantly the A-funnel and its 2σ tail extending to δaµ ∼ 5× 10−10

is predominantly the stau-coannihilation region. δaµ in the stau-coannihilation
region is bigger than that in the A-funnel region, because smuons are lighter in
the stau-coannihilation region than in the A-funnel region. Because destructive
chargino-stop loops in b→ sγ are suppressed by their mass scale, b→ sγ is largest
in the A-funnel region. With µ > 0, increasing tan β increases δaµ in Eq. 3.59, but
decreases b→ sγ because it enhances destructive contributions in Eq. 3.41.

Fig. 4.5.7b indicates positive correlation and, as δaµ must be enhanced, tension
between Bs → µ+µ− and δaµ, because their SUSY contributions are proportional
to a positive power of tan β divided by a relevant SUSY mass scale (see Eq. 3.45
and Eq. 3.59). The 1σ credible region, with a steep gradient, corresponds the A-
funnel region, in which tan β ∼ 45. Increasing BR (Bs → µ+µ−) corresponds to
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increasing tan β and decreasing mA and thus m1/2. The 2σ credible region, with a
flatter gradient, is the stau-coannihilation region, in which tan β ∼ 10. Increasing
δaµ corresponds to decreasing m1/2 and increasing tan β.

We investigate B-physics by comparing sgn µ = ±1 in Fig. 4.5.7c and Fig. 4.5.7d.
As anticipated, with µ > 0 in Fig. 4.5.7c, BR (b→ sγ) is smaller than its mea-
surement, but with µ < 0 in Fig. 4.5.7d, it agrees with its measurement, because
of constructive chargino-stop loops. With µ < 0, BR (Bs → µ+µ−) is safely be-
low its experimental limit. By contrast, with µ > 0, the 2σ credible region ex-
ceeds the experimental upper limit for BR (Bs → µ+µ−). With each sgn µ, the
A-funnel and stau-coannihilation regions separate. With µ > 0, the 2σ tail
at BR (b→ sγ) ∼ 3 × 10−4 is the stau-coannihilation region and the 2σ tail at
BR (Bs → µ+µ−) ∼ BR (Bs → µ+µ−)EXP is the overlapping stau-coannihilation
and A-funnel regions andwith µ < 0, the 2σ slither at BR (Bs → µ+µ−) ∼ 3× 10−9

is the stau-coannihilation region. In the stau-coannihilation region, SUSY contri-
butions to Bs → µ+µ− are small and its predictions is BR (Bs → µ+µ−) ∼ 3× 10−9

with each sgn µ. In the A-funnel region, moderate SUSY contributions to Bs →
µ+µ− flip signwith µ < 0 and BR (Bs → µ+µ−) is reducedwith µ < 0. With µ < 0,
b→ sγ is largest in the overlapping stau-coannihilation and A-funnel regions, in
which MSUSY is moderate and tan β ∼ 40, resulting in substantial constructive
chargino-stop loops.

Direct detection

Lastly, we consider direct detection in Fig. 4.5.8, which should be compared with
the equivalent result in Sec. 4.4, Fig. 4.4.5. With µ > 0 in Fig. 4.5.8a, the

(
mχ, σSI

p

)

plane has three modes. The mode at σSI
p ∼ 10−8 is the focus-point, with Higgs

exchange enhanced by the higgsino component of its mixed neutralino, that at
mχ ∼ 300GeV is the stau-coannihilation, and that at 1σ at mχ ∼ 700GeV is the
A-funnel. Compared with Sec. 4.4, σSI

p in the A-funnel is reduced, because the
pseudoscalar Higgs is heavier, but σSI

p in the stau-coannihilation and focus-point is
approximately unchanged. Although XENON100’s direct detection 90% exclusion
contour is plotted in Fig. 4.4.5a, we did not include it in our likelihood function.
XENON100 appears to exclude the focus-point; however, our calculated σSI

p has
significant theoretical uncertainties.

With µ < 0, the credible regions and the behaviour on the
(

mχ, σSI
p

)
plane



156 Chapter 4. Results

is different. In the focus-point, because |µ| . M1, sgn µ is irrelevant. In the
stau-coannihilation and A-funnel regions σSI

p with µ < 0 is approximately three
decades smaller than with µ > 0. With µ < 0, t-channel diagrams with light
and heavy Higgs bosons cancel [315]. If µ < 0 in the stau-coannihilation or
A-funnel region, as is marginally favoured in our analysis, direction detection
experiments would struggle to detect dark matter. With sgn µ marginalised in
Fig. 4.5.8b, five modes are present: the focus-point, and the stau-coannihilation
and A-funnel regions with each sgn µ. The “v”-shape is the A-funnel with µ < 0
at mχ & 600GeV and the overlapping stau-coannihilation and A-funnel regions
with µ < 0 at mχ . 600GeV. The tiny 2σ credible region at mχ ∼ 300GeV is
the stau-coannihilation region with µ < 0, which is deflated by the “volume ef-
fect.” The stau-coannihilation region with µ > 0 connects with the overlapping
stau-coannihilation and A-funnel regions with µ < 0 at mχ ∼ 250GeV. That the
best-fit point is excluded by the 2σ credible region indicates fine-tuning.

Surprisingly, in the A-funnel with µ < 0, σSI
p increases with mχ. In the A-funnel,

2mχ ∼ mA ∼ mH. With lighter 2mχ ∼ mA, heavy Higgs exchange dominates σSI
p .

With mχ ∼ 600GeV, light and heavy Higgs t-channel exchange cancel. With
heavier 2mχ ∼ mA, the heavy Higgs t-channel diagram is suppressed and cannot
cancel the light Higgs t-channel diagram, which dominates σSI

p . From Ref. [315], if
µ < 0,

σSI
p ∝

[
|kH|
m2

H
− |kh|

]2

, (4.44)

where kH,h are numerical factors associated with heavy Higgs and light Higgs
t-channel diagrams, respectively. This function exhibits the “v”-shape present on
the

(
mχ, σSI

p

)
plane for µ < 0.
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Figure 4.5.1: Approximate CMS Razor confidence intervals (red lines) on the CMSSM’s
(m0, m1/2) plane. The black (grey) line is the 2σ confidence interval from CMS (ATLAS). The
intervals are approximately independent of tan β, A0 and sgn µ.
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(b) (A0, tan β) with ATLAS and
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hoods (case 1).
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(c) (m0, m1/2) with a hypothetical
Higgs mh = 125GeV discovery
likelihood (case 2).
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Figure 4.5.2: 1σ (2σ) Bayesian credible regions in dark (light) blue for the CMSSMwith sgn µ = 1.
The posterior mean (best-fit point) is marked with a black circle (red star), and the CMS Razor
(ATLAS) 2σ exclusion is marked with a full black (dashed grey) line. Logarithmic priors for
soft-breaking masses and linear priors otherwise.
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(b) (A0, tan β) and
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(c) (m0, m1/2) and µ < 0.
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(d) (A0, tan β) and µ <
0.
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(e) (m0, m1/2) and sgn µ
marginalised.
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Figure 4.5.5: 1σ (2σ) Bayesian credible regions in dark (light) blue for the CMSSMwith each sgn µ
and with sgn µ marginalised. All likelihoods, except for δaµ, and a mh = 125GeV likelihood were
included (case 3). The posterior mean (best-fit point) is marked with a black circle (red star), and
the CMS Razor (ATLAS) 2σ exclusion is marked with a full black (dashed grey) line. Logarithmic
priors for soft-breaking masses and linear priors otherwise.
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Figure 4.5.7: 1σ (2σ) Bayesian credible regions in dark (light) blue for the CMSSM flavour and
δaµ observables, with logarithmic priors for soft-breaking masses and linear priors otherwise. The
posterior mean (best-fit point) is marked with a black circle (red star). Standard Model predictions
and experimental measurements are marked with dashed lines.
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Mass spectra

We examine the sparticle and Higgs masses in Fig. 4.5.9 in case 1 and case 2, and
with each sgn µ without δaµ in case 3. The favoured A-funnel region dominates
credible regions for the sparticle masses. In case 1 in Fig. 4.5.9a, the entire spectrum
is heavywith squarks and gluinos∼ 2.5TeV, sleptons∼ 2TeV, and electroweakinos
∼ 1TeV. The credible regions, however, are typically& 1TeV at 2σ, because lighter
masses are permitted in the stau-coannihilation and focus-point regions. In case 2
in Fig. 4.5.9b, remarkably, our 2σ credible regions permit electroweakinos lighter
than in case 1, because the focus-point is enhanced in case 2. The 1σ credible
regions and posterior means for the electroweakinos, however, are heavier, and
the squarks, sleptons and Higgs are heavier.

Removing δaµ with µ > 0 in Fig. 4.5.9c has a negligible effect on sparticle
masses, though squarks are marginally heavier than in Fig. 4.5.9b. With µ < 0
in Fig. 4.5.9d, because the A-funnel was smaller on the (m0, m1/2) plane, the 1σ

credible regions and posterior means are lighter than with µ > 0, especially the
heavy Higgs masses and the squark masses. Because the stau-coannihilation and
focus-point regions were disfavoured with µ < 0, however, the lower 1σ tails
exclude light masses that were permitted in Fig. 4.5.9c.

4.6 pMSSM dark matter and collider signatures

The results in this section were published in Ref. [316].

In Sec. 4.5, we found that the CMSSM struggled to agree with LHC direct searches
and Higgs searches, in conjunction with other experiments within our prior ranges.
We, furthermore, wanted to investigate supersymmetric dark matter, without a
particular pattern of soft-breaking masses. To relax the CMSSM, we investigated
the MSSM, with soft-breaking parameters defined at the scale MSUSY. Our model
is the MSSM with degeneracies between soft-breaking masses, such that it cap-
tures dark matter and Higgs phenomenology and evades experimental limits, but
remains tractable. Our p9MSSM, defined in Sec. 1.5.3, demands that M1 = 0.5M2

at MSUSY; this is unification at MGUT evolved to the scale MSUSY with the RG.
Because M1 < M2, the lightest neutralino cannot be predominantly wino. We
neglected wino-like neutralinos, because winos . 3TeV annihilate to WW via a
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(c) sgn µ = 1 with all likelihoods
and mh = 125GeV, but without a
likelihood from δaµ (case 2).
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Figure 4.5.9: Credible regions (red candlesticks) and posterior means (black dashes) for CMSSM
mass spectra, with logarithmic priors for soft-breaking masses and linear priors otherwise.
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t-channel wino-like chargino at a rate such that the relic density is smaller than its
measurement and might be excluded by indirect detection experiments [317].

Because LHCdirect searches strongly constrain only first and second-generation
squark masses, we fixed first- and second-generation soft-breaking squark masses
at 2.5TeV, but permitted third-generation soft-breaking squark masses to vary to
investigate Higgs phenomenology. Because sleptons cannot be lighter than the
neutralino, we fixed first- and second-generation slepton masses to M1 + 50GeV,
in order to enhance δaµ. We permitted the third-generation soft-breaking slepton
mass to vary so that we might investigate stau-coannihilation with mχ ≈ mτ̃1

.
The trilinears are particularly relevant to the stau-coannihilation mechanism and
the Higgs mass. We permitted the unified slepton trilinear and unified up-type
trilinears to vary, but fixed unified down-type trilinears.

In the Higgs sector of our p9MSSM, we traded soft-breaking Higgs masses for
mA and MZ via electroweak symmetry breaking conditions and fixed MZ, leaving
mA, µ and tan β. We investigated only sgn µ = +1. The soft-breakingmasses in our
p9MSSM are defined at the scale MSUSY. The nuisance parameters 1/αem(MZ)

MS

and αs in our p9MSSM are less relevant than in the CMSSM, because the gauge
couplings modify the RG evolution from the MSUSY to MGUT in the CMSSM. We
fixed 1/αem(MZ)

MS and αs, but varied Mt and mb(mb)
MS.

In summary, our p9MSSM parameters are:

M1 = 0.5M2, (4.45)

mL̃1,2
= mẽ1,2

= M1 + 50GeV,

mL̃3
= mẽ3

,

mQ̃1,2
= mũ1,2

= m
d̃1,2

= 2.5TeV,

mQ̃3
= mũ3

= m
d̃3

,

Ae = Aµ = Aτ,

Au = Ac = At,

Ad = As = Ab = −0.5TeV,

andwehave tradedmHu , mHd and b for MZ, tan β andmA via electroweak symmetry
breaking conditions. The ranges of parameters over which we scanned are in
Table B.5 in Appendix B.
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By contrast with our previous studies of the CMSSM, we investigated our
p9MSSMwith frequentist statistics, rather than Bayesian statistics. Weworried that,
with its extra parameters, with Bayesian statistics our p9MSSM would suffer from
strongly increased prior dependence, and, rather than identify its best regions, we
wanted only to establish that particularmechanisms of darkmatter annihilation and
sparticle masses could agree with experiment. We would, furthermore, struggle
to cover our whole parameter space in detail. With frequentist statistics, we could
concatenate chains from several MultiNest scans of the p9MSSM with linear and
log priors. With Bayesian statistics, combining samples requires that each sample
is correctly weighted.

We scanned our p9MSSMwith the parameter ranges in Table B.5 in Appendix B
and considered four likelihood cases, by adding experiments one by one to our
likelihood:

1. “Basic” likelihoods: likelihoods from αT, LEP sparticle mass limits, mh, Ωh2,
b→ sγ, Bs → µ+µ−, Bu → τν, ∆MBs , sin2 θeff, MW , mb(mb)

MS and Mt;

2. “Basic” likelihoods plus a likelihood from XENON100;

3. “Basic” likelihoods plus a likelihood from δaµ.

4. “Basic” likelihoods, plus a likelihood from XENON100 and a likelihood from
δaµ.

The likelihood functions are in Table A.1, Table A.2, Table A.3 and Table A.5 in
Appendix A.

CMS updated their αT search with 11.7 fb−1 and included b-tagged jets to
improve their search’s sensitivity to third-generation squarks [318]. We calculated
selection efficiencies for this search and cross sections for our p9MSSM points
“on the fly” in our scan, if the search might be sensitive to our trial point. Our
likelihood was a product of Poissons, similar to that in Sec. 4.4 and Sec. 4.5. If the
search was not sensitive to our trial point, its likelihood was unity. The search was
sensitive to ∼ 1% of points.

We wished to include the CMS 3`+ /ET search for direct production of neu-
tralinos and charginos in 9.2 fb−1 [319]. Because electroweak production searches,
however, might be sensitive to∼ 25% of our points, we could not include it “on the
fly,” because our computer time was limited. We instead simulated electroweak
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production for a random ∼ 2% subset of our points, with a similar methodology
to that in Sec. 4.4 and Sec. 4.5.

Predicting σSI
p in direct detection experiments in the MSSM is complicated by

hadronic uncertainties (Sec. 3.3.4) in the π-nucleon σ-term,

ΣπN =
1
2
(mu + md)

(
〈N|ūu|N〉+ 〈N|d̄d|N〉

)
, (4.46)

which is independent of whether the nucleon N is a proton or a neutron. ΣπN is
measured in low-energy pion-nucleon scattering in pion-hydrogen collisions. If
ΣπN is varied within its 2σ confidence interval, σSI

p varies by an order of magni-
tude [110]. Intriguingly, a reanalysis of CHAOS [320] pion-nucleon scattering in
Ref. [321] found

ΣπN = 43± 12MeV, (4.47)

which disagrees at ∼ 2.5σ with a previous estimate [322] of

ΣπN = 66± 6MeV. (4.48)

We included ΣπN as a nuisance parameter in our p9MSSM. We constructed our
Poisson likelihood function for XENON100 from their event data [323]. We sepa-
rately considered the measurements in Eq. 4.47 and Eq. 4.48 in conjunction with
XENON100 by convoluting our likelihood function by a Gaussian for ΣπN via
Eq. 3.5.

To investigate dark matter in our p9MSSM, we predicted quantities relevant
to indirect detection experiments (see Sec. 3.3.5). Indirect detection experiments
search for products from dark matter annihilation. The pertinent quantity is the
dark matter annihilation rate in the zero temperature limit.

4.6.1 Results

Basic likelihoods

We present our results on the (M2, µ) plane, because from it one can deduce the
approximate mass and composition of the lightest neutralino. We discard points
with ∆χ2 > 5.99 in case 1, i.e., points that are excluded at 2σ by experiments in
case 1. We approximately identifymechanisms bywhich darkmatter is annihilated:
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h-resonance, in which 0.45mh < mχ < 0.50mh, present in the CMSSM in Sec. 4.4.
Because the lightest Higgs has such a narrow width, we omit mχ & mh/2.

Z-resonance, in which 0.45MZ < mχ < 0.55MZ, absent in the CMSSM.

A-funnel, in which 0.45mA < mχ < 0.55mA, present in the CMSSM. The A-
funnel definition differs from that for the h-resonance, because the pseu-
doscalar’s width is appreciable.

Stau-coannihilation, in which mτ̃1
< 1.1mχ, present in the CMSSM.

χ̃±1 -coannihilation, in which mχ±1
< 1.1mχ, absent in the CMSSM. Because the

chargino annihilates slower than the neutralino, χ̃±1 -coannihilation can in-
crease the relic density.

f̃ -coannihilation, in which m f̃ < 1.1mχ, with f̃ any sfermion other than a stau.
Absent in the CMSSM.

Mixed neutralino, in which the neutralino’s higgsino component is greater than
0.2 (Z2

13 + Z2
14 > 0.2) and the neutralino annihilates predominantly via a

t-channel higgsino-like chargino to WW in Fig. 3.3.1b. This annihilation
mechanism is in the focus-point region in the CMSSM.

These definitions are somewhat arbitrary and, strictly, ought to refer to the dom-
inant contribution to neutralino annihilation in 〈σv〉TF.O. . These mechanisms are
not mutually exclusive; a point could annihilate dark matter by a combination of
mechanisms. In fact, because heavy neutralinos struggle to annihilate fast enough
to reduce the relic density, a combination of mechanisms might be required to
reduce the relic density of heavy neutralinos.

The categorised points are scattered on the (M2, µ) plane in Fig. 4.6.1 and
separately in Fig. 4.6.2. We observe that for much of the (M2, µ) plane, there were
no points with ∆χ2 < 5.99; the points lie on an “L”-shape. We examine the plane
from M2 = 0GeV. With M2 . 100GeV or µ . 100GeV, the chargino is lighter
than LEP’s limit that mχ±1

> 94GeV.
The h/Z-resonance is M2 ∼ 100GeV for all µ & 50GeV, in which, because

mh or MZ ≈ 2mχ, neutralinos annihilate via an s-channel light Higgs/Z-boson
resonance, the vertex for which is bino-higgsino-Higgs/bino-bino-gauge boson.
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Whilst the neutralino must have a higgsino component for the h-resonance, it is
predominantly bino-like, with no visible upper limit for µ.

At M2 ∼ 200GeV, adjacent to the h-resonance, is a strip points that annihilate
dark matter via f̃ -coannihilation and bulk mechanisms, despite the sfermions
being∼ 30GeV heavier than the neutralino. If the sfermions were degenerate with
the neutralino, neutralinos and sfermions would coannihilate at a rate such that the
relic density would be less than that measured by WMAP and PLANCK, because
the neutralino is light. With M2 . 200GeV, LEP limits on sfermion masses forbid
mχ ' m f̃ . With our p9MSSM, although soft-breaking slepton masses are 50GeV
heavier than M1, negative diagonal D-terms result in degenerate neutralinos and
right-handed sleptons.

The stau-coannihilation and f̃ -coannihilation region is M2 & 200GeV; M2 ∼
300GeV for all µ is exclusively coannihilation. With 300GeV . M2 . 500GeV, the
condition mχ ≈ m f̃ and correct relic density is achieved for any µ, by tuning the
soft-breaking stau mass and third-generation slepton trilinear. The coannihilation
regions end at M2 ' 600GeV, because, with such heavy neutralinos, coannihilation
is insufficient to annihilate dark matter. The coannihilation is predominantly
slepton, because squarks must be heavy to evade LHC searches.

In the low-mass region in Fig. 4.6.1b, with µ ∼ M2, there is a mixed neutralino
region, which includes unclassified points. There is a gap with no points at µ ∼
150GeV, because the relic density is smaller than its measured value. That the
mixed region at µ ∼ 100GeV exists is puzzling; why is the relic density as big
as it is, given that the neutralino is mixed and that µ ∼ 150GeV is forbidden?
With µ ∼ 100GeV and µ ∼ M2, mχ < MW and the chargino is heavier than the
LEP limit (see Fig. 4.6.1b). With mχ < MW , higgsino-like annihilation to WW
is off-shell and dark matter is annihilated by chargino coannihilation or by bulk
mechanisms. With heavier M2, achieving higgsino-like neutralinos with mχ < MW

and charginos heavier than LEP’s limit is impossible.
The ridge in the mixed region in Fig. 4.6.1b at M2 ' 400GeV is at mχ < Mt, at

which point, because bulk sfermion exchange to t̄t is forbidden, µ may be smaller
than would otherwise be permitted. Bulk exchange favours heavy fermion final
states because it is helicity suppressed.

On the diagonal µ ≈ 0.5M2 = M1 strip, beginning at M2 ∼ 500GeV, a combi-
nation of mechanisms annihilate dark matter. This is not surprising; within the
MSSM, heavy neutralinos struggle to annihilate fast enough to reduce the relic den-
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sity. In fact, µ ≈ 0.5M2 = M1 naturally combines annihilation mechanisms. With
µ ∼ M1, the neutralino’s composition is a bino-higgsino admixture (Fig. 4.6.2f).

The A-funnel with mA ≈ 2mχ begins at mA ' M2 ' 500GeV (Fig. 4.6.2b); such
heavy mA is required to suppress BR (Bs → µ+µ−). All neutralinos in the A-funnel
have a significant higgsino component. Without a higgsino component, A-funnel
annihilation is impossible (Fig. 4.6.2b), because it is a bino-higgsino-pseudoscalar
Higgs vertex. The A-funnel region is limited to the µ ≈ 0.5M2 = M1 strip to insure
that the neutralino is mixed.

As well as A-funnel annihilation, t-channel higgsino-like chargino exchange an-
nihilates dark matter to WW on the µ ≈ 0.5M2 = M1 strip, because the neutralino
is mixed. With µ . M2, the higgsino fraction of the neutralino is such that the
relic density is less than its measurement, resulting in the region with no points
with ∆χ2 < 5.99 in Fig. 4.6.1a. The diagonal strip flattens at M2 ∼ 2TeV and mixed
solutions exist with µ ∼ 1TeV for 2TeV . M2 . 4TeV. With such large µ, the
neutralino and chargino masses are degenerate. The chargino is “parasitic” rather
than “symbiotic” [92] — it annihilates slower than the neutralino and increases the
relic density, such that the relic density is not reduced below its measured value.
Neutralino-chargino degeneracy determines the location on the (M2, µ) plane of
the mixed region. If it were possible to decouple chargino masses from higgsino-
like neutralino masses, the mixed region would not occur at µ ≈ 0.5M2 = M1, but
at µ & 0.5M2 = M1.

One might wonder; is there a maximum neutralino mass in our model, above
which it is impossible to sufficiently annihilate dark matter? With case 1, mχ <

1840GeV at 2σ, though this might result from our scanning ranges. Because the
soft-breaking stau mass is ≤ 2000GeV, after mixing, the lightest stau might be
. 1900GeV. Because the neutralino must be our LSP, this would limit mχ .
1900GeV. Could an arbitrarily heavy neutralino sufficiently annihilate? Naïvely,
one might expect that if its composition was solely higgsino, the neutralino could
be mχ � 2TeV. With µ � M1, M2, mχ ' mχ±1

. The light χ±1 , however, increases
the relic density, because the chargino annihilates slower than the neutralino.
Charginos are “parasitic” rather than “symbiotic” [92]. A-funnel annihilation,
however, could be sufficient for mχ � 2TeV. We find points with heavy neutralinos
and µ ≈ 0.5M2 = M1 in the A-funnel in Fig. 4.6.2a. Their scarcity in Fig. 4.6.2a
might be because it is difficult to find points with heavy neutralinos in the A-funnel
that satisfy all of the experimental constraints, i.e., solutions in the A-funnel with
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heavy neutralinos exist but are “fine-tuned.” It might be impossible to satisfy all
of the experimental constraints with mχ & 2TeV in the A-funnel [324].

There is, furthermore, coannihilation with sfermions on the µ ≈ 0.5M2 = M1

strip. The masses of neutralinos and sfermions are often degenerate (Fig. 4.6.2d
and Fig. 4.6.2e). Because with mχ & 500GeV coannihilation alone cannot suffi-
ciently annihilate dark matter, with mχ & 500GeV coannihilation appears only
in conjunction with other mechanisms, which naturally occur on the diagonal
µ ≈ 0.5M2 = M1 strip.

Hadronic uncertainties

We confirm in Fig. 4.6.3 that ΣπN significantly affects σSI
p ; however, with Eq. 4.48

from Ref. [322], propagating the 1σ error from ΣπN, the error in σSI
p is less than

an order of magnitude, which was our previous estimate. With Eq. 4.47 from
Ref. [321], σSI

p is ∼ 3 times smaller than that with Eq. 4.48 from Ref. [322]. This
result is independent of neutralino mass and composition.

Direct and indirect detection

We examine direct detection on the
(

mχ, σSI
p

)
plane in Fig. 4.6.4. Because squarks

are heavy, the t-channel Higgs exchange dominates σSI
p . σSI

p varies by ∼ 5 orders of
magnitude in our p9MSSMpoints with∆χ2 < 5.99. The h/Z-resonance is a vertical
strip at mχ ∼ 75GeV; σSI

p increases with the neutralino’s higgsino component,
which increases as µ decreases. The stau-coannihilation and f̃ -coannihilation
region at mχ ∼ 250GeV is similar. The mixed neutralino region is at mχ ∼ 1TeV.
σSI

p is largest in the A-funnel and mixed neutralino regions.
We examine indirect detection on the (mχ, 〈σv〉T→0) plane in Fig. 4.6.5. The

quantity 〈σv〉T→0 is the neutralino annihilation rate at zero temperature, relevant
now, in the late Universe. 〈σv〉T→0 is not zero in the zero temperature limit; it
is the convolution of a cross section with a statistical weight is approximately a
Dirac function at s = 4m2

χ in Eq. 3.16. The plane exhibits similar behaviour to
the

(
mχ, σSI

p

)
plane in Fig. 4.6.4; we observe distinct mechanisms of dark matter

annihilation, with 〈σv〉T→0 varying most in the h-resonance and coannihilation
regions. The f̃ -coannihilation and stau-coannihilation regions, however, bifurcate
at 〈σv〉T→0 ∼ 10−28 pb. At zero temperature,

√
s = 2mχ and only L = 0, S = 0

partial wave annihilation is possible, which is “helicity suppressed” (see Sec. 3.3.2).
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Because of this “helicity suppression,” bulk sfermion exchange χχ → f̄ f , sig-
nificant if the sfermion is light, is proportional to m2

f . Because the tau is much
heavier than the electron and muon leptons, 〈σv〉T→0 with bulk stau exchange
is larger than that with bulk selectron or smuon exchange. 〈σv〉T→0 is largest in
the A-funnel, which avoids “helicity suppression” via a pseudoscalar Yukawa
coupling, and in the mixed neutralino region, which avoids “helicity suppression”
because its final state is WW, rather than fermions.

Naïvely, from an order of magnitude calculation, we might expect that
〈σv〉T→0 ∼ 10−26cm3s−1 for Ωχh2 ∼ 0.1 [88]. We find, however, that 〈σv〉T→0

is∼ 5 orders of magnitude smaller than that in the h-resonance and coannihilation
regions. In the coannihilation regions, the explanation is trivial. Our 〈σv〉T→0

includes only annihilation. Our relic density calculation, of course, includes coan-
nihilation. In the h-resonance, the explanation is that the pertinent quantity in
the relic density calculation is the thermally averaged annihilation cross section,
rather than that in the zero temperature limit. As a function of

√
s , 〈σv〉TF.O. spikes

at
√

s = mh. Thermally averaged over the spike at
√

s = mh, the annihilation
cross section is ∼ 10−26cm3s−1. The h/Z resonance cannot contribute to 〈σv〉T→0,
because a CP-even resonance is forbidden in the S = 0 partial wave. Themixed neu-
tralino region parallel to the h/Z-resonance at mχ ∼ 200GeV is the µ ∼ 100GeV
solution in Fig. 4.6.1b, for which chargino coannihilation is relevant, because of the
WW threshold. Because WW is off-shell at T = 0, it cannot contribute to 〈σv〉T→0.

Including XENON100

We examine the impact of XENON100’s 90% exclusion contour on the
(

mχ, σSI
p

)

plane (case 2) in Fig. 4.6.6 with separate determinations of ΣπN . With Eq. 4.47 from
Ref. [321] (ΣπN ' 43MeV), XENON100’s impact is small — it excludes a fraction
of mχ ∼ 100GeV higgsino/gaugino mixed neutralino solutions with 250GeV .
mχ . 750GeV (see Fig. 4.6.4), for which σSI

p via Higgs exchange is largest. By
contrast, with Eq. 4.48 from Ref. [322] (ΣπN ' 66MeV), XENON100 excludes
mixed neutralinos with mχ . 1TeV. With each determination of ΣπN , the majority
of points with ∆χ2 < 5.99 in case 1 are unaffected by XENON100. If realised,
however, projected exclusion limits fromXENON100 and from LUXwould exclude
most points with mixed neutralinos and a fraction of the coannihilation and h-
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resonance regions, though small σSI
p in the coannihilation and h-resonance regions

would be unaffected.

Including δaµ

Because δaµ is enhanced by chargino, neutralino, smuon and smuon-neutrino
loop contributions, including δaµ in our likelihood function (case 3) ought to
limit their masses. Because the neutralino must be the LSP, δaµ constrains mχ via
mµ̃ . The points that survive case 3 with ∆χ2 < 5.99 are scattered on the (M2, µ)

plane in Fig. 4.6.7. δaµ is devastating; it excludes M2 & 1200GeV, including the
A-funnel and χ±1 -coannihilation regions, and disfavours µ & 2TeV, including
the h/Z-resonance and bulk regions. With light neutralinos, for µ & 2TeV in
the h/Z-resonance and bulk regions, δaµ is larger than its measurement. For
M2 & 1200GeV, δaµ is suppressed by heavy sparticles.

We examine the relevant sparticle masses in Fig. 4.6.8. The
(

mµ̃R
, mχ

)
plane

in Fig. 4.6.8a demonstrates that δaµ excludes mµ̃R
& 500GeV at 2σ. In conjunction

with our likelihood functions (case 3), δaµ permits narrow bands of points at 2σ.
The band closest to the unphysical region with mµ̃R

≈ mχ is f̃ -coannihilation
with a slepton. The lightest permitted neutralino masses at mχ ∼ 100GeV are the
h/Z resonance and the bulk regions. The “hook” feature at mχ . 100GeV and
mµ̃R
' 200GeV is the region in which mχ < MW in Fig. 4.6.1b. The remainder is

mixed neutralino solutions with µ ≈ 0.5M2. The
(

mν̃µ , mχ±1

)
plane in Fig. 4.6.8b is

similar. δaµ excludesmν̃µ & 500GeVat 2σ. The strip closest to the unphysical region
is the h/Z-resonance and bulk region at mν̃µ . 100GeV and the coannihilation
regions at mν̃µ & 100GeV. The second strip is the mixed region. Triangular regions
of the planes are unphysical, because χ was not the LSP.

Electroweak search

With ∼ 106 points, including LHC searches at the event level was impracticable
with our computers. Instead, we included the CMS electroweak search for 3`+ /ET

at the event level for a subset of ∼ 2% of randomly chosen points with ∆χ2 < 5.99
in case 1. Because this search constrains mχ, it might be in tension with δaµ. We
plot

(
mχ, δaµ

)
in Fig. 4.6.9. We find that, whilst δaµ requires mχ . 500GeV, the

electroweak search requires mχ & 200GeV. The exact limit from the electroweak
search depends on the chargino mass and chargino and neutralino compositions.
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There exists an interval 200GeV . mχ . 500GeV that is in agreement with δaµ,
the electroweak search and with the likelihoods in case 1.

Minimum χ2

We identify the minimum χ2 in four cases: basic likelihoods (case 1), basic and
δaµ likelihoods (case 3), basic and XENON100 likelihoods (case 2), and basic, δaµ

and XENON100 likelihoods (case 4). The χ2
Min with all likelihoods is ∼ 6.4 from 9

Gaussian likelihoods, XENON100, the electroweak search and αT, with 13 fitted
parameters. The model cannot span the whole observable space, else the χ2

Min
would be zero, because the number of fitted parameters is greater than the number
of constraints. Whilst this χ2

Min is ostensibly improbable, we cannot calculate a
p-value because there are, ostensibly, less than one degrees of freedom.

We breakdown the contributions to the χ2
Min in Fig. 4.6.10. Bu → τν and

∆MBs are significant χ2 ∼ 2 contributions. Electroweak precision observables,
Higgs mass, Ωχh2, b → sγ and Bs → µ+µ− are negligible contributions. Whilst
the χ2 from δaµ is substantial in case 1, in case 3, in which it is minimised, it
is negligible, though the χ2 from electroweak precision observables increases.
Including XENON100 and δaµ further increases the contribution from electroweak
precision observables. That χ2 from Bu → τν was significant was surprising;
BR (Bu → τν) in our p9MSSM ought to be similar to that in the Standard Model,
because the charged Higgs is heavy (see Eq. 3.51). We found that our Standard
Model prediction for BR (Bu → τν) with SuperIso [281,282], ∼ 0.8× 10−4, was
considerably smaller than that of the CKM-fitter collaboration [184], 1.68± 0.31×
10−4.

Neutralino, Higgs and sparticle mass spectrum

We examine sparticle mass spectra with the best-fit and confidence intervals with
our four likelihood functions in Fig. 4.6.11. The best-fit lightest neutralino in case 1 is
mχ = 1050GeV, with mχ ∈ (51GeV, 1211GeV) at 1σ and mχ ∈ (51GeV, 1840GeV)
at 2σ. With XENON100 in case 2, because intermediate neutralino masses are
forbidden, the neutralino’s 1σ confidence interval has disconnected modes in the
coannihilation and mixed regions. The lightest and heaviest permitted masses at
1σ are (60GeV, 1184GeV). The best-fit mass, however, is in the heavy mixed region
with mχ = 1049GeV. With δaµ in case 3, the neutralino must be light. The best-fit
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is mχ = 296GeV and mχ ∈ (78GeV, 357GeV) at 1σ. The heaviest permitted mass
at 2σ is mχ ≤ 474GeV.

Unlike in the CMSSM in Sec. 4.5.4, the calculated Higgs mass is sufficiently
heavy — mh ∼ 126GeV in each mode, achieved with heavy stops with large
mixing. The lightest Higgs is, however, only approximately Standard Model-like,
with couplings strengths that deviate from those in the Standard Model by ±20%,
illustrated in Fig. 4.6.12. Positive deviations are especially prevalent in the bulk
and h/Z-resonance regions, whereas negative deviations are prevalent for all
annihilation mechanisms. Because mA cannot be arbitrarily light in A-funnel,
the Higgs is Standard Model-like in the A-funnel. If mA � MZ, the Higgs’ tree-
level couplings to Standard Model fields is Standard Model-like. Couplings can,
however, be affected by sparticle loops, especially stau and chargino loops in
triangle diagrams.
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Figure 4.6.1: Scatter of p9MSSM points permitted at 2σ in case 1 on the (M2, µ) plane, coloured
by possible dark matter annihilation mechanisms. The colour scheme and definitions are those in
Fig. 4.6.2: h-resonance is yellow, A-funnel red, stau-coannihilation green, χ±1 -coannihilation blue,
f̃ -coannihilation magenta, mixed neutralino cyan and unclassified black. The categories are not
mutually exclusive.
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Figure 4.6.2: Scatter of p9MSSM points permitted at 2σ in case 1 on the (M2, µ) plane, split by
possible dark matter annihilation mechanisms.
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case 1 are scattered on the (mχ, 〈σv〉T→0) plane, split by possible dark matter mechanisms.
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Figure 4.6.7: Points permitted by δaµ (case 3) scattered on the p9MSSM’s (M2, µ) plane, coloured
by their dark matter annihilation mechanism. The blue and pink crossed are excluded by δaµ.
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Figure 4.6.10: Breakdown of the χ2 at the best-fit point in the p9MSSM in four cases: (a) basic
likelihoods (case 1), (b) basic and δaµ likelihoods (case 3), (c) basic and XENON100 likelihoods
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dashed red line.
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(a) Basic likelihoods only (case 1). (b) Basic and δaµ likelihoods
(case 3).

(c) Basic and XENON100 likeli-
hoods (case 2).

(d) Basic, δaµ and XENON100
likelihoods (case 4).

Figure 4.6.11: Best-fitting mass spectra in the p9MSSM for four likelihood combinations identical
to those in Fig. 4.6.10. 1σ (2σ) confidence intervals are shown with blue (green) bars and best-fitting
mass spectra with red stars.
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Figure 4.6.12: Higgs coupling strength to γγ against mass for points with ∆χ2 < 5.99 in case 1.
The Standard Model is axiomatically Rγγ = 1.



Chapter 5

Conclusions

I began by introducing pertinent theory; in Chap. 1 I reviewed supersymmetry
and explained that low-scale supersymmetry is motivated by experimental and
theoretical puzzles. I introduced tractable, unified models, including the CMSSM,
the predictions of which I would compare with experiment with Bayesian statistics,
which I reviewed in Chap. 2. I reviewed the relevant experiments in Chap. 3,
including Higgs searches, dark matter, B-physics, the muon’s anomalous magnetic
moment and electroweak precision observables.

I presented my findings — Bayesian analyses of supersymmetric models’ pa-
rameter spaces — in Chap. 4. I investigated constrained and phenomenological
supersymmetricmodels, including the CMSSM, and included several experimental
constraints, including future experiments and the strongest contemporary experi-
mental constraints.

In Sec. 4.2, I investigated a benchmark scenario in which sparticles were mea-
sured at the LHC via a “golden decay.” Our Bayesian analysis demonstrated that,
although we could recover the CMSSM’s Lagrangian parameters, we would strug-
gle to recover the Lagrangian parameters of relaxed NUHM, NUG and pMSSM
models, and struggle to discriminate between patterns of soft-breaking masses,
even with additional information from dark matter measurements. We, further-
more, investigated de facto priors in the CMSSM, NUHM, NUG and pMSSM by
including only physicality conditions.

We updated our “golden decay” analysis to a heavy benchmark point in Sec. 4.3.
By replicating CMSmethodologies to simulate the “golden decay” at the event level
in Monte-Carlo, we found a covariance matrix describing hypothetical sparticle
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mass measurements. We investigated parameter reconstruction in the CMSSM,
finding that whilst we could recover soft-breaking masses, we struggled to recover
the soft-breaking trilinear, even with additional information from dark matter and
Higgs measurements.

In Sec. 4.4, we included the strongest available experimental constraints in a
Bayesian analysis of the CMSSM. This required that we build a likelihood func-
tion describing the CMS αT 1.1 fb−1 search for supersymmetry with Monte-Carlo
simulations. We found that the Bayesian credible regions of the CMSSM’s pa-
rameter space were dramatically shifted to heavier masses by the CMS αT search,
but that the CMSSM remained simultaneously compatible with all experimental
constraints. The stau-coannihilation mechanism of dark matter annihilation was
favoured.

The CMS αT 1.1 fb−1 search was surpassed by the CMS Razor 5 fb−1 search. We
again built a likelihood function at the event-level with Monte-Carlo simulations.
We included, inter alia, the CMS Razor search, an updated Bs → µ+µ− upper limit
and, significantly, the Higgs discovery in our Bayesian analysis of the CMSSM in
Sec. 4.5. We found that the credible regions favoured the A-funnel, rather than
the stau-coannihilation region, with heavy sparticle masses, but that the CMSSM
preferred Higgs masses lighter than that which was measured. Because with
such heavy sparticles δaµ could not be satisfied, we omitted it from our likelihood
function and investigated each sgn µ = ±1. Remarkably, we found that, without
δaµ, sgn µ = −1 was insignificantly preferred. Whilst the agreement with the
data was poor, we declined to declare that the CMSSM was excluded, because our
likelihood functions were non-Gaussian and because our algorithm was optimised
for Bayesian, rather than frequentist, analysis.

In Sec. 4.6, we investigated a tractable p9MSSM, focusing on dark matter, in-
cluding its relic density, direct detection and indirect detection. We found that a
broad range of neutralino masses and compositions could agree with relic den-
sity measurements via a variety of annihilation mechanisms, and that the cross
sections relevant to direct and indirect detection varied by orders of magnitude.
We investigated the impact of uncertainties in direct detection by repeating our
analysis with a different assumption for hadronic uncertainties.

In summary, having reviewed supersymmetry, pertinent experiments and
Bayesian statistics and algorithms, I applied Bayesian statistics to constrained and
phenomenological supersymmetric models in benchmark scenarios and with the
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strongest contemporary experimental constraints, building likelihood functions at
the event-level in Monte-Carlo. I presented in detail the results: credible regions
of the models’ parameter spaces, the models’ predictions, particularly for dark
matter direct detection experiments, and agreement with data.

I was fortunate that our analyses coincided with the early years of the LHC, a
watershed moment in particle physics. We published timely, noteworthy analyses,
and it was a personally enjoyable, challenging time. The results in Sec. 4.5 in
particular were conducted around the discovery of the Higgs boson, an exciting
moment with frenzied activity in our community. Although there was no sign of
supersymmetry, there were rumours, especially in the CMS αT 1.1 fb−1 search in
Sec. 4.5. I conclude with my personal thoughts on the status of SUSY. LHC exper-
iments, including the discovery of the Higgs boson, are in concordance that the
scale of supersymmetry breaking must be heavier than that which was expected;
however, the motivations for introducing supersymmetry in Sec. 1.1 are unspoiled,
and even the CMSSM is simultaneously compatible with all experiments. “Natu-
ralness,” however, is a problem in MSSM-type models. As I hinted in Sec. 2.1, I
believe that “naturalness” is statistical in nature rather than an aesthetic criterion.
If supersymmetry is discovered, I suspect that a mechanism “naturally” generates
µ ∼ MSUSY, probably spontaneously, as in the next-to-minimal MSSM, or, if not,
that “naturalness” incorporates problems beyond that which we usually consider,
e.g., the cosmological constant, or even beyond that which we know. I believe that
it is most likely that MSUSY . 10TeV, so that supersymmetry can explain dark
matter and insure gauge coupling unification, though neither is strictly necessary.
I hope that the LHC

√
s = 13TeV phase will definitively settle the matter, but

perhaps we will be left to speculate for a while longer.



Appendix A

Experimental constraints

Sparticle Mass limit
Alternative
hierarchy

Theory error Function Reference

LEP sparticle mass 95% limits

χ > 50 5%
Lower limit
Error Function

[163,325,326]

χ±1 > 103.5 > 92.4 v.s. v.s. [325,326]
ẽR > 100 > 73 v.s. v.s. v.s.
µ̃R > 95 > 73 v.s. v.s. v.s.
τ̃1 > 87 > 73 v.s. v.s. v.s.
t̃1 > 95 > 65 v.s. v.s. v.s.
b̃1 > 95 > 59 v.s. v.s. v.s.

Tevatron sparticle mass 95% limits

ν̃ > 94 > 43 5%
Lower limit
Error Function

[327] ( [328])

q̃ > 375 v.s. v.s. [329]
g̃ > 289 v.s. v.s. v.s.

LEP Higgs mass and coupling 95% limits

h > 114.4 3
Lower limit
Error Function

[111]

ζ2
h < f (mh) 0

Upper limit
Step Function

v.s.

Table A.1: LEP and Tevatron indirect limits on sparticle masses and the Higgs mass and Z-boson
coupling. Masses are in GeV. The alternative hierarchies are detailed in Ref. [71].
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Appendix B

Priors

Parameter Prior range Scale

CMSSM

m0 100, 4000 Linear
m1/2 100, 2000 Linear
A0 −4000, 4000 Linear
tan β 3, 62 Linear
sgn µ +1 Fixed

Nuisance

Mt 173.5 Fixed
mb(mb)

MS 4.19 Fixed
αs(MZ)

MS 0.1184 Fixed
1/αem(MZ)

MS 127.944 Fixed

Table B.1: Priors in ourHigh mass study in Sec. 4.3. Mass parameters and trilinear couplings are
in GeV.
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Parameter Prior range Scale

CMSSM

m0 25, 1000 Log/linear
m1/2 25, 1000 Log/linear
A0 −7000, 7000 Linear
tan β 2, 65 Linear
sgn µ +1 Fixed

NUHM, CMSSM plus soft-breaking Higgs masses

mHd , mHd 25, 1000 Log/linear

NUG, CMSSM plus soft-breaking gaugino masses

M1, M2, M3 25, 1000 Log/linear

p12MSSM

M2, Au,c,t, Ad,s,b, Ae,µ,τ 1, 1000 Log/linear
mA, µ, mL̃1,2,3

, mẽ1,2,3
, mQ̃1,2,3

, mũ1,2,3
, m

d̃1,2,3
100, 1000 Log/linear

tan β 2, 60 Linear

p14MSSM: p12MSSM plus soft-breaking gaugino masses

M1, M2, M3 1, 1000 Log/linear

Nuisance

Mt 163.7, 178.1 Linear
mb(mb)

MS 3.92, 4.48 Linear
αs(MZ)

MS 0.1096, 0.1256 Linear
1/αem(MZ)

MS 127.846, 127.99 Linear

Table B.2: Priors in our ATLAS SU3 study in Sec. 4.2. Mass parameters and trilinear couplings
are in GeV. Note that a mistake in Ref. [286] is corrected.
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Parameter Prior range Scale

CMSSM

m0 100, 2000 Log
m1/2 100, 1000 Log
A0 −2000, 2000 Linear
tan β 3, 62 Linear
sgn µ +1 Fixed

Nuisance

Mt 163.7, 178.1 Linear
mb(mb)

MS 3.92, 4.48 Linear
αs(MZ)

MS 0.1096, 0.1256 Linear
1/αem(MZ)

MS 127.846, 127.99 Linear

Table B.3: Priors for the CMSSM’s parameters and for the Standard Model’s nuisance parameters
in our CMSSM 1 fb−1 study in Sec. 4.4. Masses are in GeV.

Parameter Prior range Scale

CMSSM

m0 100, 4000 Log
m1/2 100, 1000 Log
A0 −7000, 7000 Linear
tan β 3, 62 Linear
sgn µ +1 and −1 Fixed

Nuisance

Mt 172.9± 1.1 Gaussian
mb(mb)

MS 4.19± 0.12 Gaussian
αs(MZ)

MS 0.1184± 0.0007 Gaussian
1/αem(MZ)

MS 127.916± 0.015 Gaussian

Table B.4: Priors for the CMSSM’s parameters and for the Standard Model’s nuisance parameters
in our CMSSM 4.4 fb−1+Higgs study in Sec. 4.5. Masses are in GeV.
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Parameter Range Scale

p9MSSM

M1 M1 = 0.5M2 Dependent on M2
M2 10, 4000 Linear and log combined
M3 700, 8000 Linear and log combined
mQ̃1,2

2500 Fixed
mQ̃3

300, 4000 Linear and log combined
mL̃1,2

mL̃1,2
= M1 + 50 Dependent on M1

mL̃3
100, 2000 Linear and log combined

At −7000, 7000 Linear
Aτ −7000, 7000 Linear
Ab −500 Fixed
mA 200, 4000 Linear and log combined
µ 10, 4000 Linear and log combined
tan β 3, 62 Linear

Nuisance

Mt 173.5± 1.0 Gaussian
mb(mb)

MS 4.18± 0.03 Gaussian

Table B.5: Scanning ranges for our p9MSSM and Standard Model nuisance parameters in our
p9MSSM study in Sec. 4.6. All masses are in GeV. Note that because the p9MSSM study was
frequentist rather than Bayesian, these ranges are not priors. “Combined” indicates that chains
with each scale were concatenated.
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