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Abstract 

 

Over the past decade, there has been increasing scientific interest in the occurrence, 

fate and effects of pharmaceuticals in the environment. To date, the majority of this 

research has focussed on the aquatic environment whilst the terrestrial environment 

has remained relatively unexplored. Research carried out in the terrestrial 

environment has primarily focussed on the fate of pharmaceuticals in soils as well as 

the uptake of pharmaceuticals into plants. Less information is available on the uptake 

of pharmaceuticals into other soil dwelling species.  

The studies presented in the thesis were therefore performed to investigate the uptake 

of pharmaceuticals into earthworm species (Eisenia fetida and Lumbricus terrestris) 

and plant species (radish and ryegrass). Experiments were designed to explore the 

effect of pharmaceutical physico-chemical properties, soil parameters and species 

traits on the uptake of pharmaceuticals from soils into terrestrial species. 

Understanding the factors and processes involved in the uptake of these compounds 

from soils, is vital to adequately assess the risks of pharmaceuticals in the 

environment.  

Initial experimental studies evaluated the uptake of four pharmaceuticals, namely 

carbamazepine, diclofenac, fluoxetine and orlistat into the earthworm, Eisenia fetida. 

Pore water based bioconcentration factors (BCFs) increased in the order of 

carbamazepine < diclofenac < fluoxetine and orlistat.  

As well as experimental research, a desk based investigation was perfomed to assess 

the applicability of a minimised design approach to estimate bioconcentration factors 

(BCFs) in terrestrial and aquatic species. A significant regression between 

BCFminimised and BCFtraditional was found and this approach was therefore adopted to 

calculate earthworm BCFs in the soil parameters and species traits studies described 

below. 

The uptake of the four study pharmaceuticals by E. fetida was therefore further 

evaluated in different soil types. The uptake and accumulation of pharmaceuticals 
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into E. fetida changed depending on soil type. Orlistat exhibited the highest pore 

water based bioconcentration factors (BCFs) and displayed the largest differences in 

uptake between soil types as BCFs ranged between 30.51 – 115.92. For 

carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.05 – 1.61, 7.02 – 

69.57 and 16.78 – 20.42 respectively.  

Supplementary studies compared the uptake of the study pharmaceuticals in two 

earthworms (Lumbricus terrestris and E. fetida). All four pharmaceuticals were 

taken up by both L. terrestris and E. fetida tissue after 21 d exposure to spiked soil. 

Pore water based bioconcentration factors (BCFs) ranged between 6.69 and 83.79 for 

L. terrestris and 1.14 and 63.03 for E. fetida.  

The effect of species type on the uptake of pharmaceuticals (carbamazepine, 

diclofenac, fluoxetine, propranolol, sulfamethazine) and a personal care product 

(triclosan) was also investigated in plant species (radish, Raphanus sativus and 

ryegrass, Lolium perenne). Five of the six chemicals were taken up into plant tissue, 

carbamazepine to the greatest extent in both the radish (52 µg/g) and ryegrass (33 

µg/g) whereas sulfamethazine uptake was below the limit of quantitation (LOQ).  

The results demonstrate the ability of plant species and earthworms to accumulate 

pharmaceuticals from soils with uptake apparently specific to both species, chemical 

and soil type. However the influence of these individual parameters does not affect 

BCFs to a significant amount. The research also highlights that a combination of 

factors and processes appear to be driving the uptake into soil dwelling species as 

further analysis was unable to find a single parameter to adequately explain 

pharmaceutical uptake into terrestrial species. For example, for plant uptake, results 

could only be partly explained by the hydrophobicity and extent of ionisation of each 

chemical in the soil.  

Even though these chemicals are taken up by earthworms and plants, further analysis 

showed that the risk to predatory birds is minimal based on the current 

environmental scenarios as thousands of worms would have to be consumed by a 

bird to receive a single dose. Similarly, the potential risk to humans consuming crops 

contaminated with pharmaceutical residues is also minimal. However with 
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increasing loadings of pharmaceuticals to soils this may result in potential problems 

for human health and predatory birds in the future.
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Chapter 1 Literature Review 

1.1 Introduction 

Pharmaceuticals are a group of chemicals used for diagnosis, treatment, alteration or 

prevention of diseases, health conditions or functions in the human body (Daughton 

and Ternes, 1999). Human medicines can be categorised according to their intended 

mode of action in the body. Pharmaceuticals have specialised properties and are 

designed to affect a specific target at a given concentration. Worldwide, 

pharmaceutical use has been on the increase for the past century (OECD, 2011). This 

trend is set to continue into the future with the development of new medicines to 

cure recently discovered diseases as well as previously untreatable problems and as a 

result of an ageing population (The Royal Commission on Environmental Pollution, 

2011). Over the past fifteen years, there has been increasing interest in the potential 

effects of pharmaceutical in the natural environment. This Chapter reviews the 

current knowledge on the inputs, occurrence and fate of pharmaceuticals in the 

environment with primary focus on the terrestrial environment which is the subject 

of this PhD thesis. 

1.1.1 Current situation in the environment 

Although pharmaceuticals have been released into the environment for decades, 

researchers have only recently begun to quantify their levels and potential effects in 

the environment. Previously, studies into the uptake and effects of chemicals in the 

environment focussed on the presence of pesticides (e.g. Dieldrin) (De Silva and van 

Gestel, 2009; Lew- et al., 2009; Matsumoto et al., 2009) and metals (Mdegela et al., 

2009; Nahmani et al., 2009) amongst other contaminants. A key example emerged 

during the period of 1932 – 1968 where it was established that a Japanese 

petrochemical plant was releasing methyl mercury into Minamata Bay. As a result, 

both total mercury and methyl mercury were seen to biomagnify through the 

Northwater Polynya food web, which caused many problems for wildlife especially 

for top predator mammals (Campbell et al., 2005). 
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However, pharmaceuticals are now a growing topic of scientific interest (Kummerer, 

2001) and recently have been defined as emerging environmental contaminants 

(Beausse, 2004; Nikolaou et al., 2007). Studies have already highlighted the effects 

of pharmaceutical residues on terrestrial wildlife after they are taken up by a variety 

of species. Experimental evidence demonstrates that diclofenac is strongly 

responsible for the rapid decline in vulture populations in Asia (Green et al., 2007, 

2006; Oaks et al., 2004). Examination of the dead vultures revealed they had died 

from visceral gout, a condition caused by renal failure. It appeared that the vultures 

had scavenged on carcasses that had previously been given veterinary doses of 

diclofenac and that the uptake of diclofenac had caused kidney failure in several 

vulture species. The vulture populations are now classed as critically endangered 

after suffering a 97 % population decline, this may not be solely attributable to the 

presence of diclofenac residues in the environment but many scientists argue that it 

plays a substantial role. 

Another important problem associated with the presence of pharmaceuticals in the 

environment is the selection of antibiotic resistance in bacterial populations (Levy, 

2002). The emergence of resistant bacteria has led to widespread coverage in the 

scientific media. There is growing evidence that resistance to antibiotics (AR) is 

posing an emerging threat to both public and the future environmental health. Knapp 

et al., (2010) were able to extract DNA from a series of archived historic soils from 

the Netherlands (1940 – 2008). Results showed that the AR gene from all classes of 

the 18 antibiotics tested had significantly increased since 1940. This was especially 

true of the group of antibiotics known as tetracyclines, where in some cases 

individual AR genes were more than 15 times more abundant now than in the 1970s. 

Concern is now focussed, amongst scientists, environmental regulators and the 

pharmaceutical industry as to the risks and potential adverse effects of these agents 

on non-target organisms (GSK, 2011; Jorgensen and Halling-Sorensen, 2000; Pomati 

et al., 2004; Stuer-Lauridsen et al., 2000; Ternes, 1998). The detection of varying 

concentrations of numerous pharmaceuticals in all environmental compartments and 

incidents such as the vulture population decline as described above, has escalated 

this concern. As a result there has also been a noteworthy increase in the number of 

published studies on pharmaceuticals in the environment since 2001 (Figure 1.1). 

Although as Figure 1.1 also highlights the majority of studies have predominantly 
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focussed on the aquatic environment with the terrestrial environment being relatively 

unexplored in comparison. 

 

Figure 1.1 Number of publications regarding pharmaceuticals in both the aquatic (white) and terrestrial (black) 

environment. Graph obtained from web of knowledge citation report service on publications of environmental 

research, search terms were ‘aquatic pharmaceutical’ and ‘terrestrial pharmaceutical.’ 

 

1.2 How do pharmaceuticals enter the terrestrial environment? 

The various routes by which pharmaceuticals enter the soil compartment have been 

extensively documented (Diaz-Cruz et al., 2003; Oppel et al., 2004; Ruhoy and 

Daughton, 2008; Thiele-Bruhn, 2003). Land application of manure is the primary 

pathway for the release of veterinary pharmaceuticals into the terrestrial environment 

(Baguer et al., 2000). The presence of veterinary pharmaceuticals in manure 

intended for land application has been demonstrated by Jacobsen and Halling-

Sorensen (2006) with the detection of various tetracyclines (< 30 mg/kg dry weight) 

and sulphonamides (< 2 mg/kg dry weight). The two key pathways by which human 

pharmaceuticals enter the soil environment include via the use of reclaimed waste 

water (effluent) for irrigation and through the application of digested sewage sludge 

as a fertiliser onto agricultural fields (Diaz-Cruz et al., 2003; Oppel et al., 2004). 



                                                                                                                                  Literature Review 

21 

Sewage sludge and reclaimed wastewater are both by products of the sewage 

treatment plant (STP) process.  

1.2.1 Sewage treatment 

Because most pharmaceuticals are designed to not bioaccumulate and instead be 

rapidly eliminated from the body of the treated patient after administration, domestic 

raw sewage contains pharmaceuticals which have been excreted in urine and faeces 

to the wastewater system (Hirsch et al., 1999). Pharmaceuticals may also be 

metabolised in the patient so raw sewage will also contain metabolites of 

pharmaceuticals (Dollery, 1991; Huschek et al., 2004; Khan and Ongerth, 2002; 

Moffat, 2004; Ternes, 1998; Zuccato et al., 2005). Once released to the sewerage 

system, the pharmaceuticals and metabolites will typically be transported to a STP 

where the sewage will be treated (Lindqvist et al., 2005; Zorita et al., 2009). 

Several in-depth studies have explored the fate of pharmaceuticals in STPs with 

different removal processes being investigated, including sorption to sludge (Kim et 

al., 2005), hydrolysis and aerobic and anaerobic biodegradation in sludge (Stumpf et 

al., 1999; Ternes, 1998; Wang et al., 1993; Xia et al., 2005). Different 

pharmaceuticals will behave differently in different treatment processes depending 

on their chemical functionality and physico-chemical properties (Castiglioni et al., 

2006; Clara et al., 2005; Heberer, 2002; Stackelberg et al., 2004).  

Whilst pharmaceuticals can be removed in STPs, as a result of complete 

mineralisation, on the whole, the elimination of pharmaceuticals is generally 

incomplete. Pharmaceuticals tend to not be removed from the raw sewage simply 

because the treatment processes are not designed to do this (Thomas and Hilton, 

2004). Thus, the final effluent is likely to contain hydrophilic pharmaceuticals as 

these will remain in the aqueous phase whilst more hydrophobic pharmaceuticals 

may sorb to the sewage sludge. 
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1.2.2 Reclaimed wastewater effluent 

Concentrations of pharmaceuticals in effluent are typically in the low µg/L range but 

have been recorded up to 200 µg/L for ketoprofen in Switzerland (Ollers et al., 

2001). The anti-epileptic drug carbamazepine is consistently detected in effluent 

samples with highest concentrations measured in Wales, United Kingdom < 4.59 

µg/L (Kasprzyk-Hordern et al., 2009). A small number of studies have also 

investigated the detection of metabolites in sewage effluent with total mean 

concentrations of diclofenac metabolites ranging from 13 – 52 % of the measured 

parent compound concentrations. STP effluent is primarily emitted to water bodies 

such as rivers. However, recently effluent has been used to irrigate fields, a process 

which is sometimes described as ‘reclaimed wastewater irrigation’ or ‘recycled 

wastewater irrigation.’ 

Irrigation comprises 65 % of all water use worldwide (Gielen et al., 2009) and this 

demand is a growing year by year. Irrigation with effluent is a particularly attractive 

option to satisfy the demand for irrigation sources (Hamilton et al., 2007). Many 

countries including the United States, Australia, Singapore, South Africa, Japan, 

China, Mexico and New Zealand have already adopted this strategy to cope with 

their water shortages (Levine and Asano, 2004). The Mezquital Valley in Mexico 

began using effluent for irrigation in 1912 (Siemens et al., 2008). This is one of the 

oldest and largest examples of irrigation using municipal wastewater and is still in 

operation today, irrigating approximately 900 km
2
 of land (Jimenez and Chavez, 

2004). 

With droughts and irrigation strains resulting from population pressures, the future 

use of recycled water is set to increase (Asano and Levine, 1996; Hamilton et al., 

2007). The Californian Government, for example, has set out aims to move towards 

a more sustainable management of water resources, including the increased use of 

recycled water over 2002 levels by a minimum of 1233 million cubic meters per year 

by 2020 and by at least 2467 million cubic meters per year by 2030 (California 

Water Resources Board, 2009). The increasing use of wastewater for irrigation will 

result in greater loads of pharmaceuticals reaching the soil. 
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1.2.3 Sewage sludge 

Previously, sewage sludge was primarily disposed of at sea. However since 31 

December 1998 when a ban was put in place prohibiting such actions in the 

European Union under the Urban Wastewater Directive (Section 1.4), the amount of 

sewage sludge applied to land has substantially increased (Andrews et al., 1998) 

(e.g. Figure 1.2). Sewage sludge, produced from STPs, is now usually treated before 

it is used as a soil amendment (Jones-Lepp and Stevens, 2007). This treatment 

process typically involves digestion through biological, chemical and physical 

processes and then de-watering (Xia et al., 2005). The sewage sludge can then be 

applied to fields either in a cake form, typically containing 30 % solids, or a slurry 

which comprises approximately 3 % solids (USEPA, 1999). In European countries, 

an average of 37 % of sewage sludge is land applied onto agricultural soils, 

equivalent to 2.39 x 10
6 

dry tonnes per year (Chang et al., 2002). Specifically, in the 

UK, over 60 % of the 1.4 million tonnes of sewage sludge produced annually is 

recycled to agricultural land (WATER UK, 2010). Recycling of sewage sludge 

occurs on a larger scale in the US with 60 % of the 6.2 x 10
9
 kg of the sewage sludge 

generated in 1998 being land-applied (e.g. landfill cover, fertilizer, or soil 

amendments in land reclamation) and remaining disposed of via incineration for 

example (USEPA, 1999). 
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Figure 1.2 Primary disposal methods of sewage sludge in the United Kingdom between 1991 and 2004. Disposal 

methods include farmland (black) landfill (grey) and sea (white). Graph constructed with data obtained from e-

Digest Statistics about Waste and Recycling from the defra website. Data was unable to be obtained for the 

period 2000 / 2001. Date accessed 30.09.12. 

 

Sewage sludge is applied to agricultural fields for a number of reasons. From an 

agricultural perspective it is an inexpensive source of nitrogen, phosphorus, organic 

matter and other nutrients all of which can enhance soil physical properties and 

ultimately crop yield (Chitdeshwari and Savithri, 2007; Joshua et al., 1998; Webber 

et al., 1996). From a STP point of view land utilisation is desirable because it is an 

economic way of disposal. Land application of sewage sludge does however have its 

draw backs; it is also a source of many soil contaminants including organic 

compounds, pathogens and heavy metals (Rogers, 1996). Therefore through the use 

of the sewage sludge as a fertiliser there is the potential for pharmaceuticals to be 

added to soils. Recently studies have detected pharmaceutical compounds in sewage 

sludge destined for land application (Kinney et al., 2006; Metcalfe et al., 2003) as 

well in sewage sludge amended soils (Golet et al., 2002; Kinney et al., 2008, 2006) 

(Table 1.1). 

The most frequently detected pharmaceuticals in sewage sludge include 

carbamazepine, diclofenac, ibuprofen and trimethoprim which have been measured 

in µg – mg/kg range. Carbamazepine was detected in all of the nine sewage sludge 
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samples studied by Kinney et al., (2006) along with fluoxetine and diphenydramine 

of which three of the sludge samples were due to be applied to agricultural land. 

Acidic pharmaceuticals such as naproxen have been measured in a number of sludge 

samples however concentrations tend to be low and can often remain undetected. In 

contrast, triclocarban and triclosan  sorb particularly well to sludge, in some cases it 

is retained completely, resulting in concentrations < 441 mg/kg  (Barron et al., 2009; 

McAvoy et al., 2002; Thompson et al., 2005; USEPA, 2009; Ying and Kookana, 

2007). Sulfonamide antibiotics are frequently detected in sewage sludge and recently 

sulphonamide metabolites have also been detected in sludge samples (< 9.81 ng/g; 

García-Galán et al. (2012).  

1.3 Concentrations of Pharmaceuticals in Soil 

Concentrations of pharmaceuticals tend to be lower in the soil environment than in 

sewage sludge and effluent. For example, ibuprofen has been detected in sewage 

sludge between 99.5 to 11 900 µg/kg dry weight and in soil at only 0.25 ± 0.04 ng/g 

(Durán-Alvarez et al., 2009). This is primarily because when sewage sludge and 

effluent are applied to fields they are diluted within the soil matrix. Other potential 

loss mechanisms include leaching into nearby groundwater, photolytic processes or 

degradation by soil microbes for example, all of which would result in a reduction of 

the compound. In comparison to concentrations of pharmaceuticals in the aquatic 

environment and in sewage sludge, there are relatively few published studies that 

have shown concentrations in the soil environment. A list of measured 

concentrations has been compiled in Table 1.1 and a few key examples will be 

discussed in more detail below. 

Kinney and colleagues (2006) published one of the earliest studies that detailed the 

presence of pharmaceuticals in soil samples after irrigation with wastewater effluent 

from Colorado City’s WWTP. Individual pharmaceuticals were detected in the soils 

with concentrations typically ranging between 0.02 and 15 µg/kg (dw). A number of 

pharmaceuticals appeared to be persistent (acetaminophen, caffeine, carbamazepine, 

erythromycin, sulfamethazole, 1, 7-dimethylaxanthine and dehydronifedipine) and 

acetaminophen, fluoxetine, caffeine, erythromycin and carbamazepine were found to 
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accumulate in the soil in mass amounts consistently higher than the estimated mass 

applied in any month. 

Durán-Alvarez and colleagues (2009) were able to detect pharmaceuticals in field 

soil samples from Tula Valley, Mexico which had been irrigated with untreated 

wastewater for 90 years. Very low concentrations of ibuprofen and naproxen were 

found in both the soil types (< 1 ng/g). This low build-up of pharmaceutical 

compound is indicative of degradation in the soil environment and possibly the high 

temperatures of the area. Meanwhile carbamazepine showed evidence of persistence 

in both the Phaeozem (6.48 ng/g) and the Leptosol (5.14 ng/g) soil (Durán-Alvarez 

et al., 2009). Similar to the results from Duran-Alvarez et al., (2009), carbamazepine 

was also detected in field soil samples obtained from marsh lands in Spain  

(Vazquez-Roig et al., 2010). In fact carbamazepine was the only compound detected 

in both soil samples with concentrations in the range of 1.43 - 5.77 ng/g.  

Even though the concentrations of pharmaceuticals in sewage sludge and effluent are 

often at low levels, pharmaceuticals can build up in the soil compartment through 

long term, repeated, application (Dalkmann et al., 2012; Kinney et al., 2006; 

Redshaw et al., 2008a; Xu et al., 2009b). This is especially true of persistent 

pharmaceuticals that are known to not easily degrade in the environment, such as 

fluoxetine and carbamazepine (Clara et al., 2004; Durán-Alvarez et al., 2009; 

Monteiro and Boxall, 2009). 
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Table 1.1 Measured concentrations of pharmaceuticals in various soil matrices, ± standard deviations where 

reported in literature. 

Pharmaceutical 

Concentration 

(µg/kg) Soil type Reference 

Acetaminophen < 1.8 Pego-Oliva (1) 

Benzafibrate 0.67 Mezquital Valley (2) 

Bisphenol A 14.8 ± 3.2 Leptosol (3) 

 5.3 ± 0.9 Fangcun 0-10cm (4) 

 3.6 ± 2.2 Fangcun10-20 cm (4) 

Carbamazepine < 6.96 ± 1.80 Mezquital Valley (2) 

 < 1.5  Pego-Oliva (1) 

 

6.48 ± 0.59 Phaeozem (3) 

 

5.14 ± 0.48 Leptosol (3) 

  5.77 Prat soil (5) 

Ciprofloxacin < 2.82 ± 0.82 Mezquital Valley (2) 

 < 4.6 Pego-Oliva (1) 

Clarithromycin < 3.89 ± 2.19 Mezquital Valley (2) 

Clofibric acid 0.49 ± 0.3 Fangcun20-30 cm (4) 

Codeine < 1.7  Pego-Oliva (1) 

Diazepam 4.65 Prat soil (5) 

 < 0.3 Pego-Oliva (1) 

Diclofenac 0.40 Mezquital Valley (2) 

Enrofloxacin < 0.64 ± 0.54 Mezquital Valley (2) 

Ibuprofen 0.25 ± 0.04 Phaeozem (3) 

Metoprolol < 0.3 Pego-Oliva (1) 

Naproxen 2.86 Mezquital Valley (2) 

 

0.55 ± 0.01 Phaeozem (3) 

 

0.73 ± 0.2 Leptosol (3) 

Norfloxacin < 8.4  Pego-Oliva (1) 

Ofloxacin < 3.3 Pego-Oliva (1) 

Propranolol < 0.4 Pego-Oliva (1) 

Sulfamethazine 11 - (6) 

Sulfamethoxazole < 5.31 ± 0.22 Mezquital Valley (2) 

Triclosan 4.4 ± 0.1 Phaeozem (3) 

 

18.6 ± 1.2 Leptosol (3) 

 3.2 ± 7.1  Fangcun10-20 cm (4) 

Trimethoprim < 2.39 ± 0.29 Mezquital Valley (2) 

 < 0.2 Pego-Oliva (1) 
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References: (1) (Vazquez-Roig et al., 2012); (2) (Dalkmann et al., 2012); (3) 

(Durán-Alvarez et al., 2009); (4) (Chen et al., 2010); (5) (Vazquez-Roig et al., 

2010); (6) (Hoper et al., 2002). 

 

1.4 Fate of pharmaceuticals in the soil environment 

Several reviews have highlighted the current scientific knowledge on the fate of 

pharmaceutical compounds in the environment (Halling-Sørensen et al., 1998; 

Heberer, 2002; Kummerer, 2004, 2001; Monteiro and Boxall, 2010; Thiele-Bruhn, 

2003). The fate of pharmaceuticals in the terrestrial environment depends heavily on 

the physico-chemical properties of the pharmaceutical as well as the properties of the 

surrounding soil matrices.  

The loss of pharmaceuticals from the soil can be broadly attributable to a number of 

processes, namely degradation, leaching and uptake by soil dwelling organisms. In 

general, the major processes that govern the fate of these compounds in the soil 

environment are sorption and degradation (Pignatello and Xing, 1996). These 

processes are important because they determine the overall persistence of 

pharmaceuticals which can therefore influence the potential for uptake of these 

compounds by terrestrial organisms. 

1.4.1 Persistence 

The chemical properties of human pharmaceuticals, such as high water solubility, 

high polarity and low volatility are largely responsible for their environmental 

persistence and thus their occurrence in terrestrial environments (Kummerer, 2008). 

Persistence in the environment is an inevitable result of the way most current 

medicines work. Pharmaceuticals need to be able to resist rapid metabolism in the 

body to ensure an adequate pharmacological effect (Richman and Castensson, 2008) 

and be stable enough to have a useful shelf life. Pharmaceuticals are developed with 

the intention of performing a biological effect; therefore they must be lipophillic to 

pass membranes whilst also being persistent to avoid the substance becoming 

inactivated (Halling-Sørensen et al., 1998). It is these specific properties which mean 
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that pharmaceuticals which are present in the terrestrial environment could 

potentially bio-accumulate in organisms. 

Persistence of a pharmaceutical in soil mostly depends on the photo-stability of the 

medicine, its binding and adsorption capability, its biodegradation rate and potential 

to leach into nearby water bodies (Diaz-Cruz et al., 2003). Studies have shown that 

pharmaceuticals can accumulate and persist in soil after application of sewage sludge 

or manure. For example, Hamscher et al. (2002) demonstrated that tetracyclines 

occur in soil which had been repeatedly fertilised with liquid manure. The 

persistence of each pharmaceutical is specific to the chemical and soil properties and 

thus persistence can vary across soil types. For example the persistence of the same 

antibiotic in the soil environment may range from less than one day to several 

months (Gavalchin and Katz, 1994).  

1.4.2 Degradation 

A number of studies have explored the degradation of human pharmaceuticals in the 

terrestrial environment (Monteiro and Boxall, 2009; Topp et al., 2008a, 2006; Xu et 

al., 2009a). 

Xu et al., (2009a) established that the degradation of pharmaceuticals differs 

between soil types and the pharmaceutical compound in agreement to the findings by 

Monterio and Boxall (2009). Whilst ibuprofen had a half-life of 6.09 days in a silt 

clay soil it also had a considerably shorter half-life in loamy sand soil at 0.91 days. 

Only triclosan was observed to exhibit similar degradation patterns in all of the 

agricultural soils investigated. Regression data from Xu et al., (2009a) demonstrates 

that degradation rate constants were negatively correlated with soil clay content, with 

the exception of clofibric acid (r
2 

between 0.42 – 0.56).  

The degradation of organic chemicals can also be affected by organic carbon (OC) 

content of the soil, soil microbial activity as well as physico-chemical properties of 

the chemical (Monteiro, 2009; Topp et al., 2008b; Xu et al., 2009c). Specifically, a 

soil with a high organic matter content may inhibit organic compound 

(pharmaceutical) degradation due to increased adsorption of the chemical and thus 

reduced bioavailability (Johnson and Sims, 1993; Xu et al., 2009). Alvey and 
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Crowley (1995) have also postulated that soil organic matter may also serve as an 

alternative nutritional source for microorganisms involved in degradation.  

The presence of sewage sludge can also affect the degradation of organic chemicals 

in soils. Sewage sludge alters the soil pH whilst also increasing the input of organic 

carbon (OC) (dissolved and solid) and microbial activity in the soil (Furczak and 

Joniec, 2007; Tsadilas et al., 1995). Specifically, pesticide degradation has been 

shown to be influenced by OC input and microbial activity (Kah et al., 2007). 

Monteiro and Boxall (2009) hypothesised that the presence of biosolids may result in 

the formation of bound residues between pharmaceuticals and the biosolid, thus 

decreasing its mobility and its potential for degradation. However conflicting results 

were observed in other studies where the degradation of pharmaceuticals increased 

with the introduction of biosolids (Topp et al., 2008a, 2006). In the 2006 paper by 

Topp et al., caffeine degradation was shown to be influenced by temperature, 

moisture, addition of liquid, the presence of caffeine degrading bacteria and soil 

type. 

Whilst it is clear pharmaceuticals can be degraded in the soil environment, the 

continual input of these pharmaceuticals ensures that some chemicals are persistent 

and thus may present a threat to soil inhabiting organisms. 

1.4.3 Sorption 

The sorption of organic compounds such as pharmaceuticals is the partitioning of the 

chemical between the water and solid phase, i.e. soil (Schwarzenbach et al., 2003). 

Sorption can be characterised by a soil–water partition coefficient (Kd) which is 

defined as the ratio of the concentration in the solid phase to the concentration in the 

solution phase at equilibrium.  

In terms of the environmental implications, the sorption behaviour of 

pharmaceuticals is critical because this regulates the transfer and distribution of 

compounds between phases which ultimately determines the mobility, bioavailability 

and availability of the compound for degradation (Thiele-Bruhn et al., 2003). It is the 

bioavailable fractions which have the potential for uptake into terrestrial organisms. 

A high Kd would suggest strong retardation in soils (Table 1.2; e.g. triclosan and 
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bisphenol A), whilst smaller Kd’s (Table 1.2; e.g. ibuprofen) would infer that these 

pharmaceuticals could move downwards with percolating water, leaching possibly 

into groundwater or nearby streams thus posing less of a risk to terrestrial organisms 

(Chefetz et al., 2008; Oppel et al., 2004; Topp et al., 2008).  

Physico-chemical properties specific to the pharmaceutical, including for example 

the octanol-water partition coefficient (Kow), the degree of ionisation, the charge of 

molecule and its hydrophobicity are important in determining the adsorption of the 

chemical to soil (Diaz-Cruz et al., 2003). Specifically, Kow indicates the tendency of 

a chemical to partition between the organic phase and the aqueous phase. Therefore 

compounds with a high Kow are hydrophobic with low water solubility and should 

sorb, to a greater extent to the soil, thus generating larger Kd values than compounds 

with a low Kow. For example triclosan has an extremely high Kd of 127 L/kg (Barron 

et al., 2009) and also a high log Kow at 4.8 (Aranami and Readman, 2007).  

This simple relationship between the Kd and Kow does however not always hold as 

there are a number of different mechanisms which are fundamental to the way in 

which pharmaceuticals sorb to soils. Sorption can occur through the direct and 

induced ion-dipole and dipole-dipole interactions. These interactions arise from the 

reciprocal attraction of two permanent dipoles or an induced dipole and can be 

responsible for the sorption of polar and ionic compounds (Von Oepen et al., 1991). 

Other mechanisms of sorption can include chemisorption, hydrogen bonding, 
 
ion 

exchange (including cation exchange), cation
 
bridging and formation of complexes 

with ions such as Ca
2+

, Mg
2+

, Fe
2+

 or Al
3+

, (Diaz-Cruz and Barcelo, 2004; Tolls, 

2001; Xia et al., 2005). For example the group of antibiotics, tetracyclines, have 

particularly low Kow’s (e.g. Chlortetracyline log Kow -0.62) yet bind strongly to soil 

because they form complexes with the metal ions present in the soil (Ca
2+

/ Mg
2+

) 

(Avisar et al., 2010; Bui and Choi, 2010). 
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Table 1.2 Reported sorption coefficients (Kd) in published literature for pharmaceuticals in various soil matrices, 

± standard deviations where reported in literature. 

Pharmaceutical Kd soil (L/kg) Soil type Reference 

Atenolol 15 Sandy mud (1) 

Benzafibrate 14 Sandy mud (1) 

Bisphenol A 17.00 ± 3.05 Loamy sand (2) 

 

27.89 ± 3.93 Sandy loam (2) 

 

42.22 ± 15.92 Silt loam (2) 

 

15.93 ± 4.77 Silt clay (2) 

 

20 Average of soils (3) 

Caffeine 25 Sandy mud (1) 

Carbamazepine 37  ± 1.6 High OC
a
 (4) 

 

0.49  ± 0.01 Low OC
a
 (4) 

 

13 Sandy mud (1) 

Chloramphenicol 42 Sandy mud (1) 

Cimetidine 11 Sandy mud (1) 

Ciprofloxacin 427 Centric Flurisol (5) 

Citalopram 250 Sandy mud (1) 

 

42579 Loamy sand (6) 

 

20691 Sandy loam (6) 

  17540 Loamy sand (6) 

Clofibric acid 9 Sandy mud (1) 

 

5.36 ± 1.49 Loamy sand (2) 

 

4.54 ± 1.68 Sandy loam (2) 

 

3.36 ± 1.55 Silt loam (2) 

 

200.73 ± 59.93 Silt clay (2) 

 

5.38 ± 0.17 High OC
a
 (4) 

Clotrimazole 1029 Sandy mud (1) 

Diazepam 30 Sandy mud (1) 

Diclofenac 164.5 ± 6.6 High OC
a
 (4) 

 

0.45 ± 0.03 Low OC
a
 (4) 

 

1.21 ± 0.36 Loamy sand (2) 

 

3.47 ± 0.73 Sandy loam (2) 

 

17.72 ± 7.45 Silt loam (2) 

 

2.83 ± 1.05 Silt clay (2) 

Enrofloxacin 3037 Rhodic Ferralsol (5) 

 

5612 Glegic Cambisol (5) 

 

1230 Haplic Podsol (5) 

 

260 Rendzic Leptosol (5) 

 

496 Centric Flurisol (5) 
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Pharmaceutical Kd soil (L/kg) Soil type Reference 

Erythromycin 68 Sandy mud (1) 

Flurbiprofen 11 Sandy mud (1) 

Fluoxetine 12546 Loamy sand (6) 

 

2602 Sandy loam (6) 

 

992 Loamy sand (6) 

Ibuprofen 0.56 ± 0.22 Loamy sand (2) 

 

0.56 ± 0.17 Sandy loam (2) 

 

3.71 ± 0.46 Silt loam (2) 

 

1.24 ± 0.26 Silt clay (2) 

Indomethacin 32 Sandy mud (1) 

Ketoprofen 9 Sandy mud (1) 

Methadone 82 Sandy mud (1) 

Metoprolol 20 Sandy mud (1) 

Metronidazole 0.67±0.10 (mL/g) Sandy loam (7) 

 

0.54±0.02 (mL/g) Sand soil (7) 

 

0.62±0.02 (mL/g) Sandy loam (7) 

  0.57±0.05 (mL/g) Loamy sand (7) 

Naproxen 11 Sandy mud (1) 

 

1.24 ± 0.31 Loamy sand (2) 

 

1.65 ± 0.52 Sandy loam (2) 

 

16.49 ± 5.17 Silt loam (2) 

 

6.99 ± 2.33 Silt clay (2) 

Ofloxacin 309 Centric Flurisol (5) 

 

3554 ± 194 High OC
a
 (4) 

 

1192 ± 122 Low OC
a
 (4) 

Oxytetracycline 680 ± 69 (mL/g) Sandy loam (7) 

 

670 ± 149 (mL/g) Sand soil (7) 

 

1026 ± 374 (mL/g) Sandy loam (7) 

 

417 ± 97 (mL/g) Loamy sand (7) 

Paracetamol 32 Sandy mud (1) 

Paroxetine 6386 Loamy sand (6) 

 

886 Sandy loam (6) 

 

355 Loamy sand (6) 

Propranolol 199 ± 9.6 High OC
a
 (4) 

 

16.3 Low OC
a
 (4) 

Salbutamol 26 Sandy mud (1) 

Salicyclic acid 82 Sandy mud (1) 
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Pharmaceutical Kd soil (L/kg) Soil type Reference 

Sertraline 787 Loamy sand (6) 

 

270 Sandy loam (6) 

 

149 Loamy sand (6) 

Sulfadiazine 2 Silt loam (8) 

Sulfamethazine 9 Sandy mud (1) 

Sulfamethoxazole 8 Sandy mud (1) 

 

37.6 ± 1.2 High OC
a
 (4) 

 

0.23 ± 0.08 Low OC
a
 (4) 

Tamoxifen 1626 Sandy mud (1) 

Triclocarban 438 Sandy mud (1) 

Triclosan 127 Sandy mud (1) 

 

9.72 ± 3.82 Loamy sand (2) 

Triclosan contd. 132.83 ± 30.01 Sandy loam (2) 

 

273.22 ± 78.43 Silt loam (2) 

 

51.67 ± 24.37 Silt clay (2) 

Trimethoprim 26 Sandy mud (1) 

a
 Organic carbon is described as OC 

References: (1) (Barron et al., 2009); (2) (Xu et al., 2009b); (3) (Ying and Kookana, 

2005); (4) (Drillia et al., 2005); (5) (Nowara et al., 1997); (6) (Kwon and Armbrust, 

2008); (7) (Rabolle and Spliid, 2000); (8) (Thiele-Bruhn and Aust, 2004).  

 

Soil components are important in the sorption of organic compounds, (Kah and 

Brown, 2006) as well as soil pore water distribution (Tsai et al., 2006) and soil 

particle size (Casey et al., 2003). For example clofibric acid in a silt clay soil has a 

Kd of 200.73 ± 59.93 (L/kg) which is larger than the Kd of 3.36 ± 1.55 (L/kg) 

obtained for the same compound in a silt loam soil (Xu et al., 2009) (Table 1.1). 

Therefore in addition to pharmaceutical physico-chemical properties, the extent to 

which a pharmaceutical sorbs to soils is determined by soil parameters such as the 

cation exchange capacity (CEC), solution chemistry (pH) and type of mineral and 

organic sorbents, (Boxall et al., 2002; Drillia et al., 2005; Tolls, 2001; Williams et 

al., 2006). Key soil parameters affecting sorption will be discussed further in 

sections 1.4.3.1 - 1.4.3.4. 



                                                                                                                                  Literature Review 

35 

1.4.3.1 pH 

Ionisable chemcials posess either weak acidic or basic functional groups and their 

behaviour depends on paramters such as surrounding medium pH and chemical pKa, 

where pKa is the negative log of the acid dissociation constant (pH at which 50 % of 

the chemical is dissociated). As a result of their potential to protonate or deprotonate 

they will either be positively or negatively charged molecules. The pH of the soil is 

therefore important in determining the sorption of pharmaceuticals because most 

pharmaceuticals are ionisable. 

For example, the sorption of acidic pharmaceuticals (e.g. naproxen) is pH dependant 

and it follows such that at typical soil pH most of these compounds are in their 

anionic state hence why their sorption to soils is particularly low. Conversely, at low 

pH, strong adsorption of basic chemicals is observed because the neutral species are 

present in high amounts (Monteiro, 2009). The pH of the soil solution has also been 

shown to affect the sorption of triclosan. An increase in pH (4 – 8) caused a decrease 

in the sorption of triclosan (Wu et al., 2009). Increasing pH decreased the amount of 

triclosan existing in the neutral from 100 to 39 % and the anionic form of triclosan 

was less attracted to the negative soil particles. Additional studies have also found 

that the sorption of sulphonamides is affected by pH (Boxall et al., 2002; Thiele-

Bruhn et al., 2004). 

1.4.3.2 Soil organic matter 

Soil organic matter (SOM) consists of varying proportions of raw plant residues and 

microorganisms, an active organic fraction and humus (stable organic matter) 

(Lickacz and Penny, 2001). The concentration and type of SOM is a very important 

factor in determining sorption of a pharmaceutical compound and thus its fate in the 

terrestrial environment. A positive correlation between SOM and sorption of 

pharmaceuticals to soil has been found on several occasions (Chefetz et al., 2008; 

Williams et al., 2006; Xu et al., 2009a). When a substance is neutral and in its un-

dissociated form, for example carbamazepine, it is quite likely to interact with SOM 

and it follows that with higher SOM there will be higher pharmaceutical retardation 

(Williams et al., 2006; Chefetz et al., 2008). However, if carbamazepine was in a 

poor SOM environment it would be significantly less retained by the soil. For neutral 
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organic compounds soil organic carbon has been postulated as the most important 

property to describe sorption in soils (Monteiro, 2009). 

In comparison, the retardation of a charged compound, for example naproxen 

(negatively charged because the carboxyl functional group is deprotonated), will be 

less influenced by SOM and thus the compound will be highly mobile (Chefetz et 

al., 2008). However, there are exceptions, diclofenac is a negatively charged 

pharmaceutical but it is slightly retarded in soils (Scheytt et al., 2006). This can be 

attributable it’s more hydrophobic nature meaning that it interacts more with SOM.  

1.4.3.3 Clay content 

The adsorption of some pharmaceuticals has been previously shown to be dependent 

on the clay content of the soil (Chen et al., 2006; Rai et al., 2000; Zheng and 

Cooper, 1996). Wu et al., (2009) postulated that high clay content might hinder the 

interaction between the chemical and SOM. In one particular soil, characterised by 

high clay content, the average Kd for triclosan was 178 L/kg whilst the remaining 

three soils, with lower clay contents, all had Kd values over 200 L/kg. Contrastingly, 

the clay content of soils has been shown to be positively correlated with the sorption 

of clofibric acid (Wu et al., 2009). This can be explained by the low pKa of clofibric 

acid (as previously discussed) which means that there are more hydrogen ions 

available for interaction with the negative clay particles.  

1.4.3.4 Dissolved organic matter  

Treated wastewater contains high levels of dissolved organic matter (DOM) (Fine et 

al., 2002). When this wastewater is used to irrigate fields then correspondingly the 

DOM will be transferred to the soil compartment. If the pharmaceutical compound 

forms a complex with DOM or the organic and inorganic suspended materials 

present in treated wastewater, this can enhance the mobility of pharmaceutical 

compounds in soils as DOM behaves as a water-soluble carrier. Interactions between 

DOM and pharmaceuticals have, in the past, been also shown to affect transport and 

sorption and thus mobility of pharmaceuticals (Chefetz et al., 2008; Nelson et al., 

1998; Totsche and Kogel-Knabner, 2004).  
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The presence of DOM can reduce the sorption of pharmaceuticals by competing for 

sorption sites in the soil (Celis et al., 1998; Flores-Cespedes et al., 2006, 2002; 

Nelson et al., 2000). The presence of DOM can also decrease the mobility of 

chemicals due to cumulative sorption and co-sorption where two chemicals with 

different preferences on surface sorbent both interact with DOM (Flores-Cespedes et 

al., 2006; Chefetz et al., 2008). 

1.5 Uptake of pharmaceuticals in the terrestrial environment 

The bioavailable fraction of the pharmaceutical is the portion of pharmaceutical that 

is available for uptake, specifically in the terrestrial environment this would be 

uptake by soil dwelling organisms such as plants and invertebrates. Bioavailability is 

influenced by the fate of pharmaceuticals in soils, for example by sorption and 

mobility. If a chemical is degraded this can also influence its bioavailability (Jjemba, 

2006); a more persistent pharmaceutical will remain in the environment for longer, 

and therefore have the potential to accumulate to higher concentrations and thus have 

a greater potential to be taken up by an organism. As discussed in section 1.4 the fate 

of pharmaceuticals in the terrestrial environment is extremely complex and depends 

on numerous soil properties; and thus it follows that the bioavailability and uptake of 

pharmaceuticals in the soil environment is also multifaceted. 

Previous research has postulated that chemicals have to be in a dissolved state to be 

bioavailable to earthworms (Belfroid et al., 1993; Oste et al., 2001; Peijnenburg et 

al., 1999; Saxe et al., 2001; Vijver et al., 2003) and additional studies has concluded 

that plant uptake of chemicals from soil are mediated by uptake from soil pore water 

during transpiration (Schrèoder and Collins, 2011). Therefore how the chemical 

behaves in the soil environment is important in determining the ultimate fate and 

uptake into terrestrial species.  

1.5.1 Previous research on the uptake of pharmaceuticals in 

terrestrial organisms 

Studies have explored the uptake of pharmaceuticals into plants from hydroponic 

culture mediums (Herklotz et al., 2010; Kong et al., 2007; Redshaw et al., 2008b; 
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Shenker et al., 2011) as well as from soils (Boxall et al., 2006; Dolliver et al., 2007; 

Holling et al., 2012; Shenker et al., 2011; Wu et al., 2012, 2010). A number of 

pharmaceuticals with different physico-chemical properties and a range of 

therapeutic uses are taken up by a variety of crop species including soybean, carrot, 

lettuce and potato. Studies have also revealed variations in plant uptake between 

different species exposed to pharmaceuticals (Boxall et al., 2006; Herklotz et al., 

2010; Wu et al., 2012). Recent studies have also investigated uptake into plants with 

the addition of sewage sludge to test systems and uptake following the application of 

reclaimed waste water effluent to soils to simulate realistic environmental exposures 

(Holling et al., 2012; Shenker et al., 2011; Wu et al., 2012, 2010). Results indicate 

that plant uptake is higher in the biosolid amended soils, probably a result of higher 

exposure concentrations, however, pharmaceuticals introduced by irrigation water 

appear to be more available for translocation (Wu et al., 2010). 

Very little research has demonstrated the uptake of pharmaceuticals into terrestrial 

invertebrates. One published study assessed the bioaccumulation of anthropogenic 

waste indicators (including the pharmaceuticals: trimethoprim, caffeine, 

carbamazepine, thiabendazole and diphenhydramine) into earthworms from 

agricultural soil amended with biosolid or swine manure (Kinney et al., 2008). In 

this study, trimethoprim was the only pharmaceutical detected in the earthworms at 

concentrations of 127 µg kg
-1

 (dw) in a biosolid amended field and 61 µg kg
-1 

(dw) 

in the manure amended field. More recently, Kinney et al., (2012) continued their 

research with earthworms and investigated the effect of biosolids containing 

pharmaceuticals on earthworm  reproduction and survival. Observations included 

biosolid toxicity to earthworm increased with biosolid aging and both survival and 

reproduction were sensitive at agronomic rates. 
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1.6 Aims and objectives of research 

It is crucial that we understand how pharmaceutical physico-chemical properties, 

species traits and the distribution of pharmaceuticals between the soil and pore water 

and relate to the degree of uptake and depuration (including how metabolism can 

affect uptake)  in the terrestrial environment (Figure 1.3). 

The main aim of the PhD research was therefore to explore the factors and processes 

which affect the uptake of pharmaceuticals in the terrestrial environment. The 

specific objectives were to: 

1) Explore the effects of chemical properties (e.g. pKa, log Kow) on the uptake 

and depuration behaviour of pharmaceuticals in earthworms, Eisenia fetida 

(Chapter 2) 

2) Explore the use of a minimised design approach to estimate bioconcentration 

factors in terrestrial and aquatic invertebrates, using reduced sampling points 

and kinetic definitions (Chapter 3) 

3) Investigate the effects of soil properties on the fate of pharmaceuticals in the 

soil and pore water and the subsequent uptake and depuration of 

pharmaceuticals in earthworms, Eisenia fetida (Chapter 4). 

4) Compare the uptake and depuration of pharmaceuticals between Eisenia 

fetida and Lumbricus terrestris earthworm species in order to establish the 

importance of species traits (Chapter 5). 

5) Determine the impacts physico-chemical properties and plant type on the 

uptake of pharmaceuticals into plant species (Chapter 6). 

Data from such investigations presented in the following chapters will be useful 

for risk assessment purposes as it will allow for the accurate prediction of uptake 

of chemicals into terrestrial species and mean that risks can be better 

characterised. 
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Figure 1.3 A conceptual model of uptake into terrestrial organisms from pore water exposure, where Kin and Kout 

are the uptake and depuration rates respectively. 
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1.7 Study compounds 

The study compounds were chosen specifically to provide a range of pharmaceutical 

physico-chemical properties (log Kow, pKa) and different therapeutic uses. 

Chemicals used in the earthworm uptake and depuration experiments (Chapter 2, 

Chapter 4 and Chapter 5) were 
14

C radiolabelled (carbamazepine, diclofenac, 

fluoxetine and orlistat) (Table 1.4). Radiolabelled pharmaceuticals were used to 

allow for lower limits of detection and thus environmentally relevant concentrations 

could be used in the experiments. Additional studies, using cold compounds, were 

performed to determine any potential metabolism in the earthworm studies. Plant 

studies were carried out using unlabelled pharmaceuticals (carbamazepine, 

diclofenac, fluoxetine, propranolol, sulfamethazine and triclosan) (Chapter 6). 

Carbamazepine is in a class of medications called anticonvulsants. It can be used to 

control certain types of epileptic seizures in patients, as well as in the treatment of 

trigeminal neuralgia (a condition that causes facial nerve pain) (Dale and Rang, 

2011). Carbamazepine is the most widely used anti-epileptic drug (Dale and Rang, 

2011). In England, 2256 x 10
3
 carbamazepine prescription items were dispensed in 

2000 resulting in an annual use of over 40 thousand kg of this drug (Jones et al., 

2002). Due to its wide use and thus potential to transfer to the environment, 

carbamazepine has been detected in numerous soil profiles throughout the world, in 

concentrations ranging up to 6.69 ± 1.80 µg/kg (Dalkmann et al., 2012; Durán-

Alvarez et al., 2009; Vazquez-Roig et al., 2012, 2010). With regards to the terrestrial 

environment, studies have explored the uptake of carbamazepine into cucumber and 

soybean plants (Shenker et al., 2011; Wu et al., 2010). Carbamazepine however has 

remained undetected in research into the bioaccumulation of anthropogenic waste 

indicators in earthworms after it was detected in soils receiving biosolid amendment 

(Kinney et al., 2012). 

Diclofenac is a non-steroidal anti-inflammatory (NSAID) taken to ease pain and 

reduce inflammation in patients suffering with, amongst other problems, rheumatoid 

arthritis, migraines and musculoskeletal injuries and pain for example (Dale and 

Rang, 2011). NSAIDs are drugs that suppress prostanoid synthesis in the 

inflammatory cells by the inhibition of the cyclo-oxygenase (COX)-2 isoform of the 
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arachidonic acid COX enzyme and in doing so provides three major therapeutic 

actions; anti-inflammatory action, analgesic effects and antipyretic effects (Dale and 

Rang, 2011). Diclofenac is a widely used pharmaceutical and statistics in 2000 

indicated that 26 121 kg was consumed in England on an annual basis (Jones et al., 

2002). Diclofenac has been detected in soils in the Mezquital Valley, Mexico at low 

concentrations (0.4 µg/kg) after irrigation using wastewater (Dalkmann et al., 2012). 

However research on the uptake of this pharmaceutical is limited; one recent study 

was unable to detect diclofenac in either wheat or soybean crops after 110 days 

grown in soil treated with sewage sludge containing NSAIDs. In terms of the wider 

environmental impacts of diclofenac, experimental evidence indicates that the casual 

factor in the decline of vulture populations in the Indian sub-continent is from these 

birds scavenging on cattle carcasses containing high levels of diclofenac (Green et 

al., 2007, 2006; Oaks et al., 2004). Therefore further research is needed to explore 

the uptake and effects of this pharmaceutical in the environment.  

Fluoxetine (also known by the trade name Prozac) is used in the treatment of 

depression. It is a selective serotonin (5-HT) reuptake inhibitor (SSRI). Statistics 

from Spain indicate that it is a highly used drug as over three thousand kilograms of 

fluoxetine were consumed in 2003(Carballa et al., 2008). Fluoxetine has been 

detected in soil samples across the U.S. which were previously irrigated with 

reclaimed wastewater irrigation (Kinney et al., 2006). The uptake of fluoxetine has 

been comprehensively explored in the aquatic environment (Brooks et al., 2005; 

Meredith-Williams et al., 2012) and the compound has been demonstrated to be 

taken up by plants from a hydroponic culture medium (Redshaw et al., 2008b) as 

well as from soil (Wu et al., 2010). 

Propranolol belongs to a group of pharmaceuticals called beta blockers that primarily 

work on the heart and blood vessels. It can be used to treat a number of symptoms 

such as high blood pressure, irregular heartbeats, angina and anxiety. Propranolol is 

a non-selective β antagonist; it targets the beta receptor which can usually be found 

on cells of heart muscles, arteries and other tissues of the sympathetic nervous 

system. When stimulated by adrenaline (epinephrine) these receptors can lead to 

stress responses. Beta blockers interfere with the binding between epinephrine and 

other stress hormones to the receptor and thus weaken the effects of stress hormones 
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(Dale and Rang, 2011). Even though propranolol has been detected in soils at 

concentrations < 0.4 µg/kg (Vazquez-Roig et al., 2012) very little research has 

investigated the uptake of this pharmaceutical into terrestrial species. In a large scale 

experiment looking at the potential uptake of 118 pharmaceuticals into four crop 

species after biosolid amendment of soil resulted in no detection of propranolol 

residues in any of the plant material (Sabourin et al., 2012). 

Sulfamethazine has antibacterial properties and comes from a well-known group of 

pharmaceuticals called sulfonamides. Recently, sulfamethazine is more commonly 

used for veterinary purposes however in the past it has been prescribed to treat a 

variety of bacterial diseases in humans. This has resulted in the detection of 

sulfamethazine in concentrations up to 11 µg/kg (Hoper et al., 2002) in soils. Some 

of the first plant uptake research with regards to pharmaceutical exposure 

demonstrated that sulfamethazine could be taken up into plant material and 

accumulate to concentrations in the range of 0.1 % of the amount applied to the soil 

in manure (Dolliver et al., 2007). 

Triclosan is a synthetic anti-microbial agent that is commonly used in consumer 

products such as soaps, deodorants and toothpastes. It should be noted that triclosan 

is not strictly a pharmaceutical and is more often referred to as a personal care 

product. In a U.S. Geological Survey study of 95 different organic wastewater 

contaminants in U.S. streams, triclosan was one of the most frequently detected 

compounds, with some of the highest concentrations (Kolpin et al., 2002). Since its 

detection in soil (Chen et al., 2010; Durán-Alvarez et al., 2009) work has been 

undertaken to explore the uptake of triclosan into various plant species 

(Karnjanapiboonwong et al., 2011; Wu et al., 2010) with bioconcentration factors up 

to 12 reported in plant roots. 

Orlistat is the only drug currently licensed in the UK for the treatment of obesity. 

(2010) (Dale and Rang, 2011). It works in interfering with the way that fat is 

digested and absorbed in the body. Specifically, the presence of orlistat in the 

intestine prevents the breakdown of dietary fat to fatty acids and glycerols by 

reacting with the serine residues at the active sites of gastric and pancreatic lipases 

and in doing so irreversibly inhibiting these enzymes (Dale and Rang, 2011). Whilst 

it has been available on the market as a prescription drug since 2001, under the sale 
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name of Xenical, it has been difficult to obtain usage and consumption statistics on 

this particular pharmaceutical. Orlistat has yet to be detected in soils. However its 

high log Kow suggests a large affinity for sorption to soil and potential 

bioaccumulation into terrestrial species if it makes its way into the soil environment 

and thus further research on this pharmaceutical is important. 



    

 

Table 1.3 Physico-chemical properties for selected study compounds 

Test chemical Therapeutic use Chemical 

formula 

Molecular 

weight 

(g/mol) 

pKa
a
 Log 

Kow
b
 

Soil-water 

distribution 

coefficient 

(Kd) (L/kg)
c
 

Structure  

Carbamazepine Anticonvulsant C15H12N2O 236.27 N/A 2.25 4.83 

 

Diclofenac Anti-

inflammatory 

C14H11Cl2NO2 318.13 4.12 4.02 28.65 

 

Fluoxetine Anti-depressant C17H18F3NO 345.79  9.53 

 

4.65 608.42 

 

Propranolol Beta-blocker C16H21NO2 259.34 8.99 3.5 - 

 

 

4
5
 



    

 

 

Table 1.3 Continued 

Test chemical Therapeutic use Chemical 

formula 

Molecular 

weight 

(g/mol) 

pKa
a
 Log 

Kow
b
 

Soil-water 

distribution 

coefficient 

(Kd) (L/kg)
c
 

Structure  

Sulfamethazine Antibacterial C12H14N4O2S 278.32 6.0,1.55 0.9 - 

 

Triclosan Antimicrobial  C12H7Cl3O2 289.54 8.1 4.8 - 

 

Orlistat Weight loss aid C29H53NO5 497.74 N/A 8.19 1493.98 

 

a
 pKa values were predicted using the University of Georgia SPARC database v. 4.2 (http://ibmlc2.chem.uga.edu/sparc) Accessed: 25/05/2012 

b
 Log Kow values obtained from KOWWIN v. 1.68 database, USEPA EPI suite 4.1 programme 

c
 Soil water distribution coefficients (Kd) for selected pharmaceuticals were determined experimentally following OECD 106 for study soil 280 

used in earthworm uptake studies in Chapter 2 (2.3.1) (unpublished data). 

4
6
 

http://ibmlc2.chem.uga.edu/sparc


    

 

Table 1.4 Radiolabelled chemical properties of selected study compounds 

Test chemical name Specific Activity 

(GBq/mmol) 

Structure (including position of 

radiolabel) 

Carbamazepine [carbonyl-
14

C] 0.74  

Diclofenac sodium, [phenylacetic acid ring – 
14

C (U)]- 2.294  

Fluoxetine [N-methyl-
14

C] hydrochloride 2.035 

 

Orlistat [tridecanyl-2-
14

C] 2.051  

 

4
7
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1.8 Study species 

1.8.1 Earthworms  

Earthworms can be split into three categories; endogeic, anecic and epigeic species 

(Edwards, 1996). The descriptions are largely based on their habitats in the soil. 

Endogeic species rarely come to the surface of the soil preferring to reside in a series 

of complex lateral burrow systems through the soil layers. Meanwhile anecic worms, 

such as Lumbircus terrestris, also form deep burrows however these tend to be 

vertical from the soil surface and go deep into the mineral soil layers. In comparison, 

to endogeic species which eat soil, anecic species feed primarily on decaying surface 

litter and therefore come to the soil surface more regularly. Worms which are 

typically used in vermicomposting, including E. fetida, tend to be epigeic species. 

Epigeic worms inhabit the top soil layers or can be found on the soil surface residing 

in loose organic litter and debris (Bouche, 1992; Edwards, 2004; Edwards, 1996). 

Earthworms can comprise of 60 – 90 % of total soil biomass in a selection of 

locations (Bouche, 1992; Lee, 1985). Earthworms are key organisms in the terrestrial 

environment; their presence is central to a healthy and sustainable soil environment, 

for example earthworms help to establish and maintain the structure and fertility of 

the soil (Edwards, 2004; Killham, 1994). The physical motion of earthworm 

burrowing can bury plants deep in the soil which is crucial for the recycling of 

nutrients whilst the structure of the burrows is important in draining and aerating the 

soil (Edwards and Bohlen, 1992; Edwards and Lofty, 1972; Edwards, 2004). 

Earthworms being at the base of a food chain hold an integral position. Uptake and 

accumulation of contaminants into earthworms not only poses a risk to the 

earthworm directly, but may also result in far wider reaching ecosystem effects due 

to bioaccumulation and contaminant transfer through the food chain to top predators 

such as birds where there is the potential for secondary poisoning (Romijn et al., 

1994; Spurgeon and Hopkin, 1996).  

Earthworms are known to bio-magnify inorganic and organic soil contaminants, 

including polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants, 

pesticides and metals (Giovanetti et al., 2010; Grumiaux et al., 2010; Harris et al., 
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2000; Heikens et al., 2001; Hinton and Veiga, 2008; Jager et al., 2005; Janssen et 

al., 1997; Ma et al., 1998, 1995; Matscheko et al., 2002; Qi and Chen, 2010; 

Sellstrom et al., 2005; Van Gestel and Ma, 1988). Earthworms take up contaminants 

in a number of ways: through living in the soil environment, earthworms are in direct 

contact with the soil and therefore the ingestion of soil particles may lead to 

chemicals passing across the gut wall and into the earthworm tissue. Uptake via 

diffusion across the earthworm skin from chemicals in the pore water is also 

possible.  

1.8.1.1 Earthworm biological properties 

The uptake and accumulation of chemicals in the soil environment can vary between 

species as a result of species specific traits, a number of studies have highlighted 

these differences. Work by Kelsey et al., (1997) demonstrated the bioavailability of 

atrazine and phenanthrene to bacteria was far greater than that to earthworms. In an 

early study; the earthworm Lumbricus rubellus accumulated more calcium and zinc 

but less lead and cadmium than the earthworm Dendrobaena rubida living in the 

same soil environment (Morgan and Morris, 1982). Further work regarding 

earthworms established that E. fetida, had BCFs that were approximately ten-fold 

higher than those for the other species in the study including the anecic species 

Lumbricus terrestris, and the endogeic species Aporrectodea caliginosa after 

exposure to 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p,p’-DDE) (Kelsey and 

White, 2005). Differences in their processing of soil organic matter, ecological 

strategy, and lipid content are potential explanations as to the observed variation 

among earthworm BCFs (Kelsey et al., 2005). 

1.8.1.2 Biotransformation 

As well bioaccumulation of chemicals in earthworms, biotransformation of 

chemicals can also occur. Biotransformation is the chemical modification made by 

an organism on a chemical compound. Biotransformation together with 

bioaccumulation are key toxicokinetic processes that can modify the toxicity of 

chemicals and sensitivity of organisms (Ashauer et al., 2012). Metabolism of 

chemicals, such as pharmaceuticals, is an example of biotransformation. The 
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metabolites may reach higher concentrations in the organism that that of the parent 

compounds. 

The biotransformation of soil contaminants, such as polychlorobiphenyls, polycyclic 

aromatic hydrocarbons, pesticides and metals in a number of earthworm species has 

been extensively studied (Button et al., 2009; Lydy and Linck, 2003; Belfroid et al., 

1995; Stroomberg et al., 2004). Pharmaceuticals can remain unchanged during 

urinary excretion and leave the human body as parent compounds (Bound and 

Voulvoulis, 2005).  However, it is well known that pharmaceuticals can undergo 

metabolism in the human body, including the study compounds selected in this thesis 

(Pearson and Wiehkers, 2008). For example, fluoxetine is extensively metabolized in 

the liver. The only identified active metabolite, norfluoxetine, is formed by 

demethylation of fluoxetine (Dale and Rang, 2011).  Biotransformaton of diclofenac 

has also been demonstrated after uptake into fish (Lahti et al., 2011). There is 

therefore the potential for pharmaceuticals to undergo biotransformation after being 

taken up by earthworms. 

Understanding the uptake of chemicals into earthworms is a prerequisite to 

understanding the risks chemicals pose to earthworm populations, as well as the 

potential effects of secondary poisoning to predators like birds. Earthworms are at 

the base of many food chains and thus if chemicals are taken up into the earthworms 

they can facilitate the movement of chemicals into the food web via bioaccumulation 

and bio-magnification processes. The two earthworm study species are discussed in 

detail below. 

1.8.1.3 Eisenia fetida 

 

The typical species of earthworm outlined in standard test guidelines and used for 

terrestrial bioaccumulation and toxicity testing is Eisenia fetida (International 

Standard Organisation, 1998, Organisation for Economic Cooperation and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Voulvoulis%20N%5Bauth%5D
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Development, (OECD) guidelines 207, 222, 317 (OECD, 2010, 2004, 1984). This 

primarily reflects its ease of laboratory culture as it is a robust species, has a fast 

reproduction time (8 weeks) and a shorter generation time than many other 

earthworm species. 

E. fetida belongs to the Lumbricidae family of earthworms, characterised by their 

segmented body. There are typically 80 -120 segments and each E. fetida is 

approximately 60 – 120 mm in length (Sims and Gerard, 1985). E. fetida are known 

under various common names including redworm, red wiggler and brandling worm. 

Interestingly the name ‘fetida’ originates from the Latin word meaning ‘fetid’ which 

refers to a foul smelling odour. When they are roughly handled or in fear of 

predation E. fetida release a pungent liquid from their body. It is the release of this 

coelomic fluid from which the name originates. 

E. fetida is a particularly robust species of earthworm, they are found in a number of 

soil environments throughout the world. It is therefore a suitable species to work 

with in laboratory experiments as they can tolerate a wide range of environmental 

conditions such as soil pH, moisture, temperature and soil types (Edwards, 1996). 

For example Edwards (1988) reported that E. fetida can tolerate a pH range from 4.0 

-7.0. E. fetida typically thrive in organic rich habitats such as rotting vegetation, 

compost and manure piles.  

1.8.1.4 Lumbricus terrestris  

 

Similar to E. fetida, Lumbricus terrestris belongs to the Lumbricidae family of 

earthworms however it is a larger species. Compared to other earthworms in its 

genus, L. terrestris is the longest having approximately 140 - 155 segments and 

reaching a maximum length of 160 mm (Sims and Gerard, 1985). It is commonly 

known as the night crawler as this species tends to crawl to the soil surface through 

permanent constructed burrows during the night to feed. 
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Whilst E. fetida is a species of earthworm commonly used in terrestrial uptake and 

toxicity testing it has been suggested that Lumbricus terrestris is a more ecologically 

relevant and sensitive species (Dean-Ross, 1983). One of the key issues is that E. 

fetida is a manure compost worm and does not naturally inhabit the soil 

environment. Additionally some authors observed differences in the sensitivity of 

Eisenia species with E. fetida being less sensitive to contaminants than other 

earthworm species (Edwards and Bohlen, 1992; Edwards and Coulson, 1992; 

Langdon et al., 2005; Spurgeon and Weeks, 1998). Yet in a more recent study, after 

exposure to imidacloprid, E. fetida were more sensitive concerning cellular 

alterations and mortality than both Aporrectodea caliginosa and L. terrestris 

(Dittbrenner, 2012). L. terrestris which are commonly found in the soil environment 

may therefore be a more useful species in terms of the risk assessment of chemicals. 

However L. terrestris worms have a long generation time, do not do well in high 

density cultures and require a stable burrow environment in order to thrive. Cultures 

must also allow sufficient burrowing depth for the worms, and this is difficult to 

achieve with burrow depths for L. terrestris reported to easily exceed 40 cm below 

the soil surface (Shipitalo and Butt, 1999). Without access to this burrow, anecic 

worms will encounter difficulties in both breeding and growing which are necessary 

for a successful standardised laboratory experiment.  

In terms of the thesis, uptake studies began with E. fetida as optimised cultures were 

easier to obtain. Later research then explored, in a small number of studies, the 

uptake of pharmaceuticals into L. terrestris. 

1.8.2 Plants 

Plants were specifically chosen to provide enough biomass for extraction and 

analysis at time of harvest. Radish also provided the opportunity to differentiate 

between above and below ground crop concentrations by separating the leaf from the 

root material. 
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1.8.2.1 Radish (Raphanus sativus) 

Radish (Raphanus sativus, Cherry belle variety) is an edible root vegetable of the 

Brassicaceae family. Specifically cherry belle is a bright red-skinned (‘cherry’ 

colour) round variety of radish with a firm white interior. Cherry belle germinate in 4 

- 6 days and are fully grown in approximately 21 days where they typically reach a 

diameter of 2 cm and the leafy green tops can reach up to 15 cm. Previous research 

has predominantly explored the uptake of metals, polychlorinated biphenyls and 

pesticides in radish plants (Davies, 1992; Mikes et al., 2009; Zhou et al., 2005). 

Apart from research investigating the phytotoxicity to and uptake of the 

fluoroquinolone antibiotic, enrofloxacin in a variety of vegetable crops, including 

radish, the uptake of pharmaceuticals into radish species has been relatively 

unexplored.   

1.8.2.2 Ryegrass (Lolium perenne) 

Ryegrass (Lolium perenne, Guard variety) is a commonly used plant species in 

toxicity and uptake testing in the terrestrial environment (Gu et al., 2013; Li et al., 

2002; Winker et al., 2010). It is a cool-season perennial grass native to Europe, 

temperate Asia, and North Africa and widely distributed throughout the world. 

Perennial ryegrass is important for forage and livestock farming in temperate regions 

of the world. It has a shallow root system which is highly branched and can be 

characterised by its fast growing and rapid establishment properties making it a high 

yielding species. Previous work with pharmaceuticals has demonstrated that 

carbamazepine can be taken up into ryegrass aerial plants and roots however 

ibuprofen remained undetected in any plant material (Winker et al., 2010). 
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Chapter 2 Uptake and Depuration of Pharmaceuticals in 

the Earthworm, Eisenia fetida 

2.1 Introduction 

A number of studies have explored the uptake of pharmaceuticals into aquatic 

invertebrates and fish (Brooks et al., 2005; Karlsson, 2013; Meredith-Williams et al., 

2012; Paterson and Metcalfe, 2008; Schultz et al., 2010). However, much less work 

has been done to assess uptake of pharmaceuticals in the terrestrial environment; 

work that has been done has focused on the uptake of human and veterinary 

pharmaceuticals into plants (Boxall et al., 2006; Shenker et al., 2011; Winker et al., 

2010; Wu et al., 2010) with very few studies looking at uptake into terrestrial 

invertebrates such as earthworms.  

Earthworms are known to bio-magnify inorganic and organic soil contaminants, 

including polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants, 

pesticides and metals (Giovanetti et al., 2010; Grumiaux et al., 2010; Heikens et al., 

2001; Hinton and Veiga, 2008; Jager et al., 2005; Janssen et al., 1997; Ma et al., 

1998, 1995; Matscheko et al., 2002; Sellstrom et al., 2005; Van Gestel and Ma, 

1988). Through living in the soil environment, earthworms are in direct contact with 

the soil and soil pore water and therefore uptake of chemicals from these two media 

is possible. The ingestion of soil particles may also lead to chemicals passing across 

the gut wall and into the tissue.  

Only one published study so far has explored the uptake of pharmaceuticals into 

earthworms (as previously discussed in section 1.5) (Kinney et al., 2008). Additional 

research is required to fully characterise the potential for pharmaceutical uptake into 

terrestrial invertebrates as this is something which we currently know little about. 

Pharmaceuticals are emerging contaminants and there have already been a number of 

notable effects on non-target organisms as a result of their presence in the 

environment (see section 1.1.1). 

Earthworms are key organisms in the terrestrial environment (section 1.8.1). 

Earthworms, being at the base of a food chain, hold an integral position. Uptake and 

accumulation of contaminants into earthworms not only poses a risk to the 
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earthworm directly, but bioaccumulation and contaminant transfer through the food 

chain to top predators such as birds has the potential to cause secondary poisoning 

(Romijn et al., 1994; Spurgeon and Hopkin, 1996).  

To assess the potential for chemicals to be taken up by earthworms, a number of 

quantitative structure-activity relationships (QSARs) allow for the prediction 

earthworm pore water based bioconcentration BCFs. QSARs can be used for initial 

screening purposes or to avoid lengthy experiments whilst still providing a measure 

of potential chemical uptake and thus wider environmental implications. Belfroid 

and colleagues (Belfroid et al., 1993) were one of the first to develop a QSAR based 

on water exposure of chlorobenzenes and work by Jager (1998) followed, which is 

included in the Technical Guidance Document (TGD) on Risk Assessment Part 2. 

Both of these QSARs utilise log Kow as the primary descriptor in BCF determination, 

mimicking the partitioning between the aqueous and lipid phases. The applicability 

of these relationships for pharmaceuticals is currently unknown. 

The aim of this study therefore was to investigate the uptake and depuration of a 

range of pharmaceuticals, including carbamazepine, diclofenac, fluoxetine and 

orlistat (Table 1.3) into the earthworm Eisenia fetida. The results would then be used 

to evaluate existing predictive models, such as QSARs for estimating uptake of 

pharmaceuticals into earthworms.  

2.2 Experimental materials 

2.2.1 Pharmaceutical compounds and reagents 

14
C labelled compounds were used in the uptake studies. Labelled fluoxetine 

[methyl-
14

C] and carbamazepine [carbonyl-
14

C] were obtained from American 

Radiolabelled Chemicals (Missouri, USA), diclofenac [U – 
14

C] was obtained from 

Perkin Elmer (Boston, USA) and orlistat [tridecanyl-2-
14

C] was provided by 

GlaxoSmithKline (GSK, UK). Unlabelled fluoxetine, carbamazepine and diclofenac 

were obtained from Sigma Aldrich (UK) and unlabelled orlistat was provided by 

GSK.  Acetonitrile (99.9 %), methanol (99.9 %) and ethyl acetate (99.9 %) were 

obtained from Fisher Scientific (Loughborough, UK).  
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2.2.2 Test soil 

The study soil was a clay loam soil obtained from LandLook (Midlands, U.K.). Prior 

to use in experimental studies, the soil was air dried for 48 hours then sieved to 2 

mm to ensure homogeneity within the soil matrix. Detailed characteristics of the 

study soil are given in Table 2.1. 

Table 2.1 Test soil characteristics provided ± standard deviation where provided (n = 6). († Analysis completed 

at INRA [Arras, France] *Analysis completed at Fera [York, U.K.]). 

 

 

 

 

 

 

2.2.3 Test organism  

E. fetida were obtained from Blades Biological Ltd (Kent, UK) and cultured in a 

medium of peat and cow manure (50:50), kept moist with deionised water at room 

temperature (20 ± 3 
o
C). The animals were fed twice weekly with homogenised 

mashed potato powder which was added to the surface of the culture. The E. fetida 

were obtained from a single species culture and cultures were maintained for at least 

four generations before being used in the studies. The lipid content of E. fetida, 

determined using the method of Folch et al., (1957), was 5.11 ± 0.29 % (wet weight 

± standard deviation). 

Fine sand (50/200 µm) (g/kg) † 272 

Coarse sand (200/2000 µm) (g/kg) † 136 

Fine silt (2/20 µm) (g/kg) † 197 

Coarse silt (20/50 µm) (g/kg) † 164 

Clay (< 2 µm) (g/kg) † 231 

pH (water) †* 6.31 ± 0.15 

Cation exchange capacity cmol +/kg † 10.3  

Organic carbon (%) † 1.89 

C/N † 11.2 

Organic matter (%) † 3.27 

Water holding capacity (%w/w) * 17.25  ± 2.52 
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2.3 Experimental methods 

2.3.1 Sorption of study compounds to test soil 

The sorption behaviour of the study pharmaceuticals in the test soil was assessed 

using a batch equilibrium method based on OECD guideline 106. Study 

pharmaceuticals were applied to a mixture of soil and a 0.1 M CaCl2 solution 

contained in PTFE centrifuge tubes in triplicate. The soil solution ratios, selected 

based on preliminary investigations, were 1:5, 1:20, 1:30 and 1:30 for diclofenac, 

carbamazepine, fluoxetine and orlistat respectively. The resulting soil/solution 

mixtures were shaken in the dark (250 oscillations/min) at a temperature of 4 
o
C on a 

side-to-side shaker for 48 h as preliminary studies showed that this was sufficient 

time for the test pharmaceuticals to reach equilibrium between the soil and liquid 

phase. The samples were then removed and centrifuged at 3500 rpm for 10 minutes 

(Heremle Z 513K Bench Top Centrifuge). A 1 mL aliquot of supernatant was then 

taken and mixed with 10 mL of Ecoscint A scintillation cocktail (National 

Diagnostics, Atlanta, Georgia) and the radioactivity remaining in solution was 

determined as per  section 2.3.3.2. Soil sorption coefficients (Kd) values were then 

determined based on the amount of radioactive pharmaceutical applied and the 

amount remaining in the supernatant at equilibrium. 

2.3.2 Toxicity of study compounds to Eisenia fetida 

Toxicity experiments were performed to ensure that the test concentrations used in 

the uptake studies were not toxic to the E. fetida. Earthworms were individually 

exposed to soil containing ten times and a hundred times the proposed test 

concentration for the main uptake study. The experimental set up was similar to the 

main uptake and depuration studies as described in section 2.3.3. Burrowing 

behaviour, potential weight change and mortality were compared to that observed in 

solvent controls and blank controls to see if the pharmaceuticals had any effect on 

the earthworms. 
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2.3.3 Uptake and Depuration study 

The uptake and depuration experiments followed OECD Guideline 317 

‘Bioaccumulation in Terrestrial Oligochaetes’. Tests were performed in glass jars 

containing 50 ± 1 g of test soil as this was an adequate amount to allow sufficient 

burrowing depth (approximately 4 -5 cm) for E. fetida. All exposures were 

performed in a growth chamber at 20 ± 2 
o
C, using a 16:8 light/dark cycle, and at 60 

% humidity. Prior to exposure to test chemicals, worms were acclimated to the 

experimental conditions in the growth chamber for 48 hours using a non-treated test 

soil.  

Exposure soils were prepared by adding the labelled pharmaceuticals to the soil 

using 100 – 200 l of a carrier solvent to give concentrations of 39, 49, 80 and 65 g 

kg
-1

 of carbamazepine, diclofenac, fluoxetine and orlistat respectively (wet weight). 

For carbamazepine and fluoxetine, ethanol was used as the carrier; for diclofenac, 

methanol was used and orlistat was applied in acetonitrile. After spiking, each test 

beaker was left for 2 hours and then mixed to allow for even distribution of the 

pharmaceutical within the soil sample. Following spiking and mixing, the carrier 

solvents were allowed to evaporate off for a period of 48 hours. For each study, 

blank study soils and test soils spiked with carrier solvent only were prepared as 

controls. Following preparation, the moisture content of the exposure and control 

soils was adjusted to between 40 – 60 % of the MWHC by addition of deionised 

water. 

For each compound, 45 beakers of spiked soil were prepared along with solvent and 

non-solvent controls (Figure 2.1). At the start of the exposure one mature adult E. 

fetida (200 – 500 mg), with a visible clitellum, was added to each test beaker and the 

burrowing time of each of the worms was recorded. Beakers were then covered with 

garden fleece, attached with an elastic band to prevent earthworms from escaping 

while allowing sufficient air supply to be maintained. The uptake phase of the 

experiment lasted for 21 days with samples taken at 0 and 6 hour and 1, 3, 7, 10, 14, 

21 day. E. fetida in the remaining beakers were then transferred to clean soil for a 21 

day depuration phase with samples taken at 6 hour and 1, 3, 7, 10, 14, 21 day after 

transfer.  Soil moisture content of the soil in each of the test beakers was monitored 
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throughout both phases, and adjusted, where necessary, by adding deionised water to 

ensure that it remained between 40 – 60 % of the MWHC.  The pH of the soils was 

measured at the beginning and end of the uptake phase and at the end of the 

depuration phase. Worms were fed weekly with mashed potato powder (Norr and 

Riepert, 2007). 

 

 

 

 

 

 

 

Figure 2.1 Test beakers for earthworm exposures in growth chamber (A) and single beaker containing 

earthworm before sampling (B). 

 

At each sampling time point, three replicate beakers were taken of the 

pharmaceutical exposed worms. At the start of the uptake phase and end of both the 

uptake and depuration phases’ four replicates were sampled from the solvent 

controls to obtain analytical background values.  The earthworms were then 

removed, rinsed with deionised water, blot dried then weighed and placed on moist 

filter paper for 24 hours to allow the earthworm to void its gut contents (Dalby et al., 

1996) (Figure 2.2). After 24 hours, earthworms were reweighed and then frozen (-20 

o
C) prior to analysis. A supplementary study indicated that maximum purging of gut 

contents occurred over 24 h with 77 % of the soil gut contents being eliminated so a 

correction had to be applied to the final worm concentration measurements 

(Appendix 1). Samples of soil were also taken for soil analysis and for immediate 

extraction of soil pore water.  

A B 
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Figure 2.2 Earthworms purging their guts on moist filter paper after sampling. 

 

Three replicates of soil spiked with radiolabelled pharmaceutical but containing no 

earthworm were also prepared and sampled at the end of the uptake phase to check 

for changes in concentrations of the pharmaceuticals in soil and pore water in the 

absence of the test organism.  

2.3.3.1 Preparation of samples for analysis 

To extract pore water, test soil (25 ± 2 g) was placed in a disposable syringe with a 

layer of 3 cm of glass wool inserted into the bottom. The syringe was centrifuged for 

40 minutes (2 x 20 minute runs) at 3000 rpm after which the pore water was 

collected from the bottom of the tube and transferred to a 2 mL Eppendorf tube. The 

Eppendorf tubes containing the sampled pore water were then further centrifuged at 

12000 rcf for four minutes to sediment any loose particles. A 500 L sample of pore 

water was the-n added to 10 mL of EcoScint A scintillation cocktail for analysis.  

Soil samples were extracted by liquid extraction. For the carbamazepine study, 5  

0.5 g of soil was extracted twice for 45 minutes on a side to side shaker (250 

oscillations min
-1

) with 2 x 10 ml of methanol. A similar method was used in the 

fluoxetine and orlistat studies except that for fluoxetine a mixture of acetonitrile and 

water (7:3 v/v) was used as the solvent and for orlistat, acetonitrile was used. For the 

diclofenac study, 10 g samples of soil were extracted three times for 45 minutes with 

3 x 20 ml ethyl acetate. Samples (1 mL) of extracts were then added to 10 mL of 

EcoScint A for analysis of the radioactivity present.  
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Even with the high extraction recoveries for diclofenac, after solvent extraction, the 

concentration in the test soils at the start of the experiment was significantly lower 

than what was expected. Combustion analysis of these soil samples was performed 

to determine i-f there was any radioactivity remaining in the soil which may account 

for the discrepancies. A large amount of dissipation of orlistat from the test beakers 

was seen which unlike the other test compounds could not be explained by uptake 

into E. fetida. It was theorised that due to orlistat’s particularly hydrophobic nature 

and high Kd value then it would have a strong sorption capacity to the soil, to such 

an extent that a fraction of the compound may have become irreversibly bound to the 

soil. Combustion analysis of the orlistat soils was also performed to check this. 

Combustion analysis was performed on a Perkin Elmer 307 Sample Oxidiser. After 

solvent extraction to determine the total extractable residues, the dried soils were 

homogenised into a fine powder. Each soil sample was prepared in triplicate in 

combusto-cones where 300 ± 25 mg of soil was mixed with equal amounts of 

cellulose powder. After combustion consisting of a 1.5 minute burn per sample, the 

14
C carbon dioxide was trapped by a vapour phase reaction with CarboSorb E 

forming carbamate which was mixed with PermaFluor E + a scintialltion cocktail 

ready for counting the radioactivity present on the Liquid Scintillation Counter 

(LSC). Regular spec-checks were performed throughout the analysis to ensure the 

recovery of the samples remained above 95 %. 

E. fetida were extracted by liquid extraction using the same solvents as for the soil 

extractions. Prior to extraction, E. fetida were defrosted, solvent (5 mL) was then 

added to the defrosted samples and the worm/solvent mix was homogenised for 5 

minutes using a LabGen Series 7 homogeniser. The suspension was transferred from 

the beaker to a glass test tube and the beaker was then rinsed with an additional 3 mL 

of solvent which was combined with the suspension to give a total extract volume of 

8 mL. The extracts were centrifuged at 415 g for 30 minutes (CHRIST Rotational 

Vacuum-Concentrator RVC 2-33 CD) and a 1 mL sample of the resulting 

supernatant was then added to 10 mL of EcoScint A.  

Method validation studies showed that average recoveries ranged from 82.8 

(diclofenac) to 100.6 (carbamazepine) % for the soil methods and from 86.3 

(fluoxetine) to 100.9 (carbamazepine and diclofenac) % for the earthworm extraction 

methods. 
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2.3.3.2 Liquid scintillation counting 

Radioactivity in soil pore water and soil and worm extracts were determined using 

Liquid Scintillation Counting (LSC) using a Beckman LS 6500 LSC counter 

(Beckman Coulter Inc., Fullerton, USA). Samples were counted three times for 5 

min. Counts were corrected for background activity by using blank controls. 

Counting efficiency and colour quenching were corrected using the external standard 

ratio method. Measured radioactivity of the pharmaceuticals in the earthworm 

extracts were corrected to account for soil-associated pharmaceuticals present in the 

gut. 

2.3.4 Potential metabolism in Eisenia fetida 

To ascertain whether the radioactivity measured in the earthworm samples was that 

of the parent compound or metabolite/transformation products additional studies 

were performed using cold compounds. Studies were performed at 20 times the soil 

concentration in the original studies to ensure that compounds were able to be 

detected in the worm matrices. Due to analytical limitations, studies to ascertain 

whether any metabolism had occurred in the earthworms were unable to be 

performed with orlistat. 

E. fetida were exposed to unlabelled carbamazepine, diclofenac and fluoxetine for 21 

days (six replicates per compound) under similar conditions to the main uptake 

studies (section 2.3.3), after which they were allowed to purge their guts for 24 hours 

and subsequently frozen (-20
o
C) ready for analysis. E. fetida were then injected with 

a stable isotope (carbamazepine d-10, diclofenac d-4 and fluoxetine d-5) and 

extracted using methods previously outlined in this study (section 2.3.3.1). The 

supernatant from these extractions was taken to dryness under a nitrogen stream and 

reconstituted in 200 µL of methanol:water (50:50 v:v). This was further centrifuged 

at 12000 RPM to sediment any loose particles. Resulting extracts were transferred to 

HPLC vials for analysis. Calibration (six concentrations, three replicates) and quality 

control (Q.C.) samples (three concentrations, six replicates at intermediary 

concentrations between the calibration range) were also prepared in worm matrix for 

each of the respective compounds (Appendix 4 and Appendix 5). 
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2.3.4.1 LC-MS/MS analysis 

Extracts were analysed for the pharmaceuticals by LC-MS/MS using a Dionex 

Ultimate 3000 and Applied Biosystems API 3000. HPLC separation was performed 

with a Symmetry C18 3.5 m, 4.6x75 mm column and Symmetry C18 3.5 mm, 

2.1x10mm guard column (Waters) with a mobile phase flow rate of 1 mL/min. The 

mobile phase composition was aqueous 1 % formic acid (v:v) (mobile phase A) and 

1 % formic acid (v:v) in acetonitrile (mobile phase B) using a gradient program over 

5 min for carbamazepine and fluoxetine and 7.5 min for diclofenac. For 

carbamazepine and fluoxetine the gradient was  0.0-2.5 min 43 % B, 2.5-2.6 min 43-

95 % B, 2.6-3.6 min 95 % B, 3.6-3.7 min 95-43 % B, 3.7-5.0 min 43 % B. For 

diclofenac the relative flow of mobile phase B was 0.0-1.5 min 43 % B, 1.5-4.0 min 

43-80 % B, 4.0-4.2 min 80-95 % B, 4.2-5.5 min 95 % B, 5.5-5.7 min 95-43 % B, 

5.7-7.5 min 43 % B. MS/MS analysis was undertaken using atmospheric pressure 

electrospray ionisation (ESI) in positive ionisation modes, using the turbo ion-spray 

interface. Spray voltage was 5000 V and source collision induced dissociation was in 

positive ESI, with the ESI capillary line maintained at 550C and collision gas (N2) 

pressure set at 6 (additional information on LC-MS/MS methods can be found in 

Appendix 4). 

Qualitative and quantitative analysis of compounds was based on retention time, 

multiple reaction monitoring (MRM) of two product ions and the ratios between the 

product ions. Limits of detection (LOD) were not assessed because sensitivity was 

not an issue with the amount of analyte. Lower limit of quantification (LLOQs) were 

375 ng/mL, 12.5 ng/mL and 150 ng/mL for carbamazepine, diclofenac and 

fluoxetine respectively. 

When LC-MS/MS analysis was unable to detect parent compound in the earthworm 

samples, extracts were subsequently analysed by LC-FTMS (solariX 9.4T, Bruker) 

to look for known metabolites and transformation products of the parent compound 

(Appendix 2). 
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2.3.5 Modelling 

2.3.5.1 Earthworm kinetic modelling 

A first order one-compartment model was used to estimate the uptake and depuration 

rates for each test compound from pore water.  The toxicokinetic model, as described 

in Equation 1, was fitted to measured internal worm concentration data and based on 

principles outlined by Ashauer et al., (2010; 2006). The parameters were estimated 

using the software OpenModel (v 1.2; University of Nottingham, 2008; 

http://www.nottingham.ac.uk/environmental-modelling/OpenModel.htm). The 

model was parameterized using residual sum of squares with the Levenberg-

Marquardt algorithm followed by Monte-Carlo Markov-Chain (MCMC) with the 

results from the Marquardt fit as input values. Confidence intervals were 

characterized by the 95 % percentile of the simulated variables. Pore water derived 

bioconcentration factors were calculated by setting the water concentration to 1 and 

by running the model until equilibrium was reached. Bioconcentration factors and 

their confidence intervals could then be read directly from the internal 

concentrations. The method is described in full in Ashauer et al., (2010; 2006).  

 

dCorganism/dt = kin * Cpw (t) – kout * Corganism (t)  

    

Equation 1

 

Where t is time (hours), kin is the uptake rate constant (L/kg d
-1

), Cpw is the 

concentration in the pore water (nmol/L), kout is the depuration rate constant (d
-1

) and 

Corganism is the concentration in the organism (nmol/kg). 

It is a valid assumption that a large percentage of the uptake into earthworms occurs 

dermally via the pore water based on previous work which has suggested this 

(Belfroid et al., 1995; Jager et al., 2003; Vijver et al., 2003) and hence omission of 

potential direct uptake from soil is justified.  
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2.3.5.2 Modelling dissipation of study compounds in soil 

A simple first-order degradation kinetic model was fitted to the results of the soil 

analysis during the uptake phase. Model parameters were optimized according to 

recommendations by FOCUS (FOCUS, 2006) using the least squares method with 

Microsoft® Excel Add-Inn Solver. Half-lives (DT50, the time for a 50 percent 

decline in the concentration of pharmaceutical) were then calculated using a true 

replicates FOCUS (FOCUS, 2006) spread sheet. 

2.3.5.3 Comparison of data to predictive models 

Models exist to predict environmental exposure scenarios such as those outlined in 

the Technical Guidance Document (TGD) on Risk Assessment (Part 2) (Equation 2). 

Pore water concentrations obtained in this study were compared to estimated 

concentrations (PECpw), calculated using sorption coefficients (Kd) for the selected 

pharmaceuticals (Table 2.2) based on equations outlined in the TGD (Equation 2). 

BCFs obtained in this study were compared to estimated BCFs using models 

outlined in Belfroid et al., (1993) and Jager, (1998) to evaluate the current models 

used in risk assessment. 

 

PECpw = (PECsoil*RHOsoil)/(Kd*1000)    Equation 2 

 

Where PECpw (mg/L) is the predicted environmental concentration in the pore water, 

PECsoil (mg/kg) is the concentration in the test soil, RHOsoil is the bulk density of the 

soil (kg/m
-3

) and Kd is the soil sorption distribution coefficient for each 

pharmaceutical in the test soil (L/kg). 
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2.3.6 Statistical analysis 

Statistical analysis of the data was performed using SigmaPlot (v. 12). For each 

compound, data on burrowing times and percentage weight gain from the toxicity 

study were first tested for normality using a Shapiro-Wilk test and then for equal 

variance. If these passed then a one-way ANOVA was performed to assess the 

differences in the values among the treatment groups. Where normality failed, 

analysis of variance was performed using a Kruskal Wallis analysis on ranks. 

Differences between the measured and predicted pore water concentrations were first 

tested for normality using a Shapiro–Wilk test, as normality failed for each 

pharmaceutical the difference between measured and predicted values was then 

evaluated by a Mann–Whitney U Rank test. The relative accuracy of the estimated 

results was estimated by calculating proportional deviation from the measured to the 

estimated value.  

2.4 Results and discussion  

2.4.1 Sorption of study pharmaceuticals to test soil 

Sorption coefficients (Kd) for the study pharmaceuticals increased in the order of 

carbamazepine < diclofenac < fluoxetine < orlistat (Table 2.2). Whilst the sorption of 

a pharmaceutical can vary considerably depending upon the soil type (Tolls, 2001) 

the values for carbamazepine, diclofenac and fluoxetine all fall within the ranges 

previously reported in scientific literature (Barron et al., 2009; Drillia et al., 2005; 

Kwon and Armbrust, 2008; Xu et al., 2009c). The results suggest that orlistat has a 

particularly strong sorption capacity to the soil. This may be due its particularly 

hydrophobic nature and the presence of a large clay fraction in the soil which has a 

high sorption capacity due to its small size and large surface area (McGechan and 

Lewis, 2002). 
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Table 2.2 Sorption of test pharmaceuticals to study soil (mean value provided ± standard deviation, n = 6). 

Pharmaceutical Distribution coefficient (Kd) 

(L/kg)
a
 

Carbamazepine 4.83 ± 0.68 

Diclofenac 28.65 ± 3.27 

Fluoxetine 608.42 ± 87.57 

Orlistat 1493.98 ± 92.01 

a Kd values were determined experimentally following OECD 106. 

2.4.2 Toxicity of study pharmaceuticals to Eisenia fetida  

No mortality was observed in any of the toxicity experiments. There were no 

significant differences in the burrowing times of E. fetida for each of the 

pharmaceutical treatments (x 10 and x 100) in comparison to the blank and solvent 

controls (F<0.709, d.f. = 3, p > 0.05). More than 90 % of earthworms burrowed 

beneath the soil within 10 minutes of being placed on the surface. Over the test 

period, the masses of E. fetida increased, however there was no significant difference 

in the growth rate of E. fetida exposed to pharmaceutical treated soils or to control 

soils (for carbamazepine and fluoxetine [F<2.323, d.f. = 3, p>0.05]) (for diclofenac 

and orlistat [H<4.610, d.f. = 3, p>0.05]). No unusual earthworm behaviour (e.g. 

coming to the soil surface, stiffening or curling into a ball) or physiological 

differences (e.g. surface lesions) were noted for any of pharmaceutical exposed 

worms. It was therefore concluded that as no visible effect on the earthworm 

behaviour was seen at 100 x the proposed test concentrations, uptake and depuration 

would unlikely be affected by toxic effects of the study compounds.  

There is relatively little research on pharmaceutical toxicity to earthworms, previous 

studies have observed no E. fetida mortality after exposure to tetracyclines at 

environmentally relevant concentrations (Qi et al., 2005) similar to the results from 

this study. However, exposure to chlorotetracycline and tetracycline has induced 

changes in biochemical markers including serious DNA damage to coelomocytes 

and enzyme activities in earthworms (Dong et al., 2012). As pharmaceutical toxicity 

was not evaluated on a biochemical scale in this study further research could 
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investigate if similar effects are observed with human pharmaceuticals comparable to 

what has been observed with tetracyclines. 

2.4.3 Uptake and depuration of pharmaceuticals in Eisenia fetida 

2.4.3.1 Main trends in soil and pore water data from uptake phase  

For all of the pharmaceuticals, throughout the exposure phase, there was a decrease 

in radioactivity in the soil followed by an increase in uptake by E. fetida. Only small 

amounts of radioactivity were unable to be recovered from the test soil in the worm 

free exposure (> 94 % recovery) for carbamazepine, fluoxetine and orlistat. Thus E. 

fetida were consistently exposed to similar concentrations of the pharmaceuticals 

throughout the exposure phase. For diclofenac < 65 % of the radioactivity could be 

recovered using a combination of solvent extraction and soil combustion after 21 

days (see discussion below). 

The amount of radioactivity measured in the carbamazepine study decreased slightly 

in the pore water over the period of uptake phase which can probably be explained 

by the decrease in radioactivity extracted from the soil over 21 days (Figure 2.3). 

Only in the fluoxetine study was an increase in radioactivity measured in the pore 

water over the uptake phase (Figure 2.4). By the end of the uptake phase, in the pore 

water, only 50 % of the original radioactivity was measured in the orlistat study 

possibly due to the strong sorption of orlistat to the soil or uptake into E. fetida. In 

terms of concentration, carbamazepine had the highest concentration in the pore 

water which can explain the initial rapid uptake in the earthworms whilst the slow 

uptake of orlistat could potentially be explained by the lowest concentration in the 

pore water suggesting that this compound was not bioavailable. 

2.4.3.2 Pharmaceutical degradation 

Apart from in the diclofenac study, the dissipation of radioactivity from the test soil 

was modelled using single first order kinetics (Appendix 3). The soil data fit well 

according to single first order kinetics with Chi square values all below the accepted 

level (Table 2.3). The half-lives (DT50) in the carbamazepine and fluoxetine studies 

would suggest these are the most stable compounds which is in agreement to 
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previous work where little to no degradation of carbamazepine and fluoxetine was 

observed with half-lives > 60 days (Monteiro and Boxall, 2010, 2009; Redshaw et 

al., 2008a). Previous research has shown that, depending on soil type, the half-life 

for diclofenac can range from 3.07 up to 20.44 days (Xu et al., 2009c). Regression 

has shown that diclofenac degradation rate constants are negatively correlated with 

soil clay content (Xu et al., 2009c). The test soil being of a particularly clayey nature 

may explain the larger DT50 values in this study (Table 2.3) due to less diclofenac 

degradation in comparison to previous work. Orlistat had a half-life of 48 days 

(11497 hours) which is the lowest of all the pharmaceuticals 

2.4.3.3 Uptake and depuration of pharmaceuticals in Eisenia fetida 

E. fetida were seen to take up all of the study compounds (Figure 2.3) but the degree 

and pattern of uptake into the worm was different for all of the compounds. 

Measured radioactivity in the carbamazepine study increased over the first 160 hours 

(~ 7 d) of exposure after which time it declined, possibly due to the observed 

dissipation of the radioactivity in the soil and soil pore water (Figure 2.3). Similarly, 

in the fluoxetine study measurements of radioactivity in the E. fetida tissue increased 

over the first 160 hours (~ 7 d) of the exposure phase and then appeared to reach a 

steady state (Figure 2.3). For diclofenac and orlistat, measurements of radioactivity 

continuously increased and did not appear to have reached a steady state by the end 

of the uptake phase (Figure 2.3). 



 

 

Table 2.3 Summary of key results from uptake and depuration experiment, including pH range of soil throughout each exposure (± standard deviation), the time taken for 50 and 90 % 

degradation of the pharmaceuticals in soil according to FOCUS modelling and the modelled E. fetida uptake and depuration rates including the pore water based BCF (BCF provided with 95 % 

confidence intervals in brackets, n = 3). Diclofenac soil concentrations could not be modelled. 

Pharmaceutical  pH  Kinetics χ2 DT50 (d) DT90 (d) k
in

  

(uptake rate)  

(L/kg d
-1

)  

k
out

  

(depuration 

rate) (d
-1

)  

BCF  

(pore water) 

Carbamazepine  6.3 ± 0.2 First order 2.0 68 226 0.24 0.14 2.21 (1.3 – 3.5) 

Diclofenac  6.2 ± 0.1 N/A N/A N/A N/A 0.036 0.0021  21.5 (13.9 – 30.6) 

Fluoxetine  6.3 ± 0.2 First order 5.1 66 220 1.11 0.047 30.8 (25.4 – 35.8) 

Orlistat  6.2 ± 0.2 First order 6.4 48 159 0.071 0.0016  51.5 (40.0 – 65.3) 

7
0
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As soon as the depuration phase began, E. fetida immediately eliminated all of the 

pharmaceuticals from the earthworm tissue as measurement of radioactivity in the 

samples decreased. For carbamazepine and fluoxetine this was fairly rapid with 

complete elimination by day 3 and 7 of the depuration phase respectfully. 

Elimination in the diclofenac study was also fairly rapid at the start, it was not 

completely eliminated from the earthworm by 21 days with < 20 % of the 

radioactivity remaining in the tissue. Orlistat was eliminated the slowest from E. 

fetida with modelled depuration rates of 0.0016 d
-1

. By the end of the depuration 

phase > 60 % of the radioactivity taken up in the orlistat study remained in the 

earthworm. 

The first order, one compartment model, based on pore water measurements, was 

successfully fitted to the uptake and depuration data for all four study compounds 

(Figure 2.3 A-D). Uptake rates and depuration rates are provided in Table 2.3. The 

pore water-based BCFs obtained from the model increased in the order of 

carbamazepine < diclofenac < fluoxetine < orlistat. The relatively large BCF of 

51.53 for orlistat can be attributed to the minimal elimination of this compound from 

the earthworm in the depuration phase whilst for carbamazepine the fast elimination 

of 0.14 d
-1 

is accountable for the smaller BCF of 2.21. The BCFs increase in a 

similar order to the increase in log Kow values for the respective compounds perhaps 

inferring that the degree of hydrophobicity plays a key role in the uptake of 

pharmaceuticals from soils. 

In comparison to aquatic BCFs for pharmaceuticals published in scientific literature, 

earthworms seem to have lower BCF values. For fluoxetine and diclofenac aquatic 

BCFs have been reported at values much larger than calculated for the earthworms 

(Brown et al., 2007; Lahti et al., 2011; Paterson and Metcalfe, 2008; Schwaiger et 

al., 2004; Zhang et al., 2010) with BCFs reported up to 185 900 for fluoxetine in the 

fresh water shrimp (Gammarus pulex) (Meredith-Williams et al., 2012) which is 

over 6000 times greater than the BCF generated for earthworms. Aquatic BCFs for 

carbamazepine are similar to the BCF of 2.21 obtained in this study (Lahti et al., 

2011; Meredith-Williams et al., 2012; Zhang et al., 2010) with results from 

Vernouillet et al., (2010) showing that algae (Psuedokirchneriella subcapita) has a 

BCF of 2.2 which is remarkably similar. 
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A) 

 

 

B) 

 

C) 

 

D) 

 

Figure 2.3 Uptake and depuration curves for Eisenia fetida exposed to A) carbamazepine, B) diclofenac, C) 

fluoxetine, and D) orlistat. Mean (n = 3  SE) measured concentrations in the worm are represented by the circles 

and the data lines represent the first order model fit. Mean Concentrations (n = 3  SE) in the soil and soil pore 

water are represented by the open and closed triangles respectively. 

 

Biological attributes such as species size, number of segments, feeding habits and 

reproduction may play a key role in uptake and bioconcentration of pharmaceuticals. 

Previous work has suggested that an increase in organism size corresponds to a 

decrease in BCF (Hendriks et al., 2001), and whilst this is true for p, p’ – DDE as 

bioaccumulation in the smaller E. fetida was < 6 times higher than in Lumbricus 

terrestris (Peters et al., 2007), pharmaceutical uptake into different earthworm 

species has not yet been evaluated to explore this concept further. In comparison to 
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fish species which are larger than E. fetida this relationship does not follow as has 

previously been shown fish BCFs for pharmaceuticals tend to be higher than BCFs 

observed in this study. Mercury accumulation in earthworms has demonstrated that 

species length and age is important in chemicals assimilating in tissues with 

decreased mercury contents following increased growth and development (Zhang et 

al., 2009). In the aquatic environment a positive relationship between lipid content 

and bioconcentration of chemicals has also been suggested (Barron, 1990; Hendriks 

et al., 2001; Schlechtriem et al., 2012). This would suggest differences in 

accumulation of pharmaceuticals in earthworms as lipid contents can range between 

1 – 20 % (Dynes, 2003).  

2.4.3.4 Mass balance results 

A mass balance was performed to account for the radioactivity present in the 

experiment, using measurements in E. fetida, soil and pore water samples. At the end 

of the exposure phase > 89 % of the compound was recovered for carbamazepine, 

fluoxetine and orlistat. While soil data demonstrated dissipation of orlistat in the 

exposure phase, the soil combustion data confirms this is not due to mineralisation 

but instead due to the formation of bound residues. However for diclofenac, whilst 

combustion data showed some recovery of non extractable residues by the end of the 

uptake phase only 52 % of the initially applied compound could be recovered, 

suggesting perhaps a loss of 
14

C - carbon dioxide released via mineralisation. 

Formations of non-extractable residues in soils have been investigated since 1980’s 

(Calderbank, 1989)  however very little work has explored pharmaceutical bound 

residues in soil (Kreuzig and Höltge, 2005; Kreuzig et al., 2003). Specifically, the 

persistent nature of 
14

C sulfadiazine was shown in work by Kreuzig and Höltge 

(Kreuzig and Höltge, 2005) where only 1 % of the radiotracer was mineralized 

to 
14

C-carbon dioxide and 82 % was transferred to non-extractable residues after 102 

days. A pharmaceutical which may be irreversibly sorbed to soil may remain bio-

available for uptake by soil organisms. Uptake of bound residues into earthworms 

was observed with pesticides however tissue to soil ratios were 2−10 times higher in 

soils with freshly spiked pesticides compared to soils containing previously non-

extractable residues for the same compounds (Gevao et al., 2001). 
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2.4.4 Metabolism 

A number of studies have reported the detection of metabolites and transformation 

products of the pharmaceutical parent compound in aquatic organisms (Lahti et al., 

2011; Paterson and Metcalfe, 2008). Little information is known about 

biotransformtion of pharmaceuticals in terrestrial organisms. 

Both carbamazepine and fluoxetine were detected in the worm tissue at 

concentrations slightly greater than expected and thus we can assume that what was 

measured in the radiolabelled studies was the parent compound. Diclofenac was not 

detected (Table 2.4). A literature search was then performed to identify known 

diclofenac metabolites and transformation products (Appendix 2). Diclofenac worm 

extracts were subsequently analysed using LC-FTMS (solariX 9.4T, Bruker) to look 

for known diclofenac metabolites and transformation products collated from 

literature sources. However no valid matches were made. The measured radioactivity 

in the diclofenac study and subsequent BCFs therefore refer to diclofenac parent 

compound and any potential transformation products. 

Table 2.4 Analyte detection in earthworm samples (n =6). 

Compound Soil spike 

(mg/kg - 

nominal) 

BSAF Expected 

(ng/g) 

Average 

measured (ng/g) 

(± standard 

deviation) 

Carbamazepine 0.78 0.33 260 491.16 (± 18.52) 

Diclofenac 0.8 0.57 456 < LOQ 

Fluoxetine 1.6 0.29 466 802.98 (± 97.77) 

 

2.4.5 Evaluation of existing predictive models 

2.4.5.1 Pore water concentrations 

Pore water concentrations of pharmaceuticals throughout the uptake and depuration 

phase were estimated (Equation 2) and compared to the measured values obtained in 
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the study. For fluoxetine and orlistat, which had the highest Kd values, pore water 

concentrations were significantly under estimated (U = 699, P = 0.012; U = 654, P = 

0.004 respectfully) in comparison to the measured data (Figure 2.4 C, D). For 

carbamazepine and diclofenac, which were less strongly sorbed to the soil, the 

estimated pore water concentrations were closer to the measured data but slightly 

overestimated with carbamazepine statistically different (U = 761, P = 0.043) whilst 

there was no significant difference for diclofenac (U = 755, P = 0.076). As there was 

a statistically significant difference between the measured and estimated data for a 

large proportion of the pharmaceuticals this infers that parameters other than the soil 

distribution coefficient (Kd) are important in estimating pore water concentrations. 

Alternatively, the results may also imply that batch sorption tests are not an 

appropriate way to calculate sorption coefficients (Kd) as it does not accurately 

stimulate the micro-environments of real soils. The inaccuracies of the Kd calculation 

may therefore be limiting the prediction of pore water concentrations. Nevertheless, 

the results show that the predicted environmental concentration in pore water for 

modelling purposes outlined the TGD may not be appropriate for pharmaceuticals. 
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A) 

 

B) 

 

C) 

 

D) 

 

Figure 2.4 Comparison between measured pore water concentrations obtained from the uptake and depuration 

experiment and estimated pore water concentrations based on Kd values calculated for each pharmaceutical for 

A) carbamazepine, B) diclofenac, C) fluoxetine, D) orlistat. The closed and open diamonds represent measured 

concentrations and estimated concentrations respectfully. 

 

2.4.5.2 Bioconcentration factors 

The QSARs generally overestimated the pore water BCFs, particularly for orlistat 

where the measured BCF was up to 6000 times higher than the estimated value 

(Figure 2.5). There are a number of possible explanations for the lower than 

predicted BCF for orlistat. This may be because of the molecular weight cut off 

which is generally seen for compounds with a high log Kow. According to REACH 

guidelines at log Kow values between 4 and 5, log BCF increases linearly with log 

Kow, however at very high log Kow (< 6) a decreasing relationship between these two 

parameters is observed and reduced uptake due to molecular size may be 
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attributable. The QSARs do not represent true earthworm uptake, orlistat uptake into 

E. fetida may also be inhibited perhaps through irreversibly bound fractions and non-

available residues in the pore water. Whilst previous work suggests that uptake 

across the gut wall is important for compounds with a log Kow greater than 5 the 

particularly large log Kow for orlistat may actually mean that the compound is so 

strongly bound to the soil that it is unable to desorb and enter the earthworm. 

Combustion results from this study and additional research (Ryan, 2013) has 

demonstrated appreciable degradation (DT50 2.4 – 23.2 d), mineralisation and 

significant irreversibly bound residues (27.16 % [21 d]) of orlistat which supports 

the idea that the total applied orlistat concentration is not available for uptake. It 

should be noted however that both of the QSARs were not developed specifically to 

predict pharmaceutical uptake, and therefore may have limited use. The QSAR by 

Belfroid (1993) had a limited log Kow window (4.2 – 5.7 which was later 

extrapolated to 2 -7) and was developed for specifically for neutral compounds. 

 

Figure 2.5 Comparison between earthworm BCFs obtained from the model in this study (white), predictions 

from the QSAR described in Belfroid et al., 1993 (grey) and predictions from the QSAR in the TGD based on 

Jager, 1998 (black) for carbamazepine (CBZ), diclofenac (DCF), fluoxetine (FLX) and orlistat (ORL). 

 

These results suggest that there may be other descriptors or parameters which may 

be important in predicting the uptake of pharmaceuticals into earthworms, but most 

importantly the discrepancies between the estimated BCFs and those from the 

measured data highlight that the current QSARs are not applicable and new 
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estimation methods for predicting pharmaceutical uptake into earthworms are needed 

for future risk assessment. Approaches which consider the ionised state of the 

molecule are integral in obtaining realistic BCFs and might improve predictions of 

earthworm BCFs for pharmaceuticals. For chemicals in the neutral form, uptake is 

predicted to be higher while the bioavailability of ionised molecules will be 

dependent on the pH of the surrounding medium. Models which explore ionisation 

include the work by Lo and Hayton, (1981) and Erickson et al., (2006) and the cell 

model (Trapp, 2004). Specifically the cell model uses Fick’s first law of diffusion for 

the neutral molecules and Nernst-Planck equation for the ionisable fraction of 

molecules to predict the movement, by diffusion, of molecules in a living cell. This 

model includes principles of the ion trap effect and assumes only the freely dissolved 

molecules in the cell can undergo diffusion and when the end point of diffusion (net 

flux is zero) has been reached this is known as equilibrium. The equilibrium 

concentration ratio between the inside and outside of the cell can currently be used to 

predict fish BCFs and with further research could be adapted to predict accurate 

earthworm BCFs. 

2.5 Conclusions 

The work presented here demonstrates that pharmaceuticals present in soils at 

environmentally relevant concentrations can be taken up by the earthworm Eisenia 

fetida. A relatively simple one compartment first order model can fit the uptake into 

E. fetida based on the assumption that uptake into the worm occurs via the pore 

water. Carbamazepine and fluoxetine do not appear to be metabolised in the current 

studies and therefore for the remaining thesis, uptake of radioactivity of these 

compounds is assumed to be parent compound. For diclofenac metabolism does 

seem to occur, however this could not be characterised as a specific transformation 

product. Therefore the radioactivity measured in the diclofenac study will refer to 

that of the parent compound and potential transformation products. Current QSAR 

estimation techniques to predict bioconcentration factors in earthworms, for the large 

part, overestimate BCFs. The results suggest that the uptake of highly hydrophobic 

compounds such as orlistat does not scale according to log Kow, implying a cut off 

point for a linear relationship between Kow and BCF above which increasing log Kow 

value does not appear to correlate with elevated bioconcentration. Even the higher 
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BCFs noted in this study are nonetheless quite low in absolute terms of plant and 

animal uptake.  

Additional research is needed to establish the influence that soil parameters (e.g. pH, 

organic matter content) and species traits have on the uptake of pharmaceuticals into 

soil invertebrates. However studies described in this chapter are highly labour 

intensive. To explore the effects of environmental and species traits on uptake would 

be challenging using the methods. Therefore, in the next chapter, the use of a 

minimised approach is explored. 
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Chapter 3 Applicability of the Minimised Design Approach 

for Assessing Bioconcentration in Invertebrates 

3.1 Introduction 

Concern about bioconcentration, bioaccumulation and biomagnification of synthetic 

chemicals in biota has led to the establishment of bioconcentration tests, guidelines 

and assessment criteria (OECD 305 (OECD, 2012)). A bioconcentration factor 

(BCF) is a useful metric for the scientific evaluation of the risks of chemicals 

(pesticides, biocides, veterinary medicines, pharmaceuticals and industrial 

chemicals) in the environment (e.g. REACH). BCFs are typically compared to a 

threshold to determine whether there is a risk of bioaccumulation or not.  

Bioconcentration studies generally consist of an uptake phase where test organisms 

are exposed to a chemical followed by a depuration (or elimination) phase where 

organisms are transferred to clean exposure medium free from chemical 

contamination, the concentration of the chemical in the organism at different time 

points in both phases is monitored (Figure 3.1). An example of such an approach can 

be found in Chapter 2. 

 

 

 

 

 

 

 

Figure 3.1 Schematic of an uptake and depuration experiment and comparison of sampling points between 

traditional designs (black lines) and minimised design (red line). Where k1 and k2 are the uptake and depuration 

rates respectively and Ct1 and Ct2 are the concentrations in organism measured at the end of uptake and end of 

depuration respectively. 
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Experimentally determined BCFs can be derived using a ratio of measured internal 

concentration and exposure medium concentration when steady state concentrations 

have been reached in the test organism. When steady state has not been achieved, 

measured data can be modelled to determine uptake and depuration rate constants 

and subsequently BCFs (sometimes termed kinetic BCFs) can be calculated from 

these. A full explanation of tokicokinetic modelling and BCF calculation can be 

found in Chapter 2 (section 2.3.5). 

Generally, bioconcentration studies following OECD guidelines require a substantial 

amount of laboratory effort due to the degree of replication that is needed and the 

sampling frequency during the uptake and depuration phases. For example, terrestrial 

invertebrate bioconcentration guidelines, such as those used in Chapter 2 suggest that 

earthworms should be sampled in triplicate a minimum of six times during both the 

uptake and depuration phases (OECD, 2010). For aquatic invertebrates the total 

number of species used in published uptake and depuration study ranges between 33 

- 98 (Ashauer et al., 2010; Karlsson, 2013; Meredith-Williams et al., 2012; Rubach 

et al., 2010) while original fish bioconcentration tests suggest a minimum of four 

fish to be sampled at least five times during uptake and four times during depuration 

(OECD, 1996). The rigour of the current guidelines means that large numbers of 

animals are required and that labour and analytical resources are costly. The 

magnitude of the tests may also be inhibiting our understanding of the factors and 

processes affecting uptake of chemicals in the environment as it almost physically 

impossible to perform large multi-factor uptake studies into chemical uptake using 

existing guidelines. 

Recognising the labour intensity of BCF studies for fish, Springer and colleagues 

(2008) proposed a new minimised test design for the OECD 305 (OECD, 1996) and 

U.S. EPA (850.1730) test guidelines for fish. This design aimed to estimate BCF 

using the kinetic definition (BCFminimised) (uptake rate constant/depuration rate 

constant) which meant that steady state tissue concentrations did not need to be 

achieved. However both uptake and depuration must follow first order kinetics. The 

proposed design requires that test organisms are collected and analysed only once at 

the end of the uptake phase/beginning of depuration (Ct1) and once at the end of the 

depuration period (Ct2). Water samples are also required on a regular basis 
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throughout the uptake period (Cw/Cpw) to calculate an average exposure medium 

concentration. Using simple algebraic expressions (Equation 3 and Equation 4) 

uptake and depuration rate constants and BCFs can then be estimated. 

k2 = (ln Ct1
 – ln Ct2

)/td     

   

Equation 3 

Where t1
 and t2 are the beginning and end of the depuration period, respectively. The 

uptake rate constant (k1) is then calculated based on the depuration rate constant (k2) 

generated from Equation 3. 

k1 = k2 * Ct1
/Cw/pw (1- e-

k
2
t
u)  

     

Equation 4 

Where k2 is depuration rate constant, the mean concentration of the test substance in 

the medium during exposure phase is Cw or Cpw and tu and td the length of uptake and 

depuration periods. Lastly a kinetic BCF from minimised design (BCFminimised) can 

be calculated by dividing the uptake rate by the depuration rate (Equation 5). See 

Table 3.1 for a full explanation of parameters used. 

BCFminimised = k1/k2    

     

Equation 5 

 

Springer et al., (2008) showed that this design uses significantly fewer animals and 

resources, yet still provides useful BCF estimates. Since this publication a new 

approach has been adopted for the fish BCF test guideline (OECD 305,(2012)) 

which utilises fewer fish for both cost and animal welfare reasons. Some of the key 

changes include only using one test concentration (when the BCF is independent of 

the test concentration) and, if specific criteria are met then a minimised aqueous 

exposure test design could be used. This minimised aqueous exposure design is 

similar to that proposed by Springer et al., (2008) in that it allows for reduced fish 

sampling in the uptake and depuration phases and reduced exposure medium 

sampling. These changes in the guidelines indicate that regulatory agencies are 

recognising there is a need to change experimental designs to reduce organism 

usage. 
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Table 3.1 Parameters and definitions for minimised design equations. 

Parameter Definition Units 

k1 Uptake rate L/kg d
-1

 

k2 Depuration rate d
-1

 

Ct1 Concentration in organism at end of uptake mg/kg 

Ct2 Concentration in organism at end of depuration mg/kg 

Cw or Cpw Mean concentration of exposure medium during uptake phase mg/L 

td Length of depuration phase d 

tu Length of uptake phase d 

BCF Bioconcentration factor L/kg 

 

While the minimised approach has been shown to be valid for fish, to date no-one 

has explored its wider applicability to other taxonomic groups. Therefore, this study 

was performed to assess the applicability of the minimised design for estimating 

BCFs in terrestrial and aquatic invertebrates. The study used existing datasets, 

published by a number of authors, on the uptake of a wide variety of pesticides and 

pharmaceutical compounds into different aquatic and terrestrial invertebrates to 

evaluate whether the minimised approach could generate reasonable estimates for 

rate constants and BCFs. The results were used to develop general guidance on the 

application of the approach. 

3.2 Materials and Methods 

3.2.1 Collation of uptake and depuration data 

Datasets from a number of BCF studies were collated. The studies included different 

periods of uptake and depuration and different chemical classes. A summary of data 

collated is provided in Table 3.2. Studies were chosen specifically to provide a range 

of invertebrate species whilst also including a range of compounds with differing 

physico-chemical properties and modes of toxic action and different test matrices 

(Table 3.2, Appendix 6). For example, the log Kow values of the chemicals in the 
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data set ranged from -0.81 to 8.19 and the dataset covered neutral compounds, weak 

acids and weak bases. Raw data from these previous studies was obtained, including 

measured internal concentrations and measured exposure medium concentrations for 

the duration of the experiments. 

All of the studies used a one compartment first-order toxicokinetic model to simulate 

the internal concentrations in the organisms using the measured concentrations of the 

test chemicals in the exposure medium as the driving variable. The aquatic studies 

consisted of a water only exposure and therefore the exposure medium was Cw. For 

terrestrial species, uptake was assumed to come from the pore water (Cpw). First 

order toxicokinetic model equations are described further in Chapter 2 (2.3.5). The 

estimated BCFtraditional (based on the full uptake and depuration studies) for the 

chemicals used in the studies ranged from 0.132 to 700 900 (Appendix 6). 

3.2.2 Estimation of rate constants and BCFs using the minimised 

approach 

Measured internal concentrations of chemicals in organisms from the last day of 

uptake and last day of depuration, for each study, were taken from the datasets along 

with measured data on concentrations of the study compound in the test media 

during the uptake phase (water or pore water). These data were then used in 

Equation 3 and Equation 4 to re-estimate the uptake and depuration constants and 

then BCFminimised values. BCFminimised values were subsequently compared to those 

previously published in the literature sources (BCFtraditional) to assess the applicability 

of the minimised design to estimate BCFs in a range of invertebrate species. 

It should be noted in the Springer approach (2008), 28 d was used for tu and td was 

14 d. If the original study consisted of different time periods then measurements 

were rescaled and interpolated from reported measurement to provide the 28 d and 

14 d measurements respectively. For the purposes of recalculating BCFs, in this 

study, the length of the uptake and depuration phases remained as they were in the 

original experiment (Table 3.2). This is an important difference, because it allowed 

us to test if the minimised design method is also applicable when much shorter 

experiments are used. 



 

 

 

Table 3.2 Summary of data collated on published BCFs (more detaile d table can be found in Appendix 6). 

 

 

  

Test species Chemicals tested Number of 

studies 

log Kow rangea Uptake period (tu) 

(days) 

Depuration period 

(td) (days) 

BCF range 

Gammarus pulex Beta-blocker, anti-cancer, anti-epileptic, 

sedative, anti-depressant, insecticide, fungicide, 

herbicide, biocide, algaecide 

25 (-0.81) - 5.31 < 2 < 6  1.64 - 185 900 

Anax imperator      Insecticide 1 4.96 2 5 100 

Asellus aquaticus      Insecticide 1 4.96 2 5 3242 

Chaoborus obscuripes      Insecticide 1 4.96 2 5 2428 

Cloeon dipterum      Insecticide 1 4.96 2 5 1782 

Daphnia magna      Insecticide 1 4.96 2 5 541 

Molanna angustata Insecticide 1 4.96 2 5 5331 

Neocaridina 

denticulata      

Insecticide 1 4.96 2 5 1291 

Notonecta maculata Insecticide 1 4.96 2 5 407 

paraponyx stratiotata Insecticide 1 4.96 2 5 1601 

Plea minutissima      Insecticide 1 4.96 2 5 654 

Procambarus sp. Insecticide 2 4.96 2 5 280 - 1295 

8
5
 



 

 

 

Table 3.2 Continued 

Test species Chemicals tested Number 

of studies 

log Kow rangea Uptake period (tu) 

(days) 

Depuration 

period (td) (days) 

BCF range 

Ranatra 

linearis 

Insecticide 1 4.96 2 5 392 

Culex pipens Insecticide 1 4.96 2 5 13930 

Sialis lutaria Insecticide 1 4.96 2 5 9625 

Planorbarius 

corneus 

Beta-blocker 1 3.05 3 3 57.3 

Notonecta 

glauca 

Beta-blocker, anti-cancer, anti-epileptic, sedative, 

anti-depressant 

6 (-0.81) - 4.65 2 2 0.13 - 1.60 

Lumbriculus 

variegatus 

Anti-epileptic, NSAIDb, anti-depressant, stimulant, 

antimicrobial, antibiotic 

17 (-0.02) - 5.42 2 2 1 - 700 900 

Eisenia fetida Anti-epileptic, NSAIDb, anti-depressant, weight 

loss aid 

4 2.25 - 8.19 21 21 1.14 – 63.03 

a 
Log Kow as reported in publications (specific log Kow for chlorpyrifos not provided therefore Bowman and Sans (1983) reference used).  

b 
NSAID – Non-steroidal anti-inflammatory drug. 

 

8
6
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3.2.3 Statistical analysis 

The (log) BCFtraditional and the (log) BCFminimised were plotted against each other in a 

correlation plot (Figure 3.2) and linear regression was used to test if the slope and 

intercept were significantly different from 0. As both X (log BCFminimised) and Y (log 

BCFtraditional) were subject to error, linear regression was fit as a Deming (or Model 

II) regression. The null hypothesis (Ho) was that the slope is equal to zero whilst the 

alternative hypothesis (Ha) was that the slope is significantly different to zero. It also 

tested to see if the slope was significantly different from 1 (i.e. if confidence interval 

of slope includes 1), because a slope of 1 indicates perfect correlation between the 

two methods. Separate correlations were also made between the uptake (k1traditional/ 

k1minimised) and depuration rate (k2traditional/ k2minimised) constants as well as individual 

data sets used in the analysis using Deming regression. 

3.3 Discussion and Results 

3.3.1 Uptake and elimination rates 

For both the uptake rate constants and the elimination rate constants, regressions 

between the minimised approach and original data do not correlate particularly well 

and deviated from the 1:1 line (Figure 3.2). In both the uptake and depuration rate 

correlations the regression line was significantly non zero (p < 0. 0001) however the 

slope was closer to 1 in the uptake rate figure (95 % confidence interval: 1.053 – 

1.383; Figure 3.2) than the depuration rate figure (95 % confidence interval: 1.662 – 

2.881;Figure 3.2). Therefore there was a better regression between uptake rate 

correlation (k1) than depuration rate correlation (k2). 

Greater deviation around the regression and 1:1 line was most evident for the lower 

values of uptake and depuration rates in comparison to the larger values. There was 

less error around the larger rate constants. Interestingly the uptake rate data points 

for Karlsson, 2013 data set were always below the 1:1 line but in a linear fashion in 

comparison to the remaining data which were more scattered. The k1traditional appear 
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to be consistently underestimated by the constant amount however this does not 

occur in the k2 figure. 

In comparison, a greater proportion of the data points were above the 1:1 line for the 

Ashauer et al., data set (2007, 2006; 2010), this is particularly evident with the 

depuration rates. A lack of relationship between depuration rates is important as it 

can influence the time to reach steady state calculations. In this analysis, G. pulex 

exposure to 4-nitrobenzyl-chloride resulted in depuration rates of 3.16 d
-1 

 and 

0.0432 d
-1 

for the original and minimised calculations respectively which 

corresponds to either 3 or 0.41 days to reach steady state within the organism. The 

minimised approach may therefore not generate data applicable for use in 

toxicokinetic-toxicodynamic modelling. 

3.3.2 Bioconcentration factors 

BCFs were unable to be estimated using the minimised approach when the 

concentration in the organism at the end of depuration phase was greater than 

internal concentration measured at the end of the uptake phase. This occurred in a 

few studies, particularly where the BCFtraditional was very high e.g. triclosan (Table 

3.2) (Appendix 7). In total 60 BCF values could be used from the BCFtraditional and 

compared to BCFminimised estimates. 

Deming regression analysis demonstrated a statistically significant correlation 

between BCF values obtained using the traditional and minimised approaches 

(Figure 3.2). The slope of the regression line was significantly non zero (p = < 

0.0001) and the hypothesis that the slope is equal to 1 was not rejected (slope: 0.99, 

95 % confidence interval: 0.91 – 1.07) therefore suggesting there is a significant 

linear relationship between the two variables (Figure 3.2). The intercept of the 

regression was also close to zero (intercept: -0.32, 95 % confidence interval: -0.77 – 

0.13). Thus the BCFminimised estimates are in agreement with the BCFtraditional values 

and there were no systematic and no proportional differences between the two 

methods. Specifically, 98 % (96 %; 65 %) of the minimised design BCF values fall 

within a factor of 10 (factor 5; factor 2) of the BCFtraditional values (Figure 3.2). As 
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previously discussed, there was a weak correlation between the uptake and 

elimination rate constants generated by the minimised design and the original data. 

However this is interesting as it appears the respective inaccuracies of the k1minimised 

and k2minimised appear to compensate each other to calculate accurate BCFminimised 

values. 

A)                                                                 B)                   

 

C) 

 

Figure 3.2 (A) Regression between uptake rate (k1) from minimised design and k1 provided in literature. (B) 

Regression between depuration rate (k2) from minimised design and k2 provided in literature. (C) Relationship 

between log BCFminimised estimates from the minimised design and log BCFtraditional obtained from the literature. 

Data include Ashauer et al., 2006 (  ); Ashauer et al., 2007 (  ); Ashauer et al., 2010 (  ); Rubach et al., 2010 (  ); 

Meredith – Williams et al., 2012 (  ); Karlsson et al., 2013 (  ) and Chapter 2 (this thesis) (  ). Deming regression 

line (black dash), with equation and 1:1 line (solid) with factor of 10 (grey dash) also provided. 

A 

A B 

C 
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Estimates of BCFminimised may not be accurate if the uptake and elimination kinetics 

differ greatly from first order. Some datasets used in this analysis exhibited small but 

systematic deviations from first order toxico-kinetics. However the significant 

correlation between the BCFtraditional and BCFminimised suggests that the BCFminimised 

results are robust against slight deviations from first order toxicokinetics. Any 

deviation from the 1:1 line can probably be explained by the depuration rate 

constants from the minimised design, specifically the weak correlation between 

depuration rates (k2minimised and k2traditional) as discussed previously (Figure 3.2).  

Only 37 % of studies included in this analysis had reached steady state in the 

exposure phase duration. Apart from a few cases when the study length was much 

shorter than required to reach steady state (< 10 % steady state), there was no 

relationship between the ratio of rate constants (k1minimised/k1traditional) and the 

percentage of steady state reached in each phase (Figure 3.3). As the percent steady 

state reached increased, the ratio remained variable around 1 and when 100 % steady 

state had been achieved the greatest divergence around k1minimised/k1traditional was 

noted. Thus the minimised design yields similar rate constants to the traditional 

design when the duration of the experiment allows for at least 10 % of steady state to 

be reached in the exposure and depuration phases. 

 

Figure 3.3 Relationship between uptake rate and percentage of steady state reached in uptake (   ) and depuration 

phase (     ) for each experiment. 
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In a number of experiments the concentration of the chemical in the exposure media 

decreased (< 72 % of initial concentration), a result perhaps of dissipation from the 

test beaker or uptake into the organism. Whilst in the depuration phase, the chemical 

sometimes reappeared in the exposure water. The minimised approach appears to be 

robust enough to deal with changes in exposure medium concentration as the degree 

to which the exposure medium concentration changes did not affect the BCF 

calculation. There were no significant relationships between correlations of 

BCFminimised/BCFtraditional and percent change in exposure medium concentration, with 

reported r
2
 0.071 and r

2
 0.276 for percent disappearing and reappearing respectively 

(Figure 3.4). 

 

Figure 3.4 Regression between change in exposure medium concentration (% decline in exposure phase (      ) 

and % reappearing (    ) in depuration phase) and BCF ratio. Regression lines provided by dashed lines for % 

decline (narrow dash) and % reappearing (wide dash).  

 

Therefore it appears that there are no systematic errors in BCF calculation if changes 

in exposure medium concentration are observed, uptake is not entirely first order or 

if steady state has not been achieved in the test. This is important because it 

demonstrates the robustness of the design. When steady state does not need to be 
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reached this means that experiments can be shorter in terms of time scale which is 

advantageous with respect to time and effort costs. 

3.3.2.1 Minimised further? 

Further analysis explored whether the minimised design could be further reduced. 

Instead of taking an average of several measurements of exposure concentrations 

during the exposure phase, which can be up to eight sampling points for one study, 

an average was calculated by only using exposure medium concentrations from the 

start and end of the exposure phase. Using an average of these two sampling points 

yielded comparable BCFminimised values to those when a full average was used (Figure 

3.5). Deming regression demonstrates that there were no systematic and no 

proportional differences between the two approaches (slope: confidence interval: 

0.7986 – 1.036, Y-intercept confidence interval: -0.4562 – 0.8761). These results 

may offer an even smaller design to calculate accurate BCFs using considerably 

fewer materials. 

 

Figure 3.5 Regression between BCF values calculated using exposure medium concentration measured over a 

period of exposure and only the beginning and end of exposure. Regression (dash) and 1:1 (solid) lines also 

provided. 
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3.3.2.2 Study specific analysis 

The BCFtraditional were generally very small for pharmaceutical exposure in Notonecta 

glauca (0.13 – 1.60) (Meredith - Williams et al., 2012). The minimised design 

generated BCFs which were correspondingly very similar (0.17 - 2.11). However > 

80 % of N. glauca BCFs were overestimated. This fits with the overall trend as the 

minimised design generally over estimates BCF values in comparison to the original 

published BCFs as more data points lie above the 1:1 line (Figure 3.2). At the other 

end of the scale, some of the largest published BCFs were obtained in the fluoxetine 

exposures with Gammarus pulex and Lumbriculus variegatus (< 218 500) (Table 

3.2). Conversely, the corresponding BCFminimised for these were consistently under 

estimated by up to two orders of magnitude (Figure 3.2). In Figure 3.2, the data point 

for fluoxetine from the Meredith-Williams et al., (2012) study is a clear outlier. This 

is a result of very minimal fluoxetine elimination observed  in G. pulex and resulted 

in a BCFtraditional of 185 000 which is several orders of magnitude larger than those 

previously calculated in aquatic exposures for this compound (Nakamura et al., 

2008). Following the minimised design, the corresponding BCF for this fluoxetine 

exposure was 1560.55. 

Data from Ashauer et al., 2010 fitted very well to the 1:1 line, the slope of the 

regression line was also significantly different from zero (p = < 0.0001) and thus 

showed a significant relationship between the two methods for calculating BCF 

(Appendix 9). A wide range of chemicals were evaluated in this dataset with 

differing physico-chemical properties and BCF values which demonstrates that this 

is a fairly robust way to estimate BCFs with limited laboratory effort. When data for 

G. pulex from a number of publications were collected and analysed separately from 

the whole data set, Deming regression showed a significant relationship between the 

two methods with a slope of 1.082 (95 % confidence interval: 0.85 – 1.32), intercept 

of -0.88 (95 % confidence interval: -2.29 – 0.54) and slope significantly different 

from zero (p = < 0.0001) (Figure 3.6). A majority of data points lie below the 1:1 

and whilst statistics show the minimised approach can accurately estimate BCFs this 

would infer that the approach generally overestimates BCFs for G. pulex. 
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Figure 3.6 Relationship between log BCF (minimised) estimates from the minimised design and log BCF 

(original) obtained from the literature for G. pulex only. Deming regression line (dash), with equation and 1:1 

line also provided (solid). 

 

For earthworm data, correlations between BCFs presented in the original paper and 

those calculated by the minimised design results produced a slope of 0.77 (95 % 

confidence interval: 0.43 – 1.11) and intercept of 1.39 (95 % confidence interval: -

12.23 – 15.01). Combined with a slope not significantly different to zero (p = 

0.0105) there appears to be a good relationship between the two methods. This is 

interesting because the Springer approach was originally designed for aquatic BCF 

calculation but results presented here demonstrate that it is also probably suitable for 

terrestrial BCF calculations. Using the minimised design would reduce earthworm 

use by approximately 70 %; there would also be considerable savings in terms of 

time and cost of materials. There is a substantial lack of earthworm studies with 

regards to studying the uptake kinetics of organic chemicals, pharmaceuticals in 

particular and the minimised design may be an attractive option to resolve this. 

Variation in data points around the 1:1 line and regression line for the Rubach et al., 

(2010) data can be attributable to the fact that species differences are important in the 

uptake of chemicals (Rubach et al., 2010). Specifically differences in BCFs amongst 
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15 species of freshwater arthropods as well as between juvenile and adult species (G. 

pulex and Procambarus sp.) were observed in the original data set (Appendix 6). 

Even though all experiments consisted of a chlorpyrifos exposure only, this research 

demonstrates that various species at different life stages can accumulate and 

eliminate chemicals in differing amounts and thus generate a range of BCF values. 

Variation in BCF values for L.variegatus is also evident in the Karlsson et al., (2013) 

data set due to changing exposure medium pH affecting ionisable chemical uptake. 

The minimised approach seems to account well for both these factors affecting 

chemical uptake as the variation in the BCF values is within the general noise of the 

whole data set. In view of the complete data set it is evident that the variation around 

the 1:1 line increases as the BCF value increases (Figure 3.2). It appears that larger 

BCFs are subject to greater error. 

Additional research has explored the use of the minimised design to estimate fish 

BCFs specifically for pharmaceutical exposures (Constantine, 2011). The results also 

yielded comparable, accurate BCFs with a reported r
2 

of 0.99 and a slope of 1.02. 

This was shown to be a robust design as 55 pharmaceuticals were compared with 

BCFs ranging from 0.6 to 12 000. 

3.3.3 Wider implications 

As the minimised design yields very good proxies for BCFs (Figure 3.2), but poor 

estimates of the true uptake and elimination rate constants the minimised design may 

therefore offer an acceptable approach to calculate BCF values for regulatory 

purposes where risk assessments require BCFs to be reported within a range (Figure 

3.7). 
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Figure 3.7 Schematic depicting potential applications of minimised design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For scientific purposes, as a result of reduced laboratory effort, the minimised design 

may allow for several studies to be carried out at once enabling many different 

parameters to be evaluated. Factors such as species differences (Meredith-Williams 

et al., 2012; Rubach et al., 2010) and effect of changing exposure medium properties 

(Díez-Ortiz et al., 2010; Karlsson, 2013) published in recent research, require us to 

evaluate the uptake and bioconcentration of organic chemicals in greater depth. 

Combined with an increasing number of chemicals which are being discharged in the 

environment further research into the uptake of pharmaceuticals in particular into 

invertebrates are needed. As results would be cheaper and faster to generate the 

minimised design may reveal patterns amongst the numerous chemicals and the 

thousands of species exposed under a plethora of environmental conditions. Specific 
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exposure scenarios may therefore be highlighted which may need to be evaluated 

further, through toxicokinetic – toxicodynamic studies for example (Figure 3.7). 

3.4 Conclusions 

A comparison of BCFs generated from full study designs (BCFtraditional) and those 

estimated using the principles of the minimised design (BCF minimised) would infer 

that the minimised design is a viable alternative approach to use. For a single 

experiment, test organism usage would be reduced by > 70 % as well as a reduction 

in experimental material and labour efforts required. Whilst the agreement between 

uptake and depuration rates generated by the two approaches is somewhat variable 

the minimised design is advantageous with respect to calculating overall BCFs. The 

approach is robust as steady state does not need to be achieved in the test system and 

BCFs are not affected by changes in exposure medium concentration. The approach 

therefore can provide a method to calculate reasonably good BCF estimates which 

may be used to determine if additional studies are required for example to explore if 

BCFs are concentration dependent. Care should however be taken when using the 

minimised design to calculate BCF values when compounds don’t depurate from the 

organism and for rate constant determination, particularly when estimating 

depuration rates. It is important to note the lack of relationship between traditional 

and minimised rate constants. The use of toxicokinetic – toxicodynamic modelling 

may be more appropriate if rate constants are to be analysed as well as BCFs.  

One of the most significant findings is that the minimised design appears to work 

well across a range of species (including both terrestrial and aquatic), chemicals and 

different exposure mediums offering a suitable alternative for BCF calculation in 

variety of environmental chemical exposure scenarios. Further analysis could 

explore the use of the minimised design concept for calculating additional BCFs, 

specifically for earthworm exposures as only a small number were collected and 

evaluated in the current work. 

In the next Chapters, the minimised approach was therefore employed to explore the 

effects of environmental parameters and species type on the uptake of 

pharmaceuticals into earthworms. 
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Chapter 4 How Soil Properties Affect the Uptake of 

Pharmaceuticals into Earthworms 

4.1 Introduction 

Research presented in Chapter 2 and a small number of recent publications have 

demonstrated that pharmaceuticals can be taken up from soils into invertebrates such 

as earthworms (Kinney et al., 2012, 2008). Specifically, Chapter 2 investigated the 

uptake and depuration kinetics of four pharmaceuticals into the earthworm E. fetida. 

Pore water based bioconcentration factors (BCFs) increased in the order of 

carbamazepine < diclofenac < fluoxetine < orlistat and ranged between 2.2 – 51.5. 

The results demonstrated that physico-chemical properties are important in the 

uptake of pharmaceuticals and that earthworm BCF’s could not be predicted solely 

based on hydrophobicity of the chemical (log Kow). 

It is well known that the same pharmaceutical can behave very differently in 

different soil types (Drillia et al., 2005; Monteiro and Boxall, 2009; Oppel et al., 

2004). For example, distribution coefficients for pharmaceuticals between soil 

particles and soil pore waters are known to vary by several orders of magnitude 

(Krogh et al., 2008; Monteiro, 2009; Tolls, 2001). As diffusion across the skin from 

the pore water has been shown to be the primary exposure pathway for chemicals in 

the soil environment (Vijver et al., 2003), it is therefore likely that uptake of 

pharmaceuticals could also vary significantly across soils.  

As most pharmaceuticals are ionisable, the uptake of pharmaceuticals into organisms 

can also vary depending on the pH of the environment (Karlsson, 2013; Nakamura et 

al., 2008). Different uptake from soils with different pH values could therefore be 

expected. Knowledge of the relationships between soil properties and pharmaceutical 

uptake is however very limited. There is therefore a real need to begin to generate 

data on the uptake of pharmaceuticals from soils with different characteristics in 

order to identify the key drivers affecting uptake and ultimately to develop uptake 

modelling approaches for use in environmental risk assessment. 
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The study described in this chapter was therefore peformed to explore the effects of 

soil properties on pharmaceutical uptake and depuration in the earthworm Eisenia 

fetida, and help elucidate the relationships between soil properties and uptake. The 

study focused on four pharmaceuticals, from a variety of therapeutic uses and 

covering a range of physico-chemical properties. To help explain any potential 

differences in uptake and depuration, parallel studies were performed to assess the 

fate and distribution of the study pharmaceuticals in test soils.  

4.2 Materials and Methods 

4.2.1 Pharmaceutical compounds and reagents 

All studies were performed using 
14

C labelled compounds. Labelled fluoxetine 

[methyl-
14

C] and carbamazepine [carbonyl-
14

C] were obtained from American 

Radiolabelled Chemicals (Missouri, USA), diclofenac [U – 
14

C] was obtained from 

Perkin Elmer (Boston, USA) and orlistat [tridecanyl-2-
14

C] was provided by 

GlaxoSmithKline (GSK, UK). Physico-chemical properties and specific activities for 

the pharmaceuticals can be found in Table 1.3. Acetonitrile (99.9 %), methanol (99.9 

%) and ethyl acetate (99.9 %) were obtained from Fisher Scientific (Loughborough, 

UK).  

4.2.2 Test soils 

Five standard test soils were obtained from LUFA Speyer, Germany (Figure 4.1). 

The soils, 2.1, 2.3, 2.4, 5M and 6S, included clayey loam, silty sand and loamy sand 

varieties and were chosen to provide a range of soil characteristics including varying 

soil pH, organic carbon content, cation exchange capacity and particle size 

distributions (Table 4.1). Soils were air dried and sieved to 2 mm prior to testing.  
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Figure 4.1 Test beakers containing five different test soils (2.1, 2.3, 2.4, 5M and 6S) for earthworm exposures 

prior to addition of earthworms. 

 

Table 4.1 Soil properties for the standard test LUFA Speyer soils. Mean values of different batch analyses are 

provided ± standard deviation (SD). 

 

Standard soil 

type 

2.1 2.3 2.4 5M 6S 

Organic 

carbon in % 

C 

0.65 ± 

0.10 

0.94 ± 

0.10 

2.26 ± 0.25 1.00 ± 0.2 1.64 ± 0.12 

Nitrogen in 

% N 

0.05 ± 

0.01 

0.08 ±0.02 0.2 ±0.04 0.11 ± 

0.02 

0.2 ± 0.02 

pH value 

(0.01 M 

CaCl2) 

5.1 ±0.3 6.8 ±0.2 7.2 ± 0.2 7.3 ± 0.1 7.1 ± 0.1 

Cation 

exchange 

capacity 

(meq/100g) 

4.3 ± 0.5 10.9 ±1.1 31.4 ± 4.6 16.6 ± 2.8 27.2 ± 1.4 

Soil type Silty sand Silty sand Clayey 

loam 

Loamy 

sand 

Clayey 

loam 

Water 

holding 

capacity 

(g/100g) 

31.1 ± 2.1 37.3 ± 1.8 44.1 ± 1.2 39.5 ± 2.9 40.5 ± 2.1 

Particle size (mm) distribution according to USDA (%) 

< 0.002 2.8 ± 1.1 8.5 ± 1.7 25.9 ± 2.1 11.1 ± 1.2 40.5 ± 2.1 

0.002 – 0.05 10.2 ± 1.8 28.4 ± 4.5 40.5 ± 1.0 29.7 ± 2.8 35.0 ± 2.9 

0.05 – 2.0 87.0 ± 1.5 63.1 ± 5.0 33.6 ± 1.8 59.2 ± 3.2 24.5 ± 3.5 
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4.2.3  Test organism  

E. fetida were obtained from Blades Biological Ltd (Kent, UK) and cultured in a 

medium of peat and cow manure (50:50), kept moist with deionised water at room 

temperature (20 ± 3 
o
C). The organisms were fed twice weekly with homogenised 

mashed potato powder. E. fetida were obtained from a single species culture and 

cultures were maintained for at least four generations before being used in the uptake 

studies. The lipid content of E. fetida, determined using the method of Folch et al., 

(1957), was 5.11 ± 0.29 % (wet weight) (Chapter 2). 

4.2.4 Fate studies 

Triplicate beakers of each test soil (2.1, 2.3, 2.4, 5M and 6S) (35 ± 1 g) were 

prepared to sample at eight time points (0 and 6 h, 1, 3, 7, 10, 14 and 21 d) where 

pore water and soil samples would be analysed to allow for determination of the 

distribution of chemicals in the soil matrices over time. To each of the five soils, 

labelled pharmaceuticals were added using 125 – 165 l of a carrier solvent to give 

concentrations of 26, 25, 28 and 44 g kg
-1

 of carbamazepine, diclofenac, fluoxetine 

and orlistat respectively. For carbamazepine and fluoxetine, ethanol was used as the 

carrier solvent; for diclofenac, methanol was used and orlistat was applied in 

acetonitrile. After spiking, each test beaker was left for 2 h and then mixed to create 

an even distribution of the pharmaceutical within the sample. Following spiking and 

mixing, the carrier solvents were allowed to evaporate for 48 hours. Blank and 

solvent controls were also prepared free from test chemical. Following preparation, 

the moisture content of all soils was adjusted to 40 – 60 % of the MWHC by addition 

of deionised water. All beakers were incubated in a growth chamber at 20 ± 2 
o
C, 

using a 16:8 light/dark cycle [600 lx], and at 60 % humidity. 

At each sampling point, soil was sampled for pH analysis and determination of 

pharmaceutical residues and pore water was extracted from the respective beakers 

using the method outlined in Chapter 2. Briefly, syringe’s containing 25 ± 5 g of test 
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soil were centrifuged for 40 minutes at 3000 rpm after which the pore water was 

collected from the bottom of the tube and transferred to a 2 mL Eppendorf tube. The 

Eppendorf tubes were then further centrifuged at 12000 rcf for four minutes to 

sediment any loose particles. A 1 mL sample of pore water was then added to 10 mL 

of EcoScint A scintillation cocktail for analysis. The pH of all soil and pore water 

(with the exception of carbamazepine) samples was measured using a Hanna pH 

electrode (HI-1093B) (Figure 4.2).  

 

 

 

 

 

Figure 4.2 Pore water extractions of test soils after centrifugation (A) and pH analysis of pore water samples (B). 

 

4.2.5 Uptake and depuration studies  

The uptake and depuration studies followed the ‘minimised’ approach described in 

Chapter 3. Earthworms were exposed in glass jars containing 50 ± 1 g of each test 

soil. For each test, soil beakers were prepared and spiked with the four 

pharmaceuticals at similar concentrations and following similar methods to those in 

the fate studies. Adult E. fetida (200 - 500 mg) were then added to each test beaker 

after having been acclimatised under experimental conditions for 48 h in non-treated 

test soil. After addition, the time it took for each earthworm to completely burrow 

into the soil was noted. For each soil type, blank and solvent controls were prepared. 

Earthworm beakers were incubated in the growth chamber and moisture adjustments 

were performed as reported in the fate study. For each pharmaceutical treatment in 

each soil type, six replicates were sampled at the end of the uptake period (21 d) and 

six at the end of the depuration phase (42 d). E. fetida were then removed from the 

A B 
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vessels, and transferred to moist filter paper for 24 h to allow them to purge their 

guts. The worms were then frozen until analysis.  

4.2.6 Preparation of samples for analysis 

Soil and earthworms were extracted using methods similar to those outlined in 

Chapter 2. Briefly, soil samples were extracted by liquid extraction. For the 

carbamazepine study, 5  0.5 g of soil was extracted twice for 45 minutes on a side 

to side shaker (250 oscillations min
-1

) with 2 x 10 mL of methanol. A similar method 

was used in the fluoxetine and orlistat studies except that a mixture of acetonitrile 

and water (7:3 v/v) and acetonitrile only were used as solvents, respectively. For the 

diclofenac study, 5 g samples of soil were extracted three times for 45 minutes with 

3 x 10 mL ethyl acetate. Samples (1 mL) of extracts were then added to 10 mL of 

EcoScint A for analysis of the radioactivity present.  

As previous work has shown that orlistat and diclofenac form irreversibly bound 

residues with soil (Chapter 2); combustion analysis of these soil samples was also 

performed using a Perkin Elmer 307 Sample Oxidiser according to similar methods 

outlined in 2.3.3.1. 

E. fetida samples were defrosted and the internal pH of each worm was measured 

using a Thermo Scientific Orion pH microelectrode. Each worm was dissected 

across the segments in the direction from the anterior to the posterior. The pH probe 

was then inserted directly into the earthworm tissue taking care to avoid internal 

organs and the digestive tract. E. fetida were then extracted by liquid extraction 

using the same solvents as for the soil extractions. For each worm, 5 mL of solvent 

was added and the worm/solvent mix was homogenised for 5 minutes using a 

LabGen Series 7 homogeniser. The suspension was transferred to a glass test tube 

and the beaker was then rinsed with an additional 3 ml of solvent which was 

combined with the original suspension to give a total volume of 8 mL. This was 

centrifuged at 415 g for 30 minutes (CHRIST Rotational Vacuum-Concentrator 

RVC 2-33 CD) and a 1 mL sample of the supernatant was then added to 10 mL of 

EcoScint A for analysis of the radioactivity present.  
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Method validation studies showed that average recoveries ranged from 72.43 to 

94.72 % for the pharmaceuticals in the five different soil types (detailed recovery 

information provided in Appendix 10). Recoveries ranged from 86.3 (fluoxetine) to 

100.9 (carbamazepine and diclofenac) % for the earthworm extraction methods. 

4.2.7 Liquid scintillation counting 

Radioactivity in the soil pore water and soil and worm extracts were determined 

using Liquid Scintillation Counting (LSC) using a Beckman LS 6500 LSC counter 

(Beckman Coulter Inc., Fullerton, USA). Samples were counted three times for 5 

min. Counts were corrected for background activity by using blank controls. 

Counting efficiency and colour quenching were corrected for using the external 

standard ratio method. 

4.2.8 Calculating BCF - kinetic modelling 

Measured radioactivity of the corresponding pharmaceuticals in the earthworm 

extracts were corrected to account for soil-associated pharmaceuticals present in the 

gut after gut purging (see section 2.3.3 for more detail). Based on minimised design 

principles outlined in Chapter 3, earthworm tissue concentrations were then used to 

calculate uptake and depuration rates for the study compounds in each soil type 

using Equation 3 and Equation 4. The uptake and depuration rates were then used to 

estimate pore water based kinetic bioconcentration factors (BCFs) (Equation 5). For 

a full explanation of BCF calculations see section 3.2.2. 

4.2.9 Calculating soil BSAF 

Soil based bioaccumulation factors (BSAF) were estimated from the pore water 

based BCFs for all pharmaceuticals using soil water partition coefficients (Kd) 

calculated from fate studies (Equation 6). The Kd value used for each compound was 

an average Kd calculated across the different sampling points in the uptake phase. 
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Equation 6 

Regression analysis was then performed to compare BSAF values and soil properties 

and BCF values and pore water properties. 

4.2.10 Statistical analysis 

Statistical analysis of the data was performed on SigmaPlot (v .12). A two-way 

analysis of variance (ANOVA) with a significance level of 0.05 was performed, 

keeping study type (blank/treatment) as repeated and time as a variable factor. 

Endpoints tested included the differences in soil and pore water pH across time, and 

in comparison to control samples, after which additional pair-wise comparisons of 

the data were performed according to the Holm-Sidak method. Further two-way 

ANOVAs were performed to check differences in soil and pore water pH 

measurements made in the same soil type but under different pharmaceutical 

treatments over time. A one-way ANOVA was employed to assess differences in 

internal pH values of the worms in comparison to the controls and between uptake 

and depuration measurements. A three–way ANOVA was used to check for changes 

in internal pH for worms exposed in the same soil but under different pharmaceutical 

treatments at both the end of the uptake and depuration phases. Additionally, for 

each pharmaceutical, data on the burrowing times of E. fetida were tested against the 

control treatment burrowing times using a one-way ANOVA to assess the 

differences in the values among the treatment groups. Prior to all tests, normal 

distribution and equal variance were tested by performing a Shapiro–Wilk and 

Levene–Mediane test, respectively. If the normality test failed then the one-way 

ANOVA was instead performed on ranks. 
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4.3 Results 

4.3.1 Fate studies 

Measurements of radioactivity in the soil and pore water changed over time and 

these changes appear to be dependent on pharmaceutical compound and in a number 

of cases, on soil type (Figure 4.3). By 21 d radioactivity was detected in all treatment 

beakers in all soil types. In most soil types, measured radioactivity tended to 

decrease after 1d, however in soil 6S in the fluoxetine study, measured radioactivity 

increased from 0.017 to 0.021 mg/kg over the period of the uptake phase. 

Carbamazepine was fairly persistent in all soil types whilst initial results showed 

rapid dissipation of diclofenac and orlistat from the test beakers. However, 

combustion analysis confirmed the formation of nonextractable (bound) residues 

(NER’s) in both the diclofenac and orlistat studies. NER fractions increased from 

0.005 to 0.028 mg/kg and 0.012 to 0.032 mg/kg for orlistat and diclofenac 

respectively (Appendix 11). 

Pore water concentrations of the pharmaceuticals differed to a greater extent, 

depending on soil type, in comparison to the soil concentrations (Figure 4.3). Soil 

2.1 generally had the highest pore water concentrations for all pharmaceuticals while 

soil 2.4 generally had the lowest concentrations. From 10 d onwards pore water 

concentrations tended to decrease in all soil types especially for diclofenac, 

fluoxetine and orlistat. This was most evident in soil 2.1 for all pharmaceuticals.  

The soil – water distribution (Kd) appears to be chemical specific and were affected 

by soil properties as there was a range of Kd values for each pharmaceutical in the 

five different soil types; namely carbamazepine (1.34 – 4.45 L/kg), diclofenac (5.63 

– 18.37 L/kg), fluoxetine (55.48 – 71.44 L/kg) and orlistat (28.99 – 110.01 L/kg). 

Over the initial 10 d of the uptake phase, orlistat became less strongly bound to the 

soil as the amount recovered in the solvent extraction increased whilst the 

combustion analysis concentrations decreased. Interestingly, following this change, 

orlistat pore water concentrations began to decrease which coincided with a 

significant decrease in the pH of these pore water samples from all five soil types. 
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Additional changes in both soil and pore water pH over time, and in comparison to 

the controls were noted as a result of the presence of the pharmaceuticals 

(diclofenac, fluoxetine and orlistat) in the soil matrix (Figure 4.4). Whilst these 

changes appeared to be influenced by soil type it is important to note these changes 

were not statistically significant for all soil types and were not consistent over time. 
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Figure 4.3 Dissipation of activity for soils treated withcarbamazepine (I), diclofenac (II), fluoxetine (III) and 

orlistat (IV) in soil (A) and pore water (B) throughout 21 day in five different soil types (2.1    , 2.3    , 2.4    ,   

5M     and 6S    ). Average C(t)/C(0) ratio provided with ± standard deviation (n = 3), where C(t) is concentration 

at time of sampling and C(0) is concentration at 0 d.  
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Figure 4.4 pH measurements made during the uptake phase in pore water (A) and soil samples (B) from the five 

soils (2.1, 2.3, 2.4, 5M and 6S) for the diclofenac (black diamonds), fluoxetine (white diamonds) and orlistat 
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(grey diamonds) studies. Mean pH values provided ± standard deviation (n = 3). Statistical analysis results from 

Holm-Sidak pair wise comparison provided (corresponding star colour to pharmaceutical treatment) (p < 0.05). 

4.3.2 Earthworm uptake  

Uptake into E. fetida from the four treatments, carbamazepine, diclofenac, fluoxetine 

and orlistat was seen from the five soils. Fluoxetine had the greatest uptake rate (k1) 

in all soils (1.138 – 2.351 L/kg d
-1

) apart from soil 5M where orlistat had a higher 

uptake rate (1.477 L/kg d
-1

), whilst carbamazepine had the fastest depuration rate 

(k2) in all five soils (0.16 – 0.243 d
-1

) (Table 4.2). This is comparable to previous 

work in a single soil type (Chapter 2; 2.4.3.3) where fluoxetine had the fastest uptake 

rate and carbamazepine had the fastest depuration rate in E. fetida. Highest pore 

water-based BCFs were observed for orlistat (< 115.92) and the smallest BCFs for 

carbamazepine. Differences in BCFs were observed for the different soil types, 

especially in the diclofenac (7.02 – 69.57) and orlistat studies (30.51 – 115.92), 

whereas smaller variability of the BCFs was noted for fluoxetine (16.78 – 20.42) and 

carbamazepine (1.05 - 1.61) (Table 4.2). 

Calculating soil pore water distribution coefficients (Kd) allowed the conversion of 

the pore water BCFs to soil based bioaccumulation factors (BSAFs) based on soil Kd 

values (Table 4.2). BSAFs were generally low (< 2), especially for carbamazepine 

and fluoxetine. Similarly to the BCF, the diclofenac exposure resulted in the largest 

range of BSAFs, up to 12.36 in soil 5M. Only very weak or no correlations we found 

between uptake and soil properties including properties such as organic carbon 

content, cation exchange capacity, soil concentrations and soil pH. Similarly 

individual pore water properties were unable to adequately explain uptake as weak 

relationships were observed between BCFs and pore water properties.  



 

 

 

Table 4.2 Results from minimised design experiments in five soil types showing measured E. fetida concentration at the end of 21 d uptake phase (Ct1) and 21 d depuration phase (Ct2) and mean 

concentration of pharmaceutical in the pore water during the uptake phase (Cpw). Calculated uptake (k1) and depuration rates (k2) are presented along with pore water based BCF values derived 

using the minimised design approach. Soil/water adsorption coefficients (Kd) are also provided with soil BSAF estimates based on Kd values. 

   

 

Ct1 mg/kg 

(internal)  

Ct2 mg/kg 

(internal) 

Mean Cpw 

(mg/L) in 

uptake 

phase 

k2 (dep. 

rate) (d
-1

) 

k1 (uptake rate)   

(L/kg d
-1

) 

Pore 

water 

BCF  

Soil Kd 

(average 

21 d) 

Soil BSAF 

(based on Kd) 

Carbamazepine   

LUFA 2.1 0.0243 0.0005 0.0191 0.187 0.243 1.30 1.34 0.97 

LUFA 2.3 0.0089 0.0001 0.0059 0.243 0.372 1.53 3.87 0.40 

LUFA 2.4 0.0082 0.0001 0.0052 0.215 0.345 1.61 4.45 0.36 

LUFA 5M 0.0110 0.0002 0.0107 0.200 0.210 1.05 2.20 0.48 

LUFA 6S 0.0112 0.0004 0.0075 0.160 0.249 1.56 3.44 0.45 

Diclofenac   

LUFA 2.1 0.0567 0.0320 0.0046 0.027 0.777 28.56 6.88 4.15 

LUFA 2.3 0.0047 0.0043 0.0043 0.004 0.054 15.04 7.25 2.07 

LUFA 2.4 0.0043 0.0037 0.0013 0.008 0.175 21.50 18.37 1.01 

LUFA 5M 0.0047 0.0047 0.0052 0.001 0.043 69.57 5.63 12.36 

LUFA 6S 0.0093 0.0058 0.0035 0.023 0.159 7.02 6.37 1.10 

Fluoxetine   

LUFA 2.1 0.0105 0.0009 0.0006 0.115 2.351 20.42 55.48 0.37 

LUFA 2.3 0.0077 0.0013 0.0005 0.084 1.651 19.74 64.85 0.32 

LUFA 2.4 0.0038 0.0009 0.0003 0.068 1.138 16.78 71.44 0.19 

LUFA 5M 0.0059 0.0017 0.0004 0.059 1.128 19.18 64.06 0.29 

LUFA 6S 0.0049 0.0005 0.0003 0.108 1.829 16.89 58.17 0.29 

1
1
1
 



 

 

 

Table 4.2 continued 

 

 Ct1 mg/kg 

(internal)  

Ct2 mg/kg 

(internal) 

Mean Cpw 

(mg/L) in 

uptake 

phase 

k2 (dep. 

rate) (d
-1

) 

k1 (uptake rate)   

(L/kg d
-1

) 

Pore 

water 

BCF  

Soil Kd 

(average 

21 d) 

Soil BSAF 

(based on Kd) 

Orlistat   

LUFA 2.1 0.0284 0.0139 0.0018 0.034 1.039 30.51 28.99 1.05 

LUFA 2.3 0.0138 0.0114 0.0007 0.009 1.051 115.92 75.10 1.54 

LUFA 2.4 0.0086 0.0063 0.0004 0.015 1.092 74.40 110.01 0.74 

LUFA 5M 0.0138 0.0065 0.0006 0.036 1.477 40.82 84.59 0.48 

LUFA 6S 0.0092 0.0079 0.0010 0.007 0.485 68.36 51.30 1.33 

1
1
2
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There was a statistically significant difference in internal E. fetida pH after exposure 

to pharmaceuticals in comparison to control earthworms; however this was not true 

for all soil types except in the fluoxetine study (Figure 4.5). Significant differences 

were also observed between measurements made on the uptake and depuration 

samples. Interestingly, not only does the internal pH change between different soil 

types it was also significantly different between different pharmaceutical treatments 

in a single soil type at the end of the uptake phase (except soil 2.3 and 5M (p = < 

0.001 – 0.003)) and the end of the depuration phase (except soil 2.1 and 2.3 (p = 

<0.001).  

 

 

Figure 4.5 Average internal pH measurements (n = 6, ± standard deviation) of E. fetida exposed to 

pharmaceuticals (I = carbamazepine, II = diclofenac, III = fluoxetine, IIII = orlistat) in five different soil types. 

Grey bar shows measurement in uptake phase and white bar shows measurements made in depuration phase with 

error bars providing ± standard deviation. Where (a) there is statistically significant (p < 0.05) difference of in 

comparison to blank controls and (b) is a statistically significant (p < 0.05) difference between the uptake and 

depuration phases. 
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4.4 Discussion 

4.4.1 Pharmaceutical fate in soils 

In agreement with previous research and results from Chapter 2 carbamazepine was 

fairly persistent in all soil types (Kinney et al., 2006; Monteiro and Boxall, 2009; 

Williams et al., 2006). Conversely a decline in radioactivity was measured in the 

diclofenac study, reasons for this include volatilisation or a small proportion of the 

chemicals may have dissipated from the test system; a result perhaps of 

mineralisation (Figure 4.3). The Kd values reported in Table 4.2 fall within the 

ranges found in previous research for carbamazepine (0.49 – 37 L/kg,(Drillia et al., 

2005)) and diclofenac (1.21 – 17.72 L/kg, (Xu et al., 2009c)) however lower than 

previously observed for fluoxetine (992 – 2546 L/kg, (Kwon and Armbrust, 2008)). 

For orlistat the Kd values are considerably lower than recorded in our own batch 

sorption experiments at 1494 L/kg (reported in Chapter 2). 

Other than research primarily on veterinary antibiotics (Heise et al., 2006; Schmidt 

et al., 2008) this is some of the first work to demonstrate that human 

pharmaceuticals can form irreversibly bound residues with soil and the degree of 

NER can be influenced by soil type (Appendix 11). Previous work has shown non 

extractable pesticide residues remain bioavailable for uptake by earthworms and thus 

NERs may be contributing to some of the uptake observed in this study (Gevao et 

al., 2001). To the best of our knowledge, this is also some of the first research which 

demonstrates that soil and pore water pH can change after addition of chemicals to 

the soil environment. Both pharmaceutical physico-chemical properties and soil type 

appear to influence the degree of pH change, as changes in comparison to the 

controls and over time was not consistent across all five soil types (Figure 4.4). 

Further analysis should explore this with a wider range of chemicals and soil types.  

Interestingly, the pore water pH measurements were not as you would expect from 

the corresponding soil pH for the range of soils evaluated. Pore water pH was 

consistently higher than soil pH and higher than pore water pH measurements made 

from floodplain sites contaminated with metals in a previous study which ranged 

between 7.51 – 7.88 (Vijver et al., 2007). In the fluoxetine study, changes in pore 
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water pH would result in a range between 36 to 64 % of the ionised fraction of 

fluoxetine. The observed changes in pH of soil and pore water samples would have 

minimal effect on the ionised percentage of diclofenac as it would remain 

extensively ionised (> 99 %) in the pH range of soils (Appendix 12). Similar results 

were observed in the fluoxetine study as soil pH changes would have had little 

change on the extent of ionisation of the parent compound (Appendix 13).  

The environment comprises of a wide range of ionisable chemicals and different soil 

types and these initial results may have considerable impact on environmental 

modelling scenarios, which currently do not account for changes in pH. Changes in 

soil and pore water pH may have significant effects on the fate of chemicals in the 

terrestrial environment through processes such as sorption, leaching and degradation 

and should be considered in a modelling framework (Franco et al., 2009; Kah and 

Brown, 2006). 

4.4.2 Relationships between soil and pore water properties with 

earthworm uptake 

4.4.2.1 Soil based BSAF 

Regression analysis between various soil properties and BSAF values failed to 

highlight key factors which may be responsible for pharmaceutical uptake into worm 

(Figure 4.6). Previously clay and organic matter content have been shown to 

influence bioavailability of organic pollutants in soils (Chung and Alexander, 1998; 

Weber and Weed, 1968; White et al., 1997; White, 1976). Research has shown 

greater earthworm uptake of phenanthrene in soils with higher clay content (White et 

al., 1997) however this was not observed with soil BSAF values calculated in this 

study. 
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Figure 4.6 Regression plots between soil based BSAFs calculated in this study (carbamazepine – diamond, 

diclofenac – triangle, fluoxetine – square and orlistat – cross) and selected soil properties including soil pH, soil 

distribution coefficient (Kd), organic carbon content and cation exchange capacity. 
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This study used soils with an environmentally realistic pH range (6.6 - 8.2) (Figure 

4.6). Therefore, this may account for the lack of clear effect of soil pH on the uptake 

of pharmaceuticals into earthworms as the pH range was fairly small. Where 

differences in BSAFtotal were observed in the diclofenac study (Table 4.2) and 

significant differences in soil pH between the five soil types were measured (Figure 

4.4); diclofenac was always extensively ionised (> 99 %) and no relationship 

between BSAFtotal and soil pH were found. Additional studies could explore  

pharmaceutical exposure in soils with a wider pH range as research has shown 

E.fetida can survive in soils between pH 4.3 – 7.5 (Sims and Gerard, 1985). 

As clear relationships with soil properties and earthworm BSAFs were unable to be 

found, it would suggest earthworm uptake is a complex interaction of a variety of 

factors and processes and does not exclusively rely on a single soil parameter. In 

addition, previous research has shown the ingestion of soil particles plays a minor 

role in the accumulation of chemicals (log Kow < 6) into earthworm tissues (Jager et 

al., 2003; Vijver et al., 2003) and thus may contribute to the lack of clear 

relationships between soil based BSAFs and soil properties for carbamazepine, 

diclofenac and fluoxetine.  

Instead, for a large proportion of chemicals uptake via diffusion across the 

earthworm skin dominates (Jager et al., 2003; Vijver et al., 2003). Therefore, 

understanding pore water properties may be a more appropriate approach to evaluate 

uptake. For this reason considering the sorption of pharmaceuticals is important as 

this will determine how much of the chemical is in the pore water and not sorbed to 

the soil surface. 

 

4.4.2.2 Pore water based BCFs 

Only weak relationships were found between pore water properties such as pH and 

pore water based BCFs. Unlike studies in the aquatic environment which found clear 

relationships between pH of the exposure medium and BCFs for ionisable chemicals 

(Karlsson, 2013; Nakamura et al., 2008), the results presented in this chapter 

demonstrated that, like soil pH; pore water pH cannot account solely for the 
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differences in the accumulation of ionisable pharmaceuticals into earthworms 

(Figure 4.7).  

 

Figure 4.7 Regression plot between porewater pH and pore water based bioconcentration factors obtained in this 

study (diclofenac – triangle, fluoxetine – square and orlistat – cross). 

 

Regarding earthworm exposures specifically cadmium uptake from pore water was 

found to be pH dependent (Oste et al., 2001). In the current study, only a slight 

relationship was observed in the diclofenac exposure as the BCF increased with 

decreasing pore water pH. Even though the pore water pH was significantly different 

across soil types, diclofenac was always extensively ionised (>99 %) and therefore 

changes in pore water pH and the subsequent fraction of ionised:netural species is 

not expected to be solely responsible for controlling pharmaceutical uptake 

(Appendix 12, Appendix 13). 

Highest internal concentrations were observed in exposures which had the highest 

pore water concentration of the respective pharmaceutical and therefore would 

suggest the bioavailability of chemicals in pore water is a limiting factor in 

earthworm uptake. For all pharmaceuticals, this was in soil 2.1, whilst soil 2.4 

generally had the lowest pore water concentrations (Figure 4.3). However high 

internal concentrations at the end of the exposure does not necessarily translate into 

highest BCFs as other factors are at play such as depuration rates each of which are 

specific to an exposure scenario. 
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As pore water concentrations are clearly important, changing the soil moisture 

content has been suggested to enhance the sorption of some pesticides to soils, with a 

decreased moisture content potentially leading to partitioning of chemicals from bio-

available fractions in the pore water to less accessible sites (Shelton and Parkin, 

1991; Shelton et al., 1995). However as the moisture content was monitored daily 

and kept at around 60 % of the MWHC for each soil type this is an unlikely 

explanation as to the observed differences in uptake in this study. 

Clearly many factors and processes in both the pore water and soil are governing the 

fate and subsequent uptake of pharmaceuticals into earthworms as current attempts 

to single out principal factors are yet to be successful. However considering uptake 

as a combination of both soil and pore water parameters may offer a better 

explanation. Different properties can interact to influence the bioavailable fraction 

such as explored in the work by Davis (1971) and White (1997). Regression analysis 

between BCF, organic carbon content and pore water concentration from the current 

study was performed to evaluate this concept further (Figure 4.8). Whilst it is 

important to note that not all regressions were significant, in general, fluoxetine and 

diclofenac results showed increased earthworm BCF in soils which had decreasing 

soil organic matter content (SOM). This could be explained by the presence of SOM 

decreasing the proportion of the chemical in pore water which in turn reduces 

potential for uptake. The results presented tend to agree that decreasing SOM leads 

to higher pore water concentrations of the pharmaceuticals (Figure 4.8). For 

fluoxetine a significant relationship in all regressions was noted, however for 

diclofenac this was only when a marked decrease in pore water concentration 

correlated to an increase in organic carbon content of the test soils. Relationships 

also showed an increase in organic carbon (OC) corresponded to a decrease in BCFs 

for the various soils and thus fits with previous research findings that the SOM is 

regulating the available fraction of pharmaceuticals in the pore water. This was most 

evident in the fluoxetine results and to a lesser extent in the diclofenac results, with 

weak correlations especially between BCF and OC (Figure 4.8).  

 



 

 

 

Figure 4.8 Correlations between organic carbon content, pore water concentration and bioconcentration factor for carbamazepine, diclofenac, fluoxetine and orlistat, linear regression line 

provided with corresponding R2 (* indicates significant relationship and p value provided for such regressions).  
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For the neutral pharmaceuticals, orlistat and carbamazepine, no significant 

correlations were observed, but in general, an increase in organic carbon content still 

follows a decrease in pore water concentration. However, in contrast a decrease in 

pore water concentration generally showed an increase in BCF (although not 

significant) (Figure 4.8). As numerous complex interactions exist between SOM, 

pore water concentrations and BCFs and no significant relationships were observed, 

apart from for fluoxetine, further experiments should be carried out using a wider 

variety of soil types to allow for appropriate exploration and conclusions to be 

drawn. 

In conclusion as one single soil type did not generate the largest BCFs for all 

pharmaceuticals and this would suggest that earthworm uptake is both a factor of soil 

type (including soil and pore water parameters) and pharmaceutical physico-

chemical properties. However, it is clear that for some pharmaceuticals the influence 

of soil type on the uptake and accumulation of pharmaceuticals is more significant 

(i.e. diclofenac) than for others (i.e. carbamazepine) with greater divergence in BCFs 

values reported. Exposure in the terrestrial system is a dynamic process and the 

availability of chemicals to organisms is highly changeable. 

4.5 Conclusions 

Earthworms differ in their ability to access chemicals in different soils types, 

whether they are sequestered or bio-available. The elimination of chemicals can also 

be influenced by differences in soil properties.  

The complex nature of numerous interactions between pharmaceutical chemical 

properties and soil properties ensures that it is incredibly difficult to disseminate the 

key factors influencing pharmaceutical uptake in earthworms. Whilst different soil 

types may affect the uptake and accumulation of some chemicals, BCF and BSAF 

results presented in this study suggest that others are less influenced by soil 

chemistry. Further work could explore the influence of dissolved organic carbon 

(DOC) in the pore water which may increase the bioavailability of chemicals. 

Unfortunately this was not measured in the current study and additional experiments 

to explore this are necessary.  
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Information on how soil properties can affect chemical uptake are important in terms 

of both risk assessment and modelling. Currently used, generalised models are 

unlikely to accurately represent the potential uptake and risk associated with soil-

borne contaminants and, as our research shows, numerous factors are involved in 

determining uptake. For modelling, a better understanding of biological factors 

influencing the uptake of chemicals residing in soils is important to accurately 

estimate the bioaccumulation potential. Additional work needs to explore the effect 

of changing pH in the earthworm tissue, soil and pore water samples on the uptake of 

ionisable chemicals and the subsequent implications of this for exposure modelling 

scenarios. Specifically, changes in earthworm tissue pH may result in wider 

implications such as the ion trap phenomena observed in plant cells (Trapp, 2004) 

being induced in earthworms, or negative effects on earthworm internal 

environments. However, as it is not clear which factors specifically lead to pH 

change further studies are needed to quantify and qualify these complicated 

processes. 

This study represents the first attempt to evaluate the complex interplay between 

pharmaceutical chemical properties and soil chemical properties and how these 

govern potential exposure scenarios for a critical terrestrial organism. While there 

are many confounding complexities and unanswered questions this work represents a 

first important step in understand the terrestrial fate of pharmaceuticals, a critical 

component in understanding environmental risk. 
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Chapter 5 Does Uptake of Pharmaceuticals Vary Across 

Earthworm Species? 

5.1 Introduction 

In Chapter 2 and Chapter 4, the uptake of a range of pharmaceuticals, with different 

physico-chemical properties, into the epigenic earthworm, Eisenia fetida was 

explored. E. fetida is the preferred standard reference earthworm species in many 

international regulatory guidelines for risk assessment such as the Organisation of 

Economic and Cooperative Development acute earthworm toxicity test (OECD 207 

(OECD, 1984)). Results showed that pharmaceuticals were accumulated by E. fetida 

and pore water based bioconcentration factors ranged from 2.25 (carbamazepine) to 

51.53 (orlistat) (Chapter 2). 

However, a number of different earthworm species co-exist within the soil 

environment. These species vary in their behaviour, physiological properties and in 

their preference of particular soil characteristics e.g. texture or pH (Edwards and 

Bohlen, 1996). Data for non-pharmaceutical contaminants (DDE and metals) 

indicates that chemical uptake and toxicity can vary across species (Kelsey and 

White, 2005; Langdon et al., 2005; Morgan and Morris, 1982; Spurgeon and Hopkin, 

1996). These differences in uptake are thought to be due to differences in processing 

of soil organic matter, ecological strategy, and lipid content across the earthworm 

species studied (Kelsey et al., 2005). It is possible that the uptake of pharmaceuticals 

into other species could be very different from E. fetida. In order to fully understand 

the risks of pharmaceuticals in terrestrial systems it would be valuable to develop 

knowledge of the differences, if any, in uptake across different species. 

This study therefore explored the uptake of four commonly used human 

pharmaceuticals into the earthworm, Lumbricus terrestris and compared the findings 

to previous results for the uptake of the chemicals into E. fetida from Chapter 2 in 

order to evaluate whether earthworm species traits are important in determining 

pharmaceutical uptake. Recently, Lumbricus terrestris have been suggested to be a 

more suitable earthworm test species for risk assessment as they reside in the soil 

environment unlike E. fetida which are more commonly found in manure/compost 
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matrices (Dean-Ross, 1983; Sims and Gerard, 1985). The test chemicals included the 

anti-epileptic drug carbamazepine, the anti-inflammatory diclofenac, the anti-

depressant fluoxetine and orlistat which can be used as weight loss aid. Detailed 

physico-chemical properties of each pharmaceutical and study species can be found 

in Table 1.3 and Table 5.1 respectfully. 

Table 5.1 Characteristics of Eisenia fetida and Lumbricus terrestris. 

(a) (Edwards and Lofty, 1972) 

(*) (Reginald William Sims and Gerard, 1985) 

(‡) (Edwards, 2004)  

(^) (Svendsen et al., 2002)   

(#) (Butt, 1991) 

  

 Eisenia fetida Lumbricus terrestris 

Ecological grouping Epigeic Anecic 

Time to maturity (days) 28 – 30
‡
 112 at 15 

o
C

^
 

Colour Brown and buff bands
‡
 Head darker, tail lighter

‡
 

Optimal temperature (
o
C) 25 (0 – 35)

 ‡
 ~ 10

a
 

Length (mm) 60 – 120* 90 – 350* 

Diameter (mm) 3 – 6* 6 – 10* 

Number of segments (mm) 80 – 120* 140 – 155* 

Mode of reproduction Obligatory amphimictic  Obligatory amphimictic 

Cocoon incubation time 18 - 26
‡
 90 at 15

 o
C

#
  

Where in soil profile? Leaf litter/surface* Deep burrows* 

Soil pH preference 4.3 – 7.5* 6.2 – 10.0* 
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5.2 Materials and Methods 

5.2.1 Pharmaceutical compounds and reagents 

The test chemicals were 
14

C labelled compounds to allow for lower limits of 

detection in the samples and thus the soil could be spiked with environmentally 

relevant concentrations in the uptake studies. Labelled fluoxetine and carbamazepine 

were obtained from American Radiolabelled Chemicals (Missouri, USA), diclofenac 

was obtained from Perkin Elmer (Boston, USA) and orlistat was kindly provided by 

GlaxoSmithKline (GSK, UK). Solvents including acetonitrile (99.9 %), methanol 

(99.9 %) and ethyl acetate (99.9 %) were HPLC grade and obtained from Fisher 

Scientific (Loughborough, UK).  

5.2.2 Test soil 

The test soil was a clay loam variety (soil 280) obtained from LandLook (Midlands, 

U.K.) and had been used in earlier earthworm uptake studies with E. fetida (Chapter 

2; section 2.2.2). Prior to the uptake studies, the field fresh soil was air dried then 

sieved to 2 mm to ensure homogeneity within the soil matrix. Soil 280 had an 

organic matter content of 3 %, a pH of 6.3 and a total organic carbon concentration 

of 1.89 %. 

5.2.3 Test organism  

L. terrestris were obtained from Blades Biological Ltd (Kent, UK). L. terrestris were 

cultured in a plastic box containing 8 kg of soil 280 and kept in a growth chamber 

under experimental conditions (see below) prior to use in the uptake studies. They 

were fed twice weekly with birch leaves and pre-treated horse manure which was 

dried at 105
o
C and then rewetted, both of which were applied to the top of the 

culture medium. The mean lipid content of L. terrestris has been reported in 

literature as 1.23 ± 0.20 % based on fresh weight (Albro et al., 1992). 
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5.2.4 Experimental design 

The L. terrestris uptake experiments followed the minimised design approach 

described in Chapter 3. Specifically; earthworms were exposed to each 

pharmaceutical, individually for a 21 d uptake phase. Exposures consisted of a 500 

mL amber glass jar containing 350 ± 5 g test soil 280, and one L. terrestris 

earthworm (3 - 6 g). The soil had been previously spiked with one of the four 

chemicals (0.8 – 1.5 mL), mixed by placing on an end over end shaker for 24 h and 

then the lids were removed to allow solvent to evaporate off for 72 h. The resulting 

soil concentrations were 36, 9.9, 7.2 and 15.8 µg/kg for carbamazepine, diclofenac, 

fluoxetine and orlistat respectively. Earthworms were also added to blank control 

and solvent control beakers which were kept under test conditions.  

The moisture content of the soils was monitored throughout the study and if 

necessary adjusted with deionised water to maintain the soil at 40 – 60 % of the 

maximum water holding capacity (MWHC). Earthworm beakers were incubated 

under controlled conditions to a constant dark cycle at 13 ± 2 
o
C and 60 % humidity 

and fed twice weekly (see culturing conditions). After 21 d, for each pharmaceutical 

treatment, six L. terrestris were removed from the spiked soil and left on moist filter 

paper for 30 h to purge their guts. The remaining earthworms were transferred to 

clean soil (350 ± 5 g) for a further 21 d for the depuration phase. After which the 

remaining six earthworms were removed from each treatment and allowed to void 

their gut contents (30 hours). All L. terrestris were then immediately frozen (-20
o
C) 

until analysis. 

Soil samples were taken at the beginning and end of the uptake phase and frozen 

until analysis. Pore water was extracted from the soil in exposure beakers at the 

beginning and end of the uptake phase via centrifugation. Duplicate samples (25 g) 

of soil were taken from each beaker and the pore water extracted using the method 

outlined in section 2.3.3.1 then immediately analysed. Measurements of soil and 

pore water pH were also made on all samples using a Hanna pH electrode (HI-

1093B) at time of sampling.  
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5.2.5 Sample analysis 

Prior to worm analysis, each L. terrestris was defrosted and dissected along the 

earthworm through the cuticle and epidermis to reveal muscle tissue. A micro pH 

probe (Thermo Scientific Orion pH microelectrode) was inserted into the muscle 

tissue to record the internal pH.  Worms were then extracted using an approach 

based on that used for E. fetida as described in section 2.3.3.1. The extraction 

solvents were methanol, ethyl acetate, acetonitrile:water (7:3) and acetonitrile for 

carbamazepine, diclofenac, fluoxetine and orlistat respectively and 25 mL of solvent 

was used per earthworm and each extraction took approximately 20 minutes. 

Suspended earthworm-solvent mixtures were centrifuged at 2000 rpm and a 1 mL 

sample of the resulting supernatant was taken and added to 10 mL EcoScint A 

scintillation cocktail ready for counting the radioactivity on a Liquid Scintillation 

Counter (LSC).  

Soil was extracted using liquid extraction according to methods outlined in Chapter 

2. Results from previous experiment confirmed the formation of irreversibly bound 

residues between diclofenac and soil 280 so combustion analysis of these soils was 

also performed to determine if there was radioactivity remaining in the soil 

according to methods reported in 2.3.3.1. Recoveries for all four pharmaceuticals in 

test soil 280 have been determined in previous validation studies (2.3.3.1). Briefly, 

method validation studies showed that average recoveries ranged from 82.8 

(diclofenac) to 100.6 (carbamazepine) %. 

5.2.5.1 Liquid scintillation counting 

Measured radioactivity in pore water, soil and worm extracts were determined using 

LSC on a Beckman LS 6500 LSC counter (Beckman Coulter Inc., Fullerton, USA). 

Each sample was counted three times for 5 minutes. Counts were corrected for 

background activity by using blank controls. Counting efficiency and colour 

quenching were corrected using the external standard ratio method.  
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5.2.6 Kinetic model fitting 

Measured radioactivity in the earthworm extracts allowed for calculation of L. 

terrestris tissue concentrations at the end of the uptake phase (Ct1) and end of 

depuration phase (Ct2). Along with measured pore water concentrations, tissue 

concentrations were input into Equation 3 and Equation 4 to calculate uptake (k1) and 

depuration rates (k2) for L. terrestris in each exposure (refer to Chapter 3 for a full 

explanation of minimised design calculations). The uptake and depuration rates were 

then used to estimate pore water based kinetic bioconcentration factors (BCFs) 

(Equation 5).  

For comparison, data from the previous full uptake and depuration E. fetida 

experiments (Chapter 2) was resampled according to if the experiment had been 

carried out using the minimised design principles to generate equivalent minimised 

design pore water based BCFs to L. terrestris. Measured data used in the calculations 

was originally obtained from full uptake and depuration studies according to OECD 

317 (OECD, 2010) outlined in Chapter 2. 

5.2.7 Statistical Analysis 

Statistical analysis of the data was performed on SigmaPlot (v .12). Prior to all tests, 

normal distribution and equal variance were tested by performing a Shapiro–Wilk 

and Levene–Mediane test, respectively. Firstly, measurements of soil and pore water 

pH made at 0 h and 21 d were compared to see if the average of each measurement 

was independent using a paired t-test. For the diclofenac exposure a one-way 

ANOVA was employed to assess differences in internal pH values of the worms in 

comparison to the control blanks and to see if there was a difference between 

measured pH values during the uptake period in comparison the depuration phase. 

For the remaining test chemicals as the normality test failed the one-way ANOVA 

was instead performed on ranks.  
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5.3 Results 

For all pharmaceuticals there was a decrease in concentrations of radioactivity in the 

soil and soil pore which can be attributed to uptake into L. terrestris, formation of 

non-extractable residues (Chapter 2) or possibly small amounts of mineralisation 

(Al-Rajab et al., 2010). pH measurements indicated that over 21 d the presence of 

diclofenac increased the pore water pH (t (11) = -3.624, p =0.004) and decreased the 

soil pH (t (11) = 2.656, p = 0.022). The presence of orlistat decreased both the pore 

water (t (11) = 3.6534, p = 0.004) and soil pH (t (5) = 6.006, p = 0.002) over the 

uptake period. No pH differences were noted in the carbamazepine study, increases 

in soil pH from 0 h to 21 d (t (11) = -10.452, p = < 0.001) were found to be 

significant in the fluoxetine exposure (Figure 5.1, Figure 5.2). 

 

Figure 5.1 Measured soil pH in different study treatments during at start of study (grey bars) and end of uptake 

phase (21 d) (dashed bars). Average pH measurements provided with ± standard deviation (n = 6). Significant 

differences in measurements between 0 h and 21 d denoted by ‘a.’ 

 

Figure 5.2 Measured pore water pH in different study treatments during at start of study (grey bars) and end of 

uptake phase (21 d) (dashed bars). Average pH measurements provided with ± standard deviation (n = 6). 

Significant differences in measurements between 0 h and 21 d denoted by ‘a.’ 
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5.3.1 Lumbricus terrestris uptake  

All four pharmaceuticals were taken up by L. terrestris over 21 d. After 21 d, 1.96 ± 

0.65, 1.17 ± 0.57, 2.11 ± 1.04 and 0.72 ± 0.18 % of applied radioactivity was taken 

up by L. terrestris in the carbamazepine, diclofenac, fluoxetine and orlistat studies 

respectively. Similar average internal concentrations (Ct1) were observed after 21 d 

for diclofenac and orlistat and these two pharmaceuticals also had the greatest 

amount of chemical remaining within the tissue once the depuration phase had 

ended. The highest uptake rate (k1) was observed in the fluoxetine study with a mean 

of 11.685 L/kg d
-1

 whist the slowest accumulation was observed in the diclofenac 

exposure (0.468 L/kg d
-1

). The diclofenac exposure also had, on average, the slowest 

depuration rate (k2) at 0.05 d
-1

 with approximately 90 % of the accumulated 

radioactivity remaining in the L. terrestris after the depuration period (0.00387 

mg/kg). Comparatively, carbamazepine was eliminated fastest from the earthworm at 

0.132 d
-1 

which resulted in a tissue concentration at the end of the depuration phase 

of 0.00162 mg/kg (Table 5.2).  

Pore water based bioaccumulation factors (BCFs) increased in the order of 

diclofenac < fluoxetine < orlistat < carbamazepine for L. terrestris after exposure to 

the pharmaceuticals in soil 280 and ranged from 6.69 – 83.79 (Table 5.2). Internal 

pH differences were noted in the carbamazepine (Q = 2.715, p = < 0.05) and 

diclofenac (t = 3.488, p = 0.007) treatments at the end of the depuration phase in 

comparison to the controls and for fluoxetine at the end of the uptake phase (Q = 

2.788 p = < 0.05). Meanwhile, orlistat was the only compound to have significant 

differences in L. terrestris internal pH measurements between the uptake and 

depuration phases (Q = 3.327, p = < 0.05) (Figure 5.3). 
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Figure 5.3 Internal pH measurements of L .terrestris exposed to four pharmaceuticals (carbamazepine, 

diclofenac, fluoxetine, orlistat) in test soil 280. Grey bar shows measurement in uptake phase and white bar 

shows measurements made in depuration phase with error bars providing ± SD (n = 6). Where (a) there is 

statistically significant (p < 0.05) difference of in comparison to blank controls and (b) is a statistically significant 

(p < 0.05) difference between the uptake and depuration phases. 

 



 

 

 

Table 5.2 Results from L. terrestris study minimised design experiments together with previously calculated  E. fetida BCFs showing average measured earthworm tissue concentrations (± 

standard deviation, n = 6) at the end of 21 d uptake phase (Ct1) and 21 d depuration phase (Ct2) and mean concentration of pharmaceutical in the pore water during the uptake phase (Cpw) (± 

standard deviation, n = 6). Calculated uptake (k1) and depuration rates (k2) are also presented along with BCF values derived using the minimised design approach. 

 Ct1 mg/kg (internal)  Ct2 mg/kg (internal) Mean Cpw (mg/L) in 

uptake phase 

k2 (dep. rate) 

(d
-1

) 

k1 (uptake rate) 

(L/kg d
-1

) 

Minimised test 

design BCF 

Lumbricus terrestris (this study) 

Carbamazepine 0.0261 ± 0.0086 0.00162 ± 0.00005 0.00416  ±  0.0012  0.132 0.884 6.69 

Diclofenac 0.0043  ± 0.0002 0.0038  ± 0.0011 0.00050  ± 0.00008 0.005 0.437 83.79 

Fluoxetine 0.0059  ± 0.0009 0.0010  ± 0.00004 0.00011  ± 0.00007 0.086 5.744 66.90 

Orlistat 0.0044  ± 0.0011 0.0022 ± 0.0006 0.00027  ± 0.00014 0.033 1.085 33.21 

Eisenia fetida (Chapter 2) 

Carbamazepine 0.0097  ± 0.0018 0.0001  ± 0.00001 0.00864  ± 0.001 0.209 0.238 1.14 

Diclofenac 0.0214 ± 0.0036 0.0056 ± 0.0007 0.00126  ± 0.0004 0.064 1.476 23.03 

Fluoxetine 0.0233 ± 0.0018 0.0028 ± 0.0021 0.00060 ± 0.0001 0.102 4.456 43.76 

Orlistat 0.0162 ± 0.0026 0.0095 ± 0.0011 0.00062 ± 0.0001 0.025 1.601 63.03 

1
3
2
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5.3.2 Comparison between Lumbricus terrestris and Eisenia fetida 

The uptake rates (k1) were considerably faster in the L. terrestris study in 

comparison to E. fetida for carbamazepine, diclofenac and fluoxetine however the 

depuration rates were comparable and fitted within the ranges found in previous E. 

fetida studies (Table 5.2). Nevertheless, in both earthworm species, fluoxetine was 

evidently taken up the fastest while carbamazepine was eliminated the quickest. The 

carbamazepine treatment had the highest average pore water concentration (0.0031 

mg/L) and also the highest L. terrestris internal concentration (0.0261 mg/kg) after 

21 days exposure which was also similar to the findings of the E. fetida study 

(Chapter 2). 

For the smaller earthworm E. fetida, pore water based BCFs calculated based on the 

minimised design were 1.14 (carbamazepine), 23.03 (diclofenac), 43.76 (fluoxetine) 

and 63.03 (orlistat) (Table 5.2). In comparison, BCFs were larger in the L. terrestris 

studies for carbamazepine, diclofenac and fluoxetine. Specifically, the pore water 

based BCFs were 83, 73 and 35 % larger in L. terrestris than E. fetida. Conversely, 

for orlistat BCFs were almost two times larger in E. fetida (63.03) than L. terrestris 

(33.21) (Table 5.2, Figure 5.4). 

 

Figure 5.4 Comparison of Lumbricus terrestris (grey) and Eisenia fetida (white) bioconcentration factors (BCFs) 

and for the study compounds. 
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5.4 Discussion 

There is increasing recognition of the importance of species traits in determining the 

uptake of chemicals, including pharmaceuticals, in the aquatic environment 

(Meredith-Williams et al., 2012; Rubach et al., 2012, 2010) traits such as respiration, 

locomotion and behaviour explaining observed differences in uptake. However, very 

little research has investigated the effect of species differences on the uptake of soil-

borne organic contaminants. This study was therefore performed to explore the 

difference in uptake of pharmaceuticals from soil by two different earthworm 

species. 

The larger BCFs in L. terrestris for three of the test compounds (carbamazepine, 

diclofenac and fluoxetine) in comparison to E. fetida present contradictory results to 

previous research findings which observed ten times higher BCFs for E. fetida than 

L. terrestris after exposure to the persistent DDT metabolite, p,p’-DDE (Kelsey et 

al., 2005). Comparatively, in agreement to the work by Kelsey et al., (2005), the 

BCF for orlistat was approximately 50 % smaller in the current L. terrestris study 

than the E. fetida pore water based BCF. 

The differences in BCF’s between L. terrestris and E. fetida may be due to 

differences in earthworm ecological strategy. E. fetida are epigeic species which 

primarily live at or near the soil surface and consume course particulate organic 

matter and surface litter whilst anecic species, such as L. terrestris live in deep 

burrows and come to surface to feed on surface litter (Bouché, 1983). Therefore as 

the soil in these experiments was mixed thoroughly, the deep burrowing action of L. 

terrestris would ensure they have the opportunity to explore the soil to a greater 

extent with more potential opportunities for chemical uptake in comparison to E. 

fetida which prefer to reside near the soil surface.  

The uptake of chemicals has been postulated to be related to hydrophobicity and the 

lipid content of the organism. For carbamazepine, diclofenac and fluoxetine the 

results do not follow this trend as L. terrestris have a lower lipid content suggesting 

less accumulation which is reverse of what the results demonstrate. Differences in 

lipid content can however offer an explanation for the BCFs in the orlistat exposure 

because E. fetida have a higher lipid content (as reported in Chapter 2). Combined 
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with the fact orlistat is a particularly hydrophobic neutral compound with a large log 

Kow value of 8.97 this would infer orlistat has a higher propensity for uptake into 

lipids and thus may account for the larger E. fetida BCF. 

Furthermore, additional explanations for the larger E. fetida pore water based BCF in 

the orlistat study include size/volume ration principles. As the size of an object 

increases the surface area to volume ratio decreases therefore as L. terrestris are a 

larger species of earthworm this would infer that the smaller, E. fetida, have a greater 

potential for the diffusion of chemicals through their tissues.  

Previous research elucidating the uptake of chemicals into earthworms demonstrated 

that a majority of uptake from the soil environment occurs via diffusion across the 

earthworm skin from pore water for a large proportion of chemicals (log Kow < 6). 

However as the hydrophobicity of the chemicals increased uptake via the gut route 

became increasingly important (Jager et al., 2003). A combination of large surface 

area to volume ratio ensuring minimal uptake via diffusion and the hydrophobic 

nature of orlistat restricting uptake to primarily across the gut wall may explain the 

smaller pore water based BCFs in L. terrestris in comparison to E. fetida.  

Whilst this may explain the orlistat uptake, other mechanisms or processes must 

exist for carbamazepine, diclofenac and fluoxetine which ensure greater 

accumulation and higher BCFs in L. terrestris. These pharmaceuticals are also more 

hydrophilic than orlistat and therefore diffusion across the earthworm skin is the 

dominant route of exposure therefore the larger volume of tissue in the L. terrestris 

could facilitate a higher capacity for uptake, shown by faster uptake rates (k1), or 

greater storage ability of the chemicals in the tissue, as shown by the larger tissue 

concentrations (Ct1) at the end of the uptake phase (Table 5.2). Little is known about 

the metabolism of pharmaceuticals in earthworms but this may also be a factor 

influencing uptake in different earthworm species. Previous work presented in 

Chapter 2 demonstrates that diclofenac is metabolised in E. fetida studies however 

additional studies are required to see if similar transformation products are formed in 

L. terrestris exposures. Potential metabolism, together with gut load and retention 

time for ingested soil particles which may alter the bioavailability of the 

pharmaceuticals (Hartenstein et al., 1981; Hartenstein and Amico, 1983). 
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These research findings demonstrate that species traits are important in determining 

uptake and BCF calculations. In terms of the wider environment, birds feeding on L. 

terrestris would generally be more at risk than if they were to ingest a similar 

number of the smaller, E. fetida, and thus the potential food chain effects as a result 

of bioaccumulation would also be greater. However for risk assessment purposes it 

may not be necessary to take into account species differences as all BCFs for the 

four pharmaceuticals were within an order of magnitude of each other. Nevertheless, 

it is important to recognise that only two species were evaluated in this study and 

therefore to draw more general conclusions it may be necessary to look at a wider 

range of earthworm species for example with differing burrowing habits, soil 

property preferences and sizes. 

All test chemicals were thoroughly mixed in the soil to create an even distribution of 

the pharmaceuticals. This heterogeneity is not representative of the natural soil 

environment where pharmaceuticals will most likely be applied to the top layers of 

the soil profile after application of sludge and manure. Earthworms which prefer to 

reside at or near the soil surface would therefore have a greater exposure to 

chemicals than the deep burrowing species which come to the surface less often. 

Hydrophilic pharmaceuticals which have a greater potential for movement with 

percolating water flows may be more widely distributed in the soil profile than 

highly sorptive pharmaceuticals and therefore differences in pharmaceutical physico-

chemical properties can also affect earthworm uptake in the natural environment. 

Recent research has demonstrated that the veterinary antibiotic, sulfadiazine 

accumulated in greater concentrations in the soil boundary layer between channel 

compartment and bulk soil. Over time, the shells of microaggregates also had a 

larger sulfadiazine concentration than the core (Reichel and Thiele-Bruhn, 2013). 

Pharmaceuticals accumulating in earthworm channels may present a greater risk to 

burrowing earthworm species where there is the potential for greater uptake of 

chemicals. Additional studies are required to determine whether this needs to be 

addressed with regards to risk assessment. 

The observed changes in pore water, soil and internal pH (Figure 5.1, Figure 5.2, 

Figure 5.3) would also indicate that the presence of chemicals can alter the chemistry 

of the soil. This is important in terms of modelling exposure scenarios and risk 
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assessment exercises as soil properties such as pH are currently assumed to remain 

constant and changing these properties may alter chemical bioavailability. 

5.5 Conclusions 

After isolated exposure of test organisms (Lumbricus terrestris) to carbamazepine, 

diclofenac, fluoxetine and orlistat for 21 days uptake phase followed by 21 days 

depuration period the range of pore water based BCFs for these compounds were 

6.69 to 83.79. These findings demonstrate bioaccumulation by L. terrestris appear to 

be highly compound specific. As a result of comparison to previous research on the 

uptake of pharmaceuticals into a smaller earthworm (E. fetida), the bioaccumulation 

of pharmaceuticals into earthworms also appear to be species specific, with the 

larger worm (L. terrestris) showing a greater capacity for the uptake of 

carbamazepine, diclofenac and fluoxetine and thus larger pore water based BCFs. In 

terms of risk assessment these results highlight that may be necessary to look at 

species differences when determining the effect of pharmaceutical residues in the 

soil environment. Further research is required to evaluate the effect of species traits 

on pharmaceutical uptake using a wider variety of test organisms before conclusions 

can be drawn as to whether a single species should not be used as a model to 

represent all organisms in the risk assessment of chemicals. 
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Chapter 6 Fate and Uptake of Pharmaceuticals in Soil – 

Plant Systems 

6.1 Introduction 

Due to the detection of pharmaceuticals in soils (Butler et al., 2012; Dalkmann et al., 

2012; Durán-Alvarez et al., 2009; Golet et al., 2003; Kinney et al., 2006; Redshaw 

et al., 2008a; Vazquez-Roig et al., 2010), as described in Chapter 1, concerns have 

been raised over the potential for these substances to be taken up into human food 

items and to pose a risk to human health (Boxall et al., 2006; Wu et al., 2010). A 

number of studies have demonstrated the uptake of pharmaceuticals from both 

human and veterinary use, into plants (Boxall et al., 2006; Dolliver et al., 2007; 

Herklotz et al., 2010; Holling et al., 2012; Kong et al., 2007; Redshaw et al., 2008b; 

Shenker et al., 2011; Wu et al., 2010, 2012). Studies have explored the uptake and 

translocation of a variety of pharmaceuticals with a particular focus on the anti-

depressant drug, fluoxetine and antibacterial chemicals including sulfamethazine, 

sulfamethoxazole and trimethoprim into numerous plant species  including root and 

shoot crops such as soybean, lettuce and carrot. 

A number of studies have explored plant uptake from a hydroponic culture medium 

such as the work by Herklotz et al., (2010) and Redshaw et al.,(2008b). Specifically, 

uptake of fluoxetine was seen in the stems (5 % mean uptake of applied burden; 

0.49 μg/g (wet weight)) and leaves (3 % mean uptake; 0.26 μg/g wet weight), 

however there was no evidence of uptake into the curd (Redshaw et al., 2008b). 

Fluoxetine also remained undetected in plant roots whereas soil uptake studies have 

generally noted a concentration of the compound in the roots albeit smaller than the 

amount detected in the main plant (Winker et al., 2010). 

Studies have also revealed variations in plant uptake between different species 

exposed to pharmaceuticals (Boxall et al., 2006; Herklotz et al., 2010; Wu et al., 

2012). Recent studies have also investigated the uptake into plants with the addition 

of sewage sludge to test systems and uptake via the application of reclaimed waste 

water effluent to simulate realistic environmental exposures in the field (Holling et 

al., 2012; Shenker et al., 2011; Wu et al., 2012, 2010). Results indicate that plant 
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uptake is higher in the biosolid amended soils, probably a result of higher exposure 

concentrations however pharmaceuticals introduced by irrigation water appear to be 

more available for translocation (Wu et al., 2010).  

Many of the previous plant uptake studies have been done at unrealistic exposure 

concentrations. Studies typically have looked at uptake only with no attempt being 

made to understand the temporal fate of the pharmaceutical in soil matrices. Without 

understanding the dynamics of the distribution and fate of the pharmaceuticals in the 

soil, it is difficult to establish relationships between the properties of pharmaceuticals 

and uptake. This study was therefore initiated to explore the fate, distribution and 

uptake of a range of pharmaceuticals in soil-plant systems. The study was performed 

on two crop species with five pharmaceuticals and an antimicrobial personal care 

product covering a diverse range of physico-chemical properties (Table 6.1). 

6.2 Materials and methods 

Analytical grade carbamazepine (> 98 %), diclofenac (> 98 %), fluoxetine (> 98 %), 

propranolol (> 99 %), sulfamethazine (> 99 %), and triclosan (> 97 %) were 

obtained from Sigma-Aldrich (Sydney, Australia). Deuterated forms of selected 

study compounds (carbamazepine-D10 (99.8 %), diclofenac-D4 (98.5 %), 

fluoxetine-D5 (99.4 %), propranolol-D7 (99.6 %), and triclosan-D3 (98.6 %) were 

purchased from TLC Pharmachem (Canada) for use as internal standards in the the 

chemical analyses. 

Tepko soil (obtained from near Tepko township in South Australia) was used for 

both the plant uptake and fate studies (pH 6.25, EC 0.09 dS/cm, OC 1 %, CEC 5.2 

cmol(+)/kg, clay 8 %). Prior to testing, the soil was air dried then sieved to 2 mm to 

ensure homogeneity. 

Ryegrass seeds (Lolium perenne, Guard variety) were obtained from Seed Services 

(SARDI, South Australian Research and Development Institute) and radish 

(Raphanus sativus, Cherry belle variety) from Mr Fothergills (Sydney, Australia). 
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Table 6.1 Selected properties of test chemicals (full description of physico-chemical properties are Table 1.3) 

Test chemical pKa Log 

Kow
a
 

Log 

Dow
b
 

Carbamazepine N/A 2.5 N/A 

Diclofenac 4.0 4.5 2.30 

Fluoxetine 10.1 4.1 0.19 

Propranolol 9.5 3.5 0.19 

Sulfamethazine 7.4 0.9 0.87 

Triclosan 8.1 4.8 4.80 

a 
Unionised form of the drugs 

b
 Log Dow at pH 6.25 

 

6.2.1 Fate study 

Duplicate pots of soil were prepared (200 ± 5 g) and spiked with aliquots of 1 g/L (in 

acetone) solution of each study pharmaceutical to give a nominal concentration of 10 

mg/kg. Following spiking, soil was mixed by hand to ensure a homogeneous 

distribution of the test chemicals; pots were then left for 2 h in a fume cupboard to 

evaporate off any solvent. Blank control pots were also prepared. Pots were then 

kept in controlled conditions (14 h light (23
o
C) 10 h dark (15

o
C)) until time of 

sampling. Moisture content adjustments were made on a daily basis, by addition of 

deionised water, to ensure levels remained at 60 % of the soil maximum water 

holding capacity (MWHC). Sampling points were 0 h, 1, 3, 7, 14, 40 d. At each 

sampling point, duplicate pots were removed and the soil pore water was extracted. 

Extractions were done by taking 2 x 25 g portions of soil from each pot and placing 

these on top of a glass wool insert in in 2 x 25 mL disposable plastic syringes. 

Syringes were placed in plastic centrifuge tubes and centrifuged at 3500 rpm for 45 

minutes. The resulting pore water, collected in the centrifuge tubes for each single 

sample, was pooled and centrifuged again at 15000 rpm for an additional 30 minutes 
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and then transferred to vials ready for analysis. Samples of whole soils were also 

taken and stored at -20C for later analysis. 

6.2.2 Uptake of pharmaceuticals into plants 

Plastic pots containing 500 ± 5 g and 200 ± 5 g were prepared for use in uptake 

studies with radish and ryegrass respectively. Pots were prepared in triplicate for 

each pharmaceutical and plant type and spiked as per the fate study to give a final 

soil concentration of 1 mg/kg. Solvent and blank controls were also prepared in 

triplicate. Soils were then left for 48 hours to equilibrate before a total of 6 and 16 

seeds were initially added to each pot for radish and ryegrass respectively which 

were then lightly covered in test soil. 

Plants were left to grow for 6 weeks in a growth chamber under the same conditions 

as the pots in the fate study (Figure 6.1). Pots were arranged in a randomised order 

(specific positions were determined based up on a random number generator in 

Microsoft Excel). A similar watering regime to that used in the fate study was 

adopted to maintain moisture levels at 60 % of the MWHC. As the experiment 

progressed, the growth of the plant was taken into account for the watering strategy. 

Germination counts were made at 11 days. After 12 days of growth, when 

approximately 80 – 90 % of plants had germinated the radish plants were thinned to 

leave behind three seedlings.  This was to ensure maximum germination potential in 

order to gather enough biomass for the chemical analysis. After 50 % emergence, 

plants were fed Ruakura nutrient solution, where 5 mL was applied per 250 g soil 

twice weekly (for three weeks) instead of the DI water. After 3 weeks, addition of 

nutrient solution continued with one 5 mL application of nutrient solution per 250 g 

of soil per week (for nutrient solution preparation see Appendix 14).  
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Figure 6.1 Radish and ryegrass plants before harvest. 

 

At harvest, loose soil was removed from around the radish plant to allow for the 

intact removal of the whole radish (Figure 6.2). The radish plant was thoroughly 

rinsed in deionised water to remove any soil residues, patted dry with paper towel, 

weighed, divided up into root and above ground biomass and these were then re-

weighed separately. For the ryegrass, after measuring the maximum height of the 

plants from each treatment, the above ground plant material was cut away, rinsed in 

DI water, patted dry and then weighed. All plant samples were cut into smaller 

pieces then freeze dried and stored at - 20
o
C until extraction for residue analysis. Soil 

was also taken from the plant pots, at the end of the uptake study, for analysis. 

 

Figure 6.2 Radish plants after harvest. 
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6.2.3 Pharmaceutical analysis 

6.2.3.1 Extraction from soil and plant material 

Pharmaceutical compounds were extracted from soils and plants using validated 

methods chosen for their high percentage recoveries (Appendix 17). Prior to plant 

and soil extractions 1 mg/g of deuterated stable isotope standards were added to their 

respective samples (100 ug/L stock solution). Since stable isotopes were unavailable 

for sulfamethazine, control plants and control soil samples were spiked with a known 

amount of sulfamethazine to determine recoveries. For the soil extraction, 5 mL of 

methanol was added to 1g soil (wet weight) and 1 g of sand. After addition of the 

solvent the test tubes were vortexed for 1 minute and then ultrasonicated for 15 

minutes. Lastly the tubes were centrifuged for 30 minutes at 1500 rpm and the 

supernatant was removed. The extraction process was repeated with a further 

addition of 5 mL methanol and then 5 mL acetone. The supernatants from the three 

extractions were combined and then evaporated to dryness before being reconstituted 

in 1mL methanol, sonicated for 5 minutes and then transferred into LC-MS/MS vials 

for analysis. 

For the plant extractions, sand (1 g) was added to 1 ± 0.1 g of plant material for each 

of the samples and 5 mL of extraction solvent (70:30 acetonitrile:Milli-Q water 

solution) was then added to the test tube. After addition of the solvent the test tubes 

were vortexed for 1 minute and then ultrasonicated for 15 minutes. The samples 

were then centrifuged for 30 minutes at 1500 rpm and the supernatant was removed 

and the process repeated for two further extractions. The combined extracts (15 mL) 

were diluted with Milli-Q to make a maximum solvent concentration of 10 % and the 

extract was then applied to an Oasis HLB (Waters Corporation) 6 mL 200 mg solid 

phase extraction (SPE) cartridge that had been preconditioned with Milli-Q water 

and methanol. The cartridges were left to dry under vacuum, washed with 10 % 

methanol in Milli-Q water and eluted with 2 x methanol (3 mL) and 1 x 

dichloromethane (3 mL). The eluates were combined and evaporated to dryness 

under a nitrogen stream and reconstituted in 1 mL methanol. Lastly the test tubes 

were sonicated for 5 minutes ready for the extract to be transferred into LC-MS/MS 

vials. 
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6.2.3.2 LC-MS/MS analysis 

Cleaned-up, extracts were analysed for the pharmaceuticals by LC-MS/MS using a 

ThermoFinnigan TSQ Quantum Discovery Max (Thermo Electron Corporation). 

HPLC separation was performed with a Kinetex C18 100 x 2.1 mm (2.6 µm particle 

size) column (Phenomenex, USA) with a mobile phase flow rate of 0.3 mL/min. The 

mobile phase composition was 0.1 % formic acid and acetonitrile using a gradient 

program over 12 min. The relative flow of 0.1 % formic acid was 95 % for 2 min, 20 

% after 3 min, 2 % at 4 min and held for 3 min until 7 min before returning to 95 % 

by 9.5 min. MS/MS analysis was undertaken using atmospheric pressure 

electrospray ionisation (ESI) in both positive and negative ionisation modes. Spray 

voltage was 5000 V and source collision induced dissociation was -12 V in positive 

ESI and -4000 V and 10 V for negative ESI, with the ESI capillary line maintained at 

350C and collision gas (Ar) pressure set at 1.5 mTorr. Qualitative and quantitative 

analysis of compounds was based on retention time, multiple reaction monitoring 

(MRM) of two product ions and the ratios between the product ions (More details of 

the analytical method pertaining to each compound are in Appendix 15). 

Lower limits of quantification (LOQs) were determined by repeat injections (n=6) of 

the lowest detectable concentrations of the compounds. The LOQ was defined as 

three multiplied by three times the standard deviation (3) of the responses. The 

LOQs relating to the soil and plant matrices were based on the respective recoveries 

within each matrix (Appendix 16). 

6.2.4 Data analysis 

6.2.4.1 Soil degradation 

Concentrations of pharmaceuticals in soil and pore water were plotted against time 

of sampling. Where there was a significant difference in concentration to that 

measured at 0 d, three kinetic models were used to fit the data: a simple first order 

degradation kinetic (SFO; Equation 7) model, a first order multi-compartment model 

(FOMC; Equation 8) (Gustafson and Holden, 1990) and a bi-exponential first order 
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model (BFO; Equation 9) (FOCUS, 2006). Model parameters were optimized 

according to recommendations by FOCUS (FOCUS, 2006) using the least squares 

method with Microsoft® Excel Add-Inn Solver. 

Ct = C0*e-
kt
     

     

Equation 7 

Ct = C0 (1+βt)
-α

    

     

Equation 8 

Ct = Ct1+Ct2 = C01*e 
(-k1t) 

+ C02e*
(-k2t)

 

     

Equation 9 

 

Where Ct is the concentration of pharmaceutical remaining in soil (μg/g) after t 

(days), C0 is the initial concentration of pharmaceutical (μg/g), k the rate of 

degradation (day
-1

), β is the location parameter, α is a shape parameter determined by 

coefficient of variation k values. For Equation 9, Ct1 + Ct2 is the total amount of 

pharmaceutical applied at time, t = 0 (in two compartments), C01 and C02 are the 

amount of chemical applied to compartment 1 and 2 respectively and k1 and k2 are 

independent decay rate constants for compartments 1 and 2 respectively. Models 

used specific to each pharmaceutical, parameters and measurements to assess the 

goodness of fit for the optimised parameters are outlined in Appendix 18. For SFO 

and FOMC model fits the time it took for a 50 or 90 % decline in the concentration 

of the pharmaceutical (DT50, DT90) could then be calculated from the model fits 

(Appendix 18; Table 6.2). For BFO models no analytical solution exists to calculate 

degradation end points. 

6.2.4.2 Uptake factors 

Measured concentrations for each of the pharmaceuticals taken up by the radish and 

ryegrass were used to calculate soil and pore water-based uptake factors (UFs). UFs 

were derived using concentrations in the soil, pore water and plant material 

(Equation 10, Equation 11, Equation 12). 

 

s

p
soil

C

C
UF       

Equation 10 
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d

soil
 waterpore

K

UF
UF     

     

Equation 11 

pw

s
d

C

C
K      

     

Equation 12 

Where UFsoil is the soil-based UF, UFpore water is the soil pore water-based UF, Cp is the 

concentration in plant material, Cs is the concentration in soil, Cpw is the 

concentration in the pore water and Kd is the average soil sorption coefficient for 

each pharmaceutical calculated across seven sampling points in the fate study (Table 

6.2). 

6.2.5 Statistical analysis 

Statistical analysis of the data was performed using SigmaPlot (v .11). A one-way 

ANOVA (significance level 0.05) was employed to assess differences in plant 

biomass (dry weight) between plants grown under treated soil and controls. 

Additionally, a one-way ANOVA was employed to assess any differences in 

concentration of the pharmaceuticals in the soil and pore water over 40 d exposures, 

with additional comparisons between sampling points assessed by Holm-Sidak pair-

wise comparison. Prior to all tests, normal distribution and equal variance were 

tested by performing a Shapiro–Wilk and Levene–Mediane test, respectively. 

6.3 Results and Discussion  

6.3.1 Fate study 

Over 40 d average Kd values ranged from 0.99 to 121.88 L/kg and increased in the 

order of sulfamethazine < carbamazepine < fluoxetine < diclofenac < propranolol < 

triclosan (Table 6.2). Some of the study compounds persisted in the soil throughout 

the 40 d uptake period whilst others were readily dissipated (Figure 6.3; Table 6.2). 

There was no significant difference between measured concentrations at 0 d and 40 d 

for carbamazepine (p = 0.026), fluoxetine (p = 0.162) and propranolol (p = 0.757). 

Triclosan dissipated from the soil after 14 d (p = 0.004).   
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Figure 6.3 Average measured soil (closed points) and pore water (open points) concentrations during fate study 

(40 d) for test pharmaceuticals; carbamazepine (A), diclofenac (B), fluoxetine (C), propranolol (D), 

sulfamethazine (E) and triclosan (F). Best model fit provided by dashed line for soil and a solid line for pore 

water where necessary and error bars represent standard error of mean (n = 3). 

 

Concentrations of diclofenac (p = 0.032) and sulfamethazine (p = 0.013) 

significantly decreased after 1 d and were undetectable after 3 d. The dissipation of 

these three compounds was fast (0.06 – 1.4 d
-1

; Table 6.2); compounds followed 

single first order kinetics and corresponding DT50 values were 0.5 d, 0.99 d and 

11.55 d for diclofenac, sulfamethazine and triclosan respectively. The persistent 

nature of carbamazepine is consistent with previous findings in this thesis (Chapter 

2) and previous research (Kinney et al., 2006; Monteiro and Boxall, 2009; Williams 

et al., 2006). The observed degradation of triclosan is also consistent with previous 

research which has suggested a half-life of 18 days (Ying et al., 2007). Results 

A B 

C D 

E F 
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presented in this study show that in less than 40 days; only 10 % of the applied 

triclosan remained in the soil (Table 6.2) which has been previously reported to 

transform to methyl triclosan (Butler et al., 2012; Waria et al., 2011). Previous fate 

studies have also shown that diclofenac is not persistent and readily biodegradable 

from soils as a result of chemical mineralisation (Al-Rajab et al., 2010; Dalkmann et 

al., 2012) The half-life observed in this study (0.5 d) is therefore comparable to 

previous findings of < 5 d(Al-Rajab et al., 2010) and considerably faster than 

observations by Xu et al., (2009c) who reported DT50’s ranging from 3.1 d (loamy 

sand) to 20.4 d (silty loam) (Table 6.2). 

Even though diclofenac and sulfamethazine were not detectable in whole soil 

extracts after 3 d, detectable concentrations of these chemicals in the pore water were 

seen for the full duration of the fate study (Figure 6.3). By 40 d, concentrations of all 

test chemicals remaining in the pore water decreased in the order carbamazepine > 

fluoxetine > sulfamethazine > propranolol > triclosan > diclofenac (Figure 6.3).With 

the exception of sulfamethazine on 0 d, carbamazepine concentrations were 

consistently the highest in the pore water (1321– 3129 µg/L) over 40 d (Figure 6.3). 

Sulfamethazine concentrations were initially high (2932 – 6502 µg/L) however after 

1 d, concentrations dropped to 832 – 2683 µg/L after which they decreased at a 

slower rate. Unlike soil dissipation, pore water dissipation did not follow first order 

kinetics. The models that described pore water dissipation better included first order 

multi-compartment model (FOMC; Equation 8) (Gustafson and Holden, 1990) and a 

bi-exponential first order model (BFO; Equation 9) (Table 6.2). Pore water 

concentrations decreased significantly in the diclofenac (p = 0.016) and 

sulfamethazine studies  (p = < 0.001) resulting in DT50’s < 20 d (Table 6.2) in 

comparison to DT50’s for the remaining compounds of > 40 d. Whilst triclosan 

dissipated rapidly from the soil, pore water concentrations were not significantly 

different at any of the sampling points over 40 d (p = 0.266). 

 



 

 

 

Table 6.2 Summary statistics from soil and pore water dissipation modelling (more detailed table including model fit provided in Appendix 18). 

 

* No significant difference between 0 d and 40 d measured concentrations therefore data was not modelled to determine degradation rates. 

  Pore water Soil 

Pharmaceutical Model DT50 (d) DT90 (d) Rate 

constants 

 r
2
 Model DT50 (d) DT90 (d) Rate 

constants 

r
2
 

Carbamazepine * > 40  > 40   * > 40  > 40   

Diclofenac FOMC 19.65 2.57E+0

3 

α = 0.79, β 

= 0.34 

0.88 SFO 0.50 1.64 (1.4) 0.99 

Fluoxetine * > 40  > 40   * > 40  > 40   

Propranolol * > 40  > 40   * > 40 > 40   

Sulfamethazine BFO   C01 = 91, 

C02 = 9, k1 

=0.85, k2 = 

0.017 

0.99 SFO 0.99 3.29 (0.7) 0.99 

Triclosan * > 40 > 40   SFO 11.55 38.38 (0.06) 0.97 

1
4
9
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6.3.2 Plant uptake 

Plants contain ion channels and enzymes which could also be potentially targeted by 

pharmaceuticals and may initiate a response such as inhibition in the transport of 

essential elements required for plant growth for example (Williams and Cook, 2007). 

Previous research has highlighted the potential for pharmaceuticals to induce toxic 

effects on plants (Kong et al., 2007). Dose response relationships with plants grown 

under triclosan treatment have been noted starting at 0.44 mg/L in hydroponic 

studies (Herklotz et al., 2010) and low observed effect concentrations (LOECs) seen 

at 0.74 mg/kg after plant growth in quartz sand (Reiss et al., 2009). In this study, 

however, no observed effect on plant growth was noted for any of the treatments in 

comparison to the controls (p = 0.08 – 0.966) for both radish and ryegrass, probably 

due to the more realistic exposure concentrations that were used (Figure 6.5). This is 

in support of previous research where concentrations of carbamazepine in root tissue 

ranging between 202 µg/kg - 426 µg/kg yielded no observed effect on ryegrass aerial 

plant growth (Winker et al., 2010) (Figure 6.4). 

 

Figure 6.4 Percentage growth of control for ryegrass as a result of pharmaceutical treatment (fluoxetine [FLX], 

diclofenac [DCF], carbamazepine [CBZ], triclosan [TCS], sulfamethazine [SMZ], propranolol [PRL]). Average 

value provided with error bars representing standard deviation, based on dry weight of plant material (n = 6).
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Figure 6.5 Percentage growth of control for radish leaf (A) and bulb (B) as a result of pharmaceutical treatment 

(fluoxetine [FLX], diclofenac [DCF], carbamazepine [CBZ], triclosan [TCS], sulfamethazine [SMZ], propranolol 

[PRL]). Average value provided with error bars representing standard deviation, based on dry weight of plant 

material (n = 6). 

 

Five of the six test chemicals were taken up in detectable quantities into radish and 

ryegrass (Table 6.3; Figure 6.6). The degree of uptake varied across pharmaceuticals 

and plant species. With the exception of propranolol, greater uptake into radish was 

seen, after combining the concentrations in the bulb and leafy parts, compared to 

ryegrass. For both radish and ryegrass, carbamazepine was taken up the greatest 

extent with measured concentrations up to 52 µg/g in the radish leaf. Whilst 

sulfamethazine was taken up by both plants, concentrations were consistently below 

the LOQ. Therefore both radish leaf and radish bulb accumulated chemicals in the 

order of carbamazepine > triclosan > diclofenac > propranolol > fluoxetine > 

sulfamethazine whereas chemicals accumulated in the ryegrass in the order of 

carbamazepine > propranolol > triclosan > fluoxetine > diclofenac > sulfamethazine 

(Figure 6.6). 

A 

B 
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In the propranolol exposure, there was very high uptake into the ryegrass but this 

was not mirrored in the radish leaf where concentrations were some 16 times less 

(Figure 6.6). This was also true for triclosan, although to a lesser extent. For the 

remaining pharmaceuticals, concentrations in the radish leaf and ryegrass were 

generally similar. 

Greater fluoxetine uptake into the roots was observed in this study (170 ng/g) in 

comparison to previous research where fluoxetine root concentrations were < 22.2 ± 

5.3 ng/g (Wu et al., 2010). The previous study involved fluoxetine application via 

biosolids and the effect of soil properties on uptake also must be considered. The 

amended soil concentration in the Wu et al., (2010) study was lower (0.07 mg/kg) 

than the current study whereas in an earlier study Redshaw and colleagues saw 

fluoxetine uptake by Brassicaceae tissue cultures from a hydroponic set-up 

comparable to the results from our study at 0.26 - 0.49 µg/g (Redshaw et al., 2008b). 



 

 

 

Table 6.3 Average soil concentrations measured at the end of the experiment from soils collected from the plant pots, soil – water partition distribution coefficients (Kd) values  calculated 

during fate study, measured plant concentrations (± standard deviation, n = 6), and calculated  uptake factors (UF) for ryegrass, radish bulb and leaf.  

 Radish soil 

(µg /g) 

Ryegrass 

soil (µg/g) 

Soil Kd 

(average 

21 d) 

Ryegrass 

conc. 

(µg/g) 

Radish 

leaf 

conc. 

(µg/g) 

Radish 

bulb 

conc. 

(µg/g) 

Ryegrass 

UFsoil 

Radish 

leaf UFsoil 

Radish 

bulb UFsoil 

Ryegrass 

UFpore 

water 

Radish 

leaf 

UFpore 

water 

Radish 

bulb 

UFpore 

water 

Carbamazepine 0.71 ± 0.1 0.46 ± 0.2 7.85 ± 

1.5 

30.23 ± 

2.8 

43.02 ± 

9.3 

5.88 ± 

0.4 

65.26 60.59 8.28 
8.31 7.71 1.05 

Diclofenac 0.07 ± 0.04 0.05 ± 0.02 12.40 ± 

8.3 

0.33 ± 

0.1 

0.79 ± 

0.3 

0.37 ± 

0.02 

6.82 11.53 5.39 
0.55 0.93 0.43 

Fluoxetine 0.47 ± 0.08 0.55 ± 0.03 8.39 ± 

4.2 

0.04 ± 

0.01 

0.04 ± 

0.02 

0.17 ± 

0.15 

0.08 0.10 0.36 
0.01 0.011 0.043 

Propranolol 0.16 ± 0.04 0.21 ± 0.04 79.44 ± 

29.8 

2.37 ± 

0.7 

0.14 ± 

0.1 

0.19 ± 

0.1 

11.04 0.91 1.20 
0.14 0.011 0.015 

Sulfamethazine < LOQ 0.01 ± 0.001 0.99 ± 

0.5 

< LOQ < LOQ < LOQ < LOQ < LOQ < LOQ 
< LOQ < LOQ < LOQ 

Triclosan 9.31 ± 0.85 0.05 ± 0.01 121.88 ± 

33.9 

2.00 ± 

0.5 

0.91 ± 

0.2 

1.13 ± 

0.64 

37.59 0.10 0.12 
0.31 0.0008 0.001 

1
5
3
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6.3.3 Uptake factors 

The greatest UFsoil values for the ryegrass, radish leaf and radish bulb were obtained 

in the carbamazepine treatments, with values of 65.26, 60.59 and 8.28, respectively 

(Table 6.3). Relatively small UFsoil values were found for fluoxetine (0.08 – 0.36) 

which can probably be accounted for by the high soil concentration remaining at the 

end of the experiment and the observed low uptake (Figure 6.3). Work by 

Karnjanapiboonwong et al., (2011) found greater triclosan UFs between the soil and 

the root in the pinto bean (Phaseolus vulgaris), which ranged between 9 -12, in 

comparison to UFsoil (0.12) and UFpore water (0.001) values generated in this study for 

the radish root. However in the ryegrass exposure the triclosan UFsoil is considerably 

larger in the present study at 37.6. 

Calculated UFpore water range between 0.01 – 8.31, 0.0008 – 7.71 and 0.001 – 1.05 for 

the ryegrass, radish leaf and radish bulb respectively (Table 6.3). Similar to UFsoil 

carbamazepine exposure resulted in the highest UFpore water in the ryegrass, radish leaf 

and radish bulb. Triclosan had the lowest UFpore water in the radish leaf (0.0008) and 

bulb (0.001) whereas fluoxetine had the lowest UFpore water in ryegrass (0.01). 

6.3.4 Potential factors influencing the uptake of pharmaceuticals 

Plant uptake is thought to be heavily dependent on the physico-chemical 

characteristics of the chemical, including the Henry’s Law constant, water solubility 

and octanol-water partition coefficient (Bacci et al., 1990; Briggs et al., 1983; Duarte 

Davidson and Jones, 1996; Trapp et al., 1990). Physico-chemical properties are 

important because they can describe whether a chemical is neutral or ionisable at 

environmentally relevant pH values. A clear distinction has been made between the 

plant uptake of neutral chemicals and chemicals which are ionised (electrically 

charged) and separate models exist to predict uptake of chemicals in both these 

forms (Trapp, 2004). However it is important to note the total concentration in a 

plant cell comprises neutral, ionic and complexed forms of  a compound (Trapp, 
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2004). In this study, carbamazepine was the only neutral chemical whereas the 

remaining pharmaceuticals were ionisable. 

For neutral chemicals, hydrophobicity (usually expressed as log Kow) has been 

postulated to be the most important property involved in the uptake of chemicals into 

a plant from the soil medium (Hellström, 2004) as the degree of uptake appears to be 

proportional to the octanol-water partition coefficient (Briggs et al., 1982; Paterson 

et al., 1994). Briggs et al., proposed that plant uptake of neutral chemicals can be 

represented by a Gaussian curve distribution where maximum translocation of 

chemicals can be seen at a log Kow, ~1.78 in comparison to particularly hydrophobic 

(high log Kow) and hydrophilic (low log Kow) chemicals which are taken up to a 

lesser extent.  

The high pore water concentrations in the carbamazepine exposure may have played 

a crucial role in the large amount of uptake observed. However the consistently high 

carbamazepine uptake into leafy parts of the plants (< 52 µg/g) can more likely be 

attributable to the log Kow of around 2 for this compound which is in the range of 

Kow values for which maximum translocation of neutral compounds is expected 

(Briggs et al., 1982). Greater carbamazepine concentrations were noted in the leaf 

material in comparison to the roots (Figure 6.6; Table 6.3) which is in agreement 

with previous research findings (Shenker et al., 2011; Winker et al., 2010; Wu et al., 

2010, 2012). It appears that the uptake of carbamazepine is passive and not restricted 

by root membranes. Carbamazepine has relatively low hydrophobicity and is mainly 

transported by mass flow from the roots and thus concentrates in the mature and 

older leaves (Shenker et al., 2011). 

Even though triclosan is slightly ionised at the test soil pH of 6.19 (1.2 %), most of 

the compound will be in the non-ionised form. The unionised molecule has a log Kow 

of 4.80 so the low observed uptake for triclosan can be also explained by the 

Gaussian distribution relating uptake to hydrophobicity (Briggs et al., 1982). Small 

radish UFpore water (0.0008 – 0.001) and UFsoil (0.10 – 0.12) values for triclosan uptake 

demonstrate that particularly hydrophobic chemicals are not taken up to a great 

extent in the plant material. 
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Figure 6.6 Total uptake of carbamazepine, diclofenac, fluoxetine, propranolol and triclosan into ryegrass (dark 

grey), radish leaf (grey) and radish bulb (white) after plants were grown from seed in pharmaceutically spiked 

soil for 40 days. Average concentrations provided with error bars representing the standard error (n = 6). 

Sulfamethazine uptake was below LOQ.  

 

Similar to triclosan, only a small proportion of sulfamethazine (5.8 %) would be in 

the ionised form at the pH of the study soil. Based on the Gaussian distribution 

(Briggs et al., 1982), the neutral form of sulfamethazine (log Kow of 0.9) would not 

be expected to enter the root system - it is therefore not surprising that concentrations 

of sulfamethazine were below the LOQ and that UFs could not be calculated. The 

complete dissipation from the soil by 3 d may have also contributed to the 

unquantifiable sulfamethazine uptake (Figure 6.3). 

Diclofenac, fluoxetine and propranolol are expected to be extensively ionised in the 

test soil (> 99 %). Previous research demonstrates that plant uptake of the 
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dissociated species of an ionisable compound is lower compared to the unionised 

species (Briggs, 1981; Trapp, 2000). As demonstrated in Figure 6.6 there were up to 

600 times less uptake of diclofenac, fluoxetine and propranolol in the ryegrass in 

comparison to the neutral pharmaceutical, carbamazepine. Specifically for 

diclofenac, the large ionisation combined with the results from the fate study which 

show extensive dissipation from both the soil and pore water, and low measured 

concentrations can probably explain the minimal uptake of diclofenac into the radish 

and ryegrass. 

Previous research findings demonstrate that some pharmaceuticals have a tendency 

to accumulate in the roots with the roots acting as a sink for hydrophobic neutral 

compounds (Herklotz et al., 2010; Wu et al., 2010). In general, organic chemicals 

with log Kow > 4 are expected to have high potential for root retention and low 

translocation capacity (Duarte Davidson and Jones, 1996). Even though diclofenac 

and fluoxetine have log Kow > 4 (Table 6.1), this is in their unionised form. As both 

diclofenac and fluoxetine are extensively ionised at test soil pH log Kow is not 

applicable and thus cannot explain plant uptake. However log Dow (pH corrected log 

Kow) could be a better descriptor for ionised chemicals as our results show a general 

increase in log Dow corresponds to an increase in UFpore water and UFsoil. For example 

fluoxetine and propranolol have low log Dow values (Table 6.1) and smaller UFpore 

water (< 0.14) than diclofenac (UFporewater < 0.93) at log Dow 2.3. 

Similar to other studies, our results found differences in uptake between the two crop 

species (Boxall et al., 2006; Wu et al., 2012). Differences may be resultant of factors 

such as degree of root growth, transpiration rates and the size and shape of the leaf 

material. Differences in plant lipid contents may also be important as this can affect 

the affect the sorption of hydrophobic chemicals (Bromilow and Chamberlain, 1995; 

Orita, 2012). The reported lipid content of perennial ryegrass ranges between 2 – 4 

% (Mir et al., 2006). Whereas radish bulbs only contain trace amounts of lipid which 

may explain the lower observed uptake of carbamazepine, diclofenac and 

propranolol in the radish (Figure 6.6). 

Based on the results presented, the factors which affect the uptake of 

pharmaceuticals into plants include physico-chemical properties of the 

pharmaceuticals, species type including lipid content and distribution between above 
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and below ground plant. Additional research has also demonstrated that soil 

properties can also affect plant uptake (Chiou et al., 2001; Harris and Sans, 1967; 

Topp et al., 1986) and therefore to conclude, the uptake of chemicals into plants is a 

complex process governed by a combination of soil, plant and chemical factors. 

However on the whole, the uptake behaviour observed in this study makes sense 

based on the knowledge from previous research. 

6.4 Conclusions 

Radish and ryegrass can take up a variety of pharmaceuticals and personal care 

products from spiked soil. Using a combination of fate study and plant uptake data it 

is clear that relationships between plant uptake and the available fraction of the 

chemical are key. Whilst a chemical may have a log Kow which fits within the 

Gaussian distribution correlating with a high propensity for uptake, this clearly is not 

the only property influencing uptake into plants. The ionisable state of the chemical 

together with its potential for degradation may result in diminishing concentrations 

in the soil matrix. The fraction available for uptake may therefore be very small and, 

correspondingly, the measured concentrations in the plant material will also be 

minimal. Interestingly, fate studies data show that whilst a chemical may dissipate 

from the soil it can still remain in the pore water. This may hold wider implications 

for risk assessment and screening techniques as chemicals present in the pore water 

may still be bioavaible for uptake into a organism. 

The results presented in this Chapter demonstrate that, in some circumstances, 

uptake and distribution of pharmaceuticals in a plant can be related to 

hydrophobicity and ionisation of the molecule, (Kow), and generally followed a 

Gaussian distribution, although this is not always the case. The results presented here 

would suggest that there are different drivers responsible for the uptake between 

different plant species. It is instructive to note that pharmaceuticals are 

predominantly ionisable organic chemicals, and in contrast to neutral organics, this is 

a characteristic that is likely to affect their partitioning behaviour in terms of 

bioavailability, plant uptake and molecular interaction with soil matrices of variable 

pH. It therefore may be important to question previous assumptions on plant uptake 

and specific models may be required to accurately predict plant uptake which 
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account for species differences, distribution of chemicals in the plant, chemical 

properties and the fate of the pharmaceutical in different soil matrices. 
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Chapter 7 Discussion 

7.1 General discussion and recommendations 

In recent decades a great deal of work has been undertaken concerning the fate and 

effects of pharmaceuticals in the environment. Whilst the aquatic environment has 

been comprehensively explored with regards to the presence, fate, uptake and effects 

of pharmaceuticals, the terrestrial environment has not yet been studied to the same 

extent. A large proportion of research in the soil compartment has focused on the 

development of extraction techniques combined with the improvement of 

appropriate analytical methods to determine the concentrations of pharmaceuticals in 

soil matrices. Several studies have also investigated the fate of pharmaceuticals in 

soils through sorption, leaching and degradation experiments. While research has 

also looked at the uptake pharmaceuticals, particularly of veterinary origin into crop 

species, fewer studies exist concerning the uptake of pharmaceuticals into soil 

dwelling organisms such as earthworms. As the detection of pharmaceuticals in the 

soil environment has been documented, the presence of pharmaceuticals may pose a 

risk to soil inhabiting species and thus studies exploring the factors and processes 

affecting uptake from soils is warrented.  

Studying the uptake of pharmaceuticals in the soil environment is important because 

uptake into soil dwelling species particularly at the base of the food web has the 

potential for bioaccumulation through the food chain and far wider reaching effects 

to be seen. One such example of the wider implications of pharmaceutical residues in 

the environment was the rapid decline in vulture populations in the Indian sub-

continent (Oaks et al., 2004). Experimental evidence indicates that the casual factor 

of this decline is the consumption of meat by these scavenging birds from cattle 

carcasses containing high levels of the non-steroidal anti-inflammatory drug 

diclofenac (Green et al., 2007, 2006; Oaks et al., 2004). Uptake into vegetable crops 

also presents a potential human risk via the consumption of contaminated crops. The 

present studies were therefore initiated to explore the factors and processes which 

affect the uptake of pharmaceuticals into terrestrial species. The studies presented in 

this thesis primarily focussed on the uptake of pharmaceuticals into earthworms. 
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However additional studies were also performed to assess uptake into plants. 

Laboratory studies evaluated the relationship between uptake; and soil parameters 

(e.g. organic matter, soil pH); pharmaceutical physico-chemical properties (e.g. pKa, 

log Kow); and species traits. A summary of data generated from the experiments 

detailed in this thesis can be found in Table 7.1. 

Initial studies demonstrated that the pharmaceuticals, carbamazepine, diclofenac, 

fluoxetine and orlistat are taken up by earthworms, Eisenia fetida (Chapter 2). Pore 

water based bioconcentration factors ranged between 2.2 and 51.5 and increased in 

the order of carbamazepine < diclofenac < fluoxetine < orlistat. BCFs obtained in 

this study for earthworms were comparable to BCFs calculated in the aquatic 

environment for carbamazepine however considerably lower than previous research 

on aquatic invertebrates for fluoxetine (Meredith-Williams et al., 2012). Kinetic 

modelling demonstrated that pharmaceuticals were accumulated and eliminated to 

different extents in E. fetida depending on the pharmaceutical compound. Both 

carbamazepine and fluoxetine were taken up and eliminated the quickest and had 

reached near steady state in the organism after 21 days. Diclofenac and orlistat were 

accumulated at a much slower rate in the earthworm tissue and were not completely 

eliminated during the depuration phase. 

The next steps in the research were to look at additional factors affecting the uptake 

of pharmaceuticals in the terrestrial environment. However the studies carried out in 

Chapter 2 were highly labour intensive and to explore many factors using these 

methods would be challenging. Therefore, the use of a minimised approach was 

explored in Chapter 3. Research successfully demonstrated that the minimised 

design approach, previously introduced by Springer et al., (2008), is viable 

alternative approach to calculate BCFs in aquatic and terrestrial invertebrates without 

having to carry out full length experiments such as OECD test guidelines. For a 

single experiment, test organism usage would be reduced by > 70 % as well as a 

reduction in experimental material and labour efforts required. The approach was 

robust as steady state does not need to be achieved in the test system and BCFs were 

not affected by changes in exposure medium concentration. One of the most 

significant findings is that the minimised design appears to work well across a range 

of species (including both terrestrial and aquatic), chemicals and different exposure 
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mediums offering a suitable alternative for BCF calculation in variety of 

environmental chemical exposure scenarios. 

Using the minimised design, further research (Chapter 4) went on to establish that 

soil properties can also affect BCF calculations for pharmaceutical exposures in E. 

fetida. The largest differences in pore water based BCFs between the five soil types 

were observed in the diclofenac and orlistat studies with BCFs ranging between 7.02 

- 69.57 and 30.51 - 115.92 respectively. Little deviation in BCF values was found 

between the soil types in the fluoxetine exposure (16.78 – 20.42) and the 

carbamazepine exposure (1.05 – 1.61). Largest BCFs obtained for each 

pharmaceutical were obtained in different soil types and no pattern of uptake 

corresponding to particular soil types was observed. Similarly, no relationships 

between soil pH, pore water pH, organic carbon content and pore water based BCFs 

were found, demonstrating that no single parameter can explain pharmaceutical 

uptake into earthworms. Numerous factors and processes appear to be governing the 

rate and amount of pharmaceutical uptake into earthworms. 

Consistent with previous research findings which have demonstrated species traits 

are important in determining chemical uptake in organisms (Kelsey et al., 2005) 

differences in BCFs between E. fetida and the larger earthworm, Lumbricus 

terrestris were observed in Chapter 5. However contrary to previous research 

findings which observed larger BCFs for the smaller earthworm E. fetida, 

carbamazepine, diclofenac and fluoxetine accumulated to a greater extent in this 

experiment and resulted in larger L. terrestris BCFs. Conversely, in the orlistat 

study, BCFs were 50 % smaller in L. terrestris than in E. fetida. Disparities in uptake 

between the two species may be a result of varying lipid contents, differences in 

burrowing behaviour in the soil or species size. 

Species differences governing the uptake of pharmaceuticals were also observed in 

plant experiments (Chapter 6). Certain pharmaceuticals accumulated to a greater 

extent in the radish roots (fluoxetine) in comparison to the leaf material 

(carbamazepine). Variations in uptake factors were also observed for the same 

chemical in the radish leaf and ryegrass. Differences in lipid content of the plant 

species or hydrophobicity (log Kow /log Dow) of the chemical are likely to be 

affecting the degree of uptake in the plant leaf and below ground root material. 
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The research presented in this thesis generated knowledge on the fate of 

pharmaceuticals in the soil environment, looking at the distribution of 

pharmaceuticals between the soil and pore water. It appears the fate of 

pharmaceuticals, similarly to the uptake of pharmaceuticals, is dependent both on 

pharmaceutical physico-chemical properties and soil parameters. Concentrations of 

pharmaceuticals in the soil and pore water changed over time. Larger decreases in 

soil concentration were observed for diclofenac in comparison to the more persistent 

pharmaceuticals such as carbamazepine in a range of soil types (Chapter 4). 

Similarly to soil, pharmaceutical pore water concentrations generally decreased over 

time, however interestingly in the initial earthworm studies (Chapter 2) fluoxetine 

increased in concentration. Through combustion of the exposure soils from the 

earthworm studies (Chapters 2 and 4) research established the formation of 

irreversibly bound residues of diclofenac and orlistat in a range of soil types. The 

degree of formation of non-extractable residues (NERs) was dependent on soil type 

and pharmaceutical compound (2.4.3.4).  

The fate of a pharmaceutical in soil is important with regards to controlling any 

potential uptake into terrestrial species. The distribution of the pharmaceutical 

between the soil and pore water can regulate the bioavailable fraction for uptake. For 

example, in the plant study (Chapter 6) triclosan rapidly dissipated from the soil 

however remained fairly persistent in the pore water throughout the length of the 

study. Therefore if soil was sampled to check for pharmaceutical residues initial 

indications would suggest that there is no chemical present for uptake. However as 

the pore water fraction facilitates uptake into both into plants and earthworms 

pharmaceuticals may well accumulate in these organisms.  

The experimental research presented in this thesis demonstrates that the uptake of 

pharmaceuticals into terrestrial species is a complex interaction of pharmaceutical 

physico-chemical properties, soil parameters and species traits. The fate and 

distribution of the pharmaceutical between the soil and pore water can also regulate 

the bioavailable fraction of the pharmaceuticals which has been shown to change 

between soil types. 



 

 

 

Table 7.1 Summary of bioconcentration factor and fate data for test pharmaceuticals obtained in experimental chapters.  

  Chapter Species Fate in soil Fate in pore water 

Pore water 

based BCF / 

UF 

Soil based 

BSAF / UF 

Carbamazepine 

2 E. fetida Persistent Slight dissipation 2.21 Not calculated 

4 E. fetida Persistent in all soil types Slight dissipation all soil types (< 10 %) 1.05 - 1.61 0.36 - 0.97 

5 L. terrestris Persistent Slight dissipation 6.69 Not calculated 

6 Radish leaf Persistent Fairly persistent 7.71 60.59 

6 Radish bulb Persistent Fairly persistent 1.05 8.28 

6 Ryegrass Persistent Fairly persistent 8.31 65.26 

Diclofenac 

2 E. fetida Dissipation and formation of NERs Relatively constant 21.5 Not calculated 

4 E. fetida Dissipation and formation of NERs Fairly persistent, soil 2.1 dissipation 7.02 - 69.57 1.01 - 12.36 

5 L. terrestris Dissipation and formation of NERs Relatively constant 83.79 Not calculated 

6 Radish leaf Complete dissipation (< 3d) Rapid dissipation but traces remain at end 0.93 11.53 

6 Radish bulb Complete dissipation (< 3d) Rapid dissipation but traces remain at end 0.43 5.39 

6 Ryegrass Complete dissipation (< 3d) Rapid dissipation but traces remain at end 0.55 6.82 

Fluoxetine 

2 E. fetida Persistent Increase in concentration 30.8 Not calculated 

4 E. fetida Persistent in all soil types Fairly persistent 16.78 - 20.42 0.19 - 0.37 

5 L. terrestris Fairly persistent Relatively constant 66.9 Not calculated 

6 Radish leaf Fairly persistent Fairly persistent 0.011 0.1 

6 Radish bulb Fairly persistent Fairly persistent 0.043 0.36 

6 Ryegrass Fairly persistent Fairly persistent 0.01 0.08 

 

  



 

 

 

Table 7.1 Summary of bioconcentration factor and fate data for test pharmaceuticals obtained in experimental chapters continued. 

  Chapter Species Fate in soil Fate in pore water 

Pore water 

based BCF / 

UF 

Soil based 

BSAF / UF 

Propranolol 

6 Radish leaf Fairly persistent Fairly persistent 0.011 0.91 

6 Radish bulb Fairly persistent Fairly persistent 0.015 1.2 

6 Ryegrass Fairly persistent Fairly persistent 0.14 11.04 

Sulfamethazine 

6 Radish leaf Complete dissipation (< 3d) Rapid dissipation but traces remain at end < LOQ < LOQ 

6 Radish bulb Complete dissipation (< 3d) Rapid dissipation but traces remain at end < LOQ < LOQ 

6 Ryegrass Complete dissipation (< 3d) Rapid dissipation but traces remain at end < LOQ < LOQ 

Triclosan 

6 Radish leaf Rapid dissipation Persistent 0.0008 0.1 

6 Radish bulb Rapid dissipation Persistent 0.001 0.12 

6 Ryegrass Rapid dissipation Persistent 0.31 37.59 

Orlistat 

2 E. fetida 
Slight dissipation (< 20 %) and 

formation of NERs 
Slight dissipation 51.5 Not calculated 

4 E. fetida 
Slight dissipation (< 20 %)and 

formation of NERs 
Some dissipation (< 30 %) 30.51 - 115.92 0.48 - 1.54 

5 L. terrestris 
Slight dissipation and formation of 

NERs 
Slight dissipation 33.21 Not calculated 
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7.1.1 Wider implications of research findings 

The research presented in this thesis demonstrates that pharmaceuticals can be taken 

up by, and accumulate in, earthworms and plants from soil contaminated with 

pharmaceutical residues. The potential for this to cause secondary poisoning in 

higher tier predators or to present a risk to humans is evaluated in the sections below. 

7.1.1.1 Risks of secondary poisoning 

As pharmaceuticals can be taken up by earthworms this may present a risk to birds 

which feed on them. The predicted environmental concentration (PEC) in a worm 

was calculated using results obtained in Chapter 2 to estimate the potential for 

secondary poisoning. For this analysis a starling was used as a representative bird 

species which eats approximately 30 g of invertebrates per day (Markman et al., 

2008). By extrapolating a human threshold value, calculated from the maximum 

therapeutic dosage for a human, a threshold value for the starling was computed. The 

daily dose is between 1.02 and 9.97 ng depending on the compound (Table 7.2). The 

results would infer the risk to be minimal for all of the pharmaceutical compounds as 

a starling would have to eat thousands of worms to reach the threshold dose, 

however these calculations should be used with caution as they involve a 

considerable amount of estimation and extrapolation. The compound with most risk 

is fluoxetine as 8000 worms would have to be eaten instead of over 250 000 to 

receive a greater than predicted threshold dose for carbamazepine. 

Currently the risk of secondary poisoning to birds is minimal based on the BCF 

values obtained in this study, however further calculations involving less 

extrapolation and estimation would confirm these findings 
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Table 7.2 The risks of secondary poisoning to a starling, evaluated by consumption of worms containing 

predicted environmental concentrations of pharmaceuticals used in this study. The daily dose (DD) to a bird is 

compared to the threshold dose to provide the margins of exposure. 

a
 PEC is the predicted environmental concentration in the worm and calculated from 

the TGD Part 2 where the total concentration in the worm = PECworm 

b
 Markham et al., 2008 – 30 g wet weight of invertebrates eaten per day for startlings 

(Markman et al., 2008). 

 

 

7.1.1.2 Human exposure 

Uptake into plants, especially edible crops, may represent an important exposure 

pathway of these chemicals into the food chain and thus present a risk to humans and 

livestock which feed on them (Boxall et al., 2006; Sridhara Chary et al., 2008; 

Zhang et al., 2007; Zohair et al., 2006). An acceptable daily intake (ADI) value can 

be used calculate the amount of a substance, for example pharmaceuticals, which can 

be consumed by a human without resulting in appreciable risk to health. For a full 

explanation of calculated methods to determine the risk to humans from consuming 

contaminated crops from results in the present study see Appendix 19.  

Results show that if all crops consumed were grown in soil containing the selected 

pharmaceuticals then humans would not consume levels greater than the ADI for any 

Pharmaceutical  PEC 

(mg/kg 

wwt 

worm
-1

) 
a 
 

Daily food 

consumption 

(g)
b
 

DD to 

bird 

(mg/bird/ 

day)  

Threshold 

dose for 

bird 

(mg/day)  

Margin of 

exposure  

Carbamazepine  0.0228 30 6.86 E-06 1.83 266 225 

Diclofenac  0.0278 30 8.34 E-06 0.11 13 699 

Fluoxetine  0.0339 30 1.02 E-05 0.09 8 979 

Orlistat  0.0326 30 9.79 E-06 0.14 14 007 
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of the pharmaceuticals in this study (Table 7.3). It should also be noted that all crops 

eaten must be grown in the contaminated soil as our analysis assumed ryegrass and 

radish bulb to be representative of all above and below ground crops consumed, 

which is not currently the case. A safety factor of 100 was also applied to the 

minimum therapeutic dose to calculate the ADI and for a large proportion of the 

population this is not needed which would make the actual ADI higher than the 

current threshold. 

Table 7.3 Results from a comparison of acceptable daily intake (ADI) values for study chemicals and theoretical 

crop concentration (based on measured soil concentrations and UFsoil calculated in this study) shown as a 

percentage of ADI. With exception of sulfamethazine as plant concentrations were below LOQ. Ryegrass was 

used as a representative above ground crop species and radish as a representative below ground crop species.  

  Ryegrass Radish 

 Soil
a
 

(mg/kg) 

% of ADI in 

359.5 g crop 

% of ADI 

in 159 g 

crop 

Carbamazepine 0.0065 3.81 0.21 

Diclofenac 0.00054 0.18 0.06 

Fluoxetine 0.0067 0.09 0.19 

Propranolol 0.0004 0.20 0.01 

Triclosan 0.019 83.80 0.12 

a =Duran-Alvarez, 2009; Dalkmann et al., 2012; Vazquez -Roig et al., 2012 

 

To date the health risks from pharmaceuticals in drinking water have been reviewed 

and several papers have also computed levels in crops fit for human consumption 

(Boxall et al., 2006; Bruce et al., 2010; Schwab et al., 2005). For fluoxetine, a 

comparison of measured concentrations in drinking water and predicted no effect 

concentrations in children yielded a ratio of 2.8 x 10
-4

 which would infer the risk to 

humans drinking water contaminated with fluoxetine would be minimal. Indeed, for 

all pharmaceuticals evaluated, approximate margins of safety for potential exposures 

ranged from 30 – 38 000 (Schwab et al., 2005). Presently, the risk to humans in 

terms of contaminated crops is therefore similar to drinking water exposures, in that 

it is very low. 
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However an important note for the future is with the growing demand for alternative 

irrigation resources in water stressed regions and projected increases in the 

application of sewage sludge on land, pharmaceutical loadings in soil will inevitably 

increase. The threat posed by pharmaceuticals taken up into crops may therefore be 

of more concern in the future than based on current exposure levels. 

7.1.1.3 Risk assessment 

Bioconcentration factors are important in the risk assessment of chemicals in the 

environment as they can be compared to threshold values to determine if there is a 

potential risk. The research presented in this thesis demonstrates that further 

refinement of previously accepted BCF estimation techniques, such as quantative 

structure relationships (QSARs), are needed for earthworm pharmaceutical exposure.  

Work by Belfroid et al., (1993) and Jager (1998) both utilise log Kow as the primary 

determinant in calculating BCFs however results show both estimation techniques 

consistently overestimated the pore water BCFs calculated in this study for 

diclofenac, fluoxetine and orlistat. For orlistat estimated BCFs were some 6000 

times greater than obtained in this research (Chapter 2). This may be explained by 

the fact these QSAR’s were not specifically designed for pharmaceutical exposures 

and highly lipophilic compounds; for example the work by Belfroid et al., (1993) has 

a limited log Kow window of 4.2 – 5.7 (which was later extrapolated from 2 -7) and 

was based on a water only exposure scenario. The results suggest that the uptake of 

highly hydrophobic compounds such as orlistat do not scale according to log Kow, 

implying a cut off point for a linear relationship between Kow and BCF above which 

increasing log Kow value does not appear to correlate with elevated bioconcentration. 

There is therefore a need to improve the accuracy and applicability of currently 

available QSARs and models for the prediction of earthworm BCFs whereby 

parameters other than log Kow are utilised to estimate pharmaceutical uptake. New 

models would need to account for physico-chemical properties (including potential 

ionisation), soil parameters (important in governing the fate of pharmaceuticals) and 

species traits, all of which have been shown to affect earthworm uptake. Similarly, 

results from Chapter 6 suggest that plant uptake models need to take into account the 
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ionisation state of the chemical and crop type, part of which has already been 

explored by Trapp (2000). 

Refining models to calculate accurate BCFs may however not be necessary for 

general risk assessment. BCFs computed in this study were generally low and all 

BSAF values were < 1. Based on the current environmental scenario the measured 

internal concentrations of all four pharmaceuticals in E. fetida present little risk in 

terms of the wider threat of bioaccumulation and secondary poisoning (section 

7.1.1.1). Similarly the results from the plant uptake study indicate that the present 

risk concerning of humans consuming food crops contaminated with pharmaceutical 

residues is very low (section 7.1.1.2). However with the projected increase in use 

and subsequent disposal of pharmaceuticals in the coming century this threat may 

develop into a more significant issue in the future and thus should be continually 

monitored and reassessed to account for the changing world we live in. 

Interestingly through analysis of the fate study data we observed that the presence of 

pharmaceuticals in the soil matrices can affect soil chemistry. Changes in soil and 

pore water pH were noted which appeared to be dependent on soil type and 

pharmaceutical properties. Significant differences were also found between the 

internal pH of E. fetida exposed to pharmaceuticals and the internal pH of control 

earthworms. These differences were also dependent on soil type and in some 

circumstances after an initial increase during the exposure phase the internal pH 

decreased back to pH measurements similar to the controls after exposure in the 

clean soil. Significant differences in internal worm pH measurements were also 

recorded in the L. terrestris study. These results hold far wider reaching implications 

in terms of risk assessment and modelling as currently no attempt to account for 

changes in pH during exposure to chemicals is made. This may be important for 

pharmaceuticals, as many of which are ionisable chemicals, and changing pH may 

alter the bioavailability of the chemicals in the environment. 
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7.2 Conclusions 

In conclusion, this thesis has demonstrated that that a combination of species traits, 

pharmaceutical physico-chemical properties and soil parameters are key to 

determining the uptake of pharmaceuticals from soil into terrestrial species. 

Currently used, generalised models for estimating earthworm BCFs are unable to 

adequately estimate the uptake of pharmaceuticals. Further refinement of these 

models is required, as it is necessary to account for these factors including species 

size, soil pH, log Kow and pore water bioavailability. 

It appears that pore water concentrations are important in regulating the amount of 

chemical available for uptake into earthworms. When comparing between the five 

soil types, greatest uptake into the earthworm, E. fetida occurred in the soil type 

which had the highest average pore water concentration throughout the uptake phase, 

and this was true for all four study chemicals. The closeness of the model fit to the 

measured earthworm data in Chapter 2 also supports the importance of pore water 

regulating the uptake of pharmaceuticals into earthworms, as the model was based 

on a pore water exposure only, and the contribution of uptake from ingestion of soil 

particles was ignored. Pore water concentrations have also previously been shown to 

be important for regulating the uptake of chemicals into plants.  

Whilst pharmaceuticals can be taken up by earthworms and plants from residues in 

the soil matrices the potential for bioaccumulation through the food chain currently 

appears to be minimal.  
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7.3 Recommendations for further research specific to this thesis 

The research presented in this thesis has generated novel information on the fate and 

uptake of pharmaceuticals in the terrestrial environment. However, it has also 

highlighted a number of additional research questions. In the future, work should 

consider the following aspects: 

1. In the current studies (Chapters 2, 4, 5), for modelling purposes and 

bioconcentration factor calculations, uptake was based on the diffusion of 

chemicals across earthworm skin via pore water exposure as demonstrated in 

the Jager et al., (2003) study. However it would be useful to understand the 

percentage of uptake from the gut, specifically as a result of pharmaceutical 

exposure, to refine model fits and to provide better uptake and 

bioconcentration estimates. A series of experiments could elucidate the main 

uptake pathways of pharmaceuticals.  

2. The research presented in this thesis has demonstrated different earthworm 

species (Eisenia fetida and Lumbricus terrestris) can affect uptake and 

bioconcentration factor estimates (Chapter 5). It would be useful to further 

understand the influence of species traits on the uptake of pharmaceuticals 

into soil organisms. A series of experiments could evaluate pharmaceutical 

uptake into additional species for example: 

 Organisms that primarily reside on the soil surface such as land snails 

(Helix pomatia) and slugs (Limax maximus), this would also provide 

an interesting comparison between species with and without a shell. 

 Soil dwelling organisms with an exoskeleton such as woodlice 

(Oniscus asellcus) to see if this restricts pharmaceutical uptake. 

 Nematode species to see if typically small and slender works (2.5 

mm) can also take up pharmaceutical residues in soils. 

3. Research from this thesis indicates some pharmaceuticals (diclofenac and 

orlistat) form irreversibly bound residues to the soil (Chapter 2). Experiments 

were unable to ascertain whether any uptake into E. fetida occurred from 

these non-extractable residues or if it was all from the soil and pore water. 

Additional research could explore this by exposing earthworms to soil 
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containing only non-extractable residues to investigate if these fractions can 

be taken up by earthworms. 

4. The two main pathways by which pharmaceuticals enter, and become 

omnipresent in the soil environment, are via the application of sewage sludge 

and use of wastewater effluent as an irrigation tool. Rather than adding the 

compound directly to the soil via stock solution spiking (as described in 

Chapter 2, 4 and 5) it would be interesting to instead spike irrigation water 

and sewage sludge with the pharmaceuticals and apply this to the soil. 

Uptake into plants via this indirect exposure route has previously been 

investigated (Wu et al., 2010) however uptake into soil dwelling organisms 

such as earthworms is an area which still needs exploring. Changing the 

application method may change the bioavailability of pharmaceuticals, rate of 

uptake into earthworms and subsequent bioconcentration factor calculations. 

A series of experiments have already demonstrated that the presence of 

sewage sludge has been shown to affect pharmaceutical fate and behaviour in 

soils (e.g. Monteiro, 2009).  

5. In terms of plant experiments, additional research could explore the risk to 

humans from pharmaceutical residues in vegetable crops in a stimulated gut 

bio-accessibility study. Evaluating this would provide better estimates as to 

the levels of pharmaceuticals that would be available and thus a risk to 

humans.  

6. The results in Chapter 3 demonstrated that the minimised design, originally 

proposed by Springer et al., 2008, is a suitable alternative to full length 

uptake and depuration studies to estimate bioconcentration factors. Whilst the 

results demonstrated this approach works well for both aquatic and terrestrial 

species, data could only be obtained for four compounds in the terrestrial 

environment. Therefore the generation of new data (additional species and 

compounds) to test the comparison between BCFminimised and BCFtraditional 

would be useful to fully validate this approach for use in terrestrial studies. 
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7.4 General recommendations for further research: 

1. To date, a majority of reseach has focussed on parent compounds and more 

research is required into the occurrence, fate, uptake and effects of 

metabolites and transformation products. Parent compounds can be altered in 

their chemical structure at various stages; in the human body after 

administration to a patient; during the STP process or once released into the 

environment. Also, more research is needed to explore the fate and uptake of 

mixtures of chemicals. Pharmaceuticals do not occur by themselves in the 

environment, other pharmaceuticals and pesticides amongst other chemicals 

may also be present and the interaction between these different chemicals 

may alter their behaviour in the environment.  

2. Human pharmaceuticals are prescribed and taken for a reason; they are 

designed to elicit an effect at a given concentration. In the terrestrial 

environment, little research has investigated the effects of pharmaceuticals on 

species. In comparison, several studies in the aquatic environment have 

observed effects in aquatic organisms (LOEC’s) (Cleuvers, 2003; Fent et al., 

2006; Ferrari et al., 2003; Skolness et al., 2012) such as reproductive failure 

in fish (Nash et al., 2004) and the feminisation of male fish (Jobling et al., 

2006, 1998; Sumpter and Johnson, 2008). We now know that 

pharmaceuticals are taken up by soil dwelling species such as earthworms 

and plants so research must now progress to evaluate any potential toxic 

effects.  

3. The use of reclaimed wastewater effluent for irrigation purposes and sewage 

sludge application to land is set to increase on a global scale and thus the 

loading of pharmaceuticals to the soil will subsequently increase. Projections 

for future concentrations of pharmaceuticals both in the soil and aquatic 

environment are needed to ascertain whether there may be problems as a 

result of this such as secondary poisoning, based on the results from current 

research. 

4. Further research is required to establish the effect of chemical residues on 

soil and aquatic chemistry. Research presented in the previous chapters 

demonstrated that the presence of pharmaceuticals in the soil can affect pore 
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water and soil pH. Other soil or water quality parameters may also be altered 

as a result of the presence of pharmaceuticals in the environment. This may 

change the bioavailability or fate of chemicals for example and therefore 

needs investigating. Results from this may hold wider implications in 

modelling scenarios for example where changes in pH are currently not 

accounted for.  
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Appendix 

Appendix 1 Eisenia fetida gut purge experiment 

A preliminary experiment was performed to assess how long earthworms, E. fetida, 

required purging their gut contents on moist filter paper to ensure that a majority of 

soil is removed from the gut before analysis. 

Methods: 

Earthworms, E. fetida, were incubated under test conditions (see section 2.3.3) for 72 

hours then removed from the soil, rinsed in deionised water and placed in individual 

petri dishes on moist filter paper. At various time sampling points (0, 4, 6, 8, 24, 30 

and 48 hour) earthworms were removed (six replicates) from the filter paper, 

weighed to the nearest 0.0001 g then dried in an oven for 24 – 48 hour at 60
o
C until 

no further change in weight loss was recorded. Dried earthworms were then re-

weighed before being placed in a muffle oven at 500
o
C for a minimum of four hours 

to burn off all the combustible parts of the earthworm (everything except the gut 

contents). The ash was then re-weighed and used to calculate the gut contents 

remaining in E. fetida at various stages of sampling. Below is is a figure of 

percentage of gut contents eliminated from Eisenia fetida after being removed from 

soil and placed on moist filter paper. Average value provided (± standard deviation). 
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Results: 

The amount of soil recovered in the earthworm samples over 24 hours decreased. 

After 24 hours of gut purge 77 % of the soil had been removed from the earthworm 

gut. At sampling 30 and 48 hours earthworms appeared to become distressed and 

started eating the filter paper. A gut purge of 24 hours was therefore chosen as an 

appropriate length of time, and measured concentrations pharmaceuticals in the 

earthworm samples were corrected for the 23 % of soil-associated pharmaceutical 

remaining in the gut in experiments detailed in Chapter 2 and Chapter 4. 
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Appendix 2 Literature search summary of known diclofenac metabolites and 

transformation products, including molecular weights provided (Huber et al., 2012; 

Kallio et al., 2010; Scheurell et al., 2009). 

Diclofenac metabolites 

/ transformation 

products Matrice 

Molecular 

weight 

(g/mol) Reference 

acyl glucuronide of 

diclofenac Fish bile 472.275 Kallio et al., 2010 

acyl glucuronide of 4'-

hydroxydiclofenac Fish bile 486.0364 Kallio et al., 2010 

acyl glucuronide of 5-

hydroxydiclofenac Fish bile 486.0364 Kallio et al., 2010 

ether glucuronide of 4'-

hydroxydiclofenac Fish bile 486.0364 Kallio et al., 2010 

sulfate conjugate of 4'-

hydroxydiclofenac Fish bile 389.9611 Kallio et al., 2010 

sulfate conjugate of 5-

hydroxydiclofenac Fish bile 389.9611 Kallio et al., 2010 

monosulfate conjugate 

of dihydroxydiclofenac Fish bile 405.9561 Kallio et al., 2010 

4'-hydroxydiclofenac 

Fish 

bile/effluent/rat 

liver/plants 312.15 

Kallio et al., 2010; Scheurell 

et al., 2009; Huber et al., 

2012; Stülten et al., 2008 

acyl-migrated isomers of 

acyl glucuronide of 3'-

hydroxydiclofenac Fish bile 486.0364 Kallio et al., 2010 

acyl-migrated isomers of 

acyl glucuronide of 

diclofenac Fish bile 470.0415 Kallio et al., 2010 

5-hydroxydiclofenac 

Fish bile/ 

Sewage effluent 312.15 

Scheurell et al., 2009; Kallio 

et al., 2010 

3′-Hydroxydiclofenac Effluent 312.148 Scheurell et al., 2009 

1-(2,6-Dichlorophenyl)-

1,3-dihydro-2H-indole-

2-one Effluent 278.13 Scheurell et al., 2009 

1-β-O-acyl glucuronide 

of diclofenac Rat liver 472.275 Lee et al., 2012 
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Appendix 3 Modelling the dissipation of test pharmaceuticals in exposure beakers 

from Chapter 2. Measured soil concentration data from uptake phase for 

carbamazepine (A), diclofenac (B), fluoxetine (C) and orlistat (D) fitted with a single 

first order (SFO) model. 

 

  

 

  

A B 

C D 
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Appendix 4 LC-MS/MS parameters used for the analysis of the test pharmaceuticals 

in metabolism study. 

Compound Parent ion 

(m/z) 

MRM product ions 

(m/z) 

Collision 

energy (V) 

Collision 

cell exit 

potential 

Retention 

time (min) 

Carbamazepine 237.3 

(M+H
+
) 

194.3 13 15 1.83 

Carbamazepine 

d10 

247.5 

(M+H
+
) 

204.2 13 15 1.83 

Fluoxetine 310.3 

(M+H
+
) 

148.3 25 12 1.4 

Fluoxetine d5 315.2 

(M+H
+
) 

153.2 25 12 1.4 

Diclofenac 296.2 (M-

H
+
) 

250.0 15 11 4.1 

Diclofenac d4 298 (M-

H
+
) 

254.1 15 11 4.1 

 

 

 

 

Appendix 5 Calibration plots for standards of carbamazepine, diclofenac and 

fluoxetine.



 

 

 

Appendix 6 Collation of bioconcentration factor data used in analysis of minimised design.Table of key points from studies used in this analysis 

including log Kow, chemical use, test species, uptake and depuration period and BCF provided in the literature  

 

Test compound 

 

 

Log Kow 
a
 

Pesticide (P) / 

Pharmaceutical 

(Ph) Use Test species 

Uptake tu 

(days) 

Depuration 

td (days) BCFtraditional Author 

4-Nitrobenzyl-

chloride 

2.61 

P   Gammarus pulex 1 6 184.6 (1) 

2,4-dichloroaniline 

2.78 

P 

biodegradative intermediate 

of contact type herbicides  Gammarus pulex 1 6 55.73 (1) 

2,4-dichlorophenol 

3.28 

P 

Preparation of herbicide 2,4-

D  Gammarus pulex 1 6 4466 (1) 

4,6-Dinitro-o-cresol 1.96 P Herbicide  Gammarus pulex 1 6 36.72 (1) 

1,2,3-

trichlorobenzene 

4.05 

P   Gammarus pulex 1 6 190.6 (1) 

2,4,5-trichlorophenol 3.95 P Fungicide, herbicide  Gammarus pulex 1 6 2635 (1) 

Aldicarb 1.13 P Insecticide  Gammarus pulex 1 6 1.64 (1) 

Carbofuran  P Insecticide  Gammarus pulex 1 6 65.14 (1) 

Diazinon 3.81 P Insecticide  Gammarus pulex 1 6 82 (1) 

Ethylacrylate 

1.32 

P 

Polymer production (resins, 

plastics, rubber, and denture 

material)  Gammarus pulex 1 6 86.97 (1) 

Hexachlorobenzene 5.31 P Fungicide  Gammarus pulex 1 6 2915 (1) 

Imidacloprid 0.33 P Insecticide  Gammarus pulex 1 6 7.35 (1) 

Malathion 2.36 P Insecticide  Gammarus pulex 1 6 114.3 (1) 

Sea-nine 2.80 P Biocide   Gammarus pulex 1 6 1732 (1) 

Chlorpyrifos  4.70 P Insecticide Gammarus pulex 3 3 1660 (2) 

Pentachlorophenol 

2.75 

P 

Herbicide, insecticide, fungi

cide, algaecide Gammarus pulex 3 3 51 (2) 

Carbaryl 1.85 P Insecticide Gammarus pulex 3 3 87 (3) 



 

 

 

Test compound 

 

 

Log Kow 
a
 

Pesticide (P) / 

Pharmaceutical 

(Ph) Use Test species 

Uptake tu 

(days) 

Depuration 

td (days) BCFtraditional Author 

Chlorpyrifos 4.96
c
 P Insecticide Anax imperator 2 5 100 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Asellus aquaticus  2 5 3242 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Chaoborus obscuripes  2 5 2428 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Cloeon dipterum  2 5 1782 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Culex pipens 2 5 13930 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Daphnia magna  2 5 541 (4) 

Chlorpyrifos 

4.96
c
 

P Insecticide 

Gammarus pulex 

juvenile  2 5 3083 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Gammarus pulex adult  2 5 2039 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Molanna angustata 2 5 5331 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Neocaridina denticulata  2 5 1291 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Notonecta maculata 2 5 407 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Parapoynx stratiotata 2 5 1601 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Plea minutissima  2 5 654 (4) 

Chlorpyrifos 

4.96
c
 

P Insecticide 

Procambarus sp. 

juvenile  2 5 280 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Procambarus sp. adult  2 5 1295 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Ranatra linearis 2 5 392 (4) 

Chlorpyrifos 4.96
c
 P Insecticide Sialis lutaria 2 5 9625 (4) 

5-fluoruracil -0.81 Ph Anti-cancer Notonecta glauca 2 2 0.132 (5) 



 

 

 

Test compound 

 

 

Log Kow 
a
 

Pesticide (P) / 

Pharmaceutical 

(Ph) Use Test species 

Uptake tu 

(days) 

Depuration 

td (days) BCFtraditional Author 

Carbamazepine 2.25 Ph Anti-epileptic Notonecta glauca 2 2 0.244 (5) 

Carvedilol 3.05 Ph Beta-blocker Notonecta glauca 2 2 1.596 (5) 

Diazepam 2.70 Ph Sedative Notonecta glauca 2 2 0.98 (5) 

Fluoxetine 4.65 Ph Anti-depressant Notonecta glauca 2 2 1.387 (5) 

Moclobemide 1.16 Ph Anti-depressant Notonecta glauca 2 2 0.334 (5) 

5-fluoruracil -0.81 Ph Anti-cancer Gammarus pulex 2 2 6.48 (5) 

Carbamazepine 2.25 Ph Anti-epileptic Gammarus pulex 2 2 7.094 (5) 

Carvedilol 3.05 Ph Beta-blocker Gammarus pulex 2 2 270.8 (5) 

Diazepam 2.70 Ph Sedative Gammarus pulex 2 2 37.47 (5) 

Moclobemide 1.16 Ph Anti-depressant Gammarus pulex 2 2 4.55 (5) 

Carvedilol 3.05 Ph Beta-blocker Planorbarius corneus 3 3 57.3 (5) 

Fluoxetine 4.65 Ph Anti-depressant Gammarus pulex 3 3 185900 (5) 

Chloramphenicol -0.02 Ph Antibiotic Lumbriculus variegatus 2 2 2 (6) 

Fluoxetine 4.16 Ph Anti-depressant Lumbriculus variegatus 2 2 911 (6) 

Salicylic acid 2.30 Ph NSAIDb /skin care product Lumbriculus variegatus 2 2 82 (6) 

Caffiene pH 5.5 1.03 Ph Stimulant Lumbriculus variegatus 2 2 1 (6) 

Caffiene pH 7 1.03 Ph Stimulant Lumbriculus variegatus 2 2 1 (6) 

Caffiene pH 8.5 1.03 Ph Stimulant Lumbriculus variegatus 2 2 1 (6) 

Diclofenac pH 5.5 4.13 Ph NSAID
b
 Lumbriculus variegatus 2 2 623 (6) 

Diclofenac pH 7 4.13 Ph NSAID
b
 Lumbriculus variegatus 2 2 30 (6) 



 

 

 

Test compound 

 

 

Log Kow 
a
 

Pesticide (P) / 

Pharmaceutical 

(Ph) Use Test species 

Uptake tu 

(days) 

Depuration 

td (days) BCFtraditional Author 

Diclofenac pH 8.5 4.13 Ph NSAID
b
 Lumbriculus variegatus 2 2 8 (6) 

Fluoxetine pH 5.5 4.16 Ph Anti-depressant Lumbriculus variegatus 2 2 49 (6) 

Fluoxetine pH 7 4.16 Ph Anti-depressant Lumbriculus variegatus 2 2 562 (6) 

Fluoxetine pH 8.5 4.16 Ph Anti-depressant Lumbriculus variegatus 2 2 218500 (6) 

Triclosan pH 5.5 5.42 Ph Antimicrobial Lumbriculus variegatus 2 2 568400 (6) 

Triclosan pH 7 5.42 Ph Antimicrobial Lumbriculus variegatus 2 2 646400 (6) 

Triclosan pH 8.5 5.42 Ph Antimicrobial Lumbriculus variegatus 2 2 559300 (6) 

Triclosan 5.42 Ph Antimicrobial Lumbriculus variegatus 2 2 700900 (6) 

Naproxen 3.36 Ph NSAID
b
 Lumbriculus variegatus 2 2 72240 (6) 

Carbamazepine 2.25 Ph Anti-epileptic Eisenia fetida 21 21 2.21 (7) 

Diclofenac 4.02 Ph NSAID
b
 Eisenia fetida 21 21 21.46 (7) 

Fluoxetine 4.65 Ph Anti-depressant Eisenia fetida 21 21 30.8 (7) 

Orlistat 8.19 Ph Weight loss aid Eisenia fetida 21 21 51.53 (7) 

a
 log Kow as reported in publications.  

b
 NSAID – Non-steroidal anti-inflammatory drug 

c
 Specific log Kow for chlorpyrifos not provided therefore Bowman and Sans (1983) reference used 

(1) (Ashauer et al., 2010) (2) (Ashauer et al., 2006) (3) (Ashauer et al., 2007) (4) (Rubach et al., 2010) (5) (Meredith-Williams et al., 2012) 

(6) (Karlsson, 2013) (7) Chapter 2. 
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Appendix 7 Bioconcentration factors removed from minimised design analysis. 

BCFs were unable to be estimated using the minimised approach when the 

concentration in the organism at the end of depuration phase was greater than 

internal concentration measured at the end of the uptake phase. For these situations 

the minimised design calculated a negative BCF value and thus were removed from 

the analysis. 

Test 

compound 

Pesticide (P) 

or Pharma-

ceutical (Ph) Use Test species 

Uptake 

tu 

(days) 

Depuration 

td (days) 

Literature 

BCF Author 

Chlorpyrifos P Insecticide Sialis lutaria 2 5 9625 

Rubach 

et al., 

2010 

Chlorpyrifos P Insecticide Culex pipens 2 5 13930 

Rubach 

et al., 

2010 

Fluoxetine 

pH 8.5 Ph 

Anti-

depressant 

Lumbriculus 

variegatus 2 2 218500 

Karlsson, 

2013 

Triclosan pH 

5.5 Ph 

Anti-

microbial 

Lumbriculus 

variegatus 2 2 568400 

Karlsson, 

2013 

Triclosan pH 

7 Ph 

Anti-

microbial 

Lumbriculus 

variegatus 2 2 646400 

Karlsson, 

2013 

Triclosan pH 

8.5 Ph 

Anti-

microbial 

Lumbriculus 

variegatus 2 2 559300 

Karlsson, 

2013 

Triclosan Ph 

Anti-

microbial 

Lumbriculus 

variegatus 2 2 700900 

Karlsson, 

2013 
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Appendix 8 Deming regression with associated regression line and additional details 

on slope and intercept for individual data sets analysed in Chapter 3. 

 

 

  

 

 

Ashauer et al., 2010 

Equation Y = 0.8885*X -0.2931 

Slope 0.8885 

95 % CI 0.8214 – 0.955 

Intercept  -0.2931 

95 % CI -0.7265 – 0.1403 

Slope sig. not zero? p = < 0.0001 

Rubach et al., 2010  

Equation Y = 0.9630*X + 

0.04606 

Slope 0.9630 

95 % CI 0.5111 – 1.415 

Intercept  0.04606 

95 % CI -3.232 – 3.324 

Slope sig. not zero? p = 0.0005 

Meredith - Williams et al., 2012  

Equation Y = 124.0*X - 7673 

Slope 124 

95 % CI 91.91 – 156.0 

Intercept  -7673 

95 % CI -22553 – 7208 

Slope sig. not zero? p = < 0.0001 

Karlsson, 2013  

Equation Y = 0.2623*X + 33.62 

Slope 0.2623 

95 % CI 0.1940 – 0.3307 

Intercept  33.62 

95 % CI -56.08 – 123.3 

Slope sig. not zero? p = <0.0001 

Chapter 2 (this thesis)  

Equation Y = 0.7668*X + 1.394 

Slope 0.7668 

95 % CI 0.4268 – 1.107 

Intercept  1.394 

95 % CI -12.23 – 15.01 

Slope sig. not zero? p = < 0.0105 
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Appendix 9 Results from Deming regression analysis on individual data sets 

comparing BCFminimised to BCFtraditional  
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Appendix 10 Validation of extraction methods for pharmaceutical analysis in five 

soil types. 

Experiments were carried out to determine the recovery of carbamazepine, 

diclofenac, fluoxetine and orlistat from five soil types using solvent extraction. For 

each soil type and each pharmaceutical 5 g of soil was prepared in triplicate and 

spiked with a known amount of pharmaceutical compound. 

Average recoveries for each soil type and compound provided ± standard deviation 

provided in table below. 

Pharmaceutical Soil type Solvent 1 x extraction  

(% recovery ± 

S.D.) 

2 x extraction 

(% recovery  ± 

S. D.) 

Carbamazepine 2.1 Methanol 85.68 ± 10.12 93.65 ± 12.22 

Carbamazepine 2.3 Methanol 79.25 ± 6.71 86.79 ± 5.00 

Carbamazepine 2.4 Methanol 84.88 ± 1.94 92.61 ± 2.93 

Carbamazepine 5M Methanol 86.50 ± 2.84 93.00 ± 2.99 

Carbamazepine 6S Methanol 83.15 ± 2.81 94.72 ± 3.96 

Diclofenac 2.1 Ethyl Acetate 93.05 ± 2.31 93.52 ± 2.00 

Diclofenac 2.3 Ethyl Acetate 90.71 ± 1.79 94.67 ± 1.97 

Diclofenac 2.4 Ethyl Acetate 90.11 ± 1.71 92.36 ± 0.70 

Diclofenac 5M Ethyl Acetate 77.04 ± 1.55 86.37 ± 4.31 

Diclofenac 6S Ethyl Acetate 83.72 ± 5.52 90.17 ± 5.89 

Fluoxetine 2.1 Acetonitrile:Water (7:3) 73.96 ± 5.19 82.19 ± 5.07 

Fluoxetine 2.3 Acetonitrile:Water (7:3) 66.16 ± 2.21  76.52 ± 1.48 

Fluoxetine 2.4 Acetonitrile:Water (7:3) 61.33 ± 0.60 74.93 ± 1.31 

Fluoxetine 5M Acetonitrile:Water (7:3) 66.26 ± 0.80 78.06 ± 1.65 

Fluoxetine 6S Acetonitrile:Water (7:3) 36.78 ± 0.68 72.43 ± 1.61 

Orlistat 2.1 Acetonitrile 84.36 ± 4.52 88.11 ± 2.19 

Orlistat 2.3 Acetonitrile 82.00 ± 2.37 82.84 ± 1.94 

Orlistat 2.4 Acetonitrile 79.07 ± 1.75 82.25 ± 2.04 

Orlistat 5M Acetonitrile 80.57 ± 2.59 82.28 ± 1.00 

Orlistat 6S Acetonitrile 81.83 ± 3.69 83.13 ± 3.62 



 

 

 

Appendix 11 Combustion analysis results, the concentration of orlistat (A) and diclofenac (B) after solvent extraction are shown by the white 

diamonds and the combined residue concentration of combustion analysis and solvent extraction are shown by the black diamonds. 

 

A 

A 

2.1 2.3 2.4 

5M 6S 
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Appendix 12 Percentage of ionised and neutral species in different soil types, pore water and worm samples for diclofenac exposure at 0H (start 

pH) and 21 d (end pH) (Chapter 5). Percentage ionisation calculated using Henderson-Hasselbalch equation: log Dow = log Kow - log 

(1+10
A(pH-pka)

), where A is -1 for basic and 1 for acidic compounds. 

Diclofenac 

        

 

pore water 

 

pore water 

 

start pH anion:neutral 

% 

neutral % ionic 

 

end pH anion:neutral 

% 

neutral % ionic 

Soil 2.1 9.57 279683.38 0.0004 100.00 

 

9.70 377282.50 0.0003 100.00 

Soil 2.3 9.22 126862.52 0.0008 100.00 

 

9.62 313809.92 0.0003 100.00 

Soil 2.4 9.78 453593.34 0.0002 100.00 

 

9.86 549540.87 0.0002 100.00 

Soil 5M 9.43 202612.70 0.0005 100.00 

 

9.72 401174.51 0.0002 100.00 

Soil 6S 9.66 346736.85 0.0003 100.00 

 

9.74 420081.28 0.0002 100.00 

          

 

soil 

 

soil 

 

start pH anion:neutral 

% 

neutral % ionic 

 

end pH anion:neutral 

% 

neutral % ionic 

Soil 2.1 6.70 377.28 0.2644 99.74 

 

6.69 368.69 0.2705 99.73 

Soil 2.3 7.03 812.83 0.1229 99.88 

 

7.00 758.58 0.1317 99.87 

Soil 2.4 7.72 4011.75 0.0249 99.98 

 

7.52 2531.24 0.0395 99.96 

Soil 5M 8.14 10471.29 0.0095 99.99 

 

8.12 10000.00 0.0100 99.99 

Soil 6S 7.92 6358.19 0.0157 99.98 

 

7.90 5979.52 0.0167 99.98 



 

 

 

 

worm 

 

 

worm 

 

end uptake pH anion:neutral 

% 

neutral % ionic 

 

end dep pH anion:neutral 

% 

neutral % ionic 

Soil 2.1 6.84 518.80 0.1924 99.81 

 

6.86 551.65 0.1809 99.82 

Soil 2.3 6.68 363.08 0.2747 99.73 

 

6.78 459.20 0.2173 99.78 

Soil 2.4 6.91 614.23 0.1625 99.84 

 

6.99 744.16 0.1342 99.87 

Soil 5M 6.89 582.10 0.1715 99.83 

 

6.83 514.83 0.1939 99.81 

Soil 6S 6.79 465.59 0.2143 99.79 

 

6.96 683.91 0.1460 99.85 

  



 

 

 

Appendix 13 Percentage of ionised and neutral species in different soil types, pore water and worm samples for fluoxetine exposure at 0H (start 

pH) and 21 d (end pH) (Chapter 5). Percentage ionisation calculated using Henderson-Hasselbalch equation: log Dow = log Kow - log 

(1+10
A(pH-pka)

), where A is -1 for basic and 1 for acidic compounds. 

Fluoxetine 

        

 

pore water 

 

pore water 

 

start pH anion:neutral 

% 

neutral % ionic 

 

end pH anion:neutral 

% 

neutral % ionic 

Soil 2.1 9.33 1.60 38.50 61.50 

 

9.51 1.05 48.85 51.15 

Soil 2.3 9.28 1.76 36.17 63.83 

 

9.04 3.11 24.31 75.69 

Soil 2.4 9.40 1.35 42.57 57.43 

 

9.62 0.81 55.16 44.84 

Soil 5M 9.31 1.66 37.60 62.40 

 

9.09 2.78 26.49 73.51 

Soil 6S 9.78 0.56 64.01 35.99 

 

9.64 0.77 56.49 43.51 

          

 

soil 

 

soil 

 

start pH anion:neutral 

% 

neutral % ionic 

 

end pH anion:neutral 

% 

neutral % ionic 

Soil 2.1 6.19 2187.76 0.05 99.95 

 

6.84 493.55 0.20 99.80 

Soil 2.3 6.88 450.13 0.22 99.78 

 

7.16 236.23 0.42 99.58 

Soil 2.4 7.21 207.33 0.48 99.52 

 

7.68 70.79 1.39 98.61 

Soil 5M 8.10 26.92 3.58 96.42 

 

8.35 15.14 6.20 93.80 

Soil 6S 8.09 27.75 3.48 96.52 

 

8.04 31.14 3.11 96.89 



 

 

 

 

 

worm 

 

 

worm 

 

end uptake pH anion:neutral 

% 

neutral % ionic 

 

end dep pH anion:neutral 

% 

neutral % ionic 

Soil 2.1 7.03 316.23 0.32 99.68 

 

6.91 418.47 0.24 99.76 

Soil 2.3 6.83 503.11 0.20 99.80 

 

6.66 503.11 0.20 99.80 

Soil 2.4 6.96 368.69 0.27 99.73 

 

6.73 368.69 0.27 99.73 

Soil 5M 6.81 530.88 0.19 99.81 

 

6.66 530.88 0.19 99.81 

Soil 6S 6.84 489.78 0.20 99.80 

 

6.77 489.78 0.20 99.80 
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Appendix 14 Preparation of Ruakura nutrient solution for use during plant growth. 

General method: 

The solution is prepared by combining three prepared stock solutions (A, B, C) to 

1.75 L of deionised water. Add 200 mL of stock B, then 200 mL of stock A and 100 

mL of the micronutrient supplement, to make a final volume of 2.25 L. 

5 mL of Ruakura solution per 250 g of soil (Smith et al., 1983) was applied twice 

weekly, (for three weeks), from the day that 50 % emergence is counted. After 3 

weeks of additions, continued with 1 x 5 mL/250 g soil of nutrient solution per week. 

Note: Pots were maintained to 60 % of the MWHC on a daily basis using deionised 

water (DI) or the nutrient solution on the prescribed one or two days per week.  

Table below provided Nutrient stocks required for Ruakura solution. 

 

 

 

Macronutrient Stock A (g/L) 

Chemical Weight (g) 

Mg(NO3)2.6H2O 4.94 

Ca(NO3)2.4H2O 16.78 

NH4NO3 8.48 

KNO3 2.28 

Macronutrient Stock B (g/L) 

Chemical Weight (g) 

KH2PO4 2.67 

K2HPO4 1.64 [or 2.149 g of K2HPO4.3H2O] 

K2SO4 6.62 

Na2SO4 0.60 

NaCl 0.33 

Micronutrient Supplement C (mg/L)   

Chemical Weight (mg) 

H3BO3 128.8 

CuCl2.2H2O 4.84 

MnCl2.4H2O 81.1 

(NH4)6Mo7O24.4H2O 0.83 
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Appendix 15 LC-MS/MS parameters used for the analysis of compounds in plant 

study. 

a
 
37

Cl isotope of TCS and TCS D3 

Appendix 16 Analytical lower limits of quantification (LOQs) for the LC-MS/MS 

method used and within the plant and soil matrices in µg/L. 

Compound LC-

MS/MS 

Soil Ryegrass 

leaf 

Radish 

leaf 

Radish 

bulb 

Propranolol 1 2.6 5.3 4.4 5.9 

Sulfamethazine 0.5 0.6 4.6 6.7 10 

Carbamazepine 0.5 0.7 4.2 5 2.6 

Fluoxetine 2.5 7.1 7.1 8.1 6.6 

Diclofenac 2.5 2.7 2.1 3 4 

Triclosan 5 17.9 11.1 7.3 6.3 

 

Compound Parent ion MRM 

product ions 

Collision 

energy (V) 

Retention 

time (min) 

Propranolol 260 (M+H+) 116 

183 

25 

25 

5.25 

Propranolol D7 267 (M+H+) 116 

188 

25 

25 

5.23 

Sulfamethazine 279 (M+H+) 92 

124 

35 

35 

5.09 

Carbamazepine 237 (M+H+) 193 

194 

40 

30 

5.41 

Carbamazepine 

D10 

247 (M+H+) 202 

204 

40 

30 

5.44 

Fluoxetine 310 (M+H+) 44 

148 

20 

20 

5.33 

Fluoxetine D5 315 (M+H+) 44 

156 

20 

20 

5.38 

Diclofenac 294 (M-H+) 214 

250 

20 

20 

5.97 

Diclofenac D4 298 (M-H+) 217 

254 

20 

20 

5.93 

Triclosan 287 (M-H+) 

289 (M-H+)a 

287 

289 

2 

2 

6.09 

Triclosan D3 290 (M-H+) 

292 (M-H+)a 

290 

292 

2 

2 

6.16 



 

 

 

Appendix 17 Validation of extraction methodologies for plant material. 

Radish, ryegrass and soil were spiked with a known amount of each pharmaceutical and different extraction methods and clean up steps were 

followed to obtain the highest percentage recoveries. Plants were freeze dried prior to extraction (soil was not) and then either extracted with 2 x 

methanol, followed by 1 x acetone or three extractions of a 70:30 (v/v) acetonitrile and water solution. A comparison between using SPE and no 

SPE as a clean up step was also made. Results presented below indicate the methods which generated the highest recoveries for the different 

matrices and thus were adopted in the extraction techniques in this study. 

  % Relative 

Matrix Extraction Carbamazepine Diclofenac Fluoxetine Propranolol Sulfamethazine Triclosan 

Leaf ACN:H20 (SPE) 100.5 ± 4.7 118.7 ± 5.8 89.1 ± 4.3 98.8 ± 4.2 82.4 ± 4.9 117.2 ± 19 

Root ACN:H20 (SPE) 106.8 ± 4.1 139 ± 10 92.6 ± 5.2 103.9 ± 4.8 75.4 ± 1.7 181.8 ± 48 

Soil MeOH/Acetone 90.42 ± 7.12 85 ± 6.3 68.53 ± 10 109.40 ± 23 91.54 ± 7.54 98.57 ± 4.9 

 

Results show that a ACN:H20 extraction followed by SPE clean up yielded the best recoveries for radish and ryegrass (both leaf and root) for the 

range of pharmaceuticals and therefore this method was adopted to analyse plant samples. Best recoveries were obtained for the soil samples 

using a combination of methanol and acetone extractions. 



 

 

 

Appendix 18 Soil and pore water dissipation: model parameters for plant study data. 

Statistical indices for single first order (SFO), first order multi-compartment models (Gustafson and Holden, 1990) (FOMC) or bi-exponential 

models (BFO) using to model the degradation rates of the pharmaceuticals in the soil and pore water.  

Soil: 

Pharmaceutical Model DT50 DT90 SSRes RMSE χ
2
        

(tabulated χ
2
)  

Model 

error 

Rate constant (k1)or (α/β) r
2 
 

Carbamazepine * > 40 d > 40 d       

Diclofenac SFO 0.50 1.64 0.51 13.68 0.084 (9.49) 29.59 (1.4) 0.99 

Fluoxetine * > 40 d > 40 d       

Propranolol * > 40 d > 40 d       

Sulfamethazine SFO 0.99 3.29 119.16 67.16 3.63 (9.48) 223.67 (0.7) 0.99 

Triclosan SFO 11.55 38.38 195.66 37.36 3.36 (9.49) 152.78 (0.06) 0.97 

* No significant difference between 0 d and 40 d measured concentrations therefore data was not modelled to determine degradation rates 

  



 

 

 

Pore water: 

Pharmaceutical Model DT50 DT90 SSRes RMSE χ
2
        

(tabulated χ
2
)  

Model 

error 

Rate constant 

(k1/k2,C01/C02,α/β) 

r
2 
 

Carbamazepine * > 40 d > 40 d       

Diclofenac FOMC 19.65 2.57E+03 61.47 8.75 7.58 (7.81) 40.81 (α = 0.79, β = 0.34) 0.88 

Fluoxetine * > 40 d > 40 d       

Propranolol * > 40 d > 40 d       

Sulfamethazine BFO - - 45.43 0.12 5.94 (5.99) 6.65 C01 = 91, C02 = 9, k1 

=0.85, k2 = 0.0174) 

0.99 

Triclosan * > 40 d > 40 d       

* No significant difference between 0 d and 40 d measured concentrations therefore data was not modelled  

Equation for DT50/DT90: 

For BFO models no solution exists. 

Time for 50 % or 90 % decrease in chemical concentration can be modelled for the SFO using the rate constant (k): 

DT50 = ln2/k  and DT90 = ln10/k 

For results using the FOMC model: 

DT50 = β*(2(1/α)-1) and DT90 = β*(10(1/α)-1)



 

 

 

Appendix 19 Human exposure calculations. 

The human risk of consumption from crops grown in pharmaceutically contaminated soil was calculated. Calculations were based on DEFRA 

statistics(Holmes et al., 2007) which estimate that in the United Kingdom an adult (70 kg) consumes 395.5 g of above ground crops and 159 g of 

below ground crops per day. Therefore ryegrass was assumed representative of an above ground crop species and radish bulb was representative 

of a below ground crop species. Acceptable daily intakes were based on the minimum therapeutic dose (mg/person/day) with a safety factor of 

100 applied. Using calculated UFsoil and measured soil concentrations(Dalkmann et al., 2012; Durán-Alvarez et al., 2009; Vazquez-Roig et al., 

2010) we could estimate realistic crop concentrations and thus how much would be in a human diet. A percentage of the ADI for each 

pharmaceutical was then calculated for each pharmaceutical. As sulfamethazine uptake was below LOQ this was removed from the analysis. 

Ryegrass - assumed representative above ground crop

 Soil 

conc. 

(mg/kg) 

UF soil Plant 

conc. 

(mg/kg) 

Plant 

conc. 

(mg/g) 

Consumption 

per person 

(g/day) 

Conc. in 359.5 

g of crop 

(mg/day) 

Min. therapeutic 

dose 

(mg/person/day) 

ADI 

(mg/person/day) 

% of ADI 

in 359.5 g 

crop 

CBZ 0.0065 65.26 0.42 0.00042 359.5 0.1525 400 4 3.81 

DCF 0.0005 6.82 0.0037 3.68E-06 359.5 0.0013 75 0.75 0.18 

FLX 0.0067 0.076251 0.0005 5.11E-07 359.5 0.0002 20 0.2 0.09 

PRL 0.0004 11.04 0.0044 4.42E-06 359.5 0.0016 80 0.8 0.20 

TCS 0.0186 37.59 0.70 0.00070 359.5 0.2514 30 0.3 83.8 

 



 

 

 

Radish - assumed representative of below ground crop

 Soil 

conc. 

(mg/kg) 

UF soil Plant 

conc. 

(mg/kg) 

Plant 

conc. 

(mg/g) 

Consumption 

per person 

(g/day) 

Conc. In 159 g 

of crop 

(mg/day) 

Min. therapeutic 

dose 

(mg/person/day) 

ADI 

(mg/person/day)  

% of ADI in 

159 g crop 

CBZ 0.0065 8.28 0.05 5.38E-05 159 0.00856 400 4 0.21 

DCF 0.0005 5.39 0.00 2.91E-06 159 0.00046 75 0.75 0.06 

FLX 0.0067 0.36 0.00 2.43E-06 159 0.00039 20 0.2 0.19 

PRL 0.0004 1.20 0.00 4.79E-07 159 0.00008 80 0.8 0.01 

TCS 0.019 0.12 0.00 2.26E-06 159 0.00036 30 0.3 0.12 
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List of Abbreviations 

API   Active pharmaceutical ingredient 

CBZ   Carbamazepine 

DCF   Diclofenac 

DOM   Dissolved organic matter 

DW   Dry weight 

FLX   Fluoxetine 

Kd   Soil sorption distribution coefficient (L/kg) 

LOEC   Low observed effect concentration 

Log Kow Octanol-water partition coefficient (measure of 

hydrophobicity) 

OM   Organic matter 

ORL   Orlistat 

pKa Negative base-10 logarithm of the acid dissociation constant 

of a solution 

PRL   Propranolol 

SOM   Soil organic matter 

SMZ   Sulfamethazine 

STP   Sewage treatment plant 

WW   Wet weight 

WWTP  Wastewater treatment plant 
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