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Abstract

In this thesis an investigation of the fluid mechanics of the

Aaberg exhaust hood is presented. The Aaberg exhaust hood is unique

in its design as the speed of the air flow towards the exhaust inlet

is enhanced by the entrainment of fluid into the hood's jet flow. The

complex air flow pattern of the hood is governed by the Navier-Stokes

equations. However, in this thesis modelling techniques have been

developed in order to reduce the complexity of determining the

fundamental air flow pattern. The modelling procedure adopted

considers the hood's overall air flow to be composed of three

component flows, namely, (i) the flow in the jet region, (ii) the

jet-induced flow and (Ui) the suction flow. In practice the fluid

flow pattern generated by the hood is such that the Reynolds number

is very large, and hence the suction and jet-induced flows are

modelled as potential flows with the boundary conditions governing

the jet-induced flow coming from the solution of the shear-layer

equations. This solution procedure enables the parameters which

govern the hood's air flow to be identified and their effect on the

flow produced by the hood may then be determined. Both

two-dimensional and three-dimensional axisymmetric exhaust designs

have been examined and for the latter case a new numerical model for

the axisymmetric radial flow of a fluid from the space between two

identical concentric discs, for laminar and turbulent flows, has been

developed. Agreement between the turbulent radial jet model developed

and the results of numerous other established theoretical and

experimental investigations is very good. The inviscid models for the

overall air flow have been developed in terms of the stream function
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and. except for in the simplest case considered where an analytical

solution is possible. the equations of motion which govern the fluid

flow in the region of interest have been solved numerically using

finite-difference techniques. The models developed illustrate all of

the flow phenomena observed experimentally and comparisons made
between the predictions of both the two-dimensional and

three-dimensional axisymmetric mathematical models and (i) the

available experimental data and (ii) the commercially available CFD

code FLUENT. which solves the full turbulent Navier-Stokes equations.

show good agreement. thereby confirming the credibility of the

cost-effective modelling approach adopted in this thesis.
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Nomenclature

a width/radius of the exhaust flange in

two-dimensional/axisymmetric cases, respectively

b width of the jet, as a function of x·

8
width of the jet at a characteristic distance s from theb

jet orifice

b
112

width of the shear-layer when u -= U/2; b
1/2

= 0.881 b

b(O) width of the jet nozzle

c
e

concentration of tracer gas in the exhaust

C background concentration of tracer gasbe

C
r

reference concentration of tracer gas

C
R

C ,C
o co

constraint ratio, = 2a/b(0)

non-dimensional parameters: C = 0.0144 K
1/2

, C = 0.0260 Kl/2
o co

C ,C ,C empirical constants: C = 1.44, C = 1.92, C = 0.09
121l 1 2 Il

d diameter of the exhaust inlet, d = 2s
E wall roughness parameter, = 9.8
f,f,f non-dimensional stream functions

co {
(9kv/2)1/3

parameter, =
(3k/0' )112 /2

o

for laminar flow
f

for turbulent flow
G ,GF W non-dimensional operating parameters for two-dimensional

turbulent free jet and wall jet flows, respectively
G,GL T non-dimensional operating parameters for two-dimensional

laminar and turbulent free jet flows, respectively
GAx! non-dimensional parameter for turbulent axisymmetric

radial jet flow
h step length in the lateral direction across the

radial jet shear-layer: ~ = Jh
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h height of the ventilator unit above the floor

H non-dimensional height of the ventilator unit above the

floor, = h/a
h distance between the bench surface and the centre of the
s

exhaust inlet

H non-dimensional distance between the bench surface and
s

the centre of the exhaust inlet, = h /p•
I ratio of the momentum flux of the jet flow to the momentum

flux of the exhaust flow, = mJu(O)/m u1n
I upstream turbulent intensity
00

j momentum flux of the free jet

k kinematic momentum flux of the free jet, = j/p; in chapter
8, k is used to denote the turbulent kinetic energy

K non-dimensional kinematic momentum flux of the free jet

m volumetric flow rate of the exhaust

m
J

volumetric flow rate of the jet
n number of iterations
p height of the jet nozzle above the bench surface, = a + h

s

p ratio of pressure to density, = pip

p fluid pressure
pi pressure correction
p. guessed pressure
q resultant air speed
Q non-dimensional resultant air speed

resultant bifurcation speed

non-dimensional resultant bifurcation speed

resultant capture speed
Q
c non-dimensional resultant capture speed
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(r'1''1)

(R'1''1)
(r,S)

(R,S)

Re
R
h

R1n

R (x·)
j

Rmass

R
(XI

s

s

u
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dependent variables: ql = q(X·,Y), qa = q(x·+ax·,Y)

dimensional coordinate system

non-dimensional coordinate system, R = r /a
0: 0:

dimensional coordinate system

non-dimensional coordinate system, R = r /a'1 '1
dimensional coordinate system

non-dimensional coordinate system, R = ria

dimensional spherical polar coordinate system

Reynolds number of the jet, = u(O)b(O)/v

hydraulic radius

Reynolds number of the exhaust flow, = u1 a/~
n 0

Reynolds number of the jet as a function of x·, = u x·/v

mass residual

radial position of outer artificial boundary

width/radius of the exhaust inlet for

two-dimensional/axisymmetric cases, respectively

non-dimensional width/radius of the exhaust inlet for

two-dimensional/axisymmetric cases, respectively

source term

u(O) jet exit speed
velocity vector, = ui + vJ + wk

u1n fluid speed at the face of the exhaust inlet

u maximum fluid speed in the jet
us

+u

u
(XI

u,v

centre-line velocity of the jet at a characteristic

distance s from the jet orifice

shear speed, = / Tw/p ,

speed upstream of the exhaust hood

velocity components in the x and y directions, respectively
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U,V non-dimensional velocity components in the x and y

u' .v'

u·,v·

u,
r

U,
r

x·
x
00

(x,y)

(X,Y)

(x,9,y)

y

+y

directions, respectively

velocity corrections

velocity based on the guessed pressure p.

radial and tangential velocity components, respectively

non-dimensional radial and tangential velocity components,

respectively

radial and tangential velocity components, respectively

non-dimensional radial and tangential velocity components,

respectively

distance along the jet axis measured from the jet orifice

position of outer artificial boundary

dimensional cartesian coordinate system

non-dimensional cartesian coordinate system

dimensional cylindrical polar coordinate system

lateral distance measured perpendicular to the jet axis
+dimensionless friction length, = yu /v

« constant of integration

« capture efficiencycap

(3
o

'1
e

r

oR

kinematic viscosity, ={:
={:

o
for turbulent flow

for laminar flow

for turbulent flow

for laminar flow
scaling factor for (3,

empirical constant

general diffusion coefficient

radial step length: R = ioR
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09

step length in the X direction: X = iox

step length in the Crank-Nicolson scheme

step length in the tangential direction: 9 = i09

step length. = In(l+oR)

step length in the tangential direction: 4'= io4'

ox

oX·

flx.fly x and y direction widths of the control volume

the volume flux of fluid between adjacent streamlines

apparent kinematic viscosity; in chapter 8. e is used to

denote turbulent energy dissipation and the apparent

s

kinematic viscosity is then denoted v
l

apparent kinematic viscosity at a characteristic distance
s from the jet orifice

o
'initial· apparent kinematic viscosity. = u(O)b(O)

e
1

tolerance in the Newton iteration procedure
e
2

tolerance between successive solutions in radial direction
A

1).1).1) shear-layer variables which measure the distance normal to

the centre-line of the jet

the von Karman constant. = 0.42

{
1/3 for the laminar plane jet

parameter. =
1/2 for the turbulent plane jet

~i dimensionless function of X·. 1 = 1.2.3.4

~ viscosity of the fluid

v kinematic viscosity of the fluid

e effective kinematic viscosity of the fluid. = v + £v

radial coordinate. = In(R)
p density of the fluid
(1' ,(1'
k £ empirical constants: (1' = 1.0. (F = 1.3

k £



0-,0-o (I)

T
w

T
IJ

Cl)

Subscripts
e,n,s,w

E,N,P,S,W

nb
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constants which characterize the spreading rate of the

turbulent For the plane jetjet.

axisymmetric radial jet: b

shear stress, = ~ au/ay

shear stress on the wall

truncation error

production of turbulent kinetic energy

empirical constant

stream function

dimensionless stream function

-1b = 0- x·,
o

for the

at x· = 0
as x· ~ (I)

relaxation parameter

stream function value at the edge of the shear-layer

control volume faces (Fig.S.I)

grid points

neighbouring grid point

ASE

Abbreviations
Aaberg slot exhaust

CFD

CLV

CPU

LEV

LVA

REEXS

SIMPLEC

S.O.R.

Computational fluid dynamics

Centre-line velocity

Central processing unit

Local exhaust ventilation

Low velocity flow analyser

Reinforced exhaust system

(Consistent)
Semi-Implicit Method for Pressure Linked Equations

Successive over relaxation
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1.1 INTRODUCTION

Production processes may be accompanied by the emission of

noxious gases, vapours, dust or heat, which affect the composition

and state of the air, and may harm the health and well-being of the

workpeople, create distressing working conditions and reduce

productivity. To combat these problems and to maintain a prescribed

condition and cleanliness of the air which meets the requirements of

hygiene some form of ventilation system is needed in the workplace.

This ventilation process removes the contaminated air from the

building (extract ventilation) and replaces it with clean air

(inflow ventilation). Ventilation methods can be classed as local or

general. Local extract ventilation is intended for removing polluted

air at source to prevent the dispersal of impurities throughout the

building. The incoming air replaces the air removed by the local

exhaust. General ventilation is required whenever it is impossible

or impractical to use local exhaust hoods, for example where the

exhaust hood might severely hinder the technological process. Here

the role of the incoming air is to dilute the impurity at least to

the maximum allowable concentration.

Local exhaust ventilation (LEV) systems are used in many

industries for the removal of all types of impurity, both

particulate and gaseous or vapour. These impurities are caught at

source and so prevented from contaminating the general atmosphere in

the workplace and as a consequence the necessary air change is kept

to a minimum. Impurities may be removed by being blown towards the

outlets by suitably arranged air currents; they may be removed

directly by exhaustion or by a combination of air currents and
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exhaustion.

A local exhaust ventilation system consists of a collection

hood for the capture of the contaminated air and an exhaust duct

system along which the contaminated air is transported and

discharged into the atmosphere, either directly or through cleaning

equipment. The main requirement of the collection hood is that it

should capture the maximum amount of impurity with the minimum

amount of air consumed and without interfering with the

technological process. A well-functioning local exhaust hood is

therefore characterized by a high concentration of pollutant in the

exhaust air, by a low volume of ventilation air, and by a low

consumption of energy. The factors under the control of the designer

in meeting these requirements are the geometry of the hood, its

location with respect to the source and the exhaust volumetric flow

rate. The geometry of the hood is chosen to suit the particular

application, with the hood as close to the source of the contaminant

as possible without hindering the technological process. The

volumetric flow rates for each hood are determined by the designer

and are based on the nature of the process to be controlled and the

type of hood selected. The volumetric flow rates must also be

capable of overcoming crosscurrents and other background air

disturbances which could deflect the stream of impurity from the

hood and hence a range of volumetric flow rates are usually
recommended for each hood.

1.1.1 Traditional Exhaust Hoods

Although having many inherent weaknesses, the local exhaust

ventilation systems used in many of today's industries remain
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virtually unchanged in their methods of operation when compared with

those introduced in the 1930's. The weaknesses of these LEV systems

are as a result of the air flow pattern which characterizes the

traditional hood. The traditional hood's air flow pattern is

non-directional, as air is exhausted from all directions, and this

results in the second characteristic and weakness, namely that the

air speed developed in front of the hood decreases almost inversely

with the square of the distance from the hood. The capture

efficiency of the traditional hood is therefore highly dependent on

and influenced by the level of background air disturbances. The

variation of the air speed with distance from the hood is of prime

importance in the design of a LEV system and a number of empirical

formulae for the variation of the centre-line air speed of unflanged

hoods have been proposed, see Fletcher (1977). The

non-directionality of the air flow pattern further adds to the

hood's inefficiency as quantities of clean air,

circumstances may have been drawn from behind
which in many

the hood, are

continually being exhausted. A typical air flow pattern developed by

the traditional exhaust hood is shown schematically in Fig.1.1(a).

Minor improvements have been made by introducing a flange to the

exhaust which limits the directions from which the exhaust can draw

air, see for example Fletcher (1978). However, the high rate of

decrease of the air velocity in front of the hood remains. Typical

profiles of constant air speed and streamlines for a traditional

flanged hood with a circular exhaust opening, of diameter d, are

shown in Fig.1.1(b), where the speed of each profile is labelled as

a percentage of the air speed at the face of the exhaust opening. As

a result of these drawbacks traditional suction devices, for example
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hoses, are often very difficult to fit into working conditions as

they have to be installed close to the technological processes and

often interfere with the work or are pushed aside by the workers.

d d

Fig.l.l(a) The non-directional
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Fig.l.l(b) Air speed profiles of

flow of a traditional LEV hood. a traditional flanged LEV hood,

Greenough (1988).

1.1.2 The Aaberg Principle

In 1965 a new reinforced exhaust system (REEXS) was introduced

by the Danish manufacturer C.P. Aaberg. By combining two well-known

flows used in ventilation technology, namely injection and

exhaustion, Aaberg demonstrated that it is possible to enhance the

air speeds generated by traditional hoods as well as achieve a

directional air flow pattern. Through a balanced combination of the

injection and exhaustion flows, known as the Aaberg principle in LEV

technology, a movement of air which consists of two well-defined

regions can be created towards the exhaust. Air moving in the first
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region is drawn directly towards the exhaust inlet whilst air in the

second region is led away from the exhaust inlet by the injection

flow. In its design the Aaberg exhaust hood is very similar to a

traditional flanged hood. However, it is fitted with a flange

through which air can be ejected radially from a narrow slot. A

cross-section through the Aaberg exhaust hood, illustrating the

Aaberg principle, is shown schematically in Fig.l.2.

Jet

\ t~
2~1~

Inlet

Jet

Fig.l.2 A schematic representation of the Aaberg principle.

The dramatic effect which is caused by the blowing Jet on the

hood's overall air flow can be explained as follows: due to the

friction developed at the radial jet/air interface an entrainment

flow develops which, under the correct conditions, has the property

of removing the clean air from in front of the hood (the recycled

flow) as well as enhancing and concentrating the exhaust's suction

in a zone along the hood's longitudinal axis (the efficient flow).
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This results in quite new profiles of constant air speed in front of

the exhaust opening and a directional exhaust capable of creating a

flow towards the opening at distances of up to 10 times the exhaust

diameter, see Hegsted (1987). Although replacement air should still

be supplied the Aaberg exhaust works with significantly smaller

quantities of air than traditional exhausts. This, together with a

higher concentration of pollutant in the exhaust air, makes the

Aaberg process for limiting pollutant emission less expensive and

more effective than traditional methods. The performance differences

between a conventional LEV system and the Aaberg system are further

highlighted in Fig.l.3. Figure 1.3(a) depicts a traditional flanged

exhaust hood of inlet radius s = 0.037 m and face velocity of
-1uin = 12.7 ms , and clearly shows that operating under suction

alone the vast majority of the pollutant enters the environment and

that only a few wisps of the contaminant are successfully exhausted.

The contaminant is modelled as a continuous release of smoke from a

burning pellet located along the hood's longitudinal axis at five

inlet diameters from the face of the inlet. In contrast, Fig. 1.3(b)

depicts a hood operating under the same inlet conditions but which

is now reinforced by a radial jet of air. The exhaust flange has a

radius of a ~ 0.15 m and the jet issues through a nozzle of width

b(O) -1= 8.0 mm with an average speed of u(O) = 7.71 ms . The volume

flux of fluid exhausted is approximately 90~ of that injected. The

striking effect achieved by the combination of the exhaustion and

injection air flows is very clear as now the vast majority of the

contaminant is contained in a narrow zone along the hood's

longitudinal axis and is drawn directly towards the exhaust inlet.



III
- 8 -

(a)

(b)

Fig.1.3 Capture of tracer gas released at Sd from an exhaust hood of

dimensions: a ~ 0.15 m, s = 0.037 m, b(O) = 8.0 mm; courtesy of the

Health and Safety Executive, Research Division, Sheffield, England.
( -1a) Suction alone, u. = 12.7 ms I = O.O. (b) Combined suction

In

and injection, uin = 12.7 ms-1 and u(O) = 7.71 ms-1, I ~ 0.65.

I
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The numerous benefits, both to the environment and to the

personal health of the workpeople, which could be achieved through a

reduction in the amount of contaminant released into the workplace

as a direct result of the correct introduction of the Aaberg exhaust

system are obvious.

1.2 A REVIEW OF THE EXISTING LITERATURE

A chronological review of the available literature concerning

both the experimental and theoretical aspects of the Aaberg

principle applied to local exhaust ventilation systems is now

presented.

The Aaberg reinforced exhaust system was first studied in 1965

but it was not until the mid 1980's when researchers at the

University of Aalborg, Denmark, tried to combine the injection and

exhaustion principle. From his experimental investigations Hyldgard

(1987) concluded that a proper balance between injection and

exhaustion is necessary to establish aerodynamic control and he

discovered that for a given hood geometry and injection slot width

bf O}, Le. the width of the slot through which the jet issues, a

critical injection velocity must be exceeded to realize the desired

air flow pattern. Hy.ldgard (1987) defined the critical injection

veloci ty as the minimum initial velocity of the jet needed to

prevent the jet of air being captured by the exhaust opening. Below

the critical velocity the hood will be less effective than a

conventional hood as the flow will 'short-circuit' as the suction

captures the radial jet. His results showed that increasing the
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injection velocity above the critical value further increased the

air speed in the efficient flow region but reduced its width as the

injection entrained more air. Aiming for greater energy efficiency

and quieter operation Hyldgard developed and tested a new hood and

through a series of experiments sought to reduce the injection

velocity to a minimum without destroying the desired effect. He

found that the critical injection velocity is dependent upon the

direction of the injection flow and demonstrated that the critical

injection velocity can be lowered if the exhaust flange is

orientated at 1050 to the axis of symmetry of the hood. Other

experiments conducted by Hyldgard (1987) investigated the effects of

the injection slot width on the critical injection velocity.

Previously, very small injection slot widths, e.g. b(O) = 0.15 mm,

had been used with very high injection velocities, e.g.
-1u(O) = 30 - 50 ms , which required high injection pressures and

generated high levels of noise. Hyldgard found that the critical

injection velocity is directly proportional to the exhaust flow rate

and that for a given exhaust flow rate the critical injection

velocity can be reduced by increasing the injection slot width. This

is because the structure of the flow in the radial jet depends upon

its momentum flux and not the initial speed of the air jet. Hyldgard

then conducted experiments on the Aaberg exhaust hood for various

ratios of the momentum flow in the exhau&t to the injection where

the momentum ratio, I, is defined as

m u(O)
I = ___;;_J __

m uin
(1.2.1)

where m is the volume flux of fluid injected with initial speed
J

u(O) and m is the volume flux of fluid exhausted with face speed
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u .. With an Aaberg exhaust hood operating at the critical injection
In

velocity Hyldgard (1987) showed that if the width of the injection

slot was chosen between b(O) = 2 mm and b(O) = 2.5 mm then the

ratio, I, could be minimized, the minimal value being between

I = 0.4 and I = 0.5. Taking into account the energy consumption of

the injection fan and the generation of noise an injection slot

width of b(O) = 2.5 mm was chosen by Hyldgard as the optimum size.

Comparisons made by Hyldgard (1987) between the air speeds

created by an Aaberg exhaust hood and those of a conventional

exhaust highlighted the superiority of the former in design and

function. Hyldgard introduced the notion of a clutch velocity,

defining it as the velocity of the air in front of the hood caused

by the hood, and operating two Aaberg exhaust hoods, one standard

and one with a back wall, see Fig.1.4, he made measurements of it.

Fig.1.4 An Aaberg exhaust hood with a back wall.
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The ratio between the clutch velocity and the velocity of the

pollutant is a decisive factor in determining whether or not the

exhaust will collect the pollutant. The results he obtained

demonstrated the effectiveness of the injection which significantly
enhanced the clutch velocities as well as the range over which

contaminant capture occurs. Simply, by increasing the injection

velocity Hyldgard noticed that the clutch velocity along the

centre-line increased dramatically and that this effect, together

with a narrowing of the efficient flow region, resulted in a more

concentrated exhaust over larger distances. Hyldgard also found that

incorporating a back wall, although reducing the differences between

the clutch velocity in situations wi,thand without injection, as the

wall acts as a flange, had the advantage of allowing the critical

injection velocity to be significantly reduced. Thus, with a back

wall the Aaberg hood can induce a specified clutch velocity,

required for the capture of a particular pollutant, at noise and

energy levels lower than possible with a standard hood.

Experiments were also performed on the Aaberg principle by

H0gsted (1981), who had access to Aaberg exhaust hoods in the form

of both a local ventilation system and a ventilator unit, see

Fig.1.5. H0gsted gives a detailed description of some experimental

work on the aerodynamic control of an Aaberg exhaust hood. Using a

ratio of injected to exhausted air quantities which is typically

1: 10 he achieved aerodynamic control and described the injection

effect as creating a selective hood with no air drawn from behind

the hood as in flanged and unflanged traditional hoods. In a

comparison with those of traditional hoods, see Fig.l.l(b), H0gsted
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Fig.1.S The Aaberg ventilator unit suspended 3.Sd above the floor.

Smoke is released on the floor beneath the ventilator.

describes the resulting flow as having quite different air speed

profiles in relation to the exhaust opening with the individual

contours of constant speed regarded as three-dimensional spherical

surfaces with centres at -2d, see Fig.1.6. In Fig.1.6 the speed
-1 -1contours for 0.30 ms and 0.40 ms are only drawn in the central

area as measurements did not cover the shaded area.

In H0gsted (1987),·results of laboratory tests performed on a

freely suspended Aaberg exhaust hood whose longitudinal axis pointed

vertically downwards, as in Fig.1.5, are presented. Measurements

were taken using a non-directionally sensitive low velocity flow

•
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Fig.1.6 Contours of constant air speed for an Aaberg exhaust hood as

obtained by Hegsted (1987).

analyser (LVA) and the objective of the investigations were to

determine contours of constant speed, streamlines and ultimately the

efficient flow region. Experiments to examine the efficient flow

region of the suspended Aaberg exhaust hood revealed that not all of

the air moving towards the hood is captured by the exhaust inlet but

some is drawn away from the inlet in the injection flow. During

smoke experiments Hegsted discovered that smoke released close to

the hood's centre-line was totally evacuated via the exhaust opening

but if released some distance from the centre-line was captured in

the injection flow and blown back into the room. This led Hegsted to

propose that the region in front of the hood could be theoretically

divided into two distinct regions, namely an efficient region and an

inefficient (or recycled) region. Capture efficiencies are assumed
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to be 100% and 0% in the efficient and recycled regions,
respectively, with the two regions being separated by a so-called

A-surface, see Fig.1.7. The capture efficiency, ~ , of the exhaust
cap

system is measured using tracer gas techniques and is defined as

~
cap C

r

C - C
e be 0.2.2)

where C is the concentration of tracer gas in the exhaust, C is
e ~

the mean background concentration and C
r

is the reference

concentration which is determined by capturing 100% of the tracer

gas.

To further investigate the behaviour of the Aaberg flow
pattern, obstacles were introduced and the deflection of the flow

pattern monitored. Results of these investigations show that the

Aaberg REEXS exhibits some quite exceptional and extremely

interesting qualities. Experiments by H0gsted (1987) show that smoke
burnt from behind a vertical plate placed in front of a local Aaberg

REEXS can be exhausted even though the combustion creates a strong

thermal influence. Experiments carried out by H0gsted on an Aaberg

ventilator unit suspended above the floor surface of the workplace

show that smoke released at floor level far from the hood's

centre-line is captured. The floor, thought of as the obstacle in

the experiment, deflects the flow pattern and the efficient flow

region of the hood radially outwards over the floor surface and

thereby creates a suction effect over a considerable surface area,

see Fig.l.8. In fact, H0gsted reports that the efficient region of a

ventilator unit suspended 3.5d above the floor is deflected over the

floor surface to a radial distance from the centre-line of up to 5

or 6d.
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Fig.l.7 The efficient and recycled flow regions of an Aaberg exhaust

hood proposed by Hegsted (1987). The shading illustrates the

efficient flow region.

_j L

a) Undeflected flow.

_j L

b) Deflected flow.

Fig.l.8 The deflection of the Aaberg flow pattern. The shading

illustrates the efficient flow region.
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Hegs ted is cautious when suggesting possible applications of

the Aaberg principle and explains that although a trial of the

system exists in practice it is not yet applicable to industry as it

requires careful adjustment to each operating situation and that far

from all the flow influencing parameters have been determined. In

order to avoid incorrect application and consequently disappointing

results H0gsted (1987) underlines the necessity to understand how

the system works and lists some basic rules to follow regarding the

application of an Aaberg REEXS. These include recommendations for

the correct installation of the hood and particularly for the

freedom of the injection flow to spread unhindered thereby avoiding
undesirable flow patterns.

More recently, Pedersen and Nielsen (1991) have described how

the capture efficiency is determined by the ratio of momentum flows

in the exhaust and injection, I, see equation (1.2.1). They also

discovered that the exhaust velocity, c.f. Hyldgard's (1987) clutch
velocity, depends on the momentum ratio, I, and found that the

lowest possible ratio to avoid a 'short-circuit' is I ~ 0.1. In a

comparison made between the Aaberg REEXS and traditional exhaust

systems Pedersen and Nielsen (1991) comment on the superiority of
the Aaberg REEXS and state that in order to induce air speeds at 6d

from the exhaust inlet which are comparable with a hood operating at

I = 0.1 the volume flow rate of the suction of a traditional hood

(I = O.0) would have to be increased by a factor of between 4 and

11. In other experiments Pedersen and Nielsen measure the

centre-line velocity of three types of Aaberg flow, namely,
axisymmetric, three-dimensional and three-dimensional wall Jet flow
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for various values of the momentumratio, I. By attaching an exhaust

hood to the edge of a bench with its centre-line parallel to the

bench surface Pedersen and Nielsen (1991) were able to change the

flow from an axisymmetric flow to a three-dimensional flow. A

three-dimensional wall jet flow was achieved by supplying the

injection air along a plane surface.

The results obtained by Pedersen and Nielsen (1991) do not

agree exactly. with the theoretical capture regions proposed by

Hegsted (1987). Indeed, contrary to the postulated 100% capture

efficiency inside the A-surface, see Hagsted (1987), Pedersen and

Nielsen (1991) found that the capture efficiency decreased with

increasing distance from the centre-line and a 100% to 0%

discontinui ty in the efficiency at the A-surface was not observed.

Pedersen and Nielsen (1991) argue that due to the fluid flow

circling around the longitudinal axis to the exhaust opening and to

the turbulence of the flow, the capture efficiency close to the

A-surface is reduced. The rotation of the flow towards the exhaust

inlet observed by Pedersen and Nielsen (1991) is induced by a

swirling radial jet. Pedersen and Nielsen state that due to the high

exhaust velocity induced, the Aaberg REEXSis able to maintain a

high capture efficiency in disturbed surroundings where the capture

efficiency of a traditional hood would be approximately zero. They

advise that a low value of the ratio I should be chosen for maximum

capture efficiency (as the efficient flow region is then broad)

whilst making sure that the exhaust velocity necessary to capture

the particular contaminant is sufficient. They conclude that the

momentumratio determines the induced velocity and the region of

high capture efficiency. Pedersen and Nielsen's capture efficiency
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results represent the maximum theoretical capture efficiency for the

given pollutant source. In practice, background disturbances, e.g.

cross draughts, temperature gradients, etc., would have to be taken

into consideration when calculating the capture efficiency.

Experimental research into the Aaberg principle has also been

undertaken by Fletcher and Saunders (1991,1993) and they have

explored two main factors involved in the hood's operation, namely

induced velocities and capture efficiencies. Velocity measurements

taken using a DANTEC low velocity flow analyser with an

omni-directional probe were used to produce contours of equal air

speed. Fletcher and Saunders (1991) regarded air speeds above

0.25 ms-1 to be those induced by the hood and those below 0.25 ms-1

to be due to background air disturbances. With an Aaberg exhaust

hood operating under combined suction and injection Fletcher and

Saunders (1991) noticed that at the edge of the exhaust flange air

was either drawn into the exhaust inlet or caught in the injection

flow, I.e. a dividing surface between the two flows exists. They

found that by operating an Aaberg exhaust hood of dimensions:

a ~ 0.15 m, s = 0.037 m and b(O) = 7.5 mm at the ratio of I ~ 0.4,
-1 -11.e. with u1n = 15.5 ms and u(O) = 7.7 ms , it was possible to

-1achieve controlled air movements towards the hood of over 0.25 ms ,

and hence overcome the level of background air disturbances, at

distances of up to 9d away from the hood along the centre-line, see

Fig.l.9(a). This result compares favourably with the length of the

controlled air flow pattern, of 10d, obtained by H0gsted (1987).

Capture efficiencies of an Aaberg exhaust hood were measured by

Fletcher and Saunders (1991) using a tracer gas technique. The
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tracer gas used was a neutrally-buoyant mixture of 15"- sulphur

hexafluoride with helium and a MIRAN lA-CVF infra-red gas analyser

was used to measure tracer gas concentrations. To obtain better

estimates of the capture efficiency, allowances were made for the

amounts of tracer gas re-entering the atmosphere via the injection

flow and creating a different background concentration at each

measurement point. The experimental results obtained by Fletcher and

Saunders (1991) suggest that contaminants located outside the

capture region normally associated with a conventional hood will be

carried towards the Aaberg exhaust hood mainly by the jet-induced

flow. Once inside this capture region the contaminant will be drawn

into the exhaust inlet by the suction. Profiles of capture

efficiencies were found to be similar to the contours of equal air

speed but the boundaries were in terms of percentage captures as

opposed to air speeds, see Fig.l.9(b). Fletcher and Saunders (1991)

showed that in areas where the induced air speeds are comparable to

the level of background air movements low captures are obtained.

Background disturbances in the laboratory gave the low capture

envelopes, below 50%, ill-defined boundaries so only those above 50%

were plotted. The main result they obtained was that inside the

A-surface the capture efficiency is'not constant but decreases with

increasing distance along the centre-line from the exhaust inlet.

This result is in agreement with the observations of Pedersen and

Nielsen (1991). Fletcher and Saunders (1991) found that the size of

the capture region created by a controlled Aaberg hood, operating at

I ~ 0.4, was very encouraging. The 100% capture boundary enclosed a

significant area and intersected the centre-line at a distance of

approximately 4d from the exhaust inlet, although the width of the
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Fig. 1.9 (a) Contours of constant air speed and (b) contours of

constant capture efficiency, as obtained by Fletcher and Saunders

(991), for an exhaust hood of dimensions: a c< 0.15 m, s= 0.037 m,

( -1-1b 0) = 7.5 mmand operating with uin = 15.5 ms and u(O) = 7.7 ms .
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boundary appeared to be limited to the diameter of the flange, see

Fig.1.9(b). The 50% capture line, see Fig.1.9(b), was found to cut

the centre-line at approximately 9d from the face of the exhaust
-1inlet and compared well with the 0.25 ms air speed boundary. The

significance of this result is that even though the hood induces

adequate clutch velocities to overcome the background air

disturbances, the capture of contaminant from this range is not

complete due to the diffusion of the contaminant into the

surrounding air. By reducing the volume flow of the suction, to

I ~ 0.6, capture envelopes intersecting the centre-line at similar

distances were produced. However, the width of the capture envelopes

close to the hood face appeared to be narrower. In accordance with

the results of Pedersen and Nielsen (1991), Fletcher and Saunders

(1991) found that the momentum ratio of the injection to exhaustion

flows affects the size and profile of the capture region. By

reducing the injection velocity, and hence I, they found it was

possible to augment the overall size of the capture region. However,

a large proportion of the capture region was then in regions of low

air speed and therefore in an industrial environment, as opposed to

under laboratory conditions, capture from this region would be

highly dependent on the level of background air disturbances. Thus,

the true capture region would be much smaller than the apparent

capture region observed experimentally. In practical situations,

decreasing the injection will therefore not necessarily increase the

hood's capture range as the results of Fletcher and Saunders (1991)

might imply.

Fletcher and Saunders (1991) also observed that the largest

capture region was produced by a hood operating under suction alone,
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contradicting the findings deduced from the air speed contours.

However, the contours of equal air speed obtained by Fletcher and

Saunders (1991) show that when operating under suction alone the

majority of the capture region has been induced from regions where

the air speeds are at a background level. This result may be
explained as follows: under laboratory conditions a hood operating

under suction alone does not create any 'negative' disturbances in
the room and air is drawn slowly towards the exhaust and hence

capture occurs at large distances. However, when the radial jet is

employed, disturbances in the ambient air are produced and the

tracer gas, modelling the contaminant, is more easily dispersed.
Large capture velocities are then required to overcome the

increasing level of air disturbance, thus reducing (narrowing) the

overall capture region.

In conclusion, Fletcher and Saunders (t99t) emphasize the need

for experiments to be carried out in conditions more representative
of normal working environments so that more realistic performance

differences between conventional local exhaust systems and the

Aaberg system can be established. They suggest that experiments

should be conducted under laboratory conditions where controlled

levels of background air movements for suction and injection can be

maintained.

Originally inducing a three-dimensional axisymmetric flow the

Aaberg principle has been implemented in a bench hood design with a

slot exhaust, rather than a circular exhaust, to produce an

approximately two-dimensional flow, see Fig.t.tO. The flow pattern

created by the hood design, termed a bench exhaust hood or an Aaberg
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slot exhaust (ASE) hood, has been studied by Pedersen (1991a).

Pedersen (1991a) conducted various experiments on the ASE, operating

both as a conventional exhaust and as a REEXS, under different
simulated external influences which in practice affect the capture

efficiency of an exhaust system. With a slot exhaust in a cross flow

of between 0.0 ms-1 and 0.6 ms-1 Pedersen (1991a) has demonstrated

that the average capture efficiency can be increased almost
three-fold, from 27% to 71%, owing to the application of the REEXS

principle. Two-dimensional slot exhausts are commonly used as

welding exhausts and in connection with the welding process the

location of an Aaberg slot exhaust compared with the orientation of

the contaminants has been optimized by Pedersen (1991a). He found
that a vertical distance between the exhaust slot and the surface of

the bench of h = 0.4 m, see Fig.l.10, and a momentum ratio of
s

approximately I = 0.6, provided the most efficient solution in

disturbed surroundings. Pedersen (1991a) also gives general

guidelines for the use of the ASE system in other applications.

Jetj~b(O)
2s1 inlet ~

h·I~
~ ~

bench

Fig.l.lO Cross-section through the Aaberg slot exhaust hood.
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The most recent publication which examines the Aaberg principle

is that of Fletcher and Saunders (1993) who describe the results of

experiments examining the efficiency of axisymmetric hoods of two

different sizes. Fletcher and Saunders (1993) examine the percentage

capture of contaminant on the hood's centre-line for different

volume flow rates of air ejected for a fixed quantity of inlet air

exhausted. They demonstrate that when operating with suction alone

the capture efficiency drops off rapidly for distances greater than

two inlet diameters from the hood; whilst the capture distance

rapidly increases to a maximum, achieved when I eo: 0.6, and then

slowly falls as the volume of the ejected air is further increased,
i.e. for I > 0.6. By examining the distance along the centre-line to

the position of 90% capture efficiency as a function of the momentum

ratio, I, with the injection slot width, b(O), used as the parameter

in the experiment, Fletcher and Saunders (1993) also show that the

flow is independent of the injection slot width, thus contradicting

the findings of Hyldgard (1987). The range of injection slot widths

examined in the experiments was between b(O) = 1 mm and

b(O) = 7.5 mm. The two hoods studied, although of slightly different

design, were found to perform very similarly and only very small

differences in the distance to 90% capture were observed. Fletcher

and Saunders (1993) attribute the fall in the distance to 90%

capture, observed for I > 0.6, to the amount of contaminated air

being drawn towards the inlet, by the jet-induced flow, exceeding

the amount of air being exhausted by the suction opening and thus

causing a 'build up' of contaminant. In conclusion Fletcher and

Saunders (1993) state that capture can be effected at much larger

distances by a LEV hood with a blowing jet than by an unassisted
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hood and that a value of I = 0.6 gives a large capture distance

whilst being clear of the range of values of I where rapid changes

in the distance to 90% capture occur.

1.3 CONCLUSIONS

Experimental studies have explored two main factors involved in

the hood's operation, namely induced velocities and capture

efficiencies and as a result of these studies the Aaberg exhaust

hood has been described as providing the only effective means of

removing airborne contaminants from the breathing zone of an

operator, as being far superior to conventional suction and

involving lower investment and operating costs. However, although

trials of the Aaberg REEXS have been carried out in practice it is
not yet applicable to industry as it requires careful adjustment to

each operating situation. The most important conclusion drawn from

these experimental results is that the flow of the Aaberg exhaust

hood is characterized by the ratio of the momentum flows in the

exhaust to the injection and that the induced flow travelling

towards the exhaust hood is divided into two well-defined regions in

which the capture efficiencies are close to 100% and 0%,

respectively. The desired air flow pattern has been achieved over a

wide range of momentum ratios from I = 0.1 to 1=2.5.

Although the advantages of the Aaberg REEXS over traditionaI

exhaust systems have been demonstrated experimentally, its design

and operating conditions have been developed purely on an ad-hoc

basis. The cost of laboratory research and equipment involved in the
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experimental attempts to maximize the efficiency of an Aaberg

exhaust hood is considerable. These costs may be further increased

by experimentalists conducting trials in parameter ranges and on

hood designs which are unlikely to optimize the flow pattern. A full

understanding of the flow characteristics of the REEXS can best be
achieved by solving the mathematical equations which describe the

underlying fluid mechanics under realistic flow conditions. The aim

of the relatively inexpensive fluid dynamics modelling to be

presented in the following chapters is to help avoid unnecessary
expenditure by accurately modelling the operating conditions and to

use the resulting model to make confident predictions as to the

typical parameter ranges and design modifications likely to prove
beneficial in the hood's operation. In this way the fluid dynamics

modelling conducted interactively with experimental research

promises to provide a most effective means of developing a full

understanding of the Aaberg flow pattern and of how it may be
optimized to suit individual operating situations; a necessary step

to be taken before the Aaberg exhaust hood can be correctly

introduced to industrial applications. It is extremely important to

design the REEXS so that the exhaust removes the maximum amount of

contaminant, in concentrated form, from the breathing zone of the

worker. It may be thought that simply increasing the suction and

blowing velocities will reduce the level of contaminant in the room.

However, the ratio of these two fluid flows must be carefully

adjusted and will depend on both the location and nature of the

contaminant. Ideally one would wish to design a hood which collects

all of the contaminant with the use of a minimal amount of energy.



CHAPTER TVO

MATIlEMATICAL MODELLING: TOOLS, TECHNIQUES AND TERMINOLOGY
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2.1 INTRODUCTION

The experimental studies undertaken by Hyldgard (1987),
Hegsted (1987), Pedersen and Nielsen (1991) and Fletcher and

Saunders (1991,1993) have all concluded that under correctly chosen

operating conditions an Aaberg exhaust hood is far superior in its

ability to capture airborne contaminants than traditional unassisted

exhaust designs. To optimize the efficiency of the Aaberg exhaust

hood by experimentation alone is time-consuming and complicated as

the operation of the hood depends upon a number of geometric and

flow parameters. In the following chapters two-dimensional and

three-dimensional axisymmetric models of the Aaberg exhaust hood's

air flow pattern will be developed in order to predict what effect

different parameters have on the air flow. The aim of this chapter

is to assemble the mathematical tools and techniques which will

allow us to simplify the problem of modelling the relatively complex

'air flow pattern induced by the Aaberg exhaust hood and thus assess

the effects of the various parameters that control the air flow. In

order to obtain a simple mathematical model for the air flow,

numerous simplifying assumptions therefore have to be made and the

reasons for making them are now described. Also introduced in this

chapter are the terms; 'capture speed', 'effective capture region'

and 'effective working range'. These terms will allow us to use the

models to predict the regions of the air flow from which we expect a

high capture efficiency.
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2.2 FORMULATION

In this thesis we are primarily interested in determining the

fundamental air flow pattern generated by the Aaberg exhaust hood

and therefore only the fully developed, steady air flow pattern

induced by the hood will be investigated. For the purpose of

determining the efficient and recycled flow regions, the contaminant

will be assumed to be neutrally-buoyant and spread throughout the

entire fluid flow domain and the effects of diffusion will be

neglected. Thus the contaminant modelled will follow the streamlines

of the air flow. In practice, the fluid flow pattern generated by

the Aaberg exhaust hood is such that the Reynolds number is very

large and hence an inviscid model is developed for the fluid flow in

the region of interest but with the boundary conditions coming from

shear-layer solutions. The fluid modelled is air at room
otemperature, i.e. at about 20 C, and it is assumed to be of constant

density, i.e. an incompressible fluid. The equations of motion

governing the flow of an incompressible, viscous fluid are then the

Navier-Stokes equations, namely the continuity equation and the

momentum equation, i.e.

V.u = 0

(u.V)u = - VP + V2(v u) .
e

(2.2.1a)

(2.2.1b)

where u , p, P = p/p and v are the velocity, pressure and the
e

effective kinematic viscosity of the fluid, respectively. The

effective kinematic viscosity, v, consists of the sum of the
e

physical viscosity, v, and the turbulent viscosity, c, i.e.

v = v + c. The turbulent viscosity, in contrast to the physical
e

viscosity, is not a property of the fluid but depends strongly on
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the state of turbulence and may vary significantly from one point in

the flow to another and also from flow to flow. The overall air flow

pattern induced by the Aaberg exhaust hood may be considered to be

composed of three distinct regions, namely (i) the flow in the jet,

(ii) the jet-induced flow and (iii) the exhaust flow, see Fig.2.1.

The fluid behaviour in each of the three flow regions is now

discussed and the mathematical tools and techniques required to

model each flow are presented.

(iii)

Fig. 2.1 The three flow regions of the model, (i) the jet flow

regions, (Li) the jet-induced flow regions and (iii) the exhaust

flow region.

2.2.1 The Flow in the Jet

Accurately modelling the flow in the jet is very important as

the flow conditions at the edge of the jet shear-layer govern the

induced inviscid fluid flow which occurs in the majority of the

region of interest. In the following chapters two-dimensional and

three-dimensional axisymmetric models of the air flow pattern

created by the Aaberg exhaust hood will be developed and hence
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two-dimensional plane jets and three-dimensional axisymmetric radial

jets, for both laminar and turbulent flows, will be investigated.

Furthermore, the two-dimensional turbulent wall jet flow which

occurs in the Aaberg slot exhaust, see Pedersen (1991a), will also

be investigated later.

The two-dimensional plane jet has received a great deal of

attention in the literature and there exists numerous theoretical

and experimental publications on the subject. A review of the

literature concerning the two-dimensional plane jet is given by

Schneider (1983), who examines both laminar and turbulent jets and

their induced flows. In this study the plane jet solutions used are

analogous to the Gortler (1942) solution, where for the turbulent

jet the Prandtl constant momentum transfer expression for the eddy

viscosi ty has been adopted,

illustrated in Schlichting

see Schlichting (1968). Comparisons,

(1968), made between the theoretical

GOrtler (1942) plane jet solution and the results of experiments

carried out by Reichardt, see Schlichting (1968), on a

two-dimensional plane jet show excellent agreement and for this

reason more complicated turbulence models, for example the k-E

turbulence model, requiring a more sophisticated numerical treatment

have not been adopted in the present work. A full numerical

treatment of the plane turbulent jet is described by Bergstrom

(1992).

In contrast, the radial free jet appears to have received very

little attention in the literature and a short review of some of the

available radial jet literature is now presented. Witze and Dwyer

(1976) presented a concise review of the literature concerning the

radial Jet. They state that the earliest theoretical treatment of
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the radial jet was given by Rumer (1949), who performed a mixing

length analysis analogous to the Tollmein (1926) plane jet solution.

Taliyev (1954) and Abramovich (1963) presented integral solutions of

the boundary-layer equations derived from assumed velocity profiles.

The publication of Squire (1955) is unusual as he solved the

complete Navier-Stokes equations, in spherical polar coordinates,

rather than the usual boundary-layer equations. Poreh and Cermak

(1959) used a simple eddy viscosity model and derived a solution

similar to the Gortler (1942) plane jet results. Rodi (1972)

presented results of a numerical technique that used a turbulent

kinematic energy/shear stress model. The turbulent radial jet has

also been studied by Wood and Chen (1985) who described results of a

numerical investigation in which comparisons were made between three

different turbulence models and the experimental results of

Heskestad (1966). More recently, Rubel (1985) and Malin (1988) have

examined the applicability of various k-c turbulence models to the

radial jet by comparing the spreading rate of the jet predicted by

the models with those determined from experiment.

In addition to the theoretical investigations just described,

the flow of a radial jet stream has also been studied experimentally

and a brief description of these studies is now given. The earliest

experimental investigation on the radial jet was performed by Tuve
~(1953) who measured the jet's centre-line velocity, u, and velocity

profiles for two different designs of nozzles which produce radial

jets. Two of the most important findings made by Tuve (1953) were

that·(i) the velocity distribution in the jet can be well-described

by the law
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(2.2.2a)

,..,
where b is the value of y where u = U/2, i.e. a measure of the

1/2

typical shear-layer thickness, and that (ii) the profiles of

lateral, or cross jet, velocity at various distances from the Jet

nozzle are similar. Figure 2.2 schematically illustrates the

notation and coordinate system of the Jet.

...-----4 Y

b(a)

Fig.2.2 Schematic diagram of the jet illustrating the coordinate

system and notation.

Heskestad (1966) presented a detailed experimental study of the

turbulent radial jet and described hot-wire anemometry measurements

of some of the turbulence quantities in the jet, e.g. the lateral

distributions of the normal and Reynolds stresses and the
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intermittency factor. The experimental results of Heskestad (1966)

indicate that the lateral velocity distribution may be

well-described by the semi-empirical formula of Squire (1955),

namely
IV

U 2- = sech (7.861)
u

1)= y/x (2.2.2b)

where x is the radial distance along the centre-line of the jet

measured from the perimeter of the jet nozzle. Experimental

investigations have also been reported by Tanaka and Tanaka (1976)

who measured the fluctuations in the streamwise velocity and

obtained experimental results which are comparable to Heskestad

(1966). The most recent extensive experimental study is given by

Witze and Dwyer (1976) who distinguished between two classes of

radial jets, namely 'constrained' radial jets or 'impinged' radial

jets depending upon the ratio between the width of the nozzle

through which the jet issues and the radius of the jet flange. Witze

and Dwyer (1976) measured lateral velocity distributions,

centre-line velocities and turbulence intensities and their results

illustrate the similarity behaviour of the lateral velocity profiles

which compare favourably with the velocity profile reported by Poreh

~d Cermak (1959), namely

U 2 ( Ob881y )u(o) = sech
1/2

for y/b
112

< 1. (2.2.2c)

The empirical formula (2.2.2a) of Tuve (1953) shows a good agreement

with his own experimental results for y/b ~ 2, 1.e. it provides
112

better agreement close to the edge of the jet shear-layer than the

expression (2.2.2c) of Poreh and Cermak. Patel (1979) extended the

results of Witze and Dwyer (1976) by measuring the growth and the

centre-line velocities of the radial jet up to a value of
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x/b(O} = 72. His results suggested that for radial free jets having

small separation distances, b(O}, the rate of growth is 0.115, i.e.

b = 0.115 x, and he found that the mathematical function
1/2

utO) = exp {-O.693( ~1/2 r }
fitted his results very well.

(2.2.2d)

A mathematical description of the fluid flow in a jet is now

given and the equations of motion and boundary conditions which

govern the flow in the shear-layers of both the two-dimensional

plane and the three-dimensional axisymmetric radial jet are

presented.

Fluid of low viscosity is discharged from the narrow nozzle,

width b(O), of the Aaberg exhaust hood at a relatively high initial

speed, u(O), into an initlally stagnant surrounding fluid of the

same density and viscosity. Due to the friction developed at its

boundary, the emerging jet of fluid carries with it some of the

surrounding fluid which was originally at rest so that the mass flow

in the jet increases along its length. As a consequence the jet

spreads out and its centre-line velocity, l.e. the velocity along

y = 0, decreases as the distance x along the jet increases. However,

the total momentum of the jet remains constant. The streamwise

component of the velocity in the jet, u, is a maximum along the

jet's centre-line and decreases to zero at the edge of the

shear-layer, whilst the y direction component of the velocity, v, is

zero along the centre-line. These physical flow characteristics of

the jet lead to the following boundary conditions:
au
ay - 0, v = 0 on y = 0 o < x < 00 (2.2.3a,b)

u ~ 0 as y ~ 00 o < x < 00 (2.2.3c)
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For large values of the Reynolds number, R , wheree

Re = u(O)b(O)
v (2.2.4)

the thickness of the jet is very small. Inside this very thin

shear-layer the velocity gradient normal to the direction of flow,

i.e. 8u/8y, is very large as the u component of the velocity in the
-jet decreases from a maximum value of u along the centre-line of the

jet to zero at the edge of the shear-layer. Therefore, even with a

very small viscosity, ~, the frictional shearing stress, i.e.

T = ~ 8u/8y, in the shear-layer is considerable because of the large

velocity gradient across the flow. In the remaining fluid flow

regions such large velocity gradients do not occur and the effect of

viscosity in these regions may be neglected.

Shear-layers may be laminar or turbulent, depending on the

distance from the orifice, the fluid viscosity and velocity, Le.

the Reynolds number of the jet. While the flow in the jet is

laminar, the thickness of the jet decreases as the Reynolds number

increases. However, as the Reynolds number tends to infinity, and

the jet becomes turbulent, the thickness of the jet does not vanish

but is approximately independent of the jet Reynolds number. Andrade

(1939) states that a two-dimensional plane jet remains laminar for

R less than approximately 30. However, an estimate of thee

equivalent critical Reynolds number for an axisymmetric radial jet

has not been found in the 11terature. The equations of motion

governing the flow in both laminar and turbulent shear-layers are

now examined.

lEEDS UNIVERSITY UBRARY
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(a) Laminar shear-layers

The Navier-Stokes equations (2.2.1) are difficult to solve

because of the non-linearity which is introduced by the presence of

the convection term and no general analytical methods for their

integration are available. However, the physical characteristics of

the shear-layer at large Reynolds numbers allow us to reduce the

Navier-Stokes equations to a simpler

non-linearity is still present.

By assuming that the shear-layer thickness, b , is very small

compared with a typical distance along the jet, I, and that the

form, although the

variation of the u component of the velocity across the shear-layer

is of the same order of magnitude as the centre-line velocity, ll,

then the order of magnitude of each term in the governing equations

can be estimated. The desired simplification can then be achieved by

neglecting lower-order terms. Following this approach it can be

demonstrated that the pressure in the direction normal to the

shear-layer is approximately constant, i.e. ap/ay - D(b}. The

pressure gradient in the x direction, i.e. the term dP/dx, has been

set identically zero in the equations of motion because to a first

approximation the fluid is stationary outside the shear-layer and

hence the pressure is constant everywhere in the jet. As a

consequence, the momentum flux, j, of the jet is constant and

independent of the distance, x, along the jet. The Navier-Stokes

equations then reduce to the Prandtl boundary-layer equations, which

for incompressible laminar flow in (L) a two-dimensional plane jet

and (Ii) an axisymmetric radial jet are given by:

(L) for the two-dimensional laminar plane jet, in cartesian

coordinate form, we have
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au au a2uu-+v-=v-
ax ay ay2

au av
ax + ay = 0

(2.2.Sa)

(2.2.Sb)

where
co

j = 2p J u
2 dy

o
and (11) for the axisymmetric laminar radial jet, in cylindrical

(2.2.6)

polar coordinate form, we have

au au a2uu-+v-=v-
ax ay ay2

a aax(xu) + ay(xv) = 0

(2.2.7a)

(2.2.7b)

where
co

j = 41(p J xu2 dy
o

(2.2.8)

(b) Turbulent shear-layers

At sufficiently high values of the Reynolds number it is found

that after a very short distance from the point of discharge of the

jet the flow becomes turbulent. It is well-known that the components

of the mean velocity of turbulent flows satisfy the same equations

as those satisfied by the laminar flows, except that the laminar

stresses must be increased by additional stresses known as the

apparent or virtual stresses of the turbulent flow. In free

turbulent flows, such as in turbulent plane and radial jet flows,

the components of viscous, or normal, stresses are negligible in

comparison with the apparent stresses and consequently it is

reasonable to neglect the viscous components. Thus, the

time-averaged equations of motion on the boundary-layer

approximation for incompressible, turbulent flow in (1) a
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two-dimensional plane jet and (ii) an axisymmetric radial jet are

the Prandt I boundary-layer equations, namely:

(i) for the two-dimensional turbulent plane jet, in cartesian

coordinate form, we have

(2.2.9a)

(2.2.9b)

and (ii) for the axisymmetric turbulent radial jet, in cylindrical

polar coordinate form, we have

(2.2.10a)

a a
ax(xu) + a/XV) = 0 (2.2.10b)

where e is the apparent or eddy viscosity. When dealing with

problems of turbulent jets it is usually assumed that the mixing

length, i.e. the distance a fluid element is carried in the

transverse direction, is proportional to the width of the jet, b,

because in this way we are led to useful results. Prandtl's constant

momentum transfer model for the eddy viscosity uses this assumption

and by assuming that the fluid particles momentum is conserved in

the transverse direction expresses e in the form
~e = X b u (2.2.11)

where X is a dimensionless empirical constant. In this way the

apparent kinematic viscosity remains constant over the whole width

of every cross-section of the jet, i.e. independent of y.

Solutions of the shear-layer equations

The solution of the shear-layer equations, subject to the

boundary conditions (2.2.3) and to the conservation of momentum,
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will give us a complete description of the flow in the jet.

Numerical solutions of the shear-layer equations are not

straightforward because of the non-linearity in the equations.

However, the nature of the flow observed in the shear-layer, I.e.

the similarity of the lateral velocity profiles along the developing

jet, indicates the form that their solution should take.

Early experimental observations, e.g. For thmann (1936),

demonstrated that the lateral distributions of the mean velocity in

the x direction of the plane turbulent free jet, i.e. the variation

of u with y at different x locations, all have the same geometrical
~shape. At every x location, u decreases from a maximum value of u on

the axis of the jet to zero at some distance from the axis. By
~scaling the velocity u and the y coordinate with respect to u and

b ,respectively, at that x location, Forthmann plotted ulu as a
1/2

function of y/b and found that the velocity distributions at
1/2

different x locations fall on a universal curve. Fdr thmann , and

other experimentalists, have shown that a very large number of flows

in the field of fluid jets, including the radial jet, see Tuve

(1953), exhibit this property of similarity. Similar solutions are

defined as those for which the component u of the velocity has the

property that two velocity profiles u{x,y) located at different

coordinates x differ by only a scale factor in u and y, i.e. where

u{ x
1
,y/b{X

1
) )

u{x )
1

u{ x ,y/b{x ) )2 2= u(x )
2

(2.2.12)

Hence we may assume that the velocity u is a function of y/b and

that b ~ xq• Accordingly, we may write the stream function in the

form

1) = y/Bxq (2. 2.13)
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where the constants A and B and the exponents p and q can be

determined from the shear-layer assumptions, namely that (a) the

inertial and viscous terms are of the same order of magnitude in the

jet and (b) the total flux of momentum at any location x is constant

and independent of x.

In cases where similar solutions exist it is possible, as we

shall see in more detail later, to reduce the systems of partial

differential equations to ones involving ordinary differential

equations which constitutes a considerable mathematical

simplification of the problem. Analytical similarity solutions of

the shear-layer equations are possible for both laminar and

turbulent two-dimensional plane and three-dimensional axisymmetric

radial jet flows. However, the similarity solutions of the

shear-layer equations may be regarded only as asymptotic solutions

for two reasons, namely, (1) the jet is assumed to emerge from a

singular point and (ii) the shear-layer equations are only valid for

very large values of the Reynolds number.

The asymptotic solution of the two-dimensional plane jet

equations of motion provides us with an adequate representation of

the flow in a plane jet, though the model is really an ideal flow

due to the fact that the fluid issues from an orifice of

infinitesimal width with an infinite initial velocity. However, the

solution of the equations of motion governing the flow in an

axisymmetric radial jet provides only the behaviour of the radial

jet flow as x ~ m, as the radial jet is then modelled as though it

issues radially from a point source. In practice, the radial jet of

the Aaberg exhaust hood issues from the perimeter of the exhaust

flange, i.e. from a circular disc of a finite radius, and therefore
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the development of the Aaberg's radial Jet flow from its initial to

its asymptotic behaviour must be modelled. A solution of the

governing shear-layer equations of motion, 1.e. equations (2.2.7)

and (2.2.10), must therefore be sought in the general form

~ - g(x) f(~·,x) (2.2.14)

where the function g(x) and the variable ~. must be chosen so as to

exhibit the correct initial behaviour of the radial jet for small x

and its asymptotic behaviour as x ~ m ..A detailed analysis of the

equations governing the flow in the radial jet will be presented in

chapter 5.

Once the solution of the shear-layer equations has been

determined then the stream function at the edge of the jet, given by

the value of ~ in the limit as y ~ m, can be deduced. The value of

the stream function at the edge of the jet shear-layer represents

the volume flux of fluid drawn into the developing Jet. For a

powerful injection of fluid the jet will be very thin and may be

considered to be confined to the x axis, i.e. assumed to be of zero

thickness. Thus the value of the stream function at the outer edge

of the shear-layer may be regarded as the value of the stream

function at y = o. Therefore, in two dimensions, with respect to the

induced flow the jet acts as a line sink whose local strength is

given the rate of change of the mass flux in the jet.

2.2.2 The Jet-induced Flow
Entrainment into a Jet gives rise to a flow of the ambient

fluid- known as the Jet-induced flow and it is this flow that

distinguishes the flow of the Aaberg exhaust hood from the flows

generated by traditional designs. The jet-induced flow is free from
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any large changes in the velocity gradient and hence for large

Reynolds numbers the effects of viscous forces are negligible

compared with the inertial forces. i.e. the fluid may be assumed to

be inviscid in this region of the flow. Although such a fluid cannot

exist in nature. under certain conditions it may give valuable

information about how a real viscous fluid behaves.

It is a common assumption that the flow which is induced by a

thin, i.e. high Reynolds number. jet is an inviscid potential flow.

i.e. it satisfies the conditions of incompressibility and

irrotationality. see for example Schneider (1981,1983). The

influence of a jet on a flow field has been investigated by a number

of experimentalists using flow visualization techniques. The flow

induced by a two-dimensional plane jet of fluid which discharges

perpendicular to a straight wall was observed by Lippisch (1958) and

is illustrated in Fig.2.3(a). The flow induced by a two-dimensional

turbulent wall jet of fluid was investigated by Sigalla (1958a) and

is illustrated in Fig.2.3(b). The smoke filaments released into the

flows clearly illustrate their laminar nature.

One limitation of the potential flow model for the jet-induced

flow is that a slip condition exists between the fluid and the

flange of the exhaust. The flow induced by the jet will produce a

boundary-layer flow along the exhaust flange but this is of a

lower-order than the jet-induced flow and therefore has been

neglected in this work as it only plays a passive role. The

equations of motion governing the inviscid potential flow in both

two-dimensional polar coordinate and three-dimensional axisymmetric

spherical polar coordinate form are now presented.
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Fig.2.3(a) The flow induced by a two-dimensional plane jet which

discharges perpendicular to a straight wall as observed by Lippisch

(1958).

Fig.2.3(b) The flow induced by a two-dimensional turbulent wall jet

issuing parallel to a straight wall as observed by Sigalla (1958a).

The arrow indicates the position of the orifice of the jet.
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(a) The potential flow equations for the two-dimensional model

In two-dimensional polar coordinate (r,a) form, the continuity

equation may be written

(2.2.15)

where u
r

and ua denote the components of the velocity in the radial

and tangential directions respectively. We now introduce the stream

function ~(r,a) in order to satisfy the equation (2.2.15), i.e.

(2.2.16a,b)

For irrotationality we insist that V x u = 0 which implies that

On substitution of equations (2.2.16) into equation (2.2.17) we

obtain the equation of motion which governs the potential flow,

namely the Laplace equation:

82~ + .! 8~ + .!_ 82~ = 0
8r2 r 8r r2 8a2

(2.2.18)

(b) The potential flow equations for the three-dimensional

axisymmetric model

In spherical polar coordinates (r,a,~) the continuity equation

may be written

.!_ ~(r2u ) + 1 ~(u) + __ 1__ 8_(u",sin(~» = 0
r2 8r r rsin(~) 8a a rsin(~) 8~ ~

(2.2.19)

where If we assume axial symmetry so that

u = (ur' 0, u~), where ur and u~ denote the velocity components in

the radial and tangential directions, respectively, then the

continuity equation (2.2.19) reduces to

1 8 2- -er u ) +
r2 8r r-

1 ~(U~Sin(~» = 0
rsin(~) 8~

(2.2.20)
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which may be satisfied by introducing the Stokes stream function

l/1(r,t/» such that

1 81/1
r2sin(t/»8t/>

For irrotationality we require that

u =
r

u = 1 81/1
t/> rsin(t/»8r

(2.2.21a,b)

(2.2.22)

and on substituting equation (2.2.21) into the above equation we

obtain the equation of motion governing the inviscid potential flow

of the Aaberg exhaust hood, namely

cott/>81/1+ _! 8
2

1/1 = 0 .
r2 8t/> r2 8t/>2

(2.2.23)

2.2.3 The Exhaust Flow

In practice, experimentalists have observed that when operating

under suction alone the fluid flow induced by the exhaust is laminar

and hence, as for the jet-induced flow, since the Reynolds number is

large, the effects of viscosity in the exhaust flow may be

neglected. In two dimensions, a very simple representation of the

flow into an exhaust inlet can be obtained by modelling the exhaust

as a line sink of fluid. Although providing a good overall model of

the flow field induced by ah exhaust, very near to the exhaust inlet

the line sink model of the exhaust flow is unrepresentative of the

actual flow which is observed in practice. This is due to the

infinitesimal width of the sink's inlet which results in an infinite

fluid velocity into the sink. A far more realistic representation of

an exhaust flow is achieved by modelling the exhaust inlet as a slot

of a finite width in two dimensions and as a circular orifice in

three dimensions and by assuming that the velocity distribution
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across the face of the inlet is constant. In practice the velocity

distribution is observed to be constant at only a very short

distance down the inlet but for simplicity, in the mathematical

models presented in this thesis, it is reasonable to enforce the

condition of a constant velocity across the face of the inlet.

2 ~3 METIlODS OF SOLUTION

Under the simplifying assumptions made, and for the reasons

given in the preceding sections, the overall air flow pattern

developed by the Aaberg exhaust hood, that is the combination of the

Jet-induced and the exhaust flows, may be considered to be an

inviscid potential flow. We shall see in the following chapters that

apart from in the simplest cases an analytical solution of the

governing inviscid potential flow equations is not possible. In the

more realistic models of the air flow pattern then, numerical

techniques provide the only way of determining the air flow pattern.

Before the solution of the governing elliptic equation of

motion can be determined using numerical methods a boundary

condition which models the flow field as r ~ m is required. In the

numerical models to be presented in the following chapters this

upstream boundary condition has been taken to be the superposition

of the upstream component of the overall flow produced by (i) the

suction, which as r ~ m is a purely radial flow, and (11) the

injection, which as r ~ m is determined from the asymptotic

solution of the governing potential equation.

Finite-difference techniques were considered to be the most
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convenient means of solving the equations of motion due to the fact

that the solution domain is free from any curved geometry and other

methods, for example the finite element method and the boundary

element method, were not considered to have any advantages over the

finite-difference method. The finite-difference method consists of

placing a mesh over the entire solution domain and replacing all

derivatives of the governing equation of motion by their

central-difference approximations. The resulting finite-difference

equations are then written in their classical five point form at

each mesh point and the resulting system of linear, algebraic

equations solved using matrix methods. The Gauss-Seidel iterative

procedure was chosen to solve the system of equations and the

successive over-relaxation (S.O.R.) method was used in order to

accelerate the rate of convergence.

As the flow field generated by an Aaberg exhaust hood is

symmetrical about the hood's centre-line then the computational

domain can be halved in size. All the results presented in this

thesis are such that they are independent of the mesh size and the

position of the upstream boundary condition. Sets of streamlines and

lines of constant speed deduced from the model can then be used to

examine the hood's air flow pattern and to illustrate the effect of

the governing parameters on the air flow.

2.4 TERMINOLOGY

In chapter 1 the notion of a clutch velocity, 1.e. the air

velocity in front of the hood caused by the hood, was introduced and
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HyIdgar'd (1987) stated that the ratio between the clutch velocity

and the velocity of the pollutant is a decisive factor in

determining whether or not the exhaust will collect the pollutant.

However, the ratio described is not a sufficient condition for

contaminant capture to take place, indeed, for the typical air flow

pattern induced by the Aaberg exhaust hood, contaminated air may be

drawn initially towards the hood but then led away from the exhaust

inlet as it moves in the jet-induced flow,

At this stage it is convenient to introduce further terminology

that will allow us to theoretically describe the region in front of

an exhaust hood from which we expect the air flow to be drawn

successfully into the exhaust inlet and hence the region from which

capture of contaminant is assumed to occur. The terms 'capture

speed', 'effective capture region' and 'effective working range'

which will be referred to frequently in the following chapters are

now defined.

2.4.1 The Capture Speed

Due to the nature of the contaminant and to the background air

movements, in an industrial environment successful contaminant

capture will only occur from a region of the workplace where the air

speed in the efficient flow, 1.e. the flow which leads directly

towards the exhaust inlet, exceeds a minimum speed, known as the

capture speed, q . Under normal practical condi tions, and for a
c

neutrally-buoyant contaminant,' the capture speed is typically of the
-1order· of 0.25 ms , see Hegs ted (1987) and Fletcher and Saunders

(1991 , 1993).
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2.4.2 The Effective Capture Region

The region of the efficient flow where the air speed induced by

the hood exceeds the capture speed is hereafter referred to as the

effective capture region. The effective capture region therefore

describes the region of the workplace where contaminant capture is

assumed to be successful. In the models to be presented in the

following chapters the effective capture region predicted represents

the maximum theoretical size of the region from which sampling can

be expected to occur in an industrial environment. This is due to

the fact that the most simple model for a contaminant is assumed and

buoyancy and diffusion effects are neglected. In two dimensions the

effective capture region is referred to as the effective capture

area.

2.4.3 The Effective Vorking Range

The effective working range of the hood refers to the distance

upstream from the hood to the region in the flow where the air speed

is equal to the capture speed, 1.e. it is the length which the

effective capture region extends upstream. In the case of the

ventilator unit, see Fig.I.S, the effective working range is taken

to be the distance which the effective capture region extends

upstream along the floor surfa~e from the centre-line of the unit.

It is very important to consider the effective working range of an

Aaberg exhaust hood as it has been demonstrated that the very small

effective working range of the traditional exhaust hood results in

serious problems relating to its installation.
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2.5 CONCLUSIONS

Mathematical techniques have been used to reduce the complexity

of modelling the Aaberg exhaust hood's air flow pattern. The

simplifying assumptions have allowed the Navier-Stokes equations to

be reduced to more tractable forms, namely, to the shear-layer

equations in the Jet flow region, where the effects of viscosity are

important, and to the potential flow equatiQns in the remaining flow

region where the effects of viscosi ty are negligible and inertia

dominates.

Now that the background and framework of the mathematical model

have been developed and the governing equations of motion set up we

proceed to examine in detail the boundary conditions for both the

two-dimensional and three-dimensional axisymmetric models of the

Aaberg exhaust hood's air flow pattern. In this way we will

establish the governing operating parameters and their effect on the

air flow.



CHAPTER TIIREE

A SIMPLE TWO-DIMENSIONAL ANALYTICAL MODEL FOR THE FLUID MECHANICS OF
THE AABERG EXHAUST HOOD
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3.1 INTRODUCTION

Originally the Aaberg exhaust hood was three-dimensional

axisymmetric in design, see Hsgsted (1987), but a two-dimensional

version was studied by Pedersen (1991a). The principles of operation

for the two- and three-dimensional hoods are the same and hence, for

simplicity we begin by examining a two-dimensional hood. The aim of

this chapter is to obtain an analytical solution for a simple

mathematical model of the hood's air flow pattern for both laminar

and turbulent injections of fluid, using the mathematical modelling

approach described in chapter 2. A description of the fluid flow in

each region is given together with the equations of motion and

boundary conditions. The shear-layer equations which govern the flow

of the two-dimensional plane jet, for both laminar and turbulent

flows, are solved analytically for the stream function following the

method given by Schlichting (1968). In turbulent flow the Prandtl

constant momentum transfer model for the eddy viscosity has been

adopted. The two-dimensional jet-induced flow is then determined by

solving the governing potential equation, subject to the appropriate

boundary conditions, by the method of separation of variables. By

modelling the exhaust flow as a line sink of fluid then, the stream

functions for the jet-induced flow and the exhaust flow are combined

to give a simple model of the Aaberg exhaust hood's air flow. A full

description of this simple two-dimensional model is now presented.
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3.2 THE MATHEMATICAL MODEL

We have seen in chapter 2 that in order to model the fluid flow

which is generated by the Aaberg exhaust hood it is necessary to

make a number of simplifying assumptions. For clarity these

assumptions will be reiterated during the development of the

two-dimensional model. The fluid is assumed to be incompressible and

the flow to be steady. The solution technique is divided into three

parts:

(i) To model the exhaust flow.

The exhaust flow is modelled as a line sink of fluid at the

centre of a plane, the plane representing the flange of the exhaust.

(ii) To model the injection flow.

The injection flow is modelled as a two-dimensional plane jet

which issues from the ends of the exhaust flange. Both laminar and

turbulent plane jets are examined and the solution in the form of a

stream function has been determined from boundary-layer theory, see

Schlichting (1968). From the stream function the boundary condition

at the edge of the jet shear-layer is derived.

(iii) To model the fluid flow induced by the injectiop.

Due to the friction which is developed at its boundary the

emerging jet carries with it some of the surrounding fluid, which

was originally at rest. The stream function for the Jet-induced flow

is found by assuming that the flow induced by the slender, i.e. high

Reynolds number, jet is an inviscid potential flow. Hence, the

stream function for this flow must satisfy the Laplace equation with

the value of the stream function, as found in (ii), as one of the

boundary conditions. The stream function for the jet-induced flow is
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determined analytically by solving the Laplace equation (2.2.18)

using the method of separation of variables.

Stream functions for the sink and the induced flow are then

combined to give a stream function for the total flow created by the

two-dimensional Aaberg exhaust hood.

3.2.1 The Stream Function due to the Sink

To calculate the stream function f'or a sink of strength m at

the centre of a vertical flange we use the polar coordinates (r,a)

and the velocity components in the radial and tangential directions

are denoted by u
r

and ua ' respectively. The flux of fluid drawn

into the sink is given by:

-1[ r u = m (3.2.1)
r

and hence
m (3.2.2)u = - --r 1[ r

The line perpendicular to the exhaust flange, passing through the

sink, about which the problem is symmetric, hereafter referred to as

the centre-line, represents a streamline of the flow and we take

~ = 0 along this line. Hence, from the radial and tangential

components of velocity, given by expressions (2.2.16), we obtain
m~ = - - a1[ (3.2.3)

which in terms of the angle ~, see Fig.3.l, may be written

(3.2.4)

The boundary conditions satisfied by the sink flow along the hood's

centre-line and the exhaust flange are therefore

~ = 0 on ~ = 1[/2 (3.2.Sa)

and ~ = ml2 on ~ = 0 , (3.2.Sb)

respectively.
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x

T- Exhaust
a

1_ --------------~y

Jet~

Fig.3.1 The geometry and coordinate system used for the sink flow.

3.2.2 The Two-dimensional Laminar Plane Jet

The equations of motion of a two-dimensional incompressible.

laminar and steady flow in the plane jet are the shear-layer

equations (2.2.5). In this chapter. for convenience. the cartesian

coordinate system (x.y) is adopted with its origin at the centre of

the exhaust flange. so that the y axis is along the centre-line of

the hood and the ~ axis perpendicular to the centre-line. see

Fig.3.1. A new coordinate system (x·.y). whose origin is located at

the orifice of the jet with the x· axis along the axis of the jet.

is now introduced such that

x· = x - a (3.2.6)

where the quantity. a. denotes the width of the exhaust flange.

Equations (2.2.5) now become

auu-
ax·

au a2u+v-=v-
ay ay2

(3.2.7a)

au av+ = 0 (3.2.7b)
ax· ay

and have to be solved subject to the boundary conditions (2.2.3) and

to conservation of momentum which is given by expression (2.2.6).
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The continuity equation (3.2.7b) implies the existence of a stream

function ~ where:

u = a~ and v = _ a~
ay ax·

In order to determine the form of the stream function in the jet we

(3.2.8a,b)

shall assume that the lateral velocity profiles in the jet are

similar and hence we seek a solution of equations (3.2.7) of the

form given by expression (2.2.13). i.e.

(3.2.9)

Using the shear-layer assumptions, namely that (a) the inertial and

viscous terms are of the same order of magnitude in the jet and (b)

the total flux of momentum at any position x· is constant, results

in
1P = '3 and 2

q = '3 (3.2.10)

Using condition (a) we can choose, for convenience,

(3.2.11)

and hence

(3.2.12)

where f(~) satisfies the ordinary differential equation
'" " '2f + ff + (f) = 0 . (3.2.13)

The prime denotes differentiation with respect to ~. This equation

has to be solved subject to the boundary conditions
,,

f = 0 , f = 0 on ~ = 0 (3.2.14a,b)

and f ~ 0 as ~ ~ IX) (3.2.14c)

Integrating equation (3.2.13) once gives
,,
f + ff = constant . (3.2.15)

To satisfy the boundary conditions (3.2.14a,b) the constant must be
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set to zero and therefore
,,
f + ff = 0 . (3.2.16)

This second-order differential equation could be integrated directly

if the second term contained a factor of two. therefore we make the

following transformation:
~ = lJ f = 2 F(~) • (3.2.17)

Hence equation (3.2.16) becomes
'dFF =-- d~

and the boundary conditions (3.2.14b.c) reduce to

,, ,
F +2FF =0 where (3.2.18)

(3.2.19a)

and F ~ 0 as ~ ~ DO • (3.2.19b)

Integrating equation (3.2.18) gives
F' + F2 = a.2 (3.2.20)

where a.2 is an unknown constant. Rearranging equation (3.2.20) gives

(3.2.21)

and integrating we have

1 -1 ( F )~ = a tanh a (3.2.22)

hence

F = a. tanh(~a.) . (3.2.23)

Cond lt Lon (b) gives us an expression for the momentum flux. J.

namely
16 3 112J=gPa. v (3.2.24)

and hence if we assume that the flux of momentum. J. for the Jet is

a known quantity. then the constant a. is given by

a. =' ( 9 k ) 1/3

16 vl12

where k = J/p is the kinematic momentum flux. The stream function

(3.2.25)

for the two-dimensional laminar Jet issuing from the coordinate
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origin is then given by:
I/J = 2 a. vl12 (x. )1/3 tanh('I)a.) • (3.2.26)

If we let y ~ m in the above expression then the stream function is

given by

x· > 0 (3.2.27)

and this is the boundary condition at the edge of the shear-layer

that we have imposed when solving for the flow induced by a

two-dimensional plane laminar jet.

3.2.3 The Two-dimensional Turbulent Plane Jet

In reality the emerging jet, originally a laminar flow, passes

through a transitional chaotic stage and soon becomes fully

turbulent. Following Schlichting (1968) we shall assume that the

width of the jet, b, is proportional to x·, 1.e. b '"x·. The

relationship between the centre-line velocity, U, and x· can then be

obtained from the momentum conservation equation (2.2.6), from which

we obtain
"'2j = constant u b (3.2.28)

and hence
'" -1/2 112
U = constant (x") j . (3.2.29)

Thus the rate of decrease in the centre-line velocity U '"(x·)-1/2.

Prandtl's expression (2.2.11) for £ simplifies the differential

equation (2.2.9a) and thus the equations of motion governing the

flow in a two-dimensional plane turbulent jet, i.e. equations

(2.2.9), then reduce to:
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auu -
ax·

au a2u+v-=c-
ay al

(3.2.30a)

au + av = 0
ax· ay

and the boundary conditions are given by equations (2.2.3). Equation

(3.2.30b)

(3.2.30a) is formally identical with that for the laminar Jet case

except the kinematic viscosity. v, of the laminar flow has been

replaced by the apparent kinematic viscosity. c. of the turbulent

flow. Denoting the centre-line velocity and the width of the Jet at
""a fixed characteristic distance. s. from the orifice by u and b •
s s

respectively. we may write

""_ ""( x. ) -112
U - U -

s S (3.2.31a)

and hence

(
x. )112

c = c -
s S

""e = ~ b u
s s s

(3.2.31b)

The stream function is again introduced and assumed to take the form

1)= (T y/x·
o

(3.2.32)

where the function (T denotes a free constant. Substituting
o

expression (3.2.32) into Prandtl·s shear-layer equation (3.2.30a) we

obtain the following differential equation for F(1):
1 I 2 1 II 2 "" III- (F) + - F F + (e (T / u s ) F = 02 2 sos

(3.2.33)

where the prime now denotes differentiation with respect to 1).where

1)= (T y/x·. The boundary conditions (2.2.3) now become
o

F = 0 • F = 1 on 1)= 0 (3.2.34a.b)

and F ~ 0 as 1)~ 110 (3.2.34c)

Since C contains the free constant ~. we write
S

1 [U;:r (3.2.35)(T = 20
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This substitution simplifies the preceding differential equation

which can now be integrated twice to give

F 2+ F = 1 (3.2.36)

This is similar to the equation for the two-dimensional plane

laminar jet and the solution is given by

F = tanh 1) • (3.2.37)

The characteristic velocity, u ,
8

can now be expressed in terms of

the constant momentum flux per unit length, using the momentum

equation we have
4 ~2 sj=-3Pu -s (J'

o
(3.2.38a)

hence
~2 3u s = - k (J'
s 4 0

(3.2.38b)

where k = j/p. The final form of the stream function for the

two-dimensional turbulent jet is therefore given by:

)

1/2

I/J = ~ ( ~k (x·)112 tanh 1) •

o
(3.2.39)

The constant (J' was determined experimentally by H. Reichardt, see
o

Schlichting (1968), and found to be (J' = 7.67. If we let y ~ m in
o

the above then the at ream function is given by

)

112
I/J ~ ~ ( ~k (X.)112

o
x· > 0 (3.2.40)

and this is the boundary condition at the edge of the shear-layer

that we have imposed when solving Laplace's equation for the flow

induced by a two-dimensional plane turbulent jet.

3.2.4 The Flow Induced by a Two-dimensional Jet

The effect which the two-dimensional jets of fluid have on the

entrainment of the surrounding fluid is now investigated under the

assumption that an inviscid potential flow is induced. If we let
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y ~ m in equations (3.2.26) and (3.2.39), then the condition for ~

at the edge of the shear-layer is of the form

A.h(X· m) = f (x·).", m x· > 0 (3.2.41a)

where

(3.2.41b)

for the laminar jet and

_ 1 ( 3k )112
f - - - ,m 2 (J'

o
A = 1/2 (3.2.41c)

for the turbulent jet. For simplicity the slender jet is assumed to

have zero thickness so that the boundary condition is enforced along

the x axis. The solution of the Laplace equation (2.2.18) subject to

the following boundary conditions

~ = f (X·)A on 9 = 0 (3.2.42a)
m

~ = 0 on 9 = 1( (3.2.42b)

~ = 0 r = r on 9 = 1(- ex (3.2.42c)ex
will give a complete description of the flow induced by the jet. The

geometry and coordinate systems used for the induced flow are

illustrated in Fig.3.2. Using the method of separation of variables

we find the solution in the form:

-1 [A [ ] A ]~ = foo (sin(A1(» r sin A(1(-9) - rexsin(Aex) . (3.2.43)

3.3 A TWO-DIMENSIONAL MODEL OF THE AABERG EXHAUST HOOD'S FLUID FLOV

In this study we are interested in determining the fundamental

air flow pattern created by the Aaberg exhaust hood and we therefore

assume that the contaminant is spread throughout the fluid and is
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neutrally-buoyant, i.e. has the same density as air, and diffusion

effects have been ignored. The stream function for the

two-dimensional flow pattern which models that created by the Aaberg

exhaust hood can then be written in the form

t/I = - i (r - i) + fco(SinC\1(»-1[ l'sin[ ;\(1(-9)] - r: sin;\'l] .

(3.3.0

x·

r y

xa

1 Line

r Sink ~

a

L

t/I = 0
-------------~y

Fig.3.2 The geometry and coordinate systems used for the induced

flow.

Although we have made these assumptions it is easy to adapt the

model to include the effects of having a neutrally-buoyant emission

of contaminant, modelling it as a line source of fluid which can be

placed anywhere in space in front of the hood. Also, solid

particles, representing contaminants can be easily introduced into

the flow at various positions and their individual particle paths
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calculated for different hood operating conditions. However,

modelling the effects of a continuously emitted,

non-neutrally-buoyant contaminant is more complicated and leads to a

two-phase problem.

The above expression for the stream function is now expressed

in dimensionless form by referring all lengths to the width of the

exhaust flange, a, and the stream function with respect to the

volume flux, m, into the exhaust inlet. Thus introducing the

dimensionless quantities

R = r/a ,R = r /a R = r /a , ~ = ~/ma a '¥ '¥

expression (3.3.1) becomes

(3.3.2)

~ = [ ~ (7 - ;) - G [ RAsin[ A(a-O) 1 - R~ sinA« ] J (3.3.3)

Awhere G = a f /msin(An) is an important dimensionless quantity,
co

referred to hereafter as the operating parameter. The operating

parameter, G, will be denoted by G when the flow in the Jet is
L

laminar and GT when the flow in the Jet is turbulent. The

dimensionless resultant speed, Q, of the flow is given by

(3.3.4)

where U and V are the dimensionless cartesian components of velocity

in the X = x/a and Y = y/a directions, respectively, such that

U = u/(m/a) and V = v/Cm/a). Hence

U = - [
cos,¥ ( A-I ;1.-. lJnR + AG R cosA + Ra cosB

'¥

and

V = - [ sin,¥ + AG(RA-1SinA + R~-'sinB1JllR
'¥

(3.3.Sa)

(3.3.Sb)
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where
A = An + 9(1-A) B = a(1-A) . (3.3.6a,b)

From a knowledge of these components the velocity directly in front

of the exhaust hood along its centre-line can be determined. Along

the centre-line

U=O,ov=!! R=Y,cx+9=w R=R
Q 2' r 'a (3.3.7)

and hence the dimensionless centre-line velocity (eLV), is given by

CLV = - [ Xly + AGRA-t[SInA + SInB)] (3.3.8)

where

n -1 (1) -1 2 29 = 2 + tan y ,a = tan Y , R = 1 + Y . (3.3.9)

3.4 RESULTS AND DISCUSSION

The mathematical model presented in this chapter represents a

very simple analytical model for the air flow pattern which is

created by a two-dimensional exhaust hood assisted by a jet flow

following the principles of operation suggested by Aaberg. However,

an exhaust hood of the same design as that modelled does not exist

in practice and therefore there are no appropriate operating

conditions and experimental data on which to base the validity of

the model. However, for the purposes of illustrating the qualitative

behaviour of the two-dimensional air flow pattern predicted by the

model. we obtain appropriate values of the dimensionless operating

parameter G from the operating conditions of a three-dimensional

Aaberg exhaust hood as supplied by Fletcher and Saunders (1991) of
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the Health and Safety Executive, Sheffield, England. These

conditions lead to the following approximate values of the physical

quantities:
3 -1m et 0.05 m s a et 0.15 m. (3.4.1)

The fluid used was air at about 20°C, and therefore the kinematic

viscosity, v, is approximately equal to -51.1 x 10 Pa s. These

parameters result in a value of G
L

Cit 0.5 for the laminar Jet and

G et 2.0 for the turbulent Jet. The value of the operating parameter
T

G may be varied and its effect on the flow pattern examined.

Increasing the value of the parameter G by a factor F may be

regarded as equivalent to one of the following:

Laminar Jet Case (A = 1/3)

G = .! ( 9akv f/3 (3.4.2)
L m 2

(a) Increasing k by a factor of F3

(b) Decreasing m by a factor of F
(c) Increasing a by a factor of F3,

1.e. decreasing the sink strength by a factor of F is equivalent to
3increasing the kinematic momentum flux by a factor of F .

Turbulent Jet Case (A = 1/2)

G = _.! ( 3ka )1/2 (3.4.3)
T 2m U'

°
(a) Increasing k by a factor of F2

(b) Decreasing m by a factor of F
(c) Increasing a by a factor of F2

From equations (3.4.2) and (3.4.3) the following relationship

between the laminar and turbulent operating parameters, G and G ,L T
can be derived:
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(
ak )1/6.

G = G
T L 12v2cr3

o

(3.4.4)

On substitution of the physical quantities given in expressions

(3.4.1), equation (3.4.4) simplifies to the approximate relationship

G
T

~ 4 G
L

Once the laminar operating parameters are known then their

(3.4.5)

equivalent turbulent parameters can be calculated from equation

(3.4.5). In this chapter the flow patterns corresponding to the

laminar operating conditions G = 0.05, 0.5 and 5 and their turbulent
L

equivalents G = 0.2, 2 and 20 are investigated. The conditions
T

G = 0.05 and G = 5 represent one tenth and ten times the value ofL L
the laminar operating condition deduced from the Health and Safety

Executive data, respectively.

It should be noted that the operating condition G = 0 is

equivalent to one of a traditional flanged hood, i.e. it models a

hood operating under suction alone.

3.4.1 The Laminar Model

The sets of streamlines describing the flow created by the
Aaberg exhaust hood deduced from expression (3.3.3) with A = 1/3 are

shown in Figs.3.3(a)-(c) when the flow in the Jet is assumed to be
laminar for the parameters G = 0.05, 0.5 and 5, respectively. It can

L

clearly be seen that increasing the value of the dimensionless

operating parameter G forces the dividing streamline, ~ = 1/2,
L

which divides the flow travelling towards the inlet from that

travelling towards the ejector flow, towards the centre-line of the

hood, resulting in the streamlines becoming more compact in the

region in front of the inlet. The width of the efficient flow region
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decreases, implying an increased fluid velocity towards the inlet.

With G = 0.05 the sink dominates the flow and fluid is drawn
L

into the inlet from all directions in front of the hood. The

injection effect is very small and the width of the efficient flow

region is reduced only very slightly over the case when G = O. The

fluid velocities towards the inlet are only slightly enhanced, and

under these conditions the Aaberg exhaust hood would perform in much

the same way as a traditional exhaust hood. For G = 5 we reach the
L

other extreme, the injection totally dominates the flow and the jet

entrains large amounts of fluid. Velocities towards the inlet are

substantially increased, although the penalty is an efficient flow

region so narrow that the exhaust would be rendered almost useless

for the capture of contaminants. Under the operating condition

G = 0.5 there is a good balance between the suction and the
L

injection. In this case the velocity towards the inlet is

substantially increased over the case when G = 0 while the efficient

flow region remains broad for the effective capture of contaminants.

These three values of the operating parameter G illustrate the
L

necessity to obtain a good balance between injection and exhaustion

in order to achieve near optimum contaminant control from the Aaberg

exhaust hood.

From expression (3.4.2) we can deduce that a hood operating

with parameter G = 0.05 and a laminar injection of fluid can be
L

modified into one operating more effectively by either:

(a) increasing k by a factor of 1000

or (b) decreasing m by a factor of 10

or (c) increasing a by a factor of 1000.

The modification (a) would require a very high supply pressure for
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the injection, create much noise and require a large increase in

energy, and (c) would almost certainly prove impractical, so that it

would seem most reasonable to choose modification (b). However, care

must be taken as decreasing m by a factor of 10 will decrease the

air speeds in the efficient flow, which for the exhaust to operate

effectively must at least exceed the capture speed.

The effect of G
L

on the flow is again illustrated in

Figs.3.4(a)-(c); these show lines of constant speed in front of the

hood, deduced from expressions (3.3.5), with a laminar injection of

fluid for G = 0.05, 0.5 and 5, respectively. As G increases the
L L

fluid velocity in front of the inlet, in both the efficient and the

recycled flow regions, increases. Under normal practical conditions

the capture speed is typically of the order of 0.25 ms -1 see

Hags ted (1987) and Fletcher and Saunders (1991,1993). A capture

speed of -10.25 ms corresponds to a non-dimensional speed of

Q = 0.75 for the operating conditions given in expressions (3.4.1).
c

Thus, in this model, we can define the effective capture area, from

which the air will be drawn into the exhaust inlet and successfully

removed from the workplace, as the area bounded by the Iine of

constant speed Q = 0.75 and the dividing streamllne ~ = 1/2.
c

We can see from Figs. 3.3 and 3.4 how the shape of this area

changes as G changes. On increasing the value of G from G = 0.5 to
L L L

G = 5 we see that the width of the effective capture area decreases
L

but its length increases. Thus increasing the value of G
L

also

increases the effective working range of the hood which can then be

placed at greater distances from the source of the contaminant

whilst still achieving the same results.
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Fig.3.3 Streamlines modelling the Aaberg flow for a laminar
injection of fluid, A = 1/3. (a) G = 0.05, (b) G = 0.5, (c) G = 5.
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Fig.3.4 Lines of constant speed in front of the hood for a laminar

injection of fluid, A = 1/3. (a) GL= 0.05, (b) GL= 0.5, (c) GL= S.
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Further examination of Fig.3.4(b), which shows the lines of

constant speed in front of a hood operating with G
L
= 0.5, suggests

that a I ine of constant speed Ob' between the lines ° = 0.4 and

Q = 0.45, bifurcates, the fluid here being either captured by the

suction or caught in the injection flow. This phenomena was also

observed experimentally by Fletcher and Saunders (1991,1993). The

form of the lines of constant speed is in qualitative agreement with

the three-dimensional experimental results obtained by H0gsted
(1987) and Fletcher and Saunders (1991,1993). The reason why the

agreement between the model and the experimental results is only

qualitative is because the flow in the theory is two-dimensional

whereas the experiments were carried out on a three-dimensional

hood.

An idea of the pressure distribution developed by the Aaberg

exhaust hood can be gained from Fig.3.4 which shows lines of

constant speed in front of the hood. As a result of the Bernoulli

equation for steady flow, i.e.
1 2P + - q = constant,
2 (3.4.6)

the lines of constant speed are also representative of the lines of

constant pressure, with the areas of high fluid speed corresponding

to areas of low fluid pressure.

Figure 3.5, which is derived from expression (3.3.8), shows the

dramatic variation in the CLV as a function of the distance, Y, from

the inlet of the exhaust hood when the flow in the Jet is assumed to

be laminar and forG = O.OS, 0.5 and 5. With G = 0.05 and G = 0.5
L L L

the injection effect is minimal and the CLV falls sharply as we move

away from the inlet. As G is increased to 5 the eLV again falls
L

until, at a distance of the order of O.Sa from the inlet, the effect
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of the injection of the fluid begins to influence the flow, raising

the fluid velocity until a local maximum is reached at a distance of

the order of la from the inlet. Moving further away from the inlet

the fluid velocity decreases, although it remains considerably

higher than was predicted for G
L
= 0.05 and G

L
= 0.5. Quantitatively,

the theory predicts that a hood operating with G = 5 has an
L

effectlve working range of over Sa compared with one of less than

O.Sa for one operating with G = 0.05.
L

~-2.0

·0o -1.B
G>> -1.6
Cl):5 -1.4

I
~ -1.2

~ -1.0
o
~ -O.B

~ -0.6
Co
.(5 -0.4
c
Cl)E -0.2.-o 0.0

\ .--r--
<,

~
"", G..S

.......L
.....
~ r-...... -....

~

~
~E'0.f:
~

~ o.o~
~

............. r---t---

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Distance from Inlet y=y/ a

Fig.3.S Variation in the centre-line velocity with distance from the

inlet for laminar injections of fluid, G
L
= 0.05, 0.5 and 5.

3.4.2 The Turbulent Model

The sets of streamlines, obtained from expression (3.3.3) with
A = 1/2; describing the flow created by the Aaberg exhaust hood with

a turbulent injection of fluid are shown in Figs.3.6(a)-(c) for the

parameters G = 0.2, 2 and 20, respectively. The effect of increasing
T
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the value of G is the same as that observed for the laminar case
T

and again resul ts in increased veloci ties in the efficient flow

region of the hood.

Figures 3.7(a)-(c) show the lines of constant speed in front of

the Aaberg hood with a turbulent injection of fluid, derived from

expressions (3.3.5) for GT= 0.2, 2 and 20, respectively. Once more

it can clearly be seen that as GT increases the fluid velocity in

front of the inlet increases. Figures 3.6 and 3.7 also illustrate

that, as in the laminar model, the shape of the effective capture

area changes with G , becoming narrower and longer as the value of
T

the operating parameter increases. With a turbulent injection of

fluid, the effective working range of the hood is greater than for

the corresponding laminar case as the turbulent jets entrain more

fluid for an equivalent value of the operating parameter (see also

Fig.3.3(b) and 3.6(b». Again, as a direct result of the Bernoulli

equation (3.4.6) the lines of constant speed in front of the hood

indicate the form of the lines of constant pressure.

Figure 3.8 illustrates how the CLV varies as a function of the

distance Y from the inlet with a turbulent injection of fluid for

the parameters G = 0.2, 2 and 20. With G = 0.2 and G = 2 the effect
T T T

due to the injection is minimal with the CLV falling very sharply

before levelling off, but increasing G by a further factor of 10 to
T

G = 20 has a marked effect on the CLV. With G = 20 the CLV againT T
falls sharply as we move away from the inlet until a local minimum

veloci ty is reached at a distance of the order of a/4 from the

inlet. At this distance from the inlet the Aaberg injection is then

able to fully influence the flow, raising its velocity until a local

maximum is reached at a distance of the order of 3a/2 from the
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Fig.3.6 Streamlines modelling the Aaberg flow for a turbulent

injection of fluid, A = 1/2. (a) G = 0.2, (b) G = 2, (c) G = 20.T T T
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inlet. On moving further away from the inlet the CLV steadily

decreases although it remains much higher than that predicted for

the other values of G which were investigated. Quantitatively,
T

Fig.3.8 shows that increasing the magnitude of the parameter G from
T

G = 0.2 to G = 2 increases the effective working range of the hoodT T
by approximately a factor of 7. A further increase to G = 20

T

substantially increases this range.
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Fig.J.S Variation in the centre-line velocity with distance from the

inlet for turbulent injections of fluid, G = 0.2, 2 and 20.

3. 5 TIIE REYNOLDS NUMBER or TIIE JET

In the two-dimensional mathematical model of the jet, the

orifice is infinitesimally small and therefore the Reynolds number

of the jet cannot be defined in terms of the velocity at the face of
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the orifice and the orifice width. Hence, we define the Reynolds

number in the jet as

R (x·)
J

u x·
=-v (3.5.U

The velocity, U, along the centre-line of the jet is given by
~( .) _ 2 2 ( .) -1/3ux --Cl x3

(3.5.2)

and we therefore obtain the following expression for the jet

Reynolds number
2/3

R (X.) = ~ ( 9kaX· )
J 3 16v2

where X· = x·/a is the dimensionless distance along the jet axis. On

(3.5.3)

substi tuting the values of the quanti ties k and a into the above

expression we find that, for air at 20°C,
R (X.) ~ 0.185 x 106 (X·)2/3.
J

It is important to indicate which of the two models, namely the

(3.5.4)

laminar or the turbulent jet, most appropriately models the flow

created by the two-dimensional Aaberg exhaust hood. Arriving at a

definite critical value of the Reynolds number at which the laminar

flow in the jet breaks down to give turbulence is not easy.

According to measurements by Andrade (1939) the two-dimensional jet

remains laminar up to a critical Reynolds number of approximately

R = 30, where the Reynolds number, R , given by equation (2.2.4),e e

relates to the efflux velocity, u(O), and to the width of the slit,

b(O), through which the fluid issues. Denoting the flux of fluid

issuing from the jet orifice as m
J

we have, in two dimensions

R = m Iv
e J

and the critical Reynolds number of 30 leads to a critical flux, in

(3.5.5)

2 -1air, of 5 cm s . Therefore according to Andrade's observations we

would expect the flow in the jet to become turbulent for
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m > 5 cm2s-1 This leads us to conclude that the flow in the jet of
J

the two-dimensional Aaberg hood is almost certainly turbulent.

3.6 CONCLUSIONS

A simple, analytical mathematical model for the fluid mechanics

of the two-dimensional Aaberg exhaust hood has been developed and

the parameter, G, which characterizes this flow has been identified.

The parameter G is similar to the experimentalists momentum ratio,

I, and models a ratio of the volume flow in the jet to that in the

inlet. The analysis presented shows how G is related to the other

flow parameters included in the model, i.e. G
L
= G

L
(a,k,v, m) and

G = G (a,k,m). Thus, once the effect which G has on the air flowT T
pattern has been determined then the effect of the individual

parameters can also be deduced. This simple model allows us to

predict the area of the workplace from which contaminated air can be

removed as a function of the parameter G. Although two-dimensional

Aaberg hoods exist in practice, see Pedersen (1991a), no

experimental data is available for the hood modelled in this chapter

and therefore the results obtained in this chapter have been

compared with the available three-dimensional aXisymmetric hood

data. It is found that the lines of constant speed, the shape of the

effective capture area and the streamlines are in good qualitative

agreement with the limited available data, see H0gsted (1987),

Hyldgard (1987), Pedersen and Nielsen (1991) and Fletcher and

Saunders (1991,1993).
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TIlE EFFECT OF TIlE EXHAUST INLET SIZE ON TIlE EFFECTIVE CAPTURE AREA

OF AN AABERG EXHAUST HOOD

AND

TIlE DEFLECTION OF TIlE AIR nov INTO TIlE HOOD WICH IS CAUSED BY TIlE

nOOR OF TIlE VORKPLACE



- 82 -

4. 1 INTRODUCTION

The simple analytical model for the air flow pattern created by

a two-dimensional Aaberg exhaust hood which has been presented in

chapter 3 predicts that the inviscid fluid flow generated by the

hood is governed by the operating parameters G and G , for laminarL T
and turbulent injections of fluid, respectively. The effect which

the parameters G and G have on the air flow into the hood has nowL T
been determined and consequently the effects of the numerous

geometrical and flow parameters which arise in the model, e.g. a, k

and m, are also known. We now wish to extend the model presented in

chapter 3 in order to consider the effect of another geometrical

parameter, namely S = s/a, where s is the width of the exhaust inlet

and a is the width of the exhaust flange. By examining the size and

profile of the hood's effective capture area as a function of the

inlet size the effect of the parameter S can be established. The

model presented in chapter 3 clearly illustrates the advantages of

the Aaberg principle over the traditional mode of operation when the

air flow induced by the exhaust hood is allowed to develop and

spread unhindered. However, does the Aaberg system retain its

advantages over traditional systems when the air flow into the hood

is obstructed? Also presented in this chapter is an examination of

the effect of the floor surface of the workplace on the air flow

pattern into an Aaberg exhaust hood when the hood is suspended

vertically above and facing the floor. In the field of ventilation

engineering an exhaust hood orientated in this manner, see for

example Fig.l.S, is usually referred to as a ventilator or

ventilator unit. Mathematical modelling techniques are used to
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predict the air flow pattern induced by both a traditional

ventilator and a ventilator which employs the Aaberg mode of

operation. The resulting air flows can then be used to compare the

effectiveness of the two different modes of operation. The effect

which a variation in the height of the ventilator above the floor

surface has on the air flow into the hood is also examined. This

effect is predicted by modelling the variation in the air speed

induced along the floor surface and centre-line of the ventilator as

a function of the height, h, at which it is suspended.

4.2 FORMULATION

When considering the influence of the exhaust inlet size and

the presence of the floor on the hood's air flow pattern the only

modifications which have to be made to the model which was developed

in chapter 3 are to replace the line sink of fluid, which models the

exhaust inlet, with an opening of finite width and to introduce an

exterior boundary. The introduction of a finite-sized opening means

that it is no longer possible to obtain an analytical solution of

the equations of motion, and the governing equations have to be

solved using numerical techniques for which the finite-difference

method has been employed.

The solution procedure is as follows: initially the jet

solution is determined and the condition for ~ at the outer edge of

the jet shear-layer, which governs the jet-induced flow, deduced.

When examining the effects of both the exhaust inlet size and the

presence of a floor, the injection flow of the hood is modelled as a
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plane turbulent Jet of fluid. The upstream boundary condition and

the boundary condition across the exhaust inlet are then determined;

the remaining boundary conditions, including the modified Jet

boundary condition, can then be deduced.

For convenience all lengths in the model are

non-dimensionalised with respect to the width, a, of the exhaust

flange and the stream function with respect to the volume flux, m,

into the exhaust inlet. We therefore introduce the dimensionless

quantities

h rH = R =a' a'
_ x

X - a' y = ya' I}I = 'i!..m (4.2.1)

4. 3 THE EFFECT OF THE EXHAUST INLET SIZE

In order to model the effect of the exhaust inlet size on the

air flow pattern into the hood it is most convenient to use the

polar coordinate system (r,a). The geometry and coordinate system

used to model the two-dimensional Aaberg exhaust hood with a

finite-sized exhaust inlet are shown in Fig.4.1. Using the symmetry

of the problem, the equations of fluid motion have only to be solved

in the region for which 0 ~ a ~ n/2 and r ~ o.

4.3.1 The Equations of Motion and the Boundary Conditions

In terms of the dimensionless quantities (4.2.1) the boundary

condition at the edge of the turbulent free jet, Le. equation

(3.2.40), may be written
I}I ~ G (R_1)l/2

T

where the operating parameter G is defined in equation (3.4.3). For
T

R > 1 (4.3.1)
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simplicity the slender jet is assumed to have zero thickness so that

the boundary condition (4.3.1) is imposed along 9 = 0 for R > 1.

x

r.
__t____.~----:-._~y

1
Fig.4.1 The geometry and coordinate system used to model the effect

of the exhaust inlet size.

In order to determine numerically the solution of the governing

elliptic partial differential equation, 1.e. the dimensionless form

of equation (2.2.18), namely

82'1' 1 8'1' 1 82'1'+--+--=0,
8R2 R 8R R2 892

(4.3.2)

one further boundary condition is required. In this model the

boundary condition at large distances upstream from the Aaberg

exhaust hood is enforced on R = R for 0 ~ 9 ~ nl2 where R »1.~ ~

This boundary condition is taken to be the asymptotic solution of

equation (4.3.2) subject to the boundary condition for the

jet-induced flow on 9 = 0, i.e equation (4.3.1), and subject to

'1'(R,nI2)= 0 (4.3.3)

plus the upstream radial flow contribution which results from the

flow into the exhaust inlet. To a first-order approximation
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\II= G RA
T

on 9 = 0 (4.3.4)

where A = 1/2 and following the method of separation of variables we

therefore seek a solution of equation (4.3.2) in the form
A\II= R 8 (9), where 8 is a function of 9 only. The resulting

1 1

first-order solution, satisfying boundary conditions (4.3.3) and

(4.3.4), is then found to take the form

RA\II= G -- sin[A(! - 9)]
T sinA! 2

2
ATo a second-order approximation \II= G R -

T

(4.3.5)

G A RA-10n 9 = 0 and
T

hence we seek a solution of equation (4.3.2) in the form

+ RA-1 8 (9)
2

(4.3.6)

where 8 is a function of 9 only, to give the second-order solution
2

A-I
AR n sin[(A-1)(i - 9)] .

sin(A-1)-
2

(4.3.7)

Following this process, higher-order approximations to the solution

are readily determined. Hence, with the contribution from the

exhaust flow we obtain

\II(R,9)
{
RA= G -- sin[A(! - 9)] -T i ~n 2s n",-

2

A-I
AR n sin[(A-1) (i - 9)] +

sin(A-1)-
2

A-2 }A(A-l)R sin[(A-2)(! - 9)] - ...
2!sin(A-2)! 2

2

(4.3.8)

on 0 ::S 9 ::S n/2, R = R »1 .
CC)

The exhaust inlet of the hood is modelled as a rectangular slot

of width s into which a flux of fluid, m, is exhausted per unit

time. Across the face of the exhaust inlet the fluid velocity is

assumed to be constant and hence we obtain the following boundary
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condition
mr

l/J(r,O) = 2s o :sr :ss. (4.3.9)

Non-dimensional ising equation (4.3.9) we obtain the boundary

condition across the face of the exhaust inlet, namely
RlII(R,O) = 25 (4.3.10)

and thus the exhaust flange is modelled by the boundary condition
1lII(R,O) = 2" 5<R:s1. (4.3.11)

The effect of the exhaust's suction is to modify the boundary

condition at the edge of the turbulent jet shear-layer, i.e.

equation (4.3.1), which now becomes
lII(R,O) ~ 1/2 + G (R_1)1/2

T
R > 1. (4.3.12)

4.3.2 The Finite-difference Scheme

A mesh was placed over the entire solution domain and all

derivatives approximated by their usual central-difference

approximations. The mesh chosen concentrated the grid points in the

area where rapid changes in the solution were expected and was made

sufficiently fine so as to ensure the results were mesh independent.

A fine mesh was adopted for 0 ~ R :s1 and for R > 1 the step length

in the radial direction was increased exponentially thus allowing

the boundary condition along R = R for 0 :sa :sn/2, i.e. equation
DO

(4.3.8), to be enforced without demanding excessive computational

storage and run times. A detailed description of the

finite-difference approximations to the governing equation of fluid

motion is now given.

Defining the mesh points in the (R,a) plane by the points of

intersection of the circles R = ioR (i = 1, 2, ..n) and the straight

lines a = joa (j = 1, 2, ..m) we may approximate the Laplace
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equation (4.3.2) at the point (i,j) using central-difference

approximations to all the derivatives, by the finite-difference

formula

Cl ~ + C4 ~ - C3 ~ + C2 ~ + C4 ~ = 0
1-1,j l,j+l l,j 1+1,j l,j-l

(4.3.13)
where the coefficients Cl, C2, C3 and C4 are given by

1Cl = 1 - 2T 1C2 = 1 + 2 i (4.3.14a,b)

C3 = 2 (1 + 1 )
(laa)2

1C4 = ---
(laa)2

(4.3.14c,d)

The finite-difference equation (4.3.13) has a truncation error

T
1j

= O(aR2,aa2) and using S.O.R. we obtain

~en+l)= ~ en) + II) (Cl ~en+1) + C2 ~en)
l,j l,j C3 1-1,j 1+1,j

+ C4 ~(n+1)
l,j-l

+ C4 ~en) _ C3 ~en) )
l,j+l l,j

(4.3.15)

where II) is the relaxation parameter and n denotes the number of

iterations. The boundary condition for ~ along the outer curved

boundary at R = R must be imposed where it is realistically met,
00

i.e. for sufficiently large values of R , to ensure that it does not
00

incorrectly influence the flow and so that only a few terms of the

series in expression (4.3.8) are needed to approximate the boundary

condition to the required accuracy. For this reason an improved mesh

is needed and to this end the transformation

~ = In R (4.3.16)

is chosen for R > 1. The transformation (4.3.16) increases the mesh

size in the radial direction exponentially and this enables the

condition for ~ to be imposed for large R whilst demanding less

computer storage than with the standard constant mesh. Transforming



•

- 89 -

the Laplace equation (4.3.2) we obtain

(4.3.17)

for R > 1. Using central-difference approximations for the

derivatives, equation (4.3.17) may be approximated at the point

(i,J) by the finite-difference formula

f1 ~ + f3 ~ - f2 ~ + f1 ~ + f3 ~ = 0
1-1,j l,j+1 l,j 1+1,J l,j-1

(4.3.18)
where the coefficients f1, f2 and f3 are defined to be

£1=
1

(~~)2
(

1 1 )f2=2--+-- ,
(~~)2 (~a)2

1f3 ---
(~a)2

(4.3.19a,b,c)

The finite-difference equation (4.3.18) has a truncation error

T = 0(~~2) + 0(~a2) and in S.O.R. form may be written as
lj

~(n+1) = ~ (n) + W ( ~(n+1) + £1 ~(n) +
l,j l,j f2 f1 1-1,j 1+1,J

f3 ~(n+1)
l,j-1

+ f3 ~(n)
l,j+1

_ f2 ~(n) ) •
l,j

(4.3.20)

The step length ~~ is chosen such that

~~ = ln(1 + ~R) (4.3.21)

in order to ensure that the meshes match at R = 1. Once the

approximations to ~ at the grid points of the mesh have been

determined, subject to the appropriate boundary conditions, the

dimensionless components of the velocity can be approximated and

from them the dimensionless resultant air speed created by the

Aaberg exhaust hood, Q, where Q = q/(mla), may be predicted.

4.3.3-Results and Discussion

The geometry of the Aaberg exhaust hood investigated by

Fletcher and Saunders (1991,1993) has an inlet size of s = 0.037 m
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and this results in a dimensionless inlet size of approximately

S = 1/4 for a hood of radius a IX 0.15 m. For the purposes of this

study the ratio between the momentum flow of the exhaust and that of

the injection is kept constant. The momentum ratio chosen

corresponds to G IX 2.0 and represents the operating conditions at
T

which Fletcher and Saunders (1991) obtained aerodynamic control of

their Aaberg exhaust hood. In order to predict what effect varying

the inlet size has on the air flow into the hood three different

sizes of inlet are considered, namely S = 1/8, 1/4 and 1/2. For each

inlet size, streamlines and lines of constant air speed (and hence

the effective capture area) deduced from the model are examined for

the inlet condition which has a constant volume flux into the inlet.

Lines of constant speed modelling the air flow pattern created

by an Aaberg exhaust hood are shown in Figs.4.2(a)-(c) for the inlet

sizes of S = 118, 1/4 and 112, respectively. For the operating

conditions given by Fletcher and Saunders (1991), see expressions

(3.4.1), the dimensionless resultant capture speed, which

corresponds to the level of background air disturbance, is given by

Q = 0.75. From the results shown in Fig.4.2 it is clear that the
c

line of constant speed Q = 0.75 is not significantly affected by
c

the size of the lnlet and in all three cases intersects the

centre-line at a distance of approximately 3a from the inlet. Sets

of streamlines describing the air flow for the inlet sizes of

S = 1/8, 1/4 and 1/2 are shown in Figs.4.3(a)-(c), respectively, and

the shaded region illustrates the predicted effective capture area.

By c~mparing Figs.4.3(a)-(c) it is evident that, except very close

to the hood, varying the size of the exhaust inlet results in no

visible change in the form of the streamlines and hence the
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effective capture area may be considered to be virtually independent

of S for the inlet sizes considered. Very close to the hood the

effective capture area is broadest for the largest inlet size

considered and this is most clearly illustrated by comparing

Figs.4.3(a) and 4.3(c). The width of the effective capture area

predicted by the model for G = 2 agrees well with the width of the
T

region of 100% capture efficiency observed by Fletcher and Saunders

(1991) for the same conditions of exhaustion and injection, see

Fig. 1.9(b). In both cases the width described is limited to the

width of the exhaust flange.

To further investigate the effects of the exhaust inlet size on

the induced air flow the air speed along the hood's centre-line

deduced from the model was examined for the inlet sizes of S = 1/8,

1/4 and 1/2. Figure 4.4 illustrates the variation in the

dimensionless resultant centre-line air speed as a function of the

distance, Y = y/a, from the inlet and indicates that although, for

small values of Y, the air speed developed by the smaller of the

inlet sizes is the greater, the centre-line air speed for each inlet

size considered rapidly approaches a common value as Y increases.

The common centre-line air speed which is reached after only a very

short distance from the inlet, i.e. of the order of 1.Sa, confirms

that the exhaust's suction has a very limited effect on the movement

of air in the workplace. From Fig.4.4 we can also conclude that for

Y > 1.S the fluid flow created by the Aaberg exhaust hood is almost

totally dominated by the flow induced by the turbulent Jet. This

result is in agreement with the experimental observations of

Fletcher and Saunders (1991,1993) and verifies the conclusions of

the plots of the streamlines and air speeds.
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4.4 CONCLUSIONS OF THE EFFECTS OF THE EXHAUST INLET SIZE

In this simple mathematical model the fundamental air flow

pattern modelling that created by an Aaberg exhaust hood for the

case of a neutrally-buoyant contaminant, neglecting the effects of

diffusion, has been considered. Under these assumptions the model

predicts that varying the size of the exhaust inlet, whilst keeping

the exhaust flow rate constant, has no significant effect on the air

flow into the hood except in a region very near to the exhaust

inlet. In the immediate neighbourhood of the exhaust inlet the model

predicts that the width of the effective capture area increases as
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the inlet size increases. However, an industrial application of the

Aaberg exhaust hood will require the induced air flow to contain and

exhaust contaminant which is released in front of and at some

distance from the hood. Consequently. the slight increase in the

width of the effective capture area at the face of the exhaust which

is predicted for an increase in the inlet size will not effect the

hood's ability to capture contaminant. The effective capture area of

the two-dimensional hood may therefore be regarded as being

virtually independent of the exhaust inlet size. In practice, due to

the random movement of the contaminant at the edge of the effective

capture area, where the air speed is close to the capture speed, we

expect the effects of diffusion to dominate the fluid motion. The

effective capture area outlined above models that which would be

obtained in ideal condi t Ions, 1.e. of a neutrally-buoyant

contaminant, without the effects of diffusion and where background

air disturbances are small.

4.5 THE EFFECT OF THE FLOOR ON THE AIR FLOW INTO AN AABERG EXHAUST
HOOD

We now wish to investigate what effect the floor has on the air

flow into an Aaberg exhaust hood, see for example Fig. 1.5 which

depicts a ventilator unit which is placed at a vertical distance of

approximately h = 8a above the floor of the workplace. To date,

H0gst~d (1987) remains the only author to have addressed this

problem. Through various experiments H0gsted (1987) observed that,

under the correct operating conditions, the presence of the floor
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causes the original efficient flow region of the hood, shown

schematically in Fig.1.8(a), to be deflected over a wide area of the

floor, as illustrated in Fig.1. 8(b). The result is an air flow

pattern capable of successfully exhausting contaminant which is

released far from the centre-line of the hood. Many industrial

processes are exothermic and produce buoyant plumes. Such processes,

for example reheat furnaces, can be equipped with a ventilator that

functions as a hood to receive the hot plume of contaminant. In

these, and other processes where it may be beneficial to draw the

contaminant vertically upwards, it has been demonstrated

experimentally by H0gsted (1987) that a Jet-reinforced exhaust

system, such as one employing the Aaberg principle, may, under the

correct operating conditions prove advantageous over traditional

hoods in drawing the contaminant more effectively into the exhaust

opening. In the following section a computational mathematical model

of the air flow pattern created by a two-dimensional ventilator unit

reinforced by a turbulent Jet flow, as described by H0gsted (1987),

is presented in order to predict the effect of the floor on the

hood's effective capture area.

4.5.1 The Equations of Motion and the Boundary Conditions

The ventilator unit is modelled as a two-dimensional flanged

opening suspended at a height h above the floor of the workplace.

The cartesian coordinate system (x,y) adopted is with the origin at

the face of the exhaust inlet, the x axis along the flange of the

vent Llat.or and the y axis along its centre-line, see Fig. 4.5. The

fluid velocities in the x and y directions are denoted by u and v,

respectively. The centre-line of the ventilator and the solid floor
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surface of the workplace are streamlines of the flow through which

the fluid may not cross and along these lines we may take the stream

function l/J = o. Owing to the symmetry of the problem about the

centre-line the flow need only be determined in the region given by

x ~ 0, 0 ~ y ~ h.

~----- a ------~

If---S~~l
: :
: :: :r jX.
y y

h

floor surface

Fig.4.5 The geometry and coordinate system used for the ventilator

unit.

The continuity equation, namely
au ev
-- + -- = 0ax ay

may be satisfied by introducing the stream function l/J such that

(4.5.U

u = al/J anday
al/Jv = - --ax (4.5.2a,b)

and as the exhaust flow is assumed to be inviscid and irrotational

then the equation governing the fluid motion is the Laplace

equation, which when expressed in terms of the non-dimensional

quantities (4.2.1) becomes
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a21}1 a21}1+ - = 0
ax2 ay2

In relation to the dimensionless cartesian coordinate system (X.Y)

(4.5.3)

the boundary condition (3.2.40), which models the amount of fluid

drawn into the developing turbulent jet. may be written
I}I(X0) = G (X_1)1/2

• T
x > 1. (4.5.4)

Operating under injection alone the plane of the exhaust inlet. the

exhaust flange. the centre-line of the hood and the floor all form

flow boundaries on which we take I}I= O. The boundary condition

modelling the flow far upstream. i.e. for X > 1 and 0 ~ Y ~ H. which

is created by the jet-induced flow is given by the asymptotic

solution of equation (4.5.3), subject to the boundary condition

(4.5.4) and to I}I= 0 along the floor. The boundary condition which

represents the effect of the suction flow far upstream is determined

by assuming that the asymptotic flow is purely horizontal with a

constant velocity across the depth. H = bla. of the workplace. The

constant velocity condition represents only the first-order

approximation to the upstream flow which is created by the suction.

However. higher-order approximations decay exponentially rather than

algebraically. as for the jet flow. and are therefore neglected.

Under these assumptiQns the following upstream boundary condition in

the stream function can be derived:

_1_ G (X-1 )-7/2 (8H3y _ 20HY3 + 15y4 _ ,,>yH
5
) 1 ( Y )384 T. ..r.: + .... + '2 1 - H

for X'» 1. 0 ~ Y ~ H. (4.5.5)

The boundary condition which models the flow at the face of the

exhaust inlet has already been determined, see section 4.3.1. and
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hence
x1Jt(X,O) = 2 S o s X s S. (4.5.6)

The effect of the exhaust's suction is to modify the boundary

condition at the edge of the Jet shear-layer, i.e. equation (4.5.4),

which now becomes

X>1. (4.5.7)
The centre-line of the ventilator, the floor surface, and the

exhaust flange all form flow boundaries and along these we have

1Jt(O,Y) = 0 o s Y S H, (4.5.8)

(4.5.9)

(4.5.10)

1Jt(X,H) = 0 x > 0

and 1Jt(X,0) = 1/2 S < X S 1,

respectively. The flow of the Jet-reinforced ventilator unit is then

given by the solution of equation (4.5.3), subject to the boundary

conditions (4.5.5)-(4.5.10).

Due to the complexity of the problem an analytical solution is

not possible and hence a finite-difference technique has to be used

to solve the problem numerically. Although the mathematical model

developed above is based on a number of simplifying assumptions some

of these may be relaxed in order to examine other aspects of the

flow. For instance the model may be adapted to include the effects

of different room geometries or hood positions, e.g. a sloping floor

surface could be introduced and its effect on the flow pattern

investigated.

4.5.2 The Finite-difference Scheme

finite-difference techniques were chosen to solve the problem

wi th a rectangular mesh in the (X,Y) plane whose grid points are

defined by the points of intersection of the perpendicular lines
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X = iax (i = 0, 1, ...n) and Y = jax (j = 0, 1, ...m). By replacing

all derivatives by their central-difference approximations the

Laplace equation (4.5.3) may be approximated at the point (iax,jax)

by the usual five-point formula, namely

t + t - 4 t + t + t = 0
1-1,j l,j+l l,j 1+1,j l,j-l (4.5.11)

which in S.O.R. form may be written as

t(n+l) +
1-1, j

+ t(n)
1, j + 1

- 4 t(n) ) .
l,j

(4.5.12)
The upstream boundary condition across the depth of the room, given

by equation (4.5.5), must be imposed at a sufficiently large value

of X, say for X = X , so as to ensure that it does not incorrectly
00

influence the flow and so that only a few terms of the series

approximation in equation (4.5.5) are necessary to give the boundary

condition to the level of accuracy of the finite-difference scheme.

For this reason the standard rectangular mesh is not suitable and an

improved mesh is needed. To this end the transformation ~ = In X is

chosen for X > 1. The mesh length in the Y direction is kept

constant, although for large values of H a similar transformation to

that used in the X direction could be employed. Using the

transformation ~ = In X the following finite-diff"rence equations

for X > 1 may be obtained

fl t + f2 t - f3 t + f4 t + f2 t = 0
1-1,j l,j+l I,j I+l,j l,j-l

(4.5.13)
and iterating, we obtain

t(n+l~ t(n) + ~ (fl t(n+l) + f2 t(n+l) + f4 t(n)
I, J . I, J f3 1-1 , J I , J -1 1+ 1, j

+ f2 t(n)
I, J + 1

- f3 t(n) )
I, J

(4.5.14)
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where the coefficients f1, f2, f3 and f4 are now given by

1f2 ---
(ax)2

(4.5.15a,b)

(4.5.15c,d)

To ensure the meshes match at X = 1 we again must insist that

a~ = In(1 + ax).

4.5.3 Results and Discussion

The operating conditions that Hags ted (1987) employed to run

his ventilator unit were not given and so the operating conditions

at which Fletcher and Saunders (1991) ran their local Aaberg exhaust

hood are used. These operating conditions, see expressions (3.4.1),

result in the operating condition which has G
T
'" 2. It should be

noted that the operating condition G = 0
T

is equivalent to a

traditional ventilatpr, i.e. it models a ventilator operating under

suction alone.

Streamlines and lines of constant speed deduced from the model

are now used to examine the effect of the turbulent injection of

fluid on the air speed induced by a ventilator. Sets of streamlines

which describe the air flow pattern created by a ventilator

suspended at the height of H = 8 are shown in Figs. 4.6(a)-(c) for

G
T
= 0, 2 and 4, respectively. The dimensionless height of H = 8

corresponds approximately to the height at which Hags ted (1987)

suspended a ventilator unit when conducting his flow visualization

experiments.

From the results shown in Fig.4.6 it is clear that the effect

of the injection of fluid on the air flow is to displace the
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dividing streamline, ~ = 1/2, towards the floor surface and thereby

concentrate the suction in a narrow zone along the floor area of the

workplace. The dividing streamline separates the flow travelling

towards the inlet from that travelling towards the ejector flow and

it is assumed that any contaminant located in the region above the

dividing streamline is blown back into the workplace via the jet

flow. Figure 4.6(a), which shows sets of streamlines modelling the

flow created by a ventilator operating under suction alone,

illustrates that under these conditions the ventilator is

non-selective, drawing air from all directions towards the exhaust

inlet. In Figs.4.6(b) and 4.6(c), which depict sets of streamlines

modelling the flow created by a ventilator operating under combined

exhaustion and injection, it can be seen that the contaminated air

is now selected from an area immediately above the floor surface and

drawn towards the inlet. The effect of further increasing the

injection, modelled by increasing G from G = 2 to G = 4, results inT T T
the selection of fluid from a very narrow layer immediately above

the floor surface. As the injection is further increased the height

of the efficient flow region decreases, implying an increased fluid

veloci ty along the floor surface towards the centre-line of the

ventilator.

Figures 4.7(a)-(c) show lines of constant air speed in the

workplace for a ventilator suspended at the height of H = 8 above

the floor surface, operating with zero injection (G
T
= 0) and with

combined injection and exhaustion for the parameters GT= 2 and

G
T
= 4! respectively. The effect of the injection of fluid on the

lines of constant speed appears quite complicated. However, it can

be seen in Fig.4.7 that for the whole area of the workplace the air
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speeds which are achieved when combining injection and exhaustion

are significantly increased over those developed under exhaustion

alone (G = 0), and increasing the parameter G further increases the
T T

air speeds. The regions where the induced air speeds are most

significant for the effective control of the contaminant are along

the floor surface and the ventilator's centre-line. The air speeds

in these regions are now investigated for a ventilator operating

under exhaustion alone and under combined injection and exhaustion.

4.5.3.1 Air Speeds along the Floor Surface of the Workplace

The air speeds along the floor surface of the workplace are of

particular interest since once they are known the effective working

range of the hood at floor level, for neutrally-buoyant

contaminants, may be predicted for various heights of the ventilator

above the floor.

Figure 4.8(a) illustrates the variation in the resultant air

speed as a function of the distance, X, along the floor surface of

the workplace produced by a ventilator operating under exhaustion

alone for H = 1, 2, 4 and 8. The figure clearly illustrates how the

air speed along the floor surface, created by the exhaustion, falls

dramatically as the height of the ventilator above the floor surface

is increased.

Figures 4.8(b) and 4.8(c) illustrate how the resultant air

speed along the floor surface varies, as a function of X, for a

ventilator suspended at heights of H = 1, 2, 4 and 8 when operating

with combined exhaustion and injection for the parameters G = 2 and
T

G
T
= 4, respectively. By comparing Fig.4.8(a) with Figs.4.8(b) and

4.8(c) the striking effect of the injection of fluid on the air
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speed along the floor surface is clearly visible. The injection

significantly enhances the air speed induced along the floor surface

for each height, H, considered. Thus, contaminated air from either

side of the ventilator's centre-line can be drawn, from a region

immediately above the floor surface, towards the centre-line at an

increased speed with combined injection and exhaustion than can be

achieved with exhaustion alone. The increased air speeds developed

when operating at G = 2 and G = 4 (over those obtained when G = 0)
T T T

also serve to increase the lateral effective working range of the

ventilator, allowing contaminated air to be sampled from greater

distances either side of the ventilator's centre-line. To summarize,

the effect of increasing G is to increase the air speed induced
T

along the floor surface towards the centre-line and hence the

lateral effective working range of the ventilator.

4.5.3.2 Air Speeds along the Centre-line of the Ventilator

To examine how the turbulent injection of fluid affects the air

speed along the ventilator's centre-line, air speeds were calculated

for a ventilator operating at GT= 0, GT= 2 and GT= 4 and the results

obtained from the three operating situations compared.

The variation in the centre-line air speed, as a function of Y,

for a ventilator suspended at the heights of H = I, 2, 4 and 8 above

the floor and operating under exhaustion alone is shown in

Fig.4.9(a). This figure illustrates that for each height considered,

the air speed along the ventilator's centre-line decays very rapidly

with ~ncreasing distance from the inlet; from a speed of Q = 2 at

the face of the inlet to Q = 0 at the floor surface. Figures 4.9(b)

and 4.9(c) depict the variation in the centre-line air speed, as a
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Fig.4.9 Variation in the resultant air speed along the centre-line

of the ventilator as a function of the ventilator height, H, for

(a) G = 0, (b) G = 2 and (c) G = 4.
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function of V, for a ventilator suspended at the heights of

H = 1, 2, 4 and 8 for GT= 2 and GT= 4, respectively, and show that

initially, as for a ventilator operating under exhaustion alone, the

air speeds fall very sharply as one moves away from the hood along

its centre-line. However, at only a very small distance from the

inlet (of the order of 0.25a) the injection of fluid begins to

influence the flow, reducing the sharpness in the decay of the

centre-line air speed. This phenomena is observed for each height

considered with the only exception being when H = 1.

From Fig.4.9 it can clearly be seen that for a ventilator

suspended at the height of H = 1 above the floor surface the

injection effect only slightly enhances the centre-line air speed;

at this height the suction effect dominates the flow. However, as

the ventilator is raised further above the floor surface the effect

of the injection of fluid is to significantly enhance the flow into

the exhaust opening, with increased air speeds along the centre-line

predicted for each height increase considered.

Thus, the model predicts that the effect of the injection on

the air flow along the centre-line is only 'felt' after some minimum

distance from the inlet has been exceeded and then the injection

effect considerably increases the air speeds along the centre-line.

The role of the suction is only to draw the contaminated air that

distance along the centre-line, towards the inlet, over which the

injection of fluid has little effect.

4.5.~.3 The Effective Capture Area

The effective capture area is defined to be the area from which

the neutrally-buoyant contaminated air will be drawn into the inlet
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and successfully removed from the workplace, see section 2.4.2. In

this model the effective capture area is therefore given by the

region bounded by the line of constant speed Q = 0.75 and the
c

dividing streamline ~ = 1/2. From Figs.4.6 and 4.7 we can predict

how the shape of this area changes as a function of GT• On
increasing the value of G

T
from G

T
= 2 to G

T
= 4 we see that the

height of the effective capture area above the floor surface

decreases and its length increases. Hence increasing the value of G
T

implies that the lateral range of the ventilator across the floor

area of the workplace increases. Detailed examination of Fig.4.6(c)

and 4.7(c) show that for X > 4 the contaminant is drawn towards the

ventilator's centre-line in a fluid layer immediately above the

floor surface and then enters a region where the air speed developed

by the hood is less than the capture speed. In this region the

contaminated air is free to randomly wander and here diffusion

effects will dominate the fluid motion. Contaminated air drawn

upwards towards the inlet and which has been successfully contained

in the efficient flow region then enters a zone where the air speed

is greater than the capture speed and may then be sampled.

4.6 CONCLUSIONS OF THE EFFECT OF THE FLOOR ON THE AIR FLOW INTO AN
AABERG EXHAUST HOOD

A simple mathematical model for the fluid mechanics of a

two-dimensional ventilator unit reinforced by a turbulent jet of

fluid has been developed. This simple model allows us to predict

from what area of the floor surface of the workplace the
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neutrally-buoyant contaminated air can be successfully removed as a

function of the height, H, of the ventilator unit above the floor

and the operating parameter G
T
• The model predicts, in accordance

with the observations of Hegsted (1987), that for a ventilator

employing the Aaberg principle the presence of the floor surface

results in a lateral deflection of the efficient flow region which

may then occupy a substantial region of the floor surface. As a

consequence contaminant capture is possible from a significant

distance either side of the ventilator's centre-line. Under a

correctly balanced ratio of injection and exhaustion the hood will

draw contaminated air from a region immediately above the floor

surface towards the centre-line and then upwards into the exhaust

inlet at greatly enhanced speeds compared to those of a conventional

ventilator operating under suction alone.

The other main conclusion which may be drawn from the model

highlights the importance which must be placed on the correct

installation of the hood. The model predicts that a critical

distance between the ventilator and the floor surface exists below

which the suction will be the dominant flow. Therefore, in order to

obtain the maximum benefit from the addition of the Jet of air, the

ventilator must be installed above this critical height. In this

study the critical height for a two-dimensional ventilator has not

been determined although the results obtained in this chapter

indicate that, for the chosen operating conditions, the minimum

distance of the ventilator from the floor surface should exceed the

width of the exhaust flange, a.

The qualitative agreement between the mathematical model for

the fluid mechanics of the two-dimensional Aaberg exhaust hood and
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the three-dimensional results is encouraging. Hence in the next

chapter an axisymmetric, three-dimensional mathematical model will

be investigated in order to obtain more quantitative agreement with

the experimental data.



CHAPTER FIVE

A TIlREE-DIMENSIONAL AXISYMMETRIC MODEL FOR THE RADIAL JET ISSUING

FROM THE AABERG EXHAUST HOOD
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5.1 INTRODUCTION

The simple mathematical models presented in chapters 3 and 4

have given us an understanding of the driving mechanism and

operating parameters which govern the fluid flow generated by an

Aaberg exhaust hood. The contours of constant speed and the

streamlines predicted by the two-dimensional models show good

qualitative agreement with the three-dimensional experimental data

and flow patterns described by the experimentalists. However, to

obtain more detailed information about the air flow pattern

generated by the original Aaberg exhaust hood it is necessary to

consider the axisymmetric radial free jet flow which is produced by

the hood and its effect on the surrounding fluid. In order to

determine the flow induced by the axisymmetric radial free jet then

the form of the jet must first be determined. The purpose of this

chapter is to present a new approach to mathematically model the

flow issuing from an axisymmetric radial free jet for both laminar

and turbulent flows.

s. 2 FORMULATION

The radial free jet produced by the Aaberg exhaust hood may be

defined as the axisymmetric flow resulting from a continuous

discharge of fluid from the space between two identical, parallel,

circular, concentric discs into an infinite region of stagnant fluid

of the same density and viscosity. The flow of the radial free jet

is one of considerable interest as it occurs in many practical
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engineering applications, e.g. in internal combustion engine valves

and also in ventilation systems where it is commonly used to provide

a ventilating jet. The analogous wall jet flows are encountered in

the fields of air cushioning and in vertical take-off and landing

(VTOL) aircraft. Although having numerous applications the radial

free jet has received little attention in the literature.

By definition, the flow of the radial free jet is axisymmetric

and hence, in the cylindrical polar· coordinate system (x,9,y), is

independent of the angular coordinate 9, see Fig.S.1. A discussion

of the solution procedure to be presented in the following sections

is now given.

In the immediate vicinity of the exhaust flange the radial jet

of fluid issuing from the annular jet nozzle does not recognize the

curvature of the exhaust flange and in this region the flow of fluid

from the nozzle is governed by the two-dimensional plane free jet

equations. However, at large distances from the exhaust flange the

fluid jet appears to issue from a point source and in this region

the flow may be modelled as a radial free jet issuing from a point

source. The solution of the Prandtl shear-layer equations which

govern the fluid motion in both the two-dimensional plane jet and

point source radial free jet regions is then determined analytically

and expressed in its similarity solution form. In both cases the

method followed is analogous to that described by Schlichting (1968)

for the two-dimensional plane jet. The two similarity regimes are

then combined in a single global regime which exhibi ts both the

properties of the two-dimensional plane jet for x· « 1 and of the

point source radial free jet for x· » 1, where x· is the distance

along the jet axis measured from the jet orifice. Substitution of
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the global regime into the governing equation of fluid motion yields

a non-linear parabolic partial differential equation whose solution,

at each station x·, is determined by marching in the radial

direction, away from the initial two-dimensional plane jet solution.

The method follows that described by Merkin (1976).

y

y

~----~----~
I

b(O)

Fig.5.1 The geometry and coordinate system used for the radial free

jet.

5.3 THE GOVERNING EQUATIONS or MOTION AND THE BOUNDARY CONDITIONS

The equations of motion governing the flow of the axisymmetric

radial free jet for both laminar and turbulent flows, i.e. equations

(2.2.7) and (2.2.10), respectively, may be written in the combined

form
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au au
u - + v-
ax ay

(5.3.la)

~x(xu) + ~y(xv) = 0 (S.3.1b)

where the kinematic viscosity, ~, is given by

for laminar flow,

for turbulent flow.

The solution of the differential equations (5.3.1) subject to the

boundary conditions (2.2.3) and to the momentum flux condition

(2.2.8) will give us a complete description of the flow in a radial

free jet which issues radially from a point source. However, in

order to model the flow which results from the uniform discharge of

fluid from the perimeter of the Aaberg's circular exhaust flange,

which has a finite radius, a, it is necessary to define a new

coordinate system (x·,y) whose origin is located at the periphery of

the flange, see Fig.5.1. This is achieved by a translation of the

radial coordinate x:

x· = x - a . (5.3.2)

Equations (5.3.1) then reduce to the following system of equations:
2au au = Cl a uu-+v fJ 2

ax· ay ay
(S.3.3a)

~[(a+x·)u] + ~[(a+x·)v] = 0
ax· ay

(S.3.3b)

and expression (2.2.8) for the kinematic momentum flux of the radial

free jet in the mainstream direction is now given by
00

k = 41l J
o

2(a+x·)u dy = constant. (5.3.4)

In order to satisfy the continuity equation (5.3.3b) we introduce

the Stokes stream function, ~, such that
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u = _1_ a.p and
a+x" ay

v = _1_ a.p
a+x· ax·

(5.3.5a,b)

A similarity solution of the equations of motion which govern

the flow of the radial free jet produced by the Aaberg exhaust hood,

namely a solution of equations (5.3.3), is not possible for

o < x· < ~ and their solution must be sought in the form of equation

(2.2.14). However, before such a solution is sought we must first

examine the initial and asymptotic behaviour of the radial free jet

for both laminar and turbulent flows. We now investigate the form of

the governing equations of fluid motion in these two limiting cases,

namely (1) at x· = 0 and (Lf ) as x· ----7~. The solution of the

resulting equations at x· = 0 will give us a complete description of

the initial fluid behaviour as it emerges from the narrow space

between the exhaust flanges and the solution of the governing

equations as x· ----7 ~ will describe the 'final' or asymptotic

behaviour of the radial free jet.

5.4 TIlE INITIAL BEHAVIOUR OF TIlE RADIAL FREE JET

In the limit as x· ----7 0 the governing system of equations

(5.3.3) reduce to those for the incompressible flow in a

two-dimensional plane jet, namely

au au {3
a2u

u - + v - = --
ax· ay ay2

au av = 0+
ax· ay

(5.4.1a)

(5.4.1b)

and have to be solved subject to the boundary conditions (2.2.3) and

to the momentum conservation equation (5.3.4), which at x· = 0
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reduces to
00

k = 4na J u2 dy = constant.
a

(5.4.2)

A similarity solution of the equations of motion (5.4.1) which

govern the initial development of the radial free Jet is now sought

for both laminar and turbulent flows.

5.4.1 The Laminar Radial Jet

Following Schlichting (1968) we seek a similarity solution of

equations (5.4.1), where ~ = v, of the form

1)= _y_
B(x·)q

(5.4.3)

where the constants A and B, and the exponents p and q are to be

determined. At x· = 0 the components of velocity (5.3.5) reduce to

1 aIjJu=-- anda ay
1 aIjJ

v = - --a ax· (5.4.4a,b)

and hence we have
A (x" )p-q fu = aB

A (X·)p-l
,

and v = - - ( fp - q1)f )a

(5.4.5a)

(5.4.5b)

where the prime represents differentiation with respect to 1). If we

assume that the inertial and viscous terms are of the same order of

magnitude in the Jet and that the kinematic momentum flux is

constant and independent of x·, then substitution of expressions

(5.4.5) for the velocity components into equation (5.4.1a), results

in
_ 2

q - 3 (5.4.6)
and

AB = va (5.4.7)

For convenience, we may choose
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2/3A = va (5.4.8)

and hence

1) = --=-y--a1/3(x.)2/3
where f(~)satisfies the third-order ordinary differential equation

-' , , 1 - -" 1 -' 2f + 3 f f + 3 (f) = 0 (5.4.10)

(5.4.9)

which must be solved subject to the boundary conditions
,,
f = 0 f = 0 on 1) = 0 (5.4.lla, b)
-'f ~ 0 as 1) ~ m (5.4.11c)

Equation (5.4.10) may be integrated three times to give

f = 6extanh(ex~) (5.4.12)

where ex is the constant of integration to be determined. From

equation (5.4.2) we obtain the required expression for ex,namely

ex= ( ~ )1/3 .
961l'V

(5.4.13)

From equations (5.4.5a) and (5.4.9) the initial streamwise component

of the velocity and stream function of the laminar radial free jet

are then

and

u = 6 ex2v a-2/3(x.)-1/3 sech2(ex~)

I/J = 6 exv a2/3(x·)1/3 tanh(ex~) ,
(5.4.14)

(5.4.15)

respec tive Iy .

5.4.2 The Turbulent Radial Jet

Following Schlichting (1968) we assume that initially the width

of the turbulent radial free jet, b, is proportional to x·, i.e.

b ~.x·. (5.4.16)

The relationship between the centre-line velocity, u, in the jet and

x· can then be determined from the momentum conservation equation

(5.4.2), from which we obtain
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-2k = constant u b (5.4.17)
and hence

- -1/2 1/2u = constant x· k. (5.4.18)

From the Prandtl expression (2.2.11) for the apparent kinematic

viscosity, and in view of equations (5.4.16) and (5.4.18), we have
1/2

£ - x· . Denoting values of the parameters of the flow at a fixed

characteristic distance, s, from the jet orifice by the subscript s

we may write
_ (x.)-1/2

u = u - ,
s S (5.4.19a,b)

and denoting £ = X b u we obtain
s s s

(5.4.19c)

In order to satisfy the equation of continuity (5.4.Lb) we now

introduce the Stokes stream function, ~, of the form

,h -1 - 3/2 .1/2 f-(-).,,=(1' us x 11
o s

(5.4.20)

where the constant (1' denotes the initial spreading rate of the
o

turbulent jet, namely b = (1'-lx•. From equations (5.4.4) the velocity
o

components in the radial free jet are then given by

1 - 3/2 -1/2 (5.4.21)u = u s x· fa s

and 1 -1 - 3/2 .-1/2(
lIf -

1 f (5.4.22)v = -(1' u s x -a 0 s 2

where the prime represents differentiation with respect to 11, where

11 = (1'y/x·. On substitution of the velocity components into equation
o

(5.4.1a), where ~ = £, we obtain the following differential equation

for f (~):
1 -'2 .! ff ' r 2 - 2- ' ,,- f + + (£ (1' a / u s )f = 02 2 s 0 s

and the boundary conditions (2.2.3) become

(5.4.23)

,,
f = 0 f = 0 on 11 = 0 (5.4.24a,b)
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f --7 0 as n --7 m (5.4.24c)
,,,

The quantity multiplying f in equation (5.4.23) is dimensionless

and as £ contains the free constant X we may choose
s

2 ,.. 2 1
(£ ~ a / us) = -4 •

sos
(5.4.25)

This subst LtutIon simplifies the preceding differential equation

which may now be integrated twice to give
-' -2 af + f =-s (5.4.26)

and whose solution is given by

f = a tanh(a~) , where a = (~)1/2. (5.4.27)

Without loss of generality, the characteristic distance, s, is taken

to be the length scale, a, and hence we can express the
,..

characteristic velocity, u, in terms of the kinematic momentum
S

flux, k, which is a known quantity. Thus, from equation (5.4.2), we

obtain

)

1/2
,..3/2 (3kau s = -8 ~ .
S n 0

(5.4.28)

Using equations (5.4.27) and (5.4.28), the streamwise velocity

component (5.4.21) and the stream function (5.4.20) of the turbulent

radial free Jet, at x· = 0, may then be written as
1/2

( 3k ) -1/2 2 -
U = - ~ x· sech (n)8na 0

(5.4.29)

and
1/2

l/J = (~:: ) x·1/2 tanh(~) ,
o

(5.4.30)

respectively.

The apparent kinematic viscosity as x· --7 0

.lt is appropriate at this stage to examine what form the

apparent kinematic viscosity, e, of the turbulent radial free Jet

assumes as x· --7 0, and from equations (5.4.19c), (5.4.25) and
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(5.4.28) we obtain

c = .! ( 3k 3 )1/2 X.1/2

4 8naO'
o

(5.4.31)

Based on the preceding analysis it seems reasonable to assume

that the initial spreading rate of the turbulent radial free jet is

identical to that of the two-dimensional turbulent plane jet. The

spreading constant, 0',
o

has been determined experimentally by

Reichardt to be 0' = 7.67 for the two-dimensional turbulent plane
o

jet, see Schlichting (1968).

5.5 TIlE ASYMPl'OTIC BEHAVIOUR OF TIlE RADIAL FREE JET

As x· ~ co equations (5.3.3) which govern the flow of the

radial free jet reduce to

au auu- + v-
ax· ay

(5.5.la)

:x(x.u) + :y(x.v) = 0 (S.S.lb)

and these equations have to be solved subject to the boundary

conditions (2.2.3) and to the momentum conservation equation

(5.3.4), which as x· ~ co becomes

co

k = 4n J u2x· dy = constant.
o

(5.5.2)

The new system of equations (5.5.1) is identical to the system of

equations (5.3.1), i.e. at large distances from the flange of the

exhaust the fluid behaviour in the radial free jet is identical to

the flow which results from the uniform radial discharge of fluid
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from a point source. A similarity solution of the equations of

motion which govern the asymptotic behaviour of the radial jet is

now sought for both laminar and turbulent flows.

5.5.1 The Laminar Radial Jet

Following Schlichting (1968) we seek a similarity solution of

equations (5.5.1), where ~ = v, of the form

~=_y_
B(x·)q

As x· ~ m the components of velocity (5.3.5) reduce to

(5.5.3)

u = 1 at/J andx· ay v = 1 at/Jx· ax· (S.S.4a,b)

and hence
AI'U = - (x·)p-q- {
B (S.S.Sa)

and v = - A (X·)p-2 ( {p - q~{' ) (S.S.Sb)

where the prime now signifies differentiation with respect to ~. The

usual boundary-layer assumptions result in

p = 1 q = 1 (5.5.6)
and

AB = v . (5.5.7)

For convenience, we may choose

A = v B = 1 (5.5.8)
and hence

t/J = v x· {(~) (5.5.9)

where {(~) satisfies the third-order ordinary differential equation
{'" + { {" + ([')2 = 0 (5.5.10)

and which must be solved subject to the boundary conditions

{ = 0
r ,

{ = 0 Aon TI = 0 (5.5.lla,b)
Aas TI ~ m (S.S.l1c)
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Equation (5.5.10) may be integrated three times to give

f = 2extanh(exn) (5.5.12)

where ex is the constant of integration to be determined. From

equation (5.5.2) we obtain the required expression for ex,namely

ex= ( 3k 2 ) 1/3 •

32nv
(5.5.13)

Using equations (5.5.Sa) and (5.5.9), the streamwise component of

the velocity and stream function in the laminar radial free jet, as

x· ~ m, are then
2 -1 2"U = 2 ex v (x·) sech (ex~) (5.5.14)

and ~ = 2 exv x· tanh(exn), (5.5.15)

respectively.

5.5.2 The Turbulent Radial Jet

A solution of the equations of motion (5.5.1), where (3=c,

which govern the flow of the turbulent radial jet in the limit as

x· ~ m is now sought. The method adopted is analogous to that

described by Schlichting (1968) for the two-dimensional plane jet

and given by Tanaka and Tanaka (1976). Following Schlichting (1968)

we shall assume that as x· ~ m the width of the Jet, b, is

proportional to x·, i.p. b ~ x·. The relationship between the
~centre-line velocity, u, of the turbulent radial free jet and x· can

then be determined from the momentum conservation equation (5.5.2)

from which we obtain
~2k = constant u x· b (5.5.16)

and hence
u = constant x.-1 kl12. (5.5.17)

From the Prandtl constant momentum transfer model for the apparent

kinematic viscosity we have
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£ = X b u - x·o = constant (5.5.18)

which implies that the apparent kinematic viscosity remains constant

over the entire Jet for sufficiently large values of x·. Identifying

values of the flow parameters u, b and E at a fixed characteristic

distance, s, from the Jet orifice by the subscript s we may now

write

(5.5.19a,b)

and hence
E = E

s
(5.5.19c)

The continuity equation (5.5.1b) is now satisfied by introducing the

Stokes stream function, ~, in the form
-1 - fA(;')~ = (1' U S x· "
00 S

n=(1' ~
00 x· (5,5.20)

where (1' is an empirical constant which characterizes the asymptotic
00

-1spreading rate of the jet such that b = (1' x· as x· ---+ 00. The
00

velocity components of the turbulent radial free jet, given by

equations (5.5.4), are then

- (x·)-l I

U = U s f (5.5.21)
S

-1 - (X·)-l(
,

and v = (1' u s nf - f ) (5.5.22)
00 S

Substitution of the velocity components (5.5.21) and (5.5.22) into

equation (5.5.la), where ~ = E, leads to a third-order ordinary

differential equation for f(n), namely
'2 " 2 - A'"f + ff + (E (1' / u s) f = 0

S 00 S
(5.5.23)

and the boundary conditions (2.2.3) become
I ,

f = 0 f = 0 Aon Tl = 0 (5.5.24a,b)
Aas Tl ---+ 00 (5.5.24c)

As £ contains the free constant X we may simplify equation (5.5.23)
s

by choosing
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2 ~ 1
(c a' / u s) = -2
s 00 s

(5.5.25)
After this simplification, equation (5.5.23) may now be integrated

twice to give
,.,' "'2
f + f = 1 (5.5.26)

and whose solution is given by

f = tanh(~) (5.5.27)
and so the streamwise component of the velocity becomes

-1 2 '" ~
U = u (x·/s) sech (1). The characteristic velocity u can now be

s s

expressed in terms of the kinematic momentum flux, k, a known

quantity. Thus from equation (5.5.2) we obtain

~ ( 3k )1/2us= -a'
s 8n 00

(5.5.28)

and hence the streamwise velocity component and the stream function

of the turbulent radial free Jet, as x· ~ 00, may be written as

(
3k )1/2 -1 2 '"

U = 8n a'00 x· sech (1) (5.5.29)

and )

1/2

I/J = (~~a'0CI x· tanh(~) , (5.5.30)

respectively.

The apparent kinematic viscosity as x· ~ 00

From equations (5.5.19c), (5.5.25) and (5.5.28) the form of c

as x· ~ 00 is given by

2
1 ( 3k3) 112__C = constant.

8na'
00

(5.5.31)

We now require a physically realistic value of the constant a' which
00

governs the asymptotic spreading rate of the turbulent radial free

Jet. Although there have been very few published experimental

studies on the turbulent radial free jet a survey of the available

literature, see Table 5.1, shows that a' = 8.21 is an average of the
00
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values determined by experiment.

Author Value of (J'
00

Heskestad (1966)
Tanaka and Tanaka (1976)
Witze and Dwyer (1976)
Patel (979)

7.86
8.99
8.31
7.66

Average (J' = 8.2100

Table 5.1. Experimentally determined values of the spreading

constant, (J' , for the turbulent radial free jet.
00

5.6 SOLUTION OF TIlE EQUATIONS OF MOTION GOVERNING THE FLOW IN A

RADIAL FREE JET FOR 0 < x. < 00

Solutions of the equations of motion (5.3.3), which govern the

radial free jet flow of an Aaberg exhaust hood have now been

determined for both laminar and turbulent flows in the two limiting

cases, namely, at x· = 0 and as x· ~ 00, and hence the initial and

asymptotic behaviour of the radial free jet has been established. We

now proceed to investigate the intermediate behaviour of the radial

free jet, i.e. its behaviour for 0 < x· < 00.

Non-dimensionalisation

At this stage it is convenient to rewrite the equations of

motion (5.3.3) in their dimensionless form. All lengths in the model

are referred to the radius of the exhaust flange:

X· = x·/a Y = yla (5.6.1)
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and the components of the velocity, the stream function and the

kinematic momentum flux of the jet are non-dimensionalised such that

u - u
- fj la '

o

v
V =--fj la

o

f! = L
fj a
o

k
K ---

4nfj2
o

(5.6.2)

where the scaling factor fj is given by
o

~o = { :
o

for laminar flow,

for turbulent flow

and where £ = b(O) u(O) is the 'initial'
o

apparent kinematic

viscosity.

Expressed in terms of the non-dimensional quantities (5.6.1)

and (5.6.2) the governing equations of motion (5.3.3) become:

(5.6.3a)

a [(1+X· )U] a [(1+X·)V] 0 (5.6.3b)+ =
ax· ay

and the boundary conditions (2.2.3) are
au = 0 V = 0 on Y = 0 (5.6.4a,b)ay

U~O as y ~ 00 (5.6.4c)

The continuity equation (5.6.3b) implies the existence of a

dimensionless Stokes stream function, t, where

1 a~
u = I+X' ay and 1 a~

V = - I+X' ax. (5.6.5a,b)

The method of solution of the equations (5.6.3) subject to boundary

conditions (5.6.4) is now addressed.

5.6.1 The Laminar Radial Jet

The similarity solutions of the laminar radial free jet

equations, i.e. equations (5.6.3) with fjlfj = 1, in the two limiting
o

cases, illustrate that for X· « 1 the behaviour of the Stokes stream
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function is such that

(5.6.6)

whilst for X· » 1

(5.6.7)

Combining the similarity regimes (5.6.6) and (5.6.7) we will look

for a single solution of equations (5.6.3), when ~/~ = 1, of the
o

form

y~ = ----~--------
X.2/3 (1 + X.) 1/3

(5.6.8)

for 0 < X· < 00. The single expression (5.6.8) exhibits both the

properties of the two-dimensional laminar plane jet solution

(5.4.15) for X· « 1 and those of the asymptotic laminar radial free

jet solution (5.5.15) for X· > 1. From equations (5.6.5) and (5.6.8)

the dimensionless components of velocity of the laminar flow may be

expressed as

(5.6.9a)

and

v =

(S.6.9b)

5.6.2 The Turbulent Radial Jet

The similarity solutions of the turbulent radial free Jet

equations, l.e. equations (5.6.3) with ~/~ = e/e ,
o 0

in the two

limiting cases, illustrate that for X· « 1 the behaviour of the
Stokes stream function is such that



;"~"",."._ •• ; •• ,,_, __ .,,,. ·... ·~·,· .. •••• .,.._~~ __ ;k.-_~ •• _, ...... _...·.,.,.·,. ____,_

- 130 -

.T. ~ X.l/2 f-( Y)... eT0 X. (5.6.10)

whilst for X· » 1

~ ~ X· f (eT 00 i-)
Combining the similarity regimes (5.6.10) and (5.6.11) we will look

(5.6.11)

for a single solution of equations (5.6.3), when ~/~ = e/e , of theo 0

form
Y1)= X. (5.6.12)

for 0 < X· < 00. Although not unique, the single expression (5.6.12)

exhibits both the properties of the similarity solution (5.4.30) for

X· «1 and of the asymptotic similarity solution (5.5.30) for

X· » 1. From equations (5.6.5) and (5.6.12) the velocity components

may be expressed as

(5.6.13a)

and

v = 1 [ (1+2X·) f + X.I12(1+X.)l/2 (88Xf•+ 8f 81))]
(1+Xi) 2X.1/2(1+X. )1/2 81)8X· .

(5.6.13b)

When substituted into equation (5.6.3a) the velocity co~ponents

(5.6.9) and (5.6.13) for the laminar and turbulent flows,

respectively, yield a third-order, non-linear parabolic partial

differential equation in f; namely

[::r =

(5.6.14)

whose coefficients c (X·), c (X·) and c (X·) are given by:
123
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(i) for the laminar radial jet

c (X·) O+3X·2) (5.6.15a)=
1 3(l+X·)2/3(l+X·2)2/3

c (X·) 3X·3 - X·2 + 5X· + 1 (5.6.15b)=2 3(1+X·)5/3(l+X·2)2/3

c (X·) X. (1+X.2)1/3
(5.6.15c)=3 O+X. )2/3

and (11) for the turbulent radial jet

c (X·) = O+2X.)X.l/2(~) -1
1 20+X.)3/2 CO

c (X·) =
O+2X.)X.l/2(~) -1

2 20+X.)3/2 CO

c (X·) X.3/2 (c )-1
=3 O+X.)1/2 Co

(5.6.16a)

(5.6.16b)

(5.6.16c)

Equation (5.6.14) has to be solved subject to the following boundary

condi tions:

a2f 0--
aTl 2

af 0-~
aTl

f = 0 on Tl = 0 (5.6.17a,b)

as Tl ~ 00 (5.6.17c)

and subject to the initial condition which has

f = f on X· = 0 . (5.6.17d)

The apparent kinematic viscosity for 0 < X· < 00

Before we can proceed to solve equation (5.6.14) in the

turbulent case we must first postulate the behaviour of the apparent

kinematic viscosity, c, as the radial free jet develops in terms of

the parameters in the flow.
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Equation (5.4.31) which expresses the initial form of the

apparent kinematic viscosity may be written
e C X·1/2 for X· « 1- =e 0
0

where

C = ! (3K )1/2
0 4 20"3

0

(5.6.18)

(5.6.19)

and on substitution of the Reichardt, see Schlichting (1968), value

for the initial spreading constant, namely 0" = 7.67,
o we obtain

c = 0.0144 KII2.
o

The non-dimensional form of equation (5.5.31),

which expresses the nature of the apparent kinematic viscosity for

X· » 1, is given by

e = C
£ 00
o

for X· » 1 (5.6.20)

where

C =! (3K )112 •2 (5.6.21)
00 20"3

00

If we adopt the average experimental value of 0" = 8.21, see Table
00

5.1, for the asymptotic spreading constant then we have

C = 0.0260 KII2.
00

Thus for X·« 1 the apparent kinematic viscosity, £/£, is
o

proportional to the square root of the distance from the orifice,

whilst for X· » 1 the value of £/£ remains constant over the whole
o

Jet and is independent of X·. We now propose that the transition of

the apparent kinematic viscosity from its initial to its asymptotic

tendencies occurs smoothly as the Jet develops, accordingly we shall

write

=
o (5.6.22a)

e
o ( (C) 2 ) 1/2

1 + 0 X·c-
oo

for 0 < X· < 00. Expression (5.6.22a) does not uniquely describe the
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transition of the apparent kinematic viscosity from initial to

asymptotic behaviour and other expressions, for example
C X·1/2~ = 0 __

e
° (1 + ( ~o )\.2f/4

00

(5.6.22b)

could equally have been chosen. The differences in the final

solution which result from the different choices for the expression

of e/e will be examined in section 5.8.
°

5.7 NUMERICAL SOLUTION OF TIlE NON-LINEAR PARABOLIC PARTIAL

DIFFERENTIAL EQUATION

In order to determine the function f and hence the form of the

radial free Jet a modified Crank-Nicolson, finite-difference

technique as described by Merkin (1976) is employed to solve

equation (5.6.14) subject to conditions (5.6.17). Following Merkin

(1976) the new dependent variable q given by

af
q = --a."

is introduced and then equation (5.6.14) becomes
."

+ aq J (c (X·)q + c (X·)aq ) d."+ c (X.) q2a 1 3 ax. 2
."0

(5.7.0

- c (X.) q 8q = O.
3 ax.

(5.7.2)

Equation (5.7.2) is then written in finite-difference form using

v = q + q as
1 2

a new dependent variable where q = q(X· Y)
1 "

q2 = ·q(X·+~X·,Y) and ~X· is the step length in the X· direction. The

X· derivatives are replaced by differences giving
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v - 2qaq = 1 + O(~X*)
ax* ~X*

and all other terms are averaged over the step from X· to X*+~X*.

(5.7.3)

For example, the second derivative with respect to ~ is given by

a2q = 1. (qlj+l- 2qlj' q'J-' + q2J+l-2q +
q2J-,]2J (S.7.4a)

a~2 2 h2 h2

1 (v - 2v + v ) (S.7.4b)=-
2h2 J+l J J-l

where h is the step length in the ~ direction. The finite-difference

equation at ~ = jh is then

h2v -2v +v + -4(v - v )(A V + AD)J+l J J-l J+l J-l 1 J 2 J
+ A V h2 (v -2q ) + A h2v 2= 0

3 J J lJ 4 J (5.7.5)

for j = 0(1 )N, where

V 1 1= - v + v + ...... + v + - vJ 2 0 1 J-l 2 J

D
1 + qlJ-l+

1= 2 ql0 + qll + ...... 2 qlJJ

(S.7.6a)

(S.7.6b)

(S.7.6c)

(S.7.6d)

(S.7.6e)

A =! (c (X*) + c (x*+~x*» .
4 4 2 2

(S.7.6f)

Boundary conditions (S.6.17a,c) are satisfied by taking

v = v and v = 0 ,
1 -1 N+l (S.7.7a,b)

respectively. The value of (N+l)h is chosen to be sufficiently large

so that condition (S.7.7b) is applied at a point at the outer edge

of the shear-layer. The boundary condition (S.6.17b) is
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automatically satisfied from choosing q = O.
10

Before equation
(5.7.5) can be used to determine the form of the radial free jet an

initial profile for q is required.

(i) Initial profile for the laminar radial jet

On substitution of af/a~, from equation (5.7.1), into equation

(5.6.9a) we can obtain the relationship
U X.1 /3 (1+X. )4/3

q =
(1+X.2) 1/3

The streamwise component of the velocity, U, in the laminar radial

(5.7.8)

free jet at X· = 0, i.e. the dimensionless form of equation

(5.4.14), may be written

6 a.2 X·-1/3 2[ 1/3]U = sech a.~ (1+X·) (5.7.9a)

where ( ~4 r Y (5.7.9b)a. = ~ =
X.2/3(1+X.) 1/3

and hence substitution of equation (5.7.9a) into equation (5.7.8)

yields the initial profile for the laminar radial jet, namely
2 2q = 6 a. sech (a.~) at X· = 0 (5.7.10)

(ii) Initial profile for the turbulent radial jet

On substitution of af/a~, from equation (5.7.1), into equation

(5.6.13a) we can obtain the relationship
q = U X·1/2(1+X·)1/2 . {5.7.10

The streamwise component of the velocity, U, in the turbulent radial

free jet at X· = 0, i.e. the dimensionless form of equation

(5.4.29), may be written

(
3K )1/2 -1/2 2U = 2 (1'0 X· sech {(1' 0 ~ )

y
~ = X· (5.7.12)

and substitution of equation (5.7.12) into equation (5.7.11) yields
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the initial profile for the turbulent radial jet, namely

at X· = O. (5.7.13)

The system of non-linear algebraic equations (5.7.5) is of the form

F (v , v , v ) = 0
J 0 1 M

j = O(UN (5.7.14)

and is solved iteratively using Newton's method, see Smith (1985).
(0)If we assume that v , for i = 0(1)N, is a known approximation to
I

the exact solution v then by the Taylor series expansion
I

F (v ) = F (v(O» + (v - v(O» (aa F) + ... = 0
J I J I I I vI J 0

(5.7.15)

and hence to a first-order approximation

(v - v(O»(~F) = - F (v(O»
1 I av J J I

I 0
(5.7.16)

Equation (5.7.16) represents (N+1) linear equations for the (N+1)

unknowns (v - v(O» and may be written in the matrix form
I 1

A 1 = c

where 1
J

(0)= v - v
J J

AA 1+0
0 0

1+A /2-0 AA, 1 1

A /2 1+A -02 2 2

A /2 A
3 3

A /2 A
4 4

A /2
M

A
M

(5.7.17)

c =
J

F (v(O» and A is a matrix of the form
J 1

0 0

1+0
1

AA 1+0
2 2

1+A -0 AA
3 3 3

A 1+A -0 AA
4 4 4 4.

.A
M

1+A -0M M

(5.7.18)

·0

1+0M-I

AA
M
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where

AA=(~F) J = 0(1 )N (5.7.19a)j av jj 0

A = ( :v
i

FjL i = 1(1)j-l (5.7.19b)j

and D = a__ (F) - 1 J = O(1)N. (5.7.19c)j av jj+l
From the finite-difference equation (5.7.5) we obtain the following

expressions for the matrix elements

h2
A = i\.- (v - v )j 1 4 j+l j-l J = 1(UN (5.7.20a)

AA = -2 +.!A + 2i\.h2 (vj 2 j 3 j

h2

D = - (i\.V + i\.D )j 4 1 j 2 j

J = 1(UN (5.7.20b)

J = 1(UN. (5.7.20c)

Using the boundary condition (5.7.7a), the finite-difference

equation at J = 0 reduces to

F = 2(v - v ) + i\.V h2(v - 2q ) + i\.h2v 2= 0o 1 0 3 0 0 10 4 0
(5.7.2U

and hence

AA = -2 + 2i\.h2(v - q ) + 2i\.h2vo 3 0 10 4 0
(5.7.22a)

D = 1 .o (5.7.22b)

The linear system of equations A.! = ~ are solved using the LU

decomposition method proposed by Doolittle, see Burden and Faires

(1989). This involves writing A = L U, where L is a lower triangular

matrix whose diagonal elements are unity, i.e. L = 1, and U is an
i i

upper triangular matrix. We first solve the equations L ~ = ~ for w

by forward substitution and then solve the equations U .! = ~ for I

by backward substitution. The quantity I + v(O) is then used as the
j j

next guess and the procedure repeated until (v - v(O» is less than
i i

the specified tolerance, c .
1
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The initial solution at X· = 0 was used to calculate the

solution of equation (5.7.5) subject to the boundary conditions

(5.7.7) at X· = ax·, until convergence to within the tolerance e
1

had been achieved. The Newton procedure was repeated, solving

equation (5.7.5) subject to conditions (5.7.7) at X· = aX·/2 using

the results obtained at X· = 0 and then using the results obtained

at X· = aX·/2, equation (5.7.5) was then solved for each v ,
j

j = 0(1)N, at X· = ax·. Providing that the results obtained at

X· = ax· using the one step of length ax· and the two steps ofaX./2

differ by less than the tolerance £2 then the technique proceeds in

the same manner to calculate v
J
' j = 0(1)N, at X· = 2aX·. Once the

v 's have been determined in this manner the new q 's are determined
J J

from q = v - q. The marching procedure was continued until the
J J J

profile obtained approached the asymptotic similarity solution, i.e.

until f ~ f.

The initial profiles for q, i.e. equations (5.7.10) and

(5.7.13), could have been determined numerically following the same

method. However, in this case the first column of the matrix A will

be slightly different due to the fact that the derivative boundary

condition (5.7.7a) is no longer enforced and an analytic expression

for q at ~ = 0 is enforced instead. This has to be done in order to

avoid obtaining the trivial solution. Although an analytic

expression for q is still required at X· = 0, ~ = 0, calculating the

initial profile in this manner does provide a useful means of

checking the numerical procedure.
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5.8 RESULTS AND DISCUSSION

Errors arising from the mesh size in the X· direction were kept

small by covering the step from X· to x·+ax· in first one and then

two steps and insisting that the difference between the solutions,
-5£2' be less than 5 x 10 . In the first few steps the solution was

found to change very rapidly and it was necessary to take ax. = 10-7
-6for the first ten steps, then ax· = 10 for a further ten steps,

etc .. Once the solution in the initial region of rapid changes had

been determined the specified tolerance, £2' between the two

solutions could be achieved with ax· = 0.05. The value of the

tolerance, £ , in the Newton procedure, was taken to be 10-6• This
1

value of the tolerance was found to provide sufficient accuracy as

choosing a smaller value for £1 had no significant effect on the

solution obtained and results were graphically indistinguishable.

At each location X· of the marching, after convergence had been

achieved, the kinematic momentum flux, K, and the stream function,

~, at the edge of the shear-layer were calculated from the
00

expressions:

(i) for laminar flow

(5.8.1)

CN+uh

+m = X·1I3(! + X·2)1/3 J qJ dn

o
(5.8.2)

(ii). for turbulent flow

J
CN;Uh

K = q dn
j

o

(5.8.3)
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CN+uh

X·)I/2 I dqj TI

o
(5.8.4)

where the integration was performed numerically. The kinematic

momentum flux, K, of the radial jet was evaluated at each location

X· to ensure that it was conserved as the jet developed; and hence

provided a useful check of the accuracy of the numerical procedure.

From the injection operating conditions at which Fetcher and

Saunders (1991,1993) ran an Aaberg exhaust hood we obtain the

following approximate values of the physical quanti ties:
1 -3u(O) = 7.7 ms- , bf O) = 7.5 x 10 m and a Cl< 0.15 m. These operating

conditions result in a Reynolds number, Re' of approximately 3397

which implies that the flow in the radial free jet is almost

certainly turbulent. The kinematic momentum flux, k, of the radial

jet is given by
2k = 2n a bf O) u(O) (5.8.5)

and hence from Fletcher and Saunders (1991,1993) we obtain the
4 -2approximate value of k = 0.419 m s . Non-dimensionalising we obtain

K to be 0(108) for the laminar radial Jet and K = 0(10) for the

turbulent radial Jet.

As discussed in chapter 2, the flow induced by a radial jet is

governed by the form of the stream function, ~ , at the edge of theco

shear-layer. Therefore it is reasonable to choose ~ as the quantityco

from which comparisons can be made between the solutions deduced

from the current mathematical model and the available experimental

and "theoretical results of other authors. Comparisons are now made

between ~ deduced from the model presented in this chapter with
00

those deduced from the available empirical and semi-empirical
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formulae.

5.8.1 The Laminar Radial Jet

Due to the very large magnitude of the dimensionless kinematic
8momentum flux of the laminar radial jet, 1.e. K is 0(10 ), it was

necessary to choose h = 0.00390625 and N = 300, i.e. Nh = 1.171875,

in order for the value of K to be conserved to within 1"- of its

initial value. Increasing the position where the outer, infinity

boundary was applied to Nh = 2.34375 had no significant effect on

the overall solution obtained. The stream function, ~, solution
CXI

deduced from the laminar radial jet model is shown in Fig.5.2 as a
8function of X· for K = 10 .

8000

c 6000
0
+-'
U
C
:J- 4000
E
CO
(])
~
+-'
Cl) 2000

o~------~----.------.------.-----~
o 2 4 6 8 10

X*

Fig.5.2 The stream function at the edge of the laminar radial jet as
8a function of X· for K = 10 .
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It has been observed that for a two-dimensional plane and a

circular jet the transition to turbulence occurs at relatively low

values of the Reynolds number, R, and there are no reasons toe

suggest why this should not also apply to a radial jet flow.

Information regarding an experimental study of the laminar radial

jet has not been found in the literature, this may be due to the

fact that in most practical applications in which the radial jet is

employed the value of the Reynolds number is relatively large and

the flow is turbulent.

5.8.2 The Turbulent Radial Jet

With h = 0.00625 and N = 160, i.e. Nh = 1, the value of K was

found to be conserved to within 1r.of its initial value. Increasing

the position where the outer, infinity boundary was applied to

Nh = 2 had no significant effect on the overall solution obtained.

From equations (2.2.2), which describe the velocity
distribution in a turbulent radial jet as derived by Tuve (1953),

Squire (1955) and Heskestad (1966), Poreh and Cermak (1959) and
Witze and Dwyer (1976), and Patel (1979), we can derive a general

expression for the stream function at the edge of the turbulent

radial jet. The general expression is arrived at after initially
,..

determining the centre-line velocity, u, from the momentum

conservation equation (5.3.4), and then by integrating the resulting

streamwise component of the velocity across the shear-layer.

Non-dimensionalising we obtain the general expression for ~ , namely
00

(5.8.6)

where the values of the constant r are given in Table 5.2.
e
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Author Value of r
e

Tuve (1953)

Heskestad (1966)

Witze and Dwyer (1976)

Patel (1979)

0.494

0.437

0.425

0.416

Table 5.2 The coefficients, r , of equation (5.8.6).
e

The Tuve (1953) and Patel (1979) expressions for the u

component of the velocity in a turbulent radial Jet, i.e. equations

(2.2.2a) and (2.2. 2d), are empirical formulae while the remaining

expressions of Squire (1955) and Poreh and Cermak (1959), 1.e.

equations (2.2. 2b) and (2.2. zer, are semi-empirical formulae. The

expression (2.2. 2b) was determined theoretically by Squire (1955)

and the spreading rate of 7.86 was determined experimentally by

Heskestad (1966). Similarly, expression (2.2.2c) was determined

theoretically by Poreh and Cermak (1959) and the Witze and Dwyer

(1976) experimentally determined expression for b
1
/
2
, namely

b = 0.106 x·, was used in order to derive expression (5.8.6). Tuve
1/2

(1953) does not provide any information regarding the half width,

b , of the Jet and hence in order to determine the expression1/2

(5.8.6) for Tuve the half width was assumed to take the form

b = 0.107 x·. The value of the constant chosen, i. e. 0.107, is an1/2

average of the experimentally determined values, see Table 5. I,

where b1/2 has been determined from the relationship:

b = 0.881 b.
1/2

The value of the stream function at the edge of the turbulent

radial Jet, as determined from the theory presented in this chapter,
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is now illustrated in Fig.5.3 as a function of X· for each of the

two expressions (5.6.22) which describe e/e Also illustrated in
o

Fig.5.3 are the expressions (5.8.6) for each of the authors given in
Table 5.2.

20

(ii,iv)

c 15
0 (iii)......o
C
~- 10
E (i,v,vi)al
Q)
~......
Cl)

5

o 2 4 6 8 10

X*

Fig.5.3 The stream function at the edge of the turbulent radial Jet

as a function of X· for K = 10, (1) e/e as given by equation
o

(5.6.22a), (11) e/e as given by equation (5.6.22b), (Ill) Tuve
o

(1953), (tv) Squire (1955) and Heskestad (1966), (v) Patel (1979),

(vi) Poreh and Cermak (1959) and Witze and Dwyer (1976).

Curves (vi), (v) and (i) of Fig.5.3 illustrate that the stream

fun~tions at the edge of the turbulent radial Jet as determined from

Poreh and Cermak (1959), Patel (1979) and the current model, with

ele as given by equation (5.6.22a), compare extremely well and are
o
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graphically indistinguishable. Similarly, curves (ii) and (iv) which

represent the current model, with e/e
o as given by equation

(5.6.22b), and the results of Squire (1955), respectively, are in

very good agreement and the differences between the two solutions

cannot be distinguished graphically. It should be noted that the

Tuve expression for ~m' which is shown as curve (iii) of Fig.5.3,

significantly overestimates the results obtained from the current

model as well as those deduced from the velocity distribution of the

authors considered. Tuve (1953) is believed to be one of the

earliest documented pieces of experimental research on the turbulent

radial Jet and thus the observed differences between the measurement

of Tuve and those of more recent experimentalists, e.g. Patel

(1979), may be attributed to the development of more accurate flow

analysing equipment.

Solutions arising when alternative expressions for the combined

similarity regime (5.6.12), e.g. those arising when equation

(5.6.12) is of the form ~ = X·1/2(1 + X·n)lI2nf(X· ,1), n = 2, 3 and

4, were found to be virtually graphically indistinguishable.

However, curves (i) and (ii) of Fig.5.3 illustrate that the choice

of the expression for e/e has a more significant effect on the
o

overall solution obtained. Equation (5.6.22a) is the most natural

choice, based on Taylor series expansions, for the expression which

models the transition of ele as a function of X·, and the resulting
o

solution for ~ , shown as curve (ii) of Fig.5.3, is in very close
m

agreement with the theoretical results of Poreh and Cermak (1959) as

well as the empirical results of Patel (1979). It is this expression

that we shall adopt when modelling the radial Jet produced by the

Aaberg exhaust hood.
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5.9 CONCLUSIONS

A numerical model for the fluid flow in a radial free Jet has

been developed for both laminar and turbulent flows. The model gives

us a first approximation of the flow in a radial free jet and allows

us to predict velocity profiles and stream function. The stream

function, ~ , at the edge of the shear-layer provides us with a
01)

first-order estimate of the amount of fluid drawn into the radial

free jet and thus the boundary condition for the outer, inviscid,

jet-induced flow, which will be discussed in more detail later. The

value of the stream function, ~OI)' at the edge of the shear-layer

determined from the current turbulent model is in very close

agreement with both available theoretical and experimental results.

The full air flow pattern created by the three-dimensional

axisymmetric Aaberg exhaust hood will now be presented in chapter 6.



CHAPTER SIX

A TIQU;E-DIMENSIONAL AXISYMMETRIC MODEL OF TIlE FLUID FLOV PATI'ERN

CREATED BY AN AABERG EXHAUST HOOD
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6.1 INTRODUCTION

Now that the fluid flow behaviour in the radial free jet has

been examined we proceed to consider the full air flow pattern

generated by the three-dimensional axisymmetric Aaberg exhaust hood.

The purpose of this chapter is to develop a mathematical model of

the air flow pattern induced by such an exhaust hood, to identify

the parameters which govern this flow and to predict how the air

flow pattern and hence how the hood's performance is influenced by

the governing parameters. The mathematical model is formulated in

terms of the Stokes stream function, t, and the governing equations

of fluid motion are solved using finite-difference techniques. The

injection flow of the exhaust hood is modelled as a turbulent radial

jet and the entrained flow is assumed to be an inviscid potential

flow. Sections through surfaces of constant air speed deduced from

the model are used to examine what effect the turbulent radial jet

flow has on the size and shape of the region in front of the hood

from which we expect a neutrally-buoyant contaminant to be captured.

Comparisons made between contours of constant air speed and

centre-line air speeds deduced from the model and the available

experimental data of Fletcher and Saunders (1993) and Pedersen and

Nielsen (1991) show good quantitative agreement over a wide range of

momentum ratios.

A three-dimensional axisymmetric investigation, analogous in

its f'ormuIatIon 'to the two-dimensional model of Hunt and Ingham

(1992), see chapter 3, is now presented.
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6.2 THE MATHEMATICAL HODEL

Under ideal conditions, i.e without the effects of cross-flows

or temperature gradients etc., the air flow pattern generated by the

combination of the suction and injection flows of the original

Aaberg exhaust hood is a three-dimensional axisymmetric flow. Hence,

adopting the spherical polar coordinate system (r,9,~) we can assume

that the solution is independent of the angular coordinate 9, see

Fig.6.1. Using the symmetry of the flow the governing equations of

fluid motion have only to be solved in the (r,~) plane for 9 = 0,

r i!: 0 and 0 ~ ~ ~ 1£/2. The equations of motion and the boundary

conditions used to model the axisymmetric flow of an Aaberg exhaust

hood are now presented.

y

y

b (0)

Fig.6.1 The geometry and coordinate system for the axisymmetric

Aaberg exhaust hood.
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6.2.1 The Axisymmetric Radial Jet Flow

A detailed analysis of the radial free jet, for both laminar

and turbulent flows, has been presented in chapter 5. In chapter 5

it was established that the flow in a radial free jet is governed by

its kinematic momentum flux, K, which may be thought of as a measure

of the strength of the radial jet. The model of the turbulent radial

jet developed in chapter 5, for which e/e is given by equation
o

(5.6.22a), is in very close agreement with both the experimental

results of Pate I (1919) and the theoretical results of Poreh and

Cermak (1959). In practice the radial jet flow of the Aaberg hood is

almost certainly turbulent and therefore it is this solution that we

shall use in this chapter to model the injection flow of the

axisymmetric Aaberg exhaust hood.

6.2.2 The Jet-induced Flow

The jet-induced flow is modelled by assuming that the flow

induced by a slender, i.e. high Reynolds number, axisymmetric radial

jet is an inviscid potential flow, i.e. it satisfies the conditions

of incompressibility and irrotationality. Under these assumptions

the fluid motion is governed by equation (2.2.23). Introducing the

non-dimensional quantities as in expressions (5.6.2) the
dimensionless form of the equation of motion (2.2.23) becomes

cot(~) a~ + __1 a2__~ = 0
R2 a~ R2 a~2

(6.2.1)

where R = ria. The value of the stream function at the edge of the

jet shear-layer has been numerically determined at each location X,

for X > I, from equation (5.8.4). We are assuming that the Jet is
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slender and hence we shall enforce these values of the stream

function along the X axis for X > 1, i.e.

'If(R,nI2) = 'If
CIO

R > 1. (6.2.2)
Thus, the boundary condition (6.2.2) governs the amount of fluid

drawn into the turbulent radial jet and hence the jet-induced flow.

6.2.3 The Exhaust Flow

Modelling the suction inlet of the exhaust hood as a

finite-sized circular opening of radius, s, into which a volume

flux, m, of fluid per unit time passes and assuming that the fluid

velocity across the face of the inlet is uniformly distributed we

obtain the boundary condition
2mr

'"(r,n/2) = --2
2ns

Non-dimensional ising, see expressions (5.6.1) and (5.6.2), we obtain

o S r s s. (6.2.3)

the inlet boundary condition

1 2'If(R,n/2) = 2 R1n R (6.2.4)

where S = sla is the dimensionless radius of the exhaust inlet and

the Reynolds number, Rin, of the exhaust flow is defined to be

(6.2.5)

and where u. is the fluid speed at the face of the exhaust inlet.
In

Along the flange of the exhaust we therefore have the boundary

condition

S<Rs1. (6.2.6)

The axis of symmetry of the hood, i.e. the axis along which ~ = 0,

represents a streamline of the flow and hence for convenience, when
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determining boundary condition (6.2.4), we have chosen

III(R,O) = 0 (6.2.7)

6.2.4 The Upstream Boundary Condition

The boundary condition modelling the fluid flow at large

distances from the Aaberg exhaust hood is enforced on R = R for
00

o ~ ~ ~ n/2, where R » 1. This upstream boundary condition is taken
00

to be the asymptotic solution of equation (6.2.1) subject to the

appropriate boundary conditions which result from the shear-layer

solutions on ~ = n/2 and to boundary condition (6.2.7) on ~ = 0,

plus the radial flow contribution which results from the exhaust

flow.

Initially, consider the component of the upstream boundary

condition which results from the radial free Jet flow. From equation

(5.5.30), we have

III(R,n/2) = G (R-l)Ax! for R » 1 (6.2.8)

where the dimensionless parameter G is defined to beAxl
G = (31(/20- ) 1/2.Ax 1 00

(6.2.9)

Thus, to a first-order approximation we have

III= G RAxl (6.2.10)

for R» 1 on f/J = n/2 and following the method of separation of

variables we therefore seek a solution of equation (6.2.1) in the

form

III= R t (f/J)
1

(6.2.11)

where t (f/J) isa function of f/J only. Substitution of expression
1

(6.2.11) into equation (6.2.1) leads to the second-order ordinary

differential equation
,, ,

t - cot(~)t = 0
1 1

(6.2.12)
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and the first-order solution, satisfying boundary conditions

(6.2.10) and (6.2.7), is then

~ = G R(l - COS(~»
Ax! (6.2.13)

To a second-order approximation

~=G R-G
Ax! Ax! (6.2.14)

for R » 1 on ~ = n/2, and hence we now seek a solution of equation
(6.2.1) in the form

~ = G R(l - cos(~» + t (~)
Ax! 2 (6.2.15)

where t (~) is a function of ~ only. Substitution of expression
2

(6.2.15) into equation (6.2.U then leads to the component of the

upstream boundary condition which may be attributed to the influence

of the radial jet flow, namely

~ = G (1 - cos(~»(R - 1)
Ax!

(6.2.16)
For sufficiently large distances upstream of the Aaberg exhaust hood

the flow which results from the flux, m, of fluid into the suction

opening may be modelled as a purely radial flow, and hence, for

r » 1, the radial component of the velocity assumes the form
m

u = --.
r 2 2nr

(6.2.17)

Using equation (2.2.21a), which relates the radial component of the

velocity to the stream function, and insisting that ~ = 0 on ~ = 0,

gives

~ = 2: (1 - cos(~» (6.2.18)

and non-dimensionalising equation (6.2.18) we obtain the condition

which models the upstream influence of the exhaust flow, namely

1 2~ = 2 Rin S (1 - cos(~» (6.2.19)

The boundary condition to be enforced on R = R , for 0 :s ~ :s n/2,
00

which models the upstream flow generated by the axisymmetric Aaberg



- 154 -

exhaust hood then takes the form

1 2+(R,_) = G (1 - cos(_»(R - 1) + -2Rj S (1 - cos(_». (6.2.20)Axl n

The effect of the exhaust's suction is to modify boundary condition

(6.2.2) which now becomes

R > 1 • (6.2.21)

For clarity the geometry of the solution domain and the position of

the boundary conditions used to model the axisymmetric flow of the

Aaberg exhaust hood are shown schematically in Fig.6.2.

x
(_=7(/2)

-_
(6.2.20)

o Y (FO)

Fig, 6.2 The solution domain and the boundary conditions used to

model the axisymmetric Aaberg exhaust hood.
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6.3 THE FINITE-DIFFERENCE SCHEME

A mesh was placed over the entire solution domain and all

derivatives of the governing equations of fluid motion approximated

by their usual central-difference approximations. The mesh generated

was identical to the one described in chapter 4 and consisted of a

fine mesh of constant step length for 0 s R s 1 and a mesh of

expanding step length for R > 1; this was achieved by a

transformation of the radial coordinate such that ~ = In R. The

governing equation of fluid motion for 0 s R s 1, i.e. equation

(6.2.1), was then approximated at the point (i,j) by the

finite-difference equation

'If = '!'_(C3('If + 'If ) + Cl 'If + C2 'If )
I,j C4 1-1,j 1+1,j I,j-l Id+1 (6.3.1)

where the coefficients Cl, C2, C3 and C4 are given by

Cl = ( R2:~2+
cot(~) ) C2 = ( _1 __ cot Ie ) )2R2o~ R2o~2 2R2o~

1 (11)C3 -- C4=2 -+--
oR2 oR2 R2o~2

(6.3.2a,b)

(6.3.2c,d)

For R > 1 equation (6.2.1) reduces to the equation
2 2

8 'If _ 8'1f _ cot (~) 8'1f + 8 'If = 0

8~2 8~ 8~ 8~2

which was approximated at the point (i,J) by the finite-difference

(6.3.3)

equation

~ - 1 (f1 ~ + f2 'If + f4 'If + f3 'If )
YI , j - f5 Y j I j 1 II-I, j 1+1, , - , j+l

(6.3.4)

f1 = ( o~2 + 2:~ ) (6.3.5a,b)
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f3 = ( _1__ cot(;) )
~e2 2~;

f5 = 2 ( _1_ + _1_) .
~t;2 ~e2

f4 = (1 cot (;) )~ + (6.3.5c,d)
~e 2~;

(6.3.5e)

In order to ensure that the meshes match at R = 1 the step length ~t;

was chosen such that ~t; = In(1+~R). The centre-Line velocity Is

given by

limit
u =
r ; ~ 0 (6.3.6)

on ; = o.

6.4 THE OPERATING PARAMETERS

The mathematical model developed predicts that the air flow

induced by the axisymmetric Aaberg exhaust hood is governed by three

dimensionless parameters, namely S, K and Rin. It is interesting to

note that these three parameters are encompassed in the single

parameter considered by the experimentalists, namely, the ratio of

the momentum flows, I, which may be expressed as

4 K

S2R2
in

The three operating parameters S, K and Rin are now examined.

I = (6.4.1)

Using equation (5.8.5), the non-dimensional expression for K,
see equation (5.6.2), reduces to

a
K = 2b(O) (6.4.2)

and hence the turbulent radial Jet flow of the Aaberg exhaust hood

is governed by the ratio of the radius of the exhaust flange to the

Jet nozzle width. The parameter K is thus a geometric ratio and is
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directly proportional to the constraint ratio, C , defined by Witze
R

and Dwyer (1976), namely,
1

K = 4" C
R

(6.4. 3)

Witze and Dwyer (1976) characterize the general structure and

behaviour of a wide range of radial jets according to the ratio C .
R

Through their experiments they concluded that for constraint ratios

greater than approximately 40 the nozzle walls constrain the flow

leaving the jet orifice to be parallel, the spreading rate is

approximately constant, and they classify the resulting flow as a

constrained radial jet. A small constraint ratio is representative

of two opposing free axisymmetric jets, the collision of which

produces an impinged radial jet for which the spreading rate is

almost three times that of the constrained jet. The findings of

Wltze and Dwyer would therefore imply that the present model is

valid only for geometries in which K is greater than approximately

10.

The second parameter, S, is the ratio of the radius of the

exhaust inlet to the radius of the exhaust flange and hence the

geometry of the particular hood under consideration is characterized

by the parameters K and S.

The third parameter Rin is a Reynolds number which reduces to

(6.4.4)

when the flow in the radial jet is turbulent. For a hood of fixed

dimensions the parameter Rin is therefore directly proportional to

the"ratio between the exhaust inlet speed and the jet exit speed and

inversely proportional to the square root of the momentum ratio I.
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6.5 RESULTS AND DISCUSSION

In this section comparisons are made between the air flow

patterns predicted by the present model and the independent

experimental observations of Fletcher and Saunders (1993) and

Pedersen and Nielsen (1991). The characteristic dimensions a, b(O)

and s of the Aaberg exhaust hoods used in these studies are shown in

Table 6.1 together with the corresponding approximate model

parameter values.

Fletcher and Pedersen and
Saunders (1993) Nielsen (1991)

a 0.1515 m 0.1115 m
b(O) 0.0075 m 0.0025 m
s 0.0370 m 0.0515 m
K 10.1 22.3
S 0.244 0.445
R1n 20.2(u1nlu(0» 44.6(U1nIU(0»

Table 6.1 The characteristic dimensions of the aXisymmetric Aaberg

exhaust hoods of Fletcher and Saunders (1993) and Pedersen and

Nielsen (1991) and the resulting model operating parameter values.

Figure 6.3(a) illustrates lines of constant air speed, in

metres per second, in front of the exhaust hood as obtained by

Fletcher and Saunders (1993) for a hood operating under suction

alone and u. =15.5 ms-to The air flow pattern deduced from the
In

model for the corresponding operating conditions, namely K = 0,

S = 0.244 and R. = 138132, is shown in Fig.6.3(b). From the results
In

shown in Fig.6.3 it is clear that the predictions of the model are
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Fig.6.3(a) Lines of constant air speed in front of an axisymmetric

flanged exhaust hood operating under suction alone; a = 0.1515 m.
-1s = 0.037 m. u1n = 15.5 ms • Fletcher and Saunders (1993).

3

O+-----~J_--~~~~--~
o 1 2 3 4

Inlet diameters

Fig.6.3(b) Lines of constant air speed deduced from the model for an

axisymmetric flanged exhaust hood operating under suction alone,

K = 0, S = 0.244, Rin ~ 138132.
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in very close agreement with the experimental results of Fletcher

and Saunders (1993) and illustrate that for a hood operating under

suction alone the air speed in front of the exhaust inlet decays

inversely proportional to the square of the distance from the inlet.

In the typical working environments in which LEV systems are

commonly used the level of background air disturbance, due for

example to temperature gradients or the small movement of the

occupants, etc., may be regarded as being of the order of 0.25 ms-1

Thus, operating under suction alone and for the given inlet

conditions, the effective capture region of the hood occupies a

relatively small hemispherical region which has a radius of

approximately Ss.
We now proceed to examine what effect the addition of a

turbulent radial jet of fluid has on the air flow pattern created by

the hood whilst maintaining the original conditions of exhaustion.

Figure 6.4(a) illustrates lines of constant speed, determined

experimentally by Fletcher and Saunders (1993), in front of a hood

operating at a momentum ratio of I QI 0.4 and with u1n = 15.5 ms-1

and u(O) = 7.7 ms-t. Lines of constant speed deduced from the model

for the corresponding operating conditions, i.e. K = 10.1, S = 0.244

and R = 40.7 are shown in Fig.6.4(b). On comparing Fig.6.3 with
in

Fig.6.4 the dramatic effect on the air speeds developed in front of

the hood which is achieved by the combination of suction and

injection is immediately apparent. As a result of the entrainment of

air into the radial jet the air speed predicted in front of the hood

has increased significantly and the line of constant speed which

corresponds to the level of background air disturbance, i.e.

q = 0.25 ms-I, now intersects the longitudinal axis of the hood at a
c
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distance of the order of lOs from the face of the exhaust inlet.

Thus for the given conditions of exhaustion and injection the model

predicts that the effective working range of the hood can be

approximately doubled by increasing the momentum ratio from I = 0 to

I = 0.4. From Fig.6.4 it is evident that the air speeds predicted by

the model underestimate those observed by Fletcher and Saunders

(1993) who pred ict that the line of constant speed q = O.25 ms-1
c

intersects the longitudinal axis of the hood at a distance of the

order of 18s from the inlet. However, for air speeds of greater than

0.4 ms-1 the lines of constant speed predicted by the model are in

favourable agreement with those observed by Fletcher and Saunders

(1993). Furthermore, Fletcher and Saunders (1993) observed that,

under the given operating conditions, the line of constant speed for

which q ~ 0.5 ms-1 bifurcates in a region where the flow divides

with one part drawn towards the exhaust inlet and the other towards

the blowing jet. The air speed at which the experimentally observed

bifurcation occurs is in very close agreement with that predicted by

the theory. Figure 6.4(a) shows that the lines of constant air speed

observed by Fletcher and Saunders are not symmetrical about the

centre-line of the hood which suggests that their measurements may

have been subject to background air disturbances. The discrepancy

between the experimental and theoretical results may also be

attributed to the ratio between the flange radius and jet nozzle

width which, for the hood considered by Fletcher and Saunders, is

approximately 10. This suggests that the radial jet produced by the

hood may not be constrained and not accurately modelled by the

present theory.



- 162 -

ID
r...e..,
t)

~
Ul._

'" E
'tI It)

N.., ci
t)
r-4
C
1-4

Inlet diameters

Fig.6.4(a) Lines of constant air speed in front of an axisymmetric

flanged exhaust hood reinforced by a radial Jet flow; a = 0.1515 m,

s = 0.037 m, -1uin = 15.5 ms , b(O) = 0.0075 m,

Fletcher and Saunders (1993).
u(O) = 7.7 ms-1,
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Fig:6.4(b) Lines of constant air speed deduced from the model for an

axisymmetric flanged exhaust hood reinforced by a turbulent radial

Jet; K = 10.1, S = 0.244, Rin = 40.7.
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Further comparisons between the model and the available

experimental data are illustrated in Fig.6.S which depicts the

variation in the resultant air speed, u/u1n, along the centre-line

of the hood as a function of the distance, y/a, along the

centre-line. The experimental results shown are those recorded by

Pedersen and Nielsen (1991) and made available by Pedersen (1993),

for the hood described in the second column of Table 6.1 and

operating with constant conditions of exhaustion given by
-1u1n = 20 ms . Four values of the momentum ratio are considered,

namely I = 0.0, 0.5, 0.9 and 1.95, which were achieved during

experiment with Jet nozzle velocities of u(O) = 0.0 ms-1 -130.8 ms ,
41.4 ms-1 and 60.9 ms-I, respectively. These operating conditions

result in R1n = 131176, 29.0, 21.6 and 14.7, respectively. Figure

6.5 shows that agreement between the air speeds predicted by the

model and those observed experimentally by Pedersen and Nielsen

(1991) are good for each momentum ratio considered.

The air speeds observed by Pedersen and Nielsen (1991) were

more accurately reproduced by the model than were those observed by

Fletcher and Saunders (1993). The constraint ratio for the Pedersen

and Nielsen hood is approximately 90 and for their chosen operating

conditions the Reynolds number of the Jet, R , is greater than thate

based on Fletcher and Saunders experiments. Consequently, of the two

experimental studies we would expect the agreement between the

theory and the results of Pedersen and Nielsen to be the closer.

Fletcher and Saunders (1991,1993) and Pedersen and Nielsen

(1991) do not provide any information regarding the streamlines of

the axisymmetric flow and for this reason streamline comparisons

between the results of experiment and the model cannot be made.
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Fig.6.S Variation in the centre-line air speed, u/u
in
, as a function

of the distance, y/a, along the hood's centre-line for Ca) I = 0.0

and (b) I = 0.5. • Pedersen C1993), -- Model.
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Ff g, 6. 5 Variatio~ in the centre-line air speed, u/U1n' as a function

of the distance, y/a, along the hood's centre-line for (c) I = 0.9

and (d) I = 1.95 .• Pedersen (993), -- Model.
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However, the results of the present axisymmetric model are in

qualitative agreement with the two-dimensional models presented in

chapters 3 and 4 and predict that the width of the efficient flow

region decreases and the air speeds in this region increase as the

momentum ratio I is increased.

6.6 CONCLUSIONS

A three-dimensional axisymmetric mathematical model for the

fluid mechanics of an Aaberg exhaust hood has been developed and the

three parameters which characterize the flow, namely K, Sand R
in'

have been identified. The model developed shows good agreement, both

quantitatively and qualitatively, with the recent experimental

observations of both Fletcher and Saunders (1993) and Pedersen and

Nielsen (1991). The model developed is very versatile and can be

easily adapted to consider a variety of other exhaust geometries or

operating situations, e.g. the region of the workplace from which we

expect air to be drawn into the exhaust inlet and successfully

sampled may be determined as a function of the momentum ratio I or

the parameter S.



CHAPTER SEVEN

APPLICATION OF THE AABERG PRINCIPLE TO THE SLOT EXHAUST HOOD
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7.1 INTRODUCTION

Originally the Aaberg exhaust hood was three-dimensional and

axisymmetric in design (circular exhaust opening) but a
two-dimensional bench version with a slot exhaust opening, termed

the Aaberg slot exhaust (ASE), has been experimentally studied by

Pedersen (1991a). The principles of operation for the two- and

three-dimensional Aaberg exhaust hoods are the same. The ASE studied

by Pedersen (1991a), which is illustrated schematically in Fig.7.1,

consists of a horizontal bench to which a vertical flange is

attached. The flange houses a rectangular exhaust slot and jet

nozzle. The distance between the bench surface and the centre of the

exhaust slot, h , may be varied as may the width of the slot, 2s.
s

The width of the jet nozzle, b(O), through which the jet of air

issues vertically upwards along the exhaust flange may be varied,

although the dtst.ance from the jet nozzle to the centre of the

exhaust inlet, a, remains fixed. At the present time the ASE hood is

still in an experimental form but the results of some preliminary

tests carried out on the hood by Pedersen have been extremely

encouraging.

The aim of this chapter is to develop a mathematical model of

the air flow pattern created by a slot exhaust hood reinforced by a

two-dimensional jet flow. In this chapter the two-dimensional jet

flow of the ASE is modelled as (i) a turbulent wall jet and (ii) a

turbulent free jet of fluid and the two parameters which

characterize the subsequent induced potential flow are identified.

Streamlines and lines of constant speed are deduced from the model

and predictions are given for the area in front of the slot exhaust
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hood from which a neutrally-buoyant contaminant can be successfully

exhausted. Comparisons made between the available experimental data

and the turbulent wall Jet model show excellent quantitative

agreement. The chapter concludes by suggesting a simple modification

to the hood's design, deduced from the theory, which will enhance

its effectiveness in the control of airborne contaminants.

7.2 THE MATHEMATICAL MODEL

During his experimental studies, Pedersen (1991a) observed that

the flow field generated by the ASE was approximately
two-dimensional except at the extremities of the bench where the

flow was fully three-dimensional. Therefore, provided the bench is

sufficiently wide, the flow pattern generated by the ASE may be

assumed to be two-dimensional and hence we can assume that the

solution is independent of z. The geometry and coordinate system of

the two-dimensional mathematical model are shown in Fig.7.2, where

for convenience polar coordinates (r,e) have been adopted. The

solution procedure for determining the air flow pattern follows that

presented in section 4.2 of chapter 4. The equations of motion and

boundary conditions are now examined.

For convenience all lengths in the model are
non-dimensionalised with respect to p, where p = a + h, and the

s

stream function with respect to the volume flux exhausted per unit

length of the slot, m. We therefore introduce the dimensionless

quanti ties:
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hr x y = l s H sR = - X = - , S = - , = -p p p p s p
~ = tf!_ Ua= ua/(m/P) U = u I(m/p) .m ,

r r
(7.2.1)

Initially, as the fluid leaves the rectangular jet nozzle the

jet flow of the ASE is most appropriately modelled as a

two-dimensional turbulent wall jet. However, as the fluid reaches

the end of the exhaust flange the wall jet undergoes a transitional

stage and develops into a two-dimensional turbulent free jet. By

modelling the injection flow both as a two-dimensional turbulent

wall and a free jet which issue from the end of the exhaust flange,

i.e. from X = I, then comparisons of the resulting induced flows can

be made and the robustness of the model examined. The solutions for

the two types of jet are now outlined.

7.2.1 The Two-dimensional Turbulent Vall Jet

The turbulent wall jet is a flow commonly encountered in

engineering where it has been applied to many practical problems,

e.g. those of heating, cooling and ventilation. There have been a

number of experimental studies on the plane turbulent wall jet, the

majority of which were undertaken during the 1960's using hot-wire

anemometry and have been critically reviewed by Launder and Rodi

(1981). One of the most recent publications is Wygnanski et al.

(1992), in which the applicability of scaling laws to the turbulent

wall jet is examined.

The two-dimensional turbulent wall jet is assumed to issue from

a narrow rectangular nozzle of width b(O) with an initial speed

equal to u(O) and the maximum fluid speed at any station x· is

denoted u ; the notation and coordinate system for the wall jet is
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Fig.7.1 A schematic diagram of the Aaberg slot exhaust hood.

r
a

h
s

1
Fig.7.2 The geometry and coordinate system of the ASE model.
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shown in Fig.7.2. The velocity distribution of the entire wall jet

has been found to be similar for values of x· greater than about

20 b(O) by a number of experimentalists, including Sigalla (1958b),

Schwarz and Cosart (1961) and Hyers et al. (1963) and in this

chapter Verhoff's (1963) empirical equation describing the
similarity solution, namely

U 1/7 ( ):: = 1.48 1J erfc 0.681J
u

y1J= ---
0.068X·

(7.2.2)

where X· = x·/p, is used to model the two-dimensional wall jet flow.

Verhoff's equation shows excellent agreement with the experimental

observations of Hyers over the range of values of x·/b(O) between 24

and 180. Other empirical expressions for the velocity profile have

been considered, see Schwarz and Cosart (1961); however, these

distributions do not compare as favourably with the experimental

data as the Verhoff (1963) distribution. From an average of the

available observations of the velocity decay in a two-dimensional
4 4turbulent wall jet for 1.9 x 10 ~ R ~ 3.7 x 10 , Rajaratnam (1976)e

describes the velocity decay as being well-represented by

_u_ = 3.5
u(O) / x./b(O)

(7.2.3)

for x·/b(O) at least up to 100. From equations (7.2.2) and (7.2.3)

we obtain

.s, = G (X_U-9/14 y1/7erfc[ 10 y 1
m/p w X-l (7.2.4)

where the dimensionless parameter G , referred to hereafter as the- w
wall jet operating parameter, is defined to be
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Gw
u(O)

= 1.61 --m ( )
1/2

p b(O) (7.2.5)

The stream function for the turbulent wall jet may be deduced from

equation (7.2.4) and hence by taking the limit as Y ~ co the

boundary condition for ~ at the edge of the turbulent wall jet

determined. The required boundary condition which will govern the

flow induced by the turbulent wall jet is given by

co

~ ---> G.CX-Il-9/14 J y.nerfe[ 1~_: 1 dY

o

x > 1 . (7.2.6)

7.2.2 The Two-dimensional Turbulent Free Jet

The equations of motion modelling the steady, incompressible

and turbulent flow in a two-dimensional free jet are the Prandtl

shear-layer equations (3.2.30). Following Schlichting (1968) we find

that b ~ x·, ~ (.)-112U ~ X and the stream function, t/J, of the

two-dimensional turbulent free jet is given by equation (3.2.39). In

relation to the coordinate system (X,Y) the non-dimensional form of

equation (3.2.39) may be written
~ = G (X_1)1/2 tanh(~)

y x > 1 (7.2.7)

where ~ = ~oY/(X-1) and the dimensionless parameter Gy' referred to

hereafter as the free jet operating parameter, is defined to be

G =.!_ ( 3kp ) 1/2
y 2m ~

o
(7.2.8)

where k = b(O) U(O)2. If we let Y ~ co in equation (7.2.7) then we

obtain the condition for ~ at the edge of the free jet shear-layer,

1.e.

(7.2.9)
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The flow induced by the two-dimensional jet is governed by the

potential equation (4.3.2) and in this model the boundary condition

at large distances from the ASE is enforced on R = Rm' where Rm » 1,

for 0 ~ 9 ~ w/2. This boundary condition is taken to be the

asymptotic solution of the Laplace equation (4.3.2) subject to the

appropriate boundary condition for the jet-induced flow on 9 = 0,

Le. equation (7.2.6) or (7.2.9), and subject to 'If= 0 on 9 = w/2

plus the radial flow contribution resulting from the exhaust flow.

The surface of the bench represents a streamline of the flow and

hence, for convenience, we have chosen

'If(R,w/2) = 0 (7.2.10)

To obtain an analytical asymptotic solution of the Laplace equation

it is necessary to approximate equation (7.2.6) in the form
'IfIX A (X-1)~ (7.2.11)

where the parameter A and the exponent ~ depend upon the wall jet

operating parameter Gw• Note that equation (7.2.9) is already in

this form with A = G and ~ = 1/2. Following the method outlined inr

section 4.3.1 of chapter 4 the following upstream boundary condition

is readily obtained

'If(R,9) R~ w--sin[~(-
SiM~ 2

2

~-1
- 9)] - --~--sin[(~-l)(~

sin(~-l)~ 2
2

- 9)]

~-2 }
+ ~(~-1)R w sin[(~-2)(i - 9)] - ...

2!sin(~-2)-
2

+ (7.2.12)

on 0 ~ 9 ~ w/2, R = R .
m

The remaining boundary conditions are found by assuming that

across the exhaust inlet the fluid velocity is uniformly
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distributed. Modelling the suction inlet as a finite-sized slot of

width 25 and positioned at a height H above the bench surface we•
obtain

~CX,O) = 215 (x - H. + 5) H - 5 s X s H + 5• • (7.2.13)

and hence
~(X,O) = 1

~(X,O) = 0

H + 5 < X s 1• (7.2.14)

(7.2.15)o s X < H - 5.
•

The effect of the exhaust's suction is to modify the boundary

condition at the edge of the Jet shear-layer which now becomes

~(X,O) ~ 1 +

00

G.(X-Il-9/14 J y.nerfe[

o

10 Y 1 dY
X-1

X > 1

C7.2.16a)
and

1/2~CX,O) ~ 1 + G (X-1)r X > 1 (7.2.16b)

for the wall and free Jet cases, respectively. Due to the complexity

of the problem an analytical solution is not possible and

finite-difference techniques are employed to solve the problem

numerically.

7.3 THE OPERATING PARAMETERS

From a knowledge of the physical quantities uCO), b(O), p and m

obtained from the operating conditions at which Pedersen (1991a) ran

an A5E, the operating parameters Gw and Gr which correspond to these

conditions can be evaluated. Although the mathematical model

developed may be used to examine many different aspects ·of the air
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flow pattern induced by the ASE, in this study two main modes of ASE

operation are considered.

The first mode of operation we consider, referred to as the

HI-experiment by Pedersen, is one in which the suction inlet, of

width 2s = 30 x 10-3m, is flush with the bench surface and the ratio

of the momentum flows, I, is varied. It should be noted that the

hood's suction inlet is not always flush with the bench surface and

in other experiments it may be raised above this datum level. The

values of the physical quantities used by Pedersen in the

HI-experiment were bf O) = 2 x 10-3m, p = 0.23 m and m = 0.111 m3s-1

(i.e. per metre length of the slot) and these lead to the following
approximate relationships:

Gw ~ 1.47 u(O) and GF ~ 0.0604 u(O) . (7.3.1)
The second mode of operation we consider, referred to as the

HHY-experiment by Pedersen, is one in which the momentum ratio is

fixed at I = 0.7 and the height of the suction inlet, H , above the
s

bench surface is allowed to vary. The exhaust inlet size is again

2s = 30 x 10-3m. The values of the physical quanti ties used by

Pedersen in the HHY-experiment were u(O) = 12 ms-1, b(O) = 2 x 10-3m
3 -1 1and m = 0.111 m s (1.e. per metre ength of the slot). These

quantities lead to the following approximate relationships:
G ~ 36.8 p112 and G Cl! 1.51 pll2.
W F (7.3.2)

The values of H which we shall consider in the model are
s

H = 0.349, 0.500 and 0.594; these values correspond to the values
B

of h considered by Pedersen,
B

namely h = 0.115 m,
s 0.215 m and

0.315 m, respectively.
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7.4 RESULTS AND DISCUSSION

The parameter A and the exponent ~, defined in equation

(7.2.11), may now be determined as functions of Gw and the boundary

condition along R = Rm deduced for the wall Jet case. Approximating

equation (7.2.6), as in the form of equation (7.2.11), we obtain the

following approximate relationship

~ = 0.0342 G (X-1}O.~.w (7.4.1)

The exponent ~ was found to be independent of the operating

parameter G for 0 ~ G ~ 33.4, where the upper limit of Gw = 33.4w w

is the largest value of Gw arising from the experimental operating

conditions considered by Pedersen. Comparisons are now made between

Pedersen's experimental data and the results obtained from the

theory in order to assess the ability of the mathematical model to

predict the actual operating conditions of the ASE.

7.4.1 The HI-Experiments

In the HI-experiments Pedersen examines what effect the

injection of fluid has on the air flow pattern by measuring the air

speed induced by an ASE operating at different momentum ratios. The

changes in the momentum ratios were achieved by Pedersen by varying

the jet nozzle speed, uf O}, whilst keeping all other quantities

constant. Pedersen's air speed measurements were recorded along the

length of the bench from y = 0 m to y = 1.2 m and at a vertical

distance of 0.04 m above its surface, a vertical distance which

corresponds to 0.174 dimensionless units. Pedersen (1991b) stated

that these measurements of air speed were taken outside the
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boundary-layer which forms along the bench surface and the

boundary-layer observed by Pedersen during smoke experiments

attained a maximum thickness of approximately 5 x 10-3m. In the

region where Pedersen's air speed measurements were recorded we

expect the induced flow to be dominated by the flow into a wall jet

and hence we expect the wall jet model to most accurately predict

the true operating conditions of the ASE.

Figures 7.3(a)-(d) illustrate the variation of the

dimensionless resultant air speed, Q, as a function of Y along

X = 0.174 for the momentum ratios of I = 0.0, 0.5, 0.9 and 2.5,

respectively. Each figure shows the air speeds predicted by the free

and wall jet models together with Pedersen's experimental data. On
comparing the graphs it is clear that increasing the momentum ratio,

I, results in increasing the resultant air speeds along the line

considered and this is most clearly illustrated by comparing

Fig.7.3(a) with Fig.7.3(d). Figure 7.3 shows that the qualitative

agreement between the predictions of the wall and free jet models

and the experimental data is good. Quantitatively the agreement

between the predictions of the wall jet model and the experimental

data is very good for each momentum ratio, I, over the ent1re range

of Y considered. However, the resultant air speeds along X = 0.174

predicted by the free jet model continually overestimate those

observed experimentally. The significant quantitative differences

between the wall jet and the free jet solutions can be explained in

terms of the momentum fluxes of the two different jets. The momentum

flUx of the wall jet is not conserved but decreases with increasing

distance from the jet orifice as the jet loses energy due to the

contact with the wall. The presence of the wall is very significant
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and for a rough wall the momentum flux of the jet may decrease by

50% in a longitudinal distance of 60b(0) from the jet orifice, see

Rajaratnam (1965). However, as an assumption of the boundary-layer

theory the momentum flux of the free jet is assumed to be constant

and independent of X. Therefore, for a given momentum flux the free

Jet will entrain more fluid than the wall Jet and expand more

rapidly. In fact, from the Verhoff velocity distribution (7.2.2) the
( -1width of the wall jet is given by b = 14.7) x·, whereas the width

of the two-dimensional free jet, as determined by Reichardt, is

b = (7.67)-lx•. This implies that the free jet expands almost twice

as rapidly as the wall jet. The greater flux of entrained fluid

realized by the free jet, as compared with the wall jet, further

concentrates the suction of the ASE and thus the resultant air

speeds predicted by the free jet model are greater than those

predicted by the wall jet model.

For values of the operating parameter G larger than those
F

considered in this chapter the profiles of resultant air speed

predicted by the model exhibit local minima and maxima air speeds.

The presence of these turning points may be explained by considering

how the air in front of the exhaust inlet is InfIuenced by the

effects of the exhaustion and injection. For large values of G the
F

free jet solution predicts that for Y < p/2 the movement of air in

front of the inlet is dominated by the exhaustion as the air speed

falls rapidly with increasing distance from the inlet. At a distance

of the order of p/2 from the inlet the free jet's entrainment of air

influences the flow, raising its resultant speed until a maximum

speed is reached at a distance of the order of 3p/2 from the exhaust

inlet. Thus, for the free jet the influence of the entrained air
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flow is abruptly 'felt' after some minimum distance from the inlet

is exceeded. Hence, the model predicts that when a hood employs the

Aaberg principle the suction plays only a very small role in the

movement of air in the workplace, as compared to the injection, and

it is only needed to draw the contaminated air that final distance

into the exhaust inlet over which the injection flow has no

influence. Turning points are also present in the wall jet solutions

for large values of Gw· However, the energy loss of the jet due to

its contact with the exhaust flange results in the wall jet-induced

flow more gradually affecting the overall air flow and the

magnitudes of the air speed gradients are less than those predicted

by the corresponding free jet solutions. The energy loss of the wall

jet also accounts for the decreasing quantitative agreement between

the free and wall jet solutions as the ratio of the momentum flows,

I, increases.

The variation in the dimensionless resultant air speed,

Q = q/(m/p), as a function of X predicted by the wall and free jet

models is shown in Fig.7.4 together with Pedersen's experimentally

observed air speeds for an ASE operating at I = 0.9 and I = 1.5. The

profiles of resultant air speed shown in Fig.7.4 are those predicted

and observed vertically from Y = 5.22, the dimensionless distance

corresponding to y = 1.2 m. Figure 7.4 shows that good agreement is

achieved between the predictions of the wall jet model and the air

speeds observed experimentally. Again it can be seen that the free

jet solution overestimates the observed values and the wall jet

solution. One notable feature of the ASE air flow which is both

predicted by the wall jet model and which is observed experimentally

is that the resultant air speed measured vertically from Y = 5.22 is
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Fig.7.4 The variation in the dimensionless resultant air speed, Q,

as a function of X from Y = 5.22, (a) I = 0.9 and (b) I = 1.5.
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approximately constant and of the order of Q = 0.3 and Q = 0.35 for

a hood operating at I = 0.9 and I = 1.5, respectively.

The slight deviation of the experimental observations of

resultant air speed from the predictions of the wall jet model, most

evident in Fig.7.3(d), may be as a result of inaccuracies

encountered during Pedersen's experimental measurements. Pedersen's

air speed measurements were recorded under laboratory condi t Ions

using a multi-channel DANTEC low velocity flow analyser and

integrated over 300 s and background air disturbances were
-1reportedly of the order of 0.02 ms . However, the physical presence

of the flow measuring apparatus would be enough to deflect the

hood's air flow pattern and could alone account for the

discrepancies. Furthermore, the ASE flow field may have been

affected by other external influences during the experiments, e.g.

temperature gradients.

We have seen from Figs.7.3 and 7.4 that the air flow predicted

by the wall jet model gives a good representation of the observed

flow in the regions considered. In order to examine further the

effect of the injection on the overall air flow pattern created by

the ASE we now examine streamlines deduced from the wall jet model.

Sets of streamlines modelling the air flow pattern created by an ASE

reinforced by a two-dimensional wall jet flow are shown in

Figs.7.Seal-Cd) for the operating parameters Gw = 0.0, 14.9, 20.0

and 33.4, respectively. The four values of Gw considered correspond

to I = 0.0, 0.5, 0.9 and 2.5, respectively. From the streamline

plots the dramatic effect on the overall air flow pattern achieved

by the introduction of the wall jet 1s clear. Figure 7.5 shows that

as the value of the dimensionless operating parameter Gw is



- 185 -

(a)

x

y

2

x

____--fJ.2
.2

O~~~-L-L~~~~~.----.----~--~--~
o 2

Y
3 4

rig.7.S Sets of streamlines modelling the ASE flow pattern predicted

by the wall Jet model, (a) Gw = 0.0 and (b) Gw = 14.9. The shaded

area represents the predicted effective capture region.
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Fig.7.S Sets of streamlines modelling the ASE flow pattern predicted

by the wall Jet model, (c) Gw = 20.0 and (d) Gw = 33.4. The shaded

area represents the predicted effective capture region.
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increased, the dividing streamline, ~ = 1, which divides the flow

travelling towards the exhaust inlet from that travelling towards

the injection flow, is forced towards the bench surface. The

displacement of the dividing streamline resulting from the

introduction of the wall jet flow thus implies enhanced air speeds

towards the inlet over the zero injection case. The selective nature

of the reinforced exhaust, observed experimentally by Pedersen

(1991a), is also illustrated in Fig.7.S. With G = 0.0,w see
Fig.7.S(a), air is drawn towards the inlet from all directions and

under these conditions the ASE is non-selective and performs in the

same way as a traditional flanged slot exhaust. However, as the

value of Gw is increased, see Figs.7.S(b)-(d), air is now selected

from a narrower and more well-defined region of the workplace. A
-1capture speed of 0.25 ms corresponds to a non-dimensional speed of

Q = 0.518 for the operating conditions used by Pedersen (1991a) in
c

his HI-experiments. Thus, we can define the effective capture

region, 1. e. the region from which the contaminated air will be

drawn into the exhaust -Lnlet and successfully removed from the

workplace, to be the area bounded by the line of constant speed,

Q = 0.518, and the dividing streamline ~ = 1. The effective capture
c

region is highlighted in Fig.7.S by the use of shading and we can

see how the shape of this region changes as the parameter G
w

increases. On increasing the value of G we see that the maximumw

width of the effective capture region decreases as its length

increases. Thus, increasing the value of G , and hence the momentumw

ratio, implies that the ASE can create controlled air movements over

greater distances than possible when using traditional methods or in

other words the injection creates long range exhaustion.
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Pedersen (1991b) stated that the level of background air

disturbances in the laboratory was of the order of 0.02 ms-1. This

would, however, lead to effective capture regions much larger than

those predicted by the wall jet model and larger than one could

possibly expect to achieve under practical circumstances.

7.4.2 The HHY-Experiments

Comparisons have also been made between Pedersen's observations

taken during the HHY-experiments and the predictions of the

mathematical model. Although these comparisons are not illustrated

in this chapter the conclusions drawn from them are the same as

those for the HI-experiments and again very good agreement is

obtained between the predictions of the wall jet model and all the

experimental observations.

7.5 CONCLUSIONS

A simple mathematical model for the fluid mechanics of an

Aaberg slot exhaust hood has been developed and the parameters G
F

and G , which characterize the subsequent free and wall jet-inducedw
flows, identified. The wall jet model developed in this chapter

shows good agreement, both quantitatively and qualitatively, with

the experimental observations of Pedersen (1991a). The agreement

gives us confidence in the theory and illustrates the mathematical

modelling as a cost-effective means of confidently predicting the

air flow field of the ASE. The simple mathematical model allows

predictions to be made as to from what region of the workplace a
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neutrally-buoyant contaminant can be successfully removed as a

function of the governing parameters. The model also illustrates the

directional flow pattern achieved when a traditional slot exhaust is

reinforced by a jet flow and predicts that in all aspects a much

improved air flow pattern is developed when using the Aaberg REEXS.

The resultant air speeds predicted by the free jet model imply

that the air flow pattern of the ASE could be significantly enhanced

through a simple modification to the hood's design. Namely, if the

part of the exhaust flange along which the wall jet of the original

ASE develops were moved 'backwards' then the emerging jet will issue

as a free jet, see Fig.7.6. In this way the fluid entraining

properties of the free jet can be utilized whilst still keeping the

back wall to contain the technological process.

inlet

Fig.7.6 Cross-section through the Aaberg slot exhaust - illustrating

the back wall design modification.

The implementation of the suggested design modification is only

suitable when the ratio of the momentum flows is sufficiently large

so that the Jet is near vertical and relatively unaffected by the
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exhaust flow. However, if the hood is to operate as a REEXS at low

values of the momentum ratio then the back wall should be

maintained. Pedersen and others have observed that the system is

then able to operate as a REEXS for values of I lower than the

corresponding free jet case due to the entrainment of fluid into the

wall jet from the wall-side of the jet. This flow assists the jet to

remain attached to the wall.



CHAPTER EIGHT

THE USE OF FLUENT

- A FULL l1JRBULENCE MODEL -
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8.1 INTRODUCTION

The mathematical models presented in the previous chapters have

been developed under the assumption that the flow induced by an

Aaberg exhaust hood is inviscid and potential and that turbulent

effects have been limited to the flow in the jet. As mentioned in

earlier chapters, the typical experimental operating conditions of

an Aaberg exhaust hood lead to Reynolds numbers which, based on the

jet nozzle width, b(O), and initial jet velocity, u(O), imply that

the fluid flow in the jet is turbulent. Similarly, the Reynolds

numbers associated with the fluid flow into the exhaust inlet, for

both (1) the axisymmetric Aaberg exhaust hood and (11) the Aaberg

slot exhaust hood, based on the radius or slot width, s , of the

exhaust inlet and the face velocity, uin' under typical operating

conditions, are (i) 0(103) and (ii) 0(10'). Thus, both the flow in

the jet and in the region surrounding the exhaust inlet are very

likely to be turbulent. However, in the region of practical

interest, i.e. the region of the flow which leads into the exhaust

inlet, the air flow created by the Aaberg exhaust hood is a

convergent flow and therefore in this region we expect there to be a

very low level of turbulence.

In this chapter the full, turbulent Navier-Stokes equations are

solved using the control volume method and the k-c model as

developed by Launder and Spalding (972) is employed in order to

model the turbulent properties of the fluid flow. The quantities k

and c denote the turbulent kinetic energy and the turbulent energy

dissipation of the turbulent motion, respectively. The widely used

and commercially available CFD package FLUENT, which solves the full
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turbulent equations using the aforementioned control volume

technique, has been used to generate the results which are presented

in this chapter. The air flows predicted by the full turbulent model

for both the axisymmetric Aaberg exhaust hood and the

two-dimensional Aaberg slot exhaust (ASE) are then compared with the

air flows predicted by the inviscid flow models developed in

chapters 6 and 7, respectively. The relative merits of the two

different techniques for determining the flow field are also

discussed.
The standard, full turbulent equations of motion are now

introduced and a description of the control volume technique and the

solution procedure SIMPLEC are given.

8. 2 TIlE FULL TIJRBULENCE MODEL

The equations of motion which govern the flow of a steady,

incompressible, turbulent viscous fluid are the time-averaged

Navier-Stokes equations, namely the continuity equation (2.2.1a) and

the momentum equation (2.2.1b).

8.2.1 The k-c Model

In order to overcome the limitations of the Prandtl mixing

length hypothesis, more sophisticated turbulence models, see for

example Launder and Spalding (1972,1974), were developed which

account for the transport of turbulent quantities by solving

differential transport equations. The k-c model is known as a two

equation model, having transport equations for the kinetic energy,
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k, and the dissipation rate, e. A standard k-e model, as developed

by Launder and Spalding (1974), is now employed and the governing

equations are as follows:

the turbulent kinetic energy equation
v

(u.V)k = V.(_! Vk) + t - e
O'k

(S.2.1a)

and the turbulent energy dissipation equation
v 2

(u.V)e = V. (_!' Vel + C -ket - C -ke.
0' 1 2e

(S.2.1b)

The k-e model uses equations (S.2.1) to calculate the distributions

of k and e, and the turbulent viscosity may be determined from the

Prandtl-Kolmogorov formula:

k2v = C -tile (S.2.2)

In expressions (S.2.1) the quantity t is the generation of turbulent

energy which is caused by turbulent stresses and the values of the

coefficients C , C , C , 0' and 0' appearing in equations (S.2.1)
1 2 Il k e

and (S.2.2) are based on an extensive examination of free flows, see

for example Launder and Spalding (1974), and in this thesis are

taken to be C = 1.44, C = 1.92, C = 0.09, 0' = 1.0 and 0' = 1.3. It is
1 2 Il k e

generally accepted that these values are applicable to any system in

which the exponents of k and e in equation (S.2.2) are 2 and 1,

respectively.

S.2.2 The Boundary Conditions

All of the governing equations, namely equations (2.2.1) and

(S.2.1), are elliptic in nature and therefore, in addition to the

upstream boundary conditions, we must specify boundary conditions on

the surface of the Aaberg exhaust hood and on the axis of symmetry.
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The no-slip conditions of u = v = 0 are applied at boundaries

representing stationary solid walls. Ideally the turbulent kinetic

energy, k, is set to zero on the wall whilst the rate of

dissipation, c, is finite. However, there are two main difficulties

encountered when imposing these boundary conditions, namely, (i) a

fine grid is required in order to resolve the steep gradients that

occur in the region close to the wall and this results in a very

expensive computation, and (ii) the constants appearing in the k-c

equations are not applicable in the wall region.

The 'wall function' approach is often employed to overcome

these difficulties and involves placing the first grid point P at a

distance y from the wall. The 'boundary condition' for e is then

specified at the first grid point away from the boundary, thus

avoiding the need to resolve the steep gradients across the

boundary-layer. In the region of the turbulent flow where the fluid

velocity is assumed to be governed by the wall function, namely

u =.!. In(Ey+)
+ le:

U

35 < Y+ 3< 50, (S.2.3)

see White (1991), it is convenient to assume that the generation, t,

and dissipation, c, of turbulent energy are in equilibrium. Hence

equation (S.2.1a), which governs the variation of k, has a constant

solution and therefore the boundary condition

ak = 0an (S.2.4)

should be enforced at the surface of the body. In equation (S.2.3),

the von Karman constant Ie: = 0.42 for a smooth wall, the roughness
. + +parameter E = 9.S, Y = yu Iv is the dimensionless friction length,

where y is the distance from the wall, and the shear velocity u+ is

defined +as u = (T Ip)1/2 in which T
w w

is the shear stress on the
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wall. The boundary condition for the dissipation rate at the point P

is calculated from the following expression
C 3/"k312

eP= ( Il ICy ) P (8.2.5)

On any boundary where the fluid leaves the system, and on the

axis of symmetry, the condition of a zero normal gradient, i.e.

8/8n = 0, for all the dependent variables is specified. Also

enforced on the axis of symmetry is the condition of a zero normal

component of the velocity, i.e. v = O. For the flow upstream of the

Aaberg exhaust hood, the values of k and £ are not experimentally

known although they may be predicted from the formula used for

internal flows, t .e, k = (I U )2 and e = 0.09 k1.5/(0.3R ) where I
co co h co

and U are the turbulent intensity and the air speed upstream of the
co

exhaust hood, respectively, and R is the hydraulic radius
h '

see
Nallasamy (1987).

In order to model the jet flow of the Aaberg exhaust hood,

constant velocity and turbulence intensity values have been

specified at the opening of the jet, from which boundary conditions

on k and £ may be determined. The turbulence intensity of a

constrained radial jet has been investigated by Witze and Dwyer

(1976) who found that the level of the turbulence varies

considerably across the width of the jet, from approximately 30%

along the jet centre-line to a maximum of approximately 60% when

y/b ~ 1.5. For wall jet flows, the turbulence intensity has been
112

taken to be 20%, a value which represents an average of the maximum

turbulence intensity recorded experimentally in the turbulent wall

jet, see Launder and Rodi (1981). The respective turbulence

intensities of 60% and 20% for the radial and the wall jet flows may
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be considered as reasonable approximations for the present geometry

and operating conditions.

Operating under suction alone the flow patterns generated by

both the two-dimensional slot exhaust and the three-dimensional

axisymmetric exhaust converge radially towards the exhaust inlet.

Consequently. specifying the normal derivative of the velocity to be

zero across the upstream rectangular boundary is not a reasonable

representation of the fluid motion in this region. Therefore. for

I = 0 the boundary conditions upstream were specified in terms of

the pressure which was deduced from the Bernoulli equation under the

assumption that the suction acts as a simple sink.

8.3 THE NUMERICAL METHOD

A brief summary of the methods used to solve the full k+e

equations. namely the control volume method and the Semi-Implicit

Method for Pressure Linked Equations Consistent (SIMPLEC) are now

given. SIMPLEC is not a control volume scheme in its own right but

rather an improvement made. by Van Doormaal and Raithby (1984). to

the existing SIMPLE scheme which was developed by Patankar and

Spalding (1972) and which has been extensively discussed by Patankar

(1980). All the results presented are of a two-dimensional or

axisymmetric nature and consequently the numerical method is

described in terms of only two dimensions.

For steady flow the equations of conservation of mass.

momentum, and transport of k and e can all be written in the general

form
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v.(pu~) = v.(r v~) + s~ (S.3.1)

where ~ now represents the general variable under consideration, r

is the transport coefficient and S~ is the source term for any

transport effects not included in the transport coefficient. For a

two-dimensional flow, equation (S.3.1) may be written in cartesian

form as

(S.3.2)

The basic idea of the control volume method is to divide the

solution domain into a number of discrete, non-overlapping control

volumes such that there is one control volume surrounding each grid

point. The simplest two-dimensional control volume is rectangular

and is shown schematically in Fig.S.1, where the grid points

labelled N, S, E and W represent the grid locations to the north,

south, east and west, respectively, of the grid point P under

consideration. The differential equations are then integrated over

each control volume and by expressing the variation of ~ between the

grid points as piecewise linear profiles the required integrals may

be evaluated. The discretization of the domain and the dependent

variables therefore makes it possible to replace the governing

differential equations (8.3.2) by a system of algebraic equations of

the form
a ~ = a ~ + a ~ + a ~ + a ~ + S~
P~P E~E W W 5 5 N~N ~ (S.3.3)

where a
l
, 1 = P, E, W, Nand 5, represents the coefficient of ~ at

the grid point i , Equation (S.3.3) represents the relationship

Qetween the value of the variable ~ at the node P to the values at

the neighbouring nodes. In this section we shall concentrate our

attention on the treatment of the momentum equation and consequently
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it is convenient to consider equation (S.3.3) as having the form

a</>=~a </> +b
p p nb nb

(S.3.4)

where the subscript nb denotes a neighbour and the summation is

taken over all neighbours and b is the source term of the momentum

equation, i.e. it is the discretized form of the pressure gradient

term.

N

I~ Ax ,1
nr---- -----l-

I I

W I P I E
WI le

I I
AyI IL ____ _____J_l

s
y

x

S

Fig.S.l A two-dimensional rectangular control volume.

The variables k, £ and the pressure are calculated at the main

grid points P, N, S, E and W, while the velocity components are

calculated for the points which lie on the faces of the cell

boundaries, see Fig.S.l, 1.e. the staggered grid system has been

employed. Using the main grid nodes such a discretization leads to a

momentum equation which contains the pressure differences between

two alternate grid points rather than between two adjacent ones. Not

only does this affect the accuracy of the solution but it also

results in a numerical method which would allow unrealistic
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solutions, for example a zig-zag pressure field. Similar problems

also arise in the treatment of the continuity equation when a

staggered grid is not employed. Using a staggered grid the

discretized x component of the momentum equation can be written as

a u = ~ a u + (p - p )A
e e nb nb PEe (S.3.Sa)

where the pressure gradient dP/dx gives rise to the last term of

equation (S.3.Sa) and is the pressure acting on the u control

volume, and A (= ~y in two dimensions) denotes the area on which
e

the pressure difference acts. Similarly, for the y component of the

momentum equation we obtain

a v = ~ a v + (p - p )A
n n nb nb P N n (S.3.Sb)

In most circumstances it is not possible to specify the correct

pressure field and the velocity must be determined based on a

guessed pressure field p•. The resulting velocity field, denoted by

(u·, v·), will then not in general satisfy the continuity equation.

The guessed pressure p. is improved by introducing a pressure

correction term, p'. such that
p = p. + pi (S.3.6)

with the intention that the resulting approximate velocity

components u· and v· become closer to satisfying the continuity

equation. The velocity components will respond to this change in

pressure and consequently the velocity corrections u' and Vi are

introduced such that u = u· + u' and v = v· + Vi. The velocity

components u· and v· are then to be corrected in response to the

pressure corrections via the velocity correction equations:
u = u. + d (p/- pi)
e e e P E

v = v· + d (p/_ pi) .
n n n P N (S.3.1)

The only difference between the methods SIMPLE and SIMPLEC is in the

choice of the coefficients d and d in equation (S.3.1) and ine n
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e
= A /(a - ~ a )

e e nb
and d = A /(a - ~ a ).

n n n nb OnSIMPLEC d

substituting expressions (8.3.7) for the velocity corrections into

the continuity equation we obtain the pressure correction, pi, from
a pi = a pi + a pi + a pi + a pi + bP PEE W W S S N N (8.3.8)

where the term b and the coefficients a , a , a , a and aN are nowPEW S
particular to the pressure correction equation (8.3.8). When solving

the pressure correction equation (8.3.8), the condition of a zero

normal gradient for the pressure correction is specified at all flow

boundaries.

8.3.1 An OUtline of the SIMPLEC Algorithm

The Semi-Implicit Method for Pressure Linked Equations is a

sequential, rather than simultaneous, procedure for calculating the

flow field and consists of the following steps:

(i) Guess the pressure field p•.

(ii) Solve the momentum equations (8.3.5) for u· and v·.

(iii) Solve the pi equation (8.3.8) and update the pressure.

(iv) Update the velocity components u and v by using the velocity

correction formulae (8.3.7).

(v) Solve the discretized form of equations (8.2.1) for k and E.

(vi) Repeat steps (ii)-(v) until a converged solution has been

obtained.

8.3.2 Solution of the Algebraic Equations and Convergence Criterion

The system of algebraic equations which results from the

discretization of the governing equations is solved for one

dependent variable at a time using the iterative Iine-by-line

method, see Patankar (1980). With the line-by-line method a
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relaxation factor, w, is often employed and equation (8.3.4) may be

written in the form

a a
p J. = ~ a ~ + b + (1 - w)...! ~.w "'p nb nb W p (8.3.9)

where ~. denotes the value taken by ~ at the previous iteration. In
p p

the treatment of the non-linear momentum equation under-relaxation

is necessary in order to avoid divergence of the iterative solution,

whilst in contrast the pressure correction equation is linear,

taking the form of a discretized Poisson equation, and

over-relaxation may be used to speed up the convergence.

The convergence criterion used is usually referred to as the

mass residual and is based on the reduction of the pressure

correction term, pi, to some small value. The mass residual of every

control volume for the continuity equation is the constant term b in

equation (8.3.8) and this may be written in the form

IRk I = C - C + C - C
ma88 e If n 8

(8.3.10)
where C , C , C and C represent the mass flux through each face of

e If n 8

the control volume surrounding the point P. The mass residual,

R ,
ma88

for the convergence criterion is the sum of the mass

residuals over all the control volumes and is often normalized with

respect to its value taken at the previous iteration. The mass

residual serves as a useful indication of the rate of convergence of

the iterative process as the continuity equation is exactly

satisfied when R = O. This cannot of course be achieved using
ma88

the numerical technique and convergence is taken to be when the mass
-3 -4residual is typically 0(10 ) or 0(10 ).
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8.3.3 The Computational Grid

In order to produce solutions which are grid independent,

solutions were obtained for increasingly fine grids and the results

compared graphically. Grid independent solutions were taken to be

those having no observable changes in the flow pattern on increasing

the number of grid nodes. In addition to the grid independence test,

the domain was doubled in size until graphically indistinguishable

solutions were observed as for grid independent solutions.

In order to resolve the flow in the jets of the two exhaust

hoods considered, a fine grid was necessary in these regions. The

grid chosen in the direction parallel to the direction of the

emerging jet was finest near the axis of the jet and expanded

symmetrically outwards on either side of the jet. The grid chosen in

the direction perpendicular to the direction of the emerging jet

concentrated the grid cells in regions where rapid changes were

expected, 1.e. around the exhaust inlet and jet orifice.

Some difficulty was encountered in obtaining a smoothly varying

flow in the jet but this was overcome by mesh refinement in the

initial development region of the jet and a convergent solution was

achieved when the mass residual was 0(10-3). Decreasing the mass

residual to 0(10-') resulted in no significant change to the

solution obtained in all the cases considered in this thesis. With

the standard meshing technique there is some uncertainty regarding

adequate flow resolution in the jet and an alternative meshing

technique which 'tracks' the progress of the jet, such as an

adaptive meshing technique, would perhaps be more appropriate for

this problem.
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8.4 RESULTS AND DISCUSSION

The modelling techniques which have Just been described are now

applied to the problem of determining the air flow induced by the

axisymmetric Aaberg exhaust hood and the Aaberg slot exhaust. Both

cases have been studied in order to make comparisons between the

simple mathematical models, developed in chapters 6 and 7, and the

more sophisticated k-c turbulence model as discussed in this

chapter. Comparisons will also be made with the experimental results

of Pedersen (1991a,1993) and Pedersen and Nielsen (1991).

8.4.1 The Axisymmetric Aaberg Exhaust Hood

The flow of the axisymmetric REEXS is assumed to be

axisymmetrical, and the full Navier-Stokes equations are given in,

for example, Anderson et al. (1988). All the numerical results

presented in this chapter for the axisymmetric exhaust are based on

the dimensions and inlet conditions given by Pedersen and Nielsen

(1991), see Table 6.1, and in this study the effect of varying the

momentum flux of the radial jet has been examined whilst all other

parameters remain constant. The operating conditions now considered

are I = 0.0, 0.5, 0.9 and 1.95, which correspond to jet exit speeds
-1 -1 -1 -1of u(O) = 0.0 ms , 30.8 ms , 41.4 ms and 60.9 ms , respectively.

The air flow pattern for the axisymmetric hood described is

shown in Figs.8.2(a)-(d) for the momentum ratios I = 0.0, 0.5, 0.9

and 1.95, respectively. The variation in the resultant air speed,

uluin, as a function of the distance, y/a, along the centre-line of

the exhaust hood predicted by the CFO model is shown in

Figs.8.3(a)-(d) for I = 0.0, 0.5, 0.9 and 1.95, respectively. Also
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shown in Fig.8.3 are (i) the centre-line air speed predicted by the

simple mathematical model presented in chapter 6 and (11) the air

speeds observed experimentally by Pedersen and Nielsen (1991).

Considering first the case I = 0.0, Fig.8.2(a) indicates that

air is drawn into the exhaust inlet from all directions with a

significant amount of fluid being sampled from behind the hood. The

exhaust flow is inefficient and non-directional, as observed by

Pedersen and Nielsen (1991), and the rapid decay in the centre-line

air speed, which results in a limited range of contaminant capture,

can be seen in Fig.8.3(a).

From the results shown in Fig.8.2 the effect of the turbulent

radial jet on the hood's induced air flow, as a function of the

momentum flux of the jet, is immediately apparent. For the largest

momentum ratio considered, namely I = 1.95, the axis of the

developing jet is almost perpendicular to the axis of symmetry of

the hood and the jet-induced flow exhibi ts a degree of symmetry

about the axis of the jet. However, as the ratio of the momentum

flows, I, decreases, the axis of the jet deviates from the near

vertical position and the curvature and thickness of the jet

increases. As expected, the width of the efficient flow decreases

and the air speed in the. efficient flow increases as I increases.

The dramatic changes in the spacing of adjacent streamlines shown in

Fig.8.2 indicates that the air speeds increase significantly

throughout the workplace as the momentum ratio increases.

A compari son of the results presented in Fig.8.3 shows that

there is close agreement between the resultant centre-line air speed

predicted by the CFD model and the simple mathematical model; both

models accurately reproduce the air speeds observed experimentally
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(a)

--------------

---------------------------

Fig.S.2 The streamlines for the flow around an axisymmetric Aaberg

exhaust hood. the volume flux of air between adjacent streamlines is

denoted by t:.t/J.
-3 3 -1(a) I = O.O, t:.t/J Cl: 2.5x10m s • and (b) I = o. 5.

-2 3 -1t:.t/J Cl: lxlO m s .
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-----------------------------

---------------------------

Fig.8.2 The streamlines for the flow around an axisymmetric Aaberg

exhaust hood, the volume flux of air between adjacent streamlines

~~ ~ 1x10-2m3s-1, (c) I = 0.9 and (d) I = 1.95.
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(a)

1=0.0

• Pedersen
- Model
---·Fluent

0.0
0 2 3 4 5 6 7 8 9

y/a

(b)

1=0.5
• Pedersen

-- Model
---·Fluent

c
::J-::J

0.4

o 2 3 4 5 6 7 8 9
y/a

FIg.8.3 The varIatIon In the resultant aIr speed, u/u
1n

, along the

centre-llne of the axIsymmetrIc exhaust hood, showIng the present

crn results (- - -), the model (--) and the experImental results

of Pedersen (1993) ( • ), for (a) I = 0.0 and (b) I = 0.5.
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(c)

1=0.9
• Pedersen

-Model
---·Fluent

0.0
0 2 3 4 5 6 7 8 9

y/a

(d)

1=1.95
• Pedersen

-Model
---·Fluent

c
::J.......
::J

0.4 ,,
0.2

o 2 3 4 5 6 7 8 9
y/a

Fig.8.3 The variation in the resultant air speed, u/u
1n

, along the

centre-line of the axisymmetric exhaust hood showing the present CFD

resul ts (- - -), the model (--) and the experimental results of

Pedersen (1993) ( • ), for (c) I = 0.9 and (d) I = 1.95.
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by Pedersen and Nielsen (1991). The close agreement, which is

achieved over a wide range of momentum ratios, indicates that the

simple mathematical model does provide an accurate means of

predicting the centre-line air speed of the hood, even when the

ratio of the momentum flows is small and the axis of the radial Jet

deviates significantly from the vertical. The good agreement may be

due to the fact that the profile of the efficient flow region, and

hence the air speeds in this region, is predominantly determined by

the flow entrained into the initial development region of the radial

jet, 1.e. the region where the air speeds in the jet are still

comparable with the jet exit speed. Further away from the Jet

orifice, where the air speed in the jet is relatively small compared

with the jet exit speed, entrainment into the jet is expected to

have no significant effect on the efficient flow region. In the

initial development region of the jet, a slender jet with a vertical

axis provides a good approximation to the flow predicted by the CFD

model, see Fig. 8. 2. However, as the ratio I is further decreased,

from I = 0.5, the jet is increasingly influenced by the exhaust flow

and the simple mathematical model is expected to completely break

down.
The CFD model has also been used to examine what effect the

turbulence intensity in the radial jet has on the overall air flow

produced by the exhaust hood. Three different values of turbulence

intensi ty were considered, namely 40", 60" and 80", and the air

flows produced by the hood operating at I = 1.95 were compared. The

air speeds developed along the centre-line of the hood were found to

be graphically indistinguishable, as were the streamlines in the

entire flow region.
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S.4.2 The Aaberg Slot Exhaust Hood

A series of investigations into the operation of an Aaberg slot

exhaust have been performed by Pedersen (1991a). The present study

assumes two-dimensional flow and concentrates on the flow behaviour

with respect to changes in the momentum ratio, I, and consequently

refers to Pedersen's HI-experiment, see chapter 7, in which all the

operating parameters are kept constant, except for the Jet exit

speed and hence the momentum ratio. A broad range of momentum ratios

have been investigated, namely I = 0.0, 0.5, 0.9 and 2.5, and

comparisons made between the air flow predicted by the ern model ,
the ASE model developed in chapter 7, see Hunt and Ingham (1993) and
the experimental work of Pedersen.

Figures S.4(a)-S.7(a) show the streamline patterns determined

from the CFD model for a proportion of the domain close to the ASE

for the operating conditions I = 0.0, 0.5, 0.9 and 2.5,

respectively. The rectangular outline depicted in Figs.S.4(a)-S.7(a)

represents the body of the exhaust system, which has a width of

0.2 m, a height of 0.4 m and an inlet width of 0.03 m. The small

extrusion on the right hand side of the exhaust indicates the

position of the Jet nozzle, which has a width of 2 x 10-3m. The

corresponding non-dimensio~al streamline patterns predicted by the

simple mathematical model for the ASE flow are shown in

Figs.S.4(b)-S.7(b), where only the air flow in front of the exhaust

is illustrated. By examining the profiles of the efficient flow

region it is clear that the agreement between the CFD model and the

Simple mathematical ASE model is good over the range of momentum

ratios considered. The streamlines illustrated in Figs.8.4(a)-S.7(a)

show that the two-dimensional Jet flow of the ASE is relatively
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(a)

(b)

><

Flg.8.4 Streamlines for the flow around the ASE unit operating at

I = 0.0, (a) the CFDmodel, the volume flux of air between adjacent

-3 3 -1
streamlines !J.I/J 0< 8.15xl0 m s per metre length of the slot, (b l

the simple mathematical ASEmodel, see chapter 1.
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(a)

v

(b)

><

Fig.8.S Streamlines for the flow around the ASE unit operatlng at

I = 0.5, (a) the CFD model, the volume flux of air between adjacent
-2 3 -1streamlines ~~ ~ 3.SxlO m s per metre length of the slot, (b) the

simple mathematical ASE model, see chapter 1.
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(a)

(b)

><

Fig.8.6 Streamlines for the flow around the ASE unit operating at

I = 0.9, (a) the CFO model, the volume flux of air between adjacent
-2 3 -1streamlines ~~ ~ 3.5xlO m s per metre length of the slot, (b) the

simple mathematical ASE model, see chapter 1.
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(a)

(b)

><

2

__-----~.t---------
O~~~---'----~--.---~----r---~--~

o 2Y 3 4

Fig.8.7 Streamlines for the flow around the ASE unit operating at

I = 2.5, (a) the CFD model, the volume flux of air between adjacent
-2 3 -1streamlines ~~ ~ 3.SxlO m s per metre length of the slot, (b) the

simple mathematical ASE model, see chapter 7.
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unaffected by the suction flow as the axis of the jet remains

approximately perpendicular to the bench surface for all the values

of I considered. This result is in sharp contrast to the behaviour

of the axisymmetric radial jet described in section 8.4.1 and

indicates that the wall has a significant effect on the evolution of

the two-dimensional jet flow for the ASE. This phenomena was also

noted by Hyldgard (1987), who reported that the critical injection

velocity for an axisymmetric hood with a back wall was lower than

that for the standard hood.

The variation in the resultant air speed, q/(m/p), at a height

of x/a = 0.174 above the surface of the bench, as a function of the

distance, y/p, along the bench predicted by the CFD model is shown

in Figs.8.8(a)-(d) for I = 0.0, 0.5, 0.9 and 2.5, respectively. Also

shown are the air speeds predicted by the turbulent wall jet model

of the ASE and those observed experimentally by Pedersen (1991a). In

general the agreement between the CFD model and the simple

mathematical ASE model is very good for each momentum ratio

considered, although it is not clear which of the numerical

techniques most accurately reproduces the experimental data. As

expected, in both the CFD and simple mathematical model cases, a

continuous decrease in the air speed is observed with increasing

distance from the exhaust face, whereas Pedersen's observations

exhibit some fluctuations in the air speed and this is most apparent

when I = 2.5. As mentioned in chapter 7, the slight discrepancy

between the experimental and numerical results could be explained in

terms of background air movements in the experimental laboratory or

by the presence of flow measuring equipment which could also disturb

the flow.
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Fig. 8. 8 The variation in the resultant air speed, q/(m/p), at a

height of x/a = 0.174 above the bench surface, showing the present

CFD results (- - -), the ASE model (--) and the experimental

results of Pedersen (1993) ( • ), for (a) I = 0.0 and (b) I = 0.5.
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Fig.8.8 The variation in the resultant air speed, q/(m/p), at a

height of x/a = 0.174 above the bench surface, showing the present

CFD results (- - -), the ASE model (--) and the experimental

results of Pedersen (1993) ( • ), for (c) I = 0.9 and (d) I = 2.5.
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Figure 8.8(a) illustrates that for values of yip greater than

approximately 1.5, the CFD model underestimates the air speeds

predicted by the simple mathematical model. This result was expected

as the simple mathematical model assumes the exhaust flange has an

infinite width and thus does not account for fluid being drawn from

behind the exhaust system. From Figs.8.8(b)-(d) it is also evident

that the air speeds predicted by the CFD model along xla = 0.174 for

I = 0.5, 0.9 and 2.5 slightly overestimate those predicted by the

simple mathematical model. The differences between the two solutions

are probably due to the different types of jet flow modelled. The

simple mathematical model assumes a turbulent wall jet flowing along

a flange of infinite length, whereas the jet flow modelled by the

CFD model undergoes a transition from an initial turbulent wall jet

phase to a turbulent free jet flow, where its momentum flux is then

conserved. Consequently, we expect the latter of the two jets

described to entrain more fluid and thus enhance the air speeds in

the region of interest when compared with the infinite flange wall

jet model.

8.5 CONCLUSIONS

In this chapter the axisymmetric REEXS and the two-dimensional

ASE models presented in chapters 6 and 7, respectively, have been

further validated by comparison with the results obtained from

solving the full, turbulent Navier-Stokes equations using the CFD

code FLUENT. In both the two-dimensional and three-dimensional

axisymmetric cases the air speeds and flow fields predicted by the
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cm model and the simple mathematical models developed in this

thesis are in good agreement. This gives us full confidence in the

simple modelling techniques adopted.

The cm package FLUENT was found to provide a convenient means

of validating the models which have been developed earlier in this

thesis and the determination of the full flow field using the cm
provides useful information regarding the interaction between the

Jet flow and exhaust flow regions. However, in comparison with the

simple mathematical models, the parameters which govern the fluid

flow of the Aaberg exhaust hood are less easily identifiable when

using the cm package as are the relationships between these

parameters. Solving the full Navier-Stokes equations is

computationally expensive in comparison with the modelling code;

convergent results for the latter were achieved in a fraction of the

computational time required by FLUENT. Clearly, both methods of

determining the fluid flow have their advantages and disadvantages.



CHAPTER NINE
GENERAL CONCLUSIONS
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The design of traditional exhaust hoods to give optimal flow

and predictability of capture efficiencies under specific conditions

of usage is a topic that has received a substantial amount of

interest. However, until the start of the present work the many

parameters which govern the fundamental fluid flow which is induced

by jet-reinforced exhaust hoods, such as those employing the Aaberg

principle, had not been identified and consequently the fluid flow

produced by this type of hood was far from being well-understood.

Experimental work has been performed with combined injection and

exhaustion, mainly at the University of Aalborg, Denmark, and at the

Health and Safety Executive, Sheffield, in order to obtain an

improvement in the collection efficiency of the exhaust. However, as

reported by Hyldgard (1987), and others, this has been "so far

without success".

In the design, or in the selection of exhaust hoods for a

particular application, the velocity profile in front of the exhaust

hood determines its capture efficiency and, therefore, it is of

prime importance. In some papers published in the early 1960's a

simple linear approach to calculating the centre-line velocity was

used in order to determine the exhaust hood design. Clearly this is

not satisfactory and one of the main aims of this thesis was to

develop simple fluid dynamics models of the Aaberg exhaust hood in

order to predict the fluid velocity everywhere but in particular in

front of the hood. This work has been very successful with both

two-dimensional and three-dimensional axisymmetric models of the

fluid flow induced by a jet-reinforced exhaust hood having been

developed.
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This thesis begins by considering the fluid flow which is

induced by two-dimensional, jet-reinforced exhaust hoods which are

of a simplistic design, see chapters 3 and 4. In chapter 3 the

exhaust flow is idealized, and modelled as a line sink of fluid, in

order to obtain analytical expressions for the components of the

fluid velocity in front of the hood. In the following chapter this

simple two-dimensional model was extended and the shape and size of

the region of high capture· efficiency was determined for a wide

range of exhaust inlet sizes and for an exhaust hood which is

suspended vertically above and facing the floor of the workplace.

Although hoods of the simplistic nature modelled in chapters 3 and 4

of this thesis have not been studied experimentally, the simple

models clearly identify the parameters which govern the flow induced

by such exhaust hoods and give good qualitative agreement with all

the available experimental data.

The remainder of this thesis has been devoted to the

development and validation of mathematical models for the purposes

of predicting the fluid flow produced by Aaberg exhaust hoods which

exist in prototype form and whose fluid flows have been studied

experimentally. Two types of hood have been investigated, namely the

axisymmetrical reinforced exhaust system (REEXS) and the Aaberg slot

exhaust (ASE). In the latter case the exhaust opening is in the form

of a slot and is positioned above and perpendicular to a surface or

'bench', whereas in the former case the exhaust extends into a room

and has an axisymmetrical geometry. Some of the parameters that have

been varied in these two applications of the Aaberg principle are:

(a) The volumes of air injected and withdrawn.

(b) The shape of the exhaust hood.
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(c) The size of the inlets and outlets.

(d) The orientation and position of the exhaust hoods.

A full description of the results obtained in each of the above

investigations is given at the end of each appropriate chapter in

the thesis and is therefore not repeated here. These models have now

been fully developed and are very robust in their operations.

The formulation of the axisymmetric model for the REEXS

involved a new approach to modelling the turbulent radial flow of a

viscous fluid from a narrow annular orifice. The turbulent radial

jet flow developed in chapter 5 of this thesis adopts the Prandtl

constant momentum transfer model for the eddy viscosity and the

resulting parabolic equations are solved numerically. These results

are in very close agreement with both the empirical and theoretical

resul ts of numerous other authors who have investigated turbulent

radial jet flows.

The mathematical models developed in this thesis for the

axisymmetrical REEXS and the ASE systems have been extensively

validated by comparing the numerically predicted results with the

experimental data of Hyldgard (1987), H0gsted (1987), Pedersen and

Nielsen (1991),

(1991,1993) . It

Pedersen (1991a,1993) and Fletcher and Saunders

is concluded that the results of the simple

mathematical models give excellent agreement with all the available

experimental data. Once a new design or operating procedure has been

postulated by using the simple mathematical models then a more

sophisticated model, i.e. a full computational fluid dynamics model,

which is more expensive in both real time and CPU time, can be used

to fine tune the design. Having done this then more experimental

work can be performed in order to further optimize all the governing
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parameters so that the efficiency of the Aaberg exhaust hood can be

maximized.

There are many operating and geometrical design parameters

which may be varied and in order to perform all the experiments

needed to cover all parameter space it is both very costly and

time-consuming. However, now that the basic fluid mechanics models

have been developed they are very easy and cheap to use in order to

test any suggested changes in the operating and/or geometric

parameters for both the REEXS and the ASE systems. This approach

therefore provides a cost-effective way of reducing the total number

of experiments which have to be performed. It must, however, be

stressed that both the simple mathematical models and the CFD models

can be no substitute for performing experimental work in the

industrial environment.

There is much scope for future investigation into both the

design and the operating conditions of the Aaberg exhaust hood which

will lead to an optimization of its fluid flow with respect to the

energy consumption and capture efficiency. Preliminary

investigations ,of possible hood design modifications performed by

the author have indicated that the fluid speed induced by a

two-dimensional Aaberg exhaust hood is significantly influenced by

changes in the direction of the jet flow. The jet flow of the

original design issues perpendicularly to the centre-line of the

hood (~= 90°). However, these investigations predict that the

induced fluid speed in the region of interest can be significantly

enhanced by orientating the jet flow such that ~ < 90°. It is

important that these design modifications, and others, should be

addressed.
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Finally, the work done in this thesis has focused on the

fundamental fluid flow pat tern induced by the Aaberg exhaust hood

and for this reason the contaminant modelled has been assumed to be

neutrally-buoyant and the effects of diffusion have been ignored.

The models developed allow one to make confident predictions as to

the fluid speeds induced by a hood of a specific geometry and

operating under given conditions. However, the actual operating

conditions of the exhaust must be tailored to fi t the particular

industrial application and they will depend upon the nature and

location of the contaminant to be exhausted. The introduction into

the fluid flow of a source of non-neutrally-buoyant contaminant is

therefore the next logical progression in the mathematical and

numerical study of the Aaberg exhaust hood.
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