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Abstract

Ultrasound is predominantly an ‘active’ sensing modality, with information obtained by

transmission of an acoustic wave, followed by analysis of received signals. Transmis-

sion occurs when electrical signals are converted to acoustic signals. This thesis covers

the design and application of these electrical signals to an array transducer. As an intro-

duction, the development of a bespoke ultrasound array research platform is discussed.

This enabling technology is built around switched-mode excitation: a method of approx-

imating an analogue waveform by selecting between discrete voltage levels. The use of

switched-mode methods has led to three major topics of research.

Firstly, a transmit beamformer architecture that provides fine control of excitation se-

quence timing using embedded-phase locked loops is presented. This enables accurate

implementation of firing sequences or phasing between transducer elements, thus mini-

mizing time-quantization error, and providing an improved representation of the expected

pressure field. An introduction to transmit beamforming is given, the impact of time-

quantization is discussed, and the transmit beamformer’s performance is demonstrated.

Secondly, a method of arbitrary waveform generation using switched-mode excitation

is described. The method encodes width-modulated sequences of three or five discrete

voltage levels, that, once passed through a transducer, give close approximation to the

desired arbitrary waveform. Applications include: power control, pulse shaping, and ar-

ray apodization. Each application is demonstrated by simulation and experimentation.

An extension to the method is shown for ‘chirp’ coded imaging, demonstrating the ca-

pability for generation of frequency modulated waveforms. The improvement in image

quality when compared with conventional square-wave, ‘pseudo-chirp’ excitation signals

is shown.

Lastly, the performance of the width-modulated signals is further extended so as to

remove unwanted third-harmonic content whilst still maintaining pulse amplitude control.
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Removal of the third harmonic reduces harmonic distortion, has benefits in applications

such as harmonic imaging, and extends the use of switched-mode operation with wide

bandwidth transducers.

iii



Table of Contents

Acknowledgements i

Abstract ii

Table of Contents viii

List of Figures ix

List of Tables xxiv

List of Abbreviations xxv

List of Symbols xxvii

1 Introduction 1

1.1 Motivation for Research . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Achievements from the Research . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Journal Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Conference Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Patent Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Research Platform Development 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Review of Existing and Current Technology . . . . . . . . . . . . . . . . 13

iv



2.2.1 Single/Dual Channel Ultrasound Systems . . . . . . . . . . . . . 13

2.2.2 Multi-Channel Array Ultrasound Systems . . . . . . . . . . . . . 14

2.2.3 Research Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Examples of Non-Standard Methods . . . . . . . . . . . . . . . . . . . . 18

2.4 Development of Enabling Technology . . . . . . . . . . . . . . . . . . . 19

2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Overview: Ultrasound Array Research Platform . . . . . . . . . . 19

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Switched-Mode Excitation of Transducers 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Piezo-Electric Transducers . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Single Element Transducers . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Array Transducers . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Electrical Properties of Transducers . . . . . . . . . . . . . . . . . . . . 27

3.4 Review of Excitation Circuits . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Summary of Amplifier Technology . . . . . . . . . . . . . . . . . . . . . 33

3.6 Enabling Technology: Ultrasound Array Research Platform (UARP) . . . 35

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Switched-Mode Timing Control 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Array Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Linear Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Additional Array Types . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Definition of Array Geometry . . . . . . . . . . . . . . . . . . . 44

4.3 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Combined Steering and Focusing . . . . . . . . . . . . . . . . . 48

v



4.4 Grating Lobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Phase Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Phase Quantization Literature Review . . . . . . . . . . . . . . . 51

4.5.2 Summary of Literature Review . . . . . . . . . . . . . . . . . . . 57

4.6 Demonstration of Phase Quantization Effects . . . . . . . . . . . . . . . 58

4.6.1 Correlated Error . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.2 Uncorrelated Error . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Other Forms of Random Error . . . . . . . . . . . . . . . . . . . . . . . 93

4.8 UARP Transmitter Architecture . . . . . . . . . . . . . . . . . . . . . . 94

4.8.1 Phase Locked Loops . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8.2 Field Programmable Gate Arrays . . . . . . . . . . . . . . . . . 97

4.8.3 Switched-Mode Transmit Beamformer with Embedded PLLs . . . 97

4.9 Evaluation of Transmit Beamformer Performance . . . . . . . . . . . . . 100

4.9.1 Evaluation Across Frequency . . . . . . . . . . . . . . . . . . . 104

4.9.2 Beam Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Switched-Mode PWM Method for Ultrasound Power Control 118

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 PWM and Multi-Level PWM . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 Overview of Carrier-Based PWM . . . . . . . . . . . . . . . . . 122

5.2.2 Fundamental Frequency Output Relationship . . . . . . . . . . . 124

5.2.3 Optimization: Trigonometric Carrier Definition . . . . . . . . . . 131

5.2.4 Extension to Multi-Level PWM . . . . . . . . . . . . . . . . . . 131

5.2.5 Generation of PWM Sequences . . . . . . . . . . . . . . . . . . 135

5.3 Demonstration of Pressure Control . . . . . . . . . . . . . . . . . . . . . 138

5.4 Array Apodization with Pulse Shaping . . . . . . . . . . . . . . . . . . . 155

5.5 Effect of Sampling Frequency . . . . . . . . . . . . . . . . . . . . . . . 158

5.6 Comparison with Sigma Delta Modulation . . . . . . . . . . . . . . . . . 160

vi



5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 Switched-Mode PWM Method for Ultrasound Coded Imaging 164

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 LFM Chirp Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2.1 Linear Frequency Modulated Chirp Design . . . . . . . . . . . . 165

6.2.2 Windowing and Tapering Functions . . . . . . . . . . . . . . . . 166

6.2.3 Swept-Frequency Level-Shifted Carrier-Comparison Method . . . 167

6.3 LFM Chirp Coded Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4 Transducer Pre-Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7 Switched-Mode PWM Method for Ultrasound Harmonic Imaging 184

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 Harmonic Imaging and Harmonic Leakage . . . . . . . . . . . . . . . . . 184

7.3 Wide Bandwidth Transducer Types . . . . . . . . . . . . . . . . . . . . . 186

7.4 Coded Harmonic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5 Switched-Mode Selective Harmonic Elimination . . . . . . . . . . . . . 190

7.6 Harmonic Reduction Pulse Width Modulation . . . . . . . . . . . . . . . 197

7.7 Evaluation of HRPWM signals . . . . . . . . . . . . . . . . . . . . . . . 217

7.7.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.7.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

7.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8 Research Summary and Further Work 241

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.2 Summary of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.2.1 Research Platform Development . . . . . . . . . . . . . . . . . . 241

8.2.2 Transmit Beamformer Architecture with Embedded PLLs . . . . 242

vii



8.2.3 Power Control Method for Switched-Mode Circuitry using Fun-

damental Mode PWM . . . . . . . . . . . . . . . . . . . . . . . 243

8.2.4 Extension of Pulse Width Modulation Strategy for Coded Linear

Frequency Modulated Signals . . . . . . . . . . . . . . . . . . . 243

8.2.5 Extension of Pulse Width Modulation Strategy for Coded Linear

Frequency Modulated Signals . . . . . . . . . . . . . . . . . . . 244

8.3 Ideas for Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.3.1 Embedded IP Core Development . . . . . . . . . . . . . . . . . . 244

8.3.2 Integration with CMUT devices . . . . . . . . . . . . . . . . . . 245

References 246

viii



List of Figures

2.1 Single element transmit and receive ultrasound system with arbitrary wave-

form generator, power amplifier, transmit receive switch and digital oscil-

loscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Modules defining an ultrasound system . . . . . . . . . . . . . . . . . . 12

2.3 Photograph of the UARP system developed at the University of Leeds . . 20

2.4 UARP system architecture . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Diagram of a single element transducer . . . . . . . . . . . . . . . . . . 26

3.2 Diagram of a multi-element array transducer . . . . . . . . . . . . . . . . 27

3.3 Series and shunt transducer equivalent circuits at resonance . . . . . . . . 28

3.4 Shock excitation pulser circuit using a charging capacitor and Silicon

Controlled Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Shock excitation pulser circuit using a charging capacitor, and N-channel

MOSFET in-place of a SCR . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Multi-level MOSFET circuit (five levels shown with return to zero) . . . . 37

3.7 Eight-channel UARP transmitter board . . . . . . . . . . . . . . . . . . . 38

4.1 Common transducer types . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Example 1-D linear array transducer imaging modes . . . . . . . . . . . 43

4.3 Generalised transducer array geometry . . . . . . . . . . . . . . . . . . . 44

4.4 Steering of a beam with a linear array of elements . . . . . . . . . . . . . 46

4.5 Definition of near field and far field as well as Fresnel and Fraunhofer

regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



4.6 Focusing of a beam with a linear array of elements . . . . . . . . . . . . 47

4.7 Combined steering and focusing of a beam with a linear array of elements 48

4.8 Estimations of RMS sidelobe level for combinations of N and different

levels of µ . The cross depicts -48 dB for a 96 element array at µ = 32 . . 54

4.9 Definition of worst case correlated error showing periodic error across the

array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 zrand vs. zTR for different N and different quantization values . . . . . . . 57

4.11 Comparison of simulated field profiles showing correlated error using

continuous wave excitation. Ideal time delays (a) vs. quantized delays

(b). Quantization at µ = 4 and steered to worst case angle of 14.48◦ . . . 60

4.12 Comparison of simulated field profiles showing correlated error using

continuous wave excitation. Ideal time delays (a) vs. quantized delays

(b). Quantization at µ = 8 and steered to worst case angle of 7.18◦ . . . . 61

4.13 Comparison of simulated field profiles showing correlated error using

continuous wave excitation. Ideal time delays (a) vs. quantized delays

(b). Quantization at µ = 12 and steered to worst case angle of 4.78◦ . . . 62

4.14 Comparison of simulated field profiles showing correlated error using

continuous wave excitation. Ideal time delays (a) vs. quantized delays

(b). Quantization at µ = 16 and steered to worst case angle of 3.58◦ . . . 63

4.15 Comparison of simulated field profiles showing correlated error using

continuous wave excitation. Ideal time delays (a) vs. quantized delays

(b). Quantization at µ = 20 and steered to worst case angle of 2.87◦ . . . 64

4.16 Comparison of simulated field profiles showing correlated error using

continuous wave excitation. Ideal time delays (a) vs. quantized delays

(b). Quantization at µ = 24 and steered to worst case angle of 2.39◦ . . . 65

4.17 Comparison of simulated field profiles showing correlated error using

continuous wave excitation. Ideal time delays (a) vs. quantized delays

(b). Quantization at µ = 28 and steered to worst case angle of 2.05◦ . . . 66

x



4.18 Comparison of simulated field profiles showing correlated error using

continuous wave excitation. Ideal time delays (a) vs. quantized delays

(b). Quantization at µ = 32 and steered to worst case angle of 1.79◦ . . . 67

4.19 Radial field profile at the transition distance showing correlated error us-

ing continuous wave excitation. Ideal time delays vs. quantized delays.

Quantization at µ = 4 and steered to worst case angle of 14.48◦ . . . . . . 68

4.20 Radial field profile at the transition distance showing correlated error us-

ing continuous wave excitation. Ideal time delays vs. quantized delays.

Quantization at µ = 8 and steered to worst case angle of 7.18◦ . . . . . . 69

4.21 Radial field profile at the transition distance showing correlated error us-

ing continuous wave excitation. Ideal time delays vs. quantized delays.

Quantization at µ = 12 and steered to worst case angle of 4.78◦ . . . . . . 69

4.22 Radial field profile at the transition distance showing correlated error us-

ing continuous wave excitation. Ideal time delays vs. quantized delays.

Quantization at µ = 16 and steered to worst case angle of 3.58◦ . . . . . . 70

4.23 Radial field profile at the transition distance showing correlated error us-

ing continuous wave excitation. Ideal time delays vs. quantized delays.

Quantization at µ = 20 and steered to worst case angle of 2.87◦ . . . . . . 70

4.24 Radial field profile at the transition distance showing correlated error us-

ing continuous wave excitation. Ideal time delays vs. quantized delays.

Quantization at µ = 24 and steered to worst case angle of 2.39◦ . . . . . . 71

4.25 Radial field profile at the transition distance showing correlated error us-

ing continuous wave excitation. Ideal time delays vs. quantized delays.

Quantization at µ = 28 and steered to worst case angle of 2.05◦ . . . . . . 71

4.26 Radial field profile at the transition distance showing correlated error us-

ing continuous wave excitation. Ideal time delays vs. quantized delays.

Quantization at µ = 32 and steered to worst case angle of 1.79◦ . . . . . . 72

xi



4.27 Diagram of the effect of uncorrelated error caused by focusing on the

beam profile, showing quantization lobes in the far field and subsidiary

foci in the near field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.28 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with ideal delays (no delay quantization) (narrowband simulation) . . . . 75

4.29 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 4 (narrowband simulation) . . . . . . . . . 76

4.30 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 4 (narrowband simulation) . . . . . 76

4.31 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2)

with delays quantized to µ = 8 (narrowband simulation) . . . . . . . . . 77

4.32 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 8 (narrowband simulation) . . . . . 77

4.33 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 12 (narrowband simulation) . . . . . . . . . 78

4.34 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 12 (narrowband simulation) . . . . 78

4.35 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 16 (narrowband simulation) . . . . . . . . . 79

4.36 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 16 (narrowband simulation) . . . . 79

4.37 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 20 (narrowband simulation) . . . . . . . . . 80

4.38 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 20 (narrowband simulation) . . . . 80

4.39 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 24 (narrowband simulation) . . . . . . . . . 81

4.40 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 24 (narrowband simulation) . . . . 81

xii



4.41 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 28 (narrowband simulation) . . . . . . . . . 82

4.42 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 28 (narrowband simulation) . . . . 82

4.43 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 32 (narrowband simulation) . . . . . . . . . 83

4.44 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 32 (narrowband simulation) . . . . 83

4.45 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 4 (broadband simulation) . . . . . . . . . . 85

4.46 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 4 (broadband simulation) . . . . . 85

4.47 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 8 (broadband simulation) . . . . . . . . . . 86

4.48 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 8 (broadband simulation) . . . . . 86

4.49 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 12 (broadband simulation) . . . . . . . . . 87

4.50 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 12 (broadband simulation) . . . . . 87

4.51 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 16 (broadband simulation) . . . . . . . . . 88

4.52 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 16 (broadband simulation) . . . . . 88

4.53 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 20 (broadband simulation) . . . . . . . . . 89

4.54 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 20 (broadband simulation) . . . . . 89

xiii



4.55 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 24 (broadband simulation) . . . . . . . . . 90

4.56 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 24 (broadband simulation) . . . . . 90

4.57 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 28 (broadband simulation) . . . . . . . . . 91

4.58 Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm

(zTR/2), with delays quantized to µ = 28 (broadband simulation) . . . . . 91

4.59 Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 32 (broadband simulation) . . . . . . . . . 92

4.60 Radial field profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),

with delays quantized to µ = 32 (broadband simulation) . . . . . . . . . 92

4.61 Typical PLL architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.62 Example of embedded PLL phase shift control . . . . . . . . . . . . . . . 98

4.63 System diagram of the UARP eight-channel phased array transmitter ar-

chitecture using Altera embedded PLLs and implemented within a com-

mercial FPGA (Altera Cyclone III EP3C40Q240C8) . . . . . . . . . . . 99

4.64 Infinite persistence acquisition from LeCroy Waverunner digital oscillo-

scope of two switched-mode signals from two UARP channels separated

by 5 ns (1000 acquisitions) . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.65 Zoom of infinite persistence acquisition from LeCroy Waverunner digi-

tal oscilloscope of two switched-mode signals from two UARP channels

separated by 5 ns (1000 acquisitions) showing maximum jitter variation . 101

4.66 Acquired switched-mode signals from two UARP channels (positive edge)

overlaid to demonstrate fine delay. Separation from 0 to 9 ns in 1 ns steps

(100 signals averaged per waveform) . . . . . . . . . . . . . . . . . . . . 102

4.67 Acquired switched-mode signals from two UARP channels (negative edge)

overlaid to demonstrate fine delay. Separation from 0 to 9 ns in 1 ns steps

(100 signals averaged per waveform) . . . . . . . . . . . . . . . . . . . . 102

xiv



4.68 Acquired switched-mode signals from two UARP channels (positive edge)

overlaid to demonstrate minimum delay resolution. Separation from 0 to

1 ns in 208 ps steps (100 signals averaged per waveform) . . . . . . . . . 103

4.69 Acquired switched-mode signals from two UARP channels (negative edge)

overlaid to demonstrate minimum delay resolution. Separation from 0 to

1 ns in 208 ps steps (100 signals averaged per waveform) . . . . . . . . . 103

4.70 Simulated radial beam profile of a 96-element, λ -spaced array, focused to

40 mm, f = 5 MHz, n = 5, ∆τ = 10 ns . . . . . . . . . . . . . . . . . . 107

4.71 Simulated radial beam profile of a 96-element, λ -spaced array, focused to

40 mm, f = 5 MHz, n = 5, ∆τ = 10 ns (black line) vs. ideal delays (grey

line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.72 Simulated beam profile of a 96-element, λ -spaced array, focused to 40

mm, f = 5 MHz, n = 5, ∆τ = 20 ns . . . . . . . . . . . . . . . . . . . . 108

4.73 Simulated radial beam profile of a 96-element, λ -spaced array, focused to

40 mm, f = 5 MHz, n = 5, ∆τ = 20 ns (black line) vs. ideal delays (grey

line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.74 Simulated beam profile of a 96-element, λ -spaced array, focused to 40

mm, f = 5 MHz, n = 5, ∆τ = 40 ns . . . . . . . . . . . . . . . . . . . . 109

4.75 Simulated radial beam profile of a 96-element, λ -spaced array, focused to

40 mm, f = 5 MHz, n = 5, ∆τ = 40 ns (black line) vs. ideal delays (grey

line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.76 Photograph of the L3-8/40EP array transducer (Prosonic Co Ltd., Gyong-

Buk, Korea), 128 elements, λ pitch, 4.8 MHz average centre frequency,

57% fractional bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.77 Photograph of the 0.2 mm needle hydrophone (Precision Acoustics, Dorch-

ester, UK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.78 Experimentally obtained radial beam profile comparing ∆τ = 10 ns (black

line) vs. ∆τ = 208 ps (grey line) . . . . . . . . . . . . . . . . . . . . . . 112

xv



4.79 Experimentally obtained radial beam profile comparing ∆τ = 20 ns (black

line) vs. ∆τ = 208 ps (grey line) . . . . . . . . . . . . . . . . . . . . . . 113

4.80 Experimentally obtained radial beam profile comparing ∆τ = 40 ns (black

line) vs. ∆τ = 208 ps (grey line) . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Example of triangular symmetrical, carrier-comparison, pulse-width mod-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Diagram of conventional carrier-based PWM featuring the carrier c(t) and

modulating wave m(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Bipolar square wave with variation of switching angle δ . . . . . . . . . 127

5.4 Harmonic energy within a PWM square wave of increasing width with

switching angle. Absolute values are normalised to the fundamental . . . 127

5.5 Variation in pulse width of a switched-mode signal . . . . . . . . . . . . 128

5.6 Pressure from pulse-width modulated signals . . . . . . . . . . . . . . . 129

5.7 FFT of pulse-width modulated pressure signals . . . . . . . . . . . . . . 129

5.8 Variation in peak pressure according to pulse width. Pressure varies ac-

cording to a trigonometric relationship as described by (5.20) . . . . . . . 130

5.9 Comparison of a triangular (grey dashed) vs a trigonometric (black solid)

carrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.10 Five-level bipolar square wave with variation of switching angle δ1 and δ2 132

5.11 Carrier scaling for multi-level PWM generation using the proposed trigono-

metric carrier. The carrier is replicated a number of times, scaled and then

level-shifted in order to span the range of the modulating signal m(t) . . . 136

5.12 Construction of PWM encoded signals. The desired waveform 5.12(a) is

a tone burst with an applied window function, and can be split into its

constituent parts s(t) and m(t) 5.12(b). The desired amplitude function is

duplicated to form positive and negative window functions 5.12(c). Using

the sign of s(t) comparison between either positive or negative compar-

isons are performed to generate the resultant PWM sequence as shown in

5.12(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvi



5.13 Photograph of the 1 mm needle hydrophone (Precision Acoustics, Dorch-

ester, UK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.14 Comparison between simulations of three-level triangular based compar-

isons vs. trigonometric based comparisons. Linearly increasing ramp

window function applied . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.15 Comparison between simulations of five-level triangular based compar-

isons vs. trigonometric based comparisons. Linearly increasing ramp

window function applied . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.16 Comparison between experimentally obtained three-level triangular based

comparisons vs. trigonometric carrier. Linearly increasing ramp function

applied (single acquisition) . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.17 Comparison between experimentally obtained five-level triangular based

comparisons vs. trigonometric carrier. Linearly increasing ramp function

applied (single acquisition) . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.18 Comparison between simulations of three-level triangular based compar-

isons vs. trigonometric based comparisons. Triangular window function

applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.19 Comparison between simulations of five-level triangular based compar-

isons vs. trigonometric based comparisons. Triangular window function

applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.20 Comparison between experimentally obtained three-level triangular based

comparisons vs. trigonometric carrier. Triangular window function ap-

plied (single acquisition) . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.21 Comparison between experimentally obtained five-level triangular based

comparisons vs. trigonometric carrier. Triangular window function ap-

plied (single acquisition) . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.22 Comparison between simulations of three-level triangular based compar-

isons vs. trigonometric carrier. Hann window function applied . . . . . . 150

xvii



5.23 Comparison between simulations of five-level triangular based compar-

isons vs. trigonometric carrier. Hann window function applied . . . . . . 151

5.24 Comparison between experimentally obtained three-level triangular based

comparisons vs. trigonometric carrier. Hann window function applied

(single acquisition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.25 Comparison between experimentally obtained five-level triangular based

comparisons vs. trigonometric carrier. Hann window function applied

(single acquisition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.26 Example of PWM encoded sequences showing tapering in time and apodiza-

tion across the array. MOSFET drive sequences are encoded for 5 MHz,

5 cycle Gaussian windowed excitations, with Gaussian array apodization

over an aperture of 48 elements, Figure 5.26(a). Experimental measure-

ments (50 averages) show decreased sidelobe levels in the lateral beam

plot at 30 mm focus when compared with a rectangular aperture with ap-

plied time tapering using the PWM strategy, Figure 5.26(b). . . . . . . . . 157

5.27 Shaped tone burst signal showing even integer relationship between f s

and f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.28 Shaped tone burst signal showing non-integer relationship between f s and f 159

5.29 Comparison with Sigma-Delta modulation 25% amplitude . . . . . . . . 161

5.30 Comparison with Sigma-Delta modulation 50% amplitude . . . . . . . . 161

5.31 Comparison with Sigma-Delta modulation 75% amplitude . . . . . . . . 162

6.1 Linear frequency modulation of the trigonometric carrier . . . . . . . . . 169

6.2 MOSFET gate drive signals of the bipolar (fixed width) chirp signal (top)

and the 5-level PWM-encoded chirp signal (bottom) 10 µs, Hamming

windowed, 4-6 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3 Experimental wire phantom images using a 10 µs Hamming 4-6 MHz signal.172

6.4 centre line plotted limited to view a single wire at the focal point. Simu-

lated data in the Figure 6.4(a). Experimentally obtained in Figure 6.4(b). . 173

xviii



6.5 Ideal convolution of 4-6 MHz, 10 µs signals with Hamming weighted

matched filter. 50 dB dynamic range, distance axis . . . . . . . . . . . . 174

6.6 MOSFET gate drive signals of the bipolar (fixed width) chirp signal (top)

and the 5-level PWM-encoded chirp signal (bottom) 10 µs, Hamming

windowed, 3-6 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.7 Experimental wire phantom images using a 10 µs Hamming 3-6 MHz signal.176

6.8 centre line plotted limited to view a single wire at the focal point. Simu-

lated data in Figure 6.8(a). Experimentally obtained data in Figure 6.8(b). 177

6.9 Ideal convolution of 3-6 MHz, 10 µs signals with Hamming weighted

matched filter. 50 dB dynamic range, distance axis . . . . . . . . . . . . 178

6.10 Desired 3-4 MHz chirp signal . . . . . . . . . . . . . . . . . . . . . . . . 179

6.11 Hydrophone measured 3-4 MHz chirp signal through transducer . . . . . 180

6.12 Pre-distorted 3-4 MHz chirp signal taking into account transducer response 181

6.13 Hydrophone measured pre-distorted 3-4 MHz chirp signal through trans-

ducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.1 A CMUT element composed of many CMUT cells . . . . . . . . . . . . 187

7.2 Frequency response of PZT medical imaging transducer. Fundamental

and harmonic regions are shown in the shaded areas. . . . . . . . . . . . 189

7.3 Third harmonic cancellation switching using amplitude thresholding at

sin(π/6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.4 Fifth harmonic cancellation switching using amplitude thresholding at

sin(π/10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.5 Simultaneous third and fifth harmonic cancellation switching using am-

plitude thresholding at sin(π/15) and sin(4π/15) . . . . . . . . . . . . . 194

7.6 Failure of SHE comparison method for harmonic and amplitude control . 195

7.7 Threshold scaling to provide third harmonic control, but loss of amplitude

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.8 Threshold scaling to provide fifth harmonic control, but loss of amplitude

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

xix



7.9 Threshold scaling to provide third and fifth harmonic control, but loss of

amplitude control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.10 Magnitude of fundamental for switching angles δ1 and δ2 (normalised) in

the range 0 < δ1,δ2 < π/2 . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.11 Path of multi-level PWM encoding described in Chapter 5 . . . . . . . . 198

7.12 Fundamental amplitude variation moving along δ1 and δ2. The region

marked δ1 shows deviation of δ1 when δ2 = π/2 (low level switch switch-

ing). The region marked δ2 shows deviation of δ2 when δ1 = 0 (high level

switch switching) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.13 Magnitude of third harmonic for switching angles δ1 and δ2 (normalised)

in the range 0 < δ1,δ2 < π/2 . . . . . . . . . . . . . . . . . . . . . . . . 200

7.14 Initial path of reduced (but not ‘least’) third harmonic considering angle

range 0 < δ1,δ2 < 2π/3 . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.15 Extension of path of least third harmonic to cover range 0 < δ1,δ2 < 2π/3 201

7.16 Overlay of path of least third harmonic onto magnitude of fundamental

for switching angles δ1 and δ2 (normalised) in the range 0 < δ1,δ2 < 2π/3 202

7.17 HRPWM switching angles vs. fundamental magnitude . . . . . . . . . . 202

7.18 Phase-separated, rectified, trigonometric waveforms used for design of

HRPWM carrier constituents . . . . . . . . . . . . . . . . . . . . . . . . 203

7.19 HRPWM low-switch modulator Carrier 1a . . . . . . . . . . . . . . . . . 206

7.20 HRPWM low-switch modulator Carrier 1b . . . . . . . . . . . . . . . . . 207

7.21 HRPWM high-switch modulator Carrier 2 . . . . . . . . . . . . . . . . . 207

7.22 Combined Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.23 Multi-Level Swept Frequency Harmonic Reduction Carrier . . . . . . . . 210

7.24 Encoding of HRPWM signals at 20% amplitude . . . . . . . . . . . . . . 211

7.25 Encoding of HRPWM signals at 40% amplitude . . . . . . . . . . . . . . 212

7.26 Encoding of HRPWM signals at 60% amplitude . . . . . . . . . . . . . . 213

7.27 Encoding of HRPWM signals at 80% amplitude . . . . . . . . . . . . . . 213

7.28 Encoding of HRPWM signals at 100% amplitude . . . . . . . . . . . . . 214

xx



7.29 HRPWM 25% Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.30 HRPWM 50% Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.31 HRPWM 75% Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.32 HRPWM 100% Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.33 Desired 6-cycle Gaussian windowed tone-burst . . . . . . . . . . . . . . 217

7.34 PWM encoded switched-mode signal 6-cycle, Gaussian-windowed tone-

burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.35 HRPWM encoded switched-mode signal 6-cycle, Gaussian-windowed tone-

burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.36 Spectrum of PWM encoded switched-mode signal 6-cycle, Gaussian-windowed

tone-burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.37 Spectrum of HRPWM encoded switched-mode signal 6-cycle, Gaussian-

windowed tone-burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.38 Desired 10 µs, Hann-windowed, 3 MHz tone-burst . . . . . . . . . . . . 220

7.39 PWM encoded switched-mode signal 10 µs, Hann-windowed, 3 MHz

tone burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.40 HRPWM encoded switched-mode signal 10 µs, Hann-windowed, 3 MHz

tone burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.41 Spectrum of PWM encoded switched-mode signal 10 µs, Hann-windowed,

3 MHz tone burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.42 Spectrum of HRPWM encoded switched-mode signal 10 µs, Hann-windowed,

3 MHz tone burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.43 Desired 10 µs, Hann-windowed, 3-4 MHz LFM chirp . . . . . . . . . . . 223

7.44 PWM encoded switched-mode signal 10 µs, Hann-windowed, 3-4 MHz

LFM chirp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.45 HRPWM encoded switched-mode signal 10 µs, Hann-windowed, 3-4 MHz

LFM chirp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.46 Spectrum of PWM encoded switched-mode signal 10 µs, Hann-windowed,

3-4 MHz LFM chirp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

xxi



7.47 Spectrum of HRPWM encoded switched-mode signal 10 µs, Hann-windowed,

3-4 MHz LFM chirp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.48 Fractional harmonic excitation method using third harmonic . . . . . . . 226

7.49 Transducer-loaded PWM electrical signal for 10 µs, 1.6 MHz, Hann-

windowed tone-burst (100 measurements averaged) . . . . . . . . . . . . 229

7.50 Transducer-loaded HRPWM electrical signal for 10 µs, 1.6 MHz, Hann-

windowed tone-burst (100 measurements averaged) . . . . . . . . . . . . 229

7.51 FFT of transducer-loaded electrical PWM and HRPWM drive signals

showing reduction in third harmonic content (100 measurements averaged) 230

7.52 Simulated pressure for 10 µs, 1.6 MHz, Hann-windowed tone-burst PWM

signal through transducer with centre frequency 5 MHz (third harmonic

matched to centre frequency) . . . . . . . . . . . . . . . . . . . . . . . . 231

7.53 Pressure in water from a 10 µs, 1.6 MHz, Hann-windowed, PWM signal

through an array transducer (100 measurements averaged) . . . . . . . . 231

7.54 Simulated pressure for 10 µs, 1.6 MHz, Hann-windowed tone-burst HRPWM

signal through transducer with centre frequency 5 MHz (third harmonic

matched to centre frequency) . . . . . . . . . . . . . . . . . . . . . . . . 232

7.55 Pressure in water from a 10 µs, 1.6 MHz, Hann-windowed, HRPWM

signal through an array transducer (100 measurements averaged) . . . . . 232

7.56 FFT of pressure measurements with PWM and HRPWM tone-burst drive

signals showing reduction in third harmonic content (100 measurements

averaged) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.57 Transducer loaded PWM electrical signal for 10 µs, 1.1 to 2.1 MHz,

Hann-windowed chirp (100 measurements averaged) . . . . . . . . . . . 234

7.58 Transducer loaded HRPWM electrical signal for 10 µs, 1.1 to 2.1 MHz,

Hann-windowed chirp (100 measurements averaged) . . . . . . . . . . . 234

7.59 FFT of transducer-loaded electrical PWM and HRPWM chirp drive sig-

nals showing reduction in third harmonic content (100 measurements av-

eraged) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

xxii



7.60 Simulated pressure for 10 µs, 1.1 to 2.1 MHz, Hann-windowed chirp

PWM signal through transducer with centre frequency 5 MHz (third har-

monic matched to centre frequency) . . . . . . . . . . . . . . . . . . . . 236

7.61 Pressure in water from the 10 µs, 1.1 to 2.1 MHz, Hann-windowed, PWM

signal through an array transducer (100 measurements averaged) . . . . . 236

7.62 Simulated pressure for 10 µs, 1.1 to 2.1 MHz, Hann-windowed chirp

HRPWM signal through transducer with centre frequency 5 MHz (third

harmonic matched to centre frequency) . . . . . . . . . . . . . . . . . . 237

7.63 Pressure in water from the 10 µs, 1.1 to 2.1 MHz, Hann-windowed, HRPWM

signal through an array transducer (100 measurements averaged) . . . . . 237

7.64 FFT of pressure measurements with PWM and HRPWM chirp drive sig-

nals showing reduction in third harmonic content (100 measurements av-

eraged) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

xxiii



List of Tables

2.1 Summary of UARP Features . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Overview of different array types . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Position of ‘worst case’ quantization lobes for far field, correlated errors. . 68

4.3 Target, measured and error of fine inter-channel phase delay (0 to 9 ns in

1 ns steps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Target, measured and error of fine inter-channel phase delay (0 to 1 ns in

208 ps steps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Example conversions of the minimum time increment ∆τ to simulate

higher frequencies using a 5 MHz array. . . . . . . . . . . . . . . . . . . 105

4.6 L3-8/40EP array transducer (Prosonic Co Ltd., GyongBuk, Korea) . . . . 106

4.7 Experimental TDR Gain: Coarse Delay ∆τ = 10 ns vs Fine Delay ∆τ =

208 ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Quantitative measurements of pressure simulations using triangular (con-

ventional) and trigonometric (proposed) PWM carriers using normalised

root mean square deviation (NRMS) . . . . . . . . . . . . . . . . . . . . 155

xxiv



List of Abbreviations

AWG Arbitrary Waveform Generator

CT Computerised Tomography

DAC Digital to Analogue Converter

FET Field Effect Transistor

FPGA Field Programmable Gate Array

HIFU High Intensity Focused Ultrasound

HRPWM Harmonic Reduction Pulse-Width Modulation

IDR Image Dynamic Range

IP Intellectual Property

IVUS Intra-Vascular UltraSound

LVDS Low Voltage Differential Signalling

MOSFET Metal Oxide Field Effect Transistor

MRI Magnetic Resonance Imaging

NCO Numerically Controlled Oscillator

NRMSD Normalised Root Mean Squared Deviation

PCB Printed Circuit Board

PLL Phase-Locked Loop

PRF Pulse Repetition Frequency

PVDF PolyVinylidene DiFlouride

PWM Pulse-Width Modulation

PZT Lead Zirconate Titanate

RADAR RAdio Detection And Ranging

xxv



RAM Random Access Memory

RDR Receive Dynamic Range

RF Radio Frequency

RMSD Root Mean Squared Deviation

SCR Silicon Controlled Rectifier

SHE Selective Harmonic Elimination

SONAR SOund Navigation and Ranging

SPICE Simulation Program with Integrated Circuit Emphasis

TDR Transmit Dynamic Range

UARP Ultrasound Array Research Platform

USB Universal Serial Bus

VCO Voltage Controlled Oscillator

xxvi



List of Symbols

δ Switching Angle

∆τ Minimum Time / Phase Resolution

δh Harmonic Cancellation Switching Angle

ε0 Permittivity of Free Space

εr Material Dielectric Constant

Γ Reflection Coefficient

λ Wavelength

µ Oversampling Factor

ω Angular Frequency

ω ′ LFM Angular Frequency

ω0 Resonance Frequency

Φ Maximum Phase Error

ρ Density

τn Element Delay

τn Per-Element Delay

PWM(t) PWM Sequence

θδ Switching Angle Separation

θG Grating Lobe Angle

θs Steering Angle

θMAX Maximum Steering Angle

θpq Worst Case Steering Angle

A Area

an Fourier Series Coefficient

xxvii



B Bandwidth

bn Fourier Series Coefficient

c Speed of Sound

c(t) Carrier Waveform

C0 Clamped Capacitance

CG Gate Capacitance

CL(t) Low Carrier Base Waveform

CT (t) Top Carrier Base Waveform

cNEG(t) Negative Carrier Waveform

cPOS(t) Positive Carrier Waveform

D Aperture Width

d Array Element Pitch

d0 Capacitor Plate Separation

f Frequency

f (x) Function of x

fs Sampling Frequency

FIN PLL Input Frequency

FOUT PLL Output Frequency

FVCO PLL VCO Frequency

fsw Switching Frequency

h(t) Transducer Impulse Response

I Current

K PLL Post-Scale Counter

kt Thickness Mode Electro-Mechanical Coupling Constant

L Level Shift Scaling

M PLL Feedback Counter

m Integer Values

m(t) Modulating Waveform

N Number of Elements

xxviii



n Integer Value

n Number of Cycles

nL Number of Levels

P PLL Pre-Scale Counter

p Number of Minimum Phase Quantization Periods

PLOSS Power Loss

Q Charge

q Number of Sub-Elements

QF Q-Factor

Ra Radiation Impedance

Rm Radiation Impedance

Rss Auto-Correlation Output

s(t) Analogue Signal

SLRMS Root Mean Square Sidelobe Level

T Duration

t Time

V Voltage

w Element Width

y(t) Output Signal

Z Acoustic Impedance

Zc Piezo-Electric Acoustic Impedance

zF Focal Distance

zrand Distance for Uncorrelated Lobes

zTR Transition Distance

l Integer values

xxix



xxx



1

Chapter 1

Introduction

1.1 Motivation for Research

Ultrasound is predominately an ‘active’ sensing modality similar to RADAR and SONAR.

Sensing is instigated by transmission of an acoustic wave of known form, operating typ-

ically in the tens of kHz to hundreds of MHz range, followed by acquisition of received

signals. Information is obtained by analysing how the transmitted signal is influenced

by the medium of propagation. Due to its active nature, the properties of the transmitted

acoustic wave therefore has great influence on the results obtained.

Fundamental to the sensing modality is conversion between the electrical and acoustic

domain. This conversion relies on the piezo-electric effect, as discovered by Pierre and

Jacques Curie in 1880 [8], whereby application of an alternating electric field, or me-

chanical stress generates mechanical disturbance, or an electrical signal respectively. A

transducer is a section of piezo-electric material packaged with electrodes and electrical

interconnects. In its simplest form, a transducer will contain a single piezo-electric el-

ement. More complex transducer forms combine multiple elements together within one

component. Such devices are called array transducers, and are now primarily used in a

large number of medical and industrial applications.

Array transducers have revolutionised ultrasound as they offer much greater flexibility

than their single element counterparts, enabling more complex beam and field patterns to

be generated by control of collections of elements. Most notably, is the use of phased ar-
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ray techniques such as beamforming and beamsteering that allow dynamic manipulation

of the acoustic wave or beam in transmission using a fixed arrangement of sources, whilst

in reception they enable increased sensitivity at a particular position. Beamsteering and

focusing requires a system design that can add inter-element delays between firing of ele-

ments. In conjunction with techniques such as beamforming, other sophisticated methods

such as signal coding can be applied in the acoustic domain. The principle of signal cod-

ing, requires transmission of a signal with a detectable embedded property, which can be

distinguished by the receiver above interference and noise, thus improving the sensitivity

of the system. Signal coding therefore requires a transmitter circuit that is capable of

generating arbitrary waveforms that contain the desired code, e.g. frequency modulation.

Array transducers often contain hundreds of elements, each of which ideally requires a

transmitter circuit for greatest flexibility, thus necessitating an array of transmitter circuits.

The design of each element’s ultrasound transmitter circuit is therefore not a trivial solu-

tion. For example, high voltages are necessary to provoke large mechanical disturbances

(and acoustic pressures) capable of propagating through material to a desired depth, tak-

ing into account factors such as attenuation. High frequency ‘Class A’ RF power ampli-

fiers are well-suited to the electrical requirements of an ultrasound transmitter, however

are often large and expensive due to the requirement for heat sinks and cooling. Class

A amplifiers are also inefficient in terms of power dissipation. An alternative transmit-

ter solution to Class A amplifiers is the use of MOSFET semi-conductor pulser devices,

similar to Class D amplifiers. These components use switched-mode excitation to select

between several positive and negative voltage levels. Switching between discrete levels

results in square-wave or staircase (stepped) pulses which approximate sinusoidal signals

(often termed ‘pseudo-sinusoidal’). MOSFETs are advantageous as they are capable of

delivering high currents to piezo-electric loads, in small scale, low-cost, integrated pack-

ages. As a consequence, MOSFET switched-mode pulser devices have subsequently been

the adopted standard within commercial machines for several years [9]. These devices

are also well suited to future trends moving towards highly integrated portable, low-cost

imaging systems [10, 11, 12].
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The disadvantage of MOSFET switched-mode excitation is the inflexible nature of the

transmitted output. Although convenient solutions, switched-mode circuits are limited

by their switching between discrete levels, undesirable harmonic content, and lack of

arbitrary waveform flexibility [13, 14].

The motivation of this research is to develop techniques that address these concerns,

increasing the performance and flexibility of switched-mode circuits, so that optimal field

profiles and signals can be transmitted for a range of applications. This research focuses

on two key aspects of an ultrasound system, namely the transmit beamformer architecture,

and the use of transmitter circuits at the system ‘front-end’.

1.2 Objective of Research

The objective of this research is to improve the quality of the transmitted field and trans-

mitted signal from an ultrasound array. This array is composed of many elements and is

excited by an array of switched-mode circuits. These switched-mode circuits are com-

monly found through ultrasonic systems and are widely adopted, however have a reported

limited functionality for advanced techniques. This research seeks to utilize these com-

ponents differently, to attain performance similar to the use of a Class A linear amplifier

device per channel.

Firstly, the transmitted field is directly affected by the firing sequence. Poor approx-

imation of inter-element delays can result in pressure distributed by erroneous beams.

Also, error can be introduced into the system, either by propagation in non-homogeneous

materials, or by system components such as the transducer. The first objective of this

research is to develop a flexible transmit beamforming architecture able to implement

inter-element delays precisely, and dynamically, thus reducing error within the transmit-

ted field.

A second objective is evaluate the pressure output generated by switched-mode cir-

cuits. The objective here is to develop methods of generating arbitrary waveform output.

Arbitrary waveform capability enables techniques such as coded imaging. A key objective
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is to enable accurate, and predictable pressure control during a pulse sequence without the

need to adjust switching levels.

The third main objective is to evaluate the nature of harmonic content within the

switched-mode signals, to reduce harmonic leakage and suppress undesired spectral con-

tent whilst maintaining amplitude control and arbitrary waveform functionality.

1.3 Achievements from the Research

• Contributed to the development of a flexible ultrasound array research platform

used throughout the Ultrasound group at the University of Leeds.

• Design of an embedded transmit beamformer architecture to provide fine inter-

channel timing resolution of switched-mode signals, thus improving the nature of

the transmitted field.

• Development of an arbitrary waveform generation scheme using a fundamental-

mode pulse-width modulation and switched-mode circuits.

• Extension for use with frequency modulated ‘chirp’ coded signals, showing ben-

efits in coded imaging when compared with previously reported switched-mode

methods.

• Development of a harmonic reduction pulse-width modulation method that permits

arbitrary waveform control, with reduced third harmonic within the excitation sig-

nal.

• Contributed to two UK patent applications.

• Primary author of two journal publications and three conference proceedings.

• Co-authored and contributed to two journal publications and eight conference pro-

ceedings.
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1.4 Journal Publications

As primary author:

• P. R. Smith, D. M. J. Cowell, B. Raiton, C. Vo Ky, and S. Freear, “Ultrasound Array

Transmitter Architecture With High Timing Resolution Using Embedded Phase-

Locked Loops”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency

Control, vol. 59, no. 1, pp. 40-49, Jan. 2012. [2]

• P. R. Smith, D. M. J. Cowell, and S. Freear, “Width-Modulated Square-Wave Pulses

for Ultrasound Applications”, Submitted to IEEE Transactions on Ultrasonics, Fer-

roelectrics, and Frequency Control, Dec. 2012. Accepted with Minor Revisions,

Apr. 2013, In Press [4]

As sub-author:

• B. Raiton, J. R. McLaughlan, S. Harput, P. R. Smith, D. M. J. Cowell, and S. Freear,

“The capture of flowing microbubbles with an ultrasonic tap using acoustic radia-

tion force”, Applied Physics Letters, vol. 101, no. 4, pp. 044102-044102-4, Jul.

2012 [15]

• D. M. J. Cowell, P. R. Smith, and S. Freear, “Phase Inversion based Selective Har-

monic Elimination (PI-SHE) in Multi-level Switched-Mode Tone and Frequency

Modulated Excitation”, Submitted to IEEE Transactions on Ultrasonics, Ferro-

electrics, and Frequency Control, Dec. 2012. Accepted with Minor Revisions, Feb.

2013, Accepted in Final Form, Mar. 2013, In Press [7]

1.5 Conference Publications

As primary author:

• P. R. Smith, D. M. J. Cowell, B. Raiton, C. Vo Ky, T. H. Pham, B. Q. Bui, and

S. Freear, “A PLL-based phased array method to minimize phase quantization errors
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and reduce phasing-lobes”, Proceedings of IEEE International Ultrasonics Sympo-

sium, 2010, pp. 1837-1840. [1]

• P. R. Smith, D. M. J. Cowell, and S. Freear, “A Fractional Harmonic Excitation

(FHE) Method for High Frequency Array Imaging”, Proceedings of IEEE Interna-

tional Ultrasonics Symposium, 2012. [6]

• P. R. Smith, S. Harput, D. M. J. Cowell, J. R. McLaughlan, and S. Freear. “Pre-

Distorted Amplitude Modulated (PDAM) Chirps for Transducer Compensation in

Harmonic Imaging”, Proceedings of IEEE International Ultrasonics Symposium,

2012. [3]

As sub-author:

• B. Raiton, J. R. McLaughlan, P. R. Smith, D. M. J. Cowell, S. Harput, and S. Freear,

“Counter flow microbubble channelling using acoustic radiation force funnel”, Pro-

ceedings of IEEE International Ultrasonics Symposium, 2011, pp. 2432-2435. [16]

• D. M. J. Cowell, P. R. Smith, and S. Freear, “Harmonic cancellation in switched

mode Linear Frequency Modulated (LFM) excitation of ultrasound arrays”, Pro-

ceedings of IEEE International Ultrasonics Symposium, 2011, pp. 454-457. [5]

• S. S. Qureshi, P. R. Smith, D. M. J. Cowell, K. M. Rajpoot, and S. Freear, “A

Compact, Parameterized, Real-Time Beamformer, Benchmarked For Ultrasound

Imaging”, Proceedings of IEEE International Ultrasonics Symposium, 2012. [17]

• C. A. Winckler, P. R. Smith, D. M. J. Cowell, O. Olagunju and S. Freear, “The De-

sign of a High Speed Receiver System for an Ultrasound Array Research Platform”,

Proceedings of IEEE International Ultrasonics Symposium, 2012. [18]

• B. Raiton, J. R. McLaughlan, P. R. Smith, S. Harput, D. M. J. Cowell, and S. Freear,

“Non-invasive Cavitation Nuclei Trap for Histotripsy”, Proceedings of IEEE Inter-

national Ultrasonics Symposium, 2012. [19]
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• J. R. McLaughlan, P. R. Smith, N. Ingram, L. Coletta, S. Evans, and S. Freear,

“Chirp Excitation of Polydisperse Microbubble Populations for Increasing Sonopo-

ratio Efficiency”, Proceedings of IEEE International Ultrasonics Symposium, 2012.

[20]

• O. Olagunju, P. R. Smith, D. M. J. Cowell, and S. Freear, “Randomized Excitation -

A Novel Ultrasound Array Excitation Scheme”, Proceedings of IEEE International

Ultrasonics Symposium, 2012. [21]

• S. Harput, J. R. McLaughlan, P. R. Smith, D. M. J. Cowell, S. Evans, and S. Freear,

“Separating the Second Harmonic Response of Tissue and Microbubbles using

Bispectral Analysis”, Proceedings of IEEE International Ultrasonics Symposium,

2012. [22]

1.6 Patent Applications

• P. R. Smith, D. M. J. Cowell, S. Freear, University of Leeds, “Ultrasound Genera-

tion”, UK Patent Application No. 122282.1, Dec. 2012.

• B. Raiton, J. R. McLaughlan, S. Harput, P. R. Smith, D. M. J. Cowell, S. Freear,

University of Leeds “Apparatus and Method for Manipulating Entrained Particles”

UK Patent Application P138728GB. Mar. 2012

1.7 Thesis Structure

Chapter 1 outlines the motivations and objective of the research, summarises the achieve-

ments of the research and lists publications.

Chapter 2 sets a research context, describing clinical and research systems. This chapter

provides an introduction to an ultrasound system architecture from a design perspective,

describes the motivation for the development of a custom platform for research purposes,

and provides an overview of the developed UARP system.
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Chapter 3 discusses the transmitter stage of the UARP platform in more detail. An

introduction to the use of switched-mode excitation to excite piezo-electric loads is pre-

sented, with the advantages and disadvantages of the technique when compared with other

technologies explained. A review of the use of switched-mode technologies throughout

previous ultrasound literature is provided. A summary of other amplifier technology is

given in comparison with switched-mode signals. Lastly the UARP transmitter section is

described from a hardware perspective.

Chapter 4 introduces array transducers and beamforming techniques. Issues are dis-

cussed such as non-ideal phasing or sequencing, and how errors introduced by the sys-

tem or components can influence the radiated field. A transmit beamformer design that

incorporates a method of applying precise and variable inter-element timings suited to

switched-mode excitation is described. The applicability of using the beamformer to

compensate for other random sources of error is also discussed.

Chapter 5 describes an arbitrary waveform generation method using switched-mode cir-

cuits and pulse-width modulation. Firstly, Fourier Series analysis of switched-mode se-

quences is presented, showing the variation in fundamental frequency output to a linear

increase in pulse width. Using this analysis, an encoding scheme that considers the out-

put pressure from the transducer in response to switched mode signals is discussed. This

encoding scheme enables arbitrary waveform capability and pressure control. The perfor-

mance of the scheme is demonstrated with simulation and experimental measurement.

Chapter 6 extends the width-modulation scheme for use with frequency modulated sig-

nals as used in signal coding, and experimentally demonstrates the applicability for coded

imaging using a wire-phantom. Examples of arbitrary frequency modulated waveforms

are also provided showing pre-distortion for transducer compensation.

Chapter 7 provides an introduction to selective harmonic elimination strategies previ-

ously proposed for switched-mode signals. The work discussed in Chapters 5 and 6, is

then extended to provide a reduction of third harmonic content within the switched-mode

signals whilst maintaining arbitrary waveform functionality. The third harmonic is the
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greatest in terms of magnitude and therefore reducing it enables optimal performance

with future wide-bandwidth devices for applications such as harmonic imaging.

Chapter 8 concludes with a summary of research to date, and suggests future research

ideas.



Chapter 2

Research Platform Development

2.1 Introduction

A complete ultrasound system not only generates transmit signals, but also acquires sig-

nals, processes signals, receives user input and displays information in an output a user

expects. For a simple single element system, an arbitrary waveform function generator

can be used with a RF linear power amplifier to drive the transducer. Receive signals

can be captured and displayed by an oscilloscope, or processed within software such as

MATLAB (Mathworks, NA). This example system setup described is particularly suited

to research and is shown in Figure 2.1. An arbitrary waveform generator can provide

optimal performance with greater than 10, 12 or 14 bit amplitude resolution. A Class

A power amplifier can provide wide-bandwidth, high gain and low harmonic distortion.

Digital oscilloscopes enable real-time display and acquisition, GS/s sampling rates, MHz

bandwidths, and automated mathematical measurement and/or processing on raw mea-

surement data. For multiple elements however, this setup is not practical or cost-effective.

Firstly, the size of such a setup across multiple channels would be large and inconvenient;

Secondly, triggering, sequencing and control of independent channels is clumsy; Thirdly

the ‘cost-per-channel’ is extremely high.

As transducer arrays are now the de facto standard for many ultrasound applications,

and with the advantages arrays posses over single element solutions, there is a greater

push towards developing research systems that can drive array transducers. Commercial
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Figure 2.1: Single element transmit and receive ultrasound system with arbitrary wave-
form generator, power amplifier, transmit receive switch and digital oscilloscope

clinical systems are well equipped to drive array transducers, however these systems are

not suited to research.

A commercial clinical system is designed to provide a medical professional with a

diagnostic view of the patient in the clearest way. Clinical systems are therefore often

mostly inflexible, with little access to raw data, or opportunity for quantitative or quali-

tative analysis of results. This is compounded by generation of a high-quality image or

video file as the final output. A commercial clinical ultrasound imaging system for use

with array transducers is a much more complex system than the single element example,

consisting of many modules and subsystems. These are summarised in Figure 2.2

In a clinical system, many of these parameters such as transmit sequencing, and sig-

nal processing are fixed with defined functionality. Due to its nature, decisions have been

made throughout the design of the system so that it is constrained within certain operative

modes, with which a medical professional can be trained. In a multi-channel research sys-

tem, the motivation differs. In this case, the system is required to have open functionality
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Figure 2.2: Modules defining an ultrasound system

not determined by modes or limited by user interface options. This level of flexibility is

not provided to the researcher by a clinical system, therefore there is a requirement for a

dedicated array platform to enable research.

In comparison with the single element research setup shown in Figure 2.1 the two

systems differ widely. For example, many of the receive subsystems are built into the

oscilloscope such as interpolation and filtering. However, aspects such as transmit se-

quencing, receive beamforming and B-Mode display require dedicated systems that can

access and control multiple channels. This chapter discusses the development of an ul-

trasound array research platform, designed similar to commercial clinical systems, but

offering the flexibility and access that a laboratory single element setup provides. An

analysis of other existing research platforms and development groups are discussed, with

arguments provided for the development of a bespoke research platform. Example op-

portunities for non-conventional operation are also discussed highlighting the impact a

flexible platform can provide to the research community. Lastly, a discussion of the de-



2.2. Review of Existing and Current Technology 13

veloped platform is provided, as well as a brief summary of other research facilitated by

the platform.

2.2 Review of Existing and Current Technology

2.2.1 Single/Dual Channel Ultrasound Systems

The main issues of the setup shown in Figure 2.1 is the high cost and size per channel.

Reducing the cost and size per channel whilst maintaining performance, and integrating

aspects of the system such as transmit sequencing and receive storage is a desirable mo-

tivator for platform development. Single element research platforms also provide more

portable solutions, requiring a single unit to be transported, as opposed to a collection

of expensive equipment as shown in Figure 2.1. An example of this is a system devel-

oped by the University of Florence [23], [24] and [25] primarily for doppler processing

of signals. This dual channel system was PC controlled, and used 8-bit, 64 MSPS DACs

driving linear power amplifiers to generate 100 Vpp excitation signals. The reported sys-

tem contained 64 MB of RAM for storage of received signals, and had dimensions of 18

x 20 x 5.5 cm.

A second example is reported in [26] of a high frame rate (130 fps) system for pre-

clinical cardiac imaging in mice. This system used a commercial high-voltage monocycle

transmitter (AVB2-TB-C, Avtech Electrosystems ltd), capable of 400 Vpp, from 50-100

MHz. This transmitter was coupled with 66 dB amplification and acquisition using a 14-

bit ADC, and demonstrated cardiac imaging in mice using 40 MHz transducers. Note that

the dimensions of the single channel transmitter alone are very large, at 10 cm x 43 cm x

37.5 cm.

Another example of a single-element system is discussed in [14]. This is an IVUS

system, designed for flexibility, and based on FPGA technology. FPGAs are well-suited

to research systems as they offer potential for continual upgrade and development. The

system in [14] permitted multi-modal imaging by combining conventional IVUS imaging,
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with photoacoustic imaging. To do this requires access to transmit and receive hardware,

and also development and integration of a photo-acoustic transmitter within the system.

A further example is described in [27] of a flexible eight channel array system for

micro ultrasound. This system used bipolar MOSFET excitation (Supertex TC6320) able

to operate in the 20-80 MHz range. Received signals were sampled and interpolated using

a fine-delay beamformer capable of 500 ps resolutions. The transmit beamformer had a

resolution of 2.5 ns. The use of an annular array in [27] demonstrated the effectiveness

of multiple elements for imaging, over single-element imaging using techniques such as

dynamic beamforming. As the number of elements increases however so does the design

complexity.

2.2.2 Multi-Channel Array Ultrasound Systems

Several groups have developed various multi-channel ultrasound systems suitable for use

with array transducers. For example, the University of Florence have developed the UL-

trasound Advanced Open Platform (ULA-OP), a highly portable array platform [28], [29],

[30] based on a sigma-delta transmitter solution described in [31]. The platform has 64

channels, receive sampling of 50 MSPS with 12-bit resolution, provides access to pre-

beamformed or raw RF data, is very compact at 34 x 14 x 23 cm, provides USB 2.0 con-

nectivity to a laptop or PC and has a range of user selectable options. As a consequence,

the system is very popular, and is used in collaboration with other research groups such

as [32], [33]. The use of a sigma-delta transmitter stage is novel and provides high pre-

cision when representing analogue waveforms. Each channel has a sigma-delta bitstream

generated by an FPGA, which is then filtered and amplified at the front end to generate

high voltage output. A drawback to the system is however the excitation voltage, which

is limited to 24 Vpp [28]. This limitation is presumably due to the requirement for linear

power amplifiers required to amplify up to high voltage, with the sigma-delta approach

replacing a high speed DAC in the system (as shown in their previous single channel

platform [23], [24] and [25]). The authors themselves in [28] describe the lack of output

voltage range as a potential limitation, and in a more recent paper, discuss future work to
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develop a board capable of transmitting high-power square-pulses through each element

when requested. The open ULA-OP research platform enables non-standard methods to

be tested with ease as shown in [34], [32], [35] and [36].

A second example of a multi-channel research system has been developed at the Uni-

versity of Southern California. The motivation for this research group was to develop a

system for high-frequency ultrasound applications (> 20 MHz). Initial details of the sys-

tem were provided by Hu et al. [37], in which a high-frequency beamformer architecture

embedded on an FPGA was described. The system allowed for an aperture of 16 elements

to be processed from a total of 64 channels in a linear-imaging scan. In conjunction with

[37], an annular array system was also presented [38]. In 2007, Xu et al. [39] described

the design of a bipolar pulse generator for use with the high frequency system using a Su-

pertex TC6320 N- and P-Channel MOSFET pair transmitter circuit. The circuit operated

in a switched-mode sense, with a tunable pulse-width to match to frequency. In the same

year, details were published in [40] of a novel envelope detector design for use within the

high frequency system.

The work in [40] also demonstrated the reprogrammable functionality of the FPGA

components used. In 2010 details were published in [41] of an update to the system, which

could now process 32 channels of data across 64 elements using channel multiplexing.

The system had very high frame rates (reported at > 400 fps) and an analogue beamformer

to replace the digital design. Also included was a doppler processing unit presented in

previous work [42]. In 2011 and 2012, the group published details of a high frequency

AWG design suitable for high frequency coded and arbitrary transmission [43] and [44].

This deviated from the original bipolar pulse generator described in [39], and moved

towards a more Class A/AB technology due to the need for very high frequency, arbitrary

waveform capability.

The RASMUS and SARUS systems designed at the Technical University of Denmark

are primarily targeted at synthetic array research. Details of the RASMUS system were

first presented in [45], describing a system with 128 transmitter channels and 64 receiver

channels, operating at 40 MHz (sampling rate) and with 12 bit precision. A key feature
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of the system is the large amount of storage within the system, reported in this case as 24

GB of RAM. This enables approximately eight seconds of data to be captured, which

can subsequently be analysed in post processing [45]. Further information about the

RASMUS system emerged in [46], with more detailed explanation of the hardware, such

as the use of 72 FPGAs. A predominant feature is the ability to capture large amount

of data, and then process quickly, and has pushed the group forward in research into

synthetic aperture imaging, blood flow imaging and other novel imaging modalities that

demand the amount of resources available from this system. In 2007, new details emerged

of a similar but expanded SARUS system, this time with 1024 channels. Sampling was

at 70 MHz, with 12 bits using the latest device to device technology with 3.2 GBit/s

‘Rocket’ I/O links interconnects. Such is the large channel count, and high sampling rate,

the system can generate 140 GB/s of data. Processing of the data is distributed across a

separate Linux cluster of PCs. There are many benefits to the systems described. The

processing power, storage capability and reprogrammable nature allow for novel methods

and ideas to be tested easily. The large channel count of the SARUS system moves more

towards 2-D array technology, and has potential for high frame rate 3-D or 4-D multi-

modal imaging. The development of the system ‘in-house’ has enabled the group to

target their specific goals, and design according to their wants and budget. Naturally

this freedom does not come with an off-the-shelf solution. Such a system does comes at

considerable cost however, and also complexity of both hardware and software design.

Also, the large size is restrictive and a system such as this lacks portability. One of the

many benefits of ultrasound is its portability when compared with other techniques such

as CT or MRI scanning. Ultrasound systems are predominately portable systems that can

be moved to the patients location (in a medical context) and/or around a test or inspection

site. Whilst this system is in itself a research platform, large sizes may prevent ease of

collaboration with other groups or departments due to the lack of portability. Another

contributing factor to the system’s size may be the choice of transmitter circuit (for which

there exists little information in references [45] and [46]). However it is assumed based



2.2. Review of Existing and Current Technology 17

on the literature that the system uses a DAC and amplifier solution due to use of ‘linear

amplifier’ in several references.

A further example is a system developed by researchers in the University of Toledo,

OH. [47]. This system has 128 linear transmitters, each capable of producing 144 Vpp

voltage using 12 bit / 40 MHz DACs and linear power amplifiers. For the receiver side,

the system has 128 12-bit / 40 MHz sampling channels, and 512 MB of memory buffer.

The system has enabled the research group in [47] to investigate and demonstrate a novel

limited diffraction transmit method, by enabling total control of transmit and receive pa-

rameters. The demonstrated approach seeks to remove the need for multiple linear RF

transmitter circuits, that are physically large, have high power consumption and require

good heat dissipation, by needing only one or two transmitter circuits. A solution such

as this however limits overall system flexibility. The developed platform provides the

research with access to pre-beamformed (raw-RF) data with which to perform signal pro-

cessing. The hardware provides them the option to compare and contrast the proposed

method with other methods known in the community.

In addition to the systems previously discussed, several commercial multi-channel

systems exist. For example, the LeCoeur “Open” system by LeCoeur Electronique boast-

ing up to 256 channels, variable sampling frequencies (10 to 80 MHz), and high voltage

(120 Vpp) analogue output. Additional software options also provide control of parame-

ters using a MATLAB scripting interface.

A second example includes the Verasonics ® system. This is a large channel-count

(128 element transmit, 64 element receive) system employing tri-state (three level) pulsers

with programmable waveform parameters. Other features of the system include frame

averaging, and transmit apodization.

Other examples include systems by companies such as: Cephasonic (Santa Clara,

CA) and their Firebird, and Griffin systems; and Peak NDT ltd. (Derby, UK) and their

Micropulse MP5PA array controller system.
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2.2.3 Research Interfaces

An alternative to the full development of an ultrasound system is to build a research inter-

face to an existing system. Such interfaces are also being provided by commercial manu-

facturers. Research interfaces were reviewed in a paper by Hemmsen et al. [48]. Exam-

ples include: Hitachi’s HiVision 5500 [49], the Ultrasonix 500 [50], Siemens SONOLINE

Antares [51] and Visualsonics Research Interface. Research interfaces are a compromise

between total system development and flexibility, however require good links with large

companies, may have large cost associated with the package, and may only provide ac-

cess to certain parameters as decided by the manufacturer. What is missing from research

interfaces is the ability to upgrade software, re-sequence operations, or substitute existing

hardware with new designs, without the backing of the commercial manufacturer. Indeed,

what also may be missing is the opportunity for research at the hardware or software de-

sign stage.

2.3 Examples of Non-Standard Methods

The research systems described in the previous section have been used to research various

non-standard methods. For example, development of the ULA-OP system has enabled

simultaneous measurement of mechanical and haemodynamic properties of blood vessels

[24], and also shown many other modes such as coded pulse-compression imaging, plane-

wave imaging, combined imaging and doppler analysis, and elastography measurement

[36].

The RASMUS system developed by Jensen et al. discussed potential for many stan-

dard and non-standard imaging methods such as linear and phased imaging, flow esti-

mation, flow imaging, synthetic aperture imaging, synthetic aperture flow imaging and

coded synthetic aperture imaging [46]. These examples show how invaluable a custom-

built research system can be to a research group, and can also breed other areas of research

with respect to implementation, design or methodology, imaging techniques, and signal

processing.
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2.4 Development of Enabling Technology

2.4.1 Motivation

Development of research systems provides a research group with greatest flexibility. Sys-

tems can be optimised for a particular research goal. Designing and developing the system

in-house allows researchers access to all aspects of the design, and provides opportunity

for both hardware and software development. For example, the majority of multi-channel

systems described in Section 2.2.2 have opted to use DAC and power amplifier transmit-

ter circuits in order to provide greatest flexibility in transmit, differing from commercial

systems that have arbitrary waveform capability. The consequence of this is a reduction

in maximum voltage output (as shown in the ULA-OP system), or the requirement for

large systems with reduced portability. It is for these reasons that development of a re-

search platform was undertaken by the Ultrasound group at the University of Leeds. As a

consequence, novel aspects of implementation have been researched as part of the work

discussed in later chapters. Most specifically the transmit beamformer, and switched-

mode transmitter system components. To set a context for later chapters therefore, an

overview of the generic UARP system is provided.

2.4.2 Overview: Ultrasound Array Research Platform

Work to develop the UARP (shown in Figure 2.3) started in 2007. The ultrasound group at

the University of Leeds had previously developed single channel systems, using switched

mode technology with MOSFETs as an alternative to linear RF power amplifiers as dis-

cussed by Cowell and Freear [52] and [53]. The work in [52] and [53] evaluated a multi-

level transmit method suited for generating coded ‘chirp’ excitations using square-wave

switched-mode approximations (or ‘pseudo-chirps’) and tapering using intermediate volt-

age levels. Work then started on developing an array platform incorporating the MOSFET

based circuit, and based on switched-mode methods as opposed to linear power amplifiers

seen in other research platforms. The MOSFET based excitation developed by [52] was

then moved to a scalable platform design as described in [1]. [1] discusses the design of
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an eight-channel transmitter board, with each channel capable of five-level excitation, this

was then re-designed to incorporate an on-board Cyclone III FPGA (EP3C40Q240C8N,

Altera). Each transmitter board was replicated to form a 96 channel transmit system. In

conjunction with this, the group also designed backplane distribution boards [54], eight-

channel receiver board designs [55], system software and firmware [56], [57], [58], as

well as data distribution, power distribution and transducer connect boards. The current

UARP system has 96 transmit and receive channels. An architectural system diagram is

shown in Figure 2.4 with a summary of the UARP capability provided in Table 2.1.

Figure 2.3: Photograph of the UARP system developed at the University of Leeds

The UARP has supported publication of several journal and conference papers as well

as supporting EPSRC grant and UK patent applications. As an example, a particular

aspect of the technology close to the subject of this thesis is flexibility of the transmit

architecture and generation of non-standard beam patterns. Work by Raiton et al. [16, 15,

59, 19] demonstrated manipulation and trapping of entrained particles under flow. In this
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Figure 2.4: UARP system architecture

Table 2.1: Summary of UARP Features

UARP Features

96 Independent Transmit/Receive Channels
Maximum Output Voltage ± 100 V
Transmit Frequency: < 20 MHz
Programmable Transmit Focusing and Steering
Receive Sampling: 50 MHz
Receive Sampling Resolution: 12 Bits
Receive Bandwidth: up to 15 MHz
Access to raw RF signals per element
Potential GPU Acceleration
Dimensions 37 cm x 34 cm x 31 cm

work, software and firmware was developed to program the UARP to generate a field for

particle manipulation using travelling waves without the need for standing waves. The

software enabled transmission of phase-inverted signals from half of the transducer to be

transmitted by the array. An asymmetric field was produced to allow particles under flow
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to be held stationary within a pressure null. The research has potential for histotripsy

applications.

Similar use of the UARP technology included a randomized excitation scheme, [21],

bi-spectral analysis of raw RF ultrasound data acquired using the UARP [22], and to

demonstrate advances in therapeutic drug delivery mechanisms such as ‘sonoporation’

[20] .

2.5 Conclusions

This Chapter discussed the context for development of an enabling array research sys-

tem. Examples and critique of other research platforms, including discussion of hardware

architectures, and design choices has been provided, with examples of how valuable ac-

cess to a research system is over a commercial system. A main conclusion is that many

of the bespoke research systems have opted to use DAC and linear power amplifiers to

produce more flexible excitation waveforms. This differs from the reported switched-

mode technology found in commercial systems [9],[60],[61]. Previous research by Cow-

ell and Freear [52] evaluated a multi-level switched-mode system for transmission of

‘chirp’ LFM signals. This technology was combined into a bespoke UARP that contains

switched-mode circuits. An overview of the UARP has been presented, and provides a

basis with which to explore other research areas. Development of the platform has pro-

vided the opportunity to research individual sub-components of the ultrasound system

design. The following chapters of this thesis relate to research based on implementa-

tion of two major system components: the transmit beamformer architecture, and design

of a transmitter scheme capable of arbitrary waveform generation using switched-mode

excitation.
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Chapter 3

Switched-Mode Excitation of

Transducers

3.1 Introduction

Chapter 2 introduced single-channel and multi-channel ultrasound research systems de-

veloped to transmit, acquire, and process received signals. Signal transmission and recep-

tion is enabled using a transducer. This chapter discusses the properties of transducers in

more detail, starting with a single element transducer as shown in the previous chapter,

and then discussing multi-element array devices. Multi-element transducers are advan-

tageous due to the ability to use beamforming techniques such as steering and focusing.

These techniques will be discussed in Chapter 4. To utilise these techniques however, it is

desirable to have an individual transmitter circuit per element, with the transmitter circuit

able to generate large voltages and source large currents when driving a piezo-electric

load.

This chapter provides an overview of the electrical properties of a transducer. A review

of methods used to excite the transducer is given, followed by a discussion of other alter-

native amplifier technologies that may also be used. A comparison is made between the

two types of amplifier circuits (analogue and digital), with the benefits of digital switched-

mode amplifiers outweighing analogue types for multi-channel systems. The University
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of Leeds UARP (as introduced in Chapter 2) is an example of a multi-channel system,

and as such uses switched-mode technology. A more thorough description of the trans-

mitter within the UARP is given and serves as a foundation for later chapters that describe

technology control methods of switched-mode sequences within the UARP’s ‘front-end’.

3.2 Piezo-Electric Transducers

3.2.1 Single Element Transducers

The piezo-electric effect [8] is the fundamental principle which governs ultrasonic sensing

and acoustics in general. A transducer is a component manufactured to harness the piezo-

electric effect in an effective manner. A basic transducer consists of a section of piezo-

electric material separating two electrodes. The thickness of the piezo-electric material

is equal to half the wavelength of the desired centre frequency [62]. The most popular

choice of piezo-electric material is a polycrystalline ferroelectric ceramic material, known

as Lead Zirconate Titanate (PZT) [63] [64]. PZT is a man-made material which exibits

a strong piezo-electric effect once ‘poled’, a process of heating whilst applying a large

electric field (kV/cm) across the material to align magnetic dipoles within its structure

along the direction of propagation. [63] [64]. The properties of PZT were first reported

by Shirane and Suzuki in 1952 [65] and later by Jaffe et al. in 1954 [66], [67].

Application of an electric signal to the piezo-electric material causes structural defor-

mation, and creates mechanical disturbance or vibration. This process can be described

as electro-mechanical conversion. PZT is particularly popular due to its high electro-

mechanical conversion factor when compared with other materials [62], and therefore is

more efficient in converting electric signals to acoustic signals.

The mechanical disturbance generates a ‘forward propagating’ wave and a ‘backward

propagating’ wave, of equal amplitudes but opposite polarity and direction. The forward

propagating wave is primarily used for sensing within the system, and is therefore cou-

pled into the medium. The backward propagating wave can internally reverberate within

the component, generating additional unwanted pressure waves and lengthening the trans-
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mission. It is therefore standard practice to attenuate or absorb the backward propagating

wave using backing material [63]. Typical backing materials such as epoxy have a good

acoustic impedance match to the piezo-electric material [63]. Providing a backing layer

ensures that a short, damped pulse is transmitted when excited with an electrical impulse

[62].

The forward propagating wave may also cause unwanted reverberation if coupled into

material with a large difference in acoustic impedance. This reduces efficiency of trans-

mission and sensitivity in reflection. Energy transfer between the piezo-electric material

and the medium can be improved by using matching layers. Matching is often necessary

for PZT, as it has a high acoustic impedance when compared with other materials such as

tissue or water [62].

The amount of acoustic energy transmitted or reflected can be calculated using stan-

dard acoustic impedance equations for transmission and reflection coefficients [68, 67]

Acoustic impedance is described as

Z = ρc (3.1)

where ρ is density of the medium, and c is the longitudinal speed of sound within the

medium. The reflection coefficient, Γ, can be calculated using [69]

Γ =
[

Z2−Z1

Z2 +Z1

]2

(3.2)

and is a measure of the strength of reflection at a boundary between two materials with

acoustic impedances Z1 and Z2. Ideally the transducer should minimise the value of Γ

from the piezo-electric element to the medium, so that maximum transmission of acoustic

energy is achieved. A final addition to the transducer may see the application of a plexi-

glass or polystyrene acoustic lens to focus (or de-focus) the forward propagating wave

[63]. A diagram of a single-element transducer is shown in Figure 3.1.

Alternative piezo-electric materials to PZT exist such as Polyvinylidene Diflouride or

PVDF, first described by Kawai in 1969 [70], [67]. PVDF is advantageous due to its low
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Figure 3.1: Diagram of a single element transducer

cost, low acoustic impedance, high bandwidth and flexible nature [63][67]. A drawback

of PVDF however is its poor transmitting efficiency due to low mechanical coupling factor

in acoustic-electro conversion [71]. As a consequence, PVDF is often used as a receiving

component, in a hydrophone for example, requiring broadband response [63].

3.2.2 Array Transducers

Array transducers package multiple independent piezo-electric elements within a single

assembly [63]. Multiple elements are advantageous as they provide a higher level of

flexibility in both transmit and receive modes when compared with single element equiv-

alents. Manufacture of array transducers involves a similar process of applying electrodes,

acoustic lenses, acoustic backing and matching layers to each element. The piezo-electric

material is ‘diced’ to form gaps between elements referred to as ‘kerfs’. Kerfs are usually

filled with a highly isolating material such as air in order to reduce inter-element crosstalk

[63]. At high frequencies however, the ability to dice elements for high-frequency arrays
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can be problematic due to the small kerf widths required [62]. As frequencies and channel

count increases, these manufacturing issues such as dicing, and interconnection increase

the cost of transducer components. Figure 3.2 shows a diagram of an array transducer.

Backing Material

Electrodes Matching Layer

LensPiezo-Electric 
Elements

Kerfs

Figure 3.2: Diagram of a multi-element array transducer

3.3 Electrical Properties of Transducers

Electrically, a transducer element can be considered as a section of isotropic material

sandwiched between a pair of conductive plates [67] as can be seen in Figures 3.1 and

3.2. A transducer can therefore have a capacitance, C0, defined by

C0 =
εrε0A

d0
=

Q
V

(3.3)

where εr is the dielectric constant of the material, ε0 is the permittivity of free space, A is

the material area, d0 is material width, Q is charge stored, and V is potential. It is known

that a capacitive load causes a large inrush current from the source in response to a step
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input. This can also be seen for the equation relating current to voltage for a capacitor

I = C0
dV
dt

. (3.4)

This large inrush current can be problematic, and the capacitance of the piezoelectric

element can be “tuned” by selecting a shunt inductor of value 1/(ω2
0C0) [63]. This tuning

inductor ideally converts the impedance of the load to be purely resistive.

A transducer can also be considered as a resonant circuit due to its crystal property.

The circuit shown in Figure 3.3 describes series and shunt equivalent circuits of a trans-

RmC0
Ra

C0

Figure 3.3: Series and shunt transducer equivalent circuits at resonance

mitting transducer at resonance [63]. Radiation resistances Ra and Rm can be calculated

using

Ra =
4k2

t Zc

πω0C0(Z1 +Z2)
(3.5)

and

Rm =
π(Z1 +Z2)
4k2

t ω1C0Zc
(3.6)

where C0 is defined according to (3.3), kt is the thickness mode electro-mechanical cou-

pling coefficient, Zc = AZ where Z is the acoustic impedance of the piezoelectric element,

ω0 is the parallel resonance frequency at which the input electrical impedance is maxi-

mum, ω1 is the series resonance frequency at which input electrical impedance is minimal

and Z1 and Z2 are the acoustic impedances of the medium and transducer backing respec-

tively. A variety of more complex models exist that define electro-acoustic interaction in

greater detail. Such models can be used to simulate different transducer configurations,
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and also medium propagation in programs such as SPICE. These models include the Ma-

son model [72], Redwood’s model [73], the KLM model [74], and other variations such

as Leach’s model [75].

Equivalent circuits permit analysis of excitation in both the electrical and acoustic

domains. It can be seen from the equivalent circuit models shown in Figure 3.3, that a

transducer can be classed as a resonant circuit, as discussed in other literature [76, 63,

68, 69]. The choice of materials used during transducer manufacture have great influence

on the resonant properties of the transducer, including damping, impedance matching,

and electro-mechanical conversion. A resonant circuit has an associate Q factor, QF ,

described by [62]

QF =
f2− f1

f
(3.7)

where f1 and f2 are the half-power frequencies. The Q factor describes the bandwidth of

the transducer, which can therefore be thought of as a form of bandpass filter that filters

electrical signals whilst converting them to the acoustic domain. Any filter will have a

impulse response determined by its bandwidth and Q factor. A high Q factor indicates low

damping, and longer duration impulse response. A low Q factor indicates high damping,

and very short duration impulse response. The choice of materials used in manufacture

alter the impulse response. For greatest axial resolution, it is best to use a low Q factor,

and a very short ‘shock’ type electrical impulse.

Section 3.4 will now review strategies used to excite transducers effectively, to first

produce short-duration impulses, and then driving transducers with longer ‘coded’ se-

quences.

3.4 Review of Excitation Circuits

Historically, two methods of pulsed transducer excitation existed. Firstly, shock excita-

tion by discharge of a capacitor and secondly tone-burst excitation using a gated sinu-

soidal waveform at RF frequency [77] [78] [79]. Tone-burst excitation of the transducer

was considered more complex to implement, and less effective than shock excitation,
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especially as shock excitation could switch hundreds of volts quickly to create larger me-

chanical disturbances. For propagation in an attenuating material this is advantageous so

as to increase penetration depth. As well as generating large voltages, shock excitation

has potential to produce very wide-bandwidth, short-duration signals suitable for optimal

axial resolution. Early examples of shock excitation circuits include the use of Thyristors

and Silicon Controlled Rectifiers (SCRs), as discussed in [78], [79], [80]. Thyristors and

SCRs are components that are non-conducting until a trigger voltage is applied to its gate

terminal. Typical circuits using SCRs accumulate charge on a capacitor, before quickly

discharging it through the SCR device, by triggering its gate. After the charge stored in

the capacitor has dissipated, the SCR stops conducting. The process can be repeated once

the capacitor has been charged sufficiently. An example circuit is shown in Figure 3.4,

consisting of a charge storage capacitor, C, a SCR device and resistors R1 and R2. Note

+V

VOUT

SCR
Trigger In

R2

R1

C

Figure 3.4: Shock excitation pulser circuit using a charging capacitor and Silicon Con-
trolled Rectifier

that the time constant R1C defines how quickly charge accumulates on the capacitor, and

should be minimised for increased Pulse Repetition Frequency (PRF) [78]. C however

should be maximized so as to accumulate most charge [81] without exceeding the capa-

bilities of the SCR [78]. As a consequence R1 (most often the source impedance) should

have a low value. Resistor R2 is used as a discharge resistor, and should be kept small in
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order to dissipate energy quickly. A practical example of this circuit was demonstrated by

Okyere and Cousin [78] capable of switching 1000 V in 100 ns with a PRF of 1000 Hz.

In the 1980’s SRCs were being replaced by high power Field Effect Transistors (FETs)

as shown in Figure 3.5. This substitution was necessary, as although SCRs could turn on

+V

VOUT

MOS
FET

Trigger In R2

R1

C

Figure 3.5: Shock excitation pulser circuit using a charging capacitor, and N-channel
MOSFET in-place of a SCR

and dissipate charge quickly, turning the devices off again was more problematic. Mattila

discussed this issue in [79] showing the decrease in rise time for a negative unipolar pulse,

after direct substitution of a power MOSFET for the SCR. This improved rise time en-

abled shorter duration, wider bandwidth pulses to be produced without sacrificing switch-

ing voltage. A paper by Persson [82] used a collection of different MOSFET transmitter

configurations to investigate how the shape of the electrical excitation signal altered the

pulse-echo response of the transducer. Persson [82] demonstrated that using rectangular

pulses generated greater pressure response than ‘impulse’ or ‘spike’ excitation, and that

the use of bipolar excitation generated larger pressure amplitude as a consequence of a

sharp leading and trailing edge. During this period, Hayward described that the majority

of ultrasound systems had now adopted some form of switching circuit for transducer ex-

citation [81]. [83] continued pursuing the use of MOSFET excitation circuits, discussing

a link between the need for independent control of multi-element devices. In the same
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year Martin [80] also demonstrated how variation of pulse width could produce ultrasonic

pulses optimised for resolution or maximum amplitude.

In the 1990s, led by work in RADAR techniques describing frequency modulated

square wave excitations by Johnston [84], several authors such as O’Donnell [85], and

Pollakowski [86] explored the use of switched-mode circuits to generate similar, fre-

quency modulated waveforms for ultrasound coded imaging. O’Donnell in 1992 de-

scribed the use of a ‘pseudo-chirp’, showing a switched-mode binary approximation of a

sinusoidal coded waveform, generated using discrete voltage levels [85] similar to those

shown by Johnston [84]. Pollakowski in 1994 also discussed the advantage of switched-

mode pseudo-chirp excitations for coded imaging over DACs and broadband amplifiers

[86] and potential for non-linear chirp generation that differed from use in RADAR.

In 1999, two switched-mode d.c.-to-RF power inverter designs (single-ended and full-

bridge) were used to successfully drive a 1 MHz transducer for ultrasonic cleaning [87].

In a comparable paper [88], the use of a Class D inverter was also shown to be benefi-

cial for a similar application. The choice of Class D in [88] over other analogue ampli-

fier technologies was due to cost and efficiency. These designs showed the potential of

switching-mode circuits for use in very high power applications such as ultrasonic clean-

ing, acoustic cavitation or therapeutic high intensity focused ultrasound (HIFU). In 2002

Brown and Lockwood [89] described the design of a low-cost pulse generator capable of

10 kW pulses ranging from 10 to 500 ns. A push-pull switching circuit was used to gener-

ate a unipolar, negative shock excitation, with very low ripple and short duration. In 2006

Haider, working for General Electric, described bipolar and multi-level switching circuits

now commonly used in ultrasound technology [9]. In [9] Haider described, unipolar,

bipolar and three level circuits, whereby the transducer is charged to a potential and then

discharged either through a resistor, or by a return to ground (return to zero) switch. In

2007 Xu et al. extended the work in [89], designing a circuit capable of generating bipolar

switched-mode excitations, for use with very high frequency (> 50 MHz) array transduc-

ers. Up to the present day many other examples exist of switched-mode techniques for

high voltage excitation as described in literature such as [52], [13], [90], [14], [12], and
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in patents such as [91, 61, 60]. However, recent authors such as [14] and [92] have dis-

cussed the use of different amplifier classes to describe more arbitrary waveforms, due to

a limitation in arbitrary pressure output from switched-mode excitation using three or five

levels [92]. The recent literature included designs of high voltage analogue amplifiers for

transducer excitation. For example, Gao and Gui described the use of a Class A/B ampli-

fier design with a pre-distortion technique to account for non-linearity, over high voltage

switched-mode pulsers [92]. Qui et al. described the design of a multi-purpose pulse

generator incorporating high voltage switched pulsers, and also the use of a three stage

amplifier chain, required due to the lack of control over pulse characteristics provided by

switched-mode pulser circuits. Later chapters of this thesis investigate this limitation. For

now however, it is important to discuss alternative amplifier technologies, and compare

them against the switched-mode methods discussed in this section.

3.5 Summary of Amplifier Technology

Amplifiers can be categorised into classes such as A, B, C, D, E, and F [93] and further

classified as switching or non-switching. An analogue, non-switching amplifier takes a

continuous signal and increases its power or voltage according to a gain (the ratio of input

to output) [94]. A switching amplifier class will generate a switched-mode output, which

is a modulated representation of the input. Analogue amplifier classes are Classes A to C.

Switching amplifier classes are Classes D to F.

The simplest amplifier is a Class A amplifier, which usually consists of a single biased

transistor device, operating in a linear mode, that conducts in proportion to the input sig-

nal. A Class A amplifier can be described as having a conduction angle of 360◦or 2π [93].

The term conduction angle describes the period with which the output stage is conducting

in response to an input of a single sinusoidal cycle. A conduction angle of 360◦means

that the the output stage conducts throughout the whole cycle. A Class A amplifier con-

sequently has a large quiescent current and dissipates power in the form of heat, with or

without an input signal [95]. Power dissipated as heat raises the temperature of the output

stage, increases the temperature of surrounding components causing them greater stress,
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and can result in accelerated failure [93]. To deal with the large amount of power dissi-

pation, Class A amplifiers require heat sinks, and/or circulating air to assist cooling. Heat

sinks are heavy, bulky and expensive [93] however are almost always necessary for high

power Class A designs.

A Class B amplifier amplifies a single positive or negative cycle, and is therefore non-

conducting for half a period, or has a conduction angle of 180◦[93]. Class B amplifiers

are rarely found in isolation (as they reject half of the signal) but are usually found in a

push-pull configuration, with each device conducting according to the positive or negative

half cycle applied. Note that a Class A amplifier can be push-pull also, using two devices,

with the input signal to one device phase-inverted. In a Class A push-pull configuration

both devices are still conducting, therefore both angles of conduction are 360◦. Class B

(push-pull) amplifiers suffer from crossover distortion when the input signal is lower than

the bias voltage of either of the devices [95]. This creates a ‘deadzone’ around zero volts,

equal to twice the voltage drop of the device used.

A Class A/B design biases each of the push-pull transistors so that at low input sig-

nals the amplifier operates as Class A, and at zero input both devices are conducting, but

at high input signals operation resembles Class B [93]. Class A/B systems provide best

compromise between the continuous conduction from Class A, and the crossover distor-

tion from Class B designs. The conduction angle of a Class A/B amplifier is dependent

on how much each device is conducting in its usual Class B stage.

Amplifiers classes such as Class D operate differently. A Class D amplifier converts

an analogue input signal into a set of switching states by means of modulation. The

most common form of modulation is to alter pulse width by comparison with a triangular

carrier [93]. The modulated representation of the waveform is then amplified using a

switching output stage (usually some sort of FET device) that selects a voltage level.

In its simplest form, a Class D amplifier will only switch between two levels, often a

ground state, and another voltage in a push-pull configuration. Most applications require

a filter to reconstruct or demodulate the switched output signal from the input signal. The

output transistors draw no current when not conducting, and have very low VDS drop when
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they are conducting [94]. As a consequence Class D amplifiers are highly efficient when

compared with other analogue classes.

Class D amplifiers rely on switching at a rate quicker than the reconstruction filter

can respond, thus providing a time-averaged output. Inefficiency of Class D amplifiers

however, comes with high switching rates, where multiple high frequency commutations

cause power loss. Switching loss is attributed to continual charging of MOSFET gate

capacitance at frequency [93] [94], CG, where

PLoss = CGV 2 fsw. (3.8)

Minimizing the switching frequency fsw reduce switching losses, at a risk of output wave-

form degradation.

Class D amplifiers operating with pulse-width modulation are seen as the future of am-

plifier technology due to their high efficiency, small size and power capability. Alternative

switching amplifiers such as sigma-delta modulators, have also been widely adopted that

use other modulation types, such as pulse-density modulation (PDM). Switched-mode

class D amplifiers save on cost, and also require less heatsinking due to lower power

dissipation than analogue amplifier technologies [93]. As a consequence, switched-mode

circuits that can switch high currents at high speed are advantageous for piezo-electric ex-

citation. The next section details how Class D switching technology has been incorporated

into the UARP, due to its benefits over analogue solutions for multi-channel excitation.

3.6 Enabling Technology: Ultrasound Array Research

Platform (UARP)

Section 3.5 described the advantages and disadvantageous of many of the amplifier tech-

nologies briefly covered in Chapter 2 when describing bespoke research platforms. Chap-

ter 2 also briefly discussed the development of the UARP system. This will now be

discussed in greater detail.
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The UARP transmitter consists of a multi-level MOSFET circuit as discussed in [52].

Section 3.4 described the development of switched-mode circuits for ultrasound from

SCR controlled capacitor discharge, to the multi-level MOSFET circuits in the design

of the UARP. Indeed commercial manufacturers such as Supertex, Texas Instruments

and Maxim IC have developed integrated circuits packaging multiple power MOSFETs,

MOSFET drivers, and level translation circuits for multi-level switched-mode excitation

of transducers. In the case of the UARP, six MOSFETs are packaged within a single

MAXIM 4811 (MAXIM Integrated Technologies), [96] device, with one device provid-

ing quinary-level excitation signals per channel. A portion of the circuit is shown in Figure

3.6 and can be explained as follows. T1, T3, and T5 are P-channel, enhancement mode

MOSFETs, whilst T2, T4, and T6 are N-channel enhancement mode MOSFETs. En-

hancement mode means that conduction (of electrons or holes) increases with increasing

input signal. T5 and T6 are included to return the output to ground in order to truncate the

pulse as discussed by Haider [9] and [52]. Each switching-device is controlled by a MOS-

FET driver (not shown in Figure 3.6) internal to the MAX4811 device. The MOSFET

driver enables CMOS-logic level input (0 to 3.3 V) to control each MOSFET. A single

UARP transmitter board houses eight MAX4811, with each device’s MOSFET CMOS

inputs controlled by an Altera Cyclone III (EP3C40Q240C8N) FPGA. Figure 3.7 shows

an annotated photo of the transmitter board. The role of the FPGA is to control incoming

instructions within the system, and directs the switching of each channel’s device. The

use of an FPGA enables controlled switching of each channel in parallel. Consequently,

the work described in later chapters is dependent on the flexibility and individual control

of each channel using the on-board FPGA.
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Figure 3.6: Multi-level MOSFET circuit (five levels shown with return to zero)
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Figure 3.7: Eight-channel UARP transmitter board
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3.7 Conclusions

This chapter discussed the properties and composition of single element and array trans-

ducers, giving explanation as to how a transducer can be modelled and the requirements

for excitation. The advantages of ‘shock’ excitation over sinusoidal tone burst signals

were discussed, particularly with respect to the ability to quickly switch-large voltages

using switching circuits such as SCRs and MOSFET devices. The evolution of switched-

mode circuits for piezo-electric excitation were also introduced as discussed in Brown and

Lockwood [89], Haider [9], Xu [39] and Cowell and Freear [52]. These switched-mode

circuits are used as an alternative to analogue amplifier technologies such as Class A, B

and A/B devices. In terms of cost, size, and power consumption, Class D amplifiers oper-

ating in a switched-mode are more suited than other analogue amplifier technologies for

use with array transducers, where multiple elements require multiple transmitters. There

are however recent examples such as [92, 14] that discuss a lack of flexibility of switched-

mode circuits, instead opting to favour analogue designs for transmitter circuits.

The latter part of the chapter, presents the UARP transmitter design. This design

uses multi-level MOSFET high voltage pulser integrated circuits, co-ordinated by a local

FPGA, and operated in a switched-mode. The following chapters of this thesis describe

how each pulser chip is controlled by the FPGA. Future chapters examine encoding of

switching signals, with pulse-width modulation, i.e. controlling the time with which a

particular MOSFET is conducting in response to a desired input, and with consideration

of the resonant nature of a transducer element as described in this chapter. Chapter 4

discusses how inter-element sequencing of excitation, i.e. delaying the MOSFET switch-

ing control signals sent from the FPGA to each pulser device can alter the nature of the

transmitted field profile.



Chapter 4

Switched-Mode Timing Control

4.1 Introduction

Chapter 3 described how piezo-electric material is packaged with electrodes and other

auxiliary components to form single element and multi-element array transducers. Multi-

element arrays ideally require an dedicated transmitter circuit per element, for maximum

flexibility. Also discussed within Chapter 3 was the use of switched-mode circuits to ex-

cite transducer elements. These switched-mode circuits may be unipolar, bipolar or multi-

level switching configurations that provide ‘shock’ excitation, or stepped or square-wave

approximations to analogue excitations. There is a distinct advantage of switched-mode

methods over analogue amplifier technologies especially for large channel-count systems,

and permits the use of different waveforms per element, and also enables control of inter-

element sequencing. Excitation sequencing control can be used to form acoustic beams

of pressure by combining contributions from multiple elements (known as beamform-

ing). Beamforming is achieved by applying electronic delays to signals. This technique is

known as array phasing [97] due to continuous wave signals requiring a phase difference

between signals for beam manipulation. Such beamforming methods rely on the ability

to manipulate inter-element timing of excitation signals - specifically in the context of the

UARP, switched-mode trigger signals that excite the transducer and generate the desired

beam profile. These switched-mode signals are generated, and delayed by each transmit-

ter board’s FPGA. Using beamforming techniques, beams of pressure can be focused to
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a point and/or steered ‘off-axis’ providing greater directivity and sensitivity for identify-

ing targets. The use of different waveforms per element alongside beamforming can alter

the characteristics of the beam and reduce pressure levels in regions outside of the main

beam, and is known as apodization.

The most prevalent effect on the characteristics of the radiated beam however is deter-

mined by the position and arrangement of sources within the array transducer. Position of

sources, excitation sequencing and per-element excitation are the main topics discussed

in this chapter, and are addressed as follows. Firstly, a description of common physical ar-

rangement of elements within transducers is provided. The position of elements impacts

on beamforming techniques which in turn relies on accurate sequencing of excitation

signals. Poor sequencing accuracy introduces phase quantization error (as opposed to

amplitude quantization error), which can adversely alter the radiated beam profile, as can

other forms of random error. A discussion of the types of phase quantization error is pro-

vided as well as examples shown in simulation. To combat poor sequencing accuracy, the

latter part of the chapter describes the design of an embedded hardware architecture for a

transmit beamformer, as used within the UARP. The design is able to dynamically adjust

switched-mode trigger signals to give high timing precision and reduce phase quantiza-

tion error in sequencing. The method described can also be used to correct other sources

of error such as phase aberration effects caused by a non-homogeneous medium. Firstly

however, the physical aspects of array transducers are discussed.

4.2 Array Transducers

Transducers are application specific components due to different sensing modalities re-

quiring ultrasound to be transmitted and received from different positions. The perfor-

mance of the transducer when used with steering and focusing is directly affected by the

distribution of elements. Naturally, the arrangement of elements affects the coverage of

the radiated ultrasound, as well as the ‘field of view’ with which the transducer encom-

passes.

The most common arrangements are shown in Figure 4.1 [98], [62] [99]. These in-
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1-D Linear Array (transducer face) 

1-D Linear Array (top view) 

1-D Curvilinear Array (top view) 

2-D Linear Array (transducer face) 

Annular Array (transducer face) 

Circular Arrays (transducer face) 

Figure 4.1: Common transducer types

clude linear, curvilinear, annular and 2-D array patterns [98] [62] [99]. The most common

of which is the 1-D linear array.

4.2.1 Linear Arrays

Linear 1-D arrays as shown in Figure 4.1 are the most common and simple transducer

arrangements, and are composed of a row of elements enabling both focusing and steering

in the x,z plane. Focusing in the elevation y,z plane can be achieved with a suitable

acoustic lens [63].

Linear arrays enable two of the most popular types of imaging to be conducted;

linear-phased and phased-linear [69]. These terms are often shortened to linear-array

and phased-array imaging. The term phased-array is potentially misleading however, as

both linear and sector imaging rely on phased-array techniques such as focusing, with

sector imaging utilising steering and focusing. Other more advanced imaging methods

such as compound plane wave imaging, utilise steering only. In all these examples the

use of signal phasing or phased array techniques to steer or focus beams is required. In
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this case, the imaging types have been defined as linear imaging and sector imaging as

shown in Figure 4.2.

Linear Scanning Sector Scanning

Figure 4.2: Example 1-D linear array transducer imaging modes

Linear imaging with a 1-D linear array uses a subset or collection of elements trans-

mitted towards a focal point. The same subset of elements is used to receive the reflected

ultrasound, with each element’s contribution coherently summed to form a single image

line. A full image is formed by moving the subset of elements or ‘aperture’ along the

face of the transducer by a single element, and transmitting and receiving another line.

As a result, the image formed is rectangular and does not extend beyond the width of the

transducer.

Sector imaging with a 1-D linear array typically uses all elements to transmit at a

particular focal depth and at a defined angle. All elements are also used in receive, with

beamforming techniques used to steer to an angle and focus to a point along the scan-line.

Additional image lines are acquired by moving to different angles. As a consequence, the

image formed is ‘fan’ shaped potentially allowing for regions greater than the width of

the transducer to be imaged.
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4.2.2 Additional Array Types

Table 4.1 provides a summary of the other array types shown in Figure 4.1. Note that

some of the transducer types shown have different modes of operation, most will use

phased-array techniques for optimum results.

Array Type Description Comments

Curvilinear Elements arranged on a
curved surface.

Generates an approximately
trapezoidal image.

Linear imaging is applied. Little use of phased-array
techniques.

Annular Coaxially aligned
concentric rings of
piezo-electric material

Enables spherical focusing
but not steering, which
requires mechanical
translation.

Circular Composed of elements in a
ring structure.

Enables spherical focusing
but not steering

2-D Linear Grid like arrangement of
elements.

May operate in linear or
sector scanning mode.

High flexibility in beam
manipulation.

Permit 3-D and 4-D
imaging.

Table 4.1: Overview of different array types

4.2.3 Definition of Array Geometry

The transducer types discussed in Figure 4.1 and Table 4.1 are different physical arrange-

ments of multiple elements, however many of these conform to the generalised geometry

of a linear 1-D array, as shown in Figure 4.3. A linear 1-D array is the most common

Element
Height

Width KerfPitch

Aperture

Figure 4.3: Generalised transducer array geometry
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of array types and is also used mostly throughout the rest of this work. It can be seen

that each of the elements in the linear array has a defined height, width, and kerf between

elements as a described in Chapter 3. The total distance between elements (taking into

account element width and kerf) is known as the pitch, d, where

d = kerf+w (4.1)

where w is the element width.

A subset of N elements is defined as an aperture as described in the linear imaging

case. An aperture has a size D defined by [100]

D = Nd (4.2)

4.3 Beamforming

A single piezo-electric element excited by an electrical impulse will vibrate and produce

a pressure wave. The properties of this pressure wave can be described by the element’s

impulse response as discussed in Chapter 3. In the simplest case, if the element is con-

sidered a point source then a spherical wavefront will be produced. A linear 1-D array

of point sources generates an array of wavefronts that can sum coherently to generate

a plane wavefront, travelling perpendicularly away from the row of point sources. This

summation is in accordance with Christian Huyghens theory of constructive and destruc-

tive interference. The principle of constructive interference can be used to form and steer

beams by controlling the sequencing of firing. Note that also in the real case, array trans-

ducers are not composed of point sources, but of elements with width and height as shown

in Figure 4.3. These physical characteristics can have impact on the direction and direc-

tivity of the wavefront as discussed in various literature such as [101, 98].
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4.3.1 Steering

Steering or deflection of the plane wave as shown in Figure 4.4 can be achieved by apply-

ing a linearly increasing delay profile across the linearly spaced aperture.

Figure 4.4: Steering of a beam with a linear array of elements

The delay between adjacent elements τn, to deflect the plane wave at an angle θs, is

equal to [102] [103]

τn =
d sinθs

c
(4.3)

Steering of a beam electronically, removes the need for physical or mechanical manipula-

tion of the transducer device (as is necessary for single-element transducers), and enables

a beam to sweep across a region by electronic control of excitation timing.

4.3.2 Focusing

An unfocused wave radiated from a transducer of N elements at an angle θs will insonate

an area approximately the same width as the aperture. This unfocused wave will even-

tually start to diverge after the natural transition distance zTR. The region before the

transition distance is known as the near field or Fresnel region. The region from the tran-

sition distance and beyond is known as the far field or Fraunhofer region. Definitions of

these regions are shown in Figure 4.5.

An unfocussed wave has low lateral resolution. Resolution can be increased for a

particular depth by focusing the beam towards a point as shown in Figure 4.6. Focusing
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Near Field Far Field

Focal Zone

Fresnel Region Far Fraunhofer 
Region  

Near Fraunhofer 
Region  

Figure 4.5: Definition of near field and far field as well as Fresnel and Fraunhofer regions

Figure 4.6: Focusing of a beam with a linear array of elements

deposits energy to a focal region in transmit, and increases sensitivity at a particular point

in receive. Focusing brings the crossover point between the near field and far field shown

in Figure 4.5 closer to the transducer face. Targets within the focal region are subjected

to larger acoustic pressures, as the energy from all elements is directed towards the focal

region. This results in stronger reflections from targets within the focused beam as a

result of larger input pressure. Targets outside of the beam are subject to less energy, and

consequently exhibit lower reflections. The ability to focus an array is determined by the

physical size of the array, and is restricted by the transition distance zTR [103] where

zTR =
D2

4λ
. (4.4)
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Arrays can only be focused in the region between zTR and the transducer’s face. Beyond

zTR, focusing has no effect. Focusing to a distance zF can be achieved by applying a

parabolic delay profile as described by [69]

τn =
1
c

[ (
z2

F + ( N−1)2 d2 / 4
)1/2

−
(

z2
F +( n d )2

)1/2
]

(4.5)

where τn is the per element delay, and

−(N−1)
2

≤ n ≤ (N−1)
2

.

This focusing formula can be defined in a variety of ways, for example as in [103]. The

work in [103] discussed the applicability of (4.5) compared to other derivations taking

into account element number, and the use of negative time such as those described in

[104], [68] [69].

4.3.3 Combined Steering and Focusing

Combining steering and focusing gives greatest manipulation of an ultrasound beam as

shown in Figure 4.7. This is achieved by combining the parabolic focal delay profile with

Figure 4.7: Combined steering and focusing of a beam with a linear array of elements
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the linear steering profile, with per-element time delays calculated using [69]

τn =
1
c

[(
z2

F +(N−1)2 d2/4+(N−1)zFd sin |θs|
)1/2

−
(

z2
F +(nd)2−2nzFd sinθs

)1/2
]

(4.6)

where −π/2≤ θs ≤ π/2 and −N ≤ n≤ N.

4.4 Grating Lobes

For linear imaging it is desirable for the transducer to cover a wide scan area. Conse-

quently, the field of view is maximised by increasing d, and reducing N (in this case the

number of elements in the sub aperture). Increasing d enables the transducer scan a wider

area, whilst reducing N increases the number of lines within the image.

For sector imaging it is desirable to sweep across the largest range of angles. For

this modality, a large value of d limits the angular region that can be scanned due to the

presence of grating lobes. Grating lobes are unwanted replicas of the main beam located

within the field, caused by periodically spaced sources that are simultaneously excited,

constructively interfering in the transmitted field. For an unsteered array, grating lobes

occur at angles defined by [63]

θG = sin−1
(

lλ
d

)
(4.7)

where l is an integer in the range−2,−1,1,2 etc. During steering, grating lobes can cause

reflections from targets in the field of view of the transducer, but outside of the main beam,

thus causing interference. The angle of these grating lobes considering steering angle is

defined by [102]

θG = sin−1
(

sinθs−
lλ
d

)
. (4.8)
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The maximum steering angle without grating lobe interference, θMAX, can be calculated

using [102]

θMAX = sin−1
(

λ (N−1)
dN

−1
)

(4.9)

Several strategies exist to alter the position, and reduce the magnitude of grating lobes.

For example, in phased-array probes used for sector scanning, transducers fabricated with

d < λ/2 moves the position of grating lobes to beyond 90◦, positioning them behind

the transducer face. Arrays with d < λ/2 are said to be ‘fully sampled’ according to

Nyquist criterion [63]. However, if d > λ/2 and grating lobes are within the field of view,

the magnitude of the grating lobe can be reduced by increasing the width of transducer

elements, and through the use of short, broadband pulses as discussed by Drinkwater and

Wilcox [98].

Grating lobes are an example of pressure being distributed at undesirable locations

away from the main beam. Any excess pressure throughout the field reduces the sensi-

tivity of the main beam and can cause distortion during image reconstruction. A second

example of undesired pressure distribution can occur due to inaccuracies in transmit or

receive beamforming. This is known as phase quantization error, and can give rise to

effects similar to grating lobes depending on the type and magnitude of the error.

4.5 Phase Quantization

Phase or time quantization is the rounding or sampling of theoretical inter-element delays

τn such as those calculated with (4.3) (4.5) or (4.6) to delays of defined precision. The

level of precision is determined by the hardware architecture and the minimum achievable

delay between elements. A delay profile rounded or quantized to a minimum discrete time

interval results in deviation or rounding error. The deviation from the ideal phase delay

profile is described as phase quantization error [100]. Errors introduced as a result of

coarse phase quantization have a detrimental effect on the beam pattern, and applies to

both the transmit and receive cases.
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Phase deviation or error can be classed as either correlated (periodic) or uncorrelated

(random) [100]. Correlated phase quantization error is error that repeats over the length

of the aperture, whilst uncorrelated error has no defined periodicity.

Correlated error occurs as a result of beams being steered off axis with a linear delay

profile as described by (4.3). Quantization of a linear delay profile produces a staircase

quantized delay profile, whereby multiple elements undergo the same phase excitation.

[97]. The worst cases of correlated error occur when the minimum time increment (or

integer multiple of) extends over two elements or more [105]. Uncorrelated phase quan-

tization error describes deviations with no defined periodicity across the aperture, such as

when beams are focused. Additional uncorrelated or random phase errors can be intro-

duced into the field pattern by other means such as element inhomogeneity as described

by Duxbury et al. [106], Zhang et al. [107] or non-homogeneous materials [108].

4.5.1 Phase Quantization Literature Review

The impact of correlated and uncorrelated phase quantization error within array applica-

tions has been discussed in previous literature; A summary of which is given here. Early

discussion of quantization error primarily considered the continuous wave case for corre-

lated lobes in the far field. Beaver [109] for example discussed the presence of additional

lobes due to correlated phase errors in a steered (non-focused) ultrasound system. In this

analysis it was shown that additional lobes appeared when a regular phase error occurred

across the array with continuous wave excitation. With respect to the pulsed case, it was

postulated that additional lobes would still be present, however would be decreased in

amplitude, similar to the effect of pulse duration on grating lobe patterns.

The effect of correlated error was also discussed in [97] with the authors describing

element phase grouping (i.e. a number of adjacent elements transmitting or receiving to-

gether as a result of coarse quantization). The authors determined that the correlated error

associated with phase grouping caused limitations in the near field and when combined

with focusing (uncorrelated error) produced larger sidelobes and non-ideal beam profiles.
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Magnin et al. [110] demonstrated the emergence of quantization-induced lobes in

pulsed excitation ultrasound systems as opposed to previous continuous wave discussions

([109] and [97]). These quantization lobes increased sidelobe amplitude, thereby limiting

the dynamic range of the ultrasound system, and potential for spurious reflections that

may degrade resolution. Correlated error and uncorrelated error cases were discussed

corresponding to steering and focusing, with the authors establishing that the amplitude

of spurious quantization lobes decreased not only with pulse duration but also as a result

of uncorrelated error introduced with focusing.

Hoen [111] discussed a more practical case using pulsed excitation, criticising [112]

for continuous wave analysis. Whilst this criticism may be fair with reference for imaging,

it must be noted that continuous wave ultrasound is often used for therapeutic applications

(e.g. [113]), and as such, the analysis is still valid and useful. Also discussed was the

effect that delay discretisation had on sidelobe levels, but not the mainlobe.

Von Ramm and Smith [104] analyzed the effect of phase quantization on image dy-

namic range, considering the transmitted beam profile and the received (synthetic) beam

profile. The authors defined image dynamic range as the ratio of the on-axis response to

the maximum undesired off-axis response [104], and can be calculated by consideration

of transmit dynamic range (TDR) and receive dynamic range (RDR). TDR can be defined

as the difference between the mainlobe and a peak sidelobe in the transmitted field and is

defined in dB as shown in (22) of [104]

TDR = 20log
N
2n

√
1+ cosΦ

1− cosΦ
(4.10)

where n is the number of cycles within the excitation pulse and the maximum phase error

per element Φ is defined as [104]

Φ = 2π f ∆τ (4.11)

where 0 < Φ < π and ∆τ is the minimum time resolution of the system.
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Von Ramm and Smith [104] defined IDR as the summation of TDR and RDR

IDR = TDR+RDR. (4.12)

As a consequence, an increase in either TDR or RDR as a result of reduced quantization

effects corresponds to an overall increase in IDR, and hence improved image quality.

RDR can be increased by oversampling and/or using signal processing techniques such

as interpolation [37]. TDR however is limited by the ∆τ of the transmit beamformer.

Von Ramm and Smith concluded their analysis by suggesting a maximum tolerable

phase error of λ/8 for apertures of greater than N = 16 elements, and excitation signals of

n = 5 cycles or less. Note that whilst the maximum tolerable phase error is expressed as a

path length or phase difference, where λ is the wavelength of the centre frequency of the

excitation pulse in the medium, it can also be represented using the following relationships

as derived from [104], [114] and [100]. The maximum phase difference Φ is most often

expressed in terms of the wavelength λ and an oversampling factor µ

Φ =
λ

µ
. (4.13)

This oversampling factor can be calculated by considering the frequency of interest f

sampled by a sampling frequency fs

µ =
fs

f
. (4.14)

This sampling frequency is effectively equal to the inverse of the minimum time resolution

of the system ∆τ

fs =
1

∆τ
. (4.15)

Peterson and Kino [114] pursued the concept of a maximum tolerable phase error

considering the effect of uncorrelated error within the focused but non-steered case. This

analysis was extremely thorough, and is seen as the dominant reference on quantization

error. Their discussion of uncorrelated error described two effects in the beam pattern;
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subsidiary foci in the near field and distinct quantization lobes in the far field. As a result

of their analysis, a suggested estimation of RMS sidelobe level was described with

SLRMS ≈ 20log
π

µ
√

6N
for µ >> 1 (4.16)

Equation (4.16) is often used when describing appropriate quantization resolution in trans-

mit and or receive. Several authors suggests a minimum value of Φ = λ/32(µ = 32) as

described in [69], [115] and [116]. Figure 4.8 plots estimations of RMS sidelobe level

for different sizes of arrays using (4.16). It can be shown that for a 96 element array (N
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Figure 4.8: Estimations of RMS sidelobe level for combinations of N and different levels
of µ . The cross depicts -48 dB for a 96 element array at µ = 32

= 96) and with µ = 32, the estimated RMS sidelobe level approaches -48 dB (as shown

by a cross in Figure 4.8). When the number of elements N is altered at µ = 32, SLRMS

values are still within the -40 dB to -50 dB range e.g. 64 elements: SLRMS = -46 dB, or

128 elements: SLRMS = -49 dB.

Following Kino’s analysis, Lancee et al. [117] studied the effect of phase errors in

transmission only, and discussed the validity of modelling phase error using probabil-
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ity distributions. Two extreme error distributions were simulated to show that whilst the

probability distributions of phase error were the same analytically, the effect in the radi-

ated field was noticeably different. One conclusion from the work in [117] was that phase

quantization error must be minimised to avoid distortions, and the effect of the error could

be simulated for particular worst cases.

Wang et al. [113] described the effect of phase errors on the field pattern for a contin-

uous wave therapeutic application. Also discussed were errors in the field occurring due

to low resolution of phase shifter electronics, non-homogenous media, or imperfect array

fabrication. In [113] a novel example of quantizing the relative phases (difference be-

tween elements) as opposed to quantizing the computed phases difference was proposed.

Wang’s main conclusions echoed the previous literature stating that with an increase in

phase quantization error sidelobes are increased, and mainlobe intensity is reduced.

Holm and Kristoffersen [100] combined the effect of steering with the focused case as

described in [114] in order to evaluate a ‘worst case’ where quantization effects were most

severe. It was shown that the worst case with respect to ultrasound applications would be

the use of continuous wave excitation and a combination of maximum correlated error

(i.e. steering in a direction where a minimum delay increment covers two elements) and

uncorrelated error (introduced as a result of focusing). Worst case steering angles can be

calculated by rearranging (4.3) to give

θs = sin−1
(

τnc
d

)
(4.17)

and then substituting τn for ∆τ/2

θpq|p=1,q=2 = sin−1
(

∆τc
2d

)
(4.18)

for p integer numbers of ∆τ extending over q sub-elements [100]. An example of p =

1,q = 2 is shown in Figure 4.9. Prediction of this angle of quantization lobe can be
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Figure 4.9: Definition of worst case correlated error showing periodic error across the
array

calculated as described in [100] using

θk|p=1,q=2 = sin−1
(

λ

2d

(
1
m
−1
))

(4.19)

for the worst case described in [100] using m = −1. Estimations for peak sidelobe lev-

els were derived for a continuous wave excitation, however as previous authors discuss,

continuous wave calculations tend to over-estimate the severity of quantization lobes with

respect to imaging applications [110], [111]. Holm and Kristoffersen also commented

that in the near field, transmit dynamic range is mostly limited by uncorrelated error and

not correlated error. The limit at which correlated lobes, have greater interference than un-

correlated (random) lobes is defined by the distance zrand, beyond which correlated lobes

have greater impact on the field. For rectangularly weighted apertures,

zrand =
4.6π2

12
(Dcosθs)

2

λ

µ

N
(4.20)

which is a more specific version of the generalised (24) in [100]. For most arrays, accord-

ing to (4.20), the uncorrelated lobes will dominate for ranges beyond zTR. An example

is shown in Figure 4.10 for a 5 MHz array with d = λ spacing. With respect to Figure

4.10, for all lines that are below the black line zTR, correlated lobes will impact. For all

cases above zTR, only uncorrelated lobes will impact. The Figures show as described in
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Figure 4.10: zrand vs. zTR for different N and different quantization values

Holm and Kristoffersen’s discussion [100] that uncorrelated (random) sidelobes are of

most important over the correlated case, unless using a large array and low value of µ .

4.5.2 Summary of Literature Review

It is well established that poor quantization of phase causes anomalous effects in the

radiated beam profile. For continuous wave excitation these effects are more distinct

than for the pulsed case. Steering causes correlated quantization lobes due to a periodic

error repeating across the array. Focusing causes uncorrelated quantization lobes due to

random error across the array caused by the parabolic delay profile. Evaluation of the

necessary minimum quantization value for an expected RMS sidelobe level was defined

by Peterson and Kino in 1984 [114] [76], with µ = 32 being the accepted value for receive

and transmit beamformers [69],[115],[116]. Holm and Kristoffersen [100] discussed the

likelihood of a worst case: steering to an angle of maximum correlated error and also

focusing. Their analysis however showed that for most cases correlated lobes would not

interfere with ultrasound imaging and it was the uncorrelated error caused by focusing
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that was of most concern. The next section demonstrates some of these effects previously

discussed in the literature.

4.6 Demonstration of Phase Quantization Effects

Field profiles from ultrasound transducers can be simulated using the well-referenced

Field II package [118], [119]. Field II is a MATLAB toolbox developed by the Technical

University of Denmark (DTU) by Jensen et al. and simulates a radiated beam profile by

calculating the field at each point using the spatial impulse response. Quantization can be

introduced to a simulation by using the ‘xdc quantization’ or ‘ele delay’ functions.

4.6.1 Correlated Error

Figures 4.11 to 4.18 demonstrate several cases of correlated periodic error in the far field

as a result of steering to worst case angles for µ = 4 to µ = 32. Worst case angles are

calculated by taking the minimum time period corresponding to each µ value, and using

(4.17) to calculate the steered angle. The upper plot (a) in each Figure shows the ideal

case (steered to the same angle defined in (4.17), but with ideal delays used (i.e. no time

delay quantization). The lower plot (b) in each Figure shows the quantized case. Note

the emergence of a phase quantization lobe of high level present in the field, in each of

the lower Figure plots, e.g. in Figure 4.11. In these simulations an aperture of N = 32

elements spaced at λ/2 was used with continuous wave excitation. Continuous wave ex-

citation provides the worst case, as narrowband signals coherently sum, and quantization

lobes are more distinct.

Figures 4.19 to 4.26 show the same data, but are plotted in an angular fashion in-

tersecting the radial transition distance of the aperture (19.2 mm). Plotting through the

pressure field permits direct comparison of the difference between the ideal, and quan-

tized representations. For reference it can be seen that Figure 4.19 is very similar to one

of the cases of extreme quantization discussed in [100], although with different simulation

parameters and simulated using different methods.
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Table 4.2 presents data showing the angle steered, location of quantization lobe, and

value of peak sidelobe from the mainlobe for the cases of correlated error shown. It can

be seen that as accuracy of delays increases, quantization lobes are reduced to between

−18 and−20 dB. sidelobe will also be further reduced in the pulsed, broadband case [63].

Note that other combinations of p and q exist that provide far field lobes, such as when

p = 3, as reported in the literature [100]. Such angles will produce far field correlated

lobes at angles predicted by [100], but with lower levels of side lobe than the p = 1,q = 2

case.
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(a)

(b)

Figure 4.11: Comparison of simulated field profiles showing correlated error using con-
tinuous wave excitation. Ideal time delays (a) vs. quantized delays (b). Quantization at
µ = 4 and steered to worst case angle of 14.48◦
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(a)

(b)

Figure 4.12: Comparison of simulated field profiles showing correlated error using con-
tinuous wave excitation. Ideal time delays (a) vs. quantized delays (b). Quantization at
µ = 8 and steered to worst case angle of 7.18◦
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(a)

(b)

Figure 4.13: Comparison of simulated field profiles showing correlated error using con-
tinuous wave excitation. Ideal time delays (a) vs. quantized delays (b). Quantization at
µ = 12 and steered to worst case angle of 4.78◦
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(a)

(b)

Figure 4.14: Comparison of simulated field profiles showing correlated error using con-
tinuous wave excitation. Ideal time delays (a) vs. quantized delays (b). Quantization at
µ = 16 and steered to worst case angle of 3.58◦
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(a)

(b)

Figure 4.15: Comparison of simulated field profiles showing correlated error using con-
tinuous wave excitation. Ideal time delays (a) vs. quantized delays (b). Quantization at
µ = 20 and steered to worst case angle of 2.87◦
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(a)

(b)

Figure 4.16: Comparison of simulated field profiles showing correlated error using con-
tinuous wave excitation. Ideal time delays (a) vs. quantized delays (b). Quantization at
µ = 24 and steered to worst case angle of 2.39◦
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(a)

(b)

Figure 4.17: Comparison of simulated field profiles showing correlated error using con-
tinuous wave excitation. Ideal time delays (a) vs. quantized delays (b). Quantization at
µ = 28 and steered to worst case angle of 2.05◦
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(a)

(b)

Figure 4.18: Comparison of simulated field profiles showing correlated error using con-
tinuous wave excitation. Ideal time delays (a) vs. quantized delays (b). Quantization at
µ = 32 and steered to worst case angle of 1.79◦
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Figure 4.19: Radial field profile at the transition distance showing correlated error using
continuous wave excitation. Ideal time delays vs. quantized delays. Quantization at µ = 4
and steered to worst case angle of 14.48◦

µ Steered Angle Correlated
Quantization Lobe

(k = -1) Angle ◦

Peak Quantization
Lobe Level (dB)

4 14.48 -48.60 -6.4
8 7.18 -61.04 -12.7

12 4.78 -66.44 -16.0
16 3.58 -69.64 -18.2
20 2.87 -71.81 -19.9
24 2.39 -73.40 -20.0
28 2.05 -74.64 -20.9
32 1.79 -75.64 -22.4

Table 4.2: Position of ‘worst case’ quantization lobes for far field, correlated errors.

Correlated error lobes are caused by a phase quantization error that occurs periodi-

cally across the array. It can be seen that reducing ∆τ lessens the impact of correlated

error, as the magnitude of the error between elements is reduced. Notice also that the

steering equation in (4.3) does not depend on N, the number of elements. The location of
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Figure 4.20: Radial field profile at the transition distance showing correlated error using
continuous wave excitation. Ideal time delays vs. quantized delays. Quantization at µ = 8
and steered to worst case angle of 7.18◦

−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0
Transition Distance, Correlated Error, µ = 12

Angle (Degrees)

N
or

m
al

is
ed

 P
ea

k 
P

os
iti

ve
 P

re
ss

ur
e 

(d
B

)

 

 
Ideal
Quantized

Figure 4.21: Radial field profile at the transition distance showing correlated error using
continuous wave excitation. Ideal time delays vs. quantized delays. Quantization at
µ = 12 and steered to worst case angle of 4.78◦
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Figure 4.22: Radial field profile at the transition distance showing correlated error using
continuous wave excitation. Ideal time delays vs. quantized delays. Quantization at
µ = 16 and steered to worst case angle of 3.58◦
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Figure 4.23: Radial field profile at the transition distance showing correlated error using
continuous wave excitation. Ideal time delays vs. quantized delays. Quantization at
µ = 20 and steered to worst case angle of 2.87◦



4.6. Demonstration of Phase Quantization Effects 71

−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0
Transition Distance, Correlated Error, µ = 24

Angle (Degrees)

N
or

m
al

is
ed

 P
ea

k 
P

os
iti

ve
 P

re
ss

ur
e 

(d
B

)

 

 
Ideal
Quantized

Figure 4.24: Radial field profile at the transition distance showing correlated error using
continuous wave excitation. Ideal time delays vs. quantized delays. Quantization at
µ = 24 and steered to worst case angle of 2.39◦
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Figure 4.25: Radial field profile at the transition distance showing correlated error using
continuous wave excitation. Ideal time delays vs. quantized delays. Quantization at
µ = 28 and steered to worst case angle of 2.05◦
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Figure 4.26: Radial field profile at the transition distance showing correlated error using
continuous wave excitation. Ideal time delays vs. quantized delays. Quantization at
µ = 32 and steered to worst case angle of 1.79◦

correlated or periodic quantization lobes is therefore not altered by increasing N from the

N = 32 case shown previously, up to N = 128 as discussed in [100]. As a consequence,

steering angles that provide correlated error can be accurately calculated by using the

physical properties of the transducer, and ∆τ . This is not the case for uncorrelated error.
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4.6.2 Uncorrelated Error

Uncorrelated error occurs due to differences in time-delays or phase that are non-periodic.

This is most often as a result of focusing in the near field, which requires a parabolic

delay profile, as shown in Figure 4.6. This section demonstrates how uncorrelated error,

introduced by poor phase quantization of focusing delays can cause quantization lobes in

the far field, and subsidiary foci in the near field as described in [114]. Figure 4.27 defines

these terms. Quantization lobes in the far field are caused by two methods: firstly, due to

beams focused at subsidiary foci between the transducer face and the desired focal point,

and secondly as a result of virtual foci (representations of quantization foci that originate

behind the transducer). Far field quantization lobes deposit energy away from the main

beam, and can reduce sensitivity of the main beam. Subsidiary near field foci are shown

by the green and red lines. These foci deposit energy before the focal point, and can

lead to clutter around and beyond the focal point into the far field. This phenomenon was

initially presented by Peterson and Kino [114] [76].
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Focal Point

Near Field 
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Array 
Transducer

Figure 4.27: Diagram of the effect of uncorrelated error caused by focusing on the beam
profile, showing quantization lobes in the far field and subsidiary foci in the near field
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Figures 4.28 to 4.43 show simulation of a typical phased array probe used for sector

imaging (N = 64, d = λ/2). In each case the focal distance is half the transition distance

zTR/2 which is equivalent to 38.4 mm at 5 MHz. Quantization values ranging from µ = 4

to µ = 32 have been plotted showing the peak positive pressure profile, and a radial

sector. In order to fully demonstrate the presence of uncorrelated lobes, a narrowband

continuous wave excitation has been used. For reference, Figure 4.28 shows the ideal

case, where no time quantization is used and delays are implemented as calculated. The

radial profiles, taken at the focal length are plotted to allow a comparison between the

quantized, and ideal case. It can be seen that the uncorrelated lobes are much different to

the correlated case. For the correlated case, the peak magnitude decreased in accordance

with an increase in µ . For the uncorrelated case this is not true. Inspection of the field

plots in Figures 4.29 to 4.44 show that both the position and peak of the lobes moves with

every case.

Figure 4.28: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with ideal delays (no delay quantization) (narrowband simulation)
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Figure 4.29: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 4 (narrowband simulation)
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Figure 4.30: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 4 (narrowband simulation)
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Figure 4.31: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2)
with delays quantized to µ = 8 (narrowband simulation)
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Figure 4.32: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 8 (narrowband simulation)



78 4.6. Demonstration of Phase Quantization Effects

Figure 4.33: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 12 (narrowband simulation)
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Figure 4.34: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 12 (narrowband simulation)
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Figure 4.35: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 16 (narrowband simulation)
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Figure 4.36: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 16 (narrowband simulation)
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Figure 4.37: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 20 (narrowband simulation)
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Figure 4.38: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 20 (narrowband simulation)
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Figure 4.39: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 24 (narrowband simulation)
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Figure 4.40: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 24 (narrowband simulation)
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Figure 4.41: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 28 (narrowband simulation)
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Figure 4.42: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 28 (narrowband simulation)
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Figure 4.43: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 32 (narrowband simulation)
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Figure 4.44: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 32 (narrowband simulation)
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The continuous wave (narrowband) case shows distinct lobes in the field profile. How-

ever, field disturbance is still evident in the pulsed wave (broadband) case. Figures 4.45

to 4.60 show the same array, focused to the same point, but with a three cycle pulse used

instead of the continuous wave approximation. It can be seen from the Figures that lobe

energy in the far field is reduced when compared with the continuous wave case. How-

ever, in the near field, energy surrounding the beam is still prevalent. In both cases, the

pressure around the main beam is dependent on the combination of the desired focal pro-

file, and minimum time increment. For example, in Figure 4.54 (radial plot at µ = 20),

there appears to be a closer approximation to the ‘ideal’ case, than when compared with

finer quantization as shown in Figure 4.56 (radial plot at µ = 24). The uncorrelated na-

ture of the distribution therefore causes difficulty in determining the level of quantization

value necessary to cover all cases.
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Figure 4.45: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 4 (broadband simulation)
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Figure 4.46: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 4 (broadband simulation)
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Figure 4.47: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 8 (broadband simulation)
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Figure 4.48: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 8 (broadband simulation)
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Figure 4.49: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 12 (broadband simulation)
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Figure 4.50: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 12 (broadband simulation)
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Figure 4.51: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 16 (broadband simulation)
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Figure 4.52: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 16 (broadband simulation)
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Figure 4.53: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 20 (broadband simulation)
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Figure 4.54: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 20 (broadband simulation)
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Figure 4.55: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 24 (broadband simulation)
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Figure 4.56: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 24 (broadband simulation)
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Figure 4.57: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 28 (broadband simulation)
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Figure 4.58: Simulated radial field profile, 64 element λ/2 array, focused to 38.4 mm
(zTR/2), with delays quantized to µ = 28 (broadband simulation)
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Figure 4.59: Simulated beam profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2),
with delays quantized to µ = 32 (broadband simulation)
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Figure 4.60: Radial field profile, 64 element λ/2 array, focused to 38.4 mm (zTR/2), with
delays quantized to µ = 32 (broadband simulation)
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4.7 Other Forms of Random Error

Phase quantization causes degradation of an ideal beam profile, due to energy being di-

rected away an intended position. This can also occur due to other system inaccuracies.

For example, focusing profiles are calculated using a single value for speed of sound as

shown in (4.3), (4.5) and (4.6). This assumption of constant speed of sound applies only

if the medium is homogeneous, or the material has a uniform velocity of sound [108]. In

practical cases, e.g. when imaging tissue, or composite materials, the speed of sound may

vary considerably at different places, due to different material densitites. For layers such

as fat or bone this causes refraction errors that can degrade image resolution and cause

overall image distortion [104]. To correct for this, new calculations for delay profiles must

be made [108] with perhaps only minor adjustment of focusing delays required. Such a

technique can only be made however, with prior knowledge or assumption of the target

being imaged, and would be used in an iterative process of adjusting phases and analysing

gains in image quality.

Another example of error can be introduced at the transducer, either by differences

in element response, or complete failure of elements. These effects have previously been

discussed by several authors. A thorough, recent explanation of random errors concern-

ing transducer array performance has been provided by Duxbury et al. [106]. In [106]

the effects of various cases of element inhomogeneity were demonstrated, including ele-

ment sensitivity, and dead (extremely low sensitivity) elements, as well as errors in firing

delay as discussed previously in the chapter. Duxbury concluded using an acceptance

criteria approach that random variations were tolerable for cases that resulted in sidelobe

amplitudes less than 8 dB below the mainlobe. These ‘acceptable’ scenarios included a

limit of ±50% of the mean element sensitivity, and up to 9% of elements to be dead. A

main conclusion was that random system inaccuracies could cause similar effects to the

uncorrelated error cases studied within this Chapter. In a similar paper, Zhang et al. [107]

discussed random error that distorted post-processing algorithms such as synthetic aper-

ture focusing, and the total focusing method that require capture of all combinations of

elements.
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When considering all sources of error due to poor phase quantization, or due to other

system inaccuracies, the ability to compensate in transmit for random inaccuracies and

provide accurate representation of delay profiles has potential in improving quality of

acquisition. When considering a transmit beamformer design, this leads us to a set of

desired criteria:

• It is desirable to design a transmit beamformer that has high timing resolution so as

to reduce the effects of phase quantization across a range of frequencies.

• It is desirable to design a transmit beamformer that can suppress uncorrelated quan-

tization lobe effects which mostly dominate the beam profile, and can not necessar-

ily be predicted when compared with the correlated case.

• It is desirable to design a transmit beamformer that can adapt to other random error

scenarios, such as non-ideal or unexpected operation of transducer elements and

perturbation or aberration in the field.

4.8 UARP Transmitter Architecture

The UARP system was briefly introduced in Chapter 2, with the transmitter hardware

shown in Chapter 3. The motivation of this work was to develop a flexible research plat-

form capable of versatile performance. This section describes the transmit beamforming

architecture sub-component that aims to address the criteria discussed in the previous

section by achieving accurate and flexible inter-element timing and reduced beam error.

The influence of phase quantization error on the transmitted beam profile is governed by

the minimum time increment possible between adjacent transmit channels. The influence

of random error on the transmitted beam profile is also governed by how adjacent chan-

nel delays can be varied. As a consequence, adverse quantization, or error defects are

dependent on transmitter implementation and design.

A number of transmit beamformer architectures have been presented in previous liter-

ature. Contrasting methods include tapped analogue delay lines, to variable methods such



4.8. UARP Transmitter Architecture 95

as storage of signals and offsetting in memory [46]. Other variable delay methods include

the use of dedicated integrated delay circuits and micro-controllers as discussed in [120],

and the use of external Phase-Locked Loop (PLL) components within front-end designs

[121].

The use of PLL-type components has proved popular for phased array applications.

Examples in literature have included a method of introducing transmitter phase delays us-

ing Voltage Controlled Oscillators (VCOs) with counters for use in ultrasound scanners as

described by [97]. Lovejoy et al. [121] designed a programmable phased array controller

for use as an ultrasound hyperthermia applicator using discrete components such as Logic

Gates and RC delay lines to alter signal phases. Whilst this design appears to work well

at the intended frequency range (0.3 to 1 MHz), at higher frequencies the chip gate delays

within each delay circuit become more critical and become a potentially limiting factor.

An example of an integrated solution using phase shifted clocks was demonstrated by

Hatfield [122]. This work focused on an Application Specific Integrated Circuit (ASIC)

design intended to be incorporated within the transducer itself. A reported benefit of the

design included reducing the unwieldy bundle of cables that accompany a transducer,

which increases with the use of more larger transducer devices. A concern with this

design however is the lack of transmit excitation flexibility, which may be necessary as

ultrasound techniques evolve.

The following section introduces a method using PLLs embedded within current FPGA

technology to alter phases of internal clocks with close accuracy in order to improve the

inter channel resolution in transmit beam forming.

4.8.1 Phase Locked Loops

Phase locked loops are components used throughout electronic systems to generate and

distribute a.c. signals such as clocks. Their main function is to measure phase but adjust

frequency [95]. As the name implies, PLLs produce an output signal that is locked to the

phase of an input signal. Locking of phase is achieved using a negative feedback loop in

conjunction with a phase detector. A phase detector [95] compares two signals, (in this
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case the input signal and the current output signal) and generates an output proportional

to the difference in phase between the two [95]. Example phase detection circuits can be

XOR gates with RC low-pass filters (type I), or edge-sensitive lag and lead phase detectors

(type II) [95]. The phase detector converts input phase difference to voltage, with an

output signal generated using a VCO, a component that converts voltage to frequency.

PLLs are primarily used in digital systems to redistribute clock signals that may be weak

or noisy. They can also be used to generate clocks of different frequencies that have a

defined phase relationship with the input clock. This is achieved in digital systems using

counter stages that can adjust parameters to alter the response of the VCO. A diagram

of a PLL including VCO, loop filter, phase detector, pre-scale counter post-scale counter

and a feedback counter as described in [123] is shown in Figure 4.61. The counters (P, M

Figure 4.61: Typical PLL architecture

and K in Figure 4.61) can be used to multiply or divide the frequency of the output clocks

accordingly using [123]

FOUT =
M×FIN

P×K
(4.21)

where FIN is the input frequency, M is the feedback counter, P is the pre-scale counter and

K is the post-scale counter. Higher frequencies can be generated by using the feedback

counter M to adjust FVCO by M times [123]. Phase differences between the input and

output frequency can be achieved by adjusting the reference phase in the phase detector.
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4.8.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays are commonly used as key system components within

ultrasound systems; often to control excitation sequences, process data and interface to

external devices [30], [46]. Several of the research platforms discussed in Chapter 2

rely heavily on FPGA technology. FPGAs are advantageous when compared with other

hardware solutions such as ASICs due to their flexible programmable nature, large amount

of input/output, embedded memory and on-chip resources and are available at moderate

to low cost. Most FPGAs include dedicated cores which are targeted to perform specific

functions. Examples include on-chip processors, digital signal processing blocks and

high speed transceiver buffers. As FPGA technology has developed, the IP cores within

the devices have become particularly feature rich. The drivers for development of FPGA

devices are the increasing requirement for high integration and scalability, reduced system

complexity and component count, and the emergence of high speed interfaces.

Another example of dedicated on-chip components are digital PLL cores. PLLs are

fundamental within FPGAs as they generate and distribute clock signals necessary to

control synchronous logic within the device. These cores operate with the same principle

as the generic PLL architecture shown in Figure 4.61, however have other features such

as re-programmable flexibility during run-time as demonstrated by both Altera and Xilinx

[124], [125].

Programmable phase shift within embedded PLLs is an example of both embedded

core development and re-programmable flexibility. This feature permits an individual

output clock’s phase to be adjusted in fine steps and in real time without interruption to

PLL operation or lock [124] [123]. Phase is adjusted using a serial interface to control a

multiplexer that selects between several phase-separated clocks according to a minimum

step (defined by the PLL resolution) as shown in Figure 4.62 [124].

4.8.3 Switched-Mode Transmit Beamformer with Embedded PLLs

Chapter 3 introduced the UARP’s front end design, and the use of switched-mode circuits

within packaged MOSFET devices to drive elements of an array transducer. MOSFET
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Figure 4.62: Example of embedded PLL phase shift control

switching signals are generated within FPGAs, with time or phase delays applied by se-

quencing of each channel’s switching relative to each other. MOSFET control signals

are either generated using a digital Numerically Controlled Oscillator (NCO) which is

quantized in amplitude or by upload to a specific AWG logic block.

Each arbitrary waveform generator is clocked with a single global clock (100 MHz

frequency in this case) and responds to a global pulse signal. Coarse phase delays of in-

teger multiples of the global clock period (10 ns) can be implemented between channels

using values stored in preloaded counters. The MOSFET control signals from each ar-

bitrary waveform generator are fed into a dual flip-flop (dual FF) stage. These flip flops

are driven by an individual phase shifted clock per channel generated by an on-chip or

embedded PLL as described in Section 4.8.1. Fine phase delays or ‘fractional delays’

(fractions of the 100 MHz system clock) are implemented using the programmable phase

shift function as shown in Figure 4.62. This introduces a phase difference between the

global 100 MHz clock which generates the excitation signal and the 100 MHz channel

clock used to drive the dual flip-flop output stage. This phase difference is sub-clock pe-

riod, therefore less than 10 ns. The flip-flop stage is necessary in order to bridge the clock

domain between the global 100 MHz clock and the phase shifted 100 MHz clock. It is

a combination of coarse delays (system clock periods) and fine delays (phase separated

clocks) applied to each channel that realises a particular delay profile across an array.

The MOSFET control signals from the dual flip-flop section are then fed off-chip directly

into a high voltage pulser device per channel. Both the PLL control blocks and the arbi-
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trary waveform generator blocks are controlled using a Nios II soft-core processor. The

architecture described is shown in Figure 4.63.
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Figure 4.63: System diagram of the UARP eight-channel phased array transmitter archi-
tecture using Altera embedded PLLs and implemented within a commercial FPGA (Altera
Cyclone III EP3C40Q240C8)

The transmit section of the UARP consists of 12 PCBs, housing eight transmitter

channels as shown previously (Figure 3.7). Each eight channels are controlled by a Cy-

clone III FPGA (Altera EP3C40Q240C8N, Altera Corporation, San Jose, CA), equalling

12 FPGAs, controlled by a master FPGA (Altera Stratix III, EP3SL340H1152C3N, Al-

tera Corporation, San Jose, CA). A diagram of a single transmitter board was shown

previously in Chapter 3. A single Cyclone III contains four embedded PLLs, capable of

distributing five output clocks throughout the device. Each output clock can be shifted

either up or down with a minimum time increment of 96 ps with an accuracy of ±50 ps.

PLL output clock jitter is specified at a maximum of 300 ps for frequencies greater than or

equal to 100 MHz, however it must be noted that jitter is also dependent on the quality of

the input clock. The input clock is generated by the master FPGA, and distributed to each

transmitter over a high speed backplane board with matched Low Voltage Differential

Signalling (LVDS) traces [54].
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4.9 Evaluation of Transmit Beamformer Performance

This section evaluates the performance of the embedded-PLL transmit beamformer method

when implementing fine and variable delay methods. Figures 4.64 and 4.65 display

screenshots acquired using a digital oscillscope (LeCroy Waverunner 44xi, LeCroy Cor-

poration, Chestnut Ridge, NY, USA) using the infinite persistence setting. 1000 acquisi-

tions of two phase separated channels are plotted. Phase separation of 5 ns is achieved

using the embedded-PLL method, and shifting an appropriate number of steps. It can be

seen from Figure 4.65 that there is a slight deviation of 440 ps on both of the channels,

however as both channels experience this it can be assumed that both signals are aligned.

True jitter between each channel would show a greater spread in the persistence plot from

the non-triggered channel. Inspection of the sampling parameters (shown in the bottom

right of each Figure) show a sampling frequency of 5 GS/s, giving a sampling period of

200 ps, which is comparable to the level of phase accuracy. A variation in triggering of

approximately 440 ps can therefore be seen as lower than a deviation of ± 1 sample.

Figures 4.66 and 4.67 show overlaid plots of averaged measurements (100 acquisitions

at each phase separation) showing phase separation in 1 ns steps from 0 ns to 9 ns across

the 10 ns period defined by the system clock (100 MHz). Figures 4.68 and 4.68 show sim-

ilar overlaid plots of averaged measurements (100 acquisitions at each phase separation)

with finer phase-steps showing phase separation in the minimum time increment, 208 ps

steps.

Table 4.3 shows the difference between the signals shown in the positive edge case

(Figure 4.66) for 1 ns separation. The values shown are acquired using scope averaging,

and the automated ‘horizontal’ measurement function ∆time@, which measures the sep-

aration between signals. Table 4.3 shows the target separation, the measured separation,

and the error.

Table 4.4 shows similar data for the positive edge of the 208 ps case as shown in

Figure 4.68.
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Figure 4.64: Infinite persistence acquisition from LeCroy Waverunner digital oscilloscope
of two switched-mode signals from two UARP channels separated by 5 ns (1000 acquisi-
tions)

Figure 4.65: Zoom of infinite persistence acquisition from LeCroy Waverunner digital
oscilloscope of two switched-mode signals from two UARP channels separated by 5 ns
(1000 acquisitions) showing maximum jitter variation
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Figure 4.66: Acquired switched-mode signals from two UARP channels (positive edge)
overlaid to demonstrate fine delay. Separation from 0 to 9 ns in 1 ns steps (100 signals
averaged per waveform)
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Figure 4.67: Acquired switched-mode signals from two UARP channels (negative edge)
overlaid to demonstrate fine delay. Separation from 0 to 9 ns in 1 ns steps (100 signals
averaged per waveform)
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Figure 4.68: Acquired switched-mode signals from two UARP channels (positive edge)
overlaid to demonstrate minimum delay resolution. Separation from 0 to 1 ns in 208 ps
steps (100 signals averaged per waveform)
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Figure 4.69: Acquired switched-mode signals from two UARP channels (negative edge)
overlaid to demonstrate minimum delay resolution. Separation from 0 to 1 ns in 208 ps
steps (100 signals averaged per waveform)
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Target (ns) Measured (ns) Error (ns)

0.000 -0.015 0.015
1.000 1.028 0.028
2.000 2.078 0.078
3.000 3.091 0.091
4.000 3.952 0.048
5.000 5.018 0.018
6.000 6.076 0.076
7.000 7.081 0.081
8.000 8.049 0.049
9.000 9.058 0.058

Table 4.3: Target, measured and error of fine inter-channel phase delay (0 to 9 ns in 1 ns
steps)

Target (ns) Measured (ns) Error (ns)

0.000 -0.015 0.015
0.208 0.173 0.035
0.416 0.375 0.041
0.624 0.577 0.047
0.832 0.793 0.039
1.040 1.028 0.012

Table 4.4: Target, measured and error of fine inter-channel phase delay (0 to 1 ns in 208
ps steps)

4.9.1 Evaluation Across Frequency

The embedded PLL phase shift method presented in this work has a minimum time in-

crement (∆τ) equal to 208 ps. This minimum increment value is defined by PLL settings

(4.21) of FVCO = 600 MHz, M = 12, P = 1 and K = 6, and surpasses the required µ = 32

threshold for excitation frequencies up to 50 MHz (requiring ∆τ = 625 ps). This section

uses the UARP system to demonstrate how fixed minimum time increments (such as those

generated by a 100 MHz clock) have an impact on TDR as frequency increases and how

the embedded PLL method can be used to improve delay resolution without increasing

system clock frequency.
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To demonstrate the improvement across excitation frequency without the need to ob-

tain several array transducers, a single array transducer of fixed frequency is used and

the ∆τ is adjusted in accordance with (4.13), (4.14) and (4.15). The relationship between

excitation frequency, f , and oversampling factor, µ , is maintained whilst ∆τ is altered to

reflect the increase in excitation frequency. Example transformations of ∆τ are shown in

Table 4.5.

Excitation Value of µ at Equivalent ∆τ

Frequency ( f ) ∆τ = 10.0 ns value for 5 MHz

5 MHz µ = 20 ∆τ = 10.0 ns
10 MHz µ = 10 ∆τ = 20.0 ns
20 MHz µ = 5 ∆τ = 40.0 ns

Table 4.5: Example conversions of the minimum time increment ∆τ to simulate higher
frequencies using a 5 MHz array.

4.9.2 Beam Profiling

In order to demonstrate an increase in TDR as a result of improved phase delay resolution,

the radiated pressure field from a commercial diagnostic 1-D linear array transducer was

simulated using Field II and also measured experimentally. The selected transducer, a

128 element L3-8/40EP array transducer (Prosonic Co Ltd., GyongBuk, Korea) was used

in simulation and experiments, however only the central 96 elements were excited due to

the number of channels in the UARP system. More detailed properties of the transducer

are shown in Table 4.6. The excitation used for evaluation was a five cycle, 5 MHz,

rectangularly windowed, switched-mode pseudo-tone burst, as described in [52].

Figures 4.70 and 4.71 show simulated beam plots, and radial beam profiles of the 5

MHz array focused to 40 mm, with 5 cycle, rectangularly windowed excitation and with

quantization using ∆τ = 10 ns. Note that the grey line is the case for phase quantization of

208 ps (the minimum time resolution from the UARP). It can be seen that there is minor

deviation between the simulated and expected cases, except at between 30◦and 35◦where

there is the emergence of a quantization lobe 3 dB higher than the noise floor, giving
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Transducer Property Value Unit

Model L3-8/40EP -
Sensitivity (average) -56.492 dB
Sensitivity (variation) 1.811 dB
Centre Frequency (-6dB, average) 4.79 MHz
Fractional Bandwidth (-6dB, average) 57.261 %
Element Pitch 0.3048 ±0.001 mm
Number of Elements 128 -

Table 4.6: L3-8/40EP array transducer (Prosonic Co Ltd., GyongBuk, Korea)

a TDR value of 31 dB at approximately 7◦. Figures 4.72 and 4.73 show the simulated

beam profile for the 10 MHz case (∆τ = 20 ns) case compared with the approximately

‘ideal’ 208 ps case. When compared with the 10 ns case in Figure 4.71, the emergence of

spurious lobes can be seen closer to the main lobe, giving a TDR of 29 dB at 5◦.

Figures 4.74 and 4.75 show a more extreme case of quantization with ∆τ = 40 ns.

This case replicates using a 20 MHz array with quantization of 10 ns. Figure 4.75 shows

a difference of between 5 dB and 12 dB in the angular plot, when compared with the 208

ps case, giving a TDR value of approximately 20 or 25 dB from lobes at 3◦or 10◦.
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Figure 4.70: Simulated radial beam profile of a 96-element, λ -spaced array, focused to
40 mm, f = 5 MHz, n = 5, ∆τ = 10 ns
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Figure 4.71: Simulated radial beam profile of a 96-element, λ -spaced array, focused to
40 mm, f = 5 MHz, n = 5, ∆τ = 10 ns (black line) vs. ideal delays (grey line)
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Figure 4.72: Simulated beam profile of a 96-element, λ -spaced array, focused to 40 mm,
f = 5 MHz, n = 5, ∆τ = 20 ns
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Figure 4.73: Simulated radial beam profile of a 96-element, λ -spaced array, focused to
40 mm, f = 5 MHz, n = 5, ∆τ = 20 ns (black line) vs. ideal delays (grey line)
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Figure 4.74: Simulated beam profile of a 96-element, λ -spaced array, focused to 40 mm,
f = 5 MHz, n = 5, ∆τ = 40 ns
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Figure 4.75: Simulated radial beam profile of a 96-element, λ -spaced array, focused to
40 mm, f = 5 MHz, n = 5, ∆τ = 40 ns (black line) vs. ideal delays (grey line)
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For experimental measurement, the transducer (shown in Figure 4.76 and described

in Table 4.6) was placed within an acoustically transparent ultrasound probe cover (CIV-

FLEX 610-004, Civco Medical Solutions, Kalona, IA) and submerged within a large tank

of filtered, deionized and degassed water at a temperature of 20◦C ± 1◦C. A 0.2 mm

PVDF (Polyvinylidene Fluoride) Needle Hydrophone (calibrated between 1 MHz to 20

MHz with an acoustic pressure range of 50 kPa to >20 MPa RMS signal-to-noise ratio),

shown in Figure 4.77 (Precision Acoustics, Dorchester, Dorset, UK), was mounted on

a 3-D computer controlled translation system able to perform lateral and radial scans of

the transmitted field. Radial beam plots were obtained at zF = 40 mm from 0◦ to 40◦ in

steps of 0.25◦. The signal from the hydrophone pre-amplifier at each radial position was

digitized using an 8 bit (48 dB dynamic range) digital oscilloscope and then processed in

MATLAB. Measurements were taken five times at each point in order to produce averaged

beam profiles to increase SNR.

Figure 4.76: Photograph of the L3-8/40EP array transducer (Prosonic Co Ltd., Gyong-
Buk, Korea), 128 elements, λ pitch, 4.8 MHz average centre frequency, 57% fractional
bandwidth.
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Figure 4.77: Photograph of the 0.2 mm needle hydrophone (Precision Acoustics, Dorch-
ester, UK)
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Figure 4.78 presents the experimentally measured transmitted beam profile of the 5

MHz array using, a 5 cycle, 5 MHz, rectangularly windowed excitation, and a delay

profile quantized to ∆τ = 10 ns (coarse delay resolution) and ∆τ = 208 ps (fine delay

resolution using the embedded PLL method). At 5 MHz, ∆τ = 208 ps is equivalent to

µ = 961 and therefore can be classed as ideal, as the timing resolution is much greater

than µ = 32, which at this frequency would equal 6.25 ns. The experimental value of

TDR for the embedded PLL method is approximately 32 dB governed by a lobe at 3.75◦.

It can be seen that the first significant lobe in the ∆τ = 10 ns result appears at 5◦ giving a

TDR value in this case of 31 dB.
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Figure 4.78: Experimentally obtained radial beam profile comparing ∆τ = 10 ns (black
line) vs. ∆τ = 208 ps (grey line)

Figure 4.79 presents data measured using the same 5 MHz array, however in this case

the ∆τ value has been adjusted to predict results when the same system is used to drive

a higher frequency array. In this case the coarse delay profile is quantized to ∆τ = 20 ns

(coarse delay resolution). At 10 MHz, ∆τ = 208 ps is equivalent to a µ = 481, and as in the

previous case, the waveform can be classed as ideal as it surpasses the µ = 32 threshold
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which would equal 3.125 ns. In this measurement the value of TDR at an equivalent f of

10 MHz is 27 dB governed by a lobe at 5.5◦
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Figure 4.79: Experimentally obtained radial beam profile comparing ∆τ = 20 ns (black
line) vs. ∆τ = 208 ps (grey line)

Figure 4.80 shows data acquired using the same 5 MHz array, however the ∆τ value

has again been adjusted to predict results when the UARP system is used with a 20 MHz

array, with the coarse delay profile is quantized to ∆τ = 40 ns. At 20 MHz, ∆τ = 208 ps

is equivalent to a µ = 240, and as per the previous cases, the waveform can be classed as

ideal as it still surpasses µ = 32 which would equal 1.5625 ns for this frequency. In this

case the value of TDR at an equivalent frequency of 20 MHz is 22 dB governed by a lobe

at 4◦

When comparing the experimental coarse quantized results to the ideal case obtained

using the fine embedded PLL method it can be seen that at 5 MHz the gain in TDR is

slight (1 dB improvement) however, as frequency increases the gain in TDR becomes

significant. At higher frequencies the embedded PLL method provides an extra 5 dB

gain in TDR at 10 MHz (when compared with using coarse delays at the same system
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Figure 4.80: Experimentally obtained radial beam profile comparing ∆τ = 40 ns (black
line) vs. ∆τ = 208 ps (grey line)

frequency) and an extra 10 dB gain when using a 20 MHz array. This data is summarised

in Table 4.7.

Excitation TDR (dB) TDR (dB) TDR
Frequency ( f ) ∆τ = 10 ns ∆τ = 208 ps Gain (dB)

5 MHz 31 dB 32 dB 1 dB
10 MHz 27 dB 32 dB 5 dB
20 MHz 22 dB 32 dB 10 dB

Table 4.7: Experimental TDR Gain: Coarse Delay ∆τ = 10 ns vs Fine Delay ∆τ = 208 ps

The results also show an increase in the overall sidelobe level as frequency increases

and the µ = 32 criteria, as derived by Kino and (4.16), is not met.

4.10 Discussion

The impact of phase quantization when minimum time increments are fixed is dependent

on excitation frequency. The embedded PLL method presented and implemented in the
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UARP system shows greater improvement when used with higher frequency arrays such

as those discussed in this work. Both simulations and experiments conducted show that

achieving the λ/32 criterion as described by previous authors reduces sidelobe levels in

the transmitted beam profile to a level which mirrors the ideal case. Whilst some minor

differences may exist between simulated data and experimental results (such as those

described by Aitkenhead et al. [126]), simulated results shows a comparable trend in TDR

with the experimental data. Note however that direct comparison between experimental

measurement and the Field II simulations may not be appropriate. Field II calculates

pressure without considering non-linear propagation or shock-wave formation. During

non-linear propagation at high pressures, such as in the focal point, the peak positive

pressure is greater than the peak negative pressure. In Field II simulation, at the focal

point, peak positive and negative pressures are equal, therefore estimations of absolute

sidelobes may not correlate. Also, some inaccuracies may be introduced in the modelling

of the transducer that change the directivity of elements, when considering element widths

and heights, and speed of sound [98]. These subtle changes can alter the field position of

certain lobes, including grating lobes. What can be seen however, is the overall reduction

of sidelobe levels when using the 208 ps quantization, for all cases.

As ultrasound systems seek to operate over broader bandwidth, achieving the correct

quantization threshold across a large number of independent channels is particularly chal-

lenging. Whilst FPGAs are capable of generating excitation pulses at high frequencies,

quantization error effects are likely be present in the transmitted beam profile if ∆τ is

not sufficiently small. At 20 MHz for example the λ/32 threshold corresponds to a ∆τ

value of 1.56 ns, whilst at 40 MHz the λ/32 value corresponds to a ∆τ value of 781 ps.

Solving this problem using external discrete circuits increases system design and com-

plexity, particularly as channel count increases. The implementation shown in this work

can achieve the λ/32 threshold for these high frequency cases and does so by merely

taking advantage of resources (perhaps not intended for such an application) but readily

available within FPGAs.
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For optimal implementation, the embedded PLL method does require additional soft-

ware to convert and track phase shifts of each channel. Such data can easily be stored in

dedicated registers within the FPGA software.

As an aside, the embedded PLL method presented could also be used to correct or

compensate for array defects and inconsistencies in array manufacture, particularly with

respect to timing variability as discussed by Zhang et al. [107]. Other areas with which

the embedded PLL method is applicable could include compensating for subtle changes

in focal delays due to temperature, boundaries between materials, or to compensate for

focal errors caused by non-ideal propagation in a medium. Using the embedded PLL

method described, it would be possible to incorporate additional time offsets as part of

a calibration routine or to fine-tune delay parameters in order to optimise the radiation

pattern.

4.11 Conclusions

Phase quantization effects such as increased sidelobe levels and phase quantization lobes

can be reduced by close approximation to the ideal delay profile for a focused and/or

steered beam in a phased array system. Most ultrasound phased array imaging suffers

only from errors associated with focusing delay profiles (uncorrelated error) as opposed

to periodic error caused by steering delay profiles (correlated error). Imaging may also

suffer as a result of other uncorrelated error introduced by the transducer or in the medium

during propagation.

Previous literature have evaluated the effect of phase quantization particularly with

respect to receive beamforming. Suggested values of maximum tolerable phase error have

been proposed such as λ/8 value by Von Ramm et al. and then λ/32 [114],[69],[115],[116].

These thresholds however are dependent on excitation frequency which can vary with ap-

plication, imaging modality or transducer. In most cases the hardware system used is a

common platform which must be able to meet the demands that these various applications

and techniques impose. This work describes the implementation of a transmit beamform-

ing method able to surpass these suggested maximum tolerable phase error values across
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a range of frequencies in order to increase transmit dynamic range, and when combined

with receiver beamforming strategies increase total image dynamic range.

Programmable and flexible embedded PLL components are now common in commer-

cial FPGAs. These embedded PLLs are highly functional and allow for real time phase

shifting of clocks by simple serial interface. Presented in this work is a method to take

advantage of these embedded PLLs to create a phased array transmitter design which can

provide inter-element resolution of 208 ps using multiple phase shifted 100 MHz clocks.

This phase delay solution is coupled with previous work into generation of coded excita-

tion waveforms using MOSFET devices [52] and replicated to form part of the University

of Leeds UARP.

Experimental evaluation with the UARP system demonstrates that the proposed em-

bedded PLL architecture can achieve and surpass the λ/32 criterion across a range of

frequencies. Results obtained with a 5 MHz array transducer have been used to evaluate

potential reductions in sidelobe levels when used at higher frequencies such as 10 MHz

and 20 MHz. Results show up to 12 dB improvement at 20 MHz in peak sidelobe level,

or transmit dynamic range.

This chapter described and demonstrated a transmit beamformer architecture for se-

quencing of switched-mode signals with fine delay and variable control. Demonstration

of the transmit beamformer architecture has shown ability to vary fine delays that are

sub-clock period (in this case 10 ns). With this fine delay control and variable nature,

the transmitted field can be further enhanced by compensating for other forms of ran-

dom error such as transducer defects or inaccuracies using the embedded PLL transmit

architecture described. The next chapter discusses another method of improving the pres-

sure wave from the UARP’s switched-mode transmitter, considering the best method for

pulse-width encoding to generate arbitrary waveform sequences.



Chapter 5

Switched-Mode PWM Method for

Ultrasound Power Control

5.1 Introduction

Chapter 3 introduced the use of switched-mode circuits as an alternative over linear power

amplifiers. Chapter 4 described how contributions from multiple array elements, excited

by switched-mode signals, can be combined to generate focused beam patterns. It also

discussed how these field patterns can be optimised by accurate excitation sequencing.

Chapters 5, 6 and 7 investigate how to utilise switched-mode circuits for optimised pres-

sure output.

Advances in areas of ultrasound such as high frequency imaging [39] and portable,

low-cost system development [11], [12], place a burden on the complexity and require-

ments of an ultrasound transmitter, particularly when the design is required to be scaled

over many channels. Complexity may also increase as future trends seek to integrate

excitation electronics into the transducer probe head which has a number of benefits, in-

cluding improved impedance matching and reducing the unwieldy cable bundle between

system and probe [127].

High frequency linear power amplifiers are well-suited to the electrical requirements

of ultrasound transmitters, however are often large, bulky and expensive components as



5.1. Introduction 119

described in Chapter 3. An alternative transmitter solution to analogue power amplifiers

is the use of MOSFET semi-conductor pulser devices operated in a switched-mode as dis-

cussed in previous chapters. These components use switched excitation to select between

several positive and negative voltage levels. Switching between discrete levels results in

square-wave or staircase (stepped) pulses which approximate sinusoidal signals as de-

scribed in [39], [11], [12], [85], [127], [86], [89], [13], [90], [92], [14]. MOSFETs are

advantageous particularly over linear power amplifiers as they are capable of delivering

high currents to piezo-electric loads [88], in small scale, low-cost, integrated packages

and are more suited for use with arrays of channels. High currents are required due to

the capacitive nature of a piezo-electric element and the large inrush current drawn when

excited by an excitation signal, especially when a square wave excitation is used, as previ-

ously discussed in Chapter 3 and (3.4). The nature of MOSFET switched excitation often

results in pulses with uniform fixed amplitude. Whilst it is possible to adjust switching

levels between firings, it is often desirable to control pulse amplitude throughout the dura-

tion of the excitation for several applications within therapeutic and diagnostic ultrasound.

Pulse width modulation (PWM) is an established technique used throughout engineer-

ing to control switched mode output. This form of output stage was briefly discussed in

the review of amplifier technology in Chapter 3. In its simplest form, the duty cycle or

on/off ratio of a square wave is adjusted in proportion to a desired, time-averaged output

i.e. the pulse-width is modulated according to desired output level.

Pulse widths can be determined using one of a number of methods. Examples include

integration based methods, carrier based methods or direct modulation methods. Carrier

based methods are often used due to their simplicity and performance in both analogue

and digital representations. Carrier based methods compare a generated reference carrier

to the desired or modulating waveform, for implementation this can be solved either with

a comparator circuit, or using if... else... statements in software. Pulse widths are derived

based upon the relative position of the carrier to the modulating waveform. The form of

the carrier is of particular importance. Carrier form not only dictates pulse width, but also

pulse position and pulse abundance (number of pulses per time period). Pulse abundance



120 5.1. Introduction

is characterised by the relationship between the carrier frequency, and the modulating

frequency. As an example, a carrier with a frequency ten times greater than the modulating

wave will produce ten PWM pulses per cycle. Pulse position can be controlled by using

symmetrical or asymmetrical modulation. Symmetrical modulation uses a carrier such

as a triangular carrier, which is symmetrical in the carrier period. In symmetrical carrier

based modulation, both edges of the square wave pulses are modulated with the centre of

the pulse located at the centre of the carrier wave period. In asymmetric modulation one

edge is fixed, and either the leading or trailing edge is modulated. In this case the carrier

is not symmetrical, such as when the carrier is a sawtooth wave. Pulse width in carrier

based schemes is determined by using the intersection of the carrier with the modulating

wave. If the modulating wave is a function such as a triangular or sawtooth wave then the

pulse width is linearly scaled, because the carrier function is linear. As an example, if the

modulating wave intersects the carrier at 25% of its amplitude, then the pulse will be on

for 25% of the carrier period and off for the remaining 75%.

PWM has a wide range of applications due to its relatively low cost, ease of implemen-

tation and high efficiency. For many applications the ratio between the carrier frequency

( fc) and the modulating frequency ( fm) is often large (e.g. fc ≥ 10 fm). In digital imple-

mentations, the carrier is a discrete version of a continuous waveform, and is therefore

sampled itself by a clock of higher frequency ( fs). The relationship between fs and fc

determines the number of available PWM states. In addition to this, sampling frequency

may dictate the specification of the modulator circuit, as the frequency fs defines the min-

imum pulse width or time to switch on and off. As an example, if a sampling frequency

or system clock of 100 MHz is used, then the minimum pulse and pulse increment would

equal 10 ns. Ultrasound frequencies are often defined in the kHz to tens of MHz range.

To implement PWM with a modulating wave at these frequencies places a burden on

the hardware required. It is therefore advantageous to design the carrier with appropri-

ate frequency as to generate either one or two PWM pulses per half cycle. This reduces

the sampling frequency fs and also the bandwidth requirement of the modulating output
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circuit. Additional advantages also exist in terms of power requirements and switching

losses.

Previous literature within ultrasound has described adjusting switching thresholds

(and hence pulse widths) of square wave pulses to eliminate harmonics in the transmitted

output [13]. The objective of [13] was not to control pulse shape or amplitude however,

but to reduce harmonic content. A recent paper [14] discussed the advantages of MOSFET

bipolar pulsers, particularly with respect to the large amplitude outputs available, but dis-

missed the use of MOSFETs for generating arbitrary excitation, stating a lack of control

over pulse characteristics. In contrast, authors such as Persson have previously described

varying the width and shape of very short square-wave pulses to effect the transmitted

pressure output [82] which showed potential for amplitude control. It is the motivation of

this work to propose a PWM strategy for Ultrasound applications, capable of providing

control of pulse characteristics using switched mode sequences.

There are many forms and implementations of PWM, particularly in power converters

where a wealth of literature is available as summarised in [128]. For ultrasound applica-

tions, a number of aspects differ from conventional implementations. Traditional PWM

strategies use a multitude of pulses to describe the modulating waveform. This requires

rapid switching of the transmitter circuit at a rate much greater than the output frequency

and is often used in combination with an output filter [129]. This form of rapid switch-

ing and reconstruction is similar to a sigma-delta modulation strategy as proposed by

Huang and Li [130]. A sigma-delta implementation generates multiple switching events

in response to an integration stage operating on a sample by sample basis. The train of

pulses are time-averaged over the duration of the half cycle, with the density of the pulses

defining the resultant output amplitude. Consequently, for low- or mid-amplitude sig-

nals, multiple sparsely distributed pulses are generated with pulse-widths that are very

small. The technique proposed in this Chapter differs, as it seeks to minimize the number

of switching events to one pulse per half cycle as in a pseudo-chirp representation, but

modulate the width of each of the pulses in the sequence at the fundamental frequency.

Widths are modulated by using the characteristics of the transducer as a bandpass filter
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as described in Chapter 3 and considering the transducer’s response to a square-wave in-

put. The method provides a solution to addresses the reported inflexibility of high voltage

bipolar pulser devices for generation of windowed or arbitrary waveforms, as described

in recent literature such as [92] and [14].

5.2 PWM and Multi-Level PWM

5.2.1 Overview of Carrier-Based PWM

Conventional carrier-based PWM compares a carrier of known form to a desired output

level or modulating wave thus generating pulses of varying widths [131]. Figure 5.1

shows three examples of modulation with an often-used triangular carrier generating three

symmetrically modulated pulses after comparison with desired d.c voltage levels [128].

Figure 5.1: Example of triangular symmetrical, carrier-comparison, pulse-width modula-
tion

Figure 5.1 shows a carrier (dotted line), and a desired output level (grey solid line).

A comparison algorithm using the carrier and a desired level, generates a width modu-

lated pulse (black solid line). The triangular form of the carrier generates symmetrically

modulated PWM with both the leading-edge, and trailing-edge of the square-wave mod-

ulated. Other modulation types exist that use an asymmetric carrier that modulates the

leading or trailing edge only. The conventional triangular carrier assigns a pulse width

from a desired output level in a linear fashion. The width of the pulse is therefore directly

proportional to the desired d.c. level. A linear triangular carrier may be defined as:

c(t) = A ·
∣∣(2/π)

(
sin−1 (sin(ωt +φ))

)∣∣+L (5.1)
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where A is a scaling factor, t is time, φ is phase, L is an arbitrary d.c. offset and ω =

2π f . The triangular carrier described by (5.1) can be used to modulate the widths of

successive pulses by comparing said carrier to a modulating wave m(t). With this method,

the square wave is ‘high’ or ‘on’ whilst c(t) < m(t). In most applications, m(t) is of much

lower frequency than the carrier, resulting in multiple pulses of varying widths, with the

ratio of carrier frequency to modulating frequency determining the number of pulses per

cycle, as demonstrated in Figure 5.2. In this context, ‘carrier’ refers to the wave used to

encode PWM sequences, and not necessarily the fundamental frequency of an amplitude

modulated pulse. In digital implementations of PWM, both the carrier and modulating

Figure 5.2: Diagram of conventional carrier-based PWM featuring the carrier c(t) and
modulating wave m(t).

wave are discrete representations of a continuous signal. Comparison occurs by using

logic components as opposed to comparator amplifiers in analogue representations. A

second relationship then exists between c(t), m(t) and the overall sampling frequency fs.

The high fundamental frequency of ultrasound places great burden on carrier sampling,

switching frequency and pulse abundance. As a consequence, due to the high frequency

of the excitation signal to be described, a single pulse per half cycle relationship was

chosen, resulting in two width-modulated (one positive and one negative) pulses for a

single cycle. This reduces switching losses, lowers the required sampling frequency and

relaxes the specification of the transmit output circuitry. That is to say that high power
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MOSFET devices typically switch hundreds of volts in the tens of ns range, and therefore

very rapid switching is limited by this factor.

5.2.2 Fundamental Frequency Output Relationship

For ultrasound applications, and for a single half cycle square-wave pulse, it can be shown

that the output pressure is not directly proportional to the width of the pulse. In other

words, the output pressure does not follow a linear relationship with a linear increase in

pulse width, and therefore a triangular or sawtooth carrier as defined in (5.1) and shown

in Figure 5.1 and Figure 5.2 is not appropriate.

The relationship between harmonic content and switching angle for square wave sig-

nals can be calculated using Fourier series analysis [129] [53].

Figure 5.3 shows a bipolar square wave, f (x), with variable angle δ and Fourier series

f (x) =
a0

2
+

∞∑
n=1

(an cos(nx)+bn sin(nx)) (5.2)

where

a0 =
1
π

∫
π

−π

f (x)dx (5.3)

an =
1
π

∫
π

−π

f (x)cos(nx)dx (5.4)

bn =
1
π

∫
π

−π

f (x)sin(nx)dx (5.5)

f (x) =


−V , if −π +δ < x <−δ

V , if δ < x < π−δ

0, otherwise

(5.6)
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f (x) is anti-symmetric about the vertical axis, and is therefore classed as an odd signal

with

an = 0, (5.7)

as f (x) has no overall d.c. offset, the a0 coefficient is also equal to zero

a0 = 0, (5.8)

This leaves the bn coefficient in (5.2) to be calculated using (5.5).

bn =
1
π

[
−V
∫ −δ

−π+δ

sin(nx)dx+V
∫

π−δ

δ

sin(nx)dx

]
(5.9)

bn =
V
π

[
−
∫ −δ

−π+δ

sin(nx)dx+
∫

π−δ

δ

sin(nx)dx

]
(5.10)

bn =
V
π

[
cos(nx)

n

∣∣−δ

−π+δ
− cos(nx)

n

∣∣π−δ

δ

]
(5.11)

bn =
V
nπ

[
cos(nx)

∣∣−δ

−π+δ
− cos(nx)

∣∣π−δ

δ

]
(5.12)

bn =
V
nπ

[(cos(n(−δ )) −cos(n(−π +δ )))− (cos(n(π−δ )) +cos(n(δ )))] (5.13)

using the relationship

cos(α) = cos(−α) (5.14)

bn =
2V
nπ

[cos(nδ )− cos(n(π−δ ))] (5.15)
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which can be expanded to

bn =
2V
nπ

[cos(nδ )− cos(nπ−nδ )] (5.16)

and can be simplified using the relationships

cos(α−β ) = cos(α)cos(β )− sin(α)sin(β ) (5.17)

and

sin(nπ) = 0 (5.18)

cos(nπ) = (−1)n . (5.19)

Therefore, bn can simplify to

bn =
2V
nπ

[cos(nδ )(1− (−1)n)] (5.20)

giving

f (x) =
∞∑

n=1

(
2V
nπ

[cos(nδ )(1− (−1)n)]sin(nx)
)

. (5.21)

If δ is varied linearly between 0 and π/2, then the magnitude of the bn coefficient in

(5.20) decreases as shown in Figure 5.4 and described previously for power converters

by Bedford and Hoft [129]. It can be seen from Figure 5.4 that the relationship between

a linearly increasing switching threshold or square wave pulse width, and the magnitude

of the harmonic component, that the relationship between the pulse width and fundamen-

tal output is indeed not linear, but trigonometric [129]. This non-linear relationship

between pulse width and peak pressure can also be demonstrated with Field II simula-

tion [118][119]. Figure 5.5 shows an exemplar set of 4-cycle switched-mode tone-burst

signals. Each of the signals has positive and negative cycles of differing widths corre-

sponding to a percentage of half cycle duration moving from 10% to 90%, where 100%

would mean maximum half cycle pulse width. The minimum pulse-width resolution is
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Bipolar square wave with variable switching angle δ

Figure 5.3: Bipolar square wave with variation of switching angle δ
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10%, and odd numbers are used to ensure that the middle of the pulse is located at the

same point for each case. When passed through a suitable transducer the pressure out-

put shows variation in amplitude (Figure 5.6). Figure 5.7 shows an FFT of each signal,

demonstrating comparable frequency characteristics. Inspection of Figures 5.6 and 5.7

shows that there is a non-linear increase in peak pulse amplitude. This peak amplitude

can be plotted against percentage width as shown in Figure 5.8, and shows a non-linearity

that is similar to Figure 5.4.
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Figure 5.6: Pressure from pulse-width modulated signals
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If the magnitude of the fundamental is considered of most importance due to the influ-

ence of the transducer, then pulse widths must be assigned according to this relationship.

A patent by Haider [132] has also discussed this relationship. In [132], a thresholding

method to to encode a desired pulse width for a desired output amplitude was discussed.

To convert between the two, an inverse trigonometric function (cos−1) was used. A thresh-

olding method such as [132] derives a single pulse width for a fixed desired amplitude.

A carrier comparison based method however can encode successive widths of a train of

pulses according to a fluctuation in desired amplitude, and can also encode the position

of pulses within a sequence. It is therefore the aim of this work to utilise the simplic-

ity of a carrier comparison method, but adjust it to reflect the trigonometric variation in

amplitude. For carrier comparison PWM a change in carrier form is required.

5.2.3 Optimization: Trigonometric Carrier Definition

Optimization of the carrier to provide a non-linear increase in pulse width for a linearly

increasing desired output can be defined like so:

c(t) = A · | cos(ωt +φ) |+L (5.22)

When the carrier defined by (5.22) is used in a carrier-comparison PWM method, sym-

metrically modulated PWM sequences are generated, with both the leading and trailing

edges modulated simultaneously [131]. Figure 5.9 demonstrates the difference between

a traditional triangular carrier and the proposed trigonometric carrier, with both carriers

scaled within the range 0≤ c(t)≤ 1.

5.2.4 Extension to Multi-Level PWM

Typically, several d.c. voltage levels are used to describe the desired excitation. Indeed,

the use of multiple level MOSFET switching circuits is commonplace for switching in-

verters [133] but also applies to ultrasound as shown in literature such as [52, 92] and

patents [61] [60]. The use of multiple levels is advantageous for PWM as it doubles the
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number of available states with which to describe the desired amplitude, at a slight cost

of increased hardware. Figure 5.10 shows a multi-level waveform, f (x). f (x) can be
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represented by the piecewise function

f (x) =



−V1, if −π +δ1 < x <−π +δ2

−V2, if −π +δ2 < x <−δ2

−V1, if −δ2 < x <−δ1

V1, if δ1 < x < δ2

V2, if δ2 < x < π−δ2

V1, if π−δ2 < x < π−δ1

0, otherwise

(5.23)

with δ1 < δ2 < π . As in the previous case, the signal is odd, with no DC offset, therefore

the an and a0 coefficients are as previously in (5.8) and (5.8), and the bn coefficient should

be calculated using (5.5).

bn =
1
π

[
−V1

∫ −π+δ2

−π+δ1

sin(nx)dx −V2

∫ −δ2

−π+δ2

sin(nx)dx −V1

∫ −δ1

−δ2

sin(nx)dx

+V1

∫
δ2

δ1

sin(nx)dx +V2

∫
π−δ2

δ2

sin(nx)dx +V1

∫
π−δ1

π−δ2

sin(nx)dx

]
(5.24)

performing integration gives

bn =
1
π

[
V1

cos(nx)
n

∣∣∣∣−π+δ2

−π+δ1

+V2
cos(nx)

n

∣∣∣∣−δ2

−π+δ2

+V1
cos(nx)

n

∣∣∣∣−δ1

−δ2

−V1
cos(nx)

n

∣∣∣∣δ2

δ1

−V2
cos(nx)

n

∣∣∣∣π−δ2

δ2

−V1
cos(nx)

n

∣∣∣∣π−δ1

π−δ2

]
(5.25)

using (5.14)

bn =
V1

nπ

[
cos(nx)

∣∣−π+δ2
−π+δ1

+cos(nx)
∣∣−δ1
−δ2
−cos(nx)

∣∣δ1
δ2

−cos(nx)
∣∣π−δ1
π−δ2

]
+

V2

nπ

[
cos(nx)

∣∣−δ2
−π+δ2

−cos(nx)
∣∣π−δ2
δ2

]
(5.26)
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bn =
V1

nπ
[cos(n(−π +δ2)) −cos(n(−π +δ1)) +cos(n(−δ1)) −cos(n(−δ2))

−cos(n(δ2)) +cos(n(δ1)) −cos(n(π−δ1)) +cos(n(π−δ2))]

+
V2

nπ
[cos(n(−δ2)) −cos(n(−π +δ2)) −cos(n(π−δ2)) −cos(n(δ2))] (5.27)

collecting terms gives

bn =
V1

nπ
[2cos(n(π−δ2))−2cos(n(π−δ1))+2cos(nδ1)−2cos(nδ2)] (5.28)

therefore

bn =
2V1

nπ
[cos(nδ1)− cos(nδ2)− cos(n(π−δ1))+ cos(n(π−δ2))]

+
2V2

nπ
[cos(nδ2)− cos(n(π−δ2))] . (5.29)

This can be further expanded to

bn =
2V1

nπ
[cos(nδ1)− cos(nδ2)− cos(nπ−nδ1)+ cos(nπ−nδ2)]

+
2V2

nπ
[cos(nδ2)− cos(nπ−nδ2)] . (5.30)

Then using (5.17), (5.18) and (5.19) bn simplifies to

bn =
2V1

nπ
[cos(nδ1)(1− (−1)n)− cos(nδ2)(1− (−1)n)]

+
2V2

nπ
[cos(nδ2)(1− (−1)n)] , (5.31)

giving

f (x) =
∞∑

n=1

{(
2V1

nπ
[cos(nδ1)(1− (−1)n)− cos(nδ2)(1− (−1)n)]

+
2V2

nπ
[cos(nδ2)(1− (−1)n)]

)
sin(nx)

}
(5.32)
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For multi-level carrier comparison PWM, strategies exist in power converter theory

which are applicable to ultrasound. In the case of level-shifted carrier comparison PWM,

each switching leg or MOSFET is assigned a carrier, with the carriers scaled to cover

the defined region of switching, contiguous in amplitude, but with a d.c. offset [131]

as described in (5.22). Examples of three-level and five-level carrier definitions using

level-shifted carriers are shown in Figure 5.11.

5.2.5 Generation of PWM Sequences

The carrier comparison method as shown in Figure 5.2 generates PWM sequences us-

ing an algorithmic approach. It is therefore appropriate to first explain conventional al-

gorithms as discussed in common literature before explaining the proposed algorithmic

change. Therefore, bipolar (three-level) PWM sequences can be generated with two,

level-shifted carriers and an algorithm as shown in (5.33).

PWM(t) =


1, m(t)≥ cPOS (t)

−1, m(t)≤ cNEG (t)

0, otherwise

(5.33)

where m(t) is the modulating signal and cPOS(t) and cNEG(t) are carriers which span

the positive and negative regions respectively. This algorithm can then be extended for

multiple levels by introducing additional carriers and levels as described by (5.34).

PWM(t) =



1, m(t)≥ cPOS2 (t)

0.5, m(t)≥ cPOS1 (t)

−1, m(t)≤ cNEG2 (t)

−0.5, m(t)≤ cNEG1 (t)

0, otherwise

(5.34)

where cPOS1(t) and cPOS2(t) are carriers that span the positive ranges between 0 to 0.5 and

0.5 to 1 respectively and cNEG1(t) and cNEG2(t) span the ranges between 0 to−0.5 and 0.5
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Figure 5.11: Carrier scaling for multi-level PWM generation using the proposed trigono-
metric carrier. The carrier is replicated a number of times, scaled and then level-shifted
in order to span the range of the modulating signal m(t)
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to −1 respectively. The algorithms described in (5.33) and (5.34) take a conventional low

frequency signal and generate multiple pulses per cycle. For ultrasound, due to the high

frequency output signal, the proposed method modifies traditional algorithms to generate

a single, width-modulated pulse per half cycle at the desired frequency. The proposed

algorithm compares two signals: a sinusoidal signal and a desired amplitude function

with the carrier setup. Two versions of the desired amplitude function are created, the

original which spans from 0 to 1, and the inverse from −1 to 0. The full algorithm is

shown in (5.35):

PWM(t) =



if s(t)≥ 0

1, mPOS (t)≥ cPOS2 (t)

0.5, mPOS (t)≥ cPOS1 (t)

0, otherwise

else

−1, mNEG (t)≤ cNEG2 (t)

−0.5, mNEG (t)≤ cNEG1 (t)

0, otherwise

(5.35)

where s(t) = A · sin(ωt +φ) and is scaled from −1 to 1, and where mPOS(t) and mNEG(t)

are positive and negative (or inverse) versions of the desired window function respectively.

For clarity an example is shown in Figure 5.12. Using the proposed encoding scheme

frequency information is stored within the carrier, and amplitude information is stored

within the modulating function.
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(a) Desired Signal (b) s(t) (top) and m(t) (bottom)

(c) mPOS(t) and mNEG(t) with multi-level trigono-
metric carriers

(d) PWM(t) sequence

Figure 5.12: Construction of PWM encoded signals. The desired waveform 5.12(a) is
a tone burst with an applied window function, and can be split into its constituent parts
s(t) and m(t) 5.12(b). The desired amplitude function is duplicated to form positive and
negative window functions 5.12(c). Using the sign of s(t) comparison between either
positive or negative comparisons are performed to generate the resultant PWM sequence
as shown in 5.12(d).

5.3 Demonstration of Pressure Control

Using the algorithm defined in (5.35), multi-level arbitrary waveform sequences can be

designed which give the desired output signal once filtered by the transducer. It is possible

to simulate the filtering effect of the transducer by measuring its impulse response, and

convolving this with the PWM signal [134]

y(t) = s(t)∗h(t) (5.36)
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where s(t) is the excitation signal and h(t) is the impulse response of the transducer and

y(t) is the simulated pressure output through the transducer. Note that s(t) can be substi-

tuted for the PWM signal PWM(t) to give the response to PWM encoded signals.

y(t) = PWM(t)∗h(t) (5.37)

The simulated pressure output can then be compared with the measured output.

To show that conversion from a triangular to trigonometric carrier is necessary, sim-

ulation and experiments were conducted with arbitrary waveform sequences using three

and five level circuits within the UARP. Figure 5.14 shows a simulated example of a lin-

early increasing amplitude function applied to a 10 µs 4.8 MHz tone-burst sampled at 100

MHz. The PWM sequence has been convolved with the impulse response of the array

transducer used in Chapter 4 (see Table 4.6). It can be seen in Figure 5.14(a) that encod-

ing with the linear carrier does not give the desired output. Instead, a curved amplitude

function is prevalent. When compared with the trigonometric case in Figure 5.14(b) it

can be seen that there is a better approximation to the desired case, but with a degree of

ripple. This ripple is due to a low resolution of PWM states, and can be improved either

by increasing sampling frequency or by increasing the number of levels to select from.

Increasing sampling frequency requires sourcing faster switching MOSFETs (of which

there is limited choice). Moving to multiple levels however requires replication of the

circuit as shown in Figure 3.6 and is a more simplistic choice, especially as multi-level

components are on the market.

Figure 5.15 shows the impact of increasing the number of levels to five, and con-

sequently the number of available states on the waveform. Firstly, with respect to the

simulated triangular carrier, it can be seen that the the use of an additional level set has

produced a ‘double-hump’ in the transition between high and low levels as shown in

Figure 5.15(a). Figure 5.15(b) shows the the result of convolution using the trigonometric

encoded PWM. This approximates the desired linearly increasing pulse with much greater

accuracy than both the triangular case, and the three level trigonometric case.
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Figures 5.16 and 5.17 show comparable data, but measured experimentally using a 1

mm Hydrophone shown in Figure 5.13 (Precision Acoustics, Dorchester, UK).

Figure 5.13: Photograph of the 1 mm needle hydrophone (Precision Acoustics, Dorch-
ester, UK)

The hydrophone was aligned to the transducer and separated by a distance of 20 mm.

Low amplitude was used to reduce non-linear effects for better comparison with the sim-

ulated cases. Each measurement was acquired using a digital oscilloscope and processed

using MATLAB. The frequency response of the hydrophone was corrected using an in-

verse filter. It can be seen that the triangular and trigonometric cases are matched to their

simulated equivalents, with the triangular carrier encoded signals giving a curved wave-

form. For the trigonometric cases in Figure 5.16(b) and 5.17(b), as with the simulated

case, the desired amplitude function is generated as in the five-level case. Notice however

a slight difference between the five-level simulated (Figure 5.15(b)) and the experimental

case (Figure 5.17(b)) at the mid-level point, or crossover between the low switch switch-

ing, and the high switch switching. This appears as a dip in amplitude, and is caused by

the effect of MOSFET rise and fall time. At this stage a minimum pulse width (10 ns

due to 100 MHz) is required by the high level switch, however due to the rise time of
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the MOSFET full amplitude is not reached before falling again. This generates a smaller

pulse height than predicted with simulation.

A second set of arbitrary waveform examples can be seen in Figures 5.18 and 5.19

(simulation) and Figures 5.20 and 5.21 (measured). In this second case, a triangular func-

tion is applied to the 10 µs, 4.8 MHz tone-burst. This example function further accentuates

the inaccuracy of the triangular carrier for both the three and five-level cases. As can be

seen in Figures 5.18(a) and 5.20(a) the three level triangular case gives a curved output,

resembling a cosine window as opposed to the desired triangular window. The three-level

trigonometric case in Figures 5.18(b) and 5.20(b) approximate the desired with greater

accuracy, however exhibit a slight ripple as a consequence of a low number of available

states. Moving to five-levels shows a noticeable ‘double-hump’ in the simulated trian-

gular modulated case (Figure 5.19(a)). This is also seen in the experimentally measured

case Figure 5.21(a). For the five-level trigonometric encoded sequences (simulation Fig-

ure 5.19(b) and experimental Figure 5.21(b)) it can be seen that the desired amplitude

function is shown, albeit with a small amount of crossover distortion between the low

switch and high switch.

A last example is provided of a Hann windowed sequence. The three-level (Figures

5.22 and 5.24) and five-level (Figures 5.23 and 5.25) cases are shown here. The triangular

encoded cases show a large difference in desired output. For the trigonometric encoded

cases much more accurate representation of the desired function is provided, although

with slight ripple in the three-level case as discussed in the previous cases, and minor

crossover distortion in the five-level case. These slight variations however should not

detract away from the performance of the trigonometric encoding scheme over the tri-

angular encoding scheme, and merely demonstrate the practical implementation issues

surrounding the method.
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Figure 5.14: Comparison between simulations of three-level triangular based comparisons
vs. trigonometric based comparisons. Linearly increasing ramp window function applied
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Figure 5.15: Comparison between simulations of five-level triangular based comparisons
vs. trigonometric based comparisons. Linearly increasing ramp window function applied
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Figure 5.16: Comparison between experimentally obtained three-level triangular based
comparisons vs. trigonometric carrier. Linearly increasing ramp function applied (single
acquisition)
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Figure 5.17: Comparison between experimentally obtained five-level triangular based
comparisons vs. trigonometric carrier. Linearly increasing ramp function applied (sin-
gle acquisition)
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Figure 5.18: Comparison between simulations of three-level triangular based comparisons
vs. trigonometric based comparisons. Triangular window function applied
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Figure 5.19: Comparison between simulations of five-level triangular based comparisons
vs. trigonometric based comparisons. Triangular window function applied
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Figure 5.20: Comparison between experimentally obtained three-level triangular based
comparisons vs. trigonometric carrier. Triangular window function applied (single acqui-
sition)
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Figure 5.21: Comparison between experimentally obtained five-level triangular based
comparisons vs. trigonometric carrier. Triangular window function applied (single ac-
quisition)
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Figure 5.22: Comparison between simulations of three-level triangular based comparisons
vs. trigonometric carrier. Hann window function applied
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Figure 5.23: Comparison between simulations of five-level triangular based comparisons
vs. trigonometric carrier. Hann window function applied
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Figure 5.24: Comparison between experimentally obtained three-level triangular based
comparisons vs. trigonometric carrier. Hann window function applied (single acquisition)
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Figure 5.25: Comparison between experimentally obtained five-level triangular based
comparisons vs. trigonometric carrier. Hann window function applied (single acquisi-
tion)
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In order to provide quantitative measurements to accompany qualitative observations,

each of the simulated cases were compared using the normalised root mean square de-

viation between an ideal ‘analogue’ case, and each of the PWM cases using triangular

(conventional) or trigonometric (proposed) carriers. The normalised root mean square

deviation or error provides a percentage mean deviation between the two pressure signals

on a sample by sample basis, and is defined by equations (5.38) and (5.39).

RMSD =

√∑k
i=1 (x1[i]− x2[i])

2

k
(5.38)

NRMSD =
RMSD

xMax− xMin
% (5.39)

Results of the comparison are shown in Table 5.1. Particularly of note is that the trigono-

metric error cases are never above 2% root mean square error, whilst every triangular

carrier case is above 2% root mean square error. Indeed it can be seen that when com-

paring the use of the three-level trigonometric encoding case and the five-level triangular

case, the five-level trigonometric case achieves closer approximation to the ideal. What is

also noticeable is that the five-level trigonometric case has less than 1% normalised root

mean square error for each of the amplitude functions tested.

Note that quantitative comparison between simulated and experimentally measured

waveforms is more difficult to obtain due to differences in phase and sampling. The

normalised root mean square metric used on the simulated cases operates on a sample by

sample basis, and therefore is not a time invariant process. It is evident from the Figures

shown previously that the experimental cases match closely with the simulated cases.
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Normalised Root Mean Square Deviation (%)

Amplitude Function Linear Triangular Hann

Triangular Carrier 3-Level 4.708 5.029 4.365
Trigonometric Carrier 3-Level 1.057 1.165 0.815
Triangular Carrier 5-Level 2.376 2.497 2.376
Trigonometric Carrier 5-Level 0.771 0.717 0.662

Table 5.1: Quantitative measurements of pressure simulations using triangular (conven-
tional) and trigonometric (proposed) PWM carriers using normalised root mean square
deviation (NRMS)

5.4 Array Apodization with Pulse Shaping

Figures 5.14 to 5.25 have provided examples of successful arbitrary waveform generation

using the proposed PWM carrier-comparison method with a trigonometric carrier. This

method can also be used for power control from an element, as well as pulse shaping.

Another example technique is known as apodization. Apodization increases the sensitiv-

ity of the main beam emitted from an aperture, by suppressing energy at the sidelobe.

High sidelobe energy is present when the emitting aperture has unity amplitude across all

elements (described as a rectangular aperture). Decreasing the amplitude of pulses at the

extremities of the aperture reduces sidelobe interference at the cost of mainlobe widening,

which can be tolerated.

Hoen [135] and Cincotti [136] described a method of switched-mode array apodiza-

tion by control of single cycle pulse widths, mapped according to the area within the

square wave pulse. A patent by Haider [132] described a thresholding method specifi-

cally for generating pulse sequences for apodization. The method described by Haider

[132] however did not demonstrate pulse shaping (amplitude modulation throughout the

duration of the pulse), and apodization across the array. Figure 5.26 shows a plot demon-

strating such a case, with PWM excitation sequences created for apodization of an array

transducer and also shaping of the transmitted pulse. In this example a 5-cycle, 5-MHz

Gaussian windowed pulse has been designed with Gaussian apodization across an aper-

ture of 48 elements Figure 5.26(a). Experimental data obtained using the UARP system

and a 0.2 mm hydrophone (Precision Acoustics, Dorset, UK) shows the applicability of
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PWM for array apodisation when compared with a rectangular aperture (no array apodiza-

tion) in Figure 5.26(b). Interpretation of the Figure shows decreased pressure sidelobe,

and increased mainlobe width as a result of applied array apodization. Note that with

reference to Chapter 4 the same level of phase quantization has been used.

The proposed PWM method enables shaping of pulses and output amplitude control

using switched excitation as demonstrated in Figures 5.17 and 5.26. The PWM method

described can be used to modulate arbitrary pulse sequences by altering the designed

amplitude function in accordance with the desired pulse shape. Pulse shaping is particu-

larly important in coded imaging where it is advantageous to taper the pulse to suppress

sidelobe.
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Figure 5.26: Example of PWM encoded sequences showing tapering in time and apodiza-
tion across the array. MOSFET drive sequences are encoded for 5 MHz, 5 cycle Gaussian
windowed excitations, with Gaussian array apodization over an aperture of 48 elements,
Figure 5.26(a). Experimental measurements (50 averages) show decreased sidelobe levels
in the lateral beam plot at 30 mm focus when compared with a rectangular aperture with
applied time tapering using the PWM strategy, Figure 5.26(b).
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5.5 Effect of Sampling Frequency

The proposed PWM method uses digitally generated carriers and amplitude functions to

modulate pulse-widths. As a consequence it is appropriate to discuss the effect of the

sampling frequency on the transmitted pressure, and pass comment on some interesting

observations. Firstly, it can be seen that although the carrier comparison scheme can

provide excellent accuracy when compared with an analogue waveform (see Table 5.1),

such accuracy may not be present for all cases. Figure 5.27 shows such a case, a 5 MHz

20 µs tone-burst sampled at 100 MHz, with the linearly increasing amplitude function

applied. Notice that instead of the expected smooth linearly increasing amplitude function

seen in previous cases (at 4.8 MHz) there is in fact a discrete number of steps.

If the sampling frequency is reduced to 97 MHz (the nearest lowest prime number)

then the desired amplitude function can be seen as shown in Figure 5.28. This unsatis-

factory effect shown in Figure 5.27 occurs when the ratio between sampling frequency

and fundamental frequency is equal to any even order integer. This ratio is the same as µ

previously used in (4.14) when discussing phase quantization in Chapter 4.

µ =
f s
f

µ ∈ N : µ/2 ∈ N (5.40)

This behaviour is mostly observed for long sequences, where the number of cycles ex-

ceeds the number of PWM states, and the value of µ is as defined by (5.40).
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Figure 5.28: Shaped tone burst signal showing non-integer relationship between f s and f
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5.6 Comparison with Sigma Delta Modulation

The introduction to this Chapter briefly mentioned a sigma-delta modulation method of

switched mode operation. Such a method was also discussed in the review of amplifier

classes in Chapter 3. Huang and Li [130] proposed the use of a sigma-delta algorithm

for LFM chirp coded sequences, which require arbitrary waveform capability, and also

frequency modulation. Sigma-Delta relies on rapid switching between two states and is

similar to PWM however is classed as pulse-density modulation. A sigma-delta stage con-

sists of an integrator, and a quantizer [130]. Switching rapidly increases noise, requires

fast-acting MOSFETs and also increases power consumption. A comparison between a

first-order sigma-delta for Ultrasound as reported by [130] and the proposed fundamental

trigonometric carrier comparison method (described in this Chapter) is shown in Figures

5.29 to 5.31. Note that in both cases, waveforms have been sampled at 100 MHz as de-

scribed in the proposed method. In each figure the desired pressure output is the dashed

line, whilst the switching signal is the solid line. It can be seen that for the proposed

PWM method, a single positive and negative switch per half cycle is required for a single

switching event. In comparison with the sigma-delta method, multiple commutations are

seen.

Following the sigma-delta modulation in [130] was a ‘code-tuning’ stage which was

an iterative algorithm, using the impulse response of the transducer to tune for best per-

formance. The advantages of the carrier-comparison method presented here is that it does

not require a tuning stage, as the effect of the transducer has already been considered in

the encoding stage. Also, the number of commutations can be reduced so that switching

is at the fundamental rate.

The authors stated that the proposed sigma-delta method is advantageous as it utilises

the benefits bipolar square-wave pulse circuits to generate arbitrary waveforms. Chapter 6

seeks to extend the PWM method for arbitrary waveform generation in chirp LFM coded

imaging.
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Figure 5.29: Comparison with Sigma-Delta modulation 25% amplitude
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Figure 5.30: Comparison with Sigma-Delta modulation 50% amplitude
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Figure 5.31: Comparison with Sigma-Delta modulation 75% amplitude
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5.7 Conclusions

This chapter has demonstrated a trigonometric carrier-comparison, pulse-width modula-

tion method for encoding multi-level switched-mode trigger signals. These signals con-

trol a switched-mode, class-D type, output stage as discussed in Chapter 3. Conventional

carriers such as triangular or sawtooth rely on rapid switching, often at 10 or 20 times

greater than the fundamental frequency. For digital PWM implementations this places

a burden on sampling frequency, especially at ultrasound frequencies in the MHz range.

Increasing the frequency of operation of switched-mode devices also increases switch-

ing losses. Switching at approximately fundamental frequency ensures a reduction in

switching losses and sampling frequency, however conventional triangular carriers do not

encode pulse widths optimally. This chapter has shown through Fourier analysis and sim-

ulated and experimental comparison that the carrier requires a different form, in fact a

rectified trigonometric carrier. This carrier modification has been shown to successfully

encode square wave signals that provide the expected pressure waveform once filtered by

the transducer.



Chapter 6

Switched-Mode PWM Method for

Ultrasound Coded Imaging

6.1 Introduction

Coded imaging is an established technique of increasing SNR in ultrasound systems and

has been well discussed in previous literature such as [137], [138], [52] and set of papers

[139], [140], [141]. In general, the technique relies on the correlation between the trans-

mitted pulse and received signal to distinguish between low intensity echoes generated

by weak scatterers and the ambient noise floor. Most often, linear frequency modulated

(LFM) signals are chosen over phase modulated signals as they do not require multiple

transmissions and do not contain abrupt changes in phase [140]. In the case of frequency

modulated signals, the embedded ‘code’ is the rate of the increase (or decrease) from a

start frequency to the stop frequency, over time. At the receiver, a ‘pulse compression’ fil-

ter is necessary to detect the coded signal and indicate correlation or a matched response.

The pulse compression filter is also known as a matched filter. One optimal design for

the matched filter is to use the inverse (or time-reversed, complex-conjugate) of the trans-

mitted sequence [139], [140]. Tapering of the excitation pulse and applying a window to

the filter can also provide additional benefits, as the nature of the taper or window func-

tion can offer gains in SNR at a cost of decreased axial resolution. This chapter aims
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to extend the trigonometric PWM carrier comparison method for LFM chirp coded ul-

trasound imaging, and demonstrate the efficacy of the multi-level PWM discussed in the

previous Chapter to accurately describe a number of tapering functions, and advantage

over conventional pseudo-chirps [86].

6.2 LFM Chirp Coding

6.2.1 Linear Frequency Modulated Chirp Design

Digitally generated LFM signals as described by Misaridis and Jensen in [140] (equation

(3)) are defined as

s(t) = a(t) · exp
{

j2π

[(
f − B

2

)
t +

B
2T

t2
]}

(6.1)

with 0≤ t ≤ T

where B is the signal bandwidth, a(t) is an applied window function or taper and the LFM

signal sweeps from fSTART = f−B/2 to fSTOP = f +B/2 in time T , at rate R = B/T [140].

This equation is a more convenient expression, as it defines an LFM signal without the

use of negative time. For signal detection, an appropriate pulse compression or matched

filter is designed. A conventional matched filter is the complex conjugate of the signal

s(t), s∗ (t). Thus the pulse-compressed output is the auto-correlation of the signal, in the

ideal case, which can be expressed as described by [140]

Rss (τ) =
∫

∞

−∞

s(t)s∗ (t + τ)dt (6.2)

Note that in the practical case the output will be a cross-correlation between the matched

filter and the received signal after propagation. The pulse compression filter demodulates

the signal, with the output approximating a sinc function [140]. If no additional tapering

or weighting is applied then the signal is said to have a rectangular window function.

Rectangular window functions cause sidelobes at approximately -13.2 dB below the peak
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in the correlation output response as discussed by numerous authors, most prominently

[142]. Applying a window function to the match filter design, by altering a(t) successfully

reduces near sidelobe at a cost of widening the mainlobe. If a rectangular windowed

signal is transmitted, and a window function applied to the match filter (now called a

‘mis-matched filter’) near sidelobe levels can be estimated as reported in [142], [143],

[144].

The performance of the pulse compression system is also defined by the time-bandwidth

product T B. For large T B values (i.e. exceeding 100) the performance of the system is

similar to that discussed in coded radar literature [145]. In ultrasound however, the T B

product is limited by the transducer’s bandwidth, and the signal duration. It is therefore

unusual to have very high T B products when imaging closely spaced targets, as their

matched filter responses will overlap in time and frequency as discussed in [146]. Also,

long duration sequences restrict imaging of targets very close to the transducer. For LFM

signals with low T B products and rectangular window functions, their amplitude spec-

trum contains significant Fresnel ripples. These ripples cause distortion in the pulse com-

pressed output referred to as far sidelobes that are not removed by the windowed matched

filter. Indeed as reported by Misaridis “Amplitude tapering is the most efficient way to

reduce the Fresnel ripples of the spectrum, if the power amplifier allows control of the

transmitted pulse rise time” [140], and as reported by Behar et al. “the effectiveness of an

excitation/compression scheme depends on the combination of the amplitude taper and

the filter weighting” [134].

In this work, tapering of a frequency modulated excitation can be achieved by using

the PWM strategy previously discussed, but with extension for use with LFM signals.

6.2.2 Windowing and Tapering Functions

The optimum for pulse compression is to taper the excitation signal to reduce Fresnel

ripples and far sidelobes, and design a weighted matched (mis-matched) filter to reduce

near sidelobes. When this is the case, the expected sidelobe level (ignoring the effect of

the transducer) can be estimated by considering the frequency response of the product of
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the two time domain windowing functions. This differs from expected values reported in

[142], [143], [144] and can also be affected by the T B product.

6.2.3 Swept-Frequency Level-Shifted Carrier-Comparison Method

The previous sections discussed generation of PWM sequences for amplitude control of

single frequency tone-burst signals with a carrier-comparison method. The carrier com-

parison method requires a rectified, scaled and phase-shifted copy of the desired signal to

be used as a carrier. Therefore to generate PWM sequences of LFM signals with defined

bandwidth it is necessary to apply the same frequency modulation to the carrier signal.

This ensures that a single, multi-level pulse per half cycle is generated at the correct po-

sition, is symmetrically modulated, and maintains frequency information. The frequency

modulated carrier can therefore be seen as an extension of (5.22) and is defined as

c(t) = A · | cos(ω ′t +φ) |+L (6.3)

where ω ′ = 2π(( f − B
2 ) + B

2T ), with B the bandwidth of the signal. Figure 6.1 shows

examples of the frequency modulated carrier arranged for generation of multi-level PWM

sequences which can be used with (5.35) according to the following process:

• Generate a frequency modulated signal s(t) of desired duration, centre frequency

and bandwidth.

• Define the carrier of same duration, centre frequency, and bandwidth, but with a

π/2 phase shift.

• Scale and level shift the carriers so they are contiguous and describe the range -1 to

1.

• Generate an appropriate excitation tapering function or time window, e.g. Hann,

Hamming or Raised Cosine window as described in [142]:

• Create positive and negative versions of the window function.
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• Use the sign of s(t) to switch alternately between comparisons of the positive win-

dow function to the positive carriers (when s(t) is positive), to comparisons of the

negative window function to the negative carriers (when s(t) is negative).

Note that this process is the same process used to generate signals described in Chapter 5.
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Figure 6.1: Linear frequency modulation of the trigonometric carrier
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6.3 LFM Chirp Coded Imaging

Examples of coded images using multi-level chirp coded PWM sequences are described in

this section. The PWM sequences are encoded with the optimised, frequency-modulated,

rectified cosine carrier method described in Section 6.2.3. A wire phantom consisting

of five wires separated by 1.27 mm is constructed and submerged in deionized degassed

water, and imaged with a medical array transducer as shown in Figure 4.76, and described

in Table 4.6 (128 Elements, L3-8, Prosonic, Korea), and the UARP system. Coded PWM

signals with applied tapering functions have been designed and used to excite 96 elements

of the linear imaging transducer following a standard linear imaging principle as shown

in Figure 4.2. An aperture of 48 elements is sequentially moved across the 96 elements,

with a focused beam (focal point 60 mm) transmitted toward the wire phantom. The

same 48 elements of the aperture are used to receive echoes sampled at 50 MHz. The raw

radio frequency data is then interpolated, apodised and beamformed according to standard

delay and sum principles to form a single line, focused at 60 mm. A weighted pulse

compression filter as described previously is then used for mismatched filtering. Two

signals have been used in each case, firstly a fixed-width, square wave pseudo-chirp [85]

[86] fluctuating between two levels (referred to as ‘Bipolar (Fixed Width)’) and secondly

a PWM chirp sequence encoded using five levels, with a carrier setup as shown in Figure

6.1(b). Both signals are switched-mode square wave excitations which are subject to

the bandpass characteristics of the transducer and have the same weighted mismatched

filter applied. Any difference between sidelobe level or mainlobe width between the two

signals is therefore as a result of excitation tapering.

Figure 6.3 shows experimentally obtained images of the wire phantom plotted with

a 45 dB dynamic range. Each of the five wires appear as bright spots. Only one of

the wires appears at the focal point. Other wires that are not in focus appear blurred or

spread laterally. The excitation signal used in this case is a Hamming windowed chirp of

5 MHz centre frequency, 2 MHz bandwidth, and 10 µs duration. Both switched excita-

tion sequences (fixed width and width modulated) have been generated with a 100 MHz

sampling frequency. The corresponding bipolar and PWM encoded MOSFET gate drive-
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signals are shown in Figure 6.2. For the fixed width pulse case shown in Figure 6.3(a),
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Figure 6.2: MOSFET gate drive signals of the bipolar (fixed width) chirp signal (top) and
the 5-level PWM-encoded chirp signal (bottom) 10 µs, Hamming windowed, 4-6 MHz.

high sidelobes are apparent in areas between wires. These appear as a lighter grey regions

indicating sidelobes at -30 dB. When compared with the five-level PWM case in Figure

6.3(b), the sidelobes have been reduced, however the wire at the focal point (seen at ap-

proximately 65 mm in the reconstructed image) has been lengthened slightly. This is as

a consequence of both the excitation taper and the filter windowing function as described

in [140].

Sidelobe levels can be more accurately compared by plotting the central line of the

image which intersects the five wires. As these images are produced using a single fo-

cus, it is appropriate to compare the single wire in the focal region. Figure 6.4 shows

simulated and experimental results of the image centre line, showing the wire at the focal

point. Simulations are performed in MATLAB using the ultrasound simulation toolbox,

Field II [119], [147] as used in previous chapters. Care has been taken to ensure that the

simulation environment is as close to the experimental environment as possible, with the

measured transducer impulse response used in simulation. Analysis of Figure 6.4 shows
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Figure 6.3: Experimental wire phantom images using a 10 µs Hamming 4-6 MHz signal.

an expected improvement of 11 dB in peak sidelobe level when using the PWM signals

according to simulation (-26 dB to -37 dB), with an experimentally observed improve-

ment of 10 dB (-26 dB to -36 dB) in peak sidelobe level. Also noticeable is an increase in

mainlobe width for the PWM case as a consequence of the applied tapering function.

For comparison, a convolution of the ideal signals and matched filter has been per-

formed in MATLAB simulation using (6.2). In this case two signals, one with a rectan-

gular taper and a signal with a Hamming taper have been convolved with a Hamming-

weighted matched filter. All other signal parameters correspond to the simulated and

experimental cases shown in Figure 6.4. In order to ease direct comparison with the ex-

perimental cases, Figure 6.5 shows the distance axis instead of time, and with a 50 dB dy-
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Figure 6.4: centre line plotted limited to view a single wire at the focal point. Simulated
data in the Figure 6.4(a). Experimentally obtained in Figure 6.4(b).
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namic range. Conversion of time to distance was performed with a speed of sound equal to

1482 m/s. It can be seen that for the ideal case using ‘analogue’ signals the sidelobe levels
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Figure 6.5: Ideal convolution of 4-6 MHz, 10 µs signals with Hamming weighted matched
filter. 50 dB dynamic range, distance axis

of the rectangular chirp are centred at approximately -30 dB with the maximum sidelobe

value of -28.6 dB. When compared with the ideal Hamming tapered signal through the

same Hamming-weighted filter a -15 dB decrease in sidelobe level can be seen, with the

peak sidelobe level at -43.8 dB with most sidelobe levels centreed between -46 to -50

dB. Also apparent is the widening of the mainlobe due to amplitude tapering. Comparing

Figure 6.5 with Figure 6.4 it can be seen that the rectangular tapered signal is closely

matched in terms of expected sidelobe level, and also mainlobe width. However com-

pared with the ideal Hamming tapered case, it can be seen that the mainlobe is wider, and

also the sidelobes are further reduced, indicating improved compression. This is reflected

in the increase in dynamic range when using the ideal signals (15 dB) than when using

the PWM signals (10 to 11 dB) showing a 4 dB difference in sidelobe level. This can be

expected however due to the time quantization associated with the sampling frequency of

the PWM process, when compared with an approximately analogue solution.
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Figure 6.7 shows a second example of experimentally obtained images of the wire

phantom. The excitation signal used in this case is a Hamming windowed chirp of 4.8

MHz centre frequency, 2.88 MHz bandwidth, and 10 µs duration. Corresponding MOS-

FET drive signals are shown in Figure 6.6. This bandwidth was chosen to match the

reported bandwidth of the transducer. It can again be seen that the sidelobes in the re-

gion between targets are reduced when comparing the fixed width sequence to the PWM

sequences.
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Figure 6.6: MOSFET gate drive signals of the bipolar (fixed width) chirp signal (top) and
the 5-level PWM-encoded chirp signal (bottom) 10 µs, Hamming windowed, 3-6 MHz.

Figure 6.8 shows simulated and experimental results of the image centre line, show-

ing the wire at the focal point. In this case simulation predicts an improvement in peak

sidelobe level when using PWM sequences of approximately 7 dB (-30 dB to -37 dB),

with experimental measurement showing an improvement in 8 dB (-30 dB to -38 dB).

Also noticeable, when compared with the previous case in Figure 6.4 is a slight increase

in axial resolution as a result of increased bandwidth. In the case of the PWM results, the

mainlobe width is increased slightly due to amplitude tapering. Once again this can be

compared with convolutions of ideal signals sampled at 100 MHz. Figure 6.9 shows the
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Figure 6.7: Experimental wire phantom images using a 10 µs Hamming 3-6 MHz signal.

result of convolutions using non-switched-mode signals with rectangular and Hamming

tapering functions through a Hamming-weighted matched filter. It can be seen that there

is a difference in peak sidelobe level of 13 dB, with peak sidelobe levels of the rectangular

and Hamming tapered signals at -32 dB and -45 dB respectively. When compared with

the PWM case it can be seen that the ideal signal provides slightly wider mainlobe and

lower sidelobe levels due to ideal compression and tapering.
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Figure 6.8: centre line plotted limited to view a single wire at the focal point. Simulated
data in Figure 6.8(a). Experimentally obtained data in Figure 6.8(b).
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Figure 6.9: Ideal convolution of 3-6 MHz, 10 µs signals with Hamming weighted matched
filter. 50 dB dynamic range, distance axis

6.4 Transducer Pre-Distortion

Weighting the pulse-compression filter to generate a mismatch has been shown to reduce

sidelobes in the compressed output. however, the transducer, naturally weights both the

outgoing, and incoming wide-bandwidth chirp signal with a separate amplitude function

derived by its own frequency response. This distorts the envelope of the transmitted wave-

form as shown in [3].

Furthermore, propagation of the signal in an attenuating medium will cause an ap-

parent frequency shift when received as a function of frequency dependent attenuation.

Estimation of the frequency dependent attenuation can be incorporated in the matched

filter design, therefore to create a depth-dependent matched filter which matches to an

estimated (or measured) new correlation function.

A different proposal is to estimate the effect of either the transducer, or attenuation to

pre-distort the transmitted signal by applying a different amplitude function to the chirp

signal to compensate. This idea may be particularly relevant to harmonic imaging, where
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signals are located at inefficient regions of a transducer, so as to encompass the funda-

mental and harmonic [3].

References such as [148], [149], [33] have all discussed such an idea, but have used a

DAC or AWG with power amplifier as a transmit circuit solution. [3] demonstrated the use

of the coded PWM method to apply a compensation weighting for the transducer, to po-

tentially improve harmonic imaging. Figure 6.10 shows a 10 µs, 15% Tukey-windowed,

3-4 MHz chirp signal pre-transducer. Figure 6.11 shows the same signal recorded using a

0.2 mm needle hydrophone (shown in Figure 4.77), showing attenuation at the lower fre-

quency as a consequence of the transducer’s bandwidth. The transducer used is shown in

Figure 4.76 with details given in Table 4.6. Figure 6.12 shows a pre-distorted chirp signal,

with a weighting applied to compensate for the estimated attenuation. This weighting has

been calculated using inverse filtering techniques [3]. Figure 6.13 shows the hydrophone

measured signal of the pre-distorted chirp. Comparison between Figures 6.11 and 6.13

show that the arbitrary nature of the PWM method can provide solutions in many appli-

cations.
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Figure 6.10: Desired 3-4 MHz chirp signal
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Figure 6.11: Hydrophone measured 3-4 MHz chirp signal through transducer

Compensation for the transducer may also have an effect in therapeutic applications

as demonstrated in [150]. For this work the coded PWM method was used to compensate

for the impulse response of the transducer, thus delivering approximately constant pres-

sure across frequency. This is advantageous for microbubbles and a technique known as

sonoporation, a technique where acoustic signals stimulate microbubbles that vibrate and

open non-permanent ‘pores’ in cell membranes. This technique can be used to increase

uptake of therapeutic agents into specific targeted areas using ultrasound. Sonoporation is

most effective when largest shear stress is exerted onto the cell membrane. Largest shear

stress is generated by a microbubble when it is insonated at it’s resonant frequency. A

microbubble’s resonant frequency varies depending on size. A polydisperse microbubble

population will therefore have a range of resonant frequencies. It is therefore advanta-

geous to transmit a signal, such as a LFM chirp, to excite a population of polydisperse

microbubbles with a range of resonant frequencies, with a wide-bandwidth signal and at

high pressure [150]. Using the PWM method described, equal pressure across frequency

can be achieved by using an inverse function of the transducer’s impulse response as the

desired amplitude function.
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Figure 6.12: Pre-distorted 3-4 MHz chirp signal taking into account transducer response
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ducer
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6.5 Discussion

The PWM method described in Chapter 5 previously demonstrated accurate implemen-

tation of tone-burst, windowed signals. With this carrier-comparison method, frequency

information was stored within the trigonometric rectified carrier, with amplitude informa-

tion defined in the modulating wave. The carrier was symmetrically modulated, meaning

that the lowest part of the carrier defined the middle of each pulse within the sequence. To

generate LFM coded PWM waveforms the carrier must also be frequency modulated at

the desired chirp parameters. This ensures that frequency modulation and amplitude cod-

ing are encoded. A similar technique was described by Banjanin et al. in a patent dated

2006 [151]. However, the carrier comparison method described in this Chapter specifi-

cally takes into account the fundamental response of the transducer to modulate widths.

Due to the nature of patents the author’s method for encoding is not fully disclosed, and

merely the form of the waveforms is suggested. The work in this chapter however has de-

rived necessary carrier comparison forms, generate algorithms for encoding and provided

experimental comparison between pseudo-chirps and PWM signals using simulation, the

UARP system and wire phantom measurements. As a consequence this Chapter provides

a much more rigorous explanation of encoding PWM sequences for coded ultrasound

imaging.

It is important to know that the carrier itself is digitally sampled. As a consequence,

it is a quantized, non-ideal version of an analogue waveform. Note that due to frequency

modulation, the effects of even integer sampling as discussed in the previous chapter do

not apply, as the value of µ changes over the length of the desired amplitude function.

As a consequence this effect can be disregarded in the frequency modulated cases. At

low modulation values however, some slight anomalies can be seen at the start and end

of pulse sequences. For example, in Figure 6.2. There is a ‘missing’ positive pulse due

to the sampled carrier not intersecting the desired signal. To ensure best performance, a

high carrier sampling ratio should be used.
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6.6 Conclusions

Frequency modulation and coded ultrasound is a useful technique of improving the SNR

of weak signals. For best results however, the technique requires an arbitrary waveform

generator that can provide both frequency modulation and amplitude control to taper the

pulse. This Chapter has demonstrated a switched-mode method for use with coded imag-

ing. The effectiveness of the switched-mode PWM method has been shown for decreas-

ing ‘self-noise’ in wire-phantom coded imaging. Also demonstrated is the ability to pre-

compensate for amplitude distortion as a result of transmission of a wide-bandwidth signal

through a transducer.

A concern of the use of switched-mode circuits however is it spectral content. This

is particularly limiting for harmonic imaging, where signal coding is used to improve the

SNR of received harmonics. The next chapter aims to address this concern.



Chapter 7

Switched-Mode PWM Method for

Ultrasound Harmonic Imaging

7.1 Introduction

Switched-mode signals have high harmonic content [13] [92] [152]. This is due to sharp

transients within the square-wave signals generated by switching between two (or more)

discrete levels. Harmonic content is a concern, as it introduces harmonic distortion, causes

energy to be taken away from the fundamental frequency, and can disturb techniques such

as harmonic imaging, a method that relies on excitation spectral integrity. This chapter

discusses the impact of undesired harmonic content for ultrasound applications and aims

to combine the multi-level switched-mode PWM strategy shown in Chapters 5 and 6

with Selective Harmonic Elimination (SHE) strategies. Evaluation of the main source of

undesired harmonic content, the third harmonic, is discussed with a strategy to reduce this

harmonic whilst still preserving amplitude control.

7.2 Harmonic Imaging and Harmonic Leakage

Harmonic imaging is an established technique in diagnostic ultrasound and is capable of

providing many benefits over conventional fundamental imaging. These benefits include

enhanced image resolution (both laterally due to a reduction in beamwidth in the harmonic



7.2. Harmonic Imaging and Harmonic Leakage 185

beam profile, and axially due to an increased number of waveform cycles, and decrease in

waveform duration in the harmonic signal [153]), reduced sensitivity to off-axis scatterers,

and improvement in image quality for patients that are described as ‘technically difficult’

when imaged conventionally [154], [155], [156], as the harmonic increases through prop-

agation, and therefore objects nearer to the transducer are lower in sensitivity. A harmonic

signal is defined as a signal that occurs at a multiple of the fundamental [155]. Harmonic

signals may be generated in two ways: either by re-radiation from material (e.g. Ultra-

sound Contrast Agent); or perhaps most commonly, through non-linear propagation in a

medium such as water or tissue [155]. Harmonics are generated during propagation as the

compression phase causes a change in medium density, due to the medium of propagation

not being completely incompressible [155]. As a consequence, the longitudinal velocity

changes and the acoustic wave travels slightly faster when the medium has higher den-

sity, thus changing the shape of the pressure wave. This effect accumulates over distance,

and leads to harmonic generation. As harmonics are generated by the medium under test,

they can provide additional information beyond the scope of fundamental signals. For

example, as described in a paper by Harput et al. [22], signal processing techniques were

applied to harmonic signals from tissue and ultrasound microbubble contrast agent in or-

der to differentiate between the two mediums. In this analysis, Harput et al. proved that

second harmonic signals provided more information about the medium than with funda-

mental signals, as regions of tissue and contrast agent could be distinguished separately,

even though both types of non-linear scatterer provided second harmonic.

A much reported issue in harmonic imaging is the difference in energy between the

fundamental and harmonic signals. Furthermore, weak fundamental scatterers generate

almost no harmonic signal [155] and require high sensitivity from the imaging system

[154]. Other harmonic based methods shown to boost SNR include coded harmonic

imaging (as discussed in Chapter 6) and combination of multiple higher order harmon-

ics (termed ‘superharmonic’ imaging) [154]. Issues surrounding harmonic and super-

harmonic techniques include insufficient transducer bandwidth and low SNR of the re-

ceived harmonics [157]. The low SNR of harmonic signals may also be compounded by
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harmonic leakage effects or transmission of harmonics from the excitation signal [157].

Harmonic leakage describes conditions where undesired spectral content is present in (or

leaks into) the frequency band of interest, as discussed in a comprehensive review by

Shen and Li [152]. For example, harmonic signals may already be present in the ultra-

sound system, as opposed to being generated via propagation. In this case, the harmonic

signal will contain two components, the desired harmonic signal e.g. from tissue or con-

trast agent, and harmonic leakage from the imaging or ultrasound system [152]. In [152]

various sources of harmonic leakage including the nature of the transmit waveform, sig-

nal bandwidth, signal duration, and system non-linearity e.g. in the receive path on the

processed harmonic signal for tissue harmonic imaging. Shen and Li concluded that har-

monic imaging performance is optimised by accurate control of the frequency content of

the waveform before propagation [152]. When coupled with coded techniques that are

shown to increase SNR, but require a flexible arbitrary waveform transmitter, there exists

a requirement for both harmonic and amplitude control from a switched-mode excitation

waveform.

7.3 Wide Bandwidth Transducer Types

Before analysing the harmonic content of switched-mode excitation signals in greater de-

tail, it is appropriate to consider another fundamental component for harmonic imaging.

Namely the properties of the transducer. Chapter 3 discussed the composition of array

transducers from materials such as PZT and PVDF. Harmonic imaging requires a trans-

ducer technology that has sufficient bandwidth to contain the fundamental frequency and

the desired harmonic. For techniques such as second harmonic imaging, PZT transducers

with 60% bandwidth are sufficient, as conventional harmonic imaging transmits at 2/3

and receives at 4/3 of the transducer’s centre frequency. For other techniques such as

third harmonic imaging [158], superharmonic imaging [154], [159], and coded harmonic

imaging [160] wider bandwidth transducer technologies are required. Such technology

exists in the form of PVDF, but as discussed in Chapter 3, PVDF has a relatively poor

transmission coefficient and is therefore mostly used for signal reception. Authors have
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Figure 7.1: A CMUT element composed of many CMUT cells

previously suggested array transducers developed with interleaved high frequency, and

low frequency elements [160] or with PZT and PVDF materials for transmit and receive

respectively [161]. Therefore using the high bandwidth receive capability of PVDF, in

conjunction with the normal transmission properties of PZT. Interleaving elements in this

fashion causes complexity of fabrication to increase.

An alternative technology exists in the form of Capacitive Micromachined Ultrasonic

Transducers (CMUT). A CMUT cell is composed of a membrane, between two elec-

trodes, suspended over a gap. The membrane is held in tension by a bias voltage. Appli-

cation of an a.c. signal causes the membrane to vibrate which generates pressure waves.

Incoming pressure on the membrane causes the membrane to fluctuate, thus creating a

current. This current is converted to a voltage signal by means of a transimpedance am-

plifier [116]. CMUT cells are small in size, and therefore multiple ‘cells’ are used to

create an element. Each cell is connected together by means of a matrix interconnecting

scheme. Figure 7.1 shows the composition of an example CMUT element composed of

21 cells. Note that it is normal that the array contains many more rows and columns of

cells than shown in the Figure. A cross section of the cell is also shown in Figure 7.1,

with the electrodes, membrane and gap marked for reference.

CMUTs are seen as the next transducer technology, and offer several distinct advan-

tageous over PZT materials. These advantages include ease of fabrication, wide band-
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width response, high yield, and potential for integration with other auxiliary electronics

[116]. The production method is similar to transistor manufacture, and consequently,

many CMUT cells can be fabricated in bulk, with the process lending itself to easier pro-

duction of 1-D and 2-D arrays. The nature of fabrication of CMUT devices also suits

integration with MOSFET or switched-mode circuits for excitation. The use of CMUT

technology enables very wide-bandwidth array transducers to be fabricated. Some CMUT

arrays have reported to be designed with elements having greater than 100% bandwidths

[162], [163], [164], [165], [166] nearly double the 60% normally seen in PZT arrays. As

a consequence, techniques such as superharmonic and coded harmonic imaging become

more feasible using a single transducer, overcoming the concerns of transducer band-

width, such as those discussed in [157]. Whilst CMUT devices may solve the bandwidth

problem for harmonic imaging, the two other issues of harmonic leakage, and low SNR

still exist. As previously mentioned, the latter can be addressed by using coded harmonic

imaging as described in [167]. However spectral integrity to remove harmonic leakage

becomes more important, especially for switched-mode signals. First however, an intro-

duction to coded harmonic imaging is provided.

7.4 Coded Harmonic Imaging

Chapter 6 introduced coded imaging using the fundamental frequency. Coded imaging

improves SNR by transmitting and detecting an embedded code within a long duration

signal. This embedded code can be detected in the presence of noise, and the long du-

ration pulse can be compressed to a narrow peak when detected using an appropriate

filter. Chapter 6 discussed the use of LFM signals, and demonstrated imaging using pulse

compression. LFM signals are also appropriate for harmonic imaging. In fundamen-

tal coded imaging, the bandwidth of the chirp typically matches, or is slightly greater

than the bandwidth of the transducer. For harmonic coded imaging, the bandwidth of the

chirp is limited by encompassing the fundamental bandwidth, and the harmonic band-

width within the transducer’s frequency range, with a ‘guard band’ to prevent harmonic

leakage. This most often results in the fundamental and harmonic LFM signals located



7.4. Coded Harmonic Imaging 189

Figure 7.2: Frequency response of PZT medical imaging transducer. Fundamental and
harmonic regions are shown in the shaded areas.

at inefficient regions of the transducer’s frequency response as shown by the shaded sec-

tions in Figure 7.2 [3]. It is advantageous in coded imaging to increase the T B product

for maximum compression gain. Also, resolution in a coded imaging system is depen-

dent on the bandwidth of the LFM signal. System efficiency can therefore be maximised

by using wider bandwidth devices. Also important, as discussed in Chapter 6 is the re-

quirement to taper the excitation signal. Tapering using switched-mode signals has been

demonstrated in Chapters 5 and 6 using a PWM strategy for switched-mode excitation

of transducers, with the benefits when compared with ‘fixed width’ bipolar LFM signals

demonstrated. Switched-mode operation is desirable as an alternative to other amplifier

methods for replication across multiple channels suitable for driving arrays of elements,

as discussed in Chapters 3 and 5. This requirement also exists for harmonic imaging

with or without coding techniques. The remaining part of this chapter discusses the har-

monic content of switched-mode signals, elimination of harmonics using SHE strategies,

and how the PWM strategy previously discussed can be developed to provide arbitrary

waveform capability with reduced harmonic content.
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7.5 Switched-Mode Selective Harmonic Elimination

SHE is a technique well-reported in power converter theory. Its basis depends on careful

choice of appropriate switching angles to move from each of the switched-mode states.

By doing this, harmonic components can be reduced using a principle of phase inversion

or cancellation. A primary example of this was discussed for ultrasound by Tang and

Clement [13]. In [13] a switched-mode power inverter was shown as suitable for driving

piezo-electric load, but with reduced third harmonic. To achieve this, the positive and

negative legs of switching were phase-separated by π/3. With reference to Figures 5.3

and 5.4 and Equation (5.20) this equates to a switching angle δ = π/6 which, on inspec-

tion of Figure 5.4 is located at a point with no third harmonic magnitude. This can be

implemented using an amplitude or phase thresholding method, where a sinusoidal signal

can be quantized to three levels. An example amplitude thresholding algorithm is shown

in (7.1)

f (x) =


1, if g(x) > sin(δ )

−1, if g(x) <−sin(δ )

0, otherwise

(7.1)

Tang and Clement discussed that removal of the third harmonic also eliminates other 3n

order harmonics [13]. Work by Cowell [53] [5] [7] showed that this can be extended

for multi-level circuits. For example, in [53] and [7] Cowell discussed the relationship

between harmonic cancellation and switching angle δ where the angle of separation, θδ ,

is defined by

θδ =
π

hn
, (7.2)

where hn is the desired harmonic to cancel, and the switching angle is derived using

δ =
θδ

2
. (7.3)

Equations (7.2) and (7.3) describe the three-level case previously discussed. For mul-

tiple level excitation circuits, Cowell also demonstrated calculation of multiple switching
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angles [7]. For example, a five-level circuit has two switching angles, δ1 and δ2 as shown

in Figure 5.10. As there exists an additional switching angle, there is opportunity to can-

cel an additional harmonic. For example, cancellation of the third and fifth harmonic, h3

and h5 respectively. To achieve this, the angle of separation can be calculated using (7.2)

for each harmonic, therefore

θδ3 =
π

3
, (7.4)

θδ5 =
π

5
. (7.5)

Application of (7.3) for both cases leads to switching angles δh3 = π/6 as in the previous

example, and δh5 = π/10. These angles do not describe angles δ1 and δ2 in Figure 5.10,

as these are calculated using the following relationship [7]

δ1 = δh1−δh2, (7.6)

δ2 = δh1 +δh2. (7.7)

Consequently, in this case, final switching angles can be calculated that simultaneously

cancel both the third and fifth harmonic, using (7.6) and (7.7) that equate to

δ1 =
π

15
, (7.8)

δ2 =
4π

15
. (7.9)

In the same way, other harmonics in the series will be cancelled, i.e. all 3n harmonics

(3,6,9...), and all 5n harmonic (5,10,15...). In addition to this, due to the symmetry

of the switched waveform, all even harmonics are cancelled as discussed in the Fourier

Series analysis in Chapter 5. After cancellation, the next-lowest harmonic will therefore

be the 7th, which will have the largest harmonic magnitude over subsequent harmonics.
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The relationship between levels required, and odd harmonics cancelled can be expressed

by [7]

nL = 1+2h (7.10)

where nL is the number of voltage levels required, and h is the number of odd harmonics

to be cancelled. Consequently, to cancel a single harmonic, three levels are required. To

simultaneously cancel two harmonics, five levels are required. To cancel three harmonics,

nine levels are required as shown in [5].

Parallels can be drawn between the method of generating switched-mode signals with

SHE, and the carrier comparison method shown previously. In this case, the ‘carrier’

or comparison signal is merely a fixed level at thresholds defined by (7.1). Figure 7.3

graphically demonstrates third harmonic cancellation with a bipolar three level signal.

The desired ‘analogue’ signal is shown in the top plot. The particular thresholds for third

harmonic elimination are also plotted in light blue. The comparison algorithm generates

a switched waveform as shown in the lower plot, with the positive and negative volt-

ages selected when the desired waveform is greater or less than the positive and negative

thresholds respectively, and zero otherwise.

Figure 7.4 shows a different case, where the fifth harmonic is cancelled, using a

switching angle of π/10. Again, the thresholds have been plotted against the desired

waveform, with the intersection of the threshold and signal causing a switching event.

A third example is shown in Figure 7.5. In this case, the multi-level strategy has been

applied, with switching angles calculated as per (7.2), (7.8) and (7.9). It can be seen that

there are two sets of positive and negative thresholds, with the blue threshold controlling

switching of the lower voltage, and the pink threshold controlling the higher voltage.

Thresholding using a single switching angle, generates switched-mode waveforms

composed of pulses with equal and fixed widths, according to the intersection of the de-

sired waveform and the threshold. Chapter 5 discussed the need for amplitude control

from a switched-mode transmitter system. Chapter 6 showed the advantages of width-

modulation within switched-mode sequences for coded imaging. Varying widths accord-
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Figure 7.3: Third harmonic cancellation switching using amplitude thresholding at
sin(π/6)
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Figure 7.4: Fifth harmonic cancellation switching using amplitude thresholding at
sin(π/10)
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Figure 7.5: Simultaneous third and fifth harmonic cancellation switching using amplitude
thresholding at sin(π/15) and sin(4π/15)

ing to the carrier derived in (6.3) does not control harmonic content. Controlling harmonic

content by means of a single threshold gives undesirable results for tapered or shaped ar-

bitrary sequences. Figure 7.6 demonstrates that the thresholding method does not encode

switched-mode sequences for harmonic, and amplitude control. As thresholds are based

on the full amplitude of the waveform, the threshold can be scaled according to the am-

plitude function. This is demonstrated in Figures 7.7, 7.8 and 7.9, however it can be seen

that there is still a lack of amplitude control. To provide both, a different approach is re-

quired, one which can adjust widths according to both harmonic content, and amplitude.

The following section describes such a method using the carrier-comparison procedure as

a basis.
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Figure 7.6: Failure of SHE comparison method for harmonic and amplitude control
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Figure 7.7: Threshold scaling to provide third harmonic control, but loss of amplitude
control
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Figure 7.8: Threshold scaling to provide fifth harmonic control, but loss of amplitude
control
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Figure 7.9: Threshold scaling to provide third and fifth harmonic control, but loss of
amplitude control



7.6. Harmonic Reduction Pulse Width Modulation 197

7.6 Harmonic Reduction Pulse Width Modulation

The carrier optimisation discussed in Chapter 5 converted a ‘linear’ PWM carrier, such as

a triangular or sawtooth carrier to a trigonometric carrier. This trigonometric carrier was a

sine or cosine function that had been rectified to generate symmetrically modulated pulse-

width modulated switched-mode sequences. To encode pulse widths according to the

expected output from the transducer, it was necessary to generate a carrier that matched

the expected fundamental frequency response from the transducer. This section explores

whether switched-mode sequences can be encoded by considering the response of the

fundamental frequency, together with a harmonic frequency.

Figure 5.4 showed how the fundamental and third harmonic magnitude deviated ac-

cording to switching angle for the three-level Fourier series described by (5.21). It can be

seen for a single switching angle, there is a single δ that eliminates the third harmonic.

Introducing a second level in turn introduces a second switching angle. This switching

angle can be used to simultaneously remove two harmonics as shown in Section 7.5, and

also provides more states for PWM without increasing sampling frequency. An alternative

approach suggested in power inverters is to keep the same number of levels, and introduce

a second commutation [129]. This second commutation provides a set of simultaneous

equations which can be solved to provide angles of separation.

Considering the multi-level case shown previously in Figure 5.10 we can plot com-

binations of switching angles δ1 and δ2 with respect to the Fourier series coefficient bn

as defined in (5.32). Figure 7.10 shows the magnitude of the fundamental coefficient,

b1 plotted for angles δ1 and δ2 [53]. Note that a triangular region is plotted, as δ2, the

higher level switching angle can only be valid when it is less than δ1. For the PWM case

discussed in Chapters 5 and 6, the path from least fundamental amplitude to most fun-

damental amplitude was described by moving from top to bottom, and right to left along

each axis, as shown in Figure 7.11. It can be seen that the lowest fundamental magnitude

exists at the top right hand corner (δ1 = δ2 = π/2) with largest fundamental magnitude at

the bottom left hand corner (δ1 = δ2 = 0). Plotting along this line shows a trigonometric

variation in fundamental amplitude as shown in Figure 7.12, and is exactly equivalent to
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Figure 7.11: Path of multi-level PWM encoding described in Chapter 5
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the single switching angle case and Figure 5.4, however here two switching angles are

defined for multiple levels. Figure 7.13 plots the magnitude of the third harmonic Fourier

coefficient b3. It can be seen that distinct regions of high and low third harmonic exist. To

reduce the third harmonic and provide amplitude control, it is possible to traverse through

this region, whilst considering the fundamental magnitude. The change in fundamental

magnitude can then be used as the basis for a new carrier definition. This carrier would

differ from the carrier described in Chapter 5 as the previous carrier can be defined by

modulating δ1 with δ2 = π/2, and then modulating δ2 with δ1 = 0.

Figure 7.14 shows a path that starts from zero fundamental amplitude (δ1 = δ2 = π/2)

and progresses toward higher amplitude. For clarity the Figure has been extended from

π/2 to 2π/3. It can be seen that a ‘path of reduced third harmonic’ can be drawn (black

line) that starts at δ1 = δ2 = π/2 before moving into a path of ‘zero third harmonic’

which moves diagonally up again. Note that moving in a path diagonally across the plot

requires simultaneous alteration of switching angles, as opposed to the previous PWM
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Figure 7.13: Magnitude of third harmonic for switching angles δ1 and δ2 (normalised) in
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Figure 7.14: Initial path of reduced (but not ‘least’) third harmonic considering angle
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Figure 7.15: Extension of path of least third harmonic to cover range 0 < δ1,δ2 < 2π/3

case where a single switching angle was changed in isolation. Notice that extension of

the graph also shows that at angles > π/2 the region of least third harmonic magnitude

continues. Therefore if the constraint of switching to π/2 is ignored, then a true path

of least third harmonic can be followed. This is shown in Figure 7.15 with the path

starting from the right hand side and moving from right to left along the solid black line to

describe least fundamental magnitude to highest fundamental magnitude. This variation

in fundamental magnitude can be verified by plotting this ‘path of least third harmonic’

onto the fundamental b1 plot, as shown in Figure 7.16.

Now that this ‘path of least third harmonic’ has been defined, it is possible to evaluate

the magnitude of the fundamental along this path, and then use that to define an appro-

priate carrier function. This method is therefore a 2-D extension of the method used in

Chapter 5 to define the trigonometric carrier as opposed to the linear carrier. Plotting each

angle against the the magnitude of the fundamental along this path of least harmonic gives

a plot as shown in Figure 7.17. This shape defines a carrier that when used with a suit-

able comparison algorithm, can encode switched-mode sequences with amplitude control

through consideration of the fundamental response through the transducer, and elimina-
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abs ( cos(θ+30) )Figure 7.18: Phase-separated, rectified, trigonometric waveforms used for design of

HRPWM carrier constituents

tion of the third harmonic by selecting only combinations of switching angles where zero

third harmonic exists.

The waveforms shown in Figure 7.17 can be approximated by two phase-separated

rectified waveforms as shown in Figure 7.18.
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Where each waveform is

CL (t) = |cos(ωt−π/6)| (7.11)

CT (t) = |cos(ωt +π/6)| (7.12)

and both waveforms are separated by π/6. Waveforms CL and CT form the basis for the

carrier design and merely describe the combination of switching angles δ1 and δ2 for a

desired output amplitude. These signals cannot directly be used to modulate harmonic

reduction PWM sequences. Instead carriers must be constructed that modulate the pulse

widths of each high and low switch. Note that the ‘path of least third harmonic’ moves

diagonally across the plot, indicating that at all times δ1 and δ2 change simultaneously.

This manifests itself in a carrier comparison method as periods of overlap for each car-

rier and differs from the multi-level carrier defined in Chapter 5 which were contiguous.

Also, the change in direction means that the width of δ1 reduces at higher fundamental

amplitudes. Carriers can be defined for the low level switch (Carrier 1) as follows

Carrier 1a(t) =


CT (t) , if CT (t)≤CL (t)

CL (t) , otherwise
(7.13)
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The low switch carrier, Carrier 1, has two parts (a and b) due to the width increasing and

then decreasing. Such behaviour cannot be described by a single function.

Carrier 1b(t) =



if CL (t) >
√

3/2

1, if CT (t) < 0.5

CL (t) , otherwise

else if CT (t) >
√

3/2

1, if CL (t) < 0.5

CT (t) , otherwise

else

1,

(7.14)

The carrier to modulate the high level switch can be defined with

Carrier 2(t) =



if CL (t) = CT (t)

1,

else if CL (t) > CT (t)

CL (t) , if CT (t)≤ 0.5

1, if CL (t)≥
√

3/2

CL (t) , otherwise

else

CT (t) , if CL (t)≤ 0.5

1, if CT (t)≥
√

3/2

CL (t) , otherwise

(7.15)

Note that these carriers have been designed to generate symmetrically modulated PWM

at the lowest switching frequency or close to the fundamental, in line with the PWM
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Figure 7.19: HRPWM low-switch modulator Carrier 1a

method described in Chapter 5. Figures 7.19 to 7.21 show each of the carrier parts in a

symmetrically modulated mode. Figure 7.22 shows all carrier parts combined to show

modulation across the full range of amplitudes (0 to 1).
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Figure 7.20: HRPWM low-switch modulator Carrier 1b
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Figure 7.21: HRPWM high-switch modulator Carrier 2
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The carrier arrangement shown in Figure 7.22 can be inverted and used to generate

five-level HRPWM sequences for tone burst or LFM excitations as shown in previous

chapters. Due to the nature of the carriers, an altered algorithm has been defined in order

to truly modulate both switches for harmonic reduction. This algorithm can be described

with

PWML (t) =



if s(t)≥ 0

if mPOS (t) <
√

3/2

0, mPOS (t)≤ Carrier 1a(t)

0.5, otherwise

else

0.5, mPOS (t)≤ Carrier 1b(t)

0, otherwise

else

if mNEG (t) >−
√

3/2

0, mNEG (t)≥−Carrier 1a(t)

−0.5, otherwise

else

−0.5, mNEG (t)≥−Carrier 1b(t)

0, otherwise

(7.16)

PWMH (t) =



if s(t)≥ 0

0, mPOS (t)≤ Carrier 2(t)

0.5, otherwise

else

0, mNEG (t)≥−Carrier 2(t)

−0.5, otherwise

(7.17)
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Figure 7.23: Multi-Level Swept Frequency Harmonic Reduction Carrier

PWM(t) = PWML (t)+PWMH (t) (7.18)

LFM HRPWM excitations can be created similar to the previous PWM case discussed,

by merely applying frequency modulation to the base waveforms described in (7.11) and

(7.12). An example of multi-level carrier definition with frequency modulation is shown

in Figure 7.23.

To elucidate the carrier setup further, it is appropriate to provide some examples of

modulation. Figures 7.24 to 7.28 show example modulations for 20%, 40%, 60%, 80%

and 100% amplitudes indicated by d.c. levels shown with the solid grey line.

Considering the first case at 20% modulation in Figure 7.24, the carrier comparison

method described in (7.16) to (7.18) shows that at 20% desired amplitude only the low

switch needs to switch, and is only covered by the range of Carrier 1a. The switch is

‘on’ when the carrier value is less than the desired amplitude, and ‘off’ when the carrier is

above the desired level as in the previous carrier comparison technique. It can be seen that

the carrier actually generates what can be seen as two pulses, which varies slightly from
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Figure 7.24: Encoding of HRPWM signals at 20% amplitude

the previous ‘fundamental’ mode of switching. When considering the case at 40% desired

amplitude in Figure 7.25, it can be seen that the width of the two pulses has increased,

with the gap between the pulses decreasing. At 60% amplitude, shown in Figure 7.26 it

can be seen that the desired level now intersects the high level carrier, Carrier 2. As a

consequence, both the low level and high level switches are on. Also notice that the low

level pulse has now joined into a single pulse. Figure 7.27 shows a higher desired level.

Notice that the low level pulse width is very wide, almost at its maximum point. When

compared with the 100% case (maximum amplitude) shown in Figure 7.28 it can be seen

that the desired level now intersects the second carrier part, Carrier 1b, and thus the ‘path

of least third harmonic’ has now changed direction, with δ1 now reducing. Analysis of

the high switch shows that this pulse width still increases, to finally match the width of

the low level pulse. This is a non-intuitive phenomenon, as essentially, the width of the

low level switch is decreasing for an increase in desired output level.

Figures 7.29 to 7.32 demonstrate examples of single cycle 1 MHz waveforms of 25%,

50%, 75% and 100% amplitude indictating the desired output signal, and the HRPWM
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Figure 7.25: Encoding of HRPWM signals at 40% amplitude

encoded switched mode signal. Again it can be seen that the width of the pulse generated

by the low switch increases and decreases with increasing desired amplitude.
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Figure 7.26: Encoding of HRPWM signals at 60% amplitude
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Figure 7.27: Encoding of HRPWM signals at 80% amplitude
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Figure 7.28: Encoding of HRPWM signals at 100% amplitude
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Figure 7.29: HRPWM 25% Amplitude
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Figure 7.30: HRPWM 50% Amplitude
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Figure 7.31: HRPWM 75% Amplitude
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Figure 7.32: HRPWM 100% Amplitude
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7.7 Evaluation of HRPWM signals

7.7.1 Simulation

This section demonstrates both control of fundamental amplitude, and reduction of third

harmonic. Comparison is made between the PWM method shown in Chapters 5 and 6, and

the HRPWM method discussed in this chapter. Firstly, a 6-cycle, Gaussian-windowed, 3

MHz tone-burst is considered, as shown in Figure 7.33. Gaussian windowed signals are

desirable in applications such as harmonic imaging, as propagation does not distort the

envelope of the signal [168]. This desired waveform can be encoded to a PWM switched-

mode signal, or a HRPWM switched mode signal respectively as shown in Figures 7.34

and 7.35. Both PWM and HRPWM sequences have been designed with a sampling fre-

quency of 100 MHz.

Figures 7.36 and 7.37 show the spectral content of the PWM and HRPWM signals

respectively. It can be seen that the spectral noise floor is between -35 dB and -40 dB.

For the PWM case there is a large third harmonic at approximately-15 dB below the
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Figure 7.33: Desired 6-cycle Gaussian windowed tone-burst
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Figure 7.34: PWM encoded switched-mode signal 6-cycle, Gaussian-windowed tone-
burst
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Figure 7.35: HRPWM encoded switched-mode signal 6-cycle, Gaussian-windowed tone-
burst
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Figure 7.36: Spectrum of PWM encoded switched-mode signal 6-cycle, Gaussian-
windowed tone-burst
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Figure 7.37: Spectrum of HRPWM encoded switched-mode signal 6-cycle, Gaussian-
windowed tone-burst
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Figure 7.38: Desired 10 µs, Hann-windowed, 3 MHz tone-burst

fundamental. Whereas for the HRPWM case the third harmonic content is reduced to

the same level as the spectral noise. This can also be seen in a second example. For

this case, the desired signal is a 10 µs, Hann-windowed, 3 MHz tone-burst, as shown

in Figure 7.38. PWM and HRPWM sequences are encoded at 100 MHz as shown in

Figures 7.39 and 7.40 respectively. It can be seen that the spectrum of the PWM encoded

signal in Figure 7.41 has a third harmonic component at a peak value of 15 dB below the

fundamental, and above the spectral noise floor at 35 - 40 dB. For the HRPWM encoded

case the third harmonic component is reduced to the same level as the spectral noise floor

as shown in Figure 7.42.

A last example shows a 10 µs duration, hann-windowed, LFM chirp signal from 3

MHz to 4 MHz. Once again, PWM and HRPWM encoding can be applied to the desired

signal using the respective carrier comparison methods. Encoded switched-mode signals

are shown in Figures 7.44 and 7.45. Inspection of the harmonic content of each signal

shows that the PWM case (Figure 7.46) has a peak value of third harmonic content, in the

range 9-12 MHz, at -15 dB. In comparison with the HRPWM case in Figure 7.47, once

again the third harmonic content is successfully reduced.
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Figure 7.39: PWM encoded switched-mode signal 10 µs, Hann-windowed, 3 MHz tone
burst
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Figure 7.40: HRPWM encoded switched-mode signal 10 µs, Hann-windowed, 3 MHz
tone burst
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Figure 7.41: Spectrum of PWM encoded switched-mode signal 10 µs, Hann-windowed,
3 MHz tone burst
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Figure 7.42: Spectrum of HRPWM encoded switched-mode signal 10 µs, Hann-
windowed, 3 MHz tone burst
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Figure 7.43: Desired 10 µs, Hann-windowed, 3-4 MHz LFM chirp
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Figure 7.44: PWM encoded switched-mode signal 10 µs, Hann-windowed, 3-4 MHz LFM
chirp
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Figure 7.45: HRPWM encoded switched-mode signal 10 µs, Hann-windowed, 3-4 MHz
LFM chirp
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Figure 7.46: Spectrum of PWM encoded switched-mode signal 10 µs, Hann-windowed,
3-4 MHz LFM chirp
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Figure 7.47: Spectrum of HRPWM encoded switched-mode signal 10 µs, Hann-
windowed, 3-4 MHz LFM chirp
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Figure 7.48: Fractional harmonic excitation method using third harmonic

7.7.2 Experimental

Experimentally showing the effect of increased or decreased third harmonic requires the

use of a very wide bandwidth transducer, such as a CMUT. Previous research however

has shown that a transducer will respond to an excitation harmonic matched to the centre

frequency or bandwidth [6]. [6] demonstrated how switching frequencies could be used

to excite transducers at higher frequencies, for both tone and coded imaging. In [6] a frac-

tional, harmonic excitation was used, the basis of which is shown in Figure 7.48, where

the excitation signal deliberately contains a large third harmonic, and the fundamental fre-

quency is designed at a fraction (1/3) of the desired fundamental. It is the third harmonic

that is then transmitted with most amplitude by the transducer.

In the absence of a very wide bandwidth transducer, a strategy similar to [6] has been

used to further demonstrate a reduction in third harmonic content. A difference between

the work described in this section, and with [6] is that in this case, it is desired to reduce

the level of third harmonic transmitted, as opposed to attempting to utilise it effectively.

Excitation signals were designed with a fundamental frequency of 1/3 of the transducer’s
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peak frequency. This ensured that third harmonic content was at the peak of the band-

width, and would not be suppressed by the ‘roll off’ of the transducer’s bandwidth at

higher frequencies. The transducer used was the Prosonic L3-8 array transducer used

throughout this thesis (shown in Figure 4.76 and described in Table 4.6), and experimen-

tal signals were obtained using a 1 mm needle hydrophone (shown in Figure 5.13) aligned

with the face of the transducer as described in previous chapters. Successful harmonic re-

duction should see a lower level of output from the transducer with matched input signals.

Figures 7.49 and 7.50 show transducer-loaded switched-mode signals of PWM and

HRPWM, as generated by the UARP, encoded for a 10 µs, 1.6 MHz, Hann windowed tone

burst. Averaging of 100 measurements was used to reduce noise. As the HRPWM sac-

rifices maximum amplitude, for harmonic control, switching levels were adjusted so that

equal pressure was output by each technique before evaluating for harmonic reduction. It

is noticeable from Figures 7.49 and 7.50 the effect of rise and fall time from the MOSFET

devices at the start and end of the sequences (low desired amplitude). This shows that the

MOSFET cannot switch as quickly as the minimum ‘on’ period determined by the sam-

pling frequency (10 ns) and therefore cannot rise to full amplitude before switching off

again. This effect was also seen in the pulse shaping examples in Chapter 5 when mov-

ing from the low level to high level switching, with a slight distorting due to non-ideal

switching.

Figure 7.51 shows an FFT of the transducer-loaded excitation signals shown in Figures

7.49 and 7.50. Notice the peak frequency is at 1.6 MHz, with the PWM signals containing

a third harmonic component at -17 dB, and the HRPWM signals showing third harmonic

content at -27 dB (10 dB difference).

Figures 7.52 and 7.53 show the simulated and experimental pressure waveforms for

the PWM case. To complement these, Figures 7.54 and 7.55 show the simulated and

experimentally obtained pressure waveforms respectively. To simulate pressure wave-

forms radiated from the transducer, a linear time-invariant model is assumed. Pressure

waveforms can then be simulated by convolving the PWM sequence with the transducer’s

impulse response as described in (5.37). It can be seen, especially for the PWM case, that
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simulation predicts the response of the transducer particularly accurately. Overall there

is a reduction in third harmonic content, as can be seen in the FFT of the experimentally

obtained pressure waveforms shown in Figure 7.56. of greater than 10 dB.

A second example shows an LFM signal (10 µs, 1.1 - 2.1 MHz, Hann window) en-

coded with PWM and HRPWM methods. Transducer-loaded excitation signals can be

seen in Figures 7.57 to 7.58. FFT analysis shows a reduction in third harmonic, however

this reduction is not as prevalent towards the higher end of the third harmonic bandwidth

(> 6 MHz). This is a result of the HRPWM carrier requiring greater carrier oversampling

for optimal results.

Simulated and experimental pressure waveforms (Figures 7.60, 7.61 and Figures 7.62,

7.63) show an expected reduction in third harmonic content. The FFT of the experimen-

tally obtained signals (Figure 7.64) shows improved harmonic reduction in the low and

middle parts of the third harmonic bandwidth, with nearly 10 dB difference between the

two signals between 4.5 to 5 MHz.
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Figure 7.49: Transducer-loaded PWM electrical signal for 10 µs, 1.6 MHz, Hann-
windowed tone-burst (100 measurements averaged)
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Figure 7.50: Transducer-loaded HRPWM electrical signal for 10 µs, 1.6 MHz, Hann-
windowed tone-burst (100 measurements averaged)
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Figure 7.51: FFT of transducer-loaded electrical PWM and HRPWM drive signals show-
ing reduction in third harmonic content (100 measurements averaged)
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Figure 7.52: Simulated pressure for 10 µs, 1.6 MHz, Hann-windowed tone-burst PWM
signal through transducer with centre frequency 5 MHz (third harmonic matched to centre
frequency)
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Figure 7.53: Pressure in water from a 10 µs, 1.6 MHz, Hann-windowed, PWM signal
through an array transducer (100 measurements averaged)
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Figure 7.54: Simulated pressure for 10 µs, 1.6 MHz, Hann-windowed tone-burst HRPWM
signal through transducer with centre frequency 5 MHz (third harmonic matched to centre
frequency)
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Figure 7.55: Pressure in water from a 10 µs, 1.6 MHz, Hann-windowed, HRPWM signal
through an array transducer (100 measurements averaged)
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Figure 7.56: FFT of pressure measurements with PWM and HRPWM tone-burst drive
signals showing reduction in third harmonic content (100 measurements averaged)
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Figure 7.57: Transducer loaded PWM electrical signal for 10 µs, 1.1 to 2.1 MHz, Hann-
windowed chirp (100 measurements averaged)
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Figure 7.58: Transducer loaded HRPWM electrical signal for 10 µs, 1.1 to 2.1 MHz,
Hann-windowed chirp (100 measurements averaged)
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Figure 7.59: FFT of transducer-loaded electrical PWM and HRPWM chirp drive signals
showing reduction in third harmonic content (100 measurements averaged)
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Figure 7.60: Simulated pressure for 10 µs, 1.1 to 2.1 MHz, Hann-windowed chirp PWM
signal through transducer with centre frequency 5 MHz (third harmonic matched to centre
frequency)

13 14 15 16 17 18 19 20 21 22 23
−150

−100

−50

0

50

100

150

P
re

ss
ur

e 
(k

P
a)

Time (µs)

Averaged Pressure Third Harmonic: PWM

Figure 7.61: Pressure in water from the 10 µs, 1.1 to 2.1 MHz, Hann-windowed, PWM
signal through an array transducer (100 measurements averaged)
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Figure 7.62: Simulated pressure for 10 µs, 1.1 to 2.1 MHz, Hann-windowed chirp
HRPWM signal through transducer with centre frequency 5 MHz (third harmonic
matched to centre frequency)
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Figure 7.63: Pressure in water from the 10 µs, 1.1 to 2.1 MHz, Hann-windowed, HRPWM
signal through an array transducer (100 measurements averaged)
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Figure 7.64: FFT of pressure measurements with PWM and HRPWM chirp drive signals
showing reduction in third harmonic content (100 measurements averaged)
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7.8 Discussion

A comparison can be made between the proposed pulse-width modulation method and

existing literature, as follows. Due to the symmetry of a switched-mode bipolar waveform

its spectral content is mostly comprised of odd-order components (1,3,5...) as can be seen

with Fourier analysis. Tang and Clement [13] discussed a SHE method of reducing the

third harmonic in ultrasound switched-mode signals. This method used a single switching

angle of δ = π/6 to separate positive and negative switching legs by π/3 thus reducing

all 3n harmonics. This work was extended further by Cowell in [53], [5] and [7] to

suppress multiple odd-order harmonics using multi-level signals. Note that in all these

cases pulses were encoded for harmonic content, and not for amplitude control. A patent

by Dodd et al. described PWM signals for ultrasound imaging with reduced harmonic

response [169]. In [169] suppression of harmonic content and control of amplitude was

described by using switched mode signals of a variety of forms. Most notably the ability

to modulate for shaped pulses, and reduce the second harmonic to -60 dB. The work in

this chapter differs from [169] as pulses are encoded to reduce even order harmonics,

and the largest odd order harmonic, whilst also encoding for amplitude control and is

applicable to tone-burst or coded excitations.

Encoding of the HRPWM sequences is achieved using a carrier comparison method

as discussed in Chapters 5 and 6. This carrier comparison encoding relies on digital gen-

eration of a carrier waveform. As a consequence the carrier is itself a sampled version

of an ideal waveform. Fundamental switching frequency assists with this, as it reduces

the overall sampling frequency. To further explain, in conventional PWM, with multiple

pulses per cycle, the carrier frequency operates at approximately 10 times the fundamental

[13]. In digital carrier generation, this requires a greater oversampling factor to accom-

modate the carrier frequency at 10 f . Chapter 5 discussed a limitation of PWM generation

due to the effect of poor carrier sampling. The HRPWM encoding is more sensitive to

this, especially as low sampling rates reduce the number of widths available, thus causing

slight deviation from the path of least third harmonic. To prevent this, an estimation of

greater than 50 times oversampling is proposed. In combination, it is desirable that the
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MOSFETs used at the front end can ideally switch as quickly as possible, and at least

have typical rise and fall times less than 15 ns for diagnostic frequencies.

7.9 Conclusions

This Chapter has described a harmonic reduction encoding scheme for multi-level switched-

mode tone-burst and LFM coded waveforms. Firstly, a motivation for the need to reduce

low order, high magnitude harmonics was discussed including an explanation of newer

wide bandwidth transducer technologies. Secondly, an overview of selective harmonic

elimination strategies was given. These techniques can reduce harmonic content, but are

restrictive in terms of pulse shaping. A new HRPWM carrier-comparison method, based

on the methods shown in the previous chapters was derived. The HRPWM method simul-

taneously encodes two switching angles and is noticeable for its reduction in lower level

pulse width with an increase in desired output amplitude. This is a non-intuitive step.

In the absence of very high bandwidth transducers such as CMUT devices, the efficacy

of the HRPWM encoding has been simulated, and demonstrated using a novel fractional

harmonic excitation method.

Wide bandwidth CMUTs lend themselves to integration with switched-mode output

stages, due to their nature of fabrication, and use in array transducers. For applications

such as harmonic imaging, it is desirable to reduce the level of excitation harmonic, so

that any received harmonic is fully due to propagation in the medium. The HRPWM

sequences are capable of reducing third harmonic content to the level of the spectral noise

floor in simulation, and when applied to real MOSFETs are capable of replicating this

behaviour. As with any switched-mode encoding scheme, its performance is directly

proportional to the specification of the MOSFETs used, in terms of switching frequency,

rise and fall times, and propagation delay. Also discussed is the ratio of fundamental

frequency to sampling frequency, with a ratio of > 50 essential for proper representation

of switching angles derived by the ‘path of least third harmonic’.
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Chapter 8

Research Summary and Further Work

8.1 Introduction

This thesis has discussed methods of optimising the nature of the transmitted ultrasound

field and pressure signals. The topics discussed in this thesis are mostly incorporated

within a bespoke hardware research platform that has been developed as a technology to

control multi-element array transducers. Work surrounding or supported by this thesis has

culminated in a total of four journal papers, eleven conference proceedings and two UK

patent applications to date. A detailed summary of the research can be given as follows.

8.2 Summary of Research

8.2.1 Research Platform Development

Array devices have been the adopted transducer technology for several years. In order to

drive such devices requires a system with multiple channels, ideally enough to match the

number of transducer elements. In order to research a wide range of techniques using ar-

ray transducers, it is essential for the multi-channel system to be flexible. In the first stage

of this research, an enabling technology, the University of Leeds UARP was developed

alongside various other group members [53], [54], [55], [58], [57], [56], [170], [171],

[172]. The main contribution from the author to the UARP project was the design and de-
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velopment of an eight-channel switched-mode transmitter board with accompanying soft-

ware. Other contributions by the author include: the design of auxiliary boards, sequenc-

ing and control software, and technical support during collaborative projects. The UARP

has served as an enabling technology for many other research students and projects, and

has provided both opportunity for collaboration, and opportunity for research into system

design, examples of which have been provided in this thesis.

8.2.2 Transmit Beamformer Architecture with Embedded PLLs

A major advantage of array transducers is the ability to electronically steer or focus a

pressure beam to a desired location. This increases sensitivity at a particular location in

imaging, or can be used to direct energy towards a desired target for therapeutic applica-

tions. In order to achieve this it is necessary to have a transmit beamformer architecture

that can provide inter-channel delays according to beamforming principles. Poor realisa-

tion of steering and focusing delays results in unwanted deposition of energy in the form

of discrete phase or time quantization lobes, or a general increase in sidelobe level. These

features occur due to correlated (periodic) or uncorrelated (random) phase or time error.

Another potential source of error can be introduced by system components such as the

transducer, or non-ideal propagation in the medium. Such errors can cause undesirable

beam patterns or reduced sensitivity in imaging. To correct these errors in transmit re-

quires a beamformer that can provide accurate and variable inter-channel delays. This

has been implemented within the UARP using embedded phase-locked loop components

within commercial FPGAs. Switched-mode signals for a particular channel are delayed

using a coarse delay (integer multiples of the system clock period) and fine delay (PLL

phase shift) to generate accurate delay profiles or provide adjustment to compensate for

minor error.
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8.2.3 Power Control Method for Switched-Mode Circuitry using Fun-

damental Mode PWM

Switched-mode circuits have been known to be convenient and cost effective excitation

methods for array transducers, and are often deployed in commercial clinical and NDT

systems due to their ability to quickly switch high voltages. Such components generate

square-wave or stepped ‘pseudo-tones’, that are approximations of sinusoidal signals.

For a research setting, the majority of literature describes the use of DAC and analogue

power amplifier technology as an excitation method, as this is known to provide arbitrary

waveform capability. Such solutions are inherently large and expensive however due to

the requirement for cooling and heat-sinks.

This research has challenged the perceived limitations of switched-mode signals, and

has proposed a fundamental-mode, carrier-comparison, pulse-width modulation strategy

to provide more flexible amplitude control. Pulse widths are assigned in accordance with

the expected response from a transducer to a square-wave excitation. The method differs

from ‘conventional’ PWM used in Class D amplifiers due to the use of a rectified trigono-

metric carrier as opposed to a more conventional triangular carrier. Using the proposed

method, arbitrary shaped sequences for ultrasonic applications can now be encoded using

PWM.

8.2.4 Extension of Pulse Width Modulation Strategy for Coded Lin-

ear Frequency Modulated Signals

DACs and analogue power amplifiers are also widely used to produce frequency mod-

ulated or ‘coded’ excitations. These excitations can increase the SNR of weak signals

by detection of a particular feature, and then compression of the coded pulse. The tech-

nique is enhanced by using a tapered excitation signal which gradually rises in amplitude

at the start and ends of the pulse according to a particular window function such as a

Hann or Hamming function. Tapered frequency modulated signals can easily be gener-

ated using a DAC and analogue power amplifier, however recent literature has described
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a limitation of switched-mode signals in generating such signals. This research takes the

previous pulse-width modulation strategy and extends it for generation of tapered coded

waveforms using switched-mode circuits.

8.2.5 Extension of Pulse Width Modulation Strategy for Coded Lin-

ear Frequency Modulated Signals

A further criticism of the use of switched-mode signals is the nature of harmonic content.

For newer wide-bandwidth transducer technologies such as CMUTs, and for techniques

such as coded imaging that rely on spectral integrity, reducing the level of harmonics

within the switched-mode signals is desirable. Also desirable is the requirement for am-

plitude control during coded harmonic imaging. The largest harmonic present in a bipolar

switched-mode signal is predominantly the third harmonic. This research has developed a

novel method of encoding pulse-width modulation sequences that reduce the level of third

harmonic whilst maintaining amplitude control. The method can be seen as incorporat-

ing pressure control for linear frequency modulated signals and also selective harmonic

elimination strategies. A particularly noticeable feature of the method after encoding is a

non-intuitive increase and decrease in pulse width for increasing desired amplitude.

8.3 Ideas for Further Work

8.3.1 Embedded IP Core Development

PWM signals are currently generated off-line and uploaded to the UARP. A more desir-

able solution is to generate encoded waveforms ‘on-the-fly’ based on a set of instruction

signals. A future direction for the work is the development of an embedded IP core de-

signed using the carrier-comparison method and implemented within digital logic. Such

a core would allow integration of the method within portable devices without requiring a

PC.
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8.3.2 Integration with CMUT devices

Wide-bandwidth CMUT devices have been cited as the next-generation transducer tech-

nology. Wider bandwidth devices permit improvement to harmonic and coded harmonic

imaging. The third harmonic content within a switched-mode signal will be transmitted

through a wide bandwidth CMUT device, causing distortion in the waveform and interfer-

ence in signal processing. The HRPWM has been shown to suppress this harmonic whilst

maintaining the use of switched-mode components. CMUTs are also suited to fabrica-

tion alongside high-voltage MOSFET devices, due to the method of manufacture. Future

direction for the research could investigate the integration and test of the HRPWM with

CMUT arrays.
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[163] İ. Çiçek, A. Bozkurt, and M. Karaman, “Design of a front-end integrated circuit
for 3D acoustic imaging using 2D CMUT arrays,” Ultrasonics, Ferroelectrics and
Frequency Control, IEEE Transactions on, vol. 52, no. 12, pp. 2235–2241, 2005,

[164] I. O. Wygant, X. Zhuang, D. T. Yeh, O. Oralkan, A. S. Ergun, M. Karaman, and
B. T. Khuri-Yakub, “Integration of 2D CMUT arrays with front-end electronics for
volumetric ultrasound imaging,” Ultrasonics, Ferroelectrics and Frequency Con-
trol, IEEE Transactions on, vol. 55, no. 2, pp. 327–342, 2008,

[165] B. T. Khuri-Yakub and mer Oralkan, “Capacitive micromachined ultrasonic trans-
ducers for medical imaging and therapy,” Journal of Micromechanics and Micro-
engineering, vol. 21, no. 5, p. 054004, 2011,

[166] L. L. Wong, A. I. Chen, A. S. Logan, and J. T. Yeow, “An FPGA-based ultrasound
imaging system using capacitive micromachined ultrasonic transducers,” Ultrason-
ics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 59, no. 7,
pp. 1513–1520, 2012,

[167] M. Arif, D. M. J. Cowell, and S. Freear, “Pulse compression of harmonic chirp
signals using the fractional fourier transform,” Ultrasound in Medicine & Biology,
vol. 36, no. 6, pp. 949 – 956, 2010,

[168] L. Ferrari and J. P. Jones, “The propagation of gaussian modulated pulses in dissi-
pative and/or dispersive media such as tissue,” Ultrasound in medicine & biology,
vol. 11, no. 2, pp. 299–305, 1985,

[169] S. S. Dodd, S. L. Carp, D. M. Hedburg, S. H. Maslak, B. S. Ramamurthy, and
D. E. Need, “Ultrasonic imaging method and apparatus for generating pulse width
modulated waveforms with reduced harmonic response, US 5833614,” Nov. 10
1998.

[170] P. R. Smith, “Ultrasonic array research platform (UARP) transmitter board devel-
opment,” Master’s thesis, School of Electronic and Electrical Engineering, Univer-
sity of Leeds, Leeds, 2009.



REFERENCES 259

[171] C. A. Winckler, “The design of a high speed receiver board for the ultrasound array
research platform,” Master’s thesis, School of Electronic and Electrical Engineer-
ing, University of Leeds, Leeds, 2012.

[172] S. S. Qureshi, “Ultrasound beamforming: FPGA implementation and dynamic fo-
cusing,” Master’s thesis, School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST), 2012.


	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation for Research
	Objective of Research
	Achievements from the Research
	Journal Publications
	Conference Publications
	Patent Applications
	Thesis Structure

	Research Platform Development
	Introduction
	Review of Existing and Current Technology
	Single/Dual Channel Ultrasound Systems
	Multi-Channel Array Ultrasound Systems
	Research Interfaces

	Examples of Non-Standard Methods
	Development of Enabling Technology
	Motivation
	Overview: Ultrasound Array Research Platform

	Conclusions

	Switched-Mode Excitation of Transducers
	Introduction
	Piezo-Electric Transducers
	Single Element Transducers
	Array Transducers

	Electrical Properties of Transducers
	Review of Excitation Circuits
	Summary of Amplifier Technology
	Enabling Technology: Ultrasound Array Research Platform (UARP)
	Conclusions

	Switched-Mode Timing Control
	Introduction
	Array Transducers
	Linear Arrays
	Additional Array Types
	Definition of Array Geometry

	Beamforming
	Steering
	Focusing
	Combined Steering and Focusing

	Grating Lobes
	Phase Quantization
	Phase Quantization Literature Review
	Summary of Literature Review

	Demonstration of Phase Quantization Effects
	Correlated Error
	Uncorrelated Error

	Other Forms of Random Error
	UARP Transmitter Architecture
	Phase Locked Loops
	Field Programmable Gate Arrays
	Switched-Mode Transmit Beamformer with Embedded PLLs

	Evaluation of Transmit Beamformer Performance
	Evaluation Across Frequency
	Beam Profiling

	Discussion
	Conclusions

	Switched-Mode PWM Method for Ultrasound Power Control
	Introduction
	PWM and Multi-Level PWM
	Overview of Carrier-Based PWM
	Fundamental Frequency Output Relationship
	Optimization: Trigonometric Carrier Definition
	Extension to Multi-Level PWM
	Generation of PWM Sequences

	Demonstration of Pressure Control
	Array Apodization with Pulse Shaping
	Effect of Sampling Frequency
	Comparison with Sigma Delta Modulation
	Conclusions

	Switched-Mode PWM Method for Ultrasound Coded Imaging
	Introduction
	LFM Chirp Coding
	Linear Frequency Modulated Chirp Design
	Windowing and Tapering Functions
	Swept-Frequency Level-Shifted Carrier-Comparison Method

	LFM Chirp Coded Imaging
	Transducer Pre-Distortion
	Discussion
	Conclusions

	Switched-Mode PWM Method for Ultrasound Harmonic Imaging
	Introduction
	Harmonic Imaging and Harmonic Leakage
	Wide Bandwidth Transducer Types
	Coded Harmonic Imaging
	Switched-Mode Selective Harmonic Elimination
	Harmonic Reduction Pulse Width Modulation
	Evaluation of HRPWM signals
	Simulation
	Experimental

	Discussion
	Conclusions

	Research Summary and Further Work
	Introduction
	Summary of Research
	Research Platform Development
	Transmit Beamformer Architecture with Embedded PLLs
	Power Control Method for Switched-Mode Circuitry using Fundamental Mode PWM
	Extension of Pulse Width Modulation Strategy for Coded Linear Frequency Modulated Signals
	Extension of Pulse Width Modulation Strategy for Coded Linear Frequency Modulated Signals

	Ideas for Further Work
	Embedded IP Core Development
	Integration with CMUT devices


	References

