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Abstract 

Campylobacter jejuni, a human pathogen, is exposed to NO and reactive nitrogen 

species (RNS) derived from the host during colonisation of the gut. As a response, C. 

jejuni expresses a single-domain globin (Cgb) and a truncated globin (Ctb) under 

control of the NssR regulator. Function of Cgb as an NO and RNS detoxification system 

and the involvement of Ctb in O2 chemistry have been deduced from gene mutagenesis 

in vivo and spectroscopic and kinetic characterisation in vitro. However, confirmation of 

the Cgb activity and further exploration of the Ctb function(s) are restricted in 

Campylobacter by difficulties in complementation by transformation of plasmids, and 

the lack of the reductase domain that, in the flavohaemoglobins, reconstitutes the haem 

ferrous state required for ligand-binding activity. This limits additional insight into the 

molecular mechanisms of these globins.  

In the present work, a functional study in the heterologous host E. coli was performed 

by cloning the cgb and ctb genes under control of arabinose-inducible promoters and 

expressing the globins in NO-sensitive strains. In this way, it was found that Cgb, but 

not Ctb, complements the E. coli NO and RNS resistance phenotype of an E. coli hmp 

mutant aerobically, confirming the function of Cgb as a NO and RNS resistance system. 

Interestingly, both Cgb- and Ctb-expressing cells consumed NO in an O2-independent 

manner. However, Cgb failed to protect E. coli anaerobically. Spectroscopic changes of 

the Cgb and Ctb haems in cellular milieus were evaluated, showing that the haems are 

reduced in E. coli and C. jejuni soluble extracts even after oxidation by NO. 

Nevertheless, exploration of candidates for the Cgb electron donor revealed only a 

minor role for the E. coli flavorubredoxin reductase (NorW), and Cgb reduction was 

independent of the respiratory chain of E. coli and the lactate dehydrogenase (Cj1585) 

from C. jejuni, arguing in favour of a non-specific reductase system. Additionally, 

preliminary tests showed an increased NO evolution from Ctb-expressing E. coli 

presented with nitrite, suggesting that the globin functions as a NO reductase; NO 

production by purified Ctb from nitrite supports this hypothesis. Finally, the suitability 

of Ctb-expressing E. coli cells as a tool to measure CO-release from CO-releasing 

molecules (CO-RMs) is also presented. Unravelling the molecular mechanisms of these 

globins constitutes a key step in the understanding of the NO resistance ability of C. 

jejuni. 
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MFS Miller Fisher syndrome  

Mb Myoglobin 



xxi 

 

MetMb Metmyoglobin 

Nap Periplasmic nitrate reductase 

NOC-5 3-(Aminopropyl)-1-hydroxy-3-isopropyl-2-oxo-1-triazene  

NOC-7 3-(2-Hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-

propanamine 

NOD Nitric oxide dioxygenase 

NOS NO synthase 

Nrf Periplasmic nitrite reductase 

NssR Campylobacter nitrosative stress-responsive regulator 

O2-Hb  Oxy-haemoglobin 

Pgb Protoglobin 

Phox Phagocyte NADPH oxidase  

PROLI-NONOate 1-(hydroxi-NNO-azoxy)-L-proline 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 

SDgb Single domain haemoglobin 

S family Sensor globin family 

SNAP S-nitroso-N-acetylpenicillamine 

SNP Sodium nitroprusside 

SNOs S-nitrosothiols  

swMb Sperm whale myoglobin 

TrHb Truncated haemoglobin 

T family Truncated Mb-fold family 

TMAO Trimethylamine-N-oxide  

Vgb Vitreoscilla single domain haemoglobin  
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CHAPTER 1. Introduction 

1.1 Nitric oxide and reactive nitrogen species (RNS) in biology 

Nitric oxide (nitrogen monoxide, NO) is a free radical able to react with other existing 

radicals due to the presence of an unpaired electron (Halliwell and Gutteridge, 2007). 

The chemistry and biological chemistry of NO and related molecules is highly complex; 

NO in cellular environments reacts with a number of targets and generates a large 

number of species that in turn interact with other molecules (reviewed in Lehnert and 

Scheidt, 2009) . 

The NO intracellular toxicity mechanisms  are related to the oxidation of the radical and 

the production of a number of poisonous substances such as the nitrosating agent 

nitrosonium (NO
+
), nitrite (NO2

-
) and peroxynitrite (ONOO

-
) (Poole and Hughes, 

2000). The last arises from the reaction of NO with superoxide (O2
-
)  (Hughes, 1999) 

and, in the cellular environment, ONOO
- 

reacts with carbon dioxide rendering the 

adduct (ONOOCO2
-
). This product is then broken down via two mechanisms, one 

evolving carbon dioxide (CO2) and nitrate (NO3
-
), and the other producing nitrogen 

dioxide (NO2) and the carbonate radical ion (reviewed in Bowman et al., 2011; Poole 

and Hughes, 2000).  

Although NO is a toxic molecule, it has important functions in biological systems. In 

1980, it was discovered that NO is synthesized in mammals as a signalling and immune 

defence mechanism (Culotta and Koshland, 1992). Since then the transformations of 

NO and RNS in physiological conditions have been extensively studied. NO is a freely 

diffusible radical that, in vivo, is relatively stable. These characteristics together with the 

extraordinary high affinity for haem groups make it suitable as a signalling molecule in 

the cardiovascular and neuronal systems in subnanomolar concentrations. Endothelial 

cells generate NO that produces relaxation of the vascular smooth muscle, partially 

related to activation of guanylate cyclase (Murad, 1986). On the other hand, as a 

response to chronic inflammation and other disease conditions, macrophages can 

produce up to micromolar concentrations of NO that are bactericidal. For these reasons,  

tight control of the intracellular concentrations of NO is essential (Singel and Stamler, 

2005; Thomas et al., 2008). 
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Production of NO by NO synthases (NOSs) in a range of cell types results from 

oxidation of L-arginine to L-citrulline and NO in an NADPH- and O2-dependent 

reaction (Stuehr, 1999). In mammals, three NOS isoforms coexist, two constitutively 

expressed, endothelial (eNOS) and neuronal (nNOS), and an inducible NOS (iNOS) 

which, in response to infection, produce high levels of NO (reviewed in Alderton et al., 

2001; Lowenstein and Padalko, 2004).  

Key bacterial enzymes such as terminal oxidases (Stevanin et al., 2000) and aconitase 

(Gardner et al., 1997) are inhibited by high and sustained concentrations of NO 

generated by the immune system. NO diffuses across the bacterial membrane toward the 

cytoplasm where it reacts with haems (Hausladen et al., 2001), iron-sulfur (Fe-S) 

clusters (Cruz-Ramos et al., 2002), and thiols (Hess et al., 2005).  

In addition to the toxic effects of NO, it exerts biological roles as a modulator of protein 

function through the S-nitrosylation of specific cysteine thiols in bacteria. Nitrosative 

stress triggered by the presence of NO and other RNS elicits adaptative responses 

including the expression of genes related to NO and RNS tolerance and detoxification 

(Avila-Ramirez et al., 2013; Flatley et al., 2005; Monk et al., 2008; Moore et al., 2004; 

Mukhopadhyay et al., 2004; Pullan et al., 2007; Richardson et al., 2006)and many 

others).  

Production of endogenous NO, in particular in bacteria that use nitrite as an electron 

acceptor in the absence of oxygen has been proposed.  Certainly, low concentrations of 

intracellular NO are accumulated as a byproduct of nitrite reduction to ammonia in 

enteric bacteria, such as E. coli (Corker and Poole, 2003; Gilberthorpe and Poole, 

2008); however, the physiological role of NO production, if any, is poorly understood. 

Interestingly, several bacteria possess NOS enzymes (reviewed by Bowman et al., 

2011); in Gram-positives, NO production has been suggested to confer alleviation of 

oxidative stress and resistance to antibiotics through chemical modification (Gusarov et 

al., 2009).  

Resistance to NO and RNS in bacteria has been mainly related to the presence of 

haemoglobins (Poole, 2005) (see section 1.3). However, nitrosative stress tolerance has 

also been associated with other proteins. For instance, in E. coli, the main mechanism 

for NO detoxification in aerobic conditions is the flavohaemoglobin Hmp (Gardner et 
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al., 1998a). However, in the absence of oxygen, the NO sensor NorR positively controls 

the expression of the flavorubredoxin protein (NorV) and its reductase (NorW). This 

pair is the most important NO detoxification mechanism in anaerobic conditions by the 

reduction of NO to N2O (Gardner and Gardner, 2002; Hutchings et al., 2002).  

1.2 Oxygen and reactive oxygen species (ROS) in biology 

The limited tolerance of microorganisms to oxygen is well documented. Anaerobes and 

microaerophiles are unable to grow in air-saturated conditions and committed aerobes 

suffer deleterious or lethal effects in hypoxic environments. Dioxygen (O2) is an 

inefficient oxidant of organic molecules such as amino acids and nucleic acids due to its 

stability and moderately weak capacity to accept electrons. However, O2 readily reacts 

with organic radicals and transitions metals. On the other hand, ROS such as hydrogen 

peroxide (H2O2), superoxide (O2
-
) and the hydroxide ion (OH

-
) are much stronger 

oxidants (Imlay, 2003).  

Oxidative stress has been defined as “a disturbance in the prooxidant-antioxidant 

balance in favour of the former, leading to potential damage” (Sies, 1991). The rate of 

H2O2 and O2
- 
formation is associated with the level of oxidative stress undergone by a 

microorganism (Imlay, 2003). Intracellular generation of ROS (O2
-
, H2O2) comes from 

the partially reduced oxygen species that are formed during the accidental reduction of 

oxygen by redox centres of electron-transfer enzymes, especially the ubiquitous 

flavoenzymes (Fridovich, 1999; Imlay, 2008; Massey et al., 1969). 

The irreversible deleterious effects caused by high levels of ROS are related to damage 

of biomolecules such as oxidation of Fe-S proteins and DNA (Farr et al., 1986; Farr and 

Kogoma, 1991; Imlay, 2008; Jang and Imlay, 2007).  The reaction between H2O2 and 

transition metals such as ferrous iron generates OH
-
 (Fenton’s reaction) that in turn 

reacts with both base and sugar molecules producing irreversible damage to DNA 

(Henle et al., 1999; Hutchinson, 1985). 

Superoxide is a major antibacterial weapon (Huang and Brumell, 2009; Mastroeni et al., 

2000). During bacterial infection, elevated concentrations of O2
- 
are produced within the 

macrophage
 
mainly via the enzymatic complex NADPH oxidase (Phox), (Babior, 1999; 

Miller, 1997). Chronic granulomatous disease, developed as a result of a genetically 
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defective production of O2
-
, produces recurrent life-threatening bacterial and fungal 

infections in humans (van den Berg et al., 2009; Winkelstein et al., 2000).  

Specific microbial defences are triggered in response to oxidative stress. In the presence 

of ROS, up-regulation of the SoxR(S) and OxyR regulons (Aussel et al., 2011; 

Greenberg et al., 1990; Tsaneva and Weiss, 1990; Zheng et al., 2001) is followed by the 

induction of several  protective proteins, including superoxide dismutase (SOD) and 

catalase. The preponderant role of these enzymes as bacterial ROS scavengers has been 

established (Imlay, 2008). For instance, accumulation of O2
- 

in E. coli lacking SOD 

under aerobic conditions leads to defective growth (Carlioz and Touati, 1986) and 

accumulation of H2O2 in a catalase/peroxidase mutant produces extensive biochemical 

damage (Jang and Imlay, 2007; Park et al., 2005). 

1.3 Bacterial globins 

After a number of reports about the existence of a ‘soluble cytochrome o’ in the obligate 

aerobe bacterium Vitreoscilla (Orii and Webster, 1977; Webster and Orii, 1977; 

Webster and Orii, 1978; Webster and Orii, 1985), the protein sequence revealed, for the 

first time, the presence of a dimeric haemoglobin (Wakabayashi et al., 1986). A more 

complex globin was later described in E. coli, the flavohaemoglobin Hmp, a chimeric 

protein containing an N-terminal globin domain and a C-terminal reductase domain able 

to bind NADPH and FAD (Vasudevan et al., 1991). Since then, a variety of bacterial 

haemoglobins have been extensively studied (Forrester and Foster, 2012; Vinogradov et 

al., 2013; Wu et al., 2003). Vinogradov et al (2005) reported the existence of two 

globin families showing the canonical 3/3 myoglobin-fold (Mb-fold), containing the 

flavohaemoglobin (FHb) and the globin-coupled sensor (GCS) families, and a third 

family with a truncated (Tr) Mb-fold (2/2 Mb-fold) with a characteristic vestigial or 

absent helix A and the presence of a loop instead of helix E (Pesce et al., 2000).  

Truncated hemoglobins (trHbs) are composed of 110 to 130 amino acids and are 

distantly but clearly related to hemoglobin (Hb) and myoglobin (Mb). Examples of 

TrHbs are found in eubacteria, cyanobacteria, protozoa and plants. According to the 

amino acid sequences, there are three TrHbs sub-families, and they have been 

nominated either I, II and III or N, O and P (Vinogradov et al., 2013; Wittenberg et al., 
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2002). There are notable differences among these groups; the amino acids identity can 

be as low as 18% (Milani et al., 2003a). 

A complete inventory of globins present in the Bacterial kingdom has been recently 

published (Vinogradov et al., 2013). This bioinformatics survey was aimed to provide 

sequences like-globins in over 2200 bacterial genomes. Approximately half of the 

genomes contained possible genes encoding globins. Examples of all classes of 

bacterial haemoglobins, flavohaemoglobins, single domain haemoglobins, truncated 

haemoglobins and sensor globins were found, and many genomes contained more than 

one globin-like sequence.  

1.3.1 Globin nomenclature 

Due to the absence of a general globin phylogeny and an inconsistent identification of 

bacterial globins in the GeneBank, a more comprehensive nomenclature that includes 

both prokaryotic and eukaryotic globins was proposed: the 3/3 alpha-helical fold (Mb-

fold) contains two families, the Mb-like family (M family) including both 

flavohaemoglobins (FHb) and single domain haemoglobins (SDgb) and the sensor 

globin family (S family) comprising protoglobins (Pgbs) and single domain sensor 

globins (SDSgb). The truncated Mb-fold family (T family) includes TrHb1, TrHb2 and 

TrHb3 (Vinogradov et al., 2013) (Table 1.1).  

1.3.2 Globin functions  

Even though there are numerous globins in bacteria, the physiological function(s) of 

these proteins has been studied only in a few examples. Figure 1.1 illustrates the 

differences between the numbers of globin-like sequences found in the prokaryotic 

databases and the experimental data reported for individual globins.  

1.3.2.1 Crystal structures  

From 1161 globin-containing genomes, only 17 crystal structures of individual globins 

have been solved (Table 1.2). Representative examples for the eight subfamilies are 

covered. Inference of function from the structural data in isolation is difficult although 

comparison with other globins whose function is known allows predictions. For 

instance, the structural homology between the SDgb from Campylobacter jejuni (Cgb)  
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Table 1.1 Proposed globin global nomenclature.  

Family M (Mb-like globins) S (sensor globins) T (truncated Mb-fold) 

Mb-fold 3/3 3/3 2/2 

Bacterial 

subfamily 

FHbs 

 (flavo-

hemoglobin) 

SDgb 

(single-

domain 

globins) 

GCSs 

(globin-

coupled 

sensors) 

Pgbs 

(proto-

globins) 

SDSgbs 

(single 

domain 

sensor 

globins) 

TrHb1s 

N 

TrHb2s 

O 

TrHb3s 

P 

Archaea   HemATs Pgb SDSgb TrHb1   

Eukaryote FHbs All animal 

globins 

  SDSgb TrHb1 TrHb2  

 

Taken from Vinogradov et al., (2013). 
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Figure 1.1 Comparison of estimated number of globin-like sequences found in the 

prokaryotic databases with the experimental data reported for individual globins. 

Base 10 logarithm of (A) estimated number of globin-like sequences, (B) number of 

globins heterologously expressed for studies of function, (C) number of globins in 

which regulation has been explored (D) number of globins for which structures have 

been solved, and (E), number of globins studied by mutation/complementation. Taken 

from Vinogradov et al. (2013). 
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Table 1.2 Bacterial and Archael globins for which the crystal structures have been 

solved.  

Origen of globin Haemoglobin 

sub-family 

Globin 

name 

References 

 

Ralstonia eutropha 

(Alcaligenes eutrophus) 

 

FHb 

 

FHP 

 

(El Hammi et al., 2011; Ermler et al., 

1995a; Ermler et al., 1995b) 

 

Escherichia coli FHb Hmp (Ilari et al., 2002b) 

 

Vibrio cholerae FHb HmpA Unpublished 

 

Vitreoscilla sp SDgb  Vgb, VHb (Bolognesi et al., 1999; Tarricone et al., 

1997b) 

 

Campylobacter jejuni SDgb Cgb (Shepherd et al., 2010) 

 

Methylacidiphilum 

infernorum 

 

SDgb HGbI (Pechkova et al., 2012) 

Mycobacterium tuberculosis  TrHb (TrHb1) HbN (Bidon-Chanal et al., 2006; Milani et al., 

2001; Milani et al., 2004; Ouellet et al., 

2006; Savard et al., 2011)  

 

Mycobacterium tuberculosis TrHb (TrHb2) HbO (Milani et al., 2003b; Ouellet et al., 

2007) 

    

Synechocystis sp. TrHb (TrHb1) rHb-R, 

SynHb 

(Falzone et al., 2002; Hoy et al., 2004; 

Hoy et al., 2007; Trent et al., 2004) 

 

Campylobacter jejuni TrHb (TrHb3) Ctb (Nardini et al., 2006) 

 

Bacillus subtilis  TrHb(TrHb2) Bs-trHb (Giangiacomo et al., 2005) 

 

Geobacillus 

stearothermophilus 

 

TrHb (TrHb2) Gs-trHb (Ilari et al., 2007) 

Thermobifida fusca TrHb (TrHb2) Tf-trHb (Bonamore et al., 2005) 

 

Agrobacterium tumefaciens TrHb (TrHb2) At-2/2HbO (Pesce et al., 2011) 

 

Methanosarcina acetivorans Pgb  MaPgb (Nardini et al., 2008) 

 

Bacillus subtilis GCS HemAT-

Bs 

(Zhang and Phillips, 2003) 

Geobacter sulfurreducens GCS globin 

domain 

GsGCS (Pesce et al., 2009) 
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(Shepherd et al., 2010) and the globin domain of the FHb from E. coli (Hmp) (Ilari et 

al., 2002b) lead to the proposal of the same molecular mechanism to detoxify NO in 

both proteins, i.e. a denitrosylase or dioxygenase function (see below). Besides, once 

the globin function has been revealed by other means, structures are valuable in 

showing consistencies between protein architecture and biological implications 

(Vinogradov et al., 2013).  

1.3.2.2 Studies of globin function by heterologous expression  

Heterologous expression is a common practice to over-express recombinant proteins for 

purification purposes. Interestingly, it is also used as an alternative to study function of 

proteins from microorganisms where genetic manipulation is difficult or not available 

(e.g Vitreoscilla). A number of bacterial haemoglobins have been heterologously 

expressed and specific phenotypes found everywhere (Table 1.3). The NO-sensitivity 

phenotype shown by E. coli lacking the FHb (Hmp) has been widely used as a model to 

study the role of heterologous globins in nitrosative stress resistance. For instance, 

expression of the Pseudoalteromonas haloplanktis truncated haemoglobin (PhHbO) in 

E. coli hmp led to the discovery of its ability to detoxify NO and RNS. A role for 

PhHbO as a mechanism to protect this Antarctic bacterium from nitrosative stress was 

suggested. However, this function has not been demonstrated in the actual host 

(Coppola et al., 2013).  

1.3.2.3 Studies of globin function by mutation/complementation 

Mutation of encoding-globin genes constitutes perhaps the most robust approach for the 

study of function. Interestingly, the number of studies where the potential function has 

been aimed by these means is small (c. 15 globins). In thirteen of these examples, the 

globins (9 of them FHbs) are implicated in resistance to nitrosative stress (Table 1.4). 

Only three truncated haemoglobins have been studied by gene mutation, the TrHb3 

from C. jejuni (Ctb), the TrHb1 from Synechococcus sp (GlbN) and the TrHbII from 

Pseudoalteromonas haloplanktis. The former has been implicated in oxygen transfer 

(Wainwright et al., 2005) while the latter in resistance to NO (Scott et al., 2010).  
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Table 1.3 Bacterial haemoglobins that have been heterologously expressed for 

studies of function. 

Origin of globin, 

globin sub-family 

and globin name 

Heterologous 

host 

Suggested function(s)  References 

 

Vitreoscilla sp, 

SDgb, VHb 

 

E. coli WT*, 

Bacillus 

subtilis WT  

 

 

Oxygen transfer, 

NO scavenging 

 

(Dikshit and Webster, 1988; Dikshit 

et al., 1992; Frey et al., 2002; Kallio 

and Bailey, 1996; Kallio et al., 2007; 

Kallio et al., 1996; Khosla and 

Bailey, 1988; Khosla et al., 1990b; 

Ramandeep et al., 2001)  

 

R. eutropha, FHb, 

FHP 

E. coli WT Oxygen transfer, 

increased cell growth in 

microaerobic conditions 

 

(Frey et al., 2000; Frey et al., 2002) 

E. coli, FHb, Hmp E. coli WT Oxidative stress 

resistance, NO 

consumption, increased 

cell growth in 

microaerobic conditions 

 

(Bollinger et al., 2001; Frey et al., 

2002) 

B. subtilis, FHb, 

HmpBs 

E. coli WT NO consumption in 

cellular extracts 

(Bollinger et al., 2001; Frey et al., 

2002) 

 

P. aeruginosa, 

FHb,  HmpPa 

E. coli WT Oxidative stress 

resistance 

(Bollinger et al., 2001; Frey et al., 

2002; Kallio et al., 2007) 

 

Deinococcus 

radiodurans, FHb,  

HmpDr 

E. coli WT Oxidative stress 

resistance, increased cell 

growth in microaerobic 

conditions 

 

(Bollinger et al., 2001; Frey et al., 

2002) 

C. jejuni, SDgb, 

Cgb or CHb 

E. coli WT  

 

 

NO scavenging  (Bollinger et al., 2001; Frey et al., 

2002) 

S. enterica serovar 

Typhi, FHb, 

HmpSt 

E. coli WT Oxidative stress 

resistance, NO 

consumption in cellular 

extracts, increased cell 

growth in microaerobic 

conditions 

 

(Bollinger et al., 2001; Frey et al., 

2002) 

 

Klebsiella 

pneumonia, FHb, 

HmpKp 

 

 

E. coli WT 

 

NO consumption in 

cellular extracts 

 

(Bollinger et al., 2001; Frey et al., 

2002) 

   (continued) 

 

*Wild type 



11 

 

Table 1.3 Bacterial haemoglobins that have been heterologously expressed for 

studies of function (continued) 

Origen of globin, 

globin sub-family 

and globin name 

Heterologous 

host 

Suggested function(s)  References 

    

M. tuberculosis, 

TrHb1, HbN 

E. coli hmp, 

M. smegmatis 

WT, 

Salmonella 

serovar 

Typhimurium 

hmp 

 

NO scavenging  (Lama et al., 2009; Pathania et al., 

2002a; Pawaria et al., 2007) 

M. tuberculosis, 

TrHb2, HbO 

E. coli WT,  

E. coli cyoB, 

M. smegmatis 

WT, 

Salmonella 

serovar 

Typhimurium 

hmp 

 

Oxygen transfer, 

increased cell growth. 

 

(Liu et al., 2004; Pathania et al., 

2002b; Pawaria et al., 2007) 

 

M. tuberculosis, 

FHb, MtbFHb 

E. coli WT, 

M. smegmatis 

WT 

D-lactate:phenazine 

methosulfate reductase 

activity, oxidative stress 

resistance 

 

(Gupta et al., 2012; Gupta et al., 

2011) 

M. leprae, TrHb2, 

HbO 

 

E. coli hmp 

 

NO scavenging (Fabozzi et al., 2006) 

M. smegmatis, 

TrHb1, HbN 

E. coli hmp Low level of NO 

scavenging 

 

(Lama et al., 2006) 

B. halodurans, 

FHb, HmpBh 

E. coli hmp Increased cell growth in 

microaerobic conditions 

 

(Kallio et al., 2007) 

Novosphingobium 

aromaticivorans, 

SDgb, NHb 

 

E. coli hmp Unidentified  (Kallio et al., 2007) 

Synechocystis, 

TrHb1, SynHb 

 

E. coli hmp NO scavenging (Smagghe et al., 2008) 

Pseudoalteromonas 

haloplanktis, 

TrHb2, PhHbO 

E. coli hmp NO scavenging (Coppola et al., 2013) 
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Table 1.4 Bacterial haemoglobins in which physiological role(s) have been studied 

by gene mutation/complementation. 

Bacterium, 

Globin sub-family 

and globin name 

Suggested function(s) References 

 

E. coli, FHb, Hmp 

 

O2 dependant NO detoxification 

to nitrate  

(alleviation of NO toxicity)  

 

(Corker and Poole, 2003; Gardner and 

Gardner, 2002; Gardner et al., 1998a; 

Gardner et al., 1998b; Hausladen et al., 

1998; Hernandez-Urzua et al., 2003; Justino 

et al., 2005; Membrillo-Hernandez et al., 

1999; Stevanin et al., 2000; Stevanin et al., 

2007; Svensson et al., 2010) 

 

Salmonella enterica 

serovar 

Typhimurium, FHb, 

Hmp 

NO detoxification (Bang et al., 2006; Crawford and Goldberg, 

1998b; Gilberthorpe et al., 2007; 

Gilberthorpe and Poole, 2008; McLean et 

al., 2010; Park et al., 2011; Stevanin et al., 

2002) 

 

Campylobacter 

jejuni, SDgb, Cgb 

 

NO detoxification (Avila-Ramirez et al., 2013; Elvers et al., 

2004; Pittman et al., 2007)  

Campylobacter coli, 

SDgb, Cgb 

 

NO detoxification (Elvers et al., 2004) 

 

C. jejuni, TrHb3, Ctb 

 

Oxygen metabolism (Wainwright et al., 2005)  

Ralstonia eutropha,  

FHb, FHPSt 

 

Accumulation of nitrous oxide 

during denitrification 

(Cramm et al., 1994) 

Erwinia 

chrysanthemi, FHb, 

HmpX 

 

Implied in survival in plant and 

in synthesis of pectate lyases, 

NO detoxification 

(Boccara et al., 2005; Favey et al., 1995) 

B. subtilis, FHb, 

HmpBs 

Anaerobic protection against 

prolonged 

nitrosative stress, NO 

detoxification 

 

(Nakano, 2006; Rogstam et al., 2007) 

 

Synechococcus sp., 

TrHb1, GlbN 

 

 

NO detoxification 

 

(Scott et al., 2010) 

Staphylococcus 

aureus, FHb, Hmp 

NO detoxification under 

microaerophilic condition, 

resistance to azoles 

 

(Goncalves et al., 2006; Nobre et al., 2008; 

Nobre et al., 2010; Richardson et al., 2006) 

  (continued) 
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Table 1.4 Bacterial haemoglobins in which physiological role(s) have been studied 

by gene mutation/complementation. (continued) 

Bacterium, 

Globin sub-family 

and globin name 

Suggested function(s) References 

   

   

Vibrio fischeri, FHb, 

Hmp 

 

NO detoxification  (Wang et al., 2010b) 

 

Sinorhizobium 

meliloti, putative 

FHb, no name 

available. 

 

NO detoxification (Meilhoc et al., 2010) 

V. cholerae, FHb, 

HmpA 

 

NO detoxification  (Davies et al., 2011; Stern et al., 2012) 

P. aeruginosa, FHb, 

HmpPa 

 

NO detoxification (Arai et al., 2005) 

 

Pseudoalteromonas 

haloplanktis, TrHb2, 

PhHbO 

 

Oxidative and nitrosative stress 

resistance 

(Parrilli et al., 2010) 

Taken from Vinogradov et al., (2013) 

 

 

 

 

 

 

 

 

 



14 

 

1.3.2.4 Globin regulation 

Even though there are a number of studies that report transcriptional changes (up-

regulation) of bacterial globin genes in specific conditions (e.g. nitrosative stress, 

oxygen limitation, etc.), in only a half of the cases (c. 9 of 19) transcriptional regulators 

associated with globin expression are identified (Table 1.5).  For instance, in agreement 

with the role of Hmp in alleviating NO toxicity, up-regulation of hmp occurs only in the 

presence of NO or RNS. Hmp expression in E coli and Salmonella is mainly controlled 

at the transcriptional level by the NO-responsive transcription factor NsrR (Filenko et 

al., 2007b; Spiro, 2007). 

NsrR (Bodenmiller and Spiro, 2006) represents the archetype regulator for proteins 

involved in NO detoxification such as FHbs in enterobacteria. NO in solution and 

probably the small levels of NO derived from S-nitrosothiols (SNOs) or NO2
-
 reduction 

are sensed by this regulator that in turn de-represses its regulated genes. Indeed, in the 

presence of GSNO, an nsrR mutant produces remarkably high levels of Hmp 

(Gilberthorpe et al., 2007). Constitutive expression of the E. coli FHb in the absence of 

NO results in detrimental production of superoxide anion in a reaction involving oxygen 

reduction by the heme (McLean et al., 2010; Poole et al., 1997; Wu et al., 2004), 

revealing the need for tight control of Hmp synthesis. 

1.4 The genus Campylobacter   

Cells of Campylobacter (for 'twisted bacteria') are spiral, curved, 0.5 to 5 µm long and 

0.2 to 0.8 µm wide. In old cultures, they tend to become coccoid, considered a 

degenerative feature more than a dormant cellular stage. Most of the species possess a 

single flagellum at one or both cell poles that enables the characteristic cork-screw-like 

motion (Debruyne et al., 2008).  

After the isolation of a Vibrio-like organism from aborted ovine foetuses by McFadyean 

and Stockman in 1913, followed by the establishment of the genus Campylobacter in 

1963 (Butzler, 2004; Skirrow, 2006), Véron and Chatelain described four species within 

the genus Campylobacter (Véron and Chateline, 1973), C. fetus, C. coli, C. jejuni and 

C. sputorum. Currently, the Campylobacteraceae family includes at least 15 

Campylobacter species (Debruyne et al., 2008). These microorganisms are found in a  
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Table 1.5 Bacterial haemoglobins in which regulation has been studied. 

Bacterium, 

globin sub-

family and 

globin name  

Regulator(s) 

involved 

Environmental 

factors and/or 

compounds involved 

in up-regulation 

References 

 

E. coli, FHb, 

Hmp 

 

Fnr, MetR, 

NsrR 

 

Nitrosative stress 

 

(Anjum et al., 1998; Bodenmiller and Spiro, 

2006; Cruz-Ramos et al., 2002; Filenko et al., 

2007b; Flatley et al., 2005; Justino et al., 

2005; Membrillo-Hernandez et al., 1999; 

Membrillo-Hernández et al., 1998; 

Membrillo-Hernandez et al., 1997; 

Mukhopadhyay et al., 2004; Poole et al., 

1996) 

 

Vitreoscilla,  

SDgb, Vgb 

CRP, Fnr, 

ArcA, 

OxyR and 

RhyB in E. 

coli 

Up-regulation in 

oxygen-limited 

conditions in the 

native host and in E. 

coli, carbon-limited 

conditions in E. coli. 

 

(Boerman and Webster, 1982; Bollinger and 

Kallio, 2007; Dikshit et al., 1990; Dikshit et 

al., 1989; Khosla and Bailey, 1988; Khosla 

and Bailey, 1989; Khosla et al., 1990a; Tsai et 

al., 1995; Webster and Hackett, 1966; Yang et 

al., 2005) 

Salmonella 

enterica 

serovar 

Typhimurium, 

FHb, Hmp 

 

Fur, NorR Nitrosative stress (Crawford and Goldberg, 1998a; Gilberthorpe 

et al., 2007; Hernandez-Urzua et al., 2007) 

 

Bacillus 

subtilis, FHb, 

Hmpbs 

ResD, 

ResE, Fnr, 

NsrR 

 

Oxygen limitation, 

nitrite, NO 

(Kommineni et al., 2012; LaCelle et al., 1996; 

Moore et al., 2004; Nakano, 2002; Nakano et 

al., 2006; Rogstam et al., 2007) 

Staphylococcus 

aureus, FHb, 

Hmp 

 

SrrAB Nitrosative stress, 

oxygen limitation 

(Goncalves et al., 2006; Nobre et al., 2008; 

Richardson et al., 2006) 

Vibrio fischeri, 

FHb, Hmp 

 

NsrR NO, initial stage of 

colonization 

(Wang et al., 2010a; Wang et al., 2010b) 

V. cholerae, 

FHb, HmpA 

NorR NO, infant mice and 

rabbits 

(Mandlik et al., 2011; Schild et al., 2007; 

Stern et al., 2012)  

 

C. jejuni, 

SDgb, Cgb 

NssR Nitrosative stress  (Avila-Ramirez et al., 2013; Elvers et al., 

2005; Monk et al., 2008; Pittman et al., 2007) 

 

C. jejuni, 

TrHb3, Ctb 

NssR Nitrosative stress (Avila-Ramirez et al., 2013; Elvers et al., 

2005; Monk et al., 2008; Smith et al., 2011) 

 

Pseudomonas 

aeruginosa, 

FHb, HmpPa 

 

FhpR Nitrosative stress (Arai et al., 2005)  

Nostoc spp, 

TrHb1, 

GlbN 

  

Unidentified Oxygen limitation  (Hill et al., 1996) 

 

 

   (Continued) 
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Table 1.5 Bacterial haemoglobins in which regulation has been studied (continued) 

Bacterium, 

globin sub-

family and 

globin name  

Regulator(s) 

involved 

Environmental 

factors and/or 

compounds involved 

in up-regulation 

References 

 

M. 

tuberculosis, 

TrHb1, HbN 

 

Unidentified 

 

Stationary phase, 

nitrite, 

sodium nitroprusside, 

hypoxia, intracellular 

growth in 

macrophages. Early 

response to oxidative 

and nitrosative stress 

(transcriptional 

fusions in M. 

smegmatis) 

 

 

(Couture et al., 1999; Joseph et al., 2012; 

Pawaria et al., 2008) 

M. 

tuberculosis, 

TrHb2, HbO 

Unidentified Expressed in all 

growth phases, up 

regulated by H2O2, 

hypoxia, intracellular 

growth in 

macrophages, nitrite 

 

(Joseph et al., 2012; Pathania et al., 2002b; 

Pawaria et al., 2008) 

M. 

tuberculosis, 

FHb, MtbHFb 

Unidentified Early exponential 

phase, oxygen 

limitation conditions 

and GSNO, SNP in 

microaerophilic 

conditions. 

Late exponential and 

stationary phase in 

aerobically cultures, 

H2O2, macrophages 

infection. 

 

(Gupta et al., 2012; Hu et al., 1999) 

M. leprae, 

TrHb2, HbO 

Unidentified Constitutively 

expressed through 

the whole growth 

cycle, up-regulated 

by nitrosative stress. 

 

(Fabozzi et al., 2006) 

Synechococcus 

sp, TrHb1, no 

name. 

 

Unidentified Likely constitutively 

expressed (unknown) 

(Scott et al., 2010) 

Sinorhizobium 

meliloti, 

putative FHb, 

no name 

 

Unidentified NO (Meilhoc et al., 2010) 

   (continued) 
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Table 1.5 Bacterial haemoglobins in which regulation has been studied (continued) 

Bacterium, 

globin sub-

family and 

globin name  

Regulator(s) 

involved 

Environmental 

factors an/or 

compounds involved 

in up-regulation 

References 

    

Frankia, 

putative 

TrHb1, no 

name 

 

Unidentified Nitrosative stress (Niemann and Tisa, 2008) 

Frankia, 

putative 

TrHb2, no 

name 

 

Unidentified Low oxygen  (Niemann and Tisa, 2008) 
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variety of niches; from commensals or parasites in domestic animals and humans to 

free-living environmental organisms.  

1.5 Campylobacter jejuni  

1.5.1 Campylobacteriosis, epidemiology, causes and consequences 

In the developed world, Campylobacter represents one of the main causes of bacterial 

gastroenteritis (Friedman et al., 2000; Scallan et al., 2011; Simonsen et al., 2011). 

Approximately 9.4 million episodes of food-borne infections occur in the United States 

every year; Campylobacter spp. are responsible for 9% of those cases and 15% of the 

related hospitalisations (Scallan et al., 2011).  

In the lower intestine of chickens, C. jejuni is found as a commensal. However, it is a 

common pathogen in humans. Poultry products contaminated during processing 

represent an important route of transmission (Friedman et al., 2000). An inflammatory 

response resulting from infection by C. jejuni (Bakhiet et al., 2004; Jacobs et al., 1998; 

Koga et al., 2005; Zheng et al., 2008) is related to pathological symptoms such as 

abdominal pain, diarrhoea, blood in stool, fever and vomiting. Although, in the majority 

of the cases, symptoms associated with campylobacteriosis are self-limited and the 

infection is usually restricted to the intestine, invasion of other tissues, mostly in elderly 

and immunocompromised patients, ends in significant morbidity and mortality (Allos, 

2001; Wassenaar and Blaser, 1999). Furthermore, autoimmune diseases such as 

Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS), mainly developed 

as the consequence of gastrointestinal infection (Fisher, 1956; Tam et al., 2007), have 

been closely related to a previous infection by C. jejuni, and the development of 

inflammatory bowel disease is now recognized as an important risk factor also 

associated with campylobacteriosis (Garcia Rodriguez et al., 2006).   

1.5.2 C. jejuni infection and pathogenesis  

The human host possesses a number of innate defence barriers designed against 

pathogenic bacteria. For instance, the acidic environment in the stomach, the peristaltic 

movements of the gut, the epithelial barrier, the mucosa layer and the innate immune 
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response represent important challenges that must be overcome by a gastrointestinal 

pathogen in order to cause infection (Hu and Kopecko, 2008). 

On the other hand, bacterial pathogens are able to initiate the disease by developing 

specific interactions with the mucosal surface of the host such as attachment and/or 

invasion. Enteritis caused by Campylobacter is an acute inflammatory process generally 

affecting the colon and rectum. Inflammation of the ileum and caecum and mesenteric 

adenitis are common characteristics associated with bacterial motility and adherence to 

the surface of mucosa cells, important factors related to colonization of the gut (Blaser 

and Engberg, 2008; Hu and Kopecko, 2008). Indeed, the inability of flagellar mutants to 

colonize the gut of animals (Morooka et al., 1985; Newell et al., 1985; Yao et al., 1997) 

has demonstrated the importance of both motility and chemotaxis as a requirement for 

bacterial colonization.  

Adhesion and invasion are also important factors associated with colonization of the 

host by C. jejuni. Caco-2 and human intestinal epithelial (INT407) cell lines have been 

exploited as suitable models to mimic the in vivo conditions encountered by the 

bacterium during colonization (Konkel et al., 2001). In this way, a number of adhesion 

factors have been described; the autotransporter CapA, PEB1, a periplasmic binding 

protein (Pei and Blaser, 1993), JlpA, a surface exposed lipoprotein (Jin et al., 2001) and 

CadF, a fibronectin-binding outer membrane protein (Konkel, 1997).  

A clear correlation between the ability of C. jejuni to invade the intestine and the 

developing of diarrhoeal disease has been shown in a primate model (Russell et al., 

1993). Intracellular bacteria found in tissue cultures and samples from patients have 

widely demonstrated the invasion capability of C. jejuni (reviewed in Dasti et al., 2010). 

Thus, CadF is involved in two activities; specific binding to the fibronectin of epithelial 

cells that promotes adhesion, and triggering of signalling pathways that in turn lead to 

activation of the small Rho GTPases Rac1 and Cdc42. These proteins are suggested to 

play a significant role in the internalization mechanism of C. jejuni (Krause-

Gruszczynska et al., 2007) via a microtubule-dependent invasion mechanism 

(Monteville et al., 2003).  

The cytolethal distending toxin (CDT) is the sole toxin identified in the genome of 

various species of Campylobacter including C. jejuni (Johnson and Lior, 1988). This 
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toxin, also present in other Gram-negative pathogenic bacteria such as E. coli, 

Helicobacter spp, Salmonella enterica serovar Typhi and Shigella spp (Haghjoo and 

Galan, 2004; Thelestam and Frisan, 2004), induces cell distension (identified by the 

enlargement, swelling, cell cycle arrest and, as a result, cell death), in a variety of 

mammalian cells such as HeLa and CaCo-2 but shows to be inactive in Vero cells 

(Smith and Bayles, 2006; Wassenaar, 1997; Whitehouse et al., 1998).  

CDT might have a role in C. jejuni pathogenesis, specifically supporting invasion 

(Purdy et al., 2000) and as a modulator of the immune response. Certainly, CDT 

triggers the production of interleukin (IL)-8 that induces inflammation of the gut via the 

recruitment of macrophages, dendritic cells and neutrophiles in man but not in chickens 

(Hickey et al., 1999). 

1.5.3 Respiratory metabolism of Campylobacter  

The bioenergetics and stress responses of C. jejuni are poorly understood. An 

incomplete glycolytic metabolism and the lack of fermentative pathways (Parkhill et al., 

2000) make oxidative phosphorylation the major route for energy production in 

Campylobacter. An intricate branched electron transport system involving a variety of 

terminal reductases and two terminal oxidases with roles in both microaerobic and 

anaerobic respiration are encoded in the genomic sequence of C. jejuni NCTC 11168 

(Hitchcock et al., 2010; Parkhill et al., 2000; Sellars et al., 2002; Smith et al., 2000). 

Figure 1.2 illustrates the complexity of the electron transport pathways of C. jejuni. 

Interestingly, the existence of a single ribonucleotide reductase dependent of O2 (class 

II), essential for DNA synthesis, impairs growth of C. jejuni under strict anaerobiosis 

(Sellars et al., 2002).  

C. jejuni preferentially grows in an atmosphere containing 3-5% CO2 and 5-15% O2 

(Ketley, 1997) at 42 °C (Hazeleger, 1998). There is a clear correlation between oxygen 

availability and growth in cultures of C. jejuni, The modifications of the oxygen transfer 

rates by variations in the volumes of batch cultures, where the oxygen solution rates 

decrease as the liquid volume increases (Pirt, 1985), is a principle commonly used for 

studying C. jejuni responses under specific oxygen tensions. For instance, in a 

microaerobic cabinet (10% O2, 10% CO2 and 80% N2 at 42 °C), oxygen transfer  
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Figure 1.2 The electron transport pathway of C. jejuni NCTC 11168. 

Organic and inorganic compounds can be used as electron donors by Campylobacter. 

Under oxygen-limited conditions, pathways to a variety of alternative electron acceptors 

permit growth and energy conservation. Under microaerobic conditions, electrons are 

transfered from menaquinone to the cb-type cytochrome c oxidase or to the non-

electrogenicquinol oxidase CioAB. Taken from Hitchcock et al., (2010).  
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constants in 250 ml flasks containing water (100, 150 or 200 ml) are 0.43 min
-1

 

(microaerobic), 0.16 min
-1

 and 0.06 min
-1

 (oxygen-limited conditions) respectively 

(Wainwright et al., 2005).  

1.5.3.1 Microaerobic respiration 

Two terminal oxidases are expressed in C. jejuni, a cytochrome bd-type quinol oxidase 

and a cb-type cytochrome c oxidase (Fouts et al., 2005; Hofreuter et al., 2006; Parkhill 

et al., 2000); however, spectroscopic signals produced by high-spin hemes b and d, 

typical of these oxidases, are not found in C. jejuni cells. Up-regulation of the cydAB 

operon is associated with survival in 5% oxygen (v/v) and formate respiration. CydAB 

has shown to be associated with resistance to cyanide and, for this reason, it was 

renamed CioAB (cyanide-insensitive oxidase). Increased expression of cioAB at higher 

oxygen tensions, a relatively low affinity for oxygen (Km = 0.8 µM) and a Vmax of > 20 

nmol mg
-1

 s
-1

 have been reported. The cb-type cytochrome c oxidase, encoded by 

ccoNOQP, is a cyanide-sensitive complex playing a major role in respiration in 

conditions of microaerobiosis. It shows a higher oxygen affinity (Km = 0.04 µM) and a 

Vmax of 6 to 9 nmol mg
-1

 s
-1

 (Jackson et al., 2007). The presence of this oxidase has been 

suggested to be essential for viability due to unsuccessful attempts to isolate mutants. 

Under oxygen-limited conditions, C. jejuni grows in media supplemented with nitrate, 

nitrite, fumarate, DMSO or TMAO. This indicates the presence of alternative pathways 

for electron acceptor-dependent energy conservation (Sellars et al., 2002).  

1.5.4 Sources of nitrosative stress during Campylobacter infection and colonization 

In addition to NO coming from the action of NOS (Section 1.1), Campylobacter faces a 

variety of sources of nitrosative stress that depend on the environmental niche. 

Additional production of NO independent of the specific host defence response 

probably arises from other nitrogenous species, such as nitrite in the oral cavity 

(RauschFan and Matejka, 2001) and on the skin (Suschek et al., 2006). Dietary nitrite 

reacts with stomach acid producing NO, and this process is exacerbated via the 

reduction of dietary nitrate to nitrite by the oral microflora (Olin et al., 2001). 
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Moreover, consumption of meat and meat products containing nitrates as a preservative 

increases the exposure of Campylobacter to sources of nitrosative stress.  

1.5.5 Inhibition of respiration by NO and RNS in Campylobacter 

The microaerobic respiration of Campylobacter is inhibited by NO; however, the 

bacterium possesses a range of respiratory complexes able to process sources of 

nitrosative stress: both periplasmic nitrite (Nrf) and nitrate (Nap) reductases are encoded 

in the genome of C. jejuni NCTC 11168 (Pittman and Kelly, 2005; Sellars et al., 2002). 

NrfA, a pentahaem cytochrome c nitrite reductase, is the terminal enzyme in the 

dissimilatory reduction of nitrite to ammonia (Pittman and Kelly, 2005; Sellars et al., 

2002). The nap operon in C. jejuni is formed by napAGHBLD; NapA and NapB 

constitue the two subunits of the periplasmic machinery. NapA (~90 kDa) plays a role 

as the catalytic subunit reducing nitrate to nitrite and contains a [4Fe-4S] group and a 

bis-molybdenum guanosine dinucleoside cofactor. NapB (~16 kDa) is a di-haem c-type 

cytochrome (Butler et al., 2001). Even though napC, a gene encoding a tetra-haem 

cytochrome that, in E. coli couples nitrate reduction to quinol oxidation, is absent in the 

C. jejuni nap operon (Brondijk et al., 2004), this bacterium possesses a putative napC 

gene that may be related to the nitrite reductase system (reviewed by Pittman and Kelly, 

2005).  

1.6 The single domain haemoglobin of Campylobacter, Cgb. 

1.6.1 Functional characterisation  

Since the report of the presence of a globin-like sequence in the genome of C. jejuni 

NCTC 11168 (Parkhill et al., 2000) (Cj1586), similar to the sequence encoding the 

Vitreoscilla haemoglobin Vgb (Wakabayashi et al., 1986), important progress has been 

made towards the understanding of the physiological role, structural features and the 

regulatory mechanism behind the globin known as Cgb (for Campylobacter globin). 

Cgb belongs to the Mb-like haemoglobin family, being a member of the single-domain 

haemoglobin sub-family (SDgb) (Vinogradov et al., 2013). Cgb comprises 140 residues 

(MW= 16.1 kDa). Even though it lacks the reductase domain present in the 

flavohaemoglobins, this protein shares a high level of sequence homology with the 

globin domains of the FHbs from E. coli, Salmonella enterica serovar Typhimurium 
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and B. subtilis (33, 34 and 39% respectively).  Besides, Cgb is a homologue of the 

SDgb from Vitreoscilla (Vgb) (42% amino acid identity) (Elvers et al., 2004).  

Infection and pathogenesis of C. jejuni depend in part on its ability to cope with the 

toxic environment imposed by the presence of NO and RNS in the host. Survival of C. 

jejuni under conditions of nitrosative stress has been mainly related to the expression of 

two haemoglobins (Cgb and Ctb). 

The first indication of the contribution of Cgb to resistance against nitrosative stress was 

reported in a study aimed at testing the protection offered by the heterologous 

expression of a variety of bacterial haemoglobins in E. coli. A significant improvement 

in growth was shown in cultures of Cgb-expressing cells compared to the parental strain 

in the presence of sodium nitroprusside (SNP) (Frey et al., 2002), a clinically important 

NO donor used as a vasodilator (Miller and Megson, 2007; Wang et al., 2002). 

Currently, it is generally accepted that resistance to NO and nitrosative stress agents in 

Campylobacter is linked to the expression of Cgb. A number of studies support this: (i) 

in the presence of the nitrosative agent S-nitrosoglutathione (GSNO), the growth of C. 

jejuni is impaired by mutation of cgb (Avila-Ramirez et al., 2013; Elvers et al., 2004); 

(ii) strains lacking cgb have a significantly diminished tolerance to GSNO, SNP, and 

NO (Elvers et al., 2004; Wainwright et al., 2005); (iii) Cgb protects cellular respiration 

of C. jejuni cells from NO-mediated respiratory inhibition by consumption of NO 

(Avila-Ramirez et al., 2013; Elvers et al., 2004; Monk et al., 2008); (iv) Infected 

colorectal adenocarcinoma cells (Caco-2) with a cgb defective strain accumulate higher 

levels of NO than uninfected cells or cells infected with the parental strain (Elvers et al., 

2004); (vi) the expression of cgb is triggered by GSNO, NOC-18, SNP, spermine 

NONOate, nitrate and nitrite; and (vii) Cgb is a member of a small regulon controlled 

by the positive transcription factor NssR under nitrosative stress conditions (see section 

1.8) (Elvers et al., 2005; Pittman et al., 2007).  

Little is known about the reaction intermediates involved in the Cgb-mediated 

detoxification of NO. On the other hand, the flavohaemoglobin Hmp in E. coli, a 

homologue of Cgb, has been widely studied. The NO detoxification mechanism via a 

dioxygenase (NOD) (Gardner et al., 2006; Gardner et al., 2000; Gardner et al., 1998b) 

or denitrosylase activity (Hausladen et al., 2001; Hausladen et al., 1998) involves the 
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conversion of NO and O2 to the harmless ion nitrate. Structural studies of the haem 

pocket suggest a similar function mediated by Cgb (Lu et al., 2007b) via the general 

reaction: 

 

                                                                                              (Eq. 1)                     

 

If the conversion of NO to nitrate is catalysed by Cgb in vivo, two conditions must be 

fulfilled; the first is oxygen availability and the second is the presence of a reductase 

system able to efficiently regenerate the ferrous haem cofactor (Fe(II)) subsequent to 

oxidation by nitric oxide. In Campylobacter, the correlation between resistance to 

nitrosative stress and oxygen availability has been certainly demonstrated. Important 

differences are shown in resistance to NO and GSNO under microaerobic or oxygen-

limited conditions. For example, better protection of respiration and growth from NO 

inhibition is shown in cultures pre-treated with GSNO at higher rates of oxygen 

diffusion, and NO consumption is also more efficient (Avila-Ramirez et al., 2013; 

Monk et al., 2008). An NO detoxification mechanism dependent on O2 for Cgb seems 

likely; the expression of Cgb maximally occurs in the presence of oxygen, (Avila-

Ramirez et al., 2013; Elvers et al., 2005; Elvers et al., 2004; Monk et al., 2008; 

Wainwright et al., 2005). However, nitrate production by Cgb either in vitro or in vivo 

has not been demonstrated so far. Indeed, over-expression of the globin did not increase 

the NO consumption activity of E. coli wild type soluble cell extracts and no differences 

in nitrate production compared to the control were reported (Frey et al., 2002), although 

it is plausible that the effect of Cgb could be masked by the presence of the 

flavohaemoglobin Hmp in the system.  

1.6.2 Cgb reduction: the redox partner mystery 

The production of NO3
- 
from the reaction of NO and O2 catalysed by single-domain 

globin proteins implies the oxidation of the haem, which requires re-reduction for 

subsequent enzymatic turnover. Therefore, the existence of reductase proteins acting as 

partners of SDgbs has been speculated upon for a long time. The ability of Vgb and 

other bacterial haemoglobins to associate with the cytoplasmic membrane (Park et al., 

2002), and their participation in oxygen transfer (Dikshit et al., 1992) has led some to 

suggest the respiratory chain as the electron source for Cgb reduction.  

CgbFe(II) + O2 + NO            CgbFe(III) + NO3
- 
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Flavohaemoglobins evade the problem of haem reduction by containing a reductase 

domain: intra-protein electron transfer from the reductase domain (or FNR, ferredoxin-

NADP reductase-like domain) to the N-terminal haem domain in an NAD(P)H-

dependent reaction via a noncovalently bound FAD allows the reduction of the ferric 

haem (Fe(III)) (Gardner et al., 1998a; Hausladen et al., 1998; Hernandez-Urzua et al., 

2003). Substantial differences between Cgb and the FHbs suggested that Cgb may not 

interact with the same type of reductase as the flavohaemoglobins. Indeed, the 

conserved residue Lys-84 responsible for the formation of a salt bridge between the 

domains in the flavohaemoglobins (Ermler et al., 1995a) is absent in Cgb.  

The gene (cj1585c) adjacent to cgb encodes a lactate dehydrogenase enzyme that has 

been suggested as a candidate for a redox partner for Cgb (Thomas et al., 2010) and  

spectroscopic characterisation supports this hypothesis. However, even though cj1585c 

is up-regulated in response to NO, this occurs only in oxygen-limited conditions, which 

does not promote the cgb induction (Avila-Ramirez et al., 2013) (see section 1.8). 

Consequently, a role of Cj1585c in an oxygen-dependent detoxification mechanism 

seems unlikely. 

1.6.3 Structural characterisation 

Flavohemoglobins possess an N-terminal globin domain (a 3/3 α-helical Mb-fold) and a 

C-terminal domain with sites for binding FAD and NAD(P)H (Ermler et al., 1995a; Ilari 

et al., 2002a; Vasudevan et al., 1991). On the other hand, single domain globins also 

have the Mb-fold haem domain but lack a C-terminal domain (Tarricone et al., 1997a; 

Tarricone et al., 1997b). Globin subunits are constituted by a 6-8 α-helical segments 

fold around a haem cofactor. The structure of Cgb matches the general globin fold 

where a central iron atom allows haem coordination to a His residue. 

The structure of cyanide-bound Cgb solved by X-ray crystallography (resolution of 1.35 

Å) shows a classic three-on-three α–helical globin architecture (Shepherd et al., 2010) 

(Fig. 1.3) with helices labelled A to H in sequence order, in accordance with standard 

globin nomenclature. Structural homology between Cgb and Vgb, the globin domain of 

Hmp and sperm whale myoglobin (swMb) was reported. While Vgb is a dimer 

(Tarricone et al., 1997b), Cgb was purified and crystallised as a monomer. 
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Figure 1.3 Backbone topology of Campylobacter jejuni haemoglobin Cgb 

The 3-over-3 α-helical fold of Cgb with the haem cofactor is shown. Helices are 

labelled in accordance with conventional globin nomenclature. Taken from Shepherd et 

al., (2010) (PDB ID: 2WY4). 
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The homodimeric structure of Vgb is due to the juxtaposition of helices H and F from 

each subunit forming a loose four-helix bundle holding together by van der Waals 

contacts in a hydrophobic zipper and two water molecules between Pro72 and Asp-139 

and Ala73 and Asp139 (Tarricone et al., 1997b). In Cgb, several charged residues 

occupy the region producing steric clashes that might impair the homodimeric structure 

of Vgb (Shepherd et al., 2010).   

Cgb displays higher ligand affinities than myoglobin. The dissociation constants for O2 

binding are 6 nM for Cgb (Lu et al., 2007b) and 0.86 μM for swMb (Gibson et al., 

1986), respectively. The character of the residues in the B10 and E7 positions are 

important for modulating ligand binding. In mammalian globins, the E7 position is 

generally occupied by a histidine. For instance, in myoglobin, the haem-bound 

dioxygen is stabilised by the H-bonding from HisE7 and the B10 position is usually 

occupied by hydrophobic amino acids. In Cgb, the B10 and E7 residues are occupied by 

tyrosine and glutamine (as in Hmp and Vgb); however, in Cgb but not in Hmp or Vgb, a 

GlnE7 is stabilized by a hydrogen bonding network reminiscent of cytochrome c 

peroxidase (CcP). This structure is in agreement with the suggested role for Cgb as an 

NO dioxygenase proceeding via a peroxidase-like mechanism (Lu et al., 2007b). 

Indeed, peroxidases and oxidases have a much more polar character compared to 

mammalian globins. Besides, an additional hydrogen bonding network in the proximal 

pocket might impose imidazolate character upon the histidine F8 that has been also 

implicated in the Cgb catalysis mediated by the peroxidase-like mechanism. These 

characteristics are central for the ‘push-pull’ model for peroxidase-like enzymes 

(Poulos, 1996), allowing the catalysing cleavage of the O-O bond that is critical for the 

isomerisation of peroxynitrite, an intermediate in the conversion of NO and O2 to NO3
-
 

during the NOD reaction (Lu et al., 2007b; Mukai et al., 2001): 

Fe
2+

-O-O + ∙N=O → [Fe
3+

-O-O-NO
-
] → Fe

3+
 + NO3

-
     (Eq. 2) 

1.7 The truncated haemoglobin of Campylobacter jejuni, Ctb 

1.7.1 Functional characterisation  

In addition to the single domain haemoglobin Cgb, Elvers et al (2004) identified a 

second haemoglobin-like protein (Cj0465c) in the genome of C. jejuni NCTC 11168  
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(Parkhill et al., 2000). The truncated globin named Ctb (Campylobacter truncated 

globin) is classified within the poorly explored sub-family III (or P) of the truncated 

haemoglobins (TrHb3) (Pesce et al., 2000; Vinogradov et al., 2005) and is 

constitutively expressed at low levels in C. jejuni. However, its expression is increased 

in an NssR-dependent manner under conditions of nitrosative stress (GSNO and SNAP) 

(see section 1.8) (Wainwright et al., 2005). 

Even though Ctb has been extensively characterised (Bolli et al., 2008; Lu et al., 2007a; 

Nardini et al., 2006; Wainwright et al., 2006), its physiological function remains 

unclear. Some of the approaches aiming at elucidating the role of Ctb include testing its 

capacity to improve microaerobe cellular growth and its ability to offer cellular 

protection against toxic oxygen tensions and nitrosative stress conditions.  

The Vitreoscilla globin (Vgb) improves microaerobic growth in E. coli and other 

bacterial and eukaryotic species (reviewed in Frey et al., 2011). When the growth 

profile of a C. jejuni ctb-lacking strain and the wild type were compared at different 

oxygen concentrations, a slower growth rate of the mutant was reported during the 

stationary phase in microaerobic conditions (Wainwright et al., 2005), suggesting a role 

of Ctb in oxygen transfer. However, in oxygen-limited conditions, there were no 

differences.  

The findings on the influence of Ctb upon oxygen consumption are as follows: (i) 

respiration rates of C. jejuni cells decreases 50% in a ctb mutant compared to wild type; 

(ii) the KM values for oxygen in wild type and the globin mutants (ctb, cgb or cgb ctb 

lacking strains) are all comparable but the ctb mutant showed a greater Vmax determined 

by the deoxygenation of oxy-LHb (Contreras et al., 1999; D'mello et al., 1994; D'mello 

et al., 1995; D'mello et al., 1996; Smith et al., 1990) (Wainwright et al., 2005) and (iii) 

the in vivo O2 consumption rate of the ctb mutant decreases below ~1 µM but increases 

in the range between 1 µM and air saturation (Wainwright et al., 2005). Given that high 

external oxygen tensions are toxic for Campylobacter, consumption of O2 by Ctb might 

confer protection during microaerobic growth. 

Based on the data above, a role for Ctb in supporting microaerobic growth and 

moderating respiration in C. jejuni seems plausible. However, the physiological 

relevance of these observations is not immediately clear. For example, under conditions 
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of nitrosative stress, the ctb gene is up-regulated but it is not induced by oxidative stress 

or variations in oxygen concentrations (Wainwright et al., 2005). Certainly, Ctb 

production was induced by GSNO and SNAP, as confirmed by western-blotting, but 

paraquat or peroxides failed to influence its expression.  

1.7.2 Structural characterisation 

Ctb was the first class III truncated haemoglobin to be structurally characterised. A 

dimeric cyanide-bound structure, solved via X-ray crystallography (resolution of 2.15 

Å) (Nardini et al., 2006) revealed a 2-over-2 α–helical sandwich, in agreement with all 

truncated globins characterised to date (Fig. 1.4). A distinct feature of Ctb, compared to 

previously characterised TrHb, was the absence of the conserved Gly-Gly sequence 

motif found at the AB inter-helical turning point and the C-terminal to the E helix, 

apparently indispensable for the adoption of the 2-over-2 fold in TrHbs 1 and 2.  

The matrix tunnel or cavity system that in the TrHb1 and 2 allows ligand migration to 

and from the distal pocket is not present in the Ctb structure. However, three conserved 

residues (B10Tyr, G8Trp, and E15Trp) participate in a hydrogen-bonding network with 

an active site water molecule. The Ctb crystal structure showed the E7His residue in 

‘open’ and ‘closed’ conformations, suggesting a possible gating system for ligand 

entry/exit, as occurs in myoglobin (Nardini et al., 2006). 

An atypically larger stretching mode at 514 cm
-1 

reported from resonance Raman data 

for the Fe-CO derivative of Ctb compared to other TrHbs suggests distinctive roles for 

B10Tyr, E7His and G8Trp residues in ligand stabilisation (Wainwright et al., 2006). 

The exceptionally high affinity of Ctb for oxygen (K = 222 µM
-1

, compared to K= 1.1 

μM
-1

 for swMb, defined as the ratio of kon versus koff) might be explained by the 

presence of these residues forming an intertwined hydrogen bond network contributing 

to the stabilisation of the haem-bound oxygen (Lu et al., 2007a). Data obtained by 

combining resonance Raman techniques with molecular dynamics led to the conclusion 

that, when oxygen is bound, Ctb could exist in one of two conformations, and both 

conformers G8Trp may be stabilising the interactions (Arroyo Manez et al., 2011). 

It has been proposed that Ctb may not function in oxygen transport or storage due to its 

high affinity for O2. Since the structure of the distal haem pocket of Ctb resembles that  
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Figure 1.4 Backbone topology of Campylobacter jejuni truncated haemoglobin Ctb. 

The 2-over-2 α-helical fold of Ctb with the haem cofactor is shown. Helices are labelled 

in accordance with conventional globin nomenclature. Taken from Nardini et al., (2006) 

(PDB ID: 2IG3). 
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of cytochrome c peroxidase (CcP) it is hypothesised that Ctb may play a role in oxygen 

chemistry (Lu et al., 2007a). However, mutation of ctb does not produce sensitivity to 

peroxides (Wainwright et al., 2005), suggesting a function for Ctb different from 

peroxide decomposition. 

1.8 Regulation of globin expression in Campylobacter 

1.8.1 Changes in gene expression elicited by nitrosative stress: the role of NssR  

The inducibility of the cgb gene was reported for the first time in Campylobacter coli. 

Cells carrying a vector containing astA, a reporter gene, under control of the cgb 

promoter showed induction by SPN and GSNO but not by methyl viologen (Hendrixson 

and DiRita, 2003). This result, supported by immunoblotting tests using Cgb polyclonal 

antibodies, led to the suggestion that haemoglobin expression was specifically induced 

under conditions of nitrosative stress (Elvers et al., 2004). 

A screening of the C. jejuni genome sequence (Parkhill et al., 2000) based on analogues 

of sensors and regulators from other bacteria, showed the presence of three potential 

transcription factors that may sense NO and, as a consequence, induce the expression of 

Cgb (Elvers et al., 2004): Fur, a Fe
2+

 cofactor-containing an iron sensor that, in C. 

jejuni, is related to iron acquisition, non-iron ion transport and flagellar biogenesis 

(Butcher et al., 2012); PerR, a metalloregulator implicated in peroxide stress responses 

(Butcher et al., 2012; Mongkolsuk and Helmann, 2002) and Cj0466, a member of the 

Crp-Fnr superfamily of transcription regulators (Korner et al., 2003).  

Mutants of either fur or perR retained the Cgb expression profile found in the parental 

strain after exposure to GSNO. However, the fur mutant showed an increased sensitivity 

to GSNO (Elvers et al., 2005); chemical interaction between exogenous RNS and 

endogenous ROS was proposed. Indeed, hypersensitivity to nitrosative stress in the 

absence of Fur has been associated with the derepression of the iron assimilation system 

producing, as a consequence, oxidative stress in E. coli (Mukhopadhyay et al., 2004). 

Conversely, the insensitivity of a C. jejuni fur mutant to inhibition by NO was reported 

more recently. In this case, the Fur-regulated genes were suggested to play a role in 

protection against nitrosative stress, associated with an augmented iron acquisition that, 

in turn, allows the repair of damaged Fe-S and haem proteins (Monk et al., 2008). 
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Although these results seem to be contradictory, compounds with different biological 

properties were used in each case (GSNO, a nitrosative agent, and NO respectively). It 

is not clear whether or not these differences can cause such dissimilar results.  

Deletion of the cj0466 sequence in the C. jejuni genome abolished the expression of 

Cgb upon exposure to GSNO; given that, under nitrosative stress conditions, the globin 

expression appeared to be dependent on Cj0466, the protein was designated NssR 

(Nitrosative stress sensing Regulator) (Elvers et al., 2005). However, an augmented 

sensitivity to methyl viologen of an NssR-lacking strain may indicate an additional role 

for this regulator. Indeed, sensitivity to methyl viologen is related to superoxide 

production in Campylobacter (Purdy et al., 1999).  

A transcriptional analysis comparing microarray data from microaerobic batch cultures 

of C. jejuni wild type in the absence and presence of GSNO showed the up-regulation 

of eight genes: sequences encoding the single domain globin Cgb (cj1586), the 

truncated globin Ctb (cj0565c), a probable peptide ABC transport system permease 

protein (cj1582c), four probable integral membrane proteins (cj0830, cj0851c, cj0313 

and cj0430), and a hypothetical product with unidentified function (cj0761) were 

reported (Elvers et al., 2005). However, the scope of the NssR-dependent response was 

later defined from transcriptional data comparing GSNO-treated cultures of the parental 

strain and the nssR mutant; cgb, ctb, cj0761 and cj0830 showed up-regulation and the 

transcription was confirmed by RT-PCR (Elvers et al., 2005).  

A more detailed study of transcriptional changes elicited by GSNO was performed in 

continuous cultures (Monk et al., 2008). This time, 97 genes (from a total of 1632 genes 

arrayed) were up-regulated (≥ 2-fold) and the presence of the NssR regulon confirmed. 

Among the genes observed were: cgb (320-fold), ctb (63.8-fold), cj0761 (49.7-fold) and 

cj0830 (12.3-fold). Besides, the presence of both Cgb and Ctb was demonstrated in 

cultures treated with GSNO by proteomic analysis (Monk et al., 2008). Interestingly, a 

modest up-regulation of nssR (2.2-fold) led to the suggestion of the presence of a 

regulatory mechanism associated with the expression of NssR under nitrosative stress 

conditions. Other genes induced in this condition were cj0757, cj0758 and cj0759 

whose products are homologues of HrcA, GrpE and DnaK respectively, proteins 

implicated in the heat-shock response (Parkhill et al., 2000), cj0311 (Ctc) involved in 
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general stress response (Volkert et al., 1994), and TrxA and TrxB (a thioredoxin and its 

reductase) related to oxidative stress tolerance. Additionally, nine genes from a group of 

18 genes implicated in iron transport showing transcriptional changes under low iron 

conditions were also reported (Holmes et al., 2005). The up-regulation of iron 

acquisition genes as a consequence of nitrosative stress has been demonstrated in a 

variety of other bacteria (Hernandez-Urzua et al., 2007; Moore et al., 2004; 

Mukhopadhyay et al., 2004; Richardson et al., 2006). Derepression of genes under 

control of Fur is due to NO binding to the ferrous haem of the transcriptional regulator.  

The differences in the chemical properties and biological interactions of NO donors 

(NOCs) and SNOs such as GSNO (a nitrosative agent) has been recently reviewed 

(Bowman et al., 2011). SNOs together with derivative species have biologically 

relevant functions other than the simple release of NO (Hess et al., 2005). GSNO is 

moderately stable and, for this reason, is used extensively in bacterial growth 

experiments. However, this compound is not ideal for the purpose of studing the 

physiological effects of NO. For example, transfer of the ion nitrosonium (NO
+
) from 

GSNO to membrane thiols is suggested in Bacillus (Morris and Hansen, 1981); 

however, other reports show that toxicity is associated with active transport. Indeed, a 

SNO-derived nitrosated dipeptide (S-nitroso-L-cysteinylglycine) is transported inwards 

via the Dpp-encoded dipeptide permease in E. coli, and, as a result, it produces 

intracellular transnitrosation reactions (Jarboe et al., 2008; Laver et al., 2012). 

Interestingly, comparison of the C. jejuni transcriptional profiles upon exposure to 

GSNO (Monk et al., 2008) or to a combination of NOCs (NOC-5 and NOC-7) revealed 

common features. The NssR regulon (including the Cgb and Ctb globins), heat shock 

proteins and regulators were similarly affected by either GSNO or NO (Smith et al., 

2011). On the other hand, in E. coli, transcriptional responses tested in continuous 

cultures upon addition of GSNO or NOCs revealed some similarities but numerous 

important differences (Pullan et al., 2007).  

Since release of NO from GSNO has been demonstrated (Singh et al., 1996), it seems 

probable that the transcriptional response of C. jejuni to GSNO was related in part to the 

NO released from the S-nitrosothiol. It has been proposed that the induction of Hmp 

mediated by the transcriptional regulator NsrR in E. coli, might be the consequence of 

the sub-micromolar concentrations of NO released from GSNO. For example, less than 
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5 µM NO is released from 500 µM GSNO (Jarboe et al., 2008). In the transcriptomic 

studies of C. jejuni, cultures were treated with GSNO (250 µM) (Monk et al., 2008) or 

NOC-5 plus NOC-7 (10 µM each) (Smith et al., 2011). It seems unlikely that a NO 

concentration under 2.5 µM (putatively released from GSNO) was responsible for the 

majority of the transcriptional changes, although the extremely high affinity of bacterial 

globins for NO might induce their expression in the presence of micromolar 

concentrations. 

1.8.2 Influence of the oxygen availability on the transcriptional responses to nitrosative 

stress.  

Variations in oxygen tension produce notable differences in the transcriptional profile of 

C. jejuni to NO (Avila-Ramirez et al., 2013). Genes induced by NOCs in microaerobic 

conditions are not up-regulated in oxygen-limited conditions. In the latter, only 11 

genes are induced and members of the NssR regulon were not found. Interestingly, the 

cj1585c gene, situated next to cgb, was marginally up-regulated under oxygen-limited 

but not in microaerobic cultures. The product of cj1585c, a lactate dehydrogenase, has 

been suggested as the redox partner of Cgb; however, given that cj1585c induction does 

not occur simultaneously with the expression of Cgb (the absence of the globin under 

nitrosative stress conditions in oxygen-limited cultures was demonstrated by 

immunoblotting), this proposal seems rather unlikely. The findings above raise several 

new questions about the ability of C. jejuni to survive in the host during infection and 

pathogenesis where variations in oxygen levels may be expected. 

1.8.3 The transcriptional regulator NssR  

NssR is a member of branch E of the Crp-Fnr superfamily (Korner et al., 2003; Matsui 

et al., 2013), being the only transcription factor involved in NO regulation in this 

branch. Since some regulators from the Crp-Fnr family are not directly activated 

through the interaction with the signal molecule, but their expression is induced by an 

independent sensor system (Fischer, 1994), the same mechanism has been suggested for 

NssR. However, a role as a NO sensor and regulator seems more plausible for NssR, as 

its expression is scarcely augmented in conditions of nitrosative stress (Elvers et al., 

2005).  
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The region -35 upstream of the -10 TATA box sequence for σ
70

 has been shown to be 

not conserved in the C. jejuni genome (Petersen et al., 2003). A σ
70

 recognition site, a -

10 motif lacking the -35, was found in the regions upstream of cgb, ctb, cj0830, cj0761 

and nssR. In addition, an Fnr-like binding sequence upstream of the -10 was identified 

in all genes (Elvers et al., 2005). The consensus sequence (TTAAC-N4-GTAA) shows 

similarities with the proposed recognition sequences of the NO-sensing regulator Nnr in 

Paraccocus pantotrophus (TTAAC-N4-GTCAA) (Korner et al., 2003) and the regulator 

of virulence gene expression PrfA from Listeria monocytogenes (TTAACA-N2-

TGTTAA) (Saunders et al., 2000). Thus, the four genes regulated by NssR share the 

same architecture that is consistent with a class II Fnr-dependent promoter (Guest et al., 

1996).  

Comparison of the wild type and an altered sequence (TTAACacaaGTCAA and 

CTAACacaaGTCAG respectively) in transcriptional fusions to lacZ demonstrated the 

specificity in the recognition of the Fnr-like sequence by NssR in the cgb promoter. In 

cultures containing GSNO, lacZ expression was highly induced in the non-modified 

promoter whereas the mutant sequence fully prevented the NssR recognition (Elvers et 

al., 2005).    

The influence of NssR not just in the regulation of ctb expression but also in its own 

expression has been suggested since the truncated globin and the nssR genes are 

divergently transcribed, sharing the potential NssR-binding sequence (Elvers et al., 

2005). Indeed, the modest induction of NssR shown in continues cultures challenged 

with GSNO (Monk et al., 2008) might represent an auto-regulation mechanism. 

In the absence of nitrosative stress, NssR binds to a 32 bp region in the ctb promoter 

(Kd(app) ~50 nM) (Smith et al., 2011), explaining the low but constitutive expression of 

the truncated globin in the absence of GSNO (Elvers et al., 2005). Nonetheless, gel shift 

experiments showed that the affinity of NssR for the ctb promoter was not enhanced in 

the presence of GSNO or NOCs (Smith et al., 2011). This is a significant result since it 

suggests that NssR might differ from other well characterised transcription factors 

within the Crp-Fnr family which, in the presence of their associated signal molecules, 

exhibit increased DNA-binding compared to the absence of the molecule  (Kd(app) in the 

nM range and in the µM range respectively) (Green et al., 2001). Hence, it appears 
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possible that NssR remains permanently bound to the promoter regions of the genes 

within the regulon, and that, upon exposure to NO, conformational changes facilitate the 

binding of the transcriptional machinery.  

A mechanism implying the nitration of one of the numerous tyrosine residues or 

nitrosylation of the sole cysteine present in the NssR structure has been proposed (Smith 

et al., 2011). Nitration involves the modification of peroxynitrite, a compound resulting 

from the reaction between NO and superoxide. Production of superoxide by oxy-ferrous 

Ctb is a possibility given that production of this compound has been demonstrated in 

other bacterial haemoglobins (Membrillo-Hernandez et al., 1996); however, in a ctb 

mutant, Cgb expression is increased in oxygen limited conditions. This result cannot be 

explained by the same hypothesis (Smith et al., 2011).  

NssR activity may require iron as a cofactor either for interaction with NO or, after 

interaction with NO, for reconstitution of the transcription factor. Certainly, the 

presence of a 4Fe-4S group is implicated in the NO-response of other regulators within 

the Fnr family (Korner et al., 2003). However, in NssR, the cysteine signature for 

binding the haem is not present (Monk et al., 2008). The NssR sensing mechanism 

remains obscure. 

1.9 The nitrite reductase of Campylobacter (NrfA) 

A constitutively expressed pentahaem cytochrome c nitrite reductase (NrfA) mediates 

the dissimilatory reduction of nitrite to ammonia in Campylobacter (Pittman and Kelly, 

2005; Sellars et al., 2002). The ability of NrfA homologues to reduce not only nitrite 

but also NO in a range of bacteria has been shown in vitro (Bamford et al., 2002; Costa 

et al., 1990). For instance, NrfA reduces NO to ammonia under anaerobic conditions in 

E. coli (Costa et al., 1990; Poock et al., 2002; van Wonderen et al., 2008), suggesting a 

function as an anaerobic NO detoxification mechanisms in addition to the 

flavorubredoxin NorV and the flavohaemoglobin Hmp (Poock et al., 2002).  

The function of NrfA as a protection mechanism against nitrosative stress in C. jejuni 

has been investigated by testing a number of single mutants affected in key genes of the 

nrf and nap operons. NapA is the only nitrate reductase in C. jejuni: the stoichiometric 

production of nitrite from nitrate observed in the parental strain is abolished by deletion 
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of napA (Pittman et al., 2007). Similarly, nitrite consumption depends solely on NrfA 

and its electron-donor NrfH. Significant protection elicited by NrfA against nitrosative 

stress has been shown in C. jejuni. Indeed, an nrfA-lacking strain growing in 

microaerobiosis is hypersensitive to spermine NONOate, SNAP and GSNO; cellular 

respiration is severely inhibited and NO consumption is decreased when compared to 

the parental strain. These findings support the role of the nitrite reductase in resistance 

to NO and RNS in C. jejuni (Pittman et al., 2007).  

Even though a direct comparison between the level of protection to nitrosative stress 

associated with Cgb and NrfA has not been performed, under the same conditions, cgb 

or nssR-lacking strains exhibit a severe inhibition of growth while an nrfA mutant only 

decreased the growth rate in the presence of nitrite when compared to the parental strain 

(Pittman et al., 2007). Hence, it has been suggested that, in Campylobacter, NrfA might 

play a role as a constitutive defence against nitrosative stress allowing survival until the 

Cgb expression is triggered (Pittman et al., 2007). However, in oxygen-limited 

conditions, where the NssR-dependent Cgb up-regulation does not take place, a nrfA 

mutant fails to show increased sensitivity to GSNO (the growth of the wild type and the 

mutant were comparable) (Avila-Ramirez et al., 2013). This interesting finding might 

mean that neither Cgb nor NrfA function as a defence against nitrosative stress under 

oxygen limited conditions. 

1.10 NO resistance in oxygen-limited conditions is independent of NssR. 

It has been proposed that the adaptative response to conditions of nitrosative stress 

under oxygen-limited conditions is not dependent on NssR, Cgb or NrfA (Avila-

Ramirez et al., 2013). Indeed, cultures pre-treated with GSNO in microaerobiosis show 

an NssR-dependent induction of Cgb that protects respiration from inhibition by NO 

(Avila-Ramirez et al., 2013; Elvers et al., 2004). On the other hand, GSNO pre-

treatment of cultures in oxygen limitation elicits a smaller but still significant protection 

against NO-mediated inhibition of respiration that is not found in cells untreated with 

the S-nitrosothiol (Avila-Ramirez et al., 2013). The protection mechanism(s) against 

NO and RNS in oxygen limitation has proved to be independent of NssR (see section 

1.8.2), suggesting the existence of an alternative inducible NO detoxification 

mechanism not related to either members of the NssR regulon or the constitutively 
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expressed enzyme NrfA. This putative system may be physiologically important during 

Campylobacter infection, where oxygen availability can be extremely low.   

1.11 Cgb and Ctb: an integrated response?  

Integrated function of globins co-existing in the same microorganism has not been 

previously described. However, since ctb and cgb belong to the same regulon (being 

expressed during exposure to NO and RNS via NssR) (Elvers et al., 2005), and 

considering that the function of Ctb in conditions of nitrosative stress is not evident 

(Wainwright et al., 2005), a mechanism involving coordinated responses of Ctb and 

Cgb might be possible. 

Even though the Campylobacter globins are not expressed in nitrosative stress 

conditions under oxygen limitation (Avila-Ramirez et al., 2013), expression of Cgb in a 

ctb-lacking strain has been recently reported in microaerobiosis and O2 limitation 

(Smith et al., 2011). This result led to the speculation that Ctb functions as a modulator 

of NO availability, controlling, consequently, NssR activity. That is, under microaerobic 

conditions, where the Ctb ferrous haem is bound to oxygen (FeII-O2) (Wainwright et 

al., 2006), the binding of NO is likely to be hindered and NO is available for the NssR 

activation. On the other hand, in oxygen limitation conditions, the binding of NO to the 

Ctb ferrous haem is facilitated by the poor oxygen availability, thus preventing the 

induction of the NssR-dependent genes (e.g. Cgb) (Smith et al., 2011). However, more 

experimental approaches are needed to prove this hypothesis.  

The interaction of the C. jejuni globins during nitrosative stress may be also supported 

by the following data: (i) the viability of cultures of C. jejuni lacking Cgb is diminished 

under nitrosative stress conditions (Elvers et al., 2004); however, the effect of the cgb 

mutation is reverted by deletion of the ctb gene, the growth being comparable to the ctb 

mutant or the parental strain (Wainwright et al., 2005); (ii) in agreement with this, 

cultures of a strain lacking both cgb and ctb genes are less sensitive to GSNO than the 

cgb mutant, suggesting that the absence of Ctb partially suppresses the effect of the cgb 

mutation (Avila-Ramirez et al., 2013) and (iii) microaerobic cultures of the ctb mutant 

grow slower than the parental strain at the final stage of the exponential phase in the 
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absence of nitrosative stress; however, mutation in the second globin results in similar 

growth profiles of the double mutant and the wild type (Wainwright et al., 2005).  

1.12 Scope of this thesis  

C. jejuni has been demonstrated to be a suitable model for studies to explore functional 

activities of the Cgb and Ctb globins in vivo. Certainly, inference of function(s) has 

been possible by testing globin mutants, and important findings about the regulation of 

the Cgb and Ctb expression under nitrosative stress conditions have been achieved. 

Besides, in vitro approaches including structural, biophysical and mechanistic 

characterisations of the purified globins, have also contributed substantially to the 

current understanding of these proteins. However, many questions, mainly related to the 

molecular mechanism behind the NO resistance offered by Cgb in Campylobacter and 

the physiological significance of Ctb remain unanswered. 

Since further investigation of globin function in Campylobacter is restricted by 

complications in complementation by transformation of plasmids, the present work is 

aimed at studying the Cgb and Ctb activities through the expression of the globin genes 

in an engineered heterologous host, namely an E. coli mutant lacking the 

flavohaemoglobin Hmp and being, as a consequence, hypersensitive to NO and RNS. 

This approach is directed to confirm the Cgb activity as a NO and RNS detoxification 

mechanism. If this is the case, it will be possible to use this model for exploring the 

possible source(s) of electrons (redox partner(s)) implied in the reconversion of the 

ferrous haem required for binding ligands. Besides, attempts to elucidate functions of 

Ctb in the heterologous host will be performed as a tool to better understand its function 

in Campylobacter.  
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CHAPTER 2. Materials and Methods 

2.1 Bacteriological methods 

2.1.1 Strains and plasmids 

E. coli and C. jejuni strains are described in Tables 2.1 and 2.2 respectively. Plasmids 

are described in Table 2.3. 

2.1.2 Culture media  

Media were sterilised by autoclaving for 15 min at 121 ºC and 15 p.s.i. The chemicals 

were purchased from Sigma, unless otherwise stated. When required, chemicals and 

solutions were sterilised by filtration using Millipore filters with a pore size of 0.45 µm 

(Sambrook and Russell, 2001).  

2.1.2.1 Luria Bertani broth and solid medium (LB)  

Tryptone (10 g), 5 g yeast extract (both from Oxoid) and 10 g NaCl were dissolved in 1 

l H2O and the pH adjusted to 7.0. To make solid medium, 15 g agar were added.   

2.1.2.2  2 X TY broth and solid medium   

Tryptone (16 g), 10 g yeast extract and 5 g NaCl were dissolved in 1 l H2O and the pH 

adjusted to 7.0. For solid medium, 12 g agar was added before autoclave.  

2.1.2.3 Mueller Hinton broth (Oxoid) 

Dried Mueller Hinton broth (21 g) was dissolved in 1 litre H2O. 

2.1.2.4 Columbia Blood agar (Oxoid) 

Dried Columbia agar (39 g) was dissolved in 1 litre H2O and autoclaved. The medium 

was cooled down to 55 °C prior to the addition of 20 ml (5% (v/v)) defibrinated horse 

blood.  

2.1.2.5 Brain heart infusion broth (Oxoid)  

Dried brain heart infusion (37 g) was dissolved in 1 l H2O. 

2.1.2.6 Succinate minimal medium (SMM) 

Na2HPO4˙12H2O (10.96 g), 2.7 g KH2PO4, 1 g (NH4)2SO4, 5 g sodium succinate and 10 
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Table 2.1 E. coli strains 

Strain Genotype Source/Reference 

MG1655 Wild type F- lambda- ilvG- rfb-50 rph-1  E. coli Genetic Stock            

Culture Collection; Yale 

University 

RKP4960 BL21 (DE3), pLysS  Invitrogen 

RKP3036 MG1655 hmpA::Tn5 Kan  (Blattner et al., 1997) 

RKP116 RKP3036, pPL341  This study 

RKP 3919  RKP3036, pBAD/HisA  This study 

RKP 3920  RKP3036, pLW1   This study 

RKP 3921  RKP3036, pMT1   This study 

RKP5867 JW2536 K-12 (BW25113)  hmpA::Tn5 Kan  NBRP (NIG, Japan): 

 E. coli 

RKP117 MG1655  hmpA::Tn5 Kan mutation transduced 

from RKP5867  

 This study 

RKP139 AV055, MG1655 hmpA 

(RKP117 but the Kan marker removed) 

Constructed by Angie 

Vreugdenhil, University of 

Amsterdam.  

RKP3940 

 

AG200, K-12 (AB1157) ygaA::lac Cm 

(ygaA now named norR) 

(Gardner et al., 2002) 

RKP3941  

 

AG400, K-12 (AB1157) ygbD::lac Cm 

(ygbD now named norW) 

(Gardner et al., 2002) 

RKP5877 MG1655 norR::Cm, mutation transduced from 

RKP3940  

  This study 

RKP5873 RKP3036 norR::Cm, mutation transduced from 

RKP3940 

  This study 

RKP5878 

 

MG1655 norW::Cm, mutation transduced from 

RKP3941 

  This study 

RKP5872 RKP3036 norW::Cm, mutation transduced from 

RKP3941 

  This study 

RKP5884 RKP5873, pPL341   This study 

RKP5885 RKP5873, pBAD/HisA   This study 

  (Continued) 
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Table 2.1 E. coli strains (continued) 

 

 

 

 

 

 

 

 

 

Strain Genotype Source/Reference 

RKP5886 RKP5873, pMT1   This study 

 

RKP5887 

 

RKP5872, pPL341 

   

  This study 

RKP5888 RKP5872, pBAD/HisA   This study 

RKP5889 RKP5872, pMT1   This study 

RKP120 AV033 MG1655 ubiCA::Kan Constructed by Angie 

Vreugdenhil, University of 

Amsterdam. 

 

RKP122 RKP139 (AV060) ubiCA::Kan  Constructed by Angie 

Vreugdenhil, University of 

Amsterdam. 

 

RKP127 RKP122, pPL341   This study 

RKP128 RKP122, pBAD/HisA   This study 

RKP129 RKP122, pMT1   This study 

RKP130 RKP122, pLW1   This study 
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Table 2.2 C. jejuni strains 

Strain Genotype Source/Reference 

NCT11168 Parental strain 

 

 Dr. S. F. Park, University of    

Surrey                        

RKP1336 11168 cgb::Kan (Elvers et al., 2004) 

RKP1386 11168 ctb::Kan (Wainwright et al., 2005) 

RKP1389 11168 ctb::Kan, cgb::Tet (Wainwright et al., 2005) 

-  11168 cj1585C::Kan Kindly given by Prof. David 

Kelly (Thomas et al., 2010)  
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Table 2.3 Plasmids 

Plasmid Description Source/Reference 

pPL341 

 

pBR322 with hmp
+
 under 

control of  its own promoter 

and Amp
R
 marker. 

(Vasudevan et al., 1991) 

pRKP1097 

pET16b (Qiagen) containing 

the cgb gene cloned in XhoI 

site. 

(Pickford et al., 2008) 

pLW1 (pBAD-ctb) 380 bp PCR product carrying 

the ctb gene in pBAD/HisC 

between NcoI and HindIII.  

(Wainwright et al., 2005) 

pMT1 (pBAD-cgb) 830 bp segment containing the 

coding region of cgb was cut 

from pRKP1097 with NcoI and 

XhoI and cloned into 

pBAD/HisA cut with the same 

restriction enzymes.  

  This study                                                                 
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ml trace elements solution were dissolved in water. After autoclaving, the medium was 

supplemented with 1 ml MgCl˙6H2O (1 M) previously sterilized by filtration (Poole, 

1989). For the trace elements solution preparation, 5 g EDTA disodium salt were 

dissolved in 1 l H2O and the pH adjusted to 7.0 followed by the addition of 0.05 g 

FeCl3, 0.05g ZnO, 0.01g CuCl2, 0.01g CoC12.6 H2O and 0.01 g H3BO3 (Poole and 

Haddock, 1974). 

2.1.2.7 SOB medium  

Tryptone (20 g), 5 g yeast extract and 0.5 g NaCl were dissolved in 950 ml H2O. KCl 10 

ml (250 mM) was added and the pH adjusted to 7.0. The volume was made up to 1 l. 

Agar, 15 g, was added to make solid medium. After autoclaving, the medium was 

cooled to 55 ºC, and 5 ml of a sterile MgCl2 solution (2M) was added (Sambrook and 

Russell, 2001). 

2.1.2.8 TB soft agar 

Tryptone (8 g) and 5 g NaCl were dissolved in 1 l H2O and the pH adjusted to 7.0, then 

7 g agar were added.    

2.1.2.9 Phage lysate plates (PL) 

Tryptone (4.0 g), 2.5 g yeast extract, 2.5 g NaCl, 1 g glucose and 6.0 g agar were 

dissolved in 500 ml H2O. After autoclaving, the medium was cooled to 55 ºC and 5 ml 

CaCl2 (0.5 M), 5 ml MgSO4 (1 M) and 0.5 ml FeCl3 (10 mM) added. The plates were 

stored immediately at 4 ºC. 

2.1.2.10 P1 plates 

Tryptone (4.0 g), 2.5 g yeast extract, 2.5 g NaCl, 1 g glucose and 6.0 g agar were 

dissolved in 500 ml H2O. After autoclaving, the medium was cooled to 55 ºC and 5 ml 

CaCl2 (0.5 M) added. The plates were stored immediately at 4 ºC.  

2.1.2.11 TY broth 

Tryptone ( 8 g), 5 g yeast extract and 5 g NaCl were dissolved in 1 l H2O.  

2.1.3 Strain storage 

For long term storage, strain stocks were maintained at -70 ºC in 15% glycerol (v/v) in 

brain heart infusion broth for C. jejuni strains and 15% (v/v) glycerol in LB for E. coli 

strains. 
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2.1.4 Maintenance of bacteria 

E. coli strains were stored on LB plates (supplemented with antibiotics) at 4 ºC.  

2.1.5 Antibiotic media supplements 

Media were supplemented where indicated with vancomycin (10 μg/ml), kanamycin (35 

μg/ml), ampicillin (100 μg/ml), chloramphenicol (25 μg/ml) and tetracycline (10 

μg/ml), (all final concentrations). 

2.1.6 Culture techniques 

2.1.6.1 E. coli aerobic growth conditions 

E. coli cells were taken from glycerol stocks and spread on LB or 2 X TY plates 

containing antibiotics and grown overnight at 37 ºC. Starter cultures were prepared by 

transferring single colonies into LB or 2 X TY (5 ml) contained in 20 ml tubes. Cultures 

were grown overnight at 37 ºC, 240 rpm and used to inoculate secondary cultures (1% 

(v/v)) contained in either 20 ml tubes or 250 ml arm-side flasks and incubated at 37 °C, 

240 rpm.   

2.1.6.2 E. coli anaerobic growth conditions 

Starter cultures were prepared as in section 2.1.6.1 but anaerobic cultures were grown in 

8 ml screw cap tubes filled with LB containing a glass bead to facilitate resuspension 

and were incubated statically at 37 °C. 

2.1.6.3 C. jejuni growth conditions 

Standard C. jejuni cultures were performed as described previously using a MACS-

VA500 microaerophilic cabinet (Don Whitley Science) at 80% N2, 10% O2 and 10% 

CO2 at 42 ºC (Elvers et al., 2004). Cells taken from glycerol stocks were spread on 

Columbia blood plates and incubated for 48 h. Starter cultures were prepared by 

harvesting cells from 1 plate with 3 ml Mueller-Hinton broth and the suspension was 

added to the same medium (50 ml) supplemented with vancomycin (plus additional 

antibiotics when the strain had resistance markers) in a 125 ml baffled flask. After 16 h 

incubation in a rotatory shaker (Mini Orbital Shaker S05, Stuart Scientific) at 150 rpm, 

the OD at 600 nm was adjusted to 0.6. This was used to inoculate secondary cultures 

(5% (v/v)) in Mueller-Hinton broth (100 ml) added with antibiotics in a 250 ml baffled 

flask unless otherwise stated.  
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2.1.6.4 Susceptibility tests  

Starter cultures (1% (v/v)) were used to inoculate tubes containing LB medium (2 ml) 

plus antibiotics and, when indicated, supplemented with arabinose (0.02%), FeCl3 (13 

µM) and δ-aminolevulinic acid (1 mM). Increasing concentrations of DETA NONOate 

or GSNO were added and the cultures incubated for an additional 18 h. Growth was 

determined as the optical density at 600 nm by using a spectrophotometer (Jenway).    

2.1.6.5 Growth curves  

Starter cultures (1% (v/v)) were used to inoculate LB or 2 X TY (10 ml) fresh medium 

plus antibiotics and, when indicated, supplemented with arabinose (0.02%), FeCl3 (13 

µM) and δ-aminolevulinic acid (1 mM). Cultures were added with DETA NONOate (1 

mM), GSNO (3 mM) or H2O2 (3 mM) and incubated at 37 °C, 240 rpm in 250 ml flasks 

fitted with side arms. Growth measurements were recorded every hour using either the 

colorimeter or the spectrophotometer at 600 nm. For Campylobacter growth curves, 

starter cultures (5% (v/v)) were used to inoculate Mueller-Hinton broth (100 ml) with 

antibiotics in a 250 ml baffled flask and 500 µM DETA NONOate or 400 µM GSNO 

were added.  

2.1.7 Overexpression of Cgb and Ctb in E. coli 

For in vivo tests, Cgb and Ctb were over-expressed as described previously (Pickford et 

al., 2008).  Starter cultures of E. coli carrying pLW1 or pMT1 (see Table 2.1) were used 

to inoculate LB or 2 X TY broth media containing ampicillin (plus additional antibiotics 

when the strains had resistance markers) and supplemented with arabinose (0.02%), 

FeCl3 (13 µM) and δ-aminolevulinic acid (1 mM) and incubated at 37 ºC, 240 rpm. For 

purification purposes, starter cultures of E. coli BL21 (DE3), pLysS freshly 

electrotransformed with pRKP1097 or pLW1 were used to inoculate (1% (v/v))  5 x 2 l 

flasks containing 500 ml LB each added with ampicillin. Cultures were incubated at 37 

ºC, 240 rpm to an OD at 600 nm of 0.4-0.6. Cultures were then induced with IPTG (1 

mM) or arabinose (0.02%) respectively and supplemented with δ-aminolevulinic acid (1 

mM) and FeCl3 (13 μM). After a further 4 h incubation, cells were harvested by 

centrifugation at 10,000 rpm for 20 min and pellets stored at -70 ºC until required. 
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2.1.8 Culture turbidity measurements 

Measurements of optical density were done using a Jenway 7305 spectrophotometer at 

600 nm in cuvettes with a 1 cm path length against a medium blank or in a Klett 

Summerson photoelectric colourimeter (Klett Manufacturing Co, New York, N. Y) with 

a no. 66 red filter when 250 ml flasks fitted with side arms were used.  

2.1.9 Preparation of cell suspensions  

Batch cultures (45 ml) grown in LB or 2 X TY were added with antibiotics, and for 

expression of heterologous globins, supplemented with arabinose (0.02%), FeCl3 (13 

µM) and δ-aminolevulinic acid (1 mM) and incubated overnight at 37 °C, 240 rpm. 

Cultures were centrifuged at 5,500 rpm at 4 °C for 10 min and pellets resuspended in 

buffer Tris-HCl 50 mM (pH 7.4) (approximately 8 ml) followed by standardization of 

the OD at 600 nm. 

2.1.10 Isolation of bacterial membranes 

This method was modified from Poole and Haddock (1974). Overnight starter cultures 

were diluted 1:100 in 2 X TY medium (250 ml) in 1 l baffled conical flasks and 

incubated in standard conditions for 6 h. Cultures were centrifuged at 10,000 rpm for 20 

min  and cell pellets resuspended in Tris-HCl  50 mM, 2 mM MgCl2, 1 mM MgCl2 (pH 

7.4) (10 ml). Cells were disrupted by sonication (Soniprep 150) (4 x 20 s bursts at an 

amplitude of 10 μm) on ice, and centrifuged for a further 30 min to separate cell debris 

and undisrupted cells. Membranes were separated from the supernatant by 

ultracentrifugation at 40,000 rpm for 1 h. The supernatant was discarded and 

membranes resuspended in buffer (200 µl) and aliquots (40 µl) stored at -80 °C. 

2.1.11 Preparation of soluble extracts 

For preparing E. coli soluble extracts, overnight cultures were diluted 1:100 (200 ml 

final volume) in LB in 1 l conical flasks and incubated for a further 6 h at 37 °C, 240 

rpm. For C. jejuni extracts, overnight cultures (50 ml in 100 ml conical flasks) grown in 

Mueller-Hinton broth (MH) at 42C were diluted 1:3 (150 ml final volume) with MH 

broth in 250 ml baffled flasks and incubated for an additional 9 h. Cells were harvested 

by centrifugation and resuspended in Tris-HCl 50 mM (pH 7.4) (10 ml). Cell 

suspension was sonicated (Soniprep 150) (4 x 20 s bursts at an amplitude of 10 μm) on 

ice, and then centrifuged at 10,000 for 20 min to separate intact cells and cell debris. 
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Supernatant was ultracentrifuged at 40,000 rpm for 1 h to separate membranes and the 

supernatant (soluble content) was stored up to 48 h at 4 °C.  

2.2 Buffers and solutions  

Chemicals were purchased from Sigma, unless otherwise stated. When required, 

chemicals and solutions were sterilised by filtration using Millipore filters with a pore 

size of 0.45 µm (Sambrook and Russell, 2001).  

2.2.1 Phage dilution buffer 

Trisma base (0.61 g), 1.23 g MgSO4·7H2O, 0.37 g CaCl2·2H2O and 1.46 g NaCl were 

dissolved in 450 ml H2O and the pH adjusted to 7.5 with HCl. The solution was made 

up to 500 ml. 

2.2.2 Tris-HCl 50 mM, pH 7.4 

Tris-HCl (7.88 g) was dissolved in 700 ml H2O. The pH was adjusted and the solution 

made up to 1 l.  

2.2.3 Tris-acetate-EDTA (TAE) 50 X buffer 

Tris base (242 g), 57.1 ml glacial acetic acid, 100 ml EDTA (0.5 M, pH 8.0)  dissolved 

in H2O and made up to 1 l (Sambrook and Russell, 2001).  

2.2.4 Antibiotic selection  

All antibiotics were added as a stock solution to liquid agar and liquid media at 50 ºC at 

1/1000 dilution. The amounts added to make 1 ml stock solutions were as follows: 

tetracycline 5 mg (in ethanol), kanamycin 10 mg, ampicillin 50 mg, chloramphenicol 34 

mg (in ethanol) and vancomycin 10 mg. Stocks were stored at -20 °C. 

2.2.5 Preparation of S-nitrosoglutathione (GSNO) 

A 500 ml beaker was filled with ice and water and placed on a stirring plate in a fume 

cupboard. To a 100 ml conical flask, covered with foil and placed into the beaker with a 

magnetic stirrer, were added 3.08 g L-glutathione (reduced) and 18 ml ice cold water. 

The mixture was stirred until glutathione was dissolved. HCl (concentrated, 0.83 ml) 

and 0.69 g NaNO2 were added and the solution stirred until it turned pink (40 min 

approximately). The solution was stirred for a further 10 min upon addition of 20 ml 
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ice-cold acetone (20 ml) and filtered through filter paper on a Buchner funnel using a 

concentrator pump. The precipitate was washed 5 times with 2 ml ice-cold H2O, 3 times 

with 10 ml ice cold acetone and 3 times with 10 ml diethyl ether and dried in a vacuum 

desiccator protected from light (Hart, 1985). Solid GSNO was stored in aliquots at -70 

ºC. To make a stock solution, a small amount of solid GSNO was dissolved in H2O at 

55 ºC protected from light. GSNO displays an absorption maximum at 545 nm, with an 

extinction coefficient of 15.9 M
-1 

cm
1
. The GSNO solution was prepared immediately 

prior to the experiments and the stock concentration determined spectrophoyo 

metrically.  

2.2.6 Glycerol 10% (v/v) 

Glycerol (126 g) (density 1.6 g/cc) was added to 900 ml H2O.  

2.2.7 DETA NONOate stock solution 

DETA NONOate, ((Z)-1-[2-(2-Aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-

1,2-diolate (Enzo)) (25 mg) was dissolved in 1 ml NaOH (0.1 M) to obtain a 153 mM 

stock and stored at -20 °C protected from direct light.  

2.2.8 PROLI-NONOate stock solution 

A small amount of PROLI-NONOate (1-(hydroxi-NNO-azoxy)-L-proline)) powder 

(Cayman Chemicals) was dissolved in 10 ml NaOH (0.01 M). PROLI NONOate 

displays an absorption maximum at 252 nm, with an extinction coefficient of 8,400 M
-1 

cm
1
. The stock concentration was determined spectrophotometrically and aliquots (500 

µl each) stored at -70 °C protected from direct light. 

2.2.9 Markwell assay reagents 

Reagent A was a solution of 20 g Na2CO3, 4 g NaOH, 1.6 g sodium tartrate and 10 g 

SDS dissolved in H2O and made up to 1 l. For regent B, 4g CuSO45H2O were dissolved 

in H2O and made up 100 ml. Reagent C was made by diluting reagent A with reagent B 

(1:100) and mixed. Folin-Ciocalteau phenol reagent was prepared by diluting 

commercial reagent with mQH2O (1:1) within an hour before use.  

2.2.9.5 Protein standard (BSA) 

Bovine serum albumin standard was prepared fresh at 200 µg/ml final concentration.  
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2.2.10 Tris-glycine running buffer  

Tris base (3.02 g) and 18.8 g glycine were dissolved in 990 ml H2O and added to 10 ml 

SDS (10% (w/v)).  

2.2.11 SDS loading buffer (2X) 

Tris-HCl (100 mM) pH 6.8, 200 mM DTT, SDS (4% (w/v)), bromophenol blue (0.2% 

(w/v)) and glycerol (20%) in 20 ml final volume.  

2.2.12 Western blot solutions 

Transblot buffer was made by dissolving 14.4 g glycine, 15.15 g Tris base, 200 ml 

methanol and 3 ml SDS (10% (w/v)) in 1 l H2O. Tris-buffered saline with 0.1% Tween 

(TBS-T) was a solution of 2.24 g Tris-HCl (pH 7.5), 8 g NaCl and 100 μl Tween 20 

dissolved in 1 l distilled water. 

2.2.13 Preparation of CORM-3 

A stock solution (10 mM) was prepared by dissolving 3.1 mg of CORM-3 

([Ru(CO)(3)Cl(glycinate)], synthesized as described previously (Clark et al., 2003)) in 

1 ml H2O. The solution was kept on ice during the experiment and stored at 4 °C for up 

to 48 h. 

2.3 Genetic methods 

2.3.1 Plasmid DNA purification  

Plasmid DNA purification was made using the QIAprep Spin Miniprep Kit, according 

to the manufacturer’s instructions (Qiagen). Overnight cultures (5 ml) were centrifuged 

at 5,000 rpm for 5 min and the pellet resuspended in 250 µl buffer P1 and transferred to 

a microcentrifuge tube. Buffer P2 (250 µl) was added and the tube was inverted 5 times 

to mix. Buffer N3 (350 µl) was added and the contents were mixed by inverting the tube 

5 times. The tube was centrifuged at 13,000 rpm for 10 min and the supernatant 

transferred to the QIAprep spin column and centrifuged for 60 s. The column was 

washed with 750 µl buffer PE and centrifuged for 60 s twice. The DNA was eluted from 

the column by adding 50 µl H2O and centrifuging for 2 min.  
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2.3.2 Restriction enzyme digestions 

Restriction enzymes were purchased from Promega. The manufacturer’s instructions 

were followed with regard to reaction buffers and incubation temperatures.  

2.3.3 Ligation 

The restricted DNA fragment and vector (1:1, 10 ng each) were ligated with T4 DNA 

ligase (1 µl) (Promega) and ligase buffer (1 µl) (Promega) and the mixture (10 µl final 

volume) was incubated overnight at room temperature.  Ligation mixture (1 µl)  was 

used to transform electrocompetent cells. The pMT1 construction was verified by 

restriction with NcoI and XhoI and by sequencing (Cogenics Technologies, Inc.) using 

universal primers (pBAD F and R primers).  

2.3.4 Agarose gel electrophoresis of DNA 

Plasmid DNA and restriction enzyme digests were routinely analysed by electrophoresis 

through a 1.0% agarose gel in TAE buffer supplemented with 0.5 µg/ml ethidium 

bromide (Sambrook and Russell, 2001). Loading buffer (5X) (Bioline) was added to 

DNA samples, and 10 to 100 ng of DNA was loaded per lane. HyperLadder I 

(BIOLINE) (200 ng) was run as a marker alongside the samples to estimate the sizes of 

DNA fragments. DNA was visualized by exposure to a source of 254 nm ultraviolet 

light.  

2.3.5 Construction of deletion mutants. 

E. coli strains carrying multiple gene deletions were constructed by P1vir phage 

transduction. The hmp ubiCA mutant was constructed by transferring the hmp mutation 

from JW2536 (Baba et al., 2006) into MG1655 where first the kanamycin marker was 

removed as described (Datsenko and Wanner, 2000) and then the ubiCA deletion 

transferred (Table 2.1). The norR and norW mutant genes were transferred from strains 

AG200 and AG400 respectively (Gardner et al., 2002) into MG1655 and MG1655 hmp 

(RKP3036) (Table 2.1).  

2.3.6 Generalized transduction with bacteriophage P1 vir 

2.3.6.1 Preparation of lysates 

Lysates were prepared according to a published method (Miller, 1972). Donor cells 

were grown overnight at 37 ºC in TY medium supplemented with CaCl2 (5 mM). P1 vir 
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stock was diluted from 10
8
 to 10

3
 PFU/ml; each was mixed with 100 µl culture and 

incubated at 37 ºC for 20 min. Pre-warmed (37 ºC) TB (1ml) and 1.5 ml warm (55 ºC) 

TB soft agar were mixed and added to the phage/cell mix and poured onto phage lysate 

plates. The plates were incubated at 37 ºC in a “wet box” (with a humid atmosphere) 

until plaques had taken on a “lacy” appearance, after which the plates were chilled at 4 

ºC for half an hour and an overlay of cold phage dilution buffer added. Plates were 

stored at 4 ºC overnight and the overlying liquid harvested using a Pasteur pipette. 

Lysates were stored at 4 °C and for long storage a few drops of chloroform were added.  

2.3.6.2 Generalized transduction 

Recipient cells were grown overnight at 37 ºC in 2.5 ml TY supplemented with CaCl2 (5 

mM). P1 vir stock from a lysate preparation (100 µl) was mixed with the same volume 

of cells and incubated at 37 ºC for 20 min. The mixture was spread onto P1 plates 

containing antibiotics plus Na4P2O7 (0.125 mM) and incubated overnight at 37 ºC 

(Miller, 1972). After overnight incubation, potential transductants were re-plated onto 

selective medium and the phenotype verified.  

2.3.7 Electrotransformation of E. coli  

Electrotransformation of electrocompetent cells was performed according to the 

manufacturer’s instructions (MicroPulser
TM 

electroporation apparatus operating 

instructions and applications guide, Bio Rad).  

2.3.7.1 Preparation of electrocompetent cells 

LB broth (500 ml) was inoculated with an overnight culture (1% inoculum) and cells 

incubated at 37 °C, 240 rpm until 0.5-0.7 OD at 600 nm was reached. The culture was 

chilled on ice for 20 min and cells harvested in a pre-chilled container by centrifugation 

at 5,500 rpm for 15 min at 4 °C. The supernatant was discarded and the pellet 

resuspended in 500 ml 10% ice-cold glycerol and centrifuged for 15 min at 4 °C. The 

same was repeated twice but adding 250 and 20 ml 10% ice-cold glycerol respectively. 

Finally, the cell pellet was resuspended in 2 ml of 10% ice-cold glycerol and stored at -

70 °C in small aliquots for up to 6 months.   
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2.3.7.2 Electrotransformation 

Electrocompetent cells were thawed on ice. A 1.5 ml tube and a 0.1 electroporation 

cuvette (Bio Rad) were also chilled on ice. Cells (40 µl) were mixed with 1 µl plasmid 

DNA in the 1.5 ml tube and incubated for 1 min on ice. The MicroPulse
TM 

was set to 

“Ec1” and the mixture transferred to the electroporation cuvette. The cuvette was seated 

in the chamber and pulsed once. After the cuvette was removed from the chamber, 1 ml 

LB at 37 °C ml was added and the suspension transferred immediately to a 1.5 ml tube. 

After 1 h incubation at 37 °C (240 rpm), a sample of the suspension (100 µl) was spread 

on LB plates containing antibiotic to select transformants.   

2.4 Biochemical methods 

2.4.1 Protein quantification 

2.4.1.1  Markwell assay 

This is a method modified from the Lowry protocol (Markwell et al., 1978). Samples 

were diluted as required with H2O before the assay. Freshly made reagent C (see section 

2.2.9) (3 ml) was mixed with the protein samples (1 ml) by vortexing and incubated at 

room temperature for 1 h.  Folin-Ciocalteau phenol reagent was added (0.03 ml) to the 

samples with whirlimixing and samples incubated at room temperature for a further 45 

min. The absorbance was recorded at 660 nm. Dilutions of a BSA stock were made 

from 0 to 200 μg protein/ml for the standard curve. The assay was perfomed with three 

different volumes of sample in triplicate (e.g. 10, 50 and 100 μl sample). 

2.4.1.2 Bradford assay 

BioRad protein assay (Bradford assay) was performed in cuvettes according to the 

manufacturer’s instructions. Diluted protein assay solution (1 ml) was added followed 

by the protein sample. A BSA standard curve using concentration from 0 to 21 μg/ml
 

protein was also performed and the absorbance recorded at 595 nm.  

2.4.2 SDS-polyacrylamide gel electrophoresis (PAGE) 

A BioRad MiniProtean gel tank with self-poured polyacrylamide gels was used. Precast 

gels 15% (BioRad) were electrophoresed in Tris-glycine running buffer. Protein assay 

(Bradford) was performed for cell free extracts and samples diluted with H2O to 
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standardize the protein concentration across the samples. Samples (20 µl) were 

resuspended in 2X SDS loading buffer and incubated at 100 ºC for 15 min and run on 

SDS-PAGE gels. Gels were performed in duplicate; one was unstained and used for 

Western blotting and the other stained with Coomassie blue to check equal amounts of 

protein across the samples.  

2.4.3 Western blot 

An unstained SDS-PAGE gel carrying the samples (10 μg) was used to transfer the 

proteins onto a nitrocellulose membrane (Hybond-C Extra membrane (Amersham 

Bioscience)) by using a BioRad Mini Trans-Blot Electrophoresis cell containing ice-

cold transblot buffer according to the manufacturer’s instructions. Samples were 

transferred from the gel to the membrane at 400 mA, 4 ºC for 90 min. The membrane 

was immersed in 5% casein (w/v) (prepared in TBS-T) and incubated overnight at room 

temperature. The membrane was washed with TBS-T (1 x 15 min followed by further 3 

x 5 min). The Cgb and Ctb antibodies were diluted in 5% casein ((w/v) 1:2000 and 

1:1000 respectively) and the membrane incubated for 1 h before a further round of 

washings was performed. ECL peroxidase-labelled secondary antibody (2 μl) 

(Amersham Biosciences) was added to 25 ml 5% casein and the membrane incubated 

for 1 h prior to a third wash step. ECL Western blotting detection reagents 1 and 2 

(Amersham Biosciences) were mixed according to the manufacturer’s instructions and 

the mixture poured onto the membrane followed by 5 min incubation. Finally, the 

membrane was covered in clingfilm and overlaid with Hyperfil ECL high performance 

chemiluminiscence film (Amersham Biosciences) for 1 to 5 min in the dark room and 

the film developed using Industriex developer (Kodak). 

2.5 Polarographic measurements of oxygen and nitric oxide  

2.5.1 Respiration rates of cell and membrane suspensions  

The oxygen electrode was calibrated with air-saturated Tris-HCl 50 mM (pH 7.4) 

(assuming an oxygen concentration at air saturation of 200 M O2) and anoxia was 

achieved by addition of sodium dithionite (a few grains) (Gilberthorpe and Poole, 

2008). Cell suspensions (see section 2.1.9) diluted 1:1 with Tris-HCl 50 mM buffer (pH 

7.4) (2 ml final volume) or membranes suspensions (20 µl) were added to a chamber 

fitted with a Clark-type polarographic oxygen electrode (Rank Brothers) (Gilberthorpe 
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and Poole, 2008). Tests were performed at a polarizing voltage of 0.6 V at 37 °C with 

constant stirring and a sealing lid. DataTrax software (World Precision Instruments, 

Inc.) was used to record the data. Glycerol solution (5 mM final concentration) or 

succinate (20 mM final concentration) were added to the chamber with a Hamilton 

syringe in order to promote respiration of cells and membranes respectively. Protein 

concentration was determined by the Markwell assay and rates were expressed as nmol 

O2/min mg protein. 

2.5.2 Determination of NO consumption of cell suspensions 

NO consumption was determined by using a modified Clark-type oxygen electrode 

system (Rank Brothers) harbouring an NO electrode (Precision Instruments ISO NOP 

sensor (2-mm diameter)) by closing the chamber with a tight lid, with the NO sensor 

inserted through a tailor-made hole in the lid (Mills et al., 2001). The NO electrode was 

calibrated according to the manufacturer (Corker and Poole, 2003). Cell suspensions 

(section 2.1.9) were diluted 1:1 with Tris-HCl buffer in the chamber (2 ml working 

volume) at 37 °C. PROLI NONOate aliquots (1 µM final concentration) were added to 

determine NO consumption.  

2.5.3 Simultaneous measurement of NO and O2 consumption of cellular suspensions.  

The method is based on (Gilberthorpe et al., 2007). The experiments were carried out in 

an O2 electrode chamber (Rank Brothers) harbouring an NO sensor (section 2.5.3). 

Glycerol (5 mM) was added to promote respiration (measured as in section 2.5.1). 

PROLI NONOate solution was added using a Hamilton syringe (1 µM final 

concentration in each case) when the O2 concentration reached 70, 40, 20 and 0%. 

Initial respiratory rate, the inhibited rate, and the rate when oxygen uptake was 

spontaneously reinitiated were calculated. The period of inhibition of respiration was 

calculated as the period between addition of the NO solution (when respiration becomes 

inhibited) and the point where oxygen uptake was reinitiated. Protein was determined 

by the Markwell assay.  

2.5.4 Determination of NO evolution from cellular suspensions 

Consumption of O2 and NO production were followed simultaneously as described in 

section 2.5.4 but the method was based on (Corker and Poole, 2003). Cell suspension 

was diluted 1:1 with buffer in the chamber (2 ml working volume). Glycerol (15 mM) 
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was added to promote respiration and after O2 was depleted, NaNO2 (25 mM final 

concentration) was added by injection with a Hamilton syringe and concentration of O2 

and NO production were followed. Carboxy-PTIO (10 mM final concentration) was 

injected either when NO production reached a plateau or after 40 min incubation. 

Concentration of total protein was quantified by the Markwell assay. 

2.6 Protein purification  

2.6.1 Ctb purification 

Purification of Ctb was performed as described (Pickford et al., 2008). A frozen cell 

pellet obtained from 2.5 l of culture (see section 2.1.7) was defrosted and resuspended 

in Tris-HCl 50 mM buffer (pH 7.0) (40 ml) followed by sonication (3 x 20 sec in a MSE 

Soniprep 150 at maximum power). Cell debris was removed by centrifugation at 10,000 

rpm for 20 min. The supernatant (red-brown in colour) was loaded onto a DEAE 

Sepharose Fast Flow 30-ml column (Pharmacia Biotech) previously equilibrated with 

Tris-HCl 50 mM (pH 7.0) connected to an Akta Purifier (GE Healthcare Bio-Sciences, 

Amersham Biosciences Ltd., UK). After washing the column with the same buffer (40 

ml) the sample was eluted with a NaCl gradient (0-0.5 M) in buffer. Red-coloured 

fractions were concentrated to 5 ml in a Vivaspin 20 concentrator (Vivascience) (cutoff 

of 5 kDa) and used for a further purification by gel filtration. The sample was loaded 

onto a Superdex-200 column (16 x 60 cm,  GE Healthcare Bio-Sciences, Amersham 

Biosciences Ltd., UK) previously equilibrated with Tris-HCl 50 mM (pH 7.0), 0.2 M 

NaCl and eluted with the same buffer (1 ml/min). Red fractions were mixed and SDS-

PAGE was used to verify the presence and purity of Ctb (14.06 kDa monomer) and 

small aliquots stored at -70 °C. 

2.6.2 Cgb purification  

The Cgb purification protocol was modified from (Pickford et al., 2008). A frozen cell 

paste obtained from 2.5 l of culture (see section 2.1.7) was defrosted and suspended in 

Tris-HCl 50 mM buffer (pH 9.0) (40 ml) and disrupted by sonication (3 x 20 sec in a 

MSE Soniprep 150 at maximum power). Cell debris was removed by centrifugation at 

10,000 rpm for 10 min. The supernatant fraction was applied to a 25 ml DEAE-

Sepharose FF column. Proteins were eluted using a 250 ml NaCl gradient from 0 to 0.3 

M in the same buffer. Red fractions eluting at about 65 mM NaCl were combined and 



59 

 

0.32 ml of 4 M ammonium sulfate was added to each ml of the sample to bring the 

ammonium sulfate concentration to about 1.2 M. The sample was then applied on a 5 ml 

Hi-Trap Phenyl-HP column (GE Healthcare) and eluted by 50 ml of a reverse gradient 

of ammonium sulfate (1.2 M to 0 in 50 mM Tris-HCl buffer pH 8.0). Coloured fractions 

eluting at about 0.9 M ammonium sulfate were combined; a volume of the sample was 

reduced to 2 ml using a VivaSpin 20 concentrator (Sartorius) and applied on a 16 x 60 

cm HiLoadSuperdex200 column (GE healthcare) equilibrated in buffer 50 mM Tris-

HCl (pH 8.0), 0.5 M NaCl. Gel filtration was performed in the same buffer. Coloured 

fractions eluted from the column at 90 ml and corresponded to Cgb in the monomeric 

state. SDS-PAGE was used to verify the presence and purity of Cgb (16.08 kDa 

monomer) and small aliquots stored at -70 °C. 

2.7 Spectroscopic techniques   

2.7.1 Reducibility of Cgb and Ctb in cell-free extracts 

Optical spectra were recorded using an Olis RSM 1000 spectrophotometer. Spectra of 

purified Cgb (5 µM) or Ctb (4.8 µM) in E. coli or C. jejuni soluble extracts or Tris-HCl 

50 mM (pH 7.4) buffer with or without NADH (10 mM) were recorded every minute 

against a baseline of buffer (Tris-HCl, 50 mM, pH 7.4) at room temperature until a 

stable spectrum was attained. PROLI NONOate (5 and 10 µM) was added followed by 

gentle mixing and changes recorded every min for 40 min. Redox forms were mainly 

identified from the α,β region of the spectra by reference to published data (Shepherd et 

al., 2011; Wainwright et al., 2006).  

2.7.2 Optical spectroscopy of intracellular Ctb 

 Absorption spectra of whole cells of E. coli hmp overexpressing Ctb were recorded 

using an SDB-4 dual-wavelength scanning spectrophotometer at room temperature 

(Kalnenieks et al., 1998) in native and reduced states. Reduction was achieved either by 

addition of sodium dithionite (a few grains) or glucose (15 mM). Optimal respiratory 

capacity of cell suspensions was verified polarographically (see section 2.5.1) prior to 

the spectrometric tests by addition of glucose in a closed chamber and, when anoxic 

conditions were reached, the chamber was opened and the time for re-oxygenation 

measured to ensure anaerobiosis during the tests. Respiration was considered optimal 

when open-lid suspensions showed re-oxygenation after 30 min incubation in the open 
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system. Native and reduced samples with sodium dithionite or glucose were bubbled 

with CO gas for 2 min and spectroscopic changes recorded immediately. When CORM-

3 (300 µM) was added to the reduced samples, changes were recorded every min for 10 

min and every 5 min for an additional 20 min. Difference spectra (CO-reduced minus 

reduced) were plotted. Cells carrying the empty vector were reduced with dithionite and 

bubbled with CO gas and the difference spectrum was plotted for comparison. The Ctb 

absolute spectrum (reduced and CO-reduced) were obtained by subtraction of the 

absorbance values from the samples carrying the empty vector. Data were analyzed 

using Excel 2007 and Sigma Plot 11.0. 

2.7.3 Determination of haem content in cellular suspensions (alkaline pyridine assay) 

This method was performed as described previously (Poole et al., 1986). Cell 

suspension (see section 2.1.9) was sonicated (Soniprep 150) (4 x 20 s bursts at an 

amplitude of 10 μm) on ice, and then centrifuged at 12,000 rpm for 10 min to separate 

intact cells and cell debris. Supernatant (0.6 ml) was mixed with the same volume of 

pyridine/NaOH regent (NaOH (0.4 M) and pyridine (4.2 M)) in a 1 ml quartz cuvette to 

promote haemochrome formation. For the oxidised sample, a few grains of ferricyanide 

were added and, after mixing, the sample was scanned in the range 500-600 nm using a 

Johnson Foundation SDB3 dual-wavelength spectrophotometer at room temperature 

(Kalnenieks et al., 1998). For the reduced sample, a few grains of sodium dithionite 

were added to a fresh sample and scanned as before. Reduced minus oxidised spectra 

were plotted and haem concentration was determined. Haem b displays an absorption 

maximum at 556 nm, with an extinction coefficient of 19 mM
-1 

cm
1
.  

2.7.4 Determination of NO production from nitrite by Ctb  

This method was modified from (Salhany, 2008) as described by (Pedersen et al., 

2010). Purified Ctb (3.7 µM) in Tris-HCl 50 mM (pH 7.4) buffer was reduced with 

sodium dithionite (10 mM final concentration) followed by the addition of sodium 

nitrite (0.5 mM) and changes in the spectrum were recorder with a Cary 50 Conc UV-

visible spectrophotometer (Varian) before addition of nitrite and after 20 min incubation 

with nitrite at room temperature. Spectra were recorded against a buffer baseline and the 

formation of FeII-NO Ctb was followed at 419, 540 and 565 nm (Shepherd et al., 2011).    
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2.7.5 Kinetics of NO-reduced Ctb formation from nitrite  

The conditions were similar to section 2.7.4 but Ctb (10 µM) was reduced with sodium 

dithionite (10 mM) and treated with sodium nitrite (0.5 mM). Changes in absorbance 

were recorded before addition of nitrite and then every 0.3 min for 40 min after addition 

of nitrite. Differences in absorbance (434 minus 426 and 420 minus 426) were plotted.  
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Chapter 3.  Responses to nitrosative and oxidative stress of an E. coli 

NO-sensitive strain expressing the C. jejuni haemoglobins Cgb and 

Ctb.  

3.1 Introduction 

E. coli possesses two main NO-detoxifying mechanisms. In aerobic conditions, the 

flavohaemoglobin Hmp, the best characterised bacterial haemoglobin, which consists of 

a globin and a reductase domain  (Mukai et al., 2001), catalyses the conversion of NO 

and O2 to the innocuous ion nitrate by either a dioxygenase (NOD) (Gardner et al., 

2006; Gardner et al., 2000; Gardner et al., 1998b) or denitrosylase activity (Hausladen 

et al., 2001; Hausladen et al., 1998). In anaerobic environments, the NO sensor NorR 

positively regulates the expression of the flavorubredoxin protein (NorV) and its 

reductase partner (NorW); the pair NorVW detoxifies NO by reduction to N2O (Gardner 

and Gardner, 2002; Gardner et al., 2003; Hutchings et al., 2002). Even though, in the 

absence of O2 Hmp is also able to reduce NO, this reaction proceeds at a very low rate 

(Mills et al., 2001).  

Resistance to nitrosative stress by C. jejuni has been mainly attributed to the presence of 

the single-domain haemoglobin Cgb, a homologue of the Hmp haem domain (33% 

identity) (Elvers et al., 2004). Structural and functional studies suggest that Cgb 

catalyses a NO detoxification reaction (Lu et al., 2007b), proceeding by a NOD or a 

denitrosylase mechanism (Shepherd et al., 2011). There is strong evidence supporting 

the NO and RNS detoxification as the main function of Cgb in C. jejuni. For instance, 

Cgb expression, mediated by the transcription regulator NssR, is induced under 

nitrosative stress conditions (Elvers et al., 2005), cells expressing Cgb by exposure of 

cultures to sub-inhibitory concentrations of GSNO, exhibit clear NO consumption and 

undisrupted respiration compared with the cgb mutant or untreated cells, and cultures of 

a cgb mutant are hypersensitive in the presence of NO and GSNO (Elvers et al., 2004).  

The confirmation that the NO detoxification mechanism is mediated by Cgb in vivo is 

complicated by difficulties expressing proteins in trans in C. jejuni. Additionally, 

studies in vitro using purified protein are limited by the lack of the reductase domain in 
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Cgb that, in Hmp, allows the restoration of the ferrous state required for ligand-binding 

activity (Hernandez-Urzua et al., 2003).   

Heterologous expression to investigate the ability of Cgb to confer resistance to 

nitrosative stress in E. coli has been previously reported (Frey et al., 2002). That study 

showed an improvement of the growth profile of a Cgb-expressing E. coli strain under 

nitrosative stress conditions compared to the wild type. However, when the NO uptake 

of soluble protein fractions from the strain expressing Cgb and the control were 

compared, there were no differences. However, since a wild type strain was used as the 

model, the inevitable presence of Hmp in the tested conditions makes it difficult to 

distinguish between the effects due to Hmp per se, and the possible additional effect 

produced by the expression of the heterologous globin. 

Under nitrosative stress conditions, C. jejuni expresses a second globin (Ctb) also under 

control of NssR (Elvers et al., 2005). This protein is classified as a member of group III 

of the truncated haemoglobins (TrHb3) (Wittenberg et al., 2002). The structural and 

kinetic characteristics of Ctb have been extensively studied (Bolli et al., 2008; Lu et al., 

2007a; Nardini et al., 2006; Wainwright et al., 2006) and, due to the exceptionally high 

oxygen affinity of Ctb (dissociation kinetics 0.0041 s
-1

) (Lu et al., 2007a) together with 

evidence of its role as an O2 regulator (Wainwright et al., 2005), involvement of this 

globin in oxygen chemistry has been suggested. However, the physiological 

significance of Ctb expression under nitrosative stress conditions has not been 

unravelled.  

In order to produce data that allowed a better understanding of the molecular 

mechanism(s) and physiological functions of the C. jejuni haemoglobins, the main 

objective of the present chapter is to investigate the effects of the heterologous 

expression of the C. jejuni globins in E. coli under nitrosative and oxidative stress 

conditions. An NO-sensitive E. coli strain (hmp mutant) expressing Cgb or Ctb is used 

as the biological model.  
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3.2 Results 

3.2.1 Expression of the C. jejuni haemoglobins Cgb and Ctb in an E. coli hmp mutant 

strain.   

In order to test the effect of the Cgb and Ctb haemoglobins in the response to nitrosative 

stress in the heterologous host E. coli, an expression vector (pBAD/HisA (Invitrogen)) 

was used to clone the reading frame of the cj1586 (cgb) gene under control of an 

arabinose-inducible promoter. The construction was verified by sequencing and 

designated pMT1 (Fig. 3.1A). A similar plasmid but containing the reading frame of the 

cj0465c (ctb) gene was used for the expression of the truncated haemoglobin Ctb 

(pLW1) (Wainwright et al., 2006) (Fig. 3.1B).  

In an approach to test the ability of Cgb and Ctb to protect the heterologous host E. coli 

from nitrosative stress, an E. coli NO-sensitive strain (hmp mutant) was transformed 

with the plasmid pMT1, pLW1 or the empty vector pBAD/HisA and the expression of 

the C. jejuni haemoglobins in cultures was verified on SDS polyacrylamide gels and by 

Western blot. Total protein of cellular extracts from cultures grown in the presence or 

absence of the inducer arabinose (0.02%) was assayed. Even though it was not possible 

to observe the presence of Cgb in a conventional SDS-polyacrylamide gel, expression 

of this globin was demonstrated by the detection of a band with an approximate weight 

of 14 KDa (Cgb molecular weight, 16.08 KDa) using polyclonal antibodies against the 

globin (Fig. 3.1C). Higher concentrations of arabinose failed to improve the expression 

of Cgb (not shown). On the other hand, Ctb (molecular weight 14.8 KDa) was over-

expressed at much higher levels. A band of approximately 14 KDa was clearly observed 

in the SDS polyacrylamide gel and the Western blot analysis using anti-Ctb antibodies 

confirmed the globin identity (Fig. 3.1D).   

3.2.2 Expression of the C. jejuni haemoglobins Cgb and Ctb does not alter the growth 

profile of an E. coli hmp mutant strain. 

As a preliminary characterisation, toxic effects or modifications on the growth profile of 

the E. coli hmp mutant by the expression of the C. jejuni haemoglobins were 

investigated. No significant differences in the growth capacity were observed when  
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Figure 3.1 Expression of the C. jejuni haemoglobins in an E. coli hmp mutant 

strain. 

Immunoblotting of cellular extracts from cultures growing in LB supplemented with 

arabinose were tested for the expression of Cgb and Ctb in an hmp mutant strain 

transformed with the expression vector pMT1 (A) or pLW1 (B) respectively. Extracts of 

the hmp mutant transformed with the empty vector (lane 1, C and D), pMT1 or pLW1 

without arabinose (lane 2, C and D respectively) were tested as a control. Anti C. jejuni 

Cgb or Ctb antibodies were used for detection of Cgb and Ctb (lanes 3, C and D 

respectively). SDS-polyacrylamide gels containing total protein are shown for 

comparison purposes (C and D upper panels).   
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aerobic cultures of the hmp mutant transformed with pMT1 or pLW1 were grown in the 

presence or absence of the inductor arabinose or compared with control cultures of the 

same strain but complemented in trans with the hmp gene under control of its own 

promoter (pPL341) (Vasudevan et al., 1991), or transformed with the empty vector 

(pBAD/HisA) (Fig. 3.2). This result supported the suitability of this heterologous 

system to further investigate the effects of Cgb and Ctb in E. coli in the presence of 

nitrosative and oxidative stress agents.  

3.2.3 Cgb complements the resistance phenotype of an E. coli hmp mutant strain to 

nitrosative stress.   

In order to study the ability of Cgb to restore the resistance to nitrosative stress, 

impaired by the absence of Hmp in E. coli, susceptibility tests and growth curves were 

performed. First, to measure susceptibility, aerobic cultures of the hmp mutant carrying 

pMT1 were grown overnight in the presence or absence of arabinose and with 

increasing concentrations of the NO donor DETA NONOate or the nitrosative agent 

GSNO. Concentrations of 1 mM DETA NONOate and 3 mM GSNO prevented the 

growth of cultures in the absence of arabinose as in the case of cells carrying the empty 

vector. On the other hand, cultures in which the Cgb expression was promoted by the 

addition of arabinose (0.02%) showed resistance to the toxic compounds even at 

concentrations as high as 2 and 5 mM DETA NONOate and GSNO respectively. The 

optical densities recorded after 24 h incubation for the Cgb-expressing cultures were 

comparable to those of control cultures (complemented strain with pPL341) (Fig. 3.3A 

and B). Secondly, when the growth was followed in cultures after addition of 1 mM 

DETA NONOate or 3 mM GSNO, the hmp mutant expressing Cgb showed a similar 

resistance profile to the complemented strain (Fig. 3.3C and D).  

The results shown above confirm the previously suggested role of Cgb in the resistance 

to nitrosative stress, and constitute the first evidence of the ability of this globin to 

complement the nitrosative stress resistance in E. coli in the absence of the 

flavohaemoglobin Hmp. 
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Figure 3.2 Growth profile of E. coli expressing Cgb or Ctb. 

Cultures of an E. coli hmp mutant strain harbouring pMT1 (▼) or pLW1 (∆) were 

grown aerobically at 37 °C in LB supplemented with arabinose. Optical density was 

recorded every hour. Cultures of the same strain but carrying the empty vector (○), or 

pPL341 (●), were tested as a control. Similar results were obtained in three independent 

experiments. Taken from Tinajero-Trejo et al. (2013).  
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Figure 3.3 Susceptibility tests and growth curves of E. coli expressing Cgb under 

nitrosative stress conditions. 

Aerobic cultures of the hmp mutant carrying the plasmids pPL341 (●), pBAD/HisA (○), 

or pMT1 (∆) were grown in LB supplemented with arabinose. The indicated 

concentrations of (A) DETA NONOate or (B) GSNO were added and cultures 

incubated for 24 h at 37 ºC; OD was recorded at 600 nm. In (C), 1 mM DETA 

NONOate or (D) 3 mM GSNO were added (arrow) and the OD recorded every hour. 

The hmp mutant carrying pMT1 but in the absence of arabinose was used as a control 

(▼). Bars represent the standard deviation of three independent experiments. Taken 

from Tinajero-Trejo et al. (2013). 
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3.2.4 Ctb fails to complement the resistance to nitrosative stress in an E. coli hmp 

mutant strain. 

It has been established that the truncated haemoglobin Ctb from C. jejuni constitutes 

one of the members of the nitrosative stress-response regulon controlled by the 

transcription factor NssR in C. jejuni (Elvers et al., 2005). However, its role in the 

resistance to NO and RNS remains unclear. 

In order to assess the ability of Ctb to support the growth of E. coli under nitrosative 

stress conditions, similar experiments to those carried out for Cgb (section 3.2.3) were 

performed. The E. coli hmp mutant transformed with the plasmid pLW1 was grown in 

the presence of arabinose to express the truncated haemoglobin. Ctb failed to support 

the growth of the NO-sensitive E. coli strain either upon addition of DETA NONOate or 

GSNO regardless of the concentrations added (Fig. 3.4A and B). Even though cultures 

were incubated for a period of time before NONOate (1 mM) or GSNO (3 mM) were 

added (until 0.2 OD at 600 nm was reached), increase in cellular mass did not produce 

differences in the growth profile of the strain expressing Ctb compared to the cultures 

grown in the absence of arabinose or carrying the empty vector (Fig. 3.4C and D).  

In order to investigate whether Ctb may offer a modest protection against NO, cultures 

of the Ctb-expressing strain were treated with low concentrations of DETA NONOate 

(0.25 and 0.5 mM). However, in these conditions, the strain carrying the empty vector 

grew at the same level as those expressing Ctb (or Hmp) after 24 h incubation, 

indicating absence of NO toxicity and, consequently, making it difficult to test this 

hypothesis (not shown).  

The inability of Ctb to support the growth of E. coli under nitrosative stress conditions 

is in agreement with previous studies suggesting the involvement of this globin in 

function(s) different from NO detoxification in C. jejuni (Smith et al., 2011).   
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Figure 3.4 Susceptibility tests and growth curves of E. coli expressing Ctb under 

nitrosative stress conditions. 

Aerobic cultures of the hmp mutant carrying the plasmids pPL341 (●), pBAD/HisA (○), 

or pLW1 (∆) were grown in LB supplemented with arabinose. The indicated 

concentration of (A) DETA NONOate or (B) GSNO were added and cultures incubated 

for 24 h at 37 ºC; OD was recorded at 600 nm. In (C), 1 mM DETA NONOate or (D) 3 

mM GSNO were added (arrow) and the OD recorded every hour. The hmp mutant 

carrying pLW1 but in the absence of arabinose was used as a control (▼). Bars 

represent the standard deviation of three independent experiments. Taken from 

Tinajero-Trejo et al. (2013). 
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3.2.5 Expression of Cgb and Ctb in E. coli does not exacerbate oxidative stress. 

Hmp generates the superoxide anion in vitro, and oxidative stress is caused by the over-

expression of this flavohaemoglobin in vivo in the absence of nitrosative stress 

(Membrillo-Hernandez et al., 1996; Mills et al., 2001). To investigate whether the C. 

jejuni haemoglobins could produce deleterious effects related to generation or 

augmentation of oxidative stress, cultures of the E. coli hmp mutant expressing Cgb 

(pMT1) or Ctb (pLW1) were treated with increasing concentrations of H2O2 and the 

growth profiles were compared with cultures of the complemented strain (pPL341) or 

carrying the empty vector (Fig. 3.5). Concentrations of 1 and 2 mM H2O2 failed to 

produce harmful effects on the growth of the cultures regardless of the presence of 

either the C. jejuni globins or Hmp (Fig. 3.5A and B). In agreement with the oxidative 

stress produced by the over-expression of Hmp, the complemented strain (pPL341) was 

fully inhibited upon addition of 3 mM H2O2. However, neither the expression of Cgb 

nor of Ctb affected the resistance of the hmp mutant in this condition (Fig. 3.5C). When 

cultures were challenged with 4 mM H2O2, a slight inhibition of growth was 

experienced in the strains expressing Cgb and Ctb. However, the strain carrying the 

empty vector was also inhibited, suggesting a cytotoxic effect due to the presence of 

H2O2 per se and not related to the presence of the heterologous globins (Fig. 3.5D). 

3.2.6 The respiratory profile of an E. coli hmp mutant is not altered by the expression of 

Cgb or Ctb. 

It has been shown that E. coli defective in cytochrome o and d terminal oxidases is able 

to recover the ability to grow on non-fermentable substrates such as malate and 

succinate by the expression of the Vitreoscilla single-domain haemoglobin (Vgb). 

Moreover, membrane vesicles prepared from the same strain consume oxygen with 

succinate as the electron donor (Dikshit et al., 1992).   

In order to test the effect of the C. jejuni globins on E. coli respiration, O2 consumption 

of hmp mutant cell suspensions expressing Cgb or Ctb was measured polarographically 

and rates compared with those determined for the complemented strain (pPL341) or the 

strain carrying the empty vector (Table 3.1). Neither Cgb nor Ctb produced a significant  
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Figure 3. 5 Growth curve of E. coli expressing Cgb or Ctb in the presence of H2O2. 

Aerobic cultures of the hmp mutant carrying the plasmid pMT1 (▼), or pLW1 (∆) were 

grown in LB supplemented with arabinose and incubated at 37 ºC, 240 rpm and OD was 

recorded every hour. When cultures reached 30 klett units 1 (A), 2 (B), 3 (C) or 4 mM 

(D) H2O2 was added (arrows). The hmp mutant carrying pPL341 (●), or pBAD/HisA (○) 

were used as a control. Similar results were obtained in two independent experiments. 

Taken from Tinajero-Trejo et al. (2013). 
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Table 3.1 Oxygen consumption rates of an E. coli hmp mutant expressing Cgb or 

Ctb. 

 

*Cell suspensions of an E. coli hmp mutant expressing Hmp (pPL341), Cgb (pMT1), Ctb (pLW1) or 

carrying the empty vector (pBAD/HisA) were added with 5 mM glycerol to promote respiration and the 

oxygen consumption was measured polarographically. Protein concentration was determined by the 

Markwell assay (Markwell et al., 1978). Respiration rates are averages of three independent experiments. 

Values of ± the standard deviation are shown.   

 

 

 

 

 

 

 

 

Strain 

 

Respiration rate* 

[nmol O2 (min
-1

 mg protein
-1

)] 

E. coli hmp, pPL341  53.83 ± 3.9 

E. coli hmp, pBAD/HisA 19.31 ±1.06 

E. coli hmp, pMT1  16.19 ± 1.03 

E. coli hmp, pLW1  18.07 ± 1.06 



74 

 

 

difference in the respiration rates when compared with the strain harbouring the empty 

vector. However, the complemented strain showed a 3-fold increase in the O2 

consumption rate. This result can be explained as a consequence of the oxidative burst 

due to the over-expression of Hmp. 

The fact that the oxygen uptake rates of the E. coli hmp mutant were not modified by 

the expression of Cgb or Ctb suggest that, at least in the tested conditions, these 

heterologous globins have no effect on the respiratory capacity of E. coli.  

3.2.7 Cgb and Ctb moderately consume NO protecting the respiration of an E. coli hmp 

mutant. 

The ability of Cgb to complement the NO resistance phenotype of the E. coli hmp 

mutant strongly supports the activity of the globin in the uptake and detoxification of 

NO not only in C. jejuni but also in the heterologous host E. coli (section 3.2.3).  

In order to further investigate the ability of Cgb to consume NO, the protection from 

respiratory inhibition of E. coli hmp cell suspensions expressing the globin was tested 

upon addition of NO. Uptake of O2 and NO were followed polarographically in a 

chamber equipped with an O2 and a NO electrode working simultaneously. After 

addition of glycerol to promote cellular respiration, aliquots of 1 µM PROLI NONOate 

(a fast NO releaser, half-life of 1.8 s) were added subsequently at 75, 50, 25, and 0% O2 

concentration, and the respiration rates were calculated before and after the NONOate 

additions (Fig. 3.6). Control samples of cell suspensions expressing Hmp did not show 

inhibition of the respiration regardless of the O2 concentration, and no NO accumulation 

was detected during the aerobic phase of the experiment (Fig. 3.6A). This is consistent 

with the previously characterised ability of Hmp to protect respiration from inhibition 

by NO (Hernandez-Urzua et al., 2003). On the other hand, cells harbouring the empty 

vector showed a clear inhibition and a very poor recovery upon addition of PROLI 

NONOate aliquots. Moreover, NO was accumulated in high concentrations reaching up 

to 1.4 µM at the end of the test (Fig. 3.6B). This result demonstrated the suitability of 

the system to test the ability of Cgb to protect the highly inhibited respiration by NO in 

the absence of Hmp.  
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Figure 3.6 Protection of the respiration and NO consumption of E. coli hmp 

mutant cell suspensions by the expression of Cgb or Ctb.                                                                                                                                 

Cells from overnight cultures grown in the presence of arabinose were resuspended in 

50 mM Tris-HCl buffer (pH 7.4). Glycerol was added to promote respiration and O2 

(solid line) and NO consumption (dashed line) were polarographically recorded at the 

same time. Respiration rates were calculated at different O2 tensions before and after 

additions of 1 μM PROLI NONOate and expressed as nmol O2/(min mg protein) 

(shown on traces). Additions of PROLI NONOate in aerobic (closed arrows) or 

anaerobic (open arrows) conditions are indicated. Taken from Avila-Ramírez et al. 

(2013). 
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Cell suspensions of the hmp mutant expressing Cgb showed severe inhibition of 

respiration immediately after addition of the PROLI NONOate aliquots. However, rapid 

recovery was shown and rates were comparable to that calculated at the beginning of the 

test, (before the first PROLI NONOate addition). Besides, even though NO presence 

was clearly recorded upon each NONOate addition, traces showed a rapid 

disappearance of the accumulated NO in a way that coincided with the recovery of the 

respiration rate (Fig. 3.6C), suggesting NO consumption by the Cgb-expressing cells. 

This result demonstrates a moderate capability of Cgb to consume and detoxify NO that 

results in protection of the respiration from inhibition by NO. Interestingly, NO uptake 

was observed even after the depletion of the oxygen in the chamber, suggesting that the 

ability of this globin to consume NO is not necessarily dependent on the oxygen 

content.   

As mentioned before in this chapter, the up-regulation of Ctb under nitrosative stress 

conditions in C. jejuni leads to the hypothesis that the globin might play a role in NO 

detoxification; however, the growth tests of the E. coli hmp mutant expressing Ctb 

failed to support this proposal. On the other hand, when the ability of Ctb to protect the 

E. coli hmp cell respiration from NO toxicity was tested, a moderate protection was 

shown. As with Cgb, the NO-consumption was independent of the O2 presence, being 

comparable in aerobic and anaerobic conditions (Fig. 3.6D).  

Considering that the Ctb expression level demonstrated by Western blot analysis was 

substantially higher than that of Cgb in E. coli (see Fig. 3.1), the protection of 

respiration in the cells expressing Ctb may be the result of unspecific NO binding to the 

Ctb haem cofactor instead of a globin-based detoxification mechanism. In order to 

investigate this, the intracellular concentration of Cgb and Ctb were determined by the 

haem assay (alkaline pyridine) and found to be 0.68 µM and 2.6 µM respectively in the 

volume of cell suspensions contained in the chamber during the experiments. Since five 

sequential aliquots of 1 µM PROLI NONOate were added during the tests and 2 moles 

of NO are released per molecule of PROLI NONOate, protection based on unspecific 

NO-haem binding was ruled out and the involvement of a specific NO detoxification 

mechanism not only for Cgb but for Ctb-expressing cells seems plausible.  
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The results described in this section constitute the first report of the ability of Cgb to 

consume NO with the concomitant respiratory protection in a heterologous host. At the 

same time, an unexpected capability of Ctb to interact and perhaps detoxify NO in E. 

coli is also reported.  

3.2.8 The C. jejuni haemoglobins Cgb and Ctb fail to support the anaerobic growth of 

an E. coli NO-sensitive strain under nitrosative stress conditions.  

The unexpected capability of E. coli hmp cells expressing Cgb and Ctb to consume NO 

under anaerobic conditions (see Fig. 3.6C and D) suggests a possible O2-independent 

detoxification mechanism mediated by these globins. Such a mechanism might be 

similar to the NO reductase activity described for the flavohaemoglobin Hmp in 

anaerobiosis (Gardner and Gardner, 2002).  

To further investigate the role of Cgb and Ctb in detoxifying NO in anoxic 

environments, an E. coli hmp norR mutant strain was constructed. The norR hmp 

deletions produce a NO hypersensitivity phenotype in both aerobic and anaerobic 

conditions in E. coli. Indeed, the absence of the positive regulator NorR prevents the 

induction, under nitrosative stress conditions, of the norVW operon, thereby preventing 

the NO reduction mediated by NorV and its redox partner NorW (Gardner and Gardner, 

2002).  

An E. coli K12 norR mutant containing an insertion of a chloramphenicol resistance 

cassette (Gardner et al., 2002) was used as a donor to replace the wild type norR gene in 

the genome of the E. coli hmp mutant and its isogenic strain (MG1655) (see Table 2.3). 

Transduction based on the P1 vir bacteriophage system rendered double mutants (hmp 

norR) that were selected by their resistance to kanamycin (hmp mutation) and 

chloramphenicol. After the absence of the norR gene was verified by PCR, anaerobic 

cultures of the isogenic strain were compared to cultures of the norR and the hmp norR 

mutant growing in the presence of 500 µM DETA NONOate. Even though the single 

mutant was clearly inhibited by NO, the double mutant showed an even higher 

inhibition related, perhaps, to the loss of the reductase activity mediated by Hmp in the 

absence of O2. Neither the expression of Cgb nor Ctb protected the growth of the hmp 

norR mutant from the NO toxicity (Fig. 3.7). Indeed, the inhibition of the double mutant  
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Figure 3.7 Anaerobic growth curve of an E. coli hmp norR expressing Cgb or Ctb 

under nitrosative stress conditions.  

Cultures of an E. coli hmp norR mutant expressing Cgb (pMT1) (∆) or Ctb (pLW1) (▼) 

by the addition of arabinose were grown in LB at 37 ºC under anaerobic conditions. 

DETA NONOate (0.5 mM) was added (arrow) and the OD recorded at 600 nm every 

hour. E. coli wild type (■), norR mutant (□), hmp norR carrying the empty vector (○), or 

expressing Hmp (pPL341) (●) were tested as a control. Bars represent standard error of 

three independent experiments. Taken from Tinajero-Trejo et al. (2013). 
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expressing the globins or harbouring the empty vector was comparable. Surprisingly, 

complementation of the hmp gene in the double mutant by transformation with pPL341 

failed to reach the same level of growth as the norR mutant. This might relate to the 

deleterious effects of the over-expression of Hmp in E. coli (Mills et al., 2001). 

The results above strongly suggest that the ability of Cgb to detoxify NO in vivo is 

dependent on the presence of O2. However, it is possible that the flavorubredoxin 

reductase (NorW) is playing a role as the reductase partner of Cgb in E. coli. Indeed, 

NorW has been successfully used as the reductase of the human neuroglobin in vitro 

(Giuffre et al., 2008). As a norR hmp mutant was used for the anaerobic tests, the 

induction of norW was prevented by the absence of NorR. Thus, the inability of Cgb to 

support the growth of the double mutant might be related to the lack of NorW and not to 

the absence of O2. This hypothesis is further investigated (see Chapter 5).  
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3.3 Discussion 

Strains of E. coli lacking the flavohaemoglobin Hmp and consequently sensitive to NO 

and RNS have proved to be a useful model to study resistance to nitrosative stress 

related to the expression of heterologous haemoglobins. For instance, the restoration of 

the NO resistance of E. coli hmp achieved by the expression of the TrHb1 (HbN) from 

M. tuberculosis (Pathania et al., 2002a) and, more recently, by the expression of the 

TrHb2 (PhHbO) from the Antartic bacterium P. haloplanktis (Coppola et al., 2013), led 

to the suggestion of the involvement of these globins in such a function in their native 

hosts. Indeed, inactivation of the PhHbO-encoding gene in P. haloplanktis, produced 

sensitivity to nitrosative and oxidative stress, in agreement with the findings reported by 

the heterologous expression (Parrilli et al., 2010). By using the same model (E. coli 

hmp), functions for a number of other globins have been suggested, most of them 

associated to nitrosative stress (Vinogradov et al., 2013) (Table 1.3, Chapter 1).  

The availability of crystal structures for both Cgb (Shepherd et al., 2010) and Ctb 

(Nardini et al., 2006), together with a detailed spectroscopic and kinetic characterisation 

(Bolli et al., 2008; Lu et al., 2007b; Lu et al., 2007c; Pickford et al., 2008; Shepherd et 

al., 2011; Wainwright et al., 2006) and extensive functional studies based on globin 

mutants in vivo (Avila-Ramirez et al., 2013; Elvers et al., 2004; Pittman et al., 2007; 

Smith et al., 2011; Wainwright et al., 2005) locate the C. jejuni globins within the 

selected group of bacterial globins, lead by Hmp (Forrester and Foster, 2012), that have 

been most comprehensively studied. However, difficulties in complementation by 

transformation of plasmids and, consequently, expression of proteins in C. jejuni restrict 

additional exploration related to function and confirmation of functions in vivo. For this 

reason, the heterologous expression of Cgb and Ctb represented a convenient next step 

in the characterisation of these proteins. 

The ability of Cgb to complement the loss of the nitrosative stress resistance phenotype 

by the absence of the flavohaemoglobin Hmp in E. coli constitute perhaps the most 

direct evidence of the globin function so far. Indeed, the growth of the Cgb-expressing 

or the complemented cultures with Hmp was comparable (Fig. 3.3), supporting the role 

of Cgb as an efficient NO and RNS detoxification mechanism in the heterologous host. 

This finding is in agreement with the evidence of the nitrosative stress sensitivity shown 
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by the deletion of the cgb gene in C. jejuni (Avila-Ramirez et al., 2013; Elvers et al., 

2004). Thus, these results together strongly support a prominent role for this single-

domain globin as a primary defence against nitrosative damage in the native host.    

Since Cgb shares a high level of homology with the globin domain of Hmp from E. coli 

(33%) (Elvers et al., 2004), a similar molecular mechanism involving the conversion of 

NO and O2 to NO3
-
 is likely. Indeed, a denitrosylase or dioxygenase activity has been 

suggested (Shepherd et al., 2011). This proposal implies two conditions, the existence 

of efficient reductases in both the heterologous and the native host and the availability 

of O2. Interestingly, the protection of respiration against NO inhibition offered by Cgb 

in E. coli hmp cells clearly correlates with the consumption of NO (figure 3.6C). 

However, the ability of Cgb to consume NO does not seem to be O2-dependent since the 

consumption patterns were comparable in the presence and absence of O2. This 

behaviour suggests the capability of this globin to detoxify NO by a mechanism 

different from the production of NO3
-
; reduction of NO to N2O is a possibility.  

The capability to detoxify NO under anaerobic conditions appears to vary among 

globins from different organisms. For instance, as mentioned before, the FHb Hmp from 

E. coli plays a major role as a NO detoxifier in aerobic conditions but only a minor one 

as a NO reductase under anaerobiosis (Mills et al., 2001). In agreement, the TrHb2 

(PhHbO) from P. haloplanktis was shown to consume NO in an O2-dependent manner 

when the globin was heterologously expressed in E. coli, losing its function in the 

absence of O2 (Coppola et al., 2013). On the other hand, the fungal FHb from 

Saccharomyces cerevisiae substantially contributes to NO consumption in both aerobic 

and anaerobic conditions (Liu et al., 2000). And, although the evidence is still scarce, in 

vitro studies support a more efficient NO reduction activity of fungal FHbs compared to 

their very well characterised orthologues in bacteria (e.g. E. coli) (reviewed by Forrester 

and Foster, 2012).  

The data above suggest that reduction more than denitrosylation (or dioxygenation) 

might be the reaction mediated by Cgb. This hypothesis could explain why consumption 

of NO seems to be independent of O2, at least in E. coli (Fig. 3.6C). However, since 

studies in Campylobacter have demonstrated a correlation between globin expression 

and O2 availability under conditions of nitrosative stress, an O2-dependent NO 
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detoxification reaction for this single-domain globin has been generally proposed. 

Indeed, Cgb is maximally expressed in the presence of oxygen (Avila-Ramirez et al., 

2013; Elvers et al., 2005; Elvers et al., 2004; Monk et al., 2008; Wainwright et al., 

2005). Besides, the inability of Cgb to complement the NO resistance phenotype of the 

E. coli hmp norR mutant under anaerobic conditions (Fig. 3.7) supports the O2-

dependence of the Cgb function. However, this result is not conclusive, since a role of 

NorW, the transcription of which depends on NorR, has been suggested as the 

heterologous reductase partner of Cgb in E. coli (see Chapter 5).  

The data presented here do not necessarily rule out the possible function of Cgb as a NO 

reductase. For instance, during infection and pathogenesis, when Campylobacter faces 

nitrosative stress, it is possible that the NssR-dependent genes (including Cgb) are 

induced in a complex pattern due to the expected variations in oxygen availability. 

Thus, once Cgb is expressed, a stable protein might perhaps play a role detoxifying NO 

independent of the oxygen tension. However, experimental approaches are needed to 

support this proposal.  

The inability of Ctb to support the growth of the E. coli hmp in the presence of NO and 

GSNO (Fig. 3.4) is in agreement with previous studies in Campylobacter where a strain 

defective in the truncated haemoglobin failed to show increased sensitivity to nitrosative 

stress. Indeed, cultures of the C. jejuni ctb mutant grew at a rate comparable to the 

isogenic strain in the presence of GSNO while a cgb mutant was severely inhibited 

(Avila-Ramirez et al., 2013; Wainwright et al., 2005). Moreover, the enhanced 

expression of Ctb, triggered by the presence of NO or RNS appears to play a deleterious 

role in the absence of Cgb in C. jejuni (in a cgb mutant). It has been shown that the 

hypersensitivity of a cgb mutant to nitrosative stress, measured as loss of viability in the 

presence of NO (Wainwright et al., 2005) or as impairment of growth by GSNO (Avila-

Ramirez et al., 2013) is alleviated by the deletion of the truncated globin, suggesting 

that the absence of Ctb partially suppresses the effect of the cgb mutation.  

In the present study, the ability of Ctb to protect respiration of E. coli hmp from NO 

inhibition has been demonstrated. This function appears to be, as in the case of the Cgb-

expressing cells, an O2-independent NO consumption mechanism (Fig. 3.6D). Indeed, 

NO uptake was not diminished by the depletion of O2 in the chamber.  However, since 
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the growth of the heterologous host was not protected from the NO and GSNO toxicity 

by the expression of Ctb (Fig. 3.4), and there is no evidence in Campylobacter to 

support the role of this globin in protection against nitrosative stress, we believe that the 

function of Ctb observed in E. coli might have no physiological significance.  

The Vitreoscilla globin (Vgb) enhances microaerobic growth of E. coli and other 

bacterial and eukaryotic species (reviewed by Frey et al., 2011)  by supposedly transfer 

O2 to the terminal oxidases (Park et al., 2002; Ramandeep et al., 2001; Webster, 1987). 

In agreement with this function, the up-regulation of the globin-encoding gene in 

oxygen-limitation has been documented in the native host (Boerman and Webster, 

1982) and in E. coli (Dikshit et al., 1990). On the other hand, the structural and kinetic 

characteristics of Ctb and its involvement in controlling the intracellular oxygen 

tensions shown in C. jejuni (Wainwright et al., 2005) suggest a more direct role of this 

globin in O2 chemistry. However, the question of why Ctb is over-expressed under 

conditions of nitrosative stress but not by oxidative stress or variations in oxygen 

concentrations remains unanswered.  

During purification, Ctb is found in the soluble fraction of E. coli cells (Pickford et al., 

2008), suggesting that the globin is not bound to cellular membranes and consequently 

might not be able to improve the O2 uptake of the heterologous host. Growth of the E. 

coli hmp mutant expressing either Ctb or Cgb was comparable to control cultures 

carrying the empty vector or complemented in trans with hmp (Fig. 3.2). Besides, when 

the respiration rates of Ctb-expressing cells were compared to the control harbouring the 

empty vector or to cells expressing Cgb, no differences were found either (Table 3.1). It 

is possible however that, by limiting the O2 availability during growth (e.g. 

microaerobic or anaerobic conditions), the expression of Ctb in E. coli produced 

differences. Preliminary work testing the growth of the E. coli hmp norR mutant 

expressing the C. jejuni globins in anaerobic conditions failed to show any improvement 

in the profile of Ctb or Cgb-expressing cultures compared to the controls (Hannah 

Southam personal communication). Thus, herein it is concluded that the role in 

supporting microaerobic growth and moderating respiration described for Ctb in C. 

jejuni, is not transferable to the heterologous host E. coli.  
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3.4 Conclusions 

The single domain haemoglobin Cgb, but not the truncated haemoglobin Ctb, from C. 

jejuni confers tolerance to NO and RNS when expressed in the heterologous host E. coli 

lacking the flavohaemoglobin Hmp. This finding confirms the role of Cgb as a NO 

detoxification mechanism in the native host. Besides, the ability of both Cgb and Ctb to 

protect respiration from NO inhibition, and their ability to consume NO in aerobic and 

anaerobic conditions is demonstrated, suggesting that the molecular mechanism to 

detoxify NO might be independent of O2 availability. However, the failure of Cgb to 

support the growth of an E. coli hmp norR mutant in the absence of O2 argues against 

this proposal. Neither Cgb nor Ctb expression affected the respiration capacity or the 

response to oxidative stress of the heterologous host.  
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Chapter 4. Reducibility of the Cgb and Ctb haem cofactors in E. coli 

and C. jejuni.   

 

4.1Introduction 

During aerobic NO detoxification, FHbs catalyse the formation of the harmless ion 

nitrate. This reaction implies the oxidation of the haem group that in turn must be re-

reduced in order to complete the following detoxification cycle. FHbs solve the problem 

of haem reduction by encoding a reductase domain: an intra-protein electron 

transference from the reductase domain (or FNR, ferredoxin-NADP reductase-like 

domain) to the N-terminal haem domain in an NAD(P)H-dependent reaction via a 

noncovalently bound FAD allows the reduction of the ferric haem (FeIII) (Gardner et 

al., 1998a; Hausladen et al., 1998; Hernandez-Urzua et al., 2003).  

The absence of a reductase domain in the structures of a growing number of bacterial 

SDgbs and TrHbs that have been implicated in nitrosative stress resistance (see Chapter 

1, Tables 1.3 and 1.4) implies the interaction of such proteins with cognate reductases in 

vivo in order to promote haem reduction after oxidation by NO. However, unlike 

eukaryotic globins such as Mb in which the reduction of the haem is catalyzed by a 

NADH-dependent myoglobin reductase in a reaction mediated by cytochrome b5 in 

muscle (Livingston et al., 1985), the associated reductases for bacterial haemoglobins 

lacking the flavo-domain have not been identified.  

The use of visible absorption spectra has allowed the observation of the intracellular 

redox state of eukaryotic and prokaryotic globins heterologously expressed in E. coli. 

Thus, the haem iron atom of human neuroglobin is found in the ferrous form (Dewilde 

et al., 2001; Trandafir et al., 2004; Van Doorslaer et al., 2003), while the TrHb2 

(PhHbO) from P. haloplanktis (Coppola et al., 2013) and Ctb from C. jejuni 

(Wainwright et al., 2006) are in the oxy-ferrous form (FeII-O2). These results suggest 

the presence of a reductase or a reducing environment in the E. coli cells that is equally 

efficient for maintaining the reduced form of these, independently of differences among 

globin structures. Moreover, reduction of oxidised neuroglobin, cytoglobin and horse 

muscle myoglobin is facilitated by the presence of NADH in either soluble cellular 
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fractions of E. coli or extracts from brain and liver, pointing to the possibility of a non-

specific reduction mechanism (Trandafir et al., 2007).  

The ability of Cgb to efficiently support the growth of a NO-sensitive E. coli strain 

under nitrosative stress conditions and the NO consumption of Cgb and Ctb-expressing 

E. coli cells (Chapter 3) implies the existence of an associated reductase(s) or the 

adequate intracellular environment to facilitate the reduction of the haem groups 

required to bind the ligands. Both Cgb and Ctb have been purified and their 

spectroscopic characteristics described (Table 4.1). By using these data, it is possible to 

follow the changes in the redox state of the haem groups of the C. jejuni globins. Thus, 

the objective of the present chapter is to examine the redox forms of the Cgb and Ctb 

haems in the presence of cellular extracts of E. coli and C. jejuni, testing the reducibility 

of the globins in the presence and absence of reducing equivalents (NADH). 

Furthermore, the re-reducibility of the globins after oxidation by the addition of NO is 

also investigated.   
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Table 4.1 Electronic absorbance characteristics of the C. jejuni globins 

 

 

 

 

 

 

 
Globin 
 

 
  Redox form Absorption maxima 

(nm) 
Extinction 

coefficient 

(mM
-1

 cm
-1

) 

References 

Soret 

region  
α, β region  

Cgb  

 

 

 

 

 

Ctb 

Ferrous (FeII) 434          555  

      13.6  

     

 

 

 

 

 

23.47 

(Pickford et 

al., 2008; 

Shepherd et 

al., 2011) 

 

 

 

(Pickford et 

al., 2008; 

Shepherd et 

al., 2011; 

Wainwright 

et al., 2006) 

Oxy-ferrous (FeII-O2) 411          540, 575 

Ferric (FeIII) 398 505, 640 

Ferrous-NO  (FeII-NO) 419 540, 565 

Ferric-NO (FeIII-NO) 520 532, 566 

   

Ferrous (FeII)  432 566 

Oxy-ferrous (FeII-O2) 414 542, 578 

Ferric (FeIII) 410 512, 542, 

582, 640 

Ferrous-NO  (FeII-NO) 419 540, 565 

Ferric-NO (FeIII-NO)   -       - 

 Ferrous-CO (FeII-CO) 421 538, 569   
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4.2 Results 

4.2.1 NADH promotes reduction of Cgb in cellular extracts of E. coli.  

In order to test the reducibility of Cgb in a cellular milieu, purified Cgb (5 µM) was 

added to soluble extracts of an E. coli hmp mutant in the presence of an excess of 

NADH (10 mM) and changes in the optical spectra were recorded using an Olis RSM 

1000 spectrophotometer. Due to difficulties in identifying clearly the redox forms from 

the absorption maxima of the spectra in the Soret region, the α, β region was used 

instead. Within this region, the absorption maxima did not deviate more than 2 to 3 nm 

from previously described values (Pickford et al., 2008; Shepherd et al., 2011; 

Wainwright et al., 2006). The absolute spectra recorded against a base line of NADH-

containing extracts showed a mixture of FeII-O2 and FeIII redox forms immediately 

after the addition of the globin to the NADH-containing extracts (421, 542, 575 nm) 

(Fig. 4.1A, red dashed line). However, after 15 min incubation at 37 °C, a stable 

reduced form (FeII) (434, 558) (Fig. 4.1A, blue solid line) was observed. On the other 

hand, addition of the globin to cellular extracts in the absence of NADH did not produce 

changes in the redox state of the haem, remaining as a mixture of FeII-O2 and FeIII 

forms even after 20 min incubation (Fig. 4.1B, red dashed and solid blue lines 

respectively). This result suggests that the reduction of Cgb in E. coli is dependent on 

the presence of NADH.  

To investigate whether the reduction of Cgb in NADH-containing cellular extracts was 

due to the interaction of components of the cellular milieu mediated by the presence of 

reducing equivalents, or a consequence of the presence of the latter only, the 

reducibility of Cgb was tested in buffer containing NADH.  After 20 min incubation, the 

spectrum shifted from FeII-O2/FeIII to FeII-O2 according to the absorption maxima 

observed in the α, β region (542, 573 nm) (Fig. 4.1C, blue solid line). However, the 

peak expected at 411 nm was absent in the Soret region. Instead, peaks at 421 and 645 

nm were recorded, indicating the presence of oxidised haem (FeIII) forms (Table 4.1). 

This suggests that the presence of NADH in the absence of cellular components has a 

poor effect as a reductant, and it is concluded that the reduction of the Cgb haem 

requires the presence of both cellular extracts and NADH. 
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Figure 4.1 Redox state of the Cgb haem cofactor in E. coli extracts. 

Purified Cgb (5 µM) was mixed with soluble extracts of E. coli hmp mutant in 50 mM 

Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C, and absorption 

spectrum was recorded immediately after addition of the protein (red dashed line) and 

after 15 min incubation (blue solid line) (A). Changes in absorbance immediately (blue 

solid lines) and after 20 min incubation in the presence of soluble extract without 

NADH (B) and in buffer containing NADH (C) are shown as controls. Soluble extracts 

containing NADH, soluble extracts or buffer added with NADH were used as a baseline 

(A, B and C respectively). Tests were repeated three times with similar results. 

Modified from Tinajero-Trejo et al. (2013). 
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The reducibility of Cgb in E. coli extracts in the presence of NADH suggests the 

presence of a reductase system in the heterologous host. Therefore, in order to test the 

efficiency  of the putative reduction system, addition of an equimolar aliquot of PROLI 

NONOate with regards to the globin concentration (5 µM) was added to promote 

oxidation and changes in the redox form towards the re-reduction were followed (Fig. 

4.2). Since PROLI NONOate releases 2 moles of NO per mole of parent compound in 

the tested conditions (Saavedra et al., 1996), NO is expected to be in excess. Cgb was 

incubated for 15 min in E. coli hmp soluble extracts containing NADH to promote 

reduction and the spectrum was recorded (427, 532, 566 nm) (Fig. 4.2A, red dashed 

line). Upon addition of PROLI NONOate, a shift in the absorption maxima from FeII to 

the characteristic NO-ferric form (FeIII-NO) was immediately observed (Fig. 4.2A, 

green short dashed line). However, after 10 min incubation, a mixture of the FeII and 

FeII-O2 forms was recorded (Fig. 4.1A, blue solid line). Furthermore, a second addition 

of a higher concentration of PROLI NONOate (10 µM) produced a similar effect (Fig. 

4.1B) suggesting that the reductase(s) or the reductant environment is able to efficiently 

promote the turnover of the haem during several oxidation/reduction cycles.  

On the other hand, addition of PROLI NONOate (5 µM) to Cgb in buffer plus NADH, 

produced a FeIII-NO spectrum followed by a rapid change to a transient oxidised form 

(~FeIII) (413, 505, 645) (Fig. 4.2, blue solid line). Surprisingly, the haem signal was 

lost after 15 min incubation (Fig. 4.2, gray solid line), suggesting the decomposition or 

loss of the haem group. The basis of this is unclear.  

The findings above are indicative of the presence of an NADH-dependent reductant 

system in the heterologous cellular milieu that efficiently reduced the Cgb haem 

following oxidation by NO. 

4.2.2 NADH promotes reduction of Cgb in cellular extracts of C. jejuni. 

In order to investigate whether the Cgb reduction observed in cellular extracts of E. coli 

was also produced in extracts of the native host, the globin (5 µM) was added to soluble 

fractions prepared from cultures of a C. jejuni cgb ctb mutant strain in the presence of 

NADH (10 mM). As in the E. coli extracts, the spectrum of a mixture of FeII-O2 and 
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Figure 4.2 Redox state of the Cgb haem cofactor in E. coli extracts and turnover 

after oxidation by NO. 

Purified Cgb (5 µM) was mixed with soluble extracts of E. coli hmp mutant in 50 mM 

Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C. Arrow (A to B) 

indicates subsequent steps performed with the same sample. (A) After reduction of Cgb 

(red long dashed line), PROLI NONOate (5 µM) was added and changes in the 

absorption were recorded immediately (green dashed line) and after 10 min incubation 

(blue solid line). (B) Additional PROLI NONOate (10 µM) was added to the sample 

(blue solid line) and the changes recorded immediately (green dashed line) and after 2 

min incubation (gray solid line). (C) Changes in the absorbance of Cgb in buffer 

containing NADH is shown as a control. Soluble extracts containing NADH (A and B) 

or buffer containing NADH (C) were used as a baseline. The tests were repeated three 

times with similar results. Modified from Tinajero-Trejo et al. (2013). 
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FeIII redox forms was recorded immediately after the addition of the globin (419, 542, 

577, 645 nm) (Fig. 4.3A, red dashed line). However, in this condition, incubation of 

Cgb led to incomplete reduction; a stable mixture of FeII and Fe-O2 was observed after 

30 min incubation (427, 548, 568 nm) (blue solid line). On the other hand, incubation of 

Cgb in C. jejuni extracts in the absence of NADH did not produce changes in the 

spectrum after 25 min incubation (Fig. 4.3B, blue solid line), indicating, as in E. coli 

extracts, the requirement of reducing equivalents for the globin reduction.  

A partially reduced Cgb sample was prepared by incubation of the globin in NADH-

containing cellular extracts for 25 min (427, 546, 570 nm). Addition of PROLI 

NONOate (5 µM) to this sample (Fig. 4.4A, red dashed line) produced an immediate 

shift of the spectrum to oxidised haem forms (FeIII and FeIII-NO) (416, 546, 570, 645 

nm) (Fig. 4.4A, green dashed line) followed by a reconversion to the partially reduced 

mixture once more after 10 min (Fig. 4.4A, blue solid line). Similar results were 

observed after a second addition of PROLI NONOate (10 µM) (Fig. 4.4B), resembling 

the re-reduction of the globin recorded in E. coli extracts under the same conditions. On 

the other hand, when an oxidised sample (Cgb in C. jejuni extracts without NADH) 

(Fig. 4.4C, gray solid line) was added with PROLI NONOate (10 µM), a FeIII-NO 

spectrum was recorded (425, 533, 568 nm) (green dashed line) shifting back to the FeIII 

form almost immediately (30 s) (Fig. 4.4C, blue solid line).  

4.2.3 The Cgb haem is not reduced in E. coli membrane suspensions 

Even though the reduction of Cgb was demonstrated in NADH-containing soluble 

cellular extracts of E. coli and C. jejuni, reaching stable reduced forms took several 

minutes (15 and 30 min respectively). This might be caused by the absence of a more 

efficient reductase(s) contained in the insoluble cellular fraction. Thus, in order to test 

whether the globin could be more rapidly reduced in the presence of both soluble and 

insoluble cellular content, attempts to test the reducibility of Cgb in crude extracts of C. 

jejuni (containing soluble and membrane fractions) were performed. However, the 

presence of high concentrations of membrane components (such as cytochrome c) 

(Jackson et al., 2007), which are also reduced by NADH and can react with NO, 

obscured the globin haem signal making it difficult to distinguish between the redox 

changes (not shown).  
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Figure 4.3 Redox state of the Cgb haem cofactor in C. jejuni extracts.  

Purified protein (5 µM) was mixed with soluble extracts of C. jejuni cgb ctb mutant in 

50 mM Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C (A). Absorption 

spectra were recorded immediately after addition of the protein (red dashed line) or 30 

min (blue solid line) incubation. (B) Spectra in soluble extracts without NADH 

immediately after globin addition (red dashed line) and 25 min later (blue solid line) are 

shown as a control. Spectra were recorded against a baseline of the soluble extracts in 

the presence or absence of NADH respectively. The tests were repeated twice with 

similar results. Modified from Tinajero-Trejo et al. (2013). 
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Figure 4.4 Redox state of the Cgb haem cofactor in C. jejuni extracts and turnover 

after oxidation by NO.  

Purified Cgb (5 µM) was mixed with soluble extracts of C. jejuni cgb ctb mutant in 50 

mM Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C. Arrow (A to B) 

indicates subsequent steps performed with the same sample. (A) After Cgb showed a 

stable FeII-O2 form (red dashed line), 10 µM PROLI NONOate were added and changes 

in the absorption recorded immediately (green short dashed line) and after 10 min 

incubation (blue solid line). (B) Additional 10 µM PROLI NONOate was added to the 

sample (blue solid line) and the changes recorded immediately (green dashed line) and 

after 2 min incubation (gray solid line). (C) Changes in the absorbance of Cgb in 

soluble extracts without NADH are shown as a control. Spectra were recorded against 

baseline of the soluble extracts in the presence (A and B) or absence (C) of NADH. The 

tests were repeated three times with similar results. Modified from Tinajero-Trejo et al. 

(2013). 
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In a different attempt to test whether insoluble components are involved in the reduction 

of the globin, membranes were isolated from E. coli hmp cells. Since the signal from the 

E. coli membranes was negligible compared to that of Cgb, this system was suitable for 

testing the redox changes of the globin.  

Membrane suspensions in the presence of NADH failed to promote reduction of ferric 

Cgb (5 µM) after 20 min incubation (513, 505, 645 nm) (Fig. 4.5A, blue solid line) and 

addition of PROLI NONOate (10 µM) produced a transient FeIII-NO form (427, 536, 

570 nm) (Fig. 4.5B, green dashed line) that, after 15 min incubation, shifted back to the 

native oxidised form (FeIII). These results suggested that the electron donor(s) involved 

in the reduction of Cgb is soluble. However, the nature of such reductase(s) is still 

unknown.  

4.2.4 NADH promotes reduction of Ctb in cellular extracts of E. coli. 

Ctb failed to support the growth of the E. coli hmp mutant strain under nitrosative stress 

conditions (Chapter 3, Fig. 3.4). However, the ability of the truncated globin to consume 

NO in E. coli cells in aerobic and anaerobic conditions (Chapter 3, Fig. 3.6D) suggests 

that Ctb might have a minor function in NO chemistry that would imply changes in the 

redox state of the haem.  

In view of the fact that the native form of the purified Ctb haem is oxidised (FeIII) (410, 

512, 542, 582, 640 nm) (Pickford et al., 2008), and consequently unable to bind NO 

(Shepherd et al., 2011), the haem group must be reduced in the cellular milieu as an 

initial step in order to allow the NO binding. In agreement with this principle, addition 

of oxidised Ctb (FeIII) (4.8 µM) to E. coli hmp extracts in the presence of NADH (10 

mM) (Fig. 4.6A, red dashed line) produced the complete reduction (FeII) of the haem 

after 30 min incubation at 37 °C (433, 566 nm) (Fig. 4.6A, blue solid line). As observed 

for Cgb, the reduction was dependent on the presence of both cellular extracts and 

NADH. Indeed, the addition of the truncated globin to extracts in the absence of 

cofactor failed to produce changes in the FeIII haem spectrum (Fig. 4.6B), and the 

presence of NADH in buffer promoted only a partial reduction after 30 min incubation 

(Fig. 4.6C).    
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Figure 4.5 Redox state of the Cgb haem cofactor in E. coli membrane suspensions 

and changes after oxidation by NO.  

Purified Cgb (5 µM) was mixed with membrane suspensions of E. coli hmp mutant in 

50 mM Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C. Arrow indicates 

subsequent steps performed with the same sample. (A) Absorption spectra were 

recorded immediately after addition of the protein (red dashed line) and after 20 min 

incubation (blue solid line). (B) PROLI NONOate (10 µM) was added to the sample 

(blue solid line) and changes in the absorption were recorded immediately (green 

dashed line) and after 10 min incubation (gray solid line). Membrane suspension 

containing NADH was used as a baseline. The test was repeated twice with similar 

results.  
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Figure 4.6 Redox state of the Ctb haem cofactor in E. coli extracts.  

Purified Ctb (4.8 µM) was mixed with soluble extracts of E. coli hmp mutant in 50 mM 

Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C. Absorption spectra were 

recorded immediately after addition of the protein (red dashed lines) and after 30 min 

incubation (A). Changes in absorbance in the presence of soluble extract without 

NADH (B) or in buffer containing NADH (C) immediately (red solid lines) and after 20 

or 30 min incubation respectively (blue solid lines) are shown as controls. Soluble 

extracts containing NADH, soluble extracts or buffer added with NADH were used as a 

baseline (A, B and C respectively). Tests were repeated two times with similar results. 

Modified from Tinajero-Trejo et al. (2013). 
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The re-reduction of the truncated globin in the heterologous extracts after NO oxidation 

was investigated. A Ctb reduced sample produced by the incubation of the globin in 

NADH-containing E. coli extracts for 30 min (Fig. 4.7A, red dashed line) was added 

with an equimolar concentration of PROLI NONOate (4.8 µM). An immediate shift to a 

fully oxidised spectrum (FeIII) (Fig. 4.7A red dashed line) was followed by 

reconversion to the reduced state (FeII) after 10 min incubation (Fig. 4.7A, blue solid 

line). A second addition of PROLI NONOate (10 µM) resulted again in oxidation and 

then re-reduction of the globin haem (Fig. 4.7B). On the other hand, addition of Ctb to 

extracts in the absence of NADH showed no changes after addition of NONOate (10 

µM) (Fig. 4.7C) in agreement with the inability of oxidised Ctb to bind NO (Shepherd 

et al., 2011).  

4.2.5 NADH promotes reduction of Ctb in cellular extracts of C. jejuni. 

Reduction of purified Ctb in C. jejuni soluble extracts was tested. Addition of native 

oxidised globin (4.5 µM) to cellular soluble extracts of C. jejuni in the presence of 

NADH (10 mM) (Fig. 4.8A, red dashed line) produced a stable, partially reduced form 

(FeII/FeII-O2) after 30 min incubation at 37 °C (425, 548, 571 nm) (Fig. 4.8A, blue 

solid line). As before, addition of Ctb to extracts in the absence of NADH did not 

produce redox changes (Fig. 4.8B) pointing out the dependence of reduction on NADH.  

Upon reduction of Ctb (4.5 µM) in C. jejuni extracts in the presence of NADH (Fig. 

4.9A, red dashed line), PROLI NONOate (10 µM) was added to oxidize the sample 

(Fig. 4.9A, green dashed line). Turnover to the partially reduced form observed after 20 

min incubation (Fig. 4.9A, blue solid line) is in agreement with the re-reduction of Ctb 

observed in E. coli extracts.  

Finally, in order to test whether a different electron donor could promote the reduction 

of Ctb in C. jejuni extracts, formate (10 mM), one of the most efficient sources of 

energy for Campylobacter (Hoffman and Goodman, 1982), was added instead of 

NADH. No changes were recorded in the spectrum after 30 min incubation (not shown), 

suggesting that, at least in the tested conditions, formate fails to mediate the reduction of 

the globin.  
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Figure 4.7 Redox state of the Ctb haem cofactor in E. coli extracts and turnover 

after oxidation by NO.  

Purified Ctb (4.8 µM) was mixed with soluble extracts of E. coli hmp mutant in 50 mM 

Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C. Arrow (A to B) 

indicates subsequent steps performed with the same sample. (A) After reduction of Cgb 

(red long dashed line), PROLI NONOate (4.8 µM) was added and changes in the 

absorption were recorded immediately (green short dashed line) and after 15 min 

incubation (blue solid line). (B) The sample (blue solid line) was added with PROLI 

NONOate (10 µM) and the changes recorded immediately (green short dashed line) and 

after 15 min incubation (gray solid line). Spectra were recorded against a NADH-

containing soluble extract baseline. (C) Changes in the absorbance of Ctb in buffer 

containing NADH (red dashed line) and after NONOate addition (red and blue lines) are 

shown as a control. Soluble extracts in the presence (A and B) or absence (C) of NADH 

were used as the baseline. The tests were repeated twice with similar results. Modified 

from Tinajero-Trejo et al. (2013). 
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Figure 4.8 Redox state of the Ctb haem cofactor in C. jejuni extracts.  

Purified Ctb (4.5 µM) was mixed with soluble extracts of the C. jejuni cgb ctb mutant in 

50 mM Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C. (A) Absorption 

spectra were recorded immediately after addition of the protein (red dashed line) and 

after 30 min (blue solid line) incubation. (B) Changes in the absorbance in soluble 

extracts without NADH immediately after addition of the protein (red dashed line) and 

after 30 min incubation (blue solid line) are shown as a control. Soluble extracts in the 

presence (A) or absence (B) of NADH were used as the baseline. Tests were repeated 

twice with similar results. Modified from Tinajero-Trejo et al. (2013). 
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Figure 4.9 Redox state of the Ctb haem cofactor in C. jejuni extracts and turnover 

after oxidation by NO.  

Purified Ctb (4.5 µM) was mixed with soluble extracts of C. jejuni cgb ctb mutant in 50 

mM Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C. After reduction of 

Ctb (red long dashed line), PROLI NONOate (10 µM) was added and changes in the 

absorption recorded immediately (green short dashed line) and after 20 min incubation 

(blue solid line). NADH-containing extracts were used as a baseline. The test was 

repeated twice with similar results. Modified from Tinajero-Trejo et al. (2013). 
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4.3 Discussion 

A metmyoglobin (metMb) reductase from bovine heart was first described by Hagler et 

al. in 1979. Reduction of metMb by this reductase was dependent on NADH and 

ferrocyanide ion. However, the presence of cytochrome b5 was more efficient than 

ferrocyanide in vitro. Later, the interaction of cytochrome b5 from microsomal 

preparations with Mb and Mb reductase was demonstrated electrophoretically and 

kinetic and 
1
H NMR data supported the electron transfer from the reductase to 

myoglobin mediated by cytochrome b5 in muscle (Livingston et al., 1983). The 

reduction of metmyoglobin in heart muscle is such an efficient reaction that the oxidised 

form is not detectable by in vivo 
1
H NMR.  

On the other hand, failure in the identification of specific reductases seems to be a 

common problem, not only for other eukaryotic globins (e.g. neuroglobin and 

cytoglobin) and prokaryotic non-flavo globin proteins (SDgbs and TrHbs), but also for 

other haem enzymes. For instance, genes encoding bacterial nitric oxide synthases 

(bNOS) have been identified in a number of bacterial genomes (e.g. Deinococcus 

radiodurans and Bacillus subtilis among many others) (Kunst et al., 1997; White et al., 

1999). NO production by bNOS appears to protect bacteria from oxidative stress 

(Gusarov and Nudler, 2005; Shatalin et al., 2008) and to play a role in resistance to 

antibacterial agents (Gusarov et al., 2009). Interestingly, these enzymes lack the C-

terminal flavodomain that enables the reduction of the haem in mammalian NOS. A 

reduced haem, consequently able to bind O2, constitutes a requisite for the production of 

NO from arginine (Gorren and Mayer, 2002; Wei et al., 2003). Thus, as is the case for 

SDgbs and TrHbs, bNOSs must rely on an independent electron donor protein. The 

search for such a dedicated redox partner has been unfruitful; the production of NO in 

vivo was demonstrated in B. subtilis and B. anthracis but efforts to find “the" dedicated 

redox partner(s) in these microorganisms were unsuccessful (Gusarov et al., 2008). 

Since over-expression of bNOS from B. subtilis in the native host and in the 

heterologous host E. coli (a phylogenetically distant bacterium, lacking nos genes) 

dramatically increased the production of NO, the authors concluded that bNOS function 

is not dependent on dedicated redox partners.  
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Is there enough evidence to reach such a conclusion with regards to the reductases of 

bacterial non-flavo globins? Is it possible that, as it has been proposed for bNOS, the 

SDgbs and the TrHbs globins rely on promiscuous electron donors more than specific 

reductases? Mutations in the TrHb2 (PhHbO) and the SDgb (Cgb) encoding-genes from 

P. haloplanktis and C. jejuni respectively led to the inference of roles in NO and RNS 

detoxification (Avila-Ramirez et al., 2013; Elvers et al., 2004; Parrilli et al., 2010; 

Pittman et al., 2007). This function was later confirmed in both cases by heterologous 

over-expression in an E. coli hmp mutant strain. Both PhHbO and Cgb complemented 

the NO and GSNO resistance phenotype loss by the absence of the flavohaemoglobin in 

the heterologous host (Coppola et al., 2013 and herein). Besides, the TrHb1 (HbN) from 

M. tuberculosis, which the encoding-gene is up-regulated under nitrosative stress 

conditions in the native host, also supports the growth of an Hmp-lacking E. coli in the 

presence of NO (Pathania et al., 2002a). Thus, these three structurally different globins, 

belonging to phylogenetically diverse bacteria, appear to find an efficient reductase(s) 

partner(s) in E. coli. This indeed suggests the presence of general reduction systems 

common perhaps to any haem protein. Unfortunately, studies of globins for which a 

function has been demonstrated in both the native host and heterologously are too 

scarce to confirm this proposal.  

Herein, it has been shown that both Cgb and Ctb haems are reduced by soluble extracts 

of E. coli (Fig. 4.1 and 4.6) and C. jejuni (Fig. 4.3 and 4.8) in the presence of NADH. 

These findings suggest the existence of a reductant component(s) in the heterologous 

host that is able to donate electrons as efficiently as their counterpart(s) in the native 

host. Furthermore, the turnover of the Cgb and Ctb haems after oxidation by an excess 

of PROLI NONOate (up to four times more NO compared to the concentration of 

globin (i. e. 5 µM Cgb and 10 µM NONOate)) (Fig. 4.2, 4.4, 4.7 and 4.9) implies the 

presence of high levels of the reductase protein(s). Perhaps an unspecific ‘diaphorase’ 

such as those described before (Liochev et al., 1994), able to catalyse several cycles of 

reduction, or a sufficiently reducing environment are responsible.  

Cgb, but not Ctb, supported the growth of an E. coli hmp mutant under nitrosative stress 

conditions (Chapter 3, Fig. 3.3). However, the reduction of Cgb and Ctb in cellular 

milieus (Fig. 4.1A and 4.3A, 4.6A and 4.8A respectively), even after NO oxidation, was 

comparable (4.2B and 4.4B, 4.7B and 4.9 respectively). Thus, it appears that reduction 
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is not the limiting factor related to the inability of Ctb to support the growth of E. coli in 

the presence of NO or RNS (Chapter 3, Fig. 3.4).  

Hausladen et al. (2001) suggested that the Hmp NOD activity implies the formation of a 

ferric nitrosyl intermediate (Hmp-FeIII-NO) prior to nitrate production. Moreover, in 

the absence of O2, a much slower reaction also dependent on the formation of the FeIII-

NO intermediate yields N2O as a result of dimerization and dehydration of nitroxyl 

(HNO) (Hausladen et al., 1998; Kim et al., 1999). The demonstration of the ability of 

the Cgb haem to bind NO in the reduced (Cgb-FeII-NO) and the oxidised (Cgb-FeIII-

NO) forms led to the proposal of a NOD or denitrosylase activity as the detoxification 

mechanism mediated by this globin (Shepherd et al., 2011). We hypothesise that 

differences in the fate of the NO molecule bound to the ferrous form of one or the other 

globin may explain the functional differences. Since reduced Ctb is able to bind NO 

(Ctb-FeII-NO) (Wainwright et al., 2006) but the oxidised form fails to do so (Shepherd 

et al., 2011) (Fig. 4.6B, 4.7C and 4.8B), a detoxification reaction (e.g. NOD, 

denitrosylase or NO reductase activity) seems unlikely. However, this suggestion fails 

to explain the NO consumption shown in Ctb-expressing E. coli cells (Chapter 3, Fig. 

3.6D). More experiments are required in order to better understand these apparent 

discrepancies.   

Even though the NADH-dependent reduction of the C. jejuni globins was demonstrated 

in cellular soluble extracts, the periods of incubation needed for  the stabilisation of the 

reduced forms were, perhaps, too long to be physiologically relevant (e.g. 10 min for 

Cgb and 20 min for Ctb in C. jejuni extracts) (Fig. 4.3A and 4.6A respectively). 

However, this might be related to the artificial system used in this study. Indeed, it is 

clear that heterologous globins synthesised in E. coli are natively reduced (see section 

4.1). Another possibility is that insoluble components, absent in our system, participate 

in a more efficient globin reduction (e.g. the electron flux from the respiratory chain). If 

this is the case, spectroscopic changes in cellular extracts containing both soluble and 

membrane fractions may produce a more efficient reduction. Indeed, a preliminary 

study of the reduction of Cgb in C. jejuni crude extracts using formate as the electron 

donor showed features of reduction (Smith, 2010). However, as reported here, the signal 

of cytochrome c made it difficult to distinguish clearly the globin spectrum. On the 
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other hand, failure of membrane suspensions containing NADH to reduce Cgb in E. coli 

(Fig. 4.5A) argues against this hypothesis. 

Considering the experimental challenges faced when using extracts to test the role of 

membrane components in the reducibility of the C. jejuni globins, a more suitable 

model might be, for example, the use of a respiration defective strain to test the ability 

of Cgb to detoxify NO in vivo in the absence of a functional respiratory chain. Such a 

possibility is explored in the following Chapter. 

4.4 Conclusions 

The single domain haemoglobin Cgb and the truncated globin Ctb from C. jejuni are 

reduced in soluble extracts of E. coli and C. jejuni in the presence of NADH. Transient 

oxidation of the globin haems by NO, followed by the reconversion to the reduce forms 

are dependent of both cellular soluble extracts and NADH.   
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Chapter 5. Looking for the reductase partners of Cgb in E. coli and C. 

jejuni 

5.1 Introduction 

Frey et al. (2000) showed that the expression of Cgb in an E. coli wild type strain 

improved the growth under nitrosative stress conditions. However, NO uptake of 

soluble cellular fractions obtained from a Cgb-expressing strain, failed to show 

differences when compared to the wild type. According to the authors, this discrepancy 

could be explained by the absence of a membrane-bound protein involved in the 

reduction of Cgb, as has been previously described for myoglobin (Livingston et al., 

1985). In the present work, the NO uptake and the protection of respiration against NO 

inhibition has been demonstrated in Cgb-expressing cells of an E. coli hmp mutant 

strain (Chapter 3, Fig. 3.6). Even though the NADH-dependent reduction of the Cgb 

haem after oxidation by NO was demonstrated spectrophotometrically in soluble 

fractions of E. coli and a C. jejuni, technical difficulties hampered the investigation of 

whether, in the presence of  membrane and soluble fractions (crude extracts), a more 

efficient turnover might take place (see Chapter 4).      

The ability of bacterial haemoglobins to associate with membranes has been previously 

described. Mycobacterial hemoglobin HbO (Pathania et al., 2002b) and the Vgb globin 

from Vitreoscilla (Ramandeep et al., 2001) bind to bacterial membranes and have been 

implicated in oxygen transfer (Dikshit et al., 1992; Park et al., 2002; Pathania et al., 

2002b). Vgb interacts with subunit I of cytochrome bo’ ubiquinol oxidases (Park et al., 

2002), supposedly playing a role as an O2 shuttle. For this reason, the Vitreoscilla 

globin is widely used for biotechnological applications (reviewed in Frey et al., 2011).  

Comparison between the Cgb and the Hmp structures suggests that the former may not 

interact with reductases as is true for the reductase domain of flavohaemoglobins. The 

conserved residue Lys-84, responsible for the formation of a salt bridge between the 

domains in the flavohaemoglobins (Ermler et al., 1995a), is absent in the C. jejuni 

globin. As Cgb and Vgb are homologues (42% amino acid identity), the former may 

interact with membranes and take electrons from the respiratory chain for the reduction 

of its haem during NO detoxification.  
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5.1.1 The respiratory chain of E. coli 

E. coli possesses a variety of energy-producing pathways. This characteristic makes it a 

suitable model for genetic studies of respiratory electron transfer and ATP synthesis 

(Cox and Downie, 1979; Poole and Williams, 1987). Mutants lacking aerobic 

respiratory metabolism are able to grow fermentatively or anaerobically with adequate 

electron acceptors. Indeed, E. coli possesses many NADH dehydrogenases (Kim et al., 

2008; Patridge and Ferry, 2006; Thorn et al., 1995), lactate and succinate 

dehydrogenases and a number of terminal reductases (Gennis and Stewart, 1996). Three 

different quinones (ubiquinone, menaquinone and demethylmenaquinone) and three 

terminal oxidases (cytochrome bo’, cytochrome bd-I and cytochrome bd-II) are 

synthesised in E. coli (Poole and Cook, 2000). Thus, electrons can be transferred to O2, 

the main terminal acceptor, or donated to alternative acceptors (e.g. dimethylsulfoxide, 

nitrate or fumarate).   

NADH constitutes the major carrier of electrons from glycolysis and the Krebs cycle, 

while FADH2 carries electrons transfered specifically from the oxidation of succinate by 

succinate dehydrogenase (Cecchini, 2003). It has been assumed that, in these processes, 

electrons are transferred to ubiquinone while the other quinones are mainly involved in 

transferring electrons from anaerobic metabolism (Wissenbach et al., 1990). The 

ubiquinone biosynthetic pathway has been studied in detail in E. coli (Meganathan, 

2001), and mutants defective in ubiquinone synthesis have been isolated (Gibson and 

Cox, 1973) due to their capacity to grow on glucose by fermentation (Wu et al., 1993), 

but not on non-fermentable carbon sources such as malate or succinate.  

Deletion of the ubiCA operon in E. coli leads to strains defective in chorismate lyase 

and 4-hydroxybenzoate octaprenyl transferase. These enzymes catalyse the first and 

second steps in the ubiquinone synthesis pathway and are rate limiting in ubiquinone 

synthesis (Soballe and Poole, 1998). Indeed, deletions in ubi genes render extremely 

poorly growing strains (Sharma et al., 2012; Wu et al., 1993; Wu et al., 1992).  
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5.1.2 The flavorubredoxin reductase (NorW) of E. coli 

The main mechanism for anaerobic NO detoxification in E. coli is catalysed by the 

flavorubredoxin (NorV). This oxygen-sensitive protein contains an NO reactive di-iron 

centre able to reduce NO to N2O (Gomes et al., 2002) in a mechanism that depends on 

the presence of a reductase partner: the FAD-containing NADH:flavorubredoxin 

oxidoreductase (NorW) (Gardner et al., 2003; Gardner et al., 2002; Gomes et al., 2002; 

Gomes et al., 2000). The induction of the norVW operon is regulated by the haem-

containing transcription factor (NorR) under nitrosative stress conditions, either in the 

presence or absence of O2 (Flatley et al., 2005; Pullan et al., 2007; Spiro, 2006).   

It has been suggested that NorW might be involved in the reduction of neuroglobin in 

vivo when the globin is heterologously expressed in E. coli. Indeed, NorW has been 

successfully utilised to reduce mouse neuroglobin in vitro in a reaction dependent on 

NADH (Giuffre et al., 2008).  

5.1.3 The lactate dehydrogenase (Cj1585c) of C. jejuni  

In the C. jejuni genome, the cj1585c gene is positioned upstream of cgb, yet divergently 

transcribed.  Cj1585c is an FAD-containing oxidoreductase using L-lactate as the 

electron donor (Thomas et al., 2010). It has been previously suggested that such a 

protein may play a similar role to the reductase partner of Cgb during NO 

detoxification. Indeed, cj1585c is up-regulated in response to NO under oxygen-limited 

conditions. However, induction of the members of the NssR regulon (including cgb) 

under nitrosative stress conditions occurs in microaerobiosis, but not in oxygen 

limitation (Avila-Ramirez et al., 2013) (see Chapter 1, section 1.8). Since the Cgb 

detoxification reaction appears to be O2-dependent in Campylobacter (Avila-Ramirez et 

al., 2013; Elvers et al., 2005; Elvers et al., 2004; Monk et al., 2008; Wainwright et al., 

2005), a role for Cj1585c is unlikely. However, disk diffusion assays in MH broth in the 

presence or absence of L-lactate revealed that a cj1585c mutant was significantly more 

sensitive than the wild type to SNP or spermine NONOate; however, this sensitivity 

was independent of the presence of L-lactate (Thomas, 2009). It is possible that basal 

levels of Cj1585c, expressed microaerobically, donate the electrons for globin reduction 

under nitrosative stress conditions.  
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The objective of the present chapter is to assess the role of the respiratory chain and the 

flavorubredoxin reductase (NorW) as the source of electrons for the reduction of the 

Cgb haem during NO detoxification in E. coli. Additionally, the function of the lactate 

dehydrogenase (Cj1585c) as the cognate reductase of Cgb in C. jejuni is evaluated.  
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5.2 Results 

5.2.1 The ability of Cgb to detoxify NO in E. coli is independent of the respiratory 

chain.   

Since the Vitreoscilla hemoglobin Vgb interacts with the cytochrome bo’ terminal 

oxidase of E. coli (Park et al., 2002), it was hypothesized that electron flux could supply 

reductant power to the C. jejuni globin Cgb during NO detoxification in aerobic 

conditions. In order to investigate this, an NO-sensitive E. coli strain (hmp mutant) 

unable to produce ubiquinone, due to the replacement of the intergenic region of the 

ubiCA operon with a kanamycin resistance gene, was constructed (see section 2.3.5). 

Characterization of the mutant included testing the absence of ubiquinone (Angie 

Vreugdenhil, personal communication) and the ability of the hmp ubiCA mutant to grow 

in rich medium under aerobic and anaerobic conditions, but not in medium containing 

succinate as the only carbon source (not shown). Additionally, the respiration rates of 

membranes isolated from the hmp mutant and the hmp ubiCA mutant were compared 

(Table 5.1). The O2 uptake rate promoted by the addition of succinate (10 mM) as the 

electron source was 7.5-fold slower in the membranes from the triple mutant than those 

from the hmp mutant. However, upon addition of coenzyme Q1 (20 µM) and succinate 

simultaneously, the rates were similar. Thus, the suitability of the system to test Cgb 

function in the absence of an efficient electron flux from the aerobic respiratory chain 

was confirmed.  

The growth profiles of the hmp ubiCA mutant expressing Cgb, Hmp or carrying the 

empty vector in 2 X TY medium were all comparable. However, ubiCA mutant (hmp
+
) 

used as a control during the test showed a diminished ability to grow in this condition 

(Fig. 5.1A). Even though there is not an obvious explanation for this behaviour, the 

same has been previously observed in our lab for ubiG and ubiA single mutants 

compared to hmp ubiG and hmp ubiA double mutants (not shown), suggesting that the 

deletion of hmp partially alleviates the growth defect that is characteristic of the 

ubiquinone-lacking strains. 

Addition of 1 mM DETA NONOate to cultures at the beginning of the exponential 

phase (30 Klett units) failed to inhibit the growth of the Cgb-expressing hmp ubiCA  
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Table 5.1 Respiration rates of membrane suspensions from an E. coli hmp ubiCA 

mutant strain. 

 

*polarographic measurements were performed upon addition of succinate (10 mM) or 

succinate plus coenzyme Q1 (8 µM). 

 

 

 

 

 

 

                        Oxygen consumption*  (nmol O2 min
-1

 mg protein
-1

) 

Strain       Succinate Succinate + Q1 

MG1655 hmp   50.54 
 

52.97     

MG1655 hmp ubiCA   6.68 
 

52.61     
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Figure 5.1 Growth profile and resistance to nitrosative stress of a respiration-

defective E. coli hmp mutant strain expressing Cgb.  

(A) Aerobic cultures of an hmp ubiCA mutant strain expressing Hmp (pPL341) (●) or 

Cgb (pMT1) (∆) were grown in 2 X TY broth supplemented with arabinose and 

incubated for 9 h at 37 ºC, 240 rpm. (B) When cultures reached 30 Klett units (arrow), 

DETA-NONOate (1 mM) was added. Cultures of E. coli ubiCA mutant (■), hmp ubiCA 

carrying the empty vector (○), or pMT1 but in the absence of arabinose (▼) were 

included as controls. Bars represent standard error from three independent experiments. 

Modified from Tinajero-Trejo et al. (2013). 
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mutant strain, but produced detrimental effects to the strains harbouring the empty 

vector or pMT1 in the absence of the inducer arabinose (Fig. 5.1B). Interestingly, the 

complemented strain with pPL341 grew slightly less than the strain expressing Cgb. 

These differences might be the consequence of a negative effect caused by production 

of the superoxide ion linked to the over-expression of Hmp (Membrillo-Hernandez et 

al., 1996; Wu et al., 2004), rather than a positive effect due to the expression of Cgb. 

The ability of cell suspensions of hmp ubiCA mutants to consume NO when expressing 

Cgb, Ctb or Hmp was tested polarographically in fully oxygenated buffer. The 

accumulated NO upon subsequent additions of 1 µM PROLI-NONOate was efficiently 

consumed by cells expressing either Cgb or Ctb. Conversely, cells carrying the empty 

vector accumulated a high concentration of the toxic compound (Fig. 5.2). The 

electrode failed to show any NO accumulation when Hmp-expressing cells were tested.  

The ability of Cgb to support the growth of the E. coli hmp ubiCA mutant, and the 

efficient consumption of NO by both Cgb- and Ctb-expressing cells, support the lack of 

dependence of Cgb and Ctb reduction on aerobic electron flux beyond the UQ pool in E. 

coli.  

5.2.2 The NADH:flavorubredoxin oxidoreductase plays a minor role as the cognate 

reductase of Cgb in E. coli. 

The function of Cgb as a NO detoxification mechanism able to sustain the aerobic 

growth of an Hmp-lacking E. coli strain in the presence of NO and RNS was 

demonstrated (Chapter 3, Fig. 3.3). However, expression of the globin failed to support 

the anaerobic growth of an hmp norR mutant under nitrosative stress conditions 

(Chapter 3, Fig. 3.7). Since, in the latter system, the expression of NorW was prevented 

by the absence of the NorR regulator (Gardner et al., 2003), it was suggested that NorW 

may have a role as the heterologous reductase partner of Cgb in vivo. Indeed, the lack of 

NorW might explain the inability of the globin to detoxify NO anaerobically in E. coli.  

In order to test whether the absence of NorW would affect the detoxification capacity of 

Cgb, aerobic cultures of the hmp norR mutant expressing Cgb were grown overnight in 

the presence of arabinose and with increasing concentrations of DETA NONOate. A 

concentration of 1 mM DETA NONOate produced a significant decrease in the OD  
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Figure 5.2 NO consumption of E. coli hmp ubiCA cell suspensions expressing Cgb 

or Ctb.  

Cells were resuspended in Tris-HCl buffer (pH 7.4), and incubated aerobically in a 

closed chamber at 37°C; NO consumption was polarographically recorded following 

four subsequent additions of 1 μM PROLI NONOate. For Cgb- and Ctb-expressing 

cells, each addition was performed after the NO trace reached the electrode base line. 

Signals from cells carrying the empty vector or expressing Hmp are shown as controls. 

Arrows indicate PROLI-NONOate additions to the Hmp-expressing cells; for other 

traces, the additions immediately precede each rise in the electrode response. The signal 

produced from the addition of 1 μM PROLI NONOate to buffer is shown for 

comparison. The assay was repeated twice with similar results. Taken from Tinajero-

Trejo et al. (2013). 
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while 2 mM completely inhibited the growth compared to the control in the absence of 

NONOate. On the other hand, the presence of DETA NONOate failed to cause growth 

inhibition of the complemented strain (pPL341) or the norR single mutant (hmp
+
) strain, 

but impaired the growth of the double mutant carrying pMT1 in the absence of 

arabinose and of cells carrying the empty vector (Fig. 5.3A). In agreement with these 

results, growth of cultures after addition of 1 mM DETA NONOate showed a 

considerable decrease of the Cgb-expressing hmp norR while the Hmp-expressing cells 

were not affected (Fig. 5.3B).  

To corroborate the results above, an hmp norW mutant strain was constructed. The 

double mutant was transformed with pMT1, pPL341 and the empty vector 

(pBAD/HisA) and the growth profile in the presence of 1 mM DETA NONOate tested. 

In agreement with the result showed in Fig. 5.3B, the growth of the Cgb-expressing hmp 

norW was slightly inhibited compared to the control (Fig. 5.4). However, comparison of 

the periods needed for the reduction of Cgb haem in extracts of E. coli hmp (Chapter 4, 

Fig. 4.2) and E. coli hmp norR (Fig. 5.5) followed spectrophotometrically after 

oxidation with NO did not show differences. Thus, the data above indicate a minor role 

for NorW as the Cgb electron donor in E. coli.  

5.2.3 The ability of Cgb to detoxify NO in C. jejuni is independent of the lactate 

dehydrogenase (Cj1585c).  

In order to investigate whether Cj1585c has a function as the cognate reductase of Cgb 

in C. jejuni, the effect of the deletion of the cj1585c gene in the resistance of the 

microorganism to nitrosative stress was tested by following the growth under 

microaerobic conditions. Addition of 500 µM DETA NONOate (Fig. 5.6A) or 400 µM 

GSNO (Fig. 5.6B) failed to produce inhibition of the cj1585c mutant or the isogenic 

strain. As expected, the cgb mutant was severely inhibited in both conditions. This 

result strongly suggests that Cj1585c is not involved in the nitrosative stress resistance 

mechanism mediated by Cgb.  
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Figure 5.3 Susceptibility tests and growth curves of an E. coli hmp norR mutant 

expressing Cgb under nitrosative stress conditions.  

Aerobic cultures of the hmp norR mutant expressing Hmp (pPL341) (●) or Cgb (pMT1) 

(∆) were grown in LB supplemented with arabinose. The indicated concentrations of 

DETA NONOate were added and cultures incubated for 24 h at 37 ºC, 240rpm; OD was 

recorded at 600 nm (A). In (B), 1 mM DETA-NONOate was added (arrow) and the OD 

recorded every hour. E. coli norR (■), hmp norR carrying the empty vector (○) and 

pMT1 in the absence of arabinose (▼) were included as controls. Bars represent the 

standard deviation of three independent experiments. Taken from Tinajero-Trejo et al. 

(2013). 
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Figure 5.4 Growth curve of an E. coli hmp norW mutant strain expressing Cgb 

under nitrosative stress conditions.  

Aerobic cultures of the hmp norW mutant carrying Hmp (pPL341) (●) or Cgb (pMT1) 

(∆) were grown in LB supplemented with arabinose. DETA NONOate (1 mM) was 

added (arrow) and cultures incubated at 37 ºC, 240rpm; OD was recorded every hour. E. 

coli norW (■) and hmp norW carrying the empty vector (○) were included as controls. 

Bars represent the standard error of three independent experiments. Taken from 

Tinajero-Trejo et al. (2013). 
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Figure 5.5 Redox state of the Cgb haem cofactor in E. coli hmp norR extracts and 

turnover after oxidation by NO. 

Purified Cgb (5 µM) was mixed with soluble extracts of E. coli hmp norR mutant in 50 

mM Tris-HCl buffer (pH 7.4), containing NADH (10 mM) at 37 °C. Arrow (A to B) 

indicates subsequent steps performed with the same sample. (A) Absorption spectra 

were recorded immediately after addition of the protein (red dashed lines) and after 20 

min incubation (blue solid line). (B) PROLI NONOate (10 µM) was added to reduced 

Cgb (blue solid line) and changes in the absorption were recorded immediately (green 

dashed line) and after 10 min incubation (gray solid line).  
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Figure 5.6 Growth curves of a C. jejuni cj1585c mutant strain under nitrosative 

stress conditions.  

Microaerobic cultures of the cj1585c mutant (▼) in MH broth weres added (arrow) with 

(A) 500 µM DETA NONOate or (B) 400 µM GSNO. Cultures were incubated at 42 ºC, 

240rpm; OD was recorded every hour. C. jejuni wild type (●) or cgb mutant (○) were 

included as controls.  
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5.3 Discussion  

Heterologous expression of globins as an alternative method by which to explore 

functional activities when genetic manipulation in the native host is not suitable 

represents a valuable tool. However, differences between the heterologous and the 

actual host should be taken into consideration before making assumptions about globin 

function(s). This is especially significant for the cases of SDgbs and TrHbs, where 

reduction of the haem cofactor does not depend on an intra-protein reaction, as is the 

case of the FHbs where a reductase domain fused to the haem domain provides the 

electrons for the reduction (Hernandez-Urzua et al., 2003). Consequently, the non-flavo 

globins putatively require interaction with an associated electron donor. It is possible 

that the reducing power comes from a reductase that is present in the heterologous host 

but not in the native organism. Indeed, Vgb has been expressed in numerous prokaryotic 

and eukaryotic organisms (reviewed by Frey et al., 2011 and Stark et al., 2011) and a 

range of functions have been attributed to these (e.g. NO and RNS detoxification). 

However, there are no data supporting such functions in Vitreoscilla itself.   

On the other hand, the evidence of the nitrosative stress sensitivity caused by the 

deletion of the cgb gene in C. jejuni (Avila-Ramirez et al., 2013; Elvers et al., 2004), 

together with the ability of Cgb to detoxify NO and RNS in E. coli (Chapter 3), indicate 

that the single-domain globin plays a crucial role in the defence against nitrosative 

damage in the native host. This also implies the presence of efficient reductase partners 

for the globin in both the native and the heterologous host.   

A recent study has shown that the respiration of an E. coli strain containing only 

ubiquinone has a decreased rate (67%) compared to the wild type, while a strain 

producing demethylmenaquinone exclusively loses 92% of its respiratory capacity 

(Sharma et al., 2012). This indicates a minor, yet significant role for 

demethylmenaquinone under aerobic conditions (Sharma et al., 2012; Soballe and 

Poole, 1998). In agreement, in the present study, the deletion of the ubiCA operon in the 

genome of the hmp mutant strain produced an 87% decrease of the respiration rate 

compared to the hmp mutant (ubiCA
+
) measured in membrane fractions (Table 5.1). The 

full recovery of the rate after addition of coenzyme Q1 (a ubiquinone homologue) 

suggests that disruption of the electron flux from ubiquinone to the terminal oxidases is 
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the cause of the O2 uptake impairment and agrees with the inability of the hmp ubi 

mutant cells to grow in succinate (not shown). 

Leakage of electrons from the respiratory chain, forming superoxide, occurs mainly via 

menaquinone (Korshunov and Imlay, 2006). However, the aim of this work was to 

explore whether electrons from the aerobic respiratory flux were transferred to Cgb. 

Since menaquinone is only a minor species in aerobic respiration (Sharma et al., 2012), 

it was not expected to play an important role in the growth of the aerobic cultures of this 

study.  Moreover, cytochrome bo’ terminal oxidase oxidizes predominantly ubiquinone 

(Kita et al., 1986) and Vgb associates with this complex in E. coli. Thus, ubi mutant 

(not an ubi men mutant) appeared to be suitable for the objective; electron flux from the 

membrane-bound respiratory chain could supply reducing power if globins were to 

associate with the membrane. A similar capability of Cgb-expressing hmp ubiCA and 

hmp mutant
 
cells to grow in the presence of NO (compare Fig. 3.3C and 5.1B), and to 

consume NO (compare Fig. 3.6C and 5.2), strongly suggests that the source(s) of 

electrons for the reduction of the Cgb haem is different from the flux of the respiratory 

chain.  

On the other hand, the flavorubredoxin reductase NorW appears to play a minor, yet 

effective role in the in vivo NO detoxification performed by Cgb in E. coli (Fig. 5.3 and 

5.4), which might have important implications. For instance, the use of purified NorW 

as the reductase partner of Cgb (and perhaps Ctb), as been used for neuroglobin (Giuffre 

et al., 2008), would allow in vitro tests. Indeed, exploration of the molecular 

mechanism(s) involved in the NO detoxification (e.g. confirmation of the suggested 

NOD and NO reductase activities) is hampered by the absence of an electron donor.  

It has been previously reported that the up-regulation of Cj1585 under conditions of 

nitrosative stress is restricted to very low O2 concentrations (oxygen transfer constant, 

0.06 min
-1

) while the induction of Cgb occurs in microaerobiosis (0.43 min
-1

) (Avila-

Ramirez et al., 2013). Herein, it is shown that deletion of the cj1585c gene failed to 

produce negative effects in the growth of C. jejuni in the presence of NO and GSNO 

whereas these agents completely inhibited the growth of a cgb mutant. Thus, it is 

concluded that the lactate dehydrogenase does not have a function as the cognate 

reductase of Cgb in the native host.  
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Attempts to uncover the source of electrons associated to the reconversion of the haem 

group of the C. jejuni globins, either in the heterologous host E. coli or in the actual 

host, have been unfruitful. However, additional strategies may be considered. The most 

sensible approach to identify specific or unspecific reductase partners for Cgb should 

come from a study in the native host. Thus, random mutagenesis in C. jejuni (Grant et 

al., 2005) followed by screening for NO sensitivity, might render mutants affected in 

genes different from cgb. Mapping of the insertion sites could provide candidates for the 

reductase(s) of Cgb. Furthermore, identification of homologues of the C. jejuni cognate 

reductase(s) in E. coli would be possible by bioinformatics-based searching in order to 

identify heterologous reductases. Once the reductase(s) is/are identified, purification 

and in vitro assays of the interaction between Cgb and the reductase(s) might provide 

valuable information about the molecular mechanism involved in the NO and RNS 

detoxification. Failure to isolate NO-sensitive mutants or the finding that these mutants 

are cgb, nrf or nssR, might suggest the absence of a specific globin reductase. Besides, 

the isolation of potential reductases from C. jejuni and E. coli cell extracts using 

column-immobilised Cgb as 'bait' has been previously considered. However, attempts in 

our laboratory to do so have not been successful (J. L. Pickford and R. K. Poole, 

unpublished).  

5.4 Conclusions 

The demonstration of the ability of the single-domain globin Cgb to support the growth 

and consume NO in E. coli lacking ubiquinone indicates that the reduction of the globin 

haem is independent of the electron flux from the respiratory chain. The 

flavorubredoxin reductase NorW from E. coli plays a minor role as the reductase partner 

of Cgb in vivo while the NO and GSNO detoxification mediated by Cgb in C. jejuni is 

independent of the lactate dehydrogenase Cj1585c. 
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Chapter 6. NO evolution from E. coli expressing Cgb and Ctb and a 

preliminary study of Ctb as a nitrite reductase. 

6.1 Introduction 

Denitrifying bacteria generate NO endogenously as an obligate intermediate in the 

reduction of nitrate (NO3
-
) to N2 (Watmough et al., 1999; Zumft, 1997). NO is also 

produced by non-denitrifying bacteria including a number of enterobacteria (Corker and 

Poole, 2003; Ji and Hollocher, 1988). Indeed, nitrite and nitrate metabolism in 

Salmonella and E. coli produces NO as a side-product (Corker and Poole, 2003; 

Gilberthorpe and Poole, 2008; Spiro, 2006). The nitrate reductase NarG has been 

identified as the major, but not the sole, source of NO by the reduction to nitrite 

(Gilberthorpe and Poole, 2008; Vine et al., 2011), leading to the expression of NO 

detoxification systems via the NO-sensing transcriptional factor NsrR (Filenko et al., 

2007a; Gilberthorpe et al., 2007). Reactive nitrogen species (e.g. NO and N2O) are 

produced during growth with electron donors such as nitrite and nitrate (Corker and 

Poole, 2003; Weiss, 2006) eliciting, as a consequence, the expression of Hmp in E. coli 

(Poole et al., 1996).  

It has been shown that expression of Cgb is induced by both nitrite and nitrate (Pittman 

et al., 2007); thus, an analogous mechanism to the one described in E. coli for the 

transcriptional activation of the globin is proposed in Campylobacter; however, there is 

no direct evidence of the production of NO or its reactive derivatives in this bacterium. 

In C. jejuni lacking the nitrate reductase NapA, Cgb expression occurs in the presence 

of nitrite but not nitrate, suggesting that the source of nitrosative stress is the reduction 

of nitrite (involving perhaps NO production). Since the levels of Cgb expression by 

nitrite and nitrate in the wild type and a nrfA mutant strain are comparable, the role of 

NrfA as the generator of nitrosative stress (NO production from nitrite) in C. jejuni 

seems unlikely (Pittman et al., 2007). Thus, the elucidation of the putative source(s) of 

NO during nitrite reduction in this microorganism requires study.  

Production of NO by eukaryotic globins such as haemoglobin and myoglobin has been 

documented (Minneci et al., 2008). A dual function has been proposed for Mb: under 

normoxia, the globin functions as a NO scavenger, whereas decreasing oxygen 



124 

 

concentrations in myocardial tissue promotes generation of NO from nitrite, leading to 

down-regulation of cardiac energetics and function (Rassaf et al., 2007). Indeed, NO 

produced from the reduction of nitrite by deoxy-Mb inhibits mitochondrial respiration 

(Shiva et al., 2007). Besides, the function of the human neuroglobin and PhHbO, the 

TrHb2 from P. haloplanktis, as nitrite reductases has been recently demonstrated in 

vitro (Li et al., 2012; Russo et al., 2013; Tiso et al., 2011). However, whether or not this 

putative function has physiological implications remains unknown.  

The ctb gene is up-regulated in response to nitrosative stress via NssR but it appears not 

to play a direct role in protection against NO toxicity resistance. Thus, an interesting 

idea is proposed: Ctb functions as a nitrite reductase producing NO, which in turn is 

converted to nitrate by Cgb. However, this is a hypothetical mechanism, and must be 

experimentally verified. Thus, the objective of the present chapter is to produce 

preliminary data as a base to explore the function of the truncated globin Ctb as a nitrite 

reductase in vivo and in vitro.  
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6.2 Results 

6.2.1 Anaerobic NO evolution by E. coli hmp mutant cells is increased by the 

expression of Ctb and decreased by the expression of Cgb.   

The ability of the C. jejuni globins to uptake NO in anaerobic conditions has been 

shown by polarographic measurements (Chapter 3, Fig. 3.6). However, expression of 

either Cgb or Ctb failed to support the anaerobic growth of E. coli under nitrosative 

stress conditions. Generation of NO upon addition of nitrite to E. coli wild type cells 

cultured anoxically with nitrate as terminal electron acceptor has been reported (Corker 

and Poole, 2003). Thus, the use of such a feature to test whether the expression of the C. 

jejuni globins were able to modify the levels of the endogenously-produced NO by the 

heterologous host (i.e. decrease it by consumption or increase it by production) was 

suggested. However, the inability of an hmp mutant to produce NO reported in the same 

study represented an important limitation in view of the fact that the presence of the 

flavohaemoglobin in the system was undesirable for the purposes of the experiment. 

Surprisingly, when anaerobic NO evolution was tested polarographically in cell 

suspensions of E. coli wild type and the hmp mutant, following the protocol described 

by Corker and Poole, but from cultures grown in aerobic standard conditions, significant 

NO production was recorded not only from the wild type but from the hmp mutant 

sample upon addition of nitrite (see below). This finding provided a suitable model for 

the determination of the anaerobic consumption of intracellularly-produced NO by Cgb 

and Ctb in vivo. 

Respiration of Cgb- and Ctb-expressing E. coli hmp mutant cells was promoted by the 

addition of glycerol (15 mM) and O2 consumption was recorded polarographically in a 

closed O2 electrode chamber fitted with an NO electrode. Once the O2 was depleted (the 

O2 trace reached zero), NaNO2 (25 mM) was injected into the chamber and NO 

accumulation followed until the trace showed a plateau. Finally, an excess of the NO 

scavenger carboxi-PTIO (50 µM) confirmed the presence of NO (Fig. 6.1). Unlike the 

hmp mutant cells transformed with the empty vector, NO accumulation by cells 

complemented with pPL341 was very poor (compare Fig. 6.1A and B), presumably due  
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Figure 6.1 Endogenous production of NO by E. coli expressing Cgb or Ctb.  

Cultures of an E. coli hmp mutant transformed with the empty vector (pBAD/HisA) (A) 

or expressing Hmp (pPL341) (B), Cgb (pMT1) (C) or Ctb (pLW1) (D) were grown 

overnight in LB supplemented with arabinose at 37 ºC, 240 rpm. Cells were 

resuspended in 50 mM Tris-HCl buffer (pH 7.4) and O2 depleted by cellular respiration 

upon addition of glycerol (15 mM). Sodium nitrite (25 mM) was added after the oxygen 

trace reached zero (solid line) and the NO production (dashed line) was recorded. NO 

and O2 levels were followed polarographically. The NO-reactive compound carboxy-

PTIO (C-PTIO) was added at 50 µM final concentration. Similar results were obtained 

in at least five independent experiments performed in duplicate. 
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to the NO consumption and detoxification by the NO-reductase activity of Hmp (Mills 

et al., 2001). In the same way, cells over-expressing Cgb showed lower levels of NO 

than the control carrying the empty vector (compare Fig. 6.1C with 6.1A), supporting 

the ability of this globin to reduce NO in the absence of O2. On the other hand, cells 

expressing Ctb did not prevent the accumulation of NO (Fig. 6.1D).  

NO production rates of cell samples expressing the C. jejuni globins or carrying the 

empty vector were calculated from the linear phase of the NO traces in Figure 6.1 and 

normalized by the total cellular protein content. A significantly lower rate for the Cgb-

expressing cells (~5-fold) compared to the cells carrying the empty vector was found. 

However, cells expressing the truncated haemoglobin Ctb produced NO ~1.5-fold faster 

than the control carrying the empty vector (Fig. 6.2) and ~1.3-fold faster than the wild 

type (MG1655) even though in the last case, the difference was not statistically 

significant (Fig. 6.2). These findings suggested that Ctb might be able to reduce nitrite 

in anaerobic conditions, resulting in a higher accumulation of the toxic compound NO.   

6.2.2 Ctb reacts with nitrite and produces NO in the presence of sodium dithionite. 

Salhany (2008) studied the wavelength-dependent kinetics of nitrosyl haemoglobin 

formation from the reaction of the globin with nitrite in the presence of the O2 

scavenger sodium dithionite. Since variations in the concentration of dithionite did not 

modify the reaction rate, it was concluded that dithionite fails to react with nitrite to 

produce NO. Thus, changes in the absorbance of dithionite-reduced globins (FeII) 

towards the NO-FeII form in the presence of nitrite can be associated with nitrite 

reduction activity: NO production implies the oxidation of the globin haem (FeIII), 

which in turn is re-reduced by the excess of dithionite. Finally, the newly reduced 

globin (FeII) binds the NO produced being FeII-NO the sole final product (Helbo et al., 

2012; Russo et al., 2013; Salhany, 2008; Tiso et al., 2012) as follows: 

FeII + NO2
-
 + H

+
         FeIII + NO + OH

-                                                                            
 (Eq. 3) 

                                                           
 

           NO + FeII         FeII-NO                                                                   (Eq. 4) 
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Figure 6.2 NO production rates of E. coli expressing Cgb or Ctb.  

Anaerobic NO production rates from nitrite by E. coli hmp mutant cells expressing Cgb 

(pMT1), Ctb (pLW1) or carrying the empty vector (pBAD/HisA) were calculated from 

the linear phase of the NO electrode traces from the experiments described in Fig. 6.1. 

Rates from the wild type (MG1655) were calculated as a control. Bars represent ± the 

standard error of at least five independent experiments performed in duplicate.  

*P < 0.001.  
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In order to further investigate whether Ctb was able to produce NO from nitrite, purified 

globin (3.7 µM) in degassed buffer (50 mM Tris-HCl 50 mM, pH 7.4) was added with a  

range of sodium dithionite concentrations (50 µM-10 mM) and the reduction was 

followed spectroscopically. Concentrations below 10 mM failed to reduce efficiently 

the haem globin (not shown) while 10 mM dithionite produced a stable ferrous 

spectrum (FeII 432, 566 nm) (for reference, see Table 4.1) after 20 min incubation at 

room temperature (Fig. 6.3A). The need for such a high concentration of dithionite to 

reduce Ctb is in agreement with the exceptionally high O2 affinity reported for this 

globin (Lu et al., 2007a). Addition of 0.5 mM sodium nitrite but not sodium nitrate to 

dithionite-reduced Ctb samples produced a FeII-NO-like spectrum (423, 543, 566 nm) 

after 20 min incubation at room temperature (Fig. 6.3B), while addition of 0.5 mM 

nitrate did not produce spectroscopic changes (Fig. 6.3C). As a control, 10 µM PROLI 

NONOate was added to a dithionite-reduced Ctb sample; an immediate shift to the FeII-

NO spectrum was observed (Fig. 6.3D). Since the resulting spectra after addition of 

NONOate and nitrite were similar (compare Fig. 3B and D), NO production by Ctb 

from nitrite appears to be occurring.  

When spectroscopic changes after addition of nitrite (0.5 mM) to dithionite-reduced Ctb 

(10 µM) were followed over time (Fig. 6.4A), an isosbestic point was clearly observed 

at 426 nm. Values from the difference in absorbance (434 nm minus 426 nm and 420 

minus 426 nm) were graphed showing apparent first order kinetics (Fig. 6.4B). 

However, the spectrum of the dithionite-reduced globin before the addition of nitrite 

failed to cross the isosbestic point, suggesting the presence of a third species in the 

reaction mixture (FeII-O2 perhaps).  
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Figure 6.3 Spectroscopic changes of dithionite-reduced Ctb in the presence of 

nitrite.  

Native Ctb (3.7 µM) in degassed buffer (Tris-HCl 50 mM, pH 7.4) was reduced by 

addition of 10 mM sodium dithionite (A, dashed and solid lines respectively). 

Dithionite-reduced Ctb (solid lines) was supplemented with 0.5 mM sodium nitrite (B) 

or sodium nitrate (C) and changes in the spectra were recorded after 20 min incubation 

at room temperature (dotted lines). Spectroscopic changes of dithionite-reduced Ctb 

(solid line) upon addition of 22 µM PROLI-NONOate (dotted line) were recorded as a 

control (D). Absolute spectra were recorded against a buffer baseline.    
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Figure 6.4 Kinetics of the NO-reduced Ctb formation from nitrite in presence of 

sodium dithionite.  

(A) Native Ctb (10 µM) in degassed buffer (Tris-HCl 50 mM, pH 7.4) was reduced by 

addition of 10 mM sodium dithionite (red line). Changes in absorbance after addition of 

0.5 mM nitrite were recorded every 0.3 min for 40 min at room temperature (blue lines). 

(B) Difference in absorbance at 434 nm minus 426 nm (open circles) and 420 nm minus 

426 nm (closed circles) were plotted.   
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6.3 Discussion 

Production of NO by prokaryotic organisms associated with the presence of NOS has 

been reported. Certainly, bNOS are encoded in many genomes of Gram-positive species 

(Gusarov et al., 2009). However, the physiological significance of NO bacterial 

production, a bactericidal compound, is far from being well understood. It has been 

suggested that NO offers protection against oxidative stress. Thus, endogenous 

production of NO defends bacteria against the oxidative burst produced by macrophages 

during infection (Gusarov and Nudler, 2005; Shatalin et al., 2008). Furthermore, 

Gusarov et al. (2009) showed that NO produced by the Bacillus subtilis bNOS protects 

the bacterium against a number of antibiotics. It was suggested that such protection may 

be a consequence of chemical modification of the antibiotic by NO (e.g. nitrosation of 

aromatic amino groups on acriflavine) or due to the reduction of the oxidative stress 

caused by antibiotics (Dwyer et al., 2009; Kohanski et al., 2007). However, new 

evidence against the production of ROS as the mechanism linked to antibiotic action 

question the latter hypothesis (Keren et al., 2013; Liu and Imlay, 2013).  

An interesting example of an interplay between NO consumption and production is the 

globin-containing organism Giardia lamblia (Rafferty et al., 2010), a flagellated 

protozoan parasite of the small intestine. A functional FHb is encoded by the genome of 

this parasite. The recombinant flavohaemoglobin metabolizes NO efficiently in the 

absence of O2 (Mastronicola et al., 2010) and probably defends the parasite against NO 

toxicity. Interestingly, NOS activity and NO production by this organism, together with 

the presence of a nos-like sequence in the genome, have been reported  (Harris et al., 

2006). However, the physiological meaning behind the NO production/consumption of 

G. lamblia has not been unravelled.  

The C. jejuni genome does not contain nos genes. However, NO is produced during 

nitrite reduction in Campylobacter in a Nrf-independent manner (Pittman et al., 2007). 

Herein, preliminary data in vivo (Fig. 6.2) and in vitro (Fig. 6.3) provide new evidence 

suggesting that Ctb is a nitrite reductase, in common with an increasing number of 

globins including myoglobin, neuroglobin and cytoglobin. Furthermore, the putative 

ability of the truncated globin to produce NO is in agreement with the reports showing 

that loss of viability associated with nitrosative stress and growth sensitivity to GSNO 



133 

 

in a cgb mutant are significantly reduced by the mutation of the ctb gene (Avila-

Ramirez et al., 2013; Wainwright et al., 2005). Thus, the following sequence of 

reactions is suggested: 

     

 

                                                                                                          (Eq. 5) 

 

 

Nitrite is produced in the oral cavity from bacterial reduction of salivary nitrate. Thus, 

nitrite in saliva reaches concentrations as high as 230 µM (Mirvish et al., 2000) and 

constitutes the major source of gastric nitrite (Eisenbrand et al., 1980). During infection, 

it is likely that Campylobacter encounters this toxic compound as the first source of 

nitrosative stress and, consequently, as an elicitor of defence responses against RNS, 

including NO, that are chemically produced in the acidic gastric environment. Indeed, it 

has been shown that Cgb is expressed in response to nitrite in C. jejuni (Pittman et al., 

2007). However, there is no evidence of nitrite detoxification by this globin and whether 

nitrite is able to directly interact with the transcription factor NssR is also unknown. An 

attractive hypothesis is that the truncated globin Ctb, constitutively expressed at low 

levels (Wainwright et al., 2005), produces NO from nitrite at early stages of the 

infection, triggering the up-regulation of cgb (via NssR) that in turn protects the 

bacterium against NO and S-nitrosothiols produced in the digestive system as a part of 

the host defence response. However, the data presented herein are preliminary and 

require more experimental support.   

Investigational approaches aimed to confirm the role of Ctb as a nitrite reductase might 

include the heterologous expression of the truncated globin in E. coli lacking not only 

the hmp and nor genes but also the main proteins implicated in NO production (e.g. nir, 

narG, nrf, etc.) (Prof. Jeff Cole, personal communication). In this way, endogenous 

anaerobic evolution of NO from nitrite may be attributed only to the presence of the 

heterologous globin. Furthermore, endogenous production of NO in C. jejuni cells 



134 

 

might be measurable polarographically; therefore, comparison among the isogenic strain 

and strains mutated in the globin genes could render useful data. For instance, NO 

evolution by cells after addition of nitrite should be higher in a cgb mutant than in the 

isogenic strain since the former lacks the NO detoxification provided by Cgb. If NO 

production was related to Ctb, NO accumulation in a Cgb-lacking strain should be 

prevented by the deletion of the truncated globin gene. Similarly, addition of high 

concentrations of nitrite should have an increased inhibitory effect on the respiration 

rate of the cgb mutant due to the putative production of NO by Ctb. However, the 

respiration rate should be less affected in cells lacking both Cgb and Ctb.  

Pittman et al. (2007) showed that, under oxygen-limitation, nitrite concentrations above 

2 mM are toxic to C. jejuni. However, cultures are able to grow with nitrate at 

concentrations as high as 20 mM. Since these authors showed that cultures of C. jejuni 

growing with nitrate produced stoichometric concentration of nitrite, it would be 

interesting to explore the effect of Cgb-lacking cultures growing in such conditions. 

Those cultures may be inhibited due to the inability of the strain to detoxify the 

produced NO. However, if the NO production is Ctb-dependent, cultures of a double 

mutant (cgb ctb) should be able to cope with the nitrosative stress conditions.  

The high O2 affinity reported for Ctb (Lu et al., 2007a) makes it difficult to follow the 

kinetics of NO production from nitrite in vitro. Indeed, the amount of sodium dithionite 

needed to reduce the C. jejuni truncated globin exceeded the amount required for 

reduction of other globins in similar experiments (e.g. 10 mM for Ctb reduction (Fig. 

6.4) and less than 100 µM for carp Mb (Helbo et al., 2012)). Furthermore, even though 

the samples were contained in sealed cuvettes and bubbled with N2 to keep them O2-

free, the spectra of the dithionite-reduced Ctb before and after addition of nitrite failed 

to show an isosbestic point, suggesting the presence of oxy-ferrous Ctb species 

contaminating the reaction mixture. Thus, preparation of the samples in an anaerobic  

glovebox would facilitate the determination of the reaction kinetics and kinetics values 

either in the presence or absence of dithionite.    
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Chapter 7. Ctb as a sink to test CO release from CO-releasing 

molecules (CO-RMs) in vivo.  

7.1 Introduction 

CO is a poisonous odourless molecule able to avidly bind reduced (FeII) haemoglobin 

(Hb) resulting in the formation of carboxy-haemoglobin (CO-Hb). This binding 

hampers the formation of oxy-haemoglobin (O2-Hb) and, consequently, inhibits 

respiration (Keilin, 1966). However, CO has important physiological functions in 

mammalian systems involving signalling and regulation. Indeed, CO is endogenously 

produced by inducible haem oxygenase-1 and constitutive haem oxygenase-II. These 

enzymes catalyse the rate-limiting step in the haem degradation pathway, producing 

biliverdin IXa (BV), CO and free iron (FeII). Endogenously produced CO is a 

gasotransmitter involved in the modulation of a number of key cellular functions acting 

as an anti-inflammatory, anti-apoptotic and cytoprotective molecule (Mann, 2010; 

Marks et al., 1991; Motterlini and Otterbein, 2010; Ryter et al., 2006). Interestingly not 

only animals but also plants and some pathogenic microorganisms produce CO via HO 

enzymes (Boczkowski et al., 2006; Shekhawat and Verma, 2010).  

CO-releasing molecules (CO-RMs) are mainly metal carbonyl compounds used for the 

delivery of CO to biological systems in controlled amounts (Motterlini et al., 2002). 

The use of CO-RMs has allowed substantial advances in biological studies without the 

difficulties and risks associated with the use of CO gas in the laboratory. A variety of 

different CO-RMs are now available (e.g. with ruthenium, manganese, iron and boron 

centres), showing different rates, kinetics and conditions for CO release (Desmard et al., 

2012; Mann, 2010; Schatzschneider, 2011). For instance, the [Ru(CO)3Cl (glycinate)] 

compound (CORM-3) (Fig. 7.1) (Clark et al., 2003) has been successfully exploited in 

models of vascular dysfunction, inflammation and ischemic injury (Alcaraz et al., 2008; 

Motterlini et al., 2005).  

The ability of CO to bind transition metal compounds such as haem groups and iron-

sulfur clusters (Boczkowski et al., 2006; Roberts et al., 2004) led to the suggestion that 

this compound might have antibacterial effects by targeting, for instance, terminal 

oxidases. Since Nobre et al. (2007) demonstrated the lethal effects of CO delivered via  
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Figure 7.1 Structure of CO-releasing molecules frequently used for biological 

studies. 

CORM-2 is a DMSO soluble compound releasing 0.7 mol CO/mol CO-RM, CORM-3 

is a water-soluble compound releasing 1 CO/mol CO-RM and CORM-401 is soluble in 

phosphate buffer saline releasing 1 CO spontaneously by a reversible, dissociative 

process.  
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organometallic CO-RMs against pathogenic bacteria, a number of papers studying the 

antibacterial properties and transcriptomic effects of CO-RMs have been produced 

(reviewed by Wilson et al., 2012). Indeed, CO-RMs, as antibacterial agents, may have 

great potential against bacterial infection (Motterlini and Otterbein, 2010).     

The carboxy-myoglobin assay (CO-Mb) is a spectrophotometric test routinely used for 

the determination of CO release form CO-RMs (Davidge et al., 2009b; Motterlini et al., 

2002). This assay measures the conversion of deoxy-Mb to CO-Mb by following 

changes in absorbance either in the α, β (Atkin et al., 2011) or Soret regions of the 

visible spectrum (Davidge et al., 2009b). However, the test requires the use of the O2-

scavenger sodium dithionite, which promotes the reduction (deoxygenation) of the 

globin. McLean et al. (2012) demonstrated that the release of CO from ruthenium-based 

and 401 CO-RMs is triggered by the presence of dithionite (and other sulfite 

compounds) promoting the formation of CO-Mb. These findings helped to clarify the 

previously described discrepancies among the CO release rates of CORM-2 and 

CORM-3 determined by the Mb assay and those determined by other methods such as 

polarographic measurements of CO (Desmard et al., 2012).  

In a study aimed at investigating inhibition of the NOD (or denitrosylase) activity of the 

E. coli flavohaemoglobin Hmp by CO, it was shown that CORM-3 inhibits the Hmp-

based resistance to NO in vivo (Tinajero-Trejo et al., manuscript in preparation). 

However, CO gas but not CORM-3, inhibited the Hmp NOD activity in vitro, in 

agreement with the inability of this compound to release CO in the absence of 

dithionite. Spectroscopic measurements showed that CORM-3 produced CO-Hmp in a 

reaction where dithionite was used as a reductant but failed to do so when the 

flavohaemoglobin was reduced with NADH (a natural Hmp electron donor) (Anjum et 

al., 1998). Interestingly, formation of CO-Hmp by CORM-3 was observed in soluble 

cellular extracts of E. coli but it was limited in membrane suspensions, arguing in 

favour of the presence of soluble compounds in the bacterial cytoplasm that promote 

CO release (e.g. sulfite-containing molecules).  

CO release from CO-RMs to bacterial terminal oxidases in whole cells and membrane 

suspensions in dithionite-reduced samples has been demonstrated (Davidge et al., 

2009b; Jesse et al., 2013). However, in order to determine the “natural” rates and 



138 

 

kinetics of CO release from these compounds in, for instance, living cells, dithionite-

free approaches must be developed. Thus, it was suggested that intracellular Hmp might 

be exploited to investigate details of CO released from CORM-3 by following the 

formation of CO-Hmp in whole cells. However, it is well-known that over-expression of 

this flavohaemoglobin in E. coli produces oxidative stress by generation of superoxide 

via a one-electron reduction of O2 in the absence of NO producing detrimental effects 

on growth (Membrillo-Hernandez et al., 1996; Wu et al., 2004). Therefore, an 

alternative globin must be sought.  

High levels of intracellular globin are required to more easily observe spectral changes 

associated with CO binding when whole cells are used. In the present work, it was 

demonstrated that the transformation of E. coli with pLW1 renders up to 7 µM 

intracellular Ctb upon addition of arabinose without causing negative effects on growth 

(Chapter 2, Figs. 3.2 and 3.5). Therefore, Ctb appears to be a suitable candidate for 

intracellular CO-release experiments from CO-RMs in the absence of “artificial” 

compounds. Thus, the objective of the current chapter is to develop a Ctb-based 

technique aimed at allowing measurements of CO release rates and kinetics from CO-

RMs to be determined in vivo in the absence of the reductant sodium dithionite.  
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7.2 Results 

7.2.1 E. coli over-expressing Ctb is a suitable model to record spectroscopic changes of 

the globin in vivo. 

E. coli hmp mutant cells transformed with pLW1 or carrying the empty vector were 

cultured with arabinose in aerobic conditions and cell suspensions prepared and 

standardized to the same OD at 600 nm. Spectroscopic measurements were carried out 

in a SDB-4 spectrophotometer at room temperature (Kalnenieks et al., 1998). When the 

absolute spectra of the samples were obtained against a buffer baseline, a clear 

difference in absorbance was observed; a much stronger signal from the Ctb-expressing 

cells than from the control sample was obtained (Fig. 7.2A). Such a signal corresponded 

to the oxy-ferrous Ctb form (FeII-O2) (417, 543, 579 nm) (see Table 4.1 for reference), 

in agreement with  a previous report showing the spectrum of intracellular Ctb in E. coli 

(Wainwright et al., 2005). Furthermore, when the absorbance values of cells carrying 

the empty vector, which correspond to the signal produced by the native haem proteins, 

were subtracted from the values of the Ctb-expressing sample, an even clearer spectrum 

was observed (Fig. 7.2B), indicating that the level of the globin signal was suitable for 

clearly recording intracellular spectroscopic changes.   

7.2.2 Intracellular dithionite-reduced but not native Ctb binds CO from CO gas and 

CORM-3.  

In order to test whether it was possible to observe the intracellular formation of the 

carboxy-Ctb compound (CO-Ctb) spectrometrically, Ctb-expressing cells were reduced 

by the addition of sodium dithionite followed by bubbling with CO gas. Difference 

spectra (CO-reduced minus reduced) clearly showed the expected peak and trough 

signal in the Soret region (Wood, 1984) that indicates the presence of the CO-Ctb redox 

form (Fig. 7.3, red solid line). Again, a similar but much weaker signal was observed 

from cells carrying the empty vector (Fig. 7.3, blue dashed line), indicating that the 

spectrum of the Ctb-containing sample was mostly due to the presence of the globin 

with only a small contribution from other haem-containing proteins.  
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Figure 7.2 Absorbance spectra of intracellular Ctb.  

Overnight cultures of an E. coli hmp mutant carrying pLW1 were grown in LB 

supplemented with arabinose. (A) Cells expressing Ctb (red solid line) or transformed 

with the empty vector (black dashed line) were resuspended in a small amount of Tris-

HCl 50 mM (pH 7.5) and the absolute spectra measured against a buffer baseline. (B) 

Ctb spectrum obtained by using the absorbance values from the spectrum of cell 

suspensions carrying the empty vector as the baseline. 
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Figure 7.3 Intracellular formation of CO-bound Ctb in the presence of sodium 

dithionite and CO gas.  

Native E. coli cell suspensions over-expressing Ctb (red solid line) or carrying the 

empty vector (blue dashed line) were reduced with a few grains of sodium dithionite 

followed by bubbling with CO gas for 2 min. The difference spectrum (CO-reduced 

minus reduced) was plotted. 
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Comparison of the difference spectra of Ctb-expressing cells in the presence and 

absence of dithionite clearly showed the need for full globin reduction as a condition for 

the formation of the CO-Ctb complex (Fig. 7.4). Indeed, bubbling of the sample with 

CO gas rendered a very small difference signal in the absence of dithionite (Fig. 7.4A, 

blue-dashed line) compared to that obtained in the presence of the O2 scavenger (Fig. 

7.4A, red solid line). Moreover, addition of CORM-3 (300 µM) elicited the formation of 

CO-Ctb in cells reduced with the artificial reductant, producing a strong and defined 

signal (Fig. 7.4B, red solid line), comparable to that obtained with CO gas; however, no 

signal was observed in the absence of dithionite (Fig. 7.4B, blue dashed line).  

7.2.3 Reduction of intracellular Ctb can be achieved by depletion of O2 via cellular 

respiration.   

The results presented in the previous section strongly suggest that Ctb might be useful 

as a sink to measure intracellular CO-release from CO-RMs; however, reduction of the 

globin prior to the addition of the CO-releasing compound was imperative and the use 

of dithionite, explained before, unsuitable. 

In an attempt to produce the de-oxygenation of the intracellular FeII-O2-Ctb pool in a 

dithionite-free way, glucose (13.8 mM) was added to globin-expressing cells to promote 

respiration as a means of scavenging the O2 from the sample. Consumption of O2 was 

followed polarographically in a closed O2 electrode chamber with constant stirring. Less 

than 2 min after addition of glucose the electrode trace reached zero, indicating the 

depletion of O2 in the chamber (not shown). However, since during the spectroscopic 

experiments the samples are not maintained in anaerobic conditions, it was important to 

determine whether, upon exposure to air, cellular respiration was sufficient to maintain 

an anoxic environment. Thus, after O2 depletion, the lid of the chamber was removed, 

allowing air diffusion into the stirred sample and the O2 levels recorded for a further 1 

hour. Re-oxygenation of the chamber occurred after 45 min incubation (not shown), 

indicating a sustainable O2 consumption via only respiratory metabolism.  

To test whether or not the anoxic conditions in the sample elicited by cellular respiration 

were sufficient for de-oxygenation of intracellular globin, glucose was added to cell 

suspensions of the Ctb-expressing cells and that carrying the empty vector to promote 
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Figure 7.4 Intracellular formation of CO-bound Ctb in the presence of sodium 

dithionite and CORM-3.  

Ctb expressing cells were reduced with sodium dithionite and then bubbled with CO gas 

for two min (A) or added with 300 µM CORM-3 (B) (red solid lines). The difference 

spectra (reduced-CO minus reduced) were plotted against the difference spectra of Ctb 

expressing cells bubbled with CO gas (A) or added with 300 µM CORM-3 (B) in the 

absence of dithionite (CO-oxy-ferrous minus oxy-ferrous)  (blue dashed line).  
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respiration, and the samples were incubated for 5-10 min at room temperature. The 

absolute spectrum of Ctb was obtained by subtracting the absorbance values of the 

glucose-reduced cells carrying the empty vector from the values of the glucose-reduced 

Ctb-expressing sample. In this way, a characteristic ferrous (FeII) Ctb form was 

observed with an absorption maximum in the Soret region at 431 nm and a single broad 

band in the α, β region (~560 nm) (Fig. 7.5A). Moreover, when the glucose-reduced 

sample was bubbled with CO gas for 2 min, and the absolute spectrum obtained by 

using CO-glucose-reduced cells carrying the empty vector as a baseline, a clear Ctb CO-

reduced spectrum was observed (422, 537, 567 nm) (Fig. 7.5B) (see Table 4.1 for 

reference). Finally, the difference spectrum of Ctb-expressing cells (CO-glucose-

reduced minus glucose-reduced) produced a signal with intensity comparable to that 

obtained in the samples containing dithionite (compare Fig. 7.5C with Fig. 7.3 red solid 

lines). These results indicated that removal of O2 by cellular respiration could be 

successfully exploited to obtain CO-Ctb in whole cells in the absence of the artificial 

reductant dithionite. 

7.2.4 A preliminary experiment suggests that intracellular Ctb binds CO from CORM-3 

in glucose-reduced samples with defined kinetics. 

In order to test the CO release from CORM-3 in the dithionite-free system, E. coli cells 

over-expressing Ctb were reduced with glucose, as described in the previous section, 

and CORM-3 (300 µM) was added. The time-course of CO release from CORM-3 was 

followed looking at the difference spectra (CO-glucose-reduced minus glucose-reduced) 

and plotted together with the difference spectrum of a glucose-reduced sample bubbled 

with CO gas for 2 min (Fig. 7.6A, blue solid lines and red dashed line respectively). 

When the difference in the absorption maxima (peak minus trough) was plotted for 

every time point, a first order kinetic plot was observed with a half-life of ~2 min.  
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Figure 7.5 Intracellular formation of CO-bound Ctb in the presence of glucose and 

CO gas.  

E. coli cell suspensions over-expressing Ctb or transformed with the empty vector were 

pre-treated with glucose (15 mM) for 7 min followed by bubbling with CO gas for 2 

min. Absolute spectra of Ctb glucose-reduced (A) or Ctb CO-glucose-reduced (B) were 

obtained by using the absorbance values from the glucose-reduced or CO-glucose-

reduced cells carrying the empty vector as the baseline respectively. (C) Difference  

spectra (CO-glucose-reduced minus glucose-reduced) were plotted for the Ctb-

expressing cells (red solid line) and the cells carrying the empty vector (black dashed 

line). 
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Figure 7.6 Intracellular formation of CO-bound Ctb in the presence of glucose and 

CORM-3 and CO release kinetics.  

(A) E. coli cell suspensions over-expressing Ctb were pre-treated with glucose (15 mM) 

for 7 min and 300 µM CORM-3 was added. Changes in the spectra were followed every 

minute for 10 min and then at 15, 20, 25 and 35 min. Difference spectra (CO reduced 

minus reduced) were plotted (blue lines). Arrows indicate the direction of the changes. 

Difference spectrum of pre-treated cells with glucose followed by bubbling with CO gas 

for 2 min is shown as a control (red dashed line). (B) The differences in the absorption 

maxima (peak minus trough) were plotted for every time point (●) and were plotted 

together with the single point corresponding to the CO gas control (■).  
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7.3 Discussion  

As mentioned previously, the truncated globin Ctb has a very high affinity for O2 (Lu et 

al., 2007a). Indeed, in order to fully reduce 3.7 µM of purified Ctb, at least 10 mM 

sodium dithionite had to be added (Chapter 6, Fig. 6.3A) and intracellular globin 

expressed in E. coli is observed in the oxygenated form (oxy-FeII) (Wainwright et al., 

2006 and Fig. 7.2B). This is interesting since it was demonstrated that oxy-FeII Ctb 

does not bind either CO gas or CO from CORM-3 (Fig. 7.4); however, growing cells 

are indeed inhibited by CORM-3 (Davidge et al., 2009a; Davidge et al., 2009b; 

Desmard et al., 2009) and the ability of Hmp to detoxify NO in culture is also decreased 

in the presence of the CO-releaser (Tinajero-Trejo et al., manuscript in preparation). 

Thus, it appears that metabolically active cells are able to maintain a sufficiently 

reduced inner environment, allowing the CO binding to, for instance, ferrous-haem 

proteins (such as haemoglobins) and terminal oxidases even in aerobic growth 

conditions. Indeed, respiring E. coli cells exposed to air in the open electrode consumed 

O2 so efficiently that the electrode failed to detect it for at least 45 min in the presence 

of glucose (see section 7.2.3). Thus, it is clear that the reductant power supplied by 

respiration can entirely replace the use of dithionite to reduce cells for studying CO-

release from CO-RMs (Fig. 7.7). However, it is important to consider whether the 

presence of glucose may also interact with CO-RMs. Experimental evidence generated 

in our lab argues against it. Certainly, 30 mM glucose failed to promote CO releasing 

from CORM-3 tested spectroscopically by following CO-Hmp formation from NADH-

reduced Hmp in vitro (Tinajero-Trejo et al., manuscript in preparation).   

The development of new strategies to combat antibiotic-resistant pathogens is a 

worldwide priority (Lewis, 2013). CO has proved to possess important antibacterial 

effects such as increasing E. coli phagocytosis (Otterbein et al., 2005) and protecting 

against lethality during bacterial sepsis (Chung et al., 2008). Thus, the use of CO-RMs 

may be part of a new era in the treatment of bacterial infection where these compounds 

may function as adjuvants of the classical or new generation antibiotics. One of the 

most attractive features of CO-RMs is the fact that they appear to be more effective than 

CO gas. Indeed, bacterial growing cells are inhibited by CORM-3 but not by the same 

concentration of dissolved CO gas, suggesting that the CO-RM is taken up by the cells  
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Figure 7.7 Simplified schematic diagram of intracellular CO release from CO-RMs 

and CO binding to Ctb in the presence and absence of sodium dithionite.  

The CO-releasing molecule (CO-RM) is transported to the cell interior (possibly 

through a transport system) where it reacts with the soluble cellular content rendering 

the inactive form of CO-RM (iCO-RM) and CO. (A) CO released from CO-RM is 

unable to bind the oxy-FeII haem (red square) of Ctb. (B) Sodium dithionite scavenges 

intracellular O2 promoting de-oxygenation of the Ctb haem and allowing CO binding to 

the FeII haem of Ctb; however, dithionite also reacts with CO-RM releasing CO. (C) 

Consumption of O2 by respiration facilitates the de-oxygenation of the Ctb haem 

allowing CO binding to the FeII haem of Ctb.  
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delivering the CO in situ (Davidge et al., 2009b; Jesse et al., 2013; Wilson et al., 2013); 

which has been called “The Trojan horse mechanism” (Wilson et al., 2013). However, 

the data concerning the modes of action of CO and CO-RMs in biological systems are 

still very limited, making it difficult to pursue further aims.  

7.4 Conclusions 

The presence of intracellular CO can be determined spectrophotometrically in vivo in E. 

coli cells over-expressing the heterologous truncated globin Ctb. Promotion of 

respiration by addition of glucose efficiently reduces the intracellular pool of globin, 

avoiding the use of the artificial reductant sodium dithionite. Thus, Ctb can be used as a 

sink to measure CO release from CO-RMs. This technique might represent a valuable 

tool to determine CO release rates and kinetics form a range of CO-RMs. At the 

moment, this system is being successfully used to determine CO-release and kinetics of 

CORM-3 and the Mn-based CO-releaser CORM-401 (Lauren Wareham personal 

communication).  
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Chapter 8. General discussion 

The microaerobic capability of C. jejuni to survive under conditions of nitrosative stress 

has been linked to the presence of the SDgb Cgb (Avila-Ramirez et al., 2013; Elvers et 

al., 2005; Monk et al., 2008; Pittman et al., 2007; Wainwright et al., 2005). This globin, 

together with the TrHb3 Ctb, a protein putatively involved in O2 chemistry (Wainwright 

et al., 2005), belong to a small regulon positively controlled by the transcription factor 

(NssR) under nitrosative stress conditions (Elvers et al., 2005; Monk et al., 2008). In 

O2-limited conditions, a different but still inducible system provides protection against 

NO toxicity (Avila-Ramirez et al., 2013). The nature of this mechanism is still unclear.  

Investigation of the molecular mechanism(s) of the C. jejuni globins in vitro is limited 

by the absence of the reductase domain that, in the flavohaemoglobins, reduces the 

haem that is oxidized during the conversion of NO and O2 to nitrate (Gardner et al., 

1998a; Hausladen et al., 1998; Hernandez-Urzua et al., 2003). Besides, as mentioned, 

direct confirmation of Cgb function as a NO and RNS detoxification system and the 

further investigation of Ctb activity in vivo is hampered in Campylobacter by 

complications to express proteins in plasmids. Therefore, the current study mainly 

pursued two objectives: first, to corroborate the ability of Cgb to protect against 

nitrosative stress and second, to explore possible functions of Ctb. A natural and 

convenient approach for functional characterisation is the heterologous expression of 

globins. Indeed, a number of bacterial globins have been studied in a microorganism 

different from the native one (Table 1.3). Thus, both cgb and ctb genes, cloned in 

commercial vectors under control of arabinose-inducible promoters, were expressed in a 

NO-sensitive E. coli strain (E. coli hmp mutant) and a number of experimental 

approaches including growth tests in the presence of nitrosative and oxidative 

compounds and polarographic measurements of NO consumption were carried out. 

Furthermore, exploration of the reduction of Cgb and Ctb haems in cellular milieus after 

oxidation by NO and a search for “the cognate reductases” of these globins in E. coli 

and C. jejuni were also performed.  

Confirmation of the Cgb function as an efficient detoxification system, able to 

complement the NO and RNS resistance phenotype in the Hmp-lacking E. coli, 

constitutes perhaps the most valuable contribution of the current study. Indeed, the 
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ability of Cgb to support the growth of the E. coli hmp mutant strain in the presence of 

NO and GSNO (Fig. 3.3) clearly agree with the proposed role of this globin as an 

efficient resistance system in C. jejuni. On the other hand, expression of Ctb failed to 

provide protection under similar conditions, in agreement with the suggestion that Ctb 

has a function different from NO and RNS tolerance (Fig. 3.4). Interestingly, 

polarographic measurements showed that not only Cgb-expressing cells but also those 

expressing Ctb were able to consume NO either in the presence of O2, providing 

protection to cellular respiration, or in anoxic conditions (Fig. 3.6).  

The O2-independent consumption of NO by the C. jejuni haemoglobins is puzzling and 

raises several questions related to the molecular mechanisms linked to Cgb and, indeed, 

to Ctb. Do these globins reduce NO in the absence of O2? The flavohaemoglobin Hmp 

acts as a NO reductase, albeit of low activity, in anaerobiosis (Mills et al., 2001). Thus, 

this is an interesting and certainly feasible suggestion. If this is the case, does this 

activity have physiological relevance considering that the NssR regulon is not expressed 

under O2-limited conditions (Avila-Ramirez et al., 2013)? Is this activity as efficient as 

the putative denitrosylase function proposed for Cgb (Shepherd et al., 2011)?  

Hausladen et al. (2001) established the denitrosylase activity of the flavohaemoglobin 

Hmp that consists of the production of nitrate from haem-bound NO (NO
-
) with O2. 

Measurements of NADH consumption and haem-ligand turnover under physiologically 

relevant concentrations of O2 (between 9 and 125 µM) and NO (between 10 and 50 

µM), revealed that Hmp primarily binds NO forming a nitrosyl–haem complex that in 

turn reacts with O2 to form nitrate. Why does a microaerophilic organism such as C. 

jejuni rely on an O2-dependent system to detoxify NO and RNS? The O2 and NO 

concentrations encountered by C. jejuni in vivo remain elusive. However, it is suggested 

that certain segments of the alimentary canal are fully anaerobic whereas others can 

have microaerobic concentrations. It has been recently demonstrated that even aerobic 

E. coli cultures are found in O2-limited conditions during exponential phase (less than 

5% of dissolved O2 (< 10 µM)) (Potzkei et al., 2012), whereas antimicrobial 

concentrations of NO that pathogenic bacteria experience can reach up to 0.28 µM 

(reviewed in Hausladen et al., 2012). How is O2-dependent NO detoxification 

efficiently performed in environments where O2 presence seems to be so variable? A 

very complex and intricate interplay between expression and perhaps protein stability 
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may be the answer. It is possible that, in the presence of O2, nitrosative stress triggers 

the expression of Cgb (via NssR). This globin might be sufficiently stable to remain 

present during transient periods of O2 absence, performing the detoxification activity 

(denitrosylase/reductase) without the need for a constant NssR-dependent cgb induction. 

As an approach to determining protein stability, the presence of Cgb in cultures after 

exposure to pulses of NO or RNS could be followed by Western blotting  

The inability of a Cgb-expressing E. coli hmp norR mutant to grow anaerobically (Fig. 

3.7) suggests that there are important differences in the level of protection conferred by 

this globin in the presence or absence of O2. Experimental approaches aimed at 

determining the products of the chemical reaction(s) mediated by the C. jejuni globins 

in the presence of NO may cast light on the matter. Measurements of nitrate production 

from NO and O2 in vitro and/or in vivo can be approached by colorimetric techniques 

and determination of N2O in anaerobic cultures by Fourier Transform Infrared 

Spectroscopy. On the other hand, experiments aimed at the determination of the 

denitrosylase activity of Cgb are a major challenge, limited by the absence of a cognate 

reductase that allows turnover measurements. 

More and more evidence seems to indicate the presence of promiscuous, rather than 

specific, reductases able to donate electrons to native and heterologous globins and 

other haem proteins (Coppola et al., 2013; Dewilde et al., 2001; Gusarov et al., 2008; 

Trandafir et al., 2004; Van Doorslaer et al., 2003). The C. jejuni globins appear not to 

be the exception. Specific candidates for the Cgb cognate reductase include the 

flavorubredoxin reductase NorW in E. coli (Figs. 5.3-5.5) or the lactate dehydrogenase 

Cj1585c in C jejuni (Fig. 5.6) but there is no indication of such a function. Furthermore, 

the role of the E. coli electron flux of the respiratory chain as the source of reduction 

was also ruled out (Fig. 5.1 and 5.2). However, herein it was demonstrated that 

regardless of the source of the cellular soluble extracts (E. coli or C. jejuni) both Cgb 

and Ctb were efficiently reduced after oxidation by NO (Chapter 4). The dependence of 

the reduction on the presence of NADH suggested that the “mysterious” reductase(s) 

might function in a similar way as the reductase domain of the flavohaemoglobin Hmp 

that also requires the presence of NADH or NADPH (Anjum et al., 1998). However, 

experimental evidence to support this must be generated.  
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Bacterial haemoglobins from pathogenic bacteria are unlikely to be candidates for 

pharmacological purposes due to their homology to human Hb and Mb. However, 

identification of the cognate reductase(s) of such globins (e.g. SDHbs and TrHbs from 

C. jejuni and M. tubercuolosis), might be valuable since it would represent an 

opportunity for exploring those reductases as targets for pharmacological intervention. 

For instance, specific compounds able to inhibit the interaction between the globin and 

the reductase partner may be extremely useful for understanding and perhaps 

manipulating signalling networks in the globin-containing bacteria.  

Extensive efforts have been made in order to reveal the physiological function(s) of the 

truncated haemoglobin Ctb (Bolli et al., 2008; Lu et al., 2007a; Nardini et al., 2006; 

Wainwright et al., 2006). However, this enigmatic protein is still far from being 

understood. Even though Ctb has been involved in oxygen chemistry, it appears to be 

up-regulated only under conditions of nitrosative stress (Wainwright et al., 2005) and 

otherwise constitutively expressed at low levels. Are the constitutive levels of the globin 

sufficient to allow a significant function in regulation of intracellular oxygen tensions? 

Why is Cgb tightly repressed in the absence of nitrosative stress while Ctb is not? 

Moreover, are increased levels of the truncated globin required to play the same, or a 

different role under nitrosative stress conditions?  

The demonstration of a significant increase in NO evolution from nitrite by the 

expression of Ctb in E. coli (Fig. 6.2) suggests a nitrite reductase activity linked to the 

truncated globin. Here, it was suggested that NO production by Ctb from nitrite might 

be a primary mechanism aimed at triggering the NssR-dependent expression of Cgb that 

in turn detoxifies NO. Thus, elucidation of the molecular mechanism leading to the 

activation of NssR in the presence of nitrosative stress (NO, GSNO, nitrite, etc.) 

represents a challenging and crucial next step in the functional characterisation of the 

NO-mediated globin responses. A requirement for iron acquisition and oxygen has been 

demonstrated for the NssR NO-mediated response (Monk et al., 2008). However, the 

molecular mechanism for activation of NssR remains elusive. Smith et al. (2011) 

showed that purified NssR has a high affinity for the ctb promoter by using gel shift 

analyses, yet GSNO and the NO donor NOC-12 had little effect on DNA binding. 

However, three possible explanations have been suggested: (i) the observed DNA 

binding of the apoprotein is due to the lack of an NssR cofactor and, consequently an 
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artefact, (ii) NssR actually binds the DNA and post-translational modifications of the 

apoprotein promote transcriptional activation or (iii) a downstream intermediate of NO 

metabolism activates the transcription. Approaches such as structural modelling, 

investigation of the NssR metal-containing cofactors and post-translational 

modifications of the regulator in the presence of candidate metabolites should be 

considered to test such hypotheses.  

Initial structural modelling approaches have been performed using the online RaptorX 

server (Kallberg et al., 2012; Peng and Xu, 2011). Structural homology with 

transcriptional regulators that bind cyclic nucleotides, haem, and α-ketoglutarate were 

found (Dr. Mark Shepherd, personal communication); of special interest are Catabolite 

Activator Protein (CAP) from Thermus thermophilus, CooA from Carboxydothermus 

hydrogenoformans (binds haem), and NtcA from Synechococcus elongatus (a global 

nitrogen regulator). Since the iron requirement for NssR activity in vivo has been 

demonstrated (Monk et al., 2008), the most likely candidate to occupy the ligand-

binding cleft is haem. Indeed, a histidine residue commonly found in haem ligands is 

predicted in the vicinity of the putative haem-binding site (Dr. Mark Shepherd, personal 

communication). If haem is found to bind to NssR, gel shift assays performed with 

haem-loaded NssR may produce perturbations of the NssR:DNA interaction in the 

presence of NO. Furthermore, the requirement of NssR for haem can be tested in vivo 

using a mutant of C. jejuni that is deficient in haem synthesis (ΔhemA); NO-induced 

expression of Cgb can be followed by Western blotting and growth sensitivity to NO 

monitored in culture. Besides, S-nitrosation of cysteine residues, the most common 

protein modification during nitrosative stress, and nitration of tyrosine residues by 

peroxynitrite, produced in vivo by the reaction of NO and superoxide (Hughes, 1999), as 

possible post-translational modification of NssR could be approached by treating 

purified NssR with GSNO and NO to cause nitrosylation and peroxynitrite to produce 

nitration. Increasing mass can be measured by a Bruker micrOTOF-Q Electrospray 

Mass Spectrometry (Dr. Mark Shepherd, personal communication).   

Experimental validation of Ctb as a nitrite reductase able to activate the expression of 

Cgb via NO production, would represent an important contribution to the understanding 

of bacterial haemoglobin functions. Certainly, it would constitute the first example of 

haemoglobins working in an integrated response. A combination of mutagenesis, 
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molecular dynamics simulation and ligand-binding measurements could be exploited to 

investigate the molecular bases of the Ctb nitrite reductase activity. Additionally, 

transcriptomic analysis of nitrite and nitrate metabolism in C. jejuni might provide a 

wider picture of the changes elicited in such conditions. Indeed, if NO is generated 

during nitrite metabolism in C. jejuni, it is plausible that the responses to cultures fed 

with nitrite will trigger not only the expression of genes related to the presence of this 

ion but also those observed in the NO regulon. A tightly controlled study in continuous 

culture could provide reliable data on the effects of nitrite (predicted to generate NO in 

vivo) and NO per se (added as a fast NO-releasing NONOate) that would allow 

comparisons, as has been done previously in Prof. Poole’s laboratory for assessing the 

full distinct effects of NO, GSNO and peroxynitrite in E. coli (Pullan et al., 2007).  

Even though bacterial globins have been widely studied in recent years, the information 

obtained does not always reveal the physiological significance of such proteins in their 

hosts. For instance, although for several microbial globins the crystal structure has been 

solved (Table 1.2), in many cases, there is not a hint of the functions. Nonetheless, C. 

jejuni has proved to possess important advantages for the investigation of globin 

function. Indeed, this pathogenic bacterium deals with NO and RNS during infection 

and pathogenesis. This means that elucidation of the resistance mechanisms against 

nitrosative stress may have profound implications for fundamental and medical science. 

Besides, C. jejuni is a genetically tractable organism with which it has been possible to 

produce mutants allowing inference of functions (e.g. the role of Cgb in NO and RNS 

resistance) and regulation (the transcription factor NssR). These data, together with (i) 

an extensive exploration of the structure and biochemical characterisation of Cgb and 

Ctb in vitro and (ii) the confirmation of the Cgb function and exploration of the Ctb 

activities by heterologous expression in E. coli have positioned the C. jejuni globins 

among the most studied bacterial globins (Table 8.1). 
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Table 8.1 Functions and regulation of the haemoglobins Cgb and Ctb from C. jejuni.  

Family,  

 subfamily 

and globin 

name 

Crystal 

Structure  

Function(s) 

 inferred  

by mutation 

Regulation Heterologous expression 

References 
Regulator(s) 

involved 

Environmental factors 

and/or compounds 

involved in up-

regulation 

Host 
      Function(s) in the 

host  

        

M 

SDHb 

Cgb 

Solved 

 

Protection of growth 

against NO and GSNO 

toxicity in microaerophilic 

conditions.  

Protection of respiration 

from NO inhibition. 

Consumption of NO under 

aerobic and anaerobic 

conditions. 

 

    NssR 

GSNO,  NOC-18, SNP, 

spermine NONOate, 

nitrate and nitrite 

E. coli wild 

type. 

E. coli hmp 

 

 

Protection of growth against NO 

and GSNO toxicity. Protection of 

respiration from NO inhibition. 

Consumption of NO under aerobic 

and anaerobic conditions. 

 

 

(Avila-Ramirez et al., 2013; 

Bollinger et al., 2001; Elvers 

et al., 2005; Elvers et al., 

2004; Frey et al., 2002; Monk 

et al., 2008; Pittman et al., 

2007; Shepherd et al., 2010; 

Wainwright et al., 2005)and 

this study). 

  TrHb 

  TrHb3 

  Ctb 

Solved Oxygen metabolism    NssR 

Constitutively expressed 

at low levels. 

Nitrosative stress. 

 

E. coli hmp 

Consumption of NO under aerobic 

and anaerobic conditions. 

Production of NO from nitrite under 

anaerobic conditions.  

 

(Avila-Ramirez et al., 2013; 

Elvers et al., 2005; Monk et al., 

2008; Nardini et al., 2006; 

Smith et al., 2011; Wainwright 

et al., 2005)and this study). 
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