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Abstract

In this thesis, inspired by the Boston House Price data, we propose

a semiparametric spatial dynamic model, that extends the ordinary

spatial autoregressive models to accommodate the effects of some co-

variates associated with the House price. A profile likelihood-based

estimation procedure is proposed and the asymptotic normality of the

proposed estimators are derived. We also investigate the connection

between cross − validation method and AIC/BIC methods in the

semiparametric family. In the proposed model, it is easier to apply

the AIC/BIC method than the cross− validation method. We illus-

trate how to identify the parametric/nonparametric components in the

proposed semiparametric model. We also show how many unknown

parameters an unknown bivariate function amounts to, and propose

an AIC/BIC nonparametric model selection. Simulation studies are

conducted to examine the performance of the proposed methods, and

their results show that the methods work very well. Finally, we ap-

ply the proposed methods to analyze the Boston House Price data,

which lead to some interesting findings.Although, the proposed model

and methodology are stimulated by the Boston House Price data, they

could be widely used in many other scientific problems.
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1 Introduction

1.1 Background of the model and the project

The Boston House Price data are frequently used in the literature to

illustrate new statistical methods. If we use yi to denote the median

value of owner-occupied homes at location si, a spatial autoregressive

model for the data would be

yi =
∑
j 6=i

wijyj + εi, i = 1, · · · , n, (1.1)

where wij is the impact of yj on yi. Apparently, (1.1) does not ad-

equately address what affects the house price and how. It is better

to incorporate the effects of some important covariates, such as crime

rate and accessibility to radial highways, into the model. If Xi, a p

dimensional vector, is the vector of the covariates associated with yi,

a reasonable model to fit the data would be

yi =
∑
j 6=i

wijyj +XT
i β + εi, i = 1, · · · , n. (1.2)

where wij and β are unknown. However, there are two problems with

model (1.2): first, there are too many unknown parameters; second, the

model has not taken into account the location effects of the impacts of

the covariates – the impacts of some covariates may vary with location.

To control the number of unknown parameters and take the location

1



effects into account, we propose the following model to fit the data

yi = α
∑
j 6=i

wijyj +XT
i β(si) + εi, i = 1, · · · , n, (1.3)

where wij is a specified certain physical or economic distance, β(·) =

(β1(·), · · · , βp(·))T, εi, i = 1, · · · , n, are i.i.d., and follow N(0, σ2),

{Xi, i = 1, · · · , n} is independent of {εi, i = 1, · · · , n}.The unknown

parameters α, σ2 and β(·) are unknown and cannot be estimated.

Model (1.3) is the model addressed in this thesis. Hereafter, yi is of

course not necessarily the house price, it is a generic response variable.

In model (1.3), the spatial neighbouring effect of yj, j 6= i, on yi is

formulated through αwij, where wij is a specified certain physical or

economic distance. Such method to define spatial neighbouring effect

is common, see Ord (1975), Anselin (1988), Su and Jin (2010).

Model (1.3) is a useful extension of spatial autoregressive models

(Gao et al., 2006; Kelejian and Prucha, 2010; Ord, 1975; Su and Jin,

2010) and varying coefficient models (Cheng et al., 2009; Fan and

Zhang, 1999, 2000; Li and Zhang, 2011; Sun et al., 2007; Zhang et

al., 2002; Zhang et al., 2009; Wang and Xia, 2009; and Tao and Xia,

2011). One characteristic of model (1.3) is

E(εi|y1, · · · , yi−1, yi+1, · · · , yn) 6= 0

although E(εi) = 0, the standard least squares estimation will not

work for (1.3). Given the local linear modelling and profile likelihood

idea, we propose a local likelihood based estimation procedure for the

unknown parameters and functions in (1.3) and derive the asymptotic

2



properties of the obtained estimators.

Cross-validation and AIC/BIC are the most commonly used tools

in model selection. Due to the structure of model (1.3), it is easier to

apply the AIC/BIC method than the Cross-validation method in model

selection. Inspired by this, we investigated the connection between

these two methods in a semiparametric model, and find that they are

equivalent to each other. Given the above reasons along with others,

this question becomes a very interesting and important topic.

In reality, some of the components of β(·) in model (1.3) may be

constant, and we do not know which components are functional and

which are constant. Methodologically speaking, if mistakenly treat-

ing a constant component as functional, we would pay a price on

the variance side of the obtained estimator. However, if mistakenly

treating a functional component as constant, we would pay a price

on the bias side of the obtained estimator. The identification of con-

stant/functional components in β(·) is imperative. From a practical

point of view, the identification of constant components is also impor-

tant. For the data set we study in this paper, β(·) can be interpreted

as the vector of the impacts of the covariates concerned on the house

price. The identification will reveal which covariates have location-

varying impacts with the House Price, and which do not. This is ap-

parently of great interest. Because it is easier to apply the AIC/BIC

method than Cross-Validation method, we show how many unknown

parameters an unknown bivariate function amounts to, and propose an

AIC/BIC nonparametric version to identify the constant components

of β(·) in model (1.3).

3



Throughout this thesis, 0k is a k dimensional vector with each

component being 0, Ik is an identity matrix of size k and U [0, 1]2 is a

two dimensional uniform distribution on [0, 1]× [0, 1].
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1.2 Thesis organization

In Chapter 2, we review the fundamental methodology in nonparamet-

ric statistics-the local polynomial modelling method. In chapter 2.1,

we introduce the framework of the local polynomial modelling method,

the bivariate case. The method for multivariate data is presented in

chapter 2.2. This chapter provides insights into nonparametric estima-

tion and should offer a better understanding of the methods we derived

in this thesis.

In Chapter 3, we describe the estimation procedure for the pro-

posed model (1.3). The asymptotic properties of the proposed meth-

ods are presented in Chapter 4, followed by the proofs of the theorems

and lemmas, in Chapters 5 and 6.

In model selection, there are three methods people would mostly

use : AIC, BIC and cross-validation method. Due to the structure

of the proposed model (1.3), it is not straightforward to apply the

cross-validation method here, in contrast, AIC/BIC methods are easier

to apply.As a result, in Chapter 7, we have showed the connection

between cross-validation and AIC/BIC in the semiparametric family.

We illustrated the equivalence of these two methods in this chapter.

The simulation studies showing the connection are listed in chapter

7.4. The theoretical proofs are presented in chapter 7.5.Investigating

the connection between these methods is also an very interesting and

important research object.

In Chapter 8, the model selection methods are introduced. The

thresholding K method is presented in chapter 8.1,followed by the

Curvature-to-Average ratio (CTAR) based method, which is illustrated

5



in chapter 8.2. In chapter 8.3, we show how many unknown parameters

an unknown bivariate function amounts to, and propose an AIC/BIC

of nonparametric version for model selection here.

The performances of the proposed estimation and model selection

procedures are assessed by the simulation studies in Chapter 9 and

Chapter 10. In Chapter 9, we estimate the unknown function β(·) and

unknown parameter α under different situations. The Oracle proper-

ties of the estimation procedure are also presented in Chapter 9.

In Chapter 11, we explore how the covariates, which are commonly

found to be associated with House Price, affect the median value of

owner-occupied homes in Boston, and how the impacts of these co-

variates change with the location, based on the proposed model and

estimation procedure.

The conclusions and a discussion of the future research are pre-

sented in Chapter 12.
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2 Local Polynomial Modelling

2.1 Framework of local polynomial modelling

In statistics, regression analysis is one of the most useful and com-

monly used tools. In this chapter, we review the techniques applied in

nonlinear regression, especially the local polynomial modelling, which

is one of the most widely used techniques in nonparametric statis-

tics. We begin by introducing this technique in the case of one-

dimensional variables. We introduce the multivariate cases in the next

sub-chapter.Consider that we generate n i.i.d bivariate data samples,

i.e, {(Xi, Yi), i = 1, · · · , n},the data are generated from the following

model:

Y = l(X) + σ(X)ε (2.1)

Here, we assume that E(ε) = 0, V ar(ε) = 1, and that independent

variable X and ε are independent. We also assume the conditional

variance of Y given X = x0 by σ2(x0) and the marginal density of X,

i.e, the design density, by f(·). We assume that the (p+1)th derivative

of l(x) at the point x0 exists. The Taylor expansion for the point x ,

which is in the neighborhood of x0 ,is:

l(x) ≈
p∑
i=0

l(i)(x0)

i!
(x− x0)i (2.2)

This polynomial is fitted locally by the weighted least squares regres-

sion problem. Treating l(j)(x0)
j!

= βj, for j = 0, 1, · · · , p, we minimize

7



the following weighted least squares regression:

n∑
i=1

{Yi −
n∑
j=1

βj(Xi − x0)j}2Kh(Xi − x0) (2.3)

Here, K is the kernel function, and h is the bandwidth, which controls

the size of the neighborhood, Kh(·) = K(·/h)/h. We minimize this

problem with respect to βj and the solution to the least squares prob-

lem is denoted by β̂j, j = 0, 1, · · · , p. For a better understanding, we

can view the weighted least squares in a matrix form. According to

the notations in Fan and Gijbels (1996), denote the design matrix X,

y,β̂ as :

X =


1 (X1 − x0) · · · (X1 − x0)p
...

...
...

1 (Xn − x0) · · · (Xn − x0)p

 , y =


Y1
...

Yn

 , β̂ =


β̂0
...

β̂n

 ,

let W be the n× n diagonal matrix of weights:

W = diag{Kh(X1 − x0), Kh(X2 − x0), · · · , Kh(Xn − x0)} (2.4)

The weighted least squares problems can be rewritten as:

min(y −Xβ)TW(y −Xβ) (2.5)

with β = (β0, · · · , βp)T , and the solution in the matrix form can be

viewed as :

β̂ = (XTWX)−1XTWy (2.6)

8



We know the conditional expectation of y given X is :

l(x0) = E(Y | X = x0) (2.7)

By equation 2.6 , we can easily derive the conditional bias and variance

of the estimator β̂:

E(β̂ | X) = (XTWX)−1XTWl = β + (XTWX)−1XTWr (2.8)

V ar(β̂ | X) = (XTWX)−1(XTΣX)(XTWX)−1 (2.9)

where l = {l(X1), · · · , l(Xn)}T , β = {l(x0), · · · , lp(x0)/p!}T ;

and r = l−Xβ is the residual vector of the approximation,

Σ = diag{K2
h(X1 − x0)σ2(X1), · · · , K2

h(Xn − x0)σ2(Xn)}
However, the exact bias and variance of β̂ are not directly usable

due to the unknown quantities: the residual r and the diagonal ma-

trix Σ. There are two ways to solve the problem. One method is the

”plug-in” method. We find the estimator of the unknown quantities,

then we plug them into the equations. Another method is founded

by Ruppert and Wand (1994). They found the approximation of the

conditional bias and variance by their first order asymptotic expan-

sions. Before illustrating the results, we would first introduce some

notations we will use in the Theorem. Denote the moments of K and

K2 by µj =
∫
µjK(µ)dµ and νj =

∫
µjK

2(µ)dµ respectively. The unit

vector ev+1 = (0, 0, · · · , 1, 0, · · · , 0)T and 1 is the (v + 1)th component.

There are also some matrices and vectors of moments that appear in

9



the asymptotic expressions.

S = (µj+l)0≤j,l≤p cp = (µp+1, · · · , µ2p+1)
T

S̃ = (µj+l+1)0≤j,l≤p c̃p = (µp+2, · · · , µ2p+2)
T

S∗ = (νj+l)0≤j,l≤p

We have the following theorem:

Theorem 2.1 Assume that t(x0) > 0 and that t(·) ,l(p+1)(·) and σ2(·)
are continuous in a neighborhood of x0.Further, assume that h → 0

and nh → ∞ Then the asymptotic conditional variance of l̂v(x0) is

given by

V ar(l̂v(x0) | X) = eTv+1S
−1S∗S−1ev+1

ν!2σ2(x0)

f(x0)nh1+2ν
+Op(

1

nh1+2ν
)

(2.10)

the asymptotic conditional bias for p− ν odd is given by

Bias(l̂v(x0) | X) = eTv+1S
−1cp

ν!

(p+ 1)!
l(p+1)hp+1−ν+op(hp+1−ν) (2.11)

the asymptotic conditional bias for p− ν even is given by

Bias(l̂v(x0) | X) = eTv+1S
−1c̃p

ν!

(p+ 2)!
{l(p+2)(x0)

+(p+ 2)m(p+1)(x0)
f ′(x0)

f(x0)
}hp+2−ν + op(hp+2−ν)

There are several advantages of local polynomial fitting. One of

10



the most important is that local polynomial fitting is nearly optimal

in an asymptotic minimax sense. The computational costs for the lo-

cal polynomial estimators are very low due to their simplicity. Fan

and Marron (1994) showed that it was possible to do local polynomial

fitting in O(n) operations. This method is an effective and easily ap-

plied method in nonparametric statistics that adapts to various types

of designs. In the next chapter, we discuss this method for multivariate

data.
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2.2 Local polynomial modelling for multivariate

data

Given multivariate covariate X and dependent variable Y, we want to

estimate the mean regression function.For simplicity, we only introduce

the local linear fitting here, i.e p = 1. However, the key idea behind

and the methodology of using local polynomial fitting for higher p are

the same. We still minimize the multivariate version of the weighted

least squares regression:

n∑
i=1

{Yi − β0 −
d∑
j=1

βj(Xij − xj)}2KB(Xi − x), (2.12)

with respect to β = (β0, · · · , βd)T . We define:

KB(u) =
1

| B |
K(B−1u) (2.13)

The bandwidth matrix B is a nonsingular d × d matrix and | B | is

the determinant of the bandwidth matrix. K is defined as a d-variate

nonnegative kernel function. The solution for the multivariate version

of the weighted least squares regression problem is:

β̂ = (XD
TWXD)−1XD

TWy, (2.14)
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where,

XD =



1 (X11 − x1) · · · (X1d − xd)
1 (X21 − x1) · · · (X2d − xd)
...

...
...

1 (Xn1 − x1) · · · (Xnd − xd)

 ,

The weight matrix is W = diag{KB(X1 − x), · · · , KB(Xn − x)}.
According to Ruppert and Wand(1994), we can find the conditional

bias and variance. The conditional bias of the estimator l̂(x) is given

by:

E{l̂(x)− l(x) | X} =
1

2
µ2(K)[tr{H(x)BBT}+ op{tr(BBT )}] (2.15)

And the conditional variance of the estimator is :

V ar{l̂(x) | X} =
1

n | B |
ν0(K)

σ2(x)

f(x)
{1 + op(1)} (2.16)

where ν0(K) =
∫
K2(µ)dµ, and H(x) is defined as the Hesian ma-

trix of m at x.f denote the d-variate marginal density function of

X = (X1, · · · , Xd)
T .

In the next chapter, we introduce the estimation procedure for

the designed model. We use the methodology of the local polynomial

modelling, which we have elaborated on this chapter.
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3 Estimation Procedure

Let wii = 0, W = (wij), Y = (y1, · · · , yn)T, A = I − αW , and m =(
XT

1β(s1), · · · , XT
nβ(sn)

)T
. By simple calculation, we have that the

conditional density function of Y given m is N
(
A−1m, (ATA)−1σ2

)
,

which leads to the following log likelihood function

−n
2

log(2π)− n log(σ) + log(|A|)− 1

2σ2
(AY −m)T(AY −m). (3.1)

Our estimation is profile likelihood based. We first construct the

estimator β̃(·; α) of β(·) pretending α is known, then let (α̂, σ̂2)

maximise (3.1) with β(·) being replaced by β̃(·; α). α̂ and σ̂2 are

our estimators of α and σ2, respectively. After the estimator of α is

obtained, the estimator of β(·) is taken to be β̃(·; α) with α and the

bandwidth used being replaced by α̂ and a slightly larger bandwidth,

respectively. The details are as follows.

For any s = (u, v)T, we denote (∂β(s)/∂u, ∂β(s)/∂v) by β̇(s),

where ∂β(s)/∂u = (∂β1(s)/∂u, · · · , ∂βp(s)/∂u)T.

For any given s, by the Taylor’s expansion, we have

β(si) ≈ β(s) + β̇(s)(si − s)

when si is in a small neighbourhood of s, which leads to the following

objective function for estimating β(s)

n∑
i=1

(
y∗i −XT

i a−XT
i B(si − s)

)2
Kh(‖si − s‖), (3.2)

where y∗i is the ith component of AY , Kh(·) = K(·/h)/h2, K(·) is a
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kernel function, and h is a bandwidth. Let (â, B̂) minimise (3.2), the

‘estimator’ β̃(s; α) of β(s) is taken to be â. By simple calculations,

we have

β̃(s; α) = â = (Ip, 0p×2p)
(
XTWX

)−1
XTWAY, (3.3)

where 0p×q is a matrix of size p× q with each entry being 0, and

X =

 X1 · · · Xn

X1 ⊗ (s1 − s) · · · Xn ⊗ (sn − s)


T

,

W = diag (Kh(‖s1 − s‖), · · · , Kh(‖sn − s‖)) .

Replacing β(si) in (3.1) by β̃(si; α) and ignoring the constant term,

we have the objective function for estimating α and σ2

−n log(σ) + log(|A|)− 1

2σ2
(AY − m̃)T(AY − m̃), (3.4)

where m̃ is m with β(si) being replaced by β̃(si; α). Let αi, i =

1, · · · , n, be the eigenvalues of W ,

σ̃2 =
1

n
(AY − m̃)T(AY − m̃),

and (α̂, σ̂2) maximise (3.4). Noticing that |A| =
n∏
i=1

(1 − ααi), by

simple calculation, we have α̂ is the maximiser of

−n log(σ̃) +
n∑
i=1

log(|1− ααi|), (3.5)
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and σ̂2 is σ̃2 with α being replaced by α̂.

Maximizing (3.5) is not difficult as it is an one dimensional opti-

mization problem and we can use a grid point method to solve it.

The estimator β̂(·)
(
= (β̂1(·), · · · , β̂p(·))T

)
is β̃(·; α) with α being

replaced by α̂ and the bandwidth h with a slightly larger bandwidth h1.

The reason to replace the bandwidth h by a slightly larger one is that

h is for the estimation of constant parameters such as α and σ2, and

thus is usually smaller than the one for estimating functional param-

eters, because undersmooth is needed for the estimators of constant

parameters to achieve the optimal convergence rate.

In reality, some components of β(·) may be constant. If a compo-

nent of β(·) is a constant, say β1(·) = β1, we use the average of β̂1(si),

i = 1, · · · , n, to estimate the constant β1, that is

β̂1 =
1

n

n∑
i=1

β̂1(si).

How to identify the constant components of β(·) is addressed in the

following chapter.

16



4 Asymptotic Properties of the Proposed

Estimators

In this chapter, we present the asymptotic properties of the proposed

estimators. We only present the asymptotic results and leave the the-

oretical proofs for chapters 5 and 6.

Although we assume that εi in (1.3) follows normal distribution in

our model assumption, we do not need this assumption when deriv-

ing the asymptotic properties of the proposed estimators. So, in this

chapter, we do not assume that εi follows normal distribution unless

otherwise stated.

In this chapter, for wij in (1.3), we assume that there exists a

sequence ρn > 0 such that wij = O(1/ρn) uniformly with respect to

i, and j and the matrices W and A−1 are uniformly bounded in both

row and column sums.

We now introduce some notations needed in the presentation of the

asymptotic properties of the proposed estimators: Let µj = Eεj1,

κ0 =
∫
R2
K(‖s‖)ds, κ2 =

∫
R2

[(1, 0)s]2K(‖s‖)ds =
∫
R2

[(0, 1)s]2K(‖s‖)ds,

ν0 =
∫
R2
K2(‖s‖)ds, ν2 =

∫
R2

[(1, 0)s]2K2(‖s‖)ds =
∫
R2

[(0, 1)s]2K2(‖s‖)ds,

Ψ = E(X1X
T
1 ), Γ = EX1, Z1(s) = lim

n→∞

1

n

n∑
i=1

giiβ(si)Kh(‖si − s‖),

Z2(s) = lim
n→∞

1

n

n∑
i=1

n∑
j 6=i

gijβ(sj)Kh(‖si−s‖), Z(s) = Z1(s)+Ψ−1ΓΓTZ2(s),

Z = κ−10

(
f−1(s1)X

T
1Z(s1), · · · , f−1(sn)XT

nZ(sn)
)T
,
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A = In − αW, G = (gij) = WA−1,

π1 = lim
n→∞

tr((G+GT)G)

n
, π2 = lim

n→∞

tr(G)

n
, π3 = lim

n→∞

1

n

n∑
i=1

g2ii,

λ1 = lim
n→∞

1

n
E[(Gm− Z)T(Gm− Z)],

λ2 = lim
n→∞

1

n
E[(Gm− Z)TGc], λ3 = lim

n→∞

1

n
E[(Gm− Z)T1n]

where Gc = (g11, · · · , gnn)T and 1n is a n dimensional vector with each

component being 1. Further, let

Ω =

 1
σ2λ1 + π1

1
σ2π2

1
σ2π2

1
2σ4

 , Σ =

 µ4−3σ4

σ4 π3 + 2µ3
σ4 λ2

µ3
2σ6λ3 + µ4−3σ4

2σ6 π2
µ3
2σ6λ3 + µ4−3σ4

2σ6 π2
µ4−3σ4

4σ8

 ,

s = (u, v)T, βuu(s) =

(
∂2β1(s)

∂u2
, · · · , ∂

2βp(s)

∂u2

)T
,

βvv(s) =

(
∂2β1(s)

∂v2
, · · · , ∂

2βp(s)

∂v2

)T
and

S =


(XT

1 ,01×2p)
(
XT

(1)W(1)X(1)

)−1
XT

(1)W(1)

...

(XT
n ,01×2p)

(
XT

(n)W(n)X(n)

)−1
XT

(n)W(n)


where X(i) and W(i) are X and W respectively with s being replaced

by si, i = 1, · · · , n.

Using simple calculations, we can see the matrix Ω defined above

is the limit of the Fisher information matrix of α and σ2. As the sin-

gularity of matrix Ω may have serious implications for the convergence

rate of the proposed estimators, we present the asymptotic properties

18



for the case in which Ω is nonsingular and the case in which Ω is sin-

gular separately. We present the nonsingular case in Theorems 1 - 3,

and the singular case in Theorems 4 - 7.

Theorem 1. Under the Conditions (1)-(7) or Conditions (1)-(6),

(7̃) and (8) in Chapter 5, α in model (1.3) is identifiable and Ω is

nonsingular, and when n1/2h2/ log2 n → ∞ and nh8 → 0, α̂ and σ̂2

are consistent estimators of α and σ2, respectively.

Theorem 1 shows the conditions under which Ω is nonsingular and

the consistency of α̂ and σ̂2 under such conditions. Based on Theorem

1, we can derive the asymptotic nomality of α̂ and σ̂2.

Theorem 2. Under the assumptions of Theorem 1, if the second par-

tial derivative of β(s) is Lipschitz continuous and nh6 → 0,

√
n
(
α̂− α, σ̂2 − σ2

)T D−→ N(0, Ω−1 + Ω−1ΣΩ−1).

Further, if εi is normally distributed,

√
n
(
α̂− α, σ̂2 − σ2

)T D−→ N(0, Ω−1).

Theorem 2 implies that the convergence rate of α̂ is of order n−1/2

when Ω is nonsingular, which is the optimal rate for parametric esti-

mation. We will see, in Theorem 5, this rate can not be achieved by α̂

when Ω is singular.

Theorem 3. Under the assumptions of Theorem 1, if nh61 = O(1) and
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h/h1 → 0,

√
nh21f(s)

(
β̂(s)−β(s)−2−1κ−10 κ2h

2
1{βuu(s)+βvv(s)}

)
D−→ N

(
0, κ−20 ν0σ

2Ψ−1
)
.

for any given s.

Theorem 3 shows β̂(·) is asymptotic normal and achieves the con-

vergence rate of order n−1/6, which is the optimal rate for bivariate

nonparametric estimation.

We now turn to the case where Ω is singular.

Theorem 4. Under the Conditions (1)-(6) and (9) in Chapter 5, α

is identifiable and Ω is singular, and if nh8 → 0, n1/2h2/ log2 n→∞,

ρn → ∞, ρnh
4 → 0 and nh2/ρn → ∞, α̂ is a consistent estimator of

α.

Theorem 5. Under the assumptions of Theorem 4, if the second par-

tial derivative of β(s) is Lipschitz continuous and nh6 → 0,

√
n/ρn(α̂− α)

D−→ N(0, σ2
α),

where

σ2
α =

[
1

σ2
λ4 + lim

n→∞

ρn
n

tr((G+GT)G)
]−2
×{ 1

σ2
λ4 + lim

n→∞

ρn
n

tr((G+GT)G) +
2µ3

σ4
lim
n→∞

ρn
n
E[(Gm− SGm)TGc]

}

and

λ4 = lim
n→∞

ρn
n
E[(Gm− SGm)T(Gm− SGm)].
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Theorem 5 shows the convergence rate of α̂ is of order (ρn/n)−1/2

which is slower than n−1/2 when ρn −→∞. However, we will see, from

Theorem 7, this has no effect on the asymptotic properties of β̂(·).

Theorem 6. Under the assumptions of Theorem 5,

√
n(σ̂2 − σ2)

D−→ N(0, µ4 − σ4).

Theorem 6 shows that although the asymptotic variance of σ̂2 is

different to that when Ω is nonsingular, σ̂2 still enjoys convergence rate

of n−1/2.

Theorem 7. Under the assumptions of Theorem 4, if nh61 = O(1) and

h/h1 → 0,

√
nh21f(s)

(
β̂(s)−β(s)−2−1κ−10 κ2h

2
1{βuu(s)+βvv(s)}

)
D−→ N

(
0, κ−20 ν0σ

2Ψ−1
)

for any given s.

From Theorem 3 and Theorem 7, we can see the singularity of Ω

has no effect on the asymptotic distribution of β̂(·).
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5 Proofs of Theorems

To avoid any confusion with notations, we use α0 to denote the true

value of α in this chapter. Further, we rewrite A = In − αW as A(α)

to emphasis its dependence on α, and abbreviate A(α0) as A.

The following regularity conditions are needed to establish the

asymptotic properties of the estimators.

Conditions

(1) The kernel function K(·) is a bounded positive, symmetric and

Lipshitz continuous function with a compact support on R. And

h→ 0.

(2) {βi(·), i = 1, · · · , p} have continuous second partial derivatives.

(3) {Xi} is a sequence of iid. random sample from the population

and is independent of εi, i = 1, · · · , n. Moreover, E(X1X
T
1 ) is

positive definite, E‖X1‖2q <∞ and E|ε1|2q <∞ for some q > 2.

(4) {si} is a sequence of fixed design points on a bounded support

S. Further, there exists a positive joint density function f(·)
satisfying a Lipshitz condition such that

sup
s∈S

∣∣∣ 1
n

n∑
i=1

[r(si)Kh(‖si − s‖)−
∫
r(t)Kh(‖t− s‖)f(t)dt

∣∣∣ = O(h)

for any bounded continuous function r(·) and Kh(·) = K(·/h)/h2

where K(·) satisfies Condition (1). f(·) is bounded away from

zero on S.

22



(5) There exists a sequence ρn > 0 such that the elements wij of W

are O(1/ρn) uniformly in all i, j. As a normalization, wii = 0

for all i. Furthermore, the matrices W and A−1 are uniformly

bounded in both row and column sums.

(6) A−1(α) are uniformly bounded in either row or column sums,

uniformly in α in a compact support ∆ . The true α0 is an

interior point in ∆.

(7) lim
n→∞

1
n
E[(Gm− Z)T(Gm− Z)] = λ1 > 0.

(7̃) λ1 = 0.

(8) ρn is bounded and for any α 6= α0,

lim
n→∞

{ 1

n
log

∣∣∣σ2A−1(A−1)T
∣∣∣− 1

n
log

∣∣∣σ2
a(α)A−1(α)(A−1(α))T

∣∣∣} = 0

where σ2
a(α) = σ2

n
tr{(A(α)A−1)TA(α)A−1}.

(9) ρn → ∞, the row sums of G have the uniform order O(1/
√
ρn),

and

lim
n→∞

ρn
n
E[(Gm− SGm)T(Gm− SGm)] = λ4 > 0.

Remark 1: Condition (1)-(3) are commonly seen in nonparametric

estimation. They are not the weakest possible ones, but they are im-

posed to facilitate the technical proofs. Since the sampling units can

be regarded as given, the fixed bounded design Condition (4) is made

for technical convenience. Of course as in Linton(1995), Condition

(4) does not preclude {si}ni=1 from being generated by some random
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mechanism. For example, if si’s were iid. with joint density f(·), then

Condition (4) holds with probability one which can be obtained simi-

larly as Hansen (2008). In this case, we can obtain our results by first

conditional on {si}ni=1 and then go on as usual.

Remark 2: Condition (5)-(8) parallel the corresponding conditions of

Lee (2004) and Su and Jin (2010), in which Condition (5)-(6) concern

the essential features of the weight matrix for the model. Condition (7)

is a sufficient condition which ensures that the likelihood function of α

has a unique maximizer. When Condition (7̃) holds and the elements

of W are uniformly bounded, the uniqueness of the maximizer can be

guaranteed by Condition (8). These two kinds of conditions ensure that

Ω which is the limit of the information matrix of the finite dimensional

parameters is nonsingular. So they are the crucial conditions for
√
n−

rate of convergence of the finite dimensional parameter estimators.

Remark 3: When ρn →∞, Ω can be nonsingular only if Condition (7)

holds. For the situation under Condition (7̃), Ω will become singular.

The singularity of the matrix may have implications on the rate of

convergence of the estimators. Nevertheless, we follow Lee (2004) and

Su and Jin (2010) to consider the situation in which

lim
n→∞

ρn
n
E[(Gm)T(In − S)T(In − S)Gm] = λ4 ∈ (0,∞).

In this case, it is natural to assume that the elements of (In − S)Gm

have the uniform order OP (1/
√
ρn) which can be satisfied by the as-

sumption that the row sums of G are of uniform order O(1/
√
ρn) .

In the following, let H be a diagonal matrix of size 3p with its first

24



p elements on the diagonal being 1 and the remaining elements being

h, P = (In − S)T(In − S) and ε = (ε1, · · · , εn)T. Moreover, like α0, we

use σ2
0 to denote the true value of σ2 to avoid confusion of notation.

Since the following notations will be frequently used in the proofs, we

list here for easy reference.

l(α, σ2) = −n
2

log(σ2) + log(|A(α)|)− 1
2σ2 (A(α)Y )TPA(α)Y,

lc(α) = −n
2

log σ̃2(α) + log |A(α)|,
σ̃2(α) = 1

n
(A(α)Y )TPA(α)Y,

σ̄2(α) = 1
n
E[(A(α)Y )TPA(α)Y ],

σ2
a(α) =

σ2
0

n
tr{(A(α)A−1)TA(α)A−1}.

To prove the theorems, the following lemmas are needed and their

proofs can be founded in chapter 6.

Lemma 1. Let {Yi} be a sequence of independent random variables

and {si} ∈ R2 are nonrandom vectors. Suppose that for some q > 2,

maxiE|Yi|q <∞. Then under Condition (1), we have

sup
s∈S

∣∣∣ 1
n

n∑
i=1

[
Kh(‖si − s‖)Yi − E{Kh(‖si − s‖)Yi}

]∣∣∣ = Op

({ log n

nh2

}1/2 )
,

provided that n1−2/qh2/ log2 n → ∞ and lim
n→∞

1
n

n∑
i=1

Kh(‖si − s‖) < ∞
for any s ∈ S.

Lemma 2. Under the Conditions (1)-(4), then when n1/2h2/ log2 n→
∞,

(1) n−1H−1XTWXH−1 =

 κ0f(s)Ψ 0p×2p

02p×p κ2f(s)Ψ⊗ I2

+OP (cn13p1
T
3p)

holds uniformly in s ∈ S where cn = h+ { logn
nh2
}1/2,

(2) β(s)− (Ip,0p×2p)(XTWX )−1XTWm = −κ2h2

2κ0

{
βuu(s) + βvv(s)

}
+
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op(h
21p) holds uniformly in s ∈ S.

Lemma 3. Under the Conditions (1)-(5), then when n1/2h2/ log2 n→
∞,

n−1H−1XTWGm− n−1E(H−1XTWGm) = oP (1)

uniformly in s ∈ S.

Lemma 4. Under the Conditions (1)(3)(4) and (5), when n1/2h2/ log2 n→
∞, we have (1) 1

n
E[tr(P )] = 1 + o(1), (2) 1

n
E[tr(GTP )− tr(G)] = o(1),

(3) 1
n
E[tr(GTPG) − tr(GTG)] = o(1). Further, when nh2/ρn → ∞,

then (4) ρn
n
E[tr(P )− n] = o(1), (5) ρn

n
E[tr(GTP )− tr(G)] = o(1), (6)

ρn
n
E[tr(GTPG)− tr(GTG)] = o(1).

Lemma 5. Under the Conditions (1)-(5), then when n1/2h2/ log2 n→
∞, (1) (Gm)TPm = oP (nh2). Moreover, under the assumption that

the second partial derivatives of β(s) are all Lipschitz continuous, we

have (2) (Gm)TPm = OP (nh3 + {nh2 log n}1/2).

Lemma 6. Under the Conditions (1)-(5), when n1/2h2/ log2 n→∞
and nh8 → 0, we have (1) n−1/2LTPm = oP (1) for L = m, ε and Gε,

(2) n−1LTPGm = oP (1) for L = m, ε and Gε.

Lemma 7. Under the Conditions (1)-(5), when n1/2h2/ log2 n →
∞, we have (1) n−1

{
(Gm)TPGm − E[(Gm)TPGm]

}
= oP (1), (2)

n−1E[(Gm)TPGm] = n−1E[(Gm− Z)T(Gm− Z)] + o(1).

Lemma 8. Under the Conditions (1)-(5), when n1/2h2/ log2 n→∞,

we have (1) n−1/2{εTPε−εTε} = oP (1), (2) n−1/2{εTGTPε−εTGTε} =
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oP (1), (3) n−1/2{εTGTPGε− εTGTGε} = oP (1), (4) n−1/2{(Gm)TPε−
(Gm− SGm)Tε} = oP (1).

Lemma 9. Suppose that B = (bij)1≤i,j≤n is a sequence of sym-

metric matrices with row and column sums uniformly bounded and

its elements are also uniformly bounded. Let σ2
Qn be the variance of

Qn where Qn = (Gm− SGm)Tε + εTBε− σ2
0tr(B). Assume that the

variance σ2
Qn is O(n) with {σ

2
Qn

n
} bounded away from zero, then we

have under Conditions (3)- (5) that Qn
σQn

D−→ N(0, 1).

Lemma 10. Under the Conditions (1)-(5), the row sums of matrix

G having the uniform order O(1/
√
ρn) and n1/2h2/ log2 n → ∞, we

have (1) (Gm)TPm = oP (ρ−1/2n nh2). Moreover, if the second partial

derivatives of β(s) are all Lipschitz continuous, then (2) (Gm)TPm =

OP (ρ−1/2n nh3 + {nh2 log n/ρn}1/2).

Lemma 11. Under the Conditions (1)-(5) and the row sums of matrix

G having the uniform order O(1/
√
ρn), then when n1/2h2/ log2 n→∞,

ρn →∞, ρnh
4 → 0 and nh2/ρn →∞, we have (1) ρn

n
mTPm = oP (1),

(2) ρn
n
LTPGm = oP (1) for L = m, ε and Gε, (3)

√
ρn
n

(Gε)TPm =

oP (1), (4) ρn
n

{
(Gm)TPGm−E[(Gm)TPGm]

}
= oP (1), (5)

√
ρn
n
{εTGTPε−

εTGTε} = oP (1), (6)
√

ρn
n
{εTGTPGε−εTGTGε} = oP (1), (7)

√
ρn
n
{(Gm)TPε−

(Gm− SGm)Tε} = oP (1).

Lemma 12. Suppose that B = (bij)1≤i,j≤n is a sequence of symmetric

matrices with row and column sums uniformly bounded. Let σ2
Qn be

the variance of Qn where Qn = (Gm − SGm)Tε + εTBε − σ2
0tr(B).

Assume that the variance σ2
Qn is O(n/ρn) with {ρn

n
σ2
Qn} bounded away
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from zero, the elements of B are of uniform order O(1/ρn) and the row

sums of G of uniform order O(1/
√
ρn). Then we have under ρn → ∞

and Conditions (3)-(5) that Qn
σQn

D−→ N(0, 1).

In the proofs of the theorems, we will use the facts that for constant

matrices B and D, var(εTBε) = (µ4−3σ4
0)

n∑
i=1

b2ii+σ
4
0[tr(BBT)+tr(B2)]

and

E(εTBεεTDε) = (µ4 − 3σ4
0)

n∑
i=1

biidii + σ4
0[tr(B)tr(D) + tr(BD) +

tr(BDT)].

Moreover, we will frequently use the following facts by Condition

(5) (see Lee, 2004) without clearly pointed out:

(1) the elements of G = WA−1 are O(1/ρn) uniformly in all i, j.

(2) The matrix G = WA−1 is uniformly bounded in both row and

column sums.

Proof of Theorem 1: First we will show that Ω is nonsingular.

Let d = (d1, d2)
T be a constant vector such that Ωd = 02. Then it is

sufficient to show that d = 02. From the second equation of Ωd = 02

we have that d2 = −2σ2
0 lim
n→∞

1
n
tr(G)d1. Plug d2 into the first equation

of Ωd = 02 and we get that

d1
{ 1

σ2
0

λ1 + lim
n→∞

[ 1

n
tr((G+GT)G)− 2

n2
tr2(G)

]}
= 0.

It follows by Condition (7) that λ1 > 0. Moreover, tr{(G+GT)G}−
2
n
tr2(G) = 1

2
tr{(G̃T + G̃)(G̃T + G̃)T} ≥ 0 where G̃ = G − 1

n
tr(G)In.

As we have by Condition (5) that the elements of G̃ are uniformly

O(1/ρn) and its row and column sums are also uniformly bounded,

then it can be easily shown that tr{(G̃T + G̃)(G̃T + G̃)T} = O( n
ρn

).
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Therefore, if Condition (7̃) holds, Condition (8) implies that the limit of

1
n
tr((G+GT)G)− 2

n2 tr2(G) = 1
2n

tr{(G̃T+G̃)(G̃T+G̃)T} > 0. Therefore,

d1 = 0 and d2 = 0.

Next we will follow the idea of Lee (2004) to show the consistency

of α̂. Define Q(α) to be max
σ2

E
[
l(α, σ2)

]
by ignoring the constant

term. The optimal solutions of this maximization problem are σ̄2(α) =

1
n
E[(A(α)Y )TPA(α)Y ]. Consequently,

Q(α) = −n/2 · log σ̄2(α) + log |A(α)|.

According to White (1994, Theorem 3.4), it suffices to show the

uniform convergence of n−1{lc(α)−Q(α)} to zero in probability on ∆

and the unique maximizer condition that

lim sup
n→∞

max
α∈Nc(α0,δ)

n−1|Q(α)−Q(α0)| < 0 for any δ > 0 (5.1)

where N c(α0, δ) is the complement of an open neighborhood of α0 in

∆ with diameter δ.

Note that 1
n
lc(α) − 1

n
Q(α) = −1

2
{log σ̃2(α) − log σ̄2(α)}, then to

show the uniform convergence, it is sufficient to show that σ̃2(α) −
σ̄2(α) = oP (1) uniformly on ∆ and σ̄2(α) is uniformly bounded away

from zero on ∆. Since

σ̃2(α)− σ̄2(α)

= n−1
{

(A(α)A−1m)TPA(α)A−1m− E[(A(α)A−1m)TPA(α)A−1m]
}

+n−1
{

(A(α)A−1ε)TPA(α)A−1ε− σ2
0E[tr{(A(α)A−1)TPA(α)A−1}]

}
+2n−1(A(α)A−1m)TPA(α)A−1ε,
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and A(α)A−1 = In + (α0−α)G by WA−1 = G, it follows from Lemma

6 and Lemma 7(1) that

n−1
{

(A(α)A−1m)TPA(α)A−1m−E[(A(α)A−1m)TPA(α)A−1m]
}

= oP (1)

and

n−1(A(α)A−1m)TPA(α)A−1ε = oP (1).

Next, we have by Lemma 4(1)-(3), Lemma 8(1)-(3) and Chebyshev

inequality that

n−1
{

(A(α)A−1ε)TPA(α)A−1ε−σ2
0E[tr{(A(α)A−1)TPA(α)A−1}]

}
= oP (1).

Therefore, σ̃2(α)− σ̄2(α) = oP (1) uniformly on ∆.

Now we will show that σ̄2(α) is bounded away from zero uniformly

on ∆. As we know by simple calculation and Lemma 4(1)-(3) that

σ̄2(α) ≥ σ2
0n
−1E

[
tr{(A(α)A−1)TPA(α)A−1}

]
= σ2

0n
−1tr{(A(α)A−1)TA(α)A−1}+ o(1), (5.2)

it suffices to show that σ2
a(α) =

σ2
0

n
tr{(A(α)A−1)TA(α)A−1} is uni-

formly bounded away from zero on ∆. To do so, we define an aux-

iliary spatial autoregressive (SAR) process: Y = α0WY + ε with

ε ∼ N(0, σ2
0In). Then its log likelihood function without the constant

term is

la(α, σ
2) = −n

2
log σ2 + log |A(α)| − 1

2σ2
(A(α)Y )TA(α)Y.
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Set Qa(α) to be max
σ2

Ea[la(α, σ
2)] by ignoring the constant term, where

Ea is the expectation under this SAR process. It can be easily shown

that

Qa(α) = −n/2 · log σ2
a(α) + log |A(α)|,

By Jensen inequality, for all α ∈ ∆, max
σ2

Ea[la(α, σ
2)] ≤ Ea[la(α0, σ

2
0)],

thus Qa(α) ≤ Qa(α0). As

1

n
[Qa(α)−Qa(α0)] = −1

2
log σ2

a(α)+
1

2
log σ2

0+
1

n

(
log |A(α)|−log |A(α0)|

)

uniformly on ∆, then it follows that

−1

2
log σ2

a(α) ≤ −1

2
log σ2

0 +
1

n

(
log |A(α0)| − log |A(α)|

)
.

If we can show that

n−1{log |A(α2)| − log |A(α1)|} = O(1) uniformly in α1 and α2 on ∆

(5.3)

then −1
2

log σ2
a(α) is bounded from above for any α ∈ ∆. Therefore,

the statement that σ2
a(α) is uniformly bounded away from zero on ∆

can be established by a counter argument.

Now we will verify (5.3), it follows by the mean value theorem and

Condition (5)-(6) that

n−1{log |A(α2)| − log |A(α1)|} = −n−1tr{WA−1(α̃)}(α2 − α1)

= O(ρ−1n )(α2 − α1) (5.4)

where α̃ lies between α1 and α2. (5.3) is then established by ∆ being
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a bounded set.

To show the uniqueness condition (5.1), write

n−1[Q(α)−Q(α0)] = n−1[Qa(α)−Qa(α0)]

+2−1[log σ2
a(α)− log σ̄2(α)] + 2−1[log σ̄2(α0)− log σ2

0],

it follows by Lemma 4(1) and Lemma 6(1) that σ̄2(α0)−σ2
0 = 1

n
E[mTPm]+

σ2
0
1
n
E[tr(P )] − σ2

0 = o(1). Hence, log σ̄2(α0) − log σ2
0 = o(1) as σ̄2(α0)

and σ2
0 are both bounded away from zero. Moreover, we have already

shown in (5.2) that lim
n→∞

[σ2
a(α)− σ̄2(α)] ≤ 0, hence,

lim sup
n→∞

max
α∈Nc(α0,δ)

n−1[Q(α)−Q(α0)] ≤ 0 for any δ > 0.

Now we will show that the above inequality holds strictly. Because

σ̄2(α) is bounded away from zero and has a quadratic form of α with

its coefficients bounded by Lemma 4(1)-(3), 6 and 7(2), this together

with (5.4), we get that n−1Q(α) is uniformly equicontinuous in α on

∆.

By the compactness of N c(α0, δ), we suppose there would exist an

δ > 0 and a sequence {αn} in N c(α0, δ) converging to a point α∗ 6= α0

such that lim
n→∞

n−1[Q(αn) − Q(α0)] = 0. Next, as αn → α∗, we have

lim
n→∞

n−1[Q(αn)−Q(α∗)] = 0. Hence, it follows that

lim
n→∞

n−1[Q(α∗)−Q(α0)] = 0. (5.5)

Since we have known that Qa(α
∗)−Qa(α0) ≤ 0 and lim

n→∞
[σ2
a(α

∗)−
σ̄2(α∗)] ≤ 0, (5.5) is possible only if (i) lim

n→∞
[σ2
a(α

∗) − σ̄2(α∗)] = 0
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and (ii) lim
n→∞

n−1[Qa(α
∗) − Qa(α0)] = 0 both hold. However, (i) is a

contradiction when Condition (7) holds as

lim
n→∞

[σ2
a(α

∗)−σ̄2(α∗)] = −(α0−α∗)2 lim
n→∞

n−1E[(Gm−Z)T(Gm−Z)] = 0,

by Lemma 4(1)-(3), 6 and 7(2). If Condition (7̃) holds, the contradic-

tion follows from (ii) by Condition (8).

For the consistency of σ̂2, as it follows by some calculation, A(α̂)A−1 =

In + (α0 − α̂)G, Lemma 6, 7, 8(1)-(3), Chebyshev inequality and

α̂
P−→ α0 that

σ̂2 =
1

n
(A(α̂)Y − SA(α̂)Y )T(A(α̂)Y − SA(α̂)Y )

=
1

n
(A(α̂)A−1m)TPA(α̂)A−1m +

2

n
(A(α̂)A−1m)TPA(α̂)A−1ε

+
1

n
(A(α̂)A−1ε)TPA(α̂)A−1ε

=
1

n
εTPε + oP (1) = σ2

0 + oP (1).

Proof of Theorem 2: Denote θ = (α, σ2)T and θ0 = (α0, σ
2
0)T,

we get by Taylor expansion that

0 =
∂l(θ̂)

∂θ
=
∂l(θ0)

∂θ
+
∂2l(θ̃)

∂θ∂θT
(θ̂ − θ0),

where θ̃ = (α̃, σ̃2)T lies between θ̂ and θ0 and thus converges to θ0 in

probability by Theorem 1. Then the asymptotic distribution of θ̂ can
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be obtained by showing that

− 1

n

∂2l(θ̃)

∂θ∂θT
P−→ Ω and

1√
n

∂l(θ0)

∂θ
D−→ N(0,Σ + Ω)

where Ω is a nonsingular matrix by Theorem 1.

By straightforward calculation, it can be easily obtained that

1
n
∂2l(θ)
∂α2 = − 1

n
tr([WA−1(α)]2)− 1

σ2n
(WY )TPWY,

1
n
∂2l(θ)
∂σ2∂σ2 = 1

2σ4 − 1
σ6n

(A(α)Y )TPA(α)Y,

1
n
∂2l(θ)
∂α∂σ2 = − 1

σ4n
(WY )TPA(α)Y.

(5.6)

As A(α̃)A−1 = In + (α0 − α̃)G by G = WA−1, we have

1

n

∂2l(θ̃)

∂σ2∂σ2
− 1

n

∂2l(θ0)

∂σ2∂σ2
= oP (1) and

1

n

∂2l(θ̃)

∂α∂σ2
− 1

n

∂2l(θ0)

∂α∂σ2
= oP (1).

using Lemma 6, 7, 8(1)-(3), Chebyshev inequality and θ̃
P−→ θ0. Let

G(α) = WA−1(α), then it follows by the mean value theorem that

1

n

∂2l(θ̃)

∂α2
− 1

n

∂2l(θ0)

∂α2

= − 2

n
tr(G3(ᾱ))(α̃− α0) +

(
1

σ2
0

− 1

σ̃2

)
1

n
(Gm +Gε)TP (Gm +Gε)

for some ᾱ between α̃ and α0. Note that G(α) is bounded in row

and column sums uniformly in a neighborhood of α0 by Condition

(5)-(6). Therefore, 1
n
tr(G3(ᾱ)) = O(1/ρn). Since we have 1

n
(Gm +

Gε)TP (Gm + Gε) = OP (1) by Lemma 6(2), 7, 8(3) and Markov in-

equality, it follows that 1
n
∂2l(

˜θ)
∂α2 − 1

n
∂2l(θ0)
∂α2 = oP (1) by α̃

P−→ α0 and

σ̃2 P−→ σ2
0.
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Next input θ0 into (5.6) and we can get by Lemma 6 that

− 1
n
∂2l(θ0)
∂α2 = 1

n
tr(G2) + 1

σ2
0n

(Gm)TP (Gm) + 1
σ2
0n
εTGTPGε + oP (1),

− 1
n
∂2l(θ0)
∂σ2∂σ2 = − 1

2σ4
0

+ 1
σ6
0n
εTPε + oP (1),

− 1
n
∂2l(θ0)
∂α∂σ2 = 1

σ4
0n
εTGTPε + oP (1).

Thus, the result of − 1
n
∂2l(θ0)

∂θ∂θT
P−→ Ω can be obtained using Lemma 7,

Lemma 8(1)-(3) and Chebyshev inequality.

In the following we will establish the asymptotic distribution of

1√
n
∂l(θ0)

∂θ . It follows by Lemma 5(2) that 1√
n
(Gm)TPm = OP (n1/2h3 +

{h2 log n}1/2) = oP (1) when nh6 → 0 and h2 log n→ 0. Then we have

by straightforward calculation, Lemma 6(1) and Lemma 8 that

1√
n

∂l(θ0)

∂α
= − 1√

n
tr(G) +

1

σ2
0

√
n

(WY )TPAY

=
1

σ2
0

√
n

[
(Gm− SGm)Tε + {εTGε− σ2

0tr(G)}
]

+ oP (1),

and

1√
n

∂l(θ0)

∂σ2
= −

√
n

2σ2
0

+
1

2σ4
0

√
n

(AY )TPAY

=
1

2σ4
0

√
n
{εTε− nσ2

0}+ oP (1).

Next we have by straightforward calculation that

var((Gm− SGm)Tε + {εTGε− σ2
0tr(G)})

= σ2
0E[(Gm− SGm)T(Gm− SGm)] + (µ4 − 3σ4

0)
n∑
i=1

g2ii + σ4
0[tr(GGT) + tr(G2)]

+2µ3E[(Gm− SGm)TGc],
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var(εTε− nσ2
0) = n(µ4 − σ4

0) and

cov{(Gm− SGm)Tε + {εTGε− σ2
0tr(G)}, εTε− nσ2

0}

= µ3E[(Gm− SGm)T1n] + (µ4 − σ4
0)tr(G).

Hence, it follows by Lemma 7(2) and some calculation that

E

(
1

n

∂l(θ0)

∂θ

∂l(θ0)

∂θT

)
= Σ + Ω + o(1).

As the components of 1√
n
∂l(θ0)

∂θ =
(

1√
n
∂l(θ0)
∂α

, 1√
n
∂l(θ0)
∂σ2

)T
are linear-

quadratic forms of double arrays, using Lemma 9 we gain 1√
n
∂l(θ0)

∂θ
D−→

N(0,Σ + Ω).

Proof of Theorem 3: It can be easily shown that

√
nh21f(s)(β̂(s)− β(s)) =

√
nh21f(s)(Ip,0p×2p)(XT

1W1X1)
−1XT

1W1ε

+
√
nh21f(s)(α0 − α̂)(Ip,0p×2p)(XT

1W1X1)
−1XT

1W1WY

+
√
nh21f(s)(Ip,0p×2p){(XT

1W1X1)
−1XT

1W1m− β(s)}

≡ Jn1 + Jn2 + Jn3

where X1 and W1 are X and W respectively with h replaced by h1.

Let H1 be H with h replaced by h1. It follows by straightforward

calculation that

√
n−1h21f(s)E{H−11 XT

1W1ε} = 03p×1,
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and

n−1h21f(s)cov{H−11 XT
1W1ε} = σ2

0n
−1h21f(s)E{H−11 XT

1W2
1X1H

−1
1 }

= σ2
0f

2(s)

 ν0Ψ + oP (1p1
T
p) oP (1p1

T
2p)

oP (12p1
T
p) ν2Ψ⊗ I2 + oP (12p1

T
2p)


then it follows by central limit theorem, Lemma 2(1) and Slutsky’s

Theorem that

Jn1
D−→ N

(
0, ν0κ

−2
0 σ2

0Ψ−1
)
.

Moreover, it follows immediately from Lemma 3 that

n−1{H−11 XT
1W1G(m + ε)− E[H−11 XT

1W1G(m + ε)]} = oP (1)

This together with Lemma 2(1) and Condition (4) leads to

(Ip,0p×2p)(XT
1W1X1)

−1XT
1W1G(m + ε) = OP (1).

Next when nh61 = O(1) and h/h1 → 0, we have
√

h21
n

(Gm)TPm =

oP (n1/2h1h
2) = oP (1) using Lemma 5(1). Hence it can be seen from the

proof of Theorem 2 that
√

h21
n
∂l(θ0)

∂θ = oP (1) and
√
nh21(α̂−α0) = oP (1)

under the assumptions of Theorem 3. Therefore,

Jn2 =
√
f(s)

√
nh21(α0−α̂)(Ip,0p×2p)(XT

1W1X1)
−1XT

1W1(Gm+Gε) = oP (1).

For Jn3, it can be obtained by Lemma 2(2) that

Jn3 =
κ2h

2
1

2κ0
{βuu(s) + βvv(s)}+ oP (h211p).
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Finally combing the results of Jn1, Jn2 and Jn3, when nh61 = O(1)

and h/h1 → 0 we get the theorem.

Proof of Theorem 4: It is obvious from the proof of nonsigu-

larity of Ω in Theorem 1 that under Condition (9), Ω is singular.

Next like Lee (2004), to prove the consistency of α̂, it suffices to

show that

ρn
n
{lc(α)− lc(α0)− [Q(α)−Q(α0)]} = oP (1) uniformly on ∆,

where Q(α) = −n/2 · log σ̄2(α) + log |A(α)| defined as in the proof of

Theorem 1 and α0 is a unique maximizer.

It follows by the mean value theorem that

ρn
n
{lc(α)− lc(α0)− [Q(α)−Q(α0)]}

= −ρn
2

∂[log σ̃2(α̃)− log σ̄2(α̃)]

∂α
(α− α0)

=
1

σ̃2(α̃)

ρn
n

{
[(WY )TPA(α̃)Y − Ln(α̃)]− σ̃2(α̃)− σ̄2(α̃)

σ̄2(α̃)
Ln(α̃)

}
(α− α0)

where α̃ lies between α and α0, and Ln(α̃) = E[(WY )TPA(α̃)Y ].

Note that A(α̃)A−1 = In+ (α0− α̃)G, by applying Lemma 4(5)(6),

11 and Chebyshev inequality we can get

ρn
n
{(WY )TPA(α̃)Y − Ln(α̃)} = oP (1) and

ρn
n
Ln(α̃) = O(1).

Moreover, using the same lines as in the proof of Theorem 1, we can

establish that σ̃2(α̃)− σ̄2(α̃) = oP (1) for any α̃ on ∆ with σ̄2(α) being

uniformly bounded away from zero on ∆. Thus σ̃2(α) is uniformly
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bounded away from zero in probability. Consequently,

ρn
n
{lc(α)− lc(α0)− [Q(α)−Q(α0)]} = oP (1) uniformly on ∆.

The uniqueness condition of α0 can be obtained by the uniform

equicontinuity of ρn
n

[Q(α)−Q(α0)] on ∆ and lim
n→∞

ρn
n

[Q(α)−Q(α0)] < 0

when α 6= α0 using a counter argument as in the proof of Theorem 1.

Write

ρn
n

[Q(α)−Q(α0)] = −ρn
2

[log σ̄2(α)− log σ̄2(α0)] +
ρn
n

[log |A(α)| − log |A(α0)|]

≡ −1

2
Jn1 + Jn2.

It follows by the mean value theorem

Jn1 =
ρn

σ̄∗2(α)
(σ̄2(α)− σ̄2(α0))

where σ̄∗2(α) lies between σ̄2(α) and σ̄2(α0). As σ̄2(α) is uniformly

bounded away from zero on ∆, σ̄∗2(α) is also uniformly bounded away

from zero on ∆. Further, we can see by Lemma 4(5)(6) and Lemma 11

that ρn(σ̄2(α) − σ̄2(α0)) is a quadratic form of α with its coefficients

bounded. Therefore, Jn1 is uniformly equicontinuious on ∆ by the

above results.

For Jn2, it can be seen by the mean value theorem that

Jn2 = −ρn
n

tr(WA−1(α̃))(α− α0)

where α̃ lies between α and α0, and tr(WA−1(α̃)) = O
(
n/ρn

)
by
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Condition (5)-(6). Therefore, Jn2 is uniformly equicontinuous on ∆.

In conclusion, ρn
n

[Q(α)−Q(α0)] is uniformly equicontinuous on ∆.

Next we will show that when α 6= α0, lim
n→∞

ρn
n

[Q(α) − Q(α0)] <

0. Using similar lines as in the proof of Theorem 1, let Qa(α) =

−n
2

log σ2
a(α) + log |A(α)|, and write

ρn
n

[Q(α)−Q(α0)] =
ρn
n

[Qa(α)−Qa(α0)]−
ρn
2

[log σ̄2(α)− log σ2
a(α)]

+
ρn
2

[log σ̄2(α0)− log σ2
0]. (5.7)

As it follows by the mean value theorem, Lemma 4(4)-(6) and

Lemma 11(1)(2) that

−ρn
2

[log σ̄2(α)− log σ2
a(α)] = − ρn

2σ∗2(α)
[σ̄2(α)− σ2

a(α)]

= − 1

2σ∗2(α)
(α0 − α)2

ρn
n
E[(Gm)TPGm] + o(1)

where σ∗2(α) lies between σ̄2(α) and σ2
a(α) and it therefore uniformly

bounded away from zero on ∆. Then for any α 6= α0, when condition

(9) holds, −ρn
2

[log σ̄2(α)− log σ2(α)] < 0 for sufficient large n.

For the third term on the right side in (5.7), it can be obtained by

the mean value theorem, Lemma 4(4) and Lemma 11(1) that

ρn
2

[log σ̄2(α0)− log σ2
0] =

ρn
2σ∗2
{σ̄2(α0)− σ2

0} = o(1)

where σ∗2 lies between σ̄2(α0) and σ2
0, and is bounded away from zero.

In consequence, lim
n→∞

ρn
n
{Q(α) − Q(α0)} < 0 when α 6= α0, as we

have shown Qa(α)−Qa(α0) ≤ 0 in the proof of Theorem 1.
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Proof of Theorem 5: By Taylor expansion, we have that

0 =
∂lc(α̂)

∂α
=
∂lc(α0)

∂α
+
∂2lc(α̃)

∂α2
(α̂− α0)

where α̃ lies between α̂ and α0, and thus converges to α0 in probability

by Theorem 4. Then the asymptotic distribution of α̂ can be obtained

by proving that when ρn →∞,

−ρn
n

∂2lc(α̃)

∂α2

P−→ σ2
1 and

√
ρn
n

∂lc(α0)

∂α
D−→ N(0, σ2

2/σ
4
0),

where σ2
1 = 1

σ2
0

lim
n→∞

ρn
n
E[(Gm− SGm)T(Gm− SGm)] and σ2

2 = σ4
0σ

2
1.

As we have by A(α)A−1 = In + (α0 − α)G, Lemma 11 and Cheby-

shev inequality that ρn
n

(WY )TPWY = ρn
n

(Gm +Gε)TP (Gm +Gε) =

OP (1) and ρn
n

(WY )TPA(α)Y = OP (1), then when ρn →∞,

ρn
n

∂2lc(α)

∂α2

=
ρn
n

{ 2

σ̃4(α)n
[(WY )TPA(α)Y ]2 − 1

σ̃2(α)
(WY )TPWY − tr([WA−1(α)]2)

}
= − 1

σ̃2(α)
· ρn
n

(WY )TPWY − ρn
n

tr([WA−1(α)]2) + oP (1).

Further using Lemma 6(1), 8(1) and the above results, we can get

when ρn →∞ that

σ̃2(α) =
1

n
εTPε + oP (1) = σ2

0 + oP (1)
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for any α ∈ ∆. Therefore it follows by the mean value theorem that

ρn
n

{
∂2lc(α̃)

∂α2
− ∂2lc(α0)

∂α2

}

=
{ 1

σ̃2(α0)
− 1

σ̃2(α̃)

}ρn
n

(WY )TPWY − ρn
n
{tr(G2(α̃))− tr(G2(α0))}+ oP (1)

= −ρn
n

tr(G3(ᾱ))(α̃− α0) + oP (1)

where G(α) = WA−1(α). As tr(G3(ᾱ)) = O(n/ρn) uniformly on ∆ by

Condition (5)-(6), we obtain that ρn
n

{
∂2lc(α̃)
∂α2 − ∂2lc(α0)

∂α2

}
= oP (1) using

α̃
P−→ α0.

Next it follows from σ̃2(α0)
P−→ σ2

0, Lemma 11 and Chebyshev

inequality that

−ρn
n

∂2lc(α0)

∂α2
=

1

σ2
0

ρn
n
E[(Gm)TPGm] +

ρn
n

[tr(G2) + tr(GGT)] + oP (1).

Therefore, −ρn
n
∂2lc(α̃)
∂α2

P−→ σ2
1 by the row sums of G being uniform order

O(1/
√
ρn).

In the following we will establish the asymptotic distribution of√
ρn
n
∂lc(α0)
∂α

. As it follows that
√

ρn
n

(Gm)TPm = oP (n1/2h3+{h2 log n}1/2) =

oP (1) when nh6 → 0, h2 log n→ 0 by Lemma 10(2) and
√

ρn
n

(Gε)TPm =

oP (1) by Lemma 11(3). Then we have by straightforward calcula-

tion and Lemma 6(1), 8(1), 11(5)(7) that the first order derivative of√
ρn
n
lc(α) at α0 is

√
ρn
n

∂lc(α0)

∂α
=

1

σ̃2(α0)

√
ρn
n

{
(WY )TPAY − σ̃2(α0)tr(G)

}
,
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with

√
ρn
n
{(WY )TPAY − σ̃2(α0)tr(G)}

=

√
ρn
n

{
(Gm− SGm)Tε + εT[G− 1

n
tr(G)In]ε

}
+ oP (1),

and

σ2
qn ≡ var

{
(Gm− SGm)Tε + εT[G− 1

n
tr(G)In]ε

}
= σ2

0E[(Gm− SGm)T(Gm− SGm)] + (µ4 − 3σ4
0)

n∑
i=1

{gii −
tr(G)

n
}2

+σ4
0[tr((G+GT)G)− 2

n
tr2(G)] + 2µ3E[(Gm− SGm)T(Gc −

1

n
tr(G)1n)].

As we have by Lemma 12 that

σ−1qn
{

(Gm− SGm)Tε + εT[GT − 1

n
tr(G)In]ε

}
D−→ N(0, 1),

it follows that

√
n

ρn
(α̂− α0) =

(
− ρn

n

∂2lc(α̃)

∂α2

)−1
·
√
ρn
n

∂lc(α0)

∂α
D−→ N

(
0, σ2

0λ
−1
4

)
.

by ρn
n
σ2
qn → σ2

2 and σ̃2(α0)
P−→ σ2

0.

Proof of Theorem 6: By straightforward calculation, Lemma

6(1), Lemma 8(1), 11, Chebyshev inequality and Theorem 5, we get

when ρn →∞ that

√
n(σ̂2 − σ2

0) =
1√
n

(A(α̂)Y − SA(α̂)Y )T(A(α̂)Y − SA(α̂)Y )−
√
nσ2

0
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=
1√
n

(m + ε)TP (m + ε)−
√
nσ2

0

+
2
√
ρn

√
n

ρn
(α0 − α̂)

ρn
n

(Gm +Gε)TP (m + ε)

+
1√
n
{
√
n

ρn
(α0 − α̂)}2ρn

n
(Gm +Gε)TP (Gm +Gε)

=
1√
n

n∑
i=1

(ε2i − σ2
0) + oP (1)

This together with central limit theorem for iid random variables

leads to
√
n(σ̂2 − σ2

0)
D−→ N(0, µ4 − σ4

0).

Proof of Theorem 7: The result can be obtained using the same

lines as the proof of Theorem 3, except that here Jn2 =
√
f(s)

√
nh21
ρn

(α0−
α̂)(Ip,0p×2p)(n

−1H−11 XT
1W1X1H

−1
1 )−1

√
ρn
n
H−11 XT

1W1G(m + ε). It fol-

lows by Lemma 2(1), Markov inequality, the row sums of the matrix

G having uniform order O(1/
√
ρn) and Condition (4) that

(Ip,0p×2p)(n
−1H−11 XT

1W1X1H
−1
1 )−1

√
ρn
n

H−11 XT
1W1G(m + ε) = OP (1).

Next, it can be seen from the proof of Theorem 5 and Lemma 10(1)

that
√

ρnh21
n

(Gm)TPm = oP (n1/2h1h
2) = oP (1) when nh61 = O(1) and

h/h1 → 0. Hence,

√
nh21
ρn

(α̂ − α)
P−→ 0 according to the arguments

establishing Theorem 5. Consequently we have that Jn2 = oP (1).
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6 Proofs of Lemmas

In this chapter, we set mi = XT
i β(si), xil to be the lth (l = 1, · · · , p)

element of Xi, i = 1, · · · , n, rn = ( logn
nh2

)1/2 , [D]ij to be the (i, j)th

elements of the matrix D, and c as a positive finite constant that may

take different values at each appearance. Moreover, the operator Vec(·)
creates a column vector from the matrix by simply stacking its column

vectors below one another.

Frequently we will use the facts (see Lee, 2004) without clearly

pointing out that the matrix G is uniformly bounded in both row and

column sums, and the elements gij of G are O(1/ρn) uniformly in all

i, j.

Proof of Lemma 1: Let τn = n1/q(log n)1/2 and the following

proof is organized as Hansen (2008). First, we deal with the truncation

error in replacing Yi with the truncated process Yi1(|Yi| ≤ τn). Second,

we replace the supremum with a maximization over a finite N-point

grid. Third, we use Bernstein inequality to bound the remainder.

The first step is to truncate Yi. Define R(s) = 1
n

n∑
i=1

Kh(‖si −

s‖)Yi1(|Yi| > τn). Since P (|Yn| > τn) ≤ τ−qn E|Yn|q and
∞∑
n=1

τ−qn =

∞∑
n=1

n−1(log n)−q/2 <∞ for q > 2. It follows that with probability one

|Yn| ≤ τn for all sufficient large n. Since τn is increasing, we have for all

sufficient large n, |Yi| ≤ τn for all i ≤ n. This implies that sups |R(s)|
is eventually zero with probability one.

Next by a standard argument and Condition (4)

E[R(s)] ≤ 1

n

n∑
i=1

Kh(‖si − s‖)E|Yi|q/τ q−1n ≤ cτ 1−qn ,
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it follows that with probability one supsE|R(s)| = O(τ 1−qn ) = O(rn).

Combing the above results, we have that with probability one

sup
s∈S
|R(s)− ER(s)| = O(rn).

For the second step we create a grid to cover the region S. As

S is a compact region, we can find a finite positive constant c1 such

that S ⊆ {s : ‖s‖ ≤ c1}. Next we create a grid using regions of the

form Nl = {s : ‖s − sl‖ ≤ rnh}. By selecting sl to lay on a grid, the

region {s : ‖s‖ ≤ c1} can be covered with N ≤ c21h
−2r−2n such regions

Nl. Therefore the supremum can be replaced by a maximization over

these N-point grid.

From the assumption of the kernel function, we know that there

exists a finite positive constant L, when ‖s‖ > L, K(‖s‖) = 0, and

there exists a finite positive constant c2 such that for all s, s′ ∈ R2,

|K(‖s‖)−K(‖s′‖)| ≤ c2
∣∣∣‖s‖ − ‖s′‖∣∣∣ ≤ c2‖s− s′‖ . Define W ∗(‖s‖) =

c2I(‖s‖ ≤ 2L), thus for s ∈ Nl, we have ‖ s−sl
h
‖ ≤ rn and

|K(‖si − s
h
‖)−K(‖si − sl

h
‖)| ≤ rnW

∗(‖si − sl
h
‖). (6.1)

Now define R1(s) = 1
n

n∑
i=1

Kh(‖si − s‖)Yi1(|Yi| ≤ τn) and R̃1(s) =

1
n

n∑
i=1

W ∗
h (‖si−s‖)|Yi|1(|Yi| ≤ τn) where W ∗

h (‖si−s‖) = W ∗(‖ si−s
h
‖)/h2.

Note that E|R̃1(s)| ≤ 1
n

n∑
i=1

W ∗
h (‖si − s‖)E|Yi| < c3 for some positive

constant c3 by Condition (4). Then we have by (6.1) that

sup
s∈Nl
|R1(s)− ER1(s)| ≤ |R1(sl)− ER1(sl)|+ rn[|R̃1(sl)|+ E|R̃1(sl)|]
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≤ |R1(sl)− ER1(sl)|+ rn|R̃1(sl)− ER̃1(sl)|+ 2rnE|R̃1(sl)|

≤ |R1(sl)− ER1(sl)|+ |R̃1(sl)− ER̃1(sl)|+ 2c3rn

with the final inequality because rn ≤ 1 for sufficient large n. There-

fore, for sufficient large n

P (sup
s∈S
|R1(s)− ER1(s)| > 4c3rn) ≤ N max

1≤l≤N
P (sup

s∈Nl
|R1(s)− ER1(s)| > 4c3rn)

≤ N max
1≤l≤N

P (|R1(sl)− ER1(sl)| > c3rn)

+N max
1≤l≤N

P (|R̃1(sl)− ER̃1(sl)| > c3rn).

Third, we will use Bernstein inequality to bound the above prob-

abilites. Let Vi(s) = Yi1K(‖ si−s
h
‖) − E[Yi1K(‖ si−s

h
‖)] where Yi1 =

Yi1(|Yi| ≤ τn). As |Yi1| ≤ τn and K(‖ si−s
h
‖) ≤ c4 for some positive con-

stant c4, it follows that |Vi(s)| ≤ 2c4τn and for any s,
n∑
i=1

var(Vi(s)) =

n∑
i=1

K2(‖ si−s
h
‖)D(Yi1) ≤ c5nh

2 by Condition (4) for some positive con-

stant c5. Then by Bernstein inequality for independent variables it

follows that for any s and sufficient large n,

P (|R1(s)− ER1(s)| > c3rn) = P (|
n∑
i=1

Vi(s)| > c3rnnh
2)

≤ 2 exp


−c23r2nn2h4

2
n∑
i=1

var(Vi(s)) + 4
3
c3c4τnrnnh2


≤ 2 exp

{
−c23 log n

2c5 + 4c4

}
≤ 2n−c3

since (c3/3τnrn)2 = c23/9 log2 n/(n1−2/qh2)→ 0 and taking c3 > max{2c5+
4c4, 1}.
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Using the same arguments, we can get that for any s and sufficient

large n P (|R̃1(s)− ER̃1(s)| > c3rn) ≤ 2n−c3 . Therefore,

P (sup
s∈S
|R1(s)− ER1(s)| > 4c3rn) ≤ ch−2r−2n n−c3 = o(1).

Proof of Lemma 2:

(1) Note that

n−1H−1XTWXH−1 =
1
n

n∑
i=1

XiX
T
i Kh(‖si − s‖) 1

n

n∑
i=1

XiX
T
i ⊗ ( si−s

h
)TKh(‖si − s‖)

1
n

n∑
i=1

XiX
T
i ⊗ si−s

h
Kh(‖si − s‖) 1

n

n∑
i=1

XiX
T
i ⊗ si−s

h
( si−s

h
)TKh(‖si − s‖)

 .

Then by Lemma 1, Lipschitz continuity of f(·), Condition (4) and

symmetry of the kernel funtion we have that

n−1H−1XTWXH−1 = κ0f(s)Ψ +Op({h+ rn}1p1Tp) Op({h+ rn}1p1T2p)
Op({h+ rn}12p1

T
p) κ2f(s)Ψ⊗ I2 +Op({h+ rn}12p1

T
2p)


holds uniformly in s ∈ S.

(2) Note that

β(s)− (Ip,0p×2p)(XTWX )−1XTWm =

(Ip,0p×2p)H
−1(n−1H−1XTWXH−1)−1n−1H−1XTW

{
X

 β(s)

Vec(β̇
T

(s))

−m
}
.
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As

n−1H−1XTW
{
X

 β(s)

Vec(β̇
T

(s))

−m
}

=


1
n

n∑
i=1

XiX
T
i {β(s) + β̇(s)(si − s)− β(si)}Kh(‖si − s‖)

1
n

n∑
i=1

Xi ⊗ si−s
h
XT
i {β(s) + β̇(s)(si − s)− β(si)}Kh(‖si − s‖)

 ,

it follows by the second order Taylor expansion that for si in a small

neighborhood of s,

β(si) = β(s) + β̇(s)(si − s) +
1

2


(si − s)Tβ̈1(s

∗
i )(si − s)

...

(si − s)Tβ̈p(s∗i )(si − s)

 ,

where β̈l(s) = ∂2βl(s)

∂s∂sT
, l = 1, · · · , p, and s∗i = s+θ(si−s) with θ ∈ (0, 1).

Then we can obtain that

n−1H−1XTW
{
X

 β(s)

Vec(β̇
T

(s))

−m
}

=

−h
2

2

p∑
l=1


1
n

n∑
i=1

Xixil(
si−s
h

)Tβ̈l(s
∗
i )(

si−s
h

)Kh(‖si − s‖)
1
n

n∑
i=1

Xi ⊗ ( si−s
h

)xil(
si−s
h

)Tβ̈l(s
∗
i )(

si−s
h

)Kh(‖si − s‖)

 .

Now using Lemma 1, Condition (4), symmetry of the kernel func-

tion and continuity of the second order partial derivatives of β(s) , it

is easy to show that

1

n

n∑
i=1

Xixil(
si − s
h

)Tβ̈l(s
∗
i )(
si − s
h

)Kh(‖si − s‖)
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= κ2f(s)E(X1x1l)(1, 0, 0, 1)Vec(β̈l(s)) + oP (1p),

and

1

n

n∑
i=1

Xi ⊗ (
si − s
h

)xil(
si − s
h

)Tβ̈l(s
∗
i )(
si − s
h

)Kh(‖si − s‖) = oP (12p)

hold uniformly in s ∈ S. Therefore,

n−1H−1XTW
{
X

 β(s)

Vec(β̇
T

(s))

−m
}

=

 −1
2
h2κ2f(s)Ψ

{
βuu(s) + βvv(s)

}
02p×1

+ oP (h213p)

holds uniformly in s ∈ S.

Next, it follows from Lemma 2(1) that

(n−1H−1XTWXH−1)−1 = κ−10 f−1(s)Ψ−1 0p×2p

02p×p κ−12 f−1(s)Ψ−1 ⊗ I2

+Op({h+ rn}13p1
T
3p)

holds uniformly in s. Hence, by the above results, we have

β(s)−(Ip,0p×2p)(XTWX )−1XTWm = −κ2h
2

2κ0

{
βuu(s)+βvv(s)

}
+op(h

21p)

holds uniformly in s ∈ S.
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Proof of Lemma 3: Note that

n−1H−1XTWGm =


1
n

n∑
i=1

n∑
j=1

gijmjXiKh(‖si − s‖)

1
n

n∑
i=1

n∑
j=1

gijmjXi ⊗ si−s
h
Kh(‖si − s‖)

 .

In the following we will show that

sup
s∈S
| 1
n

n∑
i=1

{ n∑
j=1

gijmjXiKh(‖si−s‖)−E[
n∑
j=1

gijmjXiKh(‖si−s‖)]
}
| = oP (1),

and

sup
s∈S
| 1
n

n∑
i=1

{ n∑
j=1

gijmjXi⊗
si − s
h

Kh(‖si−s‖)−E[
n∑
j=1

gijmjXi⊗
si − s
h

Kh(‖si−s‖)]
}
| = oP (1).

It is obvious that these two results can be established by the same

arguments, here we only show the first one. Note that

1

n

n∑
i=1

n∑
j=1

gijmjXiKh(‖si − s‖)

=
1

n

n∑
i=1

giimiXiKh(‖si − s‖) +
1

n

n∑
i=1

n∑
j 6=i

gijEmjXiKh(‖si − s‖)

+
1

n

n∑
i=1

n∑
j 6=i

gij(mj − Emj)XiKh(‖si − s‖).

As gii and
n∑
j 6=i

gijEmj are both bounded for any i, it follows by

Lemma 1 that

1

n

n∑
i=1

giimiXiKh(‖si − s‖) =
1

n

n∑
i=1

E[giimiXiKh(‖si − s‖)] +OP (rn)
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= Ψ
1

n

n∑
i=1

giiβ(si)Kh(‖si − s‖) + oP (1),

and

1

n

n∑
i=1

n∑
j 6=i

gijEmjXiKh(‖si − s‖) =
1

n

n∑
i=1

n∑
j 6=i

E[XigijEmjKh(‖si − s‖)] +OP (rn)

= ΓΓT 1

n

n∑
i=1

n∑
j 6=i

gijβ(sj)Kh(‖si − s‖) + oP (1)

hold uniformly in s ∈ S.

In the following we only need to show that for any d (d = 1, · · · , p)

sup
s∈S

∣∣∣ 1
n

n∑
i=1

n∑
j 6=i

gij(mj − Emj)xidKh(‖si − s‖)
∣∣∣ = oP (1).

This result can be established using the second step in Lemma 1 where

we take rn = (log n)−1/2 and then Chebyshev inequality instead of

Bernstein inequality.

Proof of Lemma 4: (1) It follows by Lemma 2(1) and some

calculation that

S = κ−10 n−1(1 + oP (1))

·


f−1(s1)X

T
1 Ψ−1X1Kh(‖s1 − s1‖) · · · f−1(s1)X

T
1 Ψ−1XnKh(‖sn − s1‖)

...
...

...

f−1(sn)XT
nΨ−1X1Kh(‖s1 − sn‖) · · · f−1(sn)XT

nΨ−1XnKh(‖sn − sn‖)


(6.2)
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As P = (In − S)T(In − S) = In − ST − S + STS, we note that

E[tr(S)] =
1

κ0n

n∑
i=1

E[f−1(si)X
T
i Ψ−1XiKh(‖si − si‖)](1 + o(1))

=
K(0)

κ0nh2

n∑
i=1

E[f−1(si)X
T
i Ψ−1Xi](1 + o(1))

=
pK(0)

κ0nh2

n∑
i=1

f−1(si) = O(h−2),

hence it follows by nh2 →∞ that n−1E[tr(S)] = n−1E[tr(ST)] = o(1).

Since by straightforward calculation we have that the (k, l)th (k, l =

1, · · · , n) element of matrix STS takes the form

[STS]kl = κ−20 n−2(1 + oP (1))

·XT
k{

n∑
i=1

f−2(si)Ψ
−1XiX

T
i Ψ−1Kh(‖sk − si‖)Kh(‖sl − si‖)}Xl,

and it follows by Lemma 1, continuity of f(·) and Condition (4) that

1

nh2

n∑
i=1

f−2(si)Ψ
−1XiX

T
i Ψ−1K2(‖si − s

h
‖)

=
1

nh2

n∑
i=1

f−2(si)Ψ
−1K2(‖si − s

h
‖) +OP (rn)

= ν0f
−1(s)Ψ−1(1 + oP (1))

holds uniformly in s ∈ S. Thus

n−1E[tr(STS)] =
ν0

κ20n
2h2

E[
n∑
k=1

f−1(sk)X
T
kΨ−1Xk](1 + o(1))

=
ν0p

κ20n
2h2

n∑
k=1

f−1(sk)(1 + o(1)) = o(1).
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Consequently, n−1tr(P ) = n−1tr(In) − 2n−1tr(S) + n−1tr(STS) = 1 +

o(1).

Results (2) and (3) can be established by the same arguments as

in (1) and straightforward calculation.

Next it can be seen clearly from the above proof that when nh2/ρn →
∞, we can obtain results (4)-(6) by the fact that the elements of G

having the uniform order O(1/ρn).

Proof of Lemma 5: (1) It follows from Lemma 2(2) and some

calculation that

(Gm)TPm = −κ2h
2

2κ0
(Gm)T(In − ST)


XT

1 [βuu(s1) + βvv(s1)]
...

XT
n [βuu(sn) + βvv(sn)]


+(Gm)T(In − ST)(X1, · · · , Xn)T1poP (h2).

Next we use (6.2), Lemma 2(1), Lemma 1, Condition (4), continuity

of f(·) and the second partial derivatives of β(·) to get that

ST


XT

1 [βuu(s1) + βvv(s1)]
...

XT
n [βuu(sn) + βvv(sn)]



=


XT

1 [βuu(s1) + βvv(s1)]
...

XT
n [βuu(sn) + βvv(sn)]

+ (X1, · · · , Xn)T1poP (1),
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and

ST(X1, · · · , Xn)T1p = (XT
11p, · · · , XT

n1p)
TOP (1). (6.3)

Consequently we have by Markov inequality that

(Gm)TPm = n−1(Gm)T(XT
11p, · · · , XT

n1p)
ToP (nh2) = oP (nh2)

(2) If f(·) and the second partial derivatives of β(s) are all Lipshitz

continuous, then we can obtain by Lemma 1, Condition (4) and similar

arguments as in Lemma 2(2) that

n−1H−1XTW
{
X

 β(s)

Vec(β̇
T

(s))

−m
}

=

 −1
2
h2κ2f(s)Ψ

{
βuu(s) + βvv(s)

}
02p×1

+OP ({h3 + h2rn}13p).

This together with Lemma 2(1) leads to

β(s)−(Ip,0p×2p)(XTWX )−1XTWm = −κ2h
2

2κ0

{
βuu(s)+βvv(s)

}
+Op({h3+h2rn}1p)

holding uniformly in s ∈ S. Hence

(Gm)TPm = −κ2h
2

2κ0
(Gm)T(In − ST)


XT

1 [βuu(s1) + βvv(s1)]
...

XT
n [βuu(sn) + βvv(sn)]


+(Gm)T(In − ST)(X1, · · · , Xn)T1pOP ({h3 + h2rn})
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If f(·) and the second partial derivatives of β(·) are all Lipschitz con-

tinuous, then

ST


XT

1 [βuu(s1) + βvv(s1)]
...

XT
n [βuu(sn) + βvv(sn)]



=


XT

1 [βuu(s1) + βvv(s1)]
...

XT
n [βuu(sn) + βvv(sn)]

+ (X1, · · · , Xn)T1pOP (h+ rn).

Therefore, we have by (6.3) and Markov inequality that

(Gm)TPm = n−1(Gm)T(XT
11p, · · · , XT

n1p)
TOP (n{h3 + h2rn})

= OP (nh3 + {nh2 log n}1/2)

Proof of Lemma 6: (1) In the following, we will show that

n−1/2LTPm = oP (1) for L = m, ε and Gε.

Note that n−1/2mTPm = n−1/2(m−Sm)T(m−Sm), and it follows

by Lemma 2(2) that

m− Sm = (X1, · · · , Xn)T1pOP (h2). (6.4)

Therefore,

n−1/2mTPm = n−1
n∑
i=1

(XT
i 1p)

2OP (n1/2h4) = oP (1)

using law of large numbers and nh8 → 0.
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Since we have by (6.3), (6.4) and Chebyshev inequality that

n−1/2εTPm = n−1/2(ε− Sε)T(m− Sm)

= {n−1/2εT(X1, · · · , Xn)T1p − n−1/2εTST(X1, · · · , Xn)T1p}OP (h2)

= n−1/2
n∑
i=1

XT
i 1pεiOP (h2) = OP (h2),

Hence n−1/2εTPm = oP (1).

Similarly, we can show that n−1/2(Gε)TPm = OP (h2) = oP (1).

(2) Here, we will show that n−1LTPGm = oP (1) for L = m, ε and

Gε.

Clearly, it follows by Lemma 5(1) that n−1mTPGm = oP (h2) =

oP (1).

For simplification, in the following we set X̃ = (XT
11p, · · · , XT

n1p)
T

and V = (f−1(s1)X
T
1 Ψ−11p, · · · , f−1(sn)XT

nΨ−11p)
T.

Note that

1

n
εTPGm =

1

n
εTGm− 1

n
εTSTGm− 1

n
εTSGm +

1

n
εTSTSGm.

As E( 1
n
εTGm) = 0, and

var(
1

n
εTGm) =

σ2
0

n2

n∑
i=1

n∑
j=1

g2ijEm
2
j+
σ2
0

n2

n∑
i=1

n∑
j=1

n∑
k 6=j

gijgikEmjEmk = O(
1

n
),

we obtain by Chebyshev inequality that n−1εTGm = oP (1).

It follows by (6.2), Lipschitz continuity of f(·), Lemma 3 and Con-

dition (4) that

STGm = {Z + V · oP (1) + X̃ · oP (1)}(1 + oP (1)). (6.5)
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Therefore,

1

n
εTSTGm = { 1

n
εTZ +

1

n
εTV · oP (1) +

1

n
εTX̃ · oP (1)}(1 + oP (1)) = oP (1)

by law of large numbers.

Similarly,

SGm = {Z + V · oP (1)}(1 + oP (1)). (6.6)

by Lemma 3 and Condition (4). Therefore, we have by law of large

numbers that

1

n
εTSGm = { 1

n
εTZ +

1

n
εTV · oP (1)}(1 + oP (1)) = oP (1).

Next it follows by (6.2) and Lemma 1 that Sε = V · oP (1). This

together with (6.6), we obtain that

1

n
(Sε)TSGm = { 1

n
VTZ +

1

n
VTV }oP (1).

Therefore, n−1εTSTSGm = oP (1) by law of large numbers.

Similarly, we can show that n−1(Gε)TPGm = oP (1).

Proof of Lemma 7: (1) It can be seen that

1

n
(Gm)TPGm =

1

n
(Gm)TGm− 2

n
(Gm)TSGm +

1

n
(SGm)TSGm.
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For the first term we have that

1

n
(Gm)TGm =

1

n

n∑
j=1

(
n∑
i=1

g2ij)m
2
j +

1

n

n∑
i=1

n∑
j=1

n∑
k 6=j

gijgikmjmk,

and

var{ 1

n

n∑
j=1

(
n∑
i=1

g2ij)m
2
j} =

1

n2

n∑
j=1

(
n∑
i=1

g2ij)
2D(m2

j) = O(
1

n
),

it follows by Chebyshev inequality that 1
n

n∑
j=1

n∑
i=1

g2ijm
2
j−E{ 1n

n∑
j=1

n∑
i=1

g2ijm
2
j} =

oP (1).

Let m̄i = mi − Emi, i = 1, · · · , n, then

1

n

n∑
i=1

n∑
j=1

n∑
k 6=j

gijgikmjmk − E{
1

n

n∑
i=1

n∑
j=1

n∑
k 6=j

gijgikmjmk}

=
1

n

n∑
j=1

n∑
k 6=j

n∑
i=1

gijgikm̄jm̄k +
1

n

n∑
j=1

n∑
k 6=j

n∑
i=1

gijgikm̄jEmj

+
1

n

n∑
k=1

n∑
j 6=k

n∑
i=1

gijgikm̄kEmk.

Define Jn1 = 1
n

n∑
j=1

n∑
k 6=j

n∑
i=1

gijgikm̄jm̄k, Jn2 = 1
n

n∑
j=1

n∑
k 6=j

n∑
i=1

gijgikm̄jEmj

and Jn3 = 1
n

n∑
k=1

n∑
j 6=k

n∑
i=1

gijgikm̄kEmk, with

var(Jn1) = E(J2
n1)

=
2

n2

n∑
j=1

n∑
k 6=j

(
n∑
i=1

gijgik)
2[βT(sj)D(X1)β(sj)][β

T(sk)D(X1)β(sk)]

≤ max
j,k

(
n∑
i=1

|gijgik|)
2

n2

n∑
j=1

{
n∑
i=1

|gij|βT(sj)D(X1)β(sj)}2 = O(
1

n
),
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var(Jn2) =
1

n2

n∑
j=1

(
n∑
k 6=j

n∑
i=1

gijgik)
2D(mj)(Emj)

2 = O(
1

n
),

and

var(Jn3) =
1

n2

n∑
k=1

(
n∑
j 6=k

n∑
i=1

gijgik)
2D(mk)(Emk)

2 = O(
1

n
).

Therefore, by Chebyshev inequality that Jn1 = oP (1), Jn2 = oP (1) and

Jn3 = oP (1). In conclusion, we obtain that 1
n
(Gm)TGm−E{ 1

n
(Gm)TGm} =

oP (1).

It follows from (6.6) that

1

n
(Gm)TSGm = { 1

n
(Gm)TZ +

1

n
(Gm)TV · oP (1)}(1 + oP (1)).

Using similar arguments as establishing 1
n
(Gm)TGm−E{ 1

n
(Gm)TGm} =

oP (1), we have that 1
n
(Gm)TL−E{ 1

n
(Gm)TL} = oP (1) for L = Z and

V . Moreover, E{ 1
n
(Gm)TSGm} = E{ 1

n
(Gm)TZ}+ o(1). Therefore,

1

n
(Gm)TSGm− E{ 1

n
(Gm)TSGm} = oP (1).

For the term 1
n
(SGm)TSGm, again by (6.6) we have that

1

n
(SGm)TSGm =

{ 1

n
ZTZ +

1

n
VTV · oP (1) +

2

n
ZTV · oP (1)

}
(1 + oP (1))

=
1

n
E(ZTZ) + oP (1)

by law of large numbers, and E{ 1
n
(SGm)TSGm} = 1

n
E(ZTZ) + o(1).

Thus
1

n
(SGm)TSGm− E{ 1

n
(SGm)TSGm} = oP (1).
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In conclusion, we obtain that 1
n
(Gm)TPGm − E{ 1

n
(Gm)TPGm} =

oP (1).

(2) We have seen from (6.6) that

1

n
E{(Gm)TPGm} =

1

n
E{(Gm− Z + V · oP (1))T(Gm− Z + V · oP (1))}(1 + o(1))

=
1

n
E[(Gm− Z)T(Gm− Z)] + o(1).

Proof of Lemma 8: (1) Since

n−1/2{εTPε− εTε} = −2n−1/2εTSε + n−1/2εTSTSε,

E[n−1/2εTSε] = σ2
0n
−1/2E[tr(S)] = O({nh4}−1/2) = o(1), and

var(n−1/2εTSε) ≤ 1

n
E(εTSε)2

=
1

n

[
(µ4 − 3σ4

0)
n∑
i=1

E[S]2ii + σ4
0E{[tr(S)]2 + tr(SST) + tr(S2)}

]

It can be seen from the proof of Lemma 4(1) that n−1E[tr(SST)] =

o(1),

1

n

n∑
i=1

E[S]2ii =
1

κ20n
3h4

n∑
i=1

E[f−2(si)(X
T
i Ψ−1Xi)

2]K2(0) = O(
1

n2h4
) = o(1),

and

tr(S) =
pK(0)

κ0nh2

n∑
i=1

f−1(si) + op(1).

It can be seen that n−1/2tr(S) = Op({nh4}−1/2) = oP (1). Hence,

n−1[tr(S)]2 = oP (1) and n−1E{[tr(S)]2} = o(1).

It follows by straightforward calculation, Lemma 1 and Condition
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(4) that

[S2]ii =
1 + oP (1)

κ20n
2

f−1(si)X
T
i Ψ−1

n∑
j=1

f−1(sj)XjX
T
j Ψ−1K2

h(‖sj − si‖)Xi

=
ν0

κ20nh
2
f−1(si)X

T
i Ψ−1Xi(1 + oP (1)).

Thus

1

n
E[tr(S2)] =

ν0(1 + o(1))

κ20n
2h2

n∑
i=1

E[f−1(si)X
T
i Ψ−1Xi] = O(

1

nh2
) = o(1).

Consequently, we have by Chebyshev inequality that n−1/2εTSε =

oP (1).

Similarly, it can be shown that n−1/2εTSTSε = oP (1). Hence we

have shown that n−1/2(εTPε− εTε) = oP (1).

Results (2) and (3) can be obtained by the same arguments as in

(1) and straightforward calculation.

(4) Note that

n−1/2{(Gm)TPε− (Gm− SGm)Tε} = −n−1/2(Gm− SGm)TSε.

Moreover, E[n−1/2(Gm−SGm)TSε] = 0 and var[n−1/2(Gm−SGm)TSε] =

σ2
0n
−1E[(Gm − SGm)TSST(Gm − SGm)]. As it follows by (6.6),

Lemma 1 and Condition (4) that

STSGm = {STZ + STV · oP (1)}(1 + oP (1))

= {Z + X̃ · oP (1) + V · oP (1)}(1 + oP (1))

where V = (f−1(s1)X
T
1 Ψ−11p, · · · , f−1(sn)XT

nΨ−11p)
T and X̃ = (XT

11p, · · · , XT
n1p)

T.
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This together with (6.5) it can be seen that

STGm− STSGm = {Z + X̃ + V }oP (1).

Hence n−1E[(Gm−SGm)TSST(Gm−SGm)] = o(1). Consequently, it

can be obtained by Chebyshev inequality that n−1/2(Gm−SGm)TSε =

oP (1). Therefore, n−1/2{(Gm)TPε− (Gm− SGm)Tε} = oP (1).

Proof of Lemma 9: The asymptotic distribution of the linear-

quadratic random form Qn can be established via the martingale cen-

tral limit theorem. Our proof of this lemma follows closely the argu-

ments in Kelejian and Prucha (2001) and Lee (2004).

Note that

Qn =
n∑
i=1

(
n∑
j=1

gijmj−gsi )εi+
n∑
i=1

biiε
2
i +2

n∑
i=1

i−1∑
k=1

bikεiεk−σ2
0tr(B) =

n∑
i=1

Vni

where gsi is the ith element of SGm and Vni = (
n∑
j=1

gijmj − gsi )εi +

bii(ε
2
i − σ2

0) + 2εi
i−1∑
k=1

bikεk.

Define σ− fields Ti =< ε1, · · · , εi > generated by ε1, · · · , εi. Because

{εi}ni=1 are iid with zero mean, finite variance and independent with

{Xj}nj=1,

E(Vni|Ti−1) = E(
n∑
j=1

gijmj− gsi )Eεi + bii(Eε
2
i −σ2

0) + 2Eεi
i−1∑
k=1

bikεk = 0.

Hence, the {(Vni, Ti)|1 ≤ i ≤ n} forms a martingale difference dou-

ble array and σ2
Qn =

n∑
i=1

E(V 2
ni) with σ2

Qn being bounded away from

zero at n rate. Define the normalized variables V ∗ni = Vni/σQn . Then
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{(V ∗ni, Ti)|1 ≤ i ≤ n} is a martingale difference double array and

Qn
σQn

=
n∑
i=1

V ∗ni. In order for the martingale central limit theorem to

be applicable we would show that there exists a δ > 0 such that
n∑
i=1

E|V ∗ni|2+δ = o(1) and
n∑
i=1

E(V ∗2ni |Ti−1)
P−→ 1.

For any positive constant p and q satisfying 1
p

+ 1
q

= 1, we have

|Vni| ≤ |bii| · |ε2i − σ2
0|+ |εi|(|

n∑
j=1

gijmj − gsi |+ 2
i−1∑
k=1

|bik| · |εk|)

= |bii|
1
p (|bii|

1
q · |ε2i − σ2

0|) + |
n∑
j=1

gijmj − gsi |
1
p (|

n∑
j=1

gijmj − gsi |
1
q |εi|)

+
i−1∑
k=1

|bik|
1
p (|bik|

1
q 2|εk| · |εi|).

Applying Holder inequality we obtain that

|Vni|q ≤
[
|
n∑
j=1

gijmj − gsi |+
i∑

k=1

|bik|
] q
p

·
[
|
n∑
j=1

gijmj − gsi | · |εi|q + |bii| · |ε2i − σ2
0|q +

i−1∑
k=1

|bik|2q|εi|q|εk|q
]

Let c1 > 1 be a finite constant such that E(|ε21 − σ2
0|) ≤ c1 ,

E|ε1|q ≤ c1, and (E|ε1|q)2 ≤ c1. Set D = {Xi}ni=1, we have

E[|Vni|q|D] ≤ 2qc1
[
|
n∑
j=1

gijmj − gsi |+
i∑

k=1

|bik|
]q

As the the matrix B are uniformly bounded in row sums, there exists

a constant c2 such that
∑n
j=1 |bij| ≤ c2 for all i. Take q = 2 + δ, it
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follows by Cr inequality and (6.6) that

n∑
i=1

E[|Vni|2+δ] =
n∑
i=1

E{E[|Vni|2+δ|D]}

≤ c12
3+2δ

n∑
i=1

{E|
n∑
j=1

gijmj − gsi |2+δ + (
i∑

k=1

|bik|)2+δ}

≤ c12
3+2δ{22+2δ

n∑
i=1

[
E|

n∑
j=1

gij(mj − Emj)|2+δ + |
n∑
j=1

gijEmj|2+δ
]

+ cn}.

Because {mj} are independent variables, we have that

E|
n∑
j=1

gij(mj − Emj)|2+δ

≤ c{
n∑
j=1

E|gij(mj − Emj)|2+δ + (
n∑
j=1

E[gij(mj − Emj)]
2)

2+δ
2 } ≤ c

by
n∑
j=1
|gij| being uniformly bounded for all i. Therefore,

n∑
i=1

E[|Vni|2+δ] =

O(n). Hence
n∑
i=1

E|V ∗ni|2+δ = 1

(σ2
Qn

)
2+δ
2

n∑
i=1

E|Vni|2+δ = O( n
n1+δ/2 ) = o(1).

It remains to show that
n∑
i=1

E(V ∗2ni |Ti−1)
P−→ 1. As E(V 2

ni|D, Ti−1) =

(µ4−σ4
0)b2ii+[(

n∑
j=1

gijmj−gsi )+2
i−1∑
k=1

bikεk]
2σ2

0 +2µ3bii[(
n∑
j=1

gijmj−gsi )+

2
i−1∑
k=1

bikεk], it follows that

E(V 2
ni|Ti−1)− E(V 2

ni)

= 4σ2
0{

i−1∑
k=1

b2ik(ε
2
k − σ2

0) +
i−1∑
k=1

i−1∑
l 6=k

bikbilεkεl}+ 4[σ2
0E(

n∑
j=1

gijmj − gsi ) + µ3bii]
i−1∑
k=1

bikεk
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Therefore,

n∑
i=1

E(V ∗2ni |Ti−1)− 1 =
1

σ2
Qn

n∑
i=1

[E(V 2
ni|Ti−1)− E(V 2

ni)]

=
4σ2

0
1
n
σ2
Qn

· 1

n

n∑
i=1

{
i−1∑
k=1

b2ik(ε
2
k − σ2

0) +
i−1∑
k=1

i−1∑
l 6=k

bikbilεkεl}

+
4

1
n
σ2
Qn

· 1

n

n∑
i=1

[σ2
0E(

n∑
j=1

gijmj − gsi ) + µ3bii]
i−1∑
k=1

bikεk

=
4σ2

0
1
n
σ2
Qn

(Jn1 + Jn2) +
4

1
n
σ2
Qn

Jn3

with Jn1 = 1
n

n∑
i=1

i−1∑
k=1

b2ik(ε
2
k − σ2

0), Jn2 = 1
n

n∑
i=1

i−1∑
k=1

i−1∑
l 6=k

bikbilεkεl, and Jn3 =

1
n

n∑
i=1

[σ2
0E(

n∑
j=1

gijmj − gsi ) + µ3bii]
i−1∑
k=1

bikεk.

Clearly, EJnl = 0, l = 1, 2, 3. By Chebyshev inequality, to show

Jnl = oP (1), it is only need to prove EJ2
nl = o(1). It is obvious by uni-

form boundness of bik and uniform boundness of
n∑
i=1
|bik| that E(J2

n1) =

1
n2

n−1∑
k=1

(
n∑

i=k+1
b2ik)

2D(ε21) ≤ 1
n2D(ε21) maxi,k |bik|2

n−1∑
k=1

(
n∑

i=k+1
|bik|)2 = O( 1

n
).

Since Jn2 = 1
n

n−1∑
k=1

n−1∑
l 6=k

(
n∑

i=max {k,l}+1
bikbil)εkεl, we have

E(J2
n2) =

2σ4
0

n2

n−1∑
k=1

n−1∑
l 6=k

(
n∑

i=max {k,l}+1

bikbil)
2 ≤ 2σ4

0

n2

n∑
k=1

n∑
l=1

(
n∑
i=1

|bikbil|)2

≤ 2σ4
0

n2
max
i,l
|bil|max

k

n∑
i=1

|bik|
n∑
i=1

n∑
k=1

n∑
l=1

|bikbil| = O(
1

n
)

As Jn3 can be written as Jn3 = 1
n

n−1∑
k=1

[
n∑

i=k+1
(σ2

0E[
n∑
j=1

gijmj − gsi ] +
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µ3bii)bik]εk, it follows that

E(J2
n3) =

σ2
0

n2

n−1∑
k=1

[
n∑

i=k+1

(σ2
0E[

n∑
j=1

gijmj − gsi ] + µ3bii)bik]
2

≤ σ2
0

n2
max
i
{σ2

0|E[
n∑
j=1

gijmj − gsi ]|+ µ3|bii|}2
n∑
k=1

(
n∑
i=1

|bik|)2 = O(
1

n
)

by |E[
n∑
j=1

gijmj − gsi ]| ≤
n∑
j=1
|gijEmj| + E|gsi | = O(1) for any i, where

E|gsi | = O(1) is obtained using (6.6).

Because Jnl = oP (1) for l = 1, 2, 3 and limn→∞
σ2
Qn

n
> 0,

n∑
i=1

E(V ∗2ni |Ti−1)
converges in probability to 1. The central limit theorem for martingale

difference double array is thus applicable to establish the result.

Proof of Lemma 10: (1) Here we will show that (Gm)TPm =

oP (ρ−1/2n nh2).

It can be seen from the proof of Lemma 5(1) that

(Gm)TPm = (Gm)T(XT
11p, · · ·XT

n1p)
ToP (h2).

As
√
ρn
n

(Gm)T(XT
11p, · · ·XT

n1p)
T =

√
ρn
n

n∑
i=1

n∑
j=1

gijmjX
T
i 1p, and

E|
√
ρn
n

n∑
i=1

n∑
j=1

gijmjX
T
i 1p| ≤

√
ρn
n

n∑
i=1

n∑
j=1

E|gijmjX
T
i 1p|

≤ c

√
ρn
n

n∑
i=1

n∑
j=1

|gij| = O(1),

using that maxi
n∑
j=1
|gij| = O(1/

√
ρn), then by Markov inequality we

have √
ρn
n

(Gm)T(XT
11p, · · ·XT

n1p)
T = OP (1). (6.7)

67



Therefore, (Gm)TPm = oP (ρ−1/2n nh2).

(2) If f(·) and the second partial derivatives of β(s) are all Lipschitz

continuous, then it follows from the proof of Lemma 5(2) that

(Gm)TPm = (Gm)T(XT
11p, · · ·XT

n1p)
TOP (h3 + h2rn).

Together with (6.7) we have

(Gm)TPm = OP (ρ−1/2n nh3 + {nh2 log n/ρn}1/2).

Proof of Lemma 11: In the following proofs we will always use

the facts that the elements of G having the uniform order O(1/ρn) and

the row sums of the matrix G having the uniform order O(1/
√
ρn).

First we will show that ρn
n

mTPm = oP (1). It can be seen from

(6.4) that

ρn
n

mTPm =
ρn
n

(m− Sm)T(m− Sm)

=
1

n
(XT

11p, · · · , XT
n1p)(X

T
11p, · · · , XT

n1p)
TOP (ρnh

4) = oP (1)

by law of large numbers.

Now we will show that ρn
n
LTPGm = oP (1) for L = m, ε and Gε.

It follows immediately from Lemma 10(1) and ρnh
4 → 0 that

ρn
n

mTPGm = oP (ρ1/2n h2) = oP (1).

Next by the same lines as establishing Lemma 3 and Condition (4)
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that

√
ρn
n

H−1XTWGm =

 ΓΓT
√
ρn
n

n∑
i=1

n∑
j 6=i

gijβ(sj)Kh(‖si − s‖)

02p×1

+oP (13p)

(6.8)

holds uniformly in s ∈ S. Then using the same lines as establishing

Lemma 6(2), the facts that the elements of G having the uniform

order O(1/ρn), the row sums of the matrix G having the uniform order

O(1/
√
ρn) and ρn/n → 0, we obtain that ρn

n
εTPGm = oP (1) and

ρn
n

(Gε)TPGm = oP (1).

Next it follows the same lines as establishing n−1/2(Gε)TPm =

oP (1) in Lemma 6(1) that
√
ρn/n(Gε)TPm = oP (1) when ρnh

4 → 0.

As we have by Lemma 2(1) and (6.8) that

√
ρnSGm =


κ−10 f−1(s1)X

T
1 Ψ−1ΓΓTZ̃(s1)
...

κ−10 f−1(sn)XT
nΨ−1ΓΓTZ̃(sn)

+ oP (1),

where Z̃(s) = lim
n→∞

√
ρn
n

n∑
i=1

n∑
j 6=i

gijβ(sj)Kh(‖si − s‖), and

ρn
n

(Gm)TPGm =
1

n
(
√
ρnGm−√ρnSGm)T(

√
ρnGm−√ρnSGm),

the results (4) can be obtained similarly using the same lines as showing

Lemma 7 with Gm and SGm replaced by
√
ρnGm and

√
ρnSGm

respectively.

The results (5) and (6) can be obtained from the proof of Lemma

8(2) and 8(3) under the assumptions of Lemma 11.
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Finally, the result (7) can be obtained as Lemma 8(4).

Proof of Lemma 12: The proof can be established using the

same lines as Lemma 9 under the assumptions of Lemma 12.
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7 The Connection between Cross-validation

and AIC in a Semiparametric Family

7.1 Introduction

Cross-validation as an important tool in statistical analysis,is intu-

itively appealing and easy to implement.However, it is also computa-

tionally expensive. Although cross-validation tends to pick up a model

which is unnecessarily complex, it is nevertheless frequently used in

practice, see Xia and Li (2002).

The AIC is another important criterion used for model selection in

a family of hierarchical models, see Akaike (1973, 1974). The equiva-

lence of cross-validation and AIC has been established in Stone (1977).

Some discussions about the frequently used criteria, which includes

cross-validation and AIC, for model selection can be found in Allen

(1974), Arlot and Celisse (2010), Davies et al.(2005), and Lv and Liu

(2010).

The existing works about the connection between cross-validation

and AIC are mainly for parametric models. The methodologies in

those works can also be extended to accommodate some semipara-

metric models, if the orthogonal basis based decomposition smoothing

method is used to deal with the unknown functions involved in the

models concerned. This is because after decomposition of the un-

known functions, the models would become parametric, though with

some tuning parameters. However, for semiparametric models, if ker-

nel smoothing is used, the situation would be different. This is because

the parameterization of unknown functions in kernel smoothing is done
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locally. On the other hand, the model selection should be done globally.

How to link them together is not trivial. As far as cross-validation and

AIC are concerned, a natural question is whether cross-validation is

still equivalent to AIC in semiparametric models when kernel smooth-

ing is used. This question is answered here.

We have to make some assumptions on the semiparametric models

addressed due to the ‘curse of dimensionality’. Let y be a response

variable, U and X be covariates. U and y are scalars, X is a p-

dimensional vector. We assume the conditional log-density function

of y given (U, XT) is

f(y; θ, a1(U), · · · , aκ(U), X), (7.1)

where f(·; · · ·) is specified, θ is a q-dimensional unknown constant

parameter, aj(·), j = 1, · · · , κ, are unknown functions.

Model (7.1) represents a large family of semiparametric models,

including generalised linear models, varying coefficient models (Fan

and Zhang, 1999; Sun et al., 2007; Wang et al., 2009; Wang and Xia,

2009; Zhang et al., 2009), multiparameter likelihood models (Cheng

et al., 2009), partially linear models (Liang and Li, 2009; Ma et al.,

2006), and semivarying coefficient models (Zhang et al., 2002; Li and

Palta, 2009; Kai et al., 2010; Li and Zhang, 2011).

In this chapter, we are going to show the connection between cross-

validation and AIC in the family of semiparematric models (7.1). We

begin in chapter 7.2 with a description of a maximum likelihood based

semiparametric estimation procedure for the unknown functions and

constants in (7.1). In chapter 7.3, we give the definitions of the AIC
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and cross-validation for (7.1) and show the connection between them.

The connection will also be demonstrated by simulation in chapter

7.4 followed by the technical proof of a theorem which establishes the

connection.

7.2 Estimation procedure

Suppose (Ui, X
T
i , yi)

T, i = 1, · · · , n, are i.i.d. from (U, XT, y)T. In

this chapter, we are going to present an estimation procedure for the

unknown functions and constants in (7.1).

7.2.1 Estimation of the unknown constant parameter

The estimation of the constant parameter consists of two steps: we first

use local maximum likelihood estimation to get some initial estimators

of the constant parameter, then average the initial estimators to get

the final estimator. The details are as follows.

For any given u, by Taylor’s expansion, we have

aj(Ui) ≈ aj(u) + ȧj(u)(Ui − u)

which leads to the local log-likelihood function

L(θ, a, b) =
n∑
i=1

f(yi; θ, a1+b1(Ui−u), · · · , aκ+bκ(Ui−u), Xi)Kh(Ui−u),

(7.2)

where a = (a1, · · · , aκ)T, b = (b1, · · · , bκ)T, Kh(·) = K(·/h)/h, K(·)
is a kernel function, h is a bandwidth.

Let (θ̃(u)T, ã(u)T, b̃(u)T) maximise (7.2). θ̃(u) is an initial esti-
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mator of θ. Let u go over Ui, i = 1, · · · , n. The final estimator of θ

is taken to be

θ̂ =
1

n

n∑
i=1

θ̃(Ui).

7.2.2 Estimation of unknown functions

The estimation of unknown functions is the standard local maximum

likelihood estimation: replacing the θ in (7.2) by its estimator and

changing the bandwidth h to a slightly larger one h1. We have the

following objective function for the estimation of unknown functions

n∑
i=1

f(yi; θ̂, a1+b1(Ui−u), · · · , aκ+bκ(Ui−u), Xi)Kh1(Ui−u). (7.3)

Let (â1(u), · · · , âκ(u), b̂1(u), · · · , b̂κ(u)) maximise (7.3). âj(u) is the

estimator of aj(u), j = 1, · · · , κ.

The reason to change the bandwidth h to a slightly larger one

h1 is that the bandwidth used in estimation of the unknown constant

parameter is usually smaller than the optimal bandwidth for estimation

of unknown functions in order to achieve a better convergence rate.

The estimators of the unknown functions and unknown constants

are needed in the computation of either AIC or CV. The estimation

procedure presented in this chapter is to provide such estimators.

7.3 Equivalence of CV and AIC

In this chapter, we will first give the definitions of cross-validation and

AIC, then show that they are equivalent to each other when the kernel

function is taken to be the density function of the uniform distribution

74



on [−1, 1].

7.3.1 Cross-validation

For each i, i = 1, · · · , n, we delete the ith observation and estimate

θ and aj(·), j = 1, · · · , κ, based on the other observations. The

resulting estimators are denoted by θ̂
\i

and â
\i
j (·), respectively. The

cross-validation sum is defined as

CV = −
n∑
i=1

f(yi; θ̂
\i
, â
\i
1 (Ui), · · · , â\iκ (Ui), Xi).

7.3.2 AIC

To define AIC for semiparametric models is not straightforward when

kernel smoothing is used. The main problem is to find out how many

unknown constant parameters an unknown function, in general, amounts

to. Cheng et al.(2009) came up with an ad-hoc solution for this prob-

lem, and suggested that an unknown function amounts to h−1(ν0 +

ν2/µ2) unknown parameters, where

µi =
∫
uiK(u)du, νi =

∫
uiK2(u)du.

While their ad-hoc solution did work well for their models, it is never-

theless worth revisiting this problem more thoroughly as their approach

is based on the local residual sum of squares, and this problem, as it

stands, should be in a global sense and should be solved globally.

To find out how many unknown constant parameters an unknown

function, in general, amounts to, we only need to come down to the
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standard univariate nonparametric regression model

ηi = a(Ui) + εi, i = 1, · · · , n, (7.4)

where (Ui, ηi), i = 1, · · · , n, are i.i.d. The degrees of freedom of the

residual sum of squares of (7.4) can be reasonably viewed as ‘n − the

number of unknown parameters in (7.4)’, which implies that unknown

function a(·) amounts to

T = n− 1

var(ε1)
E

{
n∑
i=1

(ηi − â(Ui))
2 |D

}

unknown constant parameters, where D = (U1, · · · , Un), â(Ui) is the

local linear estimator of a(Ui). Using the standard argument in Fan

and Gijbels (1996) and Lemma 1 in chapter 7.5, we have

T = (2K(0)− ν0)h−1(1 + oP (1))

when h = oP (n−1/5) and nh −→∞, where K(·) is the kernel function

to produce the local linear estimator â(Ui), h is the bandwidth. So,

we conclude that an unknown function amounts to (2K(0) − ν0)h
−1

unknown constant parameters, and define the AIC for (7.1) as

AIC = −
n∑
i=1

f(yi; θ̂, â1(Ui), · · · , âκ(Ui), Xi) +K,

where K is the number of “unknown parameters” in the model, which

is

K = q + κ(2K(0)− ν0)h−11 .
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Remark: In general, bias is associated with an overly parsimonious

model, whereas excessive variability is associated with an overly com-

plex model. Clearly, the term, (2K(0)− ν0)h−11 , increases as the band-

width decreases, reflecting an inflation in variability, and the term

decreases as the bandwidth increases, reflecting an inflation in bias.

Thus, complexity is inversely related to bandwidth.

The connection between CV and AIC is established through the

following theorem.

Theorem 1. Under the conditions (1) - (6) stated in chapter 7.5, we

have

CV = AIC− κ(K(0)− ν0)h−11 + oP (1).

Remark: When the kernel function is taken to be the density function

of the uniform distribution on [−1, 1], it is easy to seeK(0) = ν0, which

implies that the CV is asymptotically the same as AIC.

Theorem 1 provides not only the connection between CV and AIC

but also a way to compute the CV, which would significantly reduce

the computational burden in the computation of CV.

7.4 Simulation study

In this chapter, we are going to use a simulated example to demonstrate

the connection between CV and AIC. We will also use either of these

two criteria to do model selection, and compare their performances.

Example 1. We generated a sample (yi, Xi, Ui), i = 1, · · · , n, from
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the logistic regression model

log

{
P (y = 1|X, U)

1− P (y = 1|X, U)

}
= x1a1(U) + x2a2(U) + x3a3 + x4a4.

Here theXi = (xi1, xi2, xi3, xi4)
T were independently generated from a

normal distribution N(0, I4), and the Ui were independently generated

from a uniform distribution U(0, 1). We set

a1(u) = sin(2πu), a2(u) = cos(2πu), a3 = 2, a4 = 1.

We use

d = (CV− AIC + κ(K(0)− ν0)h−11 )/(q + κK(0)h−11 )

to measure the difference between CV and AIC−κ(K(0)−ν0)h−11 . The

reason for us to use d rather than (CV−AIC + κ(K(0)− ν0)h−11 )/CV

to measure the difference is that CV is usually very large and the ratio

would be very small. In fact, from the proof of Theorem 1, we can see

CV = −
n∑
i=1

f(yi; θ̂, â1(Ui), · · · , âκ(Ui), Xi) + (q + κK(0)h−11 ).

So, it is (q + κK(0)h−11 ) that plays a key role in CV. So, we use d to

measure the difference between CV and AIC− κ(K(0)− ν0)h−11 .

We set the sample size n in the range from 200 to 2000. For each

given n, we do 100 simulations, and for each simulation, we compute

the d. The mean and standard deviation (SD) of the ds obtained from

the 100 simulations for each given n are presented in Figure 1. Figure
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1 shows the CV is indeed very close to the AIC−κ(K(0)−ν0)h−11 when

sample size is larger than 1500, which is in line with our theoretical

result presented in Theorem 1.

Figure 1: The left figure is for the mean of d, in which the horizontal
axis is sample size, the vertical axis is the mean of the d. The right
figure is for the standard deviation of d, in which the horizontal axis
is sample size, the vertical axis is the standard deviation of the d.

We now pretend we don’t know which coefficients in the model,

from which the sample is generated, are functional, and apply either

of the two criteria to identify the functional coefficients. The candidate

family is
4⋃

k=1

⋃
1≤i1<···<ik≤4

{Mi1,···,ik}
⋃
{M0}
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where Mi1,···,ik represents the model

log

{
P (y = 1|X, U)

1− P (y = 1|X, U)

}
=

∑
j∈{i1, ···, ik}

xjaj(U) +
∑

l∈{i1, ···, ik}c
xlal

and M0 represents the model

log

{
P (y = 1|X, U)

1− P (y = 1|X, U)

}
=

4∑
j=1

xjaj

where {i1, · · · , ik}c is the complement of {i1, · · · , ik}.
We set the sample size to be 1500. The reason to set such a large

sample size is because binary data carries much less information, and

there are two unknown functions and two unknown constants to esti-

mate in the model. In order to have enough information to construct

decent estimators of the unknowns, we have to set the sample size in

the magnitude of thousands. Because the computation involved in the

model selection is very expensive, we only carry out 100 simulations.

In each simulation, we compute the CV and AIC for each potential

candidate model, and select the one with the smallest CV for the CV

based approach. Similarly we select the smallest AIC for the AIC

based approach. We find, in the 100 simulations, the ratio of picking

the right model, M1,2, is 95% for the CV based approach, and 94%

for the AIC based approach. From these results, we can see both cri-

teria perform reasonably well, and their performances are similar. We

also set the sample size to be 1200 and 2000, the obtained results are

similar, which are presented in Table 1 and 2.
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Table 1: The Ratio of AIC Picking Each Candidate Model

Sample Size M1,2 M1,2,3 M1,2,4 M1,2,3,4 others
n = 1200 93% 5% 2% 0% 0%
n = 1500 94% 5% 1% 0% 0%
n = 2000 97% 1% 1% 1% 0%

Table 2: The Ratio of CV Picking Each Candidate Model

Sample Size M1,2 M1,2,3 M1,2,4 M1 M2,3 others
n = 1200 93% 3% 2% 1% 1% 0%
n = 1500 95% 5% 0% 0% 0% 0%
n = 2000 97% 3% 0% 0% 0% 0%

7.5 Proofs

The connection between CV and AIC is built on the following technical

conditions

(1) h = o(n−1/6), h1 = o(n−1/6), nh3 −→∞, nh31 −→∞.

(2) Let 0p×q be a p× q matrix with each entry being 0. We assume

L̇(θ, a, b) = 0(2κ+q)×1 has an unique root.

(3) The density function of U , g(u), is continuous and positive on its

support [0, 1]. The second derivative of a(·) is continuous.

(4) The kernel function K(·) is a symmetric and positive density

function, and has bounded derivative on its support set [−A, A].
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(5) For some s > 2, E(|X|2s|U = u) <∞ is continuous andE(y2s|U =

u, X = x) <∞.

(6) f(y; θ, a1, · · · , aκ, X) has bounded second derivative with

respect to (θT, a1, · · · , aκ).

The following Lemma in Fan and Zhang (1999) is needed in the

proof of the Theorem.

Lemma 1. Let (X1, Y1), ..., (Xn, Yn) be i.i.d random vectors, where the

Yi’s are scalar random variables. Assume further that E|y|s <∞ and

sup
x

∫
|y|sf(x, y)dy < ∞, where f denotes the joint density of (X, Y ).

Let K be a bounded positive function with a bounded support, satisfying

a Lipschitz condition. Then

sup
x∈D
|n−1

n∑
i=1

{Kh(Xi−x)Yi−E[Kh(Xi−x)Yi]}| = OP [{nh/ log(1/h)}−1/2]

provided that n2ε−1h −→∞ for some ε < 1− s−1.

Proof of Theorem 1:

Let

a(·) = (a1(·), · · · , aκ(·))T, â(·) = (â1(·), · · · , âκ(·))T,

â\i(·) = (â
\i
1 (·), · · · , â\iκ (·))T.

The AIC and CV can be written as

CV = −
n∑
i=1

f(yi; θ̂
\i
, â\i(Ui), Xi), AIC = −

n∑
i=1

f(yi; θ̂, â(Ui), Xi)+K.
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Let

∆ =
n∑
i=1

{
f(yi; θ̂, â(Ui), Xi)− f(yi; θ̂

\i
, â\i(Ui), Xi)

}

It is obvious that

CV = −
n∑
i=1

f(yi; θ̂, â(Ui), Xi) + ∆,

and

∆ = −
n∑
i=1

(
(θ̂
\i
− θ̂)T, (â\i(Ui)− â(Ui))

T
)
ḟ(yi; θ̂, â(Ui), Xi)(1+oP (1)),

(7.5)

where

ḟ(yi; θ, a, Xi) =
(
ḟ1(yi; θ, a, Xi)

T, ḟ2(yi; θ, a, Xi)
T
)T

ḟ1(yi; θ, a, Xi) = ∂f(yi; θ, a, Xi)/∂θ, ḟ2(yi; θ, a, Xi) = ∂f(yi; θ, a, Xi)/∂a.

Let Ik be an identity matrix of size k,

L\i(θ, a, b) =
n∑

k=1, k 6=i
f(yk; θ, a + b(Uk − u), Xk)Kh(Uk − u),

L̇(θ, a, b) = ∂L/∂(θT, aT, bT)T, Hi = diag (Iq+κ, (Ui − u)Iκ) ,

and

F(yk; θ, a, Xk) =
(
ḟ(yi; θ, a, Xi)

T, ḟ2(yi; θ, a, Xi)
T
)T
.
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By simple calculation, we have

L̇(θ, a, b) =
n∑
k=1

HkF(yk; θ, a + b(Uk − u), Xk)Kh(Uk − u).

We suppress the u in θ̃(u), ã(u), or b̃(u) to make the notations more

simple. Let a0 = a(u), b0 = ȧ(u), and θ0 be the true θ. By the

Taylor’s expansion and

L̇(θ̃, ã, b̃) = 0(2κ+q)×1,

we have

0(2κ+q)×1 = H−10 J1 +H−10 (J2 + J3)(ξ− ξ0) +OP

[
n
{
‖H0(ξ − ξ0)‖3

}]
,

(7.6)

where H0 is the Hi with (Ui − u) being replaced by h, and

ξ = (θ̃
T
, ãT, b̃

T
)T, ξ0 = (θT0, aT0, bT

0)T,

J1 =
n∑
k=1

HkF(yk; θ0, a0 + b0(Uk − u), Xk)Kh(Uk − u),

J2 =
n∑
k=1

HkG(yk; θ0, a0 + b0(Uk − u), Xk)HkKh(Uk − u),

G(yk; θ, a, Xk) =


f̈11(yi; θ, a, Xi) f̈21(yi; θ, a, Xi) f̈21(yi; θ, a, Xi)

f̈12(yi; θ, a, Xi) f̈22(yi; θ, a, Xi) f̈22(yi; θ, a, Xi)

f̈12(yi; θ, a, Xi) f̈22(yi; θ, a, Xi) f̈22(yi; θ, a, Xi)


f̈11(yi; θ, a, Xi) = ∂2f(yi; θ, a, Xi)/∂θ∂θ

T,

f̈12(yi; θ, a, Xi) = ∂2f(yi; θ, a, Xi)/∂θ∂aT,
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f̈22(yi; θ, a, Xi) = ∂2f(yi; θ, a, Xi)/∂a∂aT, J3 = (J1, · · · , Jq+2κ)
T,

Jl =
n∑
k=1

(ξ−ξ0)THkF̈l(yk; θ0, a0+b0(Uk−u), Xk)HkKh(Uk−u), l ≤ q+κ,

when l > q + κ,

Jl =
n∑
k=1

(Uk−u)(ξ−ξ0)THkF̈l(yk; θ0, a0+b0(Uk−u), Xk)HkKh(Uk−u),

where

(F1(yk; θ, a, Xk), · · · , Fq+2κ(yk; θ, a, Xk))
T = F(yk; θ, a, Xk),

and

F̈l(yk; θ, a, Xk) = ∂2Fl(yk; θ, a, Xk)/∂(θT, aT, aT)T∂(θT, aT, aT).

Let ξ\i and J
\i
l , l = 1, 2, 3, be the counterparts of ξ and Jl when the

ith observation is deleted. Obviously,

0(2κ+q)×1 = H−10 J
\i
1 +H−10 (J

\i
2 +J

\i
3 )(ξ\i−ξ0)+OP

[
n
{
‖H0(ξ

\i − ξ0)‖3
}]
.

(7.7)

Using exactly the same argument as that in the proof of Theorem 2 in

Zhang and Peng (2010), we have

‖H0(ξ
\i − ξ0)‖ = OP (δn) and ‖H0(ξ − ξ0)‖ = OP (δn) (7.8)
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uniformly in terms of u, where δn = h2 + {− log(h)/(nh)}1/2. (7.8)

together with (7.6) and (7.7) lead to

H−10 J1+H
−1
0 (J2+J3)(ξ−ξ0) = H−10 J

\i
1 +H−10 (J

\i
2 +J

\i
3 )(ξ\i−ξ0)+OP

(
nδ3n

)

which leads to

ξ\i − ξ = J−12

{
HiF(yi; θ0, a0 + b0(Ui − u), Xi)Kh(Ui − u)

+HiG(yi; θ0, a0 + b0(Ui − u), Xi)HiKh(Ui − u)(ξ\i − ξ0)
}

+OP (δ3n). (7.9)

Using Lemma 1, by some tedious calculations, we have

J2 = ng(u)H0Ω(u)H0(1 + oP (1))

uniformly, where

Ω(u) = diag
(
E
{
f̈(y; θ0, a0, X)|U = u

}
, µ2E

{
f̈22(y; θ0, a0, X)|U = u

})

and

f̈(y; θ, a, X) =

 f̈11(y; θ, a, X) f̈21(y; θ, a, X)

f̈12(y; θ, a, X) f̈22(y; θ, a, X)

 .
So,

θ̂
\i
− θ̂ =

1

n2
(Iq, 0q×2κ)

n∑
k=1

{
g(Uk)

−1H−10 Ω(Uk)
−1H−10 Hi,k

F(yi; θ0, a(Uk) + ȧ(Uk)(Ui − Uk), Xi)Kh(Ui − Uk)
}
×

86



(1 + oP (1)), (7.10)

where Hi,k is the Hi with u being replaced by Uk.

Replacing the θ in L(θ, a, b) by θ̂, in L\i(θ, a, b) by θ̂
\i

, and

using exactly the same argument as that for deriving (7.9), we have

â\i(u)−â(u) =
1

ng(u)

[
E
{
f̈22(y; θ0, a0, X)|U = u

}]−1
(Γ1+Γ2)(1+oP (1)),

(7.11)

where

Γ1 = ḟ2(yi; θ0, a0 + b0(Ui − u), Xi)Kh1(Ui − u),

Γ2 = −
∑
k 6=i

f̈12(yk; θ0, a0 + b0(Uk − u), Xk)(θ̂
\i
− θ̂)Kh1(Uk − u).

(7.5), (7.10) and (7.11) together with Lemma 1 leads to

∆ = −(∆1 + ∆2)(1 + oP (1))

with

∆1 =
n∑
i=1

ḟ1(yi; θ0, a(Ui), Xi)
T(θ̂

\i
− θ̂)

and

∆2 =
n∑
i=1

ḟ2(yi; θ0, a(Ui), Xi)
T
(
â\i(Ui)− â(Ui)

)
,

and

∆1 =
1

n2

n∑
k=1

g(Uk)
−1

n∑
i=1

{
ḟ1(yi; θ0, a(Ui), Xi)

T ×

(Iq, 0q×κ)
[
E
{
f̈(y; θ0, a(Uk), X)|U = Uk

}]−1
×
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ḟ(yi; θ0, a(Uk) + ȧ(Uk)(Ui − Uk), Xi)Kh(Ui − Uk)
}
×

(1 + oP (1))

=
1

n

n∑
k=1

tr
[
(Iq, 0q×κ)

[
E
{
f̈(y; θ0, a(Uk), X)|U = Uk

}]−1
×

E
{
ḟ(y; θ0, a(Uk), X)ḟ(y; θ0, a(Uk), X)T|U = Uk

}
(Iq, 0q×κ)

T
]
×

(1 + oP (1))

= −q(1 + oP (1)),

∆2 = (∆2,1 + ∆2,2)(1 + oP (1)),

where

∆2,1 =
Kh1(0)

n

n∑
i=1

{
1

g(Ui)
ḟ2(yi; θ0, a(Ui), Xi)

T

[
E
{
f̈22(y; θ0, a(Ui), X)|U = Ui

}]−1
ḟ2(yi; θ0, a(Ui), Xi)

}
= −Kh1(0)κ+OP (n−1/2h−11 ),

and

∆2,2 = − 1

n

n∑
i=1

{
1

g(Ui)
ḟ2(yi; θ0, a(Ui), Xi)

T

[
E
{
f̈22(y; θ0, a(Ui), X)|U = Ui

}]−1
∑
k 6=i

f̈12(yk; θ0, a(Ui) + ȧ(Ui)(Uk − Ui), Xk)(θ̂
\i
− θ̂)Kh1(Uk − Ui)


= − 1

n3

n∑
l=1

n∑
i=1

n∑
k 6=i

{
Kh(Ui − Ul)Kh1(Uk − Ui)

g(Ui)g(Ul)
ḟ2(yi; θ0, a(Ui), Xi)

T

[
E
{
f̈22(y; θ0, a(Ui), X)|U = Ui

}]−1
f̈12(yk; θ0, a(Ui) + ȧ(Ui)(Uk − Ui), Xk)
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(Iq, 0q×κ)
[
E
{
f̈(y; θ0, a(Ul), X)|U = Ul

}]−1
ḟ(yi; θ0, a(Ul) + ȧ(Ul)(Ui − Ul), Xi)

}
(1 + oP (1)) = oP (1).

So,

∆ = q + h−11 K(0)κ+ oP (1)

which leads to

CV = AIC− κ(K(0)− ν0)h−11 + oP (1).
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8 Model selection

8.1 Thresholding K method

8.1.1 Introduction

As we mentioned in Chapter 3, some components of β(·) in model

(1.3) may be constant in reality, and it is important to identify such

constant components.To identify the constant components is basically

a model selection problem. In this chapter, we introduce several model

selection methods. First, we present the Thresholding K method.

We treat all components β1(·), · · · , βp(·) as functional and estimate

them in the simulations.After we get the estimator of each component

β̂1(·), · · · , β̂p(·), we calculate the discrepancy of the estimator from its

average. For example, say the pth component, we define its discrepancy

as kp, kp =
∑i=n
i=1 (β̂p(Si) − β̂p), here β̂p =

∑i=n
i=1 β̂p(Si)/n . We then

sort these p discrepancies in descending order, suppose the order is

k(1) < k(2) < k(3) · · · < k(p).We use this value range as the starting and

ending point of the thresholding method. Here, we use the minimum

discrepancy k(1) as the initial thresholding value K1. We increase the

starting thresholding value until it reaches the maximum discrepancy.

We calculate the Mean Integrated Squared of Error each time under

different thresholding values. The ones with the minimum MISE values

are our optimal thresholding K0. The details are illustrated below

8.1.2 Identify the constant component

(1) We take the initial K1 as thresholding to identify the constant

component. For the jth simulation, we generate data set j, and es-
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timate all the components as functional. Then we calculate the dis-

crepancy of each component. If the discrepancy of the component is

smaller than K1, we treat this component as constant. Suppose, only

β1(·) has a discrepancy smaller than K1, we treat β1(·) as a constant

component denoted as β1. We then conduct the estimation procedure

again,but this time, we treat β1(·) as constant. Suppose the obtained

estimated β is : β = (β̂1, β̂2(·), · · · , β̂p(·)). We calculate the ISE for

the jth simulation, which is defined as:

ISEj =
1

n

n∑
i=1

[(α̂− α)
∑
k 6=i

wikyk +XT
i (β̂(si)− β(si))]

2 (8.1)

(2)We continue the procedure for n times. We calculate ISE value

every time. Then, we could get the mean integrated squared of error

for the thresholding value K1, we denote the value as MISE(K1) =∑j=n
j=1 ISEj/n.

(3)As we said before, we use the minimum discrepancy as the ini-

tial K1, which may not be the optimal one.Now, we will increase the

thresholding value until it reaches the maximum discrepancy k(p). In

our simulations, we increase 30% each time.This is due to the com-

putational limitations. For different thresholding value Kj, we could

calculate the MISE(Kj) for each K. The one with minimum MISE

value is the optimal threshold . From the simulation results, we notice

that the optimal threshold is not unique, in fact, it is an interval.

(4) After we find the optimal thresholding, we conduct the simula-

tion n times again.We use the ratios to evaluate the performance of this
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method. We calculate three ratios :The ratio of picking right model,

denote as R ; The ratio of picking wrong model, treating constant as

function; The ratio of picking wrong model, treating function as con-

stant. From the simulation, we find the results are quite satisfied.The

thresholding method works very well.

8.1.3 Difficulty of the thresholding method

The key idea of the thresholding method is to select an optimal thresh-

olding to identify the constant component. The natural question is how

to select the optimal threshold. In the previous chapter, we defined

the thresholding values with minimum mean integrated squared error

as the optimal threshold K0. In simulations,we calculate the MISEs

based on what was known of the true model. So the key point of finding

the optimal thresholding value is the same as finding the MISEs(K)

of each thresholding value K. If we find a good estimator of MISE(K),

denoted as M̂(K),then finding the optimal thresholding K would not

be problematic. Unfortunately, we have not thus far come up with

a method for finding the optimal thresholding value K0. Finding an

accurate estimator of MISEs(K) will be complicated work, and we

intend to pursue such research in future work.

8.1.4 The aim of thresholding method

The main aim of the thresholding method is a benchmark. We compare

the results we get from the thresholding method and from AIC/BIC in

simulations.We mentioned the challenge of applying the thresholding

method in real data analysis. It is very difficult to find the optimal
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thresholding value K0 in real data analysis.We could see the thresh-

olding method do works very well in simulations. If the results we get

from AIC/BIC can compare with the results using the thresholding

method,we could consider AIC/BIC as a powerful tool for identifying

the constant component. AIC/BIC can be easily applied to real data

analysis, and the results are comparable. We applied the AIC method

to the Boston House Price data set. The results are in the chapter

covering real data analysis.

8.2 Curvature-to-Average ratio based method to

identify the constant component

In the previous chapter, we derived the thresholding K method to help

us identify the constant components. In the thresholding method, we

calculate the discrepancy of each component, and then sort them in

the increasing order. We use the smallest discrepancy as our initial

thresholding value. In the simulation studies, we could tell the thresh-

olding method do provide us fancy results. However, we came across

the scale problem. For example, the component βi(st) is constant at

every location st(ut, vt). However, the value of βi is large. The compo-

nent βj(st) is functional. But the value of βi(·) is extremely small at

every location st(ut, vt) .Under this situation, the discrepancy of the

constant component is much larger than the functional component.We

will easily identify the wrong component as constant due to the scale

problem, which occurs in real data sets. Accordingly, we come up with

a new method called Curvature-to-Average (CTAR) based method.

This method remove the effects of the scales. The basic ideas are sim-
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ilar to thresholding method, and the details are listed below.

(1) For each location Si(ui, vi), we find the estimator of the unknown

function βj(Si), denoted as β̂j(Si). We treat each component as func-

tional component at the beginning.

(2) We calculate the average value of each component, we denote it as

β̄j = 1
n

∑n
i=1 β̂j(Si)

(3) We then calculate the noise s =

√
n∑
i=1

(
β̂j(Si)− β̄j

)2
/n− 1 .We can

get the ratio for the jth component βj, i.e, rj = s/β̄j.

(4) We use the ratio rj as a thresholding. We set an thresholding λ.

If the ratio rj is smaller than the thresholding λ, then we treat the

component βj as constant. Otherwise, the component is functional.

We repeat the procedure for n times, then we can calculate the ratio

of picking the right model.

The CTAR method well deal with the scale problem , and simula-

tion results showed it works very well. However, we are still faced with

the question of how to find the optimal λ.The difficulty of finding the

optimal λ is similar to the difficulty of finding the optimal threshold

K0 as we mentioned previously.

8.3 Identification of constant components based

on AIC and BIC

8.3.1 Criterion for identification

In this chapter, we appeal the AIC or BIC to identify the constant

components. The AIC for (1.3), in which some components of β(·)
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may be constant, is defined as follows

AIC = n log(σ̂)− log(|Â|) +
1

2σ̂2
(ÂY − m̂)T(ÂY − m̂) +K, (8.2)

where Â and m̂ are A and m with the unknown parameters and func-

tions being replaced by their estimators, K is the number of unknown

parameters in model (1.3). The BIC can be defined in a similar way.

Because there are unknown functions in model (1.3), the first hur-

dle in the calculation of AIC of model (1.3) is to find how many un-

known constants an unknown bivariate function amounts to. In the

following, based on the residual sum of squares of standard bivariate

nonparametric regression model, we propose an ad hoc way to solve

this problem.

Suppose we have the following standard bivariate nonparametric

regression model,

ηi = g(si) + ei, i = 1, · · · , n, (8.3)

where E(ei) = 0 and var(ei) = σ2
e . The residual sum of squares of (8.3)

is

RSS =
n∑
i=1

{ηi − ĝ(si)}2

where ĝ(·) is the local linear estimator of g(·). On the other hand,

E(RSS/σ2
e) = n− the number of unknown parameters in the regression function

So, the number T of unknown constants the unknown function g(·)
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amounts to can be reasonably viewed as

T = n− E(RSS/σ2
e) = n− σ−2e E

[
n∑
i=1

{ηi − ĝ(si)}2
]
.

To make T more convenient to use, we derive the asymptotic form of

T . Let

Si =


1 sT1 − sTi
...

...

1 sTn − sTi

 , η =


η1
...

ηn

 , e =


e1
...

en

 ,

and

Wi = diag (Kh(u1 − ui)Kh(v1 − vi), · · · , Kh(un − ui)Kh(vn − vi)) ,

we have

ĝ(si) = (1, 0, 0)
(
ST
iWiSi

)−1
ST
iWiη

By the standard argument in Fan and Gijbels (1996) and the Lemma

1 in Fan and Zhang (1999), we have

T =
(
2K2(0)− ν20

)
h−2 + o(h−2)

when h = o(n−1/6) and nh2 −→∞, where ν0 =
∫
K2(t)dt.

We conclude that an unknown bivariate function amounts to (2K2(0)− ν20)h−2

unknown constants. Based on this conclusion, if the number of con-

stant components in β(·) is q, theK in (8.2) will be q+(p−q) (2K2(0)− ν20)h−2.

To identify the constant components in β(·) in (1.3) is basically a

model selection problem. Theoretically speaking, we go for the model
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with the smallest AIC (or BIC). However, in practice, it is almost com-

putationally impossible to compute the AICs for all possible models.

We have to use some algorithm to reduce the computational burden. In

the following, we are going to introduce two algorithms for the model

selection.

8.3.2 Computational algorithms

In this chapter, we use AIC as an example to demonstrate the intro-

duced algorithms. The model in which β(·) has its i1th, i2th, · · ·, and

ikth components being constant is denoted by {i1, · · · , ik}.

Backward elimination

The first algorithm we introduce is the backward elimination. Details

are as follows.

(1) We start with the full model, {1, · · · , p}, and compute its AIC

by (8.2). Denote the full model by Mp, its AIC by AICp.

(2) For any integer k, suppose the current model isMk = {i1, · · · , ik}
with AIC given by AICk. Take Mk−1 to be the model with the

largest maximum of log likelihood function among the models

{i1, · · · , ij−1, ij+1, · · · , ik}, j = 1, · · · , k. If AICk < AICk−1,

the chosen model is Mk, and the model selection is ended; oth-

erwise, continue to compute Ml and AICl until either AICl <

AICl−1 or l = 0.
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Curvature-to-Average ratio (CTAR) based method

A more aggressive way to reduce the computational burden involved in

the model selection procedure is based on the ratio of the curvature of

the estimated function to its average. Explicitly, we first treat all βj(·),
j = 1, · · · , p, as functional. For each j, j = 1, · · · , p, we compute the

curvature-to-average ratio (CTAR) Rj of the estimated function β̂j(·):

Rj =
1

β̄2
j

n∑
i=1

{
β̂j(si)− β̄j

}2
, β̄j =

1

n

n∑
i=1

β̂j(si), j = 1, · · · , p.

We sort Rj, j = 1, · · · , p, in an increasing order, say Ri1 ≤ · · · ≤ Rip ,

then compute the AICs for the models {i1, · · · , ik} from k = 0 to the

turning point k0 where the AIC starts to increase. The chosen model

is {i1, · · · , ik0}.
The algorithm based on the CTAR is much faster than the back-

ward elimination based algorithm, however, from simulations, we find

it less accurate although it still works reasonably well.
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9 Performance of the Estimation Proce-

dure

9.1 Different sample sizes

In this chapter, we will use simulated examples to examine the perfor-

mances of the proposed estimation. In all simulated examples and the

real data analysis later on, we set wij to be

wij = exp(−‖si − sj‖)/
∑
k 6=i

exp(−‖si − sk‖), ‖si‖ = (sTi si)
1/2. (8.1)

We first examine the performance of the proposed estimation pro-

cedure.

Example 2. In model (1.3), we set p = 2, σ2 = 1,

α = 0.5, β1(s) = sin(‖s‖2π), β2(s) = cos(‖s‖2π),

and independently generate Xi from N(02, I2), si from U [0, 1]2, εi

from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated through

model (1.3). We are going to apply the proposed estimation method

based on the generated (si, X
T
i , yi), i = 1, · · · , n, to estimate β1(·),

β2(·), α and σ2, and examine the accuracy of the proposed estimation

procedure.

We use the Epanechnikov kernel K(t) = 0.75(1 − t2)+ as the ker-

nel function in the estimation procedure. The bandwidth used in the

estimation is 0.45.

We use mean squared error (MSE) to assess the accuracy of an
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estimator of an unknown constant parameter, mean integrated squared

error (MISE) to assess the accuracy of an estimator of an unknown

function.

For each given sample size n, we do 200 simulations. We compute

the MSEs of the estimators of the unknown constants and the MISEs

of the estimators of the unknown functions for sample sizes n = 400,

n = 500 and n = 600. The obtained results are presented in Table 3.

Table 3 shows the proposed estimation procedure works very well. For

a more visible illustration of the performance of the proposed estima-

tion procedure, we set sample size n = 500 and do 200 simulations.

We single out the one with median performance among the 200 sim-

ulations. The estimate of α coming from this simulation is 0.42, the

estimate of σ2 is 0.95. The estimated unknown functions from this sim-

ulation are presented in Figures 2 and 3, and are superimposed with

the true functions. All these show our estimation procedure works very

well.

Figure 2: β1(s) = sin(‖s‖2π)
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Figure 3: β2(s) = cos(‖s‖2π)

Table 3: Example2 :The MISEs and MSEs for different sample
sizes

β̂1(·) β̂2(·) α̂ σ̂2

n=400 0.0512 0.0480 0.00788 0.0099
n=500 0.0432 0.0382 0.00429 0.0070
n=600 0.0380 0.0345 0.00325 0.0046

The column corresponding to the estimator of an unknown function
is the MISEs of the estimator for n = 400, n = 500 and n = 600,
corresponding to the estimator of an unknown constant is the MSEs of
the estimator.

Example 3. In model (1.3), we set p = 2, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2), β2(s) = 4− (‖s‖2),

and independently generate Xi from N(02, I2), si from U [0, 1]2, εi
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from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated through

model (1.3). We are going to estimate β1(·), β2(·), α and σ2, and

examine the accuracy of the proposed estimation procedure.

We still use the Epanechnikov kernel K(t) = 0.75(1 − t2)+ as the

kernel function in the estimation procedure. The bandwidth used in

the estimation is 0.31.

We use mean squared error (MSE) to assess the accuracy of an

estimator of an unknown constant parameter, mean integrated squared

error (MISE) to assess the accuracy of an estimator of an unknown

function.

For each given sample size n, we do 200 simulations. We compute

the MSEs of the estimators of the unknown constants and the MISEs

of the estimators of the unknown functions for sample size n = 500,

n = 600 and n = 700. The obtained results are presented in Table 4.

Table 4 shows the proposed estimation procedure works very well. For

a more visible illustration of the performance of the proposed estima-

tion procedure, we set sample size n = 500 and do 200 simulations.

We single out the one with median performance among the 200 sim-

ulations. The estimate of α coming from this simulation is 0.47, the

estimate of σ2 is 0.98. The estimated unknown functions from this

simulation are presented in Figures 4 and 5, and are superimposed

with the true functions. Both figures show our estimation procedure

works very well.
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Figure 4: β1(s) = 2− (‖s‖2)

Figure 5: β2(s) = 4− (‖s‖2)

9.2 Different bandwidths

A natural question here is how wide the local neighborhood should

be in estimation procedure. Likewise, it is essential to know how to

select the bandwidth so that our approximation will be valid. There is

a trade-off between bias and variance during estimation. If we select
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Table 4: Example 3 :The MISEs and MSEs for different sample
sizes

β̂1(·) β̂2(·) α̂ σ̂2

n=500 0.03159 0.03032 0.06892 0.0079
n=600 0.02432 0.02382 0.03791 0.0042
n=700 0.01862 0.01845 0.01255 0.0026

The column corresponding to the estimator of an unknown function
is the MISEs of the estimator for n = 500, n = 600 and n = 700,
corresponding to the estimator of an unknown constant is the MSEs of
the estimator.

the bandwidth too large, the variance will be small, however, we would

pay a price on bias part. If the bandwidth is too small, the variance

of the estimated local parameters will be large.In this chapter, we

estimate beta function based on different bandwidths, and examine

how bandwidths affect our estimation. Due to the computational limit,

we only estimate the beta functions when sample size n equals 500.

Example 4. We set p = 2, σ2 = 1,

α = 0.5, β1(s) = sin(‖s‖2π), β2(s) = cos(‖s‖2π),

and independently generate Xi from N(02, I2), si from U [0, 1]2, and

εi from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated

through model (1.3). We are going to apply the proposed estimation

method based on the generated (si, X
T
i , yi), i = 1, · · · , n, to estimate

β1(·), β2(·), and examine the accuracy of the proposed estimation pro-

104



cedure.We use the Epanechnikov kernel K(t) = 0.75(1 − t2)+ as the

kernel function in the estimation procedure. We estimated the un-

known functions beta based on different bandwidths. The obtained

results are presented in Table 5. We can tell the minimum MISE for

unknown functions are both achieved at the bandwidth h = 0.4.

We use MISE to assess the accuracy of an estimator of an unknown

function.

For each given bandwidth h, we do 200 simulations. We compute

the MISEs of the estimators of the unknown functions for sample size

n = 500. The ways in which the selection of bandwidth affected the

estimation accuracy, are illustrated are in Figures 6 and 7. Here, β̂(·) =

β̂1(·) + β̂2(·)

Figure 6: MISE for β1(s) = sin(‖s‖2π) based on different bandwidth

Example 5. In model (1.3), we set p = 2, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2), β2(s) = 4− (‖s‖2),
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Table 5: Example 4: The MISEs for β(·) with different band-
widths

β̂1(·) β̂2(·) β̂(·)
0.35 0.04667 0.04279 0.08946
0.4 0.04194 0.03785 0.07980
0.45 0.04329 0.03813 0.08142
0.5 0.04838 0.04106 0.08942
0.55 0.05574 0.04544 0.10119
0.6 0.06432 0.05063 0.11496
0.65 0.07321 0.05602 0.12923
0.7 0.08134 0.06160 0.14294
0.75 0.08848 0.06774 0.15622
0.8 0.09462 0.07497 0.16960
0.85 0.10005 0.08365 0.18371

The column corresponding to the estimator of an unknown function is
the MISEs of the estimator for n = 500 based on different bandwidths

Figure 7: MISE for β2(s) = cos(‖s‖2π) based on different bandwidth
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and independently generate Xi from N(02, I2), si from U [0, 1]2, and

εi from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated

through model (1.3). We estimated the unknown functions beta based

on different bandwidths. The results are presented in Table 6.

We use MISE to assess the accuracy of an estimator of an unknown

function.

For each given bandwidth h, we do 200 simulations. We compute

the MISEs of the estimators of the unknown functions for sample size

n = 500. To illustrate how the selection of bandwidth affects the

estimation accuracy, we graph the results in Figures 8 and 9.

Figure 8: MISE for β1(s) = 2− (‖s‖2) based on different bandwidth

9.3 Performance of estimation procedure when

alpha is known

In the previous chapter, we use simulated examples to examine the

performances of the proposed estimation, the unknown functions and
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Table 6: Example 5: The MISEs for β(·) with different band-
widths

β̂1(·) β̂2(·) β̂(·)
0.25 0.03905 0.03713 0.07618
0.35 0.02396 0.02347 0.04743
0.45 0.01935 0.01879 0.03814
0.55 0.01638 0.01613 0.03251
0.65 0.01502 0.01437 0.02939
0.75 0.01413 0.01367 0.02780
0.85 0.01396 0.01302 0.02698
0.9 0.01356 0.01289 0.02645
0.95 0.01332 0.01276 0.02608
1.0 0.01395 0.01289 0.02684
1.05 0.01417 0.01325 0.02742
1.10 0.01463 0.01396 0.02859
1.15 0.01502 0.01412 0.02914
1.20 0.01535 0.01457 0.02992

The column corresponding to the estimator of an unknown function is
the MISEs of the estimator for n = 500 based on different bandwidth

the unknown parameters. Our estimation procedure is profile likeli-

hood. We pretend that the beta function is known, and we get the

estimator of α using grid method and the estimator of σ2 . Then, we

find the estimator of the unknown functions. A very obvious question

would be how the estimation procedure works when we know the value

of α. In this chapter, we estimate the unknown functions under the

condition when the value of α is known.
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Figure 9: MISE for β2(s) = 4− (‖s‖2) based on different bandwidth

9.3.1 Different sample sizes

Example 6. In model (1.3), we set p = 1, σ2 = 1,

α = 0.5, β1(s) = sin(‖s‖2π),

and independently generate Xi from N(0, I), si from U [0, 1]2, and εi

from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated through

model (1.3). We are going to apply the proposed estimation method

based on the generated (si, X
T
i , yi), i = 1, · · · , n, to estimate β1(·),

and examine the accuracy of the proposed estimation procedure.The

bandwidth used in the estimation is 0.25.

We use MISE to assess the accuracy of an estimator of an unknown

function.

For each given sample size n, we do 200 simulations. We compute

MISEs of the estimators of the unknown functions for sample sizes
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n = 400, n = 500 and n = 600. The results are presented in Table 7,

which shows the proposed estimation procedure still works very well.

Table 7: Example 6: The MISEs for β(·) with α known

β̂1(·)
n=400 0.05319
n=500 0.04179
n=600 0.03578

The column corresponding to the estimator of an unknown function is
the MISEs of the estimators for n = 400, n = 500 and n = 600.

Example 7. In model (1.3), we set p = 2, σ2 = 1,

α = 0.5, β1(s) = sin(‖s‖2π), β2(s) = cos(‖s‖2π),

and independently generate Xi from N(02, I2), si from U [0, 1]2, and εi

from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated through

model (1.3). We apply the proposed estimation method based on the

generated (si, X
T
i , yi), i = 1, · · · , n, to estimate β1(·), β2(·), and

examine the accuracy of the proposed estimation procedure.

Other settings are the same. The bandwidth used in the estimation

is 0.45. We use MISE to assess the accuracy of an estimator of an

unknown function.

For each given sample size n, we do 200 simulations. We compute

MISEs of the estimators of the unknown functions for sample sizes

n = 400, n = 500 and n = 600. The results are presented in Table 8,

which are quite satisfying.

110



Table 8: Example 7: The MISEs for β(·) with α known

β̂1(·) β̂2(·)
n=400 0.05086 0.04746
n=500 0.04311 0.03802
n=600 0.03792 0.03419

The column corresponding to the estimator of an unknown function is
the MISEs of the estimators for n = 400, n = 500 and n = 600.

Example 8. In model (1.3), we set p = 1, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2),

and independently generate Xi from N(0, I), si from U [0, 1]2, εi from

N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated through model

(1.3). We estimate β1(·), and examine the accuracy of the proposed

estimation procedure. The bandwidth used in the estimation is 0.15.

We use MISE to assess the accuracy of an estimator of an unknown

function. The results are presented in Table 9.

Table 9: Example 8: The MISEs for β(·) with α known

β̂1(·)
n=500 0.03019
n=600 0.02379
n=700 0.01773

The column corresponding to the estimator of an unknown function is
the MISEs of the estimators for n = 500, n = 600 and n = 700
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Example 9. We set p = 2, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2), β2(s) = 4− (‖s‖2),

and independently generate Xi from N(02, I2), si from U [0, 1]2, εi

from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated through

model (1.3). We estimate β1(·), β2(·), and examine the accuracy of

the proposed estimation procedure.We use the Epanechnikov kernel

K(t) = 0.75(1−t2)+ as the kernel function in the estimation procedure,

and estimate the unknown functions beta based bandwidth h = 0.31.

MISE is used to assess the accuracy of an estimator of an unknown

function.

For each given sample size n, we do 200 simulations. We compute

the MISEs of the estimators of the unknown functions for sample size

n = 500, n = 600 and n = 700. The results are presented in Table 10.

Table 10: Example 9: The MISEs for β(·) with α known

β̂1(·) β̂2(·)
n=500 0.03059 0.02973
n=600 0.02395 0.02278
n=700 0.01793 0.01824

The column corresponding to the estimator of an unknown function is
the MISEs of the estimators for n = 500, n = 600 and n = 700.
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9.3.2 Different bandwidths

In this chapter, we estimate the unknown functions based on different

bandwidth. To compare the results from the previous sections, we

estimate beta using the same bandwidths we used before. Due to the

same reasons given before, namely the computational limitations, we

only calculate the MISEs when the sample size n equals 500.

Example 10. We set p = 2, σ2 = 1,

α = 0.5, β1(s) = sin(‖s‖2π), β2(s) = cos(‖s‖2π),

and independently generate Xi from N(02, I2), si from U [0, 1]2, εi

from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated through

model (1.3). We apply the proposed estimation method based on the

generated (si, X
T
i , yi), i = 1, · · · , n, to estimate β1(·), β2(·), and

examine the accuracy of the proposed estimation procedure. We es-

timated the unknown functions beta based on different bandwidths.

The results are presented in Table 11.

We use MISE to assess the accuracy of an estimator of an unknown

function.

For each given bandwidth h, we do 200 simulations. We compute

the MISEs of the estimators of the unknown functions for sample size

n = 500. The ways in which the selection of bandwidths affects the

estimation accuracy, are presented in Figures 10 and 11.
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Table 11: Example 10: The MISEs for β(·) with α known under
different bandwidths

β̂1(·) β̂2(·) β̂(·)
0.35 0.04664 0.04278 0.08943
0.4 0.04192 0.03765 0.07958
0.45 0.04311 0.03802 0.08114
0.5 0.04792 0.04104 0.08897
0.55 0.05573 0.04544 0.10116
0.6 0.06432 0.05062 0.11493
0.65 0.07320 0.05601 0.12922
0.7 0.08133 0.06159 0.14292
0.75 0.08842 0.06772 0.15614
0.8 0.09462 0.07466 0.16927
0.85 0.10004 0.08362 0.18365

The column corresponding to the estimator of an unknown function is
the MISEs of the estimator for n = 500 based on different bandwidths

Figure 10: MISE for β1(s) = sin(‖s‖2π) based on different bandwidths
with α known
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Figure 11: MISE for β2(s) = cos(‖s‖2π) based on different bandwidths
with α known

Example 11.We set p = 2, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2), β2(s) = 4− (‖s‖2),

and independently generate Xi from N(02, I2), si from U [0, 1]2, εi

from N(0, σ2), i = 1, · · · , n. yi, i = 1, · · · , n, are generated through

model (1.3). We are going to apply the proposed estimation method

based on the generated (si, X
T
i , yi), i = 1, · · · , n, to estimate β1(·),

β2(·), and examine the accuracy of the proposed estimation proce-

dure.We use the Epanechnikov kernel K(t) = 0.75(1− t2)+ as the ker-

nel function in the estimation procedure. We estimated the unknown

functions beta based on different bandwidth. The obtained results are

presented in Table 12.

We use the mean integrated squared error (MISE) to assess the

accuracy of an estimator of an unknown function.For each given band-
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width h, we do 200 simulations. We compute the MISEs of the esti-

mators of the unknown functions for sample size n = 500. To have

a more visible idea, we draw graphs about how the selection of band-

width affected the estimation accuracy. They are presented in Figures

12 and 13.

Table 12: Example 11: The MISEs for β(·) with α known under
different bandwidths

β̂1(·) β̂2(·) β̂(·)
0.25 0.03814 0.03623 0.07438
0.35 0.02243 0.02232 0.04475
0.45 0.01723 0.01715 0.03439
0.55 0.01522 0.01502 0.03025
0.65 0.01444 0.01397 0.02843
0.75 0.01386 0.01325 0.02712
0.85 0.01337 0.01271 0.02608
0.90 0.01324 0.01257 0.02582
0.95 0.01326 0.01258 0.02585
1.00 0.01338 0.01275 0.02613
1.05 0.01356 0.01301 0.02657
1.10 0.01379 0.01332 0.02711
1.15 0.01404 0.01366 0.02771
1.20 0.01432 0.01426 0.02858

The column corresponding to the estimator of an unknown function is
the MISEs of the estimator for n = 500 based on different bandwidths

9.4 Oracle property of the estimation

In the previous chapter, we estimate the unknown functions under the

condition that either α is known or α is unknown, and find that the
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Figure 12: MISE for β1(s) = 2− (‖s‖2) based on different bandwidths
with α known

Figure 13: MISE for β2(s) = 4− (‖s‖2) based on different bandwidths
with α known

mean integrated squared errors for the unknown functions are very

similar for the two situations. Clearly, we get more accurate results

when α is known. However, there is not a big difference. All of the

above results shows that our estimator has an Oracle property.This
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is understandable from asymptotic point of view, because the conver-

gence rate of an estimator of unknown constant is of order n−1/2. It

is much faster than the convergence rate of an estimator of unknown

function which is of order (
√
nh)−1. So the estimation for the unknown

functions under the condition ,whether α is unknown or known,would

not differ from each other.

Example 12. In model (1.3), we set p = 2, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2), β2(s) = 4− (‖s‖2),

We have estimated the unknown function β1(·) and β2(·) under con-

dition α are unknown and known respectively under different band-

widths. We used the MISE to measure the accuracy of the estimation

procedure.In Table 13, we compare the MISE for the unknown func-

tion β1(·) under the condition α is known and unknown. We also use

the graphs to obtain an invisible view. Figure 14 compares the MISEs

under different bandwidths with α unknown and α known. The two

lines are clearly close together, which proves that our estimator has an

oracle property.

In Table 14, we compare the MISE for the unknown function

β2(s) = 4− (‖s‖2) under the conditions α is known and α is unknown.

Figure 15 and compares the MISEs under different bandwidths with α

unknown and α known.

Example 13. In model (1.3), we set p = 2, σ2 = 1,

α = 0.5, β1(s) = sin(‖s‖2π), β2(s) = cos(‖s‖2π),
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Table 13: Example 12: The MISEs of β̂1(·) with α known and
unknown using different bandwidths

α known α unknown
0.25 0.03814 0.03905
0.25 0.02243 0.02396
0.25 0.01723 0.01935
0.25 0.01522 0.01638
0.65 0.01444 0.01502
0.75 0.01386 0.01413
0.85 0.01337 0.01396
0.9 0.01324 0.01356
0.95 0.01326 0.01332
1.0 0.01338 0.01395
1.05 0.01356 0.01417
1.10 0.01379 0.01463
1.15 0.01404 0.01502
1.20 0.01432 0.01535

The column corresponding to the estimator of an unknown function
β1(s) = 2− (‖s‖2) is the MISEs of the estimator for n = 500 based on
different bandwidths with α known and unknown.

In Table 15, we also compare the MISEs for the unknown function

β1(·) = sin(‖s‖2π) when α is known and unknown. Figures 16 and

17 provide an invisible view, comparing the MISEs under different

bandwidths with α unknown and α known.

In Table 16, we compare the MISEs for the unknown function

β2(s) = cos(‖s‖2π) when α is known and unknown. Figures 18 and 19

compare the MISEs under different bandwidths with α unknown and

known.
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Figure 14: MISE for β1(s) = 2− (‖s‖2) based on different bandwidths

The two lines are the MISEs of the estimator for n = 500 based on
different bandwidth with α known and unknown.The solid line is the
MISEs with α unknown. The dashed line is the MISEs with α known.
The MISEs with α known are smaller than the MISEs with α unknown.
However, the two lines are very close.

All of the above examples proves our estimators of the unknown

functions have an Oracle property.

9.5 Performance of estimation procedure for al-

pha

In the previous chapter, we estimate the unknown functions under

the condition that the unknown parameter is known. In this chapter,

we examine the performance of estimation procedure for the unknown

parameter α when beta functions are known.The convergence rate of an

estimator of unknown constant is of order n−1/2. It is much faster than

120



Table 14: Example 12: The MISEs of β̂2(·) with α known and
unknown using different bandwidths

α known α unknown
0.25 0.03623 0.03713
0.35 0.02232 0.02347
0.45 0.01715 0.01879
0.55 0.01502 0.01613
0.65 0.01397 0.01437
0.75 0.01325 0.01367
0.85 0.01271 0.01302
0.9 0.01257 0.01289
0.95 0.01258 0.01276
1.0 0.01275 0.01289
1.05 0.01301 0.01325
1.10 0.01332 0.01396
1.15 0.01366 0.01412
1.20 0.01426 0.01457

The column corresponding to the estimator of an unknown function
β2(s) = 4− (‖s‖2) is the MISEs of the estimator for n = 500 based on
different bandwidths with α known and unknown

the convergence rate of an estimator of unknown function which is of

order (
√
nh)−1. There is no significant difference between the situation

that α is known and α is unknown in estimating. The situation totally

changes when we estimate the unknown parameter under the condition

that beta functions are known. The accuracy of estimation greatly

increases. It is easy to understand, because α converges much faster

than the unknown functions.We would use two examples to prove this.
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Figure 15: MISE for β2(s) = 4− (‖s‖2) based on different bandwidth

The two lines are the MISEs of the estimator for n = 500 based on
different bandwidth with α known and unknown.The solid line is the
MISEs with α unknown. The dashed line is the MISEs with α known.

Example 14. We set p = 2, σ2 = 1,

α = 0.5, β1(s) = sin(‖s‖2π), β2(s) = cos(‖s‖2π),

We use mean squared error (MSE) to assess the accuracy of an esti-

mator of an unknown constant parameter.For each given sample size

n, we do 200 simulations. We compute the MSEs of the estimators

of the unknown constants for sample sizes n = 400, n = 500 and

n = 600. The obtained results are presented in Table 17, which shows

the proposed estimation procedure works very well. The accuracy of

estimating the unknown parameter α increases significantly.
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Table 15: Example 13: The MISEs of β̂1(·) with α known and
unknown using different bandwidths

α known α unknown
0.35 0.04664 0.04667
0.4 0.04192 0.04194
0.45 0.04311 0.04329
0.5 0.04792 0.04838
0.55 0.05573 0.05574
0.6 0.06432 0.06432
0.65 0.07320 0.07321
0.7 0.08133 0.08134
0.75 0.08842 0.08848
0.8 0.09462 0.09642
0.85 0.10004 0.10005

The column corresponding to the estimator of an unknown function
beta1(·) = sin(‖s‖2π) is the MISEs of the estimator for n = 500 based
on different bandwidths with α known and unknown

Example 15. In model (1.3), we set p = 2, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2), β2(s) = 4− (‖s‖2),

The obtained results are presented in Table 18. Table 18 shows the

proposed estimation procedure works very well. The accuracy of esti-

mating the unknown parameter α does increase a lot.
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Figure 16: MISE for β1(·) = sin(‖s‖2π) based on different bandwidths

The two lines are the MISEs of the estimator for n = 500 based on
different bandwidths with α known and unknown.

10 Performance of the Model Selection

Procedure

In this chapter, we use simulated examples to examine the perfor-

mances of the model selection methods previously derived . We use

the ratio of picking the right model to measure the performance of our

model selection methods, and find that all the model selection methods

perform quite well in simulation studies.

10.1 Thresholding K simulation

Example 16. In model (1.3), we set p = 3, β1(·) = sin(‖s‖2π)

and β2(·) = cos(‖s‖2π), β3(·) = β3 = 1. We generate Xi, si, εi,
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Figure 17: MISE for β1(·) = sin(‖s‖2π) based on different bandwidths

We zoom Figure 17 in the bandwidth range [0.35, 0.55] to have a better
view.The solid line are the MISEs of the estimator for n = 500 based on
different bandwidth with α unknown . The dashed line are the MISEs of
the estimator for n = 500 based on different bandwidths with α known

yi i = 1, · · · , n, in the same way as before, except that Xi is from

N(03, I3). Based on the generated data, we are going to apply the pro-

posed thresholding K method to select the correct model, and examine

the performances of the proposed method in identifying the constant

components in model (1.3).

We still use the Epanechnikov kernel as the kernel function in the

model selection.The bandwidth we used for estimation is h = 0.45.

We set the sample size to equal 500.We first calculate the discrepancy

of each component p.We repeat the procedure 200 times, and we take

their average as our starting point. Table 19 represents the discrepancy

of each component.
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Table 16: Example 13:The MISEs of β̂2(·) with α known and
unknown using different bandwidths

α known α unknown
0.35 0.04278 0.04279
0.4 0.03765 0.03785
0.45 0.03802 0.03813
0.5 0.04104 0.04106
0.55 0.04544 0.04544
0.6 0.05062 0.05063
0.65 0.05601 0.05602
0.7 0.06159 0.06160
0.75 0.06772 0.06774
0.8 0.07466 0.07497
0.85 0.08362 0.08365

The column corresponding to the estimator of an unknown function
β2(s) = cos(‖s‖2π) is the MISEs of the estimator for n = 500 based on
different bandwidth with α known and unknown

Table 17: Example14 : The MSEs for α with β(·) known

α̂
n=400 0.004075
n=500 0.001156
n=600 0.000789

The column corresponding to the estimator of an unknown parameter
is the MSEs of the estimators for n = 400, n = 500 and n = 600.

We use 10.8760 as the initial value K1. Then,we increase our

thresholding value Ki 30% each time until it reaches our maximum
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Figure 18: MISE for β2(s) = cos(‖s‖2π) based on different bandwidth

The two lines are the MISEs of the estimator for n = 500 based on
different bandwidth with α known and unknown. They are vey close to
each other

Table 18: Example15 :The MSEs for α with β(·) known

α̂
n=500 0.001045
n=600 0.000566
n=700 0.000218

The column corresponding to the estimator of an unknown parameter
is the MSEs of the estimators for n = 500, n = 600 and n = 700.

value 197.3109. We repeat the simulation 200 times and then calcu-

late the MISE for this 12 thresholding value. Table 20 represents the

MISE values .To illustrate, Figure 20 shows the MISE values for each

thresholding K.We could find the thresholding K values with minimum
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Figure 19: MISE for β2(s) = cos(‖s‖2π) based on different bandwidth

We zoom Firgure 19 in the bandwidth range [0.35, 0.55] to have a better
view.The solid line are the MISEs of the estimator for n = 500 based on
different bandwidth with α unknown . The dashed line are the MISEs
of the estimator for n = 500 based on different bandwidth with α known

Table 19: Example 16: The Discrepancies for different compo-
nent

Discrepency
β1(·) 133.9557
β2(·) 197.3109
β3(·) 10.8760

The column corresponding to discrepancy of each component.The sam-
ple size n = 500

MISE, which would be our optimal thresholding value K0.

We also find the ratios for each thresholding Ki. We calculate three
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Table 20: Example 16 :The MISEs of different Thresholding
values

thresholding value MISEs
K=10.876 0.1162
K=14.1388 0.1102
K=18.3804 0.1032
K=23.8945 0.1008
K=31.0629 0.0991
K=40.3818 0.0984
K=52.4963 0.0975
K=68.2452 0.0975
K=88.7188 0.1057
K=115.2245 0.1624
K=149.9348 0.2777
K=194.9153 0.5457

The column corresponding to MISEs of each thresholding value Ki.The
sample size n = 500. We repeat the simulation 200 times

ratios:The ratio of picking the right model, Right model; the ratio of

treating constant component as function, constant as function; the

ratio of treating function as constant, function as constant .Table 21

presents the results.

The thresholding value K = 52.4963 and K = 68.2452 achieved

the minimum MISEs and the ratios of picking the right model are all 1

.This would be our optimal thresholding K value range, [52.4963, 68.2452].

Previously, we ran 200 times simulation. Theoretically, we should con-

duct 1000 simulations for at least 2 thresholding values within the

optimal range. Due to the computational limitations, we only conduct

1000 simulations for thresholding value K = 52.4963. We calculate
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Figure 20: MISEs based on different thresholding value

The sample size is n = 500. In the interval [52.4963, 68.2452] , we
get the minimum MISEs. This would be our optimal thresholding K
range.

the ratios of picking the model, and the result is listed in Table 22.

Example 17. In model (1.3), we set p = 3, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2), β2(s) = 4− (‖s‖2), β3(·) = β3 = 1

We generate Xi, si, εi, yi i = 1, · · · , n, in the same way as before,

except that Xi is from N(03, I3).

We use the Epanechnikov kernel as the kernel function in the model

selection, and the bandwidth used to estimate is h = 0.31. The sample

size is set at 500.We first calculate the discrepancy of each component

p. We repeat the procedure 200 times, and take their average as our

starting point. Table 23 represents the discrepancy of each component.
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Table 21: Example 16 :The Ratios of picking the model under
different thresholding K values

thresholding value Right model constant as function function as constant
K=10.876 0.43 0.57 0
K=14.1388 0.67 0.23 0
K=18.3804 0.89 0.11 0
K=23.8945 0.95 0.05 0
K=31.0629 0.98 0.02 0
K=40.3818 0.99 0.01 0
K=52.4963 1 0 0
K=68.2452 1 0 0
K=88.7188 0.99 0 0.01
K=115.2245 0.77 0 0.23
K=149.9348 0.42 0 0.58
K=194.9153 0.26 0 0.74

The ratios of picking model of each thresholding value Ki.The sample
size n = 500. We repeat the simulation 200 times

Table 22: Example 16: The Ratios of Optimal Thresholding
Value K

thresholding value Right model constant as function function as constant
K=52.4963 0.996 0.003 0.001

The ratios of picking model of optimal thresholding value K0 =
52.4963.The sample size n = 500. We repeat the simulation 1000 times

We use 2.8838 as the initial value K1. Then we increase our thresh-
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Table 23: Example 17: The Discrepancies for different compo-
nents

Discrepency
β1(·) 88.5951
β2(·) 88.4794
β3(·) 2.8838

The column corresponding to discrepancy of each component.The sam-
ple size n = 500

olding value Ki 30% each time until it reaches our maximum value

88.5951. We repeat the simulation 200 times and then calculate the

MISE for the following 14 thresholding values. Table 24 represents

these MISEs values . Figure 20 shows the MISE values for each thresh-

olding K.We find the thresholding K values with minimum MISE. And

this would be our optimal Thresholding value K0.

We also find the ratios for each thresholding Ki. We calculate three

ratios. The ratio of picking the right model, Right model; the ratio

of treating constant component as function, constant as function; the

ratio of treating function as constant, function as constant. Table 25

represents the results.

The thresholding values K = 13.9195,K = 18.0954 ,and K =

23.5240 all achieved the minimum MISEs and the ratios of picking

the right model are all 1 .This would be our optimal thresholding K

value range, [13.9195, 23.5240]. Previously, we performed 200 simula-

tions. Theoretically, we should conduct 1000 simulations for at least

2 thresholding values within the optimal range. Due to the compu-
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Table 24: Example 17 :The MISEs of different Thresholding
values

thresholding value MISEs
K=2.8838 0.036102
K=3.7489 0.036087
K=4.8736 0.035924
K=6.3367 0.034897
K=8.2364 0.034132
K=10.7073 0.033937
K=13.9195 0.033827
K=18.0954 0.033827
K=23.5240 0.033827
K=30.5812 0.035678
K=39.7556 0.037982
K=51.6823 0.043212
K=67.1871 0.059798
K=87.3431 0.078125

The column corresponding to MISEs of each thresholding value Ki.The
sample size n = 500. We repeat the simulation 200 times

tational limitation, we only conduct 1000 simulations for thresholding

value K = 18.0954. We calculate the ratios of picking the model, and

the result is listed in Table 26.

The above examples, indicate that the MISEs of detecting the con-

stant component as a functional component is approximately 10 times

larger than the MISE of detecting the functional component as a con-

stant component. As we explained , the error order of treating the

functional component as constant is O(1). In contrast, the error order

of treating constant as function is O( 1√
nh

). As a result, we should be
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Table 25: Example 17 :The Ratios of picking the model under
different thresholding K values

thresholding value Right model constant as function function as constant
K=2.8838 0.62 0.38 0
K=3.7489 0.67 0.33 0
K=4.8736 0.71 0.29 0
K=6.3367 0.74 0.26 0
K=8.2364 0.81 0.19 0
K=10.7073 0.94 0.06 0
K=13.9195 1 0 0
K=18.0954 1 0 0
K=23.5240 1 0 0
K=30.5812 0.92 0 0.08
K=39.7556 0.85 0 0.15
K=51.6823 0.77 0 0.23
K=67.1871 0.69 0 0.31
K=87.3431 0.54 0 0.46

The ratios of picking model of each thresholding value Ki.The sample
size n = 500. We repeat the simulation for 200 times

Table 26: Example 17: The Ratios of Optimal Thresholding
Value K

thresholding value Right model constant as function function as constant
K=18.0954 0.997 0.001 0.002

The ratios of picking model of optimal thresholding value K0 =
18.0954.The sample size n = 500. We repeat the simulation for 1000
times
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Figure 21: MISEs based on different thresholding value

The sample size is n = 500. In the interval [13.9195, 23.5240] , we
get the minimum MISEs. This would be our optimal thresholding K
range.

very careful when we select the Thresholding K. If the thresholding

chosen is too large, then the ratio of picking the constant as function

will increase. However, if it is too small, the ratio of picking the func-

tion as constant will increase.The second mistake is much worse than

the first, and within the optimal range, the thresholding method will

provide fantastic results for selecting models. We have not discovered

how to get the estimator of MISEs as we discussed before. We can not

deny the existence of the optimal thresholding range.Perhaps in the

future, we could construct the way of identifying the optimal thresh-

olding range.In Table 22 and Table 26, we repeat the simulation for

1000 times.The thresholding method works quite well in model selec-

tion.
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10.2 CTAR method to identify constant compo-

nent

In this chapter, we use the simulated example to examine the perfor-

mance of the CTAR method derived above. As previously discussed,

CTAR could deal with the scale problems well.

Example 18. In model (1.3), we set p = 3, β1(·) = sin(‖s‖2π)

and β2(·) = cos(‖s‖2π), β3(·) = β3 = 1. We generate Xi, si, εi,

yi i = 1, · · · , n, in the same way as before, except that Xi is from

N(03, I3). Based on the generated data, we apply the proposed CTAR

method to select the correct model, and examine the performances of

the proposed method in identifying the constant components in model

(1.3).The bandwidth we used for estimation is h = 0.45. We use

different λs in the CTAR. We set the sample size n = 500. For each λ

we did 200 times simulations. We also calculate the ratios of picking

right models for each λ. Table 27 illustrated the results of the CTAR,

and their performances are quite satisfying.

In Table 23, we notice that the ratio of picking the right model is

1 in the range [0.25, 0.3]. Regarding the thresholding method, we have

an optimal thresholding K range. It is the same for CTAR method,

for which we have an optimal λ range. In our example, the optimal

λ range is [0.25, 0.3]. Within this range we could detect the constant

component in our model efficiently and accurately. Previously, we

performed 200 times simulations for each λ value. Theoretically, we

should conduct 1000 times simulation for at least 2 λ values within the

optimal range. Due to the computational limitations, we only conduct

1000 simulation for λ = 0.28. We calculate the ratios of picking the

136



Table 27: Example 18: The ratios of picking model with dif-
ferent λ

thresholding value Right model constant as function function as constant
λ=0.05 0 1 0
λ=0.1 0.35 0.65 0
λ=0.15 0.53 0.47 0
λ=0.2 0.89 0.11 0
λ=0.25 1 0 0
λ=0.3 1 0 0
λ=0.35 0.92 0 0.08

The ratios of picking model of each value λ.The sample size n = 500.
We repeat the simulation 200 times.

right model, and the result is listed in Table 28.

Table 28: Example 18: The ratios of picking model using the
optimal λ

thresholding value Right model constant as function function as constant
λ=0.28 0.995 0.004 0.001

The ratio of picking the model of optimal λ value λ0 = 0.28.The sample
size n = 500. We repeat the simulation 1000 times.

Example 19. We set p = 3, σ2 = 1,

α = 0.4, β1(s) = 2− (‖s‖2), β2(s) = 4− (‖s‖2), β3(·) = β3 = 1

We generate Xi, si, εi, yi i = 1, · · · , n, in the same way as before,
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except that Xi is from N(03, I3). The bandwidth used for estimation

is h = 0.31, and use different λs in the CTAR. We set the sample size

n = 500. For each λ we performed 200 times simulations. We also

calculated the ratios of picking the right models for each λ. Table 29

illustrates the results of the CTAR, from which it can be seen that the

performances are quite satisfying.

Table 29: Example 19: The ratios of picking model with dif-
ferent λ

thresholding value Right model constant as function function as constant
λ=0.05 0 1 0
λ=0.1 0.59 0.41 0
λ=0.15 0.87 0.13 0
λ=0.2 1 0 0
λ=0.25 1 0 0
λ=0.3 0.97 0 0.03
λ=0.35 0.89 0 0.11

The ratios of picking model of each value λ.The sample size n = 500.
We repeat the simulation for 200 times

In Table 29, we note that the ratio of picking the right model is 1

in the range [0.2, 0.25]. The optimal λ range is [0.2, 0.25]. Within this

range we could detect the constant component in our model efficiently

and accurately.We conduct 1000 times simulation for λ = 0.23. We

calculate the ratios of picking the right model. The result is listed

in Table 30. We could tell the CTAR do works very well in model

selection.

The basic idea of the CTAR is the same as the Thresholding K
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Table 30: Example 19: The ratios of picking model using the
optimal λ

thresholding value Right model constant as function function as constant
λ=0.23 0.996 0.002 0.002

The ratios of picking model of optimal λ value λ0 = 0.23.The sample
size n = 500. We repeat the simulation 1000 times

method, both of which works very well. Within the optimal range we

detect the constant component in our model efficiently and accurately.

However, we encounter the same problem of how to identify the optimal

λ range.

10.3 AIC and BIC method

10.3.1 Bandwidth selection in AIC/BIC based model selec-

tion

Selecting bandwidth is always an essential problem. We first select the

same bandwidth in estimating and model selection, and our results

are quite dissatisfying.AIC and BIC can be described as the trade off

between bias and variance in model construction, or loosely speaking

between the accuracy and the complexity of the model. The formulas

we used to calculate AIC and BIC in our model are

AIC = n log(σ̂)− log(|Â|) +
1

2σ̂2
(ÂY − m̂)T(ÂY − m̂) +K, (8.1)
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BIC = 2(n log(σ̂)− log(|Â|) +
1

2σ̂2
(ÂY − m̂)T(ÂY − m̂)) +K log(n),

(8.2)

We can not choose a bandwidth h, which is the optimal bandwidth

for both estimating and model selection. Thus, we use different band-

widths for these two parts. As for the Thresholding K method and

the CTAR method, there is an optimal value range. It is the same for

AIC and BIC method, which has an optimal bandwidth range within

which the ratio of picking the right model is close to 1. We illustrate

the results later.

10.3.2 Simulation results

Example 20.. In model (1.3), we set p = 3, β1(·) and β2(·) the same

as that in Example 16, β3(·) = β3 = 1. We generate Xi, si, εi, yi

i = 1, · · · , n, in the same way as that in Example 16, except that Xi

is from N(03, I3). Based on the generated data, we are going to apply

the proposed AIC or BIC to select the correct model, and examine

the performances of the proposed AIC, BIC and the two algorithms in

identifying the constant components in model (1.3).

We still use the Epanechnikov kernel as the kernel function in the

model selection, however, the bandwidth used is 0.25 for AIC and

0.35 for BIC, which is smaller than that for estimation. In general,

the bandwidth used for model selection should be smaller than that

for estimation. In fact, we have tried different bandwidths, it turned

out any bandwidth in a reasonable range such as [0.2, 0.3] for AIC,
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[0.3, 0.4] for BIC would do the job very well.

Due to the very expensive computation involved, for any given

sample size n, we only do 200 simulations, and in each simulation,

we apply either AIC or BIC coupled with either of the two proposed

algorithms to select model. For each candidate model, the ratios of

picking up this model in the 200 simulations are computed for different

cases. The results are presented in Table 31. We can see, from Table

31, the proposed BIC with Backward elimination performs best, and

the others are doing reasonably well too.

To make the case more convincing, for sample size 500, we do

1000 simulations for each method. The ratio of picking up each candi-

date model in the 1000 simulations are presented in Table 32 for each

method. It is very clear, the results in Table 32 are consistent with

that in Table 31. We conclude all of the proposed model selection

methods work well, and the proposed BIC with Backward elimination

performs best.

10.4 Optimal bandwidth range

At the beginning of the previous subsection, we discussed an optimal

bandwidth range for AIC and BIC model selection methods.Due to

the computational cost, we only conduct 200 simulations for bandwidth

from h = 0.15 to h = 0.45 for sample size n = 500. We use the

backward elimination method. We calculated the ratio of picking the

right model. Table 33 shows the results. We could find that the ratio

of picking the right model in the bandwidth range [0.2, 0.3] for AIC

and [0.3, 0.4] for BIC are close to 1. These would be our optimal
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Table 31: Ratio of Picking Up Each Candidate Model using
AIC/BIC

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} {}
n=400 0 0 0.91 0 0.04 0.02 0.03 0
n=500 0 0 0.98 0 0.02 0 0 0
n=600 0 0 1 0 0 0 0 0
n=400 0 0 0.9 0 0.07 0 0.03 0
n=500 0 0 0.94 0 0.06 0 0 0
n=600 0 0 0.96 0 0.03 0 0.01 0
n=400 0 0 0.92 0 0.05 0 0.03 0
n=500 0 0 0.98 0 0.01 0 0.01 0
n=600 0 0 1 0 0 0 0 0
n=400 0 0 0.89 0 0.09 0 0.02 0
n=500 0 0 0.95 0 0.05 0 0 0
n=600 0 0 0.97 0 0.03 0 0 0

The ratios of picking up each candidate model in 200 simulations for
different sample sizes. {i1, · · · , ik} stands for the model in which
β(·) has its i1th, · · ·, ikth components being constant, and the column
corresponding to which is the ratios of picking up this model among
200 simulations. Row 2 to row 4 are the ratios obtained based on AIC
and Backward elimination when sample size n = 400, n = 500 and
n = 600. Row 5 to row 7 are the ratios obtained based on AIC and the
CTAR based algorithm, Row 8 to row 10 are the ratios obtained based
on BIC and Backward elimination, and Row 11 to row 13 are the ratios
obtained based on BIC and the CTAR based algorithm.

bandwidth ranges. Within them, we could get a satisfying result in

model selection.
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Table 32: Ratio of Picking Up Each Candidate Model with
simulation time of 1000s

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} {}
0 0 0.989 0 0.01 0 0.001 0
0 0 0.959 0 0.033 0 0.008 0
0 0 0.992 0 0.005 0 0.003 0
0 0 0.963 0 0.031 0 0.006 0

The ratios of picking up each candidate model in 1000 simulations for
sample size n = 500. {i1, · · · , ik} stands for the model in which
β(·) has its i1th, · · ·, ikth components being constant, and the column
corresponding to which is the ratios of picking up this model among 1000
simulations. Row 2 are ratios obtained based on AIC and Backward
elimination when sample size n = 500 . Row 3 are the ratios obtained
based on AIC and the CTAR based algorithm, Row 4 are the ratios
obtained based on BIC and Backward elimination, and Row 5 are the
ratios obtained based on BIC and the CTAR based algorithm.

11 Real Data Analysis

11.1 Introduction

Boston is the capital of the Commonwealth of Massachusetts. It is also

the largest and one of the oldest cities in the United States. Boston

has a population of around 600 thousand people. The city covers

125 square km. Greater Boston is the fifth-largest area in the United

States. Many world-famous universities and research institutes are

located in the city and surrounding areas, which makes Boston an in-

ternational center for education and researching. The universities and

research institutes in this area have an notable effect on the region’s

economy.The region’s economic base includes research, finance, man-
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Table 33: Ratio of Picking Up Each Candidate Model using a
different bandwidth

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} {}
h=0.15 0 0 0.79 0 0.04 0.12 0.05 0
h=0.2 0 0 0.92 0 0 0.07 0.01 0
h=0.25 0 0 0.98 0 0.02 0 0 0
h=0.3 0 0 1 0 0 0 0 0
h=0.35 0 0 0.91 0 0.02 0 0.01 0.06
h=0.4 0 0 0.84 0 0.01 0 0 0.15
h=0.45 0 0 0.72 0 0 0 0 0.28
h=0.15 0 0 0.75 0 0.03 0.18 0.04 0
h=0.2 0 0 0.87 0 0 0.11 0.02 0
h=0.25 0 0 0.93 0 0.07 0 0 0
h=0.3 0 0 1 0 0 0 0 0
h=0.35 0 0 0.98 0 0.01 0 0.01 0
h=0.4 0 0 0.94 0 0 0 0 0.06
h=0.45 0 0 0.83 0 0 0 0 0.17

The ratios of picking up each candidate model in 200 simulations for
sample size n=500. {i1, · · · , ik} stands for the model in which β(·)
has its i1th, · · ·, ikth components being constant, and the column cor-
responding to which is the ratios of picking up this model among 200
simulations. Row 2 to row 8 are the ratios obtained based on AIC and
Backward elimination when sample size n = 500. Row 9 to row 15 are
the ratios obtained based on BIC and Backward elimination.

ufacturing, etc. and Boston has also received the highest amount of

annual funding compared with all other cities in the United States.

As a result, Boston is a supreme financial center, that ranks number

twelve in the top twenty Global Financial Centers. All of these posi-

tive factors make Boston a city with the highest costs of living in the
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United States, i.e. 3rd in the United States and 36th globally.

Figure 22: Map of Boston

11.2 Brief description of the data set

The aim of this chapter is to apply the model we developed in the pre-

vious chapters to a real data set, specifically the Boston House Price

data. More precisely, we apply the proposed model (1.3) together with

the associated model selection and estimation method in our analy-

sis.The data set consists of 5 covariates and 1 response variable.The

sample size n equals 506. The locations of the houses consists of longi-

tudes and latitudes,converted into U(0,1).We first introduce the data

and analyze the data set.

Response variable MEDV: Median value of owner-occupied homes

in $1000’s
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Covariate1 CRIM: per capita crime rate by town

Covariate2 RM: average number of rooms per dwelling

Covariate 3 RAD: index of accessibility to radial highways

Covariate 4 TAX: full-value property-tax rate per $10,000 dollar

Covariate 5 LSTAT: The Percent of the lower status of the popu-

lation

11.2.1 Descriptions of covariates

As in the previous chapter, we know there are 5 covariates and 1 re-

sponse variable in this data set. We calculate the mean and standard

deviation of each covariate, and the order of the data set is the same.We

could have some rough idea of our data set. Table 34 describes our

statistics. Figure 23 are the histograms of the 5 covariates.

Table 34: Descriptive Statistics

Mean Std.Deviation N
MEDV 22.5328 9.1971 506
CRIM 3.6135 8.6015 506
RM 6.284634 0.7026 506

RAD 9.55 8.707 506
TAX 408.24 168.537 506

LSTAT 12.6530 7.1410 506

We use the statistical software SAS-”Statistical Analysis System” to
get the above results. The sample size is 506.
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Figure 23: The Histograms of the 5 Covariates.The left one on the
upper panel is the histogram of CRIM, the right one on the upper
panel is the histogram of RM. The left one in the lower panel is the
histogram of RAD, the middle on in the lower panel is the histogram
of TAX, the right one in the lower panel is the histogram of LSTAT

11.3 Parametric way of analyzing data

In the previous chapter, we analyze the data set to have some basic

ideas. In this chapter, we use the parametric way to analyze our data

set, that is the Linear Regression Model. We ignore the spatial interac-

tion term, and consider the effect on the covariate to be constant.Then

our model would be as follows:

yi = XT
i β + εi, i = 1, · · · , n, (8.1)

where β = (β0, · · · , βp),
In the linear regression model, we only need to estimate the co-

efficients β = (β0, · · · , βp). And we use AIC backward elimination
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method to help us select the significant variables. Table 35 and Table

36 provide the results of AIC Backward elimination and estimation,

which indicate that the 5 covariates are all significant.However, the

linear regression model is not realistic nor is it adequate to analyze

data. Spatial interaction is a real-world phenomenon that should be

considered in the model. As a result, in the next chapter, we apply

the new model we proposed to fit the data set.

Table 35: Model Summary

Model R R square Adjusted R square Std. Error of the estimate
1 .809 .655 .651 .5.4310

a. Predictors:(Constant), LSTAT,RM,CRIM,RAD,TAX
b. Dependent Variable: MEDV

Table 36: Coefficients

Model B Std.Error Standardized Coefficients Beta t Sig
Constant 1.120 3.328 .336 .737

CRIM -.087 .037 -.082 -2.368 .018
RM 5.090 .442 .389 11.509 .000

RAD .173 .071 .164 2.447 .015
TAX -.013 .004 -.230 -3.463 .001

LSTAT -.537 .050 -.417 -10.733 .000

a. Predictors:(Constant), LSTAT,RM,CRIM,RAD,TAX
b. Dependent Variable: MEDV
c.Model: Linear Regression Model
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11.4 Model selection and estimation

In this chapter, we are going to apply the proposed model (1.3) together

with the proposed model selection and estimation method to analyse

the Boston house price data. Specifically, we are going to explore how

some factors such as CRIM, RM,RAD, TAX, and LSTAT affect the

median value of owner-occupied homes in $1000’s (denoted by MEDV),

and whether the effects of these factors vary over location.

We use model (1.3) to fit the data with yi, xi1, xi2, xi3, xi4 and xi5

being MEDV, CRIM, RM, RAD, TAX and LSTAT, respectively, and

Xi = (xi1, · · · , xi5)T. The kernel function used in either estimation

procedure or model selection is taken to be the Epanechnikov kernel.

We first try to find which factors have location varying effects on

the house price, and which factors do not. This is equivalent to iden-

tifying the constant coefficients in the model used to fit the data. We

apply the proposed BIC coupled with Backward elimination to do the

model selection, and the bandwidth used is chosen to be 17% of the

range of the locations. The obtained result shows the coefficients of

xi3 and xi5 are constant, which means all factors, except RAD and

LSTAT, have location varying effects on the house price.

We now apply the chosen model

yi = α
∑
j 6=i

wijyj + xi1β1(si) + xi2β2(si) + xi3β3 + xi4β4(si) + xi5β5 + εi,

(8.2)

i = 1, · · · , n, where wij is defined by (8.1), to fit the data. The pro-

posed estimation procedure is used to estimate the unknown functions

and constants, and the bandwidth used in the estimation procedure is
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taken to be 60% of the range of the locations. The estimates of the

unknown constants are presented in Table 37, and the estimates of the

unknown functions are presented in Fig 23.

As β3 and β5 can be interpreted as the impacts of RAD and LSTAT,

respectively, Table 37 shows the index of accessibility to radial high-

ways has positive impact on house price and the percentage of the lower

status of the population has negative impact on house price. Appar-

ently, this makes sense. Table 35 also shows that the estimate of α is

0.221, which is an unignorable effect, and indicates the house prices in

a neighbourhood do affect each other. This is a true phenomenon in

real world.

Table 37: Estimates of The Unknown Constant Coefficients

α̂ β̂3 β̂5
0.2210 0.3589 -0.4473

From Fig 24, we can see the impact β1(·) of the per capita crime rate

by town on house price is negative and is clearly varying over location.

The impact β2(·) of the average number of rooms per dwelling on house

price is positive and is also varying over location. It is interesting to

see that the impact of the average number of rooms per dwelling is

lower in the area where the impact of crime rate is high than the area

where the impact of crime rate is low. This implies that the crime rate

is a dominate factor on the house price in the area where the impact

of crime rate is high. Fig 24 also shows the association between the

house price and the full-value property-tax rate is varying over location,

and it is generally positive, however, there are some areas where this
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Figure 24: The 3D plots of β̂1(s), β̂2(s) and β̂4(s). The left one in the
upper panel is β̂1(s), right one in the upper panel is β̂2(s), and the one
in the lower panel is β̂4(s).

association is negative. We can also see that the impact of the average

number of rooms per dwelling is lower in the area, where the association

between the house price and the full-value property-tax rate is strong,

than the area where the association is weak.
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12 Conclusions and Future Work

In Chapter 2 of this thesis, we introduce the framework of the lo-

cal polynomial modelling and the multivariate version of the method.

In Chapter 3, we propose the estimation procedure for the designed

model, in which we use kernel smoothing and local polynomial fitting.

However, we never discuss how to select the bandwidth. The choice of

the bandwidth plays an important role,and its selection is one of the

most important tasks in estimation. This may require further work.

In Chapters 4, 5 and 6, we provide the asymptotic properties of the

proposed estimators followed by the proofs of the theorems and lem-

mas. As we mentioned above, due to the structure of our model, it is

not straight-forward to apply the cross-validation method. In Chap-

ter 7, we discuss the connection between these two important model

selection methods. In Chapter 8, we provided several model selection

methods.

We also designed the hypothesis testing for our model. Due to

the computational limitations, we did not have enough time to do

simulations and apply this method to real data.We will illustrate our

idea here.

Bootstrapping method is a nonparametric approach to statistical

inference that substitutes computation for more traditional distribu-

tional assumptions and asymptotic results. In our model, we use the

bootstrapping method to help us detect whether the component of

β(·) = (β1(·), · · · , βp(·))T, is a function, constant or zero. Our aim is

to construct a hypothesis testing to test whether a specific covariate is

significant. If it is, whether its coefficient is functional or constant.
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Procedure

We construct the hypothesis testing as follows. Without lose of gen-

erality, we take the first component of β(·) , i.e. β1(·) as an example.

We want to test whether β1(·) is constant. If β1(·) is constant, then we

do another hypothesis test to determine whether β1(·) is zero. Our test

statistic is T1 =
K∑
j=1
| β̂1(sj)− β̄1 | 1

K
. Our Hypothesis testing is reject

H0 when T1 > C ,otherwise we accept the H0, where P (T1 > C) = α.

To find C, we appeal Bootstrapping method as follows. We use the es-

timation method introduced in Chapter 3 to get the estimators of β(·),
where β̂(·) = (β̂1, β̂2(·), · · · , β̂p(·))T and the estimator of α̂. In boot-

strapping re-sampling, we fixed β̂(·) and α̂ . We calculate the residuals

of the response variable yi, which is ε̂i = yi− ŷi, i = 1, 2, ..., n. We con-

duct the bootstrap re-sampling for the residuals { ε̂1, · · · , ε̂n} r times

to get the bootstrap samples ε̂∗k = (ε̂∗1k, · · · , ε̂∗nk), k = 1, 2, · · · , r. Ac-

cording to the results presented by Efron and Tibshirani (1993,chap.19

), which suggest that bootstrap confidence intervals on 1000 bootstrap

samples generally provides accurate results, and using 2,000 bootstrap

replications should be very safe. ε̂∗b are the re-sampled residuals for the

bth bootstrap sample.

After we get the bth bootstrap sample for ε̂ , where ε̂∗b = (ε̂∗1b, · · · , ε̂∗nb)T,

We could get the bth bootstrap sample for the response variable y∗b ,

where y∗b = (y∗1b, · · · , y∗nb)T The procedure is as follows:

y∗ib = α̂
∑
j 6=i

wijy
∗
jb+X

T
i β̂(si)+ε̂

∗
ib, i = 1, · · · , n, β̂(si) = (β̂1, β̂2(si), · · · , β̂p(·))

(8.1)
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We could see it in the matrix form:

(I − α̂W )Y ∗ = XT β̂(·) + ε∗ (8.2)

After we get the bth bootstrap y∗b , we could use the same estima-

tion procedures we used before to get the bth bootstrap sample of β̂(·),
where β̂

∗
b(·) = (β̂∗b1, · · · , β̂∗bn(·))T. We calculate T ∗1 =

N∑
j=1
| β̂∗b1(sj)−β̄1

∗ |
1
N

.We repeat the bootstrapping procedure r times, i.e. T ∗1 , T ∗2 , · · · , T ∗r
.It is straight-forward to find the p-value for the hypothesis testing

based on the bootstrap sampling. Then we could get the results of

whether β1(·) is a significant covariate or not.If we accept the null hy-

pothesis, then we continue. We then test whether β1 = 0. Hypothesis

testing is good tool to help us detect the parametric/nonparametric

components. Unfortunately, due to the huge computational cost, we

do not have enough time to finish it.

The method of re-sample the residuals:

We randomly draw. Each bootstrap residual sample selects n val-

ues with the replacement among the n values of the original residual

sample,

ε̂∗ib = random− draw(ε̂1, · · · , ε̂n)

There is still a great deal of interesting research left. Three years is

too short a time to investigate all of them. However, We will continue

our work along these lines in the future.
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