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Abstract 

The function of the integral membrane protein stomatin is as yet poorly understood. 

Stomatin is deficient from the erythrocyte membrane of patients suffering with Over- 

hydrated Hereditary Stomatocytosis (OHSt). Patient erythrocytes have altered 

morphology and are known as stomatocytes. It is believed that stomatin is mis- 

trafficked in the developing stomatocyte. These patients suffer grossly abnormal 

cation fluxes in the stomatocyte membrane which causes increased osmotic fragility 

of the cell and results in haemolytic anaemia. This study set out to characterise 

further stomatin and to investigate its role in the cell. The membranes and lipid rafts 

of stomatocytes were found to have reduced actin levels as compared to 

erythrocytes, suggesting that stomatin may function as a structural protein linking 

the cytoskeleton to the membrane. Overexpression of stomatin in nucleated cells 

caused enhanced actin association with cell membranes and lipid rafts, further 

confirming the findings from stomatocytes. Calcium-induced vesiculation was found 

to be significantly enhanced from the stomatocyte as compared to the erythrocyte, 

with defective partitioning of the flotillin proteins into the vesicles. This suggests that 

stomatin may function as a negative regulator in this vesiculation, possibly due to its 

interaction with actin and that the flotillins may substitute for stomatin in this process 

within the stomatocyte. 

Mutating the principle cysteine residue for palmitoylation within stomatin caused the 

protein to show less affinity for the membrane and lipid rafts but an increased affinity 

for the nucleus. This suggests that palmitoylation of stomatin affects the affinity of 

stomatin for the membrane and that this modification may be involved in regulating 

the shuttling of stomatin between the plasma membrane and the nucleus. 



Prokaryotic stomatin exists in an operon with a serine protease, suggesting a 

functional link between the two. Using a reporter gene construct approach the 

potential for mammalian stomatin to be proteolytically processed was investigated. 

Stomatin was found to be proteolytically processed in the membrane by a serine 

protease with the subsequent release of a C-terminal fragment. 
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Chapter 1: Introduction 

1.1 The erythrocyte 

Erythrocytes serve as oxygen and carbon dioxide carriers within the blood; each 

litre of blood contains approximately 5x 1012 erythrocytes. They are devoid of many 

cellular organelles, such as the nucleus, in order to maximise the volume available 

to the oxygen-transporting haemoglobin. Rather than being spherical, the 

erythrocyte is biconcave; this increases the surface area over which gas exchange 

can take place. Erythrocytes circulate in the blood for approximately 120 days 

before being phagocytosed and digested by macrophages in the liver or spleen. 

Low oxygen levels in the blood or a shortage of erythrocytes stimulates the kidneys 

to secrete erythropoietin. In humans, this stimulates erythropoiesis in the bone 

marrow; this causes differentiation of hematopoietic stem cells into mature 

erythrocytes (Richmond et al. 2005). 

1.1.1 Organisation of the erythrocyte membrane 

The membrane of the erythrocyte has to provide sufficient mechanical stability to 

ensure survival of the cell but also has to provide a degree of flexibility which allows 

deformation during transit through the narrow capillary network. The lipid bilayer is 

supported by a series of cytoskeletal proteins to allow this. Early work to identify the 

major proteins of the erythrocyte membrane used Sodium Dodecyl Sulphate 

Polyacrylamide Gel Electrophoresis (SDS-PAGE). Proteins were identified 

according to their electrophoretic mobility on the gels and given names such as 

`band 3' to describe their relative position on the gel (Fairbanks et al. 1971). 
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Spectrin is thought to play a central role in maintaining cell shape whilst permitting 

the large reversible deformations required of the erythrocyte (figure 1.1). The two 

isoforms of spectrin, a and ß, form heterodimers which are loosely intertwined. 

These heterodimers are linked head-to-head to form tetramers. The junctions 

between heterodimers are sites where several other proteins, as well as spectrin, 

can bind; this allows anchorage to the membrane via interaction with 

transmembrane proteins (Bennett 1989). This meshwork of spectrin covers the 

entire cytoplasmic surface of the erythrocyte membrane and is anchored to the 

membrane at two types of site. The first involves the transmembrane anion 

exchanger, band 3. Band 3 is responsible for the exchange of chloride and 

bicarbonate across the phospholipid bilayer (Fu et al. 2004). The protein ankyrin 

binds to spectrin and to the cytoplasmic domain of band 3. It is thought that protein 

4.2, also bound here, stabilises this interaction. The second site at which the 

spectrin meshwork is anchored to the membrane is through interaction with protein 

4.1 which in turn binds to glycophorin. Spectrin is also able to associate with actin, 

this is stabilised by protein 4.1 and adducin. Bundles of filamentous actin 

crosslinked by protein 4.9 associate with tropomyosin and tropomodulin (Tse et al. 

1999). Many of the major cytoskeletal proteins are phosphorylated; this reduces the 

binding affinity of the components and weakens the rigidity of the membrane. How 

phosphorylation regulates the mechanical stability of the membrane is unknown 

(Manno et al. 2005). Mutations in the genes that encode major erythrocyte 

membrane-associated proteins can cause complete or partial protein deficiencies 

within the membrane. Alternatively, some mutations can allow the protein to locate 

to the membrane but show an incorrect function (Low et al. 2001). This can 

compromise the shape of the erythrocyte, its stability and function. Frequently the 

mutations will hinder the association with binding-partners in the membrane. In a 
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secondary manner these binding partners are then diminished in the erythrocyte 

membrane (McMullin 1999). For example, hereditary spherocytosis is a haemolytic 

anaemia in which the erythrocyte shows increased osmotic fragility and spherocytic 

morphology. Mutations in ankyrin, band 3, band 4.2 and spectrin are all known to 

cause this condition (Delaunay 2002). 

The lipid distribution across the bilayer is under tight control; aminophospholipids 

(e. g. phosphatidylserine and phosphatidylethanolamine) are maintained on the inner 

surface of the bilayer whereas the cholinephospholipids are predominantly located 

in the outer leaflet. Scramblase, translocase and flippase proteins ensure 

transbilayer asymmetry (Zwaal et al. 1997). This lipid maintenance provides the 

erythrocyte with mechanical stability through phosphatidylserine-cytoskeletal protein 

interactions and ensures cell survival; phosphatidylserine on the outer surface 

marks a cell for destruction by macrophages (Manno et al. 2002). 
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Figure 1.1 Organisation of the erythrocyte membrane skeleton 

(A) Electron microscopy of the erythrocyte membrane skeleton. (B) Junctions 

where spectrin is anchored to the membrane via band 3 and glycophorin. (C) The 

spectrin-actin junction. Figure taken from (Bennett et al. 2001). 
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1.2 Stomatin 

The membrane protein stomatin was originally identified due to its absence from the 

erythrocyte membrane in patients suffering Over-hydrated Hereditary 

Stomatocytosis (OHSt). The erythrocytes of OHSt patients were observed to have 

altered morphology and adopt a mouth-like shape rather than the traditional disc- 

like shape and were thus called stomatocytes. Stoma, being the Greek for mouth, 

gave the name to the protein and the condition. Due to its relative electrophoretic 

mobility on SDS-PAGE stomatin is also known as band 7.2b (Lande et al. 1982). 

Although widely expressed in animals, plants and microorganisms, and in many 

tissues, the function of stomatin is as yet unclear (Stewart et al. 1992). 

1.2.1 Characteristics of stomatin 

Purification of band 7.2b revealed an integral membrane phosphoprotein of 32kDa 

(Wang et a/. 1991). In situ proteolytic fragmentation of the protein revealed an 

intracellular domain larger than 12 kDa (Hiebl-Dirschmied et al. 1991 a). Cloning of 

the cDNA encoding stomatin showed that the protein contained a stretch of 29 

hydrophobic residues, amino acids 26-54 inclusive. The hydrophobic stretch is 

preceded by a highly charged 24 residue long N-terminus and followed by the 

relatively large C-terminus accounting for the remaining 234 residues and the 

previously identified 12 kDa intracellular domain (Hiebl-Dirschmied et al. 1991b; 

Stewart et al. 1992). The N-terminus of stomatin was initially considered to be 

exoplasmic forming a bitopic membrane protein. However, the identification of a 

phosphorylation site at Ser-9 proved that the N-terminus also faced the cytoplasm, 

resulting in an entirely cytofacial monotopic membrane conformation (figure 1.2). 

This formation of a protein in the membrane is known as a hairpin loop (Salzer et al. 
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1993). Stomatin is palmitoylated at cysteine 29 (Cys-29) and cysteine 86 (Cys-86). 

Cys-29 forms the major palmitoylation site and, due to its positioning relative to the 

transmembrane domain, is suggested to enhance the affinity of the protein for the 

membrane (Snyers et al. 1999b). In the human amniotic cell line UAC, stomatin is 

present in membrane-protruding folds and extensions at high concentrations where 

it co-localises with actin microfilaments even after disruption of the filaments with 

cytochalasin D. This prompted suggestions that stomatin functions as a structural 

protein which anchors the actin cytoskeleton to the membrane (Snyers et al. 1997). 

Stomatin is able to form homo-oligomers which comprise of between 9 and 12 

subunits; truncation mutants suggest the C-terminus is critical for this association. 

As many other oligomeric proteins are associated with cellular roles in 

morphogenesis, it was suggested that stomatin may function similarly (Snyers et al. 

1998). 

Stomatin shows similar trafficking to glycosylphosphatidylinositol (GPI)-anchored 

proteins in polarised epithelial cells, co-localising to the apical membrane (Snyers et 

al. 1999). Whilst in the Golgi complex GPI-anchored proteins become associated 

with sphingolipid and cholesterol-enriched lipid rafts, this is thought to cause apical 

targeting of the proteins (Simons et al. 1997). Lipid rafts are resistant to non-ionic 

detergents at cold temperatures; this allows their isolation from the rest of the 

plasma membrane. Stomatin too can be isolated in detergent resistant complexes 

of the plasma membrane, suggesting the protein resides within lipid rafts (Salzer et 

al. 2001). Caveolae form a well characterised subset of lipid rafts, so-called due to 

the high concentration of the structural protein caveolin. They are implicated in 

endocytosis and cell signalling (Hooper 1999). Stomatin does not co-localise with 

caveolin and therefore functions in a separate lipid microdomain perhaps providing 
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a critical structural element required for formation and integrity of this stomatin- 

specific microdomain (Snyers et al. 1999a). Stomatin does share some structural 

similarities with caveolin; both contain multiple sites of palmitoylation, both 

oligomerise and both assume a hairpin loop in the lipid bilayer. This again 

prompted suggestions of a structural role for stomatin (Snyers et al. 1999b). As well 

as being located in the plasma membrane, stomatin has also been found in the 

nucleus (Fricke et al. 2005), mitochondria (Argent et al. 2004), endosomes (Snyers 

et al. 1999a) and lipid bodies (Umlauf et al. 2004). The role of stomatin in the 

nucleus and mitochondria has never been investigated. Lipid bodies are implicated 

in the storage and turnover of lipids, protecting the cell membrane from lipid 

overload (van Meer 2001). It is as yet unknown what role stomatin has in the lipid 

bodies; lipid organisation and cargo selection are amongst the possibilities (Umlauf 

et al. 2004). Two chaperones of stomatin have been isolated from human 

erythrocyte cytosol, ECP-51 and ECP-54. They contain ATP-binding sites, interact 

with each other and are found in both the cytosol and nucleus (Salzer et al. 1999). 
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1.2.2 Stomatin and the movement of ions across the membrane 

Stomatin is deficient in the erythrocyte membranes from patients suffering Over- 

hydrated Hereditary Stomatocytosis (OHSt) (discussed in detail below). The 

patient's erythrocytes suffer increased intracellular cation concentration due to an as 

yet uncharacterised leak in the membrane. It is unclear if the deficiency in stomatin 

is the direct cause of the cation leak but this has prompted speculation that stomatin 

may have an ion channel regulatory role (Lande et al. 1982). Although this role for 

stomatin has never been proven, other studies have linked stomatin with ion 

channels, particularly the epithelial sodium channel (ENaC). Stomatin and subunits 

of ENaC have been found expressed in the same dorsal root ganglion of rats; this is 

consistent with a role for stomatin in mechanotransduction (Fricke et al. 2000). The 

stomatin homologue MEC-2 in the nematode Caenorhabditis elegans (C. elegans) 

interacts with and regulates the ion channel degenerin, the mammalian equivalent 

of which is ENaC. This has been linked to mechanotransduction (Goodman et al. 

2002). As the activation of ENaC requires the channel activating protease xCAP-1, 

it has been suggested that stomatin may function to regulate this activity (Vallet et 

al. 2002; Green et al. 2004). 

Patients suffering from Liddle's syndrome have a congenitally leaky ENaC. In this 

disease the domain associated with Nedd-4 ubiquitination protein turnover is 

destroyed by mutation, causing increased numbers of the channel and elevated 

mean open probability (Abriel et al. 1999; Stewart et al. 1999). Na+ and K+ transport 

in the patient's erythrocytes is accelerated suggesting there may be a few copies of 

the protein functioning in the erythrocyte under normal conditions (Gardner et al. 

1971). However, ENaC has never been found in the erythrocyte and treatment to 

inhibit the channel fails to correct the leak seen in OHSt cells (Stewart et al. 1992). 
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Stomatin is expressed in mammalian sensory neurons (Mannsfeldt et al. 1999). 

Here stomatin is known to bind and alter the activity of acid-sensing ion channels 

(ASICs). These Na+ channels are members of the ENaC family expressed in the 

central and peripheral nervous systems of mammals and other vertebrates, where 

they are thought to function as transducers of sensory stimuli. It is unclear if this is 

a direct association, i. e. stomatin forms a subunit of the channel, or indirect 

association facilitated by the presence of stomatin in lipid rafts (Price et al. 2004). 

Stomatin has been shown to exhibit an affinity for the GLUT-1 glucose transporter 

and is the first known protein to exert a regulatory effect on this transporter (Zhang 

et al. 1999). Overexpression of stomatin depresses the transporter's activity. 

These data imply a possible link between stomatin and glucose transport across the 

cell membrane (Zhang et al. 2001). 

1.2.3 Stomatin and proteolysis 

Protein-protein BLAST searching of prokaryotic genomes identified 23 organisms 

with stomatin homologues (p-stomatin). In every genome found to encode p- 

stomatin, the gene encoding `stomatin operon partner protein' (STOPP) was also 

found. In 19 of these genomes stopp was found adjacent to p-stomatin where they 

are thought to share the same operon (Green et al. 2004). Genes found in operons 

often code for components involved in the same multimolecular process (Lawrence 

et al. 1996). Prokaryotic STOPP is a membrane-bound serine protease. As p- 

stomatin shares an operon with STOPP, it is thought that stomatin may act as either 

a chaperone to the enzyme, a regulator to the enzyme, or as a substrate to the 

enzyme (Green et al. 2004). Further studies on one of these genomes, Pyrococcus 

horikoshii (P. horikoshii), suggested that stomatin forms the substrate to the 
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membrane-bound serine protease. The stomatin homologue (PH 1511) is cleaved 

by the protease homologue (PH1510) which is hypothesised to cause the opening 

of an ion channel (figure 1.3) (Yokoyama et al. 2005). 
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Figure 1.3 Schematic showing proteolysis of stomatin resulting in ion 

channel opening 

In Pyrococcus horikoshii the stomatin homologue PH1511 is cleaved by a 

membrane-bound serine protease, and it is hypothesised that this cleavage results 

in the opening of an ion channel (Yokoyama et a/. 2005). The C-terminal domain of 

stomatin contains a proposed serine protease cleavage site in a region rich in 

hydrophobic residues. Interaction of this region with the membrane is proposed to 

block ion channel function. Upon cleavage within the domain a C-terminal fragment 

is released from the parent protein and allows the opening of an ion channel. 
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1.2.4 Stomatin and disease 

As previously mentioned, stomatin is deficient in the erythrocyte membrane of 

patients suffering OHSt (Lande et al. 1982). This condition has been found to be 

the most severe form of a group of dominantly inherited anaemias known as the 

hereditary stomatocytoses (discussed in detail below). In these diseases the 

erythrocyte membrane is `leaky' to cations and as a result the cell shows elevated 

cation and water concentrations leading to premature lysis of the erythrocyte. The 

stomatin gene is not mutated and the molecular basis of OHSt remains unknown. 

Patients are generally able to lead normal lives but can require transfusions in times 

of crisis (Stewart et al. 1999). It is believed that stomatin is trafficked wrongly in the 

maturing erythrocyte and fails to locate to the plasma membrane (Fricke et al. 

2005). The knockout stomatin mouse is without phenotype, suggesting that the 

deficiency of stomatin in stomatocyte membranes is not responsible for the cation 

leak (Zhu et al. 1999). Whether other proteins of the erythrocyte membrane can 

function in place of stomatin is unknown. 

A French child born to healthy first cousins of Tunisian origin showed a severe 

multisystem disease. Suffering many problems including altered erythrocyte 

morphology, anaemia, delayed growth, delayed neurological development, 

mitochondrial dysfunction and convulsions; the child died aged six. It was realised 

that stomatin was deficient in the erythrocyte membrane. As with the OHSt cases, 

sequencing found no mutation in the gene. However, the mRNA showed a series of 

spliceforms. Five siblings to the same parents were still born or died soon after birth, 

one is alive and well. The exact cause of this condition remains unknown (Argent et 

al. 2004). 
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1.2.5 Human stomatin-like proteins 

Stomatin-like protein 1 (hSLP-1) is a bipartite protein containing a stomatin-like 

domain at the N-terminus and a non-specific lipid transfer protein (nsLTP) domain at 

the C-terminal end. The C. elegans protein UNC-24 also shows the same bipartite 

structure and is thought to be the hSLP-1 homologue in this organism. hSLP-1 is 

not present in erythrocytes. The highest levels of expression were detected in the 

brain, an organ where stomatin is not expressed and thus hSLP-1 is thought to 

represent `brain-specific stomatin' (Seidel et al. 1998). The second human 

stomatin-like protein (hSLP-2) is widely expressed in many tissues and is also found 

in mature erythrocytes. It is the first member of the stomatin family to lack a 

hydrophobic stretch at the N-terminus and is only peripherally associated with the 

membrane. The high homology between the C-terminal domains of stomatin and 

hSLP-2 suggests the two could potentially associate in mixed oligomers forming 

cytoskeletal associated structural components of the membrane (Wang et al. 2000). 

hSLP-2 has been found overexpressed in an oesophageal carcinoma where it is 

thought it may have a role in hyperproliferation. Antisense transfection of hSLP-2 

suppressed cell growth and proliferation due to S phase arrest (Zhang et al. 2005). 
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1.3 SPFH domain proteins 

Stomatin contains an SPFH (Stomatins, Prohibitins, Flotillins and HfIK/C) domain 

that spans 200 of the 234 residues that form the C-terminus (Tavernarakis et al. 

1999). Sharing this domain with stomatin, as the name suggests, are the 

prohibitins, flotillins, HfIK and HfIC as well as three C. elegans homologues and 

podocin. It is as yet unclear what purpose this domain serves in stomatin but 

observations on the other SPFH domain members suggest that it may be critical in 

membrane protein degradation (Kaser et al. 2000) or as a scaffold protein for the 

assembly of multiprotein complexes (Langhorst et al. 2005). SPFH domain proteins 

tend to be associated with the actin cytoskeleton, oligomerise and reside within lipid 

rafts. 

1.3.1 Prohibitins 

The two prohibitin proteins, prohibitin 1 and prohibitin 2, are highly conserved and 

found in bacteria, plants, yeast, worms, flies and humans (Nijtmans et al. 2002). 

They are interdependent; a decreased level of one corresponds with a similar 

decrease in the other. They are found mainly in the inner membrane of the 

mitochondria where they are believed to chaperone the m-AAA protease. This is 

thought to form part of the quality control system within mitochondria and protect 

non-assembled membrane proteins (Tatsuta et al. 2005). Cells with decreased 

levels of the prohibitins show a decreased lifespan; as cells age the prohibitin 

expression lowers. This implicates prohibitin in cellular ageing (Coates et al. 2001). 

Prohibitins are also found in the nucleus where they can regulate cell-cycle 

progression through interaction with E2F transcription factors and Rb proteins 

(suppressors of E2F-mediated transcription). Interaction with E2F prevents the 
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protein binding to E2F promotor sites present in many of the genes involved in 

progression through S phase (Wang et al. 2002). The prohibitins are tumour 

suppressors and are found overexpressed in many tumours. This is believed to aid 

the tumour cells in reducing oxidative stress and allowing their continued growth 

(Nijtmans et al. 2002). The 3' untranslated region of the prohibitin gene is known to 

act as a tumour suppressor in breast cancers (Manjeshwar et al. 2003). 

1.3.2 Flotillins 

Flotillins are highly conserved and found in bacteria, plants, fungi, flies and humans 

(Langhorst et al. 2005). They are interdependent and normally associated with the 

plasma membrane where they assume a hairpin loop in the bilayer. Flotillin-1 is 

known to translocate to the nucleus particularly at the beginning of S-phase; its role 

here is unknown (Santamaria et al. 2005). Flotillin-2 has not yet been reported to 

locate to the nucleus. As yet, the function of the flotillins is unclear but they have 

been implicated in cell signalling, trafficking and cytoskeletal rearrangement 

(Langhorst et al. 2005). 

1.3.3 HfIK and HfIC 

The bacterial membrane proteins HfIK and HfIC (high frequency of lysogenisation) 

associate with and regulate the AAA protease, FtsH. This influences the choice 

between the lysogenic and lytic cycle during X-phage infection. FtsH affects the 

stability of the transcriptional regulator cll. When cli levels are high lysogeny is 

favoured; when cll levels are low lysis is favoured (Saikawa et al. 2004). They show 

the same interdependence as seen for the prohibitins (Banuett et al. 1987). 
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1.3.4 Podocin 

Podocin is a membrane protein exclusively expressed in podocytes, specialised 

renal epithelial cells involved in plasma ultrafiltration during urine formation. It 

assumes a hairpin loop in the bilayer where it is linked to the actin cytoskeleton by 

the adapter protein CD2AP. The role of podocin is unclear but it is thought to be 

responsible for the recruitment of nephrin to lipid rafts followed by subsequent 

nephrin signalling (Schwarz et a/. 2001; Huber et al. 2003). The podocin-knockout 

mouse dies soon after birth due to renal failure (Roselli et al. 2004). Expression 

levels and subcellular localisation of nephrin are affected in several renal diseases 

such as diabetes (Liu et al. 2004). 

1.3.5 UNC and MEC proteins in C. elegans 

Three homologues of stomatin have been found in Caenorhabditis elegans 

(C. elegans), all of which, if mutated, cause neuronal dysfunction of some form. The 

two most similar to stomatin are MEC-2, which when mutated causes 

mechanoinsensitivity, and UNC1, the mutated form of which causes sensitivity to 

volatile anaesthetics. 

MEC-2 (65% identity, 85% amino acid similarity to stomatin) is required for 

mechanosensation through its interaction with the epithelial sodium channels 

(ENaC) and the actin cytoskeleton; mutations in the mec-2 gene result in animals 

unresponsive to light touch (Huang et al. 1995). MEC-2 interacts with MEC-4, a 

homolog of a subunit of ENaC (Suzuki et al. 2003). 
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UNC-1 (52% identity, 87% amino acid similarity to stomatin) is required for the 

normal locomotion of the nematode. Mutations in the unc-1 gene result in animals 

with the abnormal motion described as kinked. Mutations in this gene also result in 

animals which show altered sensitivity to volatile anaesthetics. This led researchers 

to suggest UNC-1 may represent a site of interaction between the cell and the 

lipophilic anaesthetics (Rajaram et a/. 1998). Interestingly, the lipophilic quinoline 

antimalarials are known to interact with stomatin (Foley et al. 1997). UNC-1 is 

known to interact with UNC-8, a sodium channel subunit (Sedensky et al. 2004). 

UNC-24 is less like stomatin (32% identity, 64% amino acid similarity to stomatin 

across residues 25-198). Mutations in the unc-24 gene result in animals which 

show difficulty in moving forward. It is a bipartite protein, as well as containing a 

domain similar to stomatin; it also contains a domain similar to the non-specific lipid 

transfer protein (nsLTP). These proteins are found in animals, plants and 

microorganisms and transport phospholipids between membranes (Wang et al. 

2005). UNC-24 is proposed to be membrane-bound via its stomatin-like domain 

and to regulate lipid transfer between closely associated membranes with its nsLTP 

domain (Barnes et al. 1996). This protein is most like the bipartite brain-specific 

form of stomatin, stomatin-like protein 1 (Seidel et al. 1998). 
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1.4 Hereditary stomatocytoses 

As with many mammalian cells, erythrocytes maintain low intracellular sodium (Na+) 

levels and high potassium (K+) levels. This requires the action of the ATP-driven 

NaK pump which exports Na+ and imports K+ against their concentration gradients 

(Stewart et al. 1999). The action of the NaK pump balances a diffusional process in 

the erythrocyte which is poorly understood. It is this diffusional process which is 

considered to be responsible for the cation leak in patients with hereditary 

stomatocytosis. Patients show increased NaK pump rates; this is thought to be the 

erythrocytes compensatory response to the uncontrollable leak. 

This set of autosomal dominant anaemias are grouped on account of abnormal 

erythrocyte membrane permeability to Na' and K+ (Stewart et al. 1999). To date, 

twelve different phenotypes have been identified with 33 different pedigrees. The 

severity of the cation leak ranges from the mild barely detectable familial 

pseudohyperkalaemia, to the severe overhydrated hereditary stomatocytosis where 

ion flux rates are 40x those in a control erythrocyte. Distinguishing between the 

phenotypes takes into account the severity of the cation leak, the temperature 

dependence of the leak (figure 1.4), degree of hydration of the cell, phospholipid 

content and presence of stomatin in the erythrocyte membrane (Stewart 2004). 

Often patient blood films will reveal abnormally shaped erythrocytes (figure 1.5). 

The swollen, mouth-shaped `stomatocytes' were described in the first case of this 

group (Lock et al. 1961). The altered morphology is likely due to excessive lipid 

packing of the inner leaflet, although this has never been shown in hereditary 

stomatocytoses patients (Coles et al. 1999). Patients can generally lead normal 

lives, however, in times of crisis such as infection, transfusions may be necessary. 

This has proved fatal when religious principles disallow such medical intervention. 
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Figure 1.4 Temperature dependence of cation leak in different hereditary 

stomatocytoses variants 

Graph showing K+ influx at various temperatures following inhibition of NaK pump 

with ouabain and bumetanide treatment. Not all hereditary stomatocytoses 

phenotypes are represented. Q- normal; 0- Familial pseudohyperkalaemia;  - 

Dehydrated hereditary stomatocytosis; 0- Woking phenotype; f- Overhydrated 

hereditary stomatocytosis; "- Blackburn phenotype; A- Cryohydrocytosis. Figure 

taken from (Stewart et al. 1999). 
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healthy 
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7 µm 

Figure 1.5 Blood film taken from an individual with OHSt 

The healthy erythrocyte is a disc/biconcave structure allowing for maximum surface 

area for gaseous exchange. The stomatocyte in hereditary stomatocytoses patients 

is mouth-shaped; this may be due to excessive packing of lipids in the inner leaflet 

of the lipid bilayer. Figure adapted from (Fricke et al. 2003). 
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1.4.1 Overhydrated hereditary stomatocytosis 

Over-hydrated Hereditary Stomatocytosis (OHSt) is rare and was the original 

hereditary stomatocytoses condition described (Lock et al. 1961). Patients show ion 

flux rates 40x that of a control erythrocyte, making this the most severe phenotype 

of the group. Intracellular Na' is over ten times greater in patient's stomatocytes 

than in normal erythrocytes and K+ four times lower. The overall increase in 

intracellular cation concentration is accompanied by increased intracellular water 

concentration, which results in swelling and premature lysis of the erythrocyte 

(Stewart et al. 1999). Haemoglobin levels are two thirds of that in a control 

erythrocyte. Patients are chronically jaundiced. The integral membrane protein 

stomatin is deficient in all cases. This deficiency is isolated to the erythrocyte 

membrane; patient's brain, liver, kidney, gut and muscle samples show normal 

levels of stomatin (Stewart et al. 1993). Messenger RNA levels are normal within 

the maturing erythrocytes of patients and sequencing has revealed no mutation in 

the stomatin gene (Stewart 1997). Cultured cells from OHSt patients reveal that the 

protein is unable to reach the plasma membrane and appears to be restricted to an 

area of multivesicular complexes and in the nucleus (Fricke et al. 2005). When the 

condition was first realised, patients underwent therapeutic splenectomy in an 

attempt to reduce splenic destruction of the stomatocytes (Stewart et al. 1999). 

This treatment was adopted due to similarities to hereditary spherocytosis; in these 

cases prevention of the splenic destruction of abnormal erythrocytes eases the 

anaemia (Reliene et al. 2002). It was gradually realised that OHSt patients who 

underwent this procedure suffered with thrombotic problems and this has recently 

been attributed to the possible appearance of phosphatidylserine (PS) at the 

surface of the stomatocyte (Stewart 2004). The phospholipid PS is usually 

contained on the inner surface of the erythrocyte by the action of the lipid transport 
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system within the membrane, appearance of PS at the surface can initiate 

thrombosis (Zwaal et al. 1997). Studies on lipid movement between the two leaflets 

of the bilayer in OHSt cells showed reduced movement of PS from the inner to the 

outer leaflet but lipid movements were otherwise normal (Ho et al. 1997). 

1.4.2 Dehydrated hereditary stomatocytosis 

Dehydrated Hereditary Stomatocytosis (DHSt) is less severe than OHSt but more 

common. Ion flux rates are only twice that of control erythrocyte rates. Patient's 

erythrocytes show mildly decreased levels in Na+ and K+ ions, which accounts for 

the dehydration. The erythrocyte membrane shows normal levels of stomatin but 

shows elevated levels of phosphatidylcholine. This is thought possibly to be caused 

by a defect in the lipid transport system of the erythrocyte membrane which 

maintains asymmetrical phospholipid distribution between the two leaflets of the 

bilayer (Stewart et al. 1999). As with OHSt, haemoglobin levels are low. 

Thrombotic problems have developed in patients which underwent therapeutic 

splenectomy. Two pedigrees are described as DHSt with ascites (the build up of 

fluid in the abdominal cavity); this variant shows mental retardation (Stewart 2004). 

1.4.3 Cryohydrocytosis 

Cryohydrocytosis (CHC) is less severe than OHSt but slightly more severe than 

DHSt. Ion flux rates are 4x that of a control erythrocyte. Two pedigrees have been 

identified which show stomatin deficiency in the erythrocyte membrane. In these 

cases ion flux rates are slightly more abnormal at 10x the control level. These two 

pedigrees show neurological abnormalities, including seizures and mental 

retardation (Fricke et al. 2004). If left to stand at room temperature, the erythrocytes 
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gain Na+ and lose K+, this effect is enhanced if the sample is stored chilled. As the 

gain in Na' outweighs the loss in K+, the cells gain water, swell and lyse. Patient's 

cells show increased sensitivity to phospholipid degradation by phospholipase at 

low temperatures. It has been suggested that this may be as a result of improperly 

packed lipids. In some cases the erythrocyte membrane shows increased ether 

content. No thrombotic problems have been described following splenectomy in 

these patients (Stewart et al. 1999). 

1.4.4 Familial pseudohyperkalaemia 

Patients with Familial pseudohyperkalaemia (FP) are essentially symptomless. Ion 

flux rates vary between being normal to 4x greater than control erythrocytes. At 

physiological temperatures intracellular Na+ is moderately increased and K+ 

decreased. Following storage at room temperature, the erythrocytes show a loss of 

K+. Such storage could be expected during a routine blood test; the results 

prompting further investigation and eventual diagnosis. Haemoglobin levels are 

normal. Thrombotic problems have developed in patients which underwent 

therapeutic splenectomy (Delaunay 2004). 

1.4.5 Other phenotypes 

The other less frequent phenotypes are so called following patient location. 

Blackburn phenotype suffers ion flux rates 4x that of control erythrocytes but is 

distinguishable from CHC due to different temperature dependence of the leak 

(figure 1.4). Chiswick phenotypes show ion flux rates 1.5x that of control 

erythrocytes; the temperature dependence is unique to this phenotype. Woking 

phenotype suffers ion flux rates 4x that of control erythrocytes but is distinguishable 
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from CHC and Blackburn phenotype again due to different temperature dependence 

of the leak. There are two Middlesbrough phenotypes suffering with 2x and 4x ion 

flux rates which have a temperature-dependent leak unique to their phenotype 

(Stewart 2004). 
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1.5 Lipid Rafts 

Polarised cells e. g. epithelial cells, form and maintain two functionally different 

membrane domains. The apical membrane faces the lumen of an internal organ 

and the basolateral membrane contacts surrounding cells. Tight junctions link the 

cells and seal the epithelium; they also prevent the mixing of components between 

the two membrane domains. The distinct character of each domain requires sorting 

of proteins and lipids in the Golgi complex. The concept of lipid rafts was introduced 

to describe how the protein and lipid distribution between the apical and basolateral 

domains of polarised epithelial cells could differ (Simons et al. 1997). Specialised 

rafts concentrated in cholesterol and sphingolipids form in the Golgi complex and 

are specifically trafficked to the apical membrane. Proteins destined for the apical 

side of the cell would associate with the rafts and traffic with them. In support of this 

model, glycosylphosphatidylinositol (GPI)-anchored proteins which are specifically 

apically located were found to become insoluble in non-ionic detergents following 

their association with the cholesterol and sphingolipid in the Golgi complex. It was 

found that the detergent isolated GPI-protein complexes were rich in cholesterol and 

sphingolipids (Brown et al. 1992). As well as existing in mammalian cells, rafts have 

also been reported in plants and yeast (Bhat et al. 2005; Malinska et al. 2003). The 

fluid mosaic model described the plasma membrane as a lipid bilayer where 

proteins are randomly distributed and free to diffuse. Lipid rafts are proposed to 

introduce a degree of organisation to the plasma membrane. The model proposes 

that clusters of lipid form heterogeneous platforms which exist in a different phase to 

the bulk of the plasma membrane. These microdomains are able to diffuse as intact 

structures (Simons et al. 1997). Since the introduction of the lipid raft model, the 

microdomains have been implicated in many cellular roles including sorting, 



27 

trafficking, signalling and polarisation (Simons et al. 1997; Mein 2005; Gomez- 

Mouton et al. 2004). 

Signalling 

Lipid rafts are implicated in many signalling events in a variety of cell types. They 

are considered to act as platforms where the crucial elements for a signalling event 

can organise in space and time (Bickel 2002; Magnani et al. 2004). Perhaps the 

best characterised raft-based events leading to a signalling event are in T-cells 

during their activation (Meiri 2005). Many proteins involved in T cell signalling such 

as the T cell antigen receptor (TCR) and kinases are concentrated in lipid rafts 

(Harder et al. 2000). Displacement of proteins critical for the signalling event from 

microdomains can inhibit T cell signalling (Zeyda et al. 2002). Rafts are thought to 

be responsible for the recruitment of binding partners, with the eventual assembly of 

a mature immunological synapse. They also recruit proteins associated with the 

underlying actin cytoskeleton, thought to provide the mechanical stability critical for 

the signalling event to be sustained (Valensin et al. 2002). 

Proteolysis 

Neuronal lipid raft integrity is required for the proteolytic activation of plasminogen to 

plasmin. The active plasmin is thought to influence neuronal plasticity (Ledesma et 

a/. 2003). Lipid rafts are known to provide the cellular site in which the 

amyloidogenic pathway leading to Alzheimer's disease occurs (Cordy et al. 2003). 

Cell migration 

In mammalian cells it has been demonstrated that lipid rafts redistribute and 

accumulate at the leading edge of a migrating cell. The raft-based receptors 
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involved in the spatially restricted signalling show similar redistribution suggesting 

key signalling events for migration preferentially occur in lipid rafts. Cholesterol 

depletion produced cells which fail to migrate successfully (Gomez-Mouton et al. 

2004). 

Disease and microbes 

Many viruses gain access to the host cell via interaction with proteins which are lipid 

raft based; in some cases disruption of the lipid rafts with cholesterol depletion 

prevents viral entry (Pietiainen et al. 2005). Rafts have also been found to contain 

high proportions of structural proteins from enveloped viruses; this may aid 

assembly and budding of the virus (Suomalainen 2002). Increasing numbers of 

bacteria are also found to enter host cells via lipid rafts, a process in some bacteria 

thought to be initiated by the secretion of cholesterol-binding proteins (Lafont et al. 

2005). Rafts are also thought to play a role in the endovacuolation of the protozoa 

Plasmodium falciparum (Haldar et al. 2001). As well as being hijacked by 

pathogens, rafts have been implicated in various diseases. For example, the 

conversion of the normal cellular form of the prion protein into the pathogenic form 

occurs preferentially in lipid rafts (Hooper 2005). Depletion of cellular cholesterol 

and thus disruption of lipid rafts reduces the level of the pathogenic form. Also the 

amyloidogenic pathway leading to Alzheimer's disease preferentially occurs in lipid 

rafts (see above). 

1.5.1 Structure of lipid rafts 

Lipid rafts are glycosphingolipid and cholesterol-enriched discrete microdomains. 

Sphingolipids have highly saturated long acyl chains which allow them to pack 

tightly in the membrane. Space beneath the head group is filled with cholesterol 
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molecules, largely responsible for stabilisation of these domains (figure 1.6) 

(Simons et al. 1997). Whilst the exoplasmic leaflet lipid content of rafts is well 

documented, the content of the cytoplasmic leaflet is not clear. As well as 

enrichment in certain lipids, the same can be said for various proteins, specifically 

GPI-anchored and acylated proteins within rafts. The partitioning of certain proteins 

into lipid rafts is thought, in part, to involve hydrophobic mismatch. As the lipids in 

rafts are saturated they sit taller in the membrane; the length of the transmembrane 

domain of a protein can therefore influence their partitioning and sorting in the Golgi 

complex (Allende et al. 2004). 
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Figure 1.6 Structure of a lipid raft 

Lipid rafts are discrete microdomains enriched in cholesterol (orange) and lipids with 

saturated acyl chains (red). They are packed tighter than the surrounding 

membrane (blue) and associate with acylated and GPI-anchored proteins. Figure 

taken from (Simons et al. 2000). 
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1.5.2 Lipid rafts in the erythrocyte 

The erythrocyte membrane is known to contain at least two distinct subsets of 

cholesterol and glycosphingolipid-rich lipid rafts. Upon calcium-induced vesiculation 

of the erythrocyte, stomatin vesiculates in the microvesicles and the flotillins remain 

within the erythrocyte membrane (Saizer et a/. 2002). Both stomatin and the 

flotillins are known raft proteins and their segregation during this vesiculation is 

considered to indicate the existence of separate microdomains (Saizer et al. 2001). 

This suggests that some lipid rafts within the erythrocyte are sites where 

exovesiculation can occur. During malarial infection many DRM-associated proteins 

are found enriched in the vacuole that forms around the parasite. This suggests 

that some lipid rafts in the erythrocyte can also be sites of endovesiculation that are 

hijacked by invading pathogens (Murphy et al. 2004). 

1.5.3 Phase Separation of lipid bilayers 

Model membranes of phospholipid bilayers were shown to contain a solid-like gel 

phase co-existing with a fluid phase (Lee 1977). Lipids which contain saturated 

(lack double bonds) acyl chains, e. g. most sphingolipids, form bilayers with high 

melting temperatures (Tm) which exist in the gel phase. Lipids with unsaturated acyl 

chains, e. g. most phospholipids, form bilayers with low Tm. The low Tm, due to a cis 

double bond in the acyl chain, ensures fluidity of the membrane which exists in the 

fluid/liquid disordered (Id) phase (Parasassi et a/. 1993). The introduction of 

cholesterol into model membranes with saturated lipids such as sphingomyelin 

resulted in the formation of an intermediate phase. It was tightly packed and 

ordered as in the gel phase, yet displayed the lateral mobility almost identical to that 

seen in Id phase (Almeida et al. 1992). This state is known as the liquid ordered 
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state (Is). In this phase the haphazard acyl chains of phospholipids as seen in the Id 

phase are extended and more tightly packed, this causes a thickening of the bilayer. 

Tighter packing causes the membrane to be less permeable but still allows lateral 

mobility of both lipids and proteins within this phase. As the gel and Id phases can 

co-exist in model membranes, so too can the 10 and Id phases (Silvius et al. 1996; 

Ahmed et al. 1997). 

1.5.4 L0 phase and detergent insolubility 

GPI-anchored proteins are insoluble in cold, non-ionic detergents such as Triton X- 

100 (TX-100) following transit through the Golgi apparatus where they associate 

with sphingolipids and cholesterol (Brown et al. 1992). Glycosphingolipids and GPI- 

anchored proteins were found to be associated in the same detergent-insoluble 

complexes. This supported the lipid raft model of sphingolipid microdomains sorting 

associated proteins such as GPI-anchored proteins, to the apical surface of 

polarised epithelial cells (Brown et al. 1992; Simons et al. 1997). Cholesterol shows 

a particular affinity for sphingolipids and both are required for detergent insolubility 

of the lo domains (Silvius 2003; Hanada et al. 1995). Model membranes similar in 

composition to the isolated detergent-resistant membranes are in the lo phase 

(Ahmed et al. 1997). Detergent insolubility is seen in model membranes in the 10 

phase; membranes not in this phase lose detergent resistance (Schroeder et al. 

1998). The detergent resistance of domains in the Io phase, considered to be the in 

vivo lipid raft, have made them simple to isolate via detergent extraction. 
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1.5.5 Detergent extraction of lipid rafts 

Detergent extraction is the most widely used technique in the biochemical study of 

lipid rafts. Membranes are solubilised in a cold non-ionic detergent such as TX-100. 

The membrane-detergent mix is then placed at the bottom of a sucrose density 

gradient. Following high speed centrifugation overnight the insoluble low density 

raft material floats away from the solubilised non-raft material and is segregated 

upon fractionation of the sucrose gradient (figure 1.7). It is thought detergent 

insolubility is a consequence of the tight packing of lipids in the lo phase and the low 

density is caused by the high cholesterol content (London et a/. 2000). It is still 

unclear how accurately the isolated detergent resistant-membranes (DRMs) reflect 

in vivo lipid rafts and the limitations of this protocol are a concern (Lichtenberg et al. 

2005). DRMs could possibly represent an artefact of the extraction process. 

Firstly, extraction is performed at 4°C rather than physiological temperature; at 37°C 

most DRMs are solubilised. It is possible that the lower temperature could promote 

alteration in tighter lipid organisation in the bilayer, a phenomenon not present 

under physiological conditions (Brown et al. 1992). Secondly, the detergents 

themselves could promote 10 formation or cause fusion of native rafts into larger 

membrane aggregates (Heerklotz 2002). Finally, proteins associate with DRMs to 

different extents. Physical properties of certain proteins, such as hydrophobicity, 

may be responsible for DRM association rather than in vivo raft residency 

(Ferguson 1999). 

Many other detergents besides TX-100 have been used in the isolation of DRMs 

including Lubrol WX, CHAPS, TX-114, Brij 96, Brij 98 and octyiglucoside 

(Chamberlain 2004). Varying concentrations and temperatures have been used to 

produce a range of results. Depending on detergent, DRMs isolated from the same 
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membrane show varying degrees of solubilisation and can vary in protein, 

cholesterol and sphingolipid content. These differences have been attributed to 

`DRM selectivity' of the different detergents (Schuck et al. 2003), subpopulations of 

raft within any given cell (raft heterogeneity) (Madore et al. 1999) and varying 

degrees of fusion between native rafts (Pike 2004). In an attempt to avoid the 

criticisms of detergent extraction, detergent-free methods have been developed 

using sonication (Smart et al. 1995). However, whilst there are concerns over the 

validity of DRM extraction, it remains by far the most popular protocol in lipid raft 

analysis. 
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5% sucrose in TBS 

Lipid rafts 

39% sucrose in TBS 

45% sucrose in TBS (containing 

J sol ubi li sed sample) 

Figure 1.7 Detergent extraction of lipid rafts 

Membranes are first solubilised in a cold non-ionic detergent such as Triton X-100. 

The solubilised sample is placed underneath a sucrose gradient (diagram shows a 

non-continuous gradient). The gradient is subjected to high speed centrifugation 

overnight at 4°C. Fractionation of the gradient from the base upwards allows the 

isolation of lipid rafts. TBS - Tris-buffered saline. 
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1.5.6 Cholesterol extraction/depletion 

The realisation that lipid rafts are concentrated in cholesterol led to many studies 

involving cholesterol depletion to perturb these microdomains. Various techniques 

have been used including cholesterol deprivation in cultured cells (Hannan et al. 

1996), inhibiting synthesis of cholesterol (Rothberg et a/. 1990) and depletion of 

cholesterol using various compounds to directly remove it form the bilayer 

(Schnitzer et al. 1994; Smart et al. 1994). The use of methyl-ß-cyclodextrin (MßCD) 

to deplete cells of cholesterol is commonly used in raft studies (liangumaran et al. 

1998). This compound acts by extracting the cholesterol peripherally rather than 

becoming incorporated into the membrane (Christian et al. 1997). DRM isolation 

from cholesterol-depleted cells often results in a normally insoluble protein being 

found in the soluble region of the gradient. It is thought this phenomenon is due to 

the dissociation of the protein from the raft in vivo (Scheiffele et al. 1997; Hao et al. 

2001). 

1.5.7 Atomic Force Microscopy of lipid rafts 

A bilayer of phosphatidyicholine is 3.5 nm thick; a bilayer of sphingomyelin is 4.6 nm 

thick. This height difference is easily detected by atomic force microscopy (AFM) 

and has made it popular in the study of lipid rafts (Henderson et al. 2004). Model 

membranes show sphingomyelin-enriched domains increase in size as cholesterol 

concentration is raised. Likewise, if the system is depleted of cholesterol, these 

domains shrink (Rinia et al. 2001; Milhiet et al. 2001; Lawrence et al. 2003). AFM 

has provided convincing images of distinct microdomains, estimated to be between 

40-100 nm (Yuan et al. 2002). AFM has also shown GPI-anchored proteins known 
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to be enriched in DRMs, e. g. placental alkaline phosphatase (PLAP), are targeted to 

these domains (Saslowsky et al. 2002). 

1.5.8 Fluorescent studies of lipid rafts 

Fluorescent lipid analogues have been used to investigate phase separation in 

planar model membranes. Many have reported domain formation consistent with 

phase separation of the lipid bilayer (Samsonov et al. 2001; Brown 2001). Giant 

unilamellar vesicles (GUVs) are model membranes which require no support as with 

the planar models and rules out any effect the support may have on the lipids. They 

have been used to demonstrate lateral heterogeneity, glycosphingolipid content and 

that the use of detergents neither induces the formation of domains nor coalesces 

existing domains (Staneva et al. 2005). 

Laurdan is a fluorescent probe used to measure phase separation. Due to altered 

water penetration in the lipid bilayer, laurdan exhibits a greater fluorescence in 

disordered than ordered domains in model membranes. Use of this probe in GUVs 

supports domain formation in model membranes (Dietrich et al. 2001). Live 

macrophages labelled with this probe show domain-like structures. This study 

predicts 10-15% of the macrophage cell surface is raft-like at physiological 

temperature (Gaus et al. 2003). 

Fluorescence resonance energy transfer (FRET) is able to detect nanoscale 

distribution in vivo. Energy transfer from the donor to the acceptor occurs at 

distances less than 12 nm. The degree of fluorescence reflects the surface density 

of the fluorophores; this is used to measure clustering in live cells. Although the 

early studies supported the existence of lipid rafts < 70 nm in diameter in live cells 
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which could be disrupted following cholesterol depletion, some more recent studies 

have reported the possibility that some of these data may have been misinterpreted 

concluding that the density of fluorescence was most likely due to membrane 

topology and not the clustering of lipid rafts (Varma et al. 1998; Glebov et al. 

2004a). Analysis of the distribution of GPI-anchored proteins showed no clustering 

in live cells, even after stimulation of T-cells. The common use of MßCD to disrupt 

lipid rafts has no effect on the distribution of GPI-anchored proteins, as measured 

by FRET. For these reasons FRET analysis favours the lipid shell theory rather 

than lipid rafts (Glebov et al. 2004b). The lipid shell theory suggests that each 

protein exists in its own lipid microenvironment rather than being associated with 

larger more stable rafts (Anderson et al. 2002). 

Fluorescence recovery after photobleaching (FRAP) measures a protein's ability to 

laterally diffuse across a membrane. A section of the membrane is bleached and 

recovery of unbleached molecules is monitored. Various raft and nonraft proteins 

have been investigated and found to exhibit similar diffusional behaviour. This 

suggests raft association is not a dominant factor in determining the ability of a 

protein to laterally diffuse across the membrane (Kenworthy et al. 2004). 
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1.6 Aims of this study 

The overall aim of this study is to investigate the role(s) of stomatin in erythrocytes 

and nucleated cells. As the stomatocyte is deficient in stomatin it represents an 

easily obtainable model to investigate the role of stomatin in the membrane. Given 

the abundance of stomatin in lipid rafts, the role of stomatin in these microdomains 

will be of particular interest. 

The roles of stomatin homologues collectively suggest a role as a scaffold protein, 

ion channel regulator or as a regulator of membrane protein degradation. Site- 

directed mutagenesis of conserved residues within the SPFH domain of stomatin 

that are shared by these proteins may reveal residues crucial in the function of 

stomatin. 

Finally, the proposed proteolysis of mammalian stomatin will be investigated. It has 

been suggested that stomatin may be a substrate for a membrane-bound serine 

protease. This study aims to identify if a C-terminal fragment is released from the 

membrane and to characterise the enzyme responsible. 
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Chapter 2: Materials and Methods 

2.1 Materials 

All materials were purchased from Sigma-Aldrich Ltd (Poole, UK) unless otherwise 

indicated. 

10 X Phosphate Buffered Saline 

10 X TGS Buffer 

10 X Trypsin-EDTA 

6X Loading Buffer 

Acetic acid 

Acrylamide 

Actin antibody 

Agar 

Ankyrin antibody 

Annexin V antibody 

Aquaporin-1 antibody 

Band 2.1 antibody 

Band 3 antibody 

Band 4.1 antibody 

Caveolin antibody 

Invitrogen Ltd, Paisley, UK 

Biorad Laboratories, CA, USA 

Cambrex Bio Science, Nottingham, UK 

Promega, Southampton, UK 

Fisher 

Severn Biotech Ltd., Kidderminster, UK 

Santa Cruz Biotechnology Inc. CA, USA 

Oxoid Ltd, Basingstoke, UK 

Calbiochem, Nottingham, UK 

Santa Cruz 

Santa Cruz 

Santa Cruz 

Santa Cruz 

J. Pinder, King's college London, UK 

BD Biosciences, ON, Canada 

Di-Sodium Hydrogen Orthophosphate - Fisher 

Dithiothreitol 

Dpn I 

Melford Laboratories, Ipswich, UK 

Stratagene 

Dual-Luciferase® Reporter Assay Promega 
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Dulbecco's Modified Eagle's Medium - Cambrex 

ECL Reagent Amersham Biosciences, Little Chalfont, UK 

Enhanced chemiluminescence kit Amersham Biosciences 

Ethanol Fisher 

Flotillin-1 antibody BD Biosciences 

Flotillin-2 antibody BD Biosciences 

Foetal Bovine Serum Cambrex 

GLUT-1 antibody S. Baldwin, University of Leeds, UK 

Glycine BDH, Poole, UK 

Glycophorin A antibody J. Pinder, King's college London, UK 

Glycophorin C Santa Cruz 

Ham's F-12 Medium Cambrex 

HRP-conjugated antibodies Sigma 

Isopropanol Fisher 

Lipofectamine Invitrogen 

Marvel skimmed milk power Local food outlet 

Methanol Fisher Scientific, Loughborough, UK 

Molecular Weight Markers Amersham 

Non-essential amino acid mixture Cambrex 

OptiMEM with GLUTAMAX Invitrogen 

pcDNA3.1N5-His©TOPO®TA Kit Invitrogen 

Penicillin-Streptomycin Cambrex 

Pfu Turbo DNA Polymerase Stratagene, Amsterdam, The Netherlands 

Phosphate Buffered Saline Invitrogen 

Plasmid DNA preparation kits Qiagen Ltd, Crawley, UK 

Poly (vinylidene) difluoride membrane - Amersham 
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Primer mix Promega 

Propan-2-ol Fisher 

QuikChange® Site-Directed Mutagenesis kit - Stratagene 

Restriction enzymes Promega 

Sodium Chloride Fisher 

Sodium Dihydrogen Orthophosphate Fisher 

Sodium Dodecyl Sulphate Fisher 

Spectrin antibody Santa Cruz 

Stomatin antibody G. W. Stewart, University College London, UK 

T4 DNA ligase Promega 

Tissue culture flasks Fisher 

Tris Fisher 

Trypsin-EDTA Cambrex 

Tryptone Oxoid 

Tween-20 Lancaster Synthesis, Morecambe, UK 

XL-1 Blue competent cells Stratagene 

Yeast Extract Oxoid 
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2.2 Cell culture 

2.2.1 Culture of mammalian cells 

Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) with 4.5g/L 

Glucose with L-Glutamine. Chinese Hamster Ovary (CHO) cells were cultured in 

Ham's - F12. All media were supplemented with 10% foetal bovine serum (FBS) 

and 1% penicillin (10,000 U/ml)/streptomycin (10,000 pg/ml). The culture medium 

of HEK cells was also supplemented with 1% non-essential amino acids. Cells 

were maintained at 37°C, with 5% CO2 in humidified air and kept viable using 

standard cell culture techniques. 

Once confluent, the cells were passaged, harvested or prepared for storage in liquid 

nitrogen. Cells were first washed twice with phosphate buffered saline (PBS) then 

treated with trypsin-EDTA. Madin Darby Canine Kidney (MDCK) cells were treated 

with 1OX trypsin-EDTA. Both trypsin-EDTA and 1OX trypsin-EDTA were purchased 

from Cambrex. Cells were incubated at 37°C until they became dislodged. Once 

the cells had detached, an equal volume of medium was then added and the cell 

suspension centrifuged at 1000g for 5 min. For passage, the resultant pellet was 

re-suspended in an appropriate volume of medium and split accordingly into 

separate culture flasks. If the cells were to be used in investigation, the supernatant 

was removed and the cells used accordingly. For storage in liquid nitrogen, the 

resultant pellet was re-suspended in filter-sterilised 50% FBS, 40% medium, 10% 

Dimethyl Sulphoxide (DMSO) and transferred to cryo-vials. The cells were placed 

at - 70°C overnight in a cryogenic cooler and then transferred to liquid nitrogen for 

long term storage. 
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2.2.2 Transient transfection of mammalian cells using Lipofectamine 

Ethanol precipitated DNA was mixed with 600µI Opti-MEM. This was added to a 

mixture containing 25µI Lipofectamine and 75µI Opti-MEM. The Lipofectamine/DNA 

solution was incubated at room temperature for 15 min to allow formation of the 

DNA-cationic lipid complex. During the incubation period, cells at 50% confluency 

were washed twice with the appropriate volume of Opti-MEM. The 

Lipofectamine/DNA solution was then added to the cells and incubated at 37°C for 

4.5 h. Medium supplemented with 20% foetal bovine serum (FBS) and 1% penicillin 

(10,000 U/ml)/streptomycin (10,000 pg/ml) was then added and the cells incubated 

at 37°C for 19 h. Medium was then removed and replaced with standard growth 

media. 
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2.3 Mammalian cell preparations 

2.3.1 Preparation of cell lysates 

Cells were washed twice with Phosphate Buffered Saline (PBS) and then dislodged 

from the tissue culture flask using a cell scraper. The cell suspension was 

centrifuged at 1500g for 5 min at 4°C and the PBS removed. Cells were then 

resuspended in lysis buffer (50mM Tris/HCI pH 7.4,1% (v/v) Triton X-100,1% (v/v) 

protease inhibitor cocktail), 2ml for each T80 tissue culture flask was used. The cell 

suspension was sonicated for 30 sec, full cycle - power setting 3 (Branson Sonifier 

450). Samples were then centrifuged at 13,000g for 5 min at 4°C and the 

supernatant isolated. Lysates were stored at -20°C. 

2.3.2 Preparation of cell membranes 

Cells were washed twice with Phosphate Buffered Saline (PBS) and then dislodged 

from the tissue culture flask using a cell scraper. The cell suspension was 

centrifuged at 1500g for 5 min at 4°C and the PBS removed. All stages were 

carried out on ice to minimise protease activity. Cells were resuspended in 4m1 of 

cold 100mM Tris/HCI pH7.4. The cell suspension was then sonicated for 1 min 

(Branson Sonifier 450; output control - 2; duty cycle %- constant). The sample was 

then centrifuged at 2000g for 5 min at 4°C. The supernatant was then removed and 

centrifuged at 50,000g for 1h at 4°C. The resultant pellet was resuspended in cold 

100mM Tris/HCI pH7.4. 
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2.3.3 Isolation of nuclei 

Cells were washed twice with Phosphate Buffered Saline (PBS) and then dislodged 

from the tissue culture flask using a cell scraper. The cell suspension was 

centrifuged at 1500g for 5 min at 4°C and the PBS removed. A Nuclei Pure Prep 

Nuclei Isolation Kit (Sigma-Aldrich Ltd) was used to isolate nuclei; the protocol was 

followed as suggested by the manufacturer. Briefly, cells were lysed in a solution 

containing Dithiothreitol (DTT) and Triton X-100. Nuclei were purified from the 

lysate by centrifugation at 30,000g for 45 min at 4°C, through a sucrose cushion. A 

pre-cooled Beckman Ultracentrifuge SW28 rotor and 35.5ml buckets were used. 

Nuclei were resuspended in the storage buffer supplied with the kit and stored at - 

20°C. 

2.3.4 Lysis of nuclei 

One volume of nuclei suspended in storage buffer was centrifuged at 5000g for 5 

min at 4°C, nuclei were resuspended in one volume of lysis buffer (10mM Pipes pH 

6.8,100mM NaCl, 300mM Sucrose, 1mM Magnesium Chloride, 1 mM EGTA, 1 mM 

DTT, 1 mM PMSF, 1% (v/v) protease inhibitor cocktail (Sigma # P-8346), 0.1 % (v/v) 

Triton X-100). Lysates were stored at -20°C. 

2.3.5 Isolation of detergent-resistant membranes (DRMs) 

Cells were washed twice with Phosphate Buffered Saline (PBS) and then dislodged 

from the tissue culture flask using a cell scraper. The cell suspension was 

centrifuged at 1500g for 5 min at 4°C and the PBS removed. The resultant pellet 

was incubated on ice for 30 min. All buffers were pre-cooled and work carried out at 
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4°C. For each T175 culture flask used, the cell pellet was resuspended in 2 ml MES 

buffered saline (MBS) (25mM MES, 130mM NaCl, pH 6.5) containing 1% (v/v) 

Triton X-100. The suspension was homogenised by passing through a 21G needle 

(30 times). Cell nuclei and debris were removed by centrifugation at 1000g for 10 

min at 4°C. An equal volume of 80% (w/v) sucrose in MBS was added to the 

supernatant and mixed well. The protein solution with final sucrose concentration of 

45% (2.5 ml) was placed at the bottom of a 5ml centrifuge tube and overlaid with 

2m1 30% (w/v) sucrose in MBS and 0.5m1 10% (w/v) sucrose in MBS. The gradient 

was subject to ultracentrifugation using a pre-cooled SW-55 Beckman rotor at 

140,000g for 18 h at 4°C. The gradient was fractionated from the base upward. 

Fraction zero represents the insoluble pellet at the base resuspended in MBS. 

Fractions were stored at -20°C. 
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2.4 Blood 

2.4.1 Blood collection 

Blood was harvested from healthy donors and one patient suffering Over-hydrated 

Hereditary Stomatocytosis by venipuncture into heparinised tubes. Erythrocytes 

were used same day. 

2.4.2 Isolation of erythrocyte membranes 

Erythrocytes were isolated from whole blood by centrifugation at 200g for 10 min at 

4°C and washed 5 times with three volumes of 0.9% (w/v) NaCl, 5 mM Sodium 

Phosphate, pH 8. Erythrocytes were then lysed in 5 mM Sodium Phosphate, pH 8 

and the membranes pelleted by centrifugation at 12,000g for 10 min at 4°C. The 

lysis step was repeated twice more. Ghosts were stored at -20°C. 

2.4.3 Isolation of DRMs from erythrocytes 

Erythrocytes were isolated from whole blood by centrifugation at 200g for 10 min at 

4°C and washed 5 times with Tris-buffered saline (TBS), (150mM Sodium Chloride, 

1 0mM Tris/HCI pH 7.5). All buffers were pre-cooled and work carried out at 4°C. 

The erythrocytes were then lysed in 9 volumes of 0.5% (v/v) Triton X-100 in TBS 

and incubated on ice for 20 min. The resultant solution was centrifuged at 15,000g 

for 10 min at 4°C and the pellet resuspended in 10ml of 0.5% (v/v) Triton X-100 in 

TBS. The solution was incubated on ice for 5 min and then centrifuged at 15,000g 

for 10 min at 4°C. The pellet was resuspended in 2 ml TBS and the protein 

concentration determined. The protein solution was diluted (2 mg/ml) with TBS and 

one volume of 90% (w/v) sucrose in TBS added. The protein solution with final 
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sucrose concentration of 45% (4 ml) was placed at the bottom of a 17.5ml 

centrifuge tube and overlaid with 5ml 30% (w/v) sucrose in TBS and 5ml 10% (w/v) 

sucrose in TBS. The sucrose gradient was then centrifuged using a pre-cooled SW- 

28 Beckman rotor at 140,000g for 18 h at 4°C and fractionated from the base 

upward. Fraction zero represents the insoluble pellet at the base resuspended in 

TBS. Fractions were stored at -20°C. 

2.4.4 Calcium-induced vesiculation of erythrocytes 

As used previously by Salzer et al. 2002. Erythrocytes were isolated from whole 

blood by centrifugation at 200g for 10 min at 4°C and washed 5 times with Tris- 

buffered saline (TBS) (150mM NaCl, 10mM Tris/HCI pH 7.5). Erythrocytes were 

resuspended in 9 volumes of TBS containing 1 mM CaCl2,5 µM calcium ionophore 

A23187 and incubated at 37°C for 30 min. Following incubation, EDTA was added 

to a final concentration of 5 mM. Erythrocytes were pelleted by centrifugation at 

15,000g for 30 sec at 4°C and the supernatant subjected to 4 centrifugation steps. 

The first three steps were at 15,000g for 10,20 and 30 min respectively at 4°C. 

This is followed by the final ultracentrifugation using a pre-cooled SW-55 Beckman 

rotor at 100,000g for 1h at 4°C. Each vesicle pellet was resuspended in the 

appropriate volume of TBS; the 30 min pellet was discarded. Vesicles were stored 

at -20°C. 

2.4.5 Cholesterol depletion of erythrocytes 

Erythrocytes were isolated from whole blood by centrifugation at 200g for 10 min at 

4°C and washed twice with phosphate buffered saline (PBS) (0.02M NaH2PO4, 
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0.0015M Na2HPO4,0.15M NaCl, pH 7.4). Erythrocytes were then incubated at 5% 

concentration in 3 mM methyl- ß-cyclodextrin in PBS for 30 min at 37°C. This 

treatment has been reported to reduce membrane cholesterol by 40% (Rivas MG et 

al. 2003). 

2.4.6 AFM and vesicle fixing 

Vesicles were prepared from whole erythrocytes as detailed in section 2.4.4 and 

resuspended in Hepes-buffered saline (5mM Hepes, 150mM NaCl, pH 7.3). The 

vesicles were applied to freshly cleaved mica (Agar Scientific, Stansted, UK) and 

imaged at room temperature using a multimode atomic force microscope with a 

Nanoscope Illa controller and an E-scanner (Digital Instruments, Santa Barbara, 

CA). Images were recorded in intermittent tapping mode using oxide-sharpened 

silicon nitride tips mounted on cantilevers with nominal spring constants of 0.32 

Newton/m, oscillating to a frequency between 7 and 9KHz. The set point was 

adjusted during imaging to minimise the force whilst scanning at a rate of 1 Hz. 
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2.5 Biochemistry 

2.5.1 Bicinchoninic acid Protein Assay 

Protein concentrations were determined using the bicinchoninic acid protein assay 

with bovine serum albumin as standard (Smith et al. 1985). 

2.5.2 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS- 

PAGE) 

Polyacrylamide gels were cast and subsequently electrophoresed using Hoefer 

Mighty Small mini gel apparatus obtained from Amersham Biosciences (Little 

Chalfont, UK). Proteins were resolved on either a 10% acrylamide (30%; acrylamide 

ratio 37.5: 1 bis acrylamide) gel or 7-17% gradient gel for larger proteins. Samples 

were prepared using 2x Lamelli buffer (62.5mM Tris-HCI pH 6.8,2% (w/v) SDS, 

25% (v/v) glycerol, 10% (w/v) beta Mercaptoethanol, 0.01% (w/v) bromophenol 

blue), followed by subsequent boiling for 5 min. Samples were electrophoresed 

alongside the appropriate molecular weight markers in Tris/Glycine/SDS (TGS) 

buffer. The acrylamide gels were electrophoresed at a constant 40mA until the front 

had eluted. 

2.5.3 Immunoblot analysis 

Resolved proteins were transferred electrophoretically onto an activated poly 

(vinylidene) difluoride (PVDF) membrane. The gel and membrane assembly were 

immersed in Towbin transfer buffer (20mM Tris/HCI pH 8.3,150mM glycine, 20% 

(v/v) methanol) and subjected to a constant 115 volts for 75 min. Blotting 

equipment from Biorad Laboratories (CA, U. S. A. ) was used. Following transfer, the 
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membrane was blocked for 1h at room temperature in 5% (w/v) milk, 2% (w/v) 

bovine serum albumin and 0.05% (v/v) Tween 20 in Phosphate-buffered saline 

(PBS) (20mM NaH2PO4,200mM Na2HPO4,0.15M NaCl, pH 7.4). The membrane 

was then washed in PBS for 15 min. Incubation with the primary antibody for 1h 

was performed in blocking solution. Three 15 min washes in 0.05% (v/v) Tween 20 

in PBS were followed by incubation for 1h with the appropriate peroxidase - 

conjugated secondary antibody. This was then followed by the detection using the 

enhanced chemiluminescence detection kit from Amersham Biosciences (Little 

Chalfont, UK) and autoradiography film (blue sensitive). 

2.5.4 Coomassie blue staining 

Electrophoresed gels were stained using Coomassie blue stain (25% (v/v) 

isopropanol, 10% (v/v) acetic acid, 0.5% (w/v) Coomassie brilliant blue G250) 

overnight at room temperature on a rocking platform. Excess staining was removed 

using a destain solution (5% (v/v) isopropanol, 10% (v/v) acetic acid) at room 

temperature on a rocking platform. 

2.5.5 Amido black staining 

Following chemiluminescence detection, PVDF membranes were stained using 

amido black stain (0.1% (w/v) amido black, 1% (v/v) acetic acid, 40% (v/v) 

methanol, 60% (v/v) water). 
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2.5.6 Densitometric analysis 

Immunoblots were scanned using a flatbed scanner and saved as Tiff files. The 

image was viewed using the imaging programme Scionimage (Scion Corporation). 

The `threshold' function was used to convert the greyscale image to pure black and 

white. The black pixels in selected bands were counted and the values compared 

using Excel. Results are semi quantitative. 

2.6 Molecular Biology 

2.6.1 Preparation of Luria-Bertani (LB) medium 

The following were dissolved in dH2O, 1% (w/v) tryptone, 0.5% (w/v) yeast extract 

and 0.5% (w/v) NaCl. The medium was autoclaved at 1210C for 20 min. Before 

use, the selective antibiotic ampicillin was added to a final concentration of 

100µg/mi. 

2.6.2 Preparation of LB-ampicillin plates 

The LB medium was made as in section 2.6.1 with 1.5% agar (w/v). Following 

autoclaving, the medium was let to cool to 55°C before ampicillin was added. The 

plates were then poured and allowed to set overnight. They were then stored at 

4°C for no more than a month. Plates were prewarmed to 37°C before use. 

2.6.3 Preparation of plasmid DNA 

Selective LB media was inoculated with a single colony picked from a selective agar 

plate. For a small preparation of DNA 5ml of LB media was used, larger 
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preparations required 50m1 of LB media. Media was incubated shaking overnight at 

37°C. Cells were centrifuged at 6000g for 15 min at 4°C. Plasmid DNA was 

isolated using Qiagen® Plasmid Purification kits (Crawley, UK); the protocol was 

followed as suggested by the manufacturer. All buffers were supplied in the kit. 

Briefly, cells were lysed using a buffer containing Sodium Hydroxide and Sodium 

Dodecyl Sulphate. The cleared lysate was applied to an anion-exchange column. 

Bound DNA was washed and then eluted using a high-salt buffer. DNA was 

precipitated by the addition of isopropanol and then desalted with 70% ethanol. The 

DNA was resuspended in dH2O and quantified by absorbance measurement at 

260nm. DNA was stored at -200C. 

2.6.4 Restriction digest of DNA 

Promega restriction enzymes were used in all cases according to manufacturer's 

guidelines. Briefly, 10µg of DNA was incubated with the desired enzyme in the 

buffer supplied by the manufacturer Incubation at the temperature selected 

according to the manufacturer was for 1 h. 

2.6.5 Ligation of DNA 

Amount of DNA used was calculated thus: 

ng of vector x kb size of insert x molar ratio of insert = ng of insert 

kb size of vector vector 

Vector and insert DNA was incubated with T4 DNA Ligase in manufacturer's buffer 

at 14°C overnight. 
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2.6.6 Transformation of XL1-Blue competent cells 

XL1-Blue Cells were thawed on ice. Cells were aliquoted into 50µI samples and 

incubated on ice for 30 min with the appropriate amount of DNA. Samples were 

heat pulsed at 42°C for 45 sec and then returned to ice for 2 min. LB medium 

(0.5m1) was added to each transformation reaction and then incubated with shaking 

(225rpm) at 37°C for 1 h. Cells were then collected by centrifugation at 1000g for 1 

min. All but 50 µl of the supernatant was removed; cells were then resuspended 

and plated on LB-ampicillin selective agar plates. Plates were incubated overnight 

at 37°C. Colonies were selected the following morning, DNA isolated and 

sequenced. 

2.6.7 Agarose gel electrophoresis 

Agarose at the desired concentration was dissolved in TAE buffer (40mM Tris/HCI 

pH 8.0,0.1% (v/v) acetic acid, 1mM EDTA) with warming. The agarose solution 

was let to cool before 1 µl of a 10mg/ml solution of Ethidium Bromide was added. 

The solution was mixed well and the gel cast using Anachem Ltd gel equipment 

(Luton, UK). Once set, the gel was placed in a horizontal gel tank where it was 

immersed in TAE buffer. Samples were prepared using 6X loading buffer and 

loaded onto the gel. The gel was electrophoresed at a constant 1 00V for 30 min. 

2.6.8 TOPO cloning system 

The pcDNA3.1N5-His©TOPO®TA Expression Kit was purchased from Invitrogen 

(Paisley, UK), the protocol was followed as suggested by the manufacturer. Briefly, 

1 µl of fresh PCR product was incubated with the TOO"' cloning vector for 5 min at 
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room temperature. The cloning reaction was then placed on ice. A single vial of 

One Shot® cells was thawed and to it, 2µI of the cloning reaction added. Cells were 

incubated on ice for 30 min. They were then heat-shocked at 42°C for 30 sec 

without shaking and then immediately placed on ice. To each vial, 250µI of room 

temperature SOC medium was added. The cells were then incubated shaking, at 

37°C for 1 h. For each transformation, 10OµI of the cell solution was spread onto 

prewarmed ampicillin selective plates. The plates were incubated overnight at 

37°C. Colonies were selected; the DNA isolated and sent for sequencing. 

2.6.9 Dual-Luciferase® Reporter Assay 

The Dual- Luciferase® Reporter Assay kit was purchased from Promega 

(Southampton, UK), the protocol was followed as suggested by the manufacturer. 

Cells grown in 6-well culture plate were washed twice with 5ml of PBS. The passive 

lysis buffer supplied in the kit was diluted appropriately and 500µI applied to each 

well. The plates were incubated on a rocking platform at room temperature for 15 

min. The lysates were transferred to an eppendorf and stored at -200C. Sufficient 

Luciferase Assay Reagent II, Stop & Glo® Reagent and lysates were warmed to 

room temperature. Luciferase readings were taken on a Berthold Lumat LB 9501 

luminometer. 



57 

Chapter 3: The role of stomatin in the plasma membrane 

3.1 Stomatin in the erythrocyte 

Although stomatin is found in abundance in the erythrocyte membrane (410,000 

copies per cell) (Desneves et al. 1996), its role here is unclear. The erythrocyte 

membranes from Over-hydrated Hereditary Stomatocytosis (OHSt) patients are 

deficient in this protein (Fricke et al. 2003). The usual biconcave morphology of 

erythrocyte becomes mouth-shaped and is commonly known as a stomatocyte. 

The reason for this deficiency of stomatin is as yet unknown; trafficking problems, 

failure to locate a binding partner within the membrane and rapid degradation have 

all been suggested (Stewart 1997). Stomatin resides in lipid rafts within the 

membrane (Salzer et al. 2001). Membrane lipids and proteins are known to exist in 

domains (Parsegian 1995); the lipid raft hypothesis was put forward to explain this 

heterogeneity (Simons et al. 1997). Cholesterol, glycosphingolipids and some 

proteins, particularly those which are GPI-linked, appear to concentrate into rafts 

(Hooper 1999). In some instances this selective association can cluster crucial 

elements to initiate a signalling event (Magee et al. 2005) or enzymatic reaction 

(Morford et al. 2002). Rafts are thought to exist in both leaflets of the membrane 

and function cooperatively to initiate spatially directed signals in response to 

extracellular stimuli (Gri et al. 2004). Rafts are often represented in the literature as 

sections of membrane isolated on a sucrose density gradient following detergent 

extraction, more commonly known as detergent-resistant membranes (DRMs). In 

many instances, including for stomatin, DRM association has been used to indicate 

raft residence in vivo (Saizer et al. 2001). 
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In this project, membranes and DRMs were isolated from erythrocytes and 

stomatocytes to investigate their protein content. Comparing the membrane content 

and DRM protein profiles may show consequential differences in the stomatocyte 

due to the deficiency in stomatin, or possibly reveal a cause for this deficiency. A 

protein which partitions into DRMs containing stomatin may do so because of some 

tethering between itself and stomatin. Identification of possible binding partners 

may provide some indication as to a possible function for stomatin in the membrane. 

ATP-dependent vesiculation is defective in the stomatocyte, although whether 

stomatin has a direct involvement in this is unclear (Turner et al. 2003). During 

calcium-induced vesiculation stomatin is known to leave the erythrocyte membrane 

and concentrate into microvesicles (Salzer et al. 2002). This process was 

investigated further with the aim of defining a role for stomatin. 

3.1.1 Comparison of membrane-associated proteins in erythrocytes and 

stomatocytes 

Membranes were prepared from erythrocytes and stomatocytes (section 2.4.2). 

Samples were subjected to SDS-PAGE (section 2.5.2) followed by subsequent 

immunoblot analysis (section 2.5.3) using antibodies against known erythrocyte 

proteins (figure 3.1). For further detail on some of these proteins see section 1.1.1. 

As previously reported (Lande et al. 1982) stomatin was deficient in the stomatocyte 

membrane. Flotillin-1 was present in erythrocyte and stomatocyte membranes at a 

similar concentration; however, more of the phosphorylated form was present in the 

stomatocyte membrane (lower band on flotillin-1 immunoblot in figure 3.1). The 

reason for this is unknown. Actin showed decreased membrane association in the 
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stomatocyte. All other proteins examined were present in approximately equal 

concentration in the erythrocyte and stomatocyte membranes. 

To quantify these results, densitometric analysis (section 2.5.6) was carried out on 

the immunoblots in figure 3.1 and one other representative immunoblot. The 

density of the protein band in the erythrocyte sample was set at 100% in each case 

and the equivalent stomatocyte band compared. Stomatin was present in the 

stomatocyte membrane at 5% of the amount in the erythrocyte membrane, whilst 

actin was reduced to 50% in the stomatocyte membrane (figure 3.2). All other 

proteins were present in the two membrane systems at essentially the same 

amount. 

This result suggests that the deficiency of stomatin seen in the stomatocyte has no 

global effect on the protein content of the membrane. It does, however, suggest a 

possible link between the deficiency of stomatin and the lowered amount of actin in 

the membrane. This link between stomatin and actin was investigated further by 

isolating DRMs from erythrocytes and stomatocytes. 
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ES kDa 

Stomatin 10 32 

Flotillin-1 qlW ""'"ý"" 43 

Actin 4 42 
_ý- 

Aquaporin-1 28 

Band 2.1 215 

Band 4.1 78 

Band 3 90 

Flotillin-2 48 

Glut-1 60 

Glycophori nA 83 

SpeChn 260 

Figure 3.1 Protein content of erythrocytes and stomatocytes 

Membranes were isolated from erythrocytes (E) and stomatocytes (S) (section 

2.4.2) and subjected to SDS-PAGE (equal protein loading; 10pg), followed by 

subsequent immunoblot analysis using antibodies against the indicated proteins. 

The blots are representative of two separate isolations. Molecular weights are 

shown to the right of each immunoblot (kDa). 
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Figure 3.2 Densitometric analysis of proteins in erythrocytes and 

stomatocytes 

The densities of the protein bands on the immunoblots of the erythrocyte and 

stomatocyte membranes (figure 3.1) were measured using Scion Image software. 

Results shown represent the percentage content of the protein in the stomatocyte 

compared to that in the erythrocyte (set to 100%). Stom - stomatin; F-1 - flotillin-1; 

Actin - actin; Aqp-1 - aquaporin-1; 2.1 - band 2.1; 3- band 3; 4.1 - band 4.1; F-2 - 

flotillin-2; Glut-1 - glucose transporter molecule-1; GA - Glycophorin A; Spec - 

spectrin. Results are the mean (± range) of two separate experiments. 
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3.1.2 Isolation of DRMs from red blood cells 

Isolation of DRMs from erythrocytes begins with the solubilisation of the non-DRM 

material using a cold non-ionic detergent. The solubilised mixture is then loaded at 

the base of a sucrose density gradient and subjected to high speed centrifugation 

overnight. Due to their insolubility and reduced density, the DRMs float up the 

sucrose gradient to the lighter fractions. Cell debris is pelleted at the base of the 

gradient and the solubilised non-DRM material remains in the lower heavier 

fractions. 

As OHSt blood was available in limiting quantity, the protocol used to isolate DRMs 

from erythrocytes had to be reliable. Two protocols were trialled as outlined in figure 

3.3. The first was sourced through personal communication with Prof. GW Stewart 

(University College London) and the second is adapted from a protocol from the 

Prohaska group (Salzer et al. 2001). Both are based on the use of cold Triton X- 

100 and a sucrose density gradient as mentioned above. 

The success of each protocol was determined by positioning of the DRM marker 

protein flotillin-1 across the fractionated sucrose gradient. Fractions were subjected 

to SDS-PAGE (section 2.5.2) followed by subsequent immunoblot analysis (section 

2.5.3) using antibodies against flotillin-1 (figure 3.4). Each protocol was carried out 

several times to assess its reliability. In my hands protocol 1 rarely isolated DRMs. 

Immunoblot analysis for flotillin-1 commonly detected the protein in lower fractions 

containing solubilised material and in the pellet fraction. The presence of flotillin-1 

in the soluble regions of the gradient using protocol 1 may indicate partial 

solubilisation of the DRMs during preparation. The Triton X-100 concentration was 

considered to be a possible problem and lowered from 1% to 0.5%. Again, similar 
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problems were experienced. This distribution across a gradient is seen in some 

instances when a protein shows partial DRM association. However, flotillin-1 should 

be restricted to the DRM fractions. It was critical to ensure complete separation of 

DRMs from non-DRM material for future comparison of erythrocytes with 

stomatocytes. Protocol 1 was trialled in four separate experiments; on one 

occasion DRMs were successfully isolated. 

Protocol 2 successfully isolated DRMs from erythrocytes (figure 3.4). Flotillin-1 was 

detected only in the lighter density fractions (7-10), demonstrating the insolubility 

and reduced density of the DRMs. Protocol 2 was trialled in four separate 

experiments; each successfully isolated DRMs. Due to its reliability, protocol 2 was 

used for the subsequent isolation of DRMs. For further experimental detail on 

protocol 2, see section 2.4.3. 
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Figure 3.4 Immunoblot analysis of gradients produced using each protocol 

Whole erythrocytes were subjected to the treatments indicated in figure 3.3. 

Fractionated gradients were subjected to SDS-PAGE (equal volume of each fraction 

loaded) followed by subsequent immunoblot analysis using an antibody against 

flotillin-1. The upper panel shows the immunoblot analysis for protocol 1 and the 

lower shows the immunoblot analysis for protocol 2 (0-pellet, 12-top fraction). 

Molecular weight markers are shown to the left of each immunoblot (kDa). The 

immunoblots are representative of four separate isolations. 
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3.1.3 Comparison of DRM profiles from erythrocytes and stomatocytes 

The DRMs were isolated from erythrocytes and stomatocytes using protocol 2 

(section 2.4.3). The fractionated gradients were subjected to SDS-PAGE followed 

by subsequent immunoblot analysis using antibodies against various proteins. As 

before, positioning of flotillin-1 across the gradient was primarily considered to 

confirm successful DRM isolation. Distribution in the gradient fractions of the 

proteins considered in the membrane study was then investigated. 

The immunoblots shown in figure 3.5 clearly demonstrate that flotillin-1 is restricted 

to the DRM fractions in both the erythrocyte and stomatocyte gradients. In both 

gradients the DRMs are present mainly in fractions 6-8. Stomatin is predominantly 

DRM-associated on the erythrocyte gradient; as expected the protein was 

undetectable on the stomatocyte gradient (data not shown). Actin was shown to be 

partially DRM-associated in the erythrocyte with significant proportions of the protein 

detected in most fractions. There was a clear reduction in actin levels across the 

stomatocyte gradient, particularly in the DRM fractions. To quantify this reduction, 

the DRM fractions on the immunoblots seen in figure 3.5 and one other 

representative immunoblot were subjected to densitometric analysis (section 2.5.6). 

The actin content in these fractions on the erythrocyte gradient was set at 100%. 

The equivalent stomatocyte fractions had only 10% (mean value) of the actin level 

of the erythrocyte (figure 3.6). 

Aquaporin-1, flotillin-2 and glut-1 were also shown to be DRM-associated, although 

minor amounts of flotillin-2 were present in the non-DRM fractions in both 

erythrocytes and stomatocytes (figure 3.5). Band 2.1, band 3, band 4.1 and 

spectrin were all shown to be non-DRM-associated proteins. They remained in the 
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solubilised material at the base of the gradient. There was no co-localisation of 

flotillin-1 with these solubilised proteins, indicating that the DRMs were completely 

segregated from the solubilised material at the base of the gradient. 

Together these results suggest that stomatin deficiency in the stomatocyte has little 

effect on the partitioning of several proteins into DRMs. The only difference noted in 

this study was the reduced association of actin across the stomatocyte gradient, 

particularly in the DRM regions. This suggests stomatin may be linked to the actin 

cytoskeleton and thus form part of a tethering mechanism between the membrane 

and the cytoskeleton. This result agrees with the decreased actin content in the 

stomatocyte membrane (figure 3.1) and was further investigated through the 

overexpression of stomatin in mammalian cells. 

A summary of the distribution of proteins in erythrocyte and stomatocyte 

membranes and DRMs is shown in figure 3.7. Additional proteins investigated with 

inconclusive results are also noted there. 
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Figure 3.5 Distribution of proteins across erythrocyte and stomatocyte 

gradients 

DRMs were isolated using a discontinuous buoyant sucrose density gradient in the 

presence of Triton X-100 (section 2.4.3). The gradients were fractionated base 

upwards and the pelleted material resuspended (0-pellet; 11-top fraction). The 

gradients were subjected to SDS-PAGE (equal volume of each fraction loaded) and 

subsequent immunoblot analysis using antibodies against the indicated proteins. 

Blots are representative of 2 separate isolations. E- erythrocyte; S- stomatocyte. 

Molecular weights are shown to the right of each immunoblot (kDa). 
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Figure 3.6 Actin association with DRM fractions 

Stomatocyes 

The density of the protein bands produced by immunoblot analysis for actin content 

of the DRMs (figure 3.5; fractions 6-8) was measured using Scion Image software 

(section 2.5.6). The density measured for erythrocytes was set to 100%. Results 

are the mean (± range) of two separate experiments. 

Erythrocytes 
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Protein Membranes DRMs 

Erythrocyte: Stomatocyte Erythrocyte Stomatocyte 

Stomatin 1: 0 + not detected 

Flotillin-1 1: 1 + + 

Actin 2: 1 +1- +1- 

Ankyrin not detected not detected not detected 

Annexin V not detected not detected not detected 

Aquaporin-1 1: 1 + + 

Band 2.1 1: 1 - - 
Band 3 1: 1 - - 
Band 4.1 1: 1 - - 
Caveolin not detected not detected not detected 

Flotillin-2 1: 1 + + 

Glut-1 1: 1 + + 
Glycophorin A 1: 1 not detected not detected 

Glycophorin C not detected not detected not detected 

Spectrin a 1: 1 - - 

Figure 3.7 Protein ratio in membranes and their distribution across the 

sucrose gradient in erythrocytes and stomatocytes 

Membranes were isolated from erythrocytes and stomatocytes (section 2.4.2), 

subjected to SDS-PAGE (equal protein loading; 10pg) and subsequent immunoblot 

analysis using antibodies against the proteins indicated. Results shown represent 

the ratio of protein content between the erythrocyte and stomatocyte. 

DRMs were isolated from erythrocytes and stomatocytes. The fractionated 

gradients were subjected to SDS-PAGE (equal volume of each fraction loaded) 

followed by subsequent immunoblot analysis using antibodies against the proteins 

shown (+ DRM associated, - no DRM association; +/- partially DRM association). 
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3.2 Overexpression of stomatin in mammalian cells 

The results obtained from the analysis of the erythrocyte and stomatocyte 

membranes and DRMs suggest that stomatin may be linked to the actin 

cytoskeleton. To further investigate this, stomatin was overexpressed in 

mammalian cells and the actin levels assessed. Various mammalian cell lines were 

cultured using standard cell culture techniques (section 2.2.1). Once confluent, they 

were washed and harvested. Membranes were isolated from each cell line (section 

2.3.2) and subjected to SDS-PAGE (section 2.5.2) followed by subsequent 

immunoblot analysis (section 2.5.3) using an antibody against stomatin (figure 3.8). 

Madin-Darby canine kidney (MDCK) cells showed low endogenous expression of 

stomatin and so were selected for this study. The protein content of MDCK cell 

lysates, membranes and DRMs following the overexpression of stomatin was 

investigated. 

3.2.1 Cloning of stomatin into the expression vector pcDNA3.1 

In order to overexpress stomatin transiently in MDCK cells, the DNA of stomatin 

was first cloned into the expression vector pcDNA3.1N5-His©TOPO®TA (TOPO). 

Full-length human stomatin cDNA was purchased from OriGene Technologies Inc. 

(MD, USA). The clone was supplied as plasmid DNA and retrieved according to the 

manufacturer's instructions. The DNA was sequenced and subsequently used as a 

template in the amplification of the cDNA encoding stomatin. Accutaq LA DNA 

Polymerase (Sigma-Aldrich Ltd., Poole, UK) was selected due to the proofreading 

system attached to this enzyme. The enzyme and reagents supplied were used as 

suggested by the manufacturer; 200ng of template DNA was used. Cycling 

parameters were set according to the manufacturer. 
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Freshly generated stomatin cDNA was cloned into the expression vector TOPO. 

The vector was supplied as a component of the pcDNA3.1N5-HiscTOPO®TA 

Expression Kit (Invitrogen Ltd, Paisley, UK). The kit was used as suggested by the 

manufacturer (section 2.6.8). The ligation reactions were then transformed into the 

TOP10 competent E. coli cells supplied in the kit. The cells were plated on selective 

media containing ampicillin (section 2.6.2). Colonies were selected and the plasmid 

DNA isolated (section 2.6.3) and sequenced. MDCK cells were transiently 

transfected (section 2.2.2) with lOpg of the expression vector TOPO containing the 

cDNA encoding human stomatin. Lysates (section 2.3.1), membranes (section 

2.3.2) and DRMs (section 2.3.5) were prepared from the cells 48 hours post- 

transfection. 

3.2.2 Comparison of actin levels in cells overexpressing stomatin 

Lysate samples from untransfected and transfected MDCK cells were subjected to 

SDS-PAGE (section 2.5.2) followed by subsequent immunoblot analysis (section 

2.5.3) using antibodies against stomatin, flotillin-1 and actin. Under these conditions 

no endogenous stomatin was detected in the untransfected MDCK cells (figure 3.9). 

This is likely due to the low level at which the protein is usually expressed. An 

increased signal was detected for stomatin in the transfected cells confirming 

overexpression of this protein. The levels of flotillin-1 and actin were unaltered 

following overexpression of stomatin. Densitometric analysis (section 2.5.6) to 

confirm this observation was carried out using the immunoblots shown in figure 3.9 

and other representative data. The untransfected sample was set at 100% and the 

transfected sample compared to it. The levels of both flotillin-1 and actin were 

essentially the same in the transfected cells as in the untransfected cells (figure 

3.9). 
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Membrane samples isolated from untransfected and transfected cells were 

immunoblotted similarly to the aforementioned lysate samples. Again, no 

endogenous stomatin was detected (figure 3.9). An increased signal for stomatin 

was detected in the transfected cells, again confirming overexpression of this 

protein and demonstrating correct cellular localisation. The level of membrane 

flotillin-1 was unaltered in the transfected cells, confirmed by densitometric analysis. 

The signal for membrane-associated actin was greater in the transfected cells as 

compared to the untransfected cells. Densitometric analysis showed there to be a 

50% increase in membrane-associated actin in the transfected as compared to the 

untransfected cells (figure 3.9). The densitometric analysis was carried out on the 

immunoblot shown in figure 3.9 and one other representative immunoblot produced 

in a separate experiment, the mean result was taken. 

Fractionated sucrose gradients prepared from transfected and untransfected cells 

were subjected to SDS-PAGE followed by subsequent immunoblot analysis using 

antibodies against stomatin, flotillin-1 and actin. Distribution of the proteins across 

the gradient was determined with particular interest shown to the DRM fractions 

(figure 3.10). Positioning of the DRM marker protein flotillin-1 showed the DRMs to 

be present in fractions 7-9 in both the untransfected and transfected cells. Stomatin 

was also found in the DRM fractions from the transfected cells. No stomatin was 

detected in the gradient prepared from the untransfected cells (data not shown). 

The actin content was significantly higher in the DRMs from the transfected cells; a 

20% increase as shown by densitometric analysis of the immunoblot in figure 3.10 

and one other representative immunoblot (figure 3.10). 
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These data agree with the analysis of membranes and DRMs isolated from 

erythrocytes and stomatocytes. The results obtained following the overexpression 

of stomatin in MDCK cells provides further evidence for a link between stomatin and 

actin. This link may serve to tether the cytoskeleton to the membrane. 
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Figure 3.8 Immunoblot analysis for stomatin in various mammalian cell lines 

Membranes were isolated from mammalian cells (section 2.3.2) that were cultured 

using standard cell culture techniques (section 2.2.1). Membrane samples from 

each cell line were subjected to SDS-PAGE (equal protein loading; 10pg) followed 

by subsequent immunoblot analysis using an antibody against stomatin. Glioma 

(BU17), Chinese hamster ovary (CHO), cervical carcinoma (HeLa), human 

embryonic kidney (HEK), Madin-Darby canine kidney (MDCK), human 

neuroblastoma (SH-SY5Y), tetraploid murine neuroblastoma (TMN). 



76 

Lysates 

UT T kDa 

Stomatin 32 

Flotillin-1 42 

Actin 43 

Me mbra nes 

UT T kDa 

Stomatin 0-09>i- 32 

Flotillin-1 ý- "ý "' 42 

Actin . + A+ 43 

C 
120 

100 
y 
ýN N 

00 

Wv 
ÜU 50 

NO 
CU 

ýe 
40 

C C_ 

20 

C 

O0 
E 

180 ö 

^160 

140 E 

v 120 
5 

ý Ifjp 

bN 
C 6J 

ö 
.ý 

00 

O. N 

20 

actr 

Figure 3.9 Overexpression of stomatin causes increased membrane actin 

association 

Stomatin was transiently overexpressed in MDCK cells (section 2.2.2). Lysate and 

membrane samples were isolated from untransfected (UT) and transfected (T) cells 

and subjected to SDS-PAGE (equal protein loading; 5pg) followed by subsequent 

immunoblot analysis using antibodies against stomatin, flotillin-1 and actin. 

Immunoblots are representative of two separate experiments. 

The density of the bands produced by immunoblot analysis for flotillin-1 and actin 

content of lysates and membranes was measured using Scion Image software 

(section 2.5.6). The density measured for UT cells was set to 100%. Results are 

the mean (± range) of two separate experiments. 
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Figure 3.10 Overexpression of stomatin causes increased actin association in 

DRMs 

Stomatin was transiently overexpressed in MDCK cells (section 2.2.2). Cells 

underwent DRM isolation (section 2.3.5) and the fractionated sucrose gradients 

were subjected to SDS-PAGE (equal volume of each fraction loaded) followed by 

subsequent immunoblot analysis using antibodies against stomatin, flotillin-1 and 

actin. Immunoblots are representative of two separate experiments. UT - 

untransfected; T- transfected. 

The density of bands produced by immunoblot analysis for actin in DRM fractions 7- 

9 were measured using Scion Image software (section 2.5.6). The density 

measured for UT cells was set to 100% and the T cells compared to them. Results 

are the mean (± range) of two separate experiments. 
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3.3 Calcium-induced vesiculation of erythrocytes 

Calcium loading of the erythrocyte has been a useful model to study membrane 

composition and vesiculation. More recently the clinical relevance of this model 

became apparent when the erythrocyte was demonstrated to respond to external 

stimuli, in particular prostaglandin E2 (Li et al. 1996) and lysophosphatidic acid (Fu 

et al. 2004), which induce calcium-dependent processes within the erythrocyte. 

Increased cytosolic calcium leads to several intracellular events all thought to 

contribute to vesiculation of the erythrocyte. Some of these events include: 

0 Rearrangement of the cytoskeleton - particularly to the spectrin network 

(Anderson et al. 1977) 

" Calpain-1 activation -a cysteine protease known to act on the cytoskeletal 

proteins protein 2.1 and protein 4.1 (Dantas de Medeiros et al. 2002) and on 

stomatin (Saizer et al. 2002) 

" Loss of lipid asymmetry in the membrane - inhibition of a translocase and 

activation of a scramblase leads to transbilayer mixing of phospholipids 

(Zwaal et al. 1997) 

Treatment of erythrocytes with calcium and ionophore A23187 causes calcium 

loading and induces the shedding of microvesicles (150 nm diameter) and 

nanovesicles (60nm diameter) (Allan et al. 1980). These haemoglobin-containing 

exovesicles are devoid of cytoskeletal components (Knowles et al. 1997) but 

enriched in glycosyiphosphatidylinositol (GPI)-anchored proteins such as 

acetyicholinesterase and CD55 (Butikofer et al. 1989). This vesiculation is 

considered to serve as the erythrocyte's defence to complement, rapidly eliminating 
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the membrane attack complex (MAC) in the exovesicles and is thought to be 

initiated by calcium influx through the MAC channel (lida et a/. 1991). Similar 

strategies have been described for platelets (Sims et al. 1986) and neutrophils 

(Morgan et al. 1987). The process is thought to be raft-based with stomatin 

concentrating into the microvesicles (Saizer et al. 2002). To provide further 

evidence for this vesiculation being a raft-based process, it was investigated in 

cholesterol-depleted erythrocytes and stomatocytes. 

3.3.1 Methyl-ß-Cyclodextrin treatment reduces vesiculation 

To provide further evidence for raft involvement with vesiculation, Methyl-ß- 

Cyclodextrin (MßCD) was used to deplete the erythrocyte of cholesterol. Depletion 

in this manner perturbs lipid rafts functionally and challenges their integrity 

(Ilangumaran et al. 1998). Untreated and cholesterol-depleted erythrocytes were 

then treated to induce vesiculation and immunoblot analysis was used to assess the 

process. In this study whole erythrocytes were incubated in 3mM MßCD for 30 min 

at 37°C (section 2.4.5). This treatment has previously been shown to reduce 

cholesterol content of the erythrocyte membrane by 40% (Rivas et al. 2003). 

Cholesterol-depleted erythrocytes were then treated with calcium and ionophore to 

induce vesiculation (section 2.4.4). Membranes were isolated from the post- 

vesiculation erythrocytes (section 2.4.2). Vesicles and post-vesiculation 

membranes were subjected to SDS-PAGE (section 2.5.2) followed by subsequent 

immunoblot analysis (section 2.5.3) using antibodies against the flotillin proteins. All 

control samples (figure 3.11; - MßCD lane 1-4) were loaded at equal protein 

concentration. Cholesterol-depleted membranes and vesicles were loaded at equal 

volume of the equivalent control sample (e. g. lane 1 in each case contained the 

same volume of sample; lane 2 in each case contained the same volume of sample 
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etc). Lane 1 represents the post-vesiculation membrane, lanes 2 and 3 represent 

the microvesicles and lane 3 represents the nanovesicles. The microvesicles in 

lane 3 represent a smaller subset of microvesicles compared to those in lane 2 due 

to the longer centrifugation period (Salzer et al. 2002). 

Under these conditions, the cholesterol-depleted erythrocytes showed reduced 

vesiculation compared to control erythrocytes (figure 3.11). Densitometric analysis 

(section 2.5.6) on the immunoblots in figure 3.11 and two other representative 

immunoblots showed - 40% of flotillin-1 and - 55% of flotillin-2 vesiculated from the 

control erythrocytes (figure 3.12). Following cholesterol depletion none of the 

flotillin-1 and only - 10% of flotillin-2 was detected in the vesicles. Longer 

exposures of the immunoblots to photographic film showed minor amounts of 

flotillin-1 in the microvesicles (data not shown). It is apparent from this study that 

the extent to which the erythrocyte is able to vesiculate in response to calcium influx 

is dramatically reduced following cholesterol depletion. As the process is reportedly 

raft-based, these results suggest that if raft integrity is perturbed, so too is the ability 

of the erythrocyte to vesiculate. 
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Figure 3.11 Cholesterol depletion reduces calcium-induced vesiculation. 

Control (- MßCD) and cholesterol-depleted (+ MßCD) erythrocytes were treated with 

calcium and the calcium ionophore A23187 to induce shedding of microvesicles and 

nanovesicles (section 2.4.4). Membranes were then isolated from the treated 

erythrocytes (section 2.4.2). Erythrocyte membranes and vesicles were subjected 

to SDS-PAGE and subsequent immunoblot analysis using antibodies against the 

Flotillin proteins. Lane 1, post-vesiculation membranes. Lane 2, microvesicles 

isolated following centrifugation for 10 min at 15,000g. Lane 3, microvesicles 

isolated following centrifugation for 20 min at 15,000g. Lane 4, nanovesicles. Post- 

vesiculation membranes and untreated vesicles were loaded at equal protein 

concentration (5pg). Equivalent volumes of treated membranes and vesicles were 

loaded. Immunoblots are representative of three separate experiments. 
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Figure 3.12 Densitometric analysis showing the extent to which the flotillin 

proteins vesiculate 

The density of bands produced by immunoblot analysis for the flotillin content within 

vesicles (figure 3.11) was measured using Scion Image software (section 2.5.6). 

Results shown represent the percentage of total flotillin content in all the vesicle 

fractions (figure 3.11, lanes 2-4) as compared to the post-vesiculation membranes 

(figure 3.11, lane 1). Control (-MßCD) and cholesterol depleted (+MßCD) are 

shown. Results are the mean (± SEM) of three separate experiments. 

Flotillin-2 
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3.3.2 Calcium-induced vesiculation of stomatocytes 

Erythrocytes and stomatocytes were treated with calcium and ionophore to induce 

vesiculation (section 2.4.4). The post-vesiculation membranes and vesicles were 

subjected to SDS-PAGE (section 2.5.2) followed by subsequent immunoblot 

analysis (section 2.5.3) using antibodies against stomatin, flotillin-1 and flotillin-2. In 

erythrocyte samples stomatin concentrated into microvesicles and the flotillin 

proteins largely remained within the erythrocyte membrane (figure 3.13). In 

stomatocyte samples stomatin was undetectable (data not shown) and the flotillin 

proteins were found predominantly in the smaller subset of microvesicles and in the 

nanovesicles. This left the post-vesiculation stomatocyte membranes almost 

completely devoid of flotillins. Densitometric analysis (section 2.5.6) on the 

immunoblots in figure 3.13 and two other representative immunoblots showed in 

control samples - 20% of flotillin-1 and -30% of flotillin-2 to vesiculate from the 

erythrocyte (figure 3.14). Vesicles from the stomatocytes contained - 100% of the 

flotillin proteins. These results suggest that stomatin may play an important role in 

regulating calcium-induced vesiculation. In the absence of stomatin, the 

vesiculation process appears to be enhanced. To further investigate the possibility 

that more vesicles are produced from stomatocytes than erythrocytes under similar 

conditions, vesicle samples were imaged by atomic force microscopy and numbers 

of vesicles assessed. 
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Figure 3.13 Treatment with calcium ionophore induces shedding of 

microvesicles and nanovesicles from erythrocytes and stomatocytes 

Erythrocytes (E) and stomatocytes (S) were treated with calcium and calcium 

ionophore A23187 to induce shedding of microvesicles and nanovesicles (section 

2.4.4). Post-vesiculation membranes and resultant vesicles were subjected to SDS- 

PAGE followed by subsequent immunoblot analysis using antibodies against the 

proteins indicated. Lane 1, post-vesiculation membranes. Lane 2, microvesicles 

isolated following centrifugation for 10 min at 15,000g. Lane 3, microvesicles 

isolated following centrifugation for 20 min at 15,000g. Lane 4, nanovesicles. Post- 

vesiculation membranes and control vesicles were loaded at equal protein 

concentration (5pg). Equivalent volumes of stomatocyte vesicles were loaded. 

Immunoblots are representative of three separate experiments. 
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Figure 3.14 Densitometric analysis of vesicles from erythrocytes and 

stomatocytes 

The density of bands produced by immunoblot analysis for the flotillin content within 

vesicles recovered from erythrocytes and stomatocytes (figure 3.13) were measured 

using Scion Image software (section 2.5.6). Results shown represent the 

percentage of total flotillin recovered in all vesicle fractions (figure 3.13, lanes 2-4) 

as compared to the post-vesiculation membranes (figure 3.13, lane 1). Results are 

the mean (± SEM) of three separate experiments. 
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3.3.3 Atomic force microscopy of calcium-induced vesicles 

To further confirm the enhanced vesiculation from stomatocytes as seen by 

immunoblot analysis (figure 3.13), vesicle samples were subjected to analysis using 

atomic force microscopy (AFM). The technique records height information 

according to sensor deflection. Erythrocytes and stomatocytes were treated with 

calcium and ionophore to induce vesiculation. Equivalent volumes of each vesicle 

sample were placed on a mica-coated surface and kindly imaged using AFM by 

Miss A. Garner (section 2.4.6). 

The AFM images obtained show an increased number of microvesicles and 

nanovesicles in the stomatocyte samples as compared to erythrocyte samples 

(figure 3.15). This agrees with immunoblot data suggesting that stomatocytes are 

more susceptible to calcium-induced vesiculation than erythrocytes. The 

microvesicles obtained from the stomatocytes appear to be more irregular in shape; 

the reason for this is unknown. This result agrees with data obtained from 

immunoblot analysis of vesicle samples from erythrocytes and stomatocytes (figure 

3.13). Together these results suggest stomatin may play a regulatory role in 

calcium-induced vesiculation. 
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microvesicles 

nanovesicles 

Figure 3.15 AFM images of erythrocyte and stomatocyte microvesicles and 

nanovesicles. 

Erythrocytes and stomatocytes were treated with calcium and ionophore to induce 

shedding of microvesicles and nanovesicles (section 2.4.4). Microvesicles (upper 

panels) and nanovesicles (lower panels) were imaged on mica coated surfaces 

(section 2.4.6). Vesicles formed from erythrocytes are seen on the left, vesicles 

from stomatocytes are seen on the right. 

Erythrocyte Stomatocyte 
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3.4 Discussion 

The results obtained from the analysis of proteins of membranes and DRMs from 

erythrocytes and stomatocytes indicate an association between stomatin and the 

actin cytoskeleton. In the stomatin-deficient stomatocytes, reduced actin 

association was detected in the membranes and DRMs as compared to the 

erythrocytes. These data are supported by unpublished work in which DRM 

analysis of stomatocytes showed the same reduction in actin association when an 

alternative DRM isolation protocol was used (J. Turner, University College London, 

UK). The possibility of an association between stomatin and the actin cytoskeleton 

was further investigated in this study through the transient overexpression of 

stomatin in MDCK cells. Cells overexpressing stomatin showed increased actin 

levels in membranes and the DRMs. Lysates from the same cells showed no 

overall increase in cellular actin. This result suggests the overexpression of 

stomatin had no global effect on the total cell actin level but does indicate a direct 

involvement with the increased presence of actin detected at the plasma membrane 

and in DRMs. If stomatin does associate with the actin cytoskeleton, then it is likely 

in part to have a structural role. 

A structural role for stomatin has previously been suggested due to its likeness with 

the caveolins. Membrane topology, palmitoylation, oligomerisation and raft 

residence are all features shared. The caveolins form the scaffold for caveolae, 

flask-shaped invaginations of the membrane. This has led to the suggestion that 

stomatin may be functioning similarly as a scaffold protein (Umlauf et al. 2004). 

Several other studies have shown an association between stomatin and the actin 

cytoskeleton. These have lead to the speculation that stomatin is a structural 
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protein forming a bridge between the membrane and the actin cytoskeleton. Firstly, 

stomatin shows an affinity for the cytoskeletal protein ß-adducin (Innes et al. 1999). 

Secondly, stomatin has been found concentrated within the actin-rich microvilli of 

MDCK and UAC cells. This group speculated that this association was perhaps 

involved in morphogenesis of these cells (Snyers et al. 1999a). Thirdly, various 

members of the SPFH (Stomatins/Prohibitins/Flotillins/HfIK/C) domain family of 

proteins have been found to associate with the actin cytoskeleton. The prohibitins 

are a group of highly conserved proteins which are responsible for various cellular 

processes including cell-cycle progression, apoptosis and modulation of epithelial 

cell migration (Bacher et al. 2002; Rajalingam et al. 2005). The flotillins, again 

highly conserved, are involved with cell signalling, trafficking and cytoskeletal 

rearrangement (Langhorst et al. 2005). Podocin is exclusively expressed in 

podocytes (specialised renal epithelial cells), and linked to the actin cytoskeleton by 

the adapter protein CD2AP (Schwarz et al. 2001). As well as their association with 

the actin cytoskeleton, these proteins all oligomerise and reside within lipid rafts. 

This has prompted the suggestion that these proteins, as well as stomatin, form 

scaffolds for the assembly of multiprotein complexes (Langhorst et al. 2005). 

Actin association with lipid raft proteins can have functional significance for cells. 

Studies on T-cell activation have shown that actin controls the coalescence of lipid 

rafts, in this instance regulating the association of the T cell signalling machinery 

and the formation of a platform favourable for signalling (Valensin et al. 2002). 

Calcium-induced vesiculation of erythrocytes is raft-based, requires reorganisation 

of the cytoskeleton and is localised to a given area of membrane according to 

calcium influx (Salzer 1999). In the erythrocyte the stomatin-actin link may in part 

assist in the coalescence of proteins and lipids required for localised vesiculation. 
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Many components which are normally considered raft resident are found enriched in 

the vesicles e. g. sphingomyelin, cholesterol and GPI-anchored proteins (Civenni et 

a/. 1998). In cells lacking GPI-anchored proteins the erythrocytes show an impaired 

ability to vesiculate (Whitlow et al. 1993). In this study, cholesterol-depleted 

erythrocytes in which the raft structure is perturbed showed significantly reduced 

vesiculation. This suggests that if components normally associated with erythrocyte 

rafts are depleted, vesiculation is hindered. This suggests a significant role for rafts 

in this process. 

During calcium-induced vesiculation stomatin concentrates into the microvesicles 

whilst the flotillins and cytoskeletal proteins remain within the erythrocyte 

membrane. If stomatin does in part function as a structural protein, it may 

concentrate into the microvesicles to form part of the scaffold. Vesiculation was 

significantly enhanced in the stomatocytes, as shown by immunoblot analysis and 

AFM. This suggests that stomatin may also have a role in the regulation of 

vesiculation, in its absence there is unrestricted shedding of vesicles. The stomatin- 

actin link discussed earlier may form part of this regulation, necessitating a cleavage 

event to allow the release of stomatin from the erythrocyte. Vesiculation is known to 

require remodelling of the underlying cytoskeleton which is thought in part to be 

calpain-associated (lida et al. 1991). Calpain is known to cleave the cytoskeletal 

protein band 4.1 (Dantas de Medeiros et al. 2002) and stomatin (Saizer et al. 2002) 

both of which concentrate into microvesicle structures. Stomatin is enriched in the 

microvesicles themselves and band 4.1 into microvesicle appendages called `tails'. 

It has been suggested that the enrichment of band 4.1 into these `tail' structures is 

significant in membrane fusion preceding the release of the microvesicle (Allan et al. 

1980). Preliminary data suggest that calpain activity is increased in stomatocytes 
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(data not shown). Perhaps the reduction in the stomatin-actin link coupled with the 

increased calpain activity is responsible for the enhanced vesiculation. Membrane 

perturbing agents can form stomatocytes from healthy erythrocytes. Studies 

performed on these stomatocytes have shown reduced vesiculation upon calcium 

loading. This suggests that the shape of the OHSt stomatocyte could not be 

responsible for the enhanced vesiculation and further suggests that the absence of 

stomatin is directly linked (Wolfs et al. 2003). 

As well as OHSt stomatocytes showing enhanced levels of vesiculation, the protein 

content of the resultant vesicles is altered. The flotillins are found in the post- 

vesiculation erythrocyte. Following calcium loading of stomatocytes, the flotillins are 

found enriched in the smaller subset of microvesicles and in the nanovesicles. The 

post-vesiculation stomatocyte membrane was left almost devoid of these proteins. 

As the vesiculation process is thought to be involved in the protection against 

complement (lida et al. 1991), it can be considered important that this system is 

maintained. In the stomatocyte it may be critical to replace stomatin in order that 

vesiculation can continue. The flotillins may form this substitute perhaps due to 

their SPFH domain or membrane topology, both features they share with stomatin. 

They may, however, lack the critical regulatory feature contained within stomatin. 

Previous studies have not implicated stomatin to be directly involved in the 

regulation of calcium-induced vesiculation but have linked the protein with various 

essential features of this process. Firstly, vesiculation is preceded by localised loss 

of phospholipid asymmetry. This is caused by the inhibition of the phospholipid 

translocase and activation of a phospholipid scramblase. This scramblase has 

previously been identified as being an endofacial protein associated with the actin 
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cytoskeleton (Connor et al. 1989); one study has suggested it to be stomatin 

(Desneves et al. 1996). During this redistribution of phospholipids, 

phosphatidylserine (PS), which is usually confined to the inner leaflet of the 

membrane, becomes exposed on the outer leaflet (Zwaal et al. 1997). The 

appearance of PS at the surface of the erythrocyte is known to trigger thrombin 

formation. The OHSt patients who undergo therapeutic splenectomy often suffer 

problems with thrombosis; this has been attributed to the possible appearance of 

PS at the surface of the stomatocyte (Stewart 2004). Although stomatocytes show 

scramblase activity (Stewart et al. 1999), thombotic problems post-splenectomy 

suggest lipid asymmetry may not be correctly regulated. This could be directly due 

to the deficiency of stomatin or as a result of enhanced vesiculation. Secondly, 

calcium increase within the erythrocyte results in the binding of the soluble 

cytoplasmic protein caipromotin to the endoplasmic face of the membrane. This 

attachment is required for the opening of Ca"-dependent K+ channels, followed by 

efflux of K+ and water and subsequent cell shrinkage. This is known as the Gardos 

effect; the exact mechanism is not yet fully understood but essential for vesiculation. 

The erythrocyte holds vast intracellular reserves of caipromotin; only 1% of this 

reserve is required to bring about the Gardos effect (Moore et al. 1991). One 

proposed binding site on the membrane is stomatin (Moore et al. 1997). 

Intracellular stomatocyte levels of calcium are within the normal range and the 

Gardos effect is known not to be responsible for the increased permeability to K+ 

ions (Stewart 2004). Stomatin had previously been suggested to have an ion 

channel regulatory role due to stomatocytes showing elevated permeability to Na+ 

and K+ cations, as yet no direct link has been shown (Lande et al. 1982). Perhaps 

this binding of calpromotin to stomatin forms some regulatory feature of calcium- 

induced vesiculation. 
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Abnormalities in calcium-induced vesiculation have been noted for other disease 

states. The erythrocytes from patients with Scott syndrome show diminished 

membrane vesiculation; this has been attributed to defective reorganisation of the 

actin cytoskeleton (Bevers et al. 1992). Patients with glucose-6-phosphate 

dehydrogenase (G6PD)-deficient erythrocytes show enhanced vesiculation. Post- 

vesiculation erythrocytes are more susceptible to hemolysis, a correlation between 

the extent of vesiculation and sensitivity to complement-mediated hemolysis has 

been found. This may be due to the selective removal of the GPI-anchored CD55 

and CD59 upon vesiculation; both proteins are known to protect the cell from 

complement attack. Untreated G6PD-deficient erythrocytes are normally more 

susceptible to hemolysis and it has been suggested that the enhanced vesiculation 

seen in G6PD-deficient erythrocytes is responsible for this increased sensitivity (Zhu 

et al. 1999). The same may be true for stomatocytes; they too show enhanced 

vesiculation perhaps they are also more sensitive to hemolysis. This may contribute 

to the anaemia associated with OHSt which is usually attributed totally to the 

osmotic fragility of the stomatocyte. 

Together, these results suggest stomatin is in part a structural protein tethered to 

the actin cytoskeleton. The protein plays a multifunctional regulatory role in 

calcium-induced vesiculation where raft integrity is essential. Further investigation 

into this vesiculation process is required to form a deeper understanding into the 

roles of stomatin and may provide a better understanding of the OHSt phenotype. 



94 

Chapter 4: Site-directed mutagenesis of stomatin 

4.1 Selection of mutants 

The addition of palmitate to a protein has varied effects. Palmitoylation of Ras 

causes the protein to associate with the membrane; depalmitoylation in the 

membrane causes the protein to leave the membrane. This cycle allows Ras 

signalling pathways in different subcellular compartments (Meder et a/. 2005). The 

palmitoylation of the linker protein LAT in T-cells is essential for its association with 

lipid rafts; this in turn influences T-cell signalling (Zhang et al. 1998). Inhibiting 

palmitoylation of the ion channel scaffold protein PSD-95 prevents clustering of ion 

channels in excitatory synapses (El-Husseini et al. 2000). Stomatin is palmitoylated 

at two positions, cysteine-29 and cysteine-86. It is predicted that these lipid 

modifications could cause the protein to have greater affinity for the membrane, 

specifically the lipid rafts within the membrane. A series of mutants unable to 

undergo palmitoylation expressed in the human amniotic cell line UAC showed 

correct cellular localisation suggesting the lipid modification does not influence the 

affinity of stomatin for the membrane (Snyers et al. 1999b). However, as stomatin is 

known to homo-oligomerise and UAC cells express stomatin endogenously, this 

may influence the cellular localisation of the mutants (Snyers et al. 1998). In this 

current study, similar cysteine to serine mutants at positions 29 and 86 in stomatin 

were investigated; the mutants were expressed in cells which do not express 

stomatin (figure 4.1). As palmitoylation is known to influence membrane and lipid 

raft association, the presence of the palmitoylation mutants in the membrane and in 

detergent-resistant membranes (DRMs) was assessed. 
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The Caenorhabditis elegans (C. elegans) proteins MEC-2 and UNC-1 are 

homologues of stomatin which contain the SPFH (Stomatins, Prohibitins, Flotillins 

and HfIK/C) domain (Tavernarakis et al. 1999). MEC-2 is required for 

mechanosensation through its interaction with the epithelial sodium channels 

(ENaC); mutations in the mec-2 gene result in animals unresponsive to touch 

(Huang et al. 1995; Goodman et al. 2002). UNC-1 is required for the sinusoidal 

motion of the nematode, mutations in the unc-1 gene result in animals with the 

abnormal motion described as kinked and cause them to be more sensitive to 

volatile anaesthetics (Rajaram et al. 1998). In this study glycines at positions 119, 

155 and 185, arginine at position 151 and leucine at position 255 were also selected 

for investigation. Mutations in glycine 119 and 185, and leucine 255 disrupt the 

function of MEC-2 (figure 4.1). Mutations in arginine 151 and glycine 155 disrupt 

the function of UNC-1. Glycine 185 in stomatin is conserved in all SPFH domain 

proteins (Tavemarakis et al. 1999). This residue, as well as disrupting the function 

of UNC-1, exists centrally within the plasma membrane targeting domain of flotillin-1 

(Liu et a/. 2005). If the same domain exists in stomatin, disruption of glycine 185 

may hinder stomatin's ability to associate with the membrane. As with the 

palmitoylation mutants, membrane and DRM association of the mutants was 

investigated. 

Stomatin is a known to localise to the nucleus; its role there has not been defined 

(Fricke et al. 2005). The SPFH domain protein flotillin-1 is also known to translocate 

to the nucleus. For unknown reasons it is present in the organelle at highest levels 

during S-phase (Langhorst et al. 2005). Band 4.1 is a major cytoskeletal protein 

within the erythrocyte (Takakuwa 2000). However, in nucleated cells it can also be 

found in the nucleus; its role here is yet to be defined (Gascard et al. 1999). There 
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is increasing evidence for the presence of cytoskeletal proteins in the nucleus 

forming a nucleoskeleton. These proteins include actin, spectrin and various actin- 

binding proteins (Parfenov et al. 1995; Padmakumar et al. 2005). Localisation to 

the nucleus was assessed for both the palmitoylation and SPFH domain mutants. 
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Palmitoylation mutants 

Mutant Mutation Base change 

Cys 29 Ser Cysteine - Serine TGC -ý AGC 
Cys 86 Ser Cysteine Serine TGC -> AGC 

SPFH domain mutants 

Mutant Mutation Base change 
Arg 151 Leu Arginine Leucine AGG - CTA 

Arg 151 Lys Arginine -* Lysine AGG -ý AAG 

Gly 119 Ala Glycine - Alanine GGT - GCT 

Gly 155 Ala Glycine Alanine GGC - GCC 

Gly 185 Ala Glycine -ý Alanine GGA - GCA 

Leu 255 Ala Leucine -> Alanine CTG -> GCG 

Leu 255 Ile Leucine -> Isoleucine CTG -* ATA 

Leu 255 Lys Leucine - Lysine CTG - AAG 

Figure 4.1 Details of the stomatin mutants investigated 

The palmitoylation mutants at positions 29 and 86 in stomatin are both missense 

mutations. The base change results in the native cysteine residue being substituted 

for a serine residue. The mutants are unable to unable to be palmitoylated at these 

residues. 

The SPFH domain mutants at positions 119,151,155,185 and 255 in stomatin are 

all missense mutations. The glycine residues at positions 119 and 185, and leucine 

255 are critical for MEC-2 function and arginine 151 and glycine 155 are critical for 

UNC-1 function. 
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4.2 Site-Directed Mutagenesis 

The dsDNA template used in this investigation was the pcDNA3.1N5- 

His`JTOPO°TA vector (Invitrogen Ltd, Paisley, UK) containing wild type (Wt) 

stomatin (section 3.2.1). Mutagenic primers were designed using the on-line 

Stratagene QuikChange® primer design program (http: //labtools. stratagene. com). 

The QuikChange® Site-Directed Mutagenesis kit was purchased from Stratagene 

(Amsterdam, Netherlands) and used according to the manufacturer's instructions. 

Briefly, mutant strand synthesis reactions using long of dsDNA template and the 

desired mutagenic primers (figures 4.2 and 4.3) were subjected to the cycling 

parameters detailed in figure 4.4. Following cycling, samples were incubated on ice 

for 2 min. The methylated parental DNA was digested using 1 41 of Dpn 1 (10 U/µl); 

each sample was incubated at 37°C for 1 hr. The entire digested sample was 

transformed into XL1-Blue competent cells and plated on selective medium 

containing ampicillin (section 2.6.6). Plasmid DNA was isolated from selected 

colonies (section 2.6.3) and sequenced. 

The mutant samples were transiently transfected (section 2.2.2) into HEK cells. 

This cell line was selected as it does not express endogenous stomatin which could 

associate with the mutants and influence cellular localisation (figure 3.8). Lysates 

(section 2.3.1), membranes (section 2.3.2), lysed nuclei (section 2.3.3) (section 

2.3.4) and detergent-resistant membranes (DRMs) (section 2.3.5) were prepared 

from the cells 48 hours post-transfection. 
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Mutant Primers 
Forward 5'-GGGCCTTGGACCTAGCGGATGGATTTTGGTG-3' 

Cys 29 Ser 
Reverse 5'-CACCAAAATCCATCCGCTAGGTCCAAGGCCC-3' 

Forward 5'-GGTTTGTTTTTTATTCTGCCAAGCACTGACAGCTTCATCAAAG-3' 
Cys 86 Ser 

Reverse 5'-CTTTGATGAAGCTGTCAGTGCTTGGCAGAATAAAAAACAAACC-3' 

Figure 4.2 Primers used to produce palmitoylation mutants 

The primers used to create the palmitoylation mutants of stomatin. Cysteines at 

positions 29 and 86 were mutated into serine residues. The altered base is shown 

in red. Mutagenic primers were designed using the on-line Stratagene 

QuikChange® primer design program (http: //labtools. stratagene. com). 
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Mutant Primers 
Forward 5'-TCTTTTGGCACAAACTACTCTGCTAAATGTTCTGGGCACCAAGAATC-3' 

Arg 151 Leu 
Reverse 5'-GATTCTTGGTGCCCAGAACATTTAGCAGAGTAGTTTGTGCCAAAAGA-3' 

Forward 5'-GGCACAAACTACTCTGAAGAATGTTCTGGGCACCA-3' 
Arg 151 Lys 

Reverse 5'-TGGTGCCCAGAACATTCTTCAGAGTAGTTTGTGCC-3' 

Forward 5'-TGACAATTAGCGTGGATGCTGTGGTCTATTACCGC-3' 
Gly 119 Ala 

Reverse 5'-GCGGTAATAGACCACAGCATCCACGCTAATTGTCA-3' 

Forward 5'-TCTGAGGAATGTTCTGGCCACCAAGAATCTTTCTC-3' 
Gly 155 Ala 

Reverse 5'-GAGAAAGATTCTTGGTGGCCAGAACATTCCTCAGA-3' 

Forward 5'-CCACTGATGCCTGGGCAATAAAGGTGGAGCG-3' 
Gly 185 Ala 

Reverse 5'-CGCTCCACCTTTATTGCCCAGGCATCAGTGG-3' 

Forward 5'-CGATACCTGCAGACAGCGACCACCATTGCTTGCT-3' 
Leu 255 Ala 

Reverse 5'-AGCAGCAATGGTGGTCGCTGTCTGCAGGTATCG-3' 

Forward 5'-CTCCGATACCTGCAGACAATAACCACCATTGCTGCTGAG-3' 
Leu 255 Ile 

Reverse 5'-CTCAGCAGCAATGGTGGTTATTGTCTGCAGGTATCGGAG-3' 

Forward 5'-CCGATACCTGCAGACAAAGACCACCATTGCTGCTG-3' 
Leu 255 Lys 

Reverse 5'-CAGCAGCAATGGTGGTCTTTGTCTGCAGGTATCGG-3' 

Figure 4.3 Primers used to produce the SPFH domain mutants 

The primers used to create the SPFH domain mutants of stomatin. Arginine at 

position 151 was mutated into a leucine or a lysine; glycines at positions 119,155 

and 185 were mutated into alanines and the leucine at position 255 was mutated 

into an alanine, isoleucine or a lysine. In this study specific residues were selected 

for mutation based on the proteins palmitoylation and SPFH domain. Mutagenic 

primers were designed using the on-line Stratagene QuikChange® primer design 

program (http: //labtools. stratagene. com). 
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Segment Cycles Temperature Time 

1 1 95°C 30 sec 

95°C 30 sec 

2 16 55°C 1 min 

68°C T 10 min 

Figure 4.4 PCR cycling parameters used for site-directed mutagenesis 

Mutant strand synthesis reactions using long of pcDNA3.1N5-His-"TOPO8TA 

vector containing Wt stomatin and the desired mutagenic primers were subjected to 

the above cycling parameters. Times and temperatures used were as 

recommended by the manufacturer Stratagene (Amsterdam, Netherlands). 
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4.2.1 Analysis of palmitoylation mutants 

Lysate, membrane, DRM gradients and nuclei were isolated from HEK cells 

expressing Wt stomatin and the palmitoylation mutants. Samples were subjected to 

SDS-PAGE (section 2.5.2) followed by subsequent immunoblot analysis (section 

2.5.3). Flotillin-1, actin and stomatin content were all investigated. The presence of 

flotillin-1 should be unaffected by the transfection of the mutant forms of stomatin. 

The overexpression of Wt stomatin is known to increase the levels of actin 

associated with the membrane and DRMs (section 3.2). It was investigated if the 

mutant forms of stomatin altered the presence of actin in the membrane, DRMs or 

nucleus. 

All the lysate samples showed expression of stomatin at varying degrees (figure 

4.5). The palmitoylation mutant at position 29 (Cys 29 Ser) was expressed at 

similar levels to Wt stomatin. The palmitoylation mutant at position 86 (Cys 86 Ser) 

was expressed at much lower levels compared to Wt stomatin. Why this should be 

the case is unknown but agrees with a previous study in which a mutation at 

position 86 in stomatin was only expressed at low levels (Snyers et al. 1999b). 

Analysis of the membrane samples showed that the little Cys 86 Ser that was being 

expressed assumed correct cellular localisation and resided in the membrane. 

Densitometric analysis (section 2.5.6) on the immunoblot in figure 4.5 and one other 

representative immunoblot showed approximately 30% of Cys 29 Ser was localised 

in the membrane compared to Wt stomatin (figure 4.6). Palmitoylation is known to 

affect membrane localisation of some proteins (Meder et al. 2005). This result 

suggests palmitoylation at position 29 in stomatin may influence the proteins affinity 

for the membrane. 
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The overall level of stomatin, actin and flotillin-1 detected was less in the nuclei than 

the levels detected in lysates or membranes. The mutant Cys 86 Ser was barely 

detectable in the nuclei of transfected HEK cells, most likely due to its low 

expression. Densitometric analysis on the immunoblot in figure 4.5 and one other 

representative immunoblot showed a 2-fold increase in levels of Cys 29 Ser 

associated with the nuclei compared to Wt stomatin (figure 4.6). Palmitoylation of 

certain proteins is known to influence the distribution between the nucleus and 

plasma membrane. For example, upon palmitoylation, phospholipid scramblase 1 is 

trafficked to the plasma membrane. Inhibition of this palmitoylation prevents 

membrane association and traffics the protein to the nucleus (Wiedmer et al. 2003). 

Taken together these results suggest a similar mechanism may be true for stomatin. 

The decreased levels of Cys 29 Ser compared to Wt stomatin in the membrane 

coupled with the increased levels found in the nucleus may be due to an inefficient 

affinity of this mutant for the membrane. The depalmitoylated form of stomatin may 

be targeted to the nucleus instead of the membrane, hence the increased presence. 

Levels of flotillin-1 were constant between cells expressing Wt stomatin compared 

with cells expressing mutant stomatin throughout. The mutant forms of stomatin 

would not be expected to exert any influence on the level of expression or cellular 

location of flotillin-1 as no association with stomatin has ever been reported. As 

actin associates with stomatin it was possible that a mutant form of stomatin may 

show reduced affinity for actin and influence the levels of actin in the various cellular 

compartments investigated. This was not the case and actin was present at the 

same level in the cellular compartments of cells expressing mutant stomatin as 

compared to cells expressing Wt stomatin. 
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The DRM distribution of stomatin did not vary between the cells expressing Wt 

stomatin as compared to cells expressing mutant stomatin; the protein was found 

mainly in the DRM fractions 7-9 (figure 4.7). Densitometric analysis on the 

immunoblot in figure 4.7 and one other representative immunoblot showed there 

was a decrease to roughly 30% in the level of actin associated with the DRM 

fractions for the mutant Cys 86 Ser (figure 4.8). As stomatin associates with the 

actin cytoskeleton (chapter 3), the decreased presence of Cys 86 Ser in the DRMs 

would be consistent with reduced actin association also seen with these structures. 

This may be due to the overall lower expression of this mutant, thus attracting less 

actin association in the DRMs. 
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Figure 4.5 Cellular localisation of palmitoylation mutants 

Lysates (section 2.3.1), membranes (section 2.3.2) and nuclei (section 2.3.3) were 

isolated from HEK cells transiently overexpressing Wt stomatin and the 

palmitoylation mutant's Cys 29 (Cys 29 Ser) and Cys 86 (Cys 86 Ser). Samples 

were subjected to SDS-PAGE (equal protein loading; lysates 20pg; membranes 

10pg; nuclei 10pg) followed by subsequent immunoblot analysis using antibodies 

against flotillin-1, actin and stomatin. Blots are representative of two separate 

experiments. Molecular weights are shown to the right of each immunoblot (kDa). 



106 

350 

300 
0 

250 

C 200 

l0 
W 

150 

E 
C_ 
rn 
N 

v 100 

v 
Ö 

C 

50 

0 
Membrane Nudei 

Figure 4.6 Amount of Cys 29 Ser in membrane and nuclei compared to Wt 

stomatin 

Densitometric analysis (section 2.5.6) was used to compare the Cys 29 Ser and Wt 

stomatin content of membranes and nuclei (as seen in figure 4.5). The Wt sample 

was set to 100% and the Cys 29 Ser compared to. Results shown are the mean (± 

range) of two separate experiments. 
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Figure 4.7 DRM analysis of the palmitoylation mutants 

DRMs were isolated (section 2.3.5) from HEK cells transiently overexpressing Wt 

stomatin (Wt) and the palmitoylation mutant's Cys 29 Ser (Cys 29) and Cys 86 Ser 

(Cys 86). Samples were subjected to SDS-PAGE (equal volume of each fraction 

loaded) followed by subsequent immunoblot analysis using antibodies against 

flotillin-1, actin and stomatin. Blots are representative of two separate experiments. 
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Figure 4.8 Amount of actin present in the DRM factions of Cys 29 Ser and Cys 

86 Ser as compared to Wt stomatin 

The DRM fractions 7-9 (as seen in figure 4.7) were analysed by densitometric 

analysis (section 2.5.6) for actin content. Wt stomatin was set to 100% and Cys 29 

Ser (Cys 29) and Cys 86 Ser (Cys 86) compared to. Results shown are the mean 

(± range) of two separate experiments. 

Cys-29 Cys-86 
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4.2.2 Analysis of SPFH domain mutants 

Lysate (section 2.3.1), membrane (section 2.3.2), DRM gradients (section 2.3.5) 

and nuclei (section 2.3.4) were isolated from HEK cells expressing Wt stomatin and 

the SPFH domain mutants. Samples were subjected to SDS-PAGE (section 2.5.2) 

followed by subsequent immunoblot analysis (section 2.5.3). As with the 

palmitoylation mutants; flotillin-1, actin and stomatin levels were all investigated. 

All SPFH domain mutants were successfully expressed at various levels in the 

transiently transfected HEK cells, as seen in the cell lysates (figure 4.9). Notably 

the mutants Gly 155 Ala and Leu 255 Lys were expressed at higher levels than the 

Wt stomatin. Why theses two mutant forms showed increased levels of expression 

is unknown. One possibility is that they show decreased levels of cellular 

degradation, perhaps due to the disruption of protease cleavage site within 

stomatin. 

All mutants successfully located to the membrane where they were present at levels 

reflecting that of their cellular expression as see in the lysates. As with the lysate 

samples, increased levels of Gly 155 Ala and Leu 255 Lys were detected in the 

membrane compared to level of Wt stomatin. 

All mutants were present in the nucleus at roughly the same level. Gly 155 Ala and 

Leu 255 Lys were present in the nucleus at higher levels reflecting their higher 

overall expression in the cell. 

All mutants successfully located to the DRM fractions of the gradients, 7-9 (figure 

4.10). Less actin was found associated with the DRM fractions of the Arg 151 Lys 
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and Leu 255 Ile gradients. Why this is the case is unknown but suggests these 

residues may be involved in the association of stomatin with actin. 

Whilst specific base changes in the C. elegans proteins MEC-2 and UNC-1 disrupted 

their function, the results from this study do not suggest the same is true for 

stomatin. The residues mutated in the SPFH domain of stomatin do not show a 

dominant role in membrane, DRM or nuclear localisation. 
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Figure 4.9 Cellular localisation of SPFH domain mutants 

Lysates (section 2.3.1), membranes (section 2.3.2) and nuclei (2.3.3) were isolated 

from HEK cells transiently overexpressing Wt stomatin and the SPFH mutants. 

Samples were subjected to SDS-PAGE (equal protein loading; lysates 20pg; 

membranes 10pg; nuclei 10Ng) followed by subsequent immunoblot analysis using 

antibodies against flotillin-1, actin and stomatin. Blots are representative of two 

separate experiments. 
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Figure 4.10 DRM analysis for SPFH domain mutants 

DRMs were isolated (section 2.3.5) from HEK cells transiently overexpressing Wt 

stomatin and the SPFH mutants Arg 151 Leu, Arg 151 Lys, Gly 119 Ala, Gly 155 

Ala, Gly 185 Ala, Leu 255 Ala, Leu 255 Ile, Leu 255 Lys. Samples were subjected 

to SDS-PAGE (equal volume of each fraction loaded) followed by subsequent 

immunoblot analysis using antibodies against flotillin-1, actin and stomatin. Blots 

are representative of two separate experiments. 
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4.3 Discussion 

Site-directed mutagenesis was used to assess if the palmitoylation of stomatin or 

conserved residues within its SPFH domain influence the protein's affinity for the 

membrane or detergent-resistant membranes (DRMs). The ability of the mutants to 

gain access to the nucleus was also investigated. 

Protein palmitoylation contributes to many cellular processes including membrane 

association and signalling (Neumann-Giesen et al. 2004; Zhang et al. 1998). 

Studies with the palmitoylation mutants of stomatin, Cys 29 Ser and Cys 86 Ser, 

suggest that palmitoylation may increase the protein's affinity for the membrane. 

For unknown reasons the Cys 86 Ser mutant was expressed at lower levels than 

either Wt stomatin or Cys 29 Ser but appeared to assume correct cellular 

localisation in the membrane, DRMs and nucleus. The Cys 29 Ser mutant lacks the 

major site of palmitoylation within stomatin, substituting the cysteine at position 29 

for a serine reduced the levels of stomatin present in the membrane compared to 

the Wt protein. As this mutant showed similar levels of expression in the cell lysates 

to Wt stomatin, this result suggests that Cys 29 Ser has a lower affinity for the 

membrane. The Cys 29 Ser mutant showed increased levels in the nucleus 

compared to the Wt protein. As palmitoylation is reversible, in some instances it 

can control the distribution of a protein between the plasma membrane and the 

nucleus. Phospholipid scramblase 1, estrogen receptor a and a regulator in GPCR 

signal transduction all exist in the membrane when palmitoylated and in the nucleus 

when not (Wiedmer et al. 2003; Acconcia et al. 2005; Drenan et al. 2005). As Cys 

29 Ser shows decreased presence within the membrane and increased presence 

within the nucleus, it may be that palmitoylation at residue 29 has a role in the 

cellular distribution of stomatin. Whilst palmitoylated the protein resides within the 
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membrane, upon depalmitoylation the protein is trafficked to the nucleus. Two 

proteins have been isolated from the lysates of erythrocytes, ECP-51 and ECP-54, 

that are predicted to chaperone stomatin (Salzer et al. 1999). They are both found 

in the cytosol and in the nucleus and so could potentially be involved in the shuttling 

of stomatin between the plasma membrane and the nucleus. It is as yet unclear 

what role stomatin may have in the nucleus (Fricke et al. 2005). There is increasing 

evidence to support the existence of a network of cytoskeletal proteins within the 

nucleus, the nucleoskeleton (Padmakumar et al. 2005). Stomatin in the plasma 

membrane is known to associate with the actin cytoskeleton (Snyers et al. 1997) 

(chapter 3). It has been suggested that stomatin may form an anchorage site in the 

plasma membrane with the actin cytoskeleton; a similar scenario may be envisaged 

in the nucleus. It could be that stomatin plays a role in the structural support of this 

organelle. As well as providing structural support in the nucleus it could be that 

stomatin has additional roles. The SPFH domain proteins, flotillin-1 and prohibitin, 

are also found in the nucleus. The presence of flotillin-1 in the nucleus is 

pronounced at the beginning of S-phase, it is as yet unknown what purpose this 

serves (Langhorst et al. 2005). Prohibitin is known to function in cell-cycle 

regulation through its interaction with the E2F family of proteins. Prohibitin inhibits 

E2F activity; this results in transcriptional regulation of genes which have E2F sites 

in their promoters, many of which are responsible for the progression of S phase 

(Wang et al. 2002). The stomatin-like protein-2 (hSLP-2) is known to be essential 

for cell growth and progression of the cell-cycle through S phase (Zhang et al. 

2005). There is as yet no direct evidence that stomatin can exert an influence on 

the progression of the cell cycle but given stomatins presence in the nucleus, 

observations with hSLP-2 and similarity to prohibitin, it seems only a matter of time 

before its role here is investigated in more depth. 
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The second set of stomatin mutants investigated in this study were concerned with 

the SPFH domain of stomatin. The SPFH domain is found in a variety of proteins in 

eukaryotes and prokaryotes (Tavemarakis et al. 1999). As yet a clear role for this 

domain has not been defined. The emerging theme for the SPFH domain proteins 

seems to suggest that they are a set of scaffold proteins involved in membrane 

proteolysis (Langhorst et al. 2005). It was hoped that mutations introduced into this 

domain may have revealed more about this domain. The residues selected for 

investigation in the SPFH domain are known to disrupt the function of either MEC-2 

or UNC-1, stomatin homologues in the nematode C. elegans (Huang et al. 1995; 

Rajaram et al. 1998). 

All the mutants were successfully expressed at varying levels in HEK cells. Two 

mutants, Gly 155 Ala and Leu 255 Lys, were expressed at higher levels than the Wt 

protein. Why this should be the case is unknown. It may be that glycine 155 and 

leucine 255 are located within proteolysis sites of stomatin. If these sites were 

concerned with the degradation of stomatin, then disruption would hinder cellular 

clearance. This could prolong the life time of stomatin and account for the higher 

levels of expression for these two mutants seen in the lysates, membranes and 

nuclei. 

As all the mutants were found in the membrane at levels reflecting their overall 

cellular expression, it suggests that the residues mutated are not essential for the 

localisation of stomatin to the membrane. Correct cellular localisation of the 

mutants into the nucleus was also seen, suggesting the investigated residues are 

not critical in the localisation of stomatin to the nucleus. All the mutants localised to 

the DRM fractions on their respective sucrose gradients. Less actin was found 
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associated with the DRM fractions isolated from HEK cells expressing Arg 151 Lys 

and Leu 255 Ile. Why less actin was found in the DRM fractions of these gradients 

is unknown but suggests arginine 151 and leucine 255 perhaps reside within 

domains responsible for the association of stomatin with the actin cytoskeleton. 

The SPFH domain mutants of stomatin investigated in this study revealed no 

individual residue involved in the location of stomatin in the membrane, DRMs or 

nucleus. In a separate investigation, a series of truncation mutants of flotillin-1 

isolated the domains responsible for membrane and DRM targeting, both of which 

are in the SPFH domain (Liu et al. 2005). In hindsight, this approach may have 

been more suitable in the identification of similar domains in stomatin. 

Essentially all the mutants investigated in this study behaved similarly to Wt 

stomatin. Palmitoylation at cysteine 29 increased the protein's affinity for the 

membrane and may also provide the mechanism behind the shuttling of stomatin 

between the plasma membrane and the nucleus. There are indications in this 

study, as with chapter 3, that stomatin interacts with the actin cytoskeleton. The 

Cys 86 Ser mutant was poorly expressed; in the DRM fractions, where little of this 

protein resided, there was less actin association. Arginine 151 and leucine 255 may 

be involved in the association of stomatin with the actin cytoskeleton as mutations at 

these positions also reduced the level of actin associated with DRMs. 
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Chapter 5: Proteolytic cleavage of stomatin 

5.1 Stomatin and its proteolysis 

Stomatin is known to associate with lipid rafts, discrete microdomains involved in 

many cellular processes, including proteolysis. It is considered possible that as a 

direct result of their concentrated presence within rafts, the closer association of 

crucial proteins increases the likelihood of a proteolytic event (Vetrivel et al. 2005). 

Lipid rafts are also concentrated in cholesterol, another factor known to influence 

proteolysis (Wolfe et al. 2004). Recently a proteolytic cleavage site has been 

proposed within stomatin (Yokoyama et al. 2005). The prokaryotic homologue of 

stomatin PH 1511 is cleaved by the serine protease PH1510 at this site. It is thought 

likely PH1151 and PH1510 share the same operon and their interaction forms the 

basis of an ion channel regulatory role. C-terminal sequence alignment with 

PH 1151 reveals the corresponding protease cleavage site in stomatin (figure 5.1). 

The site is flanked by hydrophobic residues in both cases and is proposed to 

interact with the membrane. However, the adjacent proline residue in stomatin 

makes this an unlikely position for proteolysis. If cleavage were to occur at this 

position in stomatin, a cytosolic C-terminal fragment of 19 amino acids would be 

released from the parent protein (figure 5.2). 

Stomatin is known to be cleaved by calpain, a predominantly cytosolic protease that 

has been reported to be raft-associated and is involved in a variety of calcium- 

regulated cellular processes (Mairhofer et al. 2002; Suzuki et al. 2004; Goll et a/. 

2003). The reason for calpain cleavage of stomatin is as yet unknown. 
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Stomatin contains an SPFH (Stomatins, Prohibitins, Flotillins and HfIK/C) domain 

(Tavernarakis et al. 1999) that spans the entire C-terminal section of the protein. 

The function of this domain is unclear but has been implicated in membrane 

targeting and the degradation of membrane-associated proteins (Suzuki et al. 2003; 

Tavernarakis et al. 1999). More recently, the group of SPFH proteins have been 

suggested to function as raft-based scaffolds of multiprotein complexes (Langhorst 

et al. 2005). The prohibitins are found mainly in the mitochondria where they 

regulate membrane protein degradation by chaperoning the mAAA proteases 

(Tatsuta et al. 2005). The bacterial members, HfIK and HfIC, are known to function 

similarly. They chaperone the AAA protease FtsH, which regulates protein turnover 

in the membrane (Saikawa et al. 2004). The significant sequence similarity that the 

SPFH proteins share, suggests stomatin may too form part of membrane- 

associated proteolytic complex (Kaser et al. 2000). 

Given that the prokaryotic homologues of stomatin exist in an operon with a serine 

protease, the proven cleavage of PH 1151 by PH 1510 and the association of the 

SPFH proteins with proteases, the possibility that stomatin is proteolytically 

processed was investigated. 
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PH1511 228 VAGDKSNVIVLMLPMEMLKLFKS 250 

Stomatin 259 IAAEKNSTIVFPLPIDMLQGIIG 281 

Figure 5.1 Sequence alignment of C-terminal regions of PHI 151 and stomatin 

The blue arrow indicates the cleavage site in the stomatin homologue PH 1151. The 

underlined sequence highlights a stretch of hydrophobic residues which is proposed 

to interact with the membrane allowing interaction with the membrane-bound serine 

protease (Yokoyama et al. 2005). The residues highlighted in red are conserved 

between PH1151 and stomatin. Cleavage of PH1151 by PH1510 is thought to be 

involved in ion channel regulation. 
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proteolysis 

C 
1 
c 

Figure 5.2 Schematic showing the proposed cytoplasmic proteolysis of 

stomatin 

The proteolytic processing of stomatin in the membrane may result in the release of 

a cytoplasmic C-terminal fragment. A serine protease site has been proposed for 

stomatin. 
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5.2 The Ga14-VP16 assay 

In this work a chimeric Ga14-VP16 protein was fused to the C-terminus of stomatin. 

Ga14 is a yeast DNA-binding domain which contains a nuclear localisation signal 

and VP16 is a transactivation domain from the herpes simplex virus. Together, they 

form a chimeric protein capable of transcriptional activation at high levels in 

mammalian cells (Sadowski et al. 1988). If the chimeric protein is able to gain 

access to the nucleus, Gal4-VP16-dependent luciferase expression from the 

experimental reporter will be observed. The experimental reporter contains multiple 

Gal4-binding motifs upstream of a firefly luciferase gene. The Gal4-VP16 assay has 

previously been used to demonstrate the intracellular processing of the amyloid 

precursor protein (APP), the low density lipoprotein receptor and notch (Karlstrom et 

al. 2002; May et al. 2002; Struhl et al. 1998). 

The proteins to be used in this assay are wild type (Wt) stomatin and a mutant form 

which lacks the N-terminal and transmembrane regions (ATMN) (residues 59-289). 

The soluble OTMN stomatin should be unimpeded (except for cellular degradation) 

in gaining access to the nucleus and thus show an uninhibited luciferase expression 

from the experimental reporter. If a C-terminal fragment of Wt stomatin is to gain 

access to the nucleus, some proteolytic processing in order to release the Gal4- 

VP16 from the membrane would be required. 

The pMstGV vector encoding the Gal4-VP16 protein was kindly gifted by X. Cao 

and T. Sudhof, University of Texas Southwestern Medical Centre, Dallas. The 

vector was generated from the pM vector (Clontech, Nottingham, UK) by 

mutagenesis of the termination codon in the Ga14 BD (Sadowski et al. 1992) and 

insertion of VP16 into the EcoR I/BamH I (figure 5.3). The protein of interest, in this 
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case Wt or OTMN stomatin, can be cloned into the Bgl II or the Nhe I site of 

pMstGV. Consequently, the protein of interest will be expressed with Gal4-VP16 

attached to the C-terminus. The pMstGV vector containing APP (pMstAPP-GV) 

was kindly gifted by X. Cao and T. Sudhof, University of Texas, Southwestern 

Medical Centre, Dallas. APP had been cloned into the Nhe I site of the pMstGV 

vector (Cao et al. 2001). This test construct will be used as a positive control. 

The pRL-TK vector (Promega, Southampton, UK) which encodes Renilla luciferase 

was used as a control reporter in order to standardise transfection efficiency (figure 

5.4). The herpes simplex virus thymidine kinase promoter provides low-level, 

constitutive expression of Renilla luciferase in transfected mammalian cells. This is 

distinguishable from the firefly luciferase encoded by the experimental reporter 

(Sherf et al. 1996). Both the Firefly and Renilla luciferase readings were taken 

using the Dual-Luciferase® Reporter Assay System Kit (Promega). 
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Figure 5.3 Vector map of the pM vector (Clontech) 
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The vector was used by X. Cao and T. Sudhof, University of Texas, Southwestern 

Medical Centre, Dallas to generate pMstGV. The termination codon in the Ga14 

binding domain was removed by site directed mutagenesis and the transactivation 

domain VP16 inserted into the EcoR I/BamH I site. The protein of interest can be 

cloned into either the Bgl II or the Nhe I site. 
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The low level of constitutive Renilla luciferase expression from pRL-TK was used as 

an internal transfection efficiency control. Renilla luciferase is distinguishable from 

the firefly luciferase encoded by the experimental reporter. 
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5.2.1 Generation of Wt and ATMN stomatin 

Full length human stomatin cDNA was purchased from OriGene Technologies Inc. 

(MD, USA). The clone was supplied as plasmid DNA and retrieved as suggested by 

the manufacturer. The DNA was sequenced and subsequently used as a template 

in the amplification of Wt and ATMN stomatin. 

Primers were designed such that the products could be cloned into pMstGV in the 

correct orientation. A Bgl II site was placed at the 5' end of each cDNA and a Nhe I 

site at the 3' end. The termination codon in each case was omitted from the final 

sequence in order that the chimeric Gal4-VP16 protein would form the C-terminal 

end of each protein upon expression. Wt stomatin retained all other original 

features (figure 5.5). The 5' end primer of ATMN stomatin was designed to attach 

immediately downstream of the transmembrane region. The primer included a start 

codon as the original would be omitted along with the entire N-terminal and 

membrane domain (figure 5.6). 

Wt and ATMN stomatin were generated by PCR using the Accutaq LA DNA 

Polymerase mix (Sigma-Aldrich Ltd., Poole, UK) which was selected for use due to 

the proofreading system attached to the enzyme. The enzyme and reagents 

supplied were used as suggested by the manufacturer. Strand synthesis reactions 

using 200ng of dsDNA template (full length stomatin cDNA purchased from OriGene 

Technologies Inc) and the desired primers were subject to the cycling parameters 

detailed in figure 5.7. Both reactions were successful as seen by agarose gel 

electrophoresis (section 2.6.7) (figure 5.8). 
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Forward primer (Wt Bgl II) 

B91 11 

5'- GGAAGATCTTCCATGGCCGAGAAGCGCGACACA -3' 

Reverse primer (C-ter Nhe I) 

Nhe I 

5'- CTAGCTAGCTAGGCCTAGATGGCTGTGTTTTGC -3' 

Figure 5.5 Primers used to amplify Wt stomatin 

The Wt construct had a Bgl II site introduced preceding the native start codon and a 

Nhe I site following the final codon, the termination codon was omitted. 
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Forward primer (OTMN Bgl II) 

Bg1 11 

5'- GGAAGATCTTCCATGGAGTATGAAAGAGCCATCATC -3' 

Reverse primer (C-ter Nhe 1) 

Nhe 
5'- CTAGCTAGCTAGGCCTAGATGGCTGTGTTTTGC - 3' 

Positioning of primers on Wt stomatin and schematic of PCR product 

ATG 
5' 3' 

PCR 

Bql II ATG Nhe I 

5' 3' 

Figure 5.6 Primers used to amplify OTMN stomatin 

The ATMN construct (residues 59-289) had a BgI II site introduced following the 

sequence encoding the transmembrane domain and a Nhe I site following the final 

codon, the termination codon was omitted. A start codon was introduced 

immediately following the Bgl II site. 
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Segment Cycles Temperature Time 

1 1 98°C 30 sec 

2 16 94°C 15sec 

68°C 20 sec 

68°C 2 min 

3 1 68°C 10 min 

Figure 5.7 Cycling parameters used in the generation of Wt and ATMN 

stomatin 

Accutaq LA DNA Polymerase mix (Sigma-Aldrich Ltd. ) was used as suggested by 

the manufacturer. Human stomatin cDNA (200ng) was amplified using the primers 

detailed in figures 5.5 and 5.6 to produce Wt and OTMN stomatin respectively. 
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Figure 5.8 PCR products of Wt and OTMN stomatin 

Human stomatin cDNA was amplified using the relevant primers to produce Wt and 

L\TMN stomatin. Loading buffer containing ethidium bromide was added to the 

samples and subjected to electrophoresis on an agarose gel (section 2.6.7). The 

gel was imaged under ultraviolet light. Markers are shown to the left of the image 

(base pairs). 
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5.2.2 Cloning of Wt and ATMN stomatin into pMstGV 

Fusion of Wt and L\TMN stomatin to the chimeric Ga14-VP16 protein was achieved 

by cloning the proteins into the pMstGV vector. Cloning into this vector, upstream of 

Gal4VP16, would form the fusion proteins Wt Gal4VP16 (Wt-GV) and ATMN- 

GaI4VP16 (\TMN-GV) (figure 5.9). 

Direct cloning of the PCR products into pMstGV following restriction digest failed on 

several occasions. Instead the PCR products were cloned directly into 

pcDNA3.1N5-His©TOPO°TA (TOPO). The vector was supplied as a component of 

the pcDNA3.1N5-His©TOPO®TA Expression Kit (Invitrogen Ltd., Paisley, UK). 

The kit was used as suggested by the manufacturer (section 2.6.8). The single 

deoxyadenosine added to the 3' end of the PCR product by Accutaq LA DNA 

Polymerase, is easily ligated into the linearised TOPO vector due to the 

overhanging 3' deoxythymidine residues (figure 5.10). 

The TOPO vector containing Wt or OTMN stomatin and pMstGV were digested 

using the restriction enzymes Bgl II and Nhe I. In each case, 10 µg of DNA were 

incubated with both restriction enzymes at 37°C for 1 hr (section 2.6.4). The 

digested samples were electrophoresed on agarose gels (section 2.6.7) and the 

relevant bands excised. The DNA was isolated from the gel sections using a 

Qiagen gel isolation kit (section 2.6.3). Wt and ATMN stomatin were ligated into the 

linearised pMstGV vector overnight at 14°C (section 2.6.5). The ligation reactions 

were transformed into XL1-Blue competent cells (section 2.6.6) and following 

incubation in LB media (section 2.6.1) for 1 hr at 37°C, the cells were plated on 
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selective media containing ampicillin (section 2.6.2). Colonies were selected, the 

plasmid DNA isolated and sequenced (section 2.6.3). 
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Figure 5.9 Fusion of Wt and OTMN to the chimeric Ga14-VP16 protein 

Wt and ATMN stomatin were cloned into pMstGV in frame with the chimeric protein 

Gal4-VP16. The resultant fusion proteins were Wt-GV and ATMN-GV. 
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Figure 5.10 Cloning into pcDNA3.1N5-His©TOPO®TA (TOPO) (Invitrogen Ltd) 

Due to the overhanging 3' deoxythymidine residues, PCR products are easily 

cloned into pcDNA3.1/V5-His°TOPO®TA. Following overnight ligation, the reactions 

were then transformed into the TOP10 competent cells supplied in the kit. The cells 

were plated on selective media containing ampicillin. Colonies were selected and 

the plasmid DNA isolated. Plasmid DNA was sequenced. 
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5.2.3 Transient expression of the Ga14-VP16 fusion proteins 

Madin-Darby canine kidney (MDCK) cells were selected for use in this study due to 

endogenous expression of stomatin (section 3.2). They are therefore more likely to 

contain the relevant cellular machinery required for the proteolytic processing of 

stomatin. 

In all cases the MDCK cells were cultured to 50% confluency and then transiently 

transfected with the relevant vectors. In some instances the cells were treated with 

various compounds; all were dissolved in DMSO and used as suggested by the 

manufacturer (figure 5.11). Cell lysates were made and then assayed for luciferase 

activity. The format is detailed below. 

Day one -a suspension of MDCK cells was counted and plated in 6-well plates 

(35mm x 18mm; Fisher) at a density of 2.5 x 105 cells per well. This density was 

selected as it would provide cells at 50% confluency the following day. The cells 

were cultured using standard cell culture techniques (section 2.2.1). 

Day two - DNA was transiently transfected using Lipofectamine reagent (section 

2.2.2). The cells were simultaneously transfected with three vectors, the test 

construct (1µg of DNA), the experimental reporter (1.54g) and the control reporter 

(0.15µg). The test construct was either pMstGV, pMstWt-GV, pMst\TMN-GV, 

pMstAPP-GV (positive control) or Wt (TOPO) (Wt stomatin without Gal4-VP16 in 

pcDNA3.1 N5-His©TOPO°TA). 

Day three - medium was changed and if desired the cells were treated with and 

without various compounds (detailed below). Where relevant, DMSO levels were 

maintained at a minimum and kept at an equal concentration in all wells. All 

solutions were made up immediately prior to use. 
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Day four - cells were harvested using the passive lysis buffer supplied in the Dual- 

Luciferase® Reporter Assay System Kit (Promega). The lysates were assayed for 

both firefly and Renilla luciferase expression (section 2.6.9). 

All assays were done in triplicate and repeated on at least two separate occasions. 

Experimental reporter gene activity was calculated taking into consideration 

transfection efficiency. 
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5.3 Stomatin is cleaved to release a cytosolic C-terminal fragment 

To assess if Wt stomatin is proteolytically processed releasing a cytoplasmic C- 

terminal fragment, the test constructs pMstGV, pMstWt-GV, pMstATM N-GV, 

pMstAPP-GV and Wt (TOPO) were transiently transfected into MDCK cells (section 

5.2.3). Cell lysates were assayed for luciferase activity. 

All samples showed reporter gene activity, with the exception of Wt (TOPO) (figure 

5.12). This form of Wt stomatin does not contain the Ga14-VP16 chimeric protein 

and thus should not produce reporter gene activity. This test was set up to ensure 

that there was no expression from the experimental reporter when unstimulated. 

This also proves the Renilla luciferase expressed from the control reporter does not 

produce false positives. Normal levels of Renilla luciferase activity were recorded 

for this sample (data not shown). It can therefore be assumed that the experimental 

reporter is not expressed without the interaction of Gal4-VP16 and that the firefly 

and Renilla luciferase readings are distinct. Upon transfection of pMstGV, the 

soluble Gal4-VP16 protein was expressed. Gal4-VP16 has no membrane 

anchorage system and owing to its nuclear localisation signal (NLS), should be 

directly targeted to the nucleus. This vector caused the greatest reporter gene 

expression. Allowing for possible degradation of Gal4-VP16, this reading 

represents unimpeded access to the nucleus and thus a constitutive expression of 

the reporter gene. APP-GV was used as the positive control in this investigation. 

The same assay has been used to show this protein undergoes proteolytic 

processing by y-secretase activity, resulting in the release of a cytoplasmic fragment 

(Karlstrom et al. 2002). As previously found, APP-GV caused reporter gene activity. 

Like Gal4-VP16, ATMN-GV is a soluble protein; one may expect them to behave 
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similarly under these assay conditions. The ATMN-GV sample recorded only 10% 

of the reporter gene activity in comparison. One possible explanation for this 

observation could be the degradation of ATMN-GV to maintain correct cellular 

balance of stomatin. It is also possible that ATMN-GV may still contain a membrane 

localisation signal; this would cause it to be trafficked differently to Gal4-VP16. 

Finally, ATMN-GV although soluble may have to be processed before access to the 

nucleus is possible. The Wt-GV sample recorded reporter gene activity. The 

inclusion of the transmembrane region to anchor the protein to the membrane 

reduced the reporter gene activity to 70% compared to its soluble counterpart 

ATMN-GV. Wt-GV would require some proteolytic event in order that the Gal4- 

VP16 protein attached to the C-terminus of stomatin is released from the membrane 

and is able to traffic to the nucleus. 

These results suggest that a C-terminal fragment of stomatin is released from the 

membrane. Further investigation into the nature of this release is necessary to 

assess if the process can be regulated and the protease which may be involved. 
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Figure 5.12 Luciferase activity in cells expressing the Gal4-VP16 fusion 

proteins 

MDCK cells were transfected with 1µg of the indicated test construct, 1.5µg of the 

experimental reporter and 0.15µg of the control reporter. After 48 hours the cells 

were lysed and readings for both firefly and Renilla luciferase recorded. Wt 

(pMstWt-GV); TMN (pMstATMN-GV); TOPO (Wt stomatin without the Gal4-VP16 

protein attached); APP (pMstAPP-GV); GV (pMstGV). Results are the mean 

(±SEM) of three separate experiments. Relative luciferase reading (firefly luciferase 

expression from experimental reporter). 

Wt TMN TOPO APP GV 
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5.3.1 PMA treatment of cells expressing Wt-GV and APP-GV 

To investigate whether the event leading to the release of the C-terminal fragment 

of stomatin could be modulated, cells were treated with the phorbol ester, phorbol 

12-myristate 13-acetate (PMA). PMA functions by activating protein kinase C 

(PKC). Treatment with PMA and has been used previously in a similar study to 

demonstrate the processing of the low density lipoprotein receptor-related protein 

(LRP) is modulated by PKC (May et a/. 2002). 

The test constructs pMstWt-GV or pMstAPP-GV were transiently transfected into 

MDCK cells along with the experimental and control reporters. Cells were treated 

with or without 1 00nM PMA 24 hours post-transfection (section 5.2.3). Cell lysates 

were assayed for luciferase activity. 

Treatment with PMA had little effect on luciferase levels in cells expressing APP-GV 

(figure 5.13). This agrees with a previous study (May et al. 2002). Cells expressing 

Wt-GV showed a 6-fold increase in reporter gene activity upon treatment with PMA 

compared to those left untreated. This may be as a result of increased processing 

to stomatin and indicates the involvement of PKC in this process. Enhanced 

processing of stomatin would increase the availability of the C-terminal fragment to 

the experimental reporter and cause the higher levels of reporter gene activity. 

To further investigate the possibility of the involvement of PKC in the processing of 

stomatin, treatment with the PKC inhibitor caiphostin C was tested. If PKC does 

enhance the processing to stomatin, the inhibitor should decrease the reporter gene 

activity. The test construct pMstWt-GV was transiently transfected into MDCK cells 

along with the experimental and control reporters. Cells were treated with or without 
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100nM PMA and 1pM calphostin C 24 hours post-transfection (section 5.2.3). Cell 

lysates were assayed for luciferase activity. 

Cells treated with PMA and calphostin C showed a 40% reduction in reporter gene 

activity compared to those cells treated with PMA alone (figure 5.14). This indicates 

the inhibition of PKC reduces the processing of stomatin. Treatment with caiphostin 

C alone stimulated reporter gene activity compared to those cells that received no 

treatment. This should not be the case. Analysis of Renilla luciferase expression 

from the control reporter showed that calphostin C has an inhibitory affect on its 

expression from the pRL-TK vector. The reason for this is unknown. The 

expression of Renilla luciferase is under the control of thymidine kinase in the pRL- 

TK vector, it may be that calphostin C has an inhibitory effect on this kinase as well 

as PKC. Taking this into account, the Renilla luciferase readings for samples 

containing calphostin C were excluded and an average reading from the remaining 

values calculated. This set of data showed that the processing of stomatin is not 

stimulated following calphostin C treatment alone. It also showed a much greater 

reduction in reporter gene activity following the combined treatment compared to 

those cells treated with PMA alone. 

These results suggest that the cytosolic processing of stomatin can be modulated 

by PKC. 
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Figure 5.13 PMA enhances reporter gene activity 
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MDCK cells were transfected with 1µg of either pMstAPP-GV or pMstWt-GV, 1.5µg 

of the experimental reporter and 0.15µg of the control reporter. After 24 hours cells 

were treated with or without 100nM PMA. After a further 24 hours, the cells were 

lysed and readings for both Renilla and firefly luciferase recorded. APP (pMstAPP- 

GV without PMA); APP + PMA (pMstAPP-GV with 100nM PMA); Wt (pMstWt-GV 

without PMA); Wt + PMA (pMstWt-GV with 100nM PMA). Results are the mean 

(±SEM) of three separate experiments. Relative luciferase reading (firefly luciferase 

expression from experimental reporter). 

APP APP + PMA Wt VA + PMA 
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Figure 5.14 Calphostin C reduces reporter gene activity in PMA-treated cells 

MDCK cells were transfected with 14g pMstWt-GV, 1.54g of the experimental 

reporter and 0.15µg of the control reporter. After 24 hours cells were treated with or 

without 1 00nM PMA and 1 pM calphostin C. After a further 24 hours, the cells were 

lysed and readings for both Renilla and firefly luciferase recorded. Wt (pMstWt-GV 

without PMA); PMA (pMstWt-GV with 1 00nM PMA); PMA + cal (pMstWt-GV with 

1 00nM PMA and 1 pM calphostin C); cal (pMstWt-GV with 1 pM calphostin). Results 

are the mean (±SEM) of three separate experiments. Relative luciferase reading 

(firefly luciferase expression from experimental reporter). 

VUt PMA PIMA +cal cal 
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5.3.2 Lactacystin treatment of cells expressing Wt-GV 

Lactacystin is a rapid and specific, irreversible proteasome inhibitor (Fenteany et a/. 

1998). Proteasomes are responsible for most non-lysosomal intracellular 

degradation. When inhibited, proteins which are normally degraded in this fashion 

will become protected. If the C-terminal fragment released from stomatin is 

protected in this manner following treatment with lactacystin, an increase in reporter 

gene activity would be expected. 

The test construct pMstWt-GV was transiently transfected into MDCK cells along 

with the experimental and control reporters. Cells were treated with or without 10 

µM lactacystin 24 hours post-transfection (section 5.2.3). Cell lysates were assayed 

for luciferase activity. 

Reporter gene activity increased approximately 10-fold following lactacystin 

treatment suggesting that the proteasome is responsible for the degradation of the 

C-terminal fragment of stomatin (figure 5.15). 
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Figure 5.15 Lactacystin enhances reporter gene activity 

MDCK cells were transfected with 1µg pMstWt-GV, 1.5µg of the experimental 

reporter and 0.15µg of the control reporter. After 24 hours cells were treated with or 

without 10µM lactacystin. After a further 24 hours, the cells were lysed and 

readings for both Renilla and firefly luciferase recorded. Wt (pMstWt-GV without 

lactacystin); Wt + lac (pMstWt-GV with 104M lactacystin). Results are the mean 

(±SEM) of three separate experiments. Relative luciferase reading (firefly luciferase 

expression from experimental reporter). 

Wt Wt + lac 
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5.4 Identification of the protease involved the proteolysis of stomatin 

It was first sought to determine the class of protease which may be involved in the 

cytosolic processing of stomatin. If the protease responsible was inhibited, there 

should be a decrease in reporter gene activity due to the decrease in availability of 

the C-terminal fragment to the reporter gene. Various inhibitors of proteases were 

used. To inhibit the cysteine proteases Trans-Epoxysuccinyl-L-Leucylamido-(4- 

Guanidino) Butane (E64) was used, 1,10-Phenanthroline was used to inhibit 

metallo-proteases, Phenylmethylsuiphonyl Fluoride (PMSF) was used to inhibit 

serine proteases and Pepstatin A was used to inhibit aspartyl proteases. All 

inhibitors were used at a concentration as recommended by the manufacturer. 

The test construct pMstWt-GV was transiently transfected into MDCK cells along 

with the experimental and control reporters. Cells were treated with or without the 

protease inhibitor 24 hours post-transfection (section 5.2.3). Cell lysates were 

assayed for luciferase activity. 

Cells treated with the cysteine protease inhibitor E64 produced the same level of 

reporter gene activity as untreated cells (figure 5.16). This result suggests that a 

cysteine protease is not responsible for the processing of stomatin in the membrane 

with the subsequent release of a C-terminal fragment. The metallo-protease 

inhibitor 1,10-Phenanthroline completely abolished reporter gene activity, 

suggesting the processing of stomatin is due to the activity of a metallo-protease 

and should be further investigated. Reporter gene activity was reduced to 65% in 

cells treated with PMSF compared to those cells left untreated. This suggests a 

serine protease could be involved in the processing of stomatin. Again, this result 

should be further investigated. The aspartyl protease inhibitor Pepstatin A caused a 
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marginal increase in reporter gene activity. This could be due to inhibition of 

proteases involved in the degradation pathway of stomatin. By inhibiting 

degradation the half-life of stomatin and/or the C-terminal fragment is increased. 

This enhances availability of the C-terminal fragment to the experimental reporter. 
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Figure 5.16 The effect of various protease inhibitors on reporter gene activity 

MDCK cells were transfected with 1 µg pMstWt-GV, 1.5µg of the experimental 

reporter and 0.15µg of the control reporter. After 24 hours cells were treated with or 

without the indicated protease inhibitor. After a further 24 hours, the cells were 

lysed and readings for both Renilla and firefly luciferase recorded. Control (pMstWt- 

GV without treatment); E64 (pMstWt-GV with 1 0µM E64); 1,10 P (pMstWt-GV with 

5mM 1,10-Phenanthroline); PMSF (pMstWt-GV with 1µM PMSF); Pepstatin A 

(pMstWt-GV with 1µM Pepstatin A). Results are the mean (±SEM) of three 

separate experiments. Relative luciferase reading (firefly luciferase expression from 

experimental reporter). 

Control E64 1,10 P PMSF 
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5.4.1 Proteolytic processing of stomatin by calpain 

Treatment of cells expressing Wt-GV with the cysteine protease inhibitor E64 

suggests that a protease in this class is not responsible for the release of a C- 

terminal fragment from stomatin (figure 5.16). However, calpain has been reported 

to cleave stomatin and thus forms the only known candidate for the proteolytic 

processing of this protein (Mairhofer et al. 2002) (figure 5.17). Calpastatin is a cell- 

permeable, potent inhibitor of calpain I and calpain II. If either calpain is responsible 

for the release of the cytoplasmic C-terminal fragment of stomatin, addition of 

calpastatin should inhibit the process. 

The test construct pMstWt-GV was transiently transfected into MDCK cells along 

with the experimental and control reporters. Cells were treated with or without 

10pM calpastatin 24 hours post-transfection (section 5.2.3). Cell lysates were 

assayed for luciferase activity. 

Reporter gene activity increased by 50% following treatment with calpastatin (figure 

5.18). This suggests the calpains are involved in the degradation of stomatin rather 

than the release of the C-terminal fragment. By inhibiting the calpains, stomatin 

and/or its C-terminal fragment become protected from degradation and cause the 

increased reporter gene expression. 
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Figure 5.17 Calpain-2 cleavage of stomatin 

- 32 kDa 

Whole HEK cell lysates overexpressing stomatin were incubated at room 

temperature for 2hrs with calpain-2 and various inhibitors of calpain-2 as shown. 

The uncleaved sample received no calpain-2 or inhibitor treatment. The samples 

were subjected to SDS-PAGE (10pg) (section 2.5.2) followed by subsequent 

immunoblot analysis (section 2.5.3) using an antibody against stomatin. Thanks to 

Dr D. Thomas (GSK, Harlow, UK) for advice on appropriate concentrations and kind 

ýQ ýQ vv 

öööö 
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donation of the calpastatin and Z-LLY-fmk. 
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Figure 5.18 The use of calpastatin to inhibit Calpain I and Calpain II 

MDCK cells were transfected with 1µg pMstWt-GV, 1.5µg of the experimental 

reporter and 0.15µg of control reporter. After 24 hours cells were treated with or 

without 1 0µM calpastatin. After a further 24 hours, the cells were lysed and 

readings for both Renilla and firefly luciferase recorded. Wt (pMstWt-GV without 

calpastatin), Wt + cal (pMstWt-GV with 10µM calpastatin). Results are the mean 

(±range) of two separate experiments. Relative luciferase reading (firefly luciferase 

expression from experimental reporter). Thanks to Dr D. Thomas (GSK, Harlow, 

UK) for advice on appropriate concentration and kind donation of the calpastatin. 

Wt 1M + cal 
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5.4.2 Proteolytic processing of stomatin by a meta I lo -protease 

Reporter gene activity was completely abolished in cells treated with 1,10- 

Phenanthroline, suggesting a protease in this class may be responsible for the 

proteolytic processing to stomatin with subsequent release of a C-terminal fragment 

(figure 5.16). To further investigate this result, the effect of 1,10-Phenanthroline on 

cells expressing Gal4-VP16 was investigated. As Gal4-VP16 is a soluble protein, 

no processing is required for it to access the reporter construct. Therefore no effect 

on reporter gene activity should be seen. 

The test constructs pMstWt-GV and pMstGV were transiently transfected into 

MDCK cells along with the experimental and control reporters. Cells were treated 

with or without 5mM 1,1 O-Phenanthroline 24 hours post-transfection (section 5.2.3). 

Cell lysates were assayed for luciferase activity. 

As previously shown, treatment with 1,10-Phenanthroline significantly reduced 

reporter gene activity in cells transfected with pMstWt-GV (figure 5.19). However, 

the same treatment also reduced reporter gene activity in the cells expressing Ga14- 

VP16. As reporter gene activity in cells expressing the soluble Gal4-VP16 is not 

dependent on proteolytic activity, the luciferase levels should not be affected by the 

inhibition of any protease. The most likely cause of the reduced activity seen in 

cells treated with 1,10-Phenanthroline is the inhibition of the luciferase reaction 

resulting in photon emission. Upon further investigation of the firefly luciferase 

reaction, it was realised that Mg++ is crucial for photon emission. 1,10- 

Phenanthroline functions by chelating metal ions and thus is almost certain to inhibit 

this reaction. This however cannot explain the inhibition of the Renilla luciferase 

also seen (data not shown). Why the Renilla luciferase was inhibited is unknown. 
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The possible involvement of a metallo-protease in the release of a C-terminal 

fragment of stomatin cannot be ruled out by this study. Alternative methodology 

would have to be used in order to assess further the possible involvement of a 

meta Ilo-protease in the release of a C-terminal fragment from stomatin. 
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Figure 5.19 The effect of 1,10-Phenanthroline on reporter gene activity 

MDCK cells were transfected with 1ýtg pMstWt-GV, 1.5ýtg of the experimental 

reporter and 0.1 5Vtg of the control reporter. After 24 hours cells were treated with or 

without 5mM 1,10 Phenanthroline. After a further 24 hours, the cells were lysed 

and readings for both Renilla and firefly luciferase recorded. GV (Gal4-VP16 

without 11,10-Phenanthroline), GV + 1,10P (Gal4-VP16 with 5mM 1,10- 

Phenanthroline); Wt (Wt-GV without 1,10-Phenanthroline); Wt + 1,10 P (Wt-GV 

with 5mM 1,10-Phenanthroline). Results are the mean (±range) of two separate 

experiments. Relative luciferase reading (firefly luciferase expression from 

experimental reporter). 

GV 
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5.4.3 Proteolytic processing of stomatin by a serine protease 

Cells expressing Wt-GV which were treated with PMSF showed a reduction in 

reporter gene activity, compared to those left untreated (figure 5.16). Whether this 

reduction is an inhibitory effect on the proteolytic processing of stomatin rather than 

inhibition of the luciferase reaction, as seen with 1,10-Phenanthroline (figure 5.19) 

was assessed. 

The test constructs pMstWt-GV and pMstGV were transiently transfected into 

MDCK cells along with the experimental and control reporters. Cells were treated 

with or without 14M PMSF 24 hours post-transfection (section 5.2.3). Cell lysates 

were assayed for luciferase activity. 

Cells expressing Gal4-VP16 treated with PMSF showed increased reporter gene 

activity compared to those left untreated (figure 5.20). As previously seen (figure 

5.16), cells expressing Wt-GV which were treated with PMSF showed decreased 

reporter gene activity compared to untreated cells. This suggests the observed 

reduction in reporter gene activity in cells expressing Wt-GV cannot be as a result of 

inhibition of luciferase activity (as seen with 1,10 Phenanthroline). It is therefore 

possible that PMSF causes inhibition of a serine protease responsible for 

processing stomatin, reducing the availability of the C-terminal fragment to the 

reporter gene. Given the enhanced reporter gene activity seen in the treated cells 

expressing Gal4-VP16, it is likely that the inhibition observed in the Wt-GV sample 

is underestimated. Insufficient levels of PMSF could explain why the reporter gene 

activity was not completely abolished. Also, the remaining reporter gene activity 

could be due to other processing events by enzymes not identified in this study. 

This result agrees with data to suggest stomatin is cleaved by a membrane-bound 
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serine protease. It has been suggested the cleavage event forms the basis of an 

ion channel regulatory feature for stomatin (Yokoyama et a/. 2005). To further 

investigate the possibility that a serine protease is responsible for the processing to 

stornatin, a second serine protease inhibitor 3,4-dichloroisocoumarin (dci) was used. 

The test constructs pMstWt-GV and pMstGV were transiently transfected into 

MDCK cells along with the experimental and control reporters. Cells were treated 

with or without 100ýLM dci 24 hours post-transfection (section 5.2.3). Cell lysates 

were assayed for luciferase activity. 

As seen with 1,10-Phenanthroline, reporter gene activity was completely abolished 

in treated samples transfected with pMstGV. This suggests that the luciferase 

reaction was inhibited, it is unclear why (figure 5.21). 
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Figure 5.20 PMSF reduces reporter gene activity 
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MDCK cells were transfected with 14g pMstWt-GV or pMstGV, 1.54g of the 

experimental reporter and 0.1 5ýLg of the control reporter. After 24 hours cells were 

treated with or without 1[tM PMSF After a further 24 hours, the cells were lysed 

and readings for both Renilla and firefly luciferase recorded. GV (pMstWt-GV 

without PMSF); GV + PMSF (pMstWt-GV with 1 ýM PMSF); Wt (pMstWt-GV without 

PMSF); Wt + PMSF (pMstWt-GV with 1 ýM PMSF). Results are the mean (±SEM) 

of three readings from separate experiments. Relative luciferase reading (firefly 

luciferase expression from experimental reporter). 

GV GV+ PMSF Wt Wt+ PMSF 
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Figure 5.21 The effect of 3,4-dichloroisocoumarin on reporter gene activity 

MDCK cells were transfected with 1ýtg pMstWt-GV or pMstGV, 1.5ýLg of the 

experimental reporter and 0.1 5ýtg of the control reporter. After 24 hours cells were 

treated with or without 100ýM 3,4-dichloroisocoumarin (dci). After a further 24 

hours, the cells were lysed and readings for both Renilla and firefly luciferase 

recorded. GV (pMstGV without dci); GV + dci (pMstGV with 100ýM dci); Wt 

(pMstWt-GV without dci), Wt + dci (pMstWt-GV with 100[tM dci). Results are the 

mean (±range) of two separate experiments. Relative luciferase reading (firefly 

luciferase expression from experimental reporter). 

GV GV + dci 
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5.5 Discussion 

The Gal4-VP16 assay was used to assess if the membrane-bound protein stomatin 

is proteolytically processed resulting in the release of a cytosolic C-terminal 

fragment. If such processing was to occur, the chimeric Ga14-VP16 protein fused to 

the C-terminus of stomatin would cause reporter gene activity. This assay has been 

used previously by several groups to assess the proteolytic processing in other 

proteins (Karlstrom et a/. 2002; May et a/. 2002; Struhl et al. 1998). If stomatin were 

to be processed, the event is likely to occur in the C-terminal domain due to its 

extensive nature. There is a predicted serine protease cleavage site in the C- 

terminal of stomatin (Yokoyama et aL 2005). 

It was first assessed if the C-terminal domain of stomatin could gain access to the 

nucleus and cause reporter gene activity. Studies with the soluble protein ATMN- 

GV showed that the C-terminal domain of stomatin lacking a membrane anchorage 

system could access the experimental reporter in the nucleus. It is unknown if the 

protein did this as a whole or was first processed in order to gain access to the 

nucleus. Significantly higher levels of reporter gene activity were recorded in cells 

expressing the soluble Gal4-VP16; this suggests that the C-terminal fragment of 

stomatin is hindered in its access to the nucleus in some way. Studies with Wt-GV 

showed that membrane-bound form of stomatin could also cause reporter gene 

activity. As expected, the level of reporter gene activity was less than that in the 

cells expressing ATMN-GV. In order that the reporter gene was expressed in cells 

expressing Wt-GV, some processing event of stomatin would have to occur. This 

would release the C-terminally fused Gal4-VP16 protein from the membrane and 

allow it to gain access to the nucleus. Together these results suggest that stomatin 

is proteolytically processed in the membrane, resulting in the release of a C-terminal 
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fragment. The size of this fragment is yet to be determined. The processing of 

proteins in the membrane sometimes results in the release of a functional fragment 

(Struhl et a/. 1998). Whether this is the case for stomatin would require further 

investigation. 

The processing that leads to the release of the cytosolic fragment of stornatin can 

be modulated by protein kinase C (PKC). The activator of PKC, phorbol 12- 

myristate 13-acetate (PMA), has previously been used to demonstrate the 

processing of the low density lipoprotein receptor-related protein (LRP) is modulated 

by PKC (May et a/. 2002). As with the LRP study, PMA significantly increased 

reporter gene activity in cells expressing Wt-GV. This suggests the processing of 

stomatin was enhanced following activation of PKC. Combined treatment of PMA 

and calphostin C (a PKC inhibitor) reduced the level of reporter gene activity in cells 

expressing Wt-GV; this suggests that the processing of stomatin in the membrane 

was reduced. Together these data suggest that the event leading to the release of 

a C-terminal fragment from stomatin can be modulated by PKC. 

Treatment of cells with the proteasome inhibitor lactacystin has been used 

previously to demonstrate the fragment released from LRP is degraded by the 

proteasome (May et al. 2002). Reporter gene activity in cells expressing Wt-GV 

was increased 10-fold following treatment with lactacystin. This suggests that the 

C-terminal fragment of stomatin may be degraded by the proteasome. 

In order to assess which protease may be responsible for the processing of the C- 

terminus of stomatin, compounds that inhibit a class of protease (e. g. cysteine 

proteases) were applied to cells transfected with Wt-GV. This study suggests that 
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cysteine and aspartyl proteases are not involved in the processing of stomatin in the 

membrane; the involvement of meta I lo-proteases could not be ruled out. Inhibiting 

the serine proteases caused a decrease in reporter gene activity, suggesting a 

protease in this class is responsible for the release of the C-terminal fragment from 

stomatin. This is in line with previous studies that suggested stomatin is the partner 

to a membrane-bound protease, most likely a serine protease. The prokaryotic 

stomatins have been proposed to form an operon with a membrane-bound serine 

protease in at least 19 organisms; the catalytic serine is 100% conserved (Green et 

a/. 2004). This relationship has been speculated to represent a role for stomatin as 

a binding partner to the serine protease, possibly as a substrate, chaperone or as a 

regulator. The data in this study suggest stomatin partners this serine protease as 

its substrate. More recently this serine protease in Pyrococcus hotikoshii PH1510 

has been shown to cleave PH1511, the stomatin homologue (Yokoyama et a/. 

2005). Sequence alignment highlighted a stretch of hydrophobic residues as being 

the proposed cleavage site in stomatin, a hydrophobic region speculated to interact 

with the membrane. It has been proposed that cleavage of stomatin at this position 

causes the opening of an ion channel and forms the basis of its regulation. Since 

the realisation that stomatin is deficient in erythrocyte membranes of patients with 

Over-hydrated Hereditary Stomatocytosis (OHSt), it has been considered possible 

that stomatin has an ion channel regulatory function (Fricke et a/. 2003). OHSt 

patients suffer increased monovalent cation permeability across the erythrocyte 

membrane; as a result the cell accumulates sodium and water which in turn 

increases the fragility of the cell which leads to anaemia. No direct evidence to 

show the stornatin deficiency causes the cation leak has ever been shown. 
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To date the only protease reported to cleave stomatin is calpain; the functional 

significance of this is unknown (Mairhofer et a/. 2002). Cleavage of stomatin by 

calpain was confirmed in this study. The data presented in this study suggest 

calpain processing of stomatin may function as part of the protein's degradation 

pathway rather than in the release of a C-terminal fragment. The inhibition of 

calpain with calpastatin increased reporter gene activity in cells expressing Wt-GV. 

If calpain were responsible for the release of a C-terminal fragment of stomatin, a 

decrease in reporter gene activity would have been expected. The increase 

suggests that higher levels of the C-terminal fragment are made available to the 

reporter gene construct. This may be as a result of inhibiting a degradation pathway 

of stomatin and/or the C-terminal fragment. 

The data presented in this study suggest that the membrane protein stomatin is 

proteolytically processed by a serine protease in its C-terminal domain. This agrees 

with data from prokaryotes showing prokaryotic stomatin shares an operon with a 

serine protease. This relationship in prokaryotes has been shown to regulate an ion 

channel; whether the same is true in mammals requires further investigation. 
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Chapter 6: General Discussion 

This study set out to characterise the integral membrane protein stomatin and to 

further understand its role within the cell. Stomatin is found predominantly in the 

plasma membrane (Wang et aL 1991) but has also been reported in the nucleus 

(Fricke et aL 2005) and mitochondria (Argent et a/. 2004). This study focused on 

the role of stomatin in the plasma membrane but also considered characteristics 

which may contribute to intracellular trafficking of the protein. As stomatin is known 

to partition into detergent-resistant membranes, the protein is thought to reside 

within lipid rafts (Salzer et a/. 2001). It is becoming increasingly apparent that many 

cellular processes take advantage of the localised organisation these microdomains 

can offer. For this reason lipid rafts were of particular interest in this study. 

Stomatin is deficient in the erythrocyte membrane of patients suffering Over- 

hydrated Hereditary Stomatocytosis (OHSt). The protein composition of 

membranes from OHSt erythrocytes, known as stomatocytes due to their altered 

morphology, were compared to membranes of control erythrocytes. When this 

investigation was undertaken it was unclear as to why the stomatocyte membrane 

was deficient in stomatin. The absence of a binding partner in the membrane and 

trafficking problems were both considered possible (Stewart 1997). This study 

aimed to find other differences between the membranes of erythrocytes and 

stomatocytes which may provide some indication towards a role for stomatin and 

why it is deficient in the stomatocyte membrane. Results showed a decreased level 

of actin associated with the stomatocyte membrane as compared to the erythrocyte 

membrane. The lipid rafts isolated from stomatocytes also showed reduced levels 

of actin. This suggests that stomatin is associated with actin and its reduced 
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presence in the stomatocyte membrane causes the reduced levels of actin. This is 

consistent with as yet unpublished data showing similar diminished actin levels 

associated with the stomatocyte membrane particularly in the lipid rafts (J. Turner, 

University College London, UK). A recent study has suggested that it is most likely 

that stomatin is trafficked wrongly in the maturing stomatocyte (Fricke etal. 2005). 

This therefore means any altered protein composition in the stomatocyte membrane 

is most likely due to the initial deficiency of stomatin rather than being the cause of 

the deficiency. These data agree with previous observations that stomatin 

associates with the actin cytoskeleton possibly forming a cytoskeletal anchor in the 

membrane and that it is involved in the control of cell morphology (Snyers et a/. 

1997; Snyers et al. 1999a). Previous to this a structural role for stomatin had been 

considered due to its similarities to the scaffold protein caveolin (Snyers et a/. 

1999b). The link between stomatin and actin may be considered similar to that 

seen with spectrin. The spectrin network in the erythrocyte is considered essential 

for the stability, and in the deformability, of the cell; it is anchored to the membrane 

in two positions through its association with the integral membrane proteins band 3 

and glycophorin (Bennett 1989). Stomatin may form the integral membrane part of 

a complex responsible for tethering the under-lying actin cytoskeleton to the 

membrane. To further investigate a possible interaction between stomatin and 

actin, stomatin was overexpressed in MDCK cells. The overexpression of stomatin 

did not affect the actin content of cell lysates. However, actin levels were increased 

in the membrane and lipid rafts of cells overexpressing stomatin. This suggests the 

increased level of stomatin in the membrane and lipid rafts enhances actin 

association with these structures. This further suggests that stomatin associates 

with actin and that this association has a functional relevance. 
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A possible role for stornatin in the raft-based process of calcium-induced 

vesiculation was investigated by comparing the process in erythrocytes and 

stomatocytes. It had previously been shown that stomatocytes showed defective 

ATP-dependent vesiculation (Turner et al. 2003). In erythrocytes, during calcium- 

induced vesiculation, the flotillins remain within the post-vesiculation membrane and 

stomatin vesiculates in the microvesicles. In stomatocytes, the flotillins were found 

to vesiculate in both the microvesicles and nanovesicles leaving the post- 

vesiculation membrane almost devoid of flotillin content. If the vesiculation process 

does serve as a protection strategy against complement (lida et al. 1991) then it 

may be considered essential that this process is maintained, even in the absence of 

stomatin. As the flotillins contain the SPFH domain and assume a hair-pin loop in 

the lipid bilayer, they may form substitutes for stomatin to maintain vesiculation 

within the stomatocyte. Compared to erythrocytes, stomatocytes showed 

significantly increased levels of vesiculation. This suggests stomatin may be acting 

as a negative regulator in this process. Enhanced vesiculation is also seen with 

glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes (Tsai et al. 

1996). It therefore seems unlikely that the deficiency in stomatin is solely 

responsible for the enhanced vesiculation seen from stomatocytes. 

Calpain activity is involved in the remodelling of the underlying actin cytoskeleton 

during calcium-induced vesiculation (Zwaal et al. 1997). The enzyme is known to 

cleave band 2.1, band 4.1 and stomatin (Dantas de Medeiros et al. 2002; Salzer et 

al. 2002). Preliminary investigations suggest that the level of calpain activity is 

elevated in stomatocytes compared to erythrocytes. It is possible that elevated 

levels of calpain activity may contribute to the enhanced vesiculation seen from 

stomatocytes by increasing the processing of cytoskeletal proteins normally 
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associated with rate-limiting steps in vesiculation. Elevated calpain activity may 

also be, in part, responsible for the degradation and thus the deficiency of stomatin 

within the stomatocyte membrane. If the remodelling of the cytoskeleton is rate- 

limiting in calcium-induced vesiculation, stomatin deficiency would reduce the level 

of rate-limiting elements in the membrane and may cause enhanced vesiculation. 

This is supported by results which show that the inhibition of calpain in MDCK cells 

protects stomatin from degradation. Elevated calpain activity was recorded in the 

single OHSt pedigree tested and the study should be extended to include more 

pedigrees. The involvement of lipid rafts in this vesiculation process was further 

confirmed in this current study through cholesterol depletion of erythrocytes which 

inhibited vesiculation. Actin is known to be crucial for the coalescence of rafts 

during T-cell signalling (Valensin et a/. 2002). A similar scenario may be envisaged 

for lipid rafts during calcium-induced vesiculation. If actin association with the 

plasma membrane is involved in the localised positioning of lipid rafts which contain 

critical proteins for controlled vesiculation, a diminished actin association with the 

membrane due to stomatin deficiency may hinder this process. Erythrocytes are 

more susceptible to hemolysis following vesiculation; G6PD-deficient erythrocytes 

are even more susceptible due to the enhanced vesiculation (Tsai et a/. 1996). If 

the same is true for stomatocytes, this may contribute to the anaemia seen in OHSt 

patients, the primary cause being the osmotic fragility of the stomatocyte. The post- 

vesiculation erythrocyte has to quickly restore lipid asymmetry moving the 

phosphatidylserine (PS) from the outer leaflet back to the inner leaflet of the bilayer. 

The enhanced vesiculation in stomatocytes could cause an increased presence of 

PS at the cell surface; this may explain the thrombotic problems experienced by 

OHSt patients who have undergone therapeutic splenectomy. 
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Characterisation of the SPFH LStomatins, Prohibitins, Flotillins and HfIK/C) domain 

within stomatin was also considered in this investigation. The SPFH domain 

proteins are considered to function in the regulation of membrane protein 

proteolysis or as scaffold proteins in the membrane for the formation of multiprotein 

complexes (Kaser et a/. 2000; Langhorst et a/. 2005). Conserved residues within 

this domain were investigated due to mutations at these positions causing defects in 

C. elegans. The residues when mutated in stomatin caused no difference to 

membrane targeting or lipid raft partitioning. They were also not essential in the 

trafficking of stomatin to the nucleus. This is likely due to these residues being of 

little importance in targeting stomatin to these structures. Interaction between the 

mutant forms of stomatin investigated and the stomatin like protein-2 cannot be 

ruled out. It may be that this interaction contributes to membrane, lipid raft and 

nuclear localisation of the mutant forms. 

The major palmitoylation site in stomatin is Cysteine 29 (Snyers et a/. 1999b); the 

effect this may have on stomatin was investigated. A Cysteine - Serine mutation at 

position 29 caused less stomatin to locate to the membrane and lipid rafts; with 

increased levels found in the nucleus. Palmitoylation is known to increase the 

affinity of certain proteins for the membrane and/or lipid rafts (Zhang et al. 1998), 

this could possibly explain why the mutant form of stomatin failed to partition into 

membranes and lipid rafts as well as the wild type protein. Some proteins, e. g. 

phospholipid scramblase 1, use reversible palmitoylation as a means of influencing 

their distribution within different compartments of the cell (Wiedmer et a/. 2003). 

When palmitoylated they localise to the membrane and when depalmitoylated they 

localise to the nucleus. Given that a mutation at position 29 causes less stomatin to 

localise to the membrane and more to the nucleus, this could indicate a defect in the 
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shuttling process of stomatin between the plasma membrane and the nucleus. 

Coupled with the reversible depalmitoylation of stomatin, it is possible that two 

chaperones of stomatin found in the cytosol and nucleus may be responsible for the 

transit of stomatin between cellular compartments (Salzer et al. 1999). As yet, the 

role of stomatin in the nucleus has not been investigated. As stomatin functions as 

a structural protein in the plasma membrane through its interaction with the actin 

cytoskeleton, it may assume a similar role in the nucleoskeleton. 

A reporter gene assay was used to assess if a proteolytic event caused the release 

of a C-terminal fragment of stomatin from the membrane. Recent studies have 

shown that prokaryotic stornatin exists in an operon with a serine protease, 

suggesting a functional link between the two (Green et a/. 2004). In Pyrococcus 

horikoshii the serine protease PH1510 has been demonstrated to cleave PH1511, 

the stomatin homologue (Yokoyama et a/. 2005). Cleavage occurs in a domain rich 

in hydrophobic residues which is thought to interact with the membrane. Cleavage 

at this site is proposed to disassociate the domain from the membrane and allow the 

opening of an ion channel. If this is true for stomatin, it may partially explain the 

cation leak in the stomatocytes of OHSt patients. An ion channel regulatory role for 

stomatin has been considered likely since its deficiency in the stomatocyte 

membrane was found (Lande et a/. 1982). Results in this current study suggest that 

the C-terminus of stomatin is subject to proteolytic processing with the subsequent 

release of a C-terminal fragment from the membrane. With the use of various 

protease inhibitors it was found that a serine protease is most likely responsible for 

this processing of stomatin. However, the action of a metal lo-protease could not be 

ruled out and further investigation should be carried out to assess this. The 

proposed serine protease cleavage site in stomatin (Yokoyama et a/. 2005) cannot 
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be confirmed or ruled out in this study as the size of the fragment was not 

investigated. It is however an unlikely site of cleavage due to an adjacent proline 

residue. The possibility of calpain being responsible for the release of a C-terminal 

fragment of stomatin was ruled out. Inhibition of calpain increased reporter gene 

activity, suggesting the enzyme may be involved in a degradation pathway of 

stomatin. The processing event was stimulated following treatment with phorbol 12- 

myrisate 13-acetate. This suggests that protein kinase C modulates this processing 

of stomatin. Inhibition of the proteasome protected the C-terminal fragment from 

degradation. 

In conclusion this study has further confirmed the role of stomatin as a structural 

protein, most likely forming an anchor between the membrane and the actin 

cytoskeleton particularly in lipid rafts. Palmitoylation of stomatin on cysteine 29 

increases the affinity of the protein for the membrane and may also regulate the 

distribution of stomatin between the membrane and the nucleus. Stomatin is the 

substrate for a serine protease; whether this forms the basis of ion channel 

regulation requires further investigation. 
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