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Abstract

In�ammation is a natural response of the innate immune system. It has evolved

over the course of millennia to deal with the threat of injury and infection. The

neutrophil is a powerful immune cell that plays a vital role in in�ammation but

when dysfunctional it can cause chronic diseases such as asthma, chronic obstructive

pulmonary disease and arthritis. These illnesses have a devastating impact on the

lives of su�erers. A complete understanding of the in�ammation response is, there-

fore, a vital ongoing area of research where breakthroughs will potentially bring huge

bene�t to individuals and to society.

Neutrophils have been studied in vitro for over a hundred years. A new oppor-

tunity has recently arisen to observe their dynamics in vivo in transgenic zebra�sh

larvae which are transparent and have an immune system with similarities of form

and function to our own. These new data present a modelling and system identi�ca-

tion challenge: how to infer cell dynamics from limited amounts of data in a complex

extra-cellular environment.

This thesis addresses the problem by modelling populations of neutrophils using

a drift-di�usion model of cell dynamics. Firstly, a weighted regression framework

is developed which uses observations of mean squared cell displacements to iden-

tify neutrophil migration coe�cients during recruitment and resolution phases of

in�ammation. As a result the recruitment dynamics of in�ammatory neutrophils are

successfully quanti�ed in vivo. Whilst this framework is more rigorous than existing

approaches, it was not conclusive for model determination.

A second computational framework is therefore presented which reformulates the

approximate Bayesian sequential Monte Carlo algorithm for use in the cell migra-

tion context. In particular, the Cha-Srihari distance is used to compare the dis-

tributions of cell populations. Drift-di�usion models are then extended to include

chemoattractant receptor depletion dynamics and spatial variability in the extracel-

lular environment. When this framework was applied to zebra�sh neutrophils during

in�ammation resolution, a key result was that this migration is the unguided result

of inherent stochastic cell movements. This contrasts with the externally guided

dynamics during recruitment. An important conclusion is that the search for in�u-

ences driving neutrophils away from a wound is futile and the focus should be on the

mechanisms whereby neutrophils are desensitised to signals that retain them in the

in�amed area.



Acknowledgements

I thank my supervisor Visakan Kadirkamanathan for being supportive of my

return to academic study and for his insights and encouragement along the way; also

to Debbie Proctor for arranging all the meetings.

I thank Stephen Renshaw whose collaboration has provided focus for the research

in this thesis and whose help has been invaluable; also to Giles Dixon and Anne

Robertson for all the data.

I thank Sean Anderson for technical discussions and for his perennial positivity

and encouragement which have made a huge impact on my progress.

I thank Andrew Hills for introducing me to LaTeX, Python, Ubuntu, Bash, Ice-

berg and Git and then troubleshooting many of the problems I've encountered as a

result. I also thank Tara Baldacchino, Eliza Condrea, Veronica Biga, Andrew Za-

mmit Mangion, Michael Pelegrinis and Parham Aram, all of whom have made my

time studying more enjoyable. And thank you to all my colleagues who bought eggs.

*

I am always grateful to my parents,

my mother Anne and late father Nigel

for all that they have given me.

*

I especially thank my wife, Rebecca, for her love and support

and for putting up with my crazy idea of studying for a PhD.

*

Finally,

I dedicate this to our children,

Imogen, Jemima, Reuben and Rosanna,

who brighten up every day.



Table of Contents

List of Figures iv

List of Tables vii

List of Algorithms viii

Nomenclature ix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and objectives of this thesis . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Papers arising from this thesis . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature review 7

2.1 Neutrophils in the immune system . . . . . . . . . . . . . . . . . . . 7

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 The neutrophil's role in in�ammation . . . . . . . . . . . . . 8

2.1.3 The importance of in�ammation resolution and the means by

which it may occur . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 An in�ammation model . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Neutrophil migration . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.6 The opportunity o�ered by transgenic zebra�sh . . . . . . . . 13

2.2 Models for neutrophil migration . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Individual cell models . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Cell population models for chemotaxis . . . . . . . . . . . . . 18

2.3 System identi�cation techniques . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Least squares methods . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Maximum likelihood approaches . . . . . . . . . . . . . . . . 25

2.3.3 Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . 27

i



ii Table of Contents

2.4 Approximate Bayesian computation . . . . . . . . . . . . . . . . . . . 28

2.4.1 The basic ABC rejection sampler . . . . . . . . . . . . . . . . 30

2.4.2 ABC with local linear regression . . . . . . . . . . . . . . . . 32

2.4.3 ABC Markov chain Monte Carlo methods . . . . . . . . . . . 33

2.4.4 ABC SMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.5 Applications of ABC . . . . . . . . . . . . . . . . . . . . . . . 37

3 Regression analysis of neutrophil migration during in�ammation

recruitment and resolution 39

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Experimental methods . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Dynamic Modelling of neutrophil behaviour . . . . . . . . . . 44

3.3.3 Model identi�cation: neutrophil recruitment . . . . . . . . . . 45

3.3.4 Model identi�cation: in�ammation resolution . . . . . . . . . 47

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Modelling results: neutrophil recruitment . . . . . . . . . . . 51

3.4.3 Modelling results: in�ammation resolution . . . . . . . . . . . 53

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Neutrophil recruitment . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 In�ammation resolution . . . . . . . . . . . . . . . . . . . . . 58

3.5.3 Issues common to both analyses . . . . . . . . . . . . . . . . . 60

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Identifying neutrophil migration: a Bayesian modelling framework 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2 Why an approximate Bayesian approach is appropriate . . . . 65

4.1.3 ABC SMC with model selection . . . . . . . . . . . . . . . . . 66

4.2 Identi�cation framework development . . . . . . . . . . . . . . . . . 67

4.2.1 Dynamic model for cell migration . . . . . . . . . . . . . . . . 68

4.2.2 Summary statistic for the observations . . . . . . . . . . . . . 69

4.2.3 Distance between simulated and observed cell distributions . 70

4.2.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . 72

4.2.5 The validity of the posterior distribution . . . . . . . . . . . . 76

4.3 Validation of the new identi�cation framework on simulated data . . 78



Table of Contents iii

4.4 Identi�cation of zebra�sh neutrophil dynamics during the resolution

phase of in�ammation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Spatiotemporal variability in the neutrophil migration model 91

5.1 Extending the model to receptor depletion . . . . . . . . . . . . . . . 92

5.1.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Physical restrictions included in the model . . . . . . . . . . . . . . . 102

5.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Combining the depletion and restriction models . . . . . . . . . . . . 108

5.3.1 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusions and further work 119

A ABC-SMC parameter estimation 123

B Additional results for Dataset B 125

C Modelling the chemoattractant concentration 129

Acronyms 131

Bibliography 133



List of Figures

2.1 In�ammation Model [99] . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Stochastic model for cell migration Stokes et al. [119] . . . . . . . . . 15

2.3 Stochastic model for leukocyte random motility and chemotaxis ad-

apted from Tranquillo et al. [122] . . . . . . . . . . . . . . . . . . . . 17

2.4 Local coupling model adapted from Arrieumerloua and Meyer [5] . . 18

2.5 Comparison of Least Squares and Maximum Likelihood . . . . . . . 26

2.6 Comparison of experimental mouse melanoma cells tracks to simulated

tracks [33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Comparison of velocities and directional indicies for recruiting and

resolving neutrophils [85] . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Zebra�sh embryo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Photoconversion of Kaede protein in neutrophils within the zebra�sh

embryo tail�n area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 In�ammatory neutrophils in zebra�sh migrate away from the site of

tissue injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 At peak in�ammation, further neutrophils are still being recruited to

the site of injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Experimental data: reverse migration of photoconverted neutrophils

away from a wound in zebra�sh . . . . . . . . . . . . . . . . . . . . . 50

3.7 Unprocessed neutrophil displacement data . . . . . . . . . . . . . . . 51

3.8 Number of observed neutrophils . . . . . . . . . . . . . . . . . . . . . 52

3.9 Neutrophils actively migrate into the wound region . . . . . . . . . . 54

3.10 Neutrophil in�ammation resolution migration behaviour �tted to both

pure-di�usion and drift-di�usion models . . . . . . . . . . . . . . . . 55

3.11 Simulation reveals a pure-di�usion model to be a better �t to the real

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.12 Comparison of cell tracks deduced by [85] to be directed with a cell

track which is not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



List of Figures v

4.1 A problem with using the symmetric Kulback-Liebler divergence . . 71

4.2 Comparison of Bhattacharyya and Cha-Srihari distances for varying

di�usivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Comparison of Bhattacharyya and Cha-Srihari distances for varying

drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Epanechnikov kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 An example of an over-�tted ABC posterior . . . . . . . . . . . . . . 76

4.6 Explanation of over-�tting the posterior distribution . . . . . . . . . 77

4.7 Validation of the identi�cation framework on simulated data. . . . . 80

4.8 Zebra�sh neutrophil data estimation results for Model 1, the pure-

di�usion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Zebra�sh neutrophil data estimation results for Model 2, the drift-

di�usion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Zebra�sh neutrophil data model selection result . . . . . . . . . . . . 85

4.11 Bayes factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.12 Simulation comparisons of the estimated pure-di�usion model, Model

1, to the experimental data . . . . . . . . . . . . . . . . . . . . . . . 87

4.13 Dataset B: model identi�caion and parameter estimation . . . . . . . 88

5.1 The receptor depletion model . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Estimation results for Model 3, the pure-di�usion-depletion model . 96

5.3 Estimation results for Model 4, the drift-di�usion-depletion model . . 97

5.4 Model selection for Models 1,3,4 . . . . . . . . . . . . . . . . . . . . . 98

5.5 Simulation comparisons of the estimated pure-di�usion depletion mod-

el, Model 3, to the experimental data . . . . . . . . . . . . . . . . . . 99

5.6 Proposed experimental design for improved identi�cation of receptor

depletion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Bayes factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8 Migration of neutrophils away from the wound indicates preferred

channels of movement . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.9 Estimation results for, Model 5, the pure-di�usion restriction model . 105

5.10 Estimation results for, Model 6, the drift-di�usion-restriction model . 106

5.11 Model selection for Models 1,5,6 . . . . . . . . . . . . . . . . . . . . . 107

5.12 Simulation comparisons between the estimated pure-di�usion restric-

tion model, Model 5, and the experimental data . . . . . . . . . . . . 108

5.13 Estimation results for, Model 7, the pure-di�usion-depletion-restriction

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.14 Estimation results for, Model 8, the drift-di�usion-depletion-restriction

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



vi List of Figures

5.15 Simulation comparisons of the estimated pure-di�usion-restriction-

depletion model, Model 7, to the experimental data . . . . . . . . . . 113

5.16 Comparing the 3 favoured models, Models 3,5,7 . . . . . . . . . . . . 114

B.1 Model comparisons for Dataset B . . . . . . . . . . . . . . . . . . . . 125

B.2 Simulation comparisons between the estimated pure-di�usion model,

Model 1, and the experimental data . . . . . . . . . . . . . . . . . . 127

B.3 Pure-di�usion model comparisons for DatasetB . . . . . . . . . . . . 128

B.4 Dataset B neutrophil migration locations . . . . . . . . . . . . . . . . 128



List of Tables

3.1 Estimated drift coe�cients for the model of drift-di�usion describing

cell migration toward the wound . . . . . . . . . . . . . . . . . . . . 52

3.2 Estimated coe�cients for the drift-di�usion model and pure-di�usion

model of cell migration away from the wound . . . . . . . . . . . . . 56

4.1 Interpretation of Bayes factor values . . . . . . . . . . . . . . . . . . 66

4.2 Performance of Algorithm 4.2 against number of iterations . . . . . . 79

5.1 Summary of the parameter estimates for Dataset A . . . . . . . . . . 117

B.1 Evidence in favour of the pure-di�usion model via logarithm of Bayes

factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2 Summary of parameter estimates for Dataset B . . . . . . . . . . . . 126

vii



List of Algorithms

4.1 Cha-Srihari distance between ordinal histograms . . . . . . . . . . . 72

4.2 Model selection and parameter estimation using ABC-SMC . . . . . 74

A.1 Parameter estimation using ABC-SMC . . . . . . . . . . . . . . . . . 123

viii



Nomenclature

A list of the variables and notation used in this thesis is de�ned below. The de�ni-

tions and conventions set here will be observed throughout unless otherwise stated.

For a list of acronyms, please consult page 131.

a vector

A matrix

Y set

θ parameter set

⊤ transpose

∇ di�erential operator

U (a, b) uniform distribution taking values in the range [a, b]

N (µ, Σ) normal distribution with mean µ and covariance Σ

P(.) probability operator

P(. | .) conditional probability operator

E (.) expectation operator

ix





Chapter 1

Introduction

1.1 Background

The neutrophil is a type of white blood cell and one that plays a key role in the

in�ammatory response of the vertebrate innate immune system. During this pro-

cess any damage to the host organism and invasion of infectious threats must be

rapidly dealt with. On such occasions, it is vital that neutrophils be activated and

deployed successfully. However, they must eventually also become de-activated and

then disperse for normal equilibrium and health to return to the system. Activated

neutrophils are powerful agents.

The ongoing study of these processes is important. Not least because the in�am-

matory response can be sometimes be inappropriately activated and sometimes may

fail to resolve properly. This can result in severe damage to otherwise healthy tissue

and organs. Such pathological states lie behind many chronic illnesses which are

prevalent in modern society such as chronic obstructive pulmonary disease (COPD),

bronchial asthma and arthritis. These are burdens which put huge demands upon

the resources of our healthcare systems as well as upon the lives of individuals and

their families.

To quote Carl Nathan [90]: `Understanding the circuits that confer and control

[neutrophil] behaviour is as challenging a problem as any other in cell biology. Meet-

ing that challenge holds therapeutic promise in diverse settings of intense interest,

..., from metastatic tumours to ravaged joints.'

Experimental studies are fundamentally important for the furthering of this un-

derstanding. More and more, however, mathematical modelling and system identi-

�cation techniques are being seen as vitally important, to bring out the full impli-

cations of experimental results and help shape the priorities for the next generation

of experiments. Modelling is the process by which a mathematical description of

1



2 Chapter 1. Introduction

a system is built up from known physical properties of the system. System iden-

ti�cation determines the unknown parameters of candidate models of the system

and weighs evidence to determine which is the best model to describe the system.

This is a data-driven process in which prediction of the model systems are compared

to measured outputs of the physical system being investigated. This thesis applies

modelling and system identi�cation principles to the study of neutrophil dynamics

during the recruitment and resolution phases of an in�ammation event.

The role and function of neutrophils in the immune system is an area that has

been studied for over a hundred years and much has already been discovered and

reported. However, with the advent of new experimental procedures and imaging

techniques - especially those for experiments in vivo, new types of dataset are avail-

able. These new datasets bring new challenges to the task of data analysis which

require the development of novel and innovative techniques for modelling, parameter

estimation and model identi�cation in order to explore and understand the cellular

dynamics. Meeting these challenges means we will be better able to identify the key

processes and hence to predict and control the outcomes.

Recently, a new opportunity to take this �eld of research forward has arisen

with the development of the zebra�sh (danio rerio) as a biological model∗ for the

in vivo study of neutrophilic in�ammation and its resolution. The zebra�sh has the

particular advantages of being genetically well known and amenable to alterations

which allow �uorescent labelling of particular cell lines. The larvae are transparent

which means the labelled cells can be observed with relative ease. And whilst being

economical in terms of space and cost to maintain, it is, importantly, a species in

which the immune system has signi�cant functional similarities to our own.

The zebra�sh model thus allows collection of data which records the whole of an

in�ammation and resolution event in which a particular cell line, the neutrophil, is

singled out from others without confusion. Therefore, the new research challenge is

to �nd novel frameworks within which to analyse this data, in particular to answer

questions about the mechanisms by which neutrophil are recruited to and resolved

from a site of in�ammation.

In summary, the recent developments which allow speci�c visualisation of neu-

trophils through a complete in�ammation cycle opens up the di�cult challenge of

modelling these cells. This thesis presents a framework for modelling them and

thereby characterises important aspects of their dynamics.

∗Model is used here in the biologist's sense of a genetically modi�ed form of an organism which
is amenable to experimental investigation.
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1.2 Aims and objectives of this thesis

The central aim of this thesis is to characterise the nature of neutrophil dynamics

during in�ammation and in�ammation resolution. Data is obtained from zebra�sh

larvae, but the conclusions have implications for understanding the human immune

system due to similarities in form and function between that and the zebra�sh im-

mune system.

Whereas many recent neutrophil studies focus on the individual cell level, this

thesis takes a previously unexplored cell population approach to this particular prob-

lem. Using the drift-di�usion partial di�erential equation (PDE) to draw analogies

with molecular dynamics in �uids, it characterises the neutrophil dynamics in terms

of drift and di�usion coe�cients. These have a correspondence to biological realities

of directed cell movement (drift-di�usion dynamics) and undirected, purely stochas-

tic movement (which will be referred to here as pure-di�usion dynamics).

Within the central aim, a key question in current neutrophil research concerns

neutrophil dynamics during in�ammation resolution: are the resolving cells directed

away from the in�amed area or are they moving freely according to inherent random

patterns? This thesis answers this question on the population level and comes to a

conclusion which contradicts a currently emerging consensus. The results presented

here, therefore, have important implications for the direction of future research into

the in�ammation resolution process.

In order to achieve its aim, this thesis accomplishes the following objectives:

• Apply regression analysis to solutions of the drift-di�usion equation to develop

a relatively straightforward procedure for estimating cell recruitment and reso-

lution dynamics during in�ammation. The aim of this approach is to be under-

standable and usable by experimentalists. It will be illustrated by application

to the zebra�sh data.

• Develop a Bayesian framework for analysis of cell dynamics. This framework

will be applicable to any complex situation which can be simulated but not

necessarily be expressed in an analytic probability model. The framework will

have a built-in model selection strategy.

• Develop a range of candidate models, suggested by experimental studies, which

are suitable for modelling the zebra�sh neutrophil data within the Bayesian

framework.

• Apply the Bayesian framework to zebra�sh neutrophil data to select between

the various candidate models and estimate the neutrophils' dynamic properties.
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The data analysed is obtained from zebra�sh larvae by research partners∗. These

datasets are novel in that, (a) they achieve neutrophil speci�c labelling of cells; and,

(b) by labelling with photo-convertible Kaede protein, a subgroup of the neutrophils

are di�erentially labelled. This twofold approach facilitates separate analysis of neu-

trophils that are being recruited to the in�ammation region and neutrophils that are

concurrently migrating away from that region.

1.3 Thesis overview

The structure of the remainder of this thesis can be summarised as follows.

Chapter 2 reviews the relevant literature relating to neutrophils, some of the

models used to characterise them, and an overview of some common system iden-

ti�cation techniques. It introduces the approximate Bayesian computation (ABC)

approach which will be developed for the neutrophil migration problem and applied

in Chapters 4 and 5.

Chapter 3 develops a regression based analysis framework which is applied to

the zebra�sh neutrophil data using models which are derived from the drift-di�usion

PDE. The analysis is applied both to neutrophils that are being recruited to in�am-

mation and neutrophils that are subsequently migrating away from the in�ammation

region. Whilst similar approaches have been used in a molecular context, to the best

of the author's knowledge this represents a novel approach to cell dynamics and the

framework can be applied in many other similar cell migration settings.

Chapter 4 develops further the key question posed above concerning in�ammation

resolution dynamics: whether there is directed or purely stochastic migration. It does

this by developing a novel simulation based Bayesian cell modelling framework which

allows parameter estimation and model selection between arbitrarily related models

for which no likelihood function is easily computed. This framework is then applied

to the zebra�sh data using simulation models corresponding to the pure-di�usion

and drift-di�usion models.

Chapter 5 seeks a more complete model description of the neutrophil migration

dynamics in order to increase the robustness of the identi�cation results. It does

this by taking into account (a) temporal variation in the neutrophil dynamics via a

novel model for attractant ligand receptors, and also (b) spatial variation via a novel

way of characterising inhomogeneities in the extra-cellular matrix within which the

neutrophils move. These new models are then applied to the neutrophil data using

the framework developed in Chapter 4. Of particular interest here is whether the

new results a�ect the conclusion concerning neutrophil migration dynamics during

∗From the Department of Infection and Immunity, University of She�eld
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in�ammation resolution.

Chapter 6 makes some conclusions and highlights areas of further work which

follow on from this thesis.

1.4 Papers arising from this thesis

Material from this thesis has formed the basis for two published papers: from

Chapter 3,

• G. Holmes, G. Dixon, S. Anderson, C. Reyes-Aldasoro, P. Elks, S. Billings,

M. Whyte, V. Kadirkamanathan, and S. Renshaw. Drift-di�usion analysis

of neutrophil migration during in�ammation resolution in a zebrafsh model.

Advances in Hematology, 2012. [53]

and from Chapters 4 and 5,

• G.R. Holmes, S.R. Anderson, G. Dixon, A.L. Robertson, C.C. Reyes-Aldasoro,

S.A. Billings, S.A. Renshaw, and V. Kadirkamanathan. Repelled from the

wound, or randomly dispersed? reverse migration behaviour of neutrophils

characterised by dynamic modelling. Journal of The Royal Society Interface,

September 2012. [52]

A third related paper to which the author contributed has been published during

the period of research for this thesis,

• V. Kadirkamanathan, S.R. Anderson, S.A. Billings, X. Zhang, G.R. Holmes,

C.C. Reyes-Aldasoro, P.M. Elks, S.A. Renshaw. The Neutrophil's Eye-View:

Inference and Visualisation of the Chemoattractant Field Driving Cell Chemo-

taxis In Vivo. PLoS One, 2012. [65]

A further conference paper based on material from Chapters 4 and 5 is currently in

submission,

• G.R. Holmes, S.R. Anderson, G. Dixon, S.A. Renshaw, V. Kadirkamanathan.

A Bayesian framework for identifying cell migration dynamics.

Finally, a paper is in preparation which uses the Bayesian framework and models

from Chapter 4 and 5, applying them to data collected from drug altered zebra�sh

neutrophil datasets,

• Anne L. Robertson, Aleksandra N. Bojarczuk, Geo�rey R. Holmes, Sean R.

Anderson, Stuart N. Farrow, Roberto Solari, Visakan Kadirkamanathan, Moira

K. B. Whyte and Stephen A. Renshaw. A novel anti-in�ammatory mechanism

de�ned by an in vivo zebra�sh in�ammation screen.
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1.5 Summary of contributions

• A regression framework for identifying cell migration dynamics (Chapter 3).

• Quanti�cation of zebra�sh neutrophil recruitment dynamics during in�amma-

tion (Chapter 3).

• A Bayesian framework for identifying cell migration dynamics (Chapter 4).

• Novel models for neutrophil migration during in�ammation and in�ammation

resolution (Chapter 5).

• Evidence that zebra�sh neutrophil migration during in�ammation resolution

is purely stochastic (Chapters 3, 4, 5).



Chapter 2

Literature review

2.1 Neutrophils in the immune system

2.1.1 Background

Neutrophils are the most abundant type of mammalian leukocyte∗ in the circulation

[3]. They play a crucial role in the innate immune system: their purpose is to �nd

and neutralise microbial invaders in their host organism. In order to do this the are

able to process complex signals and deploy a range of attacking strategies as part of

the in�ammation process [90]. Unfortunately, their power against infection carries a

concomitant potential to cause serious collateral damage to the host [84].

Neutrophils are eukaryotic cells. This means that they have a cell nucleus which

is in contrast to prokaryotic cells such as bacteria. Neutrophils have been known and

studied since the late 19th century when Paul Erlich used a staining procedure to

analyse subtypes of leukocyte [16]. The name `neutrophil' arose from the tendency

of these cells to retain neutral dyes. At the same time Elie Metchniko� discovered

the neutrophil's basic function as a microbial phagocyte [50], in other words they

consume invading microbes. Observing their lobulated nuclei, Metchniko� gave them

the name polymorphonuclear leukocyte (PMN). Both neutrophil and PMN are still

commonly used terms for these cells. Neutrophils are part of the granulocyte subtype

of leukocytes [16]. The term granulocyte relates to the densely packed granules in

their cytoplasm - structures that enables them to carry potent proteins safely. These

proteins are encapsulated but ready to be released and deployed when the time and

place is right.

Since their discovery over a century ago, neutrophils have proved di�cult subjects

of research. They are short lived cells with a 6-8 hour lifespan in the circulation and

they are not amenable to growth in tissue culture [3]. Furthermore, the complex

∗white blood cell

7
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signalling processes they are part of in the complex environments in which they

carry out their functions means that ex vivo studies are quite limited in what they

can reveal. Modern techniques mean that much progress has been made but there

are still many unanswered questions which remain to be addressed [118]. These

questions include,

• What chemoattractants, and possibly what chemorepellants, drive neutrophil

migration?

• What are the dynamics of neutrophil migration towards and away from in�am-

mation sites?

• What are the functions and fate of these reverse migrating cells?

• What are the signalling mechanisms that underlie neutrophil polarisation and

chemotaxis?

This thesis focusses on the second of these questions.

2.1.2 The neutrophil's role in in�ammation

Neutrophils [3, 15] are generated within the bone marrow. From there they move

into the bloodstream and are immediately receptive to any evidence of a threat to the

host organism. Such a threat typically occurs in the epithelium∗. An injury, together

with any associated infectious incursion, immediately releases a cascade of chemical

signals, some host derived and some microbial. When these reach the vicinity of the

vasculature they interact with endothelial† cells which in turn produce markers on

the walls of the blood vessels. Circulating neutrophils repeatedly come into contact

with these walls and when they encounter such a marker it initiates them into a

process of activation. First they start a rolling motion along the inner edge of the

endothelium. Further contact with more of the pro-in�ammation markers arrests

them in a state of adhesion. They are then able to migrate through the endothelial

wall and enter the interstitial space.

The neutrophils are now in a very di�erent context to the vasculature and they

are surrounded by the multi layered chemical �eld of pro-in�ammatory agents and

signals. Their heightened state of activation enables them to perform the multiple

tasks of navigating towards the site of the threat, preparing to deploy their an-

timicrobial agents and releasing other chemicals that further facilitate the innate

immune response and initiate the adaptive immune response. In doing this they are

∗Epithelial tissues lines cavities and surfaces throughout the body including the skin.
†Endothelial cells form a thin surface on the interior of blood vessels.
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interacting comprehensively with other immune cells and recruiting them into the

in�ammation area [117].

When they arrive in the target area, neutrophils reach the �nal stage of activation

in which they have three strategies for dealing with infection. The �rst and most

basic is phagocytosis - the engulfment of alien cells (and other cell debris) to nullify

the threat these pose. Neutrophils will actively follow microbe derived signals and

relentlessly pursue their target until they overtake and consume it. The second strat-

egy is degranulation: the toxic proteins, up to now safely carried in the cytoplasmic

granules, are released where they are needed. And thirdly, as part of programmed

cell death (apoptosis) neutrophils may release extra-cellular traps [19].

Apoptosis of neutrophils, in turn, produces signals which lead to the dampening

of the in�ammatory response. Recruitment of further neutrophils slows down and

eventually ceases. Phagocytosis of apoptic neutrophils by macrophages ensures that

secondary death of apoptic neutrophils does not lead to a new in�ammation event

and also puts the macrophage cells into anti-in�ammatory mode thus promoting

tissue restoration. In addition to apoptosis, as will be described in Section 3.2 there

is increasing evidence that in�ammation resolution may be e�ected by neutrophils

migrating away from in�ammatory sites[20, 85, 131], and possibly even returning to

the vasculature [21].

2.1.3 The importance of in�ammation resolution and the means by

which it may occur

The responses described above have evolved over hundreds of millions of years en-

abling a vigorous and e�ective response to invading micro-organisms. For millennia,

human life was relatively short and such risks were ever present. Now, however, with

the advent of modern medicine, life expectancy has increased. Over this longer span

we are more aware of the potential pathological side e�ects arising from the potency

of the neutrophil [84, 132].

Inappropriate activation of neutrophils or failure in the resolution process of an

in�ammation event often results in conditions of chronic in�ammation [111]. This

leads to harmful accumulations of toxic substances in the tissues which can lead, in

turn, to one or more of several chronic illnesses. Examples include bronchial asthma,

rheumatoid arthritis, cystic �brosis and also COPD, which according to the World

Health Organisation, is one of the leading causes of death in the developed world

[132]. In these conditions the severity of in�ammation often has a direct inverse

correlation with positive outcome [3]. Adverse neutrophil action can also support

disease progression in other illnesses such as cancer and autoimmune syndromes.

These negative consequences of in�ammation clearly cause loss of life expectancy
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and loss of life quality for millions of people worldwide. Associated with this is a

huge drain on public healthcare resources. For these reasons, research which will

lead to the understanding of the mechanisms of in�ammation and its resolution as

well as of the dysregulated versions of these process, is vital at this time. This thesis

makes an important contribution to this area.

In the past it was thought that in�ammation resolution was a passive process in

the sense that the cues for in�ammation decayed over time and neutrophil recruit-

ment ceased. It is now believed that in�ammation resolution is an active process,

programmed in a similar manner to the way that in�ammation itself is [111]. This

has important therapeutic consequences: both pro-resolution and anti-in�ammation

interventions may be possible, and care needs to be taken that any anti-in�ammatory

interventions do not upset the inherent in�ammation resolution programme and

thereby cause unintended and unforeseen harm.

Resolution of in�ammation, is clearly a multifaceted process [111]. The aspect

of it that this thesis is particularly concerned with is how neutrophils leave or are

removed from the a�ected tissues. It is recognised that this can happen in various

ways:

• Apoptosis and subsequent clearance by other phagocytes.

• Migration away into the surrounding tissues.

• Migration back into bloodstream.

This thesis investigates how migration away into the surrounding tissue occurs. In

particular, it investigates whether this is an actively directed process (in the sense

described in the following section) or a purely passive (undirected) process which

is the result of inherent random behaviours. It should be noted, however, that the

belief that in�ammation resolution as a whole is an active programmed process does

not pre-empt or con�ict with this particular issue to be addressed.

2.1.4 An in�ammation model

Ordinary di�erential equation (ODE)s are frequently used to model biological sys-

tems. This approach has been applied to the in�ammation response with a view to

prediction and control. The following model of Parker and Clermont [99] illustrates
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the approach.

dP

dt
= kP (1− P )P − kPMMP (2.1)

dM

dt
= (kMPP + L)M(1−M)− kPMMP − kMM (2.2)

dL

dt
= kLM

(
1 + tanh

(
M −M0

w

))
− kLMP (2.3)

where P is a pro-in�ammation agent, M represents the immune system response,

which could be measure, for instance, by the concentration of neutrophils, and L

represents a quanti�cation of dysfunction, such as host cell damage. Equations (2.1)-

(2.3) are illustrated and explained in Figure 2.1. The �gure also shows how a further

term can be added to represent an anti-in�ammation agent, C [31]. These models

P L

C

M

anti-in�ammation

pro-in�ammation dysfunction

in�ammation

Figure 2.1: In�ammation Model [99]: Pro-in�ammation agent, P , (e.g. bacterial
concentration) promotes in�ammatory response, M . M , in turn, is self promoting
(e.g. neutrophil attract other neutrophils), suppressing P but also causes damage,
L. The damage, L can also promote further in�ammatory response. If an anti-
in�ammation agent, C is present, it introduces a negative feedback loop, reducing
the possibility of unchecked in�ammation which cannot resolve.

can be investigated by solving the equations with di�erent parameter choices to see

what the range of dynamic system responses can occur. They can also be calibrated

or made to be biologically meaningful via combination of choosing parameters based

on a priori knowledge or other studies in the literature and estimating parameters

by minimising the di�erence between model predictions and experimental results.

ODE models such as this have no spatial dimension but can be given some spatial

aspect by compartmental modelling. In compartmental modelling, systems of ODE
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apply in a number of separate compartments and then transitions and interactions

between compartments are also modelled on another level. Whilst such modelling

reveals much about the in�ammation process it is not suitable for modelling cell

migration dynamics which requires a full spatio-temporal treatment.

2.1.5 Neutrophil migration

Cell migration [70] in its broadest sense is resolved and studied on three temporal

scales: locomotion, translocation and migration [34]. Locomotion is the scale on

which the mechanics of the individual cell are considered: cell polarisation, the for-

mation of protrusions which reach out and adhere to the substrate∗ creating tractive

force, and the release of rearward adhesions to allow forward movement (at or below

this level one may also consider the binding of ligands and intracellular signalling

which are e�ecting the locomotion). Translocation is the scale of several locomotion

cycles of a cell. At this level, local directional correlations (persistence) are seen to

occur and decay over time, and global directional bias may begin to be observed.

On the migration scale, the detailed tracks of individual cells are of less interest.

Migration relates to the position of cells at various times or the evolving distribu-

tion of a cell population as a whole. It is on this level of migration as populational

distribution that neutrophil dynamics will be modelled in this thesis.

Migration is therefore the result of translocation, and it has been shown that

translocation can be directed by signals external to the migrating cell in various

di�erent ways : haptotaxis is when a cell moves up an adhesion gradient [34] and

chemotaxis is when a cell moves up a chemoattractant gradient [136]; to these can be

added fugetaxis [127], the opposite of chemotaxis, with the cell migrating down the

chemoattractant gradient, and galvanotaxis when a cell moves up a electrical �eld

gradient [57].

If there are several forms of taxis, there are also various modes whereby these

taxis events can be achieved [34]: Topotaxis is a mode of preferential turning toward

the direction of maximum gradient; Orthotaxis is when the cell moves faster when

moving in the gradient direction; Klinotaxis is the reduction of random turning when

the cell is oriented in the gradient direction; orthokinesis is when cell speed increases

with chemoattractant concentration; klinokinesis is when cell turning reduces with

chemoattractant concentration.

The ability of neutrophils to direct their movements along a chemical gradient

was �rst demonstrated by Zigmond in 1977 [135]. It has subsequently been shown

that neutrophils can and perhaps must be guided sequentially towards their target by

∗the substrate is the surface or medium on which a cell moves or is attached also known as the
extra cellular matrix.
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a sequence of competing chemoattractants [44]. The neutrophils are able to integrate

the signals and use `memory' to prioritise and respond to the newly distinguished

signals each in turn [45]. Furthermore having migrated up an attractant gradient to

a saturation level where orientation is no longer possible, they are able to navigate

down the �rst gradient in response to a new more distant signal. It is found also

that target (i.e. bacterium or dying cell) induced attractants are prioritised over

regulatory cell induced attractants. This is accomplished by the former having an

inhibitory e�ect on the ligand binding of the latter.

Arrieumerloua and Meyer [5] suggest and describe 3 basic chemotaxis modes for

eukaryotic cells: Correlated Random Walking, Biased Random Walking and Persis-

tent Migration. The �rst of these is purely stochastic but with short term directional

persistence which decays over time. The di�erence between the latter two modes is

that in a biased random walk, movement is possible in any direction but net move-

ment is towards the target, whereas in persistent migration movement is never away

from the target. A key point arising from the �ndings of this thesis is the importance

of not misrepresenting short term directional correlation in purely random motion

as though it is evidence of persistent migration.

2.1.6 The opportunity o�ered by transgenic zebra�sh

Throughout most of the last century leukocyte research relied on in vitro methods

to uncover new knowledge and understanding of cell phenotype and function [130].

More recently a number of animal models∗ have been developed which, together

with modern video microscopy equipment, have allowed a revolution to occur in

investigating how the cells behave in their native context. The preferred context

for in vivo neutrophil study has been the mouse, and in the mouse a visualisation

of neutrophil recruitment has been achieved with striking results [87, 131]. There

are, however, limits to what can be achieved in this way. During recruitment the

neutrophils are moving into the observed region of the animal but their positions and

paths prior to arrival are not able to be observed. Furthermore, during in�ammation

resolution, by its nature, the cells are moving away and tend to disappear back into

regions of tissue where observation is not possible. For this reason it is much more

di�cult to study the dynamics of these resolving cells as they are removed from

in�ammatory sites. In addition, genetic approaches allowing distinction in vivo of

neutrophils from other immune cells are still uncommon.

The transgenic zebra�sh model [97], in contrast, allows in vivo visualisation of

individual immune cells during in�ammation resolution [38, 107, 108]. Zebra�sh are

∗Model is used here in the biologist's sense of a genetically modi�ed form of an organism which
is amenable to experimental investigation.
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genetically tractable and e�cient in terms of both cost and space. Furthermore, the

zebra�sh has similar immune system characteristics to those in mammals. Not only

do neutrophils have similar functionality in mammals as in bony �sh generally [84],

but more particularly, zebra�sh neutrophils, as in humans, are the most numerous of

the leukocytes [76] and are the �rst to be recruited to an in�ammation event where

they perform the usual vital functions of degranulation and phagocytosis [28, 40,

48, 118]. Using the zebra�sh in its transparent larval form, neutrophils tagged with

green �uorescent protein (GFP) markers can be directly observed and recorded in

vivo and throughout the organism using video microscopy. In addition to this, by

labelling the neutrophils with Kaede protein [4], which �uoresces green but changes

to red on exposure to a certain frequency of light, sub-populations of the cells can be

distinguished and observed separately. The behaviour of these distinct cell groups

then be analysed to provide insight into the underlying patterns governing their

movement. Data of this kind (though without the Kaede enhancement) has already

been used to show that Hydrogen Peroxide (H2O2) is a likely candidate for rapid

recruitment of neutrophils to wound sites in zebra�sh [94].

2.2 Models for neutrophil migration

2.2.1 Individual cell models

On the individual cell level there is much work in the literature to try to uncover and

understand the mechanics of cell migration using mathematical models. A particular

goal has been to �nd a modelling framework which can unify the twin aspects of (a)

random but directionally correlated motion in the absence of any guiding cue, with

(b) the existence of directionally guided motion when such cues are present.

Stokes et al. [119] build on the earlier work of Uhlenbeck and Ornstein [124],

Doob [35] and Dunn and Brown [37] to develop a stochastic migration model. This

model is described in the following two equations for velocity, v and position, x:

dv(t) = −βv(t) dt+
√
α dW(t) +Ψ(t) dt (2.4)

x(t) =

∫ t

0
v(s)ds (2.5)

Equation (2.5) is self explanatory whilst (2.4) describes the change in velocity as the

net result of two deterministic impulses and a random acceleration.

−βv(t) is the drag, directly proportional to and opposing the current velocity.

Ψ(t) is the force due to a biasing chemoattractant.

W(t) is the random velocity disturbances at time t.
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ϕ

Cell path
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y

Figure 2.2: Stochastic model for cell migration. From Stokes et al. [119],
adapted with permission∗.

In this model it is assumed that the source of chemoattractant is localised and

therefore the bias direction is spatially dependent. They use the results of Nossal

and Zigmond [96] to derive a formula for the bias force:

Ψ = κ∇a sin

∣∣∣∣ϕ2
∣∣∣∣ (2.6)

where κ is the chemotactic responsiveness, ∇a is the gradient of attractant and ϕ is

the current angle between v and ∇a, as shown in Figure 2.2.

Nossal and Zigmond [96] show, however, that the attraction increases with ϕ up

to an angle of 90o. There is no evidence given for angles over this. An alternative

model of gradient sensing, proposed by Tranquillo et al. [122] and discussed below,

implies instead that the sensed gradient would decrease as ϕ increases from 90o to

180o in which case a more appropriate formula would be:

Ψ = κ∇a sin |ϕ| . (2.7)

Also, whilst in the model proposed by Stokes et al. the bias is assumed to act as a

force on the particle, in the light of the model of Tranquillo et al. [122], it might be

more appropriate to treat it as a turning moment acting on the orientation of the

particle.

Neutrophils and other leukocytes show short term directional persistence within

∗With permission from Journal of Cell Science, The Company of Biologists.
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globally random migration patterns when moving in the absence of any chemotactic

signal. They can also move with directional accuracy under the in�uence of an

attracting bias even when the gradient inducing the bias is very small (e.g. 1− 2%).

Tranquillo et al. [122] presented a model for leukocyte motility which reconciles these

two facts.

The model, illustrated in Figure 2.3 assumes that the cells have constant polarisa-

tion and move forward at a constant speed independently of the turning mechanism

described by the model. The leading edge of the polarised cell, or lamellipodium, is

modelled as two interacting compartments. The surface of each compartment has

a set of attractant receptors. When a receptor is occupied by the corresponding

ligand, motile force e�ector, M, is produced within the compartment. The turning

rate of the cell is proportional to the di�erence between the amount of e�ector in

each compartment,
dθ

dt
∝ M1 −M2 (2.8)

The quantities M1 and M2 are calculated by solving di�erential equations which

include terms for production, di�usion and decay of M. Production relies in turn on

chemoattractant concentration, instantaneous and mean proportion of receptor oc-

cupancy and direction of travel through the chemoattractant �eld. The stochasticity

which drives the model is introduced through a stochastic di�erential equation for

instantaneous receptor occupancy.

Models such as Tranquillo et al. [122] and those based on it rely on internal

signalling and integration of gradient sensing across the leading edge of the cell. In

contrast to this some more recent models propose and �nd evidence for cell turning

being due to the net result of independent lamellipod extensions on either side of the

leading edge of the cell. For instance Arrieumerloua and Meyer [5] assumed that each

receptor binding event within the leading edge triggers a local lamellipod extension,

and that the average local lamellipod response to this creates a small turn in the

direction of migration. On average the cell will tend to turn towards the source

of the chemoattractant. From these assumptions they derive a distribution for cell

orientation as a function of local chemoattractant gradient:

P (α) = γe
g
δ
cos(α) (2.9)

where −π < α < π, γ is a normaliser, δ is an incremental angle created by lamellipod

extension in response to a single signalling event, and g is a relative measure of the

chemoattracant gradient derived from the concentrations c1 and c2 at the left and
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right side respectively of the leading edge,

g = 2
c1− c2

c1 + c2
(2.10)

Arrieumerloua and Meyer call the ratio g
δ the compass parameter. The higher the

value of this ratio, the more e�ciently the cell is able to �nd its way to the source

of the chemoattracant.

Expected

response
Possible

response

Mean field

Possible

perceived field

(a) (b)

M1 M2 M1 M2

Figure 2.3: Stochastic model for leukocyte random motility and chemo-
taxis. Adapted from Tranquillo et al. [122] with permission∗. (a) Chemotaxis: A
cell is subject to a gradient of chemoattractant (mean �eld line). However, due to
noise in the process of chemoattractant / receptor binding it is possible that the cell
perceives the gradient to be operating in the contrary direction. Nevertheless, the
mean direction perceived by the cell will be that of the true gradient. (b) Random
motility: Similarly, in a uniform �eld the process noise means that the cell will per-
ceive a gradient even though there is none present in fact. Globally the movements
will be random. The model can be speci�ed such that there is short term directional
persistence which is in keeping with observations of neutrophil movements.

The models described above, and many more like them [60], aim to develop a

mathematical description for individual neutrophil migration which is plausible and

can give a good account of the types of behaviour that are observed experimentally.

However, less work has been done on the reverse problem which is a thoroughgoing

data-driven identi�cation and estimation of migration models. Zigmond and Lauf-

fenburger [134] discuss various ways in which cell migration data has been analysed.

Their context is the evaluation of cells for migratory defects and the data is as-

sumed to be collected in vitro. However, many current experimental studies still use

∗ c⃝1988 Rockefeller University Press. Originally published in Journal of Cell Biology. 106:303-
309. doi:10.1083/jcb.106.2.303
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similar approaches. Typically, the analysis is based on comparing speed of move-

ment, directional orientation or the proportion of cells responding to a directional

cue. Common approaches include, counting the number of cells that migrate beyond

a chosen threshold distance, measuring the distance travelled by a small group of

leading cells, and determining the total number of cells migrating in a particular

direction. Approaches that apply particularly to the evaluation of chemotaxis in-

clude the McCutcheon index (net direction travelled in the direction of chemotactic

bias divided by total path distance), and the orientation bias (the proportion of cells

moving in the direction of bias, at any point in time). These approaches are sensitive

to the sampling time, since the full tortuosity of a cell path may be masked if the

sampling time is too short. Whilst Zigmond and Lau�enburger were writing some

time ago, the methods used in many experimental studies is still at this level.

attractant 

concentration

c2

c1

Figure 2.4: Local coupling model. Adapted from Arrieumerloua and Meyer [5]∗.

2.2.2 Cell population models for chemotaxis

The idea of Chemotaxis has already been introduced in Section 2.1.5: it is the process

whereby a cells movement is aligned to the gradient of a surrounding chemical �eld

[136]. Two of the principle results of this thesis are the quanti�cation of neutrophil

chemotaxis during in�ammation recruitment and the determination of whether neu-

trophils chemotaxis occurs during in�ammation resolution. The analysis frameworks

developed to do this will, however, have wider applicability because cell chemotaxis

is a ubiquitous and fundamental process in living organisms [51]. Chemotaxis guides

the sperm to the egg during fertilisation; it directs the positioning of cells in embryo-

genesis during gastrulation (an early folding process) and nervous system patterning;

it encourages the formation of new blood vessels during angiogenesis; less happily it

is implicated in the formation of cancerous cells into tumours. Chemotaxis is utilised

∗With permission from Elsevier
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for navigation by bacteria, and this has been extensively studied in the case of Es-

cherichia coli, similarly in the slime mould Dictyostelium discoideum. It also plays a

role in navigation by multi-cellular organisms such nematodes, fruit �ies and moths.

Patlak introduced the idea of persistence, or directional correlation in Random

Walks [26]. He was also the �rst to make a mathematical study of chemotaxis [100].

This was followed up by the well known work of Keller and Segel [68] yielding the

model named after them. The Keller-Segel model has formed the foundation for

much of the study of chemotaxis. It is a model that yields particular insights when

the chemotaxing cells contribute to the directing �eld by producing chemoattractant

chemical themselves. This auto-attractant feedback mechanism leads to pattern

formation which is vital in many contexts mentioned above.

A simpli�ed version of the Keller-Segel Model may be stated as follows [51]:

ut = ∇(D∇u− χu∇v) (2.11)

vt = ∇2v + u− γv (2.12)

where ut is the current cell concentration and vt the concentration of attractant; D

is the di�usion coe�cient and ∇ is the gradient operator.

Equations (2.11) and (2.12) describe a cell population that is di�using with con-

stant rate D and with a drift proportional to the gradient of the attractant. The

proportionality is determined by the chemotactic sensitivity, χ. The attractant dif-

fuses (rapidly) and is produced by the cells themselves. It also decays at a constant

rate, γ. In Random Walk Theory [26] this is referred to as a Reinforced Random

Walk.

The Keller Segel equations are relatively simple in form as well as being analyt-

ically and numerically tractable � certainly in comparison to individual cell based

approaches. They are able to capture the key characteristics of chemotaxis and have

been applied with modi�cations to yield insight in several contexts, including those

mentioned in the �rst paragraph of this section.

However, as described in the review by Hillen and Painter [51], there are a number

of things about this model that are potentially unrealistic:

• There may be a saturating level of attractant above which a gradient can no

longer be sensed.

• The cells may have limited velocity range which requires a non-linear relation

between drift and gradient.

• Various aspects of the system (di�usion, chemotactic sensitivity) may be de-

pendent on either or both of the density of cells and density of attractant.
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The basic model can be adapted to address these issues. For instance, replacing

(2.11) with,

ut = ∇(D∇u− χuF(∇v)) (2.13)

allows for a non-linear relationship between cell velocity and attractant gradient with

a suitable choice of F. For instance, with a sigmoidal F of the form,

F (s) =
1

1 + e−s
(2.14)

the relationship is approximately linear in a central range but the velocity is e�ec-

tively constant (and maximal) above a certain threshold attractant gradient. This

prevents the physically unrealistic possibility of unbounded cell velocities.

Similarly, replacing (2.11) with,

ut = ∇
(
D∇u− χu

(1 + αv)2
∇v

)
(2.15)

creates a model where the chemotactic sensitivity is reduced to zero when the at-

tractant concentration is at a saturating level. The basic model is recovered when

the constant α = 0.

The Keller-Segel PDEs remain a cornerstone of current chemotaxis modelling

and analysis. The are many studies in the literature developing variations of the

basic model and investigating their resulting mathematical properties (e.g. [24, 41])

and the Keller-Segel approach also underpins models used in other methods such as

agent based models and hybrid agent-PDE models [46].

In the analysis used in this thesis a simplifying assumption is made that the bias

velocity induced by the chemoattractant is constant (and thus it is not necessary to

model the dynamics of the attractant). In this case one can recover from (2.11) the

drift-di�usion equation for species u,

ut = ∇ (D∇u− bu) (2.16)

where b is a constant encapsulating the gradient of the attractant which is assumed

constant (see Appendix C).

It may be pointed out that the tissue within which neutrophils move in vivo is

complex and porous rather than being a simple and completely homogeneous media.

However, it has been shown by Nicholson [93] in relation to brain tissue that the

dynamic coe�cients are only a�ected by a scaling factor which takes into account

the porosity and e�ectively averages the coe�cients over a unit area. For instance,
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the usual di�usion coe�cient, D, is replaced by say D̂ where,

D = λ2D̂

with λ2 ⩾ 1 being a measure of the tortuosity of the media.

2.3 System identi�cation techniques

This thesis develops models, and associated system identi�cation techniques, for

cell migration. The models can describe a wide range of behaviours depending on

the choice of parameters within the model. System identi�cation is a multifaceted

process. The key components, however, may be summarised following Ljung [77]:

• Experimental design for the collection of suitable data.

• Selection of candidate models.

• Data driven model choice.

• Validation of the chosen model.

These steps are generally used in an iterative loop, using the results and shortcomings

of one cycle to inform the tuning of choices made for the next cycle.

Ideally, an experiment will be designed in such a way that in response to a se-

quence of known inputs the full dynamic range of the system being investigated is

excited. If only a part of the dynamic range is explored, then only this aspect of the

system can be identi�ed since the data contains no information about other char-

acteristics. Predictions of future behaviour may then fail if a di�erent set of inputs

is realised. Whilst such idealised experimental design may be achievable in many

cases, especially in engineered systems, it will not be so in many biological systems

which are an increasing area of research for engineers and systems analysts. The

data analysed in this thesis is collected from cell observations in a living organism.

The normal cell migration patterns are disrupted or excited by surgical wounding

of a �sh embryo. This is an `input' to the system but clearly not one that can be

turned on and o� repeatedly or in varying degrees to elicit di�ering responses. Thus

in this class of cases, system design, whilst still a vital consideration, has a limited

extent.

As described at the end of Section 2.2, the initial candidate model used in this

thesis is the drift-di�usion model which is a special case of the Keller-Segel equations.

It will be considered in its general form and in the special case where the drift

coe�cient is zero. The latter will be called the pure-di�usion model. In Chapter



22 Chapter 2. Literature review

5 the shortcomings of these two models in relation to the experimental data will

be used to propose and estimate enhanced models which better describe the full

observed dynamics of the system.

Validation is a key part of the system identi�cation process. The model identi�ed

may be the best available but the validity question still remains. It may take the

form, `Does the model give an accurate account of the data?', or, `Is the model �t for

the purpose in hand?'. Ljung provides a number of validation methods but admits

that an amount of subjectivity must come into play. The standard methods [77] that

will be employed in this thesis are,

• Comparison of estimated parameters to a priori knowledge.

• Evaluation of the physical plausibility of the parameters.

• Comparison of model simulations to experimental data.

When the choices of experimental design, candidate models and validation meth-

ods have been made, it remains to carry out the central task of system identi�cation

which is the estimation of model parameters and the identi�cation of the preferred

model. It is the comparison of model predictions to experimental data measurements

via a suitable comparison criterion that make this a data-driven process. Two com-

monly used approaches to parameter estimation are represented by the following two

questions [6]:

1. Which parameter set minimises the prediction error?

2. Which parameter set is most likely to have generated the observation set?

The following subsections will outline some methods that address these questions.

2.3.1 Least squares methods

A ubiquitous method for determining which parameter set minimises the prediction

error, is to use the method of least squares (LS) [71, 92]. This minimisation requires

an assumption about how the size of errors is to be measured and the name `least

squares' arises from the choice of using the standard Euclidean distance metric to

measure the errors. Consider a system described by the following noisy linear model,

yi = θ⊤xi + vi (2.17)

and suppose that, for realisations of the system i = 1, . . . , N , the value of the (pos-

sibly vector) explanatory variable xi and response variable yi are known but the
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random disturbance vi is not known. The intention is to determine that value of the

unknown parameter vector θ.

For any given choice of θ there is an associated prediction of the response,

ŷi = θ⊤xi (2.18)

and thus an error between prediction and observation of

ϵi = yi − ŷi. (2.19)

The ordinary least squares (OLS) estimate of θ is the value of θ which minimises the

sum of the squares of all the errors, i.e.

θLS = argmin
θ

N∑
i=1

ϵ⊤i ϵi. (2.20)

Using (2.18) and (2.19), this can be written in the form of a cost function which

must be minimised with respect to θ,

J(θ) =
N∑
i=1

(yi − θxi)
⊤(yi − θxi) (2.21)

The right hand side of this cost function can be expanded, rearranged and di�eren-

tiated to show that it is minimised when

θ = θLS =

(
N∑
i=1

xix
⊤
i

)−1( N∑
i=1

yix
⊤
i

)
(2.22)

And this in turn can be written in matrix form as the well known normal equations

[72],

θLS = (X⊤X)−1X⊤y (2.23)

where the elementXij is the j
th element of xi and y is the vector whose ith component

is yi. Clearly a similar method could proceed with an alternative cost function.

However, the terms within the summation in (2.21) must clearly all be positive and

squaring has the advantage over taking the modulus, for instance, as the result is

much more algebraically tractable and, in particular, amenable to di�erentiation.

The OLS method was published by the mathematician CF Gauss in 1809 and

in 1822 he showed via the Gauss-Markov theorem that the estimate arrived at is

the optimal unbiased estimate of the parameters when the model is linear and the

errors, ϵi, have zero mean and are uncorrelated with identical variances. In the more
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general situation where the variances of the error are unequal and have some degree

of correlation OLS is no longer theoretically justi�ed. However, generalised least

squares (GLS) [66] deals with the heteroscedasticity and correlation via the error

correlation matrix, V , to provide an unbiased estimate of the parameters. It �nds θ

which minimises the cost function,

θLS = argmin
θ

N∑
i=1

ϵ⊤V −1ϵ, (2.24)

and the GLS estimate is reached via,

θGLS = (X⊤V −1X)−1X⊤V −1Y (2.25)

If the correlation matrix, V , is unknown it can be estimated along with the parameter

vector, θGLS, in an iterative scheme.

A GLS method has been applied to identify cell movement indices from tracking

data [33]. A special case of GLS is weighted least squares (WLS) [92], where all

o�-diagonal entries in the correlation matrix, V are zero. This essentially applies

importance weights to the di�erent observation instances. This approach will be

discussed and used in Chapter 3.

In some applications of LS it may be unclear how many parameters are necessary

to the explain the data being modelled. In this case the alternative method known as

regularised least squares (RLS) [14] can be employed. Rather that simply minimising

the squared error, which could lead to over�tting∗ the noisy data if the dimension

of the parameter vector is unnecessarily high, a trade o� is introduced between the

size of the errors and the size of the elements of the parameter vector themselves.

The latter has the e�ect of suppressing the number of e�ective dimensions of the

parameter set, keeping those which have most explanatory power. One possible way

of doing this is to replace the cost function in (2.21) with,

J(θ) =

N∑
i=1

(yi − θxi)
⊤(yi − θxi) + λθ⊤θ (2.26)

where λ is a user chosen parameter which controls the trade o� described above.

Increasing λ increases the preference for small parameter values. Because this cost

function remains quadratic in θ it still has a closed form solution,

θRLS = (λI +X⊤X)−1X⊤y (2.27)

∗Over�tting of the data occurs when the size of observation noise is underestimated with the
result that the identi�ed function has much higher frequencies than the true underlying process.
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analogous to (2.23). A more stringent method for ensuring sparsity of parameter

vectors is to use the L1 norm of θ instead of the quadratic L2 norm. In this case we

have

J(θ) =
N∑
i=1

(yi − θxi)
⊤(yi − θxi) + λ

d∑
j=1

|θj | (2.28)

where d is the size of the vector θ and the θj are its elements. Increasing λ in this case

has the e�ect of driving increasing numbers of the elements of θ to zero. However,

this more direct control of dimensionality comes at the cost of losing the analytic

tractability of the quadratic form.

2.3.2 Maximum likelihood approaches

Maximum likelihood (ML) estimation [14] seeks to answer question 2 above (page

22): of all possible parameter sets, which one has the highest probability of producing

the system observations, i.e.

θML = argmax
θ

P(Y | θ) (2.29)

where P(Y | θ), is the probability of Y given the parameter set θ. If equations (2.17)

and (2.18) above are again considered, with the added assumption now that the vi

have identical normal distributions with variance Σv, then

P(Y |X; θ) =

N∏
i=1

P(yi |xi; θ) (2.30)

where

P(yi |xi; θ) ∼ N
(
θ⊤xi, Σv

)
(2.31)

Because the logarithm function is monotonically increasing, minimising a function

is equivalent to minimising its logarithm. Logarithms can be taken, therefore, to

simplify the manipulation of (2.31). In particular the logarithm of a product become

the sum of logarithms, and the Gaussian form is reduced to a constant and a product

of errors and their covariance matrix,

logP(Y |X; θ) =

N∑
i=1

{logA+ (yi − θ⊤x)⊤Σ−1
v (yi − θ⊤x)} (2.32)
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Algebraic manipulation shows that the minimising value, θML, is achieved once again

when,

θ = θLS =

(
N∑
i=1

xix
⊤
i

)−1( N∑
i=1

yix
⊤
i

)
(2.33)

The results presented here for OLS and ML illustrate that in the special case of

independent and identical normal distribution of the errors, the two approaches yield

the same estimate for the model parameters. This is not generally true, however.

The underlying di�erence between OLS and ML is illustrated in a simple way in

Figure 2.5. The prediction (or expectation) of model A is 4, whilst that of model B

is 5. Therefore, if the observed output is 4, a LS approach selects model A as the

correct (error minimising) model as it produces an error of zero. ML, on the other

hand looks at the probability of observing 4 under the assumption of each model.

For model A, this is 20% for model B, 25%. Therefore ML chooses model B as the

correct (most likely) model. A preference for the ML choice can be further justi�ed

by the following thought experiment. Both models are simulated 100 times. One

would expect the outcome 4 to be observed 20 times from model A and 25 times

from model B. A random selection from these 45 results is thus 25% more likely to

have arisen from model B than model A.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

model A

output

p
ro

b
ab

il
it

y

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

model B

output

p
ro

b
ab

il
it

y

Figure 2.5: Comparison of Least Squares and Maximum Likelihood. Il-
lustration of two discrete probability distributions where LS estimation and ML
estimation di�er in their conclusions.

A known problem with both LS and ML approaches, when errors are modelled

using the normal distribution is their sensitivity to outliers, i.e. points which are

exceptionally unlikely or points that are not rightly from the process under investi-

gation. [47]. Outliers tend to make both LS and ML methods ine�cient and bias the

results away from the true underlying model. Also, the LS and ML methods arrive
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at a point estimate of the parameter values. Providing such a point estimate can

obscure the fact that there may be a range of parameter values that are also strong

candidates for consideration. Both these issues can be addressed by the Bayesian

methods which are discussed next.

2.3.3 Bayesian methods

The Bayesian method [47] is a general, thoroughgoing and �exible method for dealing

with inferences and the associated uncertainties. It is a process whereby a generative

probability model is chosen to describe the process behind an observed dataset. The

estimation result produced by an application of the Bayesian method is expressed as

a probability distribution on the parameters of the model and on any further unob-

served quantities that may be of interest (e.g. predicted future observations). It is

often contrasted to the frequentist approach which preceded it and now coexists with

it. In brief, `frequentists' consider the parameters underlying a process to be �xed

and therefore amenable to identi�cation via repeated sampling and null hypothesis

testing or error minimisation. `Bayesians', in contrast, model the parameters them-

selves as random variables. As such they are invested with a prior distribution (prior,

that is, to receiving any evidence about them, or any new evidence from the current

investigation). This prior distribution, often referred to simply as the prior, may be

based on previous data-driven inferences about the parameters, or on expert knowl-

edge about the parameters, or on a combination of these and other assumptions. The

prior may be quite broad or `uninformative', or it may be relatively tightly de�ned

and therefore `informative' about the likely range in which the parameters will be

found to lie. An informative prior will exert more of an in�uence, or bias, on the

subsequent inference results. At the heart of any Bayesian method is the theorem of

Revd T Bayes [9]. For any two events A and B,

P(A |B) =
P(B |A)P(A)

P(B)
(2.34)

where P(A |B) is the probability of event A occurring given that event B is known

to have occurred.

Equation (2.34) can be re-written in notation more commonly used in Bayesian

inference:

P(θ | y) = l(y|θ)P(θ)
P(y)

(2.35)

where θ is the parameter set for the model being used to describe the process which

gives rise to observations y. So, P(θ | y) is the desired posterior distribution of θ given
the new evidence y. l(y|θ) is just another way of writing P(y | θ) which is referred to
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as the likelihood function � the likelihood of the observed evidence given a particular

choice of θ. P(θ) is the prior distribution of the parameters and P(y) is the probability

of observing the evidence regardless of the underlying model for the process.

In practice P(y) may be unknown and impossible to calculate. However, since

P(θ | y) is a probability distribution it must be normalised. Hence it is su�cient to

know that

P(θ | y) ∝ l(y|θ)P(θ) (2.36)

and thus the evaluation of the likelihood function is the means by which the prior is

transformed into the posterior.

Since the Bayesian method returns a distribution over the parameters of a model,

and potentially also a distribution over candidate models as shall be seen in Chapter

4, it has distinct advantages over the LS and ML approaches which provide only

a point estimate of the parameters. With a distribution over the parameters it is

possible to integrate over the possibilities to get an average prediction for future

of outcomes the system and a full sense of the uncertainties that pertain to it.

However, if a point estimate is required this can be taken to be the parameter set

corresponding to the maximum or modal value of the posterior distribution. That

is why the Bayesian method is also referred to as the maximum a posteriori (MAP)

approach.

The Bayesian and LS approaches are linked by a special case: If the Bayesian

parameters are given a zero mean Gaussian prior then the solution reached is the

same as that for regularised least squares using the quadratic L2 norm. This can be

seen with reference to (2.26) by noting that

e−
1
2
(yi−θxi)

⊤(yi−θxi)− 1
2
λθ⊤θ = e−

1
2
(yi−θxi)

⊤(yi−θxi)e−
1
2
λθ⊤θ (2.37)

which is equivalent to (2.36). From this it can be seen that the Bayesian method has

an implicit tendency towards dimensionality reduction.

2.4 Approximate Bayesian computation

There are many systems that can be studied in the realm of the life sciences and they

tend to be very complex. As a result, for any given one of these systems there may

be a multitude of models proposed to describe it. A model may be quite easy both

to encode and to simulate, and it can be very tempting to compare model simulation

output with observations of the real system and say that the agreement between the

too is quite good, very good, or even astounding [91]. Of course judgements such

those, though apparently con�dent, are subjective and vague at the best of times.
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For instance, Figure 2.6 shows two plots reproduced from a well cited paper [33]

where it is noted that the simulated tracks (a) and the experimentally observed

tracks (b) �show similar track characteristics, that is the directional persistence over

short times, and the meandering path characteristic of a random walk over longer

time�. In fact, the short term directional persistence is very di�erent between the two

cases. The simulated tracks are much smoother than the experimental tracks, having

a signi�cantly di�erent distribution of turn angles. For this reason the persistence

times for the two cases will in fact be very di�erent. This highlights the fact that

comparisons between simulation results and experimental results can easily be done

in a vague way. It is possible however, to be principled and make explicit the way in

which comparisons will objectively made.

The approximate Bayesian computation (ABC) [10] approach to estimation is a

framework which allows and indeed relies on such a principled comparison of sim-

ulated and experimental results. In its most basic form it involves the choice of a

model for which parameter values are simulated from a prior distribution. The model

is then simulated and the output compared with the experimental observation using

a chosen metric. If the distance between the two is zero (for discrete values) or is

below some threshold (for continuously distributed values) the parameter set is ac-

cepted as being a sample from the posterior distribution. The ABC method thus

carries with it all the advantages of the Bayesian paradigm whilst allowing estimation

to be carried out without the evaluation of a likelihood function.

Figure 2.6: Comparison of experimental mouse melanoma cells tracks to
simulated tracks. Reproduced from [33]∗. (a) Simulated cell tracks. (b) Observed
mouse melanoma cell tracks.

ABC methods have come to prominence over the last 10�15 years [10]. The recent

∗With permission of John Wiley & Sons Inc.



30 Chapter 2. Literature review

proliferation of studies using the approach can be traced back to four formative

papers in the domain of population genetics [11, 82, 103, 120]. In this research �eld,

particular genetic markers are observed which may be linked in genealogical trees

along a multitude of possible paths. This makes likehood evaluation approaches

impractical.

2.4.1 The basic ABC rejection sampler

Though ABC methods started to gain popularity some 15 years ago, a similar ap-

proach was, in fact, present some 13 years earlier in an algorithm proposed by Rubin

[110]. This is the basis of the most simple form of ABC rejection sampler. In this case

the data are discrete and of low dimension such that the posterior can be sampled

without approximation by repeated application of the following [10]:

1. Sample a process parameter vector, θi ∼ π(θ) from the prior.

2. Simulate observations of the process, xi ∼ P(x | θi).

3. Reject θi if xi ̸= y, where y is the observation set.

The accepted set {θi}Ni=1 are a sampling representation of P(θ | y) which is the prob-

ability distribution of the parameters that may have produced the observed data

(assuming of course that the assumed model of the process is correct). The simplest

way to portray this sampled distribution is as a histogram (for the cases of one or

two dimensional parameter sets). Alternatively, kernel density methods [113] can be

used to yield a smoothed version of the distribution which can be used to estimate

the mode of the distribution, in situations where a point estimate of ML is required.

In addition, either the discrete or smoothed version of the posterior can be used to

compute a prediction of any quantity which may arise from future realisations of the

process, i.e.

P(f(x)) =

∫
P(f(x) | θ)π(θ) dθ (2.38)

where f is the quantity of interest and the integral is a summation if θ only takes

discrete values.

In many applications, one or all of the observables may be a continuous quantity.

In this case, P(xi = y) = 0. To enable the method to work in this situation the

�rst approximation has to be introduced. This takes the form of an error threshold

within which tolerance a parameter set will still be accepted. To be precise, an error

threshold, ϵ, is chosen and step 3 above is replaced by:

3a. Reject θi if ρ(xi(θi)− y) > ϵ, where ρ is an appropriate distance metric.
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Now the accepted set {θi}Ni=1 are a sampling representation of

P(θ | ρ(x(θ)− y) < ϵ). (2.39)

The second main approximation in the ABC approach is the use of summary statis-

tics. These are needed when the data are of high dimensionality and the resulting

size of the parameter space e�ectively means that the target region in the parameter

space, for which

ρ(x(θ)− y) ⩽ ϵ, (2.40)

is impossible to �nd with any degree of e�ciency. A summary statistic, S(x), maps

the observations into a space of lower dimensionality. Good summary statistics do

this without signi�cant loss of information. Ideally the summary statistics may be

said to be su�cient, in which case no information is lost in mapping observation to

observation summary and P(θ |S(x)) = P(θ |x). With the inclusion of a summary

statistic, step 3 above is replaced by:

3b. Reject θi if ρ(S(xi(θi))− S(y)) > ϵ, where S is the chosen summary statistic.

Now the accepted set {θi}Ni=1 are a sampling representation of

P(θ | ρ(S(x(θ))− S(y)) < ϵ)

with the distance metric, ρ, and error threshold, ϵ, being suitably chosen for the new

context.

The use of summary statistics has been a point of criticism of ABC approaches,

particularly when they have been adopted in an ad hoc manner. Over recent years

there have been attempts to bring stronger principles to bear on their selection [64]

and even automation [42]. However, an important part of any ABC implementation

is the validation of the approach and any particular implementation decisions made,

within the context of the speci�c application area. But as a general rule, the number

of independent dimensions in the summary statistic needs to match the number of

uncorrelated parameters in the model [10].

The foregoing text has presented three versions of the basic ABC rejection sam-

pler. Unfortunately, this algorithm can be very ine�cient in practice. Ideally, it is

desirable that the tolerance, ϵ, be as small as possible so that the approximation

made in 3a or 3b above will be correspondingly as good as possible. However, the

smaller ϵ is, the greater is the proportion of sampled parameter vectors that will be

rejected. This is exacerbated if the dimensionality of the problem is increased. In

practice ϵ may be chosen to ensure that the acceptance rate is N
M , where N is the

number of accepted samples deemed su�cient andM is that number of samples from
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the prior that can realistically be sampled and simulated from in the computation

time available. To combat the ine�ciency of the basic ABC approach, a number of

authors have developed the basic ABC paradigm to counter the ine�ciency problem.

There are three main ways in which this has been done:

• post processing of the ABC rejection results using weighting and a form of

local linear regression which allows a greater proportion of the samples to

be retained after appropriate adjustment to compensate for the size of the

simulated observation error;

• setting the rejection step within a Markov chain Monte Carlo (MCMC) frame-

work so that after a suitable burn-in time a higher proportion of samples will

be accepted; and,

• sequential reduction of error tolerances to produce an iterative scheme known

as approximate Bayesian computation sequential Monte Carlo (ABC-SMC)

where at each iteration there is a proposal distribution which evolves from the

prior towards the target posterior.

These broad ABC approaches will now be described in more detail.

2.4.2 ABC with local linear regression

ABC with local linear regression was introduced by Beaumont et al. [11] where

two additions are made to the basic ABC rejection sampler: smooth weighting of

the accepted samples and adjustment of the samples using local linear regression.

It is clear that in the basic sampler all samples that pass through the error test

are accepted with equal weight. Beaumont et al. propose that those with smallest

error have greatest weight. This is achieved using an Epachnikov kernel (see Figure

4.4) which has the advantage of automatically assigning zero weight to any samples

outside the error tolerance, ϵ,

Wϵ(s) =

cϵ−1(1− ( sϵ )
2) t ⩽ ϵ,

0 t > ϵ,
(2.41)

where c is a normalising constant. The subsequent adjustment step is based on the

assumption that (in the single parameter case), the accepted samples, ϕi, from the

target distribution can be described by

ϕi = α+ (S(xi)− S(y))β + γi (2.42)



2.4. Approximate Bayesian computation 33

where S(.) is again a summarising function of the simulated and observed observa-

tions, xi and y; α and β are regression constants and the γi are uncorrelated residuals

with zero mean and a common variance. If S(xi) = S(y) then ϕi is a sample from

the exact posterior which has mean α. Under these assumptions it is possible to

obtain LS estimates for α and β, and thereby to make the adjustment,

ϕ∗
i = ϕi − (S(xi)− S(y))β̂ (2.43)

This will yield a true sample from the posterior distribution if the conditions are met.

If the linear model is considered too restrictive an assumption, local linear regression

can be performed instead where only points within the neighbourhood of S(y) are

included in the regression step. These two approaches, weighting and adjustment,

can both be implemented on their own or together and in theory allow a much

larger proportion of simulated parameter sets to be included in the estimation of the

posterior distribution (thus increasing e�ciency) as well as improving accuracy of

the estimation for a given error tolerance. This weighting and adjustment can also

be included as extra enhancements in the two methods that are discussed below.

Whilst the regression adjustment version of ABC improves on the e�ciency of the

basic ABC algorithms, it nevertheless su�ers from the drawback of sampling only

from the prior distribution. If the prior distribution is uninformative relative to

the data then many of the parameter samples will inevitably be of little use in the

estimation. Two following enhancements of ABC seek to overcome this problem.

2.4.3 ABC Markov chain Monte Carlo methods

Generic Monte Carlo methods use repeated random samples from a distribution to

build up a picture of that distribution. One subset of these methods is Markov chain

Monte Carlo (MCMC) methods which greatly increase their e�ciency by using a

property of stationary Markov chains. A stationary Markov chain can reach an

equilibrium whereby the distribution of the state of the chain remains unchanged

from one iteration of the chain to the next. For a given posterior distribution it

is usually possible to construct a Markov chain that has this distribution as its

equilibrium state. Thus, propagating the Markov chain, and discarding samples from

the `burn in' period when the process is settling to its equilibrium, yields samples

from the posterior distribution. Taken in the order in which they arise, these samples

are correlated. However, taken as a whole over many iterations, they approximate

an uncorrelated sample from the target distribution.

As an example of a mainstream MCMC method, consider a brief outline of the

Metropolis Hastings (MH) algorithm [25]. This relies on a Markov process, f say,
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which maps the a current state onto the subsequent one,

f(x → x̂) (2.44)

For this process to be stationary with equilibrium distribution P(x), a detailed bal-

ance condition must be ful�lled,

P(x)f(x → x̂) = P(x̂)f(x̂ → x) (2.45)

This condition is satis�ed when f(x → x̂) is comprised of a proposal step, g, and an

acceptance step, A, i.e.

f(x → x̂) = g(x → x̂)A(x → x̂), (2.46)

with

A(x → x̂) = min

(
1,
P(x̂)

P(x)

g(x̂ → x)

g(x → x̂)

)
. (2.47)

Beginning from an initial state x0, the MH algorithm proceeds inductively as

follows,

1. given state xt propose a new state x̂ according to the proposal g(xt → x̂);

2. sample u ∼ N (0, 1)

3. set xt+1 =

x̂ if u ⩽ A(x → x̂)

xt if u > A(x → x̂)

It is obvious from the expression for A(x → x̂) in (2.47), that the MH algorithm

requires evaluation of a likelihood function to evaluate the update probability. Ap-

proximate Bayesian computation Markov chain Monte Carlo (ABC-MCMC), how-

ever, bypasses this problem by setting the MH step within an ABC rejection setting.

Essentially there are now two decision steps: the ABC acceptance or rejection deci-

sion based on comparing simulation results and the MH decision based on relative

probabilities.

An ABC-MCMC algorithm based on that of Marjoram et al. [82] can be out-

lined as follows, where P(x | θ) is a probability model of the process for realising

observations, x, conditional on parameters θ; S(.) yields a summary statistic of the

observations; ρ(., .) is a distance measure; ϵ is an error tolerance; and g(.|.) is a

suitably chosen Markov process proposal step.

1. Sample θ(0) from the parameter prior, π(0).

2. At iteration t ⩾ 1
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(a) Sample θ′ ∼ g(θ|θ(t−1))

(b) Simulate x ∼ P(x | θ′)

(c) If ρ(S(x), S(y)) > ϵ, set θ(t) = θ(t−1), otherwise

i. Sample u ∼ U (0, 1)
ii. If u ⩽ π(θ′)

π(θ(t−1))

g(θ(t−1)|θ′)
g(θ′|θ(t−1))

, set θ(t) = θ′,

otherwise set θ(t) = θ(t−1)

In [82] it is shown that after convergence, samples will come from the ABC

posterior,

P(θ | ρ(S(x(θ))− S(y)) < ϵ)

and at this time the proposal distribution in line 2(a) will be dominated by this

target distribution and hence increased e�ciency should be guaranteed.

The main practical drawback to ABC-MCMC is the unfortunate fact that if the

chain is started in a low density region of the posterior, or if it happens to make a

move into such a region, it can be very hard to leave again. The result of such an

occurrence is that the chain gets stuck for a very long time on a particular parameter

value. The proposal kernel may yield points in the vicinity that would be accepted by

the MH step, 2(c)ii, but they are highly unlikely to �rst get past the ABC rejection

step in the �rst line of 2(c). In theory, over su�ciently long realisations of the

chain, these biases would eventually even out, but su�ciently long runs may not

be practically possible. Steps have been taken to counter this problem by taking an

adaptive approach to the tolerance parameter [17, 105]. However, another shortfall of

ABC-MCMC is that like all MCMC methods it does not lend itself to parallelisation.

This is in contrast to the next method considered.

2.4.4 ABC SMC

In order to address the problems faced by ABC-MCMC but still gain e�ciency over

basic ABC, Sisson et al. [114] proposed an integration of the ABC approach into a

sequential importance sampling (SIS) framework.

In importance sampling [81], the aim is to approximate a target distribution,

P(x), which cannot be sampled from but which can be evaluated at any point in its

support up to an unknown normalising constant, i.e. P(x) ∝ Q(x), where Q(x) is the

function that can be evaluated. This is achieved by sampling from a carefully chosen

proposal distribution, η(.), and then weighting the resulting sample according to its

importance. The weights are given by

w(xi) =
Q(xi)

η(xi)
(2.48)
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Putting (2.48) into words, a sample is given increased weight for being from a region

of high probability density in the target distribution and for being hard to sample

from the proposal distribution. In some cases (such as a high dimensional target

distribution) it can be hard to arrive at a suitable proposal distribution. In these

circumstances SIS enables the target to be reached in stages where at each stage an

intermediate distribution is approximated.

The initial ABC-SMC proposal of Sisson et al. was subject to a bias. This

was subsequently corrected and the resulting closely related variants of ABC-SMC

[12, 115, 121] provide one the most often implemented versions of ABC algorithm. It

can be summarised as follows, where P(x | θ) is a probability model of the process for
realising observations x conditional on parameters θ; S(.) yields a summary statistic

of the observations; ρ(., .) is a distance measure; ϵ1, . . . , ϵT is a decreasing sequence

of error tolerances; and K(.|.) is a parameter perturbation kernel.

1. On the �rst iteration, t = 1,

(a) For i = 1, . . . , N

(b) Simulate θ
(1)
i from the prior, π(θ), and x ∼ P(x | θ(1)i )

until ρ(S(x), S(y)) < ϵ1

(c) set ω
(1)
i = 1

N

2. Set τ22 appropriately, e.g. twice the variance of {θ(1)i }Ni=1.

3. For subsequent iterations, t = 2, . . . , T ,

(a) For i = 1, . . . , N , repeat

i. Choose θ̂i from {θ(t−1)
i }Ni=1 with probability ω

(t−1)
j

ii. sample θ
(t)
i ∼ K(θ|θ̂i; τ2t ), x ∼ P(x | θ(t)i )

until ρ(S(x), S(y)) < ϵt

(b) Set ω
(t)
i ∝ π(θ

(t)
i )∑N

j=1 ω
(t−1)
j K(θ

(t)
i |θ(t−1)

j ;τ2t

(c) Set τ2t+1 as twice the weighted variance of {θ(t)i }Ni=1.

In order to justify the weights used in the ABC-SMC algorithm, Fearnhead and

Prangle [42] note that the ABC likelihood is approximated by,

P(S(y) | θ) =
∫

P(x | θ)χ[−ϵ,ϵ](Dxy) dx (2.49)
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where Dxy = ρ(S(x)− S(y)) and χ is the indicator function, i.e.

χ[−ϵ,ϵ](s) =

1 −ϵ ⩽ s ⩽ ϵ

0 otherise
(2.50)

This in turn means that, by applying Bayes' theorem, the ABC posterior can be

de�ned as,

πABC(θ|S(y)) ∝ π(θ)P(S(y) | θ) (2.51)

∝ π(θ)

∫
P(x | θ)χ[−ϵ,ϵ](Dxy) dx (2.52)

where π(θ) is the prior distribution over the parameters. The standard importance

sampling weights for the posterior are therefore,

π(θ)

η(θ)

∫
P(x | θ)χ[−ϵ,ϵ](Dxy) dx (2.53)

where η(θ) is the current proposal density. In the Monte Carlo step at the heart of

ABC x is simulated from P(x | θ) and accepted θ with probability χ[−ϵ,ϵ](Dxy). If the

accepted samples are assigned the weight,

π(θ)

η(θ)
, (2.54)

the expected weight over all samples will be given by (2.53). In the case of ABC-SMC

the proposal density changes on each iteration so that it more closely resembles the

posterior. It is a kernel approximation of the last estimate of the posterior:

η(x) =
N∑
j=1

ω
(t−1)
j K(x|θj ; τ2) (2.55)

and hence we have the weights that are assigned above in 3(b). In Chapter 4 this

version of ABC and its extension to include model selection will be tailored to the

identi�cation of zebra�sh neutrophil dynamics during in�ammation and in�amma-

tion resolution.

2.4.5 Applications of ABC

Since its inception in the domain of population genetics as already described, ABC

methods have been applied to �ltering [58] and smoothing [83] problems and to

diverse �elds from chemoattractant �eld estimation [75] through psychology [123] to
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cosmology [22]. With its increasing popularity a number of software tools have been

developed to facilitate the application of the ABC methods in population genetics

[29, 79, 129] and systems biology [74].



Chapter 3

Regression analysis of neutrophil

migration during in�ammation

recruitment and resolution

3.1 Overview

During in�ammation neutrophils are known to be recruited to sites of injury and

infection. Neutrophils must also eventually be removed from these sites for in�am-

mation to resolve satisfactorily and homeostasis to be restored. Neutrophil clearance

from a site of in�ammation can be e�ected by apoptosis, which is programmed death

of the cell in situ. Recent work in zebra�sh has suggested that neutrophils may also

migrate away from in�ammatory sites. Up to now rigorous mathematical treat-

ment of these recruitment and in�ammation resolution phenomena has been lacking.

The dynamics of neutrophil recruitment are unquanti�ed and a key open question

in neutrophil research concerns what signals, if any, regulate the process of reverse

migration. This chapter seeks to provide an answer to these questions by applying

system identi�cation techniques to study the behaviour of neutrophils during recruit-

ment and reverse migration. The aim is twofold: �rstly, is to con�rm that neutrophils

in vivo are actively recruited to in�ammation sites and to quantify this recruitment

dynamic; secondly, to investigate whether they move away from in�amed sites in a

similar manner or whether the inherent random component of their migration was

enough to account for this behaviour.

In order to achieve these aims, targeted data was obtained from experimental col-

laborators. They used neutrophil-driven photo-convertible Kaede protein in trans-

genic zebra�sh larvae to label neutrophils at an in�ammation site and they recorded

the locations of these neutrophils over time. This chapter describes how regression

39
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methods were applied to this data by �tting two separate but related models derived

from the pure-di�usion equation and from the drift-di�usion equation. These mod-

els correspond to undirected or purely stochastic migration and directed migration

respectively.

3.2 Introduction

The fate of neutrophils following completion of an in�ammatory event is of criti-

cal importance for the outcome of episodes of acute in�ammation and can deter-

mine whether there is prompt healing of a wound or the development of chronic

in�ammation and tissue injury. The uncertainty as to the in vivo fates of individual

neutrophils relates in part to the di�culty in following individual cells during in�am-

mation resolution in vivo. However, the transgenic zebra�sh model is emerging as a

key model for the study of vertebrate immunity [108]. It allows direct imaging of in-

dividual cells, and of populations of cells in vivo throughout the onset and resolution

of in�ammation.

The most widely accepted mechanism of neutrophil removal is the programmed

cell death, or apoptosis, of the neutrophil. Apoptic neutrophils are subsequently

cleared from the system by macrophage cells which consume the dead neutrophils

[36]. This process has been observed in the zebra�sh [40, 80]. However, there is in-

creasing evidence that in addition to apoptosis, migration of neutrophils away from

in�ammatory sites is a signi�cant process contributing to in�ammation resolution.

Neutrophils may move away from the in�amed site into the bloodstream (�reverse

transmigration� [21]), by migration through other tissues (�retrograde chemotaxis�

or �reverse migration� [20, 49, 54, 85, 133]), or may be exuded out of the wound

[43, 125]. Because this process cannot be easily visualised in mammalian systems,

de�nitive proof of its importance is lacking, but considerable evidence points to its

potential signi�cance in mammalian biology [21, 131]. Certainly, it appears to be a

key regulatory step in in�ammation resolution in the zebra�sh [39]. In order to un-

derstand how this reverse migration is regulated, it is necessary to better understand

what this process represents physiologically.

A number of papers have reported that retrograde chemotaxis plays a role in

the reverse migration process [55, 85, 86, 88, 118] and although there is very limited

analysis of neutrophil migratory patterns in the literature, this is becoming widely

assumed to be the case. The implication of this belief is that directional guidance

is exerted on the neutrophils to move them away from the in�ammation site in an

analogous way to that which they experience when being recruited. However, all the

papers that report retrograde chemotaxis refer back to the one paper where hard
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evidence for this process is reported to be present [85]. In that study zebra�sh larvae

at 3 days post fertilisation (dpf) were wounded in the ventral �n to induce in�am-

mation. Neutrophils expressing green �uorescent protein (GFP) were then observed

over periods of 20 mins (10s/frame), 3 hours (30s/frame) or 4 hours (60s/frame).

Individual neutrophils were tracked for as long as could be distinguished from other

cells and velocity, directional persistence and a directionality index (net distance

travelled / path length) were calculated. The conclusion that retrograde chemotaxis

occurred was based upon the following:

• The majority (80%) of cells entering the wound were also observed to track

back towards the vasculature.

• Velocity and directionality estimates were comparable for cells in both direc-

tions of migrations (Figure 3.1).

• The directionality estimates were high and therefore presumed not to be due

to random motility.

Figure 3.1: Comparison of velocities and directional indicies for recruiting
and resolving neutrophils Reproduced from Mathias et al. [85]†. This represents
the most rigorous analysis of zebra�sh in�ammatory neutrophils prior to the work
contained in this thesis. The conclusion that the recruiting and resolving dynamics
are of the same kind is drawn from the fact that the mean values are close even
though the distribution of directionality indices are quite di�erent. In any case the
quantities evaluated are based on quite selective use of data.

Whilst [85] provides an important contribution to the �eld, it is concerning that

a consensus should emerge based on a relative paucity of rigorous mathematical

†Republished with permission of The Society for Leukocyte Biology; permission conveyed
through Copyright Clearance Center, Inc.
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analysis. This thesis makes the novel contribution of analysing similar neutrophil

data from a populational perspective. This bypasses any biases that would arise

from the tracking or track selection process. Furthermore, because tracking is not

required, data can be incorporated from all cell-position observations, thus gaining

maximum information from the data. Observations can also be included over a

long time period‡ so that short time directional correlations can be ignored, which

otherwise might be mistaken for direct motion.

3.3 Methods

3.3.1 Experimental methods

All experimental work was carried out by collaborators� from the Academic Unit of

Respiratory Medicine, Department of Infection and Immunity, University of She�eld,

She�eld, UK. All experiments were performed according to guidelines and legisla-

tion set out in UK law in the Animals (Scienti�c Procedures) Act 1986. Ethical

approval was given by the University of She�eld Local Ethical Review Panel. The

in vivo zebra�sh model for observing neutrophil in�ammation and its resolution is

derived from two transgenic lines: Tg(lyz:Gal4)i252 [39] and Tg(UAS:Kaede)s1999t

[30]. These are described in their respective references. Brie�y, the yeast transcrip-

tion factor Gal4, fused to VP16 viral transcriptional activator sequence, recognises

and drives transcription from the upstream activation sequence. The Gal4 sequence

is inserted into a DNA vector 3 of a PCR generated promoter for Lysozyme C, which

has almost complete overlap with the neutrophil-speci�c mpx promoter at early de-

velopmental stages. This construct is injected into fertilised eggs, allowing random

incorporation into the genome and driving expression of Gal4 in neutrophils in sub-

sequent generations. In parallel, the second transgenic line is generated in the same

way, expressing the photo-convertible protein, Kaede, under an upstream activation

sequence. Thus in the double transgenics, generated by crosses of the two single

transgenics, Kaede is expressed in neutrophils. The zebra�sh lines were maintained

according to standard protocols [97].

Six zebra�sh embryos from the double transgenic stock, at 3 days post fertilisation

were subjected to tail�n transection under anaesthesia using a sterile scalpel. The

embryos were allowed to recover. Each embryo was then mounted in 0.5% low melt-

ing point agarose and at four hours post injury the neutrophils then present within

the tip of the tail�n were photoconverted so that they emitted red �uorescence. This

‡Tracking requires relatively fast data sampling and the ultraviolet exposure required for this
has the e�ect of bleaching out the cells and damaging the health of the specimen. Both of these
causes early experimental termination.

�Giles Dixon and Anne Robertson working under Stephen Renshaw.
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transgenic zebrafish larva 3 days post fertilisation

site of  tailfin transection

Figure 3.2: Zebra�sh embryo. The neutrophils in the transparent double trans-
genic zebra�sh embryo express a green �uorescent protein which facilitates visualisa-
tion of the neutrophils throughout in�ammation and in�ammation resolution. The
approximate location for the tail�n transection is shown. The Kaede protein ex-
pressed by the neutrophils means that at the scheduled time after injury (4 hours in
this case), neutrophils in the immediate vicinity of the tail�n wound can be photocon-
verted to show red �uorescence. Thus they are labelled as a distinct sub-population
of cells and can be observed as they migrate around and away from the wound area.

was in contrast to the rest of the neutrophils present in the surrounding area which

continued to emit green �uorescence. Thus it was possible to collect data for two

distinct sub-populations of neutrophils. Photo-conversion of the Kaede protein was

carried out using a Perkin Elmer UltraVIEW PhotoKinesis device, mounted on a

Perkin Elmer UltraVIEW VoX ERS 6FR Laser Confocal Imaging System (Perkin

Elmer INC, USA) with an inverted Olympus IX81 microscope, equipped with six

diode laser lines and a Yokogawa CSU-X1 spinning disk. The device was calibrated

using a glass microscope slide (Menzel-Gläzer) covered with �uorescent highlighter

ink (Stabilo Boss) as a photo-bleachable substrate (according to manufacturers in-

structions). Photo-conversion was performed using 40% laser energy for 120 cycles

of a 405 nm laser line.

The embryos were released from the agarose gel and transferred to fresh E3.

The petri dishes containing the embryos were wrapped in tinfoil to prevent back-

ground photo-conversion. The embryos were then mounted on the microscope and

the neutrophils were observed using a Nikon Eclipse TE2000-U Inverted Compound

Fluorescence Microscope (Nikon UK Ltd) with a Hamamatsu 1394 ORCA-ERA cam-

era (Hamamatsu Photonics Inc). During the time-lapse, separate images were taken

using �lter sets optimised for green �uorescence and for red �uorescence, in order to

record the migration of both sub-populations of the neutrophils. Images were cap-

tured using Volocity (build 5.3.2, Perkin Elmer) every 300 seconds by taking wide�eld

�uorescence Z-stacks as well as a background DIC¶ image. Volocity was used for ini-

¶Di�erential interference contrast (DIC) is an enhanced imaging technique [89]. The DIC image
is a confocal image of the specimen showing the tissues and cells as opposed to a �uorescent image
of the neutrophils only. See Figures 3.3-3.5.
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tial processing of the data to extract neutrophil centroid positions. These data were

then exported to Matlab (MathWorks, MA) for the further analysis described below.

3.3.2 Dynamic Modelling of neutrophil behaviour

Random walk models are often used in biology to describe the movement dynamics of

individuals and populations [26, 101] and particularly for cell migration patterns [2,

73, 102]. Over short time-scales neutrophils exhibit correlated random walk (CRW)

behaviour. In a CRW the current migration direction usually changes only slightly

from moment to moment. However, these short term correlations decay over time.

The time between the observations in the experimental data analysed in this thesis is

greater than typical neutrophil persistence times [122] and thus local correlations in

direction can be ignored [101] and a simple random walk (SRW) or the variant biased

random walk (BRW) model can be applied to the data. A random walk model for

the individual cell has a corresponding Fokker-Plank equation which describes the

resulting cell population dynamics. For the SRW and BRW this is the drift-di�usion

equation:
∂p(x, t)

∂t
= b

∂2p

∂x2
+ a

∂p

∂x
(3.1)

where p(x, t) is the distribution of cells (in this case) at the location described by

coordinate x and at time t; b is the di�usivity coe�cient and a the drift coe�cient.

The neutrophil locations were described by a single coordinate x which corresponds to

their distance from the wound. The dynamics being considered relate to migrations

and any biases to and from the wound, so the direction parallel to the wound is not

relevant.

The di�usion equation, corresponding to a SRW, is a special case of the drift-

di�usion equation where the drift coe�cient, a is zero. The distinction will be

made clear in this thesis by referring to the di�usion equation as the pure-di�usion

equation. The dynamic models are derived from these related equations as follows.

Firstly, in order to model the photoconverted (red) cells which are initially in the

vicinity of the wound and gradually migrate away, is was assumed that the wound in

the �sh can be mathematically characterised as a re�ecting boundary and that the

initial distribution of cells was a delta distribution at the origin. Equation (3.1) was

solved using the method of re�ections [27] to show that the system can be described

by

p(x, t) =
1√
4πbt

(
e

−(x−at)2

4bt + e
−(x+at)2

4bt

)
(3.2)
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Multiplying this by x2 and then integrating over x ∈ [0,∞) yields:

E
(
x(t)2

)
= a2t2 + 2bt+ k1 (3.3)

where k1 is a constant determined by the initial positions of the cells. It should be

noted that if the delta distribution assumption is relaxed, (3.2) will be a sum over the

number of cells with two equivalent terms within this summation on the right hand

side corresponding to a delta distribution on the initial position of each individual

cell. However, the integration step will still yield result (3.3).

Equation (3.3) implies that E (x(t)) will have a quadratic form if a > 0 (when

there is a bias present away from the wound) and a linear form if a = 0 (when there

is no bias and the process is di�usion only).

Secondly, in order to model the non-photoconverted (green) cells which are ini-

tially at some distance away from the wound and still migrating inwards, it was

assumed that the cells had an arbitrary distribution, which is far enough away from

the boundary (i.e. the wound) that some time elapses before any cell reaches the

boundary then, using the method described by Codling et al. [26], equation (3.1) is

multiplied by x and integrated by parts to yield:

E (x(t)) = at+ k2 (3.4)

where k2 is a constant determined by the initial positions of the cells. Equation (3.4)

implies that the mean position of cells will be constant if there is no bias (di�usion

only) but will move linearly with time in the direction of any bias.

3.3.3 Model identi�cation: neutrophil recruitment

At each observation time the data provides a set values. Each value is the distance

of an observed cell from the wound,

X (t) = {x1(t), . . . , xnt(t)} (3.5)

where nt is the number of observed cells at time t. These values were averaged to

produce an experimental value ⟨x(t)⟩ for each time t. This is the data derived version
of the theoretical quantity E (x(t)) found in (3.4). ⟨x(t)⟩ is plotted against time in

Figure 3.9. It can be seen that ⟨x(t)⟩ decreases linearly up to a certain switching

time, say t = tS . A suitable value of tS was determined by visual inspection of the

graph in each case.

In order to identify the bias parameter, a, closed form weighted least squares

(WLS) estimation was applied [92]. The observation vector z, the design matrix Φ
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and the target parameter vector θ were de�ned as follows,

z =
(
⟨x(t1)⟩ . . . ⟨x(tS)⟩

)⊤
(3.6)

Φ =

(
t1 t2 . . . tS

1 1 . . . 1

)⊤

(3.7)

θ =
(
a k2

)⊤
(3.8)

It should be noted here that in keeping with the experimental observation rate one

time unit (tk − tk−1) is 300 seconds. The model de�ned by (3.4) implies that:

z = Φθ (3.9)

In the case of the green cells, the variability in the number of visible cells was due

to cells entering and leaving the domain as well as cells being indistinguishable, at

times, from one another. The weighting vector was de�ned, therefore, in terms of

the deviation from the mean number of visible cells, as follows:

W = diag([w1 . . . wS ]) (3.10)

wk = 1−
(
⟨n⟩ − nk

⟨n⟩

)2

(3.11)

⟨n⟩ = 1

S

S∑
k=1

nk (3.12)

Where diag(.) is the diagonal matrix constructed from its vector argument and nk

is the number of cells visible at time t = tk. Then, according to the WLS scheme

[92], the best estimate θ̂ of θ is identi�ed by:

θ̂ = (Φ⊤WΦ)−1Φ⊤Wz (3.13)

and con�dence in the identi�ed value of u given the model, can be assessed via a

standard deviation, σ, which is calculated from the residuals as follows:

e(j) = ⟨x(tj)⟩ − (ûtj + k̂2) (3.14)

e = (e(1) . . . e(S))⊤ (3.15)

σ =

√
e⊤e

S −m
(ϕ⊤ϕ)−1ϕ⊤W 2ϕ(ϕ⊤ϕ)−1 (3.16)
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where m is the number of parameters in the model. In this case m = 2.

3.3.4 Model identi�cation: in�ammation resolution

For the photo-converted (red) cells which are migrating away from the wound, the

appropriate model is given by (3.3). This has two di�erent forms, depending on

whether or not the drift coe�cient a is non-zero. In the a = 0 case, the design

matrix is de�ned to be,

Φ0 =

(
t1 t2 . . . tN

1 1 . . . 1

)⊤

(3.17)

and if a can be non zero,

Φ1 =

t21 t22 . . . t2N
t1 t2 . . . tN

1 1 . . . 1


⊤

(3.18)

In both cases, the observation vector z and parameter vector θ are de�ned to be

z =
(
⟨x(1)2⟩ . . . ⟨x(N)2⟩

)⊤
θ =

(
2b a k1

)⊤
In this case the weights were de�ned as

W = diag([n1 . . . nS ])

This is because variability in the number of visible red cells is only caused by cells

becoming obscured by proximity to each other. Very few if any cells leave the do-

main and no new cells can join this photo-converted sub-population. Proceeding

analogously to the last section, allows calculation of

θ̂2 =
(
2b̂ k̂1

)⊤
and

θ̂3 =
(
â2 2b̂ k̂1

)⊤
together with the associated con�dence intervals.

An higher order model will always give a better �t to a data set. It will have a

smaller associated error function

J(m) = e⊤e
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(where m is the order of the model). The `f' hypothesis test was applied, therefore,

to evaluate the signi�cance of the improvement. The higher order model is better

with 1− α certainty if f > χ2
α(1). Where χ2

. (.) is the Chi-Squared distribution and:

f =
J(m− 1)− J(m)

J(m)
(N −m) (3.19)

Put simply, this test says that if f > 4 the quadratic model should be chosen over

the linear model [116].

3.4 Results

3.4.1 Experimental results

In six zebra�sh embryos that had their tail�n transected, Kaede-expressing neu-

trophils were photoconverted in the vicinity of a wound at 4 hours post injury (Fig-

ure 3.3). These cells were initially in the range 0 − 100 µm from the wound. The

photo-conversion process e�ectively labelled two sub-populations of neutrophils. The

evolving positions of both groups were observed at 5 minute intervals using time-

lapse video-microscopy as described above. Cells were not individually tracked but

their positions at each time point were observed in order to record the evolution of

their populational distribution.

A representative sample of the raw images of the two resulting neutrophil sub-

populations as they migrate over the duration of the experiment are shown in Figure

3.4 (photo-converted cells) and Figure 3.5 (non-converted cells). Plots of the ex-

tracted data for all neutrophils at photo-conversion and the evolving positions of the

photo-converted cells are also shown in Figure 3.6. Throughout the course of the

experiment the photoconverted red cells remained most densely clustered near the

wound but their distribution widened over time as cells migrated away.

There were no green neutrophils observed at the site of injury at 4 hours post

injury (hpi) because all the cells present had been photoconverted. However, there is

a subsequent accumulation of green neutrophils at the site of injury from 6 hpi until

14 hpi. This shows that, in zebra�sh, neutrophils continue to be recruited to the

in�ammation site even whilst neutrophils recruited earlier are beginning to migrate

away. This is a contrast to mammalian in�ammation, where neutrophil in�ux ceases

early in the in�ammatory response, at least in rabbit models of pneumonia [62,

63]. However, the di�erence could be due to the increased sensitivity for detecting

continued in�ux in the transparent zebra�sh model with the Kaede protein labelling.

Figure 3.7 shows the extracted neutrophil position data represented by plotting,

for every observation time, the distance of each observed neutrophil from the wound.
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before photoconversion post photoconversion

Figure 3.3: Photoconversion of Kaede protein in neutrophils within the
tail�n area. Embryos at 3 days post fertilisation from transgenic zebra�sh express-
ing Kaede in neutrophils were subjected to tail�n transection under anaesthesia using
a sterile scalpel. The embryos were allowed to recover for 4 hours. At four hours
after injury the embryo was mounted in 0.5% low melting point agarose for imaging
on a Laser Confocal System (Perkin Elmer Inc). The PhotoKinesis device was �rst
used to photoconvert all neutrophils present within the tip of the tail�n. Photocon-
version was carried out according to the methods described (120 cycles of 40% 405
nm laser energy). The composite images of DIC (see footnote on page 43) overlaid
with the red and green �uorescence channels show a representative zebra�sh tail with
the neutrophils in the vicinity of the wound before and after photoconversion. All
experimental work was carried out by collaborators from the Academic Unit of Res-
piratory Medicine, Department of Infection and Immunity, University of She�eld,
She�eld, UK.

Figure 3.4: In�ammatory neutrophils in zebra�sh migrate away from the
site of tissue injury. A montage of DIC images overlaid with the red �uorescence
channel at the timepoints indicated after tail�n injury (hpi is hours post injury).
The redistribution of photoconverted cells can be clearly seen over time.
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Figure 3.5: At peak in�ammation, further neutrophils are still being re-
cruited to the site of injury. A montage of DIC images overlaid with the green
�uorescence channel at the timepoints indicated after tail�n injury (hpi is hours
post injury). Green neutrophils can be seen to accumulate at the site of injury be-
tween 6 and 14 hours after injury. Thus recruitment continues whilst cells recruited
previously have begun migrating away.
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Figure 3.6: Experimental data: reverse migration of photoconverted neu-
trophils away from a wound in zebra�sh. The top left subplot shows the initial
observed position of all neutrophils. The photoconverted neutrophils are marked in
red. All shown in grey are the positions of all photoconverted cells at all subsequent
time points. The data is aligned and aggregated over 6 zebra�sh and the wound was
located in each case at approximately 1250 µm on the X position axis. The remain-
ing subplots, likewise, show the evolving positions of photoconverted neutrophils at
increasing time points relative to the start of observations.

These plots of the distance of each cell from the wound edge against time reveal a

distinct pattern of neutrophil movement: neutrophils appear to be constrained in

their behaviour, gradually increasing their mean distance from the wound, at a rate
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Figure 3.7: Unprocessed neutrophil displacement data. For each neutrophil
in the six individual zebra�sh embryos, the distance from the wound was calculated
using algorithms within Volocity and plotted against time.

slower than their maximum speed would permit (Figure 3.7). Figure 3.8 shows the

number of cells observed at each observation time for each of the two neutrophil

sub-populations. For the red cells there is a generally a slight increase in numbers

from the start of the experiment. This is due to the cells being densely packed

near the wound initially, resulting in some indistinguishability or occlusion of cells

behind other cells. Green cells generally show a decrease in the second half of the

experiment. The reason for this is not clear. However, only the data from earlier

times is used for calculating the green cell dynamics.

3.4.2 Modelling results: neutrophil recruitment

In order to identify and quantify and dynamics of neutrophils during in�ammation

recruitment, equation (3.4) was �tted to the data collected for the non-converted

(green) neutrophils. These were initially all more than 100 µm from the wound.

During the early part of the experiment they migrated towards the wound (Figure

3.5). This early portion of the data, prior to any of the green cells reaching the

wound, was used to estimate the drift coe�cient in (3.4). The mean number of

observed cells was fairly constant over this time but with some noise, therefore a

weighted least squares scheme was used as described in Section 3.3.3.

Fitting the drift-di�usion equation to the dataset treats the neutrophils as point
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Figure 3.8: Number of observed neutrophils (a) The number of observed neu-
trophils at each observation time is shown for each individual zebra�sh embryo. The
red line shows the red, photoconverted neutrophils and the green line the green, non-
photoconverted neutrophils. (b) The cell counts across all embryos in the combined
dataset. For the red cells there is a generally a slight increase in numbers from the
start of the experiment. This is due to the cells being densely packed near the wound
initially, resulting in some indistinguishability or occlusion of cells behind other cells.
These and similar e�ects also explain the noise on the cell counts. The green cells
generally show a decrease in the second half of the experiment. However, only the
data from earlier times is used for calculating the green cell dynamics.

embryo
drift standard

coe�cient error

1 -0.85 (0.13)
2 -0.95 (0.06)
3 -0.11 (0.02)
4 -0.32 (0.02)
5 -0.48 (0.08)
6 -0.37 (0.06)
all -0.35 (0.03)

Table 3.1: Estimated drift coe�cients for the model of drift-di�usion de-
scribing cell migration toward the wound. Drifts are in µmmin−1, the standard
deviation is given in brackets.

objects and asks whether they are behaving like simple particles redistributing sto-

chastically (di�usion) or whether there is an element of active movement towards or

away from a chemical gradient (chemotaxis or fugetaxis). The equation generates

a value for the drift coe�cient, for which non-zero values re�ect an active rather

than purely random migration. The drift was estimated from the linear relationship

between time and mean cell distance from the wound (Figure 3.9). The results of
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this analysis are shown in Table 3.1. For the data from the 6 individual embryos, the

coe�cient estimates ranged in value from 0.11−0.95 µmmin−1 and for the aggregated

data the value was 0.35 µmmin−1. Graphical representation of the �tted data is

shown in Figure 3.9. As expected, in all cases cell populations demonstrated active

drift toward the wound. This is equivalent to saying that the neutrophils are moving

according to a biased random walk (BRW) and is consistent with cell migration that

is directed by a chemotactic process. This result, for the �rst time, quanti�es the in

vivo dynamics of neutrophils during in�ammation recruitment in zebra�sh.

3.4.3 Modelling results: in�ammation resolution

In order to identify and quantify and dynamics of neutrophils during in�ammation

resolution, a similar analysis was performed for photoconverted (red) cells present

at the site of the wound at the time of photo-conversion, 4 hours following the tail-

�n transection. In this case, equation (3.3) was �tted to the data collected for the

photo-converted (red) neutrophils which begin their migration from within 100 µm

from the wound (Figure 3.4). Two di�erent versions of (3.3) were �tted to this data.

In the �rst form, the drift coe�cient, a was constrained to be zero, whilst in the

second it was allowed to take any non-negative value. The �rst form describes pure-

di�usion dynamics which corresponds to undirected random motion. The second

form describes drift-di�usion dynamics which corresponds to some degree of chemo-

tactic guidance which could be either attractive or repulsive [55]. Thus �tting the

�rst form is to estimate a di�usion coe�cient via a linear �t and �tting the second

form both a di�usion and a drift coe�cient via a quadratic �t (Figure 3.10). The

estimated coe�cients are displayed in Table 3.2. Visual inspection of Figure 3.10

suggests that the quadratic model is a better �t to the data than the linear model.

However, this will always be the case for a higher order versus a lower order model.

Therefore an F-test was applied to the two models as described in Section 3.3.4. The

resulting F-test scores are also shown in Table 3.2 and again seem to con�rm that

the quadratic, drift-di�usion model should be the preferred model. However, further

inspection of Figure 3.10 shows that the errors in the model predictions (equation

3.14) are correlated and thus the usual F-test cannot be relied on in this case.

Therefore, to di�erentiate between the identi�ed models for the aggregated data,

both were repeatedly simulated and the results averaged: the pure-di�usion model

with D = 41.8 µm2min−1 and the drift-di�usion model with a = 0.26 µmmin−1, D =

8 µm2min−1. This gave a telling result: the cell population mode of the drift-di�usion

model moved away from the wound over time (Figure 3.11, red line), in contrast to

the observed data, where the mode remained close to the wound (Figure 3.11, yellow

bars). The pure-di�usion model accurately captured this qualitative behaviour, more
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Figure 3.9: Neutrophils actively migrate into the wound region. (a) Mean
cell distance from the wound against time for the non-photoconverted neutrophils in
each of the six embryos (black line). Prediction of mean distance obtained from the
linear model of initial drift (red line). Time is measured from the start of observations
which commenced four hours after injury. The cell count in embryo 6 (bottom right)
was low and sometimes zero near the end of the dataset, which explains the missing
sections. (b) Data and model combined over all six embryos.

accurately re�ecting the observed distribution of neutrophils over time (Figure 3.11,

blue line).

The belief that neutrophil in�ammation resolution migration is directed chemo-

taxis is becoming prevalent in the zebra�sh community. The striking results pre-

sented here challenges that emerging consensus and suggests, to the contrary, that
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stochastic redistribution best describes the phenomena of neutrophil behaviour dur-

ing in�ammation resolution.
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Figure 3.10: Neutrophil in�ammation resolution migration behaviour �t-
ted to both pure-di�usion and drift-di�usion models. (a) Plots of mean
squared cell distance from the wound against time for the photoconverted (red) neu-
trophils for each of the six embryos. Also shown on each plot are the �ts for the
linear model corresponding to pure-di�usion with zero drift (blue line) and for the
drift-di�usion model (red line). (b) Data and models combined over all six embryos.
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Figure 3.11: Simulation reveals a pure-di�usion model to be a better �t
to the real data. Both the drift-di�usion model (red line) corresponding to drift
(0.26µmmin−1) and di�usion (8.0µm2min−1) and the pure-di�usion model (blue
line) corresponding to di�usion (41.8µm2min−1) were simulated 1000 times. The
simulations were used to produce a distribution for the spatially binned data of each
model. The mean values of cell distribution over space are shown by the red and
blue lines, respectively (in terms of distance from the wound). Overlaid on these is
a corresponding histogram representation (yellow) of the real data (combined over
all �sh). The histogram bins have width 100µm and are centered at 50 to 950µm
from the wound. The pure-di�usion model shows a correct qualitative prediction of
cell distribution whereas the drift-di�usion model predicts that the population mode
moves away from the wound over time, in contrast to the observed data.

embryo
drift-di�usion model pure-di�usion model

F-test
drift coe�cient di�usion coe�cient di�usion coe�cient

1 0.25 (0.05) -4 (10) 27 (2) 38
2 0.27 (0.07) 23 (15) 56 (4) 28
3 0.19 (0.05) 13 (10) 32 (3) 14
4 0.21 (0.05) 32 (11) 54 (3) 14
5 0.35 (0.07) -8 (14) 55 (4) 82
6 0.27 (0.03) -7 (6) 31 (2) 145
all 0.26 (0.02) 8 (3) 41.8 (0.10) 267

Table 3.2: Estimated coe�cients for the drift-di�usion model and pure-
di�usion model of cell migration away from the wound. Drifts are in
µmmin−1 and di�usions in µm2min−1, standard deviation is given in brackets. Un-
der normal circumstances, an F-test value greater than 4 indicates that the drift-
di�usion model should be preferred to the pure-di�usion model.
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3.5 Discussion

3.5.1 Neutrophil recruitment

The analysis of zebra�sh neutrophil recruitment data in this chapter con�rms that

these cells are actively recruited towards the wound. This conclusion follows from

the fact that the drift-di�usion description of their dynamics has a positive value of

drift coe�cient. The magnitude of this drift is small compared to usual migration

speeds, which are of the order of 10 µmmin−1. This in turn implies that the cells are

performing a biased random walk rather than persistent migration [5] (see Section

2.1.5). In other words their natural stochastic search strategy is still dominating

their migration but with a small bias towards the target direction. There is net

movement towards the wound but the neutrophils are still able to track back and

forth in the tissue.

However, unlike the photo-converted sub-population, the non-photoconverted

cells are not a closed group: some of these cells may leave the observation area

and other cells may arrive which cannot be distinguished from the original cells.

Perhaps there will be a balance to these migrations such that they cancel each other

out, but it is possible that these e�ects could be weakening the ability to detect

the full amount of drift. It would be possible to investigate this further by repeat-

ing the experiment with earlier photo-conversion, this time of a sub-population of

cells from a band in the middle of the observation area. This would label a dis-

tinct sub-population of cells that are being recruited and would overcome the issues

mentioned above. However, it may be di�cult to capture a large enough number of

cells in this proposed photo-conversion process to make analysis feasible and reliable.

This remains an avenue for future exploration.

A second alternative would be to analyse cell tracking data instead of the popu-

lation approach taken here. Such an approach has been applied to proteins in living

cells [104, 112] and to in vivomelanoma cell tracks [33]. However, care is needed when

considering cell tracks as a naive approach could misrepresent short term correlations

in track direction as biased migration, as will be discussed below. Furthermore it

would be necessary to average the results obtained over a population and this in

turn would require enough cells that can be tracked for a su�cient amount of time,

at least greater than typical directional persistence times. In addition, to identify

tracks requires faster sampling of observations. This would have to be balanced

against total experiment runtime because there is a trade o� between the two due

to bleaching out of the cells and harm to the host organism from overexposure to

UV light. These are some of the issues which is the analysis of this chapter has been

designed to circumvent.
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3.5.2 In�ammation resolution

The regression analysis of zebra�sh neutrophil in�ammation resolution data was not

in itself conclusive. However, when combined with comparative simulations of the

identi�ed models, the pure-di�usion models was identi�ed as the best model for the

data. This is in sharp contrast to the results of [85] discussed in the introduction

to this chapter. To summarise, Mathias et al. used tracking data for in�ammatory

neutrophils to calculate cell velocity and a directionality index. Finding these to

be comparable for cells moving towards and away from the wound it was concluded

that in�ammation resolution migration, like recruitment migration, was directed

motion as a result of chemotaxis. It was also reported that cells were observed to

cyclically migrate towards and then away from the wound with the conclusion that

there was directed movement alternating between the two directions. Whilst [85] is

an important contribution to the �eld, a number of cautionary points need to be

made:

• Neutrophils movements are usually modelled with a CRW process. Short term

correlations in direction are therefore observed even when the motion is globally

random. It is possible for these short term track portions to exhibit a high

directionality index. This may be happening given the time scales over which

the observations were made.

• Neutrophils may move at internally determined speeds that are roughly con-

stant irrespective of whether they are migrating according to random or direc-

tionally biased patterns.

• Restricted channels in which neutrophils may preferentially move may further

enhance the apparent directionality of random motion.

• In [85] neutrophils were `observed to display simultaneous, bidirectional mi-

gration'. However, this could just describe a CRW observed over longer time

scales.

• Some of the directionality in [85] is measured from track portions that are

parallel to the wound. This suggests that the directionality is independent

of attractive or repulsive forces which would be acting perpendicular to the

wound and thus relate to inherent migration processes.

• It is stated that there is a degree of selectivity in the use of tracks (and the

process of tracking is in itself implicitly selective). From a population of cells

randomly migrating according to a CRW there will always be some that have
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signi�cantly high degree of directionality. This will be balanced globally by

some which have very little directionality.

50 µm

Figure 3.12: Comparison of cell tracks assumed by [85] to be directed with
a cell track which is not. Red tracks are those presented in [85] as exhibiting
bi-directional chemotaxis (directed migration). The green track was observed in the
head of a zebra�sh embryo in normal homeostasis such that it can be presumed
no chemoattractant signals are presents. It could also be interpreted as showing
directed or bidirectional chemotaxis. However, the migration is actually random
search behaviour. This illustrates how it is easy to draw misleading conclusions.

In relation to the �nal point, attention is drawn to Figure 3.12. This �gure shows

neutrophil tracks presented in [85] as showing bidirectional chemotaxis (red tracks).

The tracks are taken from two separate experiments from which one and four tracks

are taken respectively. Where necessary the tracks have been separated to make

them easier to see individually. In each case the neutrophil was migrating in the

vicinity of an induced wound to the zebra�sh embryo which was roughly below the



60 Chapter 3. Neutrophils come and go

track as plotted. It is asserted in [85] that these tracks demonstrate directed motion,

as opposed to random motion, in each direction (i.e. upwards and downwards, as

shown here). However, the representative green track was observed in the head of

zebra�sh embryo in equilibrium conditions∗. This embryo had not been subject to

any in�ammation inducing injury. It is presumed, therefore, that this neutrophil was

not subject to any chemoattractant directional guidance. It was migrating according

to inherent random search patterns. Nevertheless, the track show a large amount of

correlation in short to medium term migration direction. In analogy to the �ndings in

[85], this green tracks could be interpreted as exhibiting guided migration cyclically in

the upward then downward directions. In this case it would be a spurious conclusion.

Most analyses of cell migration are subject to at least some of the issues high-

lighted in this section. One of the novel contributions of this thesis is to analyse

neutrophil migration from a population perspective. This bypasses any biases that

would arise in the tracking or track selection process. Because tracking is not re-

quired, data can be incorporated from all cell-position observations and furthermore,

observations can be included over a long time period so that short time directional

correlations can be ignored. Under the approach proposed here the opposite conclu-

sion to that reached by Mathias et al. is established: migration of neutrophils away

from an in�ammation site is achieved by inherent random migration patterns and

not by chemotaxis or fugetaxis.

The identi�ed model for neutrophil in�ammation resolution obtained in this chap-

ter generally �ts the data quite well. However, this is a relatively simpli�ed model.

The need to add further explanatory detail to the model is motivated by observing

that the model consistently underestimates the number of photoconverted cells re-

maining adjacent to the wound. This suggests that some cells are actively retained at

the wound site. Indeed, the experimental results showed that whilst early recruited

neutrophils are migrating away from the wound, other cells are still being actively

recruited. This implies a cell by cell switch o� from the original chemoattractant

�eld. To completely address this will require the development of a framework that

can incorporate multiple models to re�ect the dynamic mix of neutrophil behaviours

present within a single population. This will be developed further in the following

chapters.

3.5.3 Issues common to both analyses

It was found that the model errors are not un-correlated. This does not mean the

model is wrong: any simulation of a pure-di�usion model will show that the errors

∗Experimental data courtesy of Dr Katy Henry, Academic Unit of Respiratory Medicine, De-
partment of Infection and Immunity, University of She�eld, She�eld, UK.
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between the actual and theoretical mean squared distance are correlated. However,

it does suggest that a more accurate result could be obtained by using a generalised

least squares scheme (as implemented in [33]) in place of the ordinary least squares

used here. This is another avenue for future work. Nevertheless, the ordinary least

squares method is a well known one that is relatively easy to conceptualise. One

of the aims of the work in this chapter has been to develop a method that is at a

relatively simple theoretical level, in order that experimental collaborators will �nd

the method accessible enough to consider utilising.

3.6 Conclusions

This chapter, which is based on already published work [53], provides a �rst mathe-

matically rigorous attempt to analyse the dynamics of in�ammatory neutrophils in

zebra�sh. The immune systems of �sh and mammals have many similarities. Thus

these dynamics of zebra�sh neutrophils may shed important light on those in mam-

malian immune systems leading to the deepened understanding vital in developing

therapies and preventions for many in�ammation related chronic diseases that a�ect

the human population.

Both the recruitment phase and resolution phase of in�ammatory neutrophil

migration have been investigated. The recruitment phase analysis showed that neu-

trophils undergo biased random walk migration towards an in�ammation site. The

presence of a bias con�rms the widely held view that the cells are actively recruited

to the wound area following chemotactic signals from the host organism. However,

in addition, it was possible to quantify this bias by estimating a drift parameter for

the cell population. This information will be useful in predicting neutrophil response

to an in�ammation trigger. If the recruitment analysis con�rms existing views, the

in�ammation resolution analysis, in contrast, challenges a growing consensus. The

in�ammation resolution analysis suggests that an simple (unbiased) random walk

best describes the neutrophils motion. On a population level this results in a pure-

di�usion process and implies that the neutrophils are moving according to inherent

stochastic processes and not in response to any attractive or repulsive signals.

The framework developed here for identifying reverse migration dynamics has

stepped beyond the basic analyses currently available in the literature. However, it

is apparent from our own evaluation of the framework in Section 3.5 that it has some

limitations. Using standard methods alone, the framework was not able to correctly

discriminate between the identi�ed models in the in�ammation resolution context

and further simulation comparisons were needed to inform the decision. Furthermore,

the framework is not readily extendible to more complex scenarios in which the
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individual neutrophils may be in di�erent migratory modes. In the next two chapters

of this thesis a novel simulation based framework is developed which overcomes

these shortcomings and which can give a more de�nitive answer on the question of

in�ammation resolution dynamics.



Chapter 4

Identifying neutrophil migration:

a Bayesian modelling framework

In Chapter 3, a regression analysis framework was developed to identify neutrophil

migration dynamics during the recruitment and resolution phases of in�ammation

episodes. When applied to in�ammation resolution in zebra�sh this gave an indi-

cation that the neutrophils were making purely di�usive movements and were not

subject to any deterministic forces driving them away from the wound which in-

duced the in�ammation. The regression analysis framework provided a relatively

quick and simple method for analysing the cell dynamics with a far greater mathe-

matical rigour than has been applied before in this context. Two potential drawbacks

of that framework, however, were that,

• not all information in the data was used as only the mean squared distance

was extracted from the full observation set at each timepoint; and,

• an additional simulation step was required to distinguish between the compet-

ing identi�ed models in order to rule out the existence of a small but never-

theless signi�cant drift term.

In this chapter a more thoroughgoing analysis framework is developed � one which

draws information from the full distribution of observed cell positions at each time-

point. Furthermore, the framework now to be proposed sits within a Bayesian

paradigm which provides a number of advantages. Firstly, the parameters to be

identi�ed are physical motility coe�cients and this gives plausibility ranges within

which to search for them. These ranges can be incorporated into the Bayesian prior

distribution over the parameters. Secondly, the key motivation in the identi�cation

process is a desire to test the �delity of alternative models of neutrophil migration.

These models, the pure-di�usion and the drift-di�usion models, correspond to alter-

63
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native biological realities of the living system. In the former the cells are moving

without external direction according to inherent random processes; in the latter, in

addition to the random movements, there is also an attractive or repulsive bias in-

�uencing the migration. In a Bayesian framework, model selection can be included

as a natural extension of the parameter estimation process. This provides a data-

driven methodology for model discrimination. Thirdly, the Bayesian approach is a

probabilistic one which yields distributions over identi�ed parameters rather than

point estimates. Thus the uncertainties associated with all identi�ed parameters

and models can be evaluated in a way that is both rigorous yet easy to interpret.

The development in this chapter of a Bayesian framework for cell migration is a

central contribution of this Thesis. The framework is also applied to the zebra�sh

neutrophil data to con�rm the answer to the key question � What kind of biological

process is at work in the resolution dynamics of in�ammatory neutrophils? A correct

answer to this is vital as it will inform future research towards interventions and

therapy for many chronic diseases.

4.1 Introduction

4.1.1 Bayesian methods

The bene�ts of a Bayesian approach can be summarised as follows:

• Prior knowledge about parameters can be included in the estimation process.

• Uncertainties in model choice and parameter values are made explicit in the

result.

• These uncertainties are expressed in a form that makes intuitive sense to most

readers (as compared to standard errors of classical estimation).

• Predictions can be based on the full posterior distribution over models and

parameters rather than just point estimates, meaning they are more balanced.

In addition, sensitivity to the various parameters is built in to the results: a low

variance posterior distribution for a parameter means that the �tted model is sen-

sitive to that parameter, whereas a broad posterior means that the �tted model is

insensitive to that parameter.

In some applications there may be sensitivity to the choice of prior distributions

over parameters. Care must also be taken over the range of plausible models that are

included or excluded in the set of candidate models. In this study the parameters

to be identi�ed are physical motion parameters for relatively large cells. As such
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they are constrained to be non-negative and to be within a range that is physically

plausible. This makes choosing the prior distributions less contentious than in some

other contexts such as black box modelling where the output of a system is mod-

elled but the functional forms and parameters used have no physically interpretable

meaning. In the past a drawback of Bayesian estimation was the sheer amount of

computation needed to evaluate the posterior distribution, especially in high dimen-

sional systems. Certainly in this study the identi�cation process is computationally

intensive. However, since it is an o�ine process, it is easily handled on a desktop

computer with typical run-times being in the region of 1-2 hours.

4.1.2 Why an approximate Bayesian approach is appropriate

Within the ensemble of Bayesian methods, even the sampling approaches such as

Markov chain Monte Carlo (MCMC) require the evaluation of a likelihood function.

Sometimes this is not possible: perhaps no analytic likelihood function is available

or if it is available it may nevertheless be impossible to evaluate.

The data analysed in this thesis may be described as follows: at any timepoint,

t, there are Nt observations of individual cell centroid positions. At time t + 1

likewise there are Nt+1 observations. In general Nt ̸= Nt+1 and furthermore there

is no correspondence between the observations at successive timepoints: cell are not

tracked and so it is not known whether a particular cell moved from xt to xt+1. To

compute a likelihood, therefore, one would have to take into account the NtNt+1

possible trajectories and thus the number of possible paths that would have to be

considered would grow exponentially with the number of observation times. This

correspondence problem could be avoided or at least made more manageable if cells

that can be tracked were extracted from the data, but this would be to throw away

a large amount of information and would distort the analysis towards cells which

are migrating in a particular way. For instance, cells that have moved away from

areas of higher cell density are more amenable to being tracked than those which

stay closely packed. The decision not to track the cells also meant that the cells

could be observed with a low inter-sampling time of 5 minutes. This, in turn meant

that problems associated with over exposure of living specimens to ultra-violet light

were avoided∗

∗Overexposure to UV light causes bleaching of the cells so that they are no longer observable
and can cause death of the zebra�sh larva specimen. In either case the experiment would terminate
prematurely and the full in�ammation resolution process would not be observed
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4.1.3 ABC SMC with model selection

Chapter 2 reviewed the ABC approach and the di�erent methods within it. To recap

brie�y, at the heart of the ABC method is the basic ABC rejection sampler. This

can be �nessed with parameter weighting and local linear regression [11] or built

into a MCMC [82] or sequential Monte Carlo (SMC) framework [114]. Whilst the

ABC-MCMC approach is e�cient in theory, it is liable to get stuck in low density

areas of the posterior distribution when there is noise in the simulation process.

Having tested each of the ABC methods it was found that the ABC-SMC approach

was e�cient and without the problems of ABC-MCMC. It can also be extended to

include model selection. Hence it is suitable to distinguish between the drift-di�usion

and pure-di�usion models for neutrophil migration. The ABC-SMC approach was

therefore adopted for the analysis reported in this thesis.

The ABC approach to model selection is based upon standard features of the

Bayesian approach to model criticism, in particular the use of Bayes factors [47, 67].

If two models, m1,m2 are being compared for a system, then the Bayes factor for

Model 1 with respect to Model 2 conditional on observed data, x, is de�ned as,

B12 =
P(m1 |x)
P(m2 |x)

P(m2)

P(m1)
(4.1)

A simple rearrangement of (4.1) shows that the Bayes factor, B12, is the means for

transforming the ratio of prior probabilities to the ratio of posterior probabilities.

The interpretation of Bayes factors relies on the classi�cation in the original edition of

the work by Je�reys [59]. An adapted summary of this classi�cation is shown in Table

4.1. If the two models m1,m2, are the only candidates and their prior probabilities

are equal then the Bayes factor, B12, is equivalent to the betting odds for the model

m1. This provides an intuitive rationale for the classi�cation by Je�reys.

B12 Evidence for m1 log10B12

< 1 not in favour < 0
1− 3.2 in favour but not signi�cant 0− 0.5
3.2− 10 substantial 0.5− 1
10− 32 strong 1− 1.5
32− 100 very strong 1.5− 2
> 100 conclusive > 2

Table 4.1: Interpretation of Bayes factor values. B12 is the Bayes factor value
for a model, m1, with respect to an alternative model, m2. This interpretation of
the Bayes factor values is adapted from Je�reys [59].

The version of ABC-SMC with model selection developed here is adapted from
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[121]. It is described fully in Algorithm 4.2. The parameter set is augmented with a

model index parameter. A parameter vector is therefore speci�ed by,

θi = (mi, bi, Di)
⊤ (4.2)

where mi is the model index, bi is the drift coe�cient and Di is the di�usivity

coe�cient. Coe�cient bi is set to zero if the model index is for the pure-di�usion

model.

The model marginal posterior distribution is simply given by the proportionate

representation of each model index value in the �nal population of samples. Thus if

there are 1000 samples and of these 800 have model index 1 and the remaining 200

have model index 2, then the Bayes factor,

B12 =
800

200
= 4, (4.3)

and this would be considered substantial evidence for Model 1 over Model 2.

Model selection can never be guaranteed to give the correct answer. Indeed

it is questionable whether there ever is a correct model of a system∗. There are

always potential pitfalls associated with, for instance, an inappropriate choice of

candidate models or an experimental design which fails to fully excite all the models

[61]. More particularly, concerns have been raised over the validity of Bayesian

model choice in the ABC setting [109]. Underlying these concerns is the question,

whether the approximations involved allow the ABC version of the Bayes factor to

approach the true value. In particular, even if a summary statistic is su�cient for

all individual models (which itself is not always the case) it often is not su�cient

to distinguish between models. This is an area of ongoing research [106] and for

now any conclusions from Bayes factor analysis should be taken as indicative and

backed up with further simulation studies to test the validity of the conclusions in

the particular experimental context. This is addressed in Section 4.3.

4.2 Identi�cation framework development

This thesis is addressing the open question of how cell population migration dynamics

can be identi�ed from time lapse video-microscopy data. It has been established that

an ABC approach is suitable and necessary in this context and that ABC-SMC is a

good choice of method. In order now to proceed and to apply ABC-SMC within the

context of neutrophil migration dynamics it necessary to provide for the following,

∗As the statistician George Box famously wrote, `Essentially all models are wrong, but some
are useful'[18]
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• a dynamic model, P(x | θ) and corresponding algorithm to simulate the for-

ward process for a given parameter speci�cation,

• a summary statistic, S(x), which reduces the observations to a lower dimen-

sional space,

• a distance measure, ρ(S(x), S(y)), to quantify the discrepancy between the

summary of a simulation and the summary of the observed process.

This is done in the following sections, forming a key contribution of this thesis.

4.2.1 Dynamic model for cell migration

It has been reported that neutrophils move according to a correlated random walk

(or biased correlated random walk if a directional cue if present) [122, 126]. How-

ever, over time-scales greater than the typical directional persistence times of the

cells [122], this type of motion approaches the limit of a pure-di�usion (or drift-

di�usion) process [26]. It is these time scales that are being considered here. These

processes are described by the following stochastic di�erential equation, known as

an Ito di�usion, [98],

dxt = b(t, xt) dt+ σ(t, xt) dωt (4.4)

where xt is the cell position at time t, b(t, xt) is the deterministic drift or migra-

tion bias, σ2(t, xt) represents the magnitude of the di�usive dynamics and ωt is a

white noise process. If the simplifying assumption is made that both the drift and

di�usivity are constant in space and time,

b(t, xt) = b, σ(t, xt) = σ, (4.5)

then this motility can be approximated in one dimension with a boundary at x = 0

according to the following discrete time model,

x
(i)
t+1 = max(0, x

(i)
t + bout∆t+ ω

(i)
t

√
2D∆t), (4.6)

where x
(i)
t is the position of the ith neutrophil at time t, for i = 1, . . . , N ; bout is

a bias velocity away from the boundary; D is the underlying di�usivity constant

or magnitude of random movement of the neutrophils; ω
(i)
t ∼ N (0, 1) are a family

of independent white noise processes; ∆t is the time increment. The use of the

max(0, .) function implies that cells do not migrate through the boundary and if

they reach the boundary they remain there until the next time increment. The

boundary is introduced to describe the wound in�icted on the zebra�sh specimens
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to induce in�ammation. This is approximately straight and perpendicular to the net

migration of cells. Cells are not observed to migrate across the line of the wound.

Equation (4.6) represents both the models considered: with bout = 0 it is the

pure-di�usion model, Model 1, which corresponds to an unbiased random walk and

with bout taking any non-negative value it is the drift-di�usion model, Model 2, which

corresponds to a biased random walk. It both cases the random walk has a variable

step size, where the steps sizes are drawn from a random normal distribution. It

is, therefore, straightforward to simulate this system by sampling the ω
(i)
t from a

Normally distributed random number generator. For a given set of experimental

results, (4.6) was used to implement the process function, P(x | θ), by applying it to

all the initial x position coordinates of all observed cells and recording the evolving

positions of the cells at times which correspond to the experimental observation

times.

4.2.2 Summary statistic for the observations

The observations of cells in the experimental data at time t can be described by,

Yt = {xt,i}Mt
i=1, (4.7)

where xt,i is the distance from the wound of ith recorded cell observation at time

t; Mt ⩽ Nc is the number of observed cells at time t; and Nc is the total number

of cells in the system. It should be noted that xt,i and xt∗,i observed at di�erent

times do not in general correspond to observations of the same cell as discussed in

Section 4.1.2. Also, although the zebra�sh is transparent, cells are not necessarily

observed at every timepoint point because they sometimes appear to coalesce with

or are occluded by other neutrophils. If Tobs is the total number of observation times

then a complete observation set may now be de�ned as,

Yobs = {Yt}Tobst=1 . (4.8)

It is clear that the event of reproducing an observed set of cell positions subse-

quent to the initial observation has probability zero. It is therefore necessary to con-

struct a summary of the observations which is of low dimensional and yet preserves

as much of the information in the data as possible. This was done by summarising

the cell positions as a discrete distribution over space, as follows,

Vt =


∑Mt

i=1 χB1(xt,i)
...∑Mt

i=1 χBb
(xt,i)

 (4.9a)
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Yt =
1∑
i Vt,i

Vt, (4.9b)

where Bj , j = 1, . . . , b is a set of spatial intervals forming a partition of the range

of the xt,i; χBj is the indicator function∗ of the interval Bj ; and Yt is thus the

normalised form of Vt.

4.2.3 Distance between simulated and observed cell distributions

Finally, in order to apply an ABC scheme for parameter estimation it was necessary

to choose a metric for comparing the di�erence between the summarised observations

for two complete observations sets.

A commonly used method for measuring the distance between two distributions,

especially in the domain of information theory, is the Kullback�Leibler divergence

(KLD) or relative entropy [8, 14]. In the discrete case, this quantity is de�ned by,

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
(4.10)

where ln is the natural logarithm function. The KLD in this usual form is not a

symmetric measure of di�erence. It measures the di�erence between the two distri-

butions from the perspective of the �rst of them, in the sense that the di�erences at

each point are weighted according the that distribution. When this divergence was

originally introduced by Kullback and Leibler [69] it was in the symmetric form,

DSKL(P ||Q) =
∑

i

(
P (i) ln

P (i)

Q(i)
+Q(i) ln

Q(i)

P (i)

)
(4.11)

A commonly used alternative, the Bhattacharyya distance (BD), is also widely

used in statistical signal processing for measuring the distance between distributions

[8, 13]. For two discrete distributions f and g over the same domain X, the Bhat-

tacharyya distance (BD) DB between them is symmetric and is relatively simple to

compute,

DB(f, g) = − ln
∑
x∈X

√
f(x)g(x). (4.12)

A problem is encountered with the BD and the KLD when the support of one

distribution being measured is not identical to that of the second. In this case an

in�nite distance is returned even if the distributions are otherwise very similar, as

∗

χB(s) =

{
1 if s ∈ B

0 otherwise
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illustrated for the KLD in Figure 4.1. It has also been suggested that both the BD and
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Figure 4.1: A problem with using the symmetric Kulback-Liebler diver-
gence. (a) The KL divergence for the two discrete distributions coloured blue and
red respectively is 3.5. (b) In this case, though the distributions are very similar, the
have non-identical support and therefore the divergence is in�nite.

KLD, whilst often used for comparing histogram data, are not suitable candidates

for this task when the histograms are ordinal or modulo rather than nominal in

nature∗[23]. This is because BD and KLD only considers the di�erence between

corresponding histogram bars and not the amount of `work' needed to transform one

histogram into the other. A naive way of taking this into account is to consider

the minimal pairwise di�erence between all samples making up the histogram data.

Computing this is exponential in time as there are n! possible pair assignments if n

is the number of samples.

Cha and Srihari [23] propose a quick-to implement algorithm to measure the dis-

tance between to histograms. They derive it by noting that the minimum di�erence

of pairwise assignments is equivalent to the minimum cost of moving cells (the ba-

sic histogram bar size units) to transform from one histogram to the other. Their

algorithm for computing it is shown in Algorithm 4.1.

The zebra�sh data is summarised as a separate discrete distribution of cells for

each of the T timepoints. Therefore, the Bhattacharyya and Cha-Srihari derived

distances between two complete observation sets were de�ned as follows,

ρB(Y(p),Y(q)) = −
Tobs∑
t=1

log
b∑

i=1

√
Y

(p)
t,i Y

(q)
t,i , (4.13)

∗In a nominal histogram (e.g. distribution over makes of car) the ordering of the bars does not
matter whereas in an ordinal (e.g. heights) or modulo (e.g. angles) histogram there is an inherent
order to the bars.
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Algorithm 4.1 Cha-Srihari distance between ordinal histograms

Require: Histograms A,B with bar sizes Ai, Bi, i = 1, . . . , n

Ensure: DCS(A,B) the Cha-Srihari distance between the two histograms.

for i = 1 to n do

Compute the bar size di�erences, di = Ai −Bi.

Compute the cumulative sums of the di�erences, ci =
∑i

j=1 di.

end for

Compute DCS(A,B) =
∑n

i=1 |ci|

ρC(Y(p),Y(q)) =

Tobs∑
t=1

DCS(Y
(p)
t , Y

(q)
t ) (4.14)

where Yt,i is the ith component of the vector Yt.

These two distance measures were considered and compared in order to test the

robustness of the identi�cation method with respect to choice of distance measure.

It can be observed in Figures 4.2 and 4.3 that the two distance measures have similar

trends when applied to simulated neutrophil migration data. However, due to the

concerns noted above, the Cha-Srihari distance was used in what follows.
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Figure 4.2: Comparison of Bhattacharyya and Cha-Srihari distances for
varying di�usivity. The distances between a target observation set from a sim-
ulated pure-di�usion process with di�usivity, (a) 10, (b) 30, (c) 50µm2min−1 and
those from pure-di�usion processes in the range 0− 50 µm2min−1, calculated using
the two distance measures.

4.2.4 Implementation details

The resulting implementations of the ABC-SMC parameter estimation algorithm

and ABC-SMC parameter estimation with model selection algorithm are set out in

Algorithms A.1 and 4.2. In the algorithms ρ(., .) is de�ned as in (4.13) or (4.14) and
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Figure 4.3: Comparison of Bhattacharyya and Cha-Srihari distances for
varying drift. The distances between a target observation set from a simulated
drift-di�usion process with di�usivity, 25 µm2min−1 and drift (a) 0, (b) 1, (c)
2 µmmin−1 and those with drift in the range 0-2µmmin−1, calculated using the
two distance measures. The Bhattacharyya distance is in�nite when the support
of the two distributions is disjoint. This explains the missing data points for that
measure.

thus implicitly includes the summarising of the data as a distribution via (4.9).

In all validation and application runs of the algorithm, unless otherwise stated,

the user-set parameters for the algorithm were chosen as follows, T = 4 and N =

4000. A uniform prior was used over all parameters with the following ranges: dif-

fusivity 0− 200 µm2min−1, drift 0− 2 µm2min−1.

Many ABC studies do not give much attention to how the choice of error tolerance

schedule is made and possibly a process of trial and error is inevitable. It should

be noted that it is the �nal tolerance value which directly a�ects the results of the

estimation, the smaller the tolerance the closer the estimated posterior is to the true

posterior. The intermediate tolerances a�ect the e�ciency with which the algorithm

reaches this approximate posterior. To give some examples, Beaumont et al. [12] use a

linearly decreasing tolerance schedule, whereas Toni et al. [121] appear to have picked

each value of tolerance to suit the application with by and large a linear decrease at

�rst but then smaller reduction in error as the �nal iteration is approached.

The error tolerances in this study were chosen automatically as follows: in an

initialisation run N parameter sets were chosen from the joint prior and the asso-

ciated simulation errors, ei, with respect to the experimental data were calculated.

The initial error tolerance was chosen to be,

ϵ1 =
1

2
max(ei)

and the �nal tolerance, ϵT , was chosen as the �rst percentile of the ei.
∗ To in-

∗If this �nal error tolerance was used with a basic ABC rejection sampler using the same prior
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Algorithm 4.2Model selection and parameter estimation using ABC-SMC

Require: data, Yobs; Monte Carlo population size, N ; number of iterations, T ;

prior distributions on models π(m) and on model parameters π(θ|m); simulation

algorithm to sample replicated observations from the processes, Y ∼ p(Y|m, θ);

distance metric ρ, model perturbation kernelM and parameter perturbation kernel

K; decreasing error tolerance schedule ϵ1, . . . , ϵT

Ensure: a set of parameter vectors θi augmented with model indicator mi, with

importance weights ωi, i = 1, . . . , N that together form a weighted sample from

the joint posterior distribution, p(θ,m|Yobs)

for i = 1 to N do

simulate mi ∼ π(m), θi ∼ π(θ|mi) and Y ∼ p(Y|mi, θi)

until ei = ρ(Y,Yobs) ⩽ ϵ1

end for

set each ω
(1)
i ∝ 1

ϵ1

(
1−

(
ei
ϵ1

)2)
, such that

∑
ω
(1)
i = 1

for t = 2 to T do

for each model, m, set τ(m)2 = 2Var({θi : mi = m})

for i = 1 to N do

choose k from {1 . . . N} with probabilities {ω1 . . . ωN}

set m∗ = mk and θ∗ = θk

simulate m̂i ∼ M(m|m∗)

Re-choose θ∗ from {θj : mj = m̂i} with probabilities {ωj : mj = m̂i}

simulate θ̂i ∼ K(θ|θ∗; τ(m̂i)
2) and Y ∼ p(Y|m̂i, θ̂i),

until ei = ρ(Y,Yobs) ⩽ ϵt

set ω̃i =
1
ϵt

(
1−

(
ei
ϵt

)2)
end for

set each ω̂i ∝ ω̃iπ(θ̂i)∑
j:mj=m̂i

ωjK(θ̂i|θj ;τ(m̂i)2)
, such that

∑
ω̂
(t)
i = 1

set each mi = m̂i, θi = θ̂i, ωi = ω̂i

end for

crease e�ciency, parameter sets from the initialisation run were recycled into the

�rst iteration if their associated error was less than ϵ1.

After investigating various choices for intermediate tolerances such as linearly

decreasing and a scheme where ϵi+1 − ϵT = 1
2(ϵi − ϵT ), it was found that a negative

then on average 1 in every 100 simulations would result in acceptance of a parameter set.
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exponential scheme was the most e�cient of those investigated. This scheme was

achieved by setting,

ϵi = ϵ1e
−αi, i = 2, . . . , N − 1 (4.15)

with

α =
log ϵ1 − log ϵN

N
(4.16)

The e�ciency of computation for this scheme with respect to various values of N are

shown in Table 4.2.
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Figure 4.4: Epanechnikov kernel used for initial weighting of parameters.

Toni et al. [121] used a uniform acceptance kernel. This means that if the simu-

lation error is just within the current error tolerance, the parameter set is accepted

with as much importance as it would be if the error had been zero (prior to the

subsequent importance weight allocation). Here, following Beaumont et al. [11] an

Epanechnikov acceptance kernel (Figure 4.4) is used to pre-weight the accepted pa-

rameter sets with a weight wk,

wk =
1

ϵi

(
1−

(
ek
ϵi

)2
)

(4.17)

where ϵi is the current error tolerance and ek is the calculated error.

The parameter perturbation kernel was chosen to be zero mean Gaussian with

variance set to be twice the weighted empirical variance of the parameters in the

previous population. Also, a model perturbation kernel was used in which the original

model was kept with probability 0.6 and one of the r remaining∗ alternative candidate

models with probability 0.4
r .

∗If a model has died out, i.e. has no representation in the previous generation, then this choice
of kernel does not allow it to be re-introduced.
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4.2.5 The validity of the posterior distribution

It is important to note that minimising the uncertainty of the estimated parameters

is not a goal of the Bayesian approach. Nissen and Propach [95] investigated the

performance of four optimisation schemes (a genetic algorithm, an evolution strat-

egy, the classical pattern search and the threshold accepting method) when the cost

function contains a signi�cant degree of random noise in its evaluation. They found

that averaging repeated evaluations of the function at each parameter value leads to

a more e�cient algorithm. Di�usion is essentially a noise process and the fewer dif-

fusing cells are being modelled the noisier will be the resulting cell distribution. This

poses the question, can a similar repeat-simulation-and-average step be bene�cially

applied in the ABC-SMC algorithm.
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Figure 4.5: An example of an over-�tted ABC posterior. Averaging of repeat
simulations results in a tighter distribution around the identi�ed parameter value.
The simulation was repeated (a) once, (b) 50, (c) 100 times before averaging. The
true di�usivity parameter value is 25. In (b) and (c) the true parameter value can
be seen to move into the tail of the posterior distribution.

Simulation studies showed that employing this step resulted in a tighter posterior

distribution around the true parameter values as demonstrated in Figure 4.5. This

suggests less uncertainty in the identi�ed parameter values. However, it was not

possible to justify this mathematically for the simple reason that, in general,

E
(
χ[−ϵ,ϵ](S(x|θ)− S(y))

)
̸= χ[−ϵ,ϵ](E (S(x|θ))− S(y)) (4.18)

where χ is the indicator function∗. This is further demonstrated in Figure 4.6.

∗

χ[−ϵ,ϵ](s) =

{
1 if − ϵ ⩽ s ⩽ ϵ

0 otherwise
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Some implementations of ABC-SMC such as that of Toni et al. [121] do employ

repeat simulation from each parameter set. However, in this case each simulation is

considered in its own right without being averaged and an initial weight is given to

the parameter set according to what proportion of simulated observations fall within

the current error threshold.
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p
ro

b
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ili
ty

observation probability 

distribution for current

         parameter choice

average of  simulated observations

     from current parameter choice

acceptance region

realisations

target observation

Figure 4.6: Explanation of over-�tting the posterior distribution. Illustra-
tion of how averaging repeated simulations from a single parameter set will lead to
over-�tting. Parameter sets which are capable of creating the target observations are
wrongly rejected. The target observation value is represented by the solid green line
with dotted red shaded region indicating the current error margins for acceptance.
The blue line is the probability density for simulated observations from the param-
eter set currently under consideration and the black crosses show ten realisations of
this process. After taking the average of these realisations (dashed green line) this
parameter set is rejected. Whereas, in fact, the crosses that are within the error
margin show that this parameter set could have produced the target observations.
Following this through, by increasing the number of realisation and decreasing the
error margins the accepted parameter values will converge on a single value which
would be equivalent to a maximum likelihood identi�cation. This fatally compro-
mises the identi�cation of a posterior distribution which allows for the fact that the
target observation may in fact be an outlier observation for the true system.



78 Chapter 4. ABC cell migration framework

4.3 Validation of the new identi�cation framework on

simulated data

In any new modelling context, the proposed identi�cation method must be validated

to show that sensible and reliable results can be obtained. Populational modelling

of neutrophils in vivo using ABC methods has not been implemented before, so a

rigorous validation procedure must be carried out. Since the dynamics of neutrophils

in vivo cannot be controlled or independently ascertained by others means, it is

necessary to do this validation in silico.

The ABC-SMC algorithm will be used to estimate model parameters and select

the optimal model for describing neutrophil migration. To give a brief résumé, ABC-

SMC estimates model parameters by (a) randomly sampling parameter sets from a

prior distribution; (b) simulating the process with those parameters; and (c) accept-

ing the parameter set as a sample from the posterior distribution if the simulation

results are within the current error tolerance from those of the experimental data.

The error tolerance is sequentially decreased over a number of iterations. Moreover,

the ABC-SMC algorithm is extensible to model selection by allocating each compet-

ing model an index value and treating this as part of the parameter vector to be

estimated.

In order to test the ability of the developed framework to identify parameters

and discriminate between pure-di�usion and drift-di�usion processes, it was applied

to simulated cell data with a range of model and parameter values. All simulations

began with cells in the con�guration of experimental data, and observations were

collected to correspond to those of the experimental data. Selected results are shown

in Figure 4.7 where the di�usivity coe�cient was set at 25 µmmin−1 in and the drift

coe�cient was varied from 0 to 0.4 µmmin−1. For higher values of drift, the correct

model continued to be identi�ed with 100% con�dence and the parameter estimation

had comparable accuracy and uncertainty to the results shown for 0.4 µmmin−1.

The e�ect of increasing or decreasing the di�usivity was only to correspondingly

increase or decrease the uncertainty in the parameter estimates. Likewise increasing

or decreasing the number of cells had the inverse e�ect of decreasing or increasing

the uncertainty respectively. However, for the data-driven estimates to be valid it

was necessary to simulate with the same number of cells that are observed in the

data.

To assess the quality of the model prediction, the Bayes Factor for Model 2,

drift-di�usion, with respect to Model 1, pure-di�usion, was calculated for each of the

simulations. The values are shown in Figure 4.11(b). For drift values below approxi-

mately 0.2 µmmin−1 model selection cannot be made with any con�dence. Between
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0.2 and 0.3 µmmin−1 there is substantial to very strong evidence for Model 2. Over

0.3 µmmin−1 the evidence for the Model 2 is overwhelming. Although there is in-

signi�cant evidence for Model 2 for drift values below approximately 0.2 µmmin−1,

this does not, however, mean that there is evidence in favour of Model 1. It simply

means that the models cannot be distinguished for that level of drift.

In order to further investigate the ability to detect the true model when the true

simulated model is Model 1, the model selection algorithm was applied repeatedly

with an increasing lower limit of the drift parameter prior. With this lower limit set

to zero, Model 2 allows any drift value of zero or above, on the other hand if the

lower limit is set to 0.5 µmmin−1, say, Model 2 requires a correspondingly signi�cant

level of drift. The results of this are shown in Figure 4.11(a).

The validation results shown in Figure 4.7 are for coe�cients comparable to those

that were estimated for the experimental data as will be reported in Section 4.4.

The results suggest that a pure-di�usion process will be correctly identi�ed with a

con�dence that grows rapidly as the minimum amount of drift considered signi�cant

is increased. But in any case the evidence for the correct pure-di�usion model will

be substantial if any drift value is allowed. Also, a drift-di�usion process will be

correctly identi�ed if the drift coe�cient is 0.2 µmmin−1 or above. The evidence for

the correct drift-di�usion model rises rapidly as the true drift coe�cient rises until

the evidence is overwhelming for drift values above 0.3µmmin−1.

estimation time (mins)
T pure-di�usion drift-di�usion

1 >240 >240
2 >240 >240
3 135 147
4 117 130
5 124 141
6 132 142
7 142 161
10 179 215

Table 4.2: Performance of Algorithm 4.2 against number of iterations,
T . In each case an exponentially decaying error tolerance schedule was applied.
Values greater than 240 mean that the algorithm was aborted after 4 hours without
completing.
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Figure 4.7: Validation of the identi�cation framework on simulated data.
In order to demonstrate the con�dence with which the correct model is identi�ed it
was tested on simulated data for varying values of di�usivity and drift. The results
shown are for a di�usivity, D = 25 µm2min−1, and with drift values, b, of (a) 0,
(b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4 µmmin−1. Column 1 shows the posterior model
marginal distribution, where Model 1 is the pure-di�usion and Model 2 the drift-
di�usion model. Column 2 shows the identi�ed posterior distribution of di�usivity
(µm2min−1) for Model 1. Column 2 shows the identi�ed joint posterior distribution
for drift (µmmin−1) and di�usivity (µm2min−1) for Model 2. The (a) stem and
(b)-(e) crosses show the true parameter values. Corresponding Bayes factor analysis
is shown in Figure 4.11
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4.4 Identi�cation of zebra�sh neutrophil dynamics dur-

ing the resolution phase of in�ammation

Understanding the processes by which in�ammatory neutrophils resolve themselves

away from a site of in�ammation is vitally and urgently needed. In�ammation is a

key process in the mammalian immune systems but one that may become dysfunc-

tional. Compromised in�ammation resolution is implicated in the causes of chronic

in�ammatory diseases such as COPD, asthma and rheumatoid arthritis. Under-

standing the drivers of the in�ammation resolution process and why it may fail will

help the search for more e�ective and hopefully cheaper interventions into the as-

sociated conditions. It has generally been assumed that this process is the mirror

image of chemotaxis, where neutrophils are drawn into areas of infection or tissue

damage by gradients of chemotactic cues. Indeed, e�orts are under way to identify

cues that drive neutrophils away by the reverse process, fugetaxis. Rigorous data

driven justi�cation of this assumption or its alternative, have however, up to now

been lacking.

In order to address this open question, the preceding work of this chapter has

developed an identi�cation framework for cell migration dynamics. The framework

uses ABC methods and cell position distribution data. The framework can now be

applied to characterise the migration dynamics of zebra�sh neutrophils in vivo with

a view to con�rming the result obtained in Chapter 3 on a more comprehensive basis.

4.4.1 Method

The ABC-SMC parameter estimation and model selection algorithms were applied to

the same experimental neutrophil data from 6 zebra�sh larvae analysed in Chapter

3 (Dataset A) and also a second dataset (Dataset B) obtained separately under the

same experimental conditions. A full description of the data is given in Chapter 3, but

brie�y: A wound is induced to the tail�n of zebra�sh larvae at 3 days post fertilisation

(dpf). At 4 hours post injury, green �uorescent protein (GFP) expressing neutrophils

in the vicinity of the wound are photoconverted to �uoresce red. These cells are then

observed every 5 minutes over a total over 980 minutes which corresponds to the

resolution phase of in�ammation. The main results presented relate to Dataset A.

Results for Dataset B are presented brie�y to con�rm the generality of the �ndings.

The candidate models are: Model 1, the pure-di�usion model and Model 2,

the drift-di�usion model. These models were introduced in Section 4.2.1 and are

recapped on page 82. Whilst Algorithm 4.2 estimates both model parameters and

model index, the parameter estimates can be unreliable for a model that has a

minority representation in the samples. For this reason, Algorithm A.1 was applied
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�rst for the individual models. Algorithm 4.2 was then applied with both models

as candidates in order to discriminate between them. From the resulting posterior

marginal distribution over the two models a Bayes factor was calculated which was

then interpreted according to Table 4.1. The default prior distribution for Model

2 allows drift values of greater than or equal to zero. In order to further explore

the model preference the model identi�cation algorithm, Algorithm 4.2 was applied

several times with increasing minimum allowed drift values as was done for the

validation in Section 4.3. The Bayes factor was calculated and plotted in each case.

Finally, the preferred estimated model was simulated repeatedly and the distribution

of resulting observations was compared to the original experimental data driving the

estimation process.

Pure di�usion and drift-di�usion models

x
(i)
t+1 = max(0, x

(i)
t + bout∆t+ ω

(i)
t

√
2D∆t), (4.19)

where

• x
(i)
t is the position of the ith neutrophil at time t;

• bout is a bias velocity away from the wound;

• ω
(i)
t ∼ N (0, 1) are a family of independent white noise processes;

• D is the underlying di�usivity constant or magnitude of random movement of
the neutrophils;

• ∆t is the time increment;

• The use of the max(0, .) function implies that cells do not migrate through the
boundary and if they reach the boundary they remain there until the next time
increment.

With bout = 0 this is designated as Model 1, and with bout ⩾ 0, Model 2.

Model 1 & 2: pure-di�usion & drift-di�usion

4.4.2 Results

The result of applying Algorithm A.1 to Dataset A for Model 1, the pure-di�usion

model, which has a single parameter, is shown in Figure 4.8. The MAP parameter

estimate is

D = 25 µm2min−1

with 90% con�dence interval of 19 − 34 µm2min−1. The di�usivity is related to

observed displacement via (4.6). Repeated simulation of this equation for a single
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cell with D = 25 µm2min−1 yielded a mean observed displacement of 5.5 µmmin−1

and a 90% con�dence interval of between 0 and 14 µmmin−1. This is exactly in

keeping with other reported neutrophil speeds in zebra�sh (Mathias et al. [85] and

Walters et al. [128] report mean speeds of approx 10 µmmin−1), and also comparable

with measured speeds of human neutrophils [78].
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Figure 4.8: Zebra�sh neutrophil data estimation results for Model 1, the
pure-di�usion model. Algorithm A.1 for parameter estimation was applied with
Model 1, the pure-di�usion model as the dynamic model. The MAP parameter
estimate for the single di�usivity parameter is D = 25 µm2min−1.

The results of Algorithm A.1 for Model 2, the drift-di�usion model, which has

two parameters, are shown in Figure 4.9. The MAP parameter set estimate is

bout = 0.05 µmmin−1, D = 19 µm2min−1

with 90% con�dence intervals 0.005 − 0.15 µmmin−1 and 7 − 36 µm2min−1. These

values imply mean observed displacement of 4.8 µmmin−1 and a 90% con�dence

interval of between 0 and 10 µmmin−1.

For the purpose of model selection, Algorithm 4.2 was applied with both Model

1 and Model 2 as candidates. The result is shown in Figure 4.10. The marginal

distribution over the models was 88% for Model 1, the pure-di�usion model, and

12% for Model 2, the drift-di�usion model. This yielded a Bayes factor for Model 1

with respect to Model 2,

B12 = 7.3

Thus there was substantial evidence for Model 1 over Model 2. It should be noted

that whilst Model 2 is the drift-di�usion model, nevertheless the model allows for

drift values of zero or arbitrarily close to zero. To test the model selection result

further Algorithm 4.2 was repeatedly applied, with increasing lower limits on the

prior range for the drift parameter in Model 2. In other words, Model 2 becomes
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Figure 4.9: Zebra�sh neutrophil data estimation results for Model 2, the
drift-di�usion model. Algorithm A.1 for parameter estimation was applied with
Model 2, the drift-di�usion model as dynamic model. (a) Posterior distribution over
the individual parameters. (b) Joint distribution for the two parameters. The MAP
parameter set is drift, bout = 0.05 µmmin−1, di�usivity, D = 19 µm2min−1.

the drift-di�usion model with minimum drift great than b0 for various values of b0.

The results of this are shown in Figure 4.11(c). Comparison to Table 4.1 shows that

there is substantial evidence for Model 1, the pure-di�usion model, for all values of

b0 and very strong evidence when b0 > 0.08 µmmin−1.

The analysis was also performed on the second dataset, Dataset B, to check

consistency of results collected in an identical manner to the main dataset. The

main results were con�rmed and even strengthened by this dataset, as shown in

Figures 4.13 and 4.11(d).

4.4.3 Discussion

In order to validate the estimation framework, the ABC-SMC algorithm was �rst

applied in silico in order to verify that discrimination could be made between di�erent

types of drift-di�usion process and correctly identify parameters within a reasonable

con�dence interval. This is an important step when applying ABC-SMC in a new

context, especially in relation to the validity of model selection [109]. When the

ABC-SMC identi�cation algorithm was applied to a pure-di�usion process and the
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Figure 4.10: Zebra�sh neutrophil data model selection result. Algorithm 4.2
was applied with both models as candidates to identify the preferred model. Model
1 is the pure-di�usion model, Model 2 the drift-di�usion model.

Bayes factor calculated, there was substantial evidence for the correct model. The

alternative model had a low representation in the marginal posterior distribution

and in addition the MAP drift coe�cient was zero. When the alternative model

was forced to look for drift values greater than a small tolerance value, the model

selection con�dence became stronger still. Moreover, when the ABC-SMC algorithm

was applied to a simulated drift-di�usion process there was substantial evidence

for the correct model for values over 0.2 µmmin−1 and overwhelming evidence for

values over 0.3 µmmin−1. Hence, the validation procedure demonstrated that the

ABC-SMC algorithm can accurately detect drift if a signi�cant drift is present.

To investigate the reverse migration behaviour of the neutrophils, the estima-

tion framework was applied to experimental data from zebra�sh larvae during the

resolution phase of an in�ammation episode, using the same data that was stud-

ied in Chapter 3 (Dataset A). Substantial evidence was found for the pure-di�usion

model which was represented by 88% of the posterior samples. The MAP drift co-

e�cient of the alternative drift-di�usion model was estimated to be zero. When the

drift-di�usion model was restricted to non-zero drift values, it was found that the

evidence for the pure-di�usion model increased and was overwhelming if the drift

was constrained to be not less than 0.1 µmmin−1. The estimation framework was

also applied to data from a second independent but identical experiment (Dataset

B). In this case there is strong evidence for the pure-di�usion model which was repre-

sented by 92% of samples from the posterior distribution. And if the drift-di�usion

was constrained to take values not less than 0.06 µmmin−1 then the Bayes factor

analysis provides conclusive evidence for the pure-di�usion model.
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Figure 4.11: Bayes factor analysis. Model 1 is the pure-di�usion model. Model
2 is the drift-di�usion model. The Bayes factor, B12 for Model 1 with respect to
Model 2 is plotted as a blue line on a logarithmic scale against the lower limit on
the prior for the drift coe�cient in Model 2. (b) also shows B21 in green.
(a) Simulated pure-di�usion data: Even when Model 2 is allowed a drift coef-
�cient of zero, there is substantial evidence for the correct Model 1. As the lower
allowed value is increased the evidence increases rapidly until, for drift greater than
approximately 0.13 µmmin−1, the evidence is overwhelming.
(b) Simulated drift-di�usion data: When the drift coe�cient is zero, there is
substantial evidence for the correct Model 1. For drift values between zero and
approximately 0.2 µmmin−1 model selection cannot be made with any con�dence.
Between 0.2 and 0.3 µmmin−1 there is substantial to very strong evidence for Model
2. For values over 0.3 µmmin−1 the evidence for the drift di�usion model is over-
whelming.
(c) Dataset A: Similarly to the simulate data in (a), when Model 2 is allowed a drift
coe�cient of zero, there is substantial evidence for Model 1. As the lower allowed
value is increased the evidence increases until, for drift greater than 0.1 µmmin−1,
the evidence is overwhelming.
(d) Dataset B: For this dataset, there is already strong evidence for Model 1 when
any drift value greater than zero is considered. If drift values less than approxi-
mately 0.06 µmmin−1 are considered insigni�cant, then there is conclusive evidence
for Model 1, the pure-di�usion model.
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Figure 4.12: Simulation comparisons of the estimated pure-di�usion mod-
el, Model 1, to the experimental data. One thousand simulations were made
of the estimated model using the MAP parameter estimate. The output is shown for
representative times throughout the experiment. The red line shows the mean pre-
dicted distribution of cell positions and the shaded red region is the 90% con�dence
interval. The experimental observations are plotted in black for comparison.

These results strongly suggest that even in the event that the model was incor-

rectly identi�ed and a small non-zero drift coe�cient was present at the limiting

value of 0.1 µmmin−1, this would only make a very small contribution to migration

(an approx. 100 µm mean shift over the 980 minute span of the experiment). This

on its own would still leave the cells in the vicinity of the wound. Therefore, it is the

identi�ed di�usivity arising from the inherent migratory patterns of the neutrophils

that is contributing the major part of the motility. This is also why cells are often

seen to change direction during migration.

It is apparent from inspecting and comparing repeated simulations of the pure-

di�usion model and the in vivo observations (Figure 4.12) that, whilst the �tted

pure di�usion model gives a broadly accurate representation of the data, nevertheless

it does not fully explain the response. The identi�ed pure-di�usion model �ts the

experimental data well at earlier timepoints, but at later times (655-980 minutes) the
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Figure 4.13: Dataset B: model identi�caion and parameter estimation.
Algorithm 4.2 was applied to an additional experimental dataset with Models 1 and
2 as candidates. Model 1 had a 92% representation in the posterior model marginal
distribution. Algorithm A.1 was applied for Model 1 to estimate the Di�usivity
parameter as 36 µm2min−1 and a 90% con�dence interval of 27− 50 µm2min−1.

predicted distribution of cells does not precisely describe the observed cell behaviour:

the cell count at the wound is greater than predicted and less than predicted at

∼ 250 µm from the wound. This suggests that the model is incompletely capturing

the nature of neutrophil movements; speci�cally it suggests that neutrophils do not

move away from the wound as easily as the pure di�usion model would suggest. The

next chapter will consider the possible causes of this discrepancy and ways in which

the model can be enhanced to obtain a more faithful representation of the data. It is

also important to do this to ensure that any signi�cant drift present in the dynamics

has not been masked by shortcomings of the modelling process.

4.5 Conclusion

In this chapter a novel framework for parameter estimation and model discrimination

for cell migration dynamics has been developed. The immediate aim has been the

identi�cation of neutrophil migration processes in in�ammation resolution. However,

the framework can also be applied in other cell migration settings. The candidate

models can be quite general in nature as long as they are capable of being simulated.

The framework makes use of approximate Bayesian computation (ABC) methods.

ABC is being used increasingly in a wide range of research areas. It has been applied

previously in a related context to estimate chemoattractant �elds from distribution of

straightness indices of zebra�sh neutrophil tracks. However, it has not been applied
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as here, to analyse and identify dynamics of cell migration and in particular of

neutrophil migration in the in�ammation resolution phase.

The identi�cation framework was validated on simulated data comparable to the

experimental data and it was shown that accurate and reliable results are achieved.

The framework was then applied to data from two separate experiments yielding the

conclusion that the process by which neutrophils migrate away from the wound in

the zebra�sh is best characterised as a stochastic redistribution without directional

bias. This �nding has important implications for further research informing future

therapeutic interventions for chronic in�ammation related illnesses. In particular,

it is already guiding researchers to look for the mechanisms whereby neutrophils

`switch o�' from the signals recruiting them to an in�ammation event rather than

to look for signals that are repelling them from the in�ammation region.





Chapter 5

Spatiotemporal variability in the

neutrophil migration model

Chapter 4 of this thesis developed a Bayesian framework for model identi�cation and

parameter estimation of cell population migration dynamics. The framework has a

general applicability and was utilized to solve the particular problem of estimating

zebra�sh neutrophil migration dynamics in the resolution phase of in�ammation,

which is the focus application for this thesis. Using pure-di�usion and drift-di�usion

models as candidates, it was shown that the pure-di�usion model was the preferred

model to describe the zebra�sh neutrophil data. In the modelling of any complex

biological system, simplifying assumption must inevitably be made to allow analysis

to proceed. Intrinsic to both the models developed in Chapter 4 were the following

assumptions:

1. The sub-population of photoconverted neutrophils were all in in�ammation

resolution mode throughout the experiment.

2. The neutrophils were moving in a homogeneous environment.

The �rst assumption may be justi�ed by the fact that the photoconverted cells were

already in the vicinity of the wound - they had completed their recruitment migration

prior to the start of the observations. Also, the photoconverted cells are subsequently

seen to spread away from the wound in a persistent way. In other words, this is not

an artefact of the random redistribution of cells that still have an attractive bias

towards the wound region. The neutrophils are located in zebra�sh tissue, not in the

bloodstream. Clearly this is a complex environment (especially in contrast to the cell

environment of in vitro studies) but the second assumption is that this complexity

is uniform throughout the region of interest.

91
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In this chapter, a limited relaxation of each of these assumptions is considered

in turn, followed by a relaxation of both simultaneously. The objective of this is

to achieve a more complete description of the data. In particular, it is intended to

safeguard against the situation where simplifying assumptions bias the answer to the

key question: whether the migration of neutrophils during in�ammation resolution is

a passive or a directed process. To pose this as a new question: Could a drift-di�usion

process be mistakenly identi�ed as a pure-di�usion process if certain complexities of

the system are ignored? This question will be answered via the development of novel

models of the system which include additional complexity. At that same time the

development of these models illustrates the broader applicability of the estimation

framework for varied types of cell migration model.

5.1 Extending the model to receptor depletion

It is clear that at the start of an in�ammation cycle, neutrophils migrate towards the

wound which is inducing the in�ammation. At some later time they are observed to

migrate away from the wound (Figure 3.4).

tr
an

se
ct

ed
 t

ai
lf

in

outgoing cell with internalized receptors

incoming cellattractant molecules

possible outward bias ?

inward bias

Figure 5.1: The receptor depletion model. A neutrophil that has newly entered
the �eld of attractant ligand molecules has its full complement of receptors which are
available on the cell surface for binding ligand. The resulting downstream internal
signalling a�ects the cells migration behaviour, creating a bias towards the wound.
Bound receptors also become internalised. This results in a gradual weakening of
the response. Eventually, when the majority of receptors are internalised, the cell
loses its response to the attractant �eld and it migrates randomly. Possibly it now
recognises other guidance cues which direct it away from the wound region.
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However, the experimental results of Chapter 3 showed that when the �rst cells

begin their outward migration, other cells are still being actively recruited towards

the wound region (Figure 3.5). This suggests that there is not a global switching o�

of the recruiting chemoattractant in�uence but rather a desensitization of individual

cells to the e�ect of this chemotactic �eld. This observation in turn prompts the

postulation of a change of dynamic mode of the neutrophils: from a recruitment

mode, when they are responding to attractants guiding them to the wound region, to

a in�ammation resolution mode, when they no longer respond to these attractants

and they move either randomly or under the e�ect of new attractive or repulsive

biases away from the wound.

It is known that neutrophils are able to orientate themselves in a gradient of

chemoattractant [135] and then to migrate via chemotaxis in the direction of ori-

entation [136]. Furthermore, they are able to prioritize distinct attractant sources

in a sequential manner [44], switching from a initial �eld to a subsequent one. In

eukaryotic cells, such as neutrophils, the signalling pathway from chemoattractant

gradient to molecular cell motors is a complex one which begins with the binding

of chemoattractant ligand molecules to protein receptors on the cell surface [1]. It

has been suggested that the number of di�erent proteins involved in this signalling

process is likely to be of the order of 100 [56]. Various models have been proposed

to link receptors dynamics to cell migration dynamics [32, 56, 122] further details of

some of these models has already been given in Chapter 2. In this section, in order to

describe the change in neutrophil mode from recruitment to in�ammation resolution,

a simpli�ed description of receptor dynamics is incorporated into the drift-di�usion

models.

5.1.1 Model description

The basic models considered in Chapter 4 were extended to capture the change of

dynamic mode from in�ammation recruitment to its resolution. First, a number

assumptions need to be stated.

• The attractant forms a steady state linear �eld, A(x). The gradient is the

negative of the rate, w, at which attractant is being produced at the origin.

The �eld reduces to zero at the boundary of its domain, x = L, i.e.

A(x) = max

(
0, w

(
L− x

L

))
(5.1)

This assumption can be justi�ed by assuming that the attractant molecules are

fast di�using (relatively to the migration rates of the neutrophils themselves)

and by then solving the suitably posed di�usion problem (see Appendix C).
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• All cells are assumed to have a �xed total number of receptors RM . Whilst

in the attractant �eld, the number of available receptors decays at a rate λ̂

in proportion to the local �eld concentration. This is due to bound receptor-

ligand complexes being internalised by the cell. It is assumed that RM is large

enough so that the number of receptors can be considered to be continuous

without detriment to the model. It is also assumed that there is no recycling

of receptors taking place, that is, once they are internalised they remain so.

• A cell's attraction or bias towards the wound is the product of a �xed bias

from the �eld bin (because of its constant gradient) and the current proportion

of receptors that are available, Rt. An outward bias bout is also allowed for.

This takes over from the inwards bias as the receptor depletion reaches its

conclusion. This will take the value zero if the motion away is purely di�usive.

Thus the model can be written down as follows:

x
(i)
t+1 = max

(
0, x

(i)
t +

(
bout −R

(i)
t bin

)
∆t+ ω

(i)
t

√
2D∆t

)
(5.2)

R
(i)
t+1 = R

(i)
t − λ̂A(x

(i)
t )R

(i)
t ∆t (5.3)

Where, as before, D is the di�usivity of the cells and ωt ∼ N(0, 1) is a white noise

process representing the random nature of this underlying motion. λ̂A(x
(i)
t ) is thus

the instantaneous rate of exponential decay of available ligand receptors for cell i at

time t. The assumptions of this model are illustrated in Figure 5.1. It can be seen

that when (5.1) is substituted into (5.3), w and λ̂ form a composite parameter. So

λ = wλ̂ will be treated as a free single parameter.

When bout = 0 this is denoted as the pure-di�usion-depletion model (Model 3)

and with bout ⩾ 0 the drift-di�usion-depletion model (Model 4). They key question

remains as before: is the experimental data best described by Model 3 or by Model

4? In other words, are the cells moving away from the wound in a directed way, as a

results of a new chemotactic in�uence, or are they migrating in a passive way, simply

as a results of their inherent random search patterns?

5.1.2 Estimation results

Algorithm A.1 was applied to Model 3, the pure-di�usion-depletion model. The

results of the estimation are shown in Figure 5.2. It can be seen that the support

of the posterior distribution is almost as large as that for the prior. There is also

some correlation between parameters, in particular between di�usivity and drift and

between di�usivity and depletion rate. However, the data has clearly informed the

posterior distribution and there is a de�nite MAP region centred on the parameter
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Receptor depletion models

x
(i)
t+1 = max

(
0, x

(i)
t +

(
bout −R

(i)
t bin

)
∆t+ ω

(i)
t

√
2D∆t

)
(5.4)

R
(i)
t+1 = R

(i)
t − λmax

(
0,

L− x
(i)
t

L

)
R

(i)
t ∆t (5.5)

where

• x
(i)
t is the position of the ith neutrophil at time t;

• bout is a bias velocity away from the wound;

• R
(i)
t is the proportion of receptors available for the ith cell at time t;

• bin is a bias velocity towards the wound;

• ω
(i)
t ∼ N (0, 1) are a family of independent white noise processes;

• D is the underlying di�usivity constant or magnitude of random movement of
the neutrophils;

• ∆t is the time increment;

• λ is the composite depletion constant described above;

• L is the nominal range of the chemoattractant �eld.

With bout = 0 this is designated as Model 3, and with bout ⩾ 0, Model 4.

Model 3 & 4: pure-di�usion-depletion & drift-di�usion-depletion

vector given by

bin = 2.1 µmmin−1, D = 83 µm2min−1, λ = 0.0046min−1.

The 90% con�dence intervals calculated from the parameter marginals are 0.9-

4.3µmmin−1, 39-172µm2min−1, 2.4 − 9.2 × 10−3min−1, respectively. The drift

and di�usivity values are physically plausible and of the same orders of magnitude

as those identi�ed by the regression methods in Chapter 3.

Algorithm A.1 was also applied to Model 4, the drift-di�usion-depletion model.

The results of the estimation are shown in Figure 5.3. The MAP estimate is,

bin = 2.8 µmmin−1, bout = 0.3 µmmin−1, D = 120 µm2min−1, λ = 0.0025min−1

and the 90% con�dence intervals calculated from the parameter marginals are 1.0-

4.7µmmin−1, 0.01-1.6µmmin−1, 42-190µm2min−1, 0.8 − 7.2 × 10−3min−1, re-
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spectively. It can be seen that, for this model, the di�usivity parameter and to

some extent the inward bias parameter have convergence issues. Also there is a

correlation between di�usivity and inward bias which suggest a possible identi�abil-

ity problem with the model for this data. Having estimated parameters for the
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Figure 5.2: Estimation results for Model 3, the pure-di�usion-depletion
model. (a) Posterior distribution over the individual parameters. (b) Joint
distributions over each pair of parameters. The MAP parameter set is bin =
2.1 µmmin−1, D = 83 µm2min−1, λ = 0.0046min−1.

new models in isolation, the model identi�cation algorithm, Algorithm 4.2, was ap-

plied to identify the preferred model. The two new models, pure-di�usion-restriction

and drift-di�usion-restriction, were also compared to the previously preferred pure-

di�usion model on a pairwise basis. The results of this are shown in Figure 5.4. The

Bayes factors calculated from these results are

B31 ≈
96

4
= 24, B41 ≈

71

29
≈ 2.4, B34 ≈

77

23
≈ 3.3 (5.6)

Referring to Table 4.1, the conclusion can be made that there is substantial evidence

for preferring Model 3 over Model 4. Also, there is strong evidence for Model 3

over the previously preferred Model 1. In other words the introduction of the recep-

tor depletion term in the model has signi�cantly improved the performance of the

identi�ed model.

The model identi�cation algorithm with Models 3 and 4 as candidates was also
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Figure 5.3: Estimation results for Model 4, the drift-di�usion-depletion
model. (a) Posterior distribution over the individual parameters. (b) Joint
distributions over each pair of parameters. The MAP parameter set is bin =
2.8 µmmin−1, bout = 0.3 µmmin−1, D = 120 µm2min−1, λ = 0.0025min−1.

repeated several times with incrementally increasing minimum allowed values for

the drift parameter for Model 4. In each case the Bayes factor was calculated and

the results are shown in Figure 5.7(a). For all minimum allowed values of drift

there is substantial evidence for Model 3 over Model 4 with the evidence clearly

increasing towards the strong evidence threshold as the minimum allowed value of

drift increases.

5.1.3 Discussion

The positive identi�cation of a model which includes a receptor depletion term sug-

gests that this is an important addition to the dynamic model. The data driven

framework suggests that this model is strongly preferred over the previously best

identi�ed model, the pure-di�usion model from Chapter 4. The discrimination be-

tween the two new models was somewhat ambiguous. Substantial evidence was found

for the pure-di�usion version over the drift-di�usion version. However, the Bayes fac-
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Figure 5.4: Model selection for Models 1,3,4. Algorithm 4.2 was applied to
pairs of candidates models to identify the preferred model. The preferred pure-
di�usion model from Chapter 4 is compared to the two new depletions models.

tor analysis did not show as much increase in con�dence for the pure-di�usion version

as was found in the similar analysis in Chapter 4. The probable reason for this is

that there was not enough information in the data to provide discriminatory power

for Model 4, the drift-di�usion-depletion model, which has an additional parameter

to those in Model 3, the pure-di�usion variant.

This observation motivates the design of additional future experiments. For the

receptor depletion dynamics to be fully explored and identi�ed, it is necessary for

the observed cells to spend signi�cant time in both the recruitment and resolution

modes of in�ammation migration. The experimental design which produced the data

analysed in this thesis means that, by and large, neutrophils have completed their

recruitment migration and are switched o� or in process of switching o� from the

recruitment signals. For this reason there will not be much information present per-

taining to the receptor depletion activity. A proposed future experiment is outlined

in Figure 5.6. This involves earlier labelling of neutrophils which are still migrating

towards the in�ammation site, in order to observe and capture the full dynamic shift

from in�ammation recruitment to its resolution. The challenge will be to capture a

su�cient number of neutrophils to make meaningful analysis possible.
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Figure 5.5: Simulation comparisons of the estimated pure-di�usion deple-
tion model, Model 3, to the experimental data. One thousand simulations
were made of the estimated model using the MAP parameter estimate. The output
is shown for representative times throughout the experiment. The red line shows
the mean predicted distribution of cell positions and the shaded red region is the
90% con�dence interval. The experimental observations are plotted in black for
comparison.
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Figure 5.6: Proposed experimental design for improved identi�cation of
receptor depletion models. In the existing Datasets (A & B), the neutrophils
are photoconverted in the region of the wound (within 100 µm) so that they can be
observed as they subsequently move away from the wound (see Figure 3.6 on page
50). The receptor depletion models include terms for a recruitment bias towards
the wound as well as any subsequent outward bias. In order to provide information
for the identi�cation of this initial bias it will be preferable to photoconvert cells
that are still in the inward migration mode. In the proposed experimental design
shown here, the photoconversion region is therefore displaced some distance away
from the wound and photoconversion is applied earlier in the experiment to avoid
labelling cells that are already resolving away from the wound. The challenge will
be to capture su�cient cells in the labelling process to enable meaningful statistical
analysis.
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Figure 5.7: Bayes factor analysis: The Bayes factor is plotted on a logarithmic
scale against the lower limit on the prior for the drift coe�cient in the appropriate
drift model.
(a) Bayes factor B34 for the pure-di�usion-depletion model, 3, with respect to the
drift-di�usion-depletion model, 4. For all minimum allowed values of drift there is
substantial evidence for Model 3.
(b) Bayes factor B56 for the pure-di�usion-restriction model, 5, with respect to the
drift-di�usion-restriction model, 6. There is substantial evidence for Model 5 for
drift values above approx. 0.27µmmin−1.
(c) Bayes factor B78 for the pure-di�usion-depletion-restriction model, 7, with re-
spect to the drift-di�usion-depletion-restriction model, 8. There is substantial evi-
dence for Model 7 for drift values above approx. 0.21 µmmin−1

.
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5.2 Physical restrictions included in the model

At the start of this chapter, two assumptions made in the modelling presented in

Chapter 4 were reviewed. The last section investigated a relaxation of the �rst as-

sumption. In this section a relaxation of the second assumption is now considered.

This assumption stated that the neutrophils are migrating in a uniform environment.

In relaxing this, one has to be realistic about what can be achieved given the ex-

perimental data at one's disposal. For instance, one cannot expect to identify drift

and di�usivity parameters that have a high degree of spatial and temporal variation

without having su�cient data to make identi�cation of these parameters possible.

The assumption is therefore relaxed in a limited way, one that is indicated by a

global observation of the data as is now described.

Figure 5.8 shows a plot of all neutrophil position observations in a single zebra�sh

larva. The observations were recorded throughout the course of a 16 hour (approx.)

experiment. Consideration of the data in this format suggested that, away from the

vicinity of the tail�n area, the neutrophils tended to move preferentially along de�ned

pathways. Similar evidence was seen in analogous plots for the other specimens in the

experiment. From this evidence it was postulated that the cells were more likely to be

able to leave the wound area if they were near to the entrance to one of these channels.

Conversely, if they were not near the entrance of a channel their migration away from

the wound area was likely to be restricted causing them to continue moving around in

the vicinity of the wound. This restriction could result in signi�cant disruption of the

original pure-di�usion model. This, in turn, could explain the observation in Chapter

4: that the prediction of the identi�ed model underestimated the concentration of

cells remaining in the vicinity of the wound. Possibly, it could also mask the presence

of a drift � making a drift-di�usion process appear to be pure-di�usion process and

therefore compromising the conclusions reached so far. Therefore, in order to account

for this restriction e�ect in a simpli�ed way two additional models were proposed.

5.2.1 Model description

All of the models in this thesis are speci�ed with one spatial dimension. This is the x-

coordinate of the cells which is the perpendicular distance to the wound inducing the

in�ammation. The justi�cation for this is that the wound goes right across the tail�n

of the zebra�sh, perpendicular to the spinal axis. This, together with the reasonable

assumption that any chemotactic guidance will be either towards or away from the

wound [85], implies chemoattractant �elds that are constant in the direction parallel

to the wound. In order to continue with one spatial dimension, the restriction e�ect

was modelled in a simple probabilistic way. It was assumed that a cell moving away
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Figure 5.8: Migration of neutrophils away from the wound indicates pre-
ferred channels of movement. The positions of photoconverted neutrophils are
shown at all timepoints for an individual zebra�sh specimen (blue dots). Many of the
cell positions appear to be gathered along speci�c pathways within the extracellular
matrix, suggesting that the neutrophils migrate along preferred channels. All six ze-
bra�sh larva in Dataset A showed a similar pattern. See Appendix B for discussion
of Dataset B. Also shown in this �gure is a de�ned wound region which is used in
the restriction modelling in this section.

from the wound and reaching the edge of the wound region (see Figure 5.8) has a

probability r of being prevented from migrating away and a probability (1 − r) of

migrating away successfully. Simplistically, the probability (1− r) can be thought of

as corresponding to the ratio of the cross-sectional area of the preferred migration

channels to the cross-sectional area of the tail�n environment. However, the channels

were observed experimentally not to coincide with any existing vascular or lymphatic

structures in the �sh. Rather, they are contingent channels through the tissue. It is

possible that such channels could be formed as a result of earlier migration routes [7].

However, the positioning of the channels was similar across di�erent experimental

specimens, suggesting that they arise due to variations in the tissue rather than

as a result of random migratory paths. In any case, the restriction parameter is

intended to give an indication of the average ease with which migration away from

the wound is navigated. This is achieved in the simulation model by using a test

variable to decided whether cell move in its intended direction out of the wound

region or whether it remains at the nominal boundary of the wound region. The full

model is speci�ed below, on page 104.
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Restriction models

x̂
(i)
t+1 = max(0, x

(i)
t + bout∆t+ ω

(i)
t

√
2D∆t), (5.7)

π
(i)
t+1 ∼ U(0, 1) (5.8)

x
(i)
t+1 =

{
xR if x

(i)
t < xR and x̂

(i)
t+1 > xR and π

(i)
t+1 < β

x̂
(i)
t+1 otherwise

(5.9)

where

• x̂
(i)
t is a proposal for the position x

(i)
t of the ith neutrophil at time t;

• bout is a bias velocity away from the wound;

• D is the underlying di�usivity constant or magnitude of random movement of
the neutrophils;

• ω
(i)
t ∼ N (0, 1) are a family of independent white noise processes;

• ∆t is the time increment;

• β ∈ [0, 1) is a constant denoting the strength of the wound exit restriction
(β = 0 means no restriction, β = 1 means 100% restriction);

• π
(i)
t ∼ U (0, 1) is a uniformly distributed test random variable for the ith particle

for simpli�ed modelling of wound exit restriction � if the cell is moving outwards
across the restriction region it has a probability, β of being unable to do so,

i.e. the cell is restricted if π
(i)
t ⩽ β.

• xR is the distance from the wound at which exit restriction is deemed to be
experienced. In practice this was chosen as the minimum distance which con-
tains all the cell positions at the time of photo-conversion which coincided with
where the preferential migration channels were observed to begin relative to
the wound. For Dataset A this was 100 µm.

With bout = 0 this is designated as Model 5, and with bout ⩾ 0, Model 6.

Model 5 & 6: pure-di�usion-restriction & drift-di�usion-restriction

5.2.2 Estimation results

In order to estimate the posterior distributions for the parameters of the new models

conditional on the zebra�sh data (Dataset A), Algorithm A.1 was again applied to

each in turn. The results of the estimations are shown in Figure 5.9 and Figure 5.10

respectively. For Model 5, the pure-di�usion-restriction model, the MAP parameter

estimates are

D = 38 µm2min−1, restriction = 60%
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and the 90% con�dence interval in the marginal posteriors are 25 − 56 µm2min−1

and 25 − 75% respectively. For Model 6, the drift-di�usion-restriction model, the

MAP parameter estimates are

bout = 0.1, D = 28 µm2min−1, restriction = 60%

and the 90% con�dence interval in the marginal posteriors are 0−0.27 µmmin−1, 12−
53 µm2min−1 and 20− 90% respectively.
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Figure 5.9: Estimation results for, Model 5, the pure-di�usion restric-
tion model. (a) Posterior distribution over the individual parameters. (b)
Joint distributions over each pair of parameters. The MAP parameter set is
D = 38 µm2min−1, restriction = 60%.

To discriminate the data driven �delity of these models with respect to each other

and with respect to the preferred model from Chapter 4, Algorithm 4.2 was applied

with pairs of these 3 models as candidates. The posterior model marginals for each

of the 3 pairings is illustrated in Figure 5.11. The resulting Bayes factors were as

follows,

B51 ≈ 9.5, B61 ≈ 3.3, B56 ≈ 1.1 (5.10)

These Bayes factors suggest (see Table 4.1) that there is substantial evidence for both

the new restriction models over the original pure-di�usion model but no evidence to

distinguish between the two new models. However, as before, Model 6, the drift-

di�usion-restriction model, allows for drift values that are zero or arbitrarily close to

zero. The Bayes factor analysis, where drift values are constrained above a increasing

sequence of minimum thresholds, was repeated and the results are shown in Figure

5.7(b). Here it can be seen that if drift values less than approximately 0.28 µmmin−1

are considered insigni�cant, then there is substantial evidence for Model 5 over Model

6.
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Figure 5.10: Estimation results for, Model 6, the drift-di�usion-restriction
model. (a) Posterior distribution over the individual parameters. (b) Joint distri-
butions over each pair of parameters. The MAP parameter set is bout = 0.1, D =
28 µm2min−1, restriction = 60%

5.2.3 Discussion

In this section, an additional component has been incorporated into the migration

models developed in Chapter 4. The new component describes preferred pathways

for cell movement through the tissues of the zebra�sh and is characterised by a

spatial restriction parameter. The addition of a spatial restriction parameter was

motivated by the observation that cell positions appeared to be gathered in speci�c

spatial channels and also that the pure-di�usion model from Chapter 4 tended to un-

derestimate somewhat the concentration of cells remaining in the immediate vicinity

of the wound (i.e. within 100 µm). In addition, there was a concern that omission of

such a restriction parameter, if it was indeed necessary, might mask the presence of

drift. By including this model term, the ability to detect drift, which corresponds to

directed migration of the neutrophils, was enhanced. The parameter could have been

rejected by the model selection algorithm or could have been assigned a zero value,

indicating it was not necessary. Instead it was found to have a positive value of 60%.

Such channels might arise due to physical characteristics of the local environment:

it might be physically easier to displace tissue matrix around the spinal area than

in the tail�n. However, they do not correspond to vascular or lymphatic structures,
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Figure 5.11: Model selection for Models 1,5,6. Algorithm 4.2 was applied to
pairs of candidates models to identify the preferred model.

which would suggest they are a feature of extravascular tissues. In addition, the

site of the channels is similar in di�erent �sh, suggesting they are not solely formed

from random paths chosen by individual cells which de�ne pathways of subsequent

neutrophil migrations.

The ABC-SMC model selection algorithm (Algorithm 4.2) was used to select

between pure-di�usion and drift-di�usion versions of the restriction model and the

original pure-di�usion model of Chapter 4. The preferred model, in the light of the

experimental data, was Model 5, the pure-di�usion-restriction model. Compared to

Model 1, the pure-di�usion model, the drift-di�usion-restriction model found sub-

stantial supporting evidence (Bayes factor 9.5, with the substantial range being 3.2-

10, see Table 4.1). However, the evidence for Model 5, the pure-di�usion-restriction

model over Model 6, the drift-di�usion-restriction model was less emphatic. The rep-

resentation in the model marginal posterior distribution was 53% versus 47%. The

MAP value of drift in the identi�ed drift-di�usion-restriction model was 0. However,

not unless drift values under approximately 0.28 µmmin−1 were considered insigni�-

cant did the former have substantial evidence over the latter. When the parameters

of the drift-di�usion-restriction model were estimated using Algorithm A.1 the 90%

con�dence interval for the drift parameter was 0-0.27µmmin−1. If the drift value
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Figure 5.12: Simulation comparisons between the estimated pure-di�usion
restriction model, Model 5, and the experimental data. One thousand sim-
ulations were made of the estimated model using the MAP parameter estimate. The
output is shown for representative times throughout the experiment. The red line
shows the mean predicted distribution of cell positions and the shaded red region is
the 90% con�dence interval. The experimental observations are plotted in black for
comparison.

was at the limit of this range, it would correspond to a directed net migration of

approximately 250 µm over the course of the experiment (980 mins). Nevertheless,

the dynamics of such a model are still dominated by the random component (see

chapter discussion in Section 5.5).

5.3 Combining the depletion and restriction models

In order to take a �nal approach to the problem, both the assumptions made in

Chapter 4 were simultaneously relaxed by combining the two models proposed in

the previous sections of this chapter. The resulting pair of models, therefore, al-

low for a change in the migration mode of the neutrophils through depletion of the

chemoattractant ligand receptors on the surface of the cells, and also for a limited
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heterogeneity in the extra-cellular environment through which the neutrophils move.

Model 7, the pure-di�usion version, has 4 parameters and Model 8, the drift-di�usion

version, has 5. It should be noted that the Bayesian estimation paradigm automati-

cally includes a penalty for increased model complexity. This guards against the fact

that a more complex model can always be made to �t the data better than a simpler

model within which it is nested. The combined models are speci�ed on page 110.

5.3.1 Estimation results

In order to estimate the posterior distributions for the parameters of the new mod-

els, Algorithm A.1 was again applied to each in turn, with the zebra�sh neutrophil

Dataset A. The results of the estimations are illustrated in Figure 5.13 and Fig-

ure 5.14 respectively. For Model 7, the pure-di�usion version, the MAP parameter

estimates are

bin = 3 µmmin−1, D = 46 µm2min−1, λ = 0.03min−1, restriction = 50%

and the 90% con�dence interval in the marginal posteriors are 0.8−4.8 µmmin−1, 31−
86 µm2min−1, 0.005− 0.09min−1and10− 70% respectively. For Model 10 the MAP

parameter estimates are

bin = 1.8 µmmin−1, bout = 0.2 µmmin−1, D = 80 µm2min−1,

λ = 0.004min−1, restriction = 40%

and the 90% con�dence interval in the marginal posteriors are 0.3−4.4 µmmin−1, 0−
0.86 µmmin−1, 27 − 177 µm2min−1, 0.001 − 0.009min−1 and 0 − 70% respectively.

These results can be compared with those for all the models of this and the previous

chapter via Table 5.5.

In order to discriminate between the two new models, Algorithm 4.2 was applied.

Once again, it was applied several times with incrementally increasing minimum

allowed values of drift, in the drift version of the model. The Bayes factors were

calculated and are shown in Figure 5.7(c). It can be seen that there is substantial

evidence for Model 7 for drift values above approx. 2.1 µmmin−1 and this increases

to strong evidence above values of approx. 3.3 µmmin−1.

Algorithm 4.2 was applied again on a pairwise basis to compare the three favoured

models from this chapter: pure-di�usion-depletion, Model 3, pure-di�usion-restriction,

Model 5, pure-di�usion-depletion-restriction, Model 7 (Figure 5.16). Only in the

comparison of Model 7 and Model 3 is there any substantial evidence, with B73 = 3.5.
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Combined receptor-depletion restriction models

x̂
(i)
t+1 = max(0, x

(i)
t +

(
bout −R

(i)
t bin

)
∆t+ ω

(i)
t

√
2D∆t (5.11)

R
(i)
t+1 = R

(i)
t − λmax

(
0,

L− x
(i)
t

L

)
R

(i)
t ∆t (5.12)

π
(i)
t+1 ∼ U(0, 1) (5.13)

x
(i)
t+1 =

{
xR if x

(i)
t < xR and x̂

(i)
t+1 > xR and π

(i)
t+1 < β

x̂
(i)
t+1 otherwise

(5.14)

where

• x̂
(i)
t is a proposal for the position x

(i)
t of the ith neutrophil at time t;

• bout is a bias velocity away from the wound;

• R
(i)
t is the proportion of receptors available for the ith cell at time t.

• bin is a bias velocity towards the wound;

• ω
(i)
t ∼ N (0, 1) are a family of independent white noise processes;

• D is the underlying di�usivity constant or magnitude of random movement of
the neutrophils;

• ∆t is the time increment;

• λ is the composite depletion constant described on page 94.

• L is the nominal range of the chemoattractant �eld.

• x̂
(i)
t+1 is a proposal for the position x

(i)
t of the ith neutrophil at time t;

• β ∈ [0, 1) is a constant denoting the strength of the wound exit restriction
(β = 0 means no restriction, β = 1 means 100% restriction);

• π
(i)
t ∼ U (0, 1) is a uniformly distributed test random variable for the ith particle

for simpli�ed modelling of wound exit restriction � if the cell is moving outwards
across the restriction region it has a probability, β of being unable to do so,

i.e. the cell is restricted if π
(i)
t ⩽ β.

• xR is the distance from the wound at which exit restriction is deemed to be
experienced.

With bout = 0 this is designated as Model 7, and with bout ⩾ 0, Model 8.

Model 7 & 8: pure-di�usion version & drift-di�usion version
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Figure 5.13: Estimation results for, Model 7, the pure-di�usion-depletion-
restriction model. (a) Posterior distribution over the individual parameters. (b)
Joint distributions over each pair of parameters. The MAP parameter set is bin =
3 µmmin−1, D = 46 µm2min−1, λ = 0.03min−1, restriction = 50%
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Figure 5.14: Estimation results for, Model 8, the drift-di�usion-depletion-
restriction model. (a) Posterior distribution over the individual parameters.
(b) Joint distributions over each pair of parameters. The MAP parameter
set is bin = 1.8 µmmin−1, bout = 0.2 µmmin−1, D = 80 µm2min−1, λ =
0.004min−1, restriction = 40%
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Figure 5.15: Simulation comparisons of the estimated pure-di�usion-res-
triction-depletion model, Model 7, to the experimental data. One thousand
simulations were made of the estimated model using the MAP parameter estimate.
The output is shown for representative times throughout the experiment. The red
line shows the mean predicted distribution of cell positions and the shaded red region
is the 90% con�dence interval. The experimental observations are plotted in black
for comparison.
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5.4 Discussion

The analysis in this chapter has demonstrated the e�ectiveness of the ABC framework

developed in Chapter 4, for estimating the parameters of complex models of cell

migration and for discriminating between models not only when the models are

nested but also when they have arbitrary relationships to each other. This con�rms

the framework as a useful tool in the exploration of cell migration and in particular

of in�ammatory neutrophil dynamics and the biological mechanisms that underlie

these dynamics.

The motivation for developing the new models in this chapter was the shortcom-

ing in the predictions of the basic pure-di�usion model. Figure 4.12 shows that the

pure-di�usion model, which was the preferred model from Chapter 4, has a system-

atic underestimation of the density of cells in the immediate vicinity of the wound,

especially throughout the �rst half of the experiment. It can be observed from Fig-

ures 5.5, 5.12 and 5.15 that this shortcoming has been signi�cantly addressed and

overcome by the expanded models. There was also a concern that the adoption of
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Figure 5.16: Comparing the 3 favoured models, Models 3,5,7. The evidence
is not conclusive for deciding between the 3 di�erent favoured models of this chapter
� apart from the comparison between Models 3 and 7 where there is substantial
evidence for Model 7 with a Bayes factor B73 = 3.5.

too simple a model in Chapter 4 might have hindered the ability to detect drift.

For example a drift-di�usion process in which receptor depletion or physical restric-

tion were active might look like a pure-di�usion process if the latter e�ects were

not accounted for in the estimation process. When investigating the enhanced mod-
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els it was found that there was scope for slightly higher values of drift coe�cient

when receptor depletion, physical restriction or both were included in the candidate

models.

In Chapter 4 the MAP value of drift was 0.05 µmmin−1, whereas in this chapter

the highest corresponding MAP value was estimated in the drift-di�usion-depletion

model where the drift value was 0.3µmmin−1. In both cases there was substantial

evidence for the pure-di�usion version over the drift-di�usion version. However, the

Bayes factor evidence reduced from 7.3 in the simple models to 3.3 in the depletion

models. To summarise these observations, the introduction of increased model com-

plexity does allow for an increase in possible drift-coe�cient which corresponds to

some element of bias away from the wound during in�ammation resolution. However,

the balance of probabilities is still in favour of a di�usion only process. Also, the

magnitude of the largest possible drift coe�cient for the alternative model is still of

such a size to mean that the di�usive element of the dynamics dominates over any

bias (see further discussion at the end of Section 5.5).

The results that have been presented in this chapter are derived only from Dataset

A. The reason for this is that Dataset B was described much better by its identi�ed

pure-di�usion model. This is discussed in Appendix B where a summary of all the

results for Dataset B are presented in Table B.2 and selected results are shown in

the �gures. In particular Figure B.2, in contrast to Figure 4.12 for Dataset A, shows

that the cell density close the wound for Dataset B is much more accurately captured

by the original pure-di�usion model, Model 1. It is not clear why there should be

this di�erence in the results between the two datasets. There may be di�erences due

to slight variation in environmental conditions or due to variation between di�erent

batches of �sh embryos. However, it is important to emphasize that this thesis is

performing data driven modelling. It should be stressed that it is the data from

Dataset A which prompts the search for a better explanatory model and the data

from Dataset B that does not require a more complex model. As and when further

similar datasets become available, the framework made available here can be applied

to obtain an overview of how often these extra factors are required to describe the

data adequately. This is noted in Chapter 6 as potential future work.

Whilst both components introduced in this chapter, the receptor depletion and

the physical restriction, may be important additions for accurate modelling of the

neutrophil data, it is the receptor depletion that is more biologically interesting and

which may have more potential for impacting on future therapies and treatments

for in�ammatory diseases. It is unlikely that the physical nature of the tissue of an

organism can be readily controlled, whereas receptor dynamics may be amenable to

alteration.
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5.5 Conclusion

The ABC framework for cell migration developed in Chapter 4 was applied to two

zebra�sh neutrophil datasets. One of the datasets, Dataset B, was well described by

the identi�ed pure-di�usion model for in�ammation resolution. Dataset A, however,

was not fully described by the relatively simple pure-di�usion or drift di�usion mod-

els. This chapter has pursued two approaches for adding complexity to the models

via chemoattractant receptor dynamics and spatial inhomogeneity. These two ap-

proaches have also been combined to form a composite model. Whilst a higher order

model will always give a better �t to a dataset than a lower order model, the em-

bedding of the identi�cation process in a Bayesian framework means that there is an

automatic penalty for model complexity. This means that the higher order model

will not be chosen simply because it reduces prediction error but only if it explains

the data more accurately. For Dataset A, each of the new models was preferred

over the simple pure-di�usion model. There was no conclusive evidence to make a

decision between the three new models. However, exploration of the receptor deple-

tion model led to the proposal of a re�ned experimental design which would allow

better determination of this model. It is hypothesized that if this experimental data

is obtained, the receptor depletion model will present stronger evidence to be chosen

as the preferred model of the migration system.

The new models in this chapter were also developed in order to investigate

whether the present of a drift term (and hence migratory bias) might be overlooked if

the full complexity of the system were oversimpli�ed. In the drift versions of the new

models, the drift coe�cient is slightly higher than in the simple drift-di�usion model.

But it is still of the same order or magnitude which is two orders of magnitude less

than the dynamics associated with the di�usive component of the migration. Thus

even in the unlikely event that drift is present, the migration is still dominated by

stochastic search behaviour. In other words, persistent chemotaxis is not present.
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model
in-drift out-drift di�usivity depletion restriction
µmmin−1

µmmin−1
µm2min−1 10−3min−1 %

1
- - 25 - -
- - (19-34) - -

2
- 0.05 19 - -
- (0.005-0.15) (7-36) - -

3
2.1 - 83 4.6 -

(0.9-4.3) - (39-172) (2.4-9.2) -

4
2.8 0.3 120 2.5 -

(1.0-4.7) (0.01-1.6) (42-190) (0.8-7.2) -

5
- - 38 - 60
- - (25-56) - (25-75)

6
- 0.1 28 - 60
- (0-0.27) (12-53) (20-90)

7
3.0 - 46 30.0 50

(0.8-4.8) - (31-86) (5.0-90) (10-70)

8
1.8 0.2 80 4.0 40

(0.3-4.4) (0-0.86) (27-177) (1.0-9.0) (0-70)

Table 5.1: Summary of the parameter estimates for Dataset A. 1, pure-
di�usion; 2, drift-di�usion; 3, pure-di�usion-depletion; 4, drift-di�usion-depletion;
5, pure-di�usion-restriction; 6, drift-di�usion-restriction; 7, pure-di�usion-depletion-
restriction; 8, drift-di�usion-depletion-restriction. The 90% con�dence intervals are
shown in brackets.





Chapter 6

Conclusions and further work

This thesis has developed two novel frameworks to investigate and determine the

dynamics of neutrophils during in�ammation and in�ammation resolution from cell

population data. Recently, population modelling methods have tended to be over-

looked in favour of cell tracking methods. However, a populational approach has a

number of advantages:

• The sampling interval can be longer. Fast sampling is required for reliable

tracking but the ultraviolet exposure required for these repeated observations

causes harm to a living biological specimen such as the zebra�sh larva. Less

frequent sampling means that experimental run times can be longer and thus

capture the full dynamics of an in�ammation and resolution event.

• All cell observations can be included in the data for analysis. If tracks are

analysed only those cell observations which are part of su�ciently long track

portions can be included. This results in signi�cant data loss and possible

biasing of the results.

Both cell track analysis and cell population analysis will be important in pushing

forward understanding of migration processes. This thesis makes an important con-

tribution towards achieving this balance of approaches.

Chapter 3 developed a regression analysis approach for identifying migration dy-

namics and applied it to the zebra�sh neutrophil population data. This allowed,

for the �rst time, the identi�cation of parameters of candidate models for both the

recruitment and resolution phases of neutrophil migration during zebra�sh in�amma-

tion. The method is fast in implementation (the analysis algorithm takes a fraction

of a second once the data has been preprocessed into a suitable form), however, the

framework does not allow con�dent discrimination between candidate models and a

subsequent model simulation step was required in order to accomplish this. Related

119
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to this is the fact that, by extracting one statistic from the data, namely the mean

squared cell position at each timepoint, the method does not make maximal use of

all the information available in the data. Nevertheless, this framework represent a

signi�cant step forward in rigorous mathematical analysis of zebra�sh in�ammatory

neutrophil dynamics. Most notably, it raises evidence that goes against a currently

emerging consensus. This consensus is that neutrophils are guided away from in-

�ammation sites by chemical signals during in�ammation resolution. The analysis

of Chapter 3 suggests the opposite: that neutrophil in�ammation resolution migra-

tion is solely the result of inherent stochastic migration patters.

Chapter 4 developed a more comprehensive framework, utilising the approximate

Bayesian computation sequential Monte Carlo (ABC-SMC) approach, suitable for

both parameter estimation and model identi�cation for the neutrophil problem. This

framework inherits the usual bene�ts of the Bayesian approach, speci�cally the ability

to incorporate prior knowledge of appropriate parameter ranges and to estimate not

only parameters and models but also associated uncertainties. The ABC approach

requires tailoring to any new problem and this was done for the �rst time in the cell

migration context by making use of an evolving cell distribution to summarise the

data whilst maintaining all the relevant information it contains, and the Cha-Srihari

distance [23] to measure the distance between summarised observations. This novel

framework was applied to the zebra�sh neutrophil data with candidate pure-di�usion

and drift-di�usion models. The key �nding of Chapter 3 was con�rmed, i.e. that the

pure-di�usion model, corresponding to undirected migration during in�ammation

resolution, was the one most likely to be a correct description of the process.

In Chapter 5 the Bayesian framework was applied again but now with three

novel and more fully developed pairs of models, a pure-di�usion and drift-di�usion

version in each case. The �rst model included ligand receptor depletion dynamics;

the second included inhomogeneity in the extra-cellular matrix; and the third was a

combined model including both these e�ects. The development of these novel models

was motivated by:

• The fact that the predictions of the estimated pure-di�usion model had some

shortcomings in its correspondence to the observed data. In particular, it

underestimated the number of neutrophils that were retained near the wound

throughout the course of the experiment.

• A desire to ensure that the detection of any bias would be robust.

The analysis of these models demonstrated the ability of the new Bayesian estimation

framework to deal with complex models for which a likelihood function is unavailable

or intractable, and also to inform choice between arbitrary models which are not



121

nested one within the other.

The drift-di�usion versions of these new models, which correspond to some degree

of directed migration, like the drift-di�usion model of Chapter 4, were never repre-

sented by a majority of samples in the identi�cation process. What is more, even

if the neutrophils were moving according to the rejected drift version model, they

would not be performing persistent chemotaxis, in which they purposefully move in

the direction of the target. Instead they would be performing a very slightly biased

random walk, where a cell's movement from moment to moment is very much dom-

inated by inherent stochastic behaviour and the bias causes only a small net drift

in the desired direction. In this scenario, portions of cell tracks would as usual have

short term directionality but this would be due to short term directional correlations

inherent in cell translocation rather than as a result of the chemotactic guidance.

This suggests that it is a mistake to conclude that neutrophil tracks such as those

shown in Figure 3.12 are moving under the in�uence of an external signal.

The mechanisms driving in�ammation resolution are therapeutically important,

and there is a fundamental mechanistic di�erence between the classes of molecular

event that drive neutrophils away from in�ammatory sites, and those that allow

neutrophils to be blind to, or to ignore, chemotactic gradients that might retain

neutrophils at in�ammatory sites. The question of whether neutrophil behaviours

are modelled best by chemotactic guidance or by stochastic redistribution is of fun-

damental importance in our understanding of in�ammation resolution. This thesis

has made an important contribution towards the search for a correct understanding

of this process. It also provides a starting point for further work in the �eld.

1. The receptor depletion modelling in Chapter 5 has potential for enriching the

biological understanding of how neutrophils change mode between recruitment

and in�ammation resolution. In Section 5.1.3 an enhanced experimental design

was proposed to explore these dynamics more fully. When data from such

an experiment have been collected the identi�cation will be repeated and the

models re�ned if appropriate. This will enable further testing of the hypothesis

that the switch from recruitment to in�ammation resolution is due to individual

neutrophils being switched o� from a recruitment signal rather than it being

the signal itself that has ceased.

2. Two datasets were available for analysis in the preparation of this thesis. Both

datasets led to a similar conclusion regarding the absence of directional bias on

neutrophils during in�ammation resolution. However, there was a di�erence

between them in terms of the support found for the more complex receptor

depletion and restriction models. If datasets from a signi�cantly greater num-
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ber of experiments can be obtained, these will be analysed in order to gain an

overview of how often such additional model terms are found to be necessary.

3. The analysis presented in this thesis has been on neutrophils in a normal in-

�ammation event. The results obtained are already a�ecting the direction of

laboratory work in the University of She�eld's Department of Infection and

Immunity. There is potential for comparative analysis in modi�ed contexts,

where, for instance, the neutrophils have enhanced or reduced capacity for

gradient sensing. Alternatively, various types of stress can be applied to the

zebra�sh embryo to investigate the e�ects of stress on the in�ammation process.

The methods of this thesis will therefore be used to further probe what are the

important characteristics of healthy and pathological in�ammation processes.

This work had already been started with the analysis of neutrophils in zebra�sh

that have been treated with the drug tanshinone. Neutrophil dynamics appear

to altered by tanshinone with in�ammation resolution dispersion proceeding

more rapidly. The new analysis in this context aims to uncover whether this is

a result of more vigorous di�usive behaviour or earlier switching o� from the

recruiting chemotactic signal. A second treatment that is also being considered

for investigation a�ects the hypoxia signalling pathways. This also modulates

in�ammation resolution but the way neutrophil behaviour is directly a�ected

is as yet unknown.

4. There is scope for putting neutrophil track analysis alongside the population

analysis used in this thesis. This will allow checking of the full consistency of

the results obtained with the experimental data. Track data has been used in a

related paper arising out of preparatory studies for this thesis [65] which used

neutrophil observations to identify the unknown chemotactic �eld to which

they were responding during in�ammation recruitment. There is scope for

developing enhanced tracking and mode detection algorithms based on dynamic

models for neutrophil shape will complement and allow extension of the work

in this thesis.

In conclusion, this thesis has achieved its aims and objectives. Building on this

foundation, the program of future work outlined above will yield further important

insights in the in�ammation response of the innate immune system.



Appendix A

ABC-SMC parameter estimation

Algorithm A.1 Parameter estimation using ABC-SMC

Require: data, Yobs; Monte Carlo population size, N ; number of iterations, T ;

prior distribution on parameter vector, π(θ); simulation algorithm to sample repli-

cated observations from the process, Y ∼ p(Y|θ) distance metric ρ and parameter

perturbation kernel K; decreasing error tolerance schedule ϵ1, . . . , ϵT

Ensure: a set of parameter vectors θi with importance weights ωi, i = 1 . . . N that

form a weighted sample from the posterior distribution, p(θ|Yobs)

for i = 1 to N do

simulate θi ∼ π(θ) and Y ∼ p(Y|θi) until ei = ρ(Y,Yobs) ⩽ ϵ1

end for

set each ω
(1)
i ∝ 1

ϵ1

(
1−

(
ei
ϵ1

)2)
, such that

∑
ω
(1)
i = 1

for t = 2 to T do

Set τ2 = 2Var({θi : i = 1 . . . N})

for i = 1 to N do

choose θ∗ from the θj with probabilities ωj

simulate θ̂i ∼ K(θ|θ∗; τ2) and Y ∼ p(Y|θ̂i) until ei = ρ(Y,Yobs) ⩽ ϵt

set ω̃i =
1
ϵt

(
1−

(
ei
ϵt

)2)
end for

set each ω̂
(t)
i ∝ ω̃iπ(θ̂i)∑N

j=1 ω
(t−1)
j K(θ̂i|θj ;τ2)

, such that
∑

ω̂
(t)
i = 1

set each θi = θ̂i, ωi = ω̂i

end for
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Appendix B

Additional results for Dataset B

The results in the main body of this thesis are based on analysis of Dataset A,

which was available throughout the research period. Towards the end of the period,

a second dataset, Dataset B, of exactly similar data became available. This was

used to con�rm the main result at the end of Chapter 4. Selected further results

from the analysis of Dataset B and presented in this appendix. The results from

Dataset B con�rm the major novel �nding of this thesis, that regardless of the

complexity of the model, the pure-di�usion version is preferred in model selection

over the drift-di�usion version (see Figure B.1 and Table B.1). This in turn implies

that the resolution migration of in�ammatory neutrophils in zebra�sh is governed

by inherent stochastic search patterns and not by external chemotactic guidance.
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Figure B.1: Model comparisons between the pure-di�usion and drift-di�usion
version of each model type. The Bayes Factor provides substantial evidence for the
pure-di�usion version in each case and in the case of the original pair of models the
evidence is strong.
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model
original depletion restriction combined

drift ⩾ 0 µmmin−1 1.02 0.80 0.87 0.74
strong substantial substantial substantial

drift ⩾ 0.1 µmmin−1 2.79 1.41 1.81 1.23
overwhelming strong very strong strong

Table B.1: Evidence in favour of the pure-di�usion model via logarithm
of Bayes factor The evidence is shown for the pure-di�usion version over the drift-
di�usion version for each model pair. The second row shows values when the mini-
mum allowed drift values in the drift version is not less than 0.1µmmin−1. A log-
arithm of Bayes factor above 0.5 represents substantial evidence; above 1.0, strong
evidence; above 1.5, very strong; and above 2.0, overwhelming evidence.

model
in-drift out-drift di�usivity depletion restriction
µmmin−1

µmmin−1
µm2min−1 10−3min−1 %

1
- - 36 - -
- - (27-50) - -

2
- 0.05 28 - -
- (0-0.1) (11-52) - -

3
0.7 - 41 60 -

(0.05-2.90) - (29-78) (1-97) -

4
1.2 0.06 37 51 -

(0.1-4.2) (0-0.21) (18-184) (0-92) -

5
- - 40 - 25
- - (29-56) - (3-51)

6
- 0.06 33 - 37
- (0-0.15) (15-67) (5-80)

7
0.74 - 44 60 24

(0.04-2.8) - (32-67) (8-97) (2-56)

8
1.2 0.07 39 60 38

(0.08-4.2) (0-0.17) (18-83) (3.6-96) (4-77)

Table B.2: Summary of parameter estimates for Dataset B for all mod-
els considered in Chapters 4 and 5. 1, pure-di�usion; 2, drift-di�usion; 3,
pure-di�usion-depletion; 4, drift-di�usion-depletion; 5, pure-di�usion-restriction; 6,
drift-di�usion-restriction; 7, pure-di�usion-depletion-restriction; 8, drift-di�usion-
depletion-restriction. The 90% con�dence intervals are shown in brackets.
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Figure B.2: Simulation comparisons between the estimated pure-di�usion
model, Model 1, and the experimental data. One thousand simulations were
made of the estimated model using the MAP parameter estimate. The output is
shown for representative times throughout the experiment. The red line shows the
mean predicted distribution of cell positions and the shaded red region is the 90%
con�dence interval. The experimental observations are also plotted in black for
comparison.
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Figure B.3: Model comparisons between the original pure-di�usion model and
the pure-di�usion version of the more complex models. In two cases the logarithm
of Bayes factor evidence for the original pure-di�usion model is just below the 0.5
threshold for substantial evidence. In the other case there is no evidence to choose
between the two models.
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Figure B.4: Neutrophil migration locations For a representative individual
zebra�sh from those in Dataset B, the location of all photoconverted neutrophils are
shown at all timepoint throughout the experiment. Comparing this to Figure 5.8,
there is here less evidence of preferential migration channels than was the case in
Dataset A.



Appendix C

Modelling the chemoattractant

concentration

Neutrophils are known to align themselves with certain attractant chemicals and sub-

sequently migrate in the direction of increasing concentration [136]. This appendix

gives support for an assumption made in the thesis which takes the gradient of the

chemoattractant �eld to be linear. If we assume the attractant di�uses away from a

source (i.e. the wound in the case of the zebra�sh experimental data) then it obeys

the usual di�usion equation [27],

∂A

∂t
= Da

∂2A

∂x2
, (C.1)

where A(x, t) is the concentration of attractant and Da is its di�usivity. If we

assume a constant input of attractant from a source at x = 0 this is represented by

the boundary condition,
∂A

∂x
(0, t) = −w. (C.2)

If we assume further that the initial concentration is zero and the concentration

decays to zero outside a certain distance we also have the initial and boundary

conditions

A(x, 0) = 0, A(L, t) = 0. (C.3)

Assuming high di�usivity a steady state will quickly be reached but in any case

steady state means no change with respect to time, i.e.

∂A

∂t
= 0. (C.4)
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Thus (C.1) requires
∂2A

∂x2
= 0 (C.5)

Following integration, this means the �rst derivative with respect to x is constant

and so using (C.2) and (C.3),
∂A

∂x
= −w (C.6)

A(x, t) = w(L− x) (C.7)

at steady state. Any change in input of attractant will disturb this equilibrium. But

if the di�usivity is fast in comparison to these changes, equilibrium will be regained

quickly and lowering or raising the input will respectively have the e�ect of lowering

or raising the gradient throughout the �eld.



Acronyms

ABC approximate Bayesian computation. 4, 29�38, 67, 68, 71, 74, 75, 80, 84, 91,

116, 118, 121

ABC-MCMC approximate Bayesian computation Markov chain Monte Carlo. 34,

35, 67

ABC-SMC approximate Bayesian computation sequential Monte Carlo. 32, 36,

37, 67, 68, 74, 76, 80, 81, 84, 87, 88, 109, 121

BD Bhattacharyya distance. 71, 72

BRW biased random walk. 44, 52

COPD chronic obstructive pulmonary disease. 1, 9, 84

CRW correlated random walk. 44, 59

dpf days post fertilisation. 40, 84

GFP green �uorescent protein. 14, 41, 84

GLS generalised least squares. 24

hpi hours post injury. 49

KLD Kullback�Leibler divergence. 71, 72

LS least squares. 22, 24, 26, 28, 33

MAP maximum a posteriori . 28, 88, 96, 97, 106, 107, 109, 111, 117

MCMC Markov chain Monte Carlo. 32, 33, 35, 66, 67

MH Metropolis Hastings. 33�35
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132 Acronyms

ML maximum likelihood. 25, 26, 28, 30

ODE ordinary di�erential equation. 10, 11

OLS ordinary least squares. 23, 24, 26

PDE partial di�erential equation. 3, 4, 20

PMN polymorphonuclear leukocyte. 7

RLS regularised least squares. 24, 28

SIS sequential importance sampling. 35, 36

SMC sequential Monte Carlo. 67

SRW simple random walk. 44

WLS weighted least squares. 24, 45, 46
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