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Abstract 

There is an urgent need to understand better how recent climatic changes and 

shifting marine environments are affecting the population dynamics and foraging 

behaviour of marine central-place foragers. I use both single and multi-colony, and 

single and multi-species approaches to investigate how different aspects of colonial 

breeding in seabirds impact on parental foraging behaviour under these changing 

environmental conditions. I combine historical and recent colony counts and trip 

duration data to consider population-level interactions and relationships for northern 

gannets Morus bassanus. I also consider the role of intra-specific competition in 

limiting neighbouring colony growth for three additional North Atlantic seabirds, the 

Atlantic puffin Fratercula arctica, European shag Phalacracorax aristotelis and 

black-legged kittiwake Rissa tridactyla, with differing population trends over the 

past three decades. I then proceed to focus on finer-scale effects on individual 

foraging behaviour and parental care of northern gannets at one colony over a period 

of 14 years, using direct observations and a variety of bird-borne logging devices. 

My findings support models of foraging based on competition for prey around 

seabird colonies. I also found that annual variation in foraging trip durations was 

particularly marked at large colonies, making them especially vulnerable to adverse 

effects of low prey availability at sea. Furthermore, as foraging ranges altered with 

colony sizes, the scale of apparent interactions between conspecifics at neighbouring 

colonies also altered, providing novel support for the limiting effect of neighbouring 

conspecific density on population growth. Gannets also showed annual flexibility in 

diet, habitat use and finer-scale search strategies, although other aspects of their 

foraging, such as the mean scale of Area Restricted Search behaviour, appeared less 

flexible. Further study is now required to understand if gannets have the capacity to 

alter the scale of their search behaviour under more extreme conditions. Gannets 

were also flexible within breeding seasons in the foraging and parental effort they 

expended, suggesting that the chick’s requirements also contribute to adults’ 

foraging behaviour. Flexibility in foraging and parental behaviour may buffer the 

potential adverse impacts of variable environments on provisioning and productivity. 

These findings have implications for the population dynamics and potential 

resilience of a wide range of seabird species and other central-place foragers. 
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Semi-variograms of model residuals for gannet colonies 
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and 300km using 1984/85 colony counts. 
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Semi-variograms of model residuals for gannet colonies 
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and 300km using 1994/95 colony counts. 
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Semi-variograms of model residuals for puffin colonies 
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200km and 250km using 2000/01 colony counts. 
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Semi-variograms of model residuals for shag colonies 

within putative foraging ranges of 20km, 30km, 40km, 

50km, 60km, 70km and 80km using 1969/70 colony 

counts. 
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Figure B.12. 

Semi-variograms of model residuals for shag colonies 

within putative foraging ranges of 20km, 30km, 40km, 

50km, 60km, 70km and 80km using 2000/01 colony 

counts. 
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Semi-variograms of model residuals for kittiwake colonies 

within putative foraging ranges of 20km, 30km, 40km, 

60km, 80km, and 100km using 1982 colony counts. 
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Semi-variograms of model residuals for kittiwake colonies 

within putative foraging ranges of 20km, 30km, 40km, 

60km, 80km, and 100km using 2000/01 colony counts. 
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Table 4.7.   Summary table of the most parsimonious model describing 

the significant positive relationships between nested ARS 

scale and trip duration (h) in 2011, with bird identity included 

as a random effect. 
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Table 4.8.   Summary characteristics of the three dive types made by 22 

northern gannets on 96 foraging trips from the Bass Rock 

during the 2011 breeding season. 
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Table 4.9.   Summary table of the most parsimonious model describing 

the significant difference in dive rates inside zones of area 

restricted search (closed) compared to those outside these 

zones (open dives) in 2011, with maximum foraging range 

(km) included as a fixed effect and bird identity as a random 

effect. 
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Table 5.1.   Summary table of the minimum adequate model testing for 

annual variation in square-root trip duration between 2010 and 

2011 (Year), with chick age included as a fixed effect and bird 

ID included as a random effect. 
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Table 5.2.   Summary table of the most parsimonious model describing 

the significant difference between square-root time pairs spent 

together at the nest (mins) between the 2010 and 2011 

breeding seasons. Pairs spent less time together at the nest in 

2011 than 2010. Nest identity was included as a random 

effect, and chick age was found to have a significant effect on 

the model. 
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Table 5.3.   Summary table of the most parsimonious model describing 

the significant relationship between time pairs spent together 

at the nest (mins) and chick age in 2010, with number of hours 

of observation and Julian day included as fixed effects. Nest 

identity is included as a random effect. 
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Table 5.4.   Summary table of the most parsimonious model describing 

the significant relationship between time pairs spent together 

at the nest (mins) and chick age in 2011, with Julian day 

included as a fixed effect. Nest identity was included as a 

random effect. 
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Table 5.5.   Summary table of the most parsimonious model testing for 

annual variation in maximum distance reached from the 

colony between 2010 and 2011 (Year), with Julian day 

included as a fixed effect and bird identity included as random 

effect. 
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Table 5.6.   Summary table of the most parsimonious model testing for 

annual variation in total distance travelled on trips between 

2010 and 2011 (Year), with Julian day included as a fixed 

effect. Bird identity was included as a random effect. 
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Table 5.7.   Summary table of the most parsimonious model describing a 

significant positive relationship between feeding frequency 

(arrivals per day) and chick age in 2010. Nest identity was 

included as a random effect. 
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Table 5.8.   Summary table of the minimum adequate model describing a 

significant relationship between GPS recorded trip durations 

and I(chick age^2) in 2010, with orientation (trip destination 

north or south of the colony) and Julian day included as fixed 

effects, and bird identity as a random effect. 
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Table 5.9.   Summary table of the minimum adequate model describing 

the significant relationship between GPS recorded maximum 

distances reached from the colony and I(chick age^2) in 2010, 

with orientation (destination was north or south of the colony) 

and Julian day included as fixed effects, and bird identity as 

the random effect. 

 

140 

Table 5.10.   Summary table of the minimum adequate model describing 

the significant relationship between GPS recorded total 

distances travelled on round foraging trips and I(chick age^2) 

in 2010, with orientation (destination was north or south of the 

colony) and Julian day included as fixed effects. Bird identity 

was included as a random effect. 
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Table 5.11.   Summary table of the most parsimonious model describing 

the significant quadratic relationship between speedb, 

calculated using maximum distance reached from the colony 

and I(chick age^2) in 2010, with maximum distance reached 

and trip duration (TD) included as fixed effects. Bird identity 

was included as a random effect. 
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Table 5.12.   Summary table of the most parsimonious model describing 145 
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the significant relationship between speedc, calculated using 

total distance travelled on a round trip and I(chick age^2) in 

2010, with total distance travelled and trip duration (TD) 

included as fixed effects. Bird identity was included as a 

random effect. 
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Chapter 1: General introduction 

 

 

1.1. Colonial breeding 

Coloniality is typically defined as a form of group living, in which individuals breed 

within densely distributed nesting territories, and in which no other resources but 

nest sites are found, but residents regularly depart in search of food or other 

resources (Perrins and Birkhead, 1983, Wittenberger and Hunt Jr, 1985). The 

evolution of coloniality is believed to have occurred because of group living enables 

individuals to exploit the resources in their environment more efficiently (Rolland et 

al., 1998). Birds have the highest proportion of species that are colonial breeders (ca. 

13%) (Lack, 1968, Brown and Brown, 2001, Gill, 2007), coloniality has also 

evolved in a number of mammals, for example, white-tailed and black-tailed prairie 

dogs Cynomys leucurus and C. ludovicianus, and pinnipeds such as elephant seals 

Mirounga leonine, grey seals Halichoerus grypus and a number of sealion species, 

e.g. Galápagos sealions Zalophus wollebaeki (Hoogland, 1981, Baldi et al., 1996, 

Wolf et al., 2007). It is also seen among reptiles, such as marine iguanas (Trillmich 

and Trillmich, 1984, Doody et al., 2009) and fish, for example three-spined 

sticklebacks Gasterosteus aculeatus (de Fraipont et al., 1993). Coloniality is, 

however, particularly well developed among seabird species, with 96% of species 

breeding in dense colonies (Coulson, 2002), making them useful models for 

investigating the costs and benefits of breeding in such aggregations. In proximate 

terms, colonial breeding is believed to arise through constraints on the availability of 

suitable habitat (Brown et al., 1990, Boulinier, 1996) or breeding partners (Wagner, 

1998, Danchin et al., 1998), in keeping with the commodity selection hypothesis 

(Danchin and Wagner, 1997). In evolutionary terms, the persistence of a colony also 

depends on the balance between the costs and benefits of colonial living. 

There are numerous potential costs for individuals breeding in colonies. For 

example, large groups may attract predators due to increased conspicuousness (Szép 

and Barta, 1992, Cresswell, 1994). However, this cost may be outweighed by larger 

groups being more effective at detecting and defending against predators (Robinson, 
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1985, Cresswell, 1994, Krause and Ruxton, 2002). The ‘many-eyes’ theory proposes 

that as group size increases, overall vigilance increases but the time each individual 

spends watching for predators decreases, thereby allowing more time and energy for 

other activities such as self-maintenance (e.g. preening and grooming), reproduction 

and foraging (Côté and Gross, 1993, Roberts, 1996, Schädelin et al., 2012).  

Other potential costs of colonial breeding include increased risk of 

transmission of parasites and diseases (Brown and Brown, 1986, Hoi et al., 1998, 

Mangin et al., 2003). Individuals breeding in dense colonies may also experience 

more aggression from conspecifics, in some cases resulting in infanticide (Ramos, 

2003, Ashbrook et al., 2008, Inoue et al., 2010). Close proximity of nests can also 

result in misdirected parental care (Møller and Birkhead, 1993, Davies, 2000). 

However, individuals breeding within a colony can also benefit from energy savings, 

for example by conserving heat (Kronenberg and Heller, 1982, Ancel et al., 1997, 

Speakman et al., 2003). 

Individuals breeding at colonies are likely to experience intra-specific 

competition for food resources (Storer, 1952, Ashmole, 1963). However, the 

behaviour of colony members can be a useful source of information to others 

searching for food, leading to potential reciprocal benefits through enhanced 

information transfer (Inglis and Isaacson, 1978, Wilkinson, 1992, Grémillet et al., 

2004). Social learning along with social stimulation of young and inexperienced 

adults can also benefit individuals breeding in colonies (Laland and Williams, 1997, 

Krause and Ruxton, 2002). While changing environmental conditions may affect any 

of these factors, coloniality can confer a net benefit to the individuals that form these 

aggregations. 

 

 

1.2. Parental investment in offspring 

Natural selection should favour individuals maximizing their lifetime reproductive 

output (Reznick, 1985, Stearns, 1992, McNamara and Houston, 1996). Thus if 

conditions become severe, theory would predict that individuals of long-lived, 
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iteroparous species should temporarily direct resources away from reproduction, so 

as not to compromise their survival (Drent and Daan, 1980, Reznick, 1985). 

 Seabird species are included in this group  (Croxall and Rothery, 1991), with 

most species having deferred maturity, small clutch sizes, extended periods of chick 

rearing and high annual adult survival (Ricklefs, 1990, Charlesworth, 1994). 

Individuals raising offspring make decisions based on both intrinsic and extrinsic 

factors, such as their physiological state and that of their chicks, as well as weather 

conditions respectively, which affect their investment in parental care and may 

impact on population dynamics. 

 

 

1.3. Regulation of seabird populations 

Various theories of the key factors believed to limit population size in seabirds have 

been proposed, many relating to the costs and benefits of breeding in colonies 

(Rowan, 1965, Birkhead and Furness, 1984, Cairns, 1992, Gaston et al., 2007). 

These consist of both density-independent and density-dependent factors. Density-

independent factors include local marine productivity and prey availability 

(Österblom et al., 2008, Kitaysky et al., 2010), along with anthropogenic interference 

or harm, such as pollution or changes in habitat use (Jahncke et al., 2004, Votier et 

al., 2005).  

 Cairns (1989) developed a model of population regulation whereby the sizes 

of colonies were limited only by the extent of foraging habitat closer to each colony 

than to any other. This ‘hinterland’ model proposed that the locations of potential 

breeding sites alone may generate observed patterns of distribution and size among 

populations (Cairns, 1989). Alternatively, density-dependent mortality over the 

winter was advocated by Lack (1968) as the main factor regulating seabird 

populations. Additional density-dependent factors believed to contribute to 

population regulation include the availability and quality of suitable nesting sites 

(Manuwal, 1974, Kildaw et al., 2005), as well as parasite burden (Duffy, 1983, 

Mangin et al., 2003). Interference competition on feeding grounds is yet another 

factor found to play a key function in population size (Hunt Jr et al., 1986, Davoren 
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et al., 2003a). Indeed many researchers have suggested that regulation operates 

through breeding success. Central to this concept is the hypothesis first proposed by 

Ashmole (1963), that breeding adults deplete prey stocks around the colony to such 

an extent that they generate an ‘annulus’ or ‘halo’ of prey surrounding the outer edge 

of this depleted zone. Accordingly, he predicted intense intra-specific competition 

for food, such that individuals at larger colonies were forced to feed further away 

because they had to travel further before encountering profitable prey.  Longer trips 

reduced the rate at which parents could provision their young and the expectation 

that breeding success would be lower (or chick condition poorer) at larger colonies 

compared to smaller ones, would hence impact on population size through lower 

breeding success or recruitment.  

This theory of density-dependent regulation through competition for prey 

received much attention in the 1980s, with studies reporting both behavioural and 

reproductive parameters linking closely to the availability of prey (Anderson et al., 

1982, Birkhead and Furness, 1984). It has been revisited again more recently 

following the development of bird-borne devices allowing direct and accurate 

information on species foraging characteristics and ranges, with studies of a wide 

variety of species’ finding increased foraging effort  with greater population sizes 

(Lewis et al., 2001, Ainley et al., 2003, Grémillet et al., 2004, Ballance et al., 2009, 

Elliott et al., 2009). Although the limiting effect of population size is difficult to 

measure directly (Birt et al., 1987), it has been suggested indirectly by testing for 

relationships between colony size and reproductive output and body condition 

(Gaston et al., 1983, Hunt Jr et al., 1986, Forero et al., 2002). There is also some 

evidence that colony size is strongly negatively correlated with the number of 

putative competitors from neighbouring colonies, within the presumed foraging 

ranges of colony members (Furness and Birkhead, 1984). This implies that the 

number of conspecifics competing for prey resources near to the colony limits 

population size through depletion or interference competition, again supporting the 

theory that intra-specific competition for prey during the breeding season also limits 

seabird numbers.  
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1.4. Changing environmental conditions 

Given the speed and magnitude of changes currently occurring in marine systems, it 

is important to consider the potential influence of extrinsic factors, such as 

environmental conditions, on population dynamics. Local marine productivity, 

within species home ranges, can effect seabird populations (Österblom et al., 2008, 

Kitaysky et al., 2010) and thus changing environmental conditions are likely to 

influence population size. The impact of global and regional climate change and 

subsequent shifts in environmental conditions on species’ ranges (Hickling et al., 

2006, Kelly and Goulden, 2008), timing of life history events (Dolenec, 2006, 

Jonzen et al., 2006) and behaviour (Peron et al., 2010), have been widely 

documented in recent years. Much evidence has been provided over the last decade 

for increasing sea-surface temperatures (IPCC, 2007), reductions in regional ocean 

primary productivity (Behrenfeld et al., 2006), influencing the trophodynamics of 

ecosystems (Richardson and Schoeman, 2004, Kirby et al., 2008) and shifts in the 

abundance and distribution of plankton and fish stocks, including commercially 

important species (Rindorf and Lewy, 2006, Huse and Ellingsen, 2008). The 

influence of such shifts, combined with the effects of commercial fisheries activities, 

has propagated along food chains to higher marine predators (Gjerdrum et al., 2003, 

Wanless et al., 2007).  

Considering the apparent importance of intra-specific competition for prey in 

relation to seabird colony sizes and the implications for population regulation, we 

may predict that the effect of changing climate should vary between populations of 

different sizes. Furthermore therefore, their influence on the growth rates of 

neighbouring colonies, with which members may compete for resources at sea, may 

also vary with differing population trends. However, to date, longitudinal studies 

adopting a multi-population approach have been rare. Hence the importance of better 

understanding the relationships between colony size and competition at the 

population level, and under varied conditions, becomes evident, along with the 

potential impacts on breeding success at the individual level, and overall population 

dynamics. 
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1.5. Foraging behaviour at sea 

Effective foraging is key to success for all species, linking the availability of prey to 

the reproductive success of the predator. Thus the apparent importance of predator-

prey interactions highlights the need for a detailed understanding of the foraging 

activities of predators in relation to their prey. For seabird species, prey are 

commonly patchily distributed (Fauchald and Erikstad, 2002), with smaller patches 

sometimes nested within larger scale patches, forming nested patch hierarchies 

within a heterogeneous environment (Kotliar and Wiens, 1990, Wu and Loucks, 

1995, Fauchald et al., 2000). It is therefore crucial that the movements of marine 

predators allow them to detect and respond to the presence of prey in patches of 

different spatial scales. Previously, observations from ship-based surveys have been 

used to provide information on the foraging characteristics, ranges and behaviours of 

many seabird species (Camphuysen et al., 1994, Stone and Aps, 1995, Trathan et al., 

1998, Louzao et al., 2009), although such surveys do have limitations (Meer and 

Camphuysen, 1996, Spear et al., 2004). The advent of bird-borne tracking 

technology has enabled fine-scale foraging behaviour of individuals of known 

breeding status and origin to be collected for a wide variety of species (Fritz et al., 

2003, Pinaud and Weimerskirch, 2006, Hamer et al., 2009). The at-sea distribution 

of marine birds has been shown to be closely related to both biological and physical 

aspects of the marine environment over a broad range of spatial scales, with features 

such as tidal mixing fronts and upwellings often of importance (Pinaud and 

Weimerskirch, 2007, Bost et al., 2009, Raymond et al., 2010). The development of 

methods to quantify search effort are relatively recent, and while variation in fine-

scale foraging behaviours has been found between species with differing foraging 

ranges and prey fields, much less is known  about how fine-scale foraging 

characteristics within a species vary under changing environmental conditions 

(Pinaud & Weimerskich 2007). 
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1.5.1. Responses to environmental change 

Studies of a wide range of marine predators have shown that they respond to shifts in 

their foraging environment, such as changes in sea-surface temperatures, 

chlorophyll-α concentration or phytoplankton abundance, which can alter the 

distribution or abundance of prey (Sims and Quayle, 1998, Oedekoven et al., 2001, 

Johnston et al., 2005b). In the case of seabirds, these include altering primary 

feeding locations in accord with shifting prey distributions (Weimerskirch and 

Lecorre, 2006, Cresswell et al., 2008) and changing foraging effort between seasons, 

for example with some species recorded travelling over greater distances during 

seasons with poorer prey availability (Furness, 2007, Hamer et al., 2007, Garthe et 

al., 2011). Prey switching also occurs when the primary species commonly exploited 

is in short supply, and other species may be more abundant (Barrett and Krasnov, 

1996, Montevecchi and Myers, 1996, Votier et al., 2004); in some cases, this can 

include utilising discards from commercial fishing vessels (Garthe et al., 1996, Arcos 

and Oro, 2002, Votier et al., 2010). Such flexibility in foraging behaviour may allow 

individuals to maintain body condition  and  provisioning rates of their young when 

conditions are less favourable, and thus effectively buffer populations against 

environmental variation (Hamer et al., 2006b). Examples of such flexible species 

include northern gannets Morus bassanus and northern fulmars Fulmarus glacialis 

(Furness and Tasker, 2000). Conversely, such species as black-legged kittiwakes 

Rissa tridactyla and terns, that have more specialised diets and shorter foraging 

ranges, are more sensitive to the detrimental impacts of variable environments 

(Furness and Tasker, 2000, Furness, 2007). However, even species with flexible 

foraging strategies will eventually reach a point where their time or energy  budgets 

(net energy gain per unit of time) can no longer be adjusted to maintain adequate 

chick provisioning rates, potentially impacting on reproductive success (Hamer et 

al., 2007).   
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1.6. Parental care and requirements of the young 

Bi-parental care occurs in the majority of bird species (Cockburn, 2006). Among 

pelagic seabirds, social monogamy is the most common mating system (Hamer et al., 

2002), with both sexes contributing to incubation and rearing of nestlings. However, 

the contribution of each sex may not be equal, with variation in distribution of effort 

between species and numerous factors influencing the contribution of each sex; e.g. 

stage of offspring development, number of chicks, relatedness and parent condition 

(Winkler, 1987). Many seabird species are semi-precocial or altricial, their young 

hatching in an undeveloped state and totally reliant on parental care during the early 

stages of development (Starck and Ricklefs, 1998). Reproductive success therefore 

often requires at least one adult in attendance at all times when chicks are newly 

hatched. In cases where both adults are away from the nest, the unattended offspring 

can be vulnerable to prevailing weather conditions, as well as predation and attacks 

from conspecifics (Hunter, 1984, Nelson, 2002, Ratcliffe and Furness, 2006). 

Maintaining adequate provisioning rates is also critical for the survival of offspring 

and their growth (Harris and Wanless, 1997, Gray et al., 2005, Enstipp et al., 2006). 

 Adults must therefore balance time spent foraging against time spent at the 

nest with the clutch or brood. Along with the trade-off between travelling costs and 

prey availability, whereby net gain of prey items needs to be greater than the cost of 

visiting feeding locations, a cost-benefit scenario also arises between maintaining 

provisioning rate, and the nutritional benefit of prey caught on longer trips. Foraging 

strategies, as well as being governed by the nutritional state of the adults (McNamara 

and Houston, 1996), are also likely to be influenced by the requirements of the 

young (Weimerskirch et al., 1997, Baduini, 2002, Gaston and Hipfner, 2006b). 

However, how adults partition foraging effort to meet their own needs and those of 

their young is poorly understood. Some species, including some procellariiform 

(tube-nosed) species, adopt a dual-foraging strategy, with foraging trips of different 

durations taken to permit adults to regulate their offspring’s energy expenditures and 

meet their own requirements (Weimerskirch et al., 1994, Terauds and Gales, 2006, 

Magalhães et al., 2008). However, many other species do not adopt this strategy 

(Lewis et al., 2004, Phillips et al., 2009). Phillips et al. (2009) suggests that caution 

is required when deducing the use of such bimodal foraging by different species; as 

this behaviour could be facultative rather than obligatory. 
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1.6.1. Flexibility in diet and provisioning 

In addition to maximise adult survival, flexibility in foraging behaviour and breeding 

effort during poorer feeding conditions can buffer the potential negative impacts on 

reproductive success (Burger and Piatt, 1990, Pinaud et al., 2005a, Hipfner et al., 

2006). While prey switching to more abundant species occurs, this may also require 

higher provisioning rates or larger meal sizes, which are not always possible, the 

replacement food stocks having lower nutritional value (Suryan et al., 2000, 

Österblom et al., 2008). Adults may also feed chicks alternative prey that is difficult 

for them to digest (Harris et al., 2008). Flexibility in parental time budgets and nest 

guarding may also buffer the impacts of poor prey availability. For example, when 

prey are more abundant, adults can spend more of their time guarding chicks and 

defending nests (Furness and Barrett, 1985, Zador and Piatt, 1999). Conversely, 

during poor feeding conditions, adults may spend less time at the nest in order to 

maintain feeding rates (Monaghan et al., 1994a). This can include the time adults 

spend together at the nest as a pair before changing over. We may predict a greater 

occurrence of chicks being left unattended when prey abundance is low and foraging 

trips are long (Harris and Wanless, 1997, Tveraa et al., 1998, Lewis et al., 2004). 

Adults must balance the risk of leaving a chick unattended with the cost of not 

maintaining provisioning rates, which can be increased by both parents foraging at 

the same time. The occurrence of unattendance may be expected to increase as 

seasons progress and as chicks age, becoming less vulnerable. 

 

 

1.7. Study species and area 

 

1.7.1. Northern gannets 

Northern gannets (hereafter gannets) are the largest member of the family Sulidae, 

comprising gannets and boobies (Nelson, 1978). Sulids are long lived, medium to 

large coastal seabirds, found in all areas except the Antarctic. Most sulids breed in 

dense colonies, often on offshore islands or continental coastlines, and forage by 

plunge-diving or scooping fish and other prey items from the surface (Nelson, 1978). 
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Northern gannets currently breed at 21 colonies across the British Isles and southern 

Ireland, ranging in size from just a few pairs to tens of thousands of breeding pairs, 

making up a third of the global northern gannet population (Nelson, 2002). This is 

the most regularly assessed seabird species in Britain, with detailed count data 

available for the majority of colonies dating back to the turn of the 20th century 

(Gurney, 1913, Fisher and Vevers, 1943, Wanless et al., 2005). The numbers of 

breeding pairs at most colonies in the UK have increased over the last century and 

new colonies have also been established (Wanless et al., 2005). The wide range in 

individual colony sizes, coupled with  the completeness of  the count data, make this 

an excellent species in which to study both density-dependent population change and 

density-dependent intra-specific competition for prey (Lewis et al., 2001). In 

addition, a considerable amount of detailed information on the behaviour of northern 

gannets, both in the colony and at sea, has been collected over the last 10 – 15 years 

(Garthe et al., 1999, Hamer et al., 2000, Hamer et al., 2007, Lewis et al., 2004, 

Votier et al., 2010), also making this a good species to investigate parental and 

foraging behaviour change in response to changing marine environments.  

 

 

1.7.2. Foraging behaviour 

During the breeding season, gannets feed primarily on lipid-rich pelagic shoaling 

fish, such as mackerel (Scomber scomber) and sandeels (mainly Ammodytes 

marinus) (Hamer et al., 2000, Lewis et al., 2003, Hamer et al., 2007). They also 

compete with other seabird species for discards from commercial fishing vessels 

(Hamer et al., 2000, Votier et al., 2009). They are medium-ranging foragers, capable 

of travelling over 1000 km on a single foraging trip in order to locate and obtain food 

for themselves and their young (Hamer et al., 2007). Typical ranges reached from the 

colony on these trips have been recorded around 230 km (Thaxter et al., 2012). The 

finer-scale movement patterns of gannets, namely area-restricted search behaviour, 

have been found to allow them to detect and respond to prey at a variety of spatial 

scales (Hamer et al., 2009). They can use a variety of distinct prey capture 

techniques on locating prey, including vertical plunge-diving and underwater pursuit, 

as well as scooping certain prey species from the surface (Garthe et al., 2000). 
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1.7.3. Parental behaviour 

Gannets have a single-egg clutch and are an altricial species; their offspring hatch in 

an undeveloped state, with only sparse neossoptiles and unable to regulate their own 

body temperature, relying heavily on parental care (Nelson, 1978). Females can 

replace their egg if lost near the start of the breeding season (Nelson, 2002). Gannets 

have a relatively long breeding season, with an incubation period of around 6 weeks, 

followed by 12-13 weeks of chick-rearing (Nelson, 2002). They have biparental care, 

with males and females taking turns to attend the egg or chick while the other is 

away from the nest foraging. It is important that chicks are guarded by at least one 

parent during the first four weeks post-hatching, when they are unable to 

thermoregulate (Montevecchi et al., 1984) and the risk of attack from conspecifics is 

greatest (Nelson, 2002). However, brood neglect can occur, with the guarding adult 

leaving the chick unattended if the foraging adult is away for an extended period 

(Lewis et al., 2004). Adults feed their chicks on semi-digested fish, which are 

regurgitated directly into the chick’s open bill. As the chick ages, it solicits food 

from the adult more actively and frequently (Nelson, 2002). 

 

 

1.7.4. Study sites 

During the 2009 breeding season (chapter 2), observational data on nest attendance 

and changeover rates were collected from 10 gannet colonies across Great Britain 

and southern Ireland: Great Saltee, Ireland’s Eye, Lambay, Bempton Cliffs, Bass 

Rock, Ailsa Craig, Troup Head, Fair Isle, Noss and Hermaness (Figure 2.1). These 

colonies are widely distributed across the British Isles, within the Celtic, Irish and 

North Seas, ranging from Great Saltee on the south-eastern Irish coast, to Hermaness 

on the northernmost tip of Shetland. Colonies varied in size from 158 breeding pairs 

(Lambay) to > 50,000 apparently occupied sites (AOS) (Bass Rock; Murray, 2011).  

During the 2010 and 2011 breeding seasons, detailed behavioural data were 

collected from the Bass Rock colony, (56°4.6’N, 2°38.3’W), south-east Scotland.  

The colony was estimated to hold 52,292 AOS in 2009 making it the second largest 

colony in the east Atlantic (Murray, 2011). The Bass Rock lies 2 km off the south 

coast of the Firth of Forth. However, gannets mainly forage further offshore in the 

North Sea, which is a semi-enclosed shelf sea made up of a mosaic of stratified, 
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mixed and frontal zones (Scott et al., 2006). Gannets on the Bass Rock are both 

easily caught and later re-caught, facilitating the use of bio-logging devices. Detailed 

behavioural observations were made in the colony in the 1960s (Nelson, 1966, 

Nelson, 1978), while bird-borne loggers have been used since the late 1990s to 

collect detailed data on various aspects of foraging behaviour (Hamer et al., 2000, 

Hamer et al., 2007, Hamer et al., 2009).  

  

 

1.7.5. Other species and colonies 

While my research primarily focuses on gannets, in chapter 3 I take a multi-species 

approach and analyze population count data for the Atlantic puffin Fratercula 

arctica, European shag Phalacracorax aristotelis and black-legged kittiwake Rissa 

tridactyla. In recent years, these species have shown large annual variation in 

breeding success at many colonies in the UK (Mavor, 2008). A long history of 

monitoring British seabird populations means that regular census data for seabird 

colonies are gathered, such as the Operation Seafarer census of 1969/70 and the 

Seabird 2000 census. These are available through the Joint Nature Conservation 

Comittee (JNCC) seabird monitoring program database (JNCC, 2012). 

 

 

1.8. Aims of thesis 

My research uses both single colony and multi-colony, and single species and multi-

species approaches to investigate how various aspects of the colonial breeding habit 

of seabirds impact on parental foraging behaviour under changing environmental 

conditions. I initially consider population level interactions and relationships and 

then go on to focus on finer-scale effects on individual foraging behaviour and 

parental care. 

Chapter 2 extends the approach taken by Lewis et al (2001) and examines the 

influence of colony size on both population growth rates and foraging trip durations 

of gannets under contrasting environmental conditions in two oceanographic regions. 

Similarly, chapter 3 extends the approach taken by Furness & Birkhead (1984) and 
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uses data for four species of north temperate seabird with differing feeding ecologies 

and contrasting population trends over the last 30 years. I test whether there has been 

a change in the ranges at which neighbouring conspecific density limits colony size 

as a result of intra-specific competition for prey. Chapter 4 uses data from bird-borne 

devices to compare foraging locations and fine-scale behaviour of gannets on the 

Bass Rock over a thirteen-year period, during which feeding conditions varied 

markedly. In Chapter 5, a combination of GPS tracking and nest observations via a 

webcam are used to investigate within-season variation in foraging behaviour and 

parental investment of gannets on the Bass Rock in 2010 and 2011. Finally, chapter 

6 discusses these results in the context of seabird life histories and changing 

environmental conditions, and considers their relevance to the conservation and 

management of marine environments.   
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Chapter 2: Density-dependent foraging and colony growth under 
varying environmental conditions in a pelagic seabird 

 

 

Abstract 

Intra-specific competition for food resources affects foraging behaviour, chick 

development, juvenile and adult survival, as well as population growth rates in many 

species, highlighting a need to understand better how changing environmental 

conditions affect individuals in populations of different sizes.  Using chick-rearing 

northern gannets as a model, I examined the influence of colony size on per capita 

population growth rates over two time-periods (1994-2000 and 2000-2009) and on 

foraging trip durations in each of two years (2000 and 2009) at 10 colonies in two 

separate regions of the UK and Ireland (the North Sea and the Celtic/Irish Sea). The 

slope of the relationship between population size and foraging trip duration in 2009 

was less than one quarter of that in 2000, suggesting a much weaker influence of 

population size in 2009, presumably due to less intense intra-specific competition for 

prey resources at sea. There was also regional variation, with colonies in the 

Celtic/Irish Sea growing substantially slower for their size over the period between 

2000 and 2009 than did colonies bordering the North Sea, whilst observed trip 

durations in 2009 were on average 13% shorter than predicted from population size 

at colonies bordering the North Sea but 32% longer than predicted at colonies in the 

Celtic and Irish Seas. These data suggest less favourable conditions for gannets in 

the latter region in recent years, and that annual variation in trip durations will be 

particularly marked at large colonies, making them especially vulnerable to adverse 

effects of low prey availability at sea. 
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2.1. Introduction 

There is growing concern over impacts of climate change on animal populations 

(Pearce-Higgins et al., 2010, Rolland et al., 2010, Davey et al., 2011). Recent studies 

have highlighted that in many cases, climate-related changes depend on population 

density (Rotella et al., 2009, Votier et al., 2009, Smallegange et al., 2011),  but the 

mechanisms underlying such density-dependence are often unclear (Ahola et al., 

2009, Laws and Belovsky, 2010, Linares et al., 2010). In marine environments, the 

pace and direction of changes in climate over the past five decades have shown 

marked geographical variation (Burrows et al., 2011) but net warming has had a net 

negative impact on primary production (Behrenfeld et al., 2006, Boyce et al., 2010). 

There is also growing evidence that such decreases in production have propagated to 

other trophic levels (Beaugrand et al., 2002, Behrenfeld et al., 2006), extending in 

some cases to higher marine predators such as seabirds (Wanless et al., 2007, 

Dorresteijn et al., 2012, Satterthwaite et al., 2012). Intense fishing pressure can also 

have cascading effects on marine food webs (Baum and Worm, 2009) and the 

greatest threat to fish stocks is likely to be the combined effects of climate change 

and overfishing (Brander, 2007). Recent studies have suggested that these combined 

effects can also have important consequences for seabird breeding success, survival 

and population stability (Frederiksen et al., 2004, Ainley and Blight, 2009). 

Many seabird species breed in dense colonies, making them potentially 

powerful models to examine density-dependent responses to changes in prey 

availability (Kitaysky et al., 2000, Ashbrook et al., 2010). In particular, foraging trip 

durations of many species are longer if conditions are poor (Hamer et al., 1993, 

Lewis et al., 2006, Riou et al., 2011) and also increase as a function of colony size, 

providing strong evidence of intra-specific competition for prey resources at sea 

(Lewis et al., 2001, Forero et al., 2002, Ainley et al., 2003). Changes in foraging 

conditions may thus be expected to have greater impacts on trip durations in larger 

populations (Hamer et al., 2006b), but there are few data to test this prediction. 

Within the British Isles, northern gannets Morus bassanus (hereafter gannets) 

breed at colonies differing in size from tens to tens of thousands of pairs (Wanless et 

al., 2005). They are generalist predators, able to exploit a wide variety of species and 

sizes of prey, including lipid-rich fish such as mackerel (Scomber scomber) and 
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sandeels (mainly Ammodytes marinus) in addition to discards from fishing vessels 

(Hamer et al., 2000, Lewis et al., 2003). Most British colonies are increasing in size, 

with smaller colonies having higher per capita growth rates (Wanless et al., 2005). In 

addition, direct observations of nest attendance have revealed a positive relationship 

between colony size and the mean foraging trip durations of breeding birds, both 

among colonies of different sizes in the same year and, from the limited longitudinal 

data available, within individual colonies as they grow (Lewis et al. 2001). However, 

trip durations and foraging ranges at one of the largest gannet colonies in the UK 

were found to be much longer in years when sandeel stocks around the colony were 

low (Hamer et al., 2007), suggesting that impacts of changes in prey availability may 

outweigh those of changes in population size. Yet it is not known whether birds at 

colonies of different sizes were similarly affected. Lewis et al. (2006) found that 

chronically poor conditions resulted in greater foraging effort by Cape gannets 

Morus capensis even at small colonies, highlighting a need to understand better how 

changing environmental conditions affect birds in populations of varying size.  

Here I resample the same colonies as those studied in 2000 by Lewis et al. 

(2001), after a further nine years of population growth. Lewis et al. (2001) found no 

evidence of any spatial variation in the effects of population size, but since then, 

several studies have identified strong regional structure in breeding productivity and 

population trends of seabirds within Britain and Ireland (Frederiksen et al., 2007, 

Cook et al., 2011). In particular, for gannets, the Celtic and Irish Sea region was 

considered ecologically distinct from the North Sea region, including Fair Isle and 

Shetland, on the basis of consistent variation in abundance at breeding colonies (Fig 

3 in Cook et al. 2011). In the North Sea region, several species of seabird have 

experienced declining breeding success since the mid 1980s (Burthe et al., 2012), but 

breeding productivity in 2009 was higher than it had been for a number of years 

including 2000, possibly due to increased availability of sandeels in 2009 (JNCC, 

2011). Stocks of mackerel in the southern, western and northern North Sea were also 

30% higher in 2009 than in 2000 (4.0 x 103 tonnes and 3.1 x 103 tonnes, respectively; 

data from ICES 2010). Hence I predicted less intense competition, i.e. a smaller 

influence of population size on foraging trip durations, at North Sea colonies in 2009 

compared to 2000.  

30 
 



 

In contrast to the North Sea, there was little evidence for any increase in prey 

availability or quality within the Celtic or Irish Seas in 2009 and some evidence of 

recent declines in prey biomass in this region (JNCC, 2011, Riou et al., 2011). As a 

result of this difference between the two regions in 2009, I predicted less difference 

between years in the relationship between population size and trip duration at 

colonies in the Celtic and Irish Seas than in the North Sea, resulting in significant 

interactions between the effects of population size, year and region on trip duration. I 

also examined the per capita growth rates of our study colonies over the periods 

1994-2000 and 2000-2009.  I assessed whether the relationship between population 

size and growth rate was similar in each time-period or whether it was affected by 

changing environmental conditions, resulting in significant two-way or three-way 

interactions between the effects of population size, time-period and region on per 

capita growth rate.  

 

 

2.2. Materials and methods 

Fieldwork took place from June to August 2000 and 2009 at nine gannet colonies 

around the coast of Britain and Ireland. A tenth colony (Lambay, established in 

2007) was also sampled in 2009 (Fig 2.1). Counts of Apparently Occupied Sites 

(AOS), made from aerial photographs combined with visits to colonies, both with a 

maximum sampling error of around 5-10% (Wanless et al., 2005), were obtained 

from the literature (Murray and Wanless, 1997, Wanless et al., 2005, Murray, 2011), 

together with more recent unpublished data for some colonies (see 

acknowledgements). Five of the nine colonies sampled in 2000 were counted that 

year. Population sizes for the other four colonies (two counted in 1999, one in 1998 

and one in 1995) were adjusted using colony-specific per capita growth rates 

recorded between 1994 and 2004 (Murray and Wanless, 1997, Lewis et al., 2001, 

Wanless et al., 2005) to estimate the additional increase in population size since the 

most recent count (in practice these increments were < 3% of population size). Six of 

the 10 colonies sampled in 2009 were counted that year.  The other four were last 

counted in 2004 (n=2) or  2008 (n=2) and population sizes for these colonies in 2009 
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were estimated by assuming that per capita growth rates recorded between 1994 and 

2004 or 2008 were maintained until 2009. The remaining colony (Ailsa Craig) 

decreased slightly in size between 1994 and 2004 (Wanless et al., 2005) but has 

shown no further decreases since then (B. Zonfrillo pers comm.) and so I assumed 

the same size in 2009 as in 2004. 

 

 

Figure 2.1. Locations and sizes of the ten gannet colonies studied in 2000 and 2009 

(A, Ailsa Craig; BR, Bass Rock; B, Bempton Cliffs; F, Fair Isle; G, Great Saltee; H, 

Hermaness; I, Ireland’s Eye; L, Lambay; N, Noss; T, Troup Head). Colony sizes 

(number of apparently occupied sites, square-root transformed) are shown for 2000 

(grey bars) and 2009 (black bars). The area of each circle is proportional to colony 

size in 2009. Scales on the y axes differ among colonies. 
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To determine foraging trip durations, around 20 chick-rearing pairs at each colony 

(2000, 18-24 pairs; 2009, 19-30 pairs) were observed during daylight hours (sunrise 

to sunset) for an average of 41 hours each (2000, 16-60hrs; 2009, 16-64hrs). 

Following Hamer et al. (1993) and Lewis et al. (2001), the arrival and departure 

times of foraging adults were recorded to the nearest minute and used to calculate a 

daily changeover rate at each colony (number of changeovers observed divided by 

the nest-days of observation). The mean trip duration at each colony was then 

calculated by dividing the time available per day for undertaking foraging trips (24 

hours minus the mean time adults spent together at the nest) by the estimated 

changeover rate. Chicks were aged using a combination of observed hatch dates and 

plumage characteristics (Nelson, 2002). The median age of all chicks observed was 7 

weeks in 2000 and 5 weeks 2009.  

All statistical analyses were carried out using R version 2.12.1 (R-

Development-Core-Team, 2010). I used a linear mixed effects model (LME) 

(Pinheiro and Bates, 2000) using the package ‘nlme’ to examine whether the 

relationship between natural log (Loge) population size (log-transformed to 

normalize the data and because population growth is a multiplicative rather than 

additive effect) and per capita growth rate differed over the periods 1994-2000 and 

2000-2009. This model included region (North Sea or Celtic/Irish Sea, as defined by 

Cook et al. 2011) as a fixed effect and colony identity as a random effect to account 

for repeated measures (see Fig 1 for locations of colonies; the model had the form: 

per capita growth rate ~ initial loge colony size + (initial loge colony size * time 

period) + (initial loge colony size * time period * region) + random =(~1| colony), 

with a Gaussian error distribution). I then used an additional LME to examine how 

the relationship between square root colony size and foraging trip duration differed 

between years. This model also included two potential confounding effects (median 

chick age and total number of nest-hours of observation at each colony) and had the 

form: trip duration (hours) ~ square-root colony size + (square-root colony size * 

year) + (square-root colony size * region) + chick age + nest-hours + random =(~1| 

colony), with a Gaussian error distribution. Colony size was square-root transformed 

for this second analysis, following Lewis et al. (2001), because the area covered by 

birds at sea increases with the square of the mean foraging radius. To check the 

robustness of our analyses, I compared each full model with the minimum adequate 
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model (Crawley, 2007) following serial deletion of non-significant terms (Mundry 

and Nunn, 2009). To check that our analysis was not affected by errors in estimating 

population sizes, I also re-ran each model using extreme population sizes, assuming 

no further growth of any colonies since the most recent counts. This had no 

qualitative effect on our results in either case, and so I am confident that any errors 

in estimating population sizes did not affect our conclusions. 

  In contrast to foraging trip durations, mean travel speeds at sea show 

remarkable consistency between different colonies and years (Grémillet et al., 2006, 

Hamer et al., 2007, Votier et al., 2010). Hence, in addition to trip durations, I also 

estimated foraging ranges each year, using telemetry data to calibrate foraging range 

against trip duration, following Hamer et al. (2001). 

 

 

2.3. Results 

2.3.1. Population sizes and per capita growth rates 

Study colonies differed in size from 188 AOS (Ireland’s Eye) to 45,569 AOS (Bass 

Rock) in 2000 and from 158 AOS (Lambay) to 52,292 AOS (Bass Rock) in 2009. 

With the exception of Ailsa Craig (see Methods), all colonies increased in size 

between 2000 and 2009 (Fig 1). Per capita population growth rates between 1994 

and 2000 and between 2000 and 2009 were significantly negatively related to 

population size in 1994 and 2000, respectively (LME; F1,7 = 27.3, P = 0.001) with no 

difference in this relationship over the two time-periods (two-way interaction; F1,7 = 

1.0, P > 0.05; 1994-2000: b = -1.953, 2000-2009: b = -3.675; Fig 2). However, 

colonies in the Celtic/Irish Sea region (I, G and A) grew substantially and 

significantly more slowly for their size over the period between 2000 and 2009 than 

did colonies bordering the North Sea (three-way interaction; F2,6 = 9.2, P < 0.05; Fig 

2.2). 

 

 

34 
 



 

 

Figure 2.2. The relationship between initial loge population size and percentage per 

capita population growth rate from 1994 to 2000 (A) and from 2000 to 2009 (B). 

North Sea colonies: filled circles, Celtic/Irish Sea colonies: open circles. In 2000-

2009, there was a significant difference between colonies in the North Sea (solid 

regression line) and the Celtic/Irish Sea (dashed regression line). 

 

 

2.3.2. Foraging trip durations 

There was a significant positive relationship between current population size (square 

root transformed AOS) and mean trip duration (TD) during chick rearing in both 

2000 and 2009 (LME; F1,5 = 28.97, P = 0.01) but with a much steeper slope, 

indicating a much stronger influence of population size, in 2000 (TD (hours)  = 

[0.069*Sqrt colony size(AOS)] + 6.39) than in 2009 (TD (hours) = [0.011*Sqrt 

colony size(AOS)] + 8.08); two-way interaction between square-root colony size and 

year; F1,5 = 8.73, P < 0.05; Fig 3). Population size also explained much more of the 

variation in trip duration among colonies in 2000 (R2 = 0.76) than in 2009 (R2 = 

0.43). Despite the increases in population sizes over the study period, birds at all but 

the two smallest colonies studied in 2000 (Ireland’s Eye and Troup Head) made 
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shorter trips in 2009  than in 2000 (Fig 2.3), suggesting that in most cases, changes 

in environmental conditions had a stronger effect on trip durations than did the 

increases in colony size.   

 

 

 

Figure 2.3. The relationship between mean foraging trip duration (hours) and 

population size (square-root transformed) in 2000 (open symbols) and 2009 (filled 

symbols). Triangles, Irish/Celtic Sea colonies; Circles, North Sea colonies (A, Ailsa 

Craig; BR, Bass Rock; B, Bempton Cliffs; F, Fair Isle; G, Great Saltee; H, 

Hermaness; I, Ireland’s Eye; L, Lambay; N, Noss; T, Troup Head). 
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There was also a significant effect of region in the model (F1,8 = 7.36, P < 0.05), with 

observed trip durations in 2009 on average 32% longer than predicted from colony 

size (i.e. above the fitted regression line for 2009) at colonies in the Celtic and Irish 

Seas, but 13% shorter than predicted (i.e. below the regression line) at colonies 

bordering the North Sea (Fig 2.3). This difference between regions was confirmed by 

running separate linear models for each year; there was a significant two-way 

interaction between square-root colony size and region in 2009 (F2,7 = 7.56, P < 

0.05) but not in 2000 (F2,6 = 2.82, P = 0.1). There was a small but significant 

additional effect of chick age (F = 13.83, P = 0.03) but no effect of the number of 

nest-hours of observation (ns). 

To assess further the difference between years and regions in the influence of 

colony size, I used the relationship between colony size and trip durations found in 

2000 to predict trip durations from colony sizes in 2009. Observed trip durations in 

2009 were shorter than predicted at all six colonies bordering the North Sea but 

longer than predicted at three of the four study colonies in the Celtic and Irish Sea, 

the exception being the colony on Ailsa Craig (Fig 2.4).  
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Figure 2.4. Observed (O) and predicted (P) trip durations (hours), with associated 

standard errors, at different colonies in 2009. Predictions were based on population 

sizes in 2009, using the relationship between square-root population size and trip 

duration that was observed in 2000 (A, Ailsa Craig; BR, Bass Rock; B, Bempton 

Cliffs; F, Fair Isle; G, Great Saltee; H, Hermaness; I, Ireland’s Eye; L, Lambay; N, 

Noss; T, Troup Head). 
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2.4. Discussion 

The slope of the relationship between population size and foraging trip duration in 

2009 was less than one quarter of that in 2000 (Fig 2.3), suggesting a much weaker 

influence of population size in 2009, presumably due to less intense intra-specific 

competition for prey resources at sea. Gannets compete mainly through passive 

interference due to prey disturbance rather than by depleting prey (Lewis et al., 2001, 

Camphuysen, 2011), but lower prey abundance can nonetheless lead to greater 

competition through fewer, smaller and/or shorter-lasting occurrences of prey close 

to the surface within the vertical foraging ranges of birds (Lewis et al., 2002a). 

Gannets may also compete directly for discards from fishing vessels, which comprise 

about 15% of the diet at colonies in the UK (Hamer et al. 2007; Votier et al. 2010). 

Changes in prey availability can result in birds altering their activity at sea (e.g. the 

proportion of time spent resting on the water; (Monaghan et al., 1994b, Litzow and 

Piatt, 2003) without any effect on trip durations (Lescroël and Bost, 2005, Garthe et 

al., 2011), but  large reductions in prey availability are likely to exceed this buffering 

capacity, resulting in longer trips, especially at large colonies where birds have less 

flexibility in their time/activity budgets owing to their greater foraging effort (Lewis 

et al., 2004, Hamer et al., 2007). 

Trips at most colonies were shorter in 2009 than in 2000, despite all but one 

of these colonies increasing in size since 2000. Hence the impact of changes in prey 

availability between years exceeded that of changes in colony sizes in most cases. 

However, trips at the two smallest colonies studied in 2000 (Troup Head and 

Ireland’s Eye) were longer in 2009, because annual variation in density-dependence 

had little effect on trip durations at these small colonies (Fig 2.3). Hence the main 

influence on trip duration in these two cases was from colony growth. This has 

important implications for the use of trip durations to monitor marine environments 

(Furness and Camphuysen, 1997a, Hamer et al., 2006b), because even large changes 

in prey availability will have relatively little effect on trip durations at small 

colonies. 
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A recent analysis of seabird monitoring data for the UK identified two separate 

ecologically coherent regions for gannets, corresponding with the North Sea and the 

Celtic/Irish Sea, within which trends in abundance varied in a consistent fashion 

(Cook et al., 2011). In support of this distinction, I found that colonies in the 

Celtic/Irish Sea region grew significantly more slowly for their size over the period 

between 2000 and 2009 than did colonies bordering the North Sea. I also found that 

observed trip durations in 2009 were shorter than predicted at colonies bordering the 

North Sea, but longer than predicted at colonies in the Celtic and Irish Seas. These 

data suggest less favourable environmental conditions in the latter region over recent 

years, similar to the impacts of low food availability on trip durations and population 

trajectories of Cape gannets Morus capensis in southern Africa (Lewis et al., 2006).  

This suggestion is also supported by recent data showing longer trips than expected 

from population size at a gannet colony in Brittany (Grémillet et al., 2006), long 

foraging trips and poor chick growth of Manx shearwaters Puffinus puffinus since 

2007 at a colony in SW Wales (Riou et al., 2011) and decreases in overwinter 

survival of adult guillemots Uria aalge and razorbills Alca torda breeding in Wales 

(Votier et al., 2005).  

At Ailsa Craig, in the northern Irish Sea, population size decreased slightly 

between 1995 and 2004 (Wanless et al., 2005) but mean trip duration in relation to 

population size was lower in 2009 than at more southerly colonies (Fig 4). I have no 

data on diets of birds or prey biomasses in this region but this difference suggests 

more favourable environmental conditions within the northern Irish Sea in more 

recent years. This corresponds with both a suspected northerly shift in the foraging 

areas of Manx shearwaters from the south of the region (Guilford et al., 2008) and 

large increases in populations of guillemots and razorbills at nearby Rathlin Island, 

following steep declines between 1999 and 2007 (Allen et al., 2011). 

In contrast to gannets, which have maintained consistently high breeding 

success over this period (Hamer et al., 2007, JNCC, 2011), several species of seabird 

at colonies in the North Sea have experienced declining breeding success since the 

mid 1980s (Burthe et al., 2012) and greatly reduced adult survival since the mid-

2000s (Lahoz-Monfort et al., 2011). This difference partly reflects the greater 

flexibility of gannets in terms of diet and foraging ranges (Hamer et al., 2007, Hamer 

et al., 2009) and may also be linked to recent increases in North Sea stocks of 
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mackerel (ICES, 2010), which are too large to be taken by most other seabirds in the 

region and may compete with them for prey species such as sandeels (Furness, 2002, 

Frederiksen et al., 2007, Langoy et al., 2012), but have been the main component in 

the diet of gannets at the large colony on Bass Rock in recent years (> 80% by 

frequency in 2010; Chapter 4).  

The consistency between different colonies and years in the mean travel 

speeds of gannets at sea (Grémillet et al., 2006, Hamer et al., 2007, Votier et al., 

2010) can be used in conjunction with the relationship between colony size and trip 

duration to project foraging ranges and hence at-sea distributions for additional 

colonies (Grecian et al., 2012); Fig 2.3). However, the results of this study highlight 

the importance of accounting for temporal variation in the latter relationship to avoid 

mismatches between observed and predicted foraging ranges. 

The observed difference between years in the effect of population size on 

gannet foraging behaviour means that annual variation in trip durations will be 

particularly marked at large colonies, making them especially vulnerable to adverse 

effects of low prey availability. Long foraging trips result in chicks receiving less 

food per unit time, assuming food loads are no larger after long trips (Lewis et al., 

2006), and also increase the likelihood of adults leaving chicks unattended and at 

risk of being washed from the nest during poor weather, exposed to cold 

temperatures or attacked by conspecifics (Nelson, 2002, Lewis et al., 2004). There is 

no evidence to date of a relationship between colony size and breeding success in 

gannets (Lewis et al. 2001), but such a relationship has been observed in some other 

species (Hunt et al., 1986, Kitaysky et al., 2000) and evidence from one large gannet 

colony suggests that in years of poor food availability, adults have very little leeway 

to increase foraging effort any further without likely adverse effects on chick 

survival (Hamer et al., 2007).  

Finally, there is evidence that gannets from large colonies recruit into smaller 

colonies (Moss et al., 2002, Votier et al., 2011), so it is possible that trip durations 

and provisioning rates play a role in influencing where birds choose to breed for the 

first time (Lewis et al. 2001). Our data indicate that the difference in trip durations 

between large and small colonies is most marked during adverse foraging conditions, 

and so differences in recruitment rate may have contributed towards both the 
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observed negative density-dependent growth of populations and the lower per capita 

growth rates since 2000 at colonies in the Celtic and Irish Sea (Fig 2).   
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Chapter 3: Dynamics of seabird colony distributions over 30 years 

suggest competition for food during the breeding season 

 

Abstract 

The role of intra-specific competition in limiting population growth has been hotly 

debated for over 50 years. In the case of seabirds, there is mounting evidence for 

density-dependent competition for food, both between conspecifics from the same 

colony (positive relationships between population size and foraging range) and those 

breeding at different colonies (inverse relationships between population size and 

number of conspecifics breeding in neighbouring colonies). The spatial scale at 

which the latter effect operates varies between species, generally being greater in 

pelagic species compared to in-shore feeders. Similarly, within species, the scale at 

which it occurs is predicted to vary with overall population size, i.e. between-colony 

effects should occur over greater distances if local population size increases and over 

smaller distances if it declines. Over the past 30 years, UK seabirds have shown 

highly variable population trends; some species have increased, while others have 

declined markedly. I use this opportunity to test whether there has been a 

concomitant change in the distance over which neighbouring conspecific density 

limits population size. I found significant changes in spatial structure since the 

1980s, with population sizes dependent on neighbouring conspecific density over a 

much larger distance than previously noted for northern gannets, which have almost 

doubled their population in the study area, but over much shorter distances than 

previously identified for shags and kittiwakes, whose populations have greatly 

declined. For puffins, whose population has remained relatively unchanged, 

structuring occurred over the same distance as before. My results provide strong 

support for the limiting effect of competition between conspecifics breeding in 

adjacent colonies. 
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3.1. Introduction 

The relative importance of different factors regulating seabird population sizes has 

been hotly debated for well over 50 years (Rowan, 1965, Cairns, 1992, Gaston et al., 

2007). Potential factors include parasitism or disease (Duffy, 1983, Mangin et al., 

2003); intra-specific competition for food between sympatric breeders (Storer, 1952, 

Ashmole, 1971); availability of suitable nesting habitat (Thompson and Furness, 

1991, Kildaw et al., 2005) and density-dependent winter mortality (Lack, 1966, 

Lack, 1968), or density-independent mortality, i.e. through food availability. All but 

the last of these factors are made more acute because seabirds are generally colonial 

breeders. Clearly therefore, there must also be benefits associated with coloniality, 

including information transfer, predator avoidance and access to mates (Birkhead, 

1977, Clode, 1993). Of the potentially limiting factors, competition for prey among 

sympatric conspecifics has received most attention; it has been shown that the 

foraging range of breeding seabirds is positively related to population size in a wide 

range of marine biomes and in species with different foraging strategies e.g. Adélie 

penguins Pygoscelis adeliae, northern gannet Morus bassanus, common guillemot 

Uria aalge, thick-billed guillemot Uria lomvia, lesser noddy Anous minutus and 

sooty tern Onychoprion fuscatus (Lewis et al., 2001, Davoren et al., 2003a, Ballance 

et al., 2009, Elliott et al., 2009). This implies that parental foraging effort increases 

and brood provisioning rates decrease with increasing population size, placing a 

density-dependent limitation on breeding success and therefore population growth 

(Lewis et al., 2001, Davoren et al., 2003a, Ballance et al., 2009, Elliott et al., 2009). 

It is less clear what effect competition between breeders from neighbouring colonies 

(i.e. neighbouring conspecifics) has on population size. Furness and Birkhead (1984) 

found that in four species of UK breeding seabirds (northern gannet, Atlantic puffin 

Fratercula arctica, European shag Phalacracorax aristotelis and black-legged 

kittiwake Rissa tridactyla; hereafter gannet, puffin, shag and kittiwake), population 

size was strongly and negatively correlated with the number of conspecifics breeding 

in neighbouring colonies. The spatial scale (i.e. the distance within which colonies 

were considered neighbours) over which these relationships were strongest varied 

between species (gannets 100 km; puffins, 150 km; shags 30 km; and kittiwakes 40 

km). This variation was thought to reflect inter-specific differences in foraging 

ranges and was therefore taken as evidence that competition for food between birds 
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from adjacent colonies limits population size (Furness and Birkhead, 1984). 

However, nesting habitat constraints have also been found to contribute to spatial 

structuring of population sizes in a number of species (Forbes et al., 2000). Indeed, 

Cairns (1989) suggested that colony location is limited by geology and topography, 

and that population size is then a function of foraging habitat available from those 

locations. To date, no study has tested between these competing hypotheses. 

However, if the spatial relationships found by Furness and Birkhead (1984) were due 

mainly to geology, they would be expected to remain unchanged regardless of 

overall population size, since topographical features change at a far slower rate than 

seabird populations. 

Seabird populations in the British Isles have shown contrasting trends over 

the past 30 years (JNCC, 2011). I take advantage of this opportunity to determine 

whether relationships shown by Furness & Birkhead (1984), between population size 

and numbers of conspecifics breeding at neighbouring colonies (hereafter, 

neighbouring conspecific density), have changed in response to population change. 

Foraging range increases with population size (Lewis et al. 2001; Elliott et al. 2009; 

but see Chapter 2). Therefore, the hypothesis that neighbouring conspecific 

competition limits population size implies that in a growing population, the negative 

relationship between population size and neighbouring conspecific density will 

become stronger at larger spatial scales. Conversely, if population size decreases, the 

spatial scale at which the relationship is strongest will decrease. Such changes would 

not be seen if population size were limited solely by breeding and foraging habitat 

availability sensu Cairns (1989). Of the four species included in Furness and 

Birkhead’s (1984) analysis, recent count data indicate that the gannet population has 

increased, the kittiwake and shag populations have declined and the puffin 

population has remained relatively unchanged (JNCC, 2011). Here I show 

concomitant changes in the scales at which population size is related most strongly 

to neighbouring conspecific density, providing strong support for the hypothesis that 

competition between conspecifics from neighbouring colonies plays an important 

role in regulating seabird population sizes. 
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3.2. Methods 

In their original study, Furness and Birkhead (1984) analysed gannet population 

sizes (apparently occupied sites) estimated during the 1970s (Nelson, 1978, Murray, 

1981, Dennis, 1979-83), puffins in the early 1970s (Harris, 1976), shags in 1969/70 

(Cramp, 1974) and kittiwakes in 1982 (Richardson, 1983) (Fig 3.1). In order to 

examine the effects of overall population changes I compiled recent population count 

data for each of these species following the same protocols as Furness and Birkhead 

(1984). Population count data for gannets were for the 2003/04 census from Wanless 

et al. (2005), count data for the other three species were from Mitchell et al. (2004) 

and the Seabird 2000 census counts in 2000/01 from the JNCC Seabird Monitoring 

Program online database (http://jncc.defra.gov.uk/smp/). I used the same core colony 

areas as Furness & Birkhead (1984): i) gannet colonies throughout the British Isles 

and Republic of Ireland, excluding the Channel Islands, ii) puffin colonies of  > 1000 

pairs in Scotland north of 57°30’N, iii), shag colonies of ≥ 40 pairs in Orkney and 

Shetland and iv) all kittiwake colonies in Shetland (Fig 3.2).  Furness and Birkhead 

(1984) did not consider gannet colonies established after 1960, regarding them to be 

“too young to have increased beyond a very small number of pairs”. Similarly I 

include only colonies established before 1990.  For each species I calculated the 

overall percentage change at each colony between the count used by Furness & 

Birkhead (1984) and the contemporary count data. In addition, because gannet 

colonies have been counted approximately every decade, I was also able to examine 

counts for this species using data from 1984 (Murray and Wanless, 1986, Lloyd et 

al., 1991) and 1994 (Murray and Wanless, 1997, Mitchell et al., 2004).  
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Figure 3.1. Locations of seabird colonies used in the Furness and Birkhead (1984) 

analysis a. Gannets (all colonies in the British Isles and southern Ireland) in the 

1970s, b. Puffins breeding in the UK, north of 57°30’N (1969-75), c. Shags breeding 

in Orkney and Shetland (1969-70) and d. Kittiwakes breeding in Shetland in 1982. 

Symbols are proportional to population size (number of pairs). Grey symbols are 

established colonies. Black symbols indicate very small or newly established 

colonies. Colony codes refer to Table A.1 in Appendix A. 

 

54 
 



 

 
  

 
 

 

Figure 3.2. Locations of seabird colonies used in the update of the Furness and 

Birkhead (1984) analysis a. Gannets (all colonies in the British Isles and southern 

Ireland) in 2003/04, b. Puffins breeding in the UK, north of 57°30’N in 2000/01, c. 

Shags breeding in Orkney and Shetland in 2000/01 and d. Kittiwakes breeding in 

Shetland in 2000/01. Symbols are proportional to population size (number of pairs). 

Grey symbols are established colonies. Black symbols indicate very small or very 

newly established colonies. Colony codes refer to Table A.1 in Appendix A. 
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For comparison with Furness and Birkhead (1984), I tested for correlations 

(Pearson’s r ) between population size and neighbouring conspecific density (i.e. 

number of conspecific pairs breeding at neighbouring colonies within the species’ 

maximum putative foraging range, obtained using the census counts described 

above). I used four, five, seven and six distances within the putative foraging range 

of gannets, puffins, shags and kittiwakes respectively. I also examined this 

relationship within the putative foraging distances using linear models. The 

additional counts of gannet colonies enabled me to compare relationships between 

population sizes and neighbouring conspecific density during the 1980s (Murray and 

Wanless, 1986, Lloyd et al., 1991) and 1990s (Murray and Wanless, 1997, Mitchell 

et al., 2004).  

None of the species considered routinely fly over land. Hence, throughout my 

analysis, distance refers to the shortest distance by sea. Putative foraging ranges were 

the average and maximum foraging ranges recently estimated for each species using 

tracking technology (Harris et al., 2012, Thaxter et al., 2012). The earlier count data 

were also analysed as described above to ensure the results from Furness & Birkhead 

(1984) could be replicated. Population sizes and number of neighbouring 

conspecifics were square-root transformed to be proportional to the putative density 

of birds at sea (Furness and Birkhead, 1984, Lewis et al., 2001) and to improve 

normality. Following the previous study, I used permutation tests to determine 

whether the observed correlations could have occurred by chance. I randomly 

relabelled colonies 1000 times for each species and time period considered, 

calculating the correlation coefficient at each permutation. I then compared observed 

correlation coefficients with the null distribution using Wilcoxon signed-rank tests. 

In addition, I used semi-variograms (Cressie, 1993) to examine spatial 

autocorrelation within observed population sizes and the linear model residuals. 
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3.3. Results 

Between the late 1970s and the early 2000s all of the original gannet colonies 

increased in size and six new colonies were established prior to 1990 (Fig 3.3). 

Overall, the gannet population in the study area nearly doubled (92% increase) 

during this period. Of the 15 puffin colonies that were larger than 1000 pairs in the 

early 1970s, 9 decreased and 6 increased in size by the early 2000s (Fig 3.4). A 

further 7 were newly established or grew to greater than 1000 pairs. However, there 

was little change in the overall numbers of puffins in the study area during this 

period (net 5% decrease). 

Of the 33 shag colonies studied, 22 decreased in size while 5 increased. An 

additional 6 colonies were established or grew to > 40 pairs (Fig 3.5). Overall, the 

breeding population of shags in Orkney and Shetland decreased by 47%. All 22 of 

the Shetland kittiwake colonies studied decreased in size between the 1981 and 2000 

censuses and no new colonies were established. Overall, the breeding population 

decreased by 69% (Fig 3.6).  
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Figure 3.3. Size of gannet colonies (square-root pairs) in the British Isles in the 

1970s (light grey bars), 1984/85 (medium grey bars), 1994/95 (dark grey bars), and 

2003/04 (black bars). This includes 6 colonies established prior to 1990 and not 

included in the analysis by Furness and Birkhead (1984) (Fair Isle, Foula, Flannan 

Isles, Troup Head, Ireland’s Eye and Bempton Cliffs). The percentage increase at 

each colony between the 1970s and 2003/04 is shown above each bar. 
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Figure 3.4. Size of puffin colonies (square-root number of pairs) north of 57°30’N in 

the early 1970s (grey bars), and in the Seabird 2000 census (black bars). This 

includes 7 colonies that established or grew to greater than 1000 AOS since the 

analysis by Furness and Birkhead (1984) (The Nev to Kame, NW Yell, SW Unst, 

Boddam to Collieston, Melvich, Saxavord-Norwick Herda and Scarfi Taing to Noup 

of Noss). The percentage difference between counts is shown above each bar. 
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Figure 3.5.  Size of shag colonies (square-root number of pairs) in Shetland and 

Orkney in 1969/70 (grey bars), and in the Seabird 2000 census (black bars). This 

includes 6 colonies that were established or grew to greater than 40 pairs since 

1969/70 (Bressay, Holm, Mousa, Out Skerries, Shapinsay and Noness). The 

percentage difference between counts is shown above each bar. 
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Figure 3.6.  Size of kittiwake colonies (square-root number of pairs) in Shetland in 

1982 (grey bars), and the Seabird 2000 census (black bars). The percentage 

difference between these counts is shown above each bar. 
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Semi-variograms generally showed evidence for negative spatial autocorrelation in 

population size over short distances and positive autocorrelation at larger distances 

(see figures B.1. – B.4. in Appendix B). 

The distance at which population size best predicted neighbouring 

conspecific density has changed with time (Table 3.1, Fig. 3.7). Randomisation tests 

showed that, with one exception, these results were unlikely to have occurred by 

chance (Wilcoxon assigned rank test, p <0.05, Table 3.1, Fig 3.8). For gannets, the 

relationship was no longer significant within a range of ≤ 150 km, but became 

significant over greater ranges (200 km; b = - 0.5491, P<0.01: 300 km; b = -0.6454, 

P<0.001). For puffins, while the smallest range gave a similar result to the original 

study, there was no longer a significant association between population size and 

number of neighbouring conspecifics at the two largest ranges. The correlation 

within the 150 km range was less significant than previously found (Table 3.1). For 

shags, there was no longer a significant relationship at distances between 30 and 60 

km. Only the relationship at the smallest distance considered (20 km) was significant 

(Table 3.1). Finally, for kittiwakes there was still no significant relationship between 

population size and the number of neighbouring conspecifics within the three largest 

distances. Although population size correlated with neighbouring conspecific density 

at 40 km, the permutation test showed that this result may have arisen by chance 

(Table 3.1). However, the relationship remained significant at the 20 km and 30 km 

ranges.  
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Table 3.1. Correlation between square-root population size and square-root number 

of conspecifics breeding at other colonies within putative foraging range for four 

species of seabird breeding in the UK, with varying population trends. Correlations 

are shown for population sizes estimated in the 1970s and the 2000s. For each 

species and time period, the spatial scale(s) with the strongest relationship is 

highlighted in bold. 

Time period 
 

1970s 
 

2000s 
 

Species 
(trend) 

Range 
(km) 

Mean no. 
colonies  Correlation P 

Mean no. 
colonies  Correlation P 

Gannet 
Increased 

100 0.8 -0.92 <0.001 1.0 -0.36 NS 
150 0.8 -0.92 <0.001 1.3 -0.44 NS 
200 1.0 -0.47 NS 2.3 -0.55 <0.01 
300 1.8 -0.51 NS 3.8 -0.76 <0.001 

Puffin 
Unchanged 

50 0.7 -0.56 <0.05 2.3 -0.46 <0.05 
100 2.5 -0.81 <0.001 4.1 -0.43 NS 
150 4.9 -0.88 <0.001 6.6 -0.56 <0.05 
200 6.6 -0.74 <0.001 7.8 -0.2 NS 
250 9.0 -0.58 <0.05 9.7 -0.04 NS 

Shag 
Declined 

20 2.0 -0.45 <0.05 1.8 -0.55 <0.01 
30 3.5 -0.54 <0.01 2.7 -0.13 NS 
40 4.9 -0.48 <0.05 3.7 -0.11 NS 
50 6.4 -0.58 <0.01 4.5 -0.10 NS 
60 7.2 -0.66 <0.001 5.6 -0.07 NS 
70 8.1 -0.32 NS 6.1 -0.08 NS 
80 9.3 -0.24 NS 7.9 0.08 NS 

Kittiwake 
Declined 

20 1.5 -0.55 <0.01 1.5 -0.49 <0.01 
30 3.3 -0.49 <0.05 3.3 -0.47 <0.05 
40 4.9 -0.67 <0.001 5.3 -0.49 <0.05+ 

60 8.8 -0.36 NS 9.2 -0.13 NS 
80 11.7 -0.32 NS 12.6 0.10 NS 
100 14.5 -0.08 NS 15.6 0.10 NS 

 

+ indicates randomisation test showed correlation not significant at α = 0.05 level   
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Figure 3.7. Strongest significant relationships between population size of and 

number of conspecifics breeding at neighbouring colonies within putative foraging 

range for a. gannets, (range = 300 km); b. puffins (range = 150 km); c. shags (range 

= 20 km); and d. kittiwakes (range = 20 km). 
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Figure 3.8. Observed Pearson’s correlation coefficient (red dotted line) in relation to 

the null distribution generated by carrying out 1000 permutations of population 

sizes, for the ranges within which the strongest significant relationships were found 

between population size and number of conspecifics breeding at neighbouring 

colonies for a. gannets, (range = 300 km); b. puffins (range = 150 km); c. shags 

(range = 20 km); and d. kittiwakes (range = 20 km). 
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For gannets, analysis of intermediate population counts (from 1984/85 and 1994/95) 

showed that the range over which a significant relationship occurred became 

progressively larger as the population grew (Table 3.2, Fig 3.9). These relationships 

also became stronger for the greater range size, whereas the significant negative 

correlations between population size and neighbouring conspecific density became 

weaker in the smaller range groups until they were eventually non-significant in the 

most recent count (Table 3.2, Fig 3.9). Again, randomisation tests showed that these 

results were unlikely to have occurred by chance (Wilcoxon assigned rank test, p 

<0.05), apart from the correlation within the 300 km distance range using the 

1984/85 population counts and within the 200 km distance range using the 1994/95 

population counts. These were not significantly different from the null distribution of 

coefficients generated by permutation (Table 3.2). 

 

Table 3.2.  Correlations between square-root gannet population size and square-root 

number of conspecifics breeding at other colonies within specific putative foraging 

ranges, in 4 separate census counts; including 1970’s, used by Furness and Birkhead 

(1984); 1984/5; 1994/5 and 2004.  

Count n 
Range 
(km) 

Mean no. of 
colonies  Correlation P 

1970s 
(Furness and 

Birkhead, 1984) 
12 

100 0.8 -0.92 <0.001 
150 0.8 -0.92 <0.001 
200 1 -0.47 NS 
300 1.8 -0.51 NS 

1984/5 
(Murray and 

Wanless, 1986, 
Lloyd et al., 1991) 

14 

100 0.9 -0.75 <0.01 
150 1 -0.72 <0.01 
200 1.3 -0.39 NS 
300 2.1 -0.48 <0.05+ 

1994/5 
(Murray and 

Wanless, 1997, 
Mitchell et al., 

2004) 

16 

100 1.1 -0.66 <0.01 
150 1.4 -0.65 <0.01 
200 2.0 -0.46 <0.05+ 

300 3.0 -0.56 <0.01 

2003/4 
(Wanless et al., 

2005) 
18 

100 1 -0.36 NS 
150 1.3 -0.44 NS 
200 2.3 -0.55 <0.01 
300 3.8 -0.76 <0.001 

+ indicates randomisation test showed correlation not significant at α = 0.05 level   
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Figure 3.9. Changes over three decades in the relationship between square-root 

gannet population size and square-root number of pairs at neighbouring colonies 

within specified distances: a.100 km; b. 150 km; c. 200 km; and d. 300 km. 

Relationships for 1970s (solid black symbol, solid black line), 1980s (open black 

symbol, dashed black line), 1990s (open red symbol, dashed red line) and 2000s 

(solid red symbol, solid red line). 

 

 

Semi-variograms of linear model residuals showed that the models accounted for 

most negative autocorrelation in the data but unexplained positive autocorrelation 

remained unaccounted for in some species (see figures B.5. – B.14. in Appendix B). 
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3.4. Discussion 

My results support the hypothesis that seabird population sizes are regulated in part 

by competition for food with conspecifics breeding at adjacent colonies. Assuming 

that competition is proportional to population size and thus that there is a positive 

relationship between foraging range and population size (Storer, 1952, Ashmole, 

1963, Lewis et al., 2001, Elliott et al., 2009), I predicted that as population sizes 

change so do the foraging ranges of colony members, thereby altering the scale of 

dependency between population size and competition with neighbouring 

conspecifics. My results support this prediction such that the distance at which the 

negative relationships between population size and number of neighbouring 

conspecifics were strongest shifted in line with population change. This was the case 

for all four species considered, which had experienced contrasting population trends 

over the study period. The study species also use a range of different foraging 

strategies e.g. foot-propelled and wing-propelled pursuit-divers (shags and puffins 

respectively), plunge and surface divers (gannets) and surface feeders (kittiwakes). 

They also variously exploit near shore (shags), offshore (puffins and kittiwakes) and 

pelagic (gannets) habitats. The importance of neighbouring conspecific competition 

appears to be a general feature of many colonially breeding seabirds. 

For puffin colonies, which were relatively unchanged over the study period, I 

found the strongest negative relationship between population size and neighbouring 

conspecific density within the same range (150 km) in both the 1970s and 2000/01. 

Information on foraging ranges from bio-logging for this species is extremely limited 

but suggests that the maximum for this species is 100 to 200 km, although most birds 

probably forage closer to the breeding colony (Harris et al., 2012, Thaxter et al., 

2012). For shags and kittiwakes, where populations decreased in size substantially, I 

found shifts towards stronger relationships at shorter putative foraging ranges. For 

example in shags, only the 20 km range gave a significant correlation for the 

2000/01 counts, in-keeping with recent information on the foraging ranges of this 

species, maximum generally < 20 km (Thaxter et al., 2012). The negative 

correlations at larger ranges in count data for the 1970s were likely due to the larger 

populations at that time inferring more intense intra-specific competition and likely 
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greater foraging ranges, although there are no independent direct data on foraging 

range to check this. 

 Over the 30 years covered by the study there was almost a twofold 

population increase in the UK gannet population. For this species large amounts of 

direct data on foraging ranges are available and there is increasing evidence of 

competition at the colony level resulting in density-dependent foraging behaviour 

(Lewis et al., 2001 and chapter 4). Such positive relationships between foraging 

range and population numbers have been found to hold across seasons, even under 

varying feeding conditions (chapter 2).  My results imply that this has increased the 

scale over which intra-specific competition with neighbours limits population 

growth. Whereas Furness and Birkhead (1984) found significant correlations 

between population size and neighbouring conspecific density within the smaller 

ranges tested (100 km and 150 km), this is no longer the case. More recent 

population counts show strong correlations between population size and the number 

of neighbouring conspecific pairs within larger ranges (200 and 300 km). These 

accord well with distances recorded using tracking technology in the late 1990s and 

2000s, i.e. mean and mean maximum foraging range of individuals estimated at 93 

km and 229 km respectively (Hamer et al., 2007, Thaxter et al., 2012).  

The positive autocorrelation remaining in the models for some species is 

likely a result of similar foraging and breeding conditions experienced by certain 

clusters of colonies, however this would not have an effect on these results. It is also 

likely that there is regional variation in population trends. For three of the species 

studied here (puffins, shags and kittiwakes), only limited parts of the overall 

breeding range were considered. It is therefore possible that more complex patterns 

of change and regulation may be apparent at larger spatial scales. Further work is 

now required to explore such spatial patterns and relationships. The possibility of 

negative correlations occurring by chance if all colonies were included within the 

maximum range tested could also be considered a limitation of this study. However, 

this was countered by the use of permutation tests, which found that these results 

were highly unlikely to have occurred by chance, apart from very few instances. 

Taken together, my findings provide little support for the hypothesis that population 

size is limited by availability of breeding habitat alone. 
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Although the locations of seabird colonies have changed very little over the last 30 

years, there is evidence of shifting distributions of ocean productivity (Richardson 

and Schoeman, 2004, Behrenfeld et al., 2006). It is thus possible that the usage of 

marine areas by breeding seabirds may also have changed. Lags between changes in 

foraging conditions and seabird population dynamics also potentially mean that these 

results are likely to have been affected by changes occurring several years 

previously. However, I show here that neighbouring seabird colonies are non-

independent. Along with other factors contributing to population size and 

distribution, such as nest site availability (Kildaw et al., 2005), local prey availability 

(Kitaysky et al., 2010) and winter mortality (Lack, 1968), competition between 

neighbouring conspecifics has been found sufficient to limit population size, and is 

therefore likely to be intense. Indeed, if one colony is lost due to either 

anthropogenic or natural processes, neighbouring colonies would be expected to 

grow. This competition between neighbouring colonies may also be sufficient to 

mediate spatial segregation of feeding grounds during the breeding season, in order 

to reduce such competition between neighbouring colonies (Cairns, 1989, Grémillet 

et al., 2004, Wakefield et al., 2011). As such, processes occurring during the 

breeding season play a role in the limitation of seabird populations. This has 

conservation implications, whereby foraging areas as well as colonies require 

protection, potentially in the form of Marine Protected Areas (Lascelles et al., 2012, 

Grecian et al., 2012).  

While this study focuses on seabird colonies, all of these factors are also 

likely to be of relevance to the population regulation of other colonial central-place 

foragers, including other colonial birds (Lack, 1968, Butler, 1994, Soutullo et al., 

2006), mammals (Robson et al., 2004, Zahn et al., 2006), reptiles (Trillmich and 

Trillmich, 1984, Doody et al., 2009) and invertebrates (Adams and Tschinkel, 2001, 

Billick, 2001).  
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Chapter 4: Annual variation in foraging ranges and fine-scale 
foraging behaviour of northern gannets 

 

 

 

Abstract 
Marine ecosystems are changing in response to natural and anthropogenic pressures. 

The distribution of primary productivity, which influences higher trophic level 

production, including the distribution of demersal fish, is thought to be altering in 

response to climate change. Hence, climatic effects can impact on marine top 

predators, such as seabirds. In this chapter, I use northern gannets Morus bassanus as 

a model species to investigate the extent to which wide-ranging seabirds can respond 

to changes in prey availability by altering their diet, foraging range and fine scale 

foraging behaviour. 

I combine published data on the foraging movements and diet of northern gannets 

breeding on Bass Rock in 1998, 2002 and 2003, with diet and GPS tracking data I 

collected in 2010 and 2011, to determine the flexibility in the foraging behaviour of 

gannets during this period. Prey captured by chick-rearing adults varied between 

years, with mackerel replacing sandeels as the predominant species in the latter two 

seasons. Foraging trips in 2010 and 2011 were significantly shorter, both in distance 

and time, compared to those in the late 1990s and early 2000s. In addition, in 2011, 

birds made a higher proportion of V-shaped dives as distances from the colony 

increased. Together, these findings support models of foraging based on prey 

depletion around seabird colonies, implying that gannets can avoid competition in 

response to prey scarcity by foraging further from the colony. Birds also expressed 

flexibility in the frequency of Area Restricted Search (ARS) behaviour and dive rates 

outside ARS zones. Hence, flexibility in diet, habitat use and aspects of finer scale 

foraging behaviours may buffer this species against environmental change. 
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4.1. Introduction 
 

Marine ecosystems are changing as a result of multiple environmental pressures 

(Richardson and Schoeman, 2004, Behrenfeld et al., 2006, Worm et al., 2006). For 

example, increases in sea surface temperature, as a result of climate change, have 

been shown to be associated with marked changes in the abundance and distribution 

of phytoplankton and zooplankton (Richardson and Schoeman, 2004, Kirby et al., 

2008). Due to tight trophic coupling, changing sea-surface temperatures influence 

the spatial distribution and abundance of higher trophic level pelagic production 

(Lenoir et al., 2010). For example, the latitudinal or depth distribution of demersal 

fish in the North Sea has altered in response to temperature increases over recent 

decades (Perry et al., 2005). Such changes may occur gradually over long periods of 

time, i.e. decades, or over much shorter periods, even annually between years 

(Beaugrand et al., 2003, Rindorf and Lewy, 2006). These effects, along with the 

impacts of industrial and commercial fishing (Hjermann et al., 2004, Camphuysen, 

2005, Österblom et al., 2006), which may act synergistically, can therefore be 

propagated along food chains and impact on the breeding success of top predators 

such as seabirds (Furness and Tasker, 2000, Rindorf et al., 2000, Furness, 2002, 

Davis et al., 2005, Furness, 2007). 

In periods of poor prey availability, wide-ranging higher predators may 

respond by shifting their foraging distributions. For example, seabirds may forage 

further away from their colonies (Pinaud et al., 2005b, Weimerskirch and Lecorre, 

2006, Cresswell et al., 2008). Generalist predators may also respond by altering their 

diets (Barrett and Krasnov, 1996, Montevecchi and Myers, 1996, Votier et al., 2004). 

This flexibility potentially buffers against environmental variability (Hamer et al., 

2006b, Hamer et al., 2007). In addition to mesoscale shifts (ca. 102 km; Haury et al. 

1977) in foraging ranges of wide-ranging species (Fritz et al., 2003, Hamer et al., 

2007, Burke and Montevecchi, 2009, Garthe et al., 2011), relationships can also be 

found at finer or coarse scales, of ca. 10 m - 100 km (Haury et al., 1977), between 

the movements of marine predators and areas of higher marine productivity (Pinaud 

and Weimerskirch, 2007, Bost et al., 2009, Raymond et al., 2010). Many species 

have been found to adopt area-restricted search (ARS) behaviour at finer spatial 

scales, often associated with zones of higher productivity, such as mixing fronts and 
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upwellings (Pinaud et al., 2005a, Hamer et al., 2009, Scheffer et al., 2010). For 

example, gannets tracked from the Bass Rock colony in 2003 were found to exhibit 

ARS in the vicinity of a small scale, shelf-sea mixing front (Hamer et al., 2009). 

Examination of such fine-scale foraging behaviour as ARS, whereby predators adjust 

movement in response to environmental cues or prey density, can therefore indicate 

key foraging locations (Fauchald and Tveraa, 2006, Pinaud and Weimerskirch, 

2007). Patterns of ARS have been considered to be possible characteristics of the 

species studied or the habitat in which they subsist (Pinaud and Weimerskirch, 

2007), and thought unlikely to be greatly affected by the conditions experienced on 

feeding grounds. However, as predators have been found to adjust their movements, 

reflecting the scale of the habitat patches they exploit (Fauchald and Tveraa, 2006), 

more investigation is required to examine finer scale search strategies under varied 

conditions.  

The ongoing development of global positioning systems (GPS) technology 

has made it increasingly possible to track species’ spatial responses to environmental 

change (Markones et al., 2010, Garthe et al., 2011, Schwemmer and Garthe, 2011). 

The northern gannet provides a good model species for this type of study. It is large 

and therefore capable of carrying devices. It is also a generalist and wide-ranging 

species (Hamer et al., 2007). There are also synoptic environmental data available, 

which aid the estimation of foraging conditions experienced by these birds, such as 

sea-surface temperatures and chlorophyll-α concentrations, as well as information on 

prey stocks (ICES, 2012). Published data on the foraging movements and diet of 

northern gannets breeding on Bass Rock during the 1998, 2002 and 2003 breeding 

seasons indicate that chick-provisioning adults forage over a large area of the North 

Sea, with mean foraging ranges of ca. 230 km, and exploit a wide variety of prey 

species (Hamer et al., 2000, Hamer et al., 2007, Hamer et al., 2009). In this chapter, I 

combine these data with data I collected in 2010 and 2011 to describe how gannets 

adjust their foraging behaviour, including both larger and finer scale movements, in 

response to environmental change over a fourteen year period. I assume that 

variation in prey availability is approximated in part by variation in winter sea-

surface temperature and summer chlorophyll-α concentrations (Beaugrand et al., 

2003, Wegner et al., 2003, Behrenfeld et al., 2006, Jansen and Gislason, 2011).  
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By comparing trip durations, feeding locations and fine-scale foraging 

patterns between years, I describe how the foraging behaviour of a flexible, 

generalist predator responds to prey abundance and distribution. I predicted shorter 

foraging trips in years when conditions were more favourable. I also aimed to use the 

dive activity data from the latest season to test the theory of greater competition for 

food closer to the colony, resulting in an annulus of prey forming around the colony. 

I predicted that dive profiles would alter as distance from the colony increases, with 

more U-shaped dives (see materials and methods) closer to the colony, indicative of 

underwater pursuit and thus greater competition closer to the colony (Davoren et al., 

2003b, Elliott et al., 2009). Finally, I hypothesised that fine-scale foraging behaviour 

between the two years for which both high resolution GPS data and dive activity data 

were available, would vary under differing foraging conditions. If aspects of search 

behaviour were similar between years, they may be considered as characteristic of 

the species, or the environment they exploit. However, if this species shows 

flexibility in their finer scale behaviour, I would predict a higher occurrence of ARS 

behaviour during the year with apparently improved conditions, owing to more 

encounters with prey or environmental cues. 
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4.2. Materials and methods: 

 

4.2.1. Field site 

Fieldwork was carried out on Bass Rock, southeast Scotland (56°4.6’N, 2°38.3’W, 

Fig. 4.1), during the 2010 and 2011 breeding seasons (June – August). At the most 

recent count, this colony was estimated to contain 52,292 apparently occupied sites 

(AOS) in 2009 (Murray, 2011). Both the Tay estuary and the sandeel (Ammodytes 

marinus) fishing grounds of St Andrew’s Bay lay within ~50km north of the colony, 

while to the east lays Wee Bankie and to the south east the fishing grounds of the 

Farnes Deep (Fig. 4.1.). 

Zooplankton and phytoplankton biomass and recruitment of some fish 

species are known to have a negative relationship with sea-surface temperature 

(SST) in the preceding winter (O'Brien et al., 2000, Beaugrand et al., 2003, Wegner 

et al., 2003, Jansen and Gislason, 2011). Hence, a proxy for prey availability was 

developed based on the SST for each study season in the preceding winter 

(December-February). SST data over a 6 x 6° area containing Bass Rock were 

obtained from ICES  (http://www.ices.dk/ocean/data/surface/surface.htm), together 

with chlorophyll-α concentrations in this area during the summer (June-August 

inclusive) each year (http://www.ices.dk/Ocean/data.asp). Summary stocks biomass 

assessment data for key prey species known to be consumed by Bass Rock gannets 

(North Sea mackerel Scomber scomber, Norwegian spring-spawning herring Clupea 

harengus and sandeels Ammodytes marinus in the three regions for which data were 

available, Dogger Bank, central North Sea and southern North Sea) were obtained 

from the ICES stocks summary database (http://www.ices.dk/datacentre/StdGraph 

DB.asp). 
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Figure 4.1. Location of Bass Rock in the UK (red circle) and other gannetries within 

300 km (Troup Head: grey triangle; Bempton: grey square). Also shown are 

bathymetric features and fishing grounds mentioned in the text (blue flags). 

 

 

4.2.2. Diet 

Regurgitated prey items were collected opportunistically each year, either from 

chick-rearing adults during routine handling or from non-breeding birds disturbed in 

the colony. The proportion of species in these regurgitates did not differ between 

breeders and non-breeders. Samples from breeding birds were collected before 

chicks reached 10-11 weeks of age. Prey items were stored separately, frozen and 

returned to the laboratory, where I identified and weighed all samples (to the nearest 
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1g). Identification was based either on external morphology or sagittal otoliths and 

vertebrae (Härkönen, 1986, Watt and Boyle, 1997). Where possible, body lengths of 

prey items were measured to the nearest 1cm (1mm for sandeels). 

 

 

4.2.3. Satellite tracking 

The foraging movements of forty-nine chick-rearing adults were recorded in 2010. 

Of these, 22 were tracked for a second time in 2011, together with an additional 6 

birds (total sample size 28). Birds were caught at the nest using a pole fitted with a 

brass noose or hook. Only adults with chicks > 2.5 weeks were caught.  

In 2010, birds were fitted with either an IgotU GT-120 (mass 20 g) or an 

IgotU GT-200e GPS logger (37 g) (n = 13 and 45 respectively, 9 individuals being 

fitted with both consecutively). In 2011, birds were fitted with an IgotU GT-200e or 

an IgotU GT-600e GPS (37 g) logger (n = 22 and 6 respectively). Additionally, in 

2011, 22 birds were also fitted with a CEFAS G5 (2.7 g) or Modular Signal Recorder 

(MSR) 145 (18 g) time-depth recorder (TDR). Devices were attached with Tesa tape 

to the three central tail feathers, close to the base of the tail in order to minimise drag 

and prevent the tags being dislodged during plunge diving (Hamer et al., 2000). 

Birds were weighed (± 25 g) at capture to ensure that instrument mass did not exceed 

2% of body mass (2010 mean = 2.95 kg, SD = 0.3; 2011 mean = 2.97 kg, SD = 

0.21). 

GPS devices were set to record locations at either 2 or 10 minute intervals.  

G5 TDRs recorded pressure every hour until they came into contact with water, 

when they began recording at 10 Hz (0.1 sec). As gannets spend time sitting on the 

water surface without diving, G5 TDRs were programmed to log only 4 data points 

if the logger became wet but its depth did not exceed 1.5 m. Due to this set up and 

because the loggers being deployed on the tail rather than leg, landings involving 

only very shallow dives were not consistently registered. Therefore dives with just 4 

data points were removed from further analyses. MRS145 TDR loggers recorded 

pressure continuously at 1 Hz (1 sec). Devices were deployed for 1-2 weeks. 

Previous studies have found no discernible effect on the foraging or provisioning 
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behaviour of gannets equipped with such devices (Hamer et al., 2000, Hamer et al., 

2007). Each individual was also fitted with a metal BTO ring and plastic Darvic 

colour ring. Handling time to complete instrument deployment and recovery was < 

15 minutes. 

The utilisation distribution of birds at sea was estimated by calculating fixed 

kernel density (FKD) (Beisiegel and Mantovani, 2006), using Geospatial Modelling 

Environment (GME) in ArcGIS 10. The contours encompassing the 95% and 50% 

FKD estimates were considered to represent the area of active use, along with the 

core foraging area respectively. The farthest location recorded from the colony 

during each trip was defined as the trip destination, separating the outward and return 

legs. Trip durations were calculated as the period between the first recorded location 

after leaving the colony, and the first recorded location back at the colony (Hamer et 

al., 2000, Hamer et al., 2007). The total distance travelled on each trip was calculated 

as the sum of the distances between each consecutive position location.  For birds for 

which 3 or more consecutive trips were recorded, the percentage time spent foraging 

was calculated by dividing mean trip duration by mean trip duration plus the mean 

time spent at the colony between trips (Hamer et al., 2007). 

With gannets, there are strong linear relationships between trip duration, 

distance to trip destination and total distance travelled (Hamer et al., 2001, Hamer et 

al., 2007). Average speed over complete foraging trips was estimated as twice the 

slope of the linear regression of maximum distance against trip duration (speedb), 

and also the slope of the linear regression of total distance against trip duration 

(speedc, Hamer et al., 2007). Both measures of speed were calculated as these can 

vary depending on the sinuosity of tracks. For example, speed calculated using time 

taken to reach trip destination may appear slow if the route taken was highly sinuous, 

despite actual speeds over the total distance travelled being high. Using platform 

terminal transmitter (PTT) and GPS tracking data recorded previously (Hamer et al., 

2007), comparisons were made between the trips recorded in 1998, 2002 and 2003 

and those recorded in 2010 and 2011.  
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4.2.4. Fine scale foraging behaviour 

Foraging tracks where concurrent dive data were collected in 2011 (22 birds, 95 

complete tracks), were compared with data collected in 2003 (13 birds, 15 tracks, 

Hamer et al., 2009), to investigate fine-scale foraging behaviour. These were the 

only two years in which both high resolution GPS and concurrent dive data were 

recorded. 

First passage time (FPT) is defined as the time taken for an animal to cross a 

circle of a given radius, and is thus a measure of how much time an animal spends 

within a certain area (Fauchald and Tveraa, 2003). A highly sinuous path will have a 

high FPT, which is assumed indicative of Area Restricted Search (ARS) (Fauchald 

and Tveraa, 2003). To identify zones of ARS, I used the R packages ‘adehabitat’ and 

‘ade4’ to estimate FPT following Fauchald &Tveraa (2003). Prior to analyses, the 

data were made regular in space by spatially interpolating locations at 1 km intervals 

following Hamer et al. (2009), using the ‘ltraj’ and ‘redisltraj’ functions, to ensure all 

points along foraging tracks were equally spaced in distance rather than time 

(Fauchald and Tveraa, 2003, Pinaud, 2008). As gannets do not fly at night, but rather 

sit on the water when away from the colony (Hamer et al., 2000, Lewis et al., 

2002b), data points recorded during darkness hours were removed from this analysis, 

restricting it to hours of daylight (4:00-23:00 BST), to avoid artificially inflating the 

variance in FPT at small spatial scales (Weimerskirch et al., 2007).  

Following Hamer et al. (2009), FPT was calculated every 1 km for circles of 

radius r varying from 1 to 100 km. Variance in log(FPT) was then plotted against r. 

Log-transformation was used in order to ensure that the variance in FPT was 

independent of the magnitude of the mean (Fauchald and Tveraa, 2003).  A peak in 

the variance (S(r)) indicates the presence of ARS behaviour in a foraging trip and 

identifies the scale r at which the bird increases its search effort (Fauchald and 

Tveraa, 2003). I then identified when and where birds increased their search efforts, 

entering and leaving zones of ARS, by plotting FPT values at the scale at which peak 

variance occurred as a function of time elapsed since departure from the colony 

(Hamer et al., 2009). The area of each ARS zone was estimated by measuring the 

maximum distance between any two points within the zone as a measure of diameter 

(Hamer et al., 2009). Once these larger scale search areas were defined, FPT analysis 
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was repeated at a finer scale with r varying from 100 m to 10 km every 100 m, to 

identify nested zones of ARS within the previously defined zones.  

The timing, duration and depths of dives were calculated using custom 

scripts written in R. Dives were then classified into one of three types, V-shaped 

dives, U1 and U2 dives. These classifications were made using the following rules; if 

the bottom phase of the dive exceeded 2.7 seconds the dive was regarded as a U 

type. Otherwise, the dive was classified as a V-shaped dive. The U type dives were 

then further divided into U1 dives (those where the overall descent gradient > 1.5 

m/s), or U2 dives (overall descent gradient < 1.5 m/s), with an appreciable further 

wing-propelled descent following the initial steep dive (Ropert-Coudert et al., 2009). 

As there was a strong correlation between the durations and depths of dives (R2 = 

0.64, n = 6287, P < 0.001), only results for depths are presented.  

 

 

4.2.5. Data analyses 

All statistical analyses were carried out in R (R-Development-Core-Team, 

2011). To examine annual and individual variation in foraging behaviour while 

taking account of potential pseudoreplication of data, linear or generalised linear 

mixed effects models (LMEs or GLMMs) were used for analyses using the packages 

‘nlme’ and lme4’ respectively. Behavioural characteristics, including trip duration 

and distance to trip destination, were modelled as a function of single covariates - 

‘year’, and ‘sample size’, to compensate for difference in sample sizes, when testing 

for annual variation. ‘Bird identity’ was treated as a random effect, as multiple trips 

were recorded for a number of birds. Models were compared to a null, intercept only 

model, using likelihood ratio tests (Crawley, 2007), and the AIC value of each model 

attempted was retrieved to assess the model fit (Zuur et al., 2009) . 

Similarly, to investigate finer-scale foraging behaviour, GLMMs were run in 

order to determine whether there was a significant association between ARS scale 

(tested for normality and log-transformed before statistical tests) and the foraging 

trip characteristics: square-root trip duration, square-root maximum foraging range 

and square-root total distance travelled on trips. These were modelled as a function 
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of a single covariate – ‘Julian day’, and ‘bird identity’ was included as a random 

effect.  These models were also compared to a null model, using likelihood ratio tests 

(Crawley, 2007) and the AIC values retrieved to assess the fit of each model (Zuur et 

al., 2009). I also compare the frequency, locations and sizes of these zones of ARS, 

between those recorded in 2003 and 2011, using GLMMs including ‘year’ and 

‘sample size’ as fixed effects and ‘bird identity’ as a random effect.  

 

 

4.3. Results 

 

4.3.1 Environmental conditions 

Average winter sea-surface temperatures around Bass Rock prior to each breeding 

season, between 1998 and 2011 varied annually, with the highest temperature 

recorded prior to the 2002 season and coldest prior to the 2011 season (Fig. 4.2). 

Summer chlorophyll-a concentrations in the region also varied among seasons, with 

the lowest concentrations recorded in 2002 and the highest recorded in 2003 (Fig. 

4.3). 
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Figure 4.2. Mean sea-surface temperatures (°C) with associated standard errors, 

recorded in the 6° x 6° cell of the North Sea containing Bass Rock, during the winter 

(Dec-Feb) preceding each breeding season since 1998. Red markers indicate years 

during which tracking data were recorded and comparisons made; black markers 

indicate intermediate years. The horizontal dotted line indicates the mean winter sea-

surface temperature in this region across the fourteen year period. 
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Figure 4.3. Mean summer Chlorophyll-a (μg/l) concentrations with associated standard 

errors, recorded in the 6° x 6° cell of the North Sea containing Bass Rock, during 

chick-rearing (Jun-Aug) since 1998. Red markers indicate years during which 

tracking data were recorded and comparisons made; black markers indicate 

intermediate years. The horizontal dotted line indicates the mean summer 

Chlorophyll-a concentrations in this region across the fourteen year period. 

 

 

Abundance of fish stocks in the North Sea also fluctuated markedly among 

years (ICES, 2012, Table 4.1). The overall total biomass of sandeels in 2010 was 

36% and 19% greater than in 1998 and 2002 respectively, and over four times 

greater than in 2003 (Fig. 4.4). The total biomass of mackerel was highest in 2011 

(35%, 63%, 51% and 5% higher compared to 1998, 2002, 2003 and 2010 

respectively, Fig. 4.5), and the biomass of Norwegian spring spawning herring was 

greatest in 2003 (Table 4.1, Fig. 4.6).  
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Table 4.1.  Total biomass (tonnes) of three key prey species for northern gannets 

breeding in the UK, 1998 – 2010 (ICES, 2012).  

  Total biomass (tonnes) 
Species Region 1998 2002 2003 2010 2011 

Sandeel Dogger Bank 896,145 1,357,150 258,154 1,8054,150 693,689 
Central Eastern 
North sea 351,199 314,730 157,418 357,087 220,037 

SE North sea 601,971 305,851 133,060 561,655 267,917 
Mackerel Combined S, W 

and N North Sea 3,065,937 2,534,243 2,737,811 3,936,896 4,131,457 

Herring NE North Sea 
(Norwegian 
spring spawning) 

8,186,000 7,862,000 9,554,000 9,551,000 7,788,000 
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4.3.2. Diet 

Data from all years in which diet samples were previously recovered on Bass Rock 

were obtained from Hamer et al. (2007); these included 1998, 2002 and 2003, when 

226, 114 and 92 fish samples were collected respectively (Table 4.2). While 

mackerel made up the highest proportion of the diet samples in 1998 (30.8% of 

biomass), sandeel was the predominant species, both by frequency and biomass, in 

2002 and 2003 (55.1 and 51.5% of biomass respectively), constituting over half of 

all samples in each of these years (Table 4.2).  

In 2010, 77 individual fish from 42 regurgitate samples were identified. 

Mackerel was the predominant species, in terms of both biomass and by frequency of 

samples in which it was recorded. Furthermore, mackerel made up a higher 

proportion of the diet in 2010 than in any other year (Table 4.2). In contrast to other 

years, sandeels were entirely absent from the diet in 2010 (Table 4.2). Fewer 

regurgitate samples were obtained in 2011 (n = 19), with 31 individual fish 

identifiable. Of these, 13% were sandeels and 79% mackerel. A small number of 

sprat were also present (Table 4.2). The lengths of mackerel in the diet were 

significantly longer in 2010 than 2011 (2010: mean: 24.2 cm, SD = 5.9; 2011: 18.4 

cm, SD = 5.3; GLM: F1,42 = 9.8, P = 0.003).  
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4.3.3. Time spent at sea: 

In 2010 and 2011, 342 complete foraging trips (2010: n =199, 2011: n =143 were 

recorded by 55 individual birds (49 birds in 2010, 28 birds in 2011). The median 

number of trips recorded per bird was 3 (range: 1-12) in 2010 and 5 (range 1-14) in 

2011.  

Previous GPS tracking of gannets from Bass Rock showed marked annual 

variation in trip duration, with mean durations of 31.5, 40 and 25.9 hours recorded in 

1998, 2002 and 2003 respectively (Hamer et al. 2007, Table 4.3, Fig. 4.7). Mean trip 

durations for both 2010 and 2011 were shorter than all those recorded during any 

previously studied season (2010: mean = 23.9 h, SD = 12.5; 2011: mean = 20.7 h, 

SD = 10.8, Table 4.3, Fig. 4.7). There was a significant difference trip durations 

among years (GLMM: F1,421 = 57.7, p<0.001). Trip durations in 2010 and 2011 were 

shorter than those recorded in 2003 (average 25.9 h) by an average of 8% and 20% 

respectively (Fig. 4.7). Though trip durations in 2003 were not significantly longer 

than those recorded in 2010 (GLMM: F1,68 = 0.74, P > 0.05), they were significantly 

longer than trips recorded in 2011 (GLMM: F1,47 = 6.9, P <0.05, Fig. 4.7). Further 

detailed comparisons between seasons for which dive data were also recorded are 

made below (2003 and 2011, section 4.3.6).  Similar to Hamer et al. (2007), I found 

no significant difference in trip durations among individual birds within these latter 

studied seasons (GLM: F22,400 = 0.65, p = 0.88). Trip duration was significantly 

shorter in 2011 (20.7 ± 0.5 h) than in 2010 (23.9 ± 0.8 h; LME: F1,282 = 4.45, P = 

0.036).  
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Figure 4.7. Annual mean foraging trip durations (hours), with associated standard 

errors, recorded by gannets tracked from Bass Rock in 1998 (n = 14), 2002 (n = 13), 

2003 (n = 21), 2010 (n = 49) and 2011 (n = 28). 
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4.3.4.  Foraging ranges and distances travelled 

Similar to previous seasons, birds tracked in 2010 and 2011 ranged widely in the 

north-western North Sea. During both years, many trips were to deep water areas on 

Fladen Ground and the Farnes Deep, to the northeast and southeast of Bass Rock 

respectively. Shallower areas on the northern Halibut Bank and Wee Bankie were 

also used (Fig. 4.1). Trips in 2011 were more coastal (Fig. 4.8).  

The 95% utilisation distribution of birds in 2010 (60,200 km²) and 2011 

(53,600 km²) were 38% and 44% smaller than those in 1998 and 72% and 75% 

smaller than those in 2002 respectively (Table 4.3; Fig. 4.8). Despite shorter average 

trip durations in 2010 and 2011, the overall foraging ranges were larger than in 2003 

(by 31% and 17% respectively), possibly due to the faster travel speeds on average 

recorded during 2010 and 2011 (see section 4.3.5 below). The core foraging area 

(50% FKD) formed a much higher proportion of the home range in 2010 (0.49) 

compared to other years (1998: 0.11, 2002: 0.15, 2003: 0.09, 2011: 0.17, Fig. 4.8). 
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Figure 4.8. Utilisation distributions of 

chick-rearing gannets tracked in; A: 

1998, B: 2002, C: 2003, D: 2010, E: 

2011; including all foraging trip 

destinations each year marked by 

black diamonds. Grey scales indicate 

the extent of the isopleths 

encompassing 50% (dark grey), 75% 

(medium grey) and 95% (light grey) of 

recorded locations. Black circle: Bass 

Rock, Black square: Bempton Cliffs, 

Black triangle: Troup Head 
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The mean maximum distance reached on foraging trips was 198 km in 2010 and 134 

km in 2011, compared to 170.5 km in 2003. Similarly, the mean total distance 

travelled on foraging trips in 2010 (517 km) was longer than in 2003, but the mean 

total distance travelled in 2011 (388 km) was shorter than in either 2003 or 2010 

(Table 4.3). Both the maximum and total distances travelled on foraging trips were 

significantly shorter in 2011 than in 2010 (Max: 2010: 198.1 ± 7.3 km, 2011: 134.0 

± 11.2 km, GLMM: F1,283 = 18.45, P < 0.001; and Total: 2010: 524.5 ± 21.2 km, 

2011: 388.1 ± 19.8 km, GLMM: F1,283 = 11.57, P < 0.001, respectively). 

Considering data from all previous studied seasons, I found that the distances 

to trip destinations differed significantly between years (GLMM: F4,393= 12.6, p < 

0.01, Table 4.3), as did the total distance travelled on trips (LME: F4,393= 11.2, p < 

0.001, Table 4.3). However, I found no significant variation among birds within each 

year in either the distances travelled to trip destinations or total distances travelled 

(GLM: F21,375 = 1.19, P > 0.05 and GLM: F21,375 = 1.24, P > 0.05 respectively). 

 

 

4.3.5. Speed of travel 

Foraging trip data from the 5 study seasons combined showed a significant linear 

relationship between maximum distance reached from the colony (trip destination) 

and trip duration (Eq. 1: Max dist (km) = 6.01 (SE ± 0.26) x trip duration (h): F1,509 

= 537.8, P < 0.0001, R2 = 0.51). There was also a positive linear relationship 

between the total distance travelled on a trip and trip duration (Eq. 2: Total dist (km) 

= 16.97 (SE ± 0.65) x trip duration (h): F1,509 = 691.01, P < 0.0001, R2 = 0.58).  

Average speed during a trip was 12.02 (SE ± 0.5) km h-1 (twice the slope of 

Eq. 1), estimated using maximum distance from the colony (speedb), and 16.97 (SE 

± 0.7) km h-1 (the slope of Eq. 2), estimated using the total distances travelled 

(speedc). There was no difference between years in the slopes of the relationship 

between maximum distance and trip duration (GLM: F1,404 = 1.92, p = 0.17). 

However, unlike the study by Hamer et al. (2007), there was a difference in the slope 

of the relationship between total distance travelled and trip duration (GLM: F1,404 = 

4.72, p = 0.03). In 2010 and 2011, adults were recorded travelling faster on average 
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over the total distance travelled, encompassing all data fixes on a complete trip 

(speedc), compared to previous years (Table 4.3). Conversely, birds were found to 

have the lowest average travel speed when estimated using the distance from the 

colony to the trip destination (speedb), suggesting less direct flight paths were taken 

in these latter years, i.e. paths were more sinuous before the flight destination was 

reached.  

 

 

 

4.3.6. Area-restricted search behaviour 

Area restricted search behaviour was identified along foraging tracks recorded in 

2011, when concurrent dive activity data were also recorded. Of the 96 foraging trips 

that year, with accompanying dive data, 95 were found to include identifiable 

periods of ARS behaviour, comprising a total of 175 zones of ARS (Fig. 4.9.A). As 

indicated by the variation in FPT during each track, birds used between 1 and 4 

zones of ARS per trip (mean = 1.9, Fig. 4.9.A).  
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Figure 4.9. A. 175 zones of ARS (1-100 km) initiated on 95 foraging tracks in 2011, 

B. 25 zones of ARS (1-100 km), recorded by 13 birds in 2003, as indicated by open 

grey circles. The area of each circle indicates the area of each intensively searched 

zone. Black circle indicates the position of Bass Rock, black triangle indicates the 

position of Troup Head colony.  

 

 

In 2011, the mean spatial scale at which ARS behaviour was adopted was 

11.6 ± 0.81 km (range 2 - 69 km). The mean estimated area of ARS zones was 

therefore 422.7 ± 2.06 km2 (range 12.6 – 14,957.1 km2), and this differed 

significantly among individuals (GLM: F94,90 = 16. 2, P < 0.001). There was a 

significant positive relationship between log transformed ARS scale and trip 

durations that season (GLMM: P < 0.03, Table 4.4). Log transformed ARS scale also 

increased significantly with maximum foraging range (GLMM: P < 0.02, Table 4.5), 

but there was no relationship between ARS scale and the total distance travelled 

throughout trips (GLMM: P > 0.05). 
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Table 4.4. Summary table of the most parsimonious model describing the significant 

positive relationships between log-transformed ARS scale and trip duration (h) in 

2011, with bird identity as a random effect. 

Fixed effects: Estimate SE DF z-value p-value 
Intercept (Bird) 0.4708    0.1535  83 3.068    0.0022 * 
Trip duration (h) 0.0135    0.0058    83 2.308    0.0210 * 

 

 

Table 4.5. Summary table of the most parsimonious model describing the significant 

positive relationships between log transformed ARS scale and maximum foraging 

range (km) in 2011, with bird identity as a random effect. 

Fixed effects: Estimate SE DF z-value p-value 
Intercept (Bird) 0.4784  0.1414    83 3.383   0.00072** 
Max. range (km) 0.0019   0.0008    83 2.523  0.01164 * 

 

 

 

 

All 25 ARS zones recorded in 2003 were on the outward phase of foraging 

trips, before reaching the trip destination. In contrast, in 2011, 25 (14.2%) zones of 

ARS occurred on the inward phase of the foraging trip, when the bird was returning 

to the colony. There was no difference found in the scales of ARS zones between the 

two years (GLMM: P > 0.05). Zones of ARS were initiated significantly further from 

the colony in 2011 (GLMM: F1,32 = 0.52, P < 0.03). However, the distance between 

ARS zones and the coast was significantly shorter in 2011 compared to 2003 (2003: 

53.9 ± 5.4 km, 2011: 41.3 ± 3.4 km, GLMM: P < 0.001, Table 4.6), with a higher 

proportion of zones initiated within 50 km of the coast in 2011 (70%) compared to 

2003 (48%). 
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Table 4.6. Summary table of the most parsimonious model describing the significant 

difference in distance of ARS zones from the coast (km) between years (2003 and 

2011), with maximum foraging range of trip (km) included as a fixed effect and bird 

identity as a random effect. 

Fixed effects: Estimate SE DF z-value p-value 
Intercept (Bird) 1.25e+02   2.80e+01    200 4.459 8.23e-06 *** 
Foraging range (km) 3.46e-03   3.76e-04    200 9.200   < 2e-16 *** 
Year -6.16e-02   1.40e-02   200 -4.412 1.02e-05 *** 

 

 

4.3.7. Nested zones of ARS 

Only 18 of the 95 tracks during which ARS behaviour was initiated in 2011 included 

smaller areas of nested ARS (Fig. 4.10). These indicate where birds concentrate their 

search effort further, within the intensively searched areas. The 18 tracks during 

which nested ARS was recorded were made by just 9 birds, suggesting that some 

birds show a greater tendency to adopt nested ARS behaviour than others, or perhaps 

these birds encountered multiple adjacent concentrations of shoaling prey. Of the 

birds that exhibited nested ARS, an average of 3.4 smaller scale zones were recorded 

in larger scale zones. Altogether, 31 zones of nested search behaviour were recorded 

within 25 of the larger scale zones (14.2%). This is a substantially smaller proportion 

of larger zones found to include nested zones than in 2003 (60%).  

 The mean spatial scale of the nested ARS zones in 2011 was 4.4 ± 0.43 km 

(range 0.2-8.1 km), and the vast majority lay to the northeast of the Bass Rock (87% 

within 100 km and 74% within 50 km of the coast). I found a significant positive 

relationship between the scale of the nested ARS zone and trip duration (GLMM: P 

< 0.001, Table 4.7). However, there was no relationship between the nested ARS 

scale and either the maximum foraging range or total distance travelled (GLMM: P > 

0.05). Neither was there a significant relationship between the scale of the larger 

ARS zones and the nested ARS zones within them (GLMM: P > 0.05). 
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Table 4.7. Summary table of the most parsimonious model describing the significant 

positive relationships between nested ARS scale and trip duration (h) in 2011, with 

bird identity included as a random effect. 

Fixed effects: Estimate SE DF z-value p-value 
Intercept (Bird) 0.5764     0.2877    18 2.003 0.045152 *   
Year 0.0394     0.0112    18 3.537 0.000405 *** 

 

 

 

Figure 4.10. 31 zones of nested ARS behaviour (100 m – 10 km) 

found during 18 of the 95 foraging tracks (red circles), superimposed 

over all 175 zones of ARS (1-100 km) initiated on 95 foraging tracks 

recorded in 2011 (open grey circles). The area of each circle indicates 

the area of each intensively searched zone. Black circle: Bass Rock, 

black triangle: Troup Head. 
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4.3.8. Dive activity and zones of ARS 

In 2011, 6287 dive events by gannets foraging from Bass Rock were recorded (25 

birds, mean = 251 dives per bird). These were made up of 4213 V-shaped dives, 

1312 U1 dives and 762 U2 dives; 4457 were recorded with accompanying GPS 

locations, constituting 96 complete foraging tracks by 22 birds (mean = 203 dives 

per bird, mean = 46 dives per foraging trip). There was considerable variation in the 

dive duration and depth and also with respect to distance from the colony. For all 

dives, the mean dive duration was 7.8 s (SD = 6.3, range: 0.8 - 48.8 s), and the mean 

depth was 6 m (SD = 3.2, range: 1.5 - 27.8).  Dive type was significantly related to 

the distance from the colony (LME: F2,4275 = 76.57, p < 0.001), with U2 dives 

tending to occur closest to, V-shaped dives furthest away from and U1 dives at 

intermediate distances from the colony(Table 4.8).   

 

 

Table 4.8. Summary characteristics of the three dive types made by 22 northern 

gannets on 96 foraging trips from the Bass Rock during the 2011 breeding season. 

Dive type V 
(n = 4213) 

U1 
(n = 1312) 

U2 
(n = 762) 

Mean SD Mean SD Mean SD 
Proportion of all dives 
(%) 67.0 20.9 12.1 

Duration (s) 5.1 2.3 9.1 4.2 20.2 8.2 
Max. Depth (m) 5.3 2.3 5.4 2.0 11.3 4.2 
Distance from colony 
(km) 

109.6 77.8 83.9 62.5 67.6 48.0 
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The first dive of each trip was recorded on average, 35.8 ± 3.8 km from the colony, 

markedly closer in 2011 than in 2003 (53.9 ± 45.7 km). 40% of dives per trip were 

not in ARS zones, a greater percentage than in 2003 (27%, Hamer et al., 2009). All 

but 20 of the larger scale ARS zones (86%) included dives (2003: 92%). The 

majority of dives (76.7%) were on the outward phase of the foraging trip. 

 Average dive frequency was twice as high within zones of ARS (4.2 ± 0.46 h-

1) as outside these zones (2.1 ± 0.2 h-1) in 2011 (GLMM: P< 0.0001, Table 4.9). 

However, open dive frequency (dives initiated outside zones of ARS) was higher 

during 2011 than in 2003, when dive frequencies in ARS zones were 4 times higher 

than those outside in 2011 (2 times higher in 2003; Hamer et al., 2009).  

 

 

Table 4.9. Summary table of the most parsimonious model describing the significant 

difference in dive rates inside zones of area restricted search (closed) compared to 

those outside these zones (open dives) in 2011, with maximum foraging range (km) 

included as a fixed effect and bird identity as a random effect. 

Fixed effects: Estimate SE DF z-value p-value 
Intercept (Bird) 1.6959 0.1121   444 15.125   < 2e-16 *** 
Max. Range (km) -0.0027   0.0004   444 -7.084  1.4e-12 *** 
Zone (open) -0.6914   0.0558 444 -12. 383 < 2e-16 ** 
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4.4. Discussion 

Marine environments are dynamic and continuously altering in response to natural 

and anthropogenic pressures (Behrenfeld et al., 2006, Worm et al., 2006), and it is 

increasingly important to understand how the effects of these changes propagate 

along food chains to higher trophic level marine organisms. I have found that 

foraging characteristics of a top predator can act as an indicator of broad scale 

changes in environmental conditions and prey stocks, building on the evidence of 

past studies (Hamer et al., 2006b, Einoder, 2009, Pichegru et al., 2009). On average, 

foraging trips of gannets from Bass Rock in 2010 and 2011 were significantly 

shorter, both in distance and time, compared to trips recorded in the late 1990s and 

early 2000s. In spite of an overall increase in sea-surface temperature over the past 

decade (ICES, 2011), both the 2010 and 2011 breeding seasons followed winters of 

relatively low sea-surface temperatures and during both seasons, high concentrations 

of chlorophyll-α were recorded in the region. These conditions appear to have 

benefitted fish stocks in the wider region in the latter two seasons, particularly 

considering mackerel. In many cases, there are indirect links between top predators 

and climatic conditions which operate via the food chain. Thus it is also important to 

consider that there may be spatial and temporal lags in the trophic and mechanistic 

links between prey and climate (Wakefield et al., 2009), along with other drivers of 

prey densities such as commercial fisheries exploitation. Temperature may affect 

spawning and recruitment of key fish species that are important for predators in 

subsequent seasons. Future studies may therefore benefit from using stock 

assessments from previous years, or information on cohort strength based on age 

structures of key fish species.   

Annual variation in gannet diet during the chick rearing period was also 

apparent. Prior to 2010, sandeels made up a large proportion of diet samples 

retrieved (Hamer et al., 2007). In contrast, sandeels were entirely absent from gannet 

diet in 2010 and formed only 12.8% of the biomass taken in 2011. The diet data 

indicated that mackerel became the predominant prey species in 2010 and 2011, 

coinciding with recent increases in North Sea stocks (ICES, 2012). Pelagic landings 

by the Scottish fishing fleet were dominated by mackerel in 2011, according to the 

Scottish Sea Fisheries Statistics 2011 (http://www.scotland.gov.uk/Resource/0040/ 
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00401747.pdf). Although more local data on mackerel abundances in the Firth of 

Forth during the latter seasons is as yet unavailable, a large number of this species 

were caught by anglers in this area from June onwards in both 2010 and 2011 (pers 

obs.). Thus, not only were stocks higher but also some shoals appeared to be close to 

the Bass Rock. Compared to most of the other prey items taken by gannets, mackerel 

are both large and have a high lipid content, making them a high quality source of 

food (Montevecchi et al., 1984). One reason for the success of gannets over recent 

years may be their ability to switch to larger prey items, namely mackerel, which are 

too large to be taken by most other seabirds in this region, such as kittiwakes and 

auks (Furness, 2002, Frederiksen et al., 2007, Langoy et al., 2012). 

Improved feeding conditions in the latter two seasons are indicated by the 

foraging characteristics of the tracked gannets, with shorter trips in 2010 and 2011. I 

also found that the types of dives made by gannets from the Bass Rock in 2011 were 

significantly related to the distance of the dive from the colony, with a higher 

proportion of V-shaped dives at greater distances. This effect could be indicative of 

greater competition for prey nearer the colony where U-shaped dives were recorded. 

With more prey disturbance occurring closer to the colony, fish will be more 

commonly pursued by individuals propelling themselves underwater, before being 

caught (Garthe et al., 2000). Conversely, V-shaped dives, which are of short duration 

and relatively shallow, allow gannets to surprise their prey (Garthe et al., 2000). 

These may therefore be adopted at greater distances from the colony, where prey are 

less likely to be disturbed by the activity of foraging competitors. Together, my 

findings of shorter foraging trips in the latter two seasons and variation in dive types 

with distance from the colony lend further support for Ashmole’s model of prey 

depletion around seabird colonies, through passive interference or removal (Lewis et 

al., 2001, Davoren et al., 2003b, Elliott et al., 2009).  

I found that distances travelled by gannets were significantly and linearly 

related to trip duration, in accordance with previous studies (Hamer et al., 2001, 

Grémillet et al., 2006, Hamer et al., 2007, Votier et al., 2010). Moreover, I found no 

difference in the relationship between maximum foraging range and date during the 

study period. However, the higher travel speeds in 2010 and 2011, estimated using 

total distance travelled throughout entire trips compared to travel speeds to the 

maximum distance reached on trips, suggest paths to the trip destinations were less 
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direct. More sinuous paths can result from the initiation of search behaviour along 

the track (Fauchald and Tveraa, 2003). A higher proportion of trips were found to 

include ARS behaviour in 2011, with all but one trip including such a zone. More 

frequent occurrence of ARS is assumed to be associated with more favourable 

feeding areas, likely to be characterised by more frequent encounters with prey or 

environmental cues (Fauchald and Tveraa, 2006, Pinaud and Weimerskirch, 2007), 

or mediated by information transfer when other birds are seen feeding (Silverman et 

al., 2004, Davoren et al., 2003b). Conversely, when prey is scarce, individuals are 

likely to encounter fewer such cues as they fly out from the colony. Travelling 

further and spending more time at sea may also limit an individual’s capacity to 

initiate ARS at numerous locations due to energetic and time constraints (Shaffer et 

al., 2003, Pinaud et al., 2005a, Hamer et al., 2007). Under such conditions, 

individuals may spend more time searching less intensively over larger areas, or just 

initiate fewer zones of ARS further from the colony (Wiedenmann and O'Neil, 1991, 

Veit, 1999, Pinaud et al., 2005a). While analyses of the different scales of ARS 

zones suggest no significant difference in the average scale of these zones between 

each season, the variation in zone sizes during both seasons was tremendous, 

implying a great deal of plasticity in search behaviour, even within the same season 

(2003: 4 – 57 km; 2011: 2- 69 km). This illustrates the flexibility of this species to 

adjust foraging behaviour in response to environmental cues. Along with finding 

more frequent initiation of ARS in 2011, I also found that ARS behaviour occurred 

on the inward phase of a number of foraging trips, when birds were returning to the 

colony. This was never recorded in 2003 (Hamer et al. 2009), however the smaller 

sample size of the 2003 study must be considered. Coupled with the higher dive rates 

recorded outside zones of ARS and a higher proportion of dives recorded outside 

these zones, this suggests more opportunistic foraging in 2011 compared to 2003. It 

appears that gannet search strategies are flexible and vary in relation to changing 

distributions of prey. In particular, the marked reduction in nested search behaviour 

in 2011 compared to 2003, suggests a lower incidence of increased search effort by 

adopting nested search behaviour in seasons with more favourable feeding 

conditions. The apparent improved feeding conditions in 2011 appear to have 

enabled gannets on Bass Rock to feed more opportunistically, diving or initiating 

zones of ARS when they encountered prey, certain environmental cues or flocks of 

conspecifics. The almost linear orientation of the mixing front along the coast of 
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eastern Scotland in 2011 (Miller et al. unpublished data, and see chapter 6), may also 

have influenced gannets’ foraging behaviour, with the majority of trips following the 

coast, parallel with the front, so that birds encountered it as they left and entered the 

Firth of Forth. This may also have contributed to the higher occurrence of feeding 

bouts on return phases of trips.  

Marked shifts in both foraging behaviour of northern gannets breeding on the 

Bass Rock and the locations of key feeding areas as a result of shifting hydro-

biological features in the north-western North Sea, are apparent in recent years. 

These results add to the growing number of studies of a variety of marine top 

predators, which have recorded adjustments of search and dive strategies in response 

to altered hierarchal distribution of prey exploited and environmental conditions 

encountered (Paiva et al., 2010, Scheffer et al., 2010, Anderwald et al., 2012). The 

great variation in the scale of ARS and the altered frequency at which they are 

adopted, as well as the different use of nested search behaviour reflects great 

flexibility in this species, along with the initiation of dive behaviour within and 

outside these zones. In the case of gannets, this ability to adjust foraging strategies 

and habitat use appears important to buffer environmental variation. The ability to 

increase foraging effort and initiate finer scale, more concentrated searches enables 

this species to respond to dynamic, shifting environments. However, as the two 

seasons during which ARS behaviour were recorded in this study were both seasons 

with relatively favourable conditions, it is possible that gannets have not yet been 

observed in conditions which would make further adjustments necessary. Therefore 

further study is required to investigate how search strategies alter during more 

difficult conditions, when prey are scarce. Such information as can be retrieved on 

the more intensive feeding locations can also help to identify areas of high 

importance to marine predators breeding in the North Sea. These should be 

considered when regarding conservation management measures, such as the 

implementation of Marine Protected Areas (Hyrenbach et al., 2006, Grecian et al., 

2012).  
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Chapter 5: Temporal variation in northern gannet foraging effort 
and parental care: Consequences of varying environmental 
conditions 

 

 

Abstract 
 

Within-season variation in the foraging behaviour of chick-rearing seabirds may be 

attributed to the changing energy requirements of chicks, or shifts in prey availability 

as the season progresses. As provisioning rates limit chick growth and survival, 

adults must balance the costs of foraging with the needs of their growing chicks, as 

well as their own needs and energetic limits. I use a combination of GPS tracking 

and detailed observational methods to investigate within-season variation in foraging 

behaviour and parental investment in northern gannets Morus bassanus during two 

study seasons (2010 and 2011) on Bass Rock.  

In line with recent evidence of inter-annual variability in foraging behaviour 

of gannets in response to changing environmental conditions, I find differences in 

the patterns of parental care and foraging between years. During the season when 

foraging trips were longer (2010), trip durations and foraging ranges showed a 

humped quadratic response to chick age, with shorter trips taken when chicks were 

very young and again when pre-fledging. This was not the case in 2011, when 

foraging trips were shorter on average than 2010. However, a humped quadratic 

relationship was found between chick age and travel speed during that latter season, 

but not in 2010. Speed increased when chicks were ca. 6 weeks, the same age at 

which trip durations were longest in 2010. I also find annual variation in parental 

attendance at the nest, with chick neglect more frequent and longer in duration 

during the season with longer foraging trips. Flexibility in foraging behaviour may 

buffer potential negative impacts of variable environments on parental care. These 

differences were found between two relatively good seasons. This highlights the 

need for further study into temporal variation during seasons with substantially 

worse conditions, when adults may reach their energetic limits, thereby reducing 

their ability to maintain feeding rates during key stages of chick development. 
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5.1. Introduction 

Within-season variation in foraging effort and movements of chick-rearing 

seabirds, suggest birds may adopt a number of strategies. Trip durations or 

proportion of time spent foraging may change either in response to chick age and 

nutritional requirements, or to the intensity of chicks’ begging behaviour, which 

itself may vary with chick age (Salamolard and Weimerskirch, 1993, Weimerskirch 

et al., 1993, Shaffer et al., 2003). In addition, parents may vary distances travelled 

(Weimerskirch et al., 1993, Kato et al., 2003), key foraging locations visited (Ito et 

al., 2010, Lyver et al., 2011) and prey type exploited (Montevecchi et al., 1984, 

Elliott et al., 2009) during the breeding season. In some cases, adults may even 

adjust their own body condition to cope with varying feeding conditions (Williams et 

al., 2007, Ballard et al., 2010). Studies of chick energy requirements have found 

switching of prey types, with older chicks optimally being delivered higher energy, 

lipid-rich species by adults (Montevecchi and Porter, 1980, Montevecchi et al., 

1984). If such switching of prey occurs, this is likely to reflect altered foraging and 

feeding behaviour. However, altered prey type or feeding locations could also occur 

in response to reduced prey availability either as a result of prey disturbance (Lewis 

et al., 2001, Litzow et al., 2004), prey depletion (Birt et al., 1987), or due to the 

strong seasonal patterns of certain prey species distributions (Macer, 1965, Jensen et 

al., 2003, Bils et al., 2012). There therefore arises a trade-off between travel costs 

and prey availability, such that net energy gain may be increased by visiting more 

distant foraging locations (Cuthill and Kacelnik, 1990, Wanless et al., 1993, Waite 

and Ydenberg, 1996), unless meal mass is no greater following such long trips. Such 

adjustments in time budgets of pelagic species has been recorded (Burger and Piatt, 

1990). Foraging seabirds need to balance the requirements of growing chicks with 

their own needs and energetic limits, and are ultimately limited by their potential 

flight durations and speeds (Hamer et al., 2007). Whether foraging efforts are 

adjusted in response to the altering demands of the chick or as a result of changing 

prey availability, provisioning rate limits both chick growth and survival (Harris and 

Wanless, 1997, Gray et al., 2005, Enstipp et al., 2006). Such temporal shifts in 

foraging behaviour and impacts on parental investment are likely to vary between 

seasons with differing prey availability, which has already been seen to result in 
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annual variation in foraging characteristics (Shaffer et al., 2001, Hamer et al., 2007, 

Garthe et al., 2011). 

Many pelagic seabirds are altricial. That is, their offspring hatch in a 

relatively undeveloped state and rely heavily on parental care (Nelson, 1978).  For 

example, gannet chicks are vulnerable to hypothermia up to the age of 3 weeks, 

being only sparsely covered with neossoptiles and therefore unable to fully regulate 

their own body temperature (Nelson, 1966, Montevecchi et al., 1984). Young chicks 

are also vulnerable to displacement from the nest by heavy rain and attacks from 

both adult gannets and older chicks (Nelson, 1978). Successful breeding therefore 

requires the chick to be constantly guarded by one or other of the parents for at least 

the first 4 weeks after hatching. Incidences of simultaneous non-attendance by 

parents can sometimes occur and are often referred to as periods of brood neglect. 

Such incidences commonly occur following extended periods of chick guarding by 

the remaining parent, that eventually also needs to leave the nest in order to feed 

(Lewis et al., 2004). Such periods of non-attendance can leave the chicks vulnerable 

to the elements and unguarded from conspecifics and predation (Nelson, 2002) and 

have been recorded in a number of species (Harris and Wanless, 1997, Tveraa et al., 

1998, Ashbrook et al., 2008).  

Although foraging decisions of adults are in part governed by their own 

energetic requirements (McNamara and Houston, 1996), trip durations are also 

probably influenced by parental duties. Gannet chicks grow most rapidly between 

the ages of  4 and 8 weeks (Poulin, 1968, Nelson, 1978, Montevecchi et al., 1984), 

with body mass increasing 40 fold within their first 2 months of life and lipid 

eventually accounting for the majority of energy in tissues (Montevecchi et al., 

1984). This age group thus demands regular provisioning to maintain such rapid 

growth (Nelson, 1978). This supposition is supported by Lewis et al., (2004), who 

found that trip durations of parents decreased as chicks aged. Studies of other 

seabirds have also revealed significant effects of chick age on parental trip duration, 

although the direction of the response has varied. For example, while trip duration 

increases with chick age in northern fulmars Fulmaris glacialis (Ojowski et al., 

2001) and African penguins Spheniscus demersus (Petersen et al., 2006), whereas 

trips became shorter in the Antarctic petrel Thalassoica Antarctica (Varpe et al., 
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2004), thick-billed murre Uria omvia (Hipfner et al., 2006) and Cape gannets Morus 

capensis (Mullers, 2009).  

Recent evidence indicates that northern gannets respond to inter-annual 

environmental variability by adjusting their foraging behaviour (Hamer et al, 2007, 

also chapters 2 and 4). Adults forage further away from the colony and spend more 

time away from the nest during seasons when conditions are poorer, as indicated by 

local stock sizes and inferred from changes in local physical conditions i.e. winter 

sea-surface temperatures and summer chlorophyll-a concentrations (chapter 4). 

Although there are a number of studies that document foraging behaviour in northern 

gannets in different seasons, few combine data on foraging behaviour and parental 

care throughout the chick-rearing period and across multiple seasons. My aim was to 

use data from Bass Rock, where annual variation in foraging behaviour has been 

recorded using GPS devices (Chapter 4), and detailed observations on parental 

behaviour were made in two  seasons (2010 and 2011). Conditions appeared better 

during the latter season (2011), indicated by significantly smaller foraging ranges 

and less time spent away from the colony (Chapter 4). I also compare frequency and 

duration of unattendance with previously published data from the same colony 

during a different season (2002: Lewis et al., 2004), when conditions were poorer 

still, previously attributed to markedly smaller sandeel stocks in the region, and 

foraging effort was substantially greater (Hamer et al., 2007, Chapter 4). 

As a result of flexible foraging behaviour and time budgets, leading to 

increased foraging effort and therefore more time spent away from the nest during 

poorer seasons, I predict: 1) more frequent and/or earlier occurrences of 

simultaneous non-attendance by parents; 2) longer periods of parental non-

attendance of older, less vulnerable chicks; 3) less flexibility in parents’ foraging 

strategies, trip durations and speeds, in response to chick requirements under poorer 

conditions. 
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5.2. Materials and Methods 

Fieldwork was carried out on Bass Rock, Firth of Forth, Scotland (56°4.6’N, 

2°38.3’W) throughout a 10 week period during the 2010 breeding season (20th June - 

24th August), and a 10 week period in 2011 (31st May - 3rd August). Fieldwork on 

Bass Rock was alternated with time using the web-camera each season (see below). 

This covered the main chick rearing period on Bass Rock, and the timing of the 

breeding season was similar each year, as observed during pre-season and incubation 

site watches. Chick survival at all known nests, including both those on the 

observation plot and the plot where adults were captured to track, were also recorded 

during the last visit to colony in August each season (2010: n = 101, 2011: n = 52) as 

a measure of breeding success.  

 

 

5.2.1. Nest attendance: 

Nest observations were carried out as described in chapter 2, using images from a 

digital stills Mobotix© surveillance camera with a fixed view, mounted in the colony 

with the aid of the Scottish Seabird Centre and monitored by remote radio link (Fig. 

5.1.). The early installation of this camera, during the March prior to each study 

season, prevented disturbance to the nests during incubation and chick rearing, and 

also enabled regular information on copulation and egg-laying, as well as the ability 

to estimate directly hatch dates for the study nests to aid aging of chicks. Estimated 

chick ages were checked and supported using plumage characteristics (Nelson, 

2002). By observing this group of breeding pairs, the arrival and departure times of 

parent gannets and the time they spent together at the nest were recorded, along with 

any incidences of brood neglect. Due to technical problems with the web-camera, it 

was not possible to carry out site observations between 23rd June and 4th July in 

2011. 
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As continuous watches were not always possible in 2010, observation shifts of 4 

hours were carried out. Therefore, during this season, average trip duration at each 

nest calculated by dividing the time available per day for undertaking foraging trips 

(24 hours minus the mean time adults spent together at the nest) by the recorded 

changeover rate (Hamer et al., 1993, Lewis et al., 2001). In 2011, continuous 

observations over three day periods were carried out by multiple observers and full 

trips were recorded. Trip durations recorded at each nest that season were not 

significantly different from those estimated using the calculation described above. 

Trip durations recorded at the observation site were also not significantly different 

from those recorded directly using GPS loggers each year.  This suggests that any 

potential bias against long trips during that season, as to only full trips were used is 

unlikely to have affected my results.  

Chick ages within the observation plot varied between 0.5 and 3 weeks at the 

start and 7.5 and 11 at the end of fieldwork in 2010; and between 0 and 2 at the start, 

and 6.5 and 10 weeks at the end of fieldwork in 2011. Due to the early start of 

observations in 2011, it was also possible to observe nest attendance during 

incubation at a sample of these nests. 
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Figure 5.1. View from the Mobotix© web camera on Bass Rock, taken on 28th June 

2010. Red asterisks indicate the nests that were included in the sample used to 

monitor attendance. Time and date are indicated in the top right-hand corner.  

 

 

5.2.2. GPS tracking of foraging trips: 

Detailed information on foraging tracks was obtained using GPS loggers. 

Deployments were carried out in a study plot ca. 30 m from the observational sites. 

In 2010, adults with chicks were fitted with Igtou GT-120 and Igotu GT-200e GPS 

loggers (21 and 53 individuals respectively; 14 individuals were fitted with both, one 

after the other); in 2011, 28 individuals were fitted with Igotu GT-200e or Igotu GT-

650e GPS satellite transmitters (see Materials and Methods, Chapter 4 for details). 

Devices were not deployed on adults with chicks less than 2 weeks old. So chicks of 

tracked birds and those in the attendance watches were aged between 2 and 9 weeks. 
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Capturing birds with older chicks was difficult as they were more likely to leave the 

chick unattended. 

The percentage of time each adult spent at sea was calculated by dividing the 

mean trip duration by the mean trip duration plus the mean time spent at the nest 

between foraging trips (Hamer et al., 2007). This was limited to birds for which 3 or 

more consecutive trips were recorded. 

 

 

5.2.3. Statistical analyses: 

All statistical analyses were carried out using the program R, version 2.12.1 (R-

Development-Core-Team, 2010). In order to test for variation in: trip duration (hrs), 

time adult pairs spent together at the nest (mins), feeding frequency (defined as 

parental visits per day) and occurrence of unattendance as chicks on the observation 

plot aged each year, generalized linear mixed-effects models (GLMMs) were run, 

using the R package “lme4” (Bates et al., 2011). Trip duration, time together, feeding 

frequency and proportion of trips that left a chick unattended were modeled as a 

function of Julian day as a single covariate. Nest identity was treated as a random 

effect. As feeding frequency was not normally distributed with unequal variance, a 

Poisson error structure was specified in this model (Bolker et al., 2009, Thaxter et 

al., 2009). When investigating effect of chick age on the proportion of trips whereby 

the chick was left unattended (unattended trip vs. attended trip), a binomial error 

distribution was used due to the presence/absence data (Crawley, 2007). These 

models were compared to a null, intercept only model, using likelihood ratio tests 

(Crawley, 2007) and AIC values for each model were also retrieved, to indicate the 

best fitted model in each case (Zuur et al., 2009). Analyses of covariance were used 

to test for annual differences in these foraging characteristics between the two study 

seasons (2010 and 2011), by including year as a covariate in the model. 

The same approach was used for data recorded by GPS devices, whereby 

temporal variation in trip duration, maximum distance travelled from the colony and 

total distance travelled, were again tested using GLMMs with ‘bird identity’ 

included as a random effect. Included in each model were chick age, Julian date and 
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whether the bird travelled to the north or south of the colony (defined as trips with 

trip destinations north or south of 56°4.6’N) as fixed effects. Likelihood ratio tests 

were used to find the most parsimonious model in each case, along with assessing 

AIC values for each model tested (Zuur et al., 2009). When investigating foraging 

characteristics, the I² term was tested in each model in order to look for a quadratic, 

‘humped’ relationship (Crawley, 2007), after initial exploration and visualisation of 

the data appeared to demonstrate this pattern. I also tested for variation in flight 

speed during both breeding seasons. Speedb (speed on outward leg of the trip) is 

calculated using distance to trip destination, and Speedc (overall travel speed during 

a foraging trip) is calculated as the average speed of travel over the complete 

foraging trip (as described in Chapter 4).  

 

 

5.2.4. Previous parental care data and annual variation: 

To increase the number of years for which paired data on foraging trips and parental 

care were available, I also included data collected during the 2001 and 2002 breeding 

seasons (Lewis et al., 2004). This study differed from my own, with the adults from 

the observed nests radio-tracked from the mainland using VHF radio transmitters. 

The radio frequencies of all tags were scanned every 15 min, and arrival and 

departure times were recorded for each bird. Similar to my study, trips were 

classified as either attended (commencing after the return of the foraging partner, 

leaving the chick attended by one adult) or unattended (commencing prior to the 

partner’s return, resulting in the chick being left unguarded). There was no 

significant effect of year on any of the foraging behaviours, and thus data were 

pooled (Lewis et al., 2004). I therefore compare results for 2001 and 2002 combined, 

with the data collected in 2010 and 2011 when environmental conditions for the 

foraging birds appeared to have improved (Chapter 4).  
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5.3. Results 

The number of nests observed each day using the web-cam ranged from 20 to 28 

pairs (mean: 26) in 2010, and from 17 to 20 pairs (mean: 19) in 2011. These 

observations were carried out for a minimum of one full day each week (2010 mean: 

41 hrs; range 18 - 60 hrs, 2011 mean: 58 hrs; range 34 - 60 hrs per week). Of all 

known nests on the observation site plus those with tracked adults in 2010 (n = 101) 

and 2011 (n = 52), 84 and 47 chicks survived respectively, an estimated breeding 

success of 83% in 2010 and 90% in 2011. There was no significant difference in the 

breeding success between these years (GLMM with binomial error structure: F1, 151 = 

0.78, P > 0.05, with nest included as a random effect).  

A total of 636 trips were recorded in 2010 using the web-cam (overall mean 

trip duration 23.45h (SD = 14.4, range: 5 – 70 h). In 2011, 399 trips were recorded 

(mean duration 16.73h; SD = 10.7, range: 0.8 – 58.4 h). The 2011 data included 

some trips made during incubation. These were significantly longer (n = 32, mean = 

23.6 h, SD = 16.2) than those made during chick-rearing (n = 367, mean = 16.13 h, 

SD = 9.9; GLMM: F1, 397 = 13.2, P < 0.01, with nest included as a random effect). 

Hence, incubation trips were excluded from subsequent analyses. Including both nest 

observations and tracking data, trip durations were significantly shorter in 2011 (16.1 

± 0.5 h) than in 2010 (19.3 ± 0.8 h; GLMM: P < 0.001, Table 5.1).  

 

 

Table 5.1. Summary table of the minimum adequate model testing for annual 

variation in square-root trip duration between 2010 and 2011 (Year), with chick age 

included as a fixed effect and bird ID included as a random effect. 

Fixed effects: Estimate Std. Error z value P value 
Intercept (bird) 1.60949     0.04610    34.91   < 2e-16 *** 
Chick age -0.01152     0.00718    -1.61     0.108 
Year -0.18123     0.03209    -5.65 1.63e-08 *** 
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5.3.1. Annual variation in parental care: 

In 2010, 12% of all trips observed (n = 636) resulted in a chick being left unattended. 

In contrast, only 3% of all trips in 2011 (n = 399) resulted in brood neglect, a 

significantly lower occurrence of neglect in the latter season (GLMM: x² = 13.6 P < 

0.001, including nest as a random effect). Both these values were lower than the 

average value for 2001/2002 (Lewis et al. 2004; 17% GLMM: P < 0.001). The 

youngest chicks left unattended in 2010 and 2011 were 4.5 and 5 weeks old 

respectively, although there was no significant difference in the mean age at which 

chicks were first left unattended between these years. The age at which the first 

chick was left unattended was 4 weeks during the 2001/2002 breeding seasons.  

As in 2001 and 2002 (Lewis et al., 2004), foraging trips during which chicks 

were left unattended were significantly shorter than those where an adult remained 

with the chick (2010 attended trips: 21.94 ± 0.9 h, unattended trips 1.7 ± 0.3 h, 

GLMM: x² = 13.7 p < 0.001; 2011 attended trips: 16.51 ± 0.5 h, unattended trips 

4.04 ± 1.5 h, GLMM: x² = 14.1, df = 1, p < 0.001, Fig. 5.2). Although chick neglect 

was less frequent in 2011, the length of neglect periods was significantly longer than 

in 2010 (GLMM: x² = 4.05, P < 0.05). Compared to unattended periods reported in 

2001/2002 (5.61 ± 0.83 h), durations of chick neglect in 2010 and 2011 appear 

shorter. 
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Figure 5.2. Square-root trip duration (hours) of attended (A) and unattended (U) 

foraging trips recorded on Bass Rock in A: 2010 and B: 2011 
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5.3.2. Within season variation in parental care: 

As in 2001 and 2002, the proportion of trips whereby a chick was left unattended 

increased significantly as chicks aged in both 2010 and 2011 (2010: GLMM with 

binomial distribution, P < 0.001, 2011: GLMM with binomial distribution, P < 0.01, 

Fig. 5.3). However, proportions were consistently lower in 2010 and 2011 compared 

to 2001 and 2002. In 2010, the proportion of trips where birds left chicks unattended 

increased from 0 for chicks aged < 4.5 weeks, to 0.27  for 10 week old chicks, with a 

peak of 0.35 for chicks aged between 8 and 9 weeks old (Fig. 5.3). The majority 

(93%) of unattended trips occurred when chicks were > 8 weeks, with only 7% of all 

trips by adults with chicks under 8 weeks resulting in brood neglect. In 2011, the 

proportion of trips where the chick was left unattended increased from 0 for chicks < 

5 weeks to 0.08 by the time chicks were 9 weeks, with a peak of 0.11 for chicks of 7 

– 8 weeks. Thus, brood neglect occurred when chicks were older and the overall 

proportion of trips where the chick was left unattended was much lower in 2011 

compared to 2010 (Fig. 5.3.).  
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Figure 5.3. The proportion of foraging trips where a chick was attended by one adult 

(grey bars), and was left unattended before the foraging adult returned (black bars), 

with increasing chick age (weeks), for northern gannets on Bass Rock in A: 2010 (n 

= 34 birds) and B: 2011 (n= 20 nests). The total numbers of trips recorded are shown 

above each bar. 

 

 

 

133 
 



 

5.3.3. Time together at the nest 

In 2010, adult pairs spent on average 32.4 minutes together at the nest during 

change-overs (n = 232, SD = 42.03, range 0 – 348 mins), compared to an average of 

22.1 minutes in 2011 (n = 519, SD= 48.46, range 0 – 641 mins). The square-root 

transformed amount of time (minutes) adult pairs spent together at the nest during 

change-overs was significantly shorter during the 2011 breeding season compared to 

2010 (GLMM: P < 0.0001, Table 5.2).  

 

 

Table 5.2. Summary table of the most parsimonious model describing the significant 

difference between square-root time pairs spent together at the nest (mins) between 

the 2010 and 2011 breeding seasons. Pairs spent less time together at the nest in 

2011 than 2010. Nest identity was included as a random effect, and chick age was 

found to have a significant effect on the model. 

Fixed effects: Estimate Std. Error z value P value 
Intercept (nest)   557.620540   98.964312    5.635 1.76e-08 *** 
Chick age -0.038562    0.007314   -5.272 1.35e-07 *** 
Year -0.276558    0.049222   -5.619 1.93e-08 *** 

 

 

 The length of time adults spent together at the nest was also found to be 

linearly related to chick age during both seasons, with change-over periods becoming 

shorter as chicks aged (2010, GLMM: P = 0.003, Table 5.3; 2011, GLMM: P = 0.02, 

Table 5.4). While the duration of these change-over periods were also found to be 

significantly related to the Julian date in 2010 (GLMM: P < 000.1), there was no 

relationship between length of time adults spent together and date in 2011 (GLMM: 

P > 0.05). 
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Table 5.3. Summary table of the most parsimonious model describing the significant 

relationship between time pairs spent together at the nest (mins) and chick age in 

2010, with number of hours of observation and Julian day included as fixed effects. 

Nest identity is included as a random effect. 

Fixed effects: Estimate Std. Error z value P value 
Intercept (nest)   4.3846 0.8452 5.187 2.13e-07 *** 
No. Hours of obs      0.020234    0.002391    8.462   < 2e-16 *** 
Julian day -0.0213 0.0051 -4.207  2.59e-05 *** 
Chick age 0.1124 0.0379 2.966   0.00301 ** 

 

 

Table 5.4. Summary table of the most parsimonious model describing the significant 

relationship between time pairs spent together at the nest (mins) and chick age in 

2011, with Julian day included as a fixed effect. Nest identity was included as a 

random effect. 

Fixed effects: Estimate Std. Error z value P value 
Intercept (nest)   0.050043    0.838120    0.060    0.9524   
Julian day 0.008743    0.005359    1.632    0.1028   
Chick age -0.088111    0.037494   -2.350    0.0188 * 

 

 

 

5.3.4. Foraging activity and parental care  

The mean percentage of their time adults spent away from the nest on foraging trips 

was 54% (n = 37, SD = 7) and 52% (n = 28, SD = 8) in 2010 and 2011 respectively, 

with no significant difference between the two seasons (GLMM: F1, 18 = 1.3, P > 

0.05, bird identity included as a random effect). Trip durations estimated from web-

cam observations did not differ significantly from those recorded by GPS loggers in 

either year. Both the maximum and total distances travelled during foraging trips 

recorded using GPS loggers were significantly shorter in 2011 than in 2010 (2010: 

198.1 ± 7.3 km, 2011: 134.0 ± 11.2 km using 95% confidence intervals, LME: F1,282 
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= 26.6, P < 0.0001, Table 5.5; and 2010: 524.5 ± 21.2 km, 2011: 388.1 ± 19.8 km, 

LME: F1,282 = 17.2, P < 0.0001, Table 5.6, respectively). 

 

 

 Table 5.5. Summary table of the most parsimonious model testing for annual 

variation in maximum distance reached from the colony between 2010 and 2011 

(Year), with Julian day included as a fixed effect and bird identity included as 

random effect. 

Fixed effects: Value SE DF t-value F-value P value 
Intercept (bird) 1909.1 370.447 282 5.1536 17323.8 <0.0001*** 
Julian day -0.0124 0.0069 282 -1.8146 131.4 0.0706 * 
Year -0.9478 0.1838 282 -5.15586 26.6 <0.0001*** 

 

 

Table 5.6. Summary table of the most parsimonious model testing for annual 

variation in total distance travelled on trips between 2010 and 2011 (Year), with 

Julian day included as a fixed effect. Bird identity was included as a random effect. 

Fixed effects: Value SE DF t-value F-value P value 
Intercept (bird) -2576.2 621.472 282 -4.14525 24010.4 <0.0001*** 
Julian day 0.0253 0.0109 282 2.32581 101.9 0.0207* 
Year 1.2793 0.3084 282 4.14755 17.2 <0.0001*** 
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Although there was no significant difference in the overall feeding frequencies 

between the two study seasons (2010: n = 232, mean = 1.34, SD = 0.89; 2011: n = 

147, mean = 1.35, SD = 0.61, GLMM: P > 0.05), there was a significant positive 

relationship between chick age and feeding frequency in 2010. Adults provisioned 

their chicks more frequently as chicks aged in that season (GLMM: F1,234 = 5.1, P = 

0.03, Table 5.7). Feeding rates increased by 20% from first hatching (1.1 feeds per 

day, SD = 0.5) to 4 weeks old (1.33 feeds per day, SD = 0.9), and by 57% between 

hatching and 8 weeks old (1.75 feeds per day, SD = 0.9).   

However, this was not the case in 2011, when there was no significant 

relationship between feeding frequency and chick age (GLMM: F1,146 = 1.3,  P > 

0.05). Feeding frequency was also found to significantly increase with date in 2010 

(GLMM: F1,234 = 5.44, P = 0.02), but there was no association found between Julian 

day and feeding frequency in 2011.  

 
 

 

Table 5.7. Summary table of the most parsimonious model describing a significant 

positive relationship between feeding frequency (arrivals per day) and chick age in 

2010. Nest identity was included as a random effect. 

Fixed effects: Estimate SE DF t-value P value 
Intercept (nest) 1.067 0.142 234 7.492 < 0.0001*** 
Chick age 0.052 0.023 234 2.248 0.0255* 
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5.3.5. Within-season variation in foraging behaviour: 

Comparing these observational data to foraging behaviour recorded directly using 

GPS devices indicated that, in 2010, there was a significant, hump-shaped, quadratic 

relationship between trip duration and chick age (GLMM: df = 191, P < 0.05, Table 

5.8, Fig. 5.4a), such that trip durations were shorter when chicks were younger. This 

increased to a peak when chicks were 6-7 weeks of age and then decreased in older 

chicks (Fig. 5.4a). A relationship was also found between trip duration and Julian 

day, though this positive relationship was found to be linear rather than quadratic 

(GLMM: df = 191, P = 0.001, Table 5.8). 

 

 

Table 5.8. Summary table of the minimum adequate model describing a significant 

relationship between GPS recorded trip durations and I(chick age^2) in 2010, with 

orientation (trip destination north or south of the colony) and Julian day included as 

fixed effects, and bird identity as a random effect. 

Fixed effects: Estimate SE DF z-value P value 
Intercept (Bird) -0.5006 0.9724   191 -0.515   0.6067 
Orientation (N) 0.76391 0.2548    191 2.998   0.0027 ** 
Orientation (S) 0.2155    0.2608    191 0.826   0.4087 
Julian day 0.0156    0.0049    191 3.211   0.0013 ** 
I(Chick age^2) -0.0071    0.0033 191 -2.138   0.0325 * 
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Figure 5.4. Foraging trip durations (hours) of tracked birds with chick age (days) in 

a. 2010, when a quadratic relationship was found between duration and chick age 

and b. 2011, when no relationship was found. Thick lines indicate the median values, 

while the boxes show the upper and lower quartiles. The whiskers extend to the 

smallest and largest values recorded. 
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In 2010, this pattern was also apparent when comparing maximum distances 

travelled from the colony on foraging trips and chick age (GLMM: df = 191, P = 

0.004, Table 5.9, Fig. 5.5a). Birds travelled shorter distances from the colony when 

chicks were very young; distances increased as chicks aged to ca. 6-7 weeks, before 

declining in older age groups. A relationship was also found between maximum 

distance travelled from the colony and Julian day, although this relationship was 

linear rather than quadratic (GLMM: df = 191, P < 0.0001, Table 5.9). A significant 

quadratic relationship was also found between total distance travelled on foraging 

trips and chick age in 2010 (GLMM: df = 191, P < 0.0001, Table 5.10, Fig. 5.6a). 

Total distance travelled was also significantly related to Julian day in 2010; again the 

relationship was linear rather than quadratic (GLMM: df = 191, P < 0.0001). 

 

 

Table 5.9. Summary table of the minimum adequate model describing the significant 

relationship between GPS recorded maximum distances reached from the colony and 

I(chick age^2) in 2010, with orientation (destination was north or south of the 

colony) and Julian day included as fixed effects, and bird identity as the random 

effect. 

Fixed effects: Estimate SE DF z-value P value 
Intercept (Bird) 1.0799       0.5000 191 2.160   0.0308 * 
Orientation (N) 0.4952    0.0816    191 6.069 1.29e-09 *** 
Orientation (S) -0.0735    0.0849   191 -0.866   0.3866 
Julian day 0.0189       0.0025 191 7.477 7.58e-14 *** 
I(Chick age^2) -0.0043    0.0015   191 -2.856   0.0043 ** 
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Table 5.10. Summary table of the minimum adequate model describing the 

significant relationship between GPS recorded total distances travelled on round 

foraging trips and I(chick age^2) in 2010, with orientation (destination was north or 

south of the colony) and Julian day included as fixed effects. Bird identity was 

included as a random effect. 

Fixed effects: Estimate SE DF z-value P value 
Intercept (Bird) 1.0335    0.3463    191 2.984   0.0028 ** 
Orientation (N) 0.5594    0.0521   191 10.739   < 2e-16 *** 
Orientation (S) -0.0060    0.0540   191 -0.111   0.9115 
Julian day 0.0235    0.0017   191 13.462   < 2e-16 *** 
I(Chick age^2) -0.0047    0.0010   191 -4.572 4.83e-06 *** 
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Figure 5.5. Maximum distance travelled from the colony (km) by tracked birds with 

chick age (days) in a. 2010, when a quadratic relationship was found between 

maximum distance and chick age, and b. 2011, when no relationship was found. 

Thick lines indicate the median values, while boxes show the upper and lower 

quartiles. The whiskers extend to the smallest and largest values recorded. 
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Figure 5.6. Total distance travelled on foraging trips (km), by tracked birds with 

chick age (days) in a. 2010, when a quadratic relationship was found between total 

distance and chick age, and b. 2011, when no relationship was found. Thick lines 

indicate the median values, while boxes show the upper and lower quartiles. The 

whiskers extend to the smallest and largest values recorded. 
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In contrast, in 2011 I found no significant relationships between trip duration and 

either chick age or Julian day (GLMM: df = 141, z = 2.0, P > 0.05, and GLMM: df = 

141, z = 1.6, P > 0.05 respectively). Neither was there any relationship between 

maximum or total distance travelled and chick age (GLMM: F1,141 = 0.02, P > 0.05 

and GLMM: F1,141 = 0.54, P > 0.05 respectively), or with Julian date (GLMM: F1,141 

= 0.01, P > 0.05 and GLMM: F1,141 = 0.35, P > 0.05 respectively). Therefore, unlike 

the tracks recorded in 2010, I found no temporal variation in these behavioural 

characteristics during this latter season. 

 

 

5.3.6. Within-season variation in travel speeds: 

Travel speeds were, on average, faster in 2010 compared to 2011 when considering 

both speed on outward leg (speedb 2010: n = 195, Mean  = 17.49 km/hr, SD = 6.65; 

2011: n = 143, Mean  = 13.4 km/hr, SD = 6.01; LME: F1,284 = 32.9, P < 0.001) and 

overall travel speed (speedc 2010: n = 195, Mean  = 22.66 km/hr, SD = 7.73; 2011: n 

= 143, Mean  = 18.92 km/hr, SD = 5.75; LME: F1,284 = 20.04, P < 0.001). During 

2010 there was no association between flight speed (either speedb or speedc) and 

chick age (speedb GLMM: P > 0.05, Fig 5.7a; speedc GLMM: P > 0.05, Fig 5.8a), 

nor any significant relationships with date (GLMM: P > 0.05).  

  In contrast, in 2011 both speedb and speedc showed a significant quadratic 

effect of chick age (GLMM: df= 141, P = 0.01, Table 5.11, Fig 5.7b and GLMM: df 

= 141, P = 0.02, Table 5.12, Fig. 5.8b respectively). There was also a borderline 

significant positive linear, but not quadratic, relationship between speedb and date in 

2011 (GLMM: F1,141=3.5, P = 0.05). However, there was no significant effect of date 

on speedc during the whole foraging trip (GLMM, df = 141, P > 0.05). 
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Table 5.11. Summary table of the most parsimonious model describing the 

significant quadratic relationship between speedb, calculated using maximum 

distance reached from the colony and I(chick age^2) in 2010, with maximum 

distance reached and trip duration (TD) included as fixed effects. Bird identity was 

included as a random effect. 

Fixed effects: Estimate SE DF z-value P value 
Intercept (Bird) 2.5000    0.0786    141 31.81 <0.0001*** 
Max. Dist 0.0071    0.0004    141 17.01 <0.0001*** 
TD (hrs) -0.0509    0.0036   141 -14.24 <0.0001*** 
I(Chick age^2) 0.0045    0.0023     141 1.94 0.0118* 

 

 

 

Table 5.12. Summary table of the most parsimonious model describing the 

significant relationship between speedc, calculated using total distance travelled on a 

round trip and I(chick age^2) in 2010, with total distance travelled and trip duration 

(TD) included as fixed effects. Bird identity was included as a random effect. 

Fixed effects: Estimate SE DF z-value P value 
Intercept (Bird) 18.9079    0.7263 141 45.55 <0.0001*** 
Tot. Dist 0.0469    0.0021 141 13.81 <0.0001*** 
TD (hrs) -0.9468    0.0464 141 -12.33 <0.0001*** 
I(Chick age^2) 0.0529    0.0223 141 1.45 0.0191* 
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Figure 5.7.  Variation in Speedb (km/hr), calculated using maximum distance 

reached from the colony by tracked birds, with chick age (days) in a. 2010, when no 

relationship was found and b. 2011, when a quadratic relationship was found 

between Speedb and chick age. Thick lines indicate the median values, while boxes 

show the upper and lower quartiles. The whiskers extend to the smallest and largest 

values recorded. 
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Figure 5.8.  Variation in Speedc (km/hr), calculated using total distance travelled on 

a round trip by tracked birds, with chick age (days) in a. 2010, when no relationship 

was found and b. 2011, when a quadratic relationship was found between Speedc and 

chick age. Thick lines indicate the median value, while boxes show the upper and 

lower quartiles. The whiskers extend to the smallest and largest values recorded. 
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5.4. Discussion 

Flexibility in foraging behaviour can buffer the potential negative impacts of 

variable environments on reproductive success (Burger and Piatt, 1990, Pinaud et al., 

2005a, Hipfner et al., 2006). For such species such as gannets, natural selection 

favours the re-direction of resources towards self-maintenance during adverse 

environmental conditions, due to high residual reproductive value (Drent and Daan, 

1980, Reznick, 1985). However, this chapter provides evidence of both annual 

variation in parental investment, and temporal variation in foraging characteristics 

and parental care throughout breeding seasons. Both of these can buffer breeders 

from environmental variation and maintain productivity (Cairns, 1987).   

 In this region of the North Sea, breeding success of several seabird species 

has declined since the mid 1980s (Burthe et al., 2012), but was higher since 2009 

than for a number of previous years (JNCC, 2012), possibly due to greater 

availability of key prey species during these latter years (ICES, 2012); also see 

chapter 4. Indeed productivity of most species on the nearby Isle of May in 2010, 

such as European shags, common guillemots and Atlantic puffins, saw a continued 

marked improvement (CEH, 2011), and conditions appear to have again improved in 

2011. As predicted, the frequency of brood neglect was greater during years with 

longer foraging trips, thereby providing further evidence of increased incidence of 

chick neglect due to poorer conditions, forcing both parents to forage simultaneously 

(Caldow and Furness, 2000, Ashbrook et al., 2008). The proportion of trips where 

the chick was left unattended was higher in 2010 than in 2011, and the proportion 

was higher still in 2001/2002 (Lewis et al., 2004), when foraging conditions were 

considered to be even worse because of low prey stocks (Hamer et al., 2007). 

Periods of unattendance were also shorter when conditions appeared better, rarely 

lasting longer than 3 hours in either 2010 or 2011. This was shorter than the 

durations of brood neglect in 2002, which often exceeded 6 hours (Lewis et al., 

2004). Conditions during my two study years were thus relatively favourable in 

terms of chick feeding frequency and also the incidence of chicks being left 

unattended, which was relatively low. This was even the case in the poorer of my 

study seasons (2010), and therefore risks of attack from conspecifics or hypothermia 

were both lower in these years. Accordingly, the breeding success recorded during 
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these seasons were relatively high compared to previous data available for the region 

(Mavor, 2008).  

Temporal variation in provisioning and foraging behaviour during the 2010 

breeding season, as well as the time adults spent at the nest, may reflect the feeding 

requirements of the chicks, either instigated through altered begging behaviour 

(Kitaysky et al., 2001, Quillfeldt, 2002), or as a strategy by the adults to maintain 

provisioning rates and minimise occurrence of brood neglect, whereby chicks are left 

vulnerable to prevailing weather and attacks from conspecifics (Hipfner et al., 2006, 

Mullers and Tinbergen, 2009). In 2010 there was a significant increase in feeding 

frequency, similar to that recorded in 2002 (Lewis et al., 2004), but at a more rapid 

rate, with feeding rates increasing by 20 - 57% between 4 and 8 weeks post-hatching, 

coinciding with the period of rapid growth (Montevecchi et al., 1984).  Lewis et al. 

(2004) found that there was no relationship between adult weight and provisioning 

rate; it is therefore more likely that feeding frequency increased to maintain high 

energy requirements of the chicks. In addition, the time adults spent together at the 

nest became shorter as chicks aged, during both seasons. Again, this may be to 

maintain increased feeding frequency as chicks age, by spending more time at sea 

foraging (Burger and Piatt, 1990). Though frequent intake of energy rich food is key 

to chick development during the first 8 weeks post-hatching, when the majority of 

body mass is accumulated, the increased size, development of juvenile plumage and 

increased energy expenditure of older chicks are also associated with high energy 

requirements (Nelson, 1978, Montevecchi et al., 1984).  It is not uncommon among 

marine birds without post-fledging care, such as gannets, for chicks to accumulate 

mass in excess of their parents followed by decreases pre-fledging (Harris, 1966, 

Ricklefs, 1968, Montevecchi et al., 1984). Phillips and Hamer (1999) found that for 

northern fulmars, it was declining total body water rather than fat that resulted in 

mass recession. Gannet chicks typically fledge with large fat stores, and thus at 

considerably higher masses than adult birds (Nelson, 1978). These reserves may play 

a crucial role in the post-fledging period, while juveniles learn to obtain food for 

themselves (Nelson, 1978, Phillips and Hamer, 1999). Thus, although changes in 

feeding frequency in the latter stages of chick development may not have a great 

impact on reproductive success, high feeding rates late in development may enable 

chicks to maintain a larger fat store, which could play a key role in survival post-
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fledging. This is difficult to measure however, because of the difficulties and cost of 

tracking chicks once fledged. 

The quadratic relationship found between chick age and both trip duration 

and distances travelled also appears to reflect the needs of chicks at different stages 

of development. Short trips with smaller foraging ranges while the chicks are very 

young reduces the likelihood of brood neglect, while also maintaining frequent 

provisioning. As the non-attendance of chicks was infrequent and of short duration 

in the latter study years, the shorter foraging trips prior to fledging were also 

consistent with the suggestion that the initial increases in provisioning with chick 

age were not a result of increased occurrence of brood neglect, i.e. both adults 

foraging at the same time. The relationships between these foraging characteristics 

and the date differed from those with chick age, as they were found to be linear 

rather than quadratic response patterns. This suggests that both chick age and 

nutritional requirements, as well as environmental conditions and prey distributions, 

influence the foraging decisions of the adults. Indeed, chick condition and begging 

behaviour have been found to influence provisioning and meal masses in a number 

of species (Bolton, 1995, Granadeiro et al., 2000, Phillips and Croxall, 2003, Varpe 

et al., 2004), but changes in prey distributions and availability throughout the season 

are also likely to affect foraging characteristics. 

Foraging trip durations and ranges were significantly shorter in 2011 than 

2010, despite both being relatively good years, as indicated by parental foraging 

effort and the percentage of time adults spent away from the nest. However, even 

between these two years there were marked differences in the variation in foraging 

behaviour recorded across the seasons. In 2010, the season was characterised by 

longer and more distant foraging trips, and higher travel speeds, therefore greater 

foraging effort, quadratic relationships were apparent with duration and distance, but 

not speed. In contrast, in 2011, when trips were on average shorter and closer and 

travel speeds were on average slower, the quadratic relationship found was between 

speed and chick age. But no relationship was found between chick age and the other 

variables. This suggests that, due to the lower average travel speeds that year, birds 

in 2011 could adjust feeding frequency and parental effort by increasing travel 

speeds to a certain extent, or more likely adjusting time budgets by altering the 

number of landings and time spent resting, to avoid increased trip durations during 
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the period when overall daily chick requirements are greatest. There can be variation 

in flight speeds between different seasons (Chapter 4), and these results suggest that 

when birds are not flying to their energetic capacity, they may have more leeway to 

adjust time spent in flight slightly in response to the needs of their growing chicks. 

We may also consider however, that higher flight speeds in seasons with long 

foraging trip durations may, in part, be an artefact of a longer commute to foraging 

locations. This is because flight speeds are likely to be faster during straighter, more 

direct phases of foraging trips. 

Foraging adults in 2010 appeared to adjust foraging characteristics to attain 

high feeding rates when chicks were young, growing rapidly and vulnerable to being 

left unattended; and prior to fledging when chicks were more active and building fat 

reserves. This suggests that these are two stages of chick development sensitive to 

environmental conditions and potentially increased foraging effort, for both 

reproductive and fledging success respectively. It appears the shorter foraging trips 

and ranges in 2011 allowed adults to maintain high chick feeding frequencies 

throughout the season. Although trips were shorter in 2011, the difference found 

between 2010 and 2011 is comparatively small compared to long term variation at 

this colony (Hamer et al. 2007, Chapter 4). Despite this, differences in foraging 

behaviour were still apparent. In order to fully understand the seasonal dynamics of 

interactions between food availability, parental foraging behaviour and the 

nutritional requirements of chicks, further study is required during a season with 

substantially poorer feeding conditions. Under more extreme conditions we may see 

a greater impact of date on foraging trip characteristics due to seasonal changes in 

prey availability and increased likelihood of local prey depletion throughout the 

season (Litzow et al., 2004, Elliott et al., 2009). Further study is also required into 

the possibility of shifting distributions of mobile prey throughout the season 

contributing to temporal variation in foraging characteristics such as flight speed and 

trip durations. 
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Chapter 6: General discussion 

 

Changing environmental conditions are known to be impacting on the population 

dynamics of many organisms (Walther et al., 2002, Bradshaw and Holzapfel, 2006). 

This situation can be particularly acute in colonial species, where breeders frequently 

share a common feeding area around the colony and intra-specific competition for 

resources can be intense (Lewis et al., 2001, Ballance et al., 2009, Elliott et al., 

2009). Seabirds are a major component of the predator community in many marine 

ecosystems, and most seabirds breed in colonies, often containing many thousands of 

individuals (Coulson, 2002). Thus, this is an ideal group to investigate how various 

aspects of the colonial breeding habit impact on parental foraging behaviour under 

changing environmental conditions. In this thesis I first consider inter-decadal, 

population-level effects on four seabird species, over a period in which colony size 

and environmental conditions changed markedly. I then examine finer-scale, 

individual-level, effects on foraging behaviour and parental effort of gannets from a 

single colony, where population size changed little but feeding conditions varied 

markedly. 

 Varying trends in the populations of seabirds  are evident worldwide 

(Schreiber and Burger, 2001, Butchart et al., 2004). Within the British Isles, many 

species have been exhibiting large annual variation in breeding success (Mavor, 

2008). As with numerous terrestrial species (Devictor et al., 2008, Møller et al., 

2008, Jiguet et al., 2010), seabirds have been faced with climatic changes (Walther et 

al., 2002, Parry et al., 2007). In the case of pelagic species, this has affected the 

spatial distribution and abundance of primary production (Lenoir et al., 2010) and 

therefore prey stocks (Perry et al., 2005, Sundby and Nakken, 2008, Ter Hofstede et 

al., 2010).  Differences in population trends among UK species may reflect the 

greater resilience to environmental change of generalist species because of their 

capacity to alter their diet and foraging behaviour (Furness and Tasker, 2000). 

However, few studies have considered the role density-dependent competition, 

within or between colonies, plays in seabirds’ responses to environmental change.  

Northern gannets are a relatively flexible species, with a generalist 

piscivorous diet, an ability to travel over great distances in order to locate prey and a 

158 
 



 

variety of prey capture techniques (Hamer et al., 2007). On the numerical scale 

devised by Furness & Tasker (2000), the criteria for which include species size, cost 

of foraging, foraging range, ability to dive, daily budget and ability to switch diet, 

they are considered to be the species in the UK least sensitive to changes in sandeel 

abundance. They have been found to maintain consistently high levels of 

productivity in recent decades, whereas in other species, breeding success has 

fluctuated markedly (JNCC, 2012). In contrast to many seabirds where numbers 

have been declining since 2000, most gannet colonies in the UK have continued to 

grow  (Wanless et al., 2005), but with the rate of growth strongly associated with 

colony size (chapter 2). Nevertheless there is evidence that in very recent years, birds 

have approached the energetic and time limits to their foraging efforts and parental 

investment, with recorded incidences of parents leaving chicks unattended, which 

was not recorded previously in this species (Nelson, 1966). There is also recent  

evidence of the energetic limits to the foraging ranges of gannets for trips lasting 

longer than 60 hours, beyond which they are likely to spend a greater proportion of 

their time spent on a trip, resting on the water surface (Lewis et al., 2004, Hamer et 

al., 2007). Such findings probably reflect changing conditions in the seas around the 

UK in recent years, as a result of large-scale environmental changes (Edwards et al., 

2002, Reid et al., 2003, Beaugrand, 2004). Foraging conditions are also likely to 

have been affected by human fisheries pressure affecting marine food webs 

(Frederiksen et al., 2004, Frederiksen et al., 2008). Indeed the combined effects of 

climate change and overfishing are likely to have posed the greatest threat to fish 

stocks in the region (Brander, 2007). 

 In this concluding chapter I summarise the key findings of my research and 

discuss their relevance to population dynamics and regulation for a wide range of 

North Atlantic colonial central-place foragers. I provide an overview of the current 

state of knowledge of the links between spatial and temporal variation in 

environmental conditions and both foraging effort and parental investment in 

gannets. I also discuss the implications of my results in the context of management 

and conservation of seabird populations and the sustainable use of the marine 

environment, and I identify priorities for further research. 
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6. 1. The role of population density in tandem with environmental change 

Some of the first empirical data to support Ashmole’s hypothesis of population 

regulation mediated by density-dependent  intra-specific competition for food was 

provided by Lewis et al. (2001), who found that during chick-rearing, northern 

gannets from bigger colonies travelled proportionally further to obtain food for their 

offspring. Lewis et al. (2001) not only found this key relationship between colony 

size and trip duration at a cross section of UK gannetries within a single season, but 

they also suggested this relationship held across years, as the limited historical data 

available on trip durations also fitted the observed relationship. My re-analysis of 

both these data and those collected subsequently from the same gannet populations 

confirms a positive relationship between foraging effort and colony size. However, I 

also found that for larger colonies i.e. those greater than ca. 3,000 AOS, the effects 

of changing environmental conditions exceeded those of changes in colony size. 

Thus there was a weaker influence of population size on parental foraging behaviour 

when feeding conditions were better. This was presumably because competition for 

resources was less severe around smaller colonies. In contrast, colony size was the 

main determinant of trip duration in smaller colonies.  

Latterly, the interaction between effects of population size and climatic 

variation on population dynamics has received increasing attention, both in terrestrial 

(Coulson et al., 2001, Grotan et al., 2009, Smallegange et al., 2011) and marine 

species (Lewis et al., 2009, Rotella et al., 2009, Ashbrook et al., 2010). Studies of 

individual growth rates in harvested populations of fish have provided empirical 

evidence for density-dependent responses to climate change (Brunel and Dickey-

Collas, 2010, Crozier et al., 2010, Xu et al., 2010). Other studies have also found 

combined effects of climate and density on population growth in terrestrial 

mammals, as well as on laying dates and clutch sizes in wild birds (Coulson et al., 

2001, Mysterud and Østbye, 2006, Ahola et al., 2009, Votier et al., 2009). However, 

studies in which multiple populations are considered remain rare.  

My work suggests that large colonies may be more vulnerable to the adverse 

effects of reduced prey availability. This finding has conservation and management 

implications, not just for gannets but also for many other seabird species, which are 

likely to experience density-dependent intra-specific competition, and changes in 
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local feeding conditions (Ainley et al., 2003, Davoren and Montevecchi, 2003, Dann 

and Norman, 2006, Ballance et al., 2009). Conservation efforts are often targeted at 

small and declining populations, particularly of specialist species. However, if these 

species are threatened by widespread declines in prey availability or nutritional 

quality, it may be more informative to monitor larger populations, particularly if 

these hold a high proportion of the regional population. For example, 94% of the 

British population of gannets breed in just 10 colonies holding > 3,000 AOS 

(Wanless et al., 2005). Birds from such colonies may have less leeway to increase 

foraging effort without possible adverse effects on chick survival. My results suggest 

that changes in feeding conditions will be harder to detect in smaller colonies, where 

trips durations are more affected by population density. Thus caution is required 

when using seabird behaviour to monitor marine ecosystems, for example when 

using foraging trip durations to indicate prey availability (Furness and Camphuysen, 

1997b, Hamer et al., 2006b, Einoder, 2009), and the relative size of monitored 

colonies should be carefully considered.  

 

 

6. 2. Neighbouring conspecific density 

A number of factors combine to regulate colony sizes. As already discussed, these 

include density-dependent competition between sympatric conspecifics, as well as 

winter mortality (Lack, 1968), availability of nesting habitat (Thompson and 

Furness, 1991, Kildaw et al., 2005) and local prey availability (Kitaysky et al., 

2000). My results for four species (gannet, Atlantic puffin, European shag and black-

legged kittiwake) that have experienced contrasting population trends since the 

1980s, provide support for the hypothesis that competition from conspecifics nesting 

at neighbouring colonies is also limiting (Furness and Birkhead, 1984). As foraging 

ranges increase with colony size (as discussed in chapter 2), the scale at which this 

effect operates is also dependent on colony size (chapter 3). My results provided no 

support for the hypothesis that colony size is limited only by the size of foraging 

habitat closer to one colony than any other. Moreover, I found that a density-

dependent model better explained my data than the Hinterland model proposed by 

Cairns (1989), whereby colony size is limited by the amount of feeding habitat 
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available to colony members closer to their breeding colony than any other. In 

addition, competition between conspecific neighbours may also generate spatial 

segregation between members of different colonies on feeding grounds (Cairns, 

1989, Ainley et al., 2003, Grémillet et al., 2004, Wakefield et al., 2011). Indeed, 

recent evidence has come to light of northern gannets from a number of distinct 

colonies foraging in separate areas that are essentially non-overlapping, with spatial 

extents proportional to colony size (Wakefield et al., in press.). This pattern is not 

consistent with segregation occurring along lines of equidistance between colonies 

(Cairns, 1989), and also suggests there is less overlap between the foraging areas of 

birds at different colonies than previously assumed (Storer, 1952, Ashmole, 1963, 

Grecian et al., 2012). 

 A limiting effect of neighbouring conspecific density on colony size has a 

number of implications for colony growth and the distribution of foraging birds. My 

study shows that negative relationships between population sizes and the numbers of 

neighbouring conspecifics can persist over decades. However, the scale of colony-

size interdependence increases with regional population size. Marked changes in the 

size of one colony will affect the population dynamics of its neighbours. In extreme 

cases, if one colony expands greatly following conservation efforts (e.g. rat 

eradication following population depression), there will be more competition for 

resources with conspecifics at other colonies within foraging range, which may then 

experience lower or negative growth rates. Conversely, if a colony were extirpated, 

either by anthropogenic or environmental causes, colonies within its potential home 

range may increase in size. This may have contributed to the establishment and rapid 

growth of a puffin colony at Melvich, Scotland, following the marked decline of the  

population at Clo Mor, less than 70 km away (JNCC Seabird Monitoring Program 

online database: http://jncc.defra.gov.uk/smp/) . Similarly, repeated culling of 

herring gulls Larus argentatus and lesser black-backed gulls L. fuscus on the Isle of 

May, Scotland led to increases in the sizes of neighbouring colonies (Coulson, 

1991). This was attributed mainly to increased recruitment by birds originating from 

the Isle of May, although there were no data for marked birds to confirm or refute 

this hypothesis, and it is not known whether or not there was any increase in 

breeding success at neighbouring colonies. Such interactions between neighbouring 

conspecific density and population growth rates have also been recorded in very 
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different colonial species, such as soil-feeding termites Anoplotermes banksi 

(Bourguignon et al., 2011) and ants Aphaenogaster senilis (Boulay et al., 2010). It is 

therefore necessary to consider the knock-on effects of single colony events or 

population conservation and management decisions on neighbouring colonies. While 

my findings focus on seabird colonies of four different species with differing 

foraging characteristics, they are also likely to be of relevance to the population 

regulation of many other colonial central place foragers from diverse taxa including 

invertebrates (Adams and Tschinkel, 2001, Billick, 2001), reptiles (Trillmich and 

Trillmich, 1984, Doody et al., 2009) and mammals (Robson et al., 2004, Zahn et al., 

2006).  

 

 

6. 3. Plasticity in response to environmental change 

As indicated in chapter 2, the environmental conditions experienced by breeding 

individuals can modulate the density-dependent relationship between competition 

and foraging effort, particularly at larger colonies. In chapter 4, I present evidence in 

support of the view that gannets are flexible in their diet and foraging behaviour, and 

thus their capacity to respond to environmental change. Along with differing 

foraging ranges and locations, I also found evidence suggesting prey depletion, and 

therefore indirect intra-specific competition around the colony (Ashmole, 1963, Birt 

et al., 1987, Elliott et al., 2009). Gannets make two types of dive: V-shaped dives 

characterised by a steep dive gradient, short bottom period and almost immediate 

ascent and U-shaped dives where there is additional propulsion under water that  

tends to result in  increased bottom time, decreased dive gradient and a longer 

overall dive duration (Ropert-Coudert et al., 2009). The frequency of V-shaped dives 

increased with distance from the colony. A higher proportion of U-shaped dives 

closer to the colony could indicate a need for more underwater pursuit due to greater 

competition for prey, in keeping with other indirect evidence of prey depletion or 

disturbance closer to the breeding site in other species (Davoren et al., 2003b, Elliott 

et al., 2009).  For example, previous studies have recorded  improved quality and 

size of captured prey  (Ainley et al., 1998, Barrette and Giraldeau, 2008, Martin and 

Vinson, 2008) and shallower dives  (Cairns et al., 1990) as distance from the colony 
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increases. Further studies have recorded reduced chick and adult body condition 

(Kitaysky et al., 2000, Davoren and Montevecchi, 2003, Gaston and Hipfner, 2006a) 

and increased trip durations (Lewis et al. 2001, chapter 2) with greater colony size. 

However, a relationship between distance from the colony and foraging effort, 

considering such characteristics as flight speed and dive rates, are not always 

observed (Ainley et al., 2004, Petersen et al., 2006), and we must consider that 

changes in the dive profiles of gannets may also reflect spatial variation in prey 

species or behaviour rather than effects of competition at feeding sites. 

My study also focused on the finer scale search behaviour of gannets during 

foraging trips. I found that birds breeding at Bass Rock also exhibited plasticity in 

their finer scale search behaviour. The variation in the scale of ARS zones during 

both seasons was very large. Also, during 2011, the season with shortest foraging 

trips, (when prey availability was assumed to be highest), ARS and diving were 

recorded on the return phase of foraging trips. This contrasted with  previous seasons 

when conditions were thought to be poorer (Hamer et al., 2009), though this may be 

a product of a smaller sample size during the earlier season. The proportion of dives 

made outside zones of ARS was also higher in 2011, there were few occurrences of 

nested ARS (10 m – 10 km) and more foraging trips included larger scale ARS zones 

(1 – 100km). It therefore appears that gannets have flexibility in their foraging 

behaviour at different spatial scales and adjust their search and fine scale feeding 

behaviour in response to altered environmental conditions. When prey are more 

abundant, adults have greater opportunity to forage opportunistically during the 

commuting legs of foraging trips. The absence of search behaviour on the return 

phase of foraging trips in 2003 (Hamer et al., 2009), may reflect the longer foraging 

trips made that season, resulting in a greater pressure for the adults to return to the 

nest to provision their chicks and relieve the attending parent (Lewis et al., 2004, 

Hamer et al., 2007). Similarly, Cape gannets Morus capensis foraging off the coast 

of South Africa, were frequently found to feed on the return leg of journeys when 

conditions were more favourable and  foraging trip durations were shorter (Ropert-

Coudert et al., 2004).  

Evidence of inter-annual variability in foraging characteristic has been 

recorded for other marine predators, which has been interpreted as demonstrating 

plasticity in response to environmental conditions (Bailey and Thompson, 2010, 
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Kappes et al., 2010). Similarly, Antarctic petrels (Thalassoica antarctica) have been 

found to adjust their foraging and search movements to reflect the scale of the habitat 

patches they exploit at all but the finest scales (Fauchald and Tveraa, 2006). 

Flexibility in foraging strategies and habitat use is important to buffer the potential 

negative impacts of environmental variation on productivity (Burger and Piatt, 1990, 

Uttley et al., 1994, Litzow and Piatt, 2003, Hamer et al., 2007). The ability to 

increase foraging effort and search at a finer scale enables individuals to respond to 

dynamic, shifting environments (Fauchald and Erikstad, 2002). Furthermore, the 

ability to adjust dive profiles and depths at different distances to the colony or when 

intra-specific competition is more intense, can also improve foraging efficiency and 

success. However, not all species are so plastic in their responses, and are therefore 

likely to be more vulnerable to environmental change (Furness and Tasker, 2000, 

Furness, 2007). Even relatively flexible species such as gannets will have eventual 

behavioural and energetic limits to this plasticity, when consequences of more time 

spent at sea or switches to less profitable prey become evident in terms of reduced 

chick growth and reproductive success. Notwithstanding that colony size influences 

foraging range, other aspects of behaviour can act as an indication of the abundance 

and distribution of fish stocks, and the overall conditions experienced by marine 

predators in different seasons (Furness and Camphuysen, 1997b, Hamer et al., 

2006b, Einoder, 2009). Identifying areas that are important feeding locations for a 

variety of higher predators has important conservation and policy implications, and 

can help identify potential marine protected areas (Birdlife, 2010, Arcos et al., 2012, 

Grecian et al., 2012). These may help alleviate threats to seabirds such as climate 

change, fisheries activities, offshore developments and pollution. Though, the 

difficulties posed by dynamic nature of the marine environment must not be 

underestimated in designating such zones. 
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6. 4. Parental effort and provisioning 

Flexibility in foraging behaviour can buffer the potential negative impacts of 

variable environments on reproductive success (Burger and Piatt, 1990). I found that 

gannets were flexible both between and within years in the amount of foraging effort 

expended (chapter 5). Within years, effort was not constant but was high during 

early and late chick rearing, reflecting variation in the chick’s energetic requirements 

rather than prey availability. Trip durations were shortest during the first few weeks 

post hatching, when chicks are most vulnerable to chilling and predation (Nelson, 

1966, Nelson, 1978, Montevecchi et al., 1984), and again at the latter stages of 

development when maintaining a lipid store is likely to improve a chicks post-

fledging survival, when learning to forage for themselves (Nelson, 1978). Although 

we may consider that having too much fat could be costly due to high wing loading 

resulting in lower flight performance. Studies of other seabirds have also recorded 

relationships between stage of the breeding season and  foraging characteristics, 

including range (Weimerskirch et al., 1993, Kato et al., 2003, Phillips et al., 2004), 

location (Ito et al., 2010, Lyver et al., 2011) and prey type (Montevecchi et al., 1984, 

Elliott et al., 2009). My study therefore suggests that the requirements of offspring, 

as well as environmental conditions, influence the foraging decisions of the adults. 

Changes in foraging behaviour of adults may not necessarily be tactical decisions by 

the adults, but result from responses to altered begging behaviour by chicks as they 

grow and therefore their energetic requirements alter (Kitaysky et al., 2001, Hamer 

et al., 2006a, Quillfeldt et al., 2006). 

 In spite of these apparent shifts in behaviour by gannets on Bass Rock, to 

adjust their effort and investment as the season progresses and their chicks age, both 

greater occurrence and longer duration of brood neglect was recorded during 2002 

when foraging conditions were worse (Lewis et al., 2004). Increased incidence of 

neglect can impact upon reproductive success in some species (Hochscheid et al., 

2002, Nelson, 2002, Ratcliffe and Furness, 2006), although it is not a reliable 

indicator of the productivity of a population for all (Harris and Wanless, 1997). 

Further, the inability of adults to maintain provisioning rates will affect chick growth 

more than pre-fledging survival (Harris and Wanless, 1997, Gray et al., 2005, 

Enstipp et al., 2006). Optimal foraging theory predicts that adults of many species 

face a trade-off between the cost of travelling to a more distant location and therefore 
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spending more time at sea, versus the quality of the prey obtained (Cresswell et al., 

2001, Litzow et al., 2004, Staniland et al., 2007), even in the absence of prey 

depletion. This is likely to be influenced by the nutritional status and energy reserves 

of the adult (McNamara and Houston, 1996, Sherratt, 2003). For adults also foraging 

for their offspring, there is an additional trade-off between time spent foraging, and 

time spent incubating or guarding chicks as well as the need to maintain provisioning 

rates (Lewis et al., 2004, Lormée et al., 2003). Indeed, life history theory predicts a 

trade-off between the costs of foraging and reproductive investment (Costa, 1991, 

Roff, 1993). For long-lived species, such as seabirds, natural selection favours the re-

direction of resources towards self maintenance during adverse environmental 

conditions, due to adults’ high residual reproductive value (Drent and Daan, 1980, 

Reznick, 1985). 

 In many species, individuals have the capacity to adjust foraging behaviour 

and time budgets to a certain extent, enabling them to buffer the negative impacts of 

environmental variability on reproductive success, as well as their own survival. 

However, there is variation in the sensitivity of different species to change (Furness 

and Tasker, 2000), and while specialist species are more vulnerable to shifts in prey 

availability, others are more flexible and can maintain breeding success by altering 

their time budgets or diets, thereby intimating consistently favourable conditions, 

when in fact feeding conditions are poorer. For species such as gannets, with 

offspring that are relatively robust during later stages of development, caution is 

required when estimating conditions from breeding success alone. Also, while adults 

may be able to provide enough food for survival at the nest, provisioning rates 

towards the end of development may not be sufficient to facilitate the building up of 

an energy reserve sufficient to ensure survival after leaving the nest (Nelson, 1978, 

Montevecchi et al., 1984). It could be beneficial to measure both fledging success 

and chick condition at fledging, although this would be impractical at most colonies, 

as it would be likely to cause excessive disturbance. Further, it could be misleading. 

For instance, Gray et al. (2003) recorded higher  body condition of fulmar Fulmarus 

glacialis chicks in a year with low breeding productivity, because of higher mortality 

among chicks with low body condition. Therefore, in species with flexible fledging 

ages, the length of the nestling period may be an alternative and informative 

indicator of conditions throughout the season. However, caution would be required if 
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assessing conditions this way, as chicks in poor conditions may fledge early, or 

indeed late. 

 

 

6. 5. Recommendations for further research 

My project investigating the foraging behaviour and population dynamics of 

northern gannets over a period of environmental change has highlighted a number of 

priorities for further research. Evidently, population density regulates not only 

colony size but also some aspects of foraging behaviour and parental investment. 

Notably, it is not only competition within, but also between colonies that is limiting. 

However, further research over much broader spatial scales is required to understand 

population trends and patterns of inter-colony competition across the full breeding 

ranges of species. More empirical data are also required to understand how the 

spatial segregation of foraging ranges of individuals from different colonies is 

related to colony size and the sizes of neighbouring colonies, and to investigate how 

segregation is mediated. These effects have far reaching implications for colonial 

breeders from several taxa, for which the distribution and availability of their food 

resources may be shifting due to anthropogenic effects. 

The three breeding seasons during which I collected data on northern gannets 

could all be considered relatively ‘good’, as indicated by both by oceanographic data 

and the relatively short foraging trip durations recorded. Therefore, it is unlikely that 

gannets’ full capacity for flexibility in foraging behaviour was observed. Though this 

is a common limitation of studying wild populations, continuing these studies at the 

same breeding colonies but under markedly less favourable conditions would help 

assess the species’ full capacity to respond to a shifting environment, especially 

when prey are scarce, and the consequences for reproductive success and ultimately 

population growth are most acute. This is also true of understanding the interactions 

between food availability, parental foraging behaviour and the nutritional 

requirements of chicks within seasons. Further study is required during a season with 

poor feeding conditions, as we may predict that extreme conditions could result in 

local prey depletion throughout the season (Litzow et al., 2004, Elliott et al., 2009), 
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therefore hindering adults’ ability to sufficiently provision their young during 

different stages of development. 

As my findings include annual variation in finer-scale search behaviour 

during foraging trips, I also suggest further study is required into the association 

between fine scale foraging behaviour and shifts in zones of high productivity, such 

as tidal mixing fronts and eddies, both within and between breeding seasons. 

Overlaps have been found between such zones of higher productivity and the 

distribution of marine predators (Pinaud and Weimerskirch, 2007, Bost et al., 2009, 

Raymond et al., 2010), with some seabird species previously found at elevated 

densities at fronts, upwellings, etc. (Schneider, 1982, Decker and Hunt Jr, 1996, 

Begg and Reid, 1997). For example, at fine scales, ARS patterns are associated with 

these oceanographic zones (Pinaud et al., 2005b, Hamer et al., 2009, Scheffer et al., 

2010). In particular, gannets tracked from Bass Rock in 2003 exhibited ARS in the 

vicinity of small-scale, shelf-sea mixing fronts (Hamer et al., 2009). There was also 

significant overlap between ARS zones and the tidal mixing front during the 2011 

breeding season, with 73% of all zones of ARS initiated within 5 km of the front 

(Fig. 6.1). I suggest, further study is now required into such fine scale feeding 

behaviour as frequency of dives and dive profiles in relation to these oceanographic 

features. 
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Figure 6.1. Locations of zones of area-restricted search used by gannets from the 

Bass Rock  in 2011, superimposed on the locations of coarse scale and mesoscale 

frontal waters present during July 2011 (Miller, et al. unpublished data reproduced 

with permission). Fronts were detected using composite sea-surface temperature data 

during and a recently developed front detection algorithm (Miller, 2009). The 

composite map combines location, strength and persistence of fronts during the 

observation period and thus displays density of frontal activity from purple through 

to yellow were density was greatest. Green indicates high frontal density and purple 

low. 

 

 

Because such features are dynamic, shifting under varying environmental 

conditions, we may predict that predators track their movements. However, few 

studies have investigated this over long time sales or fine spatial scales. With new 

methods of mapping fronts at the km scale (Miller, 2009), it is becoming 

increasingly possible to investigate the importance of these zones to a range of 

species (Johnston et al., 2005a, Bailey and Thompson, 2010, Raya Rey et al., 2010). 
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Such studies into small scale feeding hotspots, along with those on foraging 

movements associated with fishing activities, are urgently needed to help designate 

and manage marine protected areas and contribute towards wildlife management 

policies.  

 

 

6. 6. Conclusions  

In light of current projections of climate change and shifting marine environments, 

the need to better understand the potential impacts of these changes on population 

dynamics and foraging behaviour of central-place foragers is evident. In summary, 

my study of British seabird species, namely the northern gannet, found that annual 

variation in foraging trip durations will be particularly marked at large colonies, 

making them especially vulnerable to adverse effects of low prey availability at sea. 

As foraging ranges alter with colony size, the scale of dependency between colony 

size and neighbouring conspecific competition also alters. My results therefore 

provide strong support for the limiting effect of competition between conspecifics 

breeding in adjacent colonies. My findings also support Ashmole’s theory of intra-

specific competition resulting in prey depletion around seabird colonies (Ashmole, 

1963), implying that gannets can reduce the effect of competitive pressure both 

between and within breeding seasons, in response to prey scarcity by foraging 

further from the colony. 

Gannets also exhibited flexibility in their finer-scale search and dive 

strategies. This flexibility in habitat use, foraging behaviours and also diet may 

buffer this species against environmental change, although we may not yet have 

observed the full range of environments that gannets might experience. There was 

also annual variation in parental investment at the nest. Furthermore, I found that 

gannets were flexible within breeding seasons in the amount of foraging and parental 

effort expended, thereby suggesting that the chick’s energetic requirements 

contribute to adults’ foraging behaviour as well as prey availability. Flexibility in 

foraging and parental behaviour may therefore buffer the potential negative impacts 

of environmental variation on provisioning rates and productivity, even in long-lived 
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species such as gannets, which are expected to redirect energy towards self 

maintenance under poor conditions. These findings hold implications for the 

population dynamics and potential resilience of a wide range of seabird species and 

central-place foragers, under dynamic and variable conditions. In turn, these have 

further implications in the context of both the management and conservation of 

threatened populations, including the identification and monitoring of marine 

protected areas. 
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Appendix A: Northern gannet, Atlantic puffin, European shag and 

black-legged kittiwake colony codes in reference to those studied in 

Chapter 3 

 

Table A.1. Abbreviations and full names for A. gannet, B. puffin, C. shag and D. 

kittiwake colonies in the UK and southern Ireland, illustrated in figures 3.1 and 3.2. 

Species Abbreviation Colony name 
A. Gannets A Ailsa Craig 

B Bempton Cliffs 
BR Bass Rock 
Bu Bull Rock 
F Foula 
FI Fair Isle 
FL Flannan Isles 
G Grassholm 
GS Great Saltee 
H Hermaness 
IE Ireland’s Eye 
LS Little Skellig 
N Noss 
Sc Scare Rocks 
SK St. Kilda 
SSg Sula Sgeir 
SSt Sule Stack 
T Troup Head 

B. Puffins BC Boddam-Collieston 
CM Clo Mor 
F Foula 
FaH Faraid Head 
FI Fair Isle 
FL Flannan Isles 
Ft Fetlar 
H Hermaness 
L Landvillas 
M Melvich 
N Noss 
NR North Rhona 
NY NW Yell 
S Shiants 
SH Sumburgh Head 
SSk Sule Skerry 
SK St. Kilda 
ST Scarfi Taing 
SU SW Unst 
Sx Saxavord 
TN The Nev to kame 
U Uyea 

C. Shags B Bressay 
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C Copinsay 
E Eday 
EY East Yell 
F Foula 
Fa Faray 
FI Fair Isle 
Ft Fetlar 
H Hermaness 
Ho Holm 
HSW Hoy and South Walls 
Flo Flotta 
Mo Mousa 
MR Muckle Roe 
N Noss 
Nn Noness 
O Outer Skerries 
PeS Pentland Skerries 
PS Papa Stour 
PW Papa Westray 
R Rousay 
Sh Shapinsay 
SH Sumburgh Head 
SR South Ronaldsay 
St Stronsay 
SSk Sule Skerry 
SW Sil Wick 
Sx Saxavord-Holm 
U Uyea 
V Vaila 
W Whalsay 
WB West Burra 
We Westray 

D. Kittiwakes BV Braga Ness-Wats Ness and Vaila 
EI Eshaness and Eshaness Islands 
F Foula 
FiH Fitful Head 
FI Fair Isle 
Ft Fetlar 
HB South Havra and West Burra  
MNn Mousa and Noness 
NB Noss and Bressay 
NEU North East Unst 
NI St. Ninian’s Isle and Ireland 
NM N Mainland 
NWM NW Mainland 
NWU NW Unst  
PSM Papa Stour and Muckle Roe 
RS Reawick-Skelda Ness and Skelda Ness-

Walls 
SEM SE Mainland 
SEY SE Yell 
SH Sumburgh Head 
SWU SW Unst 
WS Whalsay and Skerries 
WY W Yell 
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Appendix B: Semi-variograms of colony size and model residuals for 
northern gannets, Atlantic puffins, European shags and black-
legged kittiwakes in different years 
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       1984/85 

 
       1994/95 

 

       2003/04 

 

 Figure B.1. Semi-variograms of gannet colony counts using matrices of shortest at-

sea distance between each pair of colonies during the 1970s, 1984/85, 1994/95 and 

2003/04. 
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Figure B.2. Semi-variograms of puffin colony counts using matrices of shortest at-

sea distance between each pair of colonies during the early 1970s and 2000/01. 
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Figure B.3. Semi-variograms of shag colony counts using matrices of shortest at-sea 

distance between each pair of colonies during 1969/70 and 2000/01. 
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Figure B.4. Semi-variograms of kittiwake colony counts using matrices of shortest 

at-sea distance between each pair of colonies during 1982 and 2000/01. 
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Figure B.5. Semi-variograms of model residuals for gannet colonies within putative 

foraging ranges of 100km, 150km, 200km and 300km using 1970’s colony counts. 
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Figure B.6. Semi-variograms of model residuals for gannet colonies within putative 

foraging ranges of 100km, 150km, 200km and 300km using 1984/85 colony counts. 
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Figure B.7. Semi-variograms of model residuals for gannet colonies within putative 

foraging ranges of 100km, 150km, 200km and 300km using 1994/95 colony counts. 
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Figure B.8. Semi-variograms of model residuals for gannet colonies within putative 

foraging ranges of 100km, 150km, 200km and 300km using 2003/04 colony counts. 
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Figure B.9. Semi-variograms of 

model residuals for puffin colonies 

within putative foraging ranges of 

50km, 100km, 150km, 200km and 

250km using 1970’s colony 

counts. 
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Figure B.10. Semi-variograms of 

model residuals for puffin colonies 

within putative foraging ranges of 

50km, 100km, 150km, 200km and 

250km using 2000/01 colony 

counts. 
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Figure B.11. Semi-variograms of 

model residuals for shag colonies 

within putative foraging ranges of 

20km, 30km, 40km, 50km, 60km, 

70km and 80km using 1969/70 

colony counts. 
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Figure B.12. Semi-variograms of 

model residuals for shag colonies 

within putative foraging ranges of 

20km, 30km, 40km, 50km, 60km, 

70km and 80km using 2000/01 

colony counts. 
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Figure B.13. Semi-variograms of model residuals for kittiwake colonies within 

putative foraging ranges of 20km, 30km, 40km, 60km, 80km, and 100km using 

1982 colony counts. 
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Figure B.14. Semi-variograms of model residuals for kittiwake colonies within 

putative foraging ranges of 20km, 30km, 40km, 60km, 80km, and 100km using 

2000/01 colony counts. 
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