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Abstract

A “chirp” is a frequency modulated signal widely used in ultrasound imag-

ing to increase the signal-to-noise ratio and penetration depth. In medical

ultrasound imaging, resolution and penetration are two major criteria that

are inversely proportional. Because of this inverse relation, short duration

pulses cannot achieve a high resolution with good penetration. The rea-

sons for this trade-off are the decrease in signal energy due to shorter pulse

duration and the attenuation in tissue, which increases with the excita-

tion frequency. The chirp coded excitation however can increase the total

transmitted energy using longer pulse durations, while the resolution can

be recovered by decoding on receive. Therefore, chirp signals offer potential

advantages over single carrier short duration pulses for medical imaging.

This work addresses the possible problems encountered in medical ultra-

sound imaging with chirps and offers new solutions to these problems in

terms of signal processing. These proposed solutions are then applied to

three major categories of medical ultrasound imaging; hard-tissue ultra-

sound imaging, soft-tissue ultrasound imaging and contrast-enhanced ul-

trasound imaging.

The application of coded excitation in medical ultrasound imaging is the

main motivation behind this work. Therefore, the concepts of frequency

modulation and matched filtering are introduced first, and ultrasound spe-

cific problems for pulse compression of chirps are discussed. Examples are

given on specific applications and circumstances, where the performance of

the traditional pulse compression techniques drops significantly.

Alternate methods of pulse compression and filtering of frequency modu-

lated chirps using the Fractional Fourier transform (FrFT) and the Fan

Chirp transform (FChT) are presented. Rather than restricting the chirp



analysis in the time or frequency domain; these proposed methods trans-

form the signal of interest into a new domain, which is more suitable to

analyse frequency modulated chirps.
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Chapter 1

Introduction

The first attempts to use ultrasound for medical diagnosis date back to 1940s (Dussik

et al., 1947). However, the diagnostic medical ultrasound imaging started to gain

popularity in 1970s, where the use of real-time scanners with hand-held transducers and

a coupling oil was reported by Griffith & Henry (1974) and McDicken et al. (1974). The

grey scale images acquired by those systems were usually referred to as B-mode images

or B-scans, where the amplitude of received echoes were mapped to the ultrasonic

properties and the time delays were mapped to the locations of the reflectors or the

scatterers. These images were formed line by line with the pulse-echo method, which

is based on the measurement of the elapsed time between the transmission of a short

pulse and the reception of the echo.

The axial resolution1 of these pulse-echo imaging systems were determined by the

duration of the ultrasonic pulse. Better resolution can be achieved by decreasing the

pulse length, which is limited by the ultrasonic frequency. The penetration depth is also

a function of the excitation frequency, since the attenuation of ultrasound in the tissue

is frequency-dependant. Therefore the resolution improves as the excitation frequency

is increased, but this increase results in reduced penetration depth.

Frequency modulated excitation, which is usually referred to as a “chirp”, can

be used to overcome these limitations introduced by the classical pulse-echo imaging

technique. In medical imaging with ultrasound, chirp excitation is used to increase

the penetration depth by increasing the total transmitted energy using longer pulse

durations, while the resolution is controlled by the signal bandwidth.

1The resolution in the direction of propagation. Also known as resolution in depth.
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1.1 Literature Review

1.1 Literature Review

Coded signals are common in all types of ultrasound applications including medical

imaging, sonar and non-destructive evaluation (Kino, 1987; Szabo, 2004). The first

application of coded excitation in medical ultrasound systems was by Takeuchi (1979)

using Golay codes. O’Donnell (1992) used chirp coded excitation for the first time for

B-mode imaging on a real-time phased-array system to improve the penetration and

SNR. He also calculated a theoretical 15− 20 dB SNR improvement for medical ultra-

sound applications. A simulation study by Rao (1994) highlighted the advantages of

coded excitation and also investigated the limitations of pulse compression technique

for medical ultrasound imaging. Passmann & Ermert (1996) showed the superiority of

chirp excitation for high frequency broadband applications, where the major concern

was the strong attenuation. They designed a 100 MHz dermatologic and ophthalmo-

logic diagnostics ultrasound imaging system and used chirp excitation to improve the

SNR. Misaridis et al. (2000) presented the potential of coded excitation in medical ul-

trasound imaging by using a new pre-distorted chirp signal. The advantages of chirps

became clearer, after Pedersen et al. (2003) performed the clinical evaluation of chirp-

coded excitation by comparing it with conventional pulsed excitation using a modified

commercial ultrasound scanner. Chiao & Hao (2005) reviewed various coded excita-

tion techniques by considering the effects of frequency-dependent attenuation, dynamic

focusing, and nonlinear propagation for diagnostic ultrasound. During the same year,

Misaridis & Jensen (2005a,b,c) published the most extensive study on coded excita-

tion in medical ultrasound. This work was based on simulations, theoretical analysis

and experimental measurements for waveform design, signal modulation, match fil-

ters, mismatched filters, and pulse compression under frequency and depth dependant

attenuation specifically for medical imaging applications.

After these studies, chirps have found applications in many types of medical ul-

trasound imaging including classical B-mode imaging of soft tissue, tissue harmonic

imaging, synthetic aperture imaging, intravascular imaging, bone imaging, contrast

imaging, contrast harmonic imaging, subharmonic imaging, etc.

There are several examples on soft-tissue imaging. Jensen et al. (2006) used a chirp

signal to overcome one of the biggest problems in synthetic aperture ultrasound imag-

ing; the limited signal energy and penetration depth due to the use of single element
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and un-focused waves. Arshadi et al. (2007) tried to improve the spatial resolution

in ultrasound imaging by applying coded excitation methods for ultrasound harmonic

imaging. Mamou et al. (2009) preferred chirp excitation for high frequency ophthalmo-

logic and small-animal imaging to compensate for the attenuation. Recently, Maresca

et al. (2012) utilized coded chirp excitation for intravascular ultrasound (IVUS) imaging

because of the high attenuation observed at high frequencies used in IVUS.

Not as many examples can be found for hard-tissue imaging but chirps are used for

imaging inside the bone with pulse compression techniques (Iriea et al., 2003).

The application of chirp excitation in contrast imaging has attracted the attention

of many researchers. Sun et al. (2006) performed the simultaneous optical-acoustical

observation of contrast agent response to chirp insonation with a high-speed digital

streak camera at 100 million frames per second. After getting promising results, they

used chirped excitation for contrast imaging (Sun et al., 2007). Borsboom et al. (2005)

proposed a harmonic chirp imaging method for ultrasound contrast agents, mainly

focusing on second harmonic component. Zhang et al. (2007) however used chirps

for subharmonic imaging and showed that subharmonic emission from encapsulated

microbubbles can be enhanced by using a chirp excitation technique.

Several new techniques have been proposed on pulse compression with chirp ex-

citation and specific problems associated with ultrasound contrast imaging. A new

nonlinear compression technique was proposed by Borsboom et al. (2003) for ultra-

sound contrast imaging that selectively compresses the second harmonic component

to improve contrast-to-tissue ratio (CTR) and SNR. Chetty et al. (2006) performed

simulations of the microbubble response to chirp multi-pulse sequences with pulse in-

version and power modulation. Their results showed that the extra energy carried by

chirps results in an increased SNR for contrast imaging. Novell et al. (2009) com-

bined the time reversal technique with chirp excitation to improve CTR and SNR by

sacrificing the axial resolution for contrast imaging. Shen & Chiu (2009) designed a

dual-frequency chirp excitation waveform for contrast harmonic imaging to suppress

the tissue harmonics.

Recent studies have focused in more detail on sidelobe reduction and issues associ-

ated with non-linear propagation in tissue. Song et al. (2010) applied coded excitation

for ultrasound tissue harmonic imaging for sidelobe reduction. They observed that the

coded excitation with pulse inversion gives better suppression of peak sidelobe levels
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for tissue harmonic imaging. They later used quadratic nonlinear chirps to further im-

prove their results on tissue harmonic imaging with coded excitation (Song et al., 2011).

Park et al. (2013) combined chirp coded tissue harmonic and fundamental ultrasound

imaging for intravascular ultrasound to reduce range sidelobe levels.

Even though coded excitation techniques have been applied to ultrasound imaging

for over three decades, researchers could not overcome the main limitations of using

chirps in medical ultrasound imaging. Image resolution and dynamic range have always

been an issue for coded excitation systems. The axial resolution is usually much worse

than the theoretical prospect because of the limited bandwidth of the transducer. Also,

the transfer function of the transducer is usually asymmetrical; therefore the range side-

lobes in the compressed signal appear in an unexpected manner. Most of the recent

studies still focus on improving image quality by suppressing compression sidelobes,

where time-bandwidth limitations of ultrasound systems and frequency-dependent at-

tenuation in tissue result in sub-optimal compression.

1.2 Motivation

The identification, evaluation, and processing of frequency modulated chirps are still

challenging for classical signal analysis. Several methods were proposed to overcome

these challenges (Cohen, 1989; Daubechies, 1990; Jaynes, 1996; Mann & Haykin, 1995).

Most of the solutions for these specific chirp related problems have surprisingly come

from a broader field; the time-frequency analysis. Therefore, this study focuses on the

application of these alternative solutions to the ultrasound related problems on pulse

compression of chirps. Especially the chirp-based transforms are given precedence,

since they provide a broader picture of the time-frequency content of the chirp signal.

A precise and fine representation of signals in the time-frequency plane is of great

importance in many fields such as radar, sonar, speech processing, optics, seismology,

oceanography, etc. Time frequency representation of signals or data is usually achieved

by spectrograms, which is a time varying spectral estimation of the signal power density.

Conventional Fourier-type techniques and new spectral estimation methods will be

discussed in this section including their advantages and disadvantages for processing

chirp signals. Although these spectral estimation methods were not developed for

medical ultrasound imaging, their main purpose is similar to imaging applications; to
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improve the compression and representation of non-stationary signals or chirps in the

time-frequency plane.

The conventional spectrum analysis1 is based on the Fourier transform and a lag

window. The Fourier transform has a sinusoidal kernel2 that is suitable for analysing

monochromatic signals. Chirps however have a quadratic phase function3 whose fre-

quency content changes by time, therefore the Fourier transform is not ideal for analysing

the chirps (Jaynes, 1996). For this reason, the first fundamental shortcoming of the

conventional approach is that chirp signals are analysed by an algorithm appropriate

to detect single-frequency stationary signals.

The second shortcoming of this method is that a Blackman-Tukey spectrum uses a

fixed-length lag window to cut the noise contribution from long time domain signals,

where the total noise energy is small for the shorter durations. When the data set is

tapered by a window, the spectrum becomes smooth and the sidelobes disappear. By

removing those unwanted sidelobes, the estimated power spectrum will have a more

pleasing appearance (Jaynes, 1996). The final representation of the time-frequency

plane will be equivalent to the convolution of the spectrogram and the Fourier transform

of the lag window, thus reducing the resolution and making it impossible to represent

sharp spectral lines correctly.

Instead of using a conventional Fourier based spectral analysis; new algorithms

were proposed to extract more information from the data and to make better use of a

priori information. The most common example is the Wigner-Ville spectral analysis

(Martin & Flandrin, 1985). Wigner-Ville distribution achieves better resolutions than

Blackman-Tukey spectrum for a single chirp signal. Choi & Williams (1989) however,

pointed out a problem with these time-frequency distributions which are members of

the generalized Cohen’s class; multicomponent signal artefacts. The artefacts appear

between multiple signals at Wigner distribution as an interference between the cross-

terms (Cohen, 1989). Other Cohen class distributions such as the Smoothed Pseudo

Wigner-Ville distribution can be used to attenuate this interference at the expense of

decreased resolution due to the smoothing.

1 The Blackman-Tukey spectrum analysis is referred to as conventional spectrum analysis. Black-

man & Tukey (1958) have introduced the usage of windows into spectral analysis and it is still the one

of the most common methods of estimating the spectrum of a signal.
2The Fourier transform is given in Eq. (3.1).
3The phase function of a linear frequency modulated chirp is given in Eq. (2.2).
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These interfering cross-terms are negligible for multiple chirps in the Choi-Williams

distribution, since they used a quadratic exponential transformation kernel and a run-

ning window (Choi & Williams, 1989). However the window parameters must be chosen

carefully, since the weighting of the window controls the amplitude of the cross term

by spreading it out in a selective manner. After Choi & Williams (1989) presented

the importance of the transformation kernel, several more time-frequency techniques

with different properties have been proposed specifically for chirp analysis. The most

common ones are the Wavelet transform, the Chirplet transform, the Fractional Fourier

transform, and the Fan Chirp transform.

The Wavelet transform uses a kernel consisting of wavelets having similar time-

frequency properties to the analysed signal (Daubechies, 1990). This technique can

achieve multiple resolutions on different parts of the time-frequency plane, however

it has serious limitations for fast chirp rates when applied to non-stationary signals

(Képesi & Weruaga, 2006).

The Chirplet transform (Mann & Haykin, 1995) and the Fractional Fourier trans-

form (McBride & Kerr, 1987) can achieve optimum compression and resolution for a

single linear frequency modulated chirp thanks to their chirp-based transformation ker-

nels. Both transformations can obtain a non-Cartesian tiling by rotating or shearing

the time-frequency plane that matches with the chirp rate of interest (Ozaktas et al.,

1994). In the presence of harmonics however, these transformations cannot achieve

optimum compression for all the harmonically related chirps (Cancela et al., 2010).

In the case of harmonics, the Fan Chirp transform offers optimal resolution si-

multaneously for all harmonic chirps by warping the time-frequency plane in a “fan”

geometry (Weruaga & Képesi, 2007). But interpolation may be necessary after warp-

ing the time-frequency plane by the Fan Chirp transform, which can result in degraded

resolution, aliasing or extra computational load.

1.3 Objectives of this work and the organization of the

thesis

The chirp coded excitation has been proven to be useful in medical ultrasound imaging.

Nevertheless, the design of an efficient coded excitation system is not trivial. Designing

the excitation signal and the pulse compression pair are equally important for this
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process. The matched filter is usually preferred for the pulse compression to maximize

the SNR. The matched filter1 response can also be further improved by compensating

for the depth-dependant attenuation, frequency-dependant attenuation, and transducer

response. However, it is impossible to design a perfect matched filter for medical

ultrasound imaging, because of the nonlinear behaviour of tissue2. Human tissue also

generates harmonics that reduces the performance of the matched filter for soft-tissue

imaging and ultrasound harmonic imaging. For contrast-enhanced ultrasound imaging

microbubbles alters the phase, the amplitude, and the frequency content of the scattered

echoes that makes pulse compression even more challenging. Therefore, alternative

methods are proposed for the compression of chirps and these techniques are applied

in different fields of medical ultrasound imaging.

The concepts of frequency modulation and matched filtering are described in chap-

ter 2. Chapter 3 explains the Linear Canonical transform and two of its special cases

used in this work; the Fractional Fourier transform (FrFT) and the Fan Chirp trans-

form (FChT). The following chapters present the applications of these techniques on

different problems encountered in chirp coded excitation for three major categories

of medical ultrasound imaging; hard-tissue ultrasound imaging, soft-tissue ultrasound

imaging and contrast-enhanced ultrasound imaging.

In part I, the chirp coded excitation is applied to dental imaging and characterisation

of tooth layers. A method of pulse compression and filtering based on the FrFT is used

to improve the resolution and SNR. In chapter 4, an imaging technique to measure

the thickness of the enamel layer in human teeth is proposed. The FrFT is used for

pulse compression of overlapping chirps due to reverberations inside the tooth layers.

In chapter 5, detection of the restoration faults under the fillings in a human tooth is

performed with ultrasound. For this application, the FrFT is used for filtering rather

than pulse compression. The results of this study were published in the following

papers:

• Sevan Harput, D.M.J. Cowell, J.A. Evans, N. Bubb and S. Freear, “Tooth Char-

acterization using Ultrasound with Fractional Fourier Transform,” IEEE Int. Ul-

trasonics Symposium (IUS), 2009, pp. 1906 - 1909.

1In this context, it is also called as a mismatched filter.
2Tissue is inhomogeneous and anisotropic, for this reason variations in the density, compressibility,

attenuation, and speed of sound is usually observed in medical imaging.
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• Sevan Harput, J.A. Evans, N. Bubb and S. Freear, “Detection of Restoration

Faults under Fillings in Human Tooth using Ultrasound,” IEEE Int. Ultrasonics

Symposium (IUS), 2011, pp. 1443 - 1446.

• Sevan Harput, J.A. Evans, N. Bubb and S. Freear, “Diagnostic Ultrasound Tooth

Imaging using Fractional Fourier Transform,” IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, vol. 58, no. 10, pp. 2096 - 2106, 2011.

The idea of using ultrasound to measure the enamel thickness and to detect the

restoration faults was conceived as result of a group discussion with D.M.J. Cowell,

J.A. Evans, N. Bubb and S. Freear. All authors contributed on these three publications

by giving their insights on possible applications of ultrasound to dentistry. J.A. Evans

and N. Bubb assisted on supplying a real human teeth and preparing it for ultrasound

measurements. However, the experimental setup, ultrasound measurements and the

signal processing were performed by the first author. All three publications were written

and edited by the first author after considering the comments and corrections of co-

authors.

In part II, the problems encountered on pulse compression of chirp signals for ul-

trasound soft tissue imaging is investigated. Chapter 6 presents a common problem in

second harmonic imaging; spectral overlapping. The FrFT is used for the extraction

of the overlapped second harmonic and fundamental components in tissue harmonic

imaging. In chapter 7, a similar problem is addressed for superharmonic imaging. The

FChT is found to be more suitable for filtering and separating the spectrally overlapped

harmonics. The results of these two studies and performance analysis of frequency mod-

ulated signals for ultrasound imaging were published and will be submitted as:

• M. Arif, Sevan Harput and S. Freear, “Experimental Investigation of Chirp Coded

Excitation in Ultrasound Superharmonic Imaging,” IEEE Int. Ultrasonics Sym-

posium (IUS), 2010, pp. 2187 - 2190.

• M. Arif, Sevan Harput, P.R. Smith, D.M.J. Cowell, and S. Freear, “Extraction of

an Overlapped Second Harmonic Chirp Component using the Fractional Fourier

Transform,” IEEE Int. Ultrasonics Symposium (IUS), 2011, pp. 405 - 408.
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• Sevan Harput, J. McLaughlan, P.R. Smith, D.M.J. Cowell, S.D. Evans and S.

Freear, “Analysis and Applications of the Fan-Chirp Transform to Chirp Exci-

tation for Super Harmonic Imaging,” IEEE Transactions on Ultrasonics, Ferro-

electrics, and Frequency Control, (Manuscript in Preparation).

Using chirp coded excitation for second harmonic and superharmonic imaging was

suggested by M. Arif. M. Arif and Sevan Harput contributed proportionally while

solving the problems encountered during the experiments, calibrating the instruments,

performing the measurements, and processing the data. First two publications were

mostly written by the first author. Sevan Harput contributed to the write-up process

by correcting and editing the final manuscript.

Part III focuses on contrast-enhanced ultrasound imaging and microbubble be-

haviour. The nonlinear behaviour of the microbubbles and their effect on pulse com-

pression is described in chapter 8. The pulse compression with the matched filter

and filtering using the FrFT and the FChT techniques are compared and analysed for

contrast-enhanced ultrasound imaging and contrast-enhanced second harmonic imag-

ing. In chapter 9, a new method is proposed to separate the second harmonic response

of tissue and microbubbles using the bispectral analysis. The theoretical background

for this work is given in chapter 8 by explaining the nonlinear behaviour of microbub-

bles. The results of these studies were published in the following papers and will be

submitted as:

• Sevan Harput, M. Arif and S. Freear, “Experimental Investigation of the Sub-

harmonic Emission from Microbubbles using Linear and Nonlinear Frequency

Modulated Signals,” IEEE Int. Ultrasonics Symposium (IUS), 2010, pp. 1724 -

1727.

• Sevan Harput, J. McLaughlan, P.R. Smith, D.M.J. Cowell, S.D. Evans and S.

Freear, “Separating the Second Harmonic Response of Tissue and Microbubbles

using Bispectral Analysis,” IEEE Int. Ultrasonics Symposium (IUS), 2012, pp.

1930 - 1933.

• Sevan Harput, M. Arif, J. McLaughlan, P.R. Smith, D.M.J. Cowell, S.D. Evans

and S. Freear, “Evaluation of Frequency Modulated Chirp Excitation for Contrast-
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Enhanced Harmonic Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, (Manuscript in Preparation).

The first publication was a team effort between all authors, however it was the first

author who shaped the idea and carried out most of the work. M. Arif and Sevan

Harput contributed proportionally while performing the measurements with contrast

agents. The signal processing and the formation of subharmonic images were performed

by the first author. For the second publication, the idea of using higher order spectral

techniques to analyse ultrasound data was conceived by the first author. The experi-

mental setup, ultrasound measurements and the signal processing for this study were

performed by Sevan Harput. Co-authors contributed by preparing contrast agents, cal-

ibrating the instruments, supplying technical support while using the UARP and giving

feedback during all stages of this study. Both publications were written and edited by

the first author and reviewed by co-authors.

The research performed in this work on frequency modulated chirps, medical ultra-

sound imaging, and microbubble behaviour contributed to other publications that are

not presented in this thesis. One patent application was submitted, and one journal

paper and six conference papers were published:

• S. Freear, B. Raiton, J.R. McLaughlan, D.M.J. Cowell, P.R. Smith, and Sevan

Harput, “Acoustic Tap for Microbubbles,” International Patent Application No.

PCT/GB2013/050738, 2012.

• Sevan Harput, P.C. Sofotasios and S. Freear, “A Composite Statistical Model

for Ultrasound Application,” IEEE Int. Ultrasonics Symposium (IUS), 2011, pp.

1387 - 1390.

• Sevan Harput, B. Raiton, J.R. McLaughlan, S.D. Evans and S. Freear, “The Pe-

riodicity between the Aggregated Microbubbles by Secondary Radiation Force,”

IEEE Int. Ultrasonics Symposium (IUS), 2011, pp. 1630 - 1633.

• P.R. Smith, Sevan Harput, D.M.J. Cowell, J. McLaughlan, and S. Freear, “Pre-

Distorted Amplitude Modulated (PDAM) Chirps for Transducer Compensation

in Harmonic Imaging,” IEEE Int. Ultrasonics Symposium (IUS), 2012, pp. 459

- 462.
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• G. Leaute, J. McLaughlan, Sevan Harput, D.M.J. Cowell, and S. Freear, “Com-

sol Modelling of Non-Spherical Microbubble Dynamics Near a Soft Membrane,”

IEEE Int. Ultrasonics Symposium (IUS), 2012, pp. 2286 - 2289.

• B. Raiton, J.R. McLaughlan, P.R. Smith, D.M.J. Cowell, Sevan Harput and S.

Freear, “Counter flow microbubble channeling using acoustic radiation force fun-

nel,” IEEE Int. Ultrasonics Symposium (IUS), 2011, pp. 2432 - 2435.

• M. Arif, Sevan Harput and S. Freear, “Performance Evaluation of Nonlinear Fre-

quency Modulated Signals in Ultrasound Harmonic Imaging,” IEEE Int. Ultra-

sonics Symposium (IUS), 2010, pp. 2016 - 2019.

• B. Raiton, J.R. McLaughlan, Sevan Harput, P.R. Smith, D.M.J. Cowell, and S.

Freear “The capture of flowing microbubbles with an ultrasonic tap using acoustic

radiation force,” Applied Physics Letters 101, 044102, 2012.
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Chapter 2

Coded Excitation and Pulse

Compression

Coded excitation was originally introduced in radar (Cook & Bernfeld, 1967; Skolnik,

1981) and was adapted to ultrasound imaging systems within the last three decades

(Chiao & Hao, 2005; Misaridis et al., 2000; O’Donnell, 1992). In medical imaging with

ultrasound, coded excitation is used to increase the SNR and penetration by increasing

the total transmitted energy while maintaining the same peak intensity level using a

longer pulse duration (O’Donnell, 1992).

In medical ultrasound imaging, pulsed excitation is usually utilized to enhance the

image quality by improving the axial resolution (Misaridis & Jensen, 2005a). By trans-

mitting short pulses, high resolution can be achieved at the expense of poor penetration.

In order to improve the penetration, the energy of the excitation signal must be in-

creased by increasing either the duration or amplitude of the pulse. Extending the pulse

duration will decrease the axial resolution, which is a trade-off between resolution and

penetration for pulsed excitation. Increasing the pulse amplitude or peak pressure level

can potentially cause bio-effects. The food and drug administration FDA (30-09-1997)

has set a limitation on mechanical index1 (MI), where large values of MI can cause

inertial cavitation and therefore tissue damage (Szabo, 2004). Therefore, the main

challenge for the pulsed excitation is to achieve a good penetration without exceeding

1MI = P−/
√
f , where P− is the peak value of the attenuated rarefactional pressure in MPa and

f is ultrasonic working frequency in MHz (Abbott, 1999). Note that MI is always normalised by

1 MPa·MHz−1/2 and dimensionless.
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the safety limits.

For hard tissue, the speed of sound is much higher than in any soft tissue, which

effectively increases the wavelength at a specific frequency. This may not be an issue for

bone imaging, where the features are coarse; however it introduces a great challenge

for dental imaging. Two of the greatest problems encountered by researchers who

have applied medical ultrasound imaging techniques to dentistry are the dimensions of

teeth and the varying speed of sound in the different tooth layers (Barber et al., 1969;

Ghorayeb et al., 2008). These two facts inevitably suggest the use of high frequency

excitation and short pulse duration to achieve better resolution. However, the ultrasonic

attenuation in dental tissue makes signal detection more difficult for high frequency

pulses, since the attenuation values are more than 10 dB/mm for dental tissue at high

frequencies (> 20 MHz) (Kossoff & Sharpe, 1966; Singh et al., 2008). The excitation

pressure may be increased to achieve better penetration depth, but this is at the cost of

increased intensity levels and the likely generation of harmonic signals. Long duration

excitation provides better penetration and improved SNR by increasing the excitation

energy without changing the peak pressure level.

In ultrasound contrast imaging, long duration excitation is preferred since it triggers

nonlinear microbubble oscillations and induces a stronger response from microbubbles.

Coded excitation can also provide the opportunity for real-time in-vivo contrast imag-

ing at low MI. In non-destructive contrast imaging, the peak pressure level is limited

due to UCA disruption. The destruction threshold of the microbubbles is significantly

lower than the maximum allowed MI (Chomas et al., 2002). The low pressure ap-

proach works well without destroying the microbubbles, because the response of the

microbubbles is still nonlinear at low pressure levels (< MI 0.2). In a similar manner,

coded excitation techniques can be used for contrast agent detection in tissue (Sun

et al., 2007). Therefore, the main advantages of coded excitation over conventional

short pulse excitation are the improvement in SNR and contrast-to-tissue ratio, which

leads to better image quality and penetration depth (Borsboom et al., 2005).

Although coded excitation has numerous advantages over pulsed excitation, it is

not easy to employ and design a coded signal. A good code must be easily detectable

at the receiver, which can be accomplished by choosing the appropriate bandwidth for

the coded signal according to the application. The decoding stage is performed on the

receiver side by applying a pulse compression technique. Bandwidth of the excitation
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signal is the key for achieving a substantial compression, where the axial resolution

of the coded excitation system becomes comparable to a conventional pulse system.

However, if the coded signal and decoding stage is not well designed, the rising sidelobe

levels can decrease the image quality (Borsboom et al., 2005).

2.1 Comparison of Frequency and the Phase Modulation

for Ultrasound Imaging

In a pulse compression system, the signal coding schemes are based on either frequency

modulation or phase modulation. Signals based on phase modulation are binary coded

sequences that use sinusoidal bursts of one to several cycles with an alternating phases

of 0◦ and 180◦. Takeuchi (1979) investigated the coded excitation method for the first

time for medical ultrasound imaging based on Golay sequences. Later on, it has been

shown that the most practical codes for ultrasound imaging systems are the Golay

sequence, Barker codes and frequency modulated chirps (Chiao & Hao, 2005; Leavens

et al., 2007; Misaridis & Jensen, 2005b).

The main differences between radar and medical ultrasound system are the wave-

length and time-bandwidth product (TBP) restrictions imposed by the relatively narrow-

band ultrasound transducers. Long codes can be implemented on radar systems, where

achieving a TBP as high as 1000 is possible (Cook & Bernfeld, 1967). In ultrasound, the

TBP is usually limited to 80 or 100 (Misaridis & Jensen, 2005b) and the code lengths

must be shorter because of the finite transducer bandwidth and hardware limitations.

The level of the range sidelobes for the binary coded signals is a function of the TBP.

For this reason, the phase coded signals will perform poorly for ultrasound applications

due to limitations on both signal duration and bandwidth. The sidelobe levels of the

frequency modulated chirps after compression depend on the amplitude modulation or

weighting function rather than TBP. However, achieving a reasonably TBP is still a

necessity, because it determines the SNR gain after the pulse compression (Chiao &

Hao, 2005; Misaridis & Jensen, 2005b).

The sidelobe levels can be significantly improved by employing complementary codes

that require multiple transmissions. The sidelobes of the complementary codes have

opposite signs after compression and they can be cancelled by addition; however trans-

mitting two reciprocal waves degrades the system frame-rate and may lead to poor
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cancellation of range sidelobes under tissue motion. Golay and Barker codes are also

more affected by dynamic focusing and motion artefacts than frequency coded signals

(Chiao & Hao, 2005).

Implementation of a binary coding scheme in ultrasound contrast imaging is also

challenging as the phase of the transmitted signal is not preserved due to the nonlinear

scattering from microbubbles (Eckersley et al., 2007; Leavens et al., 2007). A similar

challenge exists for harmonic imaging, since the code phase are not maintained in the

harmonic domain. In contrast, frequency modulated chirp signals can be employed for

the ultrasound harmonic imaging as the chirp signal maintain its phase according to

second order distortion model or square law (Arshadi et al., 2007; Kim et al., 2001).

Finally, chirps are more robust to the distortion caused by the frequency dependent

attenuation as the ultrasound wave propagates through soft tissue (Misaridis & Jensen,

2005b).

2.2 Linear Frequency Modulation (LFM)

In this section, the linear frequency modulated excitation technique will be described

and formulated. Its response after pulse compression will be evaluated in the next

section by considering sidelobe performance and resolution.

The representation of a linear frequency modulated real signal is

s(t) = A(t) · cos(2πφ(t)), −T
2
≤ t ≤ T

2
(2.1)

with a phase

φ(t) =

(
fc +

B

2T
t

)
t, (2.2)

where A(t) is the amplitude modulation function, fc is the centre frequency, B is the

sweeping bandwidth, T is the duration of the signal, σ = B/T is the chirp rate, and

fc−B/2 is the starting frequency. A sample linear frequency modulated chirp is shown

in Figure 2.1 with the waveform parameters given in Table 2.1, where a Hann window

is used to design the envelope of the signal A(t).

The uncertainty principle dictates that a time-limited signal cannot be also band-

limited. A function can only have a finite support either in time domain or the frequency

domain, but not in both domains. For this reason, the duration of the signal is defined

as T from Eq. (2.1), where more than 99% of the signal’s energy is located. The
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Figure 2.1: Illustration of a linear frequency modulated chirp with a Hann window.

The waveform has a centre frequency of 5 MHz, a fractional bandwidth of 100%, and

a duration of 10 µs.
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bandwidth of the signal, B, is defined as the sweeping bandwidth at −20 dB points in

the frequency domain, where 99% of the signal’s energy is located.

Table 2.1: Signal parameters

Parameter Value

Sampling frequency 100 MHz

Centre frequency 5 MHz

Fractional bandwidth 100%

Duration 10 µs

To differentiate between different types of frequency modulated signals, one must

consider the instantaneous frequency of the signal. The instantaneous frequency, fi(t),

of the signal can be found by calculating the derivative of its phase

fi(t) = φ′(t) = fc +
B

T
t. (2.3)

The instantaneous frequency of a frequency modulated signal includes all the nec-

essary information about a signal, such that the signals are named after the shape of

their instantaneous frequency. Three chirps with different instantaneous frequencies

are illustrated in Figure 2.2 for descriptive purposes.

2.2.1 Received Echo

For ultrasound imaging in human tissue, the received echo, r(t), from a plane wave can

be expressed in the following form

r(t) = Re


K∑
k=1

∞∑
n=1

Γk ·Bn · s(t)n︸ ︷︷ ︸
1

· e−βzf︸ ︷︷ ︸
2

· e−j2πf(z/c0)︸ ︷︷ ︸
3

 . (2.4)

Γk is the reflection coefficient for the k-th reflection due to scatterers in tissue or

reflections from different tissue layers. K is the total number of reflections.

According to second order distortion model (Arshadi et al., 2007), the harmonic

generation in tissue can be modelled as the summation of all harmonic terms as given

in part 1 of Eq. 2.4. Bn is the amplitude of the harmonic generated due to nonlinear
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2.2 Linear Frequency Modulation (LFM)
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Figure 2.2: Instantaneous frequency functions of tone-burst, linear frequency modu-

lated chirp, nonlinear frequency modulated chirp, and exponential frequency modu-

lated chirp are shown. All waveforms have a duration of 10 µs. The centre frequency

of the sinusoidal tone-burst is 5 MHz and its instantaneous frequency is constant. The

chirp waveforms have a centre frequency of 5 MHz, a fractional bandwidth of 100%.

The frequency of the sinusoidal chirps changes linearly, nonlinearly or exponentially

with time therefore the instantaneous frequencies are linear, nonlinear and exponential

for the given chirps.
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2.3 Pulse Compression with a Matched Filter

propagation in tissue as explained in appendix B. n is the number of the harmonic that

also increases the phase of the signal by a factor of n.

The part 2 of the Eq. 2.4 is due to the depth and frequency dependant attenuation,

where β is the attenuation coefficient, z is the total propagation distance, f is the

frequency. For human tissue the frequency dependant attenuation is assumed to be

linear, i.e. attenuation is scaled by f1.0. For wideband signals, such as chirps, the

attenuation completely alters the shape of the applied window, A(t). This change in

the window shape creates problems for pulse compression with matched filters, which

will be explained in the next section.

The part 3 of the Eq. 2.4 shows the phase change observed by the signal after

propagating the distance of z and c0 is the speed of sound in human tissue.

2.3 Pulse Compression with a Matched Filter

The main problems encountered in target detection by pulse compression are the strad-

dling loss and the separation between multiple targets. The straddling loss is the loss

in SNR because the target is not centred with the transmitted beam. The separation

problem is due to the proximity of the targets and the shadowing of weak reflectors

by stronger reflectors because of the undesirable sidelobes. Therefore the performance

of a pulse compression system can be measured by its detection range, SNR, range

resolution, dynamic range, and Doppler resolution1. These parameters depend on the

waveform design and the pulse compression pair. The excitation waveform determines

detection performance and accuracy of measurement. The detection range and SNR

can increased by using longer waveforms and high transmit energy. The long duration

signals however, reduce the range resolution. The resolution is recovered back by using

a matched filter with an appropriate window, which also determines the sidelobe levels

and hence the dynamic range.

A matched filter2 is a linear time-invariant filter that works by correlating a known

signal with an unknown signal to detect the presence of the known signal. A matched

filter optimizes the probability of the detection by maximizing the SNR in the presence

1The Doppler resolution was not taken into consideration, because the Doppler effect was not

observed in any of the applications presented in the later chapters of this work.
2A matched filter is also known as a North filter.
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2.3 Pulse Compression with a Matched Filter

of white Gaussian noise (Misaridis & Jensen, 2005a). Therefore, in this study matched

filtering is used for pulse compression of the linear frequency modulated signals.

The ideal filter at the receiver side must be the same as the transmitted signal

according to the likelihood criterion. In order to design an optimal receiver, the matched

filter’s impulse response1, h(t), must be equal to the time reversal of the transmitted

signal with a time shift, td. For the real signal s(t), defined in Eq. (2.1), the impulse

response of the matched filter is given by:

h(t) = s(td − t). (2.5)

Thus the time-domain output of the pulse compression is the convolution of the

input signal with the matched filter, which is the autocorrelation function of the input

signal as given in Eq. (2.6).

The match filter has a processing gain or SNR gain, which equals to the time

bandwidth product of the excitation signal (Misaridis & Jensen, 2005a). In order

to maximise the SNR and the probability of detection, one should increase the signal

bandwidth and duration; however the transducer’s response and hardware performance

will place limitations on both duration and bandwidth. For an ultrasound system; pulse

duration is usually adjusted according to power requirements and necessary penetration

depth, and the bandwidth is maximised to increase the resolution. The matched filter

response has a resolution approximately in the order of 1/B, so the maximum achievable

resolution is limited with the bandwidth of the system.

Unlike a typical frequency domain filter that simply passes all energy within a

certain bandwidth, the matched filter detects not only the frequency but also the mod-

ulation. The matched filter in effect calculates the probability of the signals presence,

compressing the energy contained within the signal into a single pulse. The pulse

compression system provides a gain in SNR at the receiver that in turn provides an

improvement in measurement; such as an increase in measurement range or through the

use of media with higher attenuation, allowing measurements not feasible with pulsed

excitation.

1For a complex signal, matched filter response is the complex conjugate time reversal of the trans-

mitted signal, h(t) = s∗(td − t).
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2.3 Pulse Compression with a Matched Filter

2.3.1 Sidelobe suppression using windowing functions

If the noise of the system is negligible and the matched filter does not have a trans-

lation in time (td = 0), the input signal of the matched filter will be the same as its

transfer function. Therefore, the response of the matched filter will be equal to the

autocorrelation of the transmitted signal as

Rss(τ) =

∫ +∞

−∞
s(t)s(t− τ)dt , (2.6)

or in discrete form as

Rss[k] =
1

N

N∑
n=1

s[n] s[n− k], (2.7)

where N is the total number of samples, and s[n] is the real valued discrete signal.

The autocorrelation function can also be defined as the inverse Fourier transform

of the power spectral density, P (f).

Rss(τ) =

∫ +∞

−∞
P (f)ej2πfτdf , (2.8)

where it is obvious that all the phase information of the signal is cancelled. Since the

output of the pulse compression system is the autocorrelation of the excitation signal,

the final shape of the compressed pulse does not depend on the modulation function

and the sidelobe levels are independent of signal duration and bandwidth (exceptions

can occur for low TBP < 10). The mainlobe width and the sidelobe levels on a pulse

compression system are therefore controlled by a windowing function that changes the

effective signal bandwidth and envelope.

A windowing function, tapering function or amplitude modulation function is usu-

ally applied on the excitation signal to reduce the spectral leakage and sidelobe levels

after compression. The choice of windowing functions available is extensive with each

possessing different sidelobe suppression properties, mainlobe widths and spectral leak-

age. An extensive study performed by Harris (1978) gives a better understanding on

windows and a thorough comparison between a wide variety of windowing functions.

For this study, some of the most commonly used windows are chosen for comparison.

The windowing has been performed in the time domain on a LFM chirp signal and the

same window is also applied on the matched filter. Parameters given in Table 2.1 and

rectangular, Hann, Hamming, Kaiser-Bessel, Blackman and Dolph-Chebyshev windows
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Figure 2.3: Frequency spectra of linear frequency modulated chirps with rectangular,

Hann, Hamming, Kaiser-Bessel, Blackman and Dolph-Chebyshev window are shown.

All waveforms have a centre frequency of 5 MHz, a fractional bandwidth of 100%, and

a duration of 10 µs.
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2.3 Pulse Compression with a Matched Filter

are used for this comparison. A more detailed comparison of windowing functions are

given in appendix A.

In order to compare the performance of the windowing functions, a rectangular

window, a Hann window, a default Hamming (a = 0.54) window and an exact Blackman

(a0 = 0.42, a1 = 0.5, a2 = 0.08) window are chosen. The Kaiser-Bessel (β = 6)

and Dolph-Chebyshev (sidelobe attenuation= 55) windows are designed to have the

same −6 dB bandwidth with the Hann and Hamming windows. Figure 2.3 shows

the spectral leakage for rectangular, Hann, Hamming, Kaiser-Bessel, Blackman and

Dolph-Chebyshev windows. Figure 2.4 shows the effect of windowing on the pulse

compression. Rectangular window or no windowing achieves the best compression by

having the narrowest mainlobe width; however it gives sidelobe levels as high as −13 dB

which is unacceptable for ultrasound imaging applications.

Windowing on the transmitting signal reduces the transmitted energy which also

reduces the SNR and penetration depth, whilst windowing on the matched filter reduces

the SNR gain and axial resolution. Therefore the Kaiser-Bessel, Blackman and Dolph-

Chebyshev windows, which can achieve better than −60 dB sidelobe levels, usually

perform worse than the Hann window in terms of axial resolution.

Figure 2.5 is presented for a better comparison of sidelobe levels and mainlobe width.

These two parameters are important for all imaging applications, where the mainlobe

width corresponds to the image resolution and the sidelobe levels corresponds to the

image dynamic range. There is a trade-off between mainlobe width and sidelobe levels,

so none of the windowing functions is superior to another.

The rectangular window has the widest bandwidth (Figure 2.3), however the com-

pressed waveform with a rectangular window has the highest sidelobe levels as shown

in Figure 2.5. However, for applications such as second harmonic imaging, preventing

the spectral leakage and minimising the sidelobe levels are crucial. It can be observed

in Figure 2.3 that Blackman and Hann windows better concentrate the signal energy at

the desired frequency band and cause less spectral leakage, since they have the highest

sidelobe roll-off as explained in appendix A. Signal bandwidth is also important for

imaging applications, where the wider bandwidth produces better image resolution.

The Blackman window has the narrowest bandwidth compared to the other windows,

which significantly reduces the image resolution. For this reason, Hann window is pre-

ferred for most of the applications, where sidelobe suppression of −40 dB is adequate.
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Figure 2.4: Autocorrelation functions of the linear frequency modulated chirps with

rectangular, Hann, Hamming, Kaiser-Bessel, Blackman and Dolph-Chebyshev windows

are shown. The autocorrelation functions are obtained after pulse compression by a

matched filter with the same windowing function. All waveforms and designed match

filters have a centre frequency of 5 MHz, a fractional bandwidth of 100%, and a duration

of 10 µs.
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Figure 2.5: Figure 2.4 zoomed in for a more detailed comparison. Autocorrelation

functions of the linear frequency modulated chirp with rectangular, Hann, Hamming,

Kaiser-Bessel, Blackman and Dolph-Chebyshev windows are shown. The autocorrela-

tion functions are obtained after pulse compression by a matched filter with the same

windowing function. All waveforms and designed match filters have a centre frequency

of 5 MHz, a fractional bandwidth of 100%, and a duration of 10 µs.
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2.3 Pulse Compression with a Matched Filter

It is also possible to design mismatched filters to improve the compression of chirps

for the measurements deteriorated by experimental factors. For example, the amplitude

modulation function of the matched filter can be re-shaped to compensate for frequency-

dependant attenuation in tissue. A mismatched filter can also be designed to rectify

the phase corruption introduced by the receiver hardware and transducer element.

However, in chapters 6, 7, 8 and 9 individual inverse filters are designed to compensate

for the transducer’s impulse response, depth-dependant attenuation and frequency-

dependant attenuation. The received signals are first processed by these filters, and

then compressed by a matched filter.
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Chapter 3

Linear Canonical Transform

Transformations have been used in signal processing for over two centuries with the most

commonly used transformation for signal analysis being the Fourier transform (Oppen-

heim & Schafer, 1975).

Fourier transform can be defined as a simple integral transformation as

S (ω) =

∫ ∞
−∞

s(t) e−jωt dt. (3.1)

It actually has a kernel formed by sine and cosine functions, which becomes evident

after using the Euler’s formula;

e−jωt = cos(ωt)− j sin(ωt). (3.2)

Since the Fourier transform has a sinusoidal kernel, it works effectively for analysing

single-frequency signals. However, it treats the time and frequency as two completely

disjoint domains, which is not the optimum strategy for analysing non-stationary chirp

signals. For this reason, in this study a generalized transform called the Linear Canon-

ical transform is proposed as an alternative signal processing tool over conventional

techniques.

The main motive for preferring the Linear Canonical transform is that it can realize

a range of transformations rather than a single one. Although the Linear Canonical

transform is not directly employed in this work, two of its special cases are used for

analysing the chirp signals.
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3.1 Linear Canonical Transform (LCT)

3.1 Linear Canonical Transform (LCT)

Linear Canonical transform (LCT) is a family of integral transforms that can represent

first degree and quadratic phase transformations. The LCT generalizes many classical

transforms such as; the Fourier transform, the Fractional Fourier transform, the Fresnel

transform and the Fan Chirp transform (Koç et al., 2008).

The LCT of a signal s(x) is given by Moshinsky & Quesne (1971) as

S (y) =

∫ ∞
−∞

s(x) CM(x, y) dx, (3.3)

where CM is the canonical transformation kernel, which is defined as

CM(x, y) = AM exp

[
jπ

(
a

b
x2 − 2

1

b
xy +

d

b
y2
)]

, (3.4)

AM =

√
1

b
exp

(
−jπ

4

)
. (3.5)

The LCT has a special representation for b = 0, which is beyond the scope of this work

and thus not presented here.

The transformation parameters are defined by the matrix M with determinant ad−
bc = 1 as

M =

[
a b
c d

]
. (3.6)

The Fourier transform (FT), the Fractional Fourier transform (FrFT), and the Fan

Chirp transform (FChT) are all special cases of the Linear Canonical transform. When

the LCT kernel is modified as

MFT =

[
0 1
−1 0

]
, (3.7)

the transform becomes the same as the Fourier transform.

Sometimes there is a discrepancy between the original definition of FT, FrFT, FChT

and the FT, FrFT, FChT derived by the LCT. For example, FT as a special case of

the LCT differs from the conventional definition by a factor of exp(−jπ/4) (Koç et al.,

2008). This usually introduces a phase shift or a scaling factor that does not affect the

main transformation kernel, so for the sake of simplicity these discrepancies are not

mentioned for each individual case.
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3.2 Fractional Fourier Transform (FrFT)

Most of the known operations on the time-frequency distribution of signals can be

represented in matrix form such as shifting, dilation, shearing, rotation and twisting.

The LCT can also perform scaling and chirp multiplication operations, which is a

special case with b = 0. This allows the realisation of physical systems and complicated

algorithms to be decomposed into cascade combination of elementary LCT blocks with

different M matrix parameters (Koç et al., 2008). Although the Linear Canonical

transform is a powerful signal processing tool just two special cases of the LCT are

utilized since the focus of this study is only chirp signals.

3.2 Fractional Fourier Transform (FrFT)

The Fractional Fourier transform was first introduced by Namias (1980) in its incom-

plete form. An extended analysis of FrFT was published by McBride & Kerr (1987)

upon which most recent work is based. The FrFT can be expressed as

Sα (y) =

∫ ∞
−∞

s(x)Kα(x, y) dx, (3.8)

where α defines the order of the transform, Kα(x, y) is the two dimensional transform

kernel and y denotes the fractional Fourier-axis for the α-th order fractional Fourier

domain, which is the frequency, f , for conventional Fourier transform with a kernel of

Kα=1(x, y) ≡ K(t, f) = e−j2πft. (3.9)

Whereas the conventional Fourier transform is only a shift from time to frequency

domain with α = 1, the FrFT enables transformation on to any line of angle in time-

frequency space, which is achieved by modifying the kernel to the form (Candan et al.,

2000; Ozaktas et al., 1996)

Kα(x, y) = Kφ exp
[
jπ
(
x2 cotφ− 2xy cscφ+ y2 cotφ

)]
, (3.10)

where

Kφ = |sinφ|−1/2 exp

[
−jπ sgn(sinφ)

4
+ j

φ

2

]
(3.11)

and

φ =
απ

2
. (3.12)
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3.2 Fractional Fourier Transform (FrFT)

The FrFT can also be represented as a special case of the LCT with the following

transform parameters;

MFrFT =

[
cosφ sinφ
− sinφ cosφ

]
. (3.13)

with Eq. (3.4) and Eq. (3.5).

3.2.1 Compression in the Fractional Fourier Domain

When analysing overlapped LFM signals, the FrFT can be used to separate the sig-

nals by rotating the waveforms to another domain between time and frequency. The

transform order is optimum when it is matched to the chirp rate of the signal. The

waveform can be rotated in the fractional Fourier domain by the optimum transform

order αopt, which is defined by Capus & Brown (2003) as

αopt = − 2

π
tan−1

(
1

2σ

)
, (3.14)

where σ is the chirp rate. For a LFM signal the chirp rate is σ = B/T where B is the

sweeping bandwidth and T is total signal duration. However, in order to calculate the

optimal transform order for the discrete FrFT, the resolution of the signal both in time

and frequency must be known. For the discrete case, the optimal transform order can

be expressed as

αopt = − 2

π
tan−1

(
∆f/∆t

2σ

)
, (3.15)

for a system with a time resolution of ∆t and frequency resolution of ∆f in the interval

of α = [−2, 2]. This interval covers all transformation angles for φ = [−π, π] according

to Eq. (3.12) and beyond these limits the FrFT is repetitive. For α = [−2, 2] the

FrFT produces an unique output, however two transformation orders can have the

time-reversed pairs of the same output such as the axis rotations α and 2− α.

The FrFT output has the maximum magnitude and hence peak compression when

the transform order is optimized as given in Eq. (3.15). In the case of chirp signals

the transform order is optimized when it is matched to the chirp rate of the linear

frequency modulated chirp signal. Therefore, this transformation results in maximum

compression at the fractional Fourier domain as illustrated in Figure 3.1.

Since the maximum compression is achieved in the fractional Fourier domain, this

domain can be used for analysing the signals by recovering the time information. How-

ever, direct analysis in the fractional Fourier domain is complicated by the geometrical
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Figure 3.1: (Left) Illustration of three overlapping chirps both in frequency and time

domains. (Right) Rotation of the time-frequency plane and overlapping chirps using

the FrFT. The rotation angle φ matches the chirp rate of the illustrated waveforms.

transformation constituting the FrFT transform. Direct comparison of time and frac-

tional Fourier domain data is complicated by scaling, offsets and rotations. Scaling of

the time domain onto the fractional Fourier domain can be achieved using trigonomet-

ric transformations. The projection of the time axis, µt, onto the fractional Fourier

axis, µα, is calculated as

µα = µt cos(φ) , (3.16)

where φ the transform angle in radians. There is an offset between the origins of the

fractional Fourier and time domains. For a discrete sampled waveform this offset can

be calculated as (Capus & Brown, 2003)

ηα =
(fc −B/2)N

fs
sin (φ) , (3.17)

where fc−B/2 is the chirp start frequency, fs is the sampling frequency, and N is the

total number of samples. Analysis of the ultrasound signals in the fractional Fourier

domain without the aid of the time domain projection will be offset and erroneously

scaled as the chirp characteristics change.

3.2.2 Filtering in the Fractional Fourier Domain

Windowing in the fractional Fourier domain enables isolation of individual chirp signals

that can be used for filtering purposes (Cowell & Freear, 2010). After achieving the
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3.2 Fractional Fourier Transform (FrFT)

maximum compression in the fractional Fourier domain as described in the previous

section, the overlapping chirp signals can be isolated and filtered.

The method for extraction of overlapping chirps is illustrated in Figure 3.2. Using

the Fractional Fourier transform, the waveform can be rotated in the time-frequency

plane by the optimum transform order to achieve maximum compression of the in-

dividual chirp components in the fractional projection. Windowing in the fractional

Fourier domain enables isolation of individual chirp signals. Windowing in the frac-

tional Fourier domain is very powerful as a linear time-frequency selective window is

created (Almeida, 1994; Candan et al., 2000; Kutay et al., 1997; Ozaktas et al., 1994,

1996). The windowed signal can then be rotated by −αopt degrees, the inverse FrFT, to

restore the signal to the time domain thus extracting the chirp from overlapped data.

3.2.3 Examples

Two examples are given to illustrate the compression capability of the FrFT. Figure 3.3

and Figure 3.4 show the fractional Fourier spectrum of two LFM chirp signals with white

Gaussian noise. In both figures, each horizontal line of the image shows the envelope of

the signal at the specific fractional Fourier domain with the transform order of α, where

α = 0 is the envelope of the time domain signal and α = 1 is the signal’s frequency

spectrum. The optimum transform order is calculated according to Eq. (3.15), which

is αopt = 0.5 for this example. Note that the optimum transform angle can be between

α = −2 and α = 2, where both angles correspond to the time domain, beyond these

boundaries the fractional Fourier domain is repetitive.

In Figure 3.3, two frequency modulated chirps are shown with a duration of 2 µs,

centre frequency of 15 MHz, and bandwidth of 10 MHz, where there is a 10 µs delay

between each chirp signal. This signal is transformed to the fractional Fourier domain

for all α values between time domain (α = 0) and frequency domain (α = 1) with

0.05 increments. The maximum compression is observed at αopt = 0.5, where the chirp

signal has the narrowest width in fractional time. Since both chirps have the same

centre frequency and bandwidth, they overlap in the frequency domain at α = 1. In

Figure 3.4, two chirp signals exist with a duration of 2 µs and starting time of 6 µs and

7 µs. The interfering chirps overlap both in the time and the frequency domains; hence

separation of the chirps is not possible in these domains. However, by using FrFT at
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Figure 3.2: Isolation of overlapping chirps in time and frequency domain. (Top-left)

Time-frequency representation of three overlapping chirps both in frequency and time

domains. (Top-right) Compressed chirps in the fractional Fourier domain after rotating

the time-frequency plane. (Bottom-left) Windowing in the fractional Fourier domain.

The blue rectangle shows the filtering window applied around the compressed waveform.

(Bottom-right) The filtered chirp on time-frequency plane after the inverse FrFT.
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Figure 3.3: The Fractional Fourier transform of two different non-interfering linear

frequency modulated chirps. Two chirp signals have a duration of 2 µs, centre frequency

of 15 MHz, bandwidth of 10 MHz and starting time of 4 µs and 14 µs.
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Figure 3.4: The Fractional Fourier transform of two interfering linear frequency mod-

ulated chirps. Two chirp signals have a duration of 2 µs, centre frequency of 15 MHz,

bandwidth of 10 MHz and starting time of 6 µs and 7 µs.
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3.3 Fan Chirp Transform (FChT)

the optimum transform order (α = 0.5), the chirp signals are maximally compressed

and separation can be achieved.

3.3 Fan Chirp Transform (FChT)

The Fan Chirp transform was recently introduced into chirp analysis by Képesi &

Weruaga (2006); Weruaga & Képesi (2007). It has been shown to improve the resolution

and fidelity of time-frequency representations of frequency modulated chirps. The name

of the FChT comes from its unique fan-shaped transformation kernel, which is best

explained visually.

Figure 3.5 represents the simplified behaviours of the Fourier transform, the FrFT,

and the FChT on the time-frequency plane. Imagine an observer standing orthogonal

to the frequency axis at the infinite. The Fourier analysis corresponds to the sight of

the observer, where the time information carried by the signal is unclear. If the observer

stands with an angle φ to the time-frequency plane at the infinite, he can see the FrFT

of the signal as shown in Figure 3.5(B). For this case, it is possible to utilize both time

and frequency information carried by the signal and the observer can achieve the best

possible resolution for a linear frequency modulated chirp located with an angle of φ

on the time-frequency plane.

In order to realize the FChT, the observer must stand inside the time-frequency

plane as represented in Figure 3.5(C), where the resulting projection gives rise to the

FChT power spectrum for σ/f . The observer can achieve the finest representation for

linear frequency modulated chirps located with a fan geometry on the time-frequency

plane, i.e. harmonically related chirps (Weruaga & Képesi, 2007).

Rather than rotating the time-frequency plane as the FrFT, the FChT reshapes

the time-frequency plane by twisting it into a fan geometry. Therefore the FChT can

compress a linear chirp with all of its harmonic content. This property of the FChT

makes it an indispensable tool for characterisation of harmonically related chirplets.

Harmonically related chirps are common in ultrasound imaging, especially in harmonic

imaging, however the use of FChT has not been reported for ultrasound applications.

It has been mostly employed in speech analysis (Képesi & Weruaga, 2006) and used for

music representation (Cancela et al., 2010), signal parameter estimation (Dunn et al.,

2009), and time-frequency representation of the chirps (Weruaga & Képesi, 2007).
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Figure 3.5: Graphical explanation of (A) the Fourier transform, (B) the Fractional

Fourier transform (FrFT), (C) the Fan Chirp transform (FChT). The dashed arrows

show the behaviour of each transformation on the time-frequency plane.
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3.3 Fan Chirp Transform (FChT)

The Fan Chirp transform of the signal s(t) can be expressed as (Weruaga & Képesi,

2007)

S(f, σ) =

∫ ∞
−∞

s(t)
√
|ϕ′σ(t)| e−j2πfϕσ(t) dt, (3.18)

where t is time, f is frequency and ϕσ(t) is the phase function or time warping function,

which is controlled by the normalized chirp rate, σ/f , as

ϕσ(t) =

(
1 +

σ

2f
t

)
t. (3.19)

ϕσ(t) can be represented as the frequency normalized phase function associated with

a LFM chirp with the same chirp rate as defined in Eq. (2.1). ϕσ(t) is equal to φ(t)/f

when f = fc and the transformation kernel given in Eq. (3.18) matches perfectly with

the signal of interest. For f = 2fc, the best match for the transformation kernel will be

a new chirp with twice the centre frequency and chirp rate. For this case, the second

harmonic component generated by the same chirp will have similar phase parameters

with the FChT kernel; hence the optimum compression will be achieved.

For any given chirp rate the FChT can achieve optimum compression including

all harmonics of the chirp of interest. For σ = 0 however, the FChT kernel becomes

the same with the Fourier transform kernel. This mathematical relation between the

transformations is more obvious, when the Linear Canonical transformation matrix M

is given. The FChT can be realized by the LCT using Eq. (3.4), Eq. (3.5) and the

following parameters;

MFChT =

[
−σ 1
−1 0

]
, (3.20)

where σ is the chirp rate of the LFM signal.

3.3.1 Compression by the FChT

Since this study focuses on finite duration signals, for the real signal s(t), centred at

the origin with duration T the limits of the integral in Eq. (3.18) reduce to −T/2 and

T/2 as (Dunn et al., 2009);

S(f, σ) =

∫ T/2

−T/2
s(t)

√
|ϕ′σ(t)| e−j2πfϕσ(t) dt. (3.21)
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3.3 Fan Chirp Transform (FChT)

It is possible to change the limits of the integral, because the harmonics of the signal

of interest are distributed on the time-frequency plane as shown in Figure 3.6(B). Rather

than computing the FChT for the whole received signal, it can now be calculated for

a shorter duration. Although computation time reduces significantly for this case, the

transform needs to be calculated at different time delays. For the FrFT however it

is more practical to apply the transformation over the whole signal, since the signal

of interest is made up of consecutive chirps with the same chirp rate as illustrated in

Figure 3.6(A). For this reason a different methodology is used to compress the chirps

with harmonic content.

When the FChT is computed according to Eq. (3.21), the best compression is

achieved for an LFM chirp with a chirp rate of σ and for all of its harmonics. The first

step is to compute the FChT for a zero centred signal in time with a transformation ori-

gin located at 〈0,−1/(σ/f)〉 as depicted in Figure 3.6(B). After the transformation, the

chirp and all of its harmonics appear as narrowband sinusoidal on the warped frequency

domain by maintaining their centre frequencies, which is shown in Figure 3.6(B).

For the next step, the signal is shifted in time and the FChT is applied on the signal

centred at the origin. It is similar to a running window approach, where the window

length is chosen to be the duration of the chirp. However, this approach does not affect

the resolution of the compression, since the window is not for reducing the effect of

long t but to reduce the computation time.

3.3.2 Filtering in the FChT Domain

Filtering in the FChT domain is essential if there is spectral overlapping between the

harmonic chirp components. When this overlap exists between the harmonic and the

fundamental chirps, artificial sidelobes appear after pulse compression with a match

filter. This will be explained in the next section and chapter 7.

In order to perform filtering in the FChT domain, the optimum compression in

the FChT domain for the chirps of interest must be achieved. After achieving the

optimum compression for a given chirp and for its harmonics, the compressed chirps

can be filtered in the FChT domain as represented in Figure 3.7(middle). The window

length used for filtering is selected according to the LFM chirp used as excitation. Note

that narrower windows will result in higher SNR and reduced sidelobe levels and wider
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Figure 3.6: Compressed chirp signals by the Fractional Fourier transform and by the

Fan Chirp transform. (A) Illustration of the compressed LFM chirps with same dura-

tion, centre frequency and bandwidth with different time delays by the FrFT. The time

delays are scaled according to Eq. 3.16. (B) Illustration of the compressed LFM chirps

with same duration and temporal location, but harmonically related centre frequency

and bandwidths by the FChT.
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3.3 Fan Chirp Transform (FChT)

windows will result in higher bandwidth and hence better axial resolution. Therefore,

choosing the right window size is crucial for filtering in the FChT domain.

The compression ratio for a LFM chirp is the time-bandwidth product of the signal.

In time domain, the width ratio between an uncompressed pulse and a compressed pulse

is T × B, where the approximated half-power width of the autocorrelation function is

given by Misaridis & Jensen (2005a) as

τ−3dB =
π/2

B
. (3.22)

In the frequency domain, the compression ratio achieved by the FChT is also the time-

bandwidth product of the signal, where the compressed signal in the FChT domain

approximately has a half-power width of

f−3dB =
π/2

T
. (3.23)

The length of the filtering window however is chosen to be the signal width at −60 dB1

as

f−60dB =
π/2

T
nwin, (3.24)

where nwin is the ratio between the −60 dB pulse width and −3 dB pulse width of the

autocorrelation function measured form Figure 2.4.

After applying the filtering windows designed according to the Eq. (3.24) in the

FChT domain, the filtered chirp and harmonics must be transformed back to the time

domain by using the inverse Fan Chirp transform (iFChT), which is defined as

s(t) =

∫ ∞
−∞

S(f, σ)
√
|ϕ′σ(t)| e−j2πfϕσ(t) df. (3.25)

Separation between the spectrally overlapping harmonics can be achieved as shown

in Figure 3.7(bottom). The filtered fundamental and harmonic chirps can now be

compressed by a matched filter without any artefacts.

Effect of the finite duration FChT and the running window approach

When Eq. (3.21) is used for a signal longer than the duration of the excitation chirp,

the process is repeated by shifting the time domain signal and computing the FChT

1For a window length equals to the pulse width at −3 dB, the half of the signal’s power will be

filtered out. Therefore, the −60 dB figure is decided after the experimental measurements performed

in later chapters.
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Figure 3.7: Isolation of harmonically related multiple chirps is described. (Top) Time-

frequency representation of the signal. (Middle) Compressed chirps in the FChT do-

main. The blue rectangle shows the filtering window applied around the compressed

waveform. (Bottom) Filtered chirps are shown on time-frequency plane after the inverse

FChT.
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Figure 3.8: Time-frequency representation of time delayed linear frequency modulated

chirps. (Left) The waveform has a time delay of t = −τ . (Middle) The waveform has

no time delay and centred at t = 0. (Right) The waveform has a time delay of t = +τ .

several times to cover the whole signal length. While performing this computation, the

same chirp appears in the FChT computation window for several times as illustrated

in Figure 3.8.

The chirp waveforms, whose time-frequency representations are illustrated in Fig-

ure 3.8, have the same duration, centre frequency, and bandwidth, but different time

delays. When these waveforms are transformed into the FChT domain, the time de-

layed chirps result in frequency shifted components in the warped-frequency domain

similar to the example given in Figure 3.9. Figure 3.9 shows the FChT spectrum of

five simulated linear frequency modulated chirps with a duration of 20 µs, a centre

frequency of 5 MHz, and a bandwidth of 5 MHz, but different time delays.

When the filtering is performed in the FChT domain with the window length cal-

culated with Eq. (3.24) and illustrated in Figure 3.9, the same chirp appears inside the

filtering window for several times with a frequency shift. To overcome this problem,

a peak detection algorithm is used to differentiate between the desired waveform and

time delayed waveforms.

It is known that the waveform with a specific chirp rate centred at t = 0 will

appear in the FChT domain exactly at its centre frequency, unlike the time delayed

waveforms. Therefore, the peak detection algorithm is used to find the location of the

compression peak and this location is compared with the centre frequency of the chirp.

If the waveform is not maximally compressed at the expected frequency location, but

still inside the filtering window, these signals are discarded. Therefore, in Figure 3.9,
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Figure 3.9: FChT spectrum of a simulated linear frequency modulated chirp with a

duration of 20 µs, a centre frequency of 5 MHz, and a bandwidth of 5 MHz with

different time delays. The thick blue line is the FChT spectrum of the chirp with no

time delay. The thin grey lines are the FChT spectrum of the time delayed chirps. The

red dashed line is the window applied in the FChT domain for filtering purposes.
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3.3 Fan Chirp Transform (FChT)

the grey signals are omitted since they do not have a peak at 5 MHz and the blue signal

is selected.

3.3.3 Example
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Figure 3.10: Spectrogram of the simulated chirp signal with harmonic content. The fun-

damental component of the simulated linear frequency modulated chirp has a duration

of 20 µs, centre frequency of 5 MHz, and bandwidth of 5 MHz.

A chirp waveform with harmonic content and white Gaussian noise, whose time-

frequency representation is given in Figure 3.10, is generated. The fundamental compo-

nent of the simulated linear frequency modulated chirp has a duration of 20 µs, centre

frequency of 5 MHz, and bandwidth of 5 MHz. The harmonic components of the simu-

lated waveform is generated to have an asymmetric wave shape and decaying harmonic

power by considering the wave propagation in dispersive media and weak shock the-

ory (Hamilton & Blackstock, 2008). The shock wave formation will be presented and

explained in chapter 7 and appendix B. For the sake of simplicity, it is assumed that

nth harmonic will have n times the centre frequency and bandwidth (for n = 2, 3, 4...)

and the frequency dependant attenuation is ignored.
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Figure 3.11: Power spectrum of the simulated chirp signal with harmonic content.

The spectrum is calculated according to modified periodogram method explained in

appendix A.
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3.3 Fan Chirp Transform (FChT)

The fundamental component of the simulated linear frequency modulated chirp has

a duration of 20 µs, centre frequency of 5 MHz, and bandwidth of 5 MHz. The rich

harmonic content of the simulated waveform results in spectral overlap between the

fundamental and harmonics, as shown in Figure 3.11.
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Figure 3.12: Fractional Fourier domain representation of the simulated chirp signal

after applying the FrFT with a transform order that matches with the fundamental

component.

The FrFT can achieve the maximum compression for the fundamental or any har-

monic component when the optimum transform order αopt, Eq. (3.15), is set accordingly.

Figure 3.12 shows the transformation of the simulated waveform into fractional Fourier

domain for the transform order that matches with the parameters of the fundamental

component. The compressed fundamental component appears at t = 0 µs and does not

overlap with any of the harmonics. To extract the fundamental and harmonic compo-

nents individually, the FrFT must be recalculated with a different transform order that

matches with the harmonic of interest.

The FChT can achieve the maximum compression for the fundamental and all

harmonic components. Figure 3.13 shows the new frequency spectrum after applying
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Figure 3.13: Frequency domain representation of the simulated chirp signal after ap-

plying the FChT with a normalised chirp rate that matches with the fundamental and

harmonic components. The frequency domain is not the same with Figure 3.11, since

the time-frequency plane is warped by the FChT.
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the FChT, which effectively warps the time-frequency plane.

When the example waveform with high harmonic content was compressed by a

matched filter designed for the fundamental chirp component, the compression arte-

facts would appear on the final waveform. These artefacts can be observed between

t = −15 µs and t = −10 µs in Figure 3.14. Separating the fundamental chirp from

the spectrally overlapping harmonics, as explained in the previous section on filtering

in the FChT domain, these artefacts can be suppressed. Figure 3.15 shows the com-

pressed waveform without any artefacts thanks to processing with the FChT before

pulse compression.
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Figure 3.14: Pulse compressed fundamental component of the simulated chirp signal

with matched filter.
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Figure 3.15: Pulse compressed fundamental component of the simulated chirp signal

with matched filter after processing with the FChT.
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Part I

Hard-Tissue Ultrasound Imaging
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Ultrasound is mostly preferred for characterisation of the osseous tissue by scat-

tering and attenuation measurements to determine velocity, attenuation and density

values (Evans & Tavakoli, 1990). The use of ultrasound for hard-tissue imaging is not

very common except in dentistry, where access to teeth is easily achievable.

Two of the greatest problems encountered by researchers who have applied medical

ultrasound imaging techniques to dentistry are the dimensions of teeth and the varying

speed of sound in the different tooth layers. In addition, the speed of sound in enamel

and dentine layers is much higher than in any soft tissue (Barber et al., 1969). These two

facts encourage the use of high frequency excitation and short pulse duration for better

resolution. However, the ultrasonic attenuation in dental tissue makes signal detection

more difficult for high frequency pulses. The excitation pressure may be increased to

achieve better penetration depth, but this is at the cost of increased intensity levels

and the likely generation of harmonic signals.

Long duration excitation provides a better penetration and improved SNR by in-

creasing the excitation energy without changing the peak pressure level, but introduces

another problem when the duration of the ultrasound signal is longer than the time of

the round trip in that tooth layer. The signal overlapping caused by the successive re-

flections inside the enamel and dentine layers makes time and frequency analysis nearly

impossible, since both constructive and destructive interference occur between individ-

ual reflections. Due to these reverberations, the received echoes are not identifiable in

the time domain. In the frequency domain all reflections completely overlap with each

other, where they are not in phase with the successive reflections. Without filtering,

the resulting waveform cannot be used to determine the tooth layers. The proposed

solution in this work is to use LFM chirp excitation by exploiting the Fractional Fourier

transform (FrFT). The FrFT allows frequency modulated signals overlapping in time

and frequency to be separated.

Chapter 4 and chapter 5 are based on the publications (Harput et al., 2009, 2011a,b),

where the FrFT is used for compressing and for filtering the chirp signals.
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Chapter 4

Ultrasound Dental Imaging using

Chirp Coded Excitation

An ultrasound contact imaging method is proposed to measure the enamel thickness in

human tooth. A delay-line transducer with a working frequency of 15 MHz is chosen

to achieve a minimum resolvable distance of 400 µm in human enamel. To confirm the

contact between the tooth and the transducer, a verification technique based on the

phase shift upon reflection is used. Because of the high attenuation in human teeth,

linear frequency modulated chirp excitation and pulse compression are exploited to

increase the penetration depth and improve the signal-to-noise ratio. Preliminary mea-

surements show that the enamel-dentine boundary creates numerous internal reflections

causing the applied chirp signals to interfere arbitrarily. In this work, the Fractional

Fourier transform (FrFT) is employed for the first time in dental imaging to separate

chirp signals overlapping in both time and frequency domains. The overlapped chirps

are compressed using the FrFT and matched filter techniques. Micro-CT, also known

as the X-ray microtomography, is used for validation of the ultrasound measurements

for both techniques. For a human molar, thickness of the enamel layer is measured with

an average error of 5.5% after compressing with the FrFT and 13.4% after compressing

with the matched filter based on average speed of sound in human teeth.
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4.1 Introduction

4.1 Introduction

The first ultrasonic observations in dental tissue started in the 1960s using the pulse-

echo technique to evaluate the tooth enamel, dentine-enamel junction (DEJ) and dentine-

pulp interface (Barber et al., 1969; Kossoff & Sharpe, 1966). Most of these studies used

simple time of flight measurements by calculating time delay between the peaks of con-

secutive reflections utilizing little or no signal processing techniques (Barber et al., 1969;

Ghorayeb & Valle, 2002; Kossoff & Sharpe, 1966). Traditionally, short-duration pulses

are preferred by researchers to achieve better axial resolution. Some signal and image

processing techniques, such as filtering and envelope detection, were subsequently used

to improve image quality (Culjat et al., 2005a; Hua et al., 2009). However, the use of

coded excitation techniques in echodentography1 is not reported. In this work, a linear

frequency modulated (LFM) chirp is chosen as an excitation technique to improve the

signal-to-noise ratio (SNR), penetration depth and thus the image quality.

The first studies in echodentography started with the frequency range of 6 − 18

MHz with basic pulse-echo measurements (Barber et al., 1969; Kossoff & Sharpe, 1966).

Later, some researchers focused on high frequency ultrasound to achieve a better reso-

lution. Hughes et al. (2008) reported on the use of a 35 MHz focused ultrasound piezo-

composite transducer for tooth measurements. Scanning acoustic microscopy (SAM)

has been successfully used to image the elastic properties of carious human teeth, char-

acterize the enamel and detect the enamel-dentine interface (Maev et al., 2002; Peck

& Briggs, 1987; Raum et al., 2007). SAM has been described at frequencies around

50 MHz (Maev et al., 2002), but the highest frequency ever reported was 900 MHz by

Raum et al. (2007) for tooth characterization. SAM can easily achieve sub-millimetre

resolution, however it is not a practical diagnostic method for dentistry. Recently, the

frequency range of 10 − 20 MHz has been favoured by researchers due to the high at-

tenuation in human tooth at higher frequencies (Culjat et al., 2003; Ghorayeb & Valle,

2002; Löst et al., 1992; Singh et al., 2006). For this reason, a delay-line transducer

with a 15 MHz centre frequency is chosen in this study for the experiments. An ex-

tended and well detailed literature review of all diagnostic applications of ultrasound

in dentistry has been published by Ghorayeb et al. (2008).

1Ultrasound dental imaging.
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4.2 Materials and Methods

The aim of this work is to measure the thickness of the enamel layer, locate discon-

tinuities and produce an image of the tooth ex-vivo using ultrasound that can provide

significant benefits to patients and dentists. A priori knowledge of tooth anatomy al-

lows the early identification of cracks, decays, enamel loss or other tooth defects, which

can cause inflammation or infection. According to the American Association of En-

dodontics, it is estimated that 15 million teeth receive endodontic treatment each year

in the USA (Rosenberg et al., 2007); early diagnostic information may help dentists re-

duce this number. By considering the significance of early detection of these anomalies

on prevention, this work will focus on dental erosion. Dental erosion or acid erosion is

mostly related to the consumption of carbonated drinks and it can cause irreversible

tooth loss. It is one of the most common chronic diseases in children with 32% of 14

year old showing erosion of permanent dentition (Dugmore & Rock, 2004). The rise

in consumption of sugar, coffee, and acidic beverages and disorders, such as Gastroe-

sophageal Reflux Disease, causes dental erosion and enamel loss (Hua et al., 2009).

Monitoring the enamel thickness can provide dentists with sufficient information to

prevent the enamel loss (Louwerse et al., 2004).

In this study, LFM excitation is used to achieve better penetration without degra-

dation of the resolution and the Fractional Fourier transform is utilized to analyse

overlapping echoes, which are caused by the successive reflections inside the enamel

and dentine layers. A tooth phantom is constructed to test the effectiveness of the

proposed technique and the experimental measurements are performed in the tooth

phantom and an extracted human molar. To perform pulse compression on overlap-

ping chirps, the FrFT and matched filter techniques are applied. Micro-CT, again a

non-destructive imaging method, is used for validation of the proposed technique.

4.2 Materials and Methods

4.2.1 Experimental Setup

The experimental measurements were carried out with a 15 MHz Sonopen replaceable

delay line transducer with 1 mm polystyrene tip (Olympus NDT Inc., Waltham, MA,

USA) in contact with the sample. All experiments were performed with glycerine

couplant at a temperature between 21◦C and 22◦C. The transducer was characterized

before designing the excitation waveform, where the centre frequency was 14 MHz
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4.2 Materials and Methods

Table 4.1: Acoustic properties of materials

Material Velocity Density Impedance

(m/s) (kg/m3) (MRayl)

Enamela 6250 3000 18.8

Dentinea 3800 2000 7.6

Pulpa 1570 1000 1.57

Glass, borosilicate∗ 6025 2475 14.9

Dental Composite∗ 3350 2200 7.4

Waterb 1482 1000 1.5

Glycerine∗ 1910 1265 2.42

Delay-line, polystyrene∗ 2310 1070 2.47

Transducer, PZT-5Ab 4350 7750 33.7

a values are taken from Ghorayeb et al. (2008).

b values are taken from Kino (1987).

∗ values are determined in our laboratory.
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and the −3 dB fractional bandwidth was 86%. To generate the excitation signals a

33250A Arbitrary Waveform Generator (Agilent Technologies Inc., Santa Clara, CA,

USA) was used and the signals were amplified by using E&I A150 RF Power Amplifier

(Electronics & Innovation Ltd., Rochester, NY, USA). Transmitted and received signals

were separated by using a RDX-6 diplexer (Ritec Inc., Warwick, RI, USA). Then the

received signal was amplified by 30 dB for phantom measurements and 50 dB for tooth

measurements, due to the higher attenuation in enamel, with a Panametrics 5072PR

Pulser/Receiver (Olympus NDT Inc., Waltham, MA, USA). All measurements were

saved by a LeCroy Waverunner 64xi oscilloscope (LeCroy Corporation, Chestnut Ridge,

NY, USA) for further processing in Matlab (Mathworks Inc., Natick, MA, USA).

Two different set of measurements were performed on a tooth phantom and a human

molar with the same experimental setup.

Phantom Measurements

The tooth phantom was constructed by bonding a 1 mm thick borosilicate glass to

a 1 mm thick dental composite Herculite XRV Unidose dentine (Kerr, Scafati, Italy)

instead of enamel and dentine (Singh et al., 2008). The acoustic properties of the

materials are given in Table 4.1. The thickness of the phantom layers were measured

with a micrometre screw gauge (Table 4.2). To replicate the effect of the pulp, the

tooth phantom was partially immersed in water during the experiments.

Tooth Measurements

For the tooth measurements, an extracted human molar with intact enamel layer was

acquired from the Leeds Dental Institute Skeletal Tissues Bank. The tooth sample has

been stored in a 1% aqueous thymol solution for 6 months. Before the experiments the

human molar was scanned first with an X-ray scanner µCT 80 (Scanco Medical AG,

Brüttisellen, Switzerland) with 40 µm resolution. Micro-CT data was used to validate

the accuracy of the ultrasound measurements. To perform the experiments a screw

thread was bonded to the tooth samples using a dental composite and cured by UV

light. A high precision computer numerical controlled (CNC) positioning system with

a positioning accuracy of 50 µm was used to scan the tooth sample with the ultrasound

delay line transducer, as shown in Figure 4.1.
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Figure 4.1: Experimental setup used for enamel thickness measurements. The tooth

sample is mounted on the moving arm of the CNC positioning system. The transducer is

fixed by a metal profile to a stationary stage. (A) Pulse-echo measurement is performed

in a tank filled with glycerine. Then the tooth is moved away from the transducer after

the measurement. (B) The CNC positioning system rotates the tooth sample and moves

in the opposite direction to achieve a contact with the transducer. After repositioning

the tooth sample with a different angle consecutive measurement is performed.
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4.2.2 Coupling Material

Human tooth is a porous material. Without using any coupling material, the small

air pockets between the transducer and tooth would prevent the ultrasonic energy

transmission due to the acoustic impedance mismatch between air and enamel. In

order to facilitate the transmission of ultrasound waves into the sample, a coupling

material must be used. Although various acoustic couplants have been evaluated for

tooth imaging (Culjat et al., 2005b), water is usually preferred as a coupling medium

for non-contact ultrasound tooth measurements (Ghorayeb & Valle, 2002; John, 2005;

Kossoff & Sharpe, 1966; Löst et al., 1992). However, the acoustical mismatch between

the water, polystyrene delay-line and enamel would interfere with echoes from the

target tissue and decrease the transmission efficiency. In this study, glycerine is chosen

as the coupling material to fill the small pores on the tooth surface. Since glycerine

and polystyrene have similar acoustic impedances (Table 4.1), the transfer efficiency is

improved by minimizing the impedance mismatch.

4.2.3 Contact Imaging

For the measurements, the tooth sample and the transducer were immersed in a tank

filled with glycerine and controlled by a CNC positioning system. Even though there

was glycerine couplant between delay-line and tooth sample, the measurements were

performed in contact mode, where the glycerine was only used to fill the microscopic

pores on the surface of the tooth sample.

For the proposed contact imaging technique, transducer positioning to achieve a

good contact with the tooth sample is crucial for accurate measurements. The human

tooth however has a rough and curved surface, which makes it difficult to achieve a

good contact with the probe tip. This contact problem between the tooth and trans-

ducer was solved by checking the phase of first reflected echo. In the experiments,

the acoustic impedances of the polystyrene, glycerine and enamel was used to validate

contact between the delay-line and enamel by considering the 180◦ phase shift of the

returned echo while the transducer was coupled to the enamel. Measurements were

also performed on the tooth phantom to test the proposed contact verification method

with results given in the next section.
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A similar contact problem was reported by Louwerse et al. (2004), where they

showed the error in enamel thickness measurements due to variations in the positioning

of the probe tip. In this work, the contact problem was solved by checking the phase of

the reflected signal and by using a CNC positioning system to increase measurements

reproducibility. The importance of the reproducibility of ultrasonic enamel thickness

measurements and the variations is further discussed by Louwerse et al. (2004).

4.2.4 Coded Excitation and Pulse Compression

Coded excitation has been shown to be effective in radar applications (Skolnik, 1981)

as well as some medical ultrasound systems (Misaridis & Jensen, 2005a) by improving

the SNR, penetration depth or image quality. Different methods such as frequency

modulation, phase modulation and Golay codes were compared to find the most suit-

able coded excitation technique for ultrasound dental imaging. The linear frequency

modulated chirp signal was chosen as an excitation technique, since it was reported to

have lower side-lobe levels after compression under high attenuation and nonlinearity

(Chiao & Hao, 2005).

Time Domain
Signal

Matched Filter

Pulse Compressed
Signal

FrFT

Time Domain
Signal

Eq. (3.16) & Eq.(3.17)

Compressed
Signal by FrFT

Figure 4.2: (Left) Diagram illustrates the pulse compression method by a matched

filter. The time domain signal is convolved with a matched filter to achieve pulse com-

pression. (Right) Diagram illustrates the compression method by the FrFT. First, the

time domain signal is transformed into fractional Fourier domain, where the compres-

sion is achieved. As the second step, Eq. (3.16) and Eq. (3.17) are used to calculate

the projection of the FrFT axis in time axis, so that the temporal information can be

recovered.

The matched filter (MF) is the most common method for filtering and compressing
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chirp signals as it optimizes the probability of detection and maximizes the SNR (Mis-

aridis & Jensen, 2005a). Therefore, the MF was chosen as the golden standard pulse

compression technique for comparison with the FrFT. Both methods are explained in

Figure 4.2.

The main advantage of the FrFT over the MF is that the FrFT can be used without

the a priori knowledge of the transmitted signal. The FrFT does not rely on the phase

of the signal but the chirp rate, which can be obtained at the receiver side. The FrFT

technique becomes more effective, if the phase distortions induced by experimental

equipment needed to be eliminated.

4.3 Experiments

To verify the accuracy of the proposed coded excitation scheme and the FrFT technique,

measurements were first performed on a tooth phantom of known dimensions. The

excitation method was also compared with a Gaussian pulse of the same bandwidth,

which is widely used by researchers to measure the thickness of the tooth layers (Barber

et al., 1969; Culjat et al., 2003; Ghorayeb & Valle, 2002; Ghorayeb et al., 1997; John,

2005, 2006; Löst et al., 1992).

Table 4.2: Thickness measurements for different excitation signals and pulse compres-

sion techniques.

Glass Dental composite A.E. M.A.E.

Actual Size 0.998 mm 1.016 mm

Gaussian Pulse 1.006 mm 0.951 mm 36 µm 65 µm

MF (Short LFM) 1.039 mm 1.050 mm 37 µm 41 µm

FrFT (Short LFM) 1.048 mm 1.060 mm 46 µm 50 µm

MF (Long LFM) 1.030 mm 0.975 mm 36 µm 41 µm

FrFT (Long LFM) 0.970 mm 1.012 mm 16 µm 28 µm

∗ (A.E.) Average error, (M.A.E.) Maximum absolute error
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Figure 4.3: (First) Transmitted Gaussian pulse. (Second) Received signal from a good

contact, where a phase-shifted Gaussian pulse can be seen at 9.5 µs. (Third) Received

signal without any contact, where no reflections can be observed. (Fourth) Received sig-

nal from a partial contact, where the observed phase shift is not 180◦. (Fifth) Received

signal from a partial contact, where the shape of the Gaussian pulse is distorted.
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4.3.1 Contact Verification

In all experiments, the phase of the first reflected echo was used to verify contact

between the transducer delay-line and tooth sample or tooth phantom. However, before

performing the thickness measurements, the contact verification method was tested on

the tooth phantom. The transmitted signal was captured as shown in Figure 4.3(first)

and this measurement was used as a control signal, whilst a 180◦ phase shift must be

observed when the contact between the delay-line and enamel is achieved. This phase

shift appears, because the imaging system has two physical interfaces; 1) between the

transducer and the delay-line, 2) between the delay-line and the tooth sample. The

polystyrene delay-line has a lower acoustic impedance than the transducer (PZT-5A)

resulting in a negative reflection coefficient,

Γ =
Zpolystyrene − Ztransducer

Zpolystyrene + Ztransducer
< 0, (4.1)

where Z is the acoustic impedance of the given material and Γ is the reflection coeffi-

cient.

However for the coupling from the polystyrene delay-line to the enamel, the reflec-

tion coefficient is positive;

Γ =
Zenamel − Zpolystyrene

Zenamel + Zpolystyrene
> 0. (4.2)

Since two reflection coefficients have a different sign, a 180◦ phase shift is expected

between the signal at t = 0 and t = 9.5 µs in Figure 4.3. For a good contact, a

180◦ phase shift was observed between Figure 4.3(first) and Figure 4.3(second), which

was considered as a valid measurement. However if the waveform is distorted or the

phase shift is not 180◦, the ultrasound measurement was discarded. Figure 4.3(third),

Figure 4.3(fourth) and Figure 4.3(fifth) are some examples, where the measurements

were discarded due to the aforementioned phase shift technique.

4.3.2 Thickness Measurements on Tooth Phantom

The tooth phantom was measured with three different excitation signals; a Gaussian

pulse, a short LFM signal with 0.5 µs duration, and a long LFM signal with 2 µs

duration. All signals were designed to match the transducer frequency response, and

therefore a centre frequency of 14 MHz and a fractional bandwidth of 80% were chosen.
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Figure 4.4: Comparison of (Top) a Gaussian pulse with (Middle) an LFM chirp com-

pressed with matched filter and (Bottom) an LFM chirp compressed with the FrFT.

(T) denotes the reflection from transducer tip and glass boundary. (G) denotes the

reflection from glass and dental composite boundary. (D) denotes the reflection from

dental composite and water boundary.
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A Hann window was applied to the LFM signals to reduce the side lobe levels after

compression. The same excitation voltage of 25 Vpp was used in each measurement.

The Gaussian pulse was chosen to demonstrate the basic pulse-echo technique and

the measurements performed with the Gaussian pulse were filtered using a band-pass

filter. However, to compress the interfered chirp signals, the LFM measurements were

first filtered using a band-pass filter and then processed using the FrFT technique or

matched filter. Two different matched filters were designed for short and long duration

LFM signals. These were then used to pulse compress the received signals. FrFT was

performed at α = 1.7421 for the short LFM and at α = 1.3360 for the long LFM with

the rotation angle calculated according to Eq. (3.15).

The received echoes for the Gaussian pulse and the envelope of the received signal

for the LFM excitation after compression with the MF and the FrFT are shown in

Figure 4.4, respectively. The time-of-flight between consecutive pulses or compressed

chirps, which are denoted as T, G and D in Figure 4.4, were measured. The time-

of-flight information for the signals in the fractional Fourier domain was recovered by

using Eq. (3.16). The layers thickness were calculated through prior knowledge of the

speed of sound in that material as given in Table 4.1. The average error and maximum

absolute error for each method was calculated and the accuracy of the techniques is

compared using the results given in Table 4.2. Of the tested techniques, it is found

that the LFM signal with 2 µs duration processed with the FrFT technique gives the

lowest error.

4.3.3 Enamel Thickness Measurement

To measure the enamel thickness of the human molar, the tooth sample was mounted to

the moving arm of the CNC positioning system. The transducer was fixed on a station-

ary stage and pulse-echo measurements performed with chirp excitation. Measurement

data was obtained through automated CNC scanning performed in steps of 5◦, as shown

in Figure 4.1. Only the LFM signal was used for excitation with a duration of 2 µs,

centre frequency of 14 MHz, fractional bandwidth of 80%, and excitation voltage of

25 Vpp, which approximately generates a pressure of 150 kPa inside the enamel.

The measurement data was processed in two different ways to plot the ultrasound

images shown in Figure 4.5. The tooth was scanned with the CNC and individual

scan lines captured for each angle were combined. For better visualisation, the spatial
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Figure 4.5: Ultrasound image of the tooth scanned with the LFM chirp and (Top)

processed with a matched filter technique and (Bottom) processed with the FrFT tech-

nique. This scan is performed to determine the enamel thickness of the tooth by mea-

suring the difference between the tooth surface and dentine-enamel junction (DEJ).
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position of the tooth was recorded by the CNC and was used to offset the individual

scan lines on the image. To plot the final ultrasound images, the measurement plot

was converted from polar coordinates to Cartesian coordinates.

In Figure 4.5(top), the matched filter technique was used to compress the received

ultrasound echoes. In Figure 4.5(bottom), the received signals were transformed to the

fractional Fourier domain where the rotation angle was calculated by Eq. (3.15). The

temporal information was recovered by scaling the time axis according to Eq. (3.16).

By comparing these figures, it can be observed that the FrFT technique gives a better

compression with a smaller main lobe width and hence better resolution in the final

image, where the features of the tooth are more distinguishable such as the DEJ at the

north-east of Figure 4.5(bottom).

For the tooth measurements, the received signal is attenuated not only because of

depth and frequency dependant attenuation, but also because of scattering, dispersion

and absorption (Barber et al., 1969). The structure of the dental tissues absorbs and

scatters the sound wave due to roughness and the irregular curved shape of the tooth.

The overall effect on the received echo is degraded SNR, change in the envelope shape

and reduced bandwidth, which will result in a discrepancy between the MF and chirp

signal. This phenomenon was observed in the real tooth measurements. Figure 4.6

shows the worst case observed in the measurements, where it was not possible to mea-

sure the enamel thickness correctly with the compression achieved by the matched

filter. In Figure 4.6(middle) the reflected echoes from enamel surface, enamel-dentine

boundary and second reflection from enamel-dentine boundary appear as a single lobe

after compression. In this case, the search algorithm, which uses the findpeaks function

in Matlab to find the local maxima, located the false DEJ according to the second

reflection from enamel-dentine boundary. However, in Figure 4.6(bottom) the com-

pression achieved by the FrFT clearly separates each reflection. In this example, the

advantage of the FrFT over the MF becomes more obvious; transforming the signals

into the fractional Fourier domain gives a better compression and hence increases the

probability of detection.

In order to compare the accuracy of the FrFT and the MF, the enamel thickness

measurements processed with both techniques were plotted on the X-ray scan of the

tooth, as shown in Figure 4.7. The registration of the Micro-CT slice with the ultra-

sound data was done by using the positional information of the transducer relative to
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Figure 4.6: (Top) Received signal, (Middle) compressed with matched filter and (Bot-

tom) signal transformed to the FrFT domain to achieve compression. (T) denotes the

reflection from transducer tip and enamel boundary. (DEJ) denotes the reflection from

dentine-enamel junction. (R) denotes the reverberation (secondary internal reflection)

caused by the enamel-dentine boundary.
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the tooth sample, which was controlled by the CNC system. In the Table 4.1 the typical

acoustic properties of the materials used are shown. The thickness of the tooth layers

were calculated according to these values by using the time-of-flight measurements.

 0o

90o

180o 

270o

Figure 4.7: Figure shows the ultrasound enamel thickness measurements mapped on

the Micro-CT image. Black crosses represent the outer surface of the tooth. Blue dots

show the ultrasound measurements processed with the FrFT. Red squares show the

ultrasound measurements processed with the matched filter. The image dimensions are

14 mm × 12 mm.

In the Figure 4.7, some measurement points between 115◦ and 145◦ are missing,

because good contact between the enamel and the transducer tip could not be achieved

due to the curvature of the tooth surface. A similar problem was also observed for the

measurement points 70◦, 235◦, 275◦, and 290◦. The measurement data for these angles

were discarded after checking the phase of the reflection from the enamel surface. The

compression problem explained in Figure 4.6 was observed at 10◦, 30◦, 125◦, 160◦, 190◦,

210◦ and 340◦, which increases the error for the MF technique.
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In order to compare the real values with the data processed by the FrFT and MF

techniques, an edge detection algorithm was used to measure actual enamel thickness

from the Micro-CT image. The edge detection was performed by the edge function

based on the Sobel method in Matlab, which finds edges in the image using the Sobel

approximation to the derivative of the Micro-CT data. The maximum relative error

observed for the MF was 113% and the maximum absolute error was 860 µm, which was

expected because of the aforementioned compression problem. However the maximum

relative error for the FrFT was 33% and the maximum absolute error was 370 µm.

The average relative error values are also calculated in order to make a fair comparison

between the phantom and tooth measurements. The mean absolute error for the FrFT

was 45 µm and the average relative error was calculated as 5.5%, which was higher

than the 1.6% error achieved in the phantom measurements for the same technique.

The mean absolute error calculated for the MF was 109 µm and the average relative

error was 13.4%, which was more than double the error observed for the FrFT.

4.4 Discussion

In this work, time-of-flight measurement for a human molar was performed with a delay-

line transducer in contact mode. The use of similar transducers, such as delay-line or

thickness gauge, is common for dental measurements (Huysmans & Thijssen, 2000;

Louwerse et al., 2004; Yanıkoğlu et al., 2000). Researchers, who used similar trans-

ducers, concluded that ultrasonic measurement of enamel thickness is feasible without

any enamel preparation. This improves the in-vivo applicability of the proposed con-

tact imaging technique, since teeth can be examined without cleaning or any further

processing. Although, SAM can achieve better resolution and perform more accurate

measurements (Marangos et al., 2011; Raum et al., 2007), it cannot be used practically

for real-time in-vivo diagnostic imaging in dentistry.

The main limitation of this method, time-of-flight measurement, is that the velocity

of the medium must be known a priori. However, without knowing the exact speed of

sound in tooth layers, the average velocity values can be used with a cost of increased

error. In this study, experiments were performed on two different samples; a phantom

with known material properties and a human tooth. Tooth phantom measurements

showed that the thickness of the glass and dental composite can be measured with a
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1.6% error, where the average error increased to 5.5% for the real tooth sample using

the FrFT technique. The average error for the matched filter was calculated as 3.6%

for the tooth phantom and 13.4% for the real tooth measurements. The error for the

FrFT technique is within the speed of sound variations observed for different tooth

samples. The average speed of sound measured by several researchers is 6250 m/s with

a deviation of ± 410 m/s (Barber et al., 1969). In a study focused on enamel thickness

measurements, researchers used an average speed of sound of 6500 m/s and reported

an average error of 50 µm (Huysmans & Thijssen, 2000). This is similar to the mean

absolute error of 45 µm for the FrFT technique observed in this study, which is based

on using averaged speed of sound values.

For the experiments performed with human teeth, it is difficult to evaluate the

accuracy of the measurement technique since this study was based on the average sound

velocities in dental tissues. The speed of sound varies in different sections of enamel and

dentine layers even within the same sample (Ghorayeb et al., 2003). It was previously

reported that there is a significant variance between measured tooth samples (Barber

et al., 1969; Ghorayeb & Valle, 2002). Additionally, ultrasonic wave propagation in

human teeth is not trivial due to the anisotropic structure of tooth, where the speed

of sound can vary within the same tooth in different directions (Ghorayeb et al., 2003;

Lees & Rollins, 1972). In Figure 4.7, for angles between 300◦ and 325◦ the ultrasound

measurements did not match with the X-ray scan of the tooth. The reason for the

mismatch is the anisotropic structure of the tooth. It was measured that the density of

the enamel layer between these angles was 9% higher than the average enamel density.

Rose et al. (2005) showed the correlation between sound velocity and bone mineral

density in teeth, where higher mineral density increases the speed of sound. This is the

reason why the enamel thickness was measured to be less in this region.

For in-vivo tooth measurements, the expected error will be similar with the ex-vivo

measurements performed in this study. It is shown that by storing the tooth sample

in aqueous solutions, the mechanical properties of the tooth samples can be protected

(Raum et al., 2007). The speed of sound will be similar for a moist extracted tooth

and non-extracted tooth, where the hardness and the sound velocity of the tooth will

crucially change after drying (Totah, 1942). In this study, the tooth sample was always

stored in an aqueous solution in order to eliminate the drying effect. Temperature will

be another important variable for the in-vivo and ex-vivo measurements. However, it
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was proven by Huysmans & Thijssen (2000) that measurements performed at 21◦C and

34◦C do not have significant differences for a human incisor teeth.

4.5 Conclusions

In optics and signal processing the Fractional Fourier transform has many applica-

tions, although there are only a few examples of the application of FrFT in ultrasound

(Bennett et al., 2004; Cowell & Freear, 2010; Harput et al., 2009). In this study, the

ultrasonic non-destructive evaluation of human teeth using chirp coded excitation to-

gether with FrFT was performed. The FrFT was used for the first time to analyse

the received echoes by separating chirp signals overlapping in both the time and the

frequency domains in dental imaging. The proposed technique was used to measure the

thickness of the enamel layer in human teeth. The results obtained with the proposed

method was compared with a Gaussian pulse, which is the de facto standard in thick-

ness measurements, and with a chirp excitation processed by a matched filter for pulse

compression. The Gaussian pulse and the chirp waveform processed by a matched filter

had an average error of 3.6%. The proposed method achieved more accurate results

with an average error of 1.6%, since the chirp signal was transformed into the frac-

tional Fourier domain and the temporal information was recovered by using Eq. (3.16)

and Eq. (3.17). The results for different waveforms and compression techniques are

presented in Table 4.2.

Besides measuring the thickness of tooth layers, other possible applications for this

method could be locating cracks inside tooth and analysing the restoration faults under

the fillings. Dentists rely on visual and endodontic examination methods or dental

radiographs to diagnose cracked teeth. These methods are usually not effective in the

early detection of cracks before the crack causes an infection (Culjat et al., 2005a);

however the coded excitation improves the detectability of small cracks by increasing

the SNR. Another major problem encountered in dentistry is the bonding faults between

dental composite and tooth. Conventional radiography cannot be used for imaging of

radiopaque restoration material, but the ultrasound is able to penetrate into the hard

structures and can detect cavities under existing restorations (Culjat et al., 2003; Singh

et al., 2007). The proposed contact imaging method combined with coded excitation

and the FrFT technique could be used as a diagnostic tool in dentistry to measure the
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enamel thickness, locate the cracks inside the tooth and analyse the possible restoration

faults.
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Chapter 5

Detection of Restoration Faults

under Fillings in Human Tooth

An ultrasound contact imaging technique for detecting the restoration faults under fill-

ings in human teeth is proposed. A linear frequency modulated chirp signal is used

to improve the signal-to-noise ratio and increase the penetration depth to allow the

detection of the echoes from restoration-tooth boundary at 200 kPa acoustic pressure.

Although the detection threshold is improved, it is observed that the duration of the

excitation signal is longer than the duration of time of flight in the restoration, which

causes signal overlapping between consecutive internal reflections. Due to these rever-

berations, the applied chirp signals interfere arbitrarily with the successive reflections,

where the received echoes are not identifiable in the time domain. Separation in the

frequency domain is not possible, since all reflections have the same bandwidth and

centre frequency.

In this work, the Fractional Fourier transform (FrFT) is employed to separate chirp

signals overlapping in both time and frequency domains. By analysing the received

echoes with the FrFT, this work presents the ultrasonic non-destructive evaluation of

dental restorations in human teeth.

5.1 Introduction

For dental imaging, conventional X-ray radiography and computed tomography (CT)

remain dominant while micro-CT has been used for in-vitro applications achieving
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a resolution of a few microns. The use of ultrasound in dentistry is not common

even though the first diagnostic applications of ultrasound were described in the 1960s

(Barber et al., 1969; Ghorayeb et al., 2008; Kossoff & Sharpe, 1966). In radiography,

the primary limitations of X-rays are the risks associated with ionizing radiation and

their inability to detect small cracks and faults in dental restorations. However, due to

its non-ionizing nature and high resolution, ultrasound offers an explicit advantage over

conventional radiography as an imaging technique in clinical dentistry (Culjat et al.,

2003; Ghorayeb & Valle, 2002; Löst et al., 1992).

One of the major problems encountered in tooth restoration is the bonding faults

between the restoration material and tooth. The restorative insertion placed in the

tooth must completely reach the base and form a flawless bond, otherwise a cavity

will be created inside the tooth, which can cause an infection requiring repetition of

the restoration procedure (Ghorayeb & Valle, 2002). Small cavities are challenging for

conventional X-ray imaging, because dental radiographs are usually not effective in the

early detection but often rely on the subsequent damage after infection (Culjat et al.,

2005a). On the other hand ultrasound is highly effective in detecting discontinuities

in the tooth, even if they are smaller than the acoustic wavelength. The advantage

of ultrasound becomes more apparent if the restoration material is radiopaque and

hence cannot be imaged by conventional radiography. Ultrasound however is able to

penetrate the hard structures and can detect hard tissue pathosis and cavities under

existing restorations (Culjat et al., 2003; Singh et al., 2007).

The aim of this work is to detect the possible restoration faults under fillings in

human teeth using ultrasound. A linear frequency modulated chirp signal is chosen

for excitation to increase the penetration depth. On the receiver side, the Fractional

Fourier transform is used to filter the received echoes and separate overlapping LFM

chirps.

5.2 Materials and Methods

5.2.1 Experimental Setup

A dentist performed two different restorations on an extracted human molar. Two

cylindrical cavities were formed using a dental drill on the tooth crown with a depth

of 2.4 mm. Dental composite Herculite XRV Unidose enamel (Kerr, Scafati, Italy) was
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Figure 5.1: X-ray image of tooth with restorations. The enamel, dentine and restoration

material appear in a different colour, since they all have different density values. Each

scan is separated by 80 µm and the scan direction is from the crown to the root of the

tooth. The restoration on the right has a cavity between the restoration material and

the tooth sample.
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used as the restoration material. For restoration A, a bonding agent was applied before

filling the cavity with restorative material. For restoration B, in order to create a poor

filling, the cavity was covered with glycerine. After filling the cavities, the restorative

material was cured by UV light and the surfaces of the fillings were flattened using

dental instruments. After the restoration process, the tooth sample was scanned by

the X-ray scanner µCT 80 (Scanco Medical AG, Brüttisellen, Switzerland) with 40 µm

resolution. Figure 5.1 shows the X-ray scan of the tooth with restorations. The shape of

the filling on the left hand side of the X-ray image matches the cavity shape. However,

for the filling on the right hand side it can be observed on the bottom of the cavity

that it is not bonded well with the dentine.

Figure 5.2: Experimental setup used for detection of restoration faults. The transducer

is mounted to the moving arm of the CNC positioning system. The tooth sample is

fixed by a metal profile to a stationary stage. The measurements are performed by

using a glycerine couplant between the transducer’s delay line and the tooth sample.

Restoration A represents a good restoration and Restoration B represents a restoration

with bonding problems.

The measurements were carried out with a 15 MHz Sonopen delay line transducer

with 1 mm polystyrene tip (Olympus NDT Inc., Waltham, MA, USA) using a glycerine

couplant in contact mode as shown in Figure 5.2. The excitation signal was designed to

77



5.2 Materials and Methods

match the transducer frequency response, and therefore a centre frequency of 14 MHz

and a fractional bandwidth of 80% were chosen. The excitation voltage of 25 V was used

with a signal duration of 2 µs, which generates a pressure of 200 kPa. The excitation

signal was tapered with a Hann window to reduce the side lobe levels after compression.

A 33250A Arbitrary Waveform Generator (Agilent Technologies Inc., Santa Clara, CA,

USA) was programmed to generate the excitation signal and then amplified by using

E&I A150 RF Power Amplifier (Electronics & Innovation Ltd., Rochester, NY, USA).

The received signal was amplified by 50 dB with a Panametrics 5072PR (Olympus NDT

Inc., Waltham, MA, USA) after separating the transmitted and received signals by a

RDX-6 diplexer (Ritec Inc., Warwick, RI, USA). The received ultrasound echoes from

the tooth sample were saved by a Waverunner 64xi oscilloscope (LeCroy Corporation,

Chestnut Ridge, NY, USA) and the signals were processed in Matlab (Mathworks Inc.,

Natick, MA, USA). The contact mode imaging and the importance of glycerine couplant

is explained by Harput et al. (2011b).

In order to perform the ultrasound scan, the tooth sample was fixed on a stationary

stage and the transducer was held by a mounting frame on the high precision CNC

positioning system. The tooth sample was scanned by the automated CNC with a step

size of 0.5 mm through the surface of both fillings on the scan lines A and B as shown

in Figure 5.3.

5.2.2 Filtering with the Fractional Fourier Transform

It was previously reported by Singh et al. (2007) that ultrasound can penetrate most of

the dental restorative materials such as amalgam, resin-composite, porcelain and gold.

However, the authors observed that gold restorations transmit minimal acoustic energy

to the tooth behind the restoration due to their large acoustic impedance. In this study,

a coded excitation technique is chosen to overcome such penetration problems.

Coded excitation has been effectively used in radar applications and medical ultra-

sound systems to improve the image quality (Misaridis & Jensen, 2005a). However, the

use of coded excitation in echodentography is not common except some recent studies

by Harput et al. (2009, 2011b). In this work, a LFM chirp is used as an excitation

signal to improve the SNR and penetration depth.

The coded excitation improves the penetration and SNR, but introduces another

problem when the duration of the ultrasound signal is longer than the time of the round
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BA
0 mm

5 mm

Figure 5.3: Scan lines for the ultrasound measurements are represented on an X-ray

slice of the tooth sample. The transducer mounted on the moving arm of the CNC

positioning system is moved between the 0 mm and 5 mm points with a step size of

0.5 mm. A represents the scan line for the good restoration and B represents the scan

line for the restoration with bonding problems.
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trip in the restorative material. Due to the signal overlapping inside the restorative

material, the received echoes are not identifiable in the time domain. In the frequency

domain all reflections completely overlap with each other, since they all have the same

bandwidth and the centre frequency. The proposed solution in this work is to use

the Fractional Fourier transform with long duration LFM chirp excitation. The FrFT

allows frequency modulated signals overlapping in time and frequency to be separated.

To isolate individual chirp signals windowing is used in the fractional Fourier do-

main as explained in the section 3.2 and illustrated in Figure 3.2. As recently presented

by Cowell & Freear (2010), after windowing in the fractional Fourier domain the wave-

form can be rotated by −αopt degrees to restore the signal to the time domain hence

extracting the chirp from overlapped data.

5.2.3 Calculating the Power of Received Echoes

The power level of the received echo can be estimated by using the acoustic impedance

and attenuation coefficient of the medium in which the ultrasonic wave is travelling

with the material properties given in Table 5.1. The transmitted ultrasonic wave into

the restoration, which has exactly 3 dB less energy than the incident wave for this case,

reflects from the back of the restoration-dentine boundary with different power levels

according to the quality of the bonding.

The received signal power is reduced as determined by the reflection coefficient,

Γ, and the reflected echoes are further attenuated by 1 dB/mm in the resin based

restorative material. Therefore, the total power of the echo can be calculated as

Received Power(dB) = −10 log(Γ2)−Attenuation(dB) (5.1)

for

Γ =
Z1 − Z0

Z1 + Z0
(5.2)

where the wave is propagating from a medium of impedance Z0 into a medium of

impedance Z1.

The main problem with this type of techniques based on reflected power calcula-

tions is that the received signal must be compressed accurately. However for the tooth

measurements, the received signal energy is still spread in time after compression with

a matched filter (MF). The compression is not ideal, since the received signal is de-

formed because of frequency dependant attenuation, scattering and dispersion in tooth
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layers and dental restorative material (Barber et al., 1969). The overall effect on the

received echo is usually observed as a change in the envelope shape and reduction in

the bandwidth, which will result in a discrepancy between the MF and chirp signal.

For this reason, rather than measuring the peak power of the compressed signals, the

total power of individual echoes is calculated in the time domain after separating with

the FrFT as

Power =
1

t2 − t1

∫ t2

t1

s(t)2dt . (5.3)

Table 5.1: Acoustic properties of materials

Material Velocity Attenuation Impedance

(m/s) (dB/mm) (MRayl)

Dentine 3800d 8c 7.6d

Restorative Material 3530a 1a 14.5a

Glycerine 1910a - 2.42a

Delay-line, polystyrene 2310a 0.18b 2.47a

a values are determined in our laboratory.

b values are taken from Kino (1987).

c values are measured by Kossoff & Sharpe (1966) at 18 MHz.

d values are compiled by Ghorayeb et al. (2008).

5.3 Experimental Results and Discussion

To separate the interfered chirp signals, the LFM measurements were processed either

using the FrFT or the MF technique. The matched filter was chosen as a reference, since

it is the most common method for filtering and compressing chirp signals as it opti-

mizes the probability of detection and maximizes the SNR (Misaridis & Jensen, 2005a).

The received signal, shown in Figure 5.4(top), was first processed with a matched fil-

ter. However, it was not possible to distinguish the reflection from restoration-dentine

boundary clearly from the compressed signal shown in Figure 5.4(middle).
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Figure 5.4: Figure shows (Top) the received signal from the restoration material, (Mid-

dle) compressed waveform with matched filter, (Bottom) the waveform transformed into

the fractional Fourier domain. The dashed lines on the bottom figure show windows

applied in the fractional Fourier domain.
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domain is shown. (Top) The filtered echo from the transducer-restoration boundary.

(Bottom) The filtered echo from the restoration-dentine boundary.
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The FrFT was performed at α = 1.336 with the rotation angle calculated according

to Eq. (3.15). Unlike the MF, the first echo from the transducer-restoration boundary

and the second echo from the restoration-dentine boundary were clearly visible in the

fractional Fourier domain. The individual echoes were separated by windowing as

shown in Figure 5.4(bottom), and the filtered signal was transformed back to the time

domain by applying the inverse FrFT. The separated chirps are plotted in Figure 5.5,

where the total power of the signals were calculated by integrating in the time domain

using Eq. (5.3).

The reflected echoes from the bottom of the fillings were normalized and the power

level of the reflected echoes are plotted in Figure 5.6 for each scan lines.

By assuming a perfect reflector geometry, a threshold value of −14.91 dB is calcu-

lated for a good bonding according to Eq. (5.1) as

− 10 log

(
7.6− 14.5

7.6 + 14.5

)2

− (1 dB/mm× 4.8 mm) = −14.91 dB,

by using the material properties given in Table 5.1.

The maximum power of the reflected echo observed for the scan line A was−17.3 dB,

which is below the threshold and does not indicate any bonding problems. For the scan

line B, the echoes between 3.0 mm and 4.5 mm show the reflections from the bottom of

the filling and the reflected power was between −13.1 dB and −7.8 dB. For restoration

B, the reflections from the filling were always above the threshold for each scan point,

which shows an adhesion problem between filling and tooth.

The level of reflected power indicates that the restorative material inside this filling

is not bonded with the tooth. The calculation of the threshold for the echo power

is possible with the knowledge of the average material properties of the restoration

material and tooth.

The proposed fault detection technique was successfully validated on a real extracted

human tooth. The simulated tooth restoration was realistic, since it was performed

by a dentist using dental instruments and dental composites. In order to achieve a

good contact with the restoration material, the surface of the restoration material

was kept flat. For a real filling however, the surface of the restoration will have the

complementary shape of the opposing tooth. This will significantly reduce the total

surface area that can be used to achieve a good contact with the ultrasound probe.

The accuracy of the proposed method will not be affected by the surface geometry of
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Figure 5.6: The reflected power from the bottom of the fillings (Top) for scan line

A and (Bottom) for scan line B. Red dashed line shows the detection threshold for

restoration failures. Signal power above this threshold indicates a bonding problem.
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the restoration, but the efficiency will decrease since the proposed method is based

on perfect reflector geometry. In order to increase the possibility of achieving a good

contact and recovering the efficiency, a smaller delay line with a sharper tip can be

designed and manufactured.

The main difficulty of using the proposed contact imaging system in practice will be

the positioning system. In this study, the experimental measurements were performed

by a CNC system which is impossible to use in clinical practice. This system must be

modified and turned into a hand-held device that can be easily used by a dentist. Even

though the current measurement setup is not suitable for practical use and cannot

perform in-vivo scans, the proposed coded excitation method and signal processing

technique is effective in detecting restoration faults.

5.4 Conclusions

Medical ultrasound is used for diagnostic imaging of almost all kind of soft-tissue struc-

tures in human body. The ultrasound is widely preferred since it is cheaper than other

modalities, it does not use ionizing radiation, and it is safe and painless for the patient.

However, the use of ultrasound as a diagnostic tool is not very common in dentistry.

In this study, a contact imaging technique using a single element ultrasound probe was

developed and the ultrasonic non-destructive evaluation of human teeth using chirp

coded excitation was performed. The FrFT was used for the first time to analyse and

filter the received echoes in dental imaging. The proposed technique was used for imag-

ing purposes to detect restoration faults in human teeth and measure the thickness of

the enamel layer as presented in chapter 4.

Radiography is currently the most dominant diagnostic imaging technique in den-

tistry. Dental X-ray scanners can achieve 50−100 µm spatial resolution and the process

takes from seconds to minutes for a single tooth (Farman & Farman, 2005). It is pos-

sible for ultrasound imaging systems to achieve faster frame rates and similar image

resolution. The imaging method used in this work can easily resolve 200 µm in dental

composite without any modifications and can scan a filling within a few seconds. How-

ever, the main advantage of ultrasound over radiography is the risks associated with

ionizing radiation. Ultrasound is a non-ionizing modality and can be safely used for

dental measurements.
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Dental radiography is based on the absorption of X-rays and measures the density.

Small discontinuities are challenging for conventional X-ray imaging, because dental

radiographs are usually not effective in the early detection but often rely on the subse-

quent tissue damage after infection (Culjat et al., 2005a). For this reason, radiography

cannot accurately detect small cracks, air pockets and faults in dental restorations

(Culjat et al., 2003; Ghorayeb & Valle, 2002; Löst et al., 1992). Ultrasound however,

is based on the reflection of the acoustic waves and it detects the difference in acoustic

impedance between the structures of the tooth. Therefore, the second advantage of

the echodentography over radiography is the susceptibility of ultrasound in detecting

discontinuities, even if they are smaller than the acoustic wavelength.

Another advantage of the ultrasound is the capability of imaging radiopaque mate-

rials, which cannot be imaged by X-rays. Ultrasound is cost effective, since the imaging

systems and price of an individual scan are less expensive than radiography.

Beside having several advantages over radiography, echodentography has its limita-

tions. The buccal and palatal surfaces, which are the sides of a tooth adjacent to the

cheek and the palate, of the tooth are easy to make contact. Therefore, the proposed

contact imaging method is suitable for imaging the buccal and palatal surfaces of the

tooth. The proximal surfaces, which are adjacent to other teeth, however cannot be

reached by the ultrasound probe and it is nearly impossible to image these sections.

The occlusal surface, which is the direction towards the biting surface of posterior teeth,

can be reached by the ultrasound probe but it is usually hard to make a good contact

because of its irregular and uneven shape. For this reason, the proposed contact imag-

ing method cannot attain the complete image of the tooth, since the ultrasound probe

is unable to achieve a good contact with all surfaces of the tooth.
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Soft-Tissue Ultrasound Imaging
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It was demonstrated in chapter 4 and chapter 5 that the FrFT is an effective sig-

nal processing tool for separating chirp signals overlapping in both time and frequency

domains. However, the reverberation artefacts and the separation of consecutive re-

flections are not an issue for soft-tissue imaging with chirps. The acoustic impedances

of the fat, muscle, blood and internal organs are close to that of water, so they do

not generate strong echoes. For this reason, the application of the FrFT for dental

imaging with chirps as explained in the previous chapters cannot be directly employed

for soft-tissue imaging.

In soft-tissue imaging, the attenuation is lower and the wavelengths are smaller due

to the lower speed observed in soft tissue, but the image resolution and penetration

depth are still an issue. For example, 2− 3 mm penetration will be sufficient for most

cases in dental imaging, however a penetration depth of up to 300 mm may be necessary

for abdominal imaging (Siemens AG, 2007). For such cases, high pressure low frequency

wideband excitation will be the best candidate for optimizing the penetration depth

and image resolution. Low frequencies will experience less attenuation. High pressure

excitation will maximize the reflections from the features deep inside the body with

likely generation of harmonics. Wideband signals will increase the axial resolution, but

also cause spectral overlap between the fundamental and harmonic components.

Similar problems are also encountered in second harmonic imaging or tissue har-

monic imaging, which can be considered as a commercial imaging standard (Rosenthal

et al., 2001; Tranquart et al., 1999). Kim et al. (2001) used a wide bandwidth chirp

signal for ultrasound harmonic imaging. The problem they have observed was the

spectral overlapping between the fundamental and harmonic components which causes

higher range sidelobes after pulse compression. The FrFT can still be employed to sep-

arate overlapping harmonic chirp components and suppress the compression sidelobe

artefacts , but the signal processing becomes quite different to the case of hard-tissue

imaging since the problem is not the separation of consecutive reflections any more.

In chapter 6 the FrFT was used to extract the second harmonic component by

filtering in the fractional Fourier domain. The suppression of the fundamental chirp

component was achieved for second harmonic imaging and the results were published

by Arif et al. (2011). Chapter 6 also includes further improvements to the previous

technique described in Arif et al. (2011).
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Chapter 7 focuses on a new imaging modality called superharmonic imaging, where

the common problems encountered in superharmonic imaging with chirps were pub-

lished by Arif et al. (2010a). In this study, the signal processing was performed by

using harmonic matched filters, which suffered from high sidelobe levels due to spectral

overlap between the harmonics.

The transformations described in chapter 3 can be used to improve these results.

Using the FrFT to separate the harmonic chirps however may not be practical for

this application. Filtering in the fractional Fourier domain needs a clever windowing

technique that must be applied manually or by using complex search algorithms. Also

the process must be repeated individually for each harmonic component, which will in-

crease the redundancy, computation time and accumulated error. Instead of computing

several Fractional Fourier transforms, the FChT can compress all spectrally overlap-

ping harmonic chirp components with one transformation. For this reason, a signal

processing method based on the FChT is proposed in chapter 7 to improve the image

quality in superharmonic imaging.
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Chapter 6

Extraction of Spectrally

Overlapped Second Harmonic

using the Fractional Fourier

Transform

In medical ultrasound imaging, the spatial resolution of an image is defined by the

minimum resolvable distance between two points in space that can be distinguished

by the system. The axial resolution of a coded excitation system can be improved

by increasing the bandwidth of the excitation waveform. To improve the lateral res-

olution, the aperture size of the ultrasound probe or the excitation frequency1 must

be increased. Second harmonic imaging however can improve both lateral and axial

resolution without changing the excitation bandwidth. The second harmonic image is

formed by exploiting the second harmonic generated in tissue through nonlinear prop-

agation, which effectively has twice the centre frequency and the bandwidth of the

excitation waveform. In this study a linear frequency modulated chirp excitation is

used for ultrasound harmonic imaging to improve the image resolution.

Even though the image resolution is better with second harmonic imaging, it is

still desirable to use wideband excitation. Increasing the bandwidth will cause over-

lapping between the second harmonic component and the fundamental component of

the received signal. For the spectrally overlapping harmonics, signal decoding using a

1Increasing the frequency of excitation effectively increases the aperture size in terms of wavelength.
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matched filter typically produces higher range sidelobe levels, which reduces the image

dynamic range.

In this study, the Fractional Fourier transform (FrFT) is used with chirp coded

excitation for the extraction of the overlapped second harmonic component. The ex-

perimental results indicate at least a 13 dB improvement in the range sidelobe levels of

the compressed second harmonic component when filtered in the FrFT domain. Later,

these results have been found unsatisfactory and the filtering method with the FrFT

has been altered in order to further improve the results.

6.1 Introduction

Medical ultrasound imaging techniques such as tissue harmonic imaging and contrast-

enhanced harmonic imaging provide better spatial resolution by producing the image

with the second harmonic component of the received signal. The extraction of the

second harmonic from the received signal can easily be achieved by using a band-

pass filter. Narrow-band signals are good candidates for this approach as the spectral

boundaries of fundamental and second harmonic component are well separated; i.e.

the second harmonic does not overlap with the fundamental component. However,

using excitation signals with narrow bandwidths will result in poor axial resolution

and decreased image quality.

The coded excitation has been applied to harmonic imaging and showed improve-

ments over the pulsed excitation. Arshadi et al. (2007) reported that when applying

coded excitation methods to ultrasound harmonic imaging the spatial resolution can be

improved. Song et al. (2010) applied coded excitation for ultrasound tissue harmonic

imaging for sidelobe reduction. They observed that the coded excitation with pulse

inversion gives better suppression of peak sidelobe levels for tissue harmonic imaging.

Pulse inversion is a commonly used multi-pulse detection scheme that can be used to

extract the second harmonic component (Burns et al., 2000b). Pulse inversion requires

the transmission of two consecutive pulses; the waveform itself and the complementary

waveform with a relative phase of 180◦. Summation of the two received echoes will result

in the suppression of odd harmonics and of the linear fundamental frequency component

mainly generated by the tissue whilst enhancing the second harmonic response. The

suppression can be achieved even for wide bandwidth signals with spectral overlap
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amongst the harmonic components. However, the main drawbacks of the pulse inversion

are the reduction of the system frame-rate by a factor of two and the fact that the

complete cancellation of the fundamental component under tissue motion cannot be

achieved (Arshadi et al., 2007; Cobbold, 2007; Shen & Li, 2002). Therefore, coded

excitation technique is chosen to provide improved SNR and penetration depth with a

single transmission which will not reduce the system frame-rate and therefore will be

less susceptible to tissue motion (Chiao & Hao, 2005).

In this work, a wideband linear frequency modulated chirp excitation is used to

achieve high spatial resolution. For wideband excitation, a spectral overlap between the

second harmonic and the fundamental components of the received signal is inevitable.

In this case, signal decoding using the second harmonic matched filter (SHMF) typically

produces higher range sidelobe levels. Therefore, the FrFT is proposed as a filtering

tool, with wideband chirp coded excitation, for the extraction of the overlapped second

harmonic component.

6.2 Materials and Methods

In order to validate the proposed method, experiments were conducted both in trans-

mission and pulse-echo configurations. The first experiment was performed to validate

the accuracy of the technique. The second experiment in pulse-echo configuration was

performed to analyse to feasibility of the proposed technique for real applications by

comparing B-mode ultrasound images.

6.2.1 Experimental Setup and Procedure

Experimental Setup-I: In a transmit-receive configuration, a transducer was aligned

coaxially with a 1 mm needle Polyvinylidene Fluoride (PVDF) hydrophone (Precision

Acoustics Ltd., Dorchester, UK) at a distance of 110 mm in a water tank using a

custom built computer numerical control (CNC) system. A 2.25 MHz single element

V323-SM immersion transducer (Olympus-NDT Inc., Waltham, MA, USA) was used as

a transmitter as shown in Figure 6.1. A 33250A Arbitrary Waveform Generator (Agilent

Technologies Inc., Santa Clara, CA, USA) was set to generate a Hann windowed linear

chirp with a centre frequency of 2.25 MHz, duration of 10 µs, and bandwidth of 2 MHz

as the excitation signal. The signals were amplified by an A150 E&I RF Power Amplifier
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Transducer

De-ionized and
degassed water

Hydrophone

CNC

Figure 6.1: Schematic diagram of the experimental setup-I. The experiments are per-

formed in a tank filled with de-ionized and degassed water. The alignment of the

transducer and the needle hydrophone is performed by a CNC system.
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(Electronics & Innovation Ltd., Rochester, NY, USA) to generate 340 kPa peak negative

pressure in water. The signals received by the hydrophone were acquired at 100 MHz

sampling rate using a Waverunner 44xi oscilloscope (LeCroy Corporation, Chestnut

Ridge, NY, USA). The captured data was stored in a computer and processed off-line

using the Matlab software (MathWorks Inc., Natick, MA, USA). The received echoes

were corrected using an inverse filter designed in Matlab according to the frequency

response of the hydrophone.

The distance, excitation frequency, and pressure levels for this experiment were

chosen specifically to generate a second harmonic to fundamental ratio of −15 dB.

The calculations were performed according to appendix B. The −15 dB figure was

selected according to previous work by other researchers, where a second harmonic

to fundamental ratio between −20 dB to −10 dB was reported (Burns et al., 2000a;

Couture et al., 2008; Ma et al., 2005).

Phantom

De-ionized and
degassed water

Ultrasound
Probe

Wires

Figure 6.2: Schematic diagram of the experimental setup-II. The experiments are per-

formed in a tank filled with de-ionized and degassed water. A commercial ultrasound

probe connected to the UARP is used to scan the wire phantom.

Experimental Setup-II: In a pulse-echo configuration, an L3-8/40EP medical
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probe (Prosonic Co., Korea) was used to scan the wire phantom as shown in Fig-

ure 6.2. The wire phantom consisted of four 120 µm thick aluminium wires within

tissue mimicking material, which was prepared by mixing 3% (36 gr.) Agar powder

(Sigma-Aldrich Co., Buchs SG, Switzerland) and 97% de-ionized water by volume. The

wires were located at a depth of 42 mm, 50 mm, 60 mm, and 70 mm, where the first

wire was mis-located during the manufacturing process. The focal depth was set to

55 mm, which was the centre of the wire phantom.

The medical probe was connected to the Ultrasound Array Research Platform

(UARP) to perform a linear scan of the phantom. The UARP is a custom 96 channel

ultrasound imaging system developed by the Ultrasound Group at the University of

Leeds (Smith et al., 2010, 2012), specifically for the research environment. The photo-

graph of the instrument is given in Figure 6.3. The UARP was designed to be an highly

flexible system based on an Altera Stratix III FPGA (Altera Corporation, San Jose,

CA, USA), in order to support various ultrasound applications from non-destructive

testing (NDT) to medical ultrasound imaging. The transmitter front-end architecture

and the switched-mode MOSFET excitation method was previously described by Cow-

ell & Freear (2008); Smith (2013). The UARP is capable of simultaneous excitation on

96 channels with arbitrary waveforms and transfer of the received raw RF data from

individual channels to a computer.

For this experiment, the UARP was programmed to generate a Hann windowed

linear frequency modulated chirp with a centre frequency of 3.5 MHz, duration of

10 µs, and bandwidth of 3 MHz.

The captured data was stored in a computer and processed off-line using the Matlab

software (MathWorks Inc., Natick, MA, USA). All received signals were corrected using

an inverse filter designed in Matlab according to the frequency response of the medical

probe.

6.2.2 Extraction of the Second Harmonic using the FrFT

The FrFT was used as a filtering tool to extract the second harmonic component as

explained in section 3.2. The received echoes with the hydrophone or the RF sig-

nals received by the individual array elements were processed in the fractional Fourier

domain before pulse compression. The time domain signal was transformed into the

fractional Fourier domain, where the transform order αopt was calculated according to
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Figure 6.3: University of Leeds 96-channel Ultrasound Array Research Platform

(UARP) system. The front panel of the UARP is removed for this photograph.

the excitation waveform using Eq. (3.15). In the fractional Fourier domain, the second

harmonic component was extracted by applying a window, which acts like a band-pass

filter. The extracted second harmonic was transformed back to the time domain using

the FrFT with a transform order of −αopt. The extracted second harmonic was then

decoded using the SHMF in order to perform pulse compression to restore axial reso-

lution. The SHMF was designed with twice the centre frequency and bandwidth of the

fundamental component by using the same window function applied to the excitation

signal (Borsboom et al., 2003; Misaridis & Jensen, 2005a). Extraction of the second

harmonic components both with the FrFT filtering and without the FrFT filtering is

explained in Figure 6.4.

6.2.3 Fundamental and Harmonic B-mode Images

The phantom geometry can be studied from grey-scale B-mode images, where the

reflection and scattering from individual wires are displayed. Since the geometry of the

wire phantom is known, the image quality can be compared for the ultrasound image

before and after filtering by the FrFT.
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Matched Filter

Pulse Compressed
Signal

iFrFT

FrFT

Time Domain
Signal

Filtering

Matched Filter

Pulse Compressed
Signal

Figure 6.4: (Left) Diagram illustrates the pulse compression method by a matched

filter. The time domain signal is convolved with a matched filter to achieve pulse

compression. (Right) Diagram illustrates the filtering method by the FrFT. First,

the time domain signal is transformed into the fractional Fourier domain, where the

compression is achieved. Second, the signal is filtered in the fractional Fourier domain.

Third, the filtered signal is transformed back to the time domain. As the last step, the

time domain signal is convolved with a second harmonic matched filter to achieve pulse

compression.
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In order to form the B-mode images, the medical probe was used to perform a linear

scan. The 96 element array was divided into 49 sub-apertures, which were consisted

of 48 elements. E.g. the first sub-aperture includes the array elements 1 − 48, the

second sub-aperture includes the array elements 2−49. Each sub-aperture was used to

transmit a delayed version of the excitation waveform to generate a focussed acoustic

pressure field at a predetermined depth. The waves reflected by the acoustic impedance

mismatch caused by the presence of the wires were received by the same sub-aperture.

The raw RF signals received by the individual array elements were filtered by the

proposed method. The processed echo signal from 48 elements was combined by using

a delay-and-sum beamforming technique. After acquiring the first scan line with the

first sub-aperture, the same procedure was repeated with the second sub-aperture. To

form a B-mode image 49 scans were performed. Therefore the final ultrasound image

maps the strength of the reflected echoes to image intensity, the time delay between

the echoes to axial distance, and the physical position of the sub-apertures to lateral

distance.

Later, the pulse compression was performed on each beamformed scan lines by using

a matched filter or a harmonic matched filter to form a fundamental or a harmonic B-

mode image, respectively. The 49 scan lines were combined to form a single image,

which was normalised and log-compressed to generate the final B-mode ultrasound

image. The dynamic range of the image was set to 40 dB and linearly mapped to 64

levels of grey scale values, where 0 dB was encoded as white and −40 dB was encoded

as black.

6.3 Experimental Results and Discussion

The received signal acquired with experimental setup-I in transmit-receive configuration

is shown in Figure 6.5. Figure 6.6 shows the power spectrum of the received signal,

where the fundamental component is centred at 2.25 MHz and the second harmonic

component is centred at 4.5 MHz. The spectral overlap between the fundamental and

second harmonic components may not be clear in the Figure 6.6, however a spectral

overlap at the frequency range of 2.5−3.25 MHz was expected. The excitation waveform

was generated to sweep the bandwidth of 1.25 − 3.25 MHz and the second harmonic

component had an estimated bandwidth of 2.5− 6.5 MHz as explained in appendix B.
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Figure 6.5: The received signal acquired with experimental setup-I is shown. The

excitation signal is a Hann windowed linear chirp with a centre frequency of 2.25 MHz,

duration of 10 µs, and bandwidth of 2 MHz.
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Figure 6.6: Frequency spectrum of the received signal acquired with experimental setup-

I is shown.

To separate the overlapped harmonics, the received signal was transformed into the

FrFT domain with a transformation order of α = 1.2422. The value of α was computed

according to the excitation chirp rate σ = 0.2 MHz/µs. The fractional Fourier domain

signal after the transformation is shown in Figure 6.7. In the fractional Fourier domain,

maximum compression for the fundamental component of the excitation waveform was

achieved and the second harmonic component was separated. Any bandpass filter

applied in the frequency domain (Figure 6.6) would either reduce the bandwidth of the

second harmonic or will not completely filter the fundamental, in the fractional Fourier

domain (Figure 6.7) however the second harmonic can be extracted without any energy

loss.

The second harmonic component was then extracted by the application of a rect-

angular window as depicted in Figure 6.7. The extracted second harmonic signal was

transformed back to the time domain by computing the FrFT with a transform order

of α = −1.2422. The extracted second harmonic component in the time domain with

twice the chirp rate of the excitation waveform is shown in Figure 6.8.

The effect of the FrFT filtering on the pulse compression was evaluated by decod-
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Figure 6.7: Figure shows the received signal in the fractional Fourier domain with the

transformation order of α = 1.2422. The red dashed lines show the window applied

around the second harmonic component for filtering.
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Figure 6.8: The extracted second harmonic component is shown in time domain. The

FrFT is applied with a transformation order of α = −1.2422 on the signal windowed

in the fractional Fourier domain as shown in Figure 6.7.
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ing the extracted second harmonic chirp signal using the harmonic matched filtering

technique. Figure 6.9 shows the effect of the FrFT filtering on the compressed second

harmonic chirp signal. The un-filtered compressed second harmonic signal exhibits a

peak sidelobe level of −15 dB, whereas the FrFT filtered compressed second harmonic

signal exhibits a peak sidelobe level of −32 dB. The reason for the higher sidelobe level

in the un-filtered compressed signal is the spectral overlapping between fundamental

and second harmonic components. An extra 17 dB reduction in the peak sidelobe level

has been achieved on the compressed second harmonic chirp signal by filtering in the

fractional Fourier domain, when compared with the un-filtered compressed signal.
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Figure 6.9: Pulse compression of the un-filtered signal and of the extracted second

harmonic component after filtering with the FrFT are shown. The pulse compression

is performed by a second harmonic matched filter, which is designed with twice the

centre frequency and bandwidth of the excitation signal.

After verifying the validity of the proposed filtering technique, new measurements

were performed by using the UARP on a wire phantom. The received signals were

filtered by using the FrFT and the extracted second harmonic chirp signal was decoded

using the SHMF. The FrFT filtered and un-filtered compressed second harmonic chirp

signals are shown in Figure 6.10.
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Figure 6.10: Figure shows the pulse compressed second harmonic component of the

received signal for the measurements performed with the wire phantom. Pulse com-

pression of the un-filtered signal and of the extracted second harmonic component after

filtering with the FrFT are shown for comparison. The pulse compression is performed

by a second harmonic matched filter, which is designed with twice the centre frequency

and bandwidth of the excitation signal.

105



6.4 Further Improvements to the Existing Study

For this measurement, filtering by the FrFT was not as effective as the previous

experiment. Both fundamental and second harmonic components suffered spectral en-

ergy loss, because of the narrower bandwidth of the transducer as compared to the

hydrophone. A significant reduction in peak sidelobe level and fundamental suppres-

sion were observed in the FrFT-filtered compressed second harmonic chirp signal when

compared with the un-filtered compressed signal. However, the complete cancellation

of the fundamental component could not be achieved, which can be observed in Fig-

ure 6.10 at 45 mm and 54 mm.

6.4 Further Improvements to the Existing Study
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Figure 6.11: Figure shows the received signal in the fractional Fourier domain with a

transformation order of α = 1.4296. The red dashed lines show the window applied

around the second harmonic component for filtering.

This work has been published in the proceedings of IEEE Ultrasonics with the

results presented in the previous section (Arif et al., 2011). Despite the aforementioned

technique showing improvements over conventional filtering methods, there was a flaw

in the extraction process. The optimum transform order αopt was calculated according
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to the excitation waveform, not according to the second harmonic component to be

extracted. In this section, the flow of the second harmonic extraction sequence was

kept the same, however the transform order α was calculated according to the expected

chirp rate of the second harmonic, σ = 0.4 MHz/µs.

After re-calculating the transform order as α = 1.4296, the maximum compression

for the second harmonic was achieved in the fractional Fourier domain as shown in

Figure 6.11. By achieving a better compression, a narrower window can be applied

over the second harmonic component, which results in lower sidelobe levels and minimal

contribution from the other frequency components.
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Figure 6.12: Pulse compression of the un-filtered signal and of the extracted second

harmonic component after filtering with the FrFT are shown. The pulse compression

is performed by a second harmonic matched filter, which is designed with twice the

centre frequency and bandwidth of the excitation signal.

The second improvement over the previous technique was the automation of the

filtering process by computing the second harmonic location in the fractional Fourier

domain. The signal processing described in the previous section was performed manu-

ally. To extract the second harmonic component a window was applied in the fractional

Fourier domain, after manually finding the location of the second harmonic. However,
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6.4 Further Improvements to the Existing Study

by changing the transform order to compress the second harmonic component, it is

now possible to estimate the location of the second harmonic in the fractional Fourier

domain.

The relation between the fractional time and time axes was calculated by using

the Eq. (3.16) and Eq. (3.17), so a window can be automatically applied on the signal

of interest. The compressed second harmonic component will have the same temporal

location with the received signal, after scaling the fractional time axis and removing the

offset. Since the received signal is centred around t = 74.8 µs as shown in Figure 6.5, the

compressed second harmonic component appears at the fractional time of t = 74.8 µs

as shown in Figure 6.11. A similar relation can also be observed in Figure 6.7 for the

fundamental component, since the figure was re-processed and the fractional time axis

was re-calculated for consistency.

After verifying the accuracy of the new filtering technique, the measurements per-

formed with the wire phantom were re-processed. A peak detection algorithm, which

uses the findpeaks function in Matlab to find the local maxima, was used to detect the

locations of the reflectors from the fundamental image, as in Figure 6.13. The locations

of these peaks were used to generate windows in the fractional Fourier domain around

the second harmonic components. By using these locations, including the ghost loca-

tions, the received signal was filtered in the FrFT domain. The ghost objects do not

result in a compressed second harmonic component in the fractional Fourier domain,

since they are just compression artefacts.

Figure 6.14 shows the image data compressed by using a second harmonic matched

filter. Figure 6.15 was filtered by the FrFT before compression by the second harmonic

matched filter. When the two images are compared, the effectiveness of the filtering

in the fractional Fourier domain becomes obvious. Even though, the FrFT successfully

filtered out the range sidelobes generated due to the spectral overlapping, it did not

reduce the peak sidelobe level for all scatterers. The range and near-field sidelobe levels

of the wires located at 50 mm and 60 mm were improved, since they were closer to the

focal point of the acoustic beam. However, for the wires located at 42 mm and 70 mm,

the near-field sidelobe levels were the same before and after filtering with the FrFT.

The reason for this is the beamforming algorithm used to form the ultrasound images,

where the received echoes from each array element was not perfectly aligned for the
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Figure 6.13: Fundamental image of the wire phantom is shown with a 40 dB dynamic

range. The received signal is compressed by a matched filter designed with the same

parameters as the excitation signal.
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out-of-focus regions. The beamforming artefacts can be reduced by using methods such

as synthetic beamforming and multiple foci on transmit and receive.

Pulse compression of the bandpass filtered signal and of the extracted second har-

monic component after filtering with the FrFT are shown in Figure 6.16 for comparison.

The pulse compression of the blue signal was performed by a second harmonic matched

filter, which was designed with twice the centre frequency and bandwidth of the ex-

citation signal. Red signal was first filtered with the FrFT according to the proposed

method and the filtered signal was pulse compressed by the same second harmonic

matched filter.

The effect of the spectrally overlapping fundamental component is increased range

sidelobe level after pulse compression, which can be observed at t = 6.2 µs in Fig-

ure 6.11. When the location of these range sidelobes were calculated for the second

harmonic image, a 4.6 mm difference between the real reflection from the wires and

the ghost reflections was found. These ghost reflections can be clearly observed in the

Figure 6.16 around 46.5 mm, 55 mm and 64.5 mm for the wires located at 42 mm,

50 mm and 60 mm, respectively.

The range sidelobe levels can be as high as −17 dB for the blue signal in Figure 6.16

because of the spectral overlap between the fundamental and second harmonic compo-

nents. For the red signal in Figure 6.16 however, the range sidelobe levels were below

−60 dB, which was the signal-to-noise ratio for these measurements. Filtering with

the FrFT before pulse compression by a second harmonic filter completely cancels the

range sidelobe levels without reducing the axial resolution.

6.5 Conclusions

The main advantages of the second harmonic imaging over B-mode imaging at funda-

mental frequency are the increased image resolution, and the reduced reverberation and

near-field artefacts. The reverberations are caused by the ultrasound waves bouncing

back and forth between tissue boundaries under the skin. The near-field artefacts are

caused by the scattering and reflection form the first few layers of skin, fat and muscle

tissue close to the ultrasound probe. The second harmonic field gradual builds up in the

body through nonlinear propagation and the second harmonic energy is significantly

lower than the fundamental energy for the first couple of centimetres in the body. For
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Figure 6.14: Second harmonic image of the wire phantom is shown with a 40 dB

dynamic range. The second harmonic component is compressed by a second harmonic

matched filter designed with twice the centre frequency and bandwidth of the excitation

signal.
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Figure 6.15: Second harmonic image of the wire phantom is shown with a 40 dB

dynamic range. The second harmonic component is filtered by the FrFT before com-

pression by a second harmonic matched filter designed with twice the centre frequency

and bandwidth of the excitation signal.
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Figure 6.16: Figure shows the pulse compressed second harmonic component of the

received signal for the measurements performed with the wire phantom. The signal in

blue corresponds to the central line of the second harmonic image given in Figure 6.14.

The signal in red corresponds to the central line of the second harmonic image given

in Figure 6.15.
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this reason, second harmonic imaging considerable improves the image quality. Elimi-

nating these artefacts are especially important in echocardiography, where the imaging

window is usually restricted by the ribs and lungs, and the presence of the intermediate

skin and fat layers and proximity to the ribs substantially increases these artefacts.

Doubling the centre frequency and signal bandwidth provides better spatial reso-

lution than conventional B-mode imaging; however separation between the spectrally

overlapping second harmonic and fundamental components is crucial for imaging. Con-

ventional filtering techniques such as a bandpass filter can separate the harmonic com-

ponents at the expense of reduced bandwidth. Pulse inversion or similar multiple

excitation methods can cancel the effect of the fundamental component by halving the

image frame rate. If there is no tissue motion, the PI can achieve complete cancellation

of the fundamental component that allows the use of whole transducer bandwidth. This

significantly improves the image resolution for pulsed excitation; however for chirp ex-

citation a tapering window is always necessary to reduce the sidelobe levels after pulse

compression. Therefore, pulse inversion can only remove the image artefacts, but can-

not further improve the spatial resolution and sidelobe levels for coded excitation. The

FrFT performs more efficiently than these multiple excitation methods, where it can

be used as a filtering tool with a wideband chirp excitation in order to extract the

overlapped second harmonic component without reducing the system frame-rate and

bandwidth.

Besides increasing the spatial resolution by working at the second harmonic fre-

quency, second harmonic imaging also introduces some limitations; increased sidelobe

levels due to the spectral overlap between the harmonic and fundamental components,

decreased penetration depth, and reduced signal-to-noise ratio. The proposed coded

excitation scheme and filtering method based on the FrFT mostly overcomes these

limitations. The coded excitation was used to increase the SNR and penetration by

increasing the total transmitted energy while maintaining the same peak intensity level

using longer pulse duration. The FrFT was utilized to reduce the range sidelobe levels

by filtering the fundamental component.

Results show that the range sidelobe levels in the compressed second harmonic can

be reduced by filtering in the fractional Fourier domain. It was also presented that a

narrower window can be applied on the compressed waveform in the fractional Fourier

domain by choosing a transform order that matches the chirp rate of the signal of
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interest. By calculating the transform order according to the signal parameters of the

second harmonic component, further reduction in sidelobe levels are achieved for second

harmonic imaging with chirp excitation.
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Chapter 7

Superharmonic Imaging with

Chirp Excitation

Tissue harmonic imaging improves spatial resolution of traditional B-mode images by

utilizing the second harmonic generated in tissue. It is possible to take advantage of

higher order harmonics and further increase the image quality. Superharmonic imaging

provides improved spatial resolution by combining the third, fourth and fifth harmonics

of the nonlinear received signal. The aim of this study is to increase the signal-to-noise

ratio and improve the axial resolution of the superharmonic image using chirp coded

excitation.

Experiments were performed by using linear chirp excitation with different band-

widths to observe the effect of spectral overlap between the higher harmonics. Harmonic

matched filters were designed and applied to the received signal to perform pulse com-

pression of the individual harmonic chirp components. To obtain the superharmonic

image, the third to fifth harmonic components were combined in the time domain after

pulse compression.

The results indicate that the processed superharmonic components with chirp exci-

tation of 20% and 40% fractional bandwidths improved the axial resolution by 35% and

65%, respectively, when compared to the superharmonic component of a tone-burst.

The wideband excitation achieves a better resolution as expected, however the spectral

overlap between the harmonic components increases the peak sidelobe levels. To over-

come this limitation and reduce the artefacts caused by spectral overlapping, the Fan

Chirp transform (FChT) has been employed.
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7.1 Introduction

A new ultrasound imaging technique called “superharmonic imaging” was proposed

in the last decade by Bouakaz et al. (2002). The superharmonic image relies on the

sum of the third, fourth, and fifth harmonic components of the received signal. These

higher order harmonic components are produced due to the nonlinear propagation

of ultrasound waves through biological tissue at high acoustic pressure (Duck, 2002).

Superharmonic imaging provides improved axial and lateral resolution with reduced

near-field artefacts.

The main issues with superharmonic imaging are the requirement for a large trans-

ducer bandwidth and sensitivity to accommodate fundamental to fifth order harmonics

of the nonlinear received signal, and the reduced SNR due to the poor energy content

of the higher order nonlinear harmonic components.

An interleaved phased array transducer having a −6 dB bandwidth of 144% was

recently developed for superharmonic imaging with improved transmission efficiency

and better reception sensitivity (van Neer et al., 2010). The recent developments in

capacitive micromachined ultrasound transducers (CMUTs) research showed that it

is possible to make very wideband transducers with small harmonic distortions on

transmit even at high pressure levels (Satir & Degertekin, 2012; Yamaner et al., 2012).

This makes CMUTs suitable for superharmonic imaging applications.

To improve the SNR, a multi-pulse excitation scheme based on the frequency com-

pound method was proposed in the area of superharmonic imaging (Matte et al., 2008;

van Neer et al., 2011). This technique showed improved image resolution with sup-

pressed ripple artefacts; however it is susceptible to motion artefacts and reduces the

system frame-rate. For this reason, in this study a linear frequency modulated (LFM)

excitation is proposed to improve the SNR and image resolution.

7.2 Materials and Methods

7.2.1 Excitation Signals

In the experiments, a LFM chirp and tone-burst were used as excitation signals. Chirp

signals had a centre frequency of 2.25 MHz, a duration of 10 µs, and fractional band-

widths (FBW) of 20% and 40%. A Hann window was also applied to reduce spectral
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leakage. For comparison, a 2.25 MHz tone-burst signal of same duration and amplitude

was used as an excitation, where all three signals had the same energy and similar SNR

on receive. However, the tone burst had the narrowest bandwidth and was expected to

yield the worst resolution.

7.2.2 Experimental Setup

Experiments were performed to measure the harmonic components generated due to

the nonlinear propagation of ultrasound waves through water. The experimental setup

is shown in Figure 7.1. The experiments were performed in a tank containing de-

ionised and degassed water. The transducer and hydrophone were aligned coaxially in

a pitch-catch configuration. An axial scan was performed, between the depths of 1−10

cm, using a custom built computer numerical control (CNC) system. A programmable

33250A Arbitrary Waveform Generator (Agilent Technologies Inc., Santa Clara, CA,

USA) was set to generate excitation signals. The signals were amplified by an A150 E&I

RF Power Amplifier (Electronics & Innovation Ltd., Rochester, NY, USA). The ampli-

fied chirp signals were transmitted by a 2.25 MHz single element V323-SM immersion

transducer (Olympus-NDT Inc., Waltham, MA, USA) with 56% fractional bandwidth.

The nonlinear signals were detected using a Polyvinylidene Fluoride (PVDF) needle

hydrophone with an active element diameter of 0.2 mm (Precision Acoustics Ltd.,

Dorchester, UK). The peak negative pressure level of each waveform was 1.125 MPa

at 2.25 MHz with a MI of 0.75 at the focus of the transducer. The received signals

were acquired at 1 GHz sampling rate using a LeCroy Waverunner 44xi oscilloscope

(LeCroy Corporation, Chestnut Ridge, NY, USA) with 32-times averaging to improve

the SNR. The captured data was processed offline in Matlab (MathWorks Inc., Nat-

ick, MA, USA). All received signals were corrected using an inverse filter designed in

Matlab according to the frequency response of the hydrophone.

7.2.3 Processing the Superharmonic Component

Individual harmonic matched filters were designed and applied on the received signal

to perform pulse compression of each harmonic component. The centre frequency

and bandwidth of the desired harmonic matched filter were set by multiplying the

centre frequency and bandwidth of the excitation signal with that harmonic number

according to the second order distortion model or square law (Arshadi et al., 2007;
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Transducer

De-ionized and
degassed water

Hydrophone

CNC

Figure 7.1: Schematic diagram of the experimental setup. The experiments are per-

formed in a tank filled with de-ionized and degassed water. The alignment of the

transducer and the needle hydrophone is performed by a CNC system.
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Kim et al., 2001). The fundamental matched filter had a centre frequency of 2.25 MHz

and bandwidth of 0.45 MHz and 0.90 MHz for chirps with 20% FBW and 40% FBW,

respectively. The second harmonic matched filter was designed by multiplying these

parameters by 2 and by using a centre frequency of 4.5 MHz and bandwidth of 0.90 MHz

and 1.80 MHz for chirps with 20% FBW and 40% FBW respectively. Similarly, the

third, the fourth, and the fifth harmonic matched filters were designed by multiplying

the centre frequency and the bandwidth of the fundamental matched filter by 3, 4, and

5, respectively. A Hann window was applied on all harmonic matched filters as used

in the excitation signal. Extraction of the harmonic components both with the FChT

filtering and without the FChT filtering is explained in Figure 7.2.

Time Domain
Signal

Matched Filter

Pulse Compressed
Signal

iFChT

FChTFChT

Time Domain
Signal

Filtering

Matched Filter

Pulse Compressed
Signal

Figure 7.2: (Left) Diagram illustrates the pulse compression method by a matched

filter. The time domain signal is convolved with a matched filter to achieve pulse

compression. (Right) Diagram illustrates the filtering method by the FChT. First, the

time domain signal is transformed into the FChT domain, where the compression is

achieved. Second, the harmonic signals are filtered and separated in the FChT domain.

Third, the filtered signals are transformed back to the time domain. As the last step,

the time domain signals are convolved with harmonic matched filters to achieve pulse

compression.

In order to calculate the superharmonic component, the third, the fourth, and the

fifth harmonic components of the chirp signal were combined. After pulse compression,
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the envelopes of the compressed signals were computed by the Hilbert transform and the

individual harmonic components were summed in the time domain. For performance

evaluation, the axial pulse width of the compressed time domain signals was measured

at −20 dB and the peak sidelobe level of the compressed chirp signals was obtained by

measuring the ratio of the highest sidelobe level to the mainlobe level.

80 85 90 95

−75

0

75

150

Received Signal

80 85 90 95

−75

0

75

150

P
re
s
s
u
re
(k
P
a
)

80 85 90 95

−75

0

75

150

Depth (mm)

2.25 4.5 6.75 9 11.25
−80

−60

−40

−20

0

N
o
rm
.
P
o
w
e
r
(d
B
) Chirp 20% FBW

2.25 4.5 6.75 9 11.25
−80

−60

−40

−20

0

Frequency (MHz)

Chirp 40% FBW

2.25 4.5 6.75 9 11.25
−80

−60

−40

−20

0

Frequency Spectrum

Tone−Burst

Figure 7.3: Figure shows (Left) the received signals at the same depth for different

excitation waveforms and (Right) the associated power spectra showing the harmonic

content of the received signals. (Top) Tone-burst excitation, (Middle) chirp excitation

with 20% fractional bandwidth, and (Bottom) chirp excitation with 40% fractional

bandwidth are shown to point out the difference between the amount of spectral over-

lapping for higher-order harmonics generated by these excitation waveforms.
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7.3 Experimental Results and Discussion

The nonlinear signals were measured at a depth of 8 cm to achieve maximum energy

transfer to the higher harmonics as explained in appendix B. Their associated power

spectra obtained using the Fourier transform are shown in Figure 7.3. The figure shows

the shock-wave formation and the higher order harmonic components. The generation

of the harmonics is due to the nonlinear propagation at high acoustic pressure, which

yields distortion in signal symmetry at the positive and negative pressure peaks of the

received signals. It can also be observed from the figure that increasing the bandwidth

of the excitation will increase the bandwidth of the harmonics and will result in the

overlapping between higher order harmonic components.

The harmonic signals obtained with a tone-burst excitation is shown in Figure 7.4.

All harmonics were filtered by a band-pass filter and normalised with the peak intensity

of the fundamental frequency component. A detailed comparison is given in Table 7.1

and Table 7.2 by considering the axial pulse width and peak sidelobe level of the har-

monic signals. The results indicate that the superharmonic of a tone-burst improves

the axial resolution when compared with the fundamental and second harmonic compo-

nent. Combining the third, fourth and fifth order harmonics will not only improve the

axial resolution but will also improve the SNR, where the SNR of the superharmonic

component becomes comparable to the second harmonic component.

The fundamental, harmonics, and superharmonic obtained after pulse compression

of chirp excitations with a 20% FBW and with a 40% FBW is shown in Figure 7.5

and Figure 7.6, respectively. The superharmonic extracted from both chirp excitations

provided around 60% improvement in axial resolution when compared with their funda-

mental components. Also around 30% reduction was observed for both chirp excitations

in the axial pulse width for the superharmonic when compared with their second har-

monic components. The peak sidelobe level of the superharmonic was comparable to

the second harmonic component for the chirp excitation with 20% FBW, however the

chirp excitation with 40% FBW contained higher peak sidelobe level due to spectral

overlapping between the higher order harmonic components.

When the processed superharmonic components were compared, the excitation with

larger bandwidth achieved a better compression and an axial resolution, as shown in

Figure 7.7. The superharmonic component axial pulse width of the chirp excitation with

122



7.3 Experimental Results and Discussion

−10 −5 0 5 10
−80

−70

−60

−50

−40

−30

−20

−10

0

time (µs)

N
or

m
. A

m
pl

itu
de

 (
dB

)
Tone−Burst

 

 

Fundamental

2nd Harmonic

3rd Harmonic

4th Harmonic

5th Harmonic
Super Harmonic

Figure 7.4: The extracted harmonic signals obtained with a tone-burst excitation. The

fundamental and harmonic components are individually filtered by a bandpass filter.

The superharmonic component is obtained by combining the third, fourth, and fifth

harmonic components in time domain.

Table 7.1: Axial pulse width of harmonic signals.

Pulse Width (µs)

Chirp 20% Chirp 40% Tone-burst

Fundamental 9.2 5.1 7.9

Second Harmonic 5.6 2.9 6.4

Third Harmonic 4.3 2.1 5.7

Fourth Harmonic 3.3 1.7 5.1

Fifth Harmonic 2.9 1.5 5.0

Superharmonic 3.9 2.0 5.4
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Figure 7.5: The extracted harmonic signals obtained with a 20% FBW chirp excita-

tion. The fundamental and harmonic components are individually compressed by a

matched filter or by a bespoke harmonic matched filter. The superharmonic compo-

nent is obtained by combining the pulse compressed third, fourth, and fifth harmonic

components in time domain.
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Figure 7.6: The extracted harmonic signals obtained with a 40% FBW chirp excita-

tion. The fundamental and harmonic components are individually compressed by a

matched filter or by a bespoke harmonic matched filter. The superharmonic compo-

nent is obtained by combining the pulse compressed third, fourth, and fifth harmonic

components in time domain.
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Table 7.2: Peak sidelobe levels of harmonic signals

Peak Sidelobe Level (dB)

Chirp 20% Chirp 40% Tone-burst

Fundamental -64.7 -50.3 -52.3

Second Harmonic -43.2 -43.3 -43.2

Third Harmonic -42.3 -35.1 -40.6

Fourth Harmonic -35.6 -26.4 -34.7

Fifth Harmonic -27.2 -27.8 -34.4

Superharmonic -43.5 -31.5 -39.4

40% FBW was nearly half that of the chirp excitation with 20% FBW. The performance

of the superharmonic for the chirp excitation with 40% FBW was close to the theoretical

expectations, where doubling the signal bandwidth should double the axial resolution.

The results indicated that chirp excitation and harmonic matched filters can be used

for second harmonic imaging. The only disadvantage of processing the superharmonic

component with a harmonic matched filter was the high peak sidelobe level due to

spectral overlap between the harmonic components.

7.4 Further Improvement by the FChT

This work has been published in the proceedings of IEEE Ultrasonics with the results

presented in the previous section (Arif et al., 2010b). Despite improving the axial

resolution for both chirp excitations with 20% and 40% FBW, the result showed that

the wideband excitation will always suffer from high sidelobe levels due to spectral

overlap between the harmonics.

In order to improve the previous results and reduce the sidelobe levels, the FChT

was employed to filter the spectrally overlapped chirps as explained in section 3.3. The

time-frequency plane was warped using the FChT and all harmonic components were

individually filtered. The received signal in the FChT domain and the window applied

on the second harmonic component are shown in Figure 7.8. The window length was

calculated by Eq. (3.24) with nwin = 6.75 and T = 10 µs. The extracted harmonics
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Figure 7.7: Comparison of the superharmonic components given in Figure 7.4, Fig-

ure 7.5, and Figure 7.6. Superharmonic components are obtained by a tone-burst

excitation, chirp excitation with 20% fractional bandwidth, and chirp excitation with

40% fractional bandwidth.
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were transformed back to the time domain by using the inverse FChT and compressed

by a harmonic matched filter.
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Figure 7.8: Frequency domain representation of the received signal after applying the

FChT with a normalised chirp rate that matches with the fundamental and harmonic

components. Figure also shows the window applied over the second harmonic. Note

that the frequency domain is not the traditional frequency axis, since the time-frequency

plane is warped by the FChT.

When Figure 7.5 and Figure 7.9 are compared, the improvement achieved by using

the FChT becomes obvious. Similar results were observed for the chirp excitation with

40% FBW after comparing Figure 7.6 and Figure 7.10. The numerical comparison of

the results are presented in Table 7.3.

The peak sidelobe level was improved nearly for all harmonics after pulse com-

pression. No improvement was observed on the axial resolution as expected, since the

signal bandwidth was not changed. Figure 7.11 clearly shows the improvement on peak

sidelobe levels after using the FChT for filtering the spectrally overlapped harmonic

chirps without decreasing the resolution.

It is also possible to reduce the sidelobe levels after compression by applying different

windows on the matched filter as described in section 2.3.1. In this approach, there

is always a trade-off between axial pulse width and sidelobes, where it is not possible
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Figure 7.9: The extracted harmonic signals obtained with a 20% FBW chirp excitation,

after filtering in the FChT domain. The fundamental and harmonic components are

individually compressed by a matched filter or by a bespoke harmonic matched filter.

The superharmonic component is obtained by combining the pulse compressed third,

fourth, and fifth harmonic components in time domain.
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Figure 7.10: The extracted harmonic signals obtained with a 40% FBW chirp excita-

tion, after filtering in the FChT domain. The fundamental and harmonic components

are individually compressed by a matched filter or by a bespoke harmonic matched

filter. The superharmonic component is obtained by combining the pulse compressed

third, fourth, and fifth harmonic components in time domain.
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Table 7.3: Peak sidelobe levels of harmonic signals compressed by a matched filter and

filtered by the Fan Chirp transform

Peak Sidelobe Level (dB)

MF FChT + MF

Chirp 20% Chirp 40% Chirp 20% Chirp 40%

Fundamental -64.7 -50.3 - -52.1

Second Harmonic -43.2 -43.3 -71.5 -36.5

Third Harmonic -42.3 -35.1 -51.6 -45.7

Fourth Harmonic -35.6 -26.4 -56.4 -70.6

Fifth Harmonic -27.2 -27.8 -59.9 -70.2

Superharmonic -43.5 -31.5 -54.1 -57.5

to improve the sidelobe levels without sacrificing the axial resolution. However, the

FChT can achieve the optimum compression in terms of both sidelobe level and axial

resolution.

7.5 Conclusions

The main advantage of the superharmonic imaging over second harmonic imaging is

the enhanced spatial resolution. This improvement on lateral and axial resolution was

confirmed with simulations and experiments by Ma et al. (2006). The experimental

measurements performed in this work verifies the results observed by Ma et al. (2006).

When the superharmonic components were compared with the second harmonic com-

ponents, a 30% improvement was observed for the chirp excitation with 20% FBW and

a 31% improvement was observed for the chirp excitation with 40% FBW as shown in

Table 7.1.

In addition to this improvement on image resolution, the superharmonic imaging

also suppresses reverberations, near-field artefacts, and off-axis artefacts similar to the

second harmonic imaging. However the suppression rate of off-axis artefacts, which

are caused by grating lobes of the fundamental beam, is much higher in superharmonic
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Figure 7.11: Comparison of extracted superharmonic components processed with and

without the FChT technique. The superharmonic components, as given in Figure 7.7,

processed by the previous method have higher sidelobe levels. The method based on the

FChT technique proposed in this section achieves better sidelobe suppression without

reducing the axial resolution.
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imaging, since three different harmonic components causing three different grating lobe

patterns are used for imaging.

Using the third, the fourth and the fifth harmonic does not only improve the image

resolution, but also reduces the speckle. Combining different frequency components

gives similar benefits with frequency compound imaging (Sanchez & Oelze, 2009).

Therefore, significant speckle reduction can be achieved by superharmonic imaging

and more details can be visualized. For this reason, superharmonic imaging is a good

candidate for all types of medical imaging applications where high image resolution is

necessary such as imaging small structures and detection of lesions.

Besides having these advantages, superharmonic imaging has several drawbacks.

Reduced sensitivity, signal-to-noise ratio, and penetration depth are the main limita-

tions of the superharmonic imaging. The higher-order harmonics are usually located

at a frequency band where the transducer does not work efficiently, therefore causing

a reduction in the SNR and sensitivity. The penetration depth is reduced because of

frequency-dependant attenuation in tissue. The SNR and penetration can be increased

by using coded excitation and increasing the total transmitted energy, but the available

transducer bandwidth is the real limitation for the superharmonic imaging. The com-

mercial ultrasound probes do not have sufficient bandwidth; however the research on

transducer technology is focusing on increasing the transducer bandwidth and recep-

tion sensitivity. With the availability of the wider transducer bandwidth (<150%), the

superharmonic imaging can become a standard modality for high resolution imaging in

the future.

Superharmonic imaging provides better spatial resolution than conventional B-mode

imaging and second harmonic imaging; however without separating the spectrally over-

lapping harmonics the final ultrasound image cannot be formed. The current research

is inclined towards the use of narrow bandwidth excitation signals in order to reduce the

sidelobe levels and the harmonic leakage. However, this approach significantly reduces

the possible improvement that can be achieved by the superharmonic imaging. Pulse

inversion cannot be used to separate the overlapping harmonics, since it will cancel out

all the odd harmonics. New multiple excitation methods were proposed specifically for

superharmonic imaging such as the “Dual-pulse frequency compounded superharmonic

imaging” method offered by van Neer et al. (2011). This approach can generate higher-

quality harmonic images at the cost of a reduced frame rate, but it cannot be applied to
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coded excitation. Conventional bandpass filtering can separate the harmonic compo-

nents at the expense of reduced bandwidth. However, individual filters must be applied

for each harmonic component and the overall reduction in bandwidth to compensate

the spectral overlap will be three times more than the reduction in second harmonic

imaging. Therefore, the FChT was used as a filtering tool for wideband chirp excitation

in order to separate the individual harmonic components without sacrificing the signal

bandwidth.

In this work, linear frequency modulated chirp signals were proposed as an exci-

tation method for superharmonic imaging. Chirp coded excitation can potentially en-

hance the SNR and axial resolution with reduced artefacts in superharmonic imaging

when compared to conventional tone-burst excitation. However, the spectral overlap

between the higher-order harmonics reduces the image dynamic range. To overcome

this problem the Fan Chirp transform was employed to filter the chirp harmonics. To

the best of the author’s knowledge, this is the first time the FChT is applied to an

ultrasound imaging application for filtering and compressing chirp signals. The results

showed that the FChT can successfully filter the spectrally overlapped harmonic signals

when used with chirp coded excitation.

134



Part III

Contrast-Enhanced Ultrasound

Imaging
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It has been presented in chapter 6 and chapter 7 that spectral overlap between the

fundamental and harmonic components increase the sidelobe levels of compressed wave-

forms with matched filters. The spectral overlap is inevitable for wideband excitation,

since harmonics exist even at low pressure levels as explained in appendix B.

For the human body, it is possible to measure the acoustic properties of the soft-

tissue and have an approximate figure concerning the speed of sound and attenuation

values (Culjat et al., 2010; Mast, 2000). A carefully chosen excitation waveform and a

matched filter pair that compensates for the depth-dependant attenuation, frequency-

dependant attenuation, and transducer response can still achieve reasonable mainlobe

width and sidelobe levels which will be sufficient for ultrasound imaging. However,

when ultrasound contrast agents are injected into the region of interest to be imaged,

both the temporal and the spectral characteristic of the received signal will be consid-

erably different. Contrast agents generate significantly more harmonics than tissue and

increase the broadband noise due to microbubble destruction.

From a signal processing aspect, microbubbles alters the phase, the envelope shape,

and the frequency content of the scattered echoes that make pulse compression even

more challenging for contrast-enhanced ultrasound imaging. Therefore, chapter 8 eval-

uates the performance of pulse compression by matched filters through simulations and

experiments for contrast-enhanced ultrasound imaging and contrast-enhanced second

harmonic imaging. The Fan Chirp transform is proposed as a filtering tool to improve

the axial resolution and the sidelobe levels of the compressed signals by separating all

overlapping harmonics in time and frequency.

After performing simulations and experiments to observe the effects of nonlinear

microbubble behaviour on pulse compression, it is decided to further investigate the

microbubble response. Third order spectral analysis, also known as the bispectral

analysis, is utilized to analyse the microbubble response. The bispectral analysis is

explained and results on microbubble behaviour are presented in chapter 9. Chapter 9

also offers a method to separate the second harmonic response of tissue and microbub-

bles using bispectral analysis.
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Chapter 8

Pulse Compression with

Microbubbles

8.1 Introduction

The use of microbubbles or ultrasound contrast agents (UCAs) was first reported in

1968, when Gramiak & Shah (1968) performed ultrasound measurements of the aortic

root by injecting gas bubbles and observed an enhancement in echoes. It led to an

increasing interest in microbubble research and clinical use of UCAs. The first contrast

agents were free air bubbles. The second generation contrast agents were encapsulated

microbubbles, which were more stable to be carried in the systemic circulation. These

bubbles had a lower diffusion rate and longer lifetime in blood than free air bubbles,

but they were mostly used to enhance the echo from blood in B-mode and Doppler

imaging (Bouakaz et al., 2007).

Nowadays UCAs are encapsulated microbubbles filled with a low solubility gas,

small enough to pass lung circulation (1 − 10 µm in diameter). UCAs are highly

echogenic1 because of the large difference in density and compressibility between the

gas inside the microbubbles and the surrounding tissue. Diagnostic medical ultrasound

employs UCAs mostly to enhance the contrast in ultrasound imaging. Microbubbles

are more widely used in echocardiography than other imaging applications, since UCAs

enable left ventricle opacification and myocardial perfusion imaging. Yet, other medi-

cal diagnostic applications such as detection and characterisation of small lesions and

1The ability of generating an echo.
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tumours will also benefit from contrast-enhanced ultrasound imaging (Burns et al.,

2000b).

The linear scattering behaviour of microbubbles improves the response from blood

pool, vessels, and human heart. Nevertheless, the nonlinear behaviour of the microbub-

bles must be used to achieve a better separation between tissue and contrast agents.

In capillaries or small blood vessels, it is hard to detect microbubbles with their linear

scattering response. However, increasing the pressure level will cause the microbubbles

to behave nonlinearly, which will allow the differentiation of their response from that

of tissue (Borsboom et al., 2005; Harput et al., 2012).

8.1.1 Nonlinear Behaviour of Microbubbles

Current research on ultrasound contrast imaging mostly focuses on exploiting the non-

linear behaviour of the microbubbles (Averkiou et al., 2008; Biagi et al., 2009; Cheung

et al., 2008; Sprague et al., 2010). Because of their gas core, microbubbles are highly

compressible and echogenic. They are also strong ultrasound scatterers; behaving linear

at low pressure levels and nonlinear at higher pressures. It is hard to classify the mi-

crobubble behaviour with specific pressure levels, however, three regimes can be defined

according to the applied pressure levels (de Jong et al., 2002):

Low acoustic pressure (< 50 kPa)

For very small pressure amplitudes the microbubble response is linear, so the Rayleigh-

Plesset equation is accurate in this regime. The resonance frequency of an oscillating

bubble is identified in this linear region.

Moderate acoustic pressure (50− 300 kPa)

In this regime, the microbubble response is both linear and nonlinear. The microbub-

ble response is considered to be nonlinear, because the oscillation amplitude and the

number of oscillation modes are increased. Nevertheless the bubble can still continue

to oscillate stably, where this situation being referred to as “stable acoustic cavita-

tion” (Brennen, 1995). Several nonlinear phenomena can be observed in this regime,

including the generation of harmonics. The nonlinear microbubble behaviour can be

predicted by using the modified Rayleigh-Plesset equation and similar models such as

Marmottant et al. (2005).

High acoustic pressure (> 300 kPa)

In this regime, microbubbles experience an explosive cavitation growth and violent col-
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lapse, which is referred to as “transient acoustic cavitation”. Under such circumstance,

the microbubble radius can change by several orders of magnitude during each cycle

(Brennen, 1995). In other words, high acoustic pressures can cause microbubble de-

struction and consequently affect their reflectivity. However, the destruction of UCAs

can also be used for imaging purposes (de Jong et al., 2002).

The three regimes are defined with nominal acoustic pressure levels, yet these

threshold values directly depend on contrast agent properties and coating. It is also

important to note that the excitation frequency is a crucial factor in determining these

thresholds. The relationship between the excitation frequency of the driving waveform

and resonance frequency of the microbubble will play an important role on the afore-

mentioned classification scheme. When microbubbles are excited near their resonance

frequency, the natural oscillation is triggered and therefore the response is stronger.

8.1.2 Motivation

Harput et al. (2010) demonstrated that the microbubble response to wideband and long

duration excitation is stronger. Microbubbles excited with a chirp waveform generate

more harmonics than with a tone burst excitation of same duration. Harput et al.

(2010) presented their results on SonoVue R© (Braco Research SA, Milan, Italy), however

most contrast agents will have a stronger response to wideband excitation since the

microbubble population is polydisperse. Therefore, using chirps for ultrasound imaging

with contrast agents is advantageous as more microbubbles can be excited close to their

resonance frequency.

The microbubbles behaviour near resonance increases the scattering from blood

and can achieve a better separation between tissue and contrast agents, thus a better

contrast-to-tissue ratio (CTR). CTR specifies the ratio between contrast perfused and

non-perfused tissue, where a higher CTR is necessary for most clinical applications.

Although chirp excitation amplifies the microbubble response and offers an im-

proved CTR, the resonance behaviour of microbubbles introduce new complications

for imaging applications. The resonance behaviour affects the phase, frequency and

amplitude of echoes, so the matched filter technique may not work as efficiently with

microbubbles as it works with linear reflectors. For this reason, this study investigates

the effect of the pulse compression with the matched filter and filtering by the FrFT and

the FChT techniques for the simulated and experimental behaviours of microbubbles.
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The aim of this work is to improve the image quality of contrast-enhanced ultrasound

imaging and contrast-enhanced second harmonic imaging.

8.2 Materials and Methods

8.2.1 Simulations

In this study, the simulations were performed with the Marmottant et al. (2005) model

for SonoVue R© (Braco Research SA, Milan, Italy) microbubbles coated with a thin

layer of phospholipid and filled with SF6. Appendix C explains the simulation model.

Table C.1 lists the symbol definitions and values used in the simulations (Tu et al.,

2009).

Two different simulations were performed to observe the effect of the excitation

frequency on microbubble behaviour and to observe the microbubble response to chirp

excitation. The diameter of the simulated microbubble was 3 µm, which was insonated

with a peak acoustic pressure of 100 kPa and 500 kPa. For the first simulation, the

excitation waveform was a 20 µs duration sinusoidal tone-burst with a centre frequency

changing between 2 MHz and 8 MHz. For the second set of simulations, a LFM chirp

excitation with 4 MHz centre frequency, 2 MHz bandwidth, and 20 µs duration was

used.

8.2.2 Microbubble Preparation and Characterisation

Lipid coated microbubbles were used in the experiments, because of their hyper-echogenicity.

The lipids were prepared by mixing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC),

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000]

(DSPE-PEG2000), and 1,2-Dipalmitoyl-sn-glycero-3-phosphate (DPPA) from Avanti

Polar Lipids (Alabaster, AL) dissolved in chloroform and drying them in a glass vial

within a vacuum desiccator. The encapsulated microbubbles were prepared by re-

suspending the lipids in Dulbecco’s Phosphate-Buffered Saline (DPBS) containing 1%

glycerine by volume. The solution was mixed in a 1 mL vial and saturated with C3F8,

which forms the gas core. The vial was shaken for 45 seconds by a CapMix mechanical

shaker (3M ESPE, St. Paul, MN). The microbubble size distribution and concentra-

tion were optically measured by Nikon Eclipse Ti-S inverted microscope (Nikon Corp,
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Tokyo, Japan) as 1.9±1 µm and 1×1010, respectively. The microbubbles were diluted

by 1:5000 to achieve similar concentrations to those observed in the human body.

After producing the microbubbles, their scattering response was measured for the

frequency range of 3 − 8 MHz and peak-negative pressure of 100 kPa. The measure-

ments were conducted in a tank containing deionized and degassed water at 20◦C. A

cylindrical chamber containing the microbubble suspension was immersed in a water

tank. The chamber had an internal diameter of 25 mm and had two windows covered by

an acoustically transparent saran wrap, one facing the transmitting transducer and the

other facing the receiving hydrophone. The transducer was positioned perpendicular

to the hydrophone which was placed at a distance of 10 mm from the chamber in the

water tank. The suspension was mixed using a magnetic stirrer (HI-180F, Hanna In-

struments Ltd., Bedfordshire, UK) to ensure uniform microbubble distribution during

the measurements. A fresh microbubble suspension was used for each set of measure-

ments, which approximately took 5 − 20 seconds with a total experiment time of less

than one hour.

A 20 µs duration sinusoidal tone-burst was used as an excitation signal for which the

centre frequency was changed between 3 MHz and 8 MHz with a 0.1 MHz incremental

steps. All excitation signals were designed in Matlab (Mathworks Inc., Natick, MA,

USA) and then loaded into a 33250A Arbitrary Waveform Generator (Agilent Technolo-

gies Inc., Santa Clara, CA, USA). The generated signals were first amplified with an

A150 E&I RF Power Amplifier (Electronics & Innovation Ltd., Rochester, NY, USA)

and then used to drive a single element V310 immersion transducer (Olympus-NDT

Inc., Waltham, MA, USA) with a centre frequency of 5 MHz and a −6 dB bandwidth

of 80%. Before the measurements the pressure calibration of the transducer was per-

formed using a Polyvinylidene Difluoride (PVDF) 1 mm needle hydrophone (Precision

Acoustics Ltd., Dorchester, UK) for the frequency range of 3− 8 MHz.

For each excitation frequency, 150 measurements were taken with a pulse repetition

frequency of 100 Hz. The scattered pressure from contrast agents were received using

the 1 mm needle hydrophone. The received signals were amplified by 40 dB using a low

noise 5072-PR pre-amplifier (Panametrics-NDT, Inc., Waltham, MA, USA) and then

digitized at a sampling frequency of 1 GHz using a LeCroy 64xi digital oscilloscope

(LeCroy Corporation, Chestnut Ridge, NY, USA). All received signals were corrected

in Matlab using the frequency response of the hydrophone with the calibration data
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from 0.5 to 20 MHz being supplied by the manufacturer. The received signals spectra

were averaged in the frequency domain over the 150 measurements for further noise

reduction. The resonance frequency of the microbubble population was measured as

3.8 MHz.

8.2.3 Experimental Setup

Scattering Measurements

Microbubble
Chamber

Ultrasound
Probe

De-ionized and
degassed water

Hydrophone

Figure 8.1: Schematic diagram of the experimental setup for microbubble scattering

measurements performed in a tank filled with de-ionized and degassed water. Measure-

ments are performed with a commercial ultrasound probe connected to the UARP and

a hydrophone.

Scattering measurements were performed to evaluate the microbubble response to

linear frequency modulated chirp excitation with different chirp rates and pressure

levels. A L3-8/40EP medical probe (Prosonic Co., Korea) was used to excite the mi-

crobubbles in a 25 mm diameter cylindrical chamber with two acoustically transparent

windows as shown in Figure 8.1. The measurements were conducted in a tank contain-

ing deionized and degassed water at 20◦C. The medical probe was connected to the

Ultrasound Array Research Platform (UARP) to generate three excitation waveforms

with a centre frequency of 3.8 MHz and a signal duration of 20 µs. The excitation

signals had 10%, 20%, and 40% fractional bandwidths. The medical probe and the
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excitations were specifically chosen to replicate imaging conditions and find the noise

level of the imaging setup.

The measurements were performed for a peak negative pressure range of 100 −
500 kPa. For each excitation waveform and pressure level 150 measurements were

taken with the microbubble suspension being renewed after every five measurements.

Scattered pressure waveforms from the contrast agents were received using the 1 mm

needle hydrophone, which was placed perpendicular to the ultrasound probe. All re-

ceived signals were corrected in Matlab using the frequency response of the hydrophone.

The received signals spectra were averaged in the frequency domain over the 150 mea-

surements to reduce the variance of the experimental results due to multiple scattering

effects from the microbubble cluster, low signal amplitude, and large fluctuations as a

result of microbubble movements (Gorce et al., 2000).

Imaging

The same medical probe was used to scan the wire as shown in Figure 8.2. The wire

phantom consisted of a 120 µm thick aluminium wire located at a depth of 60 mm. The

medical probe was connected to the UARP to perform a linear scan with a focal depth of

60 mm. For the second measurement, a 20 mm wide chamber with two mylar windows

to contain the microbubble solution was introduced as shown in Figure 8.3. The aim

of these measurements was to find the point spread function of the system with and

without microbubbles for contrast-enhanced ultrasound imaging and contrast-enhanced

second harmonic imaging.

For both experiments, the UARP was programmed to generate a Hann windowed

linear frequency modulated chirp with a centre frequency of 3.5 MHz, a duration of

20 µs, and a bandwidth of 1 MHz. Since the medical probe bandwidth spans between

3 MHz and 8 MHz, the excitation signal was chosen to be a LFM chirp sweeping the

frequency range of 3−4 MHz so the second harmonic could be received at the frequency

range of 6− 8 MHz.

The imaging was performed with a peak negative pressure of 500 kPa. All received

signals were corrected using an inverse filter designed in Matlab according to the fre-

quency response of the medical probe. Later, the pulse compression was performed

on each beamformed scan line by using either a matched filter or a second harmonic

matched filter. The second harmonic matched filter was designed with twice the centre
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Ultrasound
Probe

De-ionized and
degassed water

Wire

Figure 8.2: Schematic diagram of the experimental setup with a point scatterer. Mea-

surements are performed using a commercial ultrasound probe connected to the UARP

in a tank filled with de-ionized and degassed water.

Microbubble
Chamber

Ultrasound
Probe

De-ionized and
degassed water

Wire

Figure 8.3: Schematic diagram of the experimental setup with a point scatterer shad-

owed by microbubbles. Measurements are performed with a commercial ultrasound

probe connected to the UARP in a tank filled with de-ionized and degassed water.
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frequency and bandwidth of the fundamental component by using the same window

function applied to the excitation signal.

8.3 Simulation Results and Discussion
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Figure 8.4: Frequency response of a 3 µm microbubble simulated with the Marmottant

model.

The simulations were performed with the Marmottant et al. (2005) model for a

phospholipid coated microbubble as explained in the previous section. The diameter of

the simulated microbubble was 3 µm and the peak acoustic pressure was 100 kPa. A

20 µs duration sinusoidal tone-burst was used as an excitation signal. The simulations

were repeated for the frequency range of 2 MHz to 8 MHz with 0.1 MHz incremental

steps.

Figure 8.4 shows the scattered pressure from microbubbles and the phase difference

between the excitation waveform and the microbubble oscillations. When microbubbles

are excited with a chirp waveform around their resonance frequency, both the phase and

amplitude response will be significantly different than that of the tissue. Microbubbles

will oscillate with a different phase for the excitation frequencies below or above their

resonance peak. Therefore, the scattered echoes from microbubbles will have sudden
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8.3 Simulation Results and Discussion

phase variations that may reduce the pulse compression efficiency. For this reason, two

different scenarios were tested with a low pressure and a high pressure excitation, to

evaluate the effectiveness of the techniques explained in the chapter 3.

8.3.1 Low Pressure Simulations
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Figure 8.5: Simulated pressure waveform scattered by a 3 µm microbubble excited by

a LFM chirp with a peak negative acoustic pressure of 100 kPa, a centre frequency of

4 MHz, a bandwidth of 2 MHz, and a duration of 20 µs.

Figure 8.5 shows the simulated 3 µm microbubble response to a LFM chirp excita-

tion with a 4 MHz centre frequency, a 2 MHz bandwidth, and a 20 µs duration.

Even at pressure levels as low as 100 kPa, microbubbles generated significantly more

harmonics than tissue, where the spectrum of the scattered pressure from the 3 µm

microbubble is given in Figure 8.6.

Figure 8.7 shows the signal compressed by a matched filter. The mainlobe width

of the compressed signal was the same as with the autocorrelation function of the

excitation waveform, but an increase in sidelobe levels was observed. Although the

sidelobe levels were higher than expected, the waveforms compressed with a matched

filter could still be used for imaging applications with 40 dB dynamic range. Since
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Figure 8.6: Spectrogram of the simulated pressure waveform scattered by a 3 µm

microbubble excited by a LFM chirp with a peak negative acoustic pressure of 100 kPa,

a centre frequency of 4 MHz, a bandwidth of 2 MHz, and a duration of 20 µs.
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there was no spectral overlap between the second harmonic and the fundamental com-

ponents, the compressed signal did not suffer from compression artefacts as represented

in Figure 6.12.
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Figure 8.7: Simulated pressure waveform compressed by a matched filter for a 3 µm

microbubble excited at 100 kPa. The pulse compression was performed with a matched

filter designed with the same parameters of the excitation signal; a centre frequency of

4 MHz, a bandwidth of 2 MHz, and a duration of 20 µs. The red dashed line is the

autocorrelation function of the excitation waveform given for comparison.

Figure 8.8 and Figure 8.9 show the signal compressed by a matched filter, after

filtering in the FrFT domain and the FChT domain respectively as explained in chap-

ter 3. Even though the final compressed signal benefited from filtering in the FChT

domain and the FrFT domain, the differences in the mainlobe width and peak sidelobe

level of the compressed signals in Figure 8.7, Figure 8.8, and Figure 8.9 were negligible.

Figure 8.10 shows the signal compressed with a second harmonic matched filter

before and after filtering in the FrFT domain and the FChT domain. The pulse com-

pression was performed with a second harmonic matched filter designed with twice the

parameters of the excitation signal; centre frequency of 8 MHz, bandwidth of 4 MHz,

and duration of 20 µs. As expected, the compressed second harmonic component
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Figure 8.8: Simulated pressure waveform compressed by a matched filter after filtering

in the FrFT domain for a 3 µm microbubble excited at 100 kPa. The pulse compression

was performed with a matched filter designed with the same parameters of the exci-

tation signal; a centre frequency of 4 MHz, a bandwidth of 2 MHz, and a duration of

20 µs. The red dashed line is the autocorrelation function of the excitation waveform

given for comparison.
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Figure 8.9: Simulated pressure waveform compressed by a matched filter after filtering

in the FChT domain for a 3 µm microbubble excited at 100 kPa. The pulse compres-

sion was performed with a matched filter designed with the same parameters of the

excitation signal; a centre frequency of 4 MHz, a bandwidth of 2 MHz, and a duration

of 20 µs. The red dashed line is the autocorrelation function of the excitation waveform

given for comparison.

150



8.3 Simulation Results and Discussion

achieved a better resolution than the fundamental. Also, filtering in the FChT domain

and the FrFT domain before pulse compression reduced the sidelobe levels.
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Figure 8.10: Simulated pressure waveform compressed by a second harmonic matched

filter without any filtering and after filtering in the FrFT and FChT domains for a 3 µm

microbubble excited at 100 kPa. The pulse compression was performed with a second

harmonic matched filter designed with twice the parameters of the excitation signal; a

centre frequency of 8 MHz, a bandwidth of 4 MHz, and a duration of 20 µs.

8.3.2 High Pressure Simulations

For this set of simulations, all the parameters were the same as the previous simulations

but the acoustic pressure was increased. Although microbubbles are highly echogenic

and generate more harmonics than tissue at low pressure levels, the use of acoustic

pressures as high as 500 kPa is common while imaging with microbubbles Sun et al.

(2007). Therefore, the simulations were repeated by increasing the excitation pressure

to 500 kPa.

The time frequency representation of the scattered pressure waveform at 500 kPa

by a 3 µm microbubble is given in Figure 8.11. When compared with Figure 8.6 the
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Figure 8.11: Spectrogram of the simulated pressure waveform scattered by a 3 µm

microbubble excited by a LFM chirp with a peak negative acoustic pressure of 500 kPa,

a centre frequency of 4 MHz, a bandwidth of 2 MHz, and a duration of 20 µs.
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harmonic generation was significantly higher than the low pressure excitation with

subharmonic1 and ultraharmonic2 components being introduced.

Figure 8.12 shows the signal compressed by a matched filter for a 500 kPa excita-

tion. The mainlobe width of the compressed signal was wider than the autocorrelation

function of the excitation waveform, especially below −15 dB. Due to the spectral

overlap between the subharmonic, ultraharmonic and fundamental components, the

compressed signal suffered from high sidelobe levels.
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Figure 8.12: Simulated pressure waveform compressed by a matched filter for a 3 µm

microbubble excited at 500 kPa. The pulse compression was performed with a matched

filter designed with the same parameters of the excitation signal; a centre frequency of

4 MHz, a bandwidth of 2 MHz, and a duration of 20 µs. The red dashed line is the

autocorrelation function of the excitation waveform, which is given for comparison.

Figure 8.13 shows the waveform compressed in the FrFT domain. Although the

waveform was successfully compressed and separated from its harmonics, the FrFT

was not a good candidate for compressing and filtering the microbubble response as

explained in chapter 3 and chapter 7. In Figure 8.13, the fundamental component

1The harmonics generated at 1/n multiples of the fundamental frequency for n = 2, 3, 4...
2The harmonics generated at (2k + 1)/2 multiples of the fundamental frequency for k = 1, 2, 3...
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was successfully compressed at t = 15 µs, but the drawback of the FrFT is that the

transform must be individually calculated for each harmonic.
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Figure 8.13: The FrFT spectrum of the simulated pressure waveform scattered by a

3 µm microbubble excited by a LFM chirp with a peak negative acoustic pressure of

500 kPa, a centre frequency of 4 MHz, a bandwidth of 2 MHz, and a duration of 20 µs.

Figure 8.14 shows the compressed waveform in the FChT domain. The fundamental

and second harmonic components of the scattered waveform appeared exactly at 4 MHz

and 8 MHz in the warped-frequency domain, respectively. Therefore, both fundamental

and second harmonic components can be filtered in the FChT domain after a single

transformation.

Figure 8.15 shows the signal compressed by a matched filter, after filtering in the

FChT domain. For this example, the compressed signal significantly benefited from

filtering in the FChT domain, where both the mainlobe width and sidelobe levels were

improved in comparison with Figure 8.12.

Figure 8.16 shows the signal compressed by a second harmonic matched filter before

and after filtering in the FChT domain. Both the mainlobe width and sidelobe levels

were improved after filtering in the FChT domain. The compressed second harmonic

signal did not give any improvement on the mainlobe width compared to the compressed
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Figure 8.14: The FChT spectrum of the simulated pressure waveform scattered by a

3 µm microbubble excited by a LFM chirp with a peak negative acoustic pressure of

500 kPa, a centre frequency of 4 MHz, a bandwidth of 2 MHz, and a duration of 20 µs.

The red dashed lines show the windows applied around the fundamental and second

harmonic component for filtering.
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Figure 8.15: Simulated pressure waveform compressed by a matched filter after filtering

in the FChT domain for a 3 µm microbubble excited at 500 kPa. The pulse compres-

sion was performed with a matched filter designed with the same parameters of the

excitation signal; a centre frequency of 4 MHz, a bandwidth of 2 MHz, and a duration

of 20 µs. The red dashed line is the autocorrelation function of the excitation waveform

given for comparison.
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fundamental component. The compressed second harmonic signal after filtering in the

FChT domain had a larger mainlobe width than its equivalent at 100 kPa given in

Figure 8.10, however it showed improvement over the compressed signal without any

filtering.
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Figure 8.16: Simulated pressure waveform compressed by a second harmonic matched

filter without any filtering and after filtering in the FChT domains for a 3 µm mi-

crobubble excited at 500 kPa. The pulse compression was performed with a second

harmonic matched filter designed with twice the parameters of the excitation signal; a

centre frequency of 8 MHz, a bandwidth of 4 MHz, and a duration of 20 µs.

Table 8.1 presents the results achieved from the simulations by comparing the main-

lobe width of compressed signals at −20 dB and peak sidelobe level. The simulation

results showed that filtering in the FChT domain reduces the sidelobe levels of the

compressed waveform both for second harmonic and fundamental components. For

the simulations performed at a peak negative pressure of 100 kPa the improvements

were not evident, however at 500 kPa the sidelobe levels were reduced significantly

after filtering in the FChT domain both for the fundamental and the second harmonic

components.

The main reason for this difference in sidelobe levels was the harmonics generated
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Table 8.1: Mainlobe widths and peak sidelobe levels of the compressed fundamental

and second harmonic components.

Fundamental Mainlobe Width Peak Sidelobe Level

Autocorrelation function 2.2 µs −46.0 dB

No filtering (100 kPa) 2.2 µs −40.7 dB

FrFT (100 kPa) 2.2 µs −40.7 dB

FChT (100 kPa) 2.2 µs −42.1 dB

No filtering (500 kPa) 2.5 µs −39.7 dB

FChT (500 kPa) 2.3 µs −61.7 dB

Second Harmonic Mainlobe Width Peak Sidelobe Level

No filtering (100 kPa) 1.3 µs −33.7 dB

FrFT (100 kPa) 1.3 µs −40.0 dB

FChT (100 kPa) 1.3 µs −46.9 dB

No filtering (500 kPa) 2.2 µs −30.7 dB

FChT (500 kPa) 1.9 µs −64.5 dB
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by the microbubbles. For the high pressure simulations, the microbubbles generated

more harmonics that spectrally overlap with each other. In the presence of spectral

overlap the performance of the matched filter dropped as presented in the chapter 6.

The reasons why FrFT was not chosen for compressing and filtering the microbubble

response at high pressure levels were reviewed in the chapter 3 and chapter 7.

8.4 Experimental Results and Discussion

8.4.1 Scattering Measurements
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Figure 8.17: Spectrogram of the scattered pressure waveforms from a microbubble

population with the chirp excitation of 3.8 MHz centre frequency and 20 µs signal

duration at 500 kPa for (Left) 10% fractional bandwidth, (Middle) 20% fractional

bandwidth, and (Right) 40% fractional bandwidth. The red dotted lines show the

chirp rate of the excitation waveform.

The first experiments were performed to observe the spectral response of the mi-

crobubble population. Figure 8.17 shows the scattered pressure waveform from the

microbubble cloud for a 10%, 20%, and 40% fractional bandwidth. It was observed

that the scattered pressure waves maintained their chirp rates for the fundamental and
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harmonic components in all three measurements. Since the chirp rates remained the

same, it was expected to observe improvements after filtering in the FChT domain.

Figure 8.18 shows the spectrum of scattered pressure waveform for a chirp excita-

tion with a 3.8 MHz centre frequency, a 20 µs signal duration, and a 20% fractional

bandwidth. Similar results were observed for the other measurements with different ex-

citation waveforms. The signals were corrected according to the control measurements

performed without microbubbles, therefore 0 dB was the noise level for all measure-

ments. The increase in broadband noise for the high pressure excitations was due

to microbubble destruction, which reduced the SNR. The increased noise level also

suggests that the compressed signals will benefit from filtering in the FChT domain.
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Figure 8.18: Frequency spectrum of the scattered pressure waveforms from a microbub-

ble population for LFM chirp excitation with 3.8 MHz centre frequency, 20 µs signal

duration, and 20% fractional bandwidth and a pressure range of 100− 500 kPa.

8.4.2 Imaging and Point Spread Function

The performance of the filtering in the FChT domain can be assessed by comparing

the spatial impulse responses of the system with and without filtering stages. The

spatial impulse response is also referred to as the point spread function for imaging
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applications. Figure 8.19 shows the point spread function for the ultrasound images

formed at the fundamental frequency and processed with the FChT and without the

FChT. After filtering in the FChT domain the sidelobe level was reduced as expected

by simulations.

Figure 8.21 shows the point spread function of the ultrasound images at second

harmonic frequency processed by the FChT and without the FChT. Similar results

observed for the second harmonic image, where filtering in the FChT domain reduced

the sidelobe levels.

When the same experiment was repeated with microbubbles, the fundamental and

the second harmonic images filtered with the FChT had lower sidelobe levels as shown in

Figure 8.22 and Figure 8.20. After shadowing by a cloud of microbubbles, no significant

difference was observed on the point spread function of the sub-wavelength scatterer

after pulse compression. Nevertheless, the peak sidelobe level was reduced both for

the fundamental and the second harmonic images when they were processed with the

FChT.

Table 8.2 shows the results measured from the fundamental and second harmonic

images in Figure 8.19, 8.20, 8.21, and 8.22 by comparing the point spread function

dimensions at −20 dB and peak sidelobe level. The experimental measurements showed

similar results with the simulations performed in the previous section. Dimensions of

the point spread function did not change after filter with the FChT. However, filtering in

the FChT domain significantly reduced the sidelobe levels of the compressed waveform

in the presence of microbubbles both for second harmonic and fundamental components

by 20.4 dB and 8 dB, respectively.

Although the image quality was improved for a point scatterer, the microbubble

response was observed to be weaker after filtering in the FChT domain. Figure 8.18

may explain the difference between the images filtered in the FChT and not filtered

in the FChT domain. For the images processed without using the FChT, as shown in

the Figure 8.22(left) and Figure 8.20(left), the matched filter did not only compress

the waveforms scattered with the same chirp rate, but also the broadband noise and

harmonics that were within the bandwidth of the matched filter. Yet, the FChT ignored

them due to the peak detection method used for separating the maximally compressed

and partially compressed waveforms as explained in the section 3.3. The CTR being

one of the most important metrics in measuring the microbubble response and the
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Figure 8.19: The fundamental image of the experimental setup given in Figure 8.2

(Left) compressed with a match filter, and (Right) compressed with a match filter after

filtering by the FChT. The sub-wavelength scatterer is located at 60 mm.
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Figure 8.20: The fundamental image of the experimental setup given in Figure 8.3

(Left) compressed with a match filter, and (Right) compressed with a match filter

after filtering by the FChT. The sub-wavelength scatterer is located at 60 mm. The

microbubble chamber is positioned between 30 mm and 50 mm.
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Figure 8.21: The second harmonic image of the experimental setup given in Figure 8.2

(Left) compressed with a match filter, and (Right) compressed with a match filter after

filtering by the FChT. The sub-wavelength scatterer is located at 60 mm.
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Figure 8.22: The second harmonic image of the experimental setup given in Figure 8.3

(Left) compressed with a match filter, and (Right) compressed with a match filter

after filtering by the FChT. The sub-wavelength scatterer is located at 60 mm. The

microbubble chamber is positioned between 30 mm and 50 mm.
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Table 8.2: Point spread function dimensions and peak sidelobe levels (PSLL) of the

fundamental and second harmonic images filtered with and without the FChT.

without MB with MB

Fundamental MF FChT + MF MF FChT + MF

Axial (mm) 3.23 3.22 3.27 3.23

Lateral (mm) 2.90 2.90 2.99 2.99

PSLL (dB) -29.5 -38.1 -29.1 -37.1

Second Harmonic MF FChT + MF MF FChT + MF

Axial (mm) 1.94 1.86 1.97 1.85

Lateral (mm) 1.64 1.64 1.64 1.64

PSLL (dB) -20.7 -39.0 -20.5 -40.9

quality of the ultrasound image, the results achieved by the FChT method may not be

considered as an improvement by radiologists.

8.5 Conclusions

Any dispersive media exhibits nonlinear behaviour and generates harmonics, as ex-

plained in the appendix B. Yet, the mechanisms responsible for the nonlinear behaviour

of microbubbles are completely different. Water always generates harmonics in an ex-

pected manner as given in Figure 7.3, but microbubbles have unique acoustic signatures

that change with bubble size, bubble encapsulation, bubble gas core, excitation pres-

sure, and excitation frequency. However, the scattered response from the microbubble

population still have the same chirp rate as the excitation signal and the chirp rate of

the harmonics generated by the microbubbles are scaled by a ratio of n for the nth-

harmonic as presented in Figure 8.18. Therefore, it is possible to use the FChT as a

filtering tool for contrast-enhanced ultrasound imaging and contrast-enhanced second

harmonic imaging.

In this study, one of the possible worst case scenario for pulse compression was

created by depth and frequency dependant attenuation, high level of harmonic gener-
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ation, variation on the phase information due to resonance behaviour of microbubbles,

increased broadband noise by microbubble destruction and limited transducer band-

width. Nevertheless, filtering in the FChT domain reduced the compression artefacts

and successfully improved the image quality.
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Chapter 9

Separating the Second Harmonic

Response of Tissue and

Microbubbles using Bispectral

Analysis

The second harmonic generation in medical ultrasound is either caused by tissue or

ultrasound contrast agents. The conventional signal processing techniques cannot sep-

arate the harmonic response from microbubbles and tissue. The second order spectral

analysis, commonly known as the frequency analysis, is the most common way of eval-

uating the microbubble response. Although frequency analysis can estimate the power

spectrum effectively, it suppresses the phase relation between the frequency compo-

nents.

In this work, the third order spectral analysis (bispectral analysis) is used to evaluate

the second harmonic response of tissue and microbubbles. The power spectrum shows

the magnitude of energy existing at different frequencies, but fails to show the relation

between their phases. Higher-order spectral analysis can display the phase-coupling

between different frequency components, i.e. between fundamental and harmonics.

Thus, bispectral analysis can be utilized to evaluate the microbubble response and

separate the second harmonic generated by tissue and microbubbles using the phase

coupling between fundamental and harmonic components.

This work has been accepted for publication as (Harput et al., 2012).
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9.1 Introduction

9.1 Introduction

The nonlinear behaviour of the ultrasound contrast agents (UCAs) is utilized in medical

ultrasound imaging to distinguish blood from the surrounding tissue by enhancing the

blood echogenicity (de Jong et al., 2000; Frinking et al., 2000). The nonlinear harmonic

components generated by microbubbles are used in ultrasound contrast imaging to

improve the image contrast and allow a selective detection during perfusion (de Jong

et al., 2009).

One of the most common techniques to improve the contrast-to-tissue ratio (CTR)

is second harmonic imaging. Most commercial ultrasound imaging systems offer second

harmonic imaging and it is widely used in clinical applications, such as myocardial per-

fusion, tumour detection, and blood flow measurements (Porter & Xie, 2010; Tranquart

et al., 1999; Wei et al., 1998). Quantitative evaluation of blood perfusion is clinically

valuable in many situations (Schrope & Newhouse, 1993). Contrast-enhanced perfu-

sion imaging, the qualitative and the quantitative assessment is based on (i) pixel-wise

evaluation of the region of interest, e.g. wash-in curves plotted according to change in

pixel intensity values of the ultrasound video, or (ii) visual inspection of the B-mode

images (Wiesmann et al., 2004). These assessment techniques may causes inconsistent

quantification of the perfusion for different scenarios. The problem becomes more evi-

dent if usage of different UCAs, the variability in the scanning conditions and the tissue

generated second harmonic are considered.

This study focuses on the assessment of the second harmonic to improve the CTR

in harmonic imaging and increase the accuracy of perfusion imaging by distinguishing

between the second harmonic response generated by the tissue and UCAs. It is usually

assumed that at low pressure levels, tissue does not generate harmonics and CTR is im-

proved by microbubble generated second harmonic. However, harmonics are generated

even at low pressure levels, thus causing the misinterpretation of harmonic response

from microbubbles (Duck, 2002; Hamilton & Blackstock, 2008). For example, human

soft tissue generates second harmonic as high as −20 dB compared to the fundamental

for an excitation pressure of 140 kPa, a 4 MHz centre frequency and at a depth of

3.5 cm as described in appendix B.

Nonlinear propagation in tissue generates harmonics that are in phase with the

fundamental component. The variation in phase velocity at different points on the
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wave progressively steepens the waveform. The distortion of the wave happens in an

expected manner, where the shape turns from sinusoidal to sawtooth (Duck, 2002).

However, the harmonics generated by a polydisperse population of microbubbles are

not necessarily in phase with the fundamental component. In this work, bispectral

analysis is used to separate the second harmonic response of tissue and microbubbles

via the phase relations of fundamental and harmonic components. The degree of phase

coherence, the bicoherence index, is calculated by using the phase coupling between

fundamental and second harmonic components for a set of measurements.

9.2 Bispectral Analysis

The second order spectral analysis, commonly known as the frequency analysis, is the

most common way of evaluating the microbubble response. Most power spectrum

estimation techniques, including the conventional Fourier type methods, estimate the

power distribution of the signal by suppressing the phase relation between the frequency

components.

For a time domain zero-mean stationary signal s(t) with a duration of T 1, the

Fourier transform of the signal can be represented as

S(f) = lim
T→∞

1

T

∫ T/2

−T/2
s(t) e−j2πftdt. (9.1)

The power spectral density of the signal is estimated as

P (f) = E {S(f) S∗(f)} = lim
T→∞

1

T

∫ T/2

−T/2
s(t)2 dt. (9.2)

where E {·} represents the expected value, and ∗ denotes the complex conjugate.

The Fourier analysis can only represent the complete statistics of a Gaussian pro-

cess, where any finite linear combination of samples has a joint Gaussian distribution

(Kim & Powers, 1979; Nikias & Raghuveer, 1987). However, higher order spectral tech-

niques are necessary to characterize the signals in the presence of nonlinearities and

identification of non-Gaussian behaviour (Nikias & Raghuveer, 1987). These nonlinear-

ities may create new phase coherent spectral components. The third-order spectrum

or bispectrum can be used for the detection of such phase coherence.

1Record length of the signal s(t).
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The third-order spectrum can be generalised by considering higher-order products of

the signal, where the power spectrum is defined as the mean squared value of the signal

for a zero-mean random process. To explain the third-order spectrum, the moments

and the cumulants must be defined first. The r-th moment of signal s(t) is defined as

mr = E {sr(t)} . (9.3)

Cumulants can be defined as moments in which the dependence on lower order moments

has been removed, where the moments of a random variable are related to its cumulants

by (Nikias & Petropulu, 1993)

c1 = m1 (9.4)

c2 = m2 −m2
1

c2 = m3 − 3m2m1 + 2m3
1

The first moment, m1, is the mean and it is assumed to be zero since the process has

a zero mean.

m1 = c1 = E {s(t)} = 0. (9.5)

The second moment, m2, is the variance or the spread of the data around the mean.

The second order moment is also known as the autocorrelation function since

Rss(τ) = E {s(t) s(t− τ)} . (9.6)

The Wiener-Khinchin theorem states the relation between the autocorrelation func-

tion and the power spectral density as the Fourier transform. Therefore, the second

order spectrum, power spectral density, of a signal is the Fourier transform of its auto-

correlation function,

P (f) =

∫ ∞
−∞

Rss(τ) e−j2πfτdτ. (9.7)

For a zero-mean signal (m1 = 0), the second order cumulant is equal to second order

moment, c2 = m2. Therefore, the second order cumulant spectrum represents the

power spectrum;

P (f) =

∫ ∞
−∞

c2(τ) e−j2πfτdτ. (9.8)

The third moment, m3, is a measure of asymmetry that shows the skewness of

the process’s probability density function. The third moment is zero, m3 = 0, for
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all symmetric distributions such as a Gaussian distribution. Therefore, higher-order

cumulants are necessary for the identification of Gaussian and non-Gaussian behaviour.

The bispectrum is equal to third order cumulant spectrum for a zero-mean signal

since c3 = m3.

B(f1, f2) =

∫ ∞
−∞

∫ ∞
−∞

c3(τ1, τ2) e
−j2π(f1τ1+f2τ2)dτ1dτ2. (9.9)

The third order spectrum, bispectrum, can also be calculated for f1 and f2 using

the Fourier transform of the signal as (Kim & Powers, 1979; Nikias & Raghuveer, 1987);

B(f1, f2) = E {S(f1) S(f2) S
∗(f1 + f2)} , (9.10)

where the bispectrum contains additional information about the statistical dependence

of frequencies f1 and f2 at the coupled frequency f1 + f2.

The bicoherence index, b(f1, f2), normalizes the bispectrum by the power spectrum

as

b(f1, f2) =
B(f1, f2)√

P (f1) P (f2) P (f1 + f2)
, (9.11)

where b2(f1, f2) is the measure of the quadratic phase coupling. For b2(f1, f2) = 0,

no phase coherence exists between the harmonic component at the coupled frequency

f1+f2, and fundamental component at f1 and f2. When the bicoherence index is equal

to 1, it indicates 100% phase coherence.

9.2.1 Discrete Bispectral Analysis

The computation of the bispectrum was performed on the discrete signal s[n], after

sampling the continuous signal s(t) with a record length of T . The duration T = N ·∆t
was large enough to have sufficient frequency resolution and the sampling interval ∆t

was small enough to ensure that any spectral component is smaller than the Nyquist

frequency. For the discrete signal s[n] the Fourier amplitudes are calculated by the

discrete Fourier transform as (Kim & Powers, 1979)

Sk =
1

N

N∑
n=1

s[n] e−j2πkn/N , (9.12)

for k = 1, 2, ..., N/2, where N is the total number of samples in the measurement.
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The power spectrum estimation of the discrete signal s[n] can be performed by

P (k) = |Sk|2 . (9.13)

The bispectrum for M sets of data records of length N can be estimated by

B(k, l) =
1

M

M∑
i=1

S
{i}
k S

{i}
l S

∗{i}
k+l , (9.14)

for i = 1, 2, ...,M , where M is total number of independent measurements and k and l

corresponds to frequency components f1 and f2 in Eq. (9.10).

By reformulating the Eq. (9.11) in discrete form, the bicoherence index can be

estimated for M number of independent measurements as

b(k, l) =

∣∣∣∣∣ 1

M

M∑
i=1

S
{i}
k S

{i}
l S

∗{i}
k+l

∣∣∣∣∣√√√√[ 1

M

M∑
i=1

∣∣∣S{i}k S
{i}
l

∣∣∣2][ 1

M

M∑
i=1

∣∣∣S{i}k+l∣∣∣2
] . (9.15)

The variance of the bicoherence may be expressed as (Chandran & Elgar, 1991; Kim

& Powers, 1979)

var( b(k, l) ) ≈ 1

M

[
1− b2(k, l)

]
, (9.16)

where the variance of the higher-order spectral analysis can be reduced by increasing

the number of measurements since var( b(k, l) ) ≈ 0 for M →∞.

9.3 Materials and Methods

9.3.1 Ultrasound Phantom

The tissue mimicking material (TMM) was prepared by mixing 3% (36 gr.) high

strength Agar powder (Acros Organics, Geel, Belgium), 10 gr. Germall plus (ISP

Chemicals LLC, Chatham, NJ), 25 gr. soda-lime glass microspheres with a diameter

≤ 25 µm (MO-SCI Corp., Rolla, MO), 8% glycerine, and 87% de-ionized water by

volume. After the TMM was set, attenuation and average sound velocity were measured

as 0.56 dB/cm·MHz and 1524 m/s, respectively.

Phantom #1 was built by placing a chamber for UCAs behind a 2 cm thick TMM

block. The chamber was also 2 cm thick and had two mylar windows to contain the
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microbubble solution. Phantom #2 was the mirrored version of Phantom #1, where

microbubbles were shadowing the TMM during the ultrasound measurements. The

microbubbles used in these phantoms were prepared and characterised as explained in

section 8.2.2.

9.3.2 Experimental Setup

The 96-channel Ultrasound Array Research Platform (UARP) was used to scan the

phantom using a L3-8/40EP medical probe (Prosonic Co., Korea) (Smith et al., 2010,

2012). A linear frequency modulated chirp sweeping between 3 − 4 MHz was used as

excitation signal and the second harmonic was received by the same probe at 6−8 MHz.

The duration of the excitation waveform was 10 µs. A Hamming window was applied on

the chirp signal in order to reduce spectral leakage. Long duration and wideband signals

perform better while calculating the phase correlation, because their phase signature

is easier to follow both in the time and frequency domains. In order to compensate for

the poor axial resolution caused by long signal duration, coded excitation was preferred

in this work.

Two sets of measurements were performed at 300 kPa and 600 kPa using the ul-

trasound phantoms with the probe facing the TMM or UCA chamber, as shown in

Figure 9.1 and Figure 9.2. The probe was electronically focused to 60 mm and a linear

scan was performed by the UARP, where the mechanical index (MI) values of 0.16

and 0.32 were calculated at the focal point. The UCA suspension was renewed after

every 5 measurements, since microbubble destruction was observed during the experi-

ments. The captured data from the UARP was transferred to a personal computer and

processed in Matlab (Mathworks Inc., Natick, MA, USA).

9.3.3 Estimation of the Bispectrum

Raw RF data for 100 B-mode images were recorded to ensure a sufficient sample size

and achieve statistical convergence. Although a hundred B-mode frames are needed in

order to perform the bispectral analysis, it does not increase the total imaging duration

when compared with the existing perfusion imaging techniques. Usually a few seconds

to minutes of video recording is necessary in order to evaluate the contrast perfusion

by measuring the peak video intensity, calculating the time-to-peak, and plotting the

wash-in curves.
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Phantom Microbubble
Chamber

Ultrasound
Probe

De-ionized and
degassed water

Figure 9.1: Experimental setup referred to as Phantom #1. Measurements are per-

formed with a commercial ultrasound probe connected to the UARP.

Phantom Microbubble
Chamber

Ultrasound
Probe

De-ionized and
degassed water

Figure 9.2: Experimental setup referred to as Phantom #2. Measurements are per-

formed with a commercial ultrasound probe connected to the UARP.
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After capturing the RF data, the signal processing was performed as described by

Kim & Powers (1979). A single RF line was selected from each frame for processing.

The mean value was subtracted from each record to eliminate the DC components. A

window was applied to each signal to reduce spectral leakage. The Fourier transform

of each signal was calculated using the fast Fourier transform (FFT) technique. The

bispectrum was estimated for a single line selected from each frame for different regions

of the phantom. The bicoherence index was calculated by using Eq. (9.15) for the region

with TMM and the region with UCAs separately for M = 100 sets of data.

9.4 Experimental Results and Discussion

It was observed in the measurements that glass microspheres increase the echogenicity

of the TMM substantially when compared to the ultrasound phantom used in chapter 6.

Figure 9.3 shows the fundamental and the second harmonic images of the Phantom #1

without microbubbles. The perfusion of the microbubbles can be followed by comparing

Figure 9.3 to Figure 9.4. However, for Figure 9.4 the CTR value is still below 0 dB,

where it is hard to distinguish between TMM and microbubbles.

Although both Phantom #1 and Phantom #2 have the same TMM, same scanning

pressure, and same microbubble concentration; the B-mode images shown in Figure 9.4

and Figure 9.6 have different CTR values. A similar problem was reported by Tang

et al. (2010), where the effects of non-linear propagation on the CTR was analysed.

In order to resolve the issues arising due to the low CTR, bispectral analysis can

be used as an auxiliary tool. The square of the bicoherence index, b2(f1, f2), represents

the phase coherence between nonlinear coupled waves at a frequency of interest f1 +f2.

For the LFM excitation used in this work, the observer should focus on the frequencies

between 3 and 4 MHz for f1 and f2 in the bispectral domain, where the phase coupling

between the frequency range of 3− 4 MHz and 6− 8 MHz will be observed.

When the RF data, which forms the B-mode images in Figure 9.4, was processed in

the bispectral domain, a phase coherence between fundamental and second harmonic as

high as 83% was observed for the TMM as shown in Figure 9.5(a). The value dropped

to 71%, when the TMM was shadowed by the microbubbles as shown in Figure 9.7(a).

No significant correlation between second harmonic and fundamental components was

observed for microbubbles. A maximum b2(f1, f2) value of 10% was calculated, which
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Figure 9.3: The fundamental and second harmonic images of Phantom #1 for a MI

of 0.32 with tissue mimicking material (TMM) and a chamber filled with water.
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Figure 9.4: The fundamental and second harmonic images of Phantom #1 for a

MI of 0.32 with the tissue mimicking material (TMM) and the chamber filled with

microbubbles (MB). CTR for the second harmonic image is −7.3 dB.
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Figure 9.5: Phase coherence for Phantom #1 at MI of 0.32 is shown for (a) the TMM

and (b) the microbubbles. A maximum b2(f1, f2) value of 83% was calculated for the

TMM, and 10% for the MB.

shows that frequencies f1 and f2 have low statistical dependence with the coupled

frequency f1 + f2, as shown in Figure 9.5(b) and Figure 9.7(b).

The phase correlation values for different measurements are listed in Table 9.1. For

Phantom #2 at 300 kPa the phase coherence value for the TMM was lower than for the

other measurements. The reason for this is the poor second harmonic generation by the

TMM and the noise, where the SNR for the TMM after shadowing by microbubbles

drops as low as 5 dB for the second harmonic image. The bicoherence index becomes

inaccurate for low SNR measurements, since the white Gaussian noise is a random

process with a bicoherence value of zero. Although bispectral analysis does not perform

well under low SNR, one can still separate the harmonic response. For the experiments

performed at lower MI the CTR value was always above 10 dB, where the TMM

and UCAs were clearly distinguishable in the B-mode ultrasound image and bispectral

analysis is not necessary, as shown in Figure 9.8.

Results show that bispectral analysis can successfully find the phase coherence and

separate the harmonics generated by microbubbles and tissue. Another advantage of

higher-order spectral analysis is the robustness of the estimates against bubble motion

and change in bubble population. Bispectral analysis is not affected by the microbubble

motion since movement does not change the phase relation between fundamental and
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Figure 9.6: The fundamental and second harmonic images of Phantom #2 for a

MI of 0.32 with the tissue mimicking material (TMM) and the chamber filled with

microbubbles (MB). CTR for the second harmonic image is 7.1 dB.
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Figure 9.7: Phase coherence for Phantom #2 at MI of 0.32 is shown for (a) the TMM

and (b) the microbubbles. A maximum b2(f1, f2) value of 71% was calculated for the

TMM, and 7% for the MB.

harmonic components. Most of the commercially available microbubbles have polydis-

perse size distribution, such as Sonuvue, Bracco BR14, Definity, Sonazoid, and Optison.

Therefore, in a statistical point of view these microbubbles can be considered as in-

dependent and identically distributed random variables. Since the Gaussian-ness of

a process can be identified by higher-order statistics, the acoustic response of a poly-

disperse microbubble population can be differentiated from tissue response. However,

the microbubble population being monodisperse and all microbubbles having the same

acoustic signature, the scattering and harmonic generation from microbubbles would

not be a random process.

Although, the microbubble size distribution has no major impact on higher-order

spectral estimates, the microbubble concentration might have. Tang et al. (2008) sug-

gested that nonlinear propagation may still occur even at low acoustic pressure levels

and can affect the imaging results in the presence of high concentration of microbub-

bles on the acoustic path. The impact of the acoustic attenuation caused by high

concentration of microbubbles reduces both the CTR and the SNR. Bispectral analysis

performs well under low CTR, however the low SNR values will change the bicoherence

index as explained through Figure 9.8 and Table 9.1. The bispectral response of the

microbubbles will not be affected by the acoustic attenuation, but the bispectrum of
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Figure 9.8: The fundamental and second harmonic images of Phantom #2 for a MI

of 0.16 with the tissue mimicking material (TMM) and the chamber filled with diluted

microbubbles (MB). CTR for the second harmonic image is −7.3 dB.
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tissue will due to the loss in SNR when the contrast agent concentration is too high.

Especially for the regions shadowed by microbubbles, the acoustic attenuation makes

the bispectral analysis impractical for evaluation of microbubble and tissue response.

Table 9.1: Maximum phase coherence values and thier standard deviations at 3−4 MHz

frequency range for different experimental measurements.

MB TMM

Max. Std. Max. Std.

Phantom #1 (MI 0.16) 4% 0.4% [∗0.39%] 67% 5.6% [∗3.8%]

Phantom #1 (MI 0.32) 10% 0.7% [∗0.95%] 83% 4.1% [∗3.4%]

Phantom #2 (MI 0.16) 5% 0.5% [∗0.49%] 17% 1.7% [∗1.5%]

Phantom #2 (MI 0.32) 7% 0.6% [∗0.68%] 71% 6.2% [∗3.8%]

Max.: Maximum bicoherence index.

Std.: Standard deviation calculated from experiments.

∗Std.: Theoretical standard deviation calculated by Eq. (9.16).

9.5 Conclusions

The bispectral analysis has been used for analysing non-Gaussian processes and eval-

uating nonlinearities. In statistics and signal processing the bispectral analysis has

many applications, although there are only a few examples in ultrasound (Hillis et al.,

2006). In this study, the bispectral analysis was used for the first time to evaluate the

harmonic generation of ultrasound contrast agents.

The main advantage of using higher-order spectral estimation techniques to second

order estimation techniques, such as correlation and power spectrum, is presence of the

phase information. The second order statistics suppresses the phase relation between

the frequency components. Higher-order spectral analysis maintain the phase informa-

tion and can reveal the phase coherent spectral components of a non-Gaussian process,

because the cumulants of a Gaussian random process are identically zero for orders

higher than 2.
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The higher-order spectral estimation techniques are usually criticised because of the

amount of data required to produce low variance estimates and the amount of com-

putational complexity involved. The requirement for large data lengths to reduce the

variance of the estimate makes bispectral analysis impractical for many applications.

Similarly, the computational complexity also reduces the practicality of this method,

where the fast Fourier transform (FFT) has a computational complexity in the order

of (N logN) and the bispectrum has a computational complexity of a two-dimensional

FFT in the order of (N logN)2. Another complication for ultrasound imaging appli-

cations is the necessity for using image registration algorithms to follow the region of

interest from the B-mode images.

The possible applications for the bispectral analysis to medical ultrasound imaging

are myocardial perfusion imaging and carotid imaging, where the boundaries between

the chambers of the hearth, arteries and tissue are easily distinguishable. In this study,

a similar experimental setup was created using a tissue phantom, where 100 B-mode

images were captured and processed to ensure a sufficient sample size and to reduce

the variance. Although a 100 B-mode frames were used to calculate the bicoherence

index, it does not increase the total imaging duration when compared with the existing

perfusion imaging techniques. Usually a few seconds to minutes of video recording

is necessary in order to evaluate the contrast perfusion by measuring the peak video

intensity, calculating the time-to-peak, and plotting the wash-in curves. Therefore,

there is no extra overhead for perfusion imaging of hearth and carotid imaging since

clinicians usually need more than tens of ultrasound frames to observe the behaviour

of the hearth or flow in the arteries.

Results show that higher-order spectral analysis allows separation of the harmonics

generated by microbubbles and tissue at low CTR. Unlike other tissue harmonic sup-

pression techniques based on multiple-excitations (Couture et al., 2008; Pasovic et al.,

2011), bicoherence is not susceptible to motion artefacts since movement does not af-

fect the phase relation between fundamental and harmonic components. The bispectral

analysis was proposed as an auxiliary tool for the second harmonic ultrasound imaging

applications with high SNR and low CTR. For low SNR values, the bispectral analysis

cannot differentiate between noise and the tissue response. For the second harmonic im-

ages with high CTR, the tissue and the microbubble response can be visually separated

and there is no need for the bispectral analysis.
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Chapter 10

Conclusions

Ultrasound imaging is an indispensable modality for medical diagnostics, because of

its non-invasive and non-ionizing nature. To assess the quality of an ultrasound image;

the spatial resolution, the dynamic range, and the sensitivity of the image must be

considered. The spatial resolution determines the minimum distinguishable spacing

between two point targets. The dynamic range is the ratio between the largest and

the smallest echoes can be represented in the image. More targets are simultaneously

detectable with a larger image dynamic range. The image sensitivity can be described

as the signal-to-noise ratio. The penetration depth, which was not considered as an

image quality metric, can be categorized within the image sensitivity.

To form a high resolution image, higher ultrasonic frequencies are preferable. How-

ever, high frequencies result in poor image sensitivity, since the penetration depth and

the SNR are reduced due to high attenuation. Both the SNR and penetration can be

improved by using chirp coded excitation. The resolution and the dynamic range of

an ultrasound image with chirp excitation are determined after the pulse compression

by the main lobe width and the peak sidelobe level, respectively. Therefore, this work

was focused on improving the compression ratio and decreasing the sidelobe level for

ultrasound imaging with chirp coded excitation.

The Fractional Fourier transform and the Fan Chirp transform were proposed as

filtering and compression tools to enhance the performance of pulse compression with

chirps. Examples were given through the applications on different problems encoun-

tered in chirp coded excitation for medical ultrasound imaging, including hard-tissue
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10.1 Dental Imaging

ultrasound imaging, soft-tissue ultrasound imaging and contrast-enhanced ultrasound

imaging.

10.1 Dental Imaging

Ultrasound is widely used for medical diagnostic imaging of soft-tissue, since it is

cheaper than other modalities, it does not use ionizing radiation, and it is safe and

painless for the patient. However, radiography is currently the most dominant diagnos-

tic imaging technique in dentistry. Dental X-ray scanners can achieve better resolution

than ultrasound imaging. However, ultrasound is a non-ionizing modality and can be

safely used for dental measurements. For this reason, an ultrasound contact imaging

method was developed as a diagnostic tool for dental imaging.

The preliminary study was performed on a tooth phantom built by materials with

similar acoustic impedances to human teeth. After achieving satisfactory results with

a tooth phantom, a human molar tooth was burrowed from the Leeds Dental Institute

Skeletal Tissues Bank to repeat the measurements on a real tooth sample. However,

the noise levels were 2−3 orders of magnitude higher mostly because of the attenuation.

Therefore, the linear frequency modulated chirp signals were proposed as an excitation

method for dental imaging to improve the SNR. Because the tooth layers were highly

attenuating, the detection of small cracks and weak echoes would not be possible with-

out using long duration signals carrying high energy. However, using chirps for dental

imaging introduced new problems on the receiver side, where the performance of pulse

compression with a matched filter was decreased.

For the tooth measurements, the received echoes were attenuated not only because

of depth and frequency dependant attenuation, but also because of scattering, disper-

sion and absorption. The structure of the dental tissues absorbs and scatters the sound

wave due to roughness and the irregular curved shape of the tooth. Therefore, the

change in the envelope shape and reduced bandwidth resulted in a discrepancy be-

tween the matched filter and received chirp signal. To overcome this pulse compression

problem, the FrFT was used to analyse the received echoes by separating chirp signals

overlapping in both the time and the frequency domains. The proposed technique was

used to measure the thickness of the enamel layer and for the evaluation of restorations

in human teeth. The results obtained with the proposed method was compared with
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10.2 Second Harmonic Imaging and Superharmonic Imaging

a Gaussian pulse, which is the de facto standard in thickness measurements, and with

a chirp excitation processed by a matched filter for pulse compression. The proposed

method achieved more accurate results with an average error of 1.6%, where the Gaus-

sian pulse and the chirp waveform processed by a matched filter had an average error

of 3.6%.

In this study, a contact imaging method was developed and a single element trans-

ducer was used to transmit an ultrasound wave and to receive the reflections from tooth

layers, cracks, cavities, and flaws. The amplitude of the return echo was used to obtain

a rough estimate of the thickness of the tooth layer or the location of a cavity or a

crack. This method is commonly used for non-destructive testing (NDT) applications

and known as the amplitude scan or the A-scan.

The current measurement setup cannot be practically used to image a tooth since

the transducer was moved by a CNC system. The final scanning instrument must

be a hand-held ultrasound probe that can be used in clinical application. Therefore,

the future work and the development stage include embedding position encoders on

the transducer, so a single element can be used to perform multiple A-scans. By

moving the transducer along the surface of the tooth being examined and combining

these individual A-scan lines with the spatial information an ultrasound image can be

formed. After these adjustments, the proposed contact imaging method and the coded

excitation technique can be used as a diagnostic tool in dentistry to measure the enamel

thickness, locate small cracks and discontinuities and detect possible restoration faults

in human teeth.

10.2 Second Harmonic Imaging and Superharmonic Imag-

ing

The main advantages of the second harmonic and superharmonic imaging over fun-

damental B-mode imaging are the increased spatial resolution and suppressed rever-

berations, near-field artefacts, and off-axis artefacts. Therefore, harmonic imaging

significantly improves the image quality. Besides increasing the spatial resolution, sec-

ond harmonic and superharmonic imaging have some drawbacks. Increased sidelobe

levels due to the spectral overlap between the harmonic and fundamental components,

decreased penetration depth and sensitivity, and reduced signal-to-noise ratio are the
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10.2 Second Harmonic Imaging and Superharmonic Imaging

main limitations of the ultrasound harmonic imaging. To overcome these limitations,

this study employed the coded excitation technique in conjunction with the FrFT and

FChT.

Lower excitation frequencies can be used in soft-tissue imaging, since the features of

the internal organs are larger than that of the human teeth. However, the penetration

is still an issue, since a penetration depth of up to 300 mm may be necessary for soft-

tissue imaging. Therefore, the linear frequency modulated chirp signals were proposed

as an excitation method to improve the penetration depth and the SNR.

Harmonic imaging provides better spatial resolution; however without separating

the spectrally overlapping harmonics a high-quality image cannot be formed. The pulse

compression with a matched filter introduces image artefacts due to the spectral overlap

between the fundamental and harmonic components. Conventional filtering techniques

such as a bandpass filter can be used to separate the harmonic components with a cost of

reduced bandwidth. Pulse inversion can remove the fundamental component by halving

the image frame rate. Filtering in the FrFT domain performs better than the band-

pass approach, because the received signals are transformed into another domain where

the second harmonic component is not overlapping with the fundamental component.

Therefore the FrFT was used as a filtering tool with wide bandwidth chirp excitation

in order to extract the overlapped second harmonic component without reducing the

bandwidth.

Using the FrFT to separate the harmonic chirps however may not be practical

for superharmonic imaging. Filtering process must be repeated individually for each

harmonic component, which will increase the redundancy, computation time and accu-

mulated error. Instead of computing several Fractional Fourier transforms, the FChT

was used to compress all spectrally overlapping harmonic chirp components with one

transformation. The final results showed that filtering methods based on the FrFT and

the FChT can reduce the high sidelobe levels of the compressed harmonic components

caused by the spectral overlap.

The second harmonic and superharmonic imaging are suitable for all types of med-

ical imaging applications where high image resolution is necessary such as imaging

small structures and detection of lesions. For high resolution imaging applications su-

perharmonic imaging outperforms the second harmonic imaging by offering significant

speckle reduction. Combining different frequency components reduces the speckle and
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increases the amount of detail can be visualized. However, the main issue for the

superharmonic imaging is the limited transducer bandwidth. The higher-order har-

monics are usually located at a frequency band where the transducer does not work

efficiently, therefore causing a reduction in the SNR and sensitivity. Currently, it is

not possible for the superharmonic imaging to become an imaging standard with the

commercially available probes and equipment. The ultrasound probes in the market

are insufficient for superharmonic imaging, because they do not have a large bandwidth

and sensitivity to accommodate fundamental to fifth order harmonics of the received

echoes. However, the current research on transducer technology is focusing on increas-

ing the transducer bandwidth. The recent developments in interleaved phased array

transducers and CMUT arrays showed improved transmission efficiency and reception

sensitivity, which will make them suitable for superharmonic imaging applications in

the near future.

Another drawback of this harmonic imaging study was that the results were pre-

sented with measurements performed in water and agar based tissue mimicking ma-

terials. It was not possible to perform ultrasonic measurements on human tissue or

animal tissue, since the instruments used in this work was not clinically or pre-clinically

approved. This problem has been experienced by many researchers, so the use of ul-

trasound phantoms is common in medical imaging research. Therefore, the use of

ultrasound phantoms can be legitimised for this study since the aim of the presented

work was to filter and to compress harmonic chirp components in second harmonic and

superharmonic imaging. The rate of harmonic generation, absorption and attenuation

are different for tissue, tissue mimicking materials and water, but the dynamics of har-

monic generation are the same. For this reason, to simulate the harmonic generation in

tissue, the ultrasound phantoms were made based on the previous research performed

on the tissue substitutes for ultrasound (Culjat et al., 2010; Rickey et al., 1995).

10.3 Microbubble Response to Chirp Excitation and its

Effects on Pulse Compression

Three major problems were addressed for chirp excitation in the presence of microbub-

bles that reduced the performance of the pulse compression with a matched filter.
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10.3 Microbubble Response to Chirp Excitation and its Effects on Pulse
Compression

First, it was proven by simulations that the amplitude and the phase of the scattered

pressure wave from a microbubble were different than that of the excitation signal. The

shape of signal envelope and the phase was corrupted due to microbubble resonance.

Second, it was presented that the mechanisms responsible for the nonlinear be-

haviour of microbubbles were different than that of tissue. Tissue generates only higher

order harmonics in a predictable manner, but microbubbles have unique acoustic sig-

natures that change with bubble size, encapsulation, gas core, excitation pressure, and

excitation frequency. Also generation of subharmonics and ultraharmonics increases

the sidelobe levels after compression, due to the increased amount of spectral overlap.

Third, an increase in noise level was observed for the experimental measurements

performed at high acoustic pressures. The reason for the increase in broadband noise

was the microbubble destruction, which reduced the SNR.

After addressing these problems, it was proven that the chirp rate was not cor-

rupted and the pulse compression in the existence of microbubbles was possible. The

scattered response from the microbubble population had the same chirp rate as the ex-

citation signal and the chirp rate of the harmonics generated by the microbubbles were

scaled by a ratio of n for the nth-harmonic. Therefore, filtering in the FChT domain

was performed to reduce the compression artefacts and improve the image quality for

contrast-enhanced ultrasound imaging and contrast-enhanced second harmonic imag-

ing.

However, the drawback of using the FChT as a filtering tool was a reduction in

image contrast. The CTR being one of the most important metrics in measuring the

microbubble response and the quality of the contrast-enhanced ultrasound image, the

results achieved by the FChT method may not be considered as an improvement by

radiologists. The reason for this was the pulse compression artefacts caused by the

aforementioned problems. The matched filter did not only compress the waveforms

scattered from microbubbles with the same chirp rate, but also the broadband noise

and the harmonics that were within the bandwidth of the matched filter. Yet, the FChT

filtered the broadband noise due to the peak detection method used for separating the

maximally compressed and partially compressed waveforms.
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10.4 Bispectral Analysis

10.4 Bispectral Analysis

Nonlinear propagation in tissue generates harmonics that are in phase with the fun-

damental component. The distortion of the wave happens in a predictable manner,

where the shape turns from sinusoidal to sawtooth. However, the harmonics generated

by a polydisperse population of microbubbles are not necessarily in phase with the

fundamental component. The second order spectral analysis, such as power spectrum,

suppresses the phase relation between the frequency components. Higher-order spectral

analysis maintains the phase information and can be used to reveal the phase coherent

spectral components of a non-Gaussian process. Therefore, in this study a higher-order

spectral analysis method was proposed to analyse the nonlinear microbubble behaviour.

After observing non-correlated phase behaviour between microbubble generated har-

monics and the fundamental component, the bispectral analysis was used to separate

the second harmonic response of tissue and microbubbles.

The bispectral analysis requires high amount of data to produce an estimate with

a low variance. The application of a higher-order spectral estimation technique in

ultrasound imaging must satisfy the requirement of > 50 samples depending on the

application. Therefore, the computational complexity and the demand for large data

lengths make bispectral analysis impractical for many applications. However, the bis-

pectral analysis can still be beneficially used in medical ultrasound imaging applications

such as myocardial perfusion imaging and carotid imaging, where clinicians require a

few seconds to minutes of ultrasound video to evaluate the contrast perfusion. In this

study, experimental measurements were performed with a tissue phantom, where 100

B-mode images were captured and processed to reduce the variance. The bicoherence

index was calculated for the regions with tissue and microbubbles, and used to measure

the phase coupling between fundamental and second harmonic components.

Results showed that higher-order spectral analysis allows separation of the harmon-

ics generated by microbubbles and tissue for ultrasound images with low CTR and high

SNR. For low SNR values, the bispectral analysis cannot differentiate between noise

and the tissue response. For the second harmonic images with high CTR, the tissue

and the microbubble response can be visually separated and there is no need for the

bispectral analysis.
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Appendix A

Time-Frequency Analysis

The Fourier analysis for a discrete signal can be summarised as the decomposition

of the function into sinusoids of different frequencies. The repetition of each sample

of the finite duration time series is mapped into discrete frequency bins by using the

discrete Fourier transform. This frequency information can be used to calculate the

distribution of the signal’s energy on the time-frequency plane, which will be explained

in the following sections.

The sampling frequency, fs, of the time domain signal plays an important role

on the Fourier analysis, since the largest frequency component that can be analysed

without aliasing is determined by the Nyquist-Shannon sampling theorem as fn = fs/2.

However, in this study the sampling frequency was always chosen to be considerably

larger than the Nyquist frequency, e.g. fs > 20fn. The reason for the oversampling of

the time domain signal was to increase the SNR, where the dynamic range is increased

by 3 dB for each 2 fold increase of the sampling frequency. If the quantisation noise

is assumed to be white Gaussian noise and evenly spread across the range of [0, fs/2],

increasing the sampling frequency will spread the noise across a wider frequency range.

A.1 Definition and Estimation of the Power Spectral Den-

sity

Let the real valued discrete time signal s[n] denote a sequence of random variables with

zero mean, E {s[n]} = 0. The autocovariance sequence of s[n] is defined as

R[k] = E {s[n] s[n− k]} . (A.1)
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A.1 Definition and Estimation of the Power Spectral Density

The relationship between the autocovariance sequence, R[k], and the spectral den-

sity function, P (f), is the discrete time Fourier transform (DTFT) that can be ex-

pressed as (Oppenheim & Schafer, 1975)

P (f) =

∞∑
k=−∞

R[k] e−j2πfk. (A.2)

Most of the spectral estimation methods, such as Blackman-Tukey method, exploit

this relationship to estimate the spectrum by using the autocorrelation function, Rss[k].

The autocorrelation reveals the similarities between the observations performed at dif-

ferent times and the existing frequencies in the signal can be estimated by using these

time delays between the observations. Since the autocorrelation is just the autocovari-

ance divided by the variance of the process, using the autocorrelation function results in

a normalised spectrum. Therefore, the following definition based on the autocorrelation

can be used to estimate the normalised power spectral density;

P (f) =
∞∑

k=−∞
Rss[k] e−j2πfk. (A.3)

For an ergodic process1 the autocorrelation function can be defined as

Rss[k] = lim
N→∞

1

N

N∑
n=1

s[n] s[n− k], (A.4)

A second definition for the power spectral density can be given as (Nikias & Petrop-

ulu, 1993)

P (f) = lim
N→∞

1

N

∣∣∣∣∣
N∑
n=1

s[n] e−j2πfn

∣∣∣∣∣
2

, (A.5)

To estimate the power spectral density (PSD), methods based on Fourier transform as

given in Eq. (A.5) can be used such as; raw periodogram, smoothed periodogram, mod-

ified periodogram, Bartlett’s method, Welch’s method, and Blackman-Tukey method.

These methods are some of the most commonly used spectral estimation techniques,

but not the all. The list can be extended by adding Multi-taper method, Singular

spectrum analysis, Maximum entropy, and parametric methods; such as Autoregres-

sive (AR), Moving Average (MA) and ARMA. For the sake of clarity, only some of the

non-parametric methods are explained in this section.

1A process is ergodic if all its moments can be determined from a single observation.
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A.1 Definition and Estimation of the Power Spectral Density

Periodogram: The periodogram PSD estimates were computed from a finite-

length discrete sequence using the fast Fourier transform (FFT) as

P (f) =
1

N

∣∣∣∣∣
N∑
n=1

s[n] e−j2πfn

∣∣∣∣∣
2

, (A.6)

where N is the total number of samples in the measurement. For long duration signals

with a large value of N the raw periodogram is a good PSD estimate, however for

short data lengths the frequency resolution is poor. Periodogram also suffers from

large sidelobes that can mask low amplitude signals. The main disadvantage of the

raw periodogram is the spectral bias and the fact that the variance does not decrease

as the N increases.

Smoothed Periodogram: The variance problem can be reduced by smoothing

the periodogram. Smoothing of the periodogram can be achieved by applying a filter in

the frequency domain. As the spectrum is smoothed the variance of the periodogram

is reduced, however it is also biased towards the local mean. Another disadvantage of

the smoothing is the reduction in resolution. Two closely spaced frequency components

might not be resolved, because the narrow peaks are spread out over a wider frequency

range after smoothing. Therefore, the capability of identifying individual peaks and

the ability of measuring the signal bandwidth accurately are significantly lower for the

smoothed spectrum.

Bartlett’s Method: The time domain signal is split into non-overlapping segments

as

s[n] = s1, s2, ...sK ,︸ ︷︷ ︸
s1[n]

sK+1, sK+2, ...s2K ,︸ ︷︷ ︸
s2[n]

..., sN−K+1, sN−K+2, ...sN .︸ ︷︷ ︸
sL[n]

(A.7)

where N = K · L is the total number of samples, K is number of samples in each

segment and L is the number of segments. Then, the periodogram is calculated for

each independent segment as

P{i}(f) =
1

K

∣∣∣∣∣
K∑
n=1

s{i}[n] e−j2πfn

∣∣∣∣∣
2

. (A.8)

The final estimate of the spectrum is obtained by averaging the estimates from these

periodograms

PB(f) =
1

L

L∑
i=1

P{i}(f). (A.9)
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Bartlett’s method reduces the variance of the periodogram at the expense of increased

bias and decreased spectral resolution, compared to raw periodogram (Oppenheim &

Schafer, 1975).

Welch’s Method: This method is similar to the Bartlett’s method, but the seg-

ments contributing to each periodogram are allowed to overlap. If non-overlapping

windows are used, a significant part of the signal is ignored due to the small values of

the windows near the edges. To avoid this loss of information, Welch’s method uses

overlapping windows.

The periodograms are not independent due to the overlap, but the variance is

lower than the Bartlett’s method since there are more periodograms to be averaged.

The Welch’s method can be defined as the averaged periodograms of overlapped and

windowed segments of the discrete signal s[n] as (Welch, 1967)

Pw,{i}(f) =
1

K

∣∣∣∣∣
K∑
n=1

w[n] s{i}[n] e−j2πfn

∣∣∣∣∣
2

, (A.10)

where Pw,{i}(f) is the windowed periodogram of the segment i, w[n] is the windowing

function, and K is number of samples in each segment. The final estimate of the

spectrum is obtained by averaging L estimates from Eq. (A.10)

PW (f) =
1

L

L∑
i=1

Pw,{i}(f). (A.11)

Blackman-Tukey Method: The spectrum is estimated by the smoothed and

truncated autocorrelation function. The autocorrelation function, Rss[k] in Eq. (A.4),

is windowed before calculating the periodogram as (Blackman & Tukey, 1958)

PBT (f) =

K∑
k=−K

w[k]Rss[k] e−j2πfk, (A.12)

where w[k] is the windowing function and 2K + 1 is the size of the window. The

bias, resolution and variance of the spectral estimates are controlled by the choice of

windowing function, which is explained in the next section. To minimise the bias, large

window size is preferable, but using large windows increases the variance. The variance

is reduced for smaller window size, but the resolution is decreased and the bandwidth

is increased.
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Modified Periodogram: The smoothness, resolution and variance of the spectral

estimates can be controlled by using filters, averaging and windowing. However, there

is always a trade-off between these parameters. In this study, the intended use of the

periodogram was to verify the spectral overlap between the fundamental and harmonic

frequency components. For this reason, a modified periodogram was chosen by focusing

on increasing the resolution and reducing the bias.

The spectral bias can be reduced by avoiding the sharp truncation of the s[n]. The

signal s[n] can be truncated gradually by using an appropriate window, which will be

explained in the next section. The windowing can be applied as

sw[n] =
1

U
w[n] s[n]. (A.13)

where U is the windowing gain that can be calculated by summation of all window

coefficients

U =

N∑
n=1

w[n]. (A.14)

Windowing also reduces the sidelobes in the periodogram that can mask low amplitude

signals.

When the FFT is used to process a discrete signal of length N , the spectral resolu-

tion of the FFT is defined as

∆f = fs/N, (A.15)

where fs is the sampling frequency. Increasing the length of the time domain signal N ,

also increases the frequency resolution. Therefore, zero padding in time domain was

performed on the recorded signals in order to increase spectral resolution after FFT for

all recordings. The zero padded signal

s̄w[n] = [0, 0, 0...., sw[n], ..., 0, 0, 0] , (A.16)

was used to calculated the modified periodogram as

PM (f) =
1

N ′

∣∣∣∣∣
N ′∑
n=1

s̄w[n] e−j2πfn

∣∣∣∣∣
2

, (A.17)

where N ′ is the size of the windowed and zero padded signal s̄w[n].

In this study, the spectral plots regarding to signal’s estimated power spectrum was

a modified periodogram with a 100% tapered Tukey window or a Hann window. This
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window was chosen to keep the widening of the frequency components at minimum, to

maintain the spectral resolution, to reduce the bias of the estimate, and to reduce the

spectral leakage. Averaging and smoothing of the periodogram was not used in this

work, since smoothing changes the bandwidth of the signal and averaging reduces the

resolution and increases the bias.

Example: To illustrate the differences between the aforementioned methods, the

received echo for the measurement performed in chapter 6 Figure 6.5 was processed

with the raw periodogram, the modified periodogram (100% tapered Tukey window),

the Blackman-Tukey method (100% tapered Tukey window), and the Welch’s method

(L = 8, 50% overlap and Hamming window). The resulting spectral plots are shown in

Figure A.1, Figure A.2, Figure A.3, and Figure A.4.

To compare the spectral resolution of each method the −6 dB bandwidth of the

fundamental frequency component located around 2.25 MHz was measured. The −6 dB

bandwidth is 0.804 MHz for the raw periodogram, which has the worst variance that

can clearly be observed in the Figure A.1. The raw periodogram was expected to

perform better in terms of resolution, but due to the high variance there is a significant

fluctuation in the values. The −6 dB bandwidth is 0.962 MHz for the Welch’s method,

which has the worst resolution when compared to the other methods due to averaging.

The −6 dB bandwidth is 0.772 MHz for the Blackman-Tukey method, which performs

better than Welch’s in terms of resolution and better than the raw periodogram in terms

of variance. The modified periodogram achieves a −6 dB bandwidth of 0.713 MHz

thanks to zero padding and elimination of sharp truncation errors by windowing in

time domain. None of these methods are superior than another, however the modified

periodogram was chosen in this study since it achieves a reasonable performance for all

important metrics; resolution, variance and bias.
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Figure A.1: Raw periodogram of the received signal.
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Figure A.2: Periodogram of the received signal processed by the modified periodogram

method.
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Figure A.3: Periodogram of the received signal processed by the Welch’s method.
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Figure A.4: Periodogram of the received signal processed by the Blackman-Tukey

method.
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A.2 Windowing

A.2 Windowing

In this study, the periodograms were mostly used for the visual representation of the

fundamental and harmonic frequency components and the spectral overlap between

them, rather than detection and estimation of signal’s power. For this reason, reducing

the spectral leakage while maintaining a high resolution was the main purpose of using

windows. The effects of negative frequency components are not mentioned, because

the harmonics are located closer to the fundamental frequency component and affected

more due to the spectral leakage and resolution problems

Some of the widely used window functions such as; rectangular, Bartlett, Hamming,

Hann (100% tapered Tukey window), Tukey, Blackman, Gaussian, Dolph-Chebyshev,

and Kaiser-Bessel were compared in terms of sidelobe characteristics, bandwidth and

worst case processing loss. The numerical comparison of these figures of merits are

listed in Table A.1. Some of these window functions are plotted in Figure A.5 to

illustrate the difference between various window shapes.

Minimum Resolution Bandwidth: The contribution of different signals can

be described as the coherent summation of signal’s energy in the frequency domain.

In order to be able to distinguish between closely spaced frequency components, the

separation between their frequency peaks must be at least as wide as the −3 dB width

of their main lobe. However, when two frequency components with same amplitude are

separated by less than their −3 dB bandwidth, they will appear as a single lobe in the

frequency domain (Harris, 1978). Therefore, the crossover points between the spectral

peaks must be less than 0.5, which corresponds to −6 dB points. For this reason, the

−6 dB bandwidth of the windows are chosen as a comparison metric.

Table A.1 shows the comparison between various windows in frequency bins, which

corresponds to the discrete intervals of the frequency domain. The widow functions

with narrower bandwidths results in better resolution, but higher sidelobes. E.g. the

rectangular window achieves the best resolution with a −6 dB bandwidth of 1.21 dis-

crete Fourier transform (DFT) bins, but it has the worst sidelobe performance with

a highest sidelobe level of −13 dB. As the main lobe width narrows, the more energy

leaks into the sidelobes. Therefore, the window functions such as rectangular, Bartlett

and 50% tapered Tukey with narrower bandwidth have higher sidelobe levels.
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A.2 Windowing

Table A.1: Comparison of various windows

Highest Sidelobe −6.0 dB Worst Case

Window Sidelobe Roll-off Bandwidth Process Loss

Level (dB) (dB/octave) (DFT Bins) (dB)

Rectangular -13 -6 1.21 3.92

Bartlett -27 -12 1.78 3.07

Hamming -43 -6 1.81 3.10

Hann -32 -18 2.00 3.18

Tukey a = 0.5 -15 -18 1.57 3.11

Blackman -58 -18 2.35 3.47

a = 2.5 -42 -6 1.86 3.14

Gaussian a = 3.0 -55 -6 2.18 3.40

a = 3.5 -69 -6 2.52 3.73

a = 2.5 -50 0 1.85 3.12

Dolph- a = 3.0 -60 0 2.01 3.23

Chebyshev a = 3.5 -70 0 2.17 3.35

a = 4.0 -80 0 2.31 3.48

a = 2.0 -46 -6 1.99 3.20

Kaiser- a = 2.5 -57 -6 2.20 3.38

Bessel a = 3.0 -69 -6 2.39 3.56

a = 3.5 -82 -6 2.57 3.74

Values in this table are taken from Harris (1978).
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A.2 Windowing

Spectral Leakage: The main reason of spectral leakage is the discontinuities in

the sampled signal either due to the truncation of the signal or due to sampling of non-

integer number of periods. The latter case is important for the periodograms processed

with Bartlett’s and Welch’s method and for spectrograms, which will be described in

the next section. Main indicators of a good spectral leakage suppression are low sidelobe

roll-off and low highest sidelobe level, which also reduces the bias.

Discontinuities in the sampled signal cause the signal’s energy to leak from the

frequency bins, where the actual signal’s energy exists, to adjacent frequency bins. The

spectral leakage results in amplitude and positional errors in the periodogram estimate,

especially for the harmonics with lower power levels (Harris, 1978). To reduce the effects

of spectral leakage, window functions are used: 1-) to assign a smaller weighting factor

to the samples of the signal that cause spectral leakage, 2-) to reduce the sampled

values to zero at the beginning and end so that the discontinuities in the sampled

signal are eliminated. Figure A.5 was plotted to point out this capability of cancelling

discontinuities, which is not clear in Table A.1. The windows with shoulders such as

Hamming, Gaussian, Kaiser-Bessel, Dolph-Chebyshev achieve low sidelobe levels, but

they cannot completely cancel these discontinuities.

In Figure A.5, it can be observed that only Hann and Blackman does not have

shoulders and they are better candidates to prevent spectral leakage. These two win-

dows also have the highest sidelobe roll-off value of −18 dB when compared with the

other window functions in Table A.1 thanks to the decrease of the window coefficients

to zero at the beginning and end of the function. A similar observation was performed

in Figure 2.3, where the spectral leakage at the second harmonic frequency was lower

for the window functions without shoulders.

Scallop Loss: Scallop loss can be described as the error in signal’s peak power,

because of its position in the discrete frequency domain. A frequency peak centred

exactly at one of the discrete frequency bins will be displayed correctly. However, when

the peak is not at the centre of a frequency bin, there is an error between the displayed

and the actual level. As the worst case scenario; if the peak is centred at half a DFT bin

away from equally spaced frequency bins, this error can be larger than 3 dB. However,

the scallop loss can be significantly reduced by oversampling and zero padding, where

both techniques are used in this work to minimise the scallop loss. Therefore, scallop

loss was not taken into consideration while choosing a window function.
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Figure A.5: Figure shows the shape of window functions for some of the windows

stated in this section. (Top-Left) the Hann window, (Top-Right) the Hamming window,

(Middle-Left) the Blackman window, (Middle-Right) the Dolph-Chebyshev window

(a = 3.0), (Bottom-Left) the Kaiser-Bessel window (a = 2.5), and (Bottom-Right) the

Gaussian window (a = 2.5).

203



A.3 Time-Frequency Distributions

Worst Case Processing Loss: The processing loss is due to zero values of the

window function near the boundaries. The worst case processing loss is the combination

of the maximum scalloping loss and the processing loss. This metric shows the total

reduction in SNR due to windowing and location of the frequency peak. For this reason,

minimising the worst case processing loss maximises the detectability. As Harris (1978)

stated that the window functions with a worst case processing loss larger than 3.8 dB

are very poor windows and should not be used. Therefore, the windowing functions

exceeding 3.8 dB level are not mentioned in this section. Note that the rectangular

window is an exception and it is only used for comparison purposes.

The choice of window function used in this study was result of a compromise between

resolution and spectral leakage. With 2.0 DFT bins, the Hann window does not have the

best resolution, however in terms of spectral leakage, it has a reasonable performance

with a highest sidelobe level of −32 dB and a sidelobe roll-off of −18 dB. The Hann

window also has a worst case processing loss of 3.18 dB, which is better than most of the

window functions listed in the Table A.1. Therefore, the Hann window was preferred

for most of the applications while tapering the time domain signal or estimating the

power spectrum.

A.3 Time-Frequency Distributions

The time analysis and frequency analysis by themselves cannot completely describe the

nature of the signal, therefore there is a need for combined time-frequency representa-

tion. E.g. for a chirp signal with an instantaneous frequency function of fc+(B/T )t as

given in Eq. (2.3), the frequency spectrum can only show the intensities of the existing

frequencies. The time-frequency representation of the same chirp however precisely

shows when these frequency components exist in time.

Short Time Fourier Transform (STFT): The STFT performs a time-localized

Fourier transform of the signal s(t) within a sliding window w(t) as

SSTFT (τ, f) =

∫ ∞
−∞

s(t) w(t− τ) e−j2πftdt, (A.18)

or in discrete form as

SSTFT [m, f ] =

N∑
n=1

s[n] w[n−m] e−j2πfn. (A.19)
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A.3 Time-Frequency Distributions

The final spectrogram can be represented as the magnitude squared STFT as

|SSTFT |2.
The achievable resolution by the window function is limited due to the uncertainty

principle. The time and frequency resolutions of the STFT cannot be chosen arbitrarily

at the same time. However, by increasing the window length and ratio of overlaps

between the windows a reasonable resolution can be achieved. Increasing the ratio of

the overlap significantly increases the computational load for long windows and signals,

but also the resolution of the spectrogram.

Wigner-Ville Distribution: This approach uses the autocorrelation function to

calculate the power spectrum by comparing the signal to itself for all possible time lags

as

SWV (t, f) =
1

2π

∫ ∞
−∞

s
(
t− τ

2

)
s
(
t+

τ

2

)
e−j2πfτdτ, (A.20)

or in discrete form as

SWV [n, f ] =
1

2π

M∑
m=1

s[n−m] s[n+m] e−j4πfm. (A.21)

The Wigner-Ville distribution is not a linear transform, therefore cross-terms will

occur when there is more than one chirp (Martin & Flandrin, 1985). Therefore, the

final time-frequency distribution will show the contributions from auto-terms and cross-

terms, which is the interaction between different components.

Wavelet Transform: In contrast to traditional techniques such as the STFT

spectrogram, the wavelet transform allows the use of variable window lengths. By

varying the window length or by scaling and shifting the wavelet function, different

frequency components of the signal can be analysed with a different resolution. The

wavelet transform has a higher time resolution for high frequency components and

lower time resolution for slowly changing low frequency components. For this reason,

it is also referred to as multi-resolution signal analysis. The wavelet transform can be

defined as (Daubechies, 1990)

Wψ(υ, τ) =
1√
υ

∫ ∞
−∞

s(t) ψ

(
t− τ
υ

)
dt, (A.22)

where υ is the scaling that modulates the width, τ shifts the time and ψ is the mother

wavelet.

205



A.3 Time-Frequency Distributions

The basic idea behind the multi-resolution analysis is based on the uncertainty

principle. Since ∆t ·∆f ≤ 1/2, it is not possible to achieve a good time and frequency

resolution simultaneously. The wavelet transform however, scales time window by mod-

ifying the wavelet function and can achieve varying time and frequency resolutions in

the spectrogram, which is also referred to as the scalogram.

For the case of LFM chirps, the estimation of the instantaneous frequency is de-

pendent on the wavelet function. The instantaneous frequency can appear with a

varying slope through different sections of the scalogram, since the spectrum has dif-

ferent resolutions for different frequencies. For this reason, the wavelet transform was

not preferred in this study.

Example: To illustrate the difference between these method a waveform was de-

signed similar to the example given in Figure 3.10. The waveform was superposition of

three different chirps. The first component of the simulated linear frequency modulated

chirp has an amplitude of 1, a duration of 20 µs, centre frequency of 5 MHz, and band-

width of 5 MHz. The second component has an amplitude of 1/4, a duration of 20 µs,

centre frequency of 10 MHz, and bandwidth of 10 MHz. The third component has an

amplitude of 1/9, a duration of 20 µs, centre frequency of 15 MHz, and bandwidth of

15 MHz.

Figure A.6 shows the STFT spectrogram of the simulated chirp signal processed by

a Hann window with 50% overlap, which is one of the common techniques for spectrum

estimation. For this example the signal length was 4096 samples and the window

length was 256 samples. For this window size, a satisfactory frequency resolution can

be achieved by sacrificing the time resolution. However, by increasing the window

overlap to 99% as shown in Figure A.7, the time resolution can be increased with

a cost of reduced frequency resolution due to the smoothing effect of averaging and

increased bias on the spectral estimation.

When the Kaiser-Bessel window is used to calculate the modified periodogram in-

stead of the Hann window, the effect of windowing on spectral leakage becomes clear,

as shown in Figure A.8. The fundamental and harmonic signals are stretched in fre-

quency domain and they have higher sidelobes when compared with the Figure A.7.

The reason for this is the high shoulders of the Kaiser-Bessel window (a = 2.5), which

makes is less effective than Hann window for suppression of spectral leakage.
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Figure A.6: Spectrogram of the simulated chirp signal processed with the STFT and a

Hann window with 50% overlap.

The contour plot of the Wigner-Ville distribution is given in Figure A.9, which is

the most preferred way of plotting distribution curves. The cross-terms, which are

causing the misinterpretation of the harmonic content of the signal, are clearly visible

in the figure. Therefore, the Wigner-Ville distribution was not used in this study for

spectrogram estimation.

In order to plot the scalogram of the simulated chirp, the continuous wavelet trans-

form, cwt function in Matlab, was used with second order Daubechies wavelets, as

shown in Figure A.8. Because the resolution is different for different frequency compo-

nents, the instantaneous frequency is not linear. The distribution of the signal’s energy

in time-frequency domain is significantly different than Figure A.7. This error can be

reduced by using different wavelet functions and scaling, but the problem cannot be

completely eliminated.
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Figure A.7: Spectrogram of the simulated chirp signal processed with the STFT and a

Hann window with 99% overlap
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Figure A.8: Spectrogram of the simulated chirp signal processed with the STFT and a

Kaiser-Bessel window (a = 2.5).

208



A.3 Time-Frequency Distributions

Time (µs)

F
re
q
u
e
n
c
y
(M
H
z
)

Wigner−Ville Distribution (dB)

−15 −10 −5 0 5 10 15

5

10

15

20

25

30

−40

−35

−30

−25

−20

−15

−10

−5

Figure A.9: Wigner-Ville distribution of the simulated chirp signal.
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Figure A.10: Scalogram of the simulated chirp signal processed with the continuous

wavelet transform by using second order Daubechies wavelets.
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Appendix B

Harmonic Generation Through

Nonlinear Propagation

The propagation of ultrasonic waves is nonlinear. This nonlinearity engenders a pro-

gressive distortion of the wave shape resulting in acoustic shocks and generation of

high-order harmonics. This phenomenon is usually referred to as “nonlinear propaga-

tion”.

The shock wave generation is due to the variation in phase velocity, which is

caused by two physical mechanisms; convection and nonlinearity of pressure-density

relation (Duck, 2002). Propagation speed of the ultrasound wave is different for the

compression and expansion phases, because waveform peaks travel faster than troughs.

At the compression phase of the wave the speed is higher, since compression increases

the density of the medium. It is slower during the rarefaction phase, where the density

is lower as shown in Figure B.1. Since (c0 + ∆V+) > (c0 −∆V−), the initial sinusoidal

waveform progressively deforms and becomes a sawtooth wave.

Figure B.2(left) shows the generation of a shock wave and higher-order harmonics

due to nonlinear propagation. The measurements were performed in de-ionized and

degassed water at a distance of z = 20 mm, z = 40 mm, and z = 90 mm for a 20 cycle

sinusoidal waveform with a centre frequency of 2.25 MHz. The waveform steepens and

the sinusoidal wave turns into a sawtooth wave as the ultrasound wave propagates.

This progressive distortion of the waveform shape gives rise to higher-order harmonics

as given in Figure B.2(right).
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Figure B.1: Spatial plot of the initial waveform at t = 0. Propagation speed of the

ultrasound wave is different for the compression phase (c0 + ∆V+) and the expansion

phase (c0 −∆V−).
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Figure B.2: (Left) Temporal plot of the ultrasound wave and (Right) the associated

frequency spectra for (Top) z = 20 mm, (Middle) z = 40 mm, and (Bottom) z = 90 mm.
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This relation between the variations in propagation speed and shock wave gen-

eration was modelled and formulated by Hamilton & Blackstock (2008). The shock

wave parameter as defined by Hamilton & Blackstock (2008) and Duck (2002) can be

expressed as;

σsw =
2π

ρ0 c30
[ p0 zf(1 +B/2A) ] (B.1)

where ρ0 is the density of the medium, c0 is the speed of the sound wave, p0 is the

acoustic pressure at the source, f is the frequency, z is the distance, β = 1 + B/2A is

usually referred to as the nonlinearity coefficient of the medium.

For σsw ≥ 1 shock wave formation starts. For example, to achieve shock formation

(σsw = 1) in degassed and de-ionized water at room temperature, one needs a p0 · z · f
product of 14.8 MPa·MHz·cm. However, it doesn’t mean that there is no harmonic

generation taking place below this threshold.

Hamilton & Blackstock (2008) combined the Fubini and Fay solutions including pre

and post-shock regions. Their results showed that the harmonic generation occurs even

for σsw ≤ 1. For σsw ≥ 3 all harmonics decay due to absorption as shown in Figure B.3.
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Figure B.3: Spectral amplitudes of fundamental and harmonic components as a function

of the shock wave parameter, σsw.
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In this work the shock wave parameter is calculated according to Eq. (B.1), and the

power levels of generated harmonics are estimated using Figure B.3 and the harmonic

amplitudes are referred to as Bn for the n-th harmonic.
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Appendix C

Microbubble Simulation Model

The bubble dynamics and cavitation was first analysed by Rayleigh (1917) for air bub-

bles in liquids. After culminating with the work done by Plesset (1949), the Rayleigh-

Plesset equation is obtained as

ρ

(
RR̈+

3

2
Ṙ2

)
= pL − p∞, (C.1)

where R is the bubble radius as a function of time, ρ is density of the liquid, p∞ is the

pressure in the liquid at infinity, pL is the pressure in the liquid at the bubble boundary.

The pressure at infinity can be expressed as

p∞ = P0 + Pdrive(t) , (C.2)

where P0 is the hydrostatic pressure and Pdrive(t) is the acoustic driving pressure.

The equation is further extended to model the bubble behaviour more accurately

as given in Eq.(C.3). In the literature this equation is sometimes known as Rayleigh-

Plesset-Noltingk-Neppiras-Poritsky (RPNNP), named after its developers Neppiras (1980);

Neppiras & Noltingk (1951); Noltingk & Neppiras (1950); Plesset (1949); Rayleigh

(1917).

ρ

(
RR̈+

3

2
Ṙ2

)
=

(
P0 +

2σ

R0

)(
R0

R

)3γ

− 2σ

R
− 4µṘ

R
− (P0 + Pdrive(t)), (C.3)

where R0 is the initial bubble radius at equilibrium,γ is the polytropic index, σ is the

surface tension between liquid and bubble interface and µ is the viscosity of the liquid.

Ultrasound contrast agents are coated microbubbles, so different models are de-

veloped to simulate the effect of the shell. The Sarkar model is one of the simplistic
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C.1 Simulation Parameters

models, which often used to calculate the radial oscillations of coated microbubbles.

This model is basically an extension of the Rayleigh-Plesset equation (Chatterjee &

Sarkar, 2003)

ρ

(
RR̈+

3

2
Ṙ2

)
=

(
P0 +

2σ

R0

)(
R0

R

)3γ

− 2σ

R
− 4µṘ

R
− 4κSṘ

R2
− p∞ (C.4)

where κS is the dilatational viscosity of the shell.

Marmottant et al. (2005) further extended Eq. (C.4) by defining the surface tension

to be radius dependent to compensate for the effect of shell elasticity, χ.

ρ

(
RR̈+

3

2
Ṙ2

)
=

(
P0 +

2σ(R0)

R0

)(
R0

R

)3γ

− 2σ(R)

R
− 4µṘ

R
− 12µSεṘ

R2
− p∞ (C.5)

where µS is the shear viscosity of the phospholipid shell, ε is the shell thickness, and

the radius-dependant surface tension is defined as

σ(R) =


0 if R ≤ Rbuckling

χ

(
R2

R2
buckling

− 1

)
if Rbuckling ≤ R ≤ Rrupture

σ if R ≥ Rrupture

(C.6)

The buckling and rupture radii of the microbubble are defined as Rbuckling = R0

and Rrupture = R0

√
1 + σ/χ.

C.1 Simulation Parameters

Table C.1 lists the symbol definitions and their values used in the simulations.
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C.1 Simulation Parameters

Table C.1: Parameter values used in the simulations

Symbol Parameter Definition Value Unit

R bubble radius (function of time) m

Ṙ bubble wall velocity m/s

R̈ bubble wall acceleration m/s2

R0 initial bubble radius at equilibrium (constant) m

p∞ pressure in the liquid at infinity Pa

pL pressure in the liquid at the bubble boundary Pa

Pdrive(t) acoustic driving pressure Pa

pi pressure inside the bubble at equilibrium Pa

P0 hydrostatic pressure 101325 Pa

ρ density of the liquid (water) 998 kg/m3

σ surface tension of water 0.0728 N/m

µ shear viscosity of the liquid (water) 0.001 Pa·s

µS shear viscosity of the shell (phospholipid) 0.5 Pa·s

γ polytropic gas index for SF6 (adiabatic) 1.095 -

GS shear modulus of the shell 20× 106 Pa

ε shell thickness 4× 10−9 m

κS dilatational viscosity of shell (κS ≈ 3εµS) 6× 10−9 Pa·m·s

χ shell elasticity (χ ≈ 3εGS) 0.3 N/m
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