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Abstract 

 The main aim of my project is to find new feedback driven enzymatic 

systems and to develop new biochemical oscillators. Such systems help in the 

understanding of nonlinear behaviour in biological systems and may also find 

applications in, for example, drug delivery or material science. 

The first step was to obtain a clock behaviour and bistability in a new enzymatic 

system, the urea/urease/sulphuric acid reaction. A kinetic model has been proposed 

and compared with the experimental results. 

Secondly, front propagation has been also observed in space under specific range 

of conditions and the results have been analysed theoretically by expansion of the 

model into spatial dimension. 

Additionally irregular oscillations in the urea/urease/acetic acid system in flow 

were observed. Attempts to explain this behaviour theoretically have been made and 

discussed.  

In order to produce more robust, regular oscillations in the urea/urease reaction, 

literature and experimental investigations of reactions that could provide negative 

feedback were made. The most obvious strategy to obtain a pH oscillator is to find an 

H+ autocatalytic reaction, in which case the best candidates from organic reactions 

was hydrolysis of esters to produce a carboxylic acid. Simple general models have 

been proposed and several examples of esters have been investigated experimentally. 

Apparently one of the investigated esters, acetyl salicylic acid, exhibited very 

interesting behaviour from the perspective of chemical locomotion. The motion of 

aspirin has been analyzed qualitatively under different set of conditions.   
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1.1 Introduction 
 

When scientists try to describe any living organism or a system, the first striking 

observation is its periodicity, from the macroscale of planetary systems through 

seasonal climate cycles on the Earth to anatomical cycles in humans and animals. 

The need to understand and control of biological processes led scientists to find 

many examples of periodical regular changes exhibiting a wide ranges of periods: 

from cardiac rhythms (1 s) to ovarian cycles (weeks). Many of these processes take 

place at the cellular level, such as calcium, glycolytic or cAMP oscillations.  

Table 1.1 Biochemical and Cellular Rhythms
1
 

Rhythm Period 

Membrane potential oscillators 10 ms – 10 s 

Cardiac rhythms 1 s  

Smooth muscle contraction Seconds – hours   

Calcium oscillations Seconds – minutes  

Protoplasmic streaming  1 min 

Glycolitic oscillations 1 min – 1 h 

cAMP oscillations 10 min 

Insulin secretion Minutes  

Gonadotropic hormone secretion Hours  

Cell cycle 30 min – 24 hours 

Circadian rhythms 24 h 

Ovarian cycle Weeks – months  

 

  Starting from the cellular level, chemistry begins to play an increasingly important 

role in governing the cyclic processes. The history of observations of chemical 

oscillations begins 400 years ago when Boyle observed oscillatory ignition of 

phosphorus
2
, though not many more examples of chemical oscillations were found 

until the discovery of periodical changes of colours in a mixture of potassium 

bromate, cerium(IV) sulphate, propanedioic acid, citric acid and dilute sulphuric acid 

made by Belousov in late 1950s
3
. Although this finding  was not considered 

seriously at that time, a rediscovery of this reaction by Zhabotinsky
3
 increased the 

interest in studying this “exotic” system. From that moment both intensive 
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theoretical and experimental studies have been done on the Belousov – Zhabotinsky 

(BZ) reaction. The BZ reaction began to be used as a model system to investigate 

oscillatory behaviour in different modified set-ups, such as with application of an 

electric field
4
, in silica gels

5
, in microemulsions

6
 or as coupled oscillators

7
. 

Later on, new chemical systems exhibiting oscillations were discovered and 

created; the group of pH oscillatory systems create one of the largest and the most 

well studied. This is explored more in detail in section 1.5.  

Although the BZ reaction has many interesting properties, the main practical 

problem arising from this system is the toxicity of the bromine components of this 

system, which does not allow this reaction to be applied, for example, in drug 

delivery. The same problems appear in all of the other known inorganic oscillatory 

systems. This is one of the main reasons for an urgent need of the creation of a non-

toxic organic-based pH oscillator. The most promising group of reactions that has 

been deeply studied are enzyme-catalyzed reactions that are described in detail in 

section 1.3 and 1.4.  

       Section 1.2 explains the basic theoretical background of nonlinearity and 

autocatalysis in chemical kinetics, especially clock reactions (section 1.2.1), 

bistability and oscillations (section 1.2.2), and fronts (section 1.2.3). 

 

1.2 Nonlinearity and autocatalysis 
 

In order to observe complex behaviour in chemical systems in vitro two general 

criteria have to be fulfilled: the presence of feedback in the chemical kinetics and far-

from-equilibrium conditions.  

Possibly the simplest type of chemical reaction is described by the equation: 

 

A + BC → AB + C           (1.1) 
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so that  

 

       
  BCA

CABBCA
k

dt

d

dt

d

dt

d

dt

d






     (1.2) 

 

Keeping the concentration of A or BC in great excess of that of the other, a pseudo-

first-order reaction is established. Thus all the other kinetic processes in chemistry 

are nonlinear which means that the vast majority of chemical reactions belong to this 

second group. Of particular interest here will be systems that show rate acceleration 

with extent of reaction. 

The best way to visualise these considerations is to plot variation of the 

reaction rate with the extent of reaction as in Fig. 1.1
2
. The only linear dependence is 

seen in the middle curve (i) that describes a first order reaction. The reaction rate 

plots for simple cases of second- and half-orders show significant deviation from the 

linear case. Nevertheless in every case the reaction rate decreases with consumption 

of the reactants which means that it is a deceleratory process. 

Figure 1.1 Dependence of reaction rate on extent of 

conversion for (ii) half-order, (i) first-order and (iii) 

second-order kinetics
2
 

 

 

 

An additional source of deviation from linearity in chemical kinetics is the presence 

of feedback. Feedback is present when ‘the products of later steps in the mechanism 

influence the rate of the earlier reaction, hence the rate of their own production’
2
. 

Then the processes can contain negative or positive feedback. The most widespread 

form of feedback is autocatalysis as in: 
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A + B → 2B     Rate = k[A][B]   (1.3) 

or  

A + 2B → 3B     Rate = k[A][B]
2
  (1.4) 

 

where equation (1.3) represents quadratic and (1.4) cubic autocatalysis that can be 

visualised by plotting again the variation of the reaction rate with the extent of 

reaction. In Fig. 1.2 examples of acceleratory reactions are shown. In all the cases 

when autocatalysis is present the rate of reaction increases at the beginning until 

reaching a maximum before decreasing to zero.   

 

Figure 1.2 Dependence of reaction rate on 

extent of conversion for acceleratory 

systems with positive feedback: (i) 

quadratic autocatalysis, (ii) cubic 

autocatalysis
2
 

 

 

 

 

Far-from-equilibrium conditions could be obtained in several ways. The first 

is to set up the initial concentrations in batch reactor in order to make the system 

approach the equilibrium. Another method is to perform the reaction in a flow 

reactor where continuous exchange of chemical species takes place through fresh 

inflow and matched outflow of reactants. 

 



23 

 

 
 

1.2.1 Clock reactions in a closed system 

  

If a closed, thermostated reactor is considered as shown in Fig. 1.3, the 

system that contains positive feedback in its kinetics exhibits its autocatalytic 

character in clock behaviour
8
.  

 

Figure 1.3 Example of thermostated  

batch reactor 

 

 

 

 

 

 

Clock reactions are characterized by a rapid acceleration of concentration of 

at least one of the species after an induction time (tind). In the case of a pH clock, the 

species are H
+
 or OH

-
. This behaviour is usually visualised by plotting concentration 

or reaction rate as a function of time, as in Fig. 1.4.  

 

 

                                 

 

 

 

 

Figure 1.4  Dependence of (a) concentration of a reactant A, and (b) reaction rate on time for 

an autocatalytic reaction
2
 

 

After the clock takes place, the system reaches its equilibrium state, then it is 

impossible to return to the initial state. There are known examples of reactions 
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displaying oscillations in closed system, such as the Belousov-Zhabotinsky or 

chlorite-iodide-malonic acid reaction
9
, though the nature of all batch oscillations is 

transient and they eventually disappear in a relatively short timescale. Oscillations 

occur in intermediate concentrations, not reactants or products. 

There is a possibility to observe a clock profile or an acceleration of the reaction 

without autocatalytic kinetics in the system
10

. This situation occurs when rapid 

removal of an inhibitor takes place or with phase transfer of one of the substrates. 

Then according to a simple model only one of the species exhibits acceleration in its 

rate of production (Fig. 1.5 d), whereas the other exhibits only a very slow 

exponential decrease (Fig. 1.5 c).  

  

Figure 1.5 Illustration of changes of concentration of: (a) substrate [A], (b) product [B] and 

their derivatives in time (c) and (d) respectively for a simple model of inhibitor removal 

 

Conversely, the classic model of a simple autocatalytic system shows that both the 

substrate and the product show an acceleration in their consumption (Fig. 1.6 a) and 

production (Fig. 1.6 b). 
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Figure 1.6 Illustration of changes of concentration of: (a) substrate [A], (b) product [B] and 

their derivatives in time (c) and (d) respectively for a simple model of autocatalytic 

production 

 

Then to confirm positive feedback in the system requires either monitoring 

whether other species display acceleratory kinetics, or performing the reaction in 

CSTR in order to find bistability.  

1.2.2 Bistability and oscillations in an open system 

 

When a reaction that contains feedback in its kinetics is performed in a 

Continuous-Flow well-Stirred Tank reactor CSTR, as shown in Fig. 1.7, the system 

is kept in far-from-equilibrium conditions. The reactants are continuously pumped by 

a calibrated peristaltic pump into the well-stirred reactor through two or more 

channels. At the same time the outflow of products takes place in order to keep the 

volume of the reaction constant. 
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Figure 1.7 Example of the 

continuous-flow well-stirred 

tank reactor. A, B – inflow 

channels connected to 

peristaltic pump, q – flow, a0, 

b0 – initial concentration of A 

and B,  a,b – concentration of 

A and B in the reactor  

 

The rate of pumping and the size of reactor can influence the qualitative behaviour of 

the system. Depending on the flow rate and initial concentrations the system can be 

in one of three possible states. When the flow rate is very low the residence time of 

the molecules in the reactor is long enough to reach close to the chemical equilibrium 

state, called the thermodynamic state. When the flow rate is very high there is 

insufficient time for reaction to occur and an unreacted steady state is present, called 

the flow state. For a range of intermediate flow rates more complex behaviour is 

present as discontinuous changes in concentrations of reactants take place during 

continuous changes of the parameter (flow rate). This phenomenon is known as a 

bifurcation
2
. Depending on the kinetics of the system several types of bifurcations 

are possible. A saddle-node bifurcation causes the coexistence of two or more steady 

states i.e. multistability. The simplest scenario in a multistable system is bistability 

described above. It consists of two stable branches and one unstable branch as shown 

in Fig. 1.8. The interval of flow rates where we have either the flow or the 

thermodynamic branch depends on the history of the reaction; this is called 

hysteresis
2
. Thus if we start from the high flow rate and decrease it, we follow the 

flow branch, and if we start from the low flow rate and increase it, we follow the 

thermodynamic branch. In between those two branches a dashed line appears that 

represents an unstable steady state that can be calculated numerically but not 
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obtained experimentally as whenever the system is perturbed to the in unstable state 

it directly goes to a stable one. The range of flows where coexistence of two steady 

states takes place usually varies with initial concentrations of all substrates in the 

system. 

 

Figure 1.8 Representation of system displaying bistability: a bifurcation diagram where: tres 

is residence time, ass is a steady state value of variable, for example pH, or concentration of 

substrate
2
 

 

 Another type of bifurcation that takes place in an open system is a Hopf 

bifurcation
2
. It is a transition from a steady state to oscillations when one parameter 

is varied. As with bistability, the region where oscillations are present depends on the 

initial concentration of substrates and flow rate. Also the amplitude and frequency of 

oscillations differs depending on the initial conditions in the system. A very useful 

tool for controlling the system is a cross-shape phase diagram, shown in Fig. 1.9. It is 

a plot of the dynamical behaviour as a function of two parameters. It could be a 

theoretical or an experimental map of a complex chemical system showing regions of 

steady states, bistability and oscillations. It was first theoretically constructed by De 

Kepper, Kustin and Epstein for the chlorite-iodate-arsenite reaction
11

.       
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Figure 1.9 Schematic representation of 

bistability and oscillatory regions depending on 

flow rate and concentration of inhibitor: i.e. a 

phase diagram
12

  

 

 

 

 

  

1.2.3 Fronts 

 

Autocatalytic reactions are also known to display a number of characteristic 

spatial effects when coupled with diffusion. Chemical wavefronts and patterns are 

observed
2
. These phenomena are widespread in nature e. g. Lisegang structures in 

minerals
13

, or mechanisms of biological morphogenesis
14

. 

The simplest nonlinear spatial phenomenon is a reaction-diffusion front. In a 

chemical front the reaction occurs at the boundary between the reactant and the 

product as it propagates through the mixture. The first chemical fronts were observed 

by Luther in a permanganate oxidation of oxalic acid in 1906
15

. Since that discovery 

many chemical fronts have been reported of which pH fronts are one of the most 

well-studied. A pH front is usually visualized by pH indicators that change colour 

significantly when the clock reaction takes place so that it is possible to observe the 

transitions between substrate and product solution. Propagation of the front may be 

either one-dimensional in a thin tube or two-dimensional in a Petri dish
8
 or Hele-

Shaw cell
16,17

 (with a reasonably thin solution or gap width, otherwise the fronts 

becomes three-dimensional). The more dimensions, the more complex behaviour 

could be observed. Tubes, Hele-Shaw cells and Petri dishes are closed systems where 

after an initiation the front propagates until it reaches an equilibrium state. To study 
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more complex behaviour, chemical waves and fronts can be examined in an open 

system
8
. There is a number of examples of such different open reactors, e.g. 

continuously-fed unstirred reactor
18

. As biological and geological systems belong to 

a group of non-uniform media, a number of experiments exploring chemical waves 

performed in spatially modulated systems have been made.
19,20

   

  The typical chemical front is initiated by putting one drop of either the 

product solution or catalyst into the reactant solution. Depending on the spatial 

orientation of the tube/Hele-Shaw cell the front may propagate horizontally or 

vertically. An important parameter describing wavefronts is the front speed that is 

defined as the distance travelled per unit of time. In case of a system with quadratic 

autocatalysis planar front speed is constant and depends on the concentrations of 

substrates and the diffusion coefficient, expressed in equation 1.5: 

)'(DkAc 
         (1.5) 

where: c – wave speed, A – constant, D – diffusion coefficient, k’ – pseudo-first rate 

order rate constant of autocatalysis.  

Another important parameter describing a chemical front is the curvature
8
. In 

general, propagating fronts can be planar or curved, stable or unstable, as shown in 

Fig. 1.10.    

Figure 1.10 Examples of a planar (a) and a curved (b) front in 

the bromate-sulphite reaction, [BrO3
-
]0 = 0.05 M,  

[


3HSO ]0 = 0.01 M, [
2

3SO ]0 = 0.03 M, indicator: bromocresol 

purple, tube diameter: (a) = 1 mm, (b) = 5 mm 
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The simplest method
12

 of analysing the curvature K of the front in pseudo 2D system 

is in terms of radius, R, where: 

K = 1/R          (1.6) 

When K is positive, the front curves towards the direction of propagation. When K is 

negative, the front curves in the opposite direction. In a planar front K = 0 so it has 

an infinite radius of curvature
8
. Curvature effects depend on the effect of convection 

that arise from differences in the density between reactants and products
8
. As the 

density depends on the temperature and composition of the solution, both front speed 

and curvature vary with the concentration of substrates and also depend on whether 

the reaction is exo- or endothermic. From those differences, two types of convection 

–  simple and double-diffusive (multicomponent) –  can arise
8
. The first one appears 

when both thermal and volume changes are positive (ΔT > 0 and ΔV > 0) so that the 

reaction is exothermic and density decreases. An example is the iodate-arsenous 

reaction
21

. The other case is when the temperature rises but there is a volume 

contraction (ΔT > 0 and ΔV < 0) so the reaction is still exothermic but the density 

increases, as in the iron(II)-nitric acid reaction
22

. Double-diffusive convection may 

also appear when ΔT and ΔV have the same sign arising from differences in 

diffusion coefficients of reactants and products as the iodate-nitric acid
23

 or the 

iodate-sulphite system
24

. Double-diffusive convection is a phenomenon widespread 

in nature and was studied primarily in mixing in currents in oceans
25

. 

1.3 Kinetics of enzymatic reactions 

 

The same as other catalysts, enzymes provide an alternative path with lower 

free energy of activation of a specific reaction, though, as they are macromolecules 

sensitive to changes of many parameters, the kinetics of enzyme-catalyzed processes 

can be complex. One of the most well known and simplest models of enzyme 
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catalysis was proposed in 1913 by Michaelis and Menten
26

. They assumed that the 

enzyme catalyzed reaction proceeds through two steps: 

ESSE 11 k,k
           (1.7)           

PEES 2k
                    (1.8) 

where: E – enzyme, ES – enzyme-substrate complex, P – product,    

Assuming that [S0]>>[E0] and k-1>>k2 so that the reaction (1.8) is a rate determining 

step and using steady state approximations so that the concentration of enzyme-

substrate complex is constant in time, 0
]ES[


dt

d
, the initial velocity (v0) of the 

enzymatic reaction is given by: 

]S[

]S[
0




M

M

K

V
v             (1.9) 

where:  

1

21

k

kk
KM


  (Michaelis constant),                  (1.10) 

02 ]E[kVM  (maximum initial rate)         (1.11) 

The maximum velocity, V
M

 (1.11), gives information about the rate when the whole 

enzyme present in the system is converted to the enzyme-substrate complex. The 

constant k
2
 in eq. 1.11 is called the turnover number. This constant gives information 

about the number of molecules of substrate converted into product per unit of time. 

As the turnover numbers could be measured only for pure enzymes, the activity of 

enzymes is usually given as units of activity per milligram of protein. One unit of 

activity is the amount of enzyme that produces one micromole of product per minute. 

The Michaelis constant, K
M

, indicates the strength of ES binding when k-1>>k2. The 
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bigger the value of K
M

, the weaker the binding. Values of K
M

 vary between 10
-2

 and 

10
-7 

M. K
M

 depends on pH and temperature.  

 Enzymes are catalysts that are very sensitive to many factors. The presence of 

other compounds can either increase or decrease their catalytic activity.  The first 

case is in the presence of molecules called coenzymes
26

. Decrease of enzyme activity 

can proceed through three different kinetic pathways depending on type of inhibitor 

present in the system
26

. The first type is called competitive inhibition as both the 

substrate (S) and the inhibitor (I) compete for the same active site.  Noncompetitive 

inhibition appears when the inhibitor does not bind to the active site but stops the 

enzyme from releasing the products. When the inhibitor binds not to the enzyme 

itself, but to the enzyme-substrate complex in order to create inactive ESI complex 

the inhibition is uncompetitive.  

 Enzyme activity dependence on the pH is also explained in terms of creation 

of active and inactive complexes by binding H+26
.  The complexes exist in reversible 

equilibria: 

 EnH
2
  EnH- + H+   En

2-
 + 2H+           (1.12)        

For many enzymes, both EnH
2
 and En

2-
 complexes are inactive, whereas EnH

-
 is the 

active one. From those dependencies, the activity of enzyme versus pH plot is 

usually a bell-shape curve specific for each enzyme. 

 Apart from the simple case with one active site, the enzyme can possess two 

or more active sites. In that case the mechanism could be sequential and proceed 

according to either an ordered or random path
27

. In an ordered mechanism first the 

substrates are bound and then products also released in an established sequence. In a 

random mechanism also binding of the substrates takes place before release of any 

product, but in both steps there is no order in which the substrate or product 
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undergoes reaction first. There is also a nonsequential mechanism possible called 

“ping-pong” when one of the products is released before the second substrate is 

bound. 

 In many cases, when enzymes possess multiple active centers, the Michaelis-

Menten model is not valid. Several models such as the allosteric or the induced-fit 

model take into account additional effects such as cooperativity
27

.          

1.4 Nonlinearity in enzymatic reactions 

 
Enzymes are essential catalysts in vast majority of metabolic processes in 

human body.  Metabolic pathways are connected to each other by a complex network 

where many important reaction chains proceed in cycles. In such important 

biochemical cycles such as citric acid, glyoxylate or urea cycle all steps are enzyme-

catalyzed
28

. It is obvious that feedback is present in those pathways because of 

nonlinear, periodical production of certain compounds. The probability that enzyme 

catalysis is the main source of feedback in those cycles is very high. 

Many enzymatic reactions have been studied theoretically for decades from 

the perspective of being potential oscillators. The early models where oscillations 

were seen either involved a two enzyme system where the product of one reaction 

acted as an inhibitor for the other enzyme
29,30

, or when substrate inhibition was 

coupled with product activation
31

, or when in two-substrate systems one acts as 

inhibitor
32

. Newer detailed studies
33

 showed that fluctuations in enzyme structure 

lead to violations of Michaelis-Menten kinetics and manifest in excess substrate 

inhibition effect. This effect is responsible for dynamic disorder driven bistability. 

Also oscillations caused by buffer and salt concentration were studied when enzyme 

reactions were performed in a charged membrane
34

. Theoretical models suggested 

oscillations occurred because of the pH-enzyme activity dependence
35

 where pepsin 
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and chymotrypsin were suggested as potential enzymes for pH oscillators. 

Additionally potential pH oscillations in enzyme-catalyzed ester hydrolysis were 

studied by Ohmori and coworkers in an immobilized enzyme system
36

, 

compartmentalized reactor
37

 or a CSTR
38

. They studied trypsin, bromelain, ficin, 

chymotrypsin and papain catalyzed reactions, where only the last two gave 

oscillations in a reasonable range of experimental parameters. 

The first and most intensively studied in vitro oscillating enzymatic system is 

glycolysis where allosteric phosphofructokinase is the main enzyme responsible for 

the oscillatory behavior.  The detailed mechanism and ways of controlling the 

glycolytic system were studied from the oscillations in yeast cells
39-41

, beef heart 

extracts
42-44

 or rat skeletal muscle extracts
45,46

 up to performing the reaction in a 

CSTR and obtaining simple and complex sustained oscillations in NADH
47

. Another 

well-studied example of an enzymatic oscillator is the oxidation of NADH catalyzed 

by horseradish peroxidase
48-50

. The oscillations in this system are between 

ferriperoxidase and oxyperoxidase. Also periodicity in the synthesis of cyclic 

adenosine monophosphate (cAMP) in Dictyostelium discoideum is attributed to two 

enzymes: adenyl cyclase and ATP pyrophosphohydrolase. The main mechanism 

responsible for oscillations here is the cooperative activation of the enzymes by 

products of different steps of the reaction, namely activation of adenyl cyclase by 

5’AMP and of ATP phosphohydrolase by cAMP
48,51

. 

The first experimental attempts to design an enzymatic pH oscillator were 

made with use of papain
52,53

, however regular oscillations could not be confirmed in 

further studies
54

. During the next years, a few attempts to construct enzymatic pH 

oscillators were made by modifying known feedback containing inorganic 

reactions
55-57

. The most significant step in designing an organic enzymatic pH 
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oscillator was shown in the glucose oxidase catalyzed reaction
58

. As this enzyme 

reacts according to the ping-pong mechanism, in the presence of different electron 

acceptors as substrates (such as glucose, molecular oxygen or ferricyanide) the 

system exhibits clocks, bistability and oscillations within a certain range of 

parameters. Further study showed also that this system exhibits interesting spatial 

behavior such as fronts and pulses
59

. 

1.5 Systematic design of pH oscillators  

The growing interest of research on pH oscillators began in the mid80s. A 

discovery of the first halogen-free oscillator in sulfide ion – hydrogen peroxide 

reaction in a CSTR
60

 initiated a new direction in the field of oscillatory reactions. 

pH changes became an important parameter and lead to discoveries of whole 

families of pH oscillators in the second half of 80s, such as: iodate-sulphite- 

ferrocyanide
61

, hydrogen peroxide-thiosulphate-copper (II)
62

, iodate-sulphite- 

thiourea
63

, iodate-thiosulphate-sulphite
64

, bromate – sulphite – ferrocyanide
65

, 

hydrogen peroxide – sulphite – ferrocyanide
66

, periodate – thiosulphate
67

, or 

periodate-hydroxylamine
68

. Based on these systems and on theoretical models, a 

systematic approach to create new pH oscillators was proposed by Rabai, Orban 

and Epstein
69

. The strategy is firstly to find an autocatalytic reaction which 

produces H
+
, so that it supports a clock behavior. Then it needs to be coupled with 

a hydrogen consuming reaction which will exhibit a pulse in a closed system, if the 

timescales of the rate constants of both reactions are similar. This coupled system 

performed in a CSTR should exhibit pH oscillations within a range of conditions 

given by a cross-shaped phase diagram.  Using this strategy, a lot of new chemical 

oscillators have been created from the growing families of bromate
70-73

, iodate
74

 or 

sulphite
75-77

 reactions. The growing interest in pH oscillators has moved into 
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synthesis of organic-based pH oscillators, such as the methylene-glycol- 

gluconolactone system
78,79

. The area of research on pH oscillations has also 

recently spread to polymer science
80,81

, where the pH oscillation reaction coupled 

with a pH-sensitive polymer acts as a chemomechanical device, i.e. pump or 

actuator. 

1.6 Outline of the thesis 

 

The aim of the research discussed here was to construct a new enzymatic pH 

oscillator. One of the most promising enzymatic reactions that had not been 

investigated before in unbuffered conditions was the urea/urease reaction. As base 

is produced in this reaction, the initial pH was adjusted by sulphuric acid. The 

results of investigation of this reaction leading to clock behavior in a batch reactor 

and bistability in a CSTR are shown in Chapter 2. A simple model of this system 

mimicking the behavior in both setups is also introduced in Chapter 2. The 

urea/urease system was also investigated spatially, and led to pH fronts within a 

certain range of initial conditions which is the subject of Chapter 3. Also the model 

was expanded to include a spatial dimension and compared to the experimental 

results.  

When the acid was changed to a weak, organic one, i.e. acetic acid, the 

behavior of the system changed: there was a variation in the shape of the pH-time 

plot in a closed system, but most significantly in a CSTR oscillations have been 

observed. The experimental results as well as introduction of different models to 

explain this behavior are described in Chapter 4. 

The next step was to couple the reaction with an acid autocatalytic system. 

From a literature study and analysis of simple models it appeared that one of the 

most promising set of reactions to be coupled with the urea/urease system was 
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hydrolysis of esters and heterocycles. Kinetic analysis of the models and 

experimental investigation of several examples of hydrolysis of organic 

compounds, including aspirin, are shown in Chapter 5. 

During the investigation of aspirin hydrolysis an intriguing spatial behavior of 

the crystals of aspirin has been observed and investigated: particle self-motion. The 

analysis of this phenomenon is the subject of Chapter 6. 

Chapter 7 discusses future work connected to the results shown in this thesis and 

the possible applications of them.         
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2. Clocks and bistability in the 

urea/urease/sulphuric acid reaction 
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2.1 Introduction 

 

The hydrolysis of urea catalyzed by the enzyme urease has the overall 

stoichiometry: 

(NH2)2CO + H2O  urease
CO2 + 2NH3          (2.1) 

It is one of the most well-studied enzymatic systems. Ureases are widely 

spread throughout nature, they are responsible for nitrogen transport in plants
1
 as 

well as for diseases such as urinary stone formation
2
, or the presence of Helicobacter 

Pylori in the stomach
3
. Although the reaction has been studied from a molecular

4,5
, 

kinetic
6,7

 and biological perspectives
8,9

, the system in such studies is always buffered 

so the autocatalytic character of this reaction has not been seen.  

In this chapter it is shown that in unbuffered conditions, starting from low 

pH, the catalytic activity of the enzyme increases together with release of one of the 

products, ammonia, leading to nonlinear effects – a clock in batch and bistability in 

flow reactors. The kinetic model of the urea/urease reaction in unbuffered conditions 

is introduced and compared with the experimental results. 

2.2 The urea/urease reaction 

 
The first urease was found in putrid urine by Musculus, but detailed studies 

on this enzyme began with discovery of its presence in soybean by Takeuchi
10

. 

Currently a few dozen ureases are known from different sources such as bacteria
11,12

, 

fungi
13,14

 and plants
15,16

. Studies on the structure of urease show that depending on its 

source, the enzyme can be built by different sequences of genes but all types of 

urease possess two nickel active sites Ni
1
 and Ni

2

10
. Ni

1
 is surrounded by two 

histidine groups bound by N-atoms and lysine groups bound by an O-atom. Ni
2
 is 
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surrounded also by an additional two histidine groups and aspartic acid bound by an 

O-atom (Fig. 2.1).  

Figure 2.1 Structure of the active centre of 

urease, copied from (10)  

 

 

 

 

 

The activity of urease depends on pH as variations in pH change the 

conformation of proteins around binding site, resulting in a bell-shape function of 

activity with respect to pH
17

 (Fig.2.2). 

Figure 2.2 pH-rate activity of 

Jack bean urease, copied from 

(17)  

 

 

 

 

  

 

Various compounds also have the potential to inhibit the activity of urease
10

. The 

inhibitors are divided according to their inhibiting strength. The group of weak 

inhibitors consists of the substrate urea, the product ammonium ions, and substrate 

analogues
18

. Urease undergoes inactivation during the initial phase of activity with 

weak inhibitors, then reactivates during course of the reaction. Thiols and 

acetohydroxamic acid inhibit urease competitively with medium strength
19

. The 
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strongest urease inhibitors are esters and amides of phosphoric acid
2
. Heavy metal 

ions inhibit urease with strength changing as: Hg
2+

≈Ag
+
>Cu

2+
>Ni

2+
>Cd

2+
>Zn

2+
 

>Co
2+

>Fe
3+

>Pb
2+

>Mn
2+

 
20

. Detailed studies of urease inhibition allow the control of 

the activity of the enzyme in bacteria in the body, as well as influencing the nitrogen 

cycles crucial in plants. 

As urea is a highly stable molecule that resists decomposition, the reaction of 

its hydrolysis has not been observed without the presence of the enzyme
10

. The rate 

of reaction is 10
14

 faster than the noncatalyzed system
21,22

. Several models of the 

reaction mechanism have been proposed. In Fig. 2.3 two possible mechanisms are 

shown. The reaction mechanism starts from binding the oxygen from urea to the 

more electrophilic Ni1 atom in the active site of urease. The next step is either to bind 

the nitrogen atom from one of the amino groups of urea or to create a second C-O 

bond with the Ni2 site. This creates a tetrahedral geometry that allows ammonia and 

carbamate to be released. The nucleophilic attack of water is performed through 

bridging hydroxide that acts as an acid to facilitate leaving of NH
3
 and the enzyme to 

return to its original structure.  

The next sections of this chapter describe details of the experimental methods 

used to monitor the urea-urease reaction in unbuffered conditions. The results 

obtained in the batch system and continuous-flow stirred tank reactor (CSTR) are 

shown, followed by a presentation of the model and comparison of the experimental 

and theoretical findings, and finally the discussion and conclusions. 



47 

 

 
 

  

Figure 2.3 Two possible schematic mechanisms of the urea/urease reaction, copied from 

(25) 

2.3 Experimental  

 
 This section describes the preparation of stock solutions of urea, urease and 

acid, followed by a description of the experimental procedure in closed and open 

systems.  

2.3.1 Solutions 

Solution A: Urea  

 

A stock solution of V = 500 mL consists of 1.2 × 10
-4

 M H
2
SO

4
 from dilution 

of 0.5 M acid prepared from 98% sulphuric acid (AnalR BDH) and 0.03 M urea 

(National Diagnostics). As the molar mass of urea M = 60.06 g mol
-1

, the mass added 

to the acid solution is m = 0.45 g. 
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Solution B: Urease 

 

A stock solution of V = 250 mL consists of urease (type III Jack beans 

U1500-100KU Sigma Aldrich) dissolved in water. The example calculation of 

preparing urease solution is as follows: the average urease activity = 20990 units g
-1 

and urease activity that is needed in stock solution = 1.4 units mL
-1

; the mass needed 

to be dissolved in 250 mL is m = 0.0165 g. Fresh urease solution is prepared every 

day as the activity of enzyme changes significantly with ageing over 24 hours. 

2.3.2 Closed system procedure 

The two stock solutions were mixed in equal amounts to give a total volume 

of 20 mL in the reactor. The clock reaction is performed in a cylindrical reactor with 

diameter d = 4.5 cm, stirred with a magnetic stirrer (IKA WERKE) of length l = 1.5 

cm and stirring rate of 600 rpm. Reactor and reactant solutions are thermostated by 

Polystat CC3 that is coupled with the TLogger program (Labview). The readings of 

temperature are taken every 5 s. The pH measurements are taken by a HI 120 pH 

meter (Hanna) through HI 1131 electrode (Hanna) and captured with the HI 92000 

program (Hanna). The readings of pH are taken every 10 s. The pH meter is 

calibrated with standard solutions of pH = 7.01 and pH = 4.01 (Acros Organics). 

Data points are saved as .xls files and are processed in Origin. pH versus time plots 

as well as d(pH)/dt versus time plots are constructed from which the peaks are 

extracted and clock times are determined. The plots showing induction period as a 

function of temperature and concentrations of urea, urease, sulphuric acid and acetic 

acid are plotted in Origin and the errors are calculated as standard deviations in 

Excel.  

All of the experiments mentioned below were performed at 20 °C except 

where specified. Measurements of the temperature dependence were taken for 
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[H
2
SO

4
]0 = 1.2 × 10

-4
 M, [urea]0 = 0.015 M, [urease]0 = 0.7 unit/mL with                  

T = 5 °C, 10 °C, 20 °C and 30 °C. The initial concentrations were varied in separate 

experiments: 0.002 M < [urea]0 < 0.015 M ,  5.0 × 10
-5

 M < [H
2
SO

4
]0 < 2.5 × 10

-4
 M, 

0.4 unit/mL < [urease]0 < 1.4 unit/mL. For each condition the experiments were 

repeated 6 times and mean induction time calculated.  

2.3.3 Open system procedure 

Solutions A and B were pumped by a Gilson pump in two separate channels 

into a closed reactor of diameter d = 3.5 cm and height h = 3.0 cm. The solution was 

pumped out by one outflow channel. The solution was stirred by a magnetic stirrer 

(IKA WERKE) with length of 1.5 cm and a stirring rate of 600 rpm. The pH 

measurements were taken as described in section 2.3.2. 

 

Calibration: 

 
The Gilson pump was calibrated every day before the experiments. The calibration 

procedure was as follows: the tubes were filled with water and the time to fill a 10 

mL cylinder (with the tube that had highest effective pumping) was measured for a 

range of pump flow rates. The total volume pumped by all four channels was 

registered each time. The volumetric flow rate (VFR) was determined from:  

t

V
VFR tot         (2.2) 

where: Vtot– total volume, t – time (s), and flow rate (k0) was determined from: 

 
rV

VFR
k 0          (2.3) 

where: Vr – volume of the reactor 

A calibration curve was plotted of flow rate dependence on pump rate.  
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2.4 Results 

2.4.1 Closed system 

The characteristic features of a clock reaction are the maximum reaction rate 

at non-zero time and the induction time. In this section, the dependence of these 

features on the initial chemical concentrations are investigated. The induction time is 

determined from the maximum slope of the pH time plot (Fig. 2.4 - Fig. 2.7) and the 

red lines on the induction time plots (Fig. 2.8) are intended to guide the eye.  Typical 

clock reaction pH - time plots for different initial concentrations of urea, urease, acid 

and different temperatures are shown in Fig. 2.4, Fig. 2.5, Fig. 2.6 and Fig. 2.7 

respectively. The clock time increases with decreasing urea (Fig. 2.4 and Fig. 2.8 (a)) 

and urease (Fig. 2.5 and Fig. 2.8 (b)) concentration as well as with temperature (Fig. 

2.6 and Fig. 2.8 (c)). This is to be expected as the maximum rate is proportional to 

the urea and urease concentrations (as is shown later in the modelling section). The 

final pH decreases with lower initial urea and urease concentrations (shown in Fig. 

2.4 and Fig. 2.5 respectively). For high urea and urease concentrations the pH goes to 

8.5 whereas for low concentrations the final pH = 7.5. As shown in Fig. 2.6 

temperature does not affect the final pH significantly. The clock time increases with 

increasing concentration of sulphuric acid (Fig. 2.7 and 2.8 (d)). There is no trend 

observed in final pH with initial concentration of the acid. It is possible to vary the 

clock times and final pH by changing the initial concentrations of any of the 

reactants. The system keeps its autocatalytic character in the whole range of 

investigated conditions. 

 

 



51 

 

 
 

 

 

Figure 2.4 (a) pH and (b) d(pH)/dt changes as a function of time for different concentrations 

of urea [M]. [H
2
SO

4
]0 = 6.0 × 10

-4
 M, [urease]0 = 0.7 unit/mL 

 

 

 

 

 

 

 

 

Figure 2.5 (a) pH and (b) d(pH)/dt changes as a function of time for different concentrations 

of urease [unit/mL].  [H
2
SO

4
]0 = 6.0 × 10

-4
 M, [urea]0 = 0.015M 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 (a) pH and (b) d(pH)/dt changes as a function of time for different temperatures 

(°C), [H
2
SO

4
]0 = 6.0 × 10

-4
 M, [urease]0 = 0.7 unit/mL, [urea]0 = 0.015 M 
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Figure 2.7 (a) pH and (b) d(pH)/dt changes as a function of time for different concentrations 

of sulphuric acid [M]. [urease]0 = 0.7 unit/mL, [urea]0 = 0.015M 

 

        

Figure 2.8 Induction time changes as a function of concentrations of (a) urea, (b) urease, (c) 

temperature, (d) sulphuric acid. Red lines are intended to guide the eye 

 

Additionally a number of experiments in batch (open to the air or sealed) 

showed a much lower final pH and/or a drop of pH after the clock reaction, such as 

in the example shown in Fig. 2.9:  
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Figure 2.9 Example of a clock reaction 

with a drop of pH.  

[sulphuric acid]0 = 1 × 10
-4 

M,  

[urea]0 = 0.015 M,  

[urease]0 = 1 unit/mL 

 

 

 

 

 

 

This occurred inconsistently, usually for lower concentrations of urease and smaller 

total reaction volumes. A preliminary investigation on the influence of the total 

volume on the final pH has been done. For the same set of initial concentrations a 

significant decrease in final pH with volume was observed as shown in Table 2.1. 

 

Table 2.1 Comparison of final pH change 

with volume under different initial 

concentrations of urea and acid 
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2.4.2 Open system 

While performing the reaction in a CSTR it was possible to observe a broad 

region of bistability as shown in Fig. 2.10. The region of bistability is between flow 

rates of 0.011 s-1 and 0.032 s-1. The amplitude is between pH = 3.7 and pH = 8.3.  

 

Figure 2.10 Example of bistability in the 

urea/urease/sulphuric acid system in a CSTR, 

[sulphuric acid]0 = 1 × 10
-4 

M,  

[urea]0 = 0.005 M, [urease]0 = 1.4 unit mL
-1 

 

 

Upon increasing the urea and decreasing the urease, the region of bistability shifts to 

higher flows keeping the same pH amplitude (Fig. 2.11). 

 

Figure 2.11 Ranges of bistability with (a) 

[sulphuric acid]0 = 1 × 10
-4 

M, [urea]0 = 0.005 M, 

[urease]0 = 1.4 unit mL
-1

, and  

(b) [sulphuric acid]0 = 1 × 10
-4 

M, [urea]0 = 0.010 

M, [urease]0 = 1.25 unit mL
-1 

 

 

However, the region of bistability was not found to be reproducible. For the 

same initial concentrations of reactants, the region of bistability increases and shifts 

to higher flow rates in time within one continuous run (Fig. 2.12 a) but also can 

shrink and shift to lower flows, and the amplitude of the change of pH between 

branches decreases, when the pump is recalibrated and the solutions are freshly 

prepared (Fig. 2.12 b).  
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Figure 2.12 Shifts of bistability during (a) continuous change of flow rate in one experiment, 

and (b) recalibration of the pump in separate experiments. [sulphuric acid]0 = 1 × 10
-4 

M, 

[urea]0 = 0.005 M, [urease]0 = 1.4 unit mL
-1 

2.5 Modelling the urea/urease reaction 

 
The proposed mechanism to model the reaction contains the enzyme-

catalyzed hydrolysis of urea: 

23

urease

222 CO2NHOH)CO(NH                 (2.4) 

  

and two hydrolysis equilibria: 

 

OHCO 22      3HCOH          pK = 6.35           (2.5) 

OHHCO 23     OHCO 3

2

3    pK = 10.25           (2.6) 

and two dissociation equilibria: 



4NH   HNH 3        pK = 9.25          (2.7) 

OH 2    OHH                (2.8) 

HA            HA                                 (2.9) 

where HA is the weak acid. In this case HA = 

4HSO , so the equilibrium becomes: 

  

4HSO           HSO2

4  
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Assuming classic Michaelis-Menten kinetics and considering additionally 

uncompetitive substrate inhibition
24,25

  and noncompetitive product inhibition
26

 and 

adding a component that determines the pH-rate dependence
27

 the rate of reaction 

(2.4) can be expressed as: 














































1

2422
22

22max

]H[

]H[
1

]NH[
1)

])CO(NH[
1]()CO(NH[

])CO(NH[

es

es

PS

M
K

K

KK
K

v
v   (2.10) 

 where:  

01max ][Ekv                   (2.11) 

[E]0 = the total amount of enzyme, KS = equilibrium constant for uncompetitive 

substrate inhibition, KP = equilibrium constant for noncompetitive product 

inhibition, Kes1 = equilibrium constant for formation of active protonated form of the 

enzyme-substrate complex, Kes2 = equilibrium constant for formation of inactive bi-

protonated form. 

The rate equations for all species are as follows: 

v
dt

d


])CO(NH[ 22
                (2.12) 

]H][NH[]NH[2
]NH[

3242

3 




 kkv

dt

d
             (2.13) 

]H][NH[]NH[
]NH[

3242
4 






 kk
dt

d
             (2.14) 

]H][HCO[]CO[
]CO[

-

33231

2 

 kkv
dt

d
             (2.15) 

]H][CO[]HCO[]H][HCO[]CO[
]HCO[ -2

34

-

34

-

3323

-

3 





  kkkk
dt

d
             (2.16) 

]H][CO[]HCO[
]CO[ -2

34

-

34

-2

3 

 kk
dt

d
             (2.17) 
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]H][[][]OH][H[]H][CO[

]HCO[]H][HCO[]CO[]H][NH[]NH[
]H[

6655

-2

34

-

34

-

33233242




























AkHAkkkk

kkkkk
dt

d
       (2.18)

 

]H][OH[
]OH[

55







 kk
dt

d
              (2.19) 

]H][A[]HA[
]HA[

66



 kk
dt

d
              (2.20) 

]H][A[]HA[
]A[

66







 kk
dt

d
              (2.21) 

 

The rate constant values are taken from the literature and are given in Table 2.2: 

Table 2.2 Values of rate constants (25°C) of reactions (2.7) - (2.12) 
10,17,28,29

 

 

The equations were solved using XPPaut with the CVODE
30

 integration method 

(Appendix II). 

2.5.1 Model Results 

In a closed system, the model gives good agreement with the experimental 

data, predicting the clock behaviour as shown in Fig. 2.13: 
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Figure 2.13 pH-time plots obtained 

experimentally (•) and in the model (─). 

Initial concentrations: [urea]0= 0.015 M, 

[urease]0 = 0.7 unit/mL, [H
2
SO

4
]0 = 1.0 × 10

-4
 

M, [H
+
]0 = 1.0 × 10

-4
 M, [



4HSO ]0 = 1.0 × 10
-

4
 M 

 

 

 

This curve is obtained by matching the enzyme parameters to best fit the 

experimental data, by trial and error, within the ranges given in the literature
10,17

. 

There is an acceleration in the rate of removal of urea accompanying the clock 

reaction in pH (Fig. 2.14), which is the first evidence of autocatalysis (Note: it is 

possible to obtain a pH clock without autocatalysis, see section 1.1). The changes of 

species in time predicted by the model are shown in Fig. 2.14. The model suggests 

that this reaction provides a promising possibility for designing a batch oscillator as 

the substrate, urea, is not fully consumed in the clock reaction, with only ca. 10% 

being consumed in the clock process. 

 

Figure 2.14 Modelled changes of 

ammonia, ammonium, urea, carbon 

dioxide, carbonate and bicarbonate 

in time. Initial concentrations: 

[urea]0= 0.015 M,  

[urease]0 = 0.7 unit/mL,  

[H
2
SO

4
]0 = 1.0 × 10

-4
 M,  

[H
+
]0 = 1.0 × 10

-4
 M,  

[


4HSO ]0 = 1.0 × 10
-4

 M 
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The comparison of clock time dependencies on the concentrations of urea, 

urease, and sulphuric acid for experiments and the model are shown in Fig. 2.15. The 

model shows a decrease in induction time while increasing initial concentration of 

urea and urease as shown in the experiments. Also similar to the experimental results 

the induction time in the model increases with increasing initial concentration of the 

acid. The agreement between theory and experiment is qualitative not quantitative 

within a certain range of parameters, i.e. low urea and urease concentrations. 

 

Figure 2.15 Model (line) and experimental (points) dependences of induction time on 

concentration of (a) urea, (b) urease, (c) sulphuric acid. Concentrations in (a) and (b): 

[urea]0= 0.015 M, [urease]0 = 0.7 unit/mL, [H
2
SO

4
]0 = 6.0 × 10

-5
 M,, in (c): [urea]0= 0.005 

M, [urease]0= 1.4 unit/mL 

 

If the flow component given by equation: 

 

)(
][

00 XXk
dt

Xd
                 (2.22)       
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is added to equations (2.12) - (2.21), bistability is predicted in a range of flow rates 

from 0.018 s-1 to 0.048 s-1 which is similar to the experimental results shown in Fig. 

2.10. 

Figure 2.16 Bistability predicted in the model for an 

open reactor, [urea]0= 0.005 M, [urease]0= 1.4 

unit/mL, [H
2
SO

4
]0 = 6.0 × 10

-5
 M 

 

 

 

Regions of bistability, thermodynamic (only high pH) and flow (only low 

pH) states are predicted in the model and depend on the concentrations of all 

reactants as shown in Fig. 2.17. For higher urea and urease concentrations, the region 

of bistability is broader. The thermodynamic state appears only at high urease and 

low acid concentrations in a narrow range of flow rates.  

 

Figure 2.17 Phase diagram showing regions of 

bistability (BS), thermodynamic (TS) and flow 

states (FS) regions for different values of flow rate 

and the concentrations of (a) sulphuric acid, (b) 

urea and (c) urease, [urea]0= 0.015 M, [urease]0= 

1.4 unit/mL, [H
2
SO

4
]0 = 6.0 × 10

-5
 M, unless 

otherwise stated 
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2.6 Discussion 

 
The results in this chapter show the first experimental example of base 

autocatalysis in an enzymatic reaction. In a batch reactor a clock reaction is observed 

giving a significant change of pH from pH = 3.5 to pH = 8.5. This is the first 

evidence that positive feedback is present in the system. The feedback arises from 

the pH dependence of enzyme activity
17

 (as shown in Fig. 2.2) coupled with the 

production of base (NH3) so that sudden acceleration of the reaction is seen when the 

system reaches the pH when the activity of enzyme is at its maximum.  

In the urea/urease reaction, clock behaviour is shown for all urea, urease and 

sulphuric acid concentrations as opposed to the glucose oxidase enzymatic system 

where the autocatalytic effect decreases with decreasing concentration of the 

substrate, namely 3

06 ])([ CNFe
31

. The urea/urease reaction can be thought of as the 

simplest example of a pH autocatalytic enzymatic reaction as a Michaelis-Menten 

model gives good qualitative agreement with experiments in terms of induction time 

dependencies on the initial concentrations of urea, urease, and sulphuric acid. This is 

contrary to the glucose oxidase
31

 enzyme reaction where a complex ping-pong 

mechanism is needed to explain the nonlinear behaviour. At very low concentrations 

of urea and high concentrations of acid there is limited quantitative agreement. This 

may be attributed to the fact that at low concentrations of reactants the kinetics of the 

urea/urease reaction is governed not by Michelis-Menten kinetics anymore as has 

been observed in previous studies
32

.  

The rate constants k2 – k-6 used in the model are well established
28,29

. The rate 

constants k
1
, K

M
, K

es1
, K

es2
, K

u
 and K

p have been varied in this work, but the ranges 

of those parameters are taken from Krajewska’s papers
10,17

, however they were 

adjusted by trial and error. One way to improve the agreement between the model 
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and experiments is to use packages such as Zita using nonlinear parameter 

estimation
33

. This will be the subject of further investigation. 

There are several other processes not included in the model that would 

potentially improve the agreement between theory and experiments.  First of all 

gaseous CO2 production may play an important role in the system, so it will be worth 

considering the CO2 liquid-gas equilibrium and the H2CO3 and 

3HCO  formation 

processes
34

 in future modelling. Also transfer of ammonia to the gas phase may 

occur under certain conditions, changing the final pH and influencing clock times. 

Also taking into account the temperature dependencies of enzyme activity and rate 

constants may improve the quantitative agreement between the model and 

experiments.  

For low urease concentrations it is probable that non-mass action kinetic 

effects should be taken into account i.e. stochastic models
35

 will be more appropriate. 

The first evidences of this type of kinetics taking place are the decrease of final pH 

with total volume of solution.  

The decrease of induction time with increasing temperature comes first of all 

from the Arrhenius dependence
27

: 

)exp(
RT

E
Ak a                 (2.23) 

where: k – reaction rate, A – pre-exponential factor, Ea – activation energy, R – gas 

constant, T – absolute temperature. Thus k1 is expected to increase with increasing 

temperature. Secondly the fact that the activity of urease increases significantly  from 

10 °C to 70 °C, with a maximum at 70 °C that is followed by a decrease at higher 

temperatures
36

 plays an additional role in the kinetics of the urea/urease system. As 

shown in Fig. 2.6 temperature does not affect the final pH significantly.  
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The second evidence for the autocatalytic character of the system is the 

experimental observation of bistability in CSTR. Bistability is also predicted in the 

model and regions of bistability, thermodynamic and flow states are mapped 

depending on initial concentrations of urea, urease and sulphuric acid. However the 

range of bistability and the amplitude were found to be sensitive to small changes, or 

fluctuations, in the inflow of reactants and temperature and thus the reproducibility 

of the data was poor. For these reasons, the complete regions of bistability, 

thermodynamic and flow states were not mapped experimentally.  

2.7 Conclusions 

 
The pH autocatalytic reaction of enzyme catalysed hydrolysis of urea was 

studied under nonbuffered conditions, showing the first experimental observations of 

a pH clock from low to high pH in this system in a batch reactor. It was possible to 

obtain a wide range of clock times, from several to two thousand seconds, when 

changing the initial concentrations of the reactants. In a CSTR, the urea/urease 

system showed a wide range of bistability which proves the validity of the model in 

this region of phase diagram. Regions of bistability, thermodynamic and flow states 

in phase diagrams of the flow rate and concentrations of urea, urease, and sulphuric 

acid were predicted in the model.  
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3. Fronts in the urea/urease/sulphuric acid 

system 
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3.1 Introduction 

 

 Investigation of the spatial behavior of the urea/urease/sulphuric acid reaction 

in thin layers is presented for a range of concentrations of reactants. For very high 

urease concentrations two types of propagating pH fronts were obtained: 

spontaneous with short clock times and initiated by product solution with long clock 

times. Under much lower concentrations of the enzyme, a clock reaction was 

obtained in a batch reactor, but no front propagation was observed. The spatial 

behavior was modelled by expansion of the model presented in Chapter 2 with 

diffusion included. Both in the experiment and simulations, correlations between the 

concentrations of reactants, clock times and average front speed were found.  

3.2 Experimental 

 

Solutions were prepared as discussed in Chapter 2. In order to visualize the 

fronts, 0.005 g of cresol red (Fisher Scientific Ltd.) was added to 250 mL of both 

reactant solutions. For each set of concentrations, before performing an experiment 

in a spatial reactor, the pH clock time was determined in a batch reactor (shown 

schematically in Fig. 3.1 a). The total volume of solutions in the batch reactor was 20 

mL.  

The fronts were observed in a reactor that consists of the lid of a Petri dish 

with diameter d = 5 cm covered by its base so that the reaction was sealed from the 

atmosphere (Fig. 3.1 b). The Petri dish was placed in a cell thermostated by Polystat 

CC3. The standard temperature was 20 ºC. In a batch reactor, 20 mL of solution was 

stirred for 30 s with a magnetic stirrer (IKA WERKE) of length l = 1 cm and stirring 

rate of 600 rpm before 1.5 mL was extracted with a pipette and added to the Petri 

dish creating a layer of depth h = 0.8 mm. The pictures of the fronts were taken every 

5 s by a CCD camera coupled with the MATLAB program (The MathWorks).  
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Figure 3.1 Schematic representation of the experimental set-up (a) the well-stirred batch 

reactor apparatus with pH probe and stirrer, (b) spatial apparatus with camera , where 1 

indicates the outer thermostated glass dish, and 2 indicates the inner Petri dish containing the 

reaction solution 

 

When the clock time was less than 1000 s, the fronts were left to self-initiate.  

When the clock time was above 1000 s, the front was initiated by a drop of product 

solution in the middle of Petri Dish through a hole with diameter d = 1 mm.  

The front profiles were analyzed by code written in MATLAB (Appendix III) 

that is illustrated in section 3.3. For each front, the average speed from propagation 

in different directions was determined (excluding erroneous data, see Fig. 3.6). The 

errors in front speed are calculated as standard deviations for each set of conditions. 

The standard deviation in front speed was determined in a single experiment and then 

over different experiments. The experiments were repeated at least 5 times. 

3.3 Results 

 

Depending on the initial concentrations and hence the clock time, several 

different types of spatial behaviour were seen. The first case is when the clock time 

is around a few thousands seconds and the front only propagates after initiation with 
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product solution in the centre of the dish or from the edges (Fig. 3.1 a-c). In the 

second case the clock time is slightly less than 1000 s and self-initiation starts to 

appear in several places in the solution (Fig. 3.1 d – f). In the last case when the 

clock time is much shorter than 1000 s, fast spontaneous self-initiation in the whole 

of the reactor is observed with many starting points (Fig. 3.1 g – i). 

 

Figure 3.2 Illustration of different types of behaviour depending on initial concentrations of 

reactants and clock times. (a) – (c) [sulphuric acid] 0 = 4.05 × 10
-4

 M, [urea] 0 = 0.009 M, 

[urease]0 =  17 unit mL
-1

. Clock time = 3000 s. (d) – (f) [sulphuric acid] 0 = 4.05 × 10
-4

 M, 

[urea] 0 = 0.03 M, [urease] 0 =  17 unit mL
-1

. Clock time = 900 s. (g) – (i) [sulphuric acid] 0 = 

4.05 × 10
-4

 M, [urea] 0 = 0.03 M, [urease] 0 =  24 unit mL
-1

. Clock time = 300 s  

 

For each of the fronts it was possible to extract space-time plots (as shown in 

the example in Fig. 3.3 a) and intensity profiles in space (Fig. 3.3 b). This example 

shows that the front propagated with a constant speed and concentration profile. 

However the front speed was found to differ depending on the direction of 
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propagation in space. This was sometimes due to imperfect initiation of the front. In 

order to reduce the error in calculating the front speed for a particular concentration, 

each of the fronts has been analysed in 16 different directions simultaneously as 

shown for different cases in Figs 3.4, 3.6, 3.7.  

 

 

Figure 3.3 (a) Typical space – time plot, and (b) intensity profiles in space. [sulphuric 

acid]0= 4.05 × 10
-4

 M, [urea]0 = 0.03 M, [urease]0 =  17 unit mL
-1

 

 

For long clock times (> 1000 s), the front can be analyzed using many time 

points when the reaction is far from completion. In spite of a slight variation of front 

speed in a few cases (for example Fig. 3.4 b5, b8 or b10), the front position changes 

linearly in time giving a similar range of front speed in all directions (in these 

conditions 0.34 – 0.39 mm min-1). 
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Figure 3.4 (a) Example of front initiated by product 

solution in the middle of the Petri Dish with long 

clock time (b) analyzed front speed, slope is 

determined in mm min
-1

. The clock time in the well-

stirred batch reactor was 3000 s and [sulphuric 

acid]0= 4.05 × 10
-4 

M, [urea]0 = 0.009 M, [urease]0 =  

17 unit mL
-1 
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For several examples of experiments with longer clock times it was possible 

to calculate the front speed in three different periods of front propagation: 50 – 500 s, 

500 – 1000 s and 1000 – 1500 s as shown in Fig. 3.5. There is a trend visible that the 

front accelerates towards the end of the reaction. The change of front speed can be up 

to 16% (seen in the example with clock time = 1700 s), though no definite 

quantitative correlation between change of front speed and clock time was found. 

 

Figure 3.5 Examples of change of 

front speed during the course of the 

reaction for reactions with different 

clock times 

 

 

 

 

In the second case of intermediate clock times (300 – 1000 s), it is also 

possible to analyze the front position with a reasonable number of time points 

between self-initiation and the clock time. The number of self-initiated spots is small 

enough so that they do not merge and it is possible to analyze them separately. The 

space-time plots follow the linear dependence in most cases (with a bigger variation 

in Fig. 3.3 b1, b12 and b16), though the range of front speeds varies more in different 

directions (from 0.50 to 0.63 mm min-1). 
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Figure 3.6 (a) Example of fronts initiated 

spontaneously with intermediate clock time, (b) 

analyzed front speed with slope given in mm min-1. 

The clock time in a well-stirred batch reactor was 900 s 

and [sulphuric acid]0 = 4.05 × 10
-4 

M, [urea]0 = 0.03 M, 

[urease]0 =  17 unit mL
-1
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Under conditions that result in very short clock times (< 300 s), spontaneous 

self-initiation begins rapidly in the whole area of the reactor. The front speed 

increases significantly (up to an average of 1.0 mm min-1) as under these conditions it 

is only possible to do the calculations near the clock time. The values of the front 

speed vary in different directions (from 0.69 to 1.34 mm min-1) and the space-time 

plots show deviation from linearity. There are much less time points taken than in the 

first two cases, as well as a much bigger density of self-initiated fronts that interact 

with each other and merge.  
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Figure 3.7 (a) Example of front initiated spontaneously 

with short clock time (b) analyzed front speed in mm 

min
-1

. The clock time in well-stirred batch reactor was 

300 s. [sulphuric acid]0 = 4.05 × 10
-4 

M, [urea]0 = 0.03 

M, [urease]0 =  24 unit mL
-1
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Another type of spatial behaviour is observed when the concentration of the 

enzyme is a few magnitudes lower. By manipulation of acid concentration it is still 

possible to obtain short clock times in a batch reactor (in a range of 300 - 500 s), with 

final pH > 8.0, but neither front propagation or conversion to high pH is seen in a 

Petri dish (as shown in Fig. 3.8). Intensity profiles and the space-time plot (Fig. 3.9) 

show that there is propagation only at the beginning due to diffusion of the product 

solution from the initiation site. Then the front does not move, giving a noisy signal 

after 4000 s when it becomes completely diffuse. 

 

Figure 3.8 Example of lack of front propagation in lower urease conditions in spite of short 

clock time in the well-stirred reactor (350 s). [sulphuric acid]0 = 1.6 × 10
-4

 M, [urea]0 = 0.03 

M, [urease]0 =  3.4 unit mL
-1

. (a) 520 s, (b) 3220 s, (c) 6000 s 

 

Figure 3.9 (a) Intensity profiles and (b) Space-time plot for experimental conditions in Fig. 

3.8 
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The dependence of the front speed on initial concentrations of reactants is 

shown in Fig. 3.10. The front speed increases significantly with urease concentration 

and decreases with acid concentration. The concentration of urea does not have as 

significant an influence on the front speed as the other reactants. For higher front 

speeds, the error is larger. This may be due to the fact that when self-initiation is 

observed there is less time between front initiation and clock time of the whole 

solution, so there are less data points to be analysed. The analysis of the front speed 

is affected by merging of the fronts that makes the number of possible time points 

even smaller and the data is noisier closer to the clock time. 

 

Figure 3.10 Changes of front speed with initial concentrations of (a) urease, (b) urea and (c) 

acid where error bars are standard deviations. The standard concentrations were: [sulphuric 

acid]0 = 4.05 × 10
-4

 M, [urea]0 = 0.03 M, [urease]0 =  17 unit mL
-1

 

 

As, in general, the front speed relates to the chemical timescale of the 

reaction according to the equation
1,2

: 

)'(DkAc         (3.1) 
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where: c – front speed, A – constant, D – diffusion coefficient, k’ – pseudo-first rate 

order rate constant, the dependence of front speed on clock time (related to 1/k’) is 

fitted according to the power law:  y = ax
b
 (as shown in Fig. 3.11). The value of the 

coefficient b = –0.35 is still far from the expected value of –0.5 which may be due to 

lack of experimental data points or poor quantitative reproducibility. The trend of the 

power-law dependence given in eq. 3.1 is observed and it shows that for long clock 

times the front speed does not change as significantly as for short clock times.   

 

Figure 3.11 The dependence of front 

speed on clock time 

 

 

 

 

 

The effect of temperature on the front speed has been investigated and is 

shown in Fig. 3.12. The influence of temperature is not as significant in the range 

between 17 ºC and 23 ºC, but below 14 ºC the system hardly exhibits any self-

initiation, the front speed becomes much lower with a bigger variation. 

 

Figure 3.12 The dependence of front 

speed on temperature. [sulphuric acid] 0 = 

4.05 × 10
-4 

M, [urea]0 = 0.03 M, 

 [urease]0 =  17 unit mL
-1

 

 

 

 

 



79 

 

 
 

3.4 Modelling 

 

The model of spatial behaviour of the urea/urease reaction was developed 

from the batch model described in section 2.5. The same set of reactions was taken 

into account as described by equations 2.7 – 2.12, for each of the variable, Ci, a 

differential equation with both reaction, f(Ci), and diffusion,
2

2

x

C
D i

i



, terms was 

applied: 

2

2

)(
x

C
DCf

t

C i

ii

i









      (3.2) 

where Di is the diffusion coefficient of Ci, and x represents space. For one spatial 

dimension the partial differential equations were solved using CVODE for time and 

2nd order central difference approximation for space in XPPAUT. The code used is 

attached in the Appendix II. The spatial step size was r = 0.2 mm, and number of grid 

points was N = 190 so the total length of the domain was 38 mm. The rate constants 

are identical to the ones given in Table 2.2 apart from k1 that was lowered to 2.2 × 

10-6 unit-1 mL mol-1 s-1 to better match the experimental results. The diffusion 

coefficients were taken as
4
 DH = 5 × 10-3 mm2 s-1 for H+, DOH = 2 × 10-3 mm2 s-1 for 

OH-, and for the rest of the species as Dx = 1 × 10-3 mm2 s-1.  The first two grid points 

concentrations (X[1..2]) were set as the reacted solution in order to initiate a front. 

The rest of the grid points (X[3..190]) were set with the initial concentrations. No 

flux boundary conditions were used: X[0] = X[1] and X[190] = X[191]. 

3.4.1 Results 

An example of modelled spatiotemporal changes of pH (a), urea (b), NH3 (c) 

and CO2 (d) for conditions giving a clock time = 1400 s are shown in Fig. 3.13. As 

expected from simulations in a batch reactor (Fig. 2.14), the concentration of urea 
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decreases in time as the pH increases. The concentration of ammonia increases in 

time, whereas CO2 reaches its maximal concentration at the border of reacted and 

unreacted solution, then decreases back to 0, so there is a pulse of CO2 propagating 

through the reaction mixture. 

  

  

Figure 3.13 Illustration of modelled spatiotemporal changes of pH (a), urea (b), NH3 (c) and 

CO2 (d). [sulphuric acid]0 = 4.05 × 10
-4

 M, [urea]0 = 0.03 M, [urease]0 =  18 unit mL
-1

. Clock 

time = 1400 s 

 

As in the experiments, it was possible to extract pH-space profiles at different 

time points, showing the change of pH is sharp as the front propagates: 

Figure 3.14 Modelled pH-space profiles at 

200, 500, and 800 s with [sulphuric acid]0 

= 4.05 × 10
-4

 M, [urea]0 = 0.03 M, 

[urease]0 =  14 unit mL
-1
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A front position vs. time plot is shown in Fig. 3.15 (a), where two regions of 

front speed are distinguished: the initial propagation and the later one. The 

distinction is made in order to show the acceleration of front speed with propagation 

of the front. To show this tendency for a wider range of conditions, an analogous plot 

has been made in Fig. 3.15 (b) for initial concentrations giving shorter clock time 

(800 s).   

              

           

 

 

Figure 3.15 Front position vs. time plots for (a) [sulphuric acid]0 = 4.05 × 10
-4

 M, [urea]0 = 

0.03 M, [urease]0 =  18 unit mL
-1

, clock time = 1400 s; (b) [sulphuric acid]0 = 4.05 × 10
-4

  M, 

[urea]0 = 0.03 M, [urease]0 =  24 unit mL
-1

, clock time = 800 s 

 

It is clearly visible that closer to the clock time, the slope is bigger. The 

difference in front speed between faster and slower clock reactions increases in time. 

Therefore in order to compare the experimental results of front speed under different 

initial concentrations of urea, urease and acid with the simulations, for each of the 

conditions an upper and lower value of wave speed was calculated. The border 

between the front position for the upper and lower speed was taken for simplicity to 

be 3 mm from the initiation site. The comparison of experimental results with the 

model is shown in Fig. 3.16. Both the upper and lower calculated values of front 

speeds confirm the trends obtained in experiments: the front is faster for higher urea 

and urease concentrations; the front is slower for higher acid. The modelled variation 

of front speed is within a smaller range when changing the concentration of urea, 
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than changing urease or acid. With conditions giving shorter clock times (low acid, 

high urea and urease) the experimental data fits better with the upper front speed 

calculated from the later period of propagation. With longer clock times (low urea 

and urease, higher acid) the experimental data are closer to the lower front speed 

calculated from the earlier period of propagation (far from clocking). The model is 

far from agreement for very high urease (24 unit mL-1) and high acid (0.45 mM). 

 

Figure 3.16 Comparison of simulated upper and lower front speed values (lines) with 

experiments for different initial concentrations of (a) urease, (b) urea and (c) acid. Standard 

concentrations were: [sulphuric acid]0 = 4.05 × 10
-4

 M, [urea]0 = 0.03 M, [urease]0 =  17 unit 

mL
-1

 

 

 The model also shows the impact of diffusion of different species on the front 

propagation. The analysis of single diffusion of H+, OH-, NH3 and 

3HCO (diffusion 

of all the other species are set to 0) shows that there is no front propagation if only 

OH- diffuses (Fig. 3.17 b), however the front propagation still proceeds if only H+, 

NH3 or 

3HCO diffuse independently (Fig. 3.17 a, c and d). This may be a 
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consequence of the way the model is written, i.e. we do not explicitly include 

reaction of OH- with other species except H+. This means that NH3 acts as 

autocatalyst. 

 

Figure 3.17 Dependence of the front propagation on diffusion of (a) H
+
, (b) OH

- 
,(c) 



3HCO and (d) NH3 alone (Dother = 0) 

 

 When the enzyme concentration is lowered down to 3.4 units mL-1, the model 

still exhibits front propagation as shown in pH spatiotemporal profile in Fig. 3.18 (a) 

and in the front speed plot in Fig. 3.18 (b). The analysis of the front speed shows the 

same tendency as under high enzyme conditions – closer to the clock time, the front 

is faster. 
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Figure 3.18 (a) Spatiotemporal changes of pH, and (b) front position vs time plot for low 

enzyme concentration.  [sulphuric acid]0 = 1.6 × 10
-4

 M, [urea]0 = 0.03 M, [urease]0 =  3.4 

unit mL
-1

 

 

3.5 Discussion 

 

The results in this chapter show that the urea/urease system exhibits pH front 

propagation within a certain range of initial conditions. In comparison to the other 

examples of enzyme catalyzed reactions undergoing front or wave propagation in 

vitro
3,4

 it may be the simplest and the easiest enzymatic front system to characterize. 

It is the simplest system as the mechanism that contains five acid-base equilibria (2.8 

– 2.12) of the products and the main enzyme-catalysed decomposition of urea (2.7) 

with addition of diffusion terms predicts the front propagation. The model shows 

reasonable quantitative agreement with the experimental data in a range of enzyme 

concentrations (from 17 to 22 unit mL-1), in lower acid concentrations (from 0.36 to 

0.43 mM) and in a wide range of urea concentrations (from 0.015 to 0.037 M), 

providing that the front speed is modelled for earlier and later periods of front 

propagation to account for acceleration as the reaction proceeds. There is 

experimental evidence that the front accelerates as the reaction proceeds (Fig. 3.5 

and Fig. 3.7). However, due to experimental limitations, such as merging of fronts or 

late times of appearance of self-initiated fronts, it was not possible to calculate the 
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front speed for earlier and later periods of propagation for all sets of concentrations. 

Even for longer clock times the front speed does not change in a reproducible way in 

time (as shown in Fig. 3.5).  

According to the current model the key species required for front propagation 

are: H+ or 

3HCO , or NH3 but not OH-. This fact means that the weaker bases, such as 



3HCO or NH3 given in the model are the species responsible for the autocatalytic 

character of the system. The front speed is in the range 0.2 – 1 mm min
-1

. In most of 

the known pH front systems such as bromate/sulphite
5
 or chlorite/tetrathionate

6
 

reaction the front speed is 10 – 20 times bigger than in the urea/urease, namely 1 – 

20 mm min
-1

. This may be attributed to the fact that these systems contain an acid 

autocatalytic step, and the diffusion of acid is 2.5 times faster than OH
-
 and 5 times 

faster than NH3. The only known example of a base-driven front is the  

(ethylenediaminetetraacetato)cobalt(II)/hydrogen peroxide system
7
 where the planar 

wave speed was found to be around 0.48 mm min
-1

. This system is not the best 

reference as fronts become unstable which leads to fingering in long term 

measurements, hence the fact that the front speed is 17 times bigger at this stage may 

be because of convection rather than reaction-diffusion. 

Further experimental characterisation of the system showed when front 

propagation did not occur: for temperatures lower than 17 ºC and five times lower 

enzyme concentrations, in spite of a reasonable clock time in the well-stirred batch 

reactor under these conditions (400 s). The model still shows the regular propagation 

of a front at low enzyme concentration, which gives information about the limit of its 

validity. Other experimental data also suggests there is a limit of this model at low 

enzyme i.e. the results in a well-stirred system in Table 2.1 where there is a trend 

showing a significant decrease in final pH with the volume of the solution. Also 
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occasionally there were situations when no clock was observed in the batch reactor, 

but only a very slow increase of pH over few thousands seconds, even with 

conditions that usually provide an intermediate clock time and final pH = 9. An 

approach to consider is that under much lower enzyme concentration the urea/urease 

reaction undergoes non-mass action kinetics
8
 or is highly sensitive to mixing effects 

(as many other autocatalytic reactions are
9
). Although usually non-mass action 

kinetics starts to play a role at a much smaller scale than a few mL, it still may be 

pronounced in this system because of the small amounts of enzyme used in these 

experiments, which is not necessarily seen on an industrial scale when the activity is 

calibrated. So for low enzyme concentrations in two separate experimental set-ups 

(batch reactor in chapter 2 and spatial here) the model introduced in the section 2.4 

does not describe the behaviour observed and new approaches need to be 

considered
10

. 

In contrast to the previously introduced enzymatic systems that exhibit fronts, 

the urea/urease reaction is easy to characterise and the dependencies of spatial 

behaviour on the parameters such as initial concentrations and temperature of the 

reactants have been determined. Although under certain conditions (such as high 

enzyme or low acid) the errors in calculated front speed are high, the ranges of 

concentrations giving self-initiation, initiated front propagation and no propagation 

are known.  

3.6 Conclusions 

A spatial investigation of the urea/urease/sulphuric acid reaction in a thin 

layer has been made. The system exhibits propagating pH fronts in a wide range of 

conditions. Three different types of spatial behaviour have been observed depending 

on initial concentrations of reactants: self-initiation of fronts, initiated front and no 



87 

 

 
 

propagation. The fronts are reproducible providing the enzyme is above critical level. 

Front propagation has been predicted in a model that gives a reasonable agreement 

with the experimental data.  
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4. Clocks and oscillations in the 

urea/urease/acetic acid reaction 
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4.1 Introduction 
 

Further investigation of the properties of the urea/urease/acid reaction 

introduced in the previous chapters was made by changing the acid from a strong to a 

weak one: acetic acid. The system was studied in unbuffered conditions in a closed 

reactor and exhibited clocks with a different profile than when using sulphuric acid. 

In a CSTR, instead of bistability large amplitude oscillations were observed and 

studied under different ranges of parameters. 

The full kinetic model introduced in chapter 2 was adapted by using the rate 

constants for acetic acid, though as it does not mimic the experimental results in a 

CSTR, different factors affecting the kinetics of the system, such as signal to noise, 

were investigated.  

4.2 Experimental 

 

Solutions were prepared as discussed in Chapter 2 with acetic acid replacing 

sulphuric acid in Solution A. The same batch reactor and CSTR procedure was 

followed. The behaviour of the system was recorded from pH measurements in the 

CSTR changing the pumping rate from settings 8 to 35 (which is close to maximum 

pump setting). The changes of pH at a certain pump rate have been measured for 

around 50 minutes. The flow rate was calibrated from the pump rate every day before 

the experiments were performed. Stock solutions undergo slow hydrolysis so have to 

be freshly prepared at least daily. 1 L stock solutions were prepared, fresh reactant 

solutions were supplied when needed. Initial concentrations of urea, urease and 

acetic acid were varied, urea from 0.01 to 0.03 M, urease from 1.25 unit/mL to 2.50 

unit/mL, acetic acid from 2.92 × 10
-4

 M to 8.77 × 10
-4

 M. The temperature during 
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measurements was 16 °C. Experiments always started from the high pH product 

solution. 

4.3 Results 

4.3.1 Closed system 

Reactions with acetic acid performed in a closed reactor exhibited 

acceleration in the production of OH
-
 but with a less sharp pH change in time, 

compared to sulphuric acid, as shown in Fig.4.1. Clock reactions are observed in all 

ranges of initial concentrations of acetic acid: from [acetic acid]0 = 2.92 × 10
-4

 M 

giving clock time = 250 s, to [acetic acid]0 = 1.17 × 10
-3

 M giving clock time = 1500 

s as shown in Fig. 4.2. In this range of concentrations of acetic acid the induction 

time increases almost linearly with concentration of the acid (Fig. 4.2 c). 

 

Figure 4.1 Example of a clock reaction 

in urea/urease/acetic acid system, 

[urease]0 = 1.3 unit/mL, [urea]0 = 0.005 

M, [acetic acid]0 = 5.85 × 10-4 M          
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Figure 4.2 (a) pH and (b) d(pH)/dt 

changes in the function of time for 

different concentrations of acetic acid [M], 

and (c) induction time dependence on 

initial concentration of acetic acid. 

[urease]0 = 0.7 unit/mL, [urea]0 = 0.005 M. 

The line is intended to guide the eye 

 

 

 

4.3.2 Open system 

4.3.2.1 Oscillations 

 

While performing the urea/urease/acetic acid reaction in a CSTR with a 

decrease of the pump rate for typical initial concentrations of reactants: [urea]0 = 

0.01 M, [urease]0 = 1.25 unit/mL, [acetic acid]0 = 5.85×10
-4

 M, a trend in the 

stability of the pH was seen. At the highest flow rate the pH decreases quickly to a 

low value and is stable under these conditions (Fig. 4.3 a). Then after a decrease of 

the flow rate, large amplitude changes of pH appear (from pH = 3.5 to 6.5) with a 

period of approximate 10 minutes and a systematic increase in the stability of the 

high pH in time and destabilisation of the low pH is observed (Fig. 4.3 b). When 

lowering the flow rate further, there is an increase in the period of the oscillations 

and further stability of the high pH state is noticed (Fig.4.3 c) until final stabilization 
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of the high pH steady state occurs as shown in Fig. 4.3 d-f. The high pH steady state 

is attained by a sudden increase and then slow decrease in pH. A lower pump rate 

gives a higher final pH. 

 

 

 

 

 

 

 

 

Figure 4.3 pH changes in time with decreases in the flow rate (a) 0.058 s
-1

, (b) 0.052 s
-1

,  (c) 

0.044 s
-1

, (d) 0.037 s
-1

, (e) 0.030 s
-1

, (f) 0.021 s
-1

, with [urea]0 = 0.01 M, [urease]0 = 1.25 

unit/mL, [acetic acid]0 = 5.85×10
-4 M 

 

Starting at a low flow rate, firstly the system drops from the high pH of the 

product solution to pH ~ 4.5 and then after some time it suddenly goes back to a 

higher pH (~ 7.5) as showed in Fig. 4.4 a. When increasing the flow rate, the system 

loses its stability in pH at a slightly higher flow rate than when decreasing the flow 

(0.024 s-1, Fig. 4.4 b). The pH changes are shifted in this case compared to when 

decreasing the flow (from pH = 4.5 to 7.5), and the period of a single oscillation is 

longer ~25 min. In Figs. 4.4 b – d, a very similar trend is seen during 50 minutes of 

the measurement: a short pulse, followed by longer stability of the high pH state (20 
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minutes in Fig. 4.4 d). A further increase of the flow (Fig. 4.4 e) does not make the 

system stabilize in pH, but shifts the region of pH to lower values (from 3.7 to 6.5) 

with two pulses of smaller amplitude.  

 
 

 

 

 

 

 

Figure 4.4 pH changes in time with increases in the flow rate (a) 0.017 s
-1

, (b) 0.024 s
-1

,      

(c) 0.033 s
-1

, (d) 0.042 s
-1

, (e) 0.052 s
-1 

, with [urea]0 = 0.01 M, [urease]0 = 1.25 unit/mL, 

[acetic acid]0 = 5.85×10
-4 

M 

 

In order to compare the behaviour of the system when increasing or 

decreasing the flow rate, a bifurcation diagram was constructed (Fig. 4.5). When 

there were no high amplitude oscillations, the final pH was taken. When an 

instability appeared, the maximum and minimum of the highest amplitude oscillation 

was taken. It is clearly seen that when increasing the flow, the region of oscillations 

begins at much lower flow rates, and when decreasing the flow the system stabilizes 

pH at k0 = 0.037 s-1. The pH oscillations are shifted to lower values when decreasing 

the flow compared to when increasing the flow. 

Figure 4.5 pH bifurcation diagram in the flow 

reactor: red line (triangles) - decreasing the flow 

rate, black line (circles) – increasing the flow rate, 

with [urea]0 = 0.01 M, [urease]0 = 1.25 unit/mL, 

[acetic acid]0 = 5.85×10
-3 M 
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4.3.2.2 Different concentrations of reactants 

 

The range of flow rates where the high or low pH is stable or where 

oscillations appear has been investigated for different reactants concentrations. 

Values of the flow rates where high amplitude oscillations were recorded are shifted, 

but oscillations are still repeatedly seen in the majority of conditions.  For example, 

for a higher acid concentration, [acetic acid]0 = 8.77×10-4 M, when decreasing the 

flow, the low pH is stable up to k0 = 0.025 s-1 where oscillations are seen, as shown 

in Fig.4.6. The presence of regular micro-oscillations (probably caused by pumping) 

is clearly visible (Fig. 4.6 c). This experiment shows that both the low and high pH 

can be stable in a long timescale and the large-amplitude spikes appear only under a 

specific flow rate. Under these conditions both the period and amplitude of the 

oscillations increase in time (Fig. 4.6 d).  At the beginning the amplitude is only 1.8 

pH units growing to 3.5 pH units 25 minutes later. The period between the maximum 

of the first and second spike is 16 minutes, and between the second and third spike is 

34 minutes. The small amplitude oscillations are visible in the low pH state even 

when the reaction is oscillating (Fig. 4.6 d). 

 

 

Figure 4.6 pH changes in time with decreases in the flow rate (a) 0.052 s
-1

, (b) 0.042 s
-1

,  (c) 

0.033 s
-1

, (d) 0.025 s
-1

, (e) 0.017 s
-1

 , [urea]0 = 0.01 M, [urease]0 = 1.25 unit/mL, [acetic 

acid]0 = 8.77×10
-4 M 
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A similar tendency was observed for higher urease concentrations (1.87 

unit/mL) with again increasing stability of the high pH state under certain flow rates 

(Fig. 4.7). Instabilities appear at lower flows compared to with higher acid and there 

is a broader region of flow rates showing a stable high pH. The period of oscillations 

increases from 8 to 20 minutes, the amplitude from 1 to 2.5 pH units as shown in Fig. 

4.7 b. 

 

 

 

 

 

 

 

Figure 4.7 pH changes in time with decreases in the flow rate (a) 0.044 s
-1

, (b) 0.038 s
-1

,  (c) 

0.032 s
-1

, (d) 0.026 s
-1

, (e) 0.020 s
-1

 , (f) 0.013 s
-1

 , [urea]0 = 0.01 M, [urease]0 = 1.87 

unit/mL, [acetic acid]0 = 5.85×10
-4 M 

 

4.3.2.3 Step changes of the flow rate 

 

In order to determine whether there is hysteresis in the oscillatory region, an 

experiment was performed where the flow was decreased to the oscillatory region 

then to the high pH steady state and back in large steps (Fig. 4.8). Oscillations occur 

at the same flow rate (0.039 s-1), however they differ qualitatively. When preceded 

by the low pH state, the oscillations are sharp in shape, having low pH periods in 

between (30 – 60 mins in Fig. 4.8). When the oscillations are preceded by the high 

pH state they can be either sharp after a long “induction period” (110 – 140 mins) or 

broad (240 – 270 mins). Also it appeared that when preceded by lower flows with 
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oscillatory behaviour, broad oscillations between high and low pH were observed at 

k0 = 0.044 s-1 rather than a low pH steady state (140 – 170 mins). 

 

Figure 4.8 pH change in time for step changes of flow rates, with [urea]0 = 0.01M, [urease]0 

= 1.87 unit/mL, [acetic acid]0 = 5.85×10
-4 M 

4.3.2.4 Temperature effects 

 

Performing the reaction under different temperatures (8 ºC difference) 

showed the same tendency in behavior of the system: 

Figure 4.9 Comparison of 

behavior of the system under 

23 ºC (Figs. a, c and e) and 15 

ºC (Figs b, d and f). [urea]0 = 

0.01M, [urease]0 = 1.25 

unit/mL, [acetic acid]0 = 

2.92×10
-4 

M. Flow rates: (a) 

and (b) = 0.014 s
-1

, (c) and (d) 

= 0.018 s
-1

, (e) and (f) 0.045 s
-1
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As showed in Figs 4.9 a and b, the system in both cases goes to a low pH at 

the beginning and then goes back to a high pH, however at 23 ºC it takes around 

1000 s to return to the high pH and at 15 ºC  from 1800 s the pH slowly increases. 

The oscillations appear under the same flow rate yet at a lower temperature it takes 

twice the time (23 ºC – 750 s, 16 ºC – 1500 s) and additionally the high pH state is 

stable faster at 23 ºC and for a longer period of time (Fig. 4.9 c). At k0 = 0.045 s-1 it is 

possible to see similar behaviour in a longer timescale: the system goes to high pH 

for very short time and then slowly returns to the low pH state (Figs 4.9 e – f), 

however at 23 ºC an additional instability is noticed at the beginning (after 500 s) 

that is not present at 15 ºC. 

4.3.2.5 Bifurcation and phase diagrams 

 

For each set of concentrations bifurcation diagrams were constructed in an 

analogous way to Fig. 4.5: 

 

Figure 4.10 Bifurcation diagrams in 

the flow reactor for different sets of 

inflow concentrations.  The standard 

concentrations are the same as in 

Fig. 4.5: [urea]0 = 0.01 M, [urease]0 

= 1.25 unit/mL, [acetic acid]0 = 

5.85×10
-4 M,  with one varied 

reactant: (a) [acetic acid]0 = 

2.92×10
-4 M, (b) [acetic acid]0 = 

8.77×10
-4 M, (c) [urease]0 = 1.87 

unit/mL, (d) [urease]0 = 2.50 

unit/mL, (e) [urea]0 = 0.02 M, (f) 

[urea]0 = 0.03 M,   where red line (triangles) – decreases in flow, black line (circles) – 

increases in flow 
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The oscillations usually keep their amplitude and increase in period while 

increasing the flow rate in the whole range of flows for all conditions investigated. 

For high acid (Fig. 4.10 b), high urea (Fig. 4.10 e) and urease concentrations (Fig. 

4.10 c) the amplitude of oscillations overlaps while increasing and decreasing flow. 

The amplitude becomes much smaller while decreasing flow for low acid (Fig. 4.10 

a) and high urease concentrations (Fig. 4.10 d). The oscillatory region while 

decreasing the flow is smaller for high urease (Figs 4.10 d and 4.11 b) and low acid 

(Figs 4.10 a and 4.11 c) concentrations. The oscillations disappear completely for 

high urea concentrations for both increasing and decreasing the flow (Figs 4.10 f, 

4.11 a and 4.11 d). Under these conditions the system shifts to steady states, there 

was no bistability noticed in this region of phase diagram. The flow state is mostly 

seen only under k0 > 0.045 s-1, apart from high acid where it is stable already at k0 = 

0.034 s-1 (Fig. 4.10 b). 

Using the experimental data it was also possible to construct very basic phase 

diagrams in order to better illustrate the trends of behaviour of this system in certain 

ranges of experimental conditions. For the majority of conditions the same tendency 

is observed: with increasing the flow rate, the system becomes oscillatory from a 

high pH steady state (apart from high urea where no oscillations are seen). With 

decreasing the flow rate the system starts from a low pH steady state, transits through 

the oscillatory region and reaches the high pH steady state. With decreasing the flow 

rate the thermodynamic state is stable for a large range of flows for low acid (Fig. 

4.10 a) and all ranges of urea and urease. While increasing the flow in most of the 

conditions the thermodynamic state is only stable at k0 = 0.018 s-1 and also k0 = 0.022 

s-1 in medium and high acid. 
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Figure 4.11 Experimental phase diagrams for different concentrations of urea, urease and 

acetic acid while decreasing the flow (a-c) and increasing flow (d-f) in time. TS = 

thermodynamic state; OSC = oscillations; FS = flow state 

 

4.4 Modelling 

 

The model consists of the same set equations as applied to the 

urea/urease/sulphuric acid system, namely 2.7 – 2.12 with acid dissociation rate 

constant (2.12) changed to acetic acid value following the reaction: 

COOHCH3

  HCOOCH3                 (4.1) 

The model gives a good agreement in a closed system mimicking the shape of the pH 

– time curve (Fig.4.12 a). Also again it is confirmed that the higher the acid 

concentration, the longer the clock time (Fig. 4.12 b). 
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Figure 4.12 Comparison of experimental (black) and modelled (red) data for (a) pH changes 

in time, [urease]0 = 1.4 unit/mL, [urea]0 = 0.005 M, [acetic acid]0 = 5.85 × 10
-4

 M, (b) 

induction time dependence on acetic acid concentration 

 

The rate of change of pH is slower in acetic acid than in sulphuric acid, which 

is correlated with formation of the acetic acid/acetate buffer, as shown in Fig.4.13: 

 

Figure 4.13 Modelled changes of concentrations 

in acetic acid and acetate during a clock. [urease]0 

= 1.4 unit/mL, [urea]0 = 0.005 M, [acetic acid]0 = 

5.85 × 10
-4

 M 

 

 

In flow, the model predicts only a small region of bistability (as shown in 

Fig. 4.13), but no oscillations are seen in the simulations.  
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Figure 4.14 (a) Modelled behaviour of the urea/urease/acetic acid system in flow for 

[urease]0 = 1.4  unit/mL, [urea]0 = 0.005 M, [acetic acid]0 = 5.85 × 10
-4

 M, with a small 

region of bistability. (b) acetic acid - flow rate phase diagram where TS = thermodynamic 

state; OSC = oscillations; FS = flow state 

 

It was also possible to construct a bifurcation diagram where bistability was 

seen with two stable branches and one unstable as shown in Fig. 4.15. The model did 

not show any other types of steady states in this range of conditions. 

 

Figure 4.15 Modelled bifurcation diagram of the urea/urease/acetic acid system in terms of 

(a) concentration of OH-, (b) pH, where i – subcritical perturbation, ii – supercritical 

perturbation. [urease]0 = 1.34 unit/mL, [urea]0 = 0.005 M, [acetic acid]0 = 5.85 × 10
-4

 M, 

solid lines – stable branches, dotted line – unstable branch 

 

In the region where the coexistence of three steady states is seen, i. e. k0 = 

0.005 s
-1, it was possible to examine the system with respect to its sensitivity to 

perturbations in pH (Fig. 4.15 b). This was achieved by increasing the initial 

concentration of base from steady state value and observing how the system decays 

above or below the threshold. By comparison to the sulphuric acid system (Fig. 4.16 
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c and d) it is clear that the urea/urease/acetic acid system (Fig. 4.16 a and b) takes 

much more time (~ 4000 s) to reach either high or low pH steady state (in sulphuric 

acid it is ~250 s) though in both cases after a perturbation the system goes directly 

into its final steady state. 

Figure 4.16 Modelled 

responses of the urea/urease/ 

(a), (b) acetic acid, or (c), (d) 

sulphuric acid system to 

perturbations in pH.  

[urease]0 = 1.34 unit/mL, 

[urea]0 = 0.005 M, [acetic 

acid]0 = 5.85 × 10
-4

 M, 

[sulphuric acid]0 = 2.0 × 10
-4 

M, k0 = 0.005 s
-1 i – 

subcritical perturbation, ii – 

supercritical perturbation 

 

As there was no obvious source of negative feedback and initial attempts to 

obtain oscillations with removal of OH- were not successful,  it was assumed that 

one of possible reasons for the presence of these oscillations is sensitivity of the 

urea/urease/weak acid system to noise as it is known that noise can cause oscillations 

in bistable systems
125

. This pathway was followed because it has been shown that in 

enzyme-catalyzed reactions without feedback, noise may induce apparent bistable 

and oscillatory behaviour
126

.  

The basic (Langevin) equation that describes temporal changes of the 

variable x that contains noise is
1
: 

)(),(),( ttxgtxq
dt

dx
        (4.2) 

where q(x,t)-drift term, g(x,t)-diffusion term(amplitude), ξ(t)-noise term  
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The noise term is described as the difference between Wiener processes at time t and 

(t+h)
1
: w(t) = W(t+h) - W(t) = h

0.5
u(t)     (4.3) 

where u(t)-set of independent Gaussian random variables. 

The algorithm containing noise is described by equations (4.4)-(4.6)
1
: 

k = hq(t, x(t))         (4.4) 

l = h
0.5

u(t)g(t,x(t))        (4.5) 

x(t+h) = x(t)+0.5h[q(t,x(t))+q(t+h,x(t)+l+k)]+0.5 h
0.5

u(t)[g(t+h,x(t)+k+l)] (4.6) 

The standard formula for adding white noise in C is gasdev random number 

generator where the amplitude is the main parameter. 

To add noise effects in the urea/urease model the integration method had to 

be changed from CVODE to Euler or Runge-Kutta. For this purpose the model was 

rewritten in C and the results compared with original XPP version (with no noise). 

The codes are included in Appendix IV. Then noise terms were added to the 

differential equations of urea, NH3 and CO2. Although there was a good agreement 

of results while using different integration methods, the problem that arises from 

Runge-Kutta is the time of modelling (that is around 12 hours) as the step needs to be 

very small to give a reasonable outcome. To accelerate the calculation first of all a 

reduction of variables was made that kept the general behaviour of the original 

model. Improvement in the time of calculation was not significant as the equations 

that were considered in the reduced model were still stiff. To make the reduced 

model less stiff, fast equilibria in reactions was considered and rate constants 

rewritten to give reduced equations keeping the same value of the equilibrium 

constants. This operation improved the velocity of the calculation significantly and 

gave interesting dependencies of the effects of white noise on the initial 

concentration of urea. However the rescaled model with added noise did not show 
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the difference in behaviour between the weak and strong acids, and also the 

bistability was lost.  

4.5 Discussion 

 

 The results presented in this chapter show different types of behaviour, 

including large amplitude oscillations, in the urea/urease/acetic acid reaction in a 

batch reactor and a CSTR. In batch, the system supported clock behaviour within a 

wide range of initial concentrations of the acid. There was no fast acceleration of the 

reaction compared to with sulphuric acid which was due to a strong buffering effect 

in the weak acid system (Fig. 4.13). In flow, the system was examined under 

different sets of parameters, such as concentrations of reactants, temperature as well 

as the range and direction of change (increasing/decreasing) of flow rates. The 

oscillations appear under certain flow rates in the majority of initial concentrations 

apart from at high urea (0.03 M), which may indicate that there is a critical 

concentration of the reactants that changes the behaviour of the system significantly. 

The region of oscillations is always for a much broader range of flow rates and the 

oscillations have more constant shape and amplitude when increasing the flow rate 

rather than decreasing the flow which may indicate either an experimental shift in 

parameters or a hysteresis when approaching the steady states that needs further 

exploration. There was no example of stable oscillations with constant amplitude and 

period seen that suggests that the nature of these oscillations is transient. Due to 

experimental limitations, such as pump channels having different flow rates or decay 

of the stock solution, it was impossible to stabilise the behaviour over a longer 

timescale in a single run. 

 The model with acetic acid shows a good agreement with the experimental 

pH–time profile and the dependence of the clock time on concentration of the acid in 
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a batch reactor. In a CSTR the model shows a very small range of bistability 

compared to the sulphuric acid system. As no oscillations were seen, perturbations 

have been made which showed that the response time of the weak acid system is 

much longer than in the strong acid, though no instabilities have been seen. 

 There could be several reasons for the presence of oscillations in chemical 

systems. Classical nonlinear analysis of a chemical autocatalytic system leads to 

creation of a Jacobian matrix with coefficients being taken from derivatives of rate 

equations with respect to all of the reactants in the system. Depending on the 

complexity of the eigenvalues of the matrix and their signs the behaviour and 

stability of the system can be predicted
2
.  Oscillations are modelled under three 

different solutions. First one is when the solution is complex and its real parts are 

negative, which is called stable focus. In this case after a perturbation the system 

goes back to its steady state in an oscillatory manner with decreasing the amplitude 

until a final stabilization. Another solution where oscillations appear is when 

eigenvalues are complex numbers with real parts positive. This leads to unstable 

focus, where the oscillations increase in amplitude. The last situation leading to 

oscillations is when real parts of eigenvalues = 0, and only imaginary part is left, 

which is called Hopf bifurcation point. Under these conditions a node becomes 

unstable leading to limit cycle appearance. Although both of the first quoted 

examples are rarely identified in the literature, the third one is the most common 

source of chemical oscillations. This is due to the fact that for Hopf bifurcation 

coupling of reactions expressing positive and negative feedback is needed which can 

be obtained by cross-shaped diagram strategy
3
 which distinguishes whole regions of 

presence different states depending on kinetic parameters such as flow rate. A source 

of negative feedback for acid autocatalytic reactions is usually acid consuming 
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compound, such as ferrocyanide coupled to bromate – sulphite reaction
4,5

. In  

analogical way for base autocatalytic reaction, such as methylene – glycol,  an acid 

producing reaction was needed as a negative feedback (in this case gluconolactone 

hydrolysis)
6
. Also an outflow of the autocatalyst can be a source of negative 

feedback, as seen in very narrow range of conditions of the bromate – bromide – 

catalyst system.
7
 Another interesting example of systems undergoing Hopf 

bifurcation is iodate – sulphite – ferrocyanide reaction
8
. In this system different types 

of Hopf bifurcations have been seen depending on the calculation parameters. 

Subcritical Hopf bifurcation has been shown in range of parameters as oscillations 

appear in large amplitude and constant period. Also supercritical Hopf bifurcation 

has been shown in this reaction as small amplitude oscillations with low period were 

observed as well. Also there was a situation where limit cycle collided with a saddle-

node which caused an Infinite-Period Hopf bifurcation with constant amplitude and 

infinitely increasing period oscillations.  

Following this pathway there is a possibility of presence of negative feedback 

in the urea/urease/acetic acid system. The products of the reaction, CO2 and NH3, can 

possibly transfer to gas phase, where ammonia is one of the driving species of the 

autocatalysis here. This assumption could be confirmed by experiment, however it 

has not been measured quantitatively yet. These gas transfer reactions are obviously 

present in both strong and weak acids systems, however sulphuric acid is not as 

sensitive to these processes  as acetic acid because in strong acid solution the rate of 

production of base is much faster without buffering effects taking place in such 

strong scale as in the weak acid case. If this is the driving force of the oscillations the 

oscillations should be constant in time, what is not seen in our experiments. However 

the change in amplitude and period of the oscillations could be explained by slow 
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decay or the stock solutions or a slight mismatch in flow rate in different channels. 

Also there might be an Infinite Period bifurcation, however is has not been found in 

the current model. Additional steps with gas phase transfer have been added to the 

current model, but no evidence of any instability has been found yet. This model still 

needs further exploration. Also in current model there was no evidence of presence 

of a focus, however this may be again caused by the range of parameters chosen and 

possibly could be seen in small region of parameter space that has not been not 

investigated yet. 

 Another source leading to oscillations in chemical systems is noise, which 

appears to be particularly important in enzymatic systems
9
. Again there could be 

several factors causing noise-induced oscillations. First one is when there is a 

stochastic resonance with periodic variation of parameters (which in our case could 

be the flow rate, very clearly seen by small amplitude oscillations). This causes 

cycling of a bistable loop, which was seen for example in the oxidation of ascorbic 

acid by copper (II) ions
10

. Another situation is when there is an excitable system with 

one stable steady state and two unstable steady states which leads to periodic 

oscillations when intermediate noise is applied
11

. Examples of this situation are 

found in biological systems such as Bacillus Subtilis, where noise induces cellular 

differentiation through changes in genes expression and protein degradation
12

.  

Finally noise may shift regions of oscillations when there are systems with Hopf 

bifurcation. This could be obtained in practise by poor mixing effects that influences 

majority of the systems, for example BZ
13

 or chlorite – thiosulphate
14

 reactions.  

With respect to the urea/urease/acetic acid system only the first mentioned 

situation of noise influence is possible. The second is excluded as there has not been 

any proof of a single excitable state in the current model. The third scenario could 
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not be explained by current model as well as any region of oscillations has not been 

found yet. Cycling of bistable loop is still probable as there is a possibility of 

variation of the activity of the enzyme especially seen under this range of enzyme 

concentrations. In order to prove this theory there is a need of more sophisticated 

calculating techniques to examine the model. Another useful information regarding 

enzyme action and the sensitivity of its kinetics to noise in this system would be to 

map the urea/urease/acetic acid behaviour in CSTR in much higher concentrations of 

the enzyme, as were used in fronts experiments to prove if the kinetics in flow 

reactor changes as significantly as in the spatial reactor.     

4.6 Conclusions 

 

 A study of the urea/urease reaction in unbuffered conditions with replacement 

of the strong acid (sulphuric) to a weak one (acetic) has been done. In a batch reactor 

clock behaviour has been found with a strong buffering effect taking place which 

was illustrated in the model of the reaction. In a CSTR the experiments resulted in 

oscillatory behaviour within a range of parameters. There was no evidence of the 

bistability which was predicted by the model. Techniques applied for the 

examination of noise and perturbations do not reproduce the behaviour of the 

urea/urease/acetic acid system in a CSTR. The model needs further development 

such as additional reaction steps to be incorporated. 
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5. Kinetic study of autocatalytic hydrolysis 

of esters 
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5.1 Introduction 

 

One of the first attempts to create a pH-enzyme oscillator was by hydrolysis 

of benzoyl-L-arginine ethyl ester catalyzed by papain in a system with a membrane 

as mentioned in section 1.3
1
. Ester hydrolysis may be autocatalytic either through 

acid catalysis or enzyme catalysis, but this approach has not been investigated much.  

Hydrolysis of esters is generally known to undergo different reaction 

mechanisms depending on the initial pH. The general scheme of the reaction is 

shown in eq. 5.1, where the reaction of the ester with water leads to production of an 

alcohol and a carboxylic acid: 

 

 (5.1) 

 

When the reaction is performed in acidic solution it is reversible and leads to 

equilibrium. The equilibrium can be shifted to the acid and alcohol products when 

performed in a large excess of water. The production of an ester is favoured when 

water is removed and in excess of alcohol solution. When the reaction is performed 

in a strong base solution, for example NaOH, the process becomes irreversible as it 

leads to the sodium salt, instead of the acid, that is not reactive with the alcohol. 

Under conditions where the carboxylic acid product is favoured, the reaction 

may show autocatalytic behavior because of catalysis by acid: 

           

 

(5.2) 
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Apart from papain, ester hydrolysis processes can be catalyzed by other types 

of enzymes such as esterases
2
. Again as these enzymes have a bell-shape pH-rate 

curve and acid is one of the products of the reaction, so clock reactions from high to 

low pH should be expected, however because of experimental limitations such as 

very low solubility of esters in water and of enzymes in the oil phase evidence of 

acid autocatalysis taking place has not been clearly shown yet.  

 In this chapter firstly an analysis of the kinetic models of ester hydrolysis is 

done to indicate how different types of catalysis leads to pH clocks and bistability.  

Then the models are compared qualitatively with experimental results of several 

examples of enzyme-catalyzed and uncatalyzed ester hydrolysis is studied. In the 

final part, a model of aspirin hydrolysis is compared to experimental results as 

aspirin is one of the example esters investigated. 

5.2 Modelling study 

 In the simplest model of ester hydrolysis three scenarios can be considered: 

(A) Uncatalyzed:  

22 PPOHS           (5.3) 

(B) Acid catalyzed: 

22 PPOHS H 


                  (5.4) 

(C) Enzyme catalyzed: 

22 PPOHS enzyme
         (5.5) 

Where S = ester; P = carboxylic acid; P2 = alcohol. 

Two additional equilibria need to be included in each scenario: 

P  P
- 
+ H

+
         pKa        (5.6) 

H2O  OHH        (5.7) 
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The rate equations with flow term (k0([X0] –[X]) for reactions performed in CSTR 

are as follows: 

])[]([
]S[

00 SSkV
dt

d
           (5.8) 

])[]([]][HP[]P[
]P[

0022 PPkkkV
dt

d
 

        (5.9) 

])[]([]][HP[]P[
]P[

0022







 PPkkk
dt

d
       (5.10) 
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Where: k
2
, k

-2
 – carboxylic acid equilibrium constants (5.6), 

k
3
, k

-3
 – water equilibrium constants (5.7), 

k
0
 – flow rate, 

V0 – hydrolysis rate, that varies in each scenario: 

In model (A) V0 = k1S, in model (B) V0 = (k1+ k1a[H
+
])S,  

in model (C) 
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Where: k1 – rate constant of uncatalyzed ester hydrolysis (reaction 5.3),  

k1a – rate constant of catalyzed ester hydrolysis (reaction 5.4). 

The rate constants, adjusted in order to show different types of behaviour, are shown 

in Table 5.1, though in different models k
1a

, k
1
 and k

2
 are varied.  
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Table 5.1 Rate constants used in the ester model, unless otherwise stated 

Rate 

constants 

k1 

s
-1

 

k1a 

M s
-1

 

k2 

s
-1

 

k-2 

M
-1

 s
-1

 

pK

a 

k3 

M s
-1

 

k-3 

M
-1

 s
-1

 

1 x 10-4 100 1×10-6 1 3 1×10-3 1×10
11

 

Enzyme 

constants 

Vmax 

M s
-1

 

KM 

M 

Kes1 

 

Kes2  

1×10
-5

 1 1×10
-4

 1×10
-8

  

 

The maximum rate Vmax depends on the total enzyme concentration [E0], KM is the 

Michaelis constant, Kes2 and Kes1 are protonation equilibria of the substrate-enzyme 

complex (see Appendix 1). In each case the initial conditions are: S = 1 M, initial pH 

= 10. In the enzyme-catalyzed case, the pH dependence of relative enzyme rate, 

calculated as 

  
















1

2

max

0
][

][
1)

es

es

M
K

H

H

K
SK

SV
V , is a bell-shape curve with 

maximum at pH = 6: 

Figure 5.1 Modelled enzyme rate 

dependence on pH 

 

 

 

The codes are included in Appendix V. 

5.2.1 Results 

(A) Uncatalyzed ester hydrolysis, k1a = 0 M s
-1

 

In the uncatalyzed case it is still possible to see a clock reaction in terms of pH, 

though no direct acceleration in terms of H
+
 production or substrate consumption is 

seen as shown in Fig.5.2. Also no evidence of bistability in flow is seen. 
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Figure 5.2 (a) pH – time plot, (b) [H
+
] changes in time, (c) enlarged region of [H

+
] 

production (d) reaction rate with respect to [H
+
], (e) [S] changes in time, (f) reaction rate 

dependence on concentration of substrate. Model parameters: k1a = 0 M s
-1

 

 

(B) Acid catalyzed ester hydrolysis 

When acid catalysis is considered in the mechanism of ester hydrolysis the pH-time 

profile looks the same as in the uncatalyzed case with a sudden change of pH ~1700 

s. However acceleration of the reaction is also seen with respect to the other species 

such as [H+] and [S] (Fig. 5.3 b – e). Additionally a small region of bistability 

(0.0003 – 0.0036 s
-1

) is seen in the flow reactor as shown in Fig. 5.4. 
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Figure 5.3 (a) pH-time plot, (b) [H
+
] changes in time, (c) enlarged region of [H

+
] production 

(d) dependence of reaction rate with respect to [H
+
] on the concentration of acid, (e) [S] 

changes in time, (f) reaction rate dependence on concentration of substrate. Model 

parameters: k1a = 100 M s
-1

 

 

Figure 5.4 Modelled region of bistability in a 

flow reactor in acid catalyzed ester hydrolysis, 

conditions as stated in table 5.1 

 

 

 

When the rate constants are changed to: k1 = 1×10
-5

 s
-1

, k1a = 1 M s
-1

, k2 = 1 ×10
-3

 s
-1 

the pH change is bigger (the final pH goes to 1.50) and proceeds in two steps – the 

first one is from 10 to 5.5, the second one from 5.5 to 1.5 (as shown in Fig. 5.5 a). 

Also changes in the concentrations of [H+] and [S] become sharper and their 
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derivatives more symmetrical than for higher values of k1 and k1a and a lower value 

of k2. Additionally a much broader range of bistability is seen – from 0.008 to 0.030 

s
-1 as shown in Fig. 5.6. 

Figure 5.5 (a) pH-time plot, (b) [H
+
] changes in time, (c) enlarged region of [H

+
] production 

(d) dependence of reaction rate with respect to [H
+
] on concentration of acid, (e) [S] changes 

in time, (f) reaction rate dependence on concentration of substrate. Model parameters: k1 = 

1×10-5 
s

-1, k1a = 1 M s
-1

, k2 = 1 ×10-3 s-1 

 

 
Figure 5.6 Modelled region of 

bistability in flow reactor in acid 

catalyzed ester hydrolysis,  

k1 = 1×10-5 
 s

-1, k1a = 1 M s
-1

,  

k2 = 1 ×10-3 s-1 
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(C) Enzyme catalyzed ester hydrolysis  

When the catalysis is performed via a pH-sensitive enzyme with k1 = 1×10
-2

 s
-1

, k1a = 

0 M s
-1

, k2 = 1 ×10
-4

 s
-1 

the pH – time profile and production of acid look similar to 

the acid catalyzed case shown in Fig. 5.2, though the clock time is shorter. The major 

difference is that the substrate is consumed only to ~30% after 2000 s and exhibits a 

sharp maximum of reaction rate close to the initial concentration of the substrate 

(Fig. 5.7 f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 (a) pH-time plot, (b) [H
+
] changes in time, (c) enlarged region of [H

+
] production 

(d) dependence of reaction rate with respect to [H
+
] on concentration of acid, (e) [S] changes 

in time, (f) reaction rate dependence on concentration of substrate. Model parameters: k1 = 

1×10
-2

 s
-1

, k1a = 0 M s
-1

, k2 = 1 ×10
-4 

s
-1 

 

In a flow reactor bistability is observed in flow rates between 0.15 and 0.70 s
-1

, 

which is much broader than in the first acid catalyzed case with lower rate constants 

of catalysis and a higher acid dissociation constant (Fig. 5.3). It is also broader 

compared to the second acid catalyzed case (Fig. 5.5) and shifted to higher flow 

values.   
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Figure 5.8 Modelled bistability 

region for enzyme catalyzed ester 

hydrolysis in a flow reactor with 

k1 = 1×10
-2

 s
-1

, k1a = 0 M s
-1

,  

k2 = 1 ×10
-4

 s
-1

 

 

 

5.3 Experimental 

 

 In the previous section, we have seen that with the addition of carboxylic acid 

catalysis to ester hydrolysis, we observe an increasingly more exponential growth in 

acid (Fig. c in each model). In the experiments we look for evidence of this trend. All 

reactions have been performed in a closed well-stirred reactor, where the solution 

consisted of 15 mL either of base (NaOH) or water. Then pH measurements were 

taken in the same way described in section 2.3.2 starting from the moment of 

addition of either solid ester or alcohol solution in p-nitrophenol acetate case. 

Attempts to monitor the substrate consumption or product appearance by UV-VIS 

spectrophotometry failed as the wavelengths of absorption lie in the noisy region of 

the spectrum of the equipment available which made the results inconsistent. The 

temperature during measurements was 20 ºC unless otherwise stated. 

As a result of experimental difficulties it was not possible to perform the 

reactions in a CSTR in order to investigate the presence of bistability. Attempts to 

use other solvents for the esters failed as mixing with water during the pumping 

process caused volume contraction and significant heat release that makes the 

parameters in the CSTR impossible to control.  
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5.3.1 Hydrolysis of gluconolactone 

One of the examples of compounds undergoing hydrolysis with generation of 

acid is gluconolactone. The reaction leads to opening the heterocyclic ring and 

production of gluconate ion: 

  

 

(5.13)  

 

 

 

When performed in a batch reactor, where D-gluconic acid lactone undergoes 

dissolution and reaction, the major change of pH takes place in first 300 s (Fig. 5.9 

a), and acid is produced faster starting from ~120 s (Fig. 5.9 c). The reaction rate has 

its maximum from 120 s till 350 s then the rate decelerates slowly. 
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Figure 5.9 Hydrolysis of gluconolactone. (a) pH-time plot, (b) long-time [H
+
] changes, (c) 

enlarged region of initial increase of [H
+
], (d) changes of the rate of the reaction in time  

5.3.2 Hydrolysis of lactide 

  Another compound that undergoes hydrolysis with production of acid is 

lactide. Again both opening of the ring and dissociation takes place: 

 

                                      

(5.14)                                            

 

 

 

The changes of pH and concentration of H+ look very different from the 

previous case. In the pH-time plot in Fig. 5.10 it is shown that two major changes of 
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pH take place: the first one between pH = 12 and 7, and the second between pH = 6 

and 4. The concentration of hydrogen ion shows that only the second change, after 

1300 s, contributes to acceleration in the production of acid significantly. The 

reaction rate starts to accelerate at that point to become constant ~1900 s (Fig. 5.10 

d). 

 

 

 

 

 

 

Figure 5.10 Dissolution and hydrolysis of 0.06 g of lactide in 15 mL of 0.016 M NaOH. (a) 

pH-time and (b) concentration of H
+
 changes (c) enlarged region of initial increase of [H

+
], 

(d) changes of rate of the reaction 

 

The same two steps in the production of acid are seen when the reaction is performed 

in presence of enzyme butyrylcholinesterase, but also it is seen that the second 

change of pH takes place earlier (of ~ 550 s) compared to the uncatalyzed case. Also 

the rate of production is higher than in the previous case (Fig. 5.11 d).  
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Figure 5.11 Dissolution and hydrolysis of 0.06 g of lactide in 15 mL of 0.016 M NaOH in 

presence of [butyrylcholinesterase]0 =  2 unit/mL. (a) pH-time and (b) concentration of H
+
 

changes (c) enlarged region of initial increase of [H
+
], (d) changes of rate of the reaction 

  

5.3.3 Hydrolysis of p-nitrophenyl acetate catalyzed by chymotrypsin 

A promising example of an enzyme-catalyzed hydrolysis of ester providing 

H+ production is p-nitrophenyl acetate (PNPA) catalyzed by chymotrypsin
3
: 

        

 

(5.16) 
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COOHCH3         HCOOCH3    pKa = 4.8  (5.17) 

 

where the activity of the enzyme depends on pH as a bell shape curve with maximum 

at pH = 8. However, because of enzyme/substrate solubility issues, the reaction was 

performed in two phases: PNPA was dissolved in 100 % ethanol, chymotrypsin in 

50/50 mixture of ethanol and 0.017 M NaOH. Both the pH and [H+] changes in time 

show the same trend as in the gluconolactone case, only the range of pH change is 

only in highly basic conditions. The main change of pH happens during the first 

minute, to become much slower in next 40 minutes in order to reach equilibrium:   

  

 

Figure 5.12 Hydrolysis reaction of [PNPA]0  = 0.05 M, [chymotrypsin]0  = 0.59 unit/mL. (a) 

pH- time and (b) concentration of H
+
 changes  

5.3.4 Hydrolysis of aspirin 

Another ester reaction that is acid catalyzed is the hydrolysis of a popular 

drug aspirin
4
: 

OHCOOCHHCHCOOH 2346      COOHCHOHHCHOOC 346     (5.18) 

COOHCH3        HCOOCH3              pKa = 4.8         (5.19) 

OHHCHOOC  46            HOHHCOOC 46      pKa = 3.0         (5.20) 
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 Addition of aspirin to NaOH leads to a sudden change of pH from 12.5 to 4.0 

after 300 s as shown in Fig. 5.13 a. The concentration of H
+
 profile (Fig. 5.13 b) 

shows significant growth after 400 s with slight acceleration. 

 

Figure 5.13 Example of pH “clock-type” behaviour when 0.05 g of aspirin is dissolved in 15 

mL of 0.016 M NaOH 

 

The dissolution of aspirin was observed to be slow and the solubility is 3 mg/mL at 

20 °C, hence we investigated the reaction at different temperatures. This clock-type 

behaviour is seen in wide range of temperatures and the clock time can be varied 

from 100 s in 60 ºC to 1250 s in 5 ºC as shown in Figure 5.14.  

 Figure 5.14 Aspirin hydrolysis dependence 

on temperature with masp = 0.05 g,  

[NaOH]0 = 0.016 M. (a) pH-time curves, (b) 

concentration of H
+
 changes and (c) 

induction times 
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The clock-type behaviour depends on the mass of aspirin dissolved, as when the 

mass is decreased to 0.03 g (below solubility limit) the final pH is only 8.5 after 7500 

s at 20 ºC (as shown in Fig. 5.14 a) and no significant production of H
+
 ions is seen. 

A temperature increase up to 60 ºC does not change the behaviour significantly as for 

the same mass of aspirin equivalent final pH values are seen (Fig. 5.15 c and d).    

Figure 5.15 (a), (c) pH – time curves and (b), (d) concentration of H
+ 

changes during aspirin 

hydrolysis depending on the amount of aspirin added performed in (a), (b) 20 ºC, and (c), (d) 

60 ºC 

5.4 Model of aspirin hydrolysis 

 

As the aspirin shows a pH clock but we were unable to follow the substrates 

by UV-VIS in experiments a model of aspirin hydrolysis was used to determine 

whether the reaction is autocatalytic. 

The known established mechanism of aspirin hydrolysis consists of six 

irreversible steps (5.21 – 5.26) and four acid – base equilibria (5.27 – 5.30)
4
: 
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  HCOOHCHCOOHHHOCOHHCOOHHCOOCCH
k

3462463
1  (5.21) 

COOHCHCOOHHHOCOHCOOHHCOOCCH k

3462463
2   (5.22) 

  COOCHCOOHHHOCOHCOOHHCOOCCH
k

346463
3  (5.23) 

COOHCHCOOHHHOCOHHCOOHCOOCCH k

3462463
4    (5.24) 

  COOCHCOOHHHOCOHCOOHCOOCCH
k

3462463
5  (5.25) 

  COOCHCOOHHOCOHCOOHCOOCCH
k

346463
6  (5.26) 

H2O  H
+
 + OH

−
         k7,k7r    pKa = 14 (5.27) 

CH3COOC6H4COOH   CH3COOC6H4COO
−
 +H

+
  k8,k8r    pKa = 3.5   (5.28) 

HOC6H4COOH  HOC6H4COO
−
 +H

+
   k9, k9r    pKa = 3      (5.29) 

CH3COOH CH3COO
−
 +H

+                       k10, k10r  pKa = 4.8 (5.30) 

As in the experiments, the dissolution process needs to be considered as well: 

CH3COOC6H4COOH (s)  CH3COOC6H4COOH (aq)  k0, k0r,   (5.31) 

 

The rate constants are known from the literature
4
 and are shown in Table 5.2: 

Table 5.2 Rate constants used in modelling of 

aspirin hydrolysis 
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The only parameters possible to vary in this model are: the initial mass of aspirin to 

be dissolved and the initial pH. In Fig. 5.17 an example of a relatively fast “clock-

type” change of pH is shown (~420 s) with the H
+
 profile and its derivative.  When 

compared to the situation with a lower mass of aspirin dissolved, shown in Fig. 5.18, 

it is clear that with a decrease of the substrate, the system loses its clock character 

with less sharp conversion and much smaller H
+
 production (only to pH ~6.8). As in 

the experiments, slight changes of the initial mass of aspirin dissolved can lead to big 

quantitative changes in H
+
 production (of several orders of magnitude). The values of 

masses leading to certain clock times are 2.5 times lower than in experiment, this 

may be caused by imperfect dissolution and mixing in the real system. A lower initial 

pH only accelerates the conversion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Modelling results of (a) pH, (b) concentration of H
+
 changes in time and (c) 

reaction rate with respect to concentration of H
+
, (d) aspirin profile in solid state and in 

solution with masp = 0.020 g, pHinit = 12 



129 

 

 
 

  

 

 

 

 

 

 

Figure 5.17 Modelling results of (a) pH, (b) 

concentration of H
+
 changes in time and (c) reaction 

rate with respect to concentration of H
+
, masp = 

0.008 g, pHinit = 12 

 
  

When k1 = 0 s
-1

 (so that the acid catalytic step is “switched off”) the pH-time plot 

still exhibits clock type behavior (Fig. 5.18a), and H
+
 production looks similar to the 

case with catalysis (Fig. 5.16).  The main difference is a sharper decrease of reaction 

rate after initial very fast production (Fig. 5.18 c) and slower transfer of aspirin into 

solution (Fig. 5.18 d). 

Figure 5.18 Modelling 

results of (a) pH, (b) 

concentration of H
+
 

changes in time and (c) 

reaction rate with 

respect to 

concentration of H
+
,  

(d) aspirin profile in 

solid state and in 

solution, with masp = 

0.020 g, pHinit = 12, 

 k1 = 0 s
-1
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 Additionally when k1 = 2.2×10
4
 s

-1 the behaviour of the system changes 

significantly. The pH-time plot exhibits a second step in the range of pH between 5.0 

and 4.2 which causes a sharper increase of H
+
 (Fig. 5.18 b) and a bell-shape rate 

dependence on acid concentration (Fig. 5.19 c) as well as changing the profile of 

aspirin dissolution into a sharp peak that takes place within this range of pH (Fig. 

5.19 d). 

Figure 5.19 Modelling results of (a) pH, (b) concentration of H
+ changes in time and (c) 

reaction rate with respect to concentration of H+, (d) aspirin in solution with masp = 0.020 g, 

pHinit = 12, k1 = 2.2×104 s-1 

 

It was also possible to construct clock times and final pH dependencies on initial 

mass of aspirin dissolve, shown in Fig. 5.20. Both of the dependencies show 

exponential character. 

Figure 5.20 (a) Clock 

time, (b) final pH 

dependencies on initial 

mass of aspirin 
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5.5 Discussion 

 

 Our goal was to find the conditions for which autocatalysis might be observed 

in ester hydrolysis and therefore evidence of autocatalysis in new experimental 

systems. Up to now there are no literature reports of autocatalysis in an experimental 

study of acid-catalyzed ester hydrolysis. 

The results in this chapter show a theoretical and experimental analysis of 

hydrolysis of organic compounds producing acid, namely open and cyclic esters 

(lactone). A pH clock is observed in the model with no catalysis due to consumption 

of initial OH
-
 present. It is clearly shown in the model that the addition of the acid 

catalytic step plays a major role in the kinetics and causes a much sharper production 

of acid and consumption of products with little effect on the pH-time plot (clock 

time). Additionally the second evidence of feedback in the system appears – 

bistability, that is not seen in the uncatalyzed case. When the acid equilibrium 

constant is increased, a second step of pH changes appears in the pH-time plot and 

although it is smaller in range than the first one, it contributes significantly to H
+
 

production and substrate consumption. Also the range of bistability becomes much 

wider than in the previous case. When additionally enzyme catalysis is considered 

the main effects are an increase in the region of bistability in the flow reactor with a 

decrease of consumption of the product, but with sharp maximum of reaction rate at 

the beginning of substrate consumption. 

 Experimental investigation allowed only trends in changes of pH to be 

shown. It is necessary to monitor changes in substrates to clearly see the presence of 

autocatalysis. However it is still possible to comment on the possibility of 

autocatalysis from the experimental data shown in the four examples of ester 

hydrolysis in this chapter. Two types of behaviour can be distinguished. In the first 
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one, seen in gluconolactone and p-nitrophenyl acetate hydrolysis, there is a direct 

decrease of pH below 500 s with a further slower production of H
+
 that proceeds 

during next few thousands seconds. This H
+
 curve looks very similar to the 

uncatalyzed model case, though the timescale in the simulations is much longer to 

show the clock behavior, which is not seen in the experiments. In the p-nitrophenyl 

acetate case the pH change is very small even in the presence of the enzyme as 

probably additional reactions are taking place between the product (acetic acid) and 

solvent (ethanol) which makes any autocatalysis impossible to be detected. 

The second behaviour is visible in lactide hydrolysis where the H
+
 production 

curve resembles the modeled acid-catalyzed case with increased dissociation 

constant: there are two pH jumps. Additionally when lactide hydrolysis is performed 

in the presence of the enzyme it is shown that only the second jump is influenced by 

the enzyme catalyst leaving the first pH decrease unchanged. No additional 

modelling has been done, though from literature
5
 it is known that hydrolysis of 

polylactic acid exhibits rate acceleration in terms of both weight loss and pH after 

several days of the degradation process
6
. Following these observations it could be 

assumed that the cyclic dimer derivative of polylactic acid exhibits a similar rate 

acceleration due to the same mechanism on a shorter timescale.  

In the case of aspirin hydrolysis we observed a pH clock and could not rule 

out feedback hence the model investigation. A full model of aspirin hydrolysis with 

consideration of all of the known steps including dissolution has been investigated. It 

has shown the same trends as in the experiments: several thousands seconds 

difference of clock times and several units of final pH difference caused by a 

decrease of the initial mass of aspirin in the order of 0.03 g, which is 1.67×10
-4

 moles 

change. The values of masses leading to certain clock times in simulations are lower 
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than in the experiment, which may be caused by imperfect dissolution and mixing in 

the real system. However there was no evidence of feedback in the model, probably 

as the acid catalysis is too weak, therefore the pH clock was seen because of 

consumption of initial OH
-
. When the rate of acid catalysis was increased in the 

model, the pH-time curve resembles the case of lactide with 2 pH jumps. 

5.6 Conclusions 

 

Models of ester hydrolysis show that in spite of the observation of pH clocks 

in all cases in a closed reactor, bistability is only seen in acid catalyzed and enzyme 

catalyzed cases in a flow reactor. In experiments, a pH clock is observed in the case 

of aspirin hydrolysis, but the model suggests that the acid catalysis does not play a 

role here. The most promising example of autocatalysis in the systems studied is the 

hydrolysis of lactide with two pH jumps rather than a characteristic pH clock, similar 

to the acid catalyzed model result, which should be the subject of further 

investigation.  
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6. Self-propelled motion of aspirin crystals 
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6.1 Introduction 

 

 During investigation of the kinetics of hydrolysis of aspirin an intriguing 

behavior of self-motion of the crystals placed in unstirred water solution was noticed. 

This led to further investigation of this behavior in context of chemical locomotion. 

This field has been intensively investigated recently
1
 in order to explain the motion 

of cells and organisms, such as bacteria
2
, with possible applications for drug 

delivery. Similar type of behavior has been deeply studied in the case of camphor 

boats, where the driving force is the surface tension
3
. More recently self-motion has 

been designed in microparticles with asymmetric catalyst
4
. In this chapter a set of 

experimental results on the motion of aspirin crystals under different conditions is 

shown and a discussion on possible mechanisms of the motion is presented. 

6.2 Experimental  

 

The experiments were performed in 16 mL of water poured on a Petri Dish, 

with diameter d = 5 cm and height h = 0.7 cm. The Petri Dish was thermostated to 20 

°C by CC3 Polystat. The pH of the solutions was adjusted by dilution of 0.1 M 

NaOH or 0.1 M H2SO4. Aspirin crystals were used as purchased from Sigma Aldrich 

of typical length l = 1 mm. Differences in shape were determined by pictures taken 

under a microscope (Olympic).  Typically they had either a rod-like (Fig. 6.1 a), an 

oval (Fig. 6.1 b) or an asymmetrical (Fig. 6.1 c) shape. Additionally the mass of each 

crystal was measured on a microbalance (Sartorius). For each solution with a 

different pH the experiments were repeated at least 10 times. 
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Figure 6.1 Illustration of different shapes of aspirin crystals with length (long axis): 

(a) rod-like (1.9 mm), (b) oval (1.5 mm), (c) asymmetrical (1.5 mm) 

 

 The movement of a particle was registered for 1000 of frames at 0, 5, 10, 15 

and 20 mins counted from the moment of addition of a crystal to the solution. The 

pictures were taken every 0.02 s by a CCD camera coupled with the MATLAB 

program (The MathWorks, Natick, MA). Also the MATLAB program was used to 

track the particle and calculate the angular velocity. The code is attached in 

Appendix VI. The linear velocity was calculated for each time step and gave an 

average for 999 steps. The angular velocity in a single experiment was taken as an 

average value of slopes as shown in an example in Fig. 6.2. In all of the experiments 

only the slopes giving repeatable trend were used to calculate the average value, as in 

Fig. 6.2 for example 1-14 were taken for average and 15-16 were omitted. Then the 

average angular velocity was calculated for whole set of experiments under certain 

pH.     

 

Figure 6.2 Example of 

fitting of slopes (red line) 

of phase of velocity vector 

per frame (green circles) 

which results in angular 

velocity (degrees per 

frame) 
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6.3 Results 

 

6.3.1 Motion of a crystal 

 In a single run of 1000 frames, a particle may exhibit different types of 

motion and change linear and angular speed signifcantly. In Fig. 6.3 a typical 

example  is shown, where the evolution of the color from dark blue through yellow 

to red represents the position of the particle from the first frame captured to the last 

(1000
th

). This example shows how the character of the motion evolves from an 

irregular pathway (0 – 300 frames) into small circles (300 – 500 frames) to finish 

with large radius of motion (1000 frames). It is clearly seen in Fig. 6.3 b that the 

critical change of linear velocity takes place with increasing radius significantly at 

~870
th

 frame. With angular motion analysis it is easy to see the turning point and 

change of direction of motion of the particle (~350 s), though slopes of the function 

of phase velocity vector change gradually, which may not be perfectly visible in Fig. 

6.3 c. 
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Figure 6.3 An example of motion of a 

single particle in an experiment. (a) 

pathway, (b) changes of linear 

velocity, (c) fitting of slopes (red line) 

of phase of velocity vector per frame 

(green circles) which results in angular 

velocity (degrees per frame) during 

1000 frames taken, pH = 2.6 

 

6.3.2 Specific types of motion 

 Although in the majority of experiments the nature of motion changes during 

the recording time, as shown in the section above, some of the results showed a 

repeatable trend in a single experiment. Three major types of motion could be 

distinguished: large radius cycle (periodic), small radius cycle (periodic), and 

translational motion coupled with small radius cycle (quasiperiodic). 

In the first case, a big and regular reproducible pathway leads to high linear 

velocity values as shown in Fig. 6.4. The angular velocity in this example is 3.71 

degrees per frame. 
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Figure 6.4  An example of a particle exhibiting circular motion with large radius. (a) the 

path of the motion (field of view = 50 x 67 mm
2
), (b) linear velocity, and (c) shape of the 

particle (length = 1.6 mm), pH = 0.95 

 

The second case is when the particle exhibits small-radius and low linear velocity as 

shown in Fig. 6.5. The linear velocity decreases by ~10 mm s
-1

, though the angular 

velocity rises up to 29.3 degrees per frame.  
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Figure 6.5 An example of a particle exhibiting small radius motion. (a) the path of the 

motion (field of view = 50 x 67 mm
2
), (b) linear velocity,  length of the particle  = 1.6 mm, 

pH = 2.6 

Another example of specific type of motion registered was a combination of 

translational and circular motion. The linear speed analysis shows in this case 

reproducible trends of spikes of slower and faster motion. Spikes can be as large as 

55 mm s
-1

 as shown in Fig. 6.6 b. In this case it is almost impossible to calculate 

rotational velocity because of complex shape of the motion. 

 

Figure 6.6 An example of a particle exhibiting circular motion with large radius. (a) the 

pathway captured (field of view = 50 x 67 mm
2
), (b) linear velocity, length of the particle = 

1.6 mm, pH = 7.1 
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Another specific example showing coupling of types of motion is the flower 

pattern with small-radius circular motion  that is shown in Fig. 6.7 a. 

 

 

 

 

Figure 6.7 An example of a particle exhibiting coupled translational with small radius 

circular motion (a) the pathway captured (field of view = 50 x 67 mm
2
), (b)  shape of the 

particle, (length = 1.9 mm), pH = 5.44 

6.3.3 Factors affecting motion 

Several factors that could possibly affect velocity and trajectory of the 

motion, such as mass of the particle, pH of the solution or presence of other 

compounds, i.e. buffers or surfactants, were investigated. The first factor investigated 

was how angular velocity changes in time for set of particles with different masses. 

Fig. 6.8 shows that no significant trend can be defined from the experimental data. 

The velocity may increase significantly as in the most extreme case at 30 mins is 11 

times bigger than at the beginning (m = 0.43 mg), but also for crystal with similar 

mass (m = 0.47 mg) the angular velocity may remain almost unchanged. There is 

also no definite linear increase of the angular velocity as in most of the cases 

particles have by turns faster and slower periods of motion.   

Figure 6.8 Angular velocity change in 

time for particles with different masses, 

pH = 5.44 
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In the same conditions mass – velocity plots were constructed. As shown in Fig. 6.9 

there is a very weak correlation for first 1 min 30 s and even weaker for 10 min – 11 

min 30 s, so it is impossible to define any influence of mass of a crystal on its 

angular velocity. Similar lack of correlation was found in solutions with lower and 

higher pH values.   

 

Figure 6.9 Angular velocity vs mass for first (a) and second (b) set of pictures in pH = 5.44 

 

In more acidic solution although dissolution time was longer than in water, 

not enough of examples possible to be analysed in long term velocity measurements 

for pH = 0.85. There was a possibility to construct a plot of angular velocity change 

in time for pH = 2.60. Again no definite trend was found as the angular velocity 

changes alternately and the amplitude varies without definite dependence on the 

mass: for example the velocity of the crystal with m = 1.29 mg changes only of ~2.5 

units, when for the crystal with slightly lower mass, m = 1.10 mg, changes 6 times. 

 

Figure 6.10 Angular velocity 

change in time for experiments in 

pH = 2.60 
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In pH > 10 almost no movement of particles and very fast dissolution takes place. 

For pH = 9.27 and pH = 7.11 dissolution of particles is faster than in lower pH 

values. Only two examples of long term measurements with increase of angular 

velocity in time could have been analyzed in long term measurements for pH = 7.11, 

that are shown in Fig. 6.11. In both cases the velocity did not change significantly for 

first 20 mins, but only exhibited significant increase after 30 mins. 

Figure 6.11 Angular velocity 

change in time for experiments 

in pH = 7.11 adjusted by 

dilution of NaOH 

 

 

 

 

In order to analyze the trend of angular velocity depending on pH either 

maximum velocity (Fig. 6.12 a) or the average (Fig. 6.12 b) of all velocities for each 

set of particles for first 1 min 30 s were compared. The average angular velocity 

indicates that the crystals move the fastest in more acidic solution, than maximum 

angular velocity analysis states. The velocity decreases significantly already in 

slightly basic solution in both ways of analysis. Both of the approaches to compare 

the velocity can contain some errors caused by differences in shape of particles or 

average mass shifted in each set of 10 particles for experiments under different pHs 

that influenced the velocity significantly. 
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Figure 6.12 (a) Maximum angular velocity vs pH and (b) average angular velocity vs pH 

plots calculated for a set of 10 particles under each pH 

 

Apart from pH several factors that might have influenced the motion of particles 

have been investigated. In order to determine whether buffering has an impact on the 

dynamic motion of aspirin crystal experiments in phosphate buffer (5 mL of 0.2 M 

KH2PO4 + 4.68 mL of 0.2 M NaOH diluted in 20 mL of H2O, giving pH = 7.8) were 

performed. No movement of crystals was found in these conditions. When the buffer 

was diluted 10 times crystals started to exhibit jumping motion only. 

When surfactant, such as CTAB powder, was added to the solution, crystals stop 

moving suddenly, although they have been moving continuously in the same solution 

before. When the solution is either saturated with aspirin (0.018 M) or contains large 

amount of sodium salicylate (0.31 M) the crystals hardly move at all. Addition of 

weak organic acid (acetic acid to make pH = 3.48), does not influence the motion 

significantly. The same situation is when ionic strength is increased by dissolution of 

NaCl to create 1.71 M solution.  

6.3.4 Motion of other crystals 

A number of solid compounds that have significantly similar or completely 

different chemical structure to aspirin were investigated in terms of their behaviour 
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in water. The results are presented in Table 6.1. The main similarity is that all of the 

compounds with benzene ring float and exhibit at least very little movements. From 

heterocycles only lactide floats and moves, ribose or gluconic acid lactone do not 

confirm this trend as they sink, though their solubility is much larger than in case of 

lactide which may play an important role in the behavior. Also all of the inorganic 

compounds sink and dissolve quickly as their solubility in water is much larger than 

the organic compounds investigated.  

Further experiments in different pHs have been done also for sodium salicylate 

and salicylic acid. In both cases fastest dissolution takes place in water. For sodium 

salicylate in water and NaOH solution (pH = 12.04) wave motion of the surface and 

oil formation while dissolution of the powder is observed. In acid intense motion of 

parts of the surface is seen. 

For salicylic acid expansion of the crystal powder and creation of network on the 

surface is noticed in all pHs. The closest interactions of crystals were in base and the 

fastest motion in water.   

 

Table 6.1 Results of investigating behavior of crystals of other compounds on the surface of 

water 

Compound Structure Behaviour Solubility 

in water  

(g L
-1

) 

Sodium oxalate 

 

 

 

 

 

 

 

 

Sinks 3.7 
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          Table 6.1(continuation) Results of investigating behavior of crystals of other compounds on the 

surface of water 

Compound Structure Behaviour Solubility 

in water  

(g L
-1

) 

Bromomethoxy 

benzaldehyde 

 

 

Floats, only 

very little 

moves 

0.19  

Benzoyl peroxide 

 

Moves as 

esters, nice 

visible 

shape, a lot 

of 

circulation 

0.03 

2-bromo-5-

methoxy benzoic 

acid 

 

Floats, some 

synchronized 

moves 

0.22 

Benzamide 

 

 

 

 

 

Floats, some 

synchronized 

moves 

28.24 

D-ribose 

 

 

 

 

 

 

Sinks and 

dissolves 

1000 
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Table 6.1(continuation)  Results of investigating behavior of crystals of other compounds on the 

surface of water 
 

Compound Structure Behaviour Solubility 

in water  

(g L
-1

) 

4-

bromobenzaldehyde 

 

 

 

 

 

Moves as 

esters 

1.5 

D-galactose 

 

 

 

 

 

 

Sinks and 

dissolves 

1000 

5-bromo-3-

nitrosalicyl 

aldehyde 

 

 

 

 

 

 

Floats, some 

synchronized 

moves 

0.04 

Methylhydroxy 

benzoate 

 

Floats and 

moves 

5.98 

Lactide 

 

Floats and 

moves 

3.16 
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Table 6.1(continuation) Results of investigating behavior of crystals of other compounds on the 

surface of water 

Compound Structure Behaviour Solubility 

in water  

(g L
-1

) 

Nitrophenyl acetate 

 

Floats and 

moves 

1.16 

Salicylic acid 

 

Floats and 

moves 

3.81 

Aspirin 

 

Floats and 

moves 

4.6 

Arginine 

 

Sinks 87.1 

Gluconic acid 

lactone 

 

Sinks 1000 
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 Table 6.1(continuation)  Results of investigating behavior of crystals of other compounds on the 

surface of water 

Compound Structure Behaviour Solubility 

in water  

(g L
-1

) 

Sodium salicylate 

 

Floats and 

very quickly 

dissolves 

110 

All inorganic 

compounds 

 Sink and 

dissolve 

>1000 

 

6.3.5 Multiple aspirin experiments 

Additionally experiments investigating behavior with more than one aspirin 

crystal were performed. The results show that the nature of motion of more crystals 

is influenced by both pH and number of particles put in the system. In pH > 10 the 

movement is only to stick together already for two particles as shown in Fig.6.13. 

 

Figure 6.13 Behaviour of two particles in basic solution of pH = 11.84, (a) 0 s, (b) 78 s 
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In less basic solution, pH = 8.50, two or three particles move independently, though 

they do not stick together even in longer timescale. A cluster is created only for 

much bigger number of crystals as shown in Fig.6.14. 

 

 

Figure 6.14 Creation of cluster of aspirin crystals in pH = 8.50, (a) 0 mins, (b) 5 mins 

 

In neutral conditions, pH =  7.05, even with more than 50 crystals there is no 

definite attraction of all of the particles or one cluster created, but only smaller 

groups of crystals sticking together (as shown in Fig. 6.15) and ceasing of the motion 

in time. 

 

 

Figure 6.15 Behaviour of group of  > 50 

aspirin crystals in solution of pH = 7.05 at (a) 0 

mins, (b) 5 mins, (c) 10 mins  
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In very acidic solution, pH = 0.72, fast motion is noticed in first minute after 

addition of aspirin crystals, than decrease of velocity until definite stoppage. For 15-

20 particles the cluster was created from very first seconds to as shown in Fig. 6.16. 

 

Figure 6.16 Behaviour of group of 17 aspirin crystals in solution of pH = 0.72 at (a) 5 s, (b) 

70 s 

6.4 Discussion 

 

Self-motion of aspirin crystals during the period of dissolution and hydrolysis 

reaction has been shown together with differences in its nature depending on pH of 

the solution, size, shape and mass of the particle as well as modification of 

physicochemical properties of the solution such as ionic strength, surface tension or 

saturation. Other examples of similar compounds (esters with a benzene ring) show a 

similar kind of behavior in terms of floating and movement on the surface of water 

while being dissolved, though because of structure of solid aspirin supplied allowing 

to monitor and analyze the movement of a single particle dynamics as well as 

multiple particles interactions, the behavior of this ester was analyzed the most 

accurately.  

From all of the types of chemical motors known before, such as: interfacial 

tension
5
, diffusionophoresis

6
, bioelectrochemical

7
 or microcantilever

8
 driven, an 

example of camphor boats
9
 is the closest case to the aspirin propulsion. Main 



152 

 

 
 

similarities are the scale and the system where both compounds move as well as the 

range of velocities, both of them also can exhibit different modes of motion: 

rotational and translational.  

The mechanism of camphor motion
10

 involves firstly a dissolution of the solid 

and formation of a thin layer at the surrounding surface, secondly a gradient of the 

surface tension is created because of inhomogeneity in the surface density. Then the 

surface tension gradient induces an acceleration of the particle motion. Additionally 

as camphor particles evaporate the gradient in surface tension inducing the motion is 

maintained. 

Since the motion of aspirin is similar to camphor, hydrolysis of aspirin should 

reduce the surface tension. This is probably due to the formation of hydrotropic 

products sodium salicylate or salicylic acid. Hydrotropes are compounds that contain 

hydrophobic aromatic or heteroaromatic ring and hydrophilic short chain or 

inorganic part
11,12

. The main difference between hydrotropes and surfactants is that 

because of difference in geometry of the hydrophobic part hydrotropes do not 

undergo selfaggregation in opposition to surfactants, where the hydrophobic chains 

aggregate spontaneously. However they are still known to lower the surface tension, 

it was experimentally proved that hydrotropes, such as sodium salicylate, 

toluenesulphonate, cumenesulphonate,  xylenesulphonate or butyl monoglycol 

sulfate decrease the surface tension significantly (of even more than 50% in case of 

cumenesulphonate)
13

. Many of the crystals that exhibited motion are hydrotropes.  

Although aspirin is denser than water (1.39 g cm
-3

), when placed in water it 

floats on the surface (as shown in Fig. 6.17). This is connected with a structure of 

this compound (as well as all of the other esters that consist of an aromatic and 
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aliphatic parts), where the aromatic part from salicylic acid provides hydrophobic 

forces. 

Figure 6.17 Side picture of an aspirin crystal floating at 

the surface of water 

 

 

 

 

 Additionally according to crystallographic investigation hydrophobicity
14,15

 in 

aspirin crystals differ in each direction. For example in a schematic crystal shown in 

Fig. 6.18 hydrophobicity would increase as: (001) > (100) > (011)
14

. This would 

explain the complex motion depending on the crystal structure. 

Figure 6.18 A schematic of crystal structure of aspirin 

   

 

 

There are a few significant differences between camphor and aspirin. First of 

all, camphor is a ketone and while being put in water does not undergo a spontaneous 

hydrolysis, as aspirin does, but evaporates. Secondly the modes of motion in 

camphor can be easily influenced by changing the shape of the crystals
10

, which 

directly allows to control the motion, whereas in aspirin the crystals have their 

natural anisotropy that drives the motion in different modes.  This makes also 

collective motion of camphor to be predictable and possible to be controlled in 

different spatial set-ups
10,16

. 
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6.5 Conclusions 

 

A new chemical system exhibiting self-locomotion has been presented in this 

chapter. The analysis of the motion of a single particle has been done within a range 

of parameters in order to explain and control the motion of the crystals. The 

behaviour of other compunds within the same chemical family as well as from 

differents families has been investigated and compared. The collective behaviour of 

aspirin crystals under different pH conditions has been compared. The possible 

explanation of differences in motion and methods to control the behaviour can 

possibly be found in differences in crystal structure of aspirin and needs further 

experimental investigation. 
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7. Future work 
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Each set of results introduced in this thesis can be built upon in future work. In 

chapter 2, the urea/urease reaction was shown to give pH clocks and bistability. 

Although the behaviour of the urea/urease reaction in a closed system was well 

characterized in a range of conditions, still the occasional low values of final pH 

could be explained either by monitoring of other species, such as CO2 or NH3, during 

the reaction, or more accurate characterization of the urease activity. A confirmation 

of the presence of autocatalysis in the urea/urease/sulphuric acid has been shown by 

bistability when the reaction was performed in a CSTR, however shifts of the range 

and pH of bistability have been noticed. More experimental runs are needed to find 

the average behavior. Also performing the reaction in a CSTR for a broader set of 

conditions will allow the regions of bistability, flow and thermodynamic states to be 

mapped out experimentally, and check the validity of the model.   

Propagation of the pH fronts was shown in a range of conditions in the 

urea/urease reaction, which for high enzyme concentration was confirmed by the 

proposed model. For a lower urease concentration, fronts were not supported 

anymore, whereas the model still showed propagation. The model should be revised 

including non-mass action kinetics or with respect to sensitivity of the system to 

mixing effects. Additionally the boarder of the behavior where the fronts are 

supported/not supported should be investigated further experimentally. 

When the acid was changed to weak one, the behavior of the system changed 

significantly especially in a CSTR, where oscillations have been observed. The 

attempts to model these oscillations have not mimicked the experimental results, so 

further investigation of the possible influence of noise or mixing effects on the 

system is needed with more sophisticated modeling tools. Also further mapping of 

the behavior under higher urease concentrations and investigation of the nature of the 
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oscillations on a longer timescale will contribute significantly to understanding of the 

system. 

A group of compounds that undergo acid catalyzed hydrolysis and might show 

acid autocatalysis were investigated. The main experimental problem encountered 

was lack of solubility of the substrates in water which needs to be solved by 

performing the reaction at a water-oil interface. Also a confirmation of the 

autocatalysis present in these systems is needed by monitoring the time profiles of 

the reactant species by UV-VIS or different analytical tools. 

Motion of aspirin crystals on the surface of water has been investigated under 

different conditions. The origin of the types of motion observed lies probably in the 

asymmetry of the crystal structure, especially the position of the hydrophobic parts of 

aspirin which needs a proper investigation by X-ray crystallography to establish the 

connection between types of motion and the structure of a certain particle. 

Additionally experiments with designed crystals with a regular structure would 

possibly allow control over the motion more accurately. A more detailed and 

quantitative analysis of the motion of group of aspirin crystals will give a useful 

contribution towards understanding the nature of the motion of the particles.          
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Appendix I Enzyme reaction mechanism 

and rate 
 

The reaction is of the Michaelis-Menten type: 

(1) EH + U  EHU 

(2) EHU  P + EH 

where EH is the active protonated form of the enzyme, U is the substrate, urea, EHU 

is the enzyme-substrate complex and P is 2NH3 and CO2 formed via carbamic acid: 

NH2COOH.
91

 Applying the steady state approximation to EHU and setting E0 = E + 

EHU where E0 = the total enzyme concentration yields the Michaelis-Menten 

expression for the rate: 

UK

UV
V

M 
 max  

where the maximum rate Vmax = k7E0 and the Michaelis constant KM = (k-6+k7)/k6.  

pH dependence of the reaction 

 

The reaction shows a typical bell-shaped curve which can be explained by the 

presence of 2 acid equilibria giving inactive forms of enzyme: 

(3) EH  E
-
 + H

+
           Ke2   pK2 = 8.7 

(4)  EH2
+
  EH + H

+
      Ke1  pK1 = 5.3 

and inactive forms of enzyme-substrate complex: 

(5)  EHU  EU
- 
+ H

+ 
       Kes2 

(6)  EH2U  EHU + H
+
     Kes1 
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 It is found that KM changes little with acid concentration implying that Ke1 = Kes1 

and Ke2 = Kes2 (i.e. the protonation equilibria do not change in the presence of the 

substrate). Taking into consideration equilibria (9 – 12), the rate expression becomes: 


















1

2

max

1)(
es

es

M
K

H

H

K
UK

UV
V  

Product inhibition 

 

The ammonium ion is found to inhibit the reaction by non-competive mechanism
91

: 

(7)  EHPS  EHS + P   KP   

(8)  EHP EH + P                           Kp 

This equilibrium may be incorporated into the Michaelis rate expression to give: 


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













p

M
K

P
UK

UV
V

1)(
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Substrate inhibition 

 

The urea inhibits the reaction by an uncompetitive mechanism
91

: 

(9)  EHS2    EHS + S   Ks 

This equilibrium may be incorporated into the rate expression to give: 

)1(
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
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Combining: 
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Appendix II Ode file for XPPaut 
Developed by Annette Taylor 
 

#urea-urease reaction 

f(U,H,NHf)=-Vm*U/((KM*(1+Ke2/H+H/Ke1)+U*(1+U/KS))*(1+NHf/Kp)) 

g(U,H,NHf,NHt)=2*Vm*U/((KM*(1+Ke2/H+H/Ke1)+U*(1+U/KS))*(1+NHf/

Kp))+k2*NHf-k2r*NHt*H 

h(NHt,H,NHf)=-k2*NHf+k2r*NHt*H 

k(U,H,NHf,COt,HCO)=Vm*U/((KM*(1+Ke2/H+H/Ke1)+U*(1+U/KS))*(1+NH

f/Kp))-k3*COt+k3r*HCO*H 

l(H,COt,COe,HCO)=k3*COt-k3r*HCO*H-k4*HCO+k4r*COe*H 

m(HCO,H,COe)=k4*HCO-k4r*COe*H 

n(H,NHf,NHt,COt,COe,HCO,OH,HA,A)=k2*NHf-k2r*NHt*H-

k3r*H*HCO+k3*COt+k4*HCO-k4r*COe*H+k5-k5r*H*OH+k6*HA-k6r*A*H 

o(OH,H)=k5-k5r*H*OH 

p(H,HA,A)=-k6*HA+k6r*A*H 

q(H,HA,A)=k6*HA-k6r*A*H 

 

#parameters 

par Vm=1.3e-4,KM=0.003,KS=3,KP=0.002,Ke1=5e-6,Ke2=2e-9, k2=24, 

k2r=4.3E10,k3=0.037,k3r=7.9e4, k4=2.8,k4r=5e10,k5=1e-3, 

k5r=1e11, k6=1.2e9,k6r=1e11 

 

# spatial parameters  

par r=0.2,Dx=2.0e-3,Doh=5e-3,Dh=9e-3 

 

# initial data 

init U[1..2]=0.010 

init NHt[1..2]=0.012 

init NHf[1..2]=0.022 

init COt[1..2]=0.00028 

init HCO[1..2]=0.016 

init COe[1..2]=0.0009 

init H[1..2]=9.9e-10 

init OH[1..2]=1.01e-5 

init HA[1..2]=1.4e-10 

init A[1..2]=0.0017 

 

init U[3..100]=0.03 

init NHt[3..100]=0 

init NHf[3..100]=0 

init COt[3..100]=0 

init HCO[3..100]=0 

init COe[3..100]=0 

init H[3..100]=2e-3 

init OH[3..100]=1e-14/2e-3 

init HA[3..100]=2e-3 

init A[3..100]=0 

 

#boundary conditions 

U0=U1 

NHt0=NHt1 

NHf0=NHf1 

COt0=COt1 
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HCO0=HCO1 

COe0=COe1 

H0=H1 

OH0=OH1 

HA0=HA1 

A0=A1 

U101=U100 

NHt101=NHt100 

NHf101=NHf100 

COt101=COt100 

HCO101=HCO100 

COe101=COe100 

H101=H100 

OH101=OH100 

HA101=HA100 

A101=A100 

 

#reaction-diffusion 

%[1..100] 

U[j]'=f(U[j],H[j],NHf[j])+Dx*(U[j+1]-2*U[j]+U[j-1])/(r*r) 

NHt[j]'=g(U[j],H[j],NHf[j],NHt[j])+Dx*(NHt[j+1]-

2*NHt[j]+NHt[j-1])/(r*r) 

NHf[j]'=h(NHt[j],H[j],NHf[j])+Dx*(NHf[j+1]-2*NHf[j]+NHf[j-

1])/(r*r) 

COt[j]'=k(U[j],H[j],NHf[j],COt[j],HCO[j])+Dx*(COt[j+1]-

2*COt[j]+COt[j-1])/(r*r) 

HCO[j]'=l(H[j],COt[j],COe[j],HCO[j])+Dx*(HCO[j+1]-

2*HCO[j]+HCO[j-1])/(r*r) 

COe[j]'=m(HCO[j],H[j],COe[j])+Dx*(COe[j+1]-2*COe[j]+COe[j-

1])/(r*r) 

H[j]'=n(H[j],NHf[j],NHt[j],COt[j],COe[j],HCO[j],OH[j],HA[j],A[

j])+Dh*(H[j+1]-2*H[j]+H[j-1])/(r*r) 

OH[j]'=o(H[j],OH[j])+Doh*(OH[j+1]-2*OH[j]+OH[j-1])/(r*r) 

HA[j]'=p(H[j],HA[j],A[j])+Dx*(HA[j+1]-2*HA[j]+HA[j-1])/(r*r) 

A[j]'=q(H[j],HA[j],A[j])+Dx*(A[j+1]-2*A[j]+A[j-1])/(r*r) 

% 

 

@ total=1000,dt=1,tol=1e-14, atol=1e-14, 

meth=cvode,bandup=10,bandlo=10 

@ xplot=t,yplot=OH,xhi=1000,ylo=1e-8,yhi=1e-3 

@ maxstor=100000 

# 

done 

Appendix III Matlab code front speed 
Developed by Tamas Bansagi 
 
close all 
clear all 
%==================================PARAMETERS 
=============================== 
rfn='Y:\CHM\Physical\AFT\MMW\ureapetri60\ureapetri60_'; % root of file 
names 
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bg=1;       % background file 
fi=50;       % first file 
li=200;      % last file 
mf=5;       % median filter radius 
smf=10;     % smoothing factor for 1D cut 
d=10;       % range of diff 
sp_res=13.2; % pixel/mm because 735 pixel corresponds to 50 mm 
dt=5;       % time elapsed between consecutive frames (in seconds) 
dxf=3;       % increment for space axis in figure 2 (in mm) 
nc=9;        % number of cuts: 4,9,16 etc 
ir=30;      % radius of the omitted area around origin  
%======================================================================
==== 
t=fi*dt:dt:li*dt; 
fc=sqrt(nc); 
af=360/2/pi; 
ar=linspace(0,(360-360/nc),nc)/af; 
filename=[rfn,num2str(bg),'.jpg']; 
bg=imread(filename); 
bg2=medfilt2(bg(:,:,2), [mf mf]); 
filename1=[rfn,num2str(fi),'.jpg']; 
i=imread(filename1); 
i_fi=i(:,:,2); 
filename2=[rfn,num2str(li),'.jpg']; 
i=imread(filename2); 
i_li=i(:,:,2); 
i_si=uint8((double(i_fi)+double(i_li))/2); 
imshow(i_si,'Border','tight'); 
text(1,10,[filename1,' + ',filename2],'BackgroundColor',[1 1 1]); 
[xl,yl] = ginput(2); length_of_cut=pdist([xl yl]); 
xp=round(xl(1)+cos(ar)*length_of_cut); 
yp=round(yl(1)+sin(ar)*length_of_cut); 
xps=round(xl(1)+cos(ar)*ir); 
yps=round(yl(1)+sin(ar)*ir); 
xpt=round(xl(1)+cos(ar)*(length_of_cut+10)); 
ypt=round(yl(1)+sin(ar)*(length_of_cut+10)); 
cl=length(improfile(i,[xps(1) xp(1)],[yps(1) yp(1)])); % length in 
pixels for length correction of oblique cuts for p=1:nc 
    line([xps(p) xp(p)],[yps(p) yp(p)],'LineWidth',2,'Color',[0 0 0]); 
    hold on 
    quiver(xps(p),yps(p),(xp(p)-xps(p)),(yp(p)-
yps(p)),0.55,'MaxHeadSize',1/cl*100,'LineWidth',2,'Color',[0 0 0]) 
    
text(xpt(p),ypt(p),num2str(p),'HorizontalAlignment','Center','Color',[1 
1 1]) end hold off for n=fi:li  
    filename=[rfn,num2str(n),'.jpg']; 
    i=imread(filename); 
    i_f=medfilt2(i(:,:,2),[mf mf]); 
    ima(n-fi+1,:,:)=double(i_f)-double(bg2); 
end 
figure 
for ang=1:nc 
    subplot(fc,fc,ang) 
    for n=fi:li  
        c=improfile(squeeze(ima(n-fi+1,:,:)),[xps(ang) 
xp(ang)],[yps(ang) yp(ang)],'bicubic'); 
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        csm=smooth(c,smf); 
        ds=round(d/2); 
        for x=1:length(c)-d 
            dcsm(x+ds)=csm(x+d)-csm(x); 
        end 
    %      plot(c,'-k') 
    %      hold on 
    %      plot(csm,'-r') 
    %      hold on 
    %      plot(dcsm,'-ob') 
    %      hold on 
         max_dcsm=max(dcsm); 
         dcsm(dcsm < max_dcsm) = 0; 
         fp=find(dcsm); 
         frpo(n-fi+1)=mean(fp); 
         dcsm_frpo(n-fi+1)=mean(dcsm(fp)); 
    %      plot(frpo(n-fi+1),dcsm_frpo(n-fi+1),'og') 
    end 
     
    lc=length(c); 
    real_frpo=frpo/sp_res*cl/lc; 
    fpifpf(ang,:)=[real_frpo(1) real_frpo(length(real_frpo))]; 
    plot(t,real_frpo,'ok') 
    xlabel('Time (sec)') 
    ylabel('Space (mm)') 
    [fit_lin_par, stat] = polyfit(t,real_frpo,1); 
    lin = fit_lin_par(1).*t+fit_lin_par(2); 
    slope(ang)=fit_lin_par(1)*60; 
    hold on 
    set(gcf,'Color','white') 
    plot(t, lin,'-r','LineWidth',2); 
    xtick=get(gca, 'XTick'); 
    ytick=get(gca, 'YTick'); 
    xtl=length(xtick); 
    ytl=length(ytick); 
    text_str=['\bf',num2str(ang),'\rm  slope = 
',num2str(fit_lin_par(1)*60)]; 
    text((xtick(1)+xtick(2))/2,(ytick(ytl)+ytick(ytl-
1))/2,text_str,'HorizontalAlignment','Left'); 
    axis([xtick(1) xtick(xtl) ytick(1) ytick(ytl)]); 
    % ===== MS Excel output (comment out if not needed) 
=================== 
    data_matrix(1,1:3)={'time','front position','fitted front 
position';}; 
    for dat=1:li-fi+1 
    data_matrix(dat+1,1:3)={t(dat),real_frpo(dat),lin(dat);}; 
    end 
    % 
===================================================================== 
    filename_xls=[rfn,'rad_',num2str(ang),'.xls']; 
    xlswrite(filename_xls, data_matrix); 
    clear max_dcsm dcsm frpo dcsm_frpo fp c csm real_frpo xtick ytick 
data_matrix 
    hold off 
end 
set(gcf,'Color','white') 
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figure 
subplot(1,2,1) 
plot(slope,'ok') 
msl=mean(slope); 
axis([0 nc+1 min(slope)*0.9 max(slope)*1.1]) hold on 
line([0 nc+1],[msl msl],'LineWidth',2,'Color','red'); 
xlabel('Cut') 
ylabel('Front velocity (mm/min)') 
set(gcf,'Color','white') 
std_err_sl=std(slope)/sqrt(nc); 
text((nc+1)/2,min(slope)*0.95,['\fontsize{9}v_{fr} = ',num2str(msl),' 
\pm ',  num2str(std_err_sl,'% 10.5f'),' 
mm/min'],'HorizontalAlignment','Center'); 
legend('fr. vel. along cut','avg. fr vel.') 
subplot(1,2,2) 
axis([0 nc+1 0 max(max(fpifpf))*1.1]) 
mfp=mean(fpifpf(:,2)-fpifpf(:,1)); 
for ang=1:nc 
line([ang ang],[fpifpf(ang,1) 
fpifpf(ang,2)],'LineWidth',2,'Color','green'); 
line([ang+0.15 ang+0.15],[0 fpifpf(ang,2)-
fpifpf(ang,1)],'LineWidth',2,'Color','blue'); 
line([ang+0.3 ang+0.3],[mfp fpifpf(ang,2)-
fpifpf(ang,1)],'LineWidth',2,'Color','red'); 
line([0 nc+1],[mfp mfp],'LineWidth',2,'Color','red'); 
end 
hold on 
plot(1+0.3:nc+0.3,fpifpf(:,2)-fpifpf(:,1),':r') 
legend('fr. position','fr. range','fr. range dev.') grid on 
xlabel('Cut') 
ylabel('initial and final front positions (mm)') 
set(gcf,'Color','white') 

Appendix IV XPP and C models with noise 
XPP model with added noise:  

Developed by Annette Taylor 
 

#urea-urease reaction: rate equations 

wiener w 

U'=-

k8*E*U/((1+d*Kes2/H+d*H/Kes1)*(0.003+U*(1+b*U/3))*(1+c*NH4/0.002))+k

0*(U0-U)+g*w 

NH3'=2*k8*E*U/((1+d*Kes2/H+d*H/Kes1)*(0.003+U*(1+b*U/3))*(1+c*NH4/0.

002))+k2*NH4-c*NH3*H-k0*NH3+g*w 

NH4'=-k2*NH4+c*NH3*H-k0*NH4 

CO2'=k8*E*U/((1+d*Kes2/H+d*H/Kes1)*(0.003+U*(1+b*U/3))*(1+c*NH4/0.00

2))-k0*CO2+g*w 

H'=k2*NH4-c*NH3*H+k6*HA-k6r*H*A+k0*(H0-H) 

HA'=-k6*HA+k6r*A*H+k0*(HA0-HA) 

A'=k6*HA-k6r*A*H-k0*A 

 

aux pH=-log(H)/log(10) 

#parameters 

par k2=1e-9, k6=1,k6r=1e-3 

par k8=3.7e-6,E=1.34,Kes1=5e-6,Kes2=2e-9,d=1,b=1, c=1, g=0 
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par k0=0,U0=0.005,H0=1e-4,HA0=1e-4 

 

 

#initial conditions 

init U=0.005,NH3=0,NH4=0,CO2=0,H=1e-4,HA=1e-4,A=0 

 

 

#numerical stuff 

@ total=20000,dt=0.1,tol=1e-12, atol=1e-8, meth=euler 

@ xplot=t,yplot=pH,xhi=20000,ylo=1,yhi=14 

@ maxstor=10000000 

Done 

 

 

C model with added noise: 

Developed by Annette Taylor 

 
        /******************************/ 

       //  Urea-Urease reaction 

     

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

#define max(a,b) ((a)>(b)?(a):(b)) 

#define IA 16807 

#define IM 2147483647 

#define AM (1.0/IM) 

#define IQ 127773 

#define IR 2836 

#define NTAB 32 

#define NDIV (1+(IM-1)/NTAB) 

#define EPS 1.2e-7 

#define RNMX (1.0-EPS) 

 

// noise 

float gasdev(long *idum); 

long seed=-101; 

double r; // random number  

double l; // eq 2.128 

double g=0;  // amplitude 

 

/******************/ 

//parameters 

double Ui=5e-3; 

double NH3i=0.0; 

double NH4i=0.0; 

double CO2i=0.0; 

double HCO3i=0.0; 

double CO3i=0.0; 

double Hi=1e-7; 

double OHi=1e-7; 

double HAi=5.83e-4; 

double Ai=0.0; 

 

double k0;   //flow rate 
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double k0step=0.001;   // step size increase in k0      

double k0loop=10;     // total number of steps in k0 

double k8=3.7e-6; 

double k2=24; 

double k2r=4.3e10; 

double k3=0.037;  

double k3r=7.9e4; 

double k4=2.8;  

double k4r=5e10;  

double k5=1e-3; 

double k5r=1e11; 

double k6=7.8e5; 

double k6r=4.5e10; 

double E=1.34; 

double KM=0.003; 

double Ks=3; 

double Kp=0.002; 

double Kes1=5e-6; 

double Kes2=2e-9; 

  

double dt=1e-7;   // time step 

long total=1000;  //total time in s 

long nstep=1e7;  // number of timesteps in 1 s 

long istep; 

int icount=0; 

int iicount=0; 

int time;  //time in s 

/***************************************/ 

// variables 

 

double U; 

double NH3; 

double NH4; 

double CO2; 

double HCO3; 

double CO3; 

double H; 

double OH; 

double HA; 

double A;    

double funcHi; 

 

//data files 

 

FILE *out; 

FILE *out2; 

 

/*********************************************************/ 

 

 

void report_parameters ( void ) 

{   

 printf ( "dt=%f\n", dt ); 

 printf ( "U=%f", Ui ); 

} 
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/*****************************************************/ 

 

void initial_conditions(void) 

 

{ 

         U=Ui; 

        NH3=NH3i; 

            NH4=NH4i; 

            CO2=CO2i; 

            HCO3=HCO3i; 

            CO3=CO3i; 

            H=Hi; 

            OH=OHi; 

            HA=HAi; 

            A=Ai;    

 

} 

 

/******************************************/ 

 

void reaction (  ) 

{ 

 double  funcUi, funcNH3i, funcNH4i, funcCO2i, funcHCO3i, funcCO3i, funcOHi; 

 double funcHAi, funcAi; 

 double  funcUb, funcNH3b, funcNH4b, funcCO2b, funcHCO3b, funcCO3b, funcOHb; 

 double funcHAb, funcAb, funcHb; 

 

    r = gasdev(&seed); 

    l = sqrt(dt)*r*g; 

         

 funcHi=H+dt*(k2*NH4-k2r*NH3*H+k3*CO2-k3r*H*HCO3+k4*HCO3-k4r*CO3*H+k5-

k5r*H*OH+k6*HA-k6r*A*H+k0*(Hi-H)); 

 funcUi=U+dt*(-k8*E*U/((1+Kes2/H+H/Kes1)*(KM+U*(1+U/Ks))*(1+NH4/Kp))+k0*(Ui-

U)); 

 

funcNH3i=NH3+dt*(2*k8*E*U/((1+Kes2/H+H/Kes1)*(KM+U*(1+U/Ks))*(1+NH

4/Kp))+k2*NH4-k2r*NH3*H-k0*NH3); 

 funcNH4i=NH4+dt*(-k2*NH4+k2r*NH3*H-k0*NH4); 

 funcCO2i=CO2+dt*(k8*E*U/((1+Kes2/H+H/Kes1)*(KM+U*(1+U/Ks))*(1+NH4/Kp))-

k3*CO2+k3r*H*HCO3-k0*CO2); 

 funcHCO3i=HCO3+dt*(k3*CO2-k3r*H*HCO3-k4*HCO3+k4r*CO3*H-k0*HCO3); 

 funcCO3i=CO3+dt*(k4*HCO3-k4r*CO3*H-k0*CO3); 

 funcOHi=OH+dt*(k5-k5r*H*OH-k0*OH); 

 funcHAi=HA+dt*(-k6*HA+k6r*A*H+k0*(HAi-HA)); 

 funcAi=A+dt*(k6*HA-k6r*A*H-k0*HA); 

         

 funcHb=H+dt*(k2*funcNH4i-k2r*funcNH3i*funcHi+k3*funcCO2i-

k3r*funcHi*funcHCO3i+k4*funcHCO3i 

       -k4r*funcCO3i*funcHi+k5-k5r*funcHi*funcOHi+k6*funcHAi-

k6r*funcAi*funcHi+k0*(Hi-H)); 

 funcUb=U+dt*(-

k8*E*funcUi/((1+Kes2/funcHi+funcHi/Kes1)*(KM+funcUi*(1+funcUi/Ks))*(1+fu

ncNH4i/Kp))+k0*(Ui-U)); 
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funcNH3b=NH3+dt*(2*k8*E*funcUi/((1+Kes2/funcHi+funcHi/Kes1)*(KM+funcU

i*(1+funcUi/Ks))*(1+funcNH4i/Kp)) 

 +k2*funcNH4i-k2r*funcNH3i*funcHi-k0*NH3i); 

 funcNH4b=NH4+dt*(-k2*funcNH4i+k2r*funcNH3i*funcHi-k0*NH4i); 

 

funcCO2b=CO2+dt*(k8*E*funcUi/((1+Kes2/funcHi+funcHi/Kes1)*(KM+funcUi*(

1+funcUi/Ks))*(1+funcNH4i/Kp)) 

       -k3*funcCO2i+k3r*funcHi*funcHCO3i-k0*CO2i); 

 funcHCO3b=HCO3+dt*(k3*funcCO2i-k3r*funcHi*funcHCO3i-

k4*funcHCO3i+k4r*funcCO3i*funcHi-k0*HCO3i); 

 funcCO3b=CO3+dt*(k4*funcHCO3i-k4r*funcCO3i*funcHi-k0*CO3i); 

 funcOHb=OH+dt*(k5-k5r*funcHi*funcOHi-k0*OHi); 

 funcHAb=HA+dt*(-k6*funcHAi+k6r*funcAi*funcHi+k0*(HAi-HA)); 

 funcAb=A+dt*(k6*funcHAi-k6r*funcAi*funcHi-k0*HAi); 

        

       U = (funcUi+funcUb)/2+l; 

       NH3 = (funcNH3i+funcNH3b)/2+l; 

       NH4 = (funcNH4i+funcNH4b)/2; 

       CO2 = (funcCO2i + funcCO2b)/2+l; 

       HCO3 = (funcHCO3i + funcHCO3b)/2; 

       CO3 = (funcCO3i + funcCO3b)/2; 

       H = (funcHi + funcHb)/2; 

       OH = (funcOHi + funcOHb)/2;    

       HA = (funcHAi + funcHAb)/2; 

       A = (funcAi +funcAb)/2; 

        

  

} 

 

/******************************************************/ 

 

void simulate (void) 

{ 

 

 reaction (  ); 

     

 icount++; 

  

 if(icount==nstep){ 

   fprintf(out,"%d %g %g %g  %g  %g %g %g %g %g %g %g %g\n",time, l, U, NH3,  

   NH4, CO2, HCO3, CO3, H, OH, HA, A); 

 

   fflush(out); 

    icount=0; 

 } 

  

 if (funcHi==0) { 

             time = total; 

             } 

 

} 

 

/*******************************************************/ 

void doit ( void ) 
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{  

 

  for (time = 0; time <=total; time++) { 

 for ( istep = 1; istep <= nstep; istep++ ) { 

    simulate (); 

}  

} 

 

  

} 

 

/**********************************************************/ 

main () 

 

{char fname[30]; 

 int i; 

  

     report_parameters (); 

     initial_conditions(); 

      

     out2=fopen("ss.dat","wt");  

 

     for (i=0; i<=k0loop; i++){ 

                  

    k0=i*k0step; 

     

   sprintf(fname,"out_%d.dat",i); 

   out = fopen(fname,"wt"); 

 

     doit ();    

      

     fclose(out);  

     fprintf(out2, "%f %g\n", k0, H); 

     fflush(out2); 

       

     }  

          

     fclose(out2); 

        

  

} 

 

/***********************************************************/ 

 

/* Random number generator  

/* To generate real random numbers 0.0-1.0 */ 

/* Should be seeded with a negative integer */ 

 

float ran1(long *idum) { 

    int j; 

    long k; 

    static long iy=0; 

    static long iv[NTAB]; 

    float temp; 

 



171 

 

 
 

    if (*idum <= 0 || !iy) { 

        if (-(*idum) < 1) *idum=1; 

        else *idum = -(*idum); 

        for (j=NTAB+7;j>=0;j--) { 

            k=(*idum)/IQ; 

            *idum=IA*(*idum-k*IQ)-IR*k; 

            if (*idum < 0) *idum += IM; 

            if (j < NTAB) iv[j] = *idum; 

        } 

        iy=iv[0]; 

    } 

    k=(*idum)/IQ; 

    *idum=IA*(*idum-k*IQ)-IR*k; 

    if (*idum < 0) *idum += IM; 

    j=iy/NDIV; 

    iy=iv[j]; 

    iv[j] = *idum; 

    temp=(float)AM*iy; 

    if (temp > RNMX) return (float)RNMX; 

    else return temp; 

} 

 

// gasdev returns a normally distributed deviate with zero mean and unit variance. 

// idum -  set to any negative integer to initialize or reinitialize the random number generator.  

 

float gasdev(long *idum) 

{ 

    

    static int iset=0; 

    static double gset; 

    double fac,rsq,v1,v2; 

 

    if (iset == 0) { 

        do { 

            v1=2.0*ran1(idum)-1.0; 

            v2=2.0*ran1(idum)-1.0; 

            rsq=v1*v1+v2*v2; 

        } while (rsq >= 1.0 || rsq == 0.0); 

        fac=sqrt(-2.0*log(rsq)/rsq); 

        gset=v1*fac; 

        iset=1; 

        return (float)(v2*fac); 

    } else { 

        iset=0; 

        return (float)gset; 

    } 
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Appendix V XPP models for ester 

hydrolysis  
Developed by Annette Taylor 
 

#acid ester hydrolysis 
 

S'=-(k1+k1a*H)*S+k0*(S0-S) 

P'=(k1+k1a*H)*S-k2*P+k2r*Pm*H-k0*P 

Pm'=k2*P-k2r*Pm*H-k0*Pm 

H'=k2*P-k2r*Pm*H+k3-k3r*H*OH+k0*(H0-H) 

OH'=k3-k3r*H*OH+k0*(OH0-OH) 

 

aux pH=-log(H)/log(10) 

 

#parameters 

par k1=1e-5,k1a=1e-1,k2=1e-3,k2r=1 

par k3=1e-3,k3r=1e11 

par k0=0,S0=1,H0=1e-10,OH0=1e-4 

 

 

#initial conditions 

init S=1,P=0,Pm=0,H=1e-10,OH=1e-4 

 

#numerical stuff 

@ total=2000,dt=0.1,tol=1e-12, atol=1e-8, meth=stiff 

@ xplot=t,yplot=pH,xhi=2000,ylo=1,yhi=14 

@ maxstor=10000000 

done 

 

#enzyme ester hydrolysis 
 

S'=-k1*S/((1+d*Kes2/H+d*H/Kes1)*(KM+S))+k0*(S0-S) 

P'=k1*S/((1+d*Kes2/H+d*H/Kes1)*(KM+S))-k2*P+k2r*Pm*H-k0*P 

Pm'=k2*P-k2r*Pm*H-k0*Pm 

H'=k2*P-k2r*Pm*H+k3-k3r*H*OH+k0*(H0-H) 

OH'=k3-k3r*H*OH+k0*(OH0-OH) 

 

aux pH=-log(H)/log(10) 

 

#parameters 

par k1=1e-2,KM=1,Kes1=1e-4,Kes2=1e-8,k2=1e-4,k2r=1 

par d=1,k3=1e-3,k3r=1e11 

par k0=0,S0=1,H0=1e-10,OH0=1e-4 

 

 

#initial conditions 

init S=1,P=0,Pm=0,H=1e-10,OH=1e-4 

 

#numerical stuff 

@ total=2000,dt=0.1,tol=1e-12, atol=1e-8, meth=stiff 

@ xplot=t,yplot=pH,xhi=2000,ylo=1,yhi=14 
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@ maxstor=10000000 

done 

 

#the aspirin clock 
#AH = aspirin (solution), A=aspirin anion, H = acid, OH = 

base, SH =salicyclic acid, S = anion,CH =acetic acid, C = 

anion 

 

AHs'=-k0*AHs^n+k0r*AH^n 

AH'=k0*AHs^n-k0r*AH^n-k1*AH*H-k2*AH+k3*OH*A-k8*AH+k8r*A*H 

A'=-k4*A*H-k5*A+k6*OH*A+k8*AH-k8r*A*H 

SH'=k1*AH*H+k2*AH+k4*A*H-k9*SH+k9r*S*H 

S'=k3*AH*OH+k5*A+k6*OH+k9*SH-k9r*S*H 

CH'=k1*AH*H+k2*AH+k3*OH*AH+k4*A*H+k5*A-k10*CH+k10r*C*H 

C'=k6*A*OH+k10*CH-k10r*C*H 

H'=-k4*A*H+k7-k7r*OH*H+k8*AH-k8r*A*H+k9*SH-k9r*S*H+k10*CH-

k10r*C*H 

OH'=-k3*AH*OH-k6*A*OH+k7-k7r*OH*H 

 

#pH 

aux pH=-log(H)/log(10) 

 

#parameters 

par n=1,k0=1.5e-3,k0r=1e-10,k1=2.2e-5,k2=1.4e-6,k3=0.012, 

k4=5.4e-4,k5=2.44e-8,k6=0.087, k7=1e-

3,k7r=1e11,k8=3.2e5,k8r=1e9,k9=1e6,k9r=1e9,k10=8e5,k10r=4.5e10 

 

#some initial conditions 

init AHs=0.018,OH=1e-2,H=1e-12,AH=0,A=0,SH=0,S=0,CH=0,C=0 

 

#numerical 

@ total=1000,dt=0.01,tol=1e-12, atol=1e-8, meth=stiff 

@ xplot=t,yplot=pH,xhi=1500,ylo=5,yhi=14 

@ maxstor=10000000 

Done 

 

Appendix VI Matlab code for particle 

tracking 

Developed by Tamas Bansagi 
 
clear all 
close all 
%================================ PARAMETERS 
============================== 
n=100;       % number of pictures (background excluded) 
bg=1;       % background image 
z='C:\Users\chmtb\Desktop\RESEARCH_LEEDS\particle3\particle3a_'; % root 
of file names 
res=11.1;   % resolution pixel/mm 
dt=0.08;    % time elapsed between frames in seconds (12.5 image/sec) 
th=80;      % brightness threshold for filtering 
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dbp=30;     % assumed minimum distance between bright objects (BO) in 
pixels 
aop=40;     % assumed area of particle(s) in pixels 
%======================================================================
==== 
filename=[z,num2str(bg),'.jpg']; 
if n > 256 % colorbar works nicely only for fewer than 256 images 
therefore colorbar needs some rescaling 
    cl=256; 
else 
    cl=n; 
end 
cb_label= num2str(round(linspace(1,n,11)')); %set color bar label 
jet_bck=colormap(jet(cl)); % set colormap jet_bck(1,1:3)=0; % set 
colormap ibg=double(imread(filename)); i=ibg-ibg; %way of creating a 
matrix of zeros pc=0; for y=(bg+1):n 
    acl=y/n; %set color value for BO 
    filename=[z,num2str(y),'.jpg']; 
    j=double(imread(filename))-ibg; %load image as double precision 
array  
    j(j < th) = 0; % pixels with brightness below "th" are set to zero 
    j(j >= th) = acl; % pixels with brightness above "th" are set to 
predefined color 
    i=i+j; % the act of superposition 
    i(i > acl) = acl; % when BO overlap some pixels become greater than 
"acl" therefore they need resetting to proper "acl" value 
    [m(:,1) m(:,2)]=find(j); % identify non-zero elements, i.e. BOs in 
image 
    sm=size(m); 
    d=zeros(sm(1)-1,1); %define a vector to hold distances between 
pixels of BOs 
    for e=1:sm(1)-1 
        d(e)=sqrt(sum((m(e,:)-m(e+1,:)).^2)); %calculate distances 
between pixels of BOs 
    end 
    d(d < dbp) = 0; % set distances above the assumed minimum distance 
between BO in pixels to zero 
    dz=find(d); % get indices of distances grater than "dbp" 
    ldz=length(dz)+1; 
    az(1)=0; % create "az" an auxilary vector for boundaries of BOs in 
"m"  
    az(2:ldz)=dz; 
    az(ldz+1)=sm(1); 
    for bl=1:ldz 
        if (az(bl+1)-az(bl)+1) > aop 
            pc=pc+1; 
            
sp(pc,:)=[mean(m((az(bl)+1):(az(bl+1)),1)),mean(m((az(bl)+1):(az(bl+1))
,2))]; %average row and column indices of BOs between bounds stored in 
"az"; "sp" is likely to store the coordinates of center points of 
particles 
        end 
    end 
    clear m az % clear them because in the next round they might have 
different size end dx=diff(sp(:,2)); % calculate dy (note that 
coordinates are reversed because matrix notation and pixel layout are 
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different) dy=-diff(sp(:,1)); % calculate dx dydx=dy./dx; %slope of 
movement len=sqrt(dx.^2+dy.^2)/res; % lenght of movement % juggling 
with numbers to make the phase of velocity vectors fall on unit circle 
ndx=dx; ndx(ndx >= 0) = 0; ndx(ndx < 0) = 180; 
ang=atan(dydx)*180/pi+ndx; nang=ang; nang(nang >= 0) = 0; nang(nang < 
0) = 360; ang=ang+nang; % display results 
imshow(i) 
colormap(jet_bck) 
colorbar('YTickLabel',cb_label); 
set(gcf,'color','white') 
hold on 
plot(sp(:,2),sp(:,1),'-wo') 
figure 
subplot(3,1,1) 
plot(len,':ko') 
xlabel('frame'); 
ylabel('distance (mm)'); 
subplot(3,1,2) 
plot(len/dt,':ro') 
xlabel('frame'); 
ylabel('Speed (mm/sec)'); 
subplot(3,1,3) 
plot(ang,':go') 
xlabel('frame'); 
ylabel('ph. of vel. vec. on unit circle (deg)'); 
set(gca,'YTick',[0 90 180 270 360]) 
set(gcf,'color','white') 
disp(['Number of frames (b.g. excluded): ',int2str(n-1)]) disp(['Number 
of particle positions identified: ',int2str(pc)]) d_ang=diff(ang); 
d_ang(abs(d_ang)<300)=0; phj=find(d_ang); % phj=[1; phj]; % comment out 
if you want to include the first bit of the % experiment in the fitting 
figure 
plot(ang,':go') 
xlabel('frame'); 
ylabel('ph. of vel. vec. on unit circle (deg)'); 
set(gca,'YTick',[0 90 180 270 360]) 
set(gcf,'color','white') 
hold on 
for i=1:length(phj)-1 
    [fit_lin_par, stat] = 
polyfit(phj(i)+1:phj(i+1),ang(phj(i)+1:phj(i+1))',1); 
    lin = fit_lin_par(1).*(phj(i):phj(i+1))+fit_lin_par(2); 
    slope(i)=fit_lin_par(1); 
    plot(phj(i):phj(i+1),lin,'-r','LineWidth',2) 
    hold on 
    if fit_lin_par(1) < 0 
        pozy=lin(1); 
        pozx=phj(i); 
    else 
        pozy=lin(length(lin)); 
        pozx=phj(i+1)-1; 
    end 
    text(pozx,pozy+10,[num2str(i)]) 
    clear lin 
end 
hold off 
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% ===== MS Excel output (comment out if not needed) =================== 
% SLOPES data_matrix(1,1:2)={'NOTE:','Unit of slopes: deg/frame';}; 
data_matrix(2,1:2)={'line#','slope';}; 
for i=1:length(phj)-1 
    data_matrix(i+2,1:2)={i,slope(i);}; 
end 
filename_xls=[z,'rev_slope','.xls']; 
dos_command=['del ',filename_xls]; 
dos(dos_command); 
xlswrite(filename_xls,data_matrix); 
% DISTANCE TRAVELLED BY PARTICLE & SPEED BETWEEN FRAMES 
dist_data_matrix(1,1:3)={'distance(n)=location(n+1)-
location(n)','Speed=dist(n)/dt',''}; 
dist_data_matrix(2,1:3)={'frame#','distance (mm)','speed (mm/sec)'}; 
for i=1:length(len)-1 
    dist_data_matrix(i+2,1:3)={i,len(i),len(i)/dt}; 
end 
filename_xls=[z,'dist_speed','.xls']; 
dos_command=['del ',filename_xls]; 
dos(dos_command); 
xlswrite(filename_xls,dist_data_matrix); 
% ===================================================================== 

 
 


