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Abstract 
 

Breast cancer is the most frequently diagnosed form of cancer and leading cause of 

cancer death in females. Current screening techniques, such as mammography, are 

inadequate. Screening reduces the number of deaths caused by breast cancer but 

also results in a large number of women with non-life threatening forms of the 

disease being treated unnecessarily. Initial screening can produce a false positive 

result, which causes much anxiety. Clearly there is a need for a more reliable 

approach; nuclear magnetic resonance (NMR)-based metabolomics has been used 

to this end. Plasma and urine from female patients with breast cancer or abnormal 

but non-cancerous breast state and extracts from tumour and adjacent normal 

tissue obtained from those afflicted with the disease have been analysed in an 

attempt to elucidate a biomarker of disease presence or tumour grade. 

 

Aqueous extracts of tumour tissue compared to healthy adjacent (normal) tissue 

revealed increased levels of lactate, alanine, creatine, glutamate, glutamine, 

glycerophosphocholine (GPC), glycerophospholipids, phosphocholine (PCho), 

taurine, uridine-5'-diphosphate-N-acetylgalactosamine, (UDP-GaINAc) and uridine-

5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) and decreased levels of glucose. 

Increased lactate and decreased glucose is in agreement with the Warburg effect 

whereby cancer cells predominantly produce energy by a high rate of glycolysis. 

Analysis of lipophilic extracts did not reveal a difference between tumour and 

normal samples. Metabolite levels did not indicate the tumour grade using either 

type of extracts. 

 

Singly, plasma and urine data did not identify changing metabolite levels with breast 

cancer or tumour grade but correlations between the two biofluids were 

established using statistical heterospectroscopy (SHY). Through an unidentified 

species it was implied that a negative correlation existed between glycerol and 

certain lipids for patients with breast cancer.  

 

These studies have provided useful insights into tumour metabolism and 

correlations of metabolites in different biofluids.  
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Chapter 1. Introduction 

 

1.1 Breast Cancer 

 

1.1.1 Prevalence of Breast Cancer  

 

Breast cancer caused over 450,000 deaths and was diagnosed in 1.38 million 

women worldwide in the latest year for which statistics are available (2008).(1) This 

equates to 14% of total female cancer deaths and 23% of female diagnoses.(1) Using 

the GLOBOCAN 2008 online tool(2) it is estimated that the number of cases 

diagnosed in the United Kingdom (UK) will rise from 46,000 in 2008 to 56,000 in 

2030 with deaths rising by 25% from 12,000 to 15,000. Worldwide figures are 

estimated to continue to rise with nearly 750,000 deaths and 2.15 million cases 

diagnosed in 2030.  

 

Although recorded incidences increased in many Westernised countries in the last 

two decades of the previous millennium, a substantial proportion will have been 

due to increased use of testing, e.g. through national breast screening programmes  

to identify the presence of breast cancer, therefore it is difficult to estimate any 

potential change to the prevalence in the population.(1) However, incidence and 

mortality rates continue to rise in many developing countries where screening is 

less common. In these areas the rises have been mainly attributed to changes in 

reproductive patterns, physical inactivity and obesity.(1)  

 

Increased risk of developing breast cancer has been linked with alcohol 

consumption and reproductive factors that include a long menstrual history, 

nulliparity, recent use of postmenopausal hormone therapy or oral contraceptives 

and late age at first birth.(1) Incidence rates have started to decrease in some 

Westernised countries in the last few years, largely due to reduced use of 

postmenopausal hormone therapy, but breast cancer remains a leading cause of 
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death in women.(1) This is why further studies and alternative strategies are needed 

in the attempt to reduce the burden of this worldwide disease.  

 

1.1.2 Types and Grade of Breast Cancer  

 

Breast cancer, like other cancers, occurs due to mutations in genes, which results in 

alterations to cell proliferation, differentiation and death.(3) Certain proteins 

enhance resistance of cells to apoptosis (programmed cell death).(4) Breast cancer is 

a multifaceted disease comprised of distinct biological subtypes that have varied 

clinical, pathologic and molecular features with different prognostic and 

therapeutic implications.(5) The female reproductive hormones, oestrogen and 

progesterone, have a major impact on breast cancer and control postnatal 

mammary gland development.(6)  

 

Oestrogen receptors (ER) are cellular proteins that bind to the most biologically 

active type of oestrogen. DNA synthesis, cell division and production of proteins 

including progesterone receptor (PR) proteins result from the interaction.(7) 

Approximately 50-80% of breast cancers have elevated levels of ER(7-9) compared to 

normal breasts for which the level is extremely low.(7) Presence of oestrogen or 

progesterone receptors results in breast cancers being referred to as ER+ or PR+, 

respectively, and similarly ER- and PR- refers to non-presence.  

 

Breast cancers that are hormone receptor positive (either ER or PR, or both) are 

receptive to treatment by endocrine (anti-oestrogen) therapies. For post-

menopausal women anti-aromatase agents can be administered that inhibit the 

final step of oestrogen synthesis(10) whereas tamoxifen, the primary treatment in 

pre-menopausal women, binds to the ER.(11) The anti-aromatase agents are 

designed to inactivate the aromatase in postmenopausal women, which is different 

to the prevalent aromatase form in premenopausal women.(9) Approximately 50-

60% of the patients with ER+ tumours respond to endocrine therapy.(11) 
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Approximately 25-30% of breast cancer cases have increased levels of human 

epidermal growth factor receptor 2 (HER2) and the associated protein is present in 

abnormally high levels in the cells.(11) Breast cancers that overexpress HER2 are 

more aggressive forms of the disease(12) but trastuzumab (Herceptin) binds to HER2 

and causes an increase in a protein that halts cell proliferation.(13) Triple negative 

breast cancers (ER-, PR- and HER2-) do not respond to endocrine therapy or other 

available targeted agents and chemotherapy is the current treatment therapy.(14) 

This form of the disease is associated with a lower survival rate.(14) The status of the 

three receptors can be combined to indicate breast cancer sub-types (luminal A, 

luminal B and basal like).(5) 

 

Presence of the different receptors can be determined by immunohistochemistry 

staining of biopsy samples whereby specific antibodies bind to the proteins of 

interest.(15,16) A common method of assessing this is the Allred method(17) where 

separate scores are assigned to the overall stain intensity (0-3) and the percentage 

of tissue that is stained (0-5). A score of 0 indicates undoubtedly that the receptor is 

not present whereas undoubtedly positive status is assigned for scores of 8 with 

scores in between indicating moderate positivity.(18,19) 

 

Breast cancer can be of an invasive or non-invasive nature. Ductal carcinoma is the 

most common invasive form and lobular carcinoma is the second most common 

form accounting for 4-15% of all breast cancers.(20) In addition to invasive breast 

cancer, non-invasive forms can manifest with ductal carcinoma in situ (DCIS) the 

most common type.(21) Lobular carcinoma in situ (LCIS) is less common than DCIS, 

approximate ratio 1:8, and is viewed as a marker of an increased risk of invasive 

breast cancer rather than as a true precursor lesion.(21) Carcinoma in situ can also 

be present for invasive breast cancers. 

 

A grade can be calculated for invasive breast cancers to indicate the severity. Rakha 

et al.(22) state that histologic grading is now part of the minimum data set for breast 

cancer pathology reporting produced by the United Kingdom Royal College of 

Pathologists and European Commission and is endorsed by the World Health 
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Organisation (WHO) and the College of American Pathologists. The Nottingham 

grading system(23) is the most widely used histologic grading system.(22) Pathologists 

assess three morphological criteria (tubule formation, mitotic count and nuclear 

polymorphism), which are given a score 1-3, with 3 the most severe, and combined 

to give an overall score. Scores of 3-5, 6-7 and 8-9 are classified as grade 1 (low), 2 

(intermediate) and 3 (high), respectively.(24) 

 

1.1.3 Cell Proliferation 

 

Given sufficient oxygen, most normal cells metabolise glucose via glycolysis into 

pyruvate that is oxidised in the tricarboxylic acid (TCA) cycle and CO2 is produced. 

Reduced nicotinamide adenine dinucleotide (NADH, the reduced form of NAD+) is 

produced in the TCA cycle, which fuels oxidative phosphorylation that allows 

adenosine 5´-triphosphate (ATP) production. NAD+ results from oxidative 

phosphorylation and 36 ATP molecules are produced per glucose molecule via this 

process.(25,26) When there is insufficient oxygen, i.e. under anaerobic conditions, 

oxidative phosphorylation is not possible so ATP and NAD+ cannot be produced. For 

glycolysis to proceed NAD+ is required and can only be formed when pyruvate is 

converted to lactate, hence the large amount of lactate that is produced through 

anaerobic glycolysis. This produces two molecules of ATP per glucose molecule.(25,26) 

Cancer cells convert most glucose to lactate with only approximately 5% of pyruvate 

directed to the TCA cycle resulting in four molecules of ATP per glucose molecule.(25) 

As first observed by Warburg, aerobic glycolysis proceeds irrespective of whether 

oxygen is present and is often referred to as the Warburg effect.(25,26) 

 

Through mutation, metabolism of cancer cells is adapted to facilitate the uptake and 

incorporation of nutrients, e.g. nucleotides, amino acids and lipids, for growth and 

to produce a new cell. Aerobic glycolysis, fatty acid synthesis and mitochondrial 

glutamine metabolism are three pathways that are considered important in cell 

growth and proliferation.(27) Glucose, glutamine and lipids are in near-constant 

supply and, unlike differentiated cells, there is no need to optimise ATP production 

for maximum energy so aerobic glycolysis can proceed. Lactate, produced by 
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aerobic glycolysis, may provide carbon, which is one of the components required for 

rapid cell division and some specialised non-proliferating cells could recycle lactate 

to glucose.(25) Glucose provides most of the carbon required for fatty acid synthesis, 

being initially converted to acetyl-coenzyme A (acetyl-CoA), which is used to 

produce citrate in the TCA cycle. Citrate production is also upheld by glutamine 

because it too supplies carbon.(28) Acetyl-CoA is also required for the biosynthesis of 

amino acids.(29) Changes to nutrient levels or usage pathways might predispose 

those with certain metabolic diseases, such as obesity, to cancer. Further knowledge 

of regulation of proliferating cell metabolism is required along with how tumour and 

whole body metabolisms interact to enhance cancer prevention strategies.(25) 

 

This can be investigated by metabolomic studies that incorporate nuclear magnetic 

resonance (NMR) spectroscopy as the data acquisition method and multivariate 

analysis (MVA) to determine whether differences exist in the levels of metabolites. 

Determination of whether metabolic changes occur due to presence of breast 

cancer or severity of the tumour will aid the information and knowledge required to 

reduce the effects of this disease.  

 

1.2  Nuclear Magnetic Resonance Spectroscopy 
  

1.2.1 Relaxation 

 

When a static magnetic field, B0, is applied individual nuclei precess around the z-

axis at the Larmor frequency. Together, the vectors for individual nuclei are 

represented by the bulk magnetisation vector, which at equilibrium is aligned along 

the +z-axis.(30,31) When a perpendicular radio frequency (RF) pulse is applied the 

populations of the nuclear spins are perturbed and the bulk magnetisation is 

rotated towards the x-y plane (Figure 1.1). If the RF pulse is applied for the correct 

length of time the bulk magnetisation will transfer 90o because the populations of α 

and β states of the nuclei that make up the bulk magnetisation are equalised.(30,31) 

Following this, through the process of relaxation, the system returns to equilibrium 
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through the spins dissipating energy, thus allowing the population of the energy 

levels to return to the Boltzmann distribution.(30,31) 

 

The dissipation of energy from the spins to the surrounding lattice and subsequent 

return of the bulk magnetisation to its equilibrium state on the +z-axis is known as 

longitudinal, or spin lattice, relaxation.(30,31) Oscillating magnetic fields at the correct 

Larmor frequency are not abundant but are required for excited nuclei to off-load 

energy and regain the ground state. The fields are produced by the motion of 

neighbouring nuclei and the process of regaining the ground state in this way is 

characterised by a time constant, T1, the longitudinal relaxation time. Despite 

longitudinal relaxation being an enthalpic process, the change in temperature is 

undetectable.(30,31) 

 

Figure 1.1 The effect of a 90o RF pulse on bulk magnetisation and recovery to the 
z-axis. 
 

By assuming equilibrium is approached exponentially, the recovery can be explained 

by the Bloch equation: 

d  

d 
 = 

     

 1
 (1.1) 

where    is the equilibrium magnetisation,    is the +z-magnetisation and T1 is the 

longitudinal relaxation time constant (though often referred to as the longitudinal 

relaxation time).(30,31) By solving the above equation, the longitudinal magnetisation 

at time t can be obtained: 

   =   (1 e
    1) (1.2) 

To achieve essentially full recovery of    magnetisation a period of 5T1 is 

required.(30,31) 

z

yx z

yx

z

yx

z

yx

90o RF pulse

5T1



7 
 

After a 90o RF pulse the net magnetisation is in the x-y plane. If all spins experienced 

an identical magnetic field, precession at the same frequency would occur. 

However, each spin will experience a different magnetic field due to inhomogeneity 

of B0 and local magnetic fields that result from intramolecular and intermolecular 

interactions.(30,31) If the sample is thought to be divided into extremely small regions 

whereby the field was uniform within each region, magnetisation vectors would 

precess at the same frequency within each region. These regions are known as 

isochromats.(30,31) Spins subject to greater magnetic fields will precess more quickly 

and move ahead of the bulk magnetisation vector whilst those spins experiencing 

weaker magnetic fields will precess more slowly and fall behind the bulk 

magnetisation vector.(30,31) Given sufficient time, this fanning-out of the isochromats 

will lead to zero net magnetisation in the x-y plane (Figure 1.2). This type of 

relaxation is known as transverse, or spin-spin, relaxation, which follows an 

exponential decay represented by the time constant   
 : 

 

  
  

 

  
  

 

       
 (1.3) 

where local magnetic fields are characterised by T2, inhomogeneity of the static field 

is represented by         and the combined relaxation time characterised by   
 .(31)  

 

Figure 1.2 Individual spins fanning out causing zero net magnetisation in the x-y 
plane (transverse relaxation).(31) 
 

Transverse relaxation is an entropic process because energy is transferred between 

spins rather than lost to the surrounding lattice as per longitudinal relaxation.(30,31) 

Due to longitudinal relaxation being the return of the magnetisation to equilibrium 

and the +z-axis it follows that T2 ≤ T1.(31) 
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Vectors that dephase quickly have short   
  times and because of large frequency 

differences between the vectors, broad lineshapes result as characterised by large 

half-height linewidths of the peaks for that molecule.(31) Long   
  times correspond 

to slow transverse relaxation and result in narrower lineshapes. High molecular 

weight (HMW) molecules typically display broader resonances than low molecular 

weight (LMW) molecules but these can be attenuated and resonances from LMW 

molecules are observed when using a spin-echo pulse sequence, such as the Carr-

Purcell-Meiboom-Gill (CPMG) sequence.(30,31) 

 

1.2.1.1 Spin-Echo Pulse Sequence 

 

The spin-echo pulse sequence was devised to measure an accurate T2 value of a 

sample by attempting to remove the effect of field inhomogeneity.(30,31) The initial 

90o
x pulse pushes the magnetisation onto the y-axis where the inhomogeneity of 

the static field causes isochromats to fan-out during the time period τ. A second 

pulse rotates all the isochromats by 180o around the x-axis to the -y-axis allowing 

the differently precessing isochromats to catch up with the average position, hence 

the magnetisation vector is refocussed(30,31) (Figure 1.3). 

 

Figure 1.3 Magnetisation during the spin-echo pulse sequence and refocusing of 
the magnetic vectors dephased by field inhomogeneity.(31) 
 

The signal decays during the initial τ delay then increases to an echo peak after the 

180o pulse and second τ delay, therefore reappearing after 2τ. The second part of 

the echo is an exponential decay and is Fourier transformed to produce a spectrum 
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which is free from field inhomogeneity effects.(30,31) However, local magnetic fields 

that result from intramolecular and intermolecular interactions cause diffusion of 

molecules which is not refocussed so the intensity of the echo is reduced by T2.(30,31). 

The Carr-Purcell pulse sequence uses many repetitions of short τ delays and 180o
x 

pulses resulting in the intensity of the echoes decaying according to T2 but because 

of the large number of echoes, the loss between each echo due to diffusion is small. 

However, if the 90o
x pulse is incorrectly measured, any errors will become 

cumulative when the 180o
x pulses are performed leading to less transverse 

magnetisation and resulting in a less intense signal.(30,31) The CPMG pulse sequence 

overcomes this problem by replacing the rotation of the magnetisation around the 

x-axis with that around the y-axis, thus making the error in the pulse width non-

cumulative and refocussing of the vectors is achieved after an even number of 180o
y 

pulses(30,31) (Figure 1.4). 

 

Figure 1.4 The operation of the Carr-Purcell-Meiboom-Gill (CPMG) sequence in the 
presence of pulse imperfections.(31) 
 

NMR spectra can be edited according to molecular size due to differences in T2 

values(30). Large molecules have short T2 times so during the τ delay the isochromats 

will have fanned-out. Small molecules, which have long T2 times, will only be 

starting to fan-out so will be refocussed after the 180o
y pulse and detected due to 

being in the x-y-plane(30,31). The intensities of signals from large molecules in 

biofluids, such as proteins and lipoproteins will thus be reduced (Figure 1.5). 
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Figure 1.5 500 MHz 1H-NMR spectrum of human blood plasma. Abbreviations: 3-
HB, 3-hydroxybutyrate; acac, acetoacetate; glu, glutamate; gp, glycoprotein; ile, 
isoleucine; LDL, low density lipoprotein; met, methionine; TSP, 3-
trimethylsilylpropionic acid; val, valine; VLDL, very low density lipoprotein. Citrate 
is present because it is the anti-coagulant used in the collection tubes. 
 

1.3 Metabolomics 

 

Living organisms will attempt to maintain homeostasis when confronted with 

disruptive influences such as disease and drug treatment. These stimuli can cause 

alterations to body conditions that disrupt the normal ratio of metabolites and 

hence alter the biofluid and tissue profile.(32) The normal ratio will be specific to 

each individual because of influences such as genetic composition, diet and lifestyle 

but loss of homeostasis is the initial step towards disease.(33)  
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Metabonomics was first described in 1999 by Nicholson et al.(34) but the underlying 

principles and methodologies were developed in the previous decades whilst the 

concept of studying perturbations to body fluids is centuries old. Over 3,000 years 

ago disease indication was recognised as being linked to changes in biological 

fluids(33,35) but in the 1940s analytical techniques were used to profile these fluids to 

investigate normality. During the 1970s and early 1980s pattern recognition started 

to be used in conjunction with analytical techniques, mainly gas chromatography 

(GC) and GC coupled with mass spectrometry (gas chromatography-mass 

spectrometry; GC-MS).(33) Nuclear magnetic resonance (NMR) spectroscopy 

developed greatly during the latter decade and became used for profiling studies.(36) 

The basis of metabolomics had been established. 

 

The total collection of endogenous metabolites is known as the metabolome and is 

estimated there are at least 3,000 metabolites in the human metabolome.(37,38) 

Metabolomics and metabonomics are both terms for metabolome studies and in 

these approaches sampling provides a picture or snapshot of the metabolome at 

one point in time.(39) Each has a unique definition but the methods and approaches 

of metabonomics and metabolomics are now highly convergent(32,40) with the 

distinctions being mainly historical.(41) Metabolomics has been defined as the 

comprehensive analysis of all measurable metabolites in the metabolome under a 

given set of conditions, and metabonomics as the measurement of the fingerprint of 

biochemical perturbations caused by disease, drugs and toxins.(42) Metabolomics 

will be used throughout the report because this term is becoming more commonly 

used amongst research groups.  

 

Proteins, transcripts and genes can be measured in a similar way to metabolites by 

the corresponding ‘omics’ (Figure 1.6). The number of metabolites is less than the 

number of any of the three aforementioned body species but metabolite levels can 

be regarded as the final downstream product of biological systems,(43,44) thus 

providing an excellent insight into the result of influences on the system. 

Additionally, running costs associated with metabolome studies are generally lower  
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than with the other ‘omics’.(42) The most common biological samples used for 

metabolomics studies are urine and blood plasma and serum, with cell and tissue 

extracts, tissue, seminal fluid, amniotic fluid, cerebrospinal fluid, saliva, synovial 

fluid, digestive fluids, blister and cyst fluids, lung aspirates and dialysis fluids also 

having been used.(32,45,46) The more common biological samples are simple to collect 

and easily provide sufficient volume for analysis.  

 

 

 Figure 1.6 The relationship between the 'omics' technologies. DNA, 
deoxyribonucleic acid; RNA, ribonucleic acid. 
 

Despite providing a picture of the metabolome at a unique time, observation over a 

period can be achieved and monitored through dynamic modelling when samples 

from multiple time points are obtained. Every subject acts as their own control thus 

potentially negating the effect of every individual having a different ‘standard’ 

metabolite profile allowing variation around the individual ‘standard’ profile to be 

the focus of the investigation.(47) However, it is often not clinically feasible to obtain 

suitable samples at multiple time points; progression of slow forming disease is 

more difficult to monitor than for shorter term reactions, for example, in the days 

following organ transplantation when the patient is already in a clinical 

environment and it is likely there will be less variables in sample handling. 
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Today, the two main platforms used for data acquisition in metabolomics are NMR 

spectroscopy and mass spectrometry (MS). The latter is combined with a 

chromatography method, commonly liquid chromatography (LC) or GC, to enable 

separation of the metabolites prior to detection. Advantages and disadvantages are 

associated with each technique so combination of the two provides the most 

thorough analysis.(48) NMR spectroscopy was the more commonly employed 

method in early metabolomics studies(34,49) and has the advantages of high 

reproducibility,(50) requiring little preparation for most sample media(51) and being 

sample non-destructive. MS has emerged as an alternative method that is now 

frequently applied due to its high sensitivity(45,52) but metabolite identification is not 

as universal as for NMR spectroscopy(52,53) and different separation techniques are 

required for different substance classes.(53,54) 

 

Sensitivity is the largest weakness of NMR spectroscopy, which presents itself as a 

detection limit in the micromolar range for common biological samples rather than 

the nanomolar range as for MS.(37) A large water peak, which can obscure 

metabolites, is always observed for biofluids. Additionally, low molecular weight 

metabolites can be obscured by the broad envelope of high molecular weight 

resonances of proteins. Both problems can be substantially addressed by 

application of appropriate pulse sequences.(55,56)  

 

1.4 Data Analysis 

 

1.4.1 Chemometrics 

 

Chemometrics uses statistics and pattern recognition techniques to analyse 

chemical numerical data.(57) Metabolomics studies generate many more measured 

variables than there are observables (samples). Large and complex data tables are 

constructed that are not able to be summarised by traditional statistics.(58) The first 

stage of chemometrics involves data reduction through the process of spectral 

binning, whereby the spectrum is divided into smaller regions (bins) that can be 
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compared to the bins of other spectra in the data set. For each bin, the area under 

the spectral curve is calculated and analysed using multivariate analysis (MVA).(57) 

Additional data processing steps, namely normalisation and scaling, are required 

between data reduction and MVA to ensure fair comparisons are made.(42,59) An 

overview of the process is given in Figure 1.7. 

 

Figure 1.7 Overview of chemometrics. For this example, plasma is analysed using 
NMR spectroscopy followed by binning as the data reduction method. Principal 
components analysis (PCA) is the MVA employed producing a scores plot and a 
loadings plot, which can be used to identify trends across the set of patients. 
 

1.4.1.1 Data Reduction 

 

Data reduction is commonly achieved through binning (alternatively known as 

bucketing), whereby the spectrum is divided into smaller regions (bins) and the 

area under the signals contained in each bin is obtained. The binning step is 

required to take account of small changes in chemical shifts between samples so 

the same signals can be compared across spectra. 

 

Traditionally, spectra have been divided into equal sized bins of 0.04 parts per 

million (ppm).(59,60) This bin width has been used for urine because it is a good 
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compromise between resolution and variation in peak positions.(59) All binning 

techniques result in a loss of information due to a reduction in the number of data 

points,(60) typically a 64k point NMR spectrum is reduced to about 250 variables 

(bins).(61) Chemical shift variations can occur for some components, such as citrate, 

due to ionic strength and pH variation across the samples.(59) Variations in these 

factors are less prevalent for other biofluids, such as plasma and serum, but the 

same bin width has been conventionally adopted in many studies involving these 

biofluids. Some of the first studies using MVA in metabolomics used different bin 

widths: 0.02 ppm(62) and 0.05 ppm.(63) 

 

Smaller bin widths have been used in more recent studies(64,65) because many 

computational limitations on data matrix sizes have been removed allowing 

improved interpretation of the results by relating peaks with individual metabolites 

but the size is limited by peak shifting. Variable bin widths have also been 

employed(66) whereby the bin width is allowed to vary by a percentage each way of 

a set bin width. This is aimed at accounting for small chemical shift differences by 

identifying local minima in the spectra and integrating a peak in a single bin(67) 

which extends the advantages, and reduces the disadvantages, of smaller bin 

widths. However, even with adoption of variable smaller bin widths, a bin can 

integrate two peaks that change oppositely with, for example, disease versus 

control, resulting in the bin amplitude not accurately reflecting the intensity of 

either peak.(68) 

 

An alternative method to binning to ensure comparable signals are analysed is to 

perform peak alignment on the original data thus eliminating the need for data 

reduction and allowing full resolution data to be used in further analysis. However, 

the magnitude of misalignments within a single sample may not be consistent so 

that a simple alignment correction across an entire spectrum cannot be performed 

and more sophisticated computer programmes are required.(68)  
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1.4.1.2 Normalisation 

 

For each spectrum the reduced data are then normalised to accommodate 

concentration changes that are unrelated to the factors being investigated. Urinary 

volume, and hence concentration, can vary greatly whereas greater regulation 

occurs for plasma and serum.(59) Compared to normal urine, drug effects and food 

deprivation can cause dilution by a factor of ten.(69) Two common normalisation 

procedures are constant sum and constant peak.(59) The former is the most widely 

employed and consists of normalising to the sum of the integrals of the whole 

spectrum. For every spectrum, each bin integral is divided by the total spectrum 

integral and the sum of all the new integrals is set to one.(70) For all biofluids and 

tissues, the influence of down-regulation of certain metabolites should be 

approximately balanced by the up-regulation of other metabolites.(69) However, this 

approximation can fail if certain metabolite levels change vastly, for example, the 

addition of a metabolite from a drug or ethanol from alcohol consumption, will 

cause the other peaks in the spectrum to appear to decrease because the total 

spectrum integral is greater.(59) Constant peak normalisation requires an internal 

reference compound or metabolite to be present at constant concentration. 

Proteins, including albumin, in plasma and serum for example, can bind non-

specifically to certain reference compounds, such as 3-trimethylsilylpropionic acid 

(TSP),(71) and cause variation in their free concentration. An alternative method is 

probabilistic quotient normalisation(69) whereby for each test spectrum every bin 

integral is divided by the integral of the same bin of a reference spectrum. The 

median of these quotients is calculated and the test spectrum bin integrals are 

divided by this value.(69) This negates potential problems with highly variable 

metabolites that would affect constant sum normalisation. 

 

1.4.1.3 Scaling 

 

Scaling regulates the relative importance of each variable. Metabolites that have a 

high concentration are not always the most informative, and without scaling, 

variation in lower concentration metabolites would be overlooked.(72) Scaling occurs 
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for the integral of one bin (variable) throughout the whole sample series and occurs 

for the variables of the whole spectrum.(59) 

 

All of the subsequent scaling methods firstly centre the data to allow differences in 

concentrations to occur around zero instead of around the concentration mean of 

the metabolite resulting in the only variation being that between the samples 

without any offset.(73) Mean-centred scaling is just the centring process; each value 

of the normalised variable has the mean of the whole sample set for that 

normalised variable subtracted from it. Without further scaling, high concentration 

metabolites have a large contribution.(74) Unit variance (UV) incorporates standard 

deviation into the scaling factor, whereby centred data is divided by the standard 

deviation of the whole sample set for that normalised variable.(72,73) All variables 

have equal potential to influence the model but as a result the noise level of spectra 

can contribute strongly.(74,75) The effect of pareto scaling is between that of mean 

centring and UV, whereby the influence of changes in the concentration of highly 

abundant metabolites is decreased more than that for changes in less abundant 

metabolites.(72) For pareto scaling, centred data is divided by the square root of the 

standard deviation of the whole sample set for that normalised variable.(73) Pareto 

scaling has been recommended for metabolomics data(58) but is still prone to 

enhancing the contribution of variables with high variance(76) and alternatives have 

been used.(77) 

 

1.4.1.4 Multivariate Analysis 

 

MVA considers several related variables simultaneously.(78) Multivariate statistical 

methods can be unsupervised, such as principal components analysis (PCA), or 

supervised, as for partial least squares-discriminant analysis (PLS-DA). Unsupervised 

models are used to reveal grouping within a data set without previous knowledge of 

the class of individual samples, whereas supervised models use class information to 

produce models, from which the class of further samples can be predicted.(79-81) All 

multivariate statistical analyses were performed using SIMCA-P+ software. 
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1.4.1.4.1 PCA 

 

PCA represents a multivariate data table (matrix X) as a low dimensional plane, 

providing an overview of the data that may reveal groups of observations, trends 

and outliers.(58) For n observations (samples), a k dimensional space is constructed 

where k is the number of variables (bins). Each sample is represented by one point. 

When k is greater than three, k dimensional space is difficult to visualise but 

mathematically this space is similar to two dimensional (2D) or three dimensional 

(3D) space.(82,83) The first principal component (PC) is fitted, which is the linear 

combination of the original variables, and is the line describing maximum variation 

between the points in multidimensional space, hence the line best accounts for the 

shape of the swarm of points. Following, the second PC, which accounts for the next 

largest amount of variation, is fitted, then the third PC and so on.(58)
 Each PC is 

orthogonal to all of the other PCs, thus ensuring there is no correlation between the 

PCs.(84)
 Most of the information in the original matrix is contained in the first few 

PCs, with two to five PCs usually providing a representative overview.(85,86) Any two 

PCs can form a plane, onto which each observation can be projected (Figure 1.8a). A 

scores value, which is the coordinate value along the PC line, can now be obtained 

and the resultant scores plot created.(86) 

 

Each PC is related to the original variables through the angles between the two, α1, 

α2 etc. where the number relates to the variable. The loadings vector of each PC, p, 

is related to all of the cos α values between that PC and the original variables (Figure 

1.8b).  
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a)  b)  

Figure 1.8: Overview of PCA. a) Formation of PCs and b) obtaining loadings 
vectors.  
 

If a PC lines up with a variable axis the angle will be small so the loading will be close 

to 1 indicating strong influence, whereas if the PC is nearly orthogonal to the 

variable axis the loading will be close to 0, hence showing little influence. A PC 

opposite to a variable axis provides a loading close to -1 and hence a strong negative 

influence(86). However, ∑p2 = 1 so the greater number of variables, the lower 

numerically the loadings will be.(78) Loading values can be plotted, in an analogous 

manner to the score values, to create a loadings plot. Directions in the scores plot 

correspond to directions in the loadings plot which allows the bins to be identified 

that cause separation between samples.(58) 

 

The original matrix, X, is summarised by T (scores) and P (loadings) matrices: 

              (1.4) 

where E is the residual matrix and contains the unexplained variation.(83) The better 

the model, the smaller the value of E.(86) 

 

Scores plots allow strong outliers to be visualised and can be detected by Hotelling’s 

T2, a multivariate generalisation of Student’s t-distribution, by defining a ‘normal’ 

area and providing a tolerance region for the data in a two-dimensional scores 

plot.(86) Distance to model (DModX) is the detection tool used to establish moderate 
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outliers. Geometrically, the greater the distance of projection of the sample onto 

the plane of PCs, the greater the DModX value and the less well represented the 

point is by the two PCs.(86) 

 

The number of PCs in a model is determined by the difference in degree of fit and 

predictive ability. The goodness of fit of a model is estimated by R2, the explained 

variation: 

R2 = 1 – (RSS/SSX) (1.5) 

where RSS (residual sum of squares) = ∑(observed – fitted)2 and SSX (sum of squares 

of X) represents the total variation in the X matrix after mean centring. When the 

number of components increases, R2 tends towards 1 but at this value everything is 

predicted, including noise, which is detrimental.(86) 

 

The predictive power of a model is summarised by Q2X, which uses cross validation, 

whereby the data is divided into groups and the model is generated devoid of one 

group. This model is used to predict the deleted group resulting in a partial 

predictive residual sum of squares (PRESS) value and this process is repeated many 

times to ensure the process occurs for each group.(81) SIMCA-P+ software (Umetrics, 

Umeå, Sweden) uses seven groups as default, though this can cause problems if 

samples are collected over a week because the samples could be dependent on the 

day, thus non-random groups would be removed. Removal of groups occurs firstly 

in rows (observations) followed by columns (variables).(86) The partial PRESS values 

are summed(81): 

PRESS = ∑(observed – predicted)2 (1.6) 

and 

Q2 = 1 – (PRESS/SSX) (1.7) 

If a new PC enhances the predictive power compared to the previous PRESS value 

then the new component is retained.(86) 
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Certain aspects of the usefulness of the model are associated with R2X and Q2X.(81) 

R2X is always greater than Q2X, high R2X and Q2X values are desirable, the difference 

between R2X and Q2X should not exceed 0.3 and R2X greater than 0.5 is considered 

good and typical for metabolomics.(86) 

 

1.4.1.4.2 PLS-DA 

 

Unlike PCA, partial least squares-discriminant analysis (PLS-DA) incorporates class 

identifiers to improve separation. In addition to an X-matrix of observations 

(samples) and variables (bins) that is used in PCA, a Y-matrix is created that consists 

of the same observations but the variables are classes,(86) e.g. case or control. 

Observations belonging to the class have a value of one and observations not 

belonging to the class have a value of zero. Geometrically, for both matrices a 

swarm of points is present in k-dimensional space where k is the number of 

variables. For the first component a line is added in each swarm that best describes 

the swarm, in a similar way to PCA, but additionally provides good correlation 

between the points along the line. This maximises the separation between 

observations belonging to the different classes.(86) Projecting the observations onto 

the first component gives scores values: t1 and u1 for X and Y swarms, respectively. 

The contribution of each variable in the X-matrix to the modelling of Y is reflected 

by the weights (w*1) with c1 the equivalent for the Y-variables. Further components 

can be added to improve the approximation of, and correlation between, X and Y. 

Similarly to PCA, the quality of PLS-DA models can be initially determined by R2 and 

Q2 values, however, the explained and predicted variation of the Y-data (R2Y and 

Q2Y, respectively) are considered; the values indicative of good models for PCA 

models also apply to PLS-DA models.(86) The number of components is assessed in a 

similar manner to PCA.(86)  

 

The aim of PLS-DA models is to predict class membership of samples from the X-

data. Models can overfit the data resulting in separation between classes arising by 

chance. Ideally, to validate the model new samples that were not used in the 

building of the model would have their class predicted. This is not always possible 
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for smaller sample sets. Alternative cross-validation methods are available.(79,87) Two 

methods have been employed in this study for prediction of samples depending on 

the sample numbers available. One-third of samples can be randomly excluded from 

generation of a new model and the classes of these samples predicted. This is 

repeated twice so that all samples have been predicted. For smaller groups ‘leave 

one out’ cross-validation builds a model devoid of one sample, the class of which is 

then predicted. This is repeated until every sample has been predicted thus the 

number of PLS-DA models generated for validation is the same as the number of 

samples. Permutation testing is an alternative validation method.(79,86) 

 

Permutation testing plots show how models in which the Y-variables, i.e. group 

classification, are randomised compare to the original PLS-DA model.(86) The y-axis 

represents the R2Y and Q2Y values of all models and the x-axis the correlation 

coefficients between permuted and original variables. For the original model the 

correlation coefficient is 1.0. Plots showing 5% or more of permuted models that 

outperform the original model, i.e. higher R2Y and Q2Y values, indicate a poorly 

modelled response.(88) Regression lines indicate model validity with the intercept 

values being interpretable as measures of ‘background’ R2Y and Q2Y values 

obtained by fit to random data. An R2Y intercept value below 0.3-0.4 and a Q2Y 

intercept value less than 0.05 indicate a valid model.(86)  

 

1.4.2 Univariate Statistics 

 

1.4.2.1 Hypothesis Testing and p-values 

 

A hypothesis is a statement about the population that is to be tested on a sample of 

the population. The null hypothesis, H0, is that there is no difference between, for 

example, two groups of the population and the alternative hypothesis, H1, is that 

there is a difference. Within the context of this work, the following is an example: 

H0: The mean integral for a peak in the NMR spectrum is the same for patients that 

do not have breast cancer as for those who do. 
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H1: The mean integral for a peak in the NMR spectrum is not the same for patients 

that do not have breast cancer as for those who do. 

 

Two tailed statistical analysis is required because H1 states that the integral is not 

the same meaning it can be either greater or less than the integral in H0. If there 

was reason to suspect the integral would be higher one-tailed analysis could be 

performed and the same would apply if there was evidence for a lower integral 

value.  

 

Acceptance or rejection of H0 is determined by a p-value that is related to the 

means of the two groups.(89) The p-value is the probability of obtaining a test value 

at least as extreme as the one that was observed, assuming that H0 was true.(89) For 

example, if a p-value of 0.001 was obtained after comparing the means of two 

groups and H0 was true, the likelihood of the occurrence of this observation by 

chance is once every thousand times. There is strong evidence to suggest that there 

is a difference between the means of the two groups and H0 should be rejected. In 

this case the p-value is statistically significant.(89) 

 

The significance level determines whether a p-value is statistically significant. 

Conventionally, the 5% significance level is used so if a p-value is ≤0.05 it is 

concluded to be statistically significant and that there is a difference between the 

means of the two groups resulting in the rejection of H0.(89) The significance level is 

important because it governs the number and type of errors. A type I error (false 

positive) occurs if H0 is rejected when it is true; the likelihood of this event is the 

same as the significance level whereas a type II error (false negative) results when 

H0 is accepted but it is false.(89) 

 

1.4.2.2 Tests for Statistical Significance 

 

The appropriate test to be used for generation of a p-value depends on the 

distribution of the data in the two groups that are compared. The Shapiro-Wilk test 

ascertains whether the values of an integral are normally distributed within each 
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group.(90) For this test, H0 is that the data distribution is normal and H1 is that the 

data distribution is not normal.  

 

If both groups are independent and the data distribution is normal the Student’s t-

test can be used. This test assumes that the variances of the two groups are equal, 

which can be determined by the Levene’s test.(89) If the variances are not equal the 

Welch-Aspin test(91) is used, a modification of the Student’s t-test. If the data 

distribution is non-normal for one or both independent groups the Mann-Whitney U 

test can be applied. The median integral values are compared instead of the means 

to reduce the effect of any outliers that cause the data to be non-normally 

distributed.(89) 

 

If the two groups are not independent, for example if the groups are measurements 

of the same patients taken from two different sample types or at two different time 

points, the paired samples t-test is required for normally distributed data and the 

Wilcoxon Matched-Pair test for non-normally distributed data.(89) 

 

1.4.2.3 Tests for Multiple Comparisons 

 

For multiple testing, false positives can be a problem. For 200 tests (approximately 

the traditional number of bins used in metabolomics) it would be expected, 

implementing a significance level of 0.05, for 10 false positives to occur hence why 

univariate analysis alone cannot be employed. 

 

To overcome the multiple testing problem the assignment of an adjusted p-value to 

each test is performed. The Bonferroni method is a conservative technique where 

the p-values are multiplied by the number of tests and compared to the significance 

level chosen for the single test. While the number of false positives is reduced so is 

the number of true discoveries.(92) A more powerful alternative is the false 

discovery rate (FDR) correction. The FDR is the expected proportion of false positive 

findings among all rejected hypotheses, for example an FDR of 0.05 means that 
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among all findings called significant, 5% of these are truly not significant on 

average.(93) 

 

1.4.3 Alternative Pattern Recognition Methods 

 

Statistical total correlation spectroscopy (STOCSY) enhances peak identification and 

highlights metabolites linked via metabolic pathways by identifying correlations 

between peaks.(94) Correlation coefficients are calculated between the columns of 

two matrices, X1 (n x v1) and X2 (n x v2), where n is the number of samples and v1 

and v2 are the number of variables in each matrix. A correlation matrix C (v1 x v2) is 

produced with the strongest correlations indicating the peaks emanate from the 

same metabolite and weaker positive or negative correlations indicative of linked 

metabolites.(94) If X1 = X2 the 2D map will have the correlation of the peak with itself 

along the diagonal.(94)  

 

Statistical heterospectroscopy (SHY) is an extension of STOCSY whereby X2 could be 

generated from analysis of the same samples but using a different analytical 

platform,(95) a different sample type, e.g. X1 = plasma data and X2 = urine data, from 

the same subjects(96) or, again from the subjects, a sample at a different time point. 

 

1.4.4 Standardisation and Knowledge Sharing 

 

The metabolomics community has aimed to increase knowledge sharing, both in 

terms of methodology and results, and standardisation of reporting to allow 

successful data dissemination.(97) This has been attempted in part through the 

establishment of the Metabolomics Standards Initiative (MSI) and its subsequent 

publications regarding reporting requirements.(98-100) Some groups have freely 

allowed access to data, either raw or pre-processed, upon publication.(50) Although 

research groups will have individual optimum experimental procedures, protocol 

publications(51,101,102) have allowed wider distribution of successful procedures. 

Online databases such as Human Metabolome Database(103) (HMDB), Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and Golm Metabolome Database 
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(GMD) provide access to detailed information about metabolites including 

compound identification by way of mass and NMR spectra libraries and metabolite 

pathways. 

 

1.5 Gas Chromatography 

 

A liquid sample is vaporised and injected into the head of chromatographic column. 

The mobile phase, an inert gas, flows through the column transporting the 

analytes.(104) Each analyte leaves the column at a different time depending on how 

strongly it is adsorbed by the stationary phase, which is a liquid fixed on the surface 

of an inert solid. The partition ratio for an analyte is equal to the ratio of its 

concentration in the stationary phase to its concentration in the mobile phase.(104) 

Therefore, a greater partition ratio results in a longer retention time. 

 

Flame ionisation detectors (FIDs) are extensively used in GC to produce 

chromatograms.(105) Upon exiting the column, the analytes pass through the nearby 

hydrogen/air flame and pyrolysis occurs (thermochemical decomposition of organic 

substances at elevated temperatures without the participation of oxygen). Electrons 

are formed that generates a current between the electrodes positioned by the 

flame, which is translated as a peak in the chromatogram.(105) 

 

1.6 Previous NMR and Metabolomics Studies of Breast Cancer 

 

Tissue has been examined by NMR spectroscopy for over 40 years.(106,107) Initial 

investigation of breast cancer tissue concentrated on T1 and T2 relaxation times for 

the water resonance and an increase in the values for tumour tissue compared to 

healthy tissue was attributed to an increase in the motional freedom of the water 

molecules of tumours.(106,108) Similar analyses followed for serum(109) including an 

extension into lipid spectra investigation.(110) Some of the first studies that 

investigated metabolite levels in serum, plasma and urine were performed by 

Nicholson et al.(111,112) A number of breast cancer metabolomic and metabolic 
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profiling studies have since been performed on biofluids, tissue and tissue extracts 

with most having used pattern recognition in the analyses, whereas some studies 

have targeted specific metabolites for investigation. Breast cancer research 

employing NMR spectroscopy pre-dates the time of a definition for 

metabolomics(34) but has been included because similar concepts and practices 

have been used. A summary of metabolomic and NMR studies of breast cancer are 

shown in Table 1.1. Reviews concerning metabolomics and cancer,(113-118) or 

specifically breast cancer,(119,120) have been published. 

 

Serum from breast cancer patients and healthy controls, with pre-, post- or 

unknown menopausal status, has been compared by the complementary techniques 

of NMR spectroscopy and MS.(121) PCA analysis of NMR data indicated lactate and 

lipids were by far the most influential species and increased levels were present in 

case samples. Conversely, taurine and glucose levels were decreased for this group. 

However, no scaling was performed so this may be the reason why the larger signals 

appear dominant. MS data was not separated by PCA or PLS-DA.  

 

Further studies have analysed serum in relation to breast cancer. For patients who 

had breast cancer, metabolic changes in serum due to recurrence (of cancer in any 

location) were analysed(122) and Oakman et al.(123) investigated differences between 

patients with early stage breast cancer and metastatic disease. Keun et al.(124) 

examined weight gain during chemotherapy because it had been suggested to lead 

to increased chance of cancer recurrence and possibly decreased overall survival. 

Lactate increased in patients who experienced weight gain (classed as >1.5 kilogram 

[kg]). For the same group valine, tyrosine and alanine mean levels increased but the 

difference was not statistically significant. A follow-on study by the group included 

investigation into response to treatment for breast cancer.(125) Concentrations of 12 

metabolites previously identified(124) were calculated but individually none showed 

statistically significant associations with treatment outcome. However, jointly high 

glucose, high lactate and low alanine were associated with progression of disease 

despite treatment.(125)  
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No metabolomics studies utilising plasma for breast cancer investigation could be 

identified but one of the earliest NMR spectroscopy studies of plasma samples was 

conducted by Fossel et al.(126) A statistically significantly narrower average line 

width of the methyl and methylene resonances of lipids in patients with breast 

cancer than in healthy subjects or those with benign tumours was concluded. Lipid 

alterations associated with breast cancer may change the distribution of the 

lipoprotein density profile and thereby influence the line shape of those signals. 

However, using similar methods, Holmberg disagreed with the findings stating it 

was not possible to distinguish between the three groups(127) though lipoprotein 

subclass profiling of plasma or serum has been used extensively in a commercial 

capacity to assess risk of cardiovascular disease (CVD).(128) The data handling, 

however, has been criticised with regards to its accuracy in resolving the lipoprotein 

signal into individual component signals.(129) 

 

Slupsky et al.(130) analysed urine from breast cancer patients and healthy controls 

and 26 metabolites were found to decrease in case samples. The lower metabolite 

levels have been attributed to the Warburg effect and consequential results. With 

less circulating glucose and amino acids, due to use by tumours, an overall decrease 

in energy metabolism elsewhere in the body has been postulated. This could reduce 

other pathways, such as the urea cycle, resulting in lower urea and creatine 

concentrations and possibly affect the gut microbial metabolism and population.(130) 

 

Menopausal status was shown to be a confounding factor in MS analysis of urine 

from patients with breast, ovarian or cervical cancer.(131) For patients with breast 

cancer compared to controls the concentrations of 5-hydroxymethyl-2-

deoxyuridine and 8-hydroxy-2-deoxyguanosine were significantly increased. 5α-

tetrahydrocorticosterone, as identified by PLS-DA loadings, was not significantly 

increased.(131) 

 

Pattern recognition was first incorporated into analysis of breast cancer tissue 

extracts by Gribbestad et al.(132) Tumour and healthy breast tissue was obtained 

from 16 patients and perchloric acid extraction performed, allowing polar 
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metabolites to be analysed. PCA showed a decrease of glucose and an increase of 

choline-containing compounds in tumour tissue.(132) Earlier studies using the same 

extraction procedure concluded a higher content of lactate, taurine, succinate, 

phosphocholine (PCho), uridine-5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) 

and uridine-5'-diphosphate-N-acetylgalactosamine (UDP-GaINAc) and lower levels 

of glucose, myo-inositol and phosphocreatine (PCr) were present in tumour tissue 

as compared to healthy tissue.(133,134) However, no statistical significance was 

attributed to the findings.  

 

Beckonert et al.(135) have analysed extracts from breast tissue. The extracts were 

prepared using a dual extraction method, which afforded both polar and lipophilic 

extracts. Myo-inositol and glucose were reduced in tumour tissue whereas taurine 

was increased. Alanine, PCho, phosphoethanolamine (PE) and UDP-hexoses (UDP-

GlcNAc and UDP-GaINAc) were raised in tumour tissue compared to adjacent 

healthy tissue. Following histopathological analysis of control tissue, samples that 

predominantly consisted of fatty tissue had a high content of myo-inositol whereas 

glucose was raised in samples with high amounts of connective tissue. The aromatic 

region of the spectra contained many more signals, such as UDP-hexoses, in tumour 

tissue compared with control; it was concluded water-soluble metabolites are more 

prevalent in tumour tissue,(135) in agreement with Sitter et al.(136) Lipid metabolites, 

including phosphatidylethanolamine (PDE), unsaturated and saturated fatty acids, 

cholesterol esters and sphingomyelin-like substances, showed concentration 

increases in grade 3 samples.(135) The statistical significance of the findings was not 

discussed. 

 

One of the first studies to use magic angle spinning (MAS) NMR spectroscopy to 

analyse intact breast tissue was performed by Cheng et al.(137) MVA was not used 

but levels of previously reported metabolites associated with breast cancer, stated 

within the paper, were investigated using a small number of samples. The relative 

intensity of phosphocholine to choline and lactate to choline increased for both 

intermediate grade 2-3 and grade 3 samples compared to grade 2 samples. The 

relative intensities involving lactate were statistically significant. 
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Further MAS NMR spectroscopy studies have been performed but using biopsy 

tissue samples.(138-140) Tumour and healthy tissue samples were separated using 

PCA but separation based on grade did not result.(138) Identification of metabolites 

was not the primary aim of the study instead class prediction of samples was the 

main interest. Using PLS-DA, Giskeodegard et al.(139) revealed separation between 

ER+/ER- samples and partial separation between PR+/PR- samples but not 

according to lymph node status. Loadings plots revealed ER- samples were 

associated with increased glycine, glycerophosphocholine (GPC), choline and 

alanine and decreased ascorbate, creatine, taurine and PCho whereas PR- samples 

have increased ascorbate, creatine, PCho, lactate, glycine, GPC, choline and alanine.  

 

For biopsy tissue samples, Li et al.(140) identified that taurine and choline-containing 

compounds were elevated in cancer tumours compared to non-cancerous samples 

(benign tumours and the adjacent normal tissue) as was the signal tentatively 

assigned to aspartate. The PR status (PR+ or PR-) of 10 from 13 (77%) cancer 

patients was correctly predicted by ‘leave one out’ cross-validation of an 

orthogonal partial least squares-discriminant analysis (OPLS-DA) model. Axillary 

lymph node status could not be predicted when all samples were used.(140)  

 

In a different study, PCA analysis of data acquired by MAS NMR spectroscopy from 

surgically removed tissue did not clearly differentiate between patients with good 

and poor prognosis of breast cancer.(136) PC 5, accounting for 6% of the variation, 

provided a tendency to separate samples based on prognosis with glycine raised in 

poor prognosis patients. Patients who subsequently died within five years of 

sample donation were separated in PC 2 (18% of the variation) from those who 

were not deceased, irrespective of cancer recurrence status. High levels of taurine, 

GPC and creatine combined with low levels of glycine and PCho characterised those 

patients alive five years after surgery.(136) However, the statistical significance of the 

change in these metabolite levels was not discussed. Ratios of metabolite levels 

were significantly different between patients with good and poor prognosis and 

also between those who either had recurring cancer or were deceased and 

“healthy” patients five years after sample donation. Taurine glycine, GPC/glycine 
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and total cholines/glycine ratios were higher for good prognosis patients and 

taurine glycine and GPC glycine ratios were raised in “healthy” patients. However, 

although mentioned, a correction for multiple tests was not employed for the 45 

ratio tests. Collagen in connective tissue contains much glycine and 

histopathological analysis revealed a higher percentage of connective tissue was 

present in samples from poor prognosis patients.(136) This was forwarded as the 

reason for higher glycine levels in poor prognosis patients and the subsequent 

lower ratios that contained glycine. 

 

The composition of tissue samples can vary with different percentages of cancer 

cells, connective tissue, fat and healthy tissue.(136) The level of metabolites could 

depend on the composition of the tissue.(136) Concentrations of glycine, GPC, PCho 

and total choline were positively correlated with the cancer cell fraction whereas 

taurine, GPC, choline and total choline-containing metabolites correlated negatively 

with fat tissue as did PCho with connective tissue. Myo-inositol positively correlated 

with healthy tissue. The authors concluded the majority of signals from low 

molecular weight metabolites arise from cancer cells whilst fat tissue contains 

minor amounts of these metabolites.(136) Further evidence of metabolite level 

variation with type of tissue was presented by Sitter et al.(141) The fraction of cancer 

cells within the tissue sample separated patients with grade 2 cancer using PCA: a 

higher percentage of cancer cells correlated with greater glycine and PCho levels. 

The cancer cell percentage varied from 0% to over 50%. The same study also 

indicated GPC/PCho and GPC/choline ratios were higher and the PCho/choline ratio 

lower in adjacent healthy tissue samples.(141)  

 



 
 

Table 1.1 Summary of metabolomics and NMR studies of breast cancer. 

Author [Year] Bio-

material 

Study Data 

acquisition 

method 

Region of 

variation 

identification 

method 

Changing metabolites 

Gu et al.(121) [2011] Serum BC (27) v. control (30) NMR PCA (+) lac, lip 

(-) tau, glc 

Asiago et al.(122) [2010] Serum Cancer recurrence (20) v. non-recurrence 

(36) 

NMR From own 

previous study 

(-) for, his, pro, cho 

Asiago et al.(122) [2010] Serum Cancer recurrence (20) v. non-recurrence 

(36) 

GCxGC/MS From own 

previous study 

(-) glu, NAG, 3-H-2-MBA 

Oakman et al.(123) 

[2011] 

Serum Metastatic BC (51) v. early BC (44) NMR OPLS (+) phe, glc, pro, lys, NAC 

(-) lip 

Keun et al.(124) [2009] Serum Weight gain (10) v. no weight gain (11) NMR PLS-DA (+) lac 

Stebbing et al.(125) 

[2012] 

Serum With treatment: Progression of BC v. no 

progression  

NMR From previous 

study(124) 

Combined (+) glc, lac and (-) ala  

Slupsky et al.(130) 

[2010] 

Urine BC (38) v. control (62) NMR Specialist 

software 

(-) cre, ace, suc, lac, pyr, for, ile, sur, 

leu, asn, ure, glc, eta, dim, 4-HPA, 

crt, ala, hip, ura, val, aco, unknowns 

at 4.34, 3.94, 3.35, 2.60, 2.36 ppm 

 

 

3
2

 



 
 

Table 1.1 Continued.  

Author [Year] Bio-

material 

Study Data 

acquisition 

method 

Region of 

variation 

identification 

method 

Changing metabolites 

Woo et al.(131) [2009] Urine BC (10) v. control (22) GC-MS PLS-DA (+) 5-HM-2-DOU, 8-H-2-DOG 

Gribbestad et al.(132) 

[1999] 

Tissue 

extracts 

Tumour (16) v. healthy (16) NMR PCA (+) cho compounds 

(-) glc 

Gribbestad et al.(133) 

[1993] 

Tissue 

extracts 

Tumour (11) v. healthy (7) NMR No PR (+) lac, suc, PCho  

(-) glc, ino  

Gribbestad et al.(134) 

[1994] 

Tissue 

extracts 

Tumour (unstated) v. healthy (unstated) NMR No PR (+) lac, suc, tau, PCho  

(-) glc, myo, PCr  

Beckonert et al.(135) 

[2003] 

Tissue 

extracts 

Tumour (49) v. healthy (39) NMR SOM   (-) myo, glc 

Beckonert et al.(135) 

[2003] 

Tissue 

extracts 

Grade severity (3 = 22, 2= 26, 0 = 41) NMR SOM (+) ala, UDP-H, PCho, PE 

Grade 3 (+) PDE, UFA, SFA, CE, sph 

Sitter et al.(136) [2010] Tissue Good prognosis (13) v. poor prognosis (16) NMR PCA See text 

Cheng et al.(137) [1998] Tissue Grade 3 or intermediate grade 2-3 v. grade 

2 

NMR From previous 

study 

(+) PCho/cho, lac/cho 

Bathen et al.(138) 

[2007] 

Biopsy 

tissue 

Tumour (91) v. healthy (48) NMR PCA Not identified 

 

3
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Table 1.1 Continued. 

Author [Year] Bio-

material 

Study Data 

acquisition 

method 

Region of 

variation 

identification 

method 

Changing metabolites 

Bathen et al.(138) 

[2007] 

Biopsy 

tissue 

Grade 3 (36) v. grade 2 (37) NMR PLS - no 

separation 

 

Bathen et al.(138) 

[2007] 

Biopsy 

tissue  

Positive hormone (ER+/PR+, ER+/PR- and 

ER-/PR+) (63) v. negative hormone        

(ER-/PR-) (13) 

NMR PLS (+) tau, GPC  

(-) lac, gly, scy, PCho 

Bathen et al.(138) 

[2007] 

Biopsy 

tissue 

Positive lymph node (36) v. negative 

lymph mode (43) 

NMR PLS (+) gly, PCho 

(-) tau 

Giskeodegard et al.(139) 

[2010] 

Biopsy 

tissue 

ER- (39) v. ER+ (118) NMR PLS-DA (+) gly, GPC, cho, ala  

(-) asc, cre, tau, PCho 

Giskeodegard et al.(139) 

[2010] 

Biopsy 

tissue 

PR- (60) v. PR+ (94) NMR PLS-DA (+) asc, lac, gly, GPC, PCho, cho, cre 

ala 

Giskeodegard et al.(139) 

[2010] 

Biopsy 

tissue 

Positive lymph node (64) v. negative 

lymph mode (88) 

NMR PLS-DA - no 

separation 

 

Li et al.(140) [2011] Biopsy 

tissue 

Cancer (13) v. non-cancer (18) NMR OPLS-DA (+) tau, cho, asp 

Sitter et al.(141) [2006] Tissue Tumour (85) v. healthy (18) NMR PCA Not identified 

 

3
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Table 1.1 Continued. 

For the study column, values in parenthesis are sample numbers. 3-H-2-MBA, 3-hydroxy-2-methyl-butanoic acid; 4-HPA, 4-hydroxyphenylacetate; 5-HM-2-

DOU, 5-hydroxymethyl-2-deoxyuridine; 8-H-2-DOG, 8-hydroxy-2-deoxyguanosine ace, acetate; aco, trans-aconitate; ala, alanine; asc, ascorbate; asn, 

asparagine; asp, aspartate; CE, cholesterol esters; cho, choline; cre, creatine; crt, creatinine; dim, dimethylamine; eta, ethanolamine; for, formate; glc, 

glucose; glu, glutamic acid; gly, glycine; GPC, glycerophosphocholine; hip, hippurate; his, histidine; ile, isoleucine; ino, inositol; lac, lactate; leu, leucine; lip, 

lipids; lys, lysine; myo, myo-inositol; NAC, N-acetyl-cysteine; NAG, N-acetyl-glycine; PCho, phosphocholine; PCr, phosphocreatine; PDE, 

phosphatidylethanolamine; PE, phosphoethanolamine; phe, phenylalanine; pro, proline; pyr, pyroglutamate; scy, scyllo-inositol; SOM, self organising map; 

SFA, saturated fatty acids; sph, sphingomyelin-like substances; suc, succinate; sur, sucrose; tau, taurine; UDP-H, uridine-5'-diphosphate-hexose; UFA, 

unsaturated fatty acids; ura, uracil; ure, urea; and val, valine. 

3
5
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Chapter 2. NMR Analysis of Plasma 

 

The following chapter will describe 1H-NMR spectroscopy analysis of plasma 

obtained from 69 women using CPMG pulse sequence. Of these, 40 had been 

collected from women who had been diagnosed as having a form of breast cancer, 

either non-invasive or an invasive tumour with associated grade 1, 2 or 3. For the 

purposes of classification in this study, cases of DCIS without invasive cancer were 

assigned as grade 0. Samples were available from 29 patients from a control group 

that had been referred to the clinic because of abnormal breast state, which was 

subsequently diagnosed as non-cancerous abnormalities such as cysts or fat 

necrosis. 

 

MVA of the spectra was performed as described in Section 1.4.1.4 in an attempt to 

identify possible biomarkers of breast cancer occurrence and progression. A number 

of confounding factors were considered either singly or in combination during the 

data interrogation. 

 

Samples were prepared as per Section 8.1.1.1 and data collected as detailed in 

Section 8.2.1. Section 8.3 applies for spectral processing with dark regions listed in 

Table 8.3. Constant sum normalisation was used. MVA was performed as detailed in 

Section 8.4. 

 

2.1 Results 

 

Each plasma sample was given a four digit identifier during collection. The first digit 

establishes breast cancer status: 1 for control and 2 for case. The subsequent digits 

indicate the order in which the samples were collected. Sample 2041 is an 

exception; it was saved prior to cancer status being confirmed and was initially 

given a control identifier but upon breast cancer diagnosis it was reclassified from 
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control to case. A summary of the demographic details for the participants in the 

study is provided in Table 2.1. 

 

Table 2.1 Selected demographics for the 40 case and 29 control samples. The 
range, average and median for cigarettes smoked refers to current and former 
smokers combined. 

 BMI        

(kg m-2) 

Age 

(Years) 

Cigarettes Smoked 

(Thousand) 

Smoking 

Status 

Case 

Range 18.9-50.2 51-97 4-365 Current 7 

Former 15 

Never 18 

Average 28.4 67 167 

Median 27.4 63 183 

Control 

Range 17.6-50.7 51-87 2-329 Current 3 

Former 13 

Never 13 

Average 30.2 63 129 

Median 29.2 62 110 

BMI = Body Mass Index. 

 

2.1.1 Analysis of Whole Spectrum 

 

2.1.1.1 Initial Analysis 

 

A PCA model was built for the data and produced five PCs; the scores plot of PC 2 

versus PC 1 is presented in Figure 2.1. The goodness of fit (R2X(cum), the fraction of 

the sum of squares of all the X-variables that are explained by the model) is 0.731. 

The predictive ability (Q2X(cum), the fraction of the total variation of the X-variables 

that can be predicted by the model) is 0.384. With a difference of more than 0.3 

between R2X and Q2X there is a greater likelihood that too much noise or outlying 

data points have been incorporated in the model.(86) Figure 2.1 supports this 

because three samples are indicative of being strong outliers being located a 

considerable distance outside of Hotelling’s T2. This defines the normal area 

corresponding to, in this case, 95% confidence, the extent of which is bound by the 

ellipse.(86) The complementary loadings plot is shown in Figure 2.2, which enabled 

identification of the plasma components responsible for the high scores. Bins in the 

range 1.163-1.200 ppm and 3.627-3.681 ppm are consistent with the presence of 

ethanol(103) in the samples and the bins centred at 0.892 and 1.288 ppm correspond 
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to lipid species.(103,142) In addition to the three suspected outliers a fourth sample, 

1003, was not positioned with the majority of samples, which exhibited tight 

clustering. The difference in signal intensities of lipids and ethanol between the four 

non-clustered samples and the remaining 65 is easily visible in the original spectra 

as shown by Figure 2.3. A large triplet signal (from the methyl group of ethanol) is 

displayed at around 1.18 ppm by the samples from patients 1003, 2003 and 2036. 

Plasma does not usually display signals in this region as illustrated by the red trace 

of sample 1017 in Figure 2.3. Sample 1003 has a much lower level of ethanol 

relative to the two other ethanol containing samples so is not as far removed from 

the cluster of samples in the scores plot (Figure 2.1). An extremely large lipid signal 

is present for the fourth outlier, sample 1002. Although the signal is present for all 

samples in the study the level is many times greater, as illustrated in Figure 2.3, and 

as such exerts a strong influence on the statistical analysis process. The medical 

records of the patients were consulted but no obvious reason for the presence of 

ethanol or excess lipids could be identified. Unrecorded consumption of alcohol was 

attributed for causing the ethanol signals. 

 

 
Key:  case and  control 

Figure 2.1 PCA scores plot of whole 1H-NMR plasma chemical shift data for all 40 
case and 29 control samples showing the first two model components. R2X = 0.307 
and 0.154, and Q2X = 0.240 and 0.115 for PC 1 and PC 2, respectively. 
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Figure 2.2 PCA loadings plot corresponding to the model displayed in Figure 2.1. 
 

Two options present themselves on how to address the ‘problematic’ regions. Either 

the regions can be removed from analysis by adding them to the ‘dark regions’, as 

described in Table 8.3, or the samples in question can be removed from further 

statistical analysis procedures. The latter option was chosen for two reasons. 

Regarding the ethanol signals, although the triplet centred at 1.18 ppm, resulting 

from the methyl protons, does not occur in a region where other signals are 

present, the signal from methylene protons, a quartet centred at 3.65 ppm, does 

and overlaps with glucose signals. By making the ethanol regions ‘dark regions’ 

unrelated signals would also be excluded. Secondly, due to the intensity of the lipid 

signals of sample 1002, wide spectral regions, in excess of 0.10 ppm, are occupied 

and incorporate underlying signals such as valine and lactate (Figure 2.3). Too broad 

a region would have to be excluded if sample 1002 was to be included in analysis. 

The four samples were therefore removed and PCA analysis was repeated. A four PC 

model was generated with an R2X(cum) value of 0.592 and 0.412 for Q2X(cum). 

Scores and loadings plots for PC 1 versus PC 2 are shown in Figure 2.4 and Figure 

2.5, respectively. 
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b)

 

Figure 2.3 Spectral region of four samples excluded from analysis plus a retained 
sample emphasising the size of a) ethanol methyl proton peaks (top) and b) lipid 
peaks (above). Trace colours: pink = 1002; blue = 1003; red = 1017 (retained); black 
= 2003; green = 2036. 
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Key:  case and  control 

Figure 2.4 PCA scores plot of plasma data for 38 case and 27 control samples 
excluding ethanol or atypical lipid level containing samples showing the first two 
model components. R2X = 0.278 and 0.160, and Q2X = 0.221 and 0.119 for PC 1 and 
PC 2, respectively. Samples 1004 and 1020 were from patients with a different 
ethnicity, i.e. not white British; their importance is discussed in further analysis. 

 

 

Figure 2.5 PCA loadings plot corresponding to the model displayed in Figure 2.4. 

 

Following removal of the four aforementioned samples the scores range is much 

smaller and there are no apparent outliers. However, there is still no discrimination 

between case and control samples. There is a very slight tendency for some case 

samples to occupy positive PC 1 and PC 2 scores space, which from the loadings 

plot (Figure 2.5) is indicative of higher lipid levels. This is supported by study 
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findings that for post-menopausal patients with breast cancer compared to those 

not afflicted there was a significant increase in total lipid levels in serum(143) and low 

density lipoprotein cholesterol and triglycerides in plasma.(144) The plasma findings 

were attributed to oxidative stress caused by an imbalance between reactive 

oxygen species and the antioxidant capacity of the cell, possibly due to the 

susceptibility of the lipoprotein to undergo oxidation. Overall, this can result in 

cellular damage leading to conversion to malignant cells.(144) Additionally, in the 

scores plot it can be noted that the majority of samples that have the highest 

negative scores value in PC 2 (>-0.35) are controls despite being fewer in number. 

Glucose is the species that occupies the corresponding space in the loadings plot 

therefore this indicates that the level of glucose is elevated in these samples. In 

tissue extracts the observation that glucose concentration is higher in unaffected 

tissue compared to malignant tissue has been reported with more active glycolysis 

in tumour tissue forwarded as the explanation.(135) 

 

At this stage close attention was paid to demographic details of the patients. It was 

noted that all but two of the women were British and white. As ethnicity is a known 

confounding factor in metabolomics,(92) highlighted by metabolomic analysis of 

urine that showed four separate clusters in PCA scores consisting of northern 

Chinese, southern Chinese, Japanese, and UK and American samples,(145) it was 

deemed best practice to remove the two samples from the study cohort for further 

analysis. The study was therefore reduced to 63 patients, consisting of 38 case and 

25 control samples, and PCA repeated. Note, however, that the metabolic profile of 

the two samples were not outliers (samples labelled in Figure 2.4) and the resultant 

scores and loadings plots with the two samples removed (data not shown) were 

almost identical to those where the two samples had been included. The 

summarised demographics for the 63 patients (table not shown) were very similar 

to that for the 69 patients (Table 2.1). Ranges for BMI, age and number of cigarettes 

smoked for case and control samples were unaffected. 

 

Four PCs were again generated, this time for the remaining 63 samples with 

R2X(cum) and Q2X(cum) values of 0.591 and 0.386, respectively (data not shown). 
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The above discussion, which related to when the two samples from patients whose 

ethnicity was not white British were included, is equally applicable to the new data 

with the two samples excluded. Given the slight tendency of grouping of some case 

and control samples in different scores space, PLS-DA was applied in an attempt to 

connect the information in the data matrix and properties of the samples, in this 

case breast cancer status. It was not possible to generate a model indicating that 

the data did not correlate with breast cancer status.  

 

2.1.1.2 Ductal Type and Cancer Grade Investigation 

 

Breast cancer is not a single disease, rather it is very heterogeneous because it 

represents multiple diseases,(146) therefore a reduction in diversity within case 

group classification could enhance separation between case and control groups via 

MVA. Case samples were separately categorised according to presence of single 

occurrence invasive ductal carcinoma and breast cancer grade. Two of the 38 case 

samples were diagnosed as having more than one instance of graded cancer 

resulting from multiple invasive carcinomas. Although these samples are included in 

case versus control analysis they have been excluded from investigation into 

differences between grades. Table 2.2 summarises selected parameters for samples 

with a single occurrence of graded tumour.  

 

Table 2.2 Selected demographics for the 36 samples with a single occurrence of 
breast cancer.  

Cancer 

Grade 

Zero                           

8 

One                          

6 

Two                                  

12 

Three                           

10 

Ductal 

Type 

No        

8 

Yes      

0 

No       

1 

Yes      

5 

No       

2 

Yes    

10 

No       

4 

Yes      

6 

Smoking 

Status 

N 

5 

F 

1 

C 

2 

N 

0 

F 

0 

C 

0 

N 

0 

F 

1 

C 

0 

N 

2 

F 

3 

C 

0 

N 

0 

F 

1 

C 

1 

N 

5 

F 

4 

C 

1 

N 

1 

F 

2 

C 

1 

N 

3 

F 

1 

C 

2 

Smoking status: N = never, F = former and C = current. 

   

Single occurrence invasive ductal carcinoma was identified for 21 samples; the other 

15 samples exhibited, for example, lobular or metaplastic carcinoma. Single 
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occurrence invasive ductal carcinoma samples acted as the case group, whilst the 

control group remained as previously. A similar range of positions in scores space 

was apparent for both groups hence no further separation was observed in the 

three component model (R2X = 0.553 and Q2X = 0.400) (Figure 2.6). 

 

 
Key:  case and  control 

Figure 2.6 PCA scores plot of plasma data for 21 single occurrence invasive ductal 
carcinoma case and 25 control samples showing the first two model components. 
R2X = 0.307 and 0.154, and Q2X = 0.240 and 0.115 for PC 1 and PC 2, respectively.  
 

In addition to case versus control investigation, potential markers of cancer grade 

can be explored. Figure 2.7 shows the scores plot whereby case samples are 

coloured according to breast cancer grade. The loadings plot (not shown) is very 

similar to Figure 2.5. The three component model had R2X(cum) and 

Q2X(cum) values of 0.548 and 0.333, respectively. Given that lower levels of glucose 

are associated with cancer cells(147) it is surprising that a selection of grade 2 

samples is clustered in the area corresponding to the glucose region in loadings 

space. Five other grade 2 samples are positioned very close to the centre of the 

scores plot indicating, comparatively, neither glucose nor lactate is elevated or 

reduced, whilst only one grade 2 sample has an elevated lactate level. Grade 3 

samples do not show increased glucose levels but only four are indicative of having 

elevated lactate levels with three having low levels of glucose and lactate. The 

sample that is most influenced by lipids (high PC 1 and 2 scores values) has an 
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associated grade of zero. Higher lipid levels are associated with greater BMI(148) so it 

is surmised that the patient’s BMI is high given that this is one of two patients for 

whom BMI data is not available. 

 

 
Key: grade =  0,  1,  2 and   3 

Figure 2.7 PCA scores plot showing the first two model components of plasma 
data for 36 single occurrence case samples coloured according to tumour grade. 
R2X = 0.260 and 0.192, and Q2X = 0.153 and 0.149 for PC 1 and PC 2, respectively.  
 

Given the heterogeneity and the non-discrete nature of the disease it is difficult to 

draw conclusions from the data especially when small samples numbers are 

involved. However, a compromise needs to be made between sample heterogeneity 

and number of samples, thus orchestrating scores to be determined for single 

occurrence ductal carcinoma case samples with cancer grade as the basis for 

identification of clustering. PC 2 versus PC 1 is shown in the scores plot Figure 2.8 

but the loadings plot of the five PC model (R2X(cum) = 0.729 and Q2X(cum) = 0.306) 

is not displayed. 

 

Many of the observations described for single occurrence case samples are not 

present for single occurrence ductal carcinoma case samples, in part due to the 

smaller number of samples. For both models, the information content of the data 

did not reflect cancer grade. The positioning of the data points displayed in the 

relevant PCA scores plots was not able to be explained by the grade of all single 
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occurrence case samples or just single occurrence invasive ductal carcinoma cases. 

Models were not able to be generated for either data set using PLS-DA. 

 

 
Key: grade =  1,  2 and   3 

Figure 2.8 PCA scores plot showing the first two model components of plasma 
data for 21 single occurrence ductal carcinoma case samples coloured according to 
tumour grade. R2X = 0.317 and 0.187, and Q2X = 0.170 and 0.124 for PC 1 and PC 2, 
respectively.  
 

2.1.1.3 Influence of Potential Confounding Factors 

 

Given that there is no clear discrimination between case and control samples or 

case grades, exploration of potential data correlation with factors that could be 

expected to influence sample content ensued, including BMI classification (Figure 

2.9; four component model, R2X(cum) = 0.581 and Q2X(cum) = 0.368) and smoking 

status (Figure 2.10; four component model, R2X(cum) = 0.591 and Q2X(cum) = 

0.386). BMI was classified according to values of <18.5, 18.5-24.9, 25-29.9 and 

≥30 kg m-2, suggestive of underweight, healthy weight, overweight and obese 

patients, respectively.(149) Smoking status was defined as ‘exposed’ (current or 

former smoker) or ‘never exposed’ (never-smoked). 
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Key: shape -  case and  control; colour - BMI (kg m-2) =  <18.5,  18.5-24.9,  25-

29.9 and  ≥30 

Figure 2.9 PCA scores plot showing the first two model components of plasma 
data for 37 case and 24 control samples coloured according to BMI (kg m-2) 
categories (<18.5 [case = 0 and controls = 1], 18.5-24.9 [13 and 6], 25-29.9 [16 and 
6+ and ≥3  *8 and 11], suggestive of underweight, healthy weight, overweight and 
obese patients, respectively). Two samples were excluded because BMI data was 
not available. R2X = 0.273 and 0.156, and Q2X = 0.211 and 0.099 for PC 1 and PC 2, 
respectively.  
 

 
Key: shape -  case and  control; colour - smoking status =  ‘never exposed’, 

‘exposed’ 

Figure 2.10 PCA scores plot showing the first two model components of plasma 
data for 38 case and 25 control samples coloured according to smoking status: 26 
‘never exposed’ [never smoked] (case = 17 and control = 9) and 37 ‘exposed’ 
[current or former smoker] (21 and 16). R2X = 0.272 and 0.163, and Q2X = 0.197 
and 0.122 for PC 1 and PC 2, respectively.  
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PCA did not show that data was reflective of the status of either factor and when 

PLS-DA was applied a model was unable to be built for BMI as the class identifier. A 

one component model (data not shown) was generated for smoking status but 

clustering of the two groups was not observed and additionally the R2X and R2Y 

values (the fraction of the sum of the squares of the X-variables and Y-variables 

explained by the model, respectively) were 0.165 and 0.237, respectively. The Q2Y 

value (the fraction of the total variation in the Y-variables that could be predicted by 

the model) was 0.093; all three values were too low for the model to be considered 

good. However, in PCA models there is a slight tendency for the samples that have 

the highest scores values in both PCs 1 and 2 to have an associated BMI of 25.5-29.9 

or ≥30 kg m-2, suggestive of overweight or obese patients, respectively, and 

originate from those whose smoking status is ‘exposed’. It is widely accepted that 

higher lipid levels are associated with greater BMI,(148) which the slight trend in 

Figure 2.9 supports in conjunction with the associated loadings plot (not shown but 

extremely similar to Figure 2.5). Figure 2.10 shows there could be a slight tendency 

for ‘exposed’ samples to have higher levels of lipids. In metabolomic analysis of 

serum by Wang-Sattler et al.(150) higher lipid levels were identified for current 

smokers compared to former or non-smokers whilst former smokers were found to 

be separated from non-smokers suggesting that the influence of cigarette smoke in 

human blood remains for years. Consequently, the ‘exposed’ category was divided 

into two categories: current and former smokers. The PCA scores plot Figure 2.11 

and loadings plot (not shown but extremely similar to Figure 2.5) clearly shows that 

samples from current smokers do not correspond with higher levels of lipids. 

However, given that patients who only recently ceased smoking could be classed as 

a former smoker, irrespective of the number of cigarettes smoked per day and 

length of exposure, the smoking habits of former smokers were investigated.  
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Key: shape -  case and  control; colour - smoking status =  never,  former and 

current.  

Figure 2.11 PCA scores plot showing the first two model components of plasma 
data for 38 case and 25 control samples coloured according to smoking status: 26 
never smoked (17 and 9), 27 former smokers (14 and 13) and 10 current smokers 
(7 and 3). Values in parentheses relate to number of case and control samples, 
respectively. Model descriptors as per Figure 2.10. 
 

Of the seven samples from former smokers that had positive PC 1 and 2 scores 

values, for the two with the highest PC 1 scores value (and most separated) 

cigarette consumption was not high relative for the study. The rank was 24th and 

33rd out of 37 for number of cigarettes smoked, plus the cessation periods were 10 

and 45 years, respectively. This further reduces the possibility that the slight trend 

is due to higher lipid levels in smokers. As an extension the number of cigarettes 

smoked was modelled for all ‘exposed’ samples but no trend in scores space was 

observed (data not shown; three component model, R2X(cum) = 0.539 and 

Q2X(cum) = 0.392). 

 

Neither the two (‘exposed’ or ‘never exposed’) nor three groups (never smoked, 

former smoker or current smoker) used for smoking status categorisation is 

optimum. There are three variables associated with smoking: number of cigarettes 

smoked per day, number of years smoked (together the number of cigarettes 

smoked can be calculated) and time since last cigarette, in terms of years. The 

former smokers pose the most problems for classification. It would be difficult to 
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differentiate between, for example, a patient who smoked heavily for a number of 

years but ceased shortly before sample donation from a current, light smoker of a 

few years. Additionally, it could be argued some former smokers could be classed 

as ‘never exposed’ in terms of the current effect of smoking given the low number 

of cigarettes smoked and long period of cessation, e.g. a patient who smoked 5 

cigarettes per day for 3 years and ceased 40 years ago. Any values for number of 

cigarettes smoked and cessation length used for classification would be arbitrary, 

hence the categories used.  

 

Although this study has not revealed any clustering of samples based on smoking 

status, cancer status was applied to samples from only patients whose smoking 

status was ‘never exposed’ (scores plot shown in Figure 2.12, loadings plot not 

shown; four component model, R2X(cum) = 0.662 and Q2X(cum) = 0.373) because it 

has been documented that smoking exposure could be a potential confounding 

factor.(150) Cancer status did not separate the 17 case and 9 control samples.  

 

 
Key:  case and  control 

Figure 2.12 PCA scores plot of plasma data for case and control samples from 
patients who have never smoked. R2X = 0.278 and 0.188, and Q2X = 0.147 and 
0.077 for PC 1 and PC 2, respectively.  
 

Further investigation related to BMI was performed. Each BMI classification, with 

the exception of <18.5 kg m-2 because there was only one sample in this class, was 
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subjected to application of cancer status for MVA. Separation in scores space was 

not observed according to cancer status for BMI ≥30 kg m-2 (Figure 2.13; five 

component model, R2X(cum) = 0.785 and Q2X(cum) = 0.456) or for the other two 

BMI classifications (data not shown). Unlike for BMI classifications of 18.5-24.9 and 

25-29.9 kg m-2 where PLS-DA models were unable to be fitted, a two component 

model (R2X(cum) = 0.454, R2Y(cum) = 0.669 and Q2Y(cum) = 0.238) was created for 

BMI ≥30 kg m-2 (Figure 2.14). The loadings plot (Figure 2.15) shows bins containing 

lactate and glucose are driving the separation between case and control samples.  

 

 
Key:  case and  control 

Figure 2.13 PCA scores plot showing the first two model components of plasma 
data for 8 case and 11 control samples from patients who had a BMI ≥3  kg m-2. 
R2X = 0.364 and 0.195, and Q2X = 0.261 and 0.138 for PC 1 and PC 2, respectively. 
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Key:  case and  control 

Figure 2.14 PLS-DA scores plot of plasma data for 8 case and 11 control samples 
from patients who had a BMI ≥3  kg m-2. 
 

 

Figure 2.15 PLS-DA loadings plot corresponding to the model displayed in Figure 
2.14. 
 

It is well known that glucose uptake and formation of lactate increases as normal 

cells transform to malignant cells(147) but this is not reflected in the plasma data set 

for these samples. The area occupied in the scores plot by most of the control 

samples is influenced by lactate and the equivalent metabolite for some of the case 

samples is glucose. All samples have an associated BMI of ≥30 kg m-2, and with 

some greatly above this value (the maximum BMI for case and control samples is 

50.2 and 50.7 kg m-2, respectively) the samples represented do not have typical 
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associated BMIs. Higher blood lactate levels have been observed with obesity and 

in patients who gained weight during chemotherapy.(124) None of the 63 patients 

received neoadjuvant therapy (chemotherapy prior to an operation) and because 

samples were taken before surgery, adjuvant therapy (chemotherapy after an 

operation) would not apply, therefore it cannot be postulated that obese patients 

were more likely to gain weight whilst receiving chemotherapy and hence have 

greater plasma levels of lactate. However, the validity of the model has to be 

considered. Table 2.3 shows the leave-one-out cross validation parameters.  

 

Table 2.3 ‘Leave-one-out’ cross-validation parameters of the PLS-DA model shown 
in Figure 2.14. 

Sample 

Excluded 

Number of 

Components 
R2X(cum) R2Y(cum) Q2Y(cum) 

Y-Predicted* 

1 2 

1006 2 0.467 0.693 0.257 0.307 0.693 

1008 2 0.462 0.723 0.199 0.281 0.719 

1013 2 0.432 0.680 0.176 1.097 -0.097 

1014 2 0.452 0.671 0.098 0.896 0.204 

1017 2 0.474 0.735 0.205 0.282 0.718 

1018 0 / / / / / 

1024 1 0.110 0.619 0.052 0.990 0.010 

1025 1 0.116 0.603 0.065 0.739 0.261 

1026 1 0.140 0.576 0.163 0.753 0.247 

1028 1 0.112 0.613 0.140 0.814 0.186 

1030 1 0.140 0.570 0.213 0.672 0.328 

2005 1 0.165 0.563 0.231 0.697 0.303 

2008 0 / / / / / 

2011 0 / / / / / 

2024 1 0.179 0.569 0.107 0.847 0.153 

2030 0 / / / / / 

2032 0 / / / / / 

2039 1 0.111 0.634 0.079 0.619 0.381 

2040 2 0.467 0.735 0.108 0.892 0.108 

*A sample was regarded as belonging to a grade by having a Y-predicted value >0.50. 

Incorrect classification is represented by red shading and correct by orange or green, 

corresponding to a Y-predicted value of 0.60-0.70 or >0.70, respectively. 
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Of the 11 control samples, seven (63%) were predicted correctly whilst the 

predictive ability of case samples was 0% due to having none of the eight samples 

correctly predicted. In total five of the 19 models were unable to be built, four 

controls and one case. Together, this indicates that the data could be overfitted by 

the model. Application of permutation testing allowed the model to be further 

scrutinised. 

 

Figure 2.16 shows many permuted models for the case class to have higher R2Y and 

Q2Y values than the original model. The intercept values of the regression lines for 

R2Y and Q2Y are 0.622 and -0.117, respectively. The R2Y value is much greater than 

0.4 so it is indicated that the model has overfitted the data thus furthering the 

conclusion from ‘leave-one-out’ cross validation. The permutation testing plot for 

the control class is not shown but with R2Y and Q2Y intercept values of 0.619 and      

-0.119, respectively, the same conclusion was made.  

 

 

Key:  R2Y and  Q2Y 

Figure 2.16 Permutation testing plots for the case class in the PLS-DA model 
shown in Figure 2.14. The R2Y and Q2Y intercept values of the regression lines are 
0.622 and -0.117, respectively. 
 

It is possible that there are distinct metabolic markers but these may be masked by 

potential confounding factors other than smoking status and BMI. Consequently, 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
SIMCA-P+ 12.0.1 - 2013-01-27 12:01:19 (UTC+0) 



55 
 

other patient parameters were interrogated for potential data correlation (Table 

2.4). Parameters were classified in a number of ways dependent on the medical 

record information. For some parameters, such as hormone replacement therapy 

(HRT) usage, there was a positive or negative class whereas for others, for example 

PR value, a fixed number of values, and hence classes, were attributed. For many 

parameters where a range of values existed, three classes were devised to each 

accommodate one-third of the samples. Individual values were also modelled if 

appropriate. Some parameters were only applicable to case samples. 
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Table 2.4 Parameters, with type of classification, used to investigate potential 
correlation with observed data in multivariate analysis. 

Parameter (units) Classification 

Age [at time of sample donation] Individual values 

Height (m) Individual values 

Weight (kg) Individual values 

BMI (kg m-2) Individual values; 3 percentile groups 

Family history of breast cancer Positive or negative 

Menarche age Individual values 

Oral contraception usage Positive or negative 

Oral contraception usage for over one year Positive or negative 

Number of pregnancies Individual values 

Number of children Individual values 

Breastfed at least one child Positive or negative 

Breastfed more than one child Positive or negative 

Breastfed at least one child for two months 

or longer 

Positive or negative 

Breastfed more than one child for two 

months or longer 

Positive or negative 

Total number of months breastfed to 

children 

Individual values 

Menopause age Individual values 

HRT usage Positive or negative 

HRT usage within six weeks of breast cancer 

diagnosis 

Positive or negative 

Current smoker Positive or negative 

Never smoked Positive or negative 

Never smoked or stopped more than 10 

years ago 

Positive or negative 

Number of cigarettes smoked Individual values 

Cancer grade 1, 2 or 3 

DCIS [simplified grade] Low, intermediate, high and N/A 

ER alpha score 0/8 - 8/8 and N/A 

PR score 0/8 - 8/8 and N/A 

HER2 status Yes, no or N/A 

LCIS Yes, no or N/A 

Lympho-vascular invasion Yes, no or N/A 

Nottingham prognostic index Individual values 

Invasive cancer size (mm) Individual values 

Overall cancer size (mm) Individual values 
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Table 2.4 Continued. 

Prothrombin time Individual values 

White  blood cell count (x109 L-1) Individual values; 3 percentile groups 

Platelet count (x109 L-1) Individual values; 3 percentile groups 

Haemoglobin (g dL-1) Individual values; 3 percentile groups 

Red blood cell count (x1012 L-1) Individual values; 3 percentile groups 

Eosinophil count (x109 L-1) Individual values; 3 percentile groups 

Monocyte count (x109 L-1) Individual values; 3 percentile groups 

Lymphocyte count (x109 L-1) Individual values; 3 percentile groups 

Basophil count (x109 L-1) Individual values; 3 percentile groups 

Neutrophil count (x109 L-1) Individual values; 3 percentile groups 

International normalised ratio Individual values; 3 percentile groups 

Activated partial thromboplastin time (s) Individual values; 3 percentile groups 

Glucose (mmol L-1) Individual values; 3 percentile groups 

Alanine transaminase (units L-1) Individual values; 3 percentile groups 

Bilirubin (µmol L-1) Individual values; 3 percentile groups 

Phosphate (mmol L-1) Individual values; 3 percentile groups 

Alkaline phosphatase (units L-1) Individual values; 3 percentile groups 

Albumin (g L-1) Individual values; 3 percentile groups 

Albumin-adjusted calcium (mmol L-1) Individual values; 3 percentile groups 

Sodium (mmol L-1) Individual values; 3 percentile groups 

Potassium (mmol L-1) Individual values; 3 percentile groups 

Creatinine (µmol L-1) Individual values; 3 percentile groups 

Urea (mmol L-1) Individual values; 3 percentile groups 

BMI, body mass index; DCIS, ductal carcinoma in situ; ER, oestrogen receptor; HER2, human 

epidermal growth factor 2; HRT, hormone replacement therapy; LCIS, lobular carcinoma in 

situ; and PR, progesterone receptor. 

 

The observed data did not correlate with any of the 55 parameters (plots not 

shown), which would indicate that via the data acquisition and analysis methods 

used none of the parameters can be identified as individual confounding factors. 

Given this and the number of parameters, it was not feasible to combine two or 

more parameters to investigate the cumulative effect of potentially confounding 

factors or exploration using parameter matched samples, with the exception of BMI, 

age and smoking status because these are commonly identified as confounding 

factors.(151) 
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Ten case and ten control samples were matched singly according to BMI or age. For 

both groups the ten samples closest to the median of the 63 samples, 27.3 kg m-2 

for BMI and 63 years for age, were chosen. Furthermore, selecting only five case 

and five control matched samples from patients who had never smoked ensured the 

range for BMI and age was kept as small as possible whilst incorporating another 

matched factor. Although using a larger sample number would be better practice 

for MVA, the range for the two parameters of BMI and age would increase greatly, 

otherwise former smokers would have to be included in an attempt to limit the 

range expansion in both groups. Table 2.5 summarises the demographics for the 

parameters age, BMI and smoking status.  

 

Table 2.5 BMI and/or age range for parameter matched samples.  

Cancer 

Status 

Matched Parameter(s) Range 

[Never Smoked Cases/Controls] 

BMI [4/4] Age [3/3] BMI and Age [5/5] 

BMI Age 

Case 25.8 - 28.7 60 - 64 24.7 - 29.1 56 - 68 

Control 24.4 - 31.4 60 - 66 22.0 - 30.0 53 - 75 

Units: BMI = kg m-2. 

 

The PCA scores plots for the BMI matched (Figure 2.17; three component model, 

R2X(cum) = 0.571 and Q2X(cum) = 0.153) and age matched samples (Figure 2.18; two 

component model, R2X(cum) = 0.465 and Q2X(cum) = 0.235) did not exhibit two 

clusters of samples in scores space based on breast cancer status. Further evidence 

is therefore provided that metabolites that are indicative of breast cancer status 

cannot be identified from this data set when the variation of a single potential 

confounding factor is much reduced. 

 



59 
 

 
Key:  case and  control 

Figure 2.17 PCA scores plot showing the first two components of plasma data for 
best BMI matched 10 case and 10 control samples. R2X = 0.257 and 0.205, and Q2X 
= 0.035 and 0.099 for PC 1 and PC 2, respectively. 
 

 
Key:  case and  control 

Figure 2.18 PCA scores plot of plasma data for best age matched 10 case and 10 
control samples.  
 

Figure 2.19 indicates a separation between case and control samples in scores 

space for the best age, BMI and smoking status matched five samples for case and 

control groups (two component model, R2X(cum) = 0.543 and Q2X(cum) = 0.089). 

The bins that have the most effect on the observed separation in the loadings plot 

(Figure 2.20) contain lactate, lipids and glucose. Positioning of these bins in loadings 

space is similar to that in the corresponding space when the full range of samples 
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has been included (Figure 2.5) with the exception of bins containing lactate (1.314 

and 1.342 ppm), which are influential in PC 2 for the full sample range but in PC 1 

for the matched samples.  

 

 
Key:  case and  control 

Figure 2.19 PCA scores plot of plasma data for best BMI, age and ‘never smoked’ 
status matched 5 case and 5 control samples. 
 

 

Figure 2.20 PCA loadings plot corresponding to the model displayed in Figure 2.19. 
 

The scores plot (Figure 2.21) of the one component PLS-DA model (R2X = 0.287, R2Y 

= 0.733 and Q2Y = 0.394) separated all samples according to class except for 2007, 

which was closer to control rather than case samples in scores space. The loadings 
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plot (not shown) identified the same bins contributing to the separation in scores 

space as those influencing PC 1 in the PCA loadings plot.  

 

 
Key:  case and  control 

Figure 2.21 PLS-DA scores plot of plasma data for best BMI, age and smoking 
status matched 5 case and 5 control samples. Classed according to sample type. 
 

Validation of the model was performed by ‘leave-one-out’ cross-validation (Table 

2.6). Four out of five (80%) case and control samples were correctly predicted. 

Singly, this value is sufficiently high to suggest that the model has not overfitted the 

data although three of the eight samples had a Y-predicted value between 0.50 and 

0.60 so the classification of these should be treated with caution. Additionally, the 

R2Y value of the first component was high for all models and for many, more than 

one component resulted but the R2Y value approached one so predictions were 

made using a single component. Permutation testing was required to evaluate 

whether the model had overfitted the data (case class plot shown in Figure 2.22, 

control class plot not shown). The R2Y intercept value of the regression line was 

0.622 for the case class and 0.620 for the control class whilst the Q2Y intercept value 

was -0.085 for both classes. Some permuted values had greater R2Y and Q2Y values 

than the original model. 

 

Taking all of this into consideration, it cannot be substantiated that case samples 

compared to control samples that are matched according to BMI, age and ‘never 
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smoked’ status have increased levels of lipids and lactate but reduced glucose as 

indicated by both the PCA and PLS-DA models. Although ‘leave-one-out’ cross-

validation supported the findings of the PLS-DA model, permutation testing did not. 

This is possibly due to the small number of samples included, which resulted in a 

large R2Y value for the first component and subsequent high fit of the data. A 

greater number of samples would be required to confirm whether levels of lipids, 

lactate and glucose were different in case and control samples. 

 

Table 2.6 ‘Leave-one-out’ cross-validation parameters for the PLS-DA model 
shown in Figure 2.21. 

Sample 

Excluded 

Number of 

Components 
R2X R2Y  Q2Y  

Y-Predicted* 

1 2 

1009 1 0.272 0.742 0.481 1.015 -0.015 

1010 1 0.302 0.763 0.570 0.537 0.463 

1017 1 0.314 0.726 0.540 0.575 0.425 

1022 1 0.289 0.710 0.472 0.903 0.097 

1027 1 0.321 0.800 0.606 0.313 0.687 

2007 1 0.301 0.848 0.540 0.741 0.259 

2023 1 0.302 0.757 0.438 0.440 0.560 

2033 1 0.302 0.694 0.454 0.133 0.867 

2037 1 0.282 0.735 0.519 0.193 0.807 

2041 1 0.288 0.711 0.510 -0.015 1.015 

*A sample was regarded as belonging to a grade by having a Y-predicted value >0.50. 

Incorrect classification is represented by red shading and correct by pink, orange or green, 

corresponding to a Y-predicted value of <0.60, 0.60-0.70 or >0.70, respectively. 
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Key:  R2Y and  Q2Y 

Figure 2.22 Permutation testing plots for the case class in the PLS-DA model 
shown in Figure 2.21. The R2Y and Q2Y intercept values of the regression lines are 
0.622 and -0.085, respectively. 
 

Sample 2007 exhibited high-grade DCIS rather than invasive ductal carcinoma 

meaning the case type is different to three other case samples, which could 

indicate why it is not positioned with the other case samples. However, 2041 is also 

a DCIS sample and is of intermediate grade with a smaller overall size, thus is not 

supportive of the above argument. The medical record for sample 1027 does not 

indicate any characteristics that could suggest a greater tendency to develop 

cancer, for example, there is no family history of breast cancer, and although none 

of the control samples had normal breasts, 1027 is not unique being one of five in 

total to exhibit breast cysts.  

 

Using a greater number of samples would increase the reliability of any model 

findings but, for this study, would result in the samples being unable to be matched 

according to BMI, age and smoking status; the ranges of the two parameters and 

smoking status would be similar to that when all samples were used. With just five 

samples in each group the age range has already increased greatly and the BMI 

range has also expanded.  
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2.1.2 Analysis of Spectrum Excluding the Glucose Region 

 

For whole spectra, the data distribution along PC 1 was shown to be strongly 

influenced by bins in the region containing glucose (3.180-3.940 ppm) for case and 

control samples (Figure 2.5) and as previously noted, a decreased level of glucose 

has been associated with breast cancer(135,147) though the level can be directly and 

rapidly affected by diet.(66,152,153) It was not possible to regulate dietary consumption 

before sample donation so as a result the region containing glucose signals was 

removed to reduce any potential effect of diet on analysis.  

 

The same systematic procedures were followed as per whole spectrum analysis: 

PCA and PLS-DA were performed for case and control samples combined and 

classed according to various parameters. A summary of the models is shown in 

Table 2.7. 
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Table 2.7 Parameters used for classification and model descriptors excluding the 
glucose region (3.180-3.940 ppm). PLS-DA models were not able to be built if 
model descriptors are not listed. 

Samples Included Parameter 

(class)  

Plot (PCA unless 

stated) 

PCs R2X 

(cum) 

R2Y 

(cum) 

Q2X/

Q2Y 

(cum) Scores  Loadings  

All State (case and 

control) 

Figure 

2.23 

Figure 

2.24 

3 0.517 / 0.371 

All BMI (<18.5, 

18.5-24.9, 25-

29.9 and ≥30) 

Figure 

2.25 

/ 3 0.507 / 0.329 

All Smoking status 

(‘never exposed’ 

and ‘exposed’) 

Figure 

2.26 

Figure 

2.24 

3 0.517 / 0.371 

All Smoking status 

(‘never exposed’ 

and ‘exposed’) 

PLS-DA 

Figure 

2.27 

PLS-DA 

Figure 

2.28 

2 0.316 0.360 0.112 

Single occurrence 

invasive ductal 

carcinoma and 

control 

State (case and 

control) 

Figure 

2.30 

/ 2 0.446 / 0.298 

Never-smoked State (case and 

control) 

Figure 

2.31 

/ 3 0.586 / 0.362 

Single occurrence 

case 

Grade (0, 1, 2, 3 

and 4) 

Figure 

2.32 

/ 2 0.458 / 0.245 

Single occurrence 

invasive ductal 

carcinoma tumour 

Grade (1, 2 and 

3) 

/ / 0 / / / 

Units: BMI = kg m-2. 

 

There is not clear separation between case and control samples in scores space 

(Figure 2.23) but a very slight tendency for some case samples to have higher lipid 

levels (bins centred at 0.892 and 1.288 ppm; Figure 2.24) is apparent as is the case 

when the region that includes glucose is retained (Figure 2.4). The bin centred at 

2.032 ppm has a high PC 1 loadings value. The main signal contained within this bin 

is attributed to glycoproteins.(142) Lactate also has a high PC 1 loadings value so it is 

difficult to ascertain the contribution of each metabolite towards the positioning of 

samples in the scores plot but there does not seem to be correlation between 
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glycoproteins and case samples despite glycoprotein association with breast cancer 

along with various other cancers.(154-156) 

 

 
Key:  case and  control 

Figure 2.23 PCA scores plot showing the first two components of plasma data 
excluding the glucose region (3.18-3.94 ppm) for 38 case and 25 control samples. 
R2X = 0.237 and 0.196, and Q2X = 0.140 and 0.203 for PC 1 and PC 2, respectively. 
 

 

Figure 2.24 PCA loadings plot corresponding to the model displayed in Figure 2.23. 

 

In Figure 2.25, of the 12 samples with the highest PC 1 scores value (>0.4), six have 

an associated BMI ≥30 kg m-2 and five of these are controls. The main corresponding 

bins in the loadings plot (not shown, extremely similar to Figure 2.24) contain 

lactate and glycoproteins. When PCA was employed, increased lactate was not 
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associated with controls from this BMI group when the glucose region was included 

(Figure 2.9) but was when PLS-DA was applied to only the case and control samples 

that had an associated BMI ≥30 kg m-2 (Figure 2.14). Unfortunately, due to the small 

number of samples and the trend not always being present, it is not possible to 

make substantiated conclusions regarding the lactate level for those with a BMI of 

≥30 kg m-2 in relation to cancer status. There appears to be no association between 

glycoproteins and BMI. 

 

 
Key: shape -  case and  control; colour - BMI (kg m-2) =  <18.5,  18.5-24.9,  25-

29.9 and  ≥30 
Figure 2.25 PCA scores plot showing the first two components of plasma data 
excluding the glucose region (3.18-3.94 ppm) based on BMI. Group sample 
numbers from Figure 2.9 apply. R2X = 0.243 and 0.178, and Q2X = 0.141 and 0.170 
for PC 1 and PC 2, respectively. 
 

Regarding smoking status, the samples with the highest lipid levels are from 

patients who conform to the ‘exposed’ (current or former smoker) category (scores 

and loadings plots shown in Figure 2.26 and Figure 2.24, respectively), which is the 

same observation as when the glucose region was included. Additionally, of the 13 

samples with the highest PC 1 scores value (>0.4), ten originated from ‘exposed’ 

patients.  
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Key: shape -  case and  control; colour - smoking status =  ‘never exposed’, 
‘exposed’ 

Figure 2.26 PCA scores plot showing the first two components of plasma data 
excluding the glucose region (3.18-3.94 ppm) based on smoking status. Group 
sample numbers from Figure 2.10 apply. R2X = 0.237 and 0.196, and Q2X = 0.140 
and 0.203 for PC 1 and PC 2, respectively. 
 

PLS-DA did not completely separate ‘exposed’ and ‘never exposed’ groups in scores 

space though a strong tendency towards separation could be observed (Figure 

2.27). Much of the separation is along PC 1 with a contribution from PC 2. Lipids and 

lactate strongly influence PC 1 and levels are indicated to be lower in ‘exposed’ 

patients (Figure 2.28). However, the quality of the model is low (Table 2.7) so 

validation is even more imperative. The validity of the model was assessed through 

exclusion of a third of the samples and their class memberships predicted using 

models built from the remaining samples. For one instance, a model was not able to 

be built using two-thirds of the samples thus the maximum total number of samples 

for which class could be predicted correctly was 67%. One of the other models only 

had a Q2Y value of 0.087 so predictions made based on this model would have to be 

treated with caution. Permutation testing (‘exposed’ class plot shown in Figure 2.29, 

‘never exposed’ samples plot not shown) indicated the model had not overfitted the 

data because the R2Y intercept value of the regression line was 0.323 for the 

‘exposed’ class and 0.320 for the ‘never exposed’ class whilst the Q2Y intercept 

values were -0.174 and -0.177, respectively. However, the model was poor due to 
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the high number of permuted models that had R2Y and Q2Y values in excess of the 

values for the original model. Combined, this information leads to the conclusion, 

despite tentative indication from PLS-DA, that lower levels of lipids and lactate are 

not present in plasma from patients whose smoking status was ‘exposed’. 

 

 
Key: shape -  case and  control; colour - smoking status =  ‘never exposed’, 

‘exposed’ 

Figure 2.27 PLS-DA scores plot of plasma data excluding the glucose region (3.18-
3.94 ppm) based on smoking status. Group sample numbers from Figure 2.10 
apply. 
 

 
Figure 2.28 PLS-DA loadings plot corresponding to the model displayed in Figure 
2.27. 
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Key:  R2Y and  Q2Y 

Figure 2.29 Permutation testing plots for the ‘exposed’ class in the PLS-DA model 
shown in Figure 2.27. The R2Y and Q2Y intercept values of the regression lines are 
0.323 and -0.174, respectively. 
 

No clear separation was observed between: single occurrence ductal cases and 

controls (Figure 2.30); cases and controls amongst the ‘never exposed’ smoking 

group (Figure 2.31); and single occurrence case samples based on tumour grade 

(Figure 2.32). It is interesting to note for tumour grade that although some grade 3 

samples do exhibit higher lactate levels the three samples that have the greatest 

negative PC 1 value are all grade 3, which from the loadings plot (not shown but 

very similar to Figure 2.24) would indicate low levels of lactate. Although a similar 

observation is apparent with the glucose region retained (Figure 2.7) it is more 

visible with the glucose region removed. This is indicative that for plasma the lactate 

level, known to increase in malignant cells,(147) is not reflective of tumour grade. 
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Key:  case and  control 

Figure 2.30 PCA scores plot of plasma data excluding the glucose region (3.18-
3.94 ppm) for 21 single occurrence ductal case and 25 control samples. 
 

 
Key:  case and  control 

Figure 2.31 PCA scores plot showing the first two components of plasma data 
excluding the glucose region (3.18-3.94 ppm) for 17 case and 9 control  samples 
from patients who have never smoked. R2X = 0.271 and 0.202, and Q2X = 0.133 
and 0.151 for PC 1 and PC 2, respectively. 
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Key: grade =  0,  1,  2 and   3 

Figure 2.32 PCA scores plot of plasma data excluding the glucose region (3.18-
3.94 ppm) for 36 single occurrence case samples based on tumour grade. 
 

PLS-DA models were not created for any parameter with the exception of smoking 

status (Figure 2.27). Together, for all samples, this indicates that removal of glucose 

does not improve the possibility that the data could be related to cancer status, 

cancer grade, BMI classification or smoking status in this study. Given none of the 

PCA or PLS-DA models characterised the specific groups clearly it was deemed 

prudent to investigate best matched samples, thus eliminating some sources of 

variation. 

 

Samples were again matched according to BMI, age or BMI, age and ‘never smoked’ 

status. The PCA scores plots for ten case and ten control BMI matched samples 

(Figure 2.33; two component model, R2X(cum) = 0.442 and Q2X(cum) = 0.065) or age 

matched samples (Figure 2.34; one component model, R2X = 0.248 and Q2X = 0.076) 

did not show separation between cases and controls in scores space. For both sets 

of samples, a PLS-DA model was not able to be built.  
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Key:  case and  control 

Figure 2.33 PCA scores plot of plasma data excluding the glucose region (3.18-
3.94 ppm) for best BMI matched 10 cases and 10 controls. 
 

 
Key:  case and  control 

Figure 2.34 PCA scores plot of plasma data excluding the glucose region (3.18-
3.94 ppm) for best age matched 10 cases and 10 controls. 
 

A PCA model was unable to be created for the five case and five control samples 

that were matched according to BMI, age and ‘never smoked’ status but a one 

component PLS-DA model (R2X = 0.247, R2Y = 0.816 and Q2Y = 0.422) was built. 

Scores and loadings plots are shown in Figure 2.35 and Figure 2.36, respectively. 

Lipids and lactate are indicated to be higher in case samples. 
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Key:  case and  control 

Figure 2.35 PLS-DA scores plot of plasma data excluding the glucose region (3.18-
3.94 ppm) for best BMI, age and ‘never smoked’ status matched 5 case and 5 
control samples. Classed according to cancer status. 
 

 

Figure 2.36 PLS-DA loadings plot corresponding to the model displayed in Figure 
2.35. 
 

Validation of the model was performed by ‘leave-one-out’ cross-validation (Table 

2.8). Four out of five (80%) control samples and three out of five (60%) case samples 

were correctly predicted but two of the eight samples had a Y-predicted value 

between 0.50 and 0.60 so the classification of these should be treated with caution. 

Only three samples had a correct Y-predicted value of over 0.70. For many of the 

models created that had one sample excluded, more than one component resulted 
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but the R2Y value approached one so predictions were made using a single 

component. Permutation testing (case samples plot shown in Figure 2.37, control 

samples plot not shown) indicated the model had overfitted the data because the 

R2Y intercept value of the regression line was 0.601 for the case class and 0.606 for 

the control class whilst the Q2Y intercept values were -0.074 and -0.096, 

respectively. It cannot be concluded that case samples compared to control samples 

that are matched according to BMI, age and ‘never smoked’ status have increased 

levels of lipids and lactate. The removal of glucose from the analysis did not 

enhance separation between case and control groups or validity of PLS-DA models. 

 

Table 2.8 ‘Leave-one-out’ cross-validation parameters for the PLS-DA model 
shown in Figure 2.35. 

Sample 

Excluded 

Number of 

Components 
R2X R2Y  Q2Y  

Y-Predicted* 

1 2 

1009 1 0.254 0.815 0.565 0.670 0.330 

1010 1 0.265 0.847 0.659 0.530 0.470 

1017 1 0.257 0.817 0.579 0.691 0.309 

1022 1 0.230 0.830 0.552 1.218 -0.218 

1027 1 0.294 0.862 0.675 0.287 0.713 

2007 1 0.270 0.827 0.410 0.500 0.500# 

2023 1 0.259 0.861 0.514 0.510 0.490 

2033 1 0.265 0.781 0.502 0.095 0.905 

2037 1 0.256 0.830 0.625 0.740 0.260 

2041 1 0.248 0.807 0.590 -0.040 1.040 

*A sample was regarded as belonging to a grade by having a Y-predicted value >0.50. 

Incorrect classification is represented by red shading and correct by pink, orange or green, 

corresponding to a Y-predicted value of <0.60, 0.60-0.70 or >0.70, respectively. 

#Y-predicted value >0.50 when more than three decimal places retained. 
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Key:  R2Y and  Q2Y 

Figure 2.37 Permutation testing plots for the case class in the PLS-DA model 
shown in Figure 2.35. The R2Y and Q2Y intercept values of the regression lines are 
0.601 and -0.074, respectively. 
 

2.2 Conclusions 

 

All parameters in the patients’ medical records were treated as potential 

confounding factors but for whole spectra, when the effects of each were analysed 

singly, none were identified as such for this study. However, when the five case and 

five control samples that were best matched according to BMI, age and ‘never 

smoked’ status, PCA provided tentative separation between case and control 

samples based on increased levels of lactate and decreased glucose for case 

samples. This is in agreement with the Warburg effect: in malignant cells glucose 

uptake increases as does lactate formation.(147) ‘Leave-one-out’ cross validation 

supported the validity of the same finding from the PLS-DA model but permutation 

testing indicated the model had overfitted the data, possibly due to the small 

sample number. A larger cohort with well defined BMI and age ranges for the same 

smoking status, i.e. ‘never smoked’, would be needed to verify the observation.  

 

The same models indicate a slight tendency for case samples to be associated with 

higher lipid levels, which is in accordance with oxidative stress caused by an 

imbalance between reactive oxygen species and the antioxidant capacity of the cell, 
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possibly due to the susceptibility of the lipoprotein to undergo oxidation. Overall, 

this can result in cellular damage leading to conversion to malignant cells.(144) 

However, greater prominence of case samples having a higher lipid level would be 

required to evidence this trend. 

 

Clear grouping of case and control samples was not observed using PCA nor was 

there correlation between breast cancer status and data acquired when PLS-DA was 

utilised, indicating for this study there is no substantive evidence to suggest an 

association between breast cancer and a change in metabolism that can be 

determined by metabolomic analysis of NMR spectroscopy acquired data from 

plasma. This also applies to tumour grade, whether to all cases or just invasive 

ductal carcinoma cases. The same conclusions were made following analysis of data 

from whole spectra and spectra with the glucose region removed. 

 

Despite glucose levels being rapidly affected by diet it is advised to retain the region 

in initial analysis of plasma. Dietary affects can be subsequently analysed. There is 

no evidence to suggest removing glucose enhances separation between groups in 

question and although the level of the metabolite has not been found in this study 

to determine breast cancer status or grade, the Warburg effect(147) highlights its 

importance in cancer studies. 
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Chapter 3. NMR Analysis of Urine 

 

In an analogous manner to that described in Chapter 2, urine from the same patient 

cohort has been analysed by 1H-NMR spectroscopy with the exception that 1D (one 

dimensional) Nuclear Overhauser Effect Spectroscopy (NOESY) pulse sequence was 

used. Chemical shift data was used in analysis. 

 

Samples were prepared as per Section 8.1.1.2 and data collected as detailed in 

Section 8.2.2. Section 8.3 applies for spectral processing with dark regions listed in 

Table 8.3. Constant sum normalised data was used initially. MVA was performed as 

detailed in Section 8.4.  

 

3.1 Results 

 

Ethanol was found to be present in urine samples from the three patients previously 

identified through analysis of their plasma sample as likely to have consumed 

alcohol prior to sample donation. These samples were excluded from all analyses; 

no other samples contained ethanol signals. Additionally, patients’ samples whose 

ethnicity was not ‘white British’ were excluded because they were not sufficiently 

represented (Section 2.1.1.1). The urine sample from patient 1002, whose plasma 

sample contained abnormal lipid levels, was included but the spectrum from sample 

1008 was incorrectly saved thus leaving the same number of case and control 

samples: 38 and 25, respectively. 

 

3.1.1 Initial Analysis of Spectrum and Comparison of Normalisation Methods 

 

A PCA model was built for constant sum normalised data and produced two PCs; the 

scores plot is presented in Figure 3.1 and the corresponding loadings plot in Figure 

3.2. R2X(cum) is 0.460, with PC 1 explaining 0.374 of the variation, whilst Q2X(cum) 

is 0.390. 
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Key:  case and  control 

Figure 3.1 PCA scores plot of whole 1H-NMR constant sum normalised urine 
chemical shift data for case and control samples. 
 

 

Figure 3.2 PCA loadings plot corresponding to the model displayed in Figure 3.1. 
 

There were 13 samples, three controls and ten cases, which had positive PC 1 scores 

values that were isolated from the remainder of the samples in scores space. The 

loadings plot showed a number of bins with positive PC 1 loadings values greater 

than or equal to 0.10: 2.158, 2.186, 3.604, 3.616, 3.630, 3.892, 3.913, 7.131, 7.154, 

7.307, 7.324, 7.344, 7.371, 7.446 and 7.467 ppm. The origin of these signals could 

not initially be identified through metabolite lists or databases(66,103,142,157-163) so the 

aforementioned 13 patients’ last food and drink consumption details prior to 

sample donation, as well as drug and supplement history, were analysed for 
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recurrent substances. Additionally, records of other diseases and ailments were 

studied for frequent instances amongst patients; hypertension was the most 

diagnosed disease with eight patients being affected but seven of the other 50 

patients were also afflicted. No food or drink item was common that might cause 

such distinct signals. Irrespective of dosage or strength, 70 different drugs or 

supplements were recorded for the 13 patients but no substances, including 

common ‘over-the-counter’ medication such as acetaminophen (paracetamol) and 

aspirin, were taken by more than three patients. Apart from a doublet at 7.32 ppm, 

signals in the spectrum did not correspond with acetaminophen signals,(103) 

however other sources suggested signals around 2.16 ppm were resultant from 

acetaminophen.(164,165) Signals from acetaminophen glucuronide, acetaminophen 

sulphate and N-acetylcysteine conjugate of acetaminophen were correlated with 

acetaminophen signals(165) and matched all of the unknown signals in the previously 

stated bin regions. It was concluded that acetaminophen and associated breakdown 

products were responsible for the unassigned signals in the spectra and patients 

had consumed acetaminophen on an ad hoc basis that was not reported. It was not 

possible to generate a PLS-DA model. 

 

Whilst investigation proceeded to determine the origin of influential signals in PC 1, 

the impact of these signals on the normalisation procedure was considered. 

Although constant sum normalisation attempts to account for dilution differences 

between samples it assumes that changes in concentrations of single metabolites 

have a small influence on the total concentration change therefore a linear 

concentration series of samples would result in a linear series of integrals. This is in 

addition to the assumption that the influence of down-regulation of certain 

metabolites should be approximately balanced by the up regulation of other 

metabolites.(69) However, this approximation can fail if there is a large change in the 

concentration of a metabolite(s), in this instance those associated with 

acetaminophen. This is because other signals in the spectrum will appear to 

decrease due to lower normalised intensities as a result of the total spectrum 

integral being greater.(59) Dieterle et al.(69) proposed probabilistic quotient 

normalisation (PQN) as a solution. This method assumes that concentration 
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changes of a single metabolite only influences parts of the spectrum hence the 

intensity of the majority of signals, rather than all, is a function of dilution. A most 

probable quotient between the signals of each spectrum in the series and of a 

reference spectrum is calculated as the normalisation factor, effectively this is a 

number that is required to make the most number of data point or bin intensities 

the same as the reference spectrum. A full description of the method to obtain 

probabilistic quotient (PQ) normalised data is provided in Section 8.3.1.2 but in 

brief, perform constant sum normalisation to ensure the absolute magnitude is 

constant, calculate a reference spectrum, calculate the quotients of all variables of 

the test spectrum with those of the reference spectrum, calculate the median of 

these quotients, excluding any noise regions (Table 8.7 lists regions included in the 

calculation of the median quotient), and divide all variables of the test spectrum by 

this median.(69)  

 

The samples with acetaminophen signals had the lowest median quotients; the 

eight samples with the highest positive PC 1 scores values had the lowest values, 

the range being 0.627-0.767. Median quotients less than 1 would be expected 

because given there are more signals present the relative intensity for each signal 

would be less using constant sum normalisation. Therefore, dividing all variables of 

the test spectrum by the associated median quotient would increase the intensity 

of signals, the majority to a similar level to those of the calculated median 

spectrum. As expected, the scores plot (Figure 3.3; loadings plot not shown) of the 

model created using PQ normalised data (two PCs, R2X(cum) = 0.455 and 

Q2X(cum) = 0.362) compared to constant sum normalised data exhibited higher PC 

1 scores values for those samples containing acetaminophen. However, the relative 

positions of the samples remained very similar and separation between case and 

control samples was not apparent. It was not possible to generate a PLS-DA model. 
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Key:  case and  control 

Figure 3.3 PCA scores plot of PQ normalised urine data for case and control 
samples. 
 

3.1.2 Analysis of Spectrum Excluding Acetaminophen Regions Using Probabilistic 

Quotient Normalisation 

 

The aforementioned bin regions of acetaminophen and associated breakdown 

products were excluded and the data re-normalised. The median quotients now 

ranged from 0.624 to 1.199. Separation was not present between case and control 

samples in PCA scores space (Figure 3.4; two PC model, R2X(cum) = 0.303 and 

Q2X(cum) = 0.186). Creatinine (bin regions 3.034-3.064 and 4.043-4.073 ppm) 

dominated PC 1 in the loadings plot whilst PC 2 was most heavily influenced by 

hippurate (bin regions 3.954-3.984, 7.530-7.590, 7.611-7.662 and 7.815-7.866 ppm) 

(Figure 3.5). 
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Key:  case and  control 

Figure 3.4 PCA scores plot of PQ normalised urine data excluding acetaminophen 
regions for case and control samples. 

 

 

Figure 3.5 PCA loadings plot corresponding to the model displayed in Figure 3.4.  
 

Given there was no clear separation between case and control samples subsequent 

investigation focused on breast cancer specific parameters (Table 3.1).  
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Table 3.1 Parameters used for classification in PCA and model descriptors 
excluding acetaminophen regions. 

Parameter (Classification) Sample Numbers (Total) PCs R2X 

(cum) 

Q2X 

(cum) 

Grade (0, 1, 2, 3, 1 and 2 

or 2, 2, and 2) 

7, 5, 12, 11, 1, 1 (37) 2 0.356 0.176 

Grade (0, 1, 2 or 3) 7, 5, 12, 11 (35) 2 0.360 0.179 

Grade (1, 2 or 3) 5, 12, 11 (28) 2 0.361 0.122 

Ductal and grade (1, 2 or 

3) 

4, 10, 7 (21) 1 0.257 0.129 

ER score (0/8 - 8/8) 11=0/8, 2=3/8, 1=6/8, 21=8/8 (35) 2 0.362 0.184 

PR score (0/8 - 8/8) 13=0/8, 1=2/8, 1=3/8, 1=4/8, 

1=5/8, 1=6/8, 4=7/8, 9=8/8 (31) 

2 0.375 0.181 

HER2 status (-ve or +ve) 27, 6 (33) 1 0.230 0.135 

Combined ER/PR/HER2 

class (1 - 8) 

13=2, 2=4, 2=7, 6=8 (23) 1 0.220 0.058 

 

With the exception of the model that included 37 samples, all models contained 

samples that were from patients with a single tumour occurrence; one patient 

exhibited two, and another three, separate occurrences.  

 

In the clinical environment both ER and PR status can be represented by a score out 

of eight and reflects confidence of assignment: 8/8 is undoubtedly positive status 

whereas 0/8 is undoubtedly negative status and 1/8 is not possible(18,19). 

Conventional practice of assigning ER and PR scores of 3/8 to 5/8 as positive 

status(19) has not been adopted (Table 3.2). This was to provide greater disparity 

between the two statuses whilst only eliminating two and three samples based on 

ER and PR scores, respectively. Only positive and negative status samples were 

included in the assignment of combined ER/PR/HER2 values (Table 3.3).  

 

Table 3.2 ER and PR status used in this study based on respective scores. 

ER or PR Score 0/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 

Status Assigned (-) (-) None None None (+) (+) (+) 

(-) = negative, (+) = positive 
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Table 3.3 Arbitrary classes assigned to ER/PR/HER2 statuses. 

Class 1 2 3 4 5 6 7 8 

Status of 

Descriptors 

ER+ 

PR+ 

HER2+ 

ER- 

PR+ 

HER2+ 

ER+ 

PR- 

HER2+ 

ER+ 

PR- 

HER2- 

ER- 

PR+ 

HER2- 

ER+ 

PR+ 

HER2- 

ER- 

PR- 

HER2+ 

ER- 

PR- 

HER2- 

Subtype 

Indication 

Luminal 

B 

Luminal 

B 

Luminal 

B 

Luminal 

A 

Luminal 

A 

Luminal 

A 

Basal 

like 

Basal 

like 

 

Clear separation in the PCA scores plots was not visible based on any of the eight 

parameters (data not shown). Only the scores plot classed according to grade of 

single occurrence tumours is shown (Figure 3.6). PCA was not performed solely for 

the samples that were assigned as ER+ or ER- because information could be inferred 

from the model created based on ER scores; the same applied to PR status. From 

the scores plot for combined ER/PR/HER2 values, evaluation based on tumour 

subtypes was conducted by combining classes 7 and 8 to form the basal like group: 

no separation was present based on luminal A, luminal B and basal like tumours. 

 

 
Key: grade =  0,  1,  2 and   3 

Figure 3.6 PCA scores plot of PQ normalised urine data excluding acetaminophen 
regions for single occurrence tumour grade. Coloured according to grade. 
 

PLS-DA was performed based on all of the eight parameters as well as for ER+/- and 

PR+/- statuses but a model was only created based on ER/PR/HER2 class. The one 

PC model was poor (R2X = 0.202, R2Y = 0.202 and Q2Y = 0.050) and no separation 
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was observed between classes (scores plot shown in Figure 3.7, loadings plot not 

shown). Of note though, in both PCA and PLS-DA scores plots, samples assigned as 

class 4 (ER+, PR- and HER2-; luminal A) had the greatest negative PC 1 scores values. 

Samples belonging to class 2 (luminal B) were also hormone receptor positive 

therefore it could be hypothesised that samples in classes 2 and 4 would be 

positioned in similar scores space but this is not observed. Additionally, there were 

only two samples in class 4.  

 

 

Key: ER/PR/HER2 class =  2,  4,  7 and   8 

Figure 3.7 PLS-DA scores plot of PQ normalised urine data excluding 
acetaminophen regions for ER/PR/HER2 class. Descriptors related to classes 
shown in Table 3.3. 
 

3.1.3 Analysis of Spectrum Excluding Acetaminophen, Creatinine and Hippurate 

Regions 

 

Further analysis ensued whereby creatinine (3.034-3.064 and 4.043-4.073 ppm) and 

hippurate signals (3.954-3.984, 7.530-7.590, 7.611-7.662 and 7.815-7.867 ppm) 

were also removed and the remaining data re-normalised. The median quotient 

range was 0.775-1.249.  

 

For the eight aforementioned parameters, PCA models could not be generated. 

Only single occurrence case samples graded as 0, 1, 2 or 3 were modelled by PLS-DA 
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(one PC; R2X = 0.155, R2Y = 0.142 and Q2Y = 0.017) and separation of grades was not 

observed. PLS-DA models were not able to be generated based on ER+/- or PR+/- 

status. 

  

3.1.4 Analysis of Spectrum Excluding Acetaminophen Samples 

 

Due to the intensity of the acetaminophen signals, it was possible that underlying 

peaks were obscured that could influence separation between sample classes. To 

determine whether this scenario was applicable, samples that contained 

acetaminophen signals were excluded. Creatinine and hippurate regions were not 

excluded. The remaining 50 samples were re-normalised resulting in median 

quotients within the range 0.613-1.210. A summary of the PCA models is shown in 

Table 3.4. 

 

Table 3.4 Parameters used for classification in PCA and model descriptors 
excluding acetaminophen samples. 

Parameter (class) Samples in class (total) PCs R2X Q2X 

State (case or control) 23, 27 (50) 1 0.147 0.034 

Grade (0, 1, 2, 3 or 1 and 

2) 

7, 3, 7, 9, 1 (27) 1 0.196 0.041 

Grade (0, 1, 2 or 3) 7, 3, 7, 9 (26) 1 0.200 0.057 

Grade (1, 2 or 3) 3, 7, 9 (19) 1 0.224 0.051 

Ductal and grade (1, 2 or 

3) 

3, 6, 5 (14) 1 0.253 0.041 

ER status (0/8 - 8/8) 10=0/8, 1=3/8, 1=6/8, 14=8/8 (26) 1 0.199 0.051 

PR status (0/8 - 8/8) 9=0/8, 1=2/8, 1=3/8, 1=4/8, 1=5/8, 

1=6/8, 3=7/8, 5=8/8 (22) 

1 0.206 0.053 

PR status (-ve or +ve) 10, 9 (19) 0 / / 

HER2 status (-ve or +ve) 18, 5 (23) 1 0.205 0.042 

Combined ER, PR and 

HER2 status (1 - 8) 

8=2, 2=7, 5=8 (15) 0 / / 

 

All models generated were poor and no separation was observed irrespective of the 

parameter tested. PLS-DA was performed for all parameters but models did not 

result. 
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3.1.5 Analysis of Spectrum with Potential Confounding Factors Minimised 

 

BMI, age and smoking are well known confounding factors(151) and analysis of a 

small plasma data set, where variation amongst the three factors had been 

minimised, resulted in partial separation between case and control samples (Section 

2.1.1.3). As per Chapter 2, ten case and ten control samples were matched singly 

according to BMI or age whilst five samples of each type were matched according to 

BMI, age and ‘never smoked’ status. With the inclusion of sample 1002 and 

exclusion of sample 1008, figures related to BMI and age changed (Table 3.5). The 

demographics of the five best matched control samples according to BMI, age and 

never smoked status were unchanged because sample 1008 was not one of samples 

included and sample 1002 was sourced from an ex-smoker.  

 

Table 3.5 Demographics of samples included in plasma and urine data sets. 

Samples Biofluid Sample Exclusive 

to Biofluid 

Age BMI (kg m-2) 

Average Median Average Median 

All Plasma 1008 66.0 63.0 29.0 27.3 

Urine 1002 65.8 63.0 28.9 27.3 

Best age 

matched 

Plasma 1008 63.4 63.5 / / 

Urine 1001 63.6 63.5 / / 

Best BMI 

matched 

Plasma 1026 / / 27.2 26.8 

Urine 1002 / / 27.0 26.8 

 

PCA and PLS-DA were applied to the data sets. Values associated with the models 

are shown in Table 3.6. 

 

Separation between case and control samples was not visible when variation in age 

or BMI, age and ‘never smoked’ status was minimised. For BMI matched samples 

there is a slight tendency for case samples to have lower t[1] values (Figure 3.8) 
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Table 3.6 Model descriptors for analysis using samples that were best matched 
according to a parameter(s). 

Parameter(s) Matched  PCA PLS-DA 

PCs R2X Q2X PCs R2X R2Y Q2Y 

BMI  1 0.234 0.059 1 0.221 0.436 0.126 

Age  1 0.246 0.103 0 / / / 

BMI, age and ‘never smoked’ 1 0.314 0.044 0 / / / 

Units: BMI = kg m-2. 

 

 
Key:  case and  control 

Figure 3.8 PCA scores plot of PQ normalised urine data for case and control 
samples matched according to BMI. 
 

Creatinine, which is positively associated with BMI,(166) strongly dominated positive 

PC 1 loadings space (figure not shown) despite these samples being BMI matched 

with a range of 24.4-30.0 kg m-2. This data set indicates creatinine could have a 

greater influence than that associated with BMI alone, however, the association 

between BMI and creatinine for all samples warrants further investigation. 

 

Models were created based on two classifications of patients’ BMI; data was 

available for 61 samples. The first classification was determined as follows: samples 

with the lowest third of BMI values were designated as class 1, class 2 for the middle 

third and the highest third was assigned class 3 status. The scores plot of the two PC 

model (R2X(cum) = 0.297 and Q2X(cum)  = 0.156) is shown in Figure 3.9; the loadings 
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plot (not shown) is extremely similar to Figure 3.5. The other form of classification 

was directly dependent on BMI values being indicative of weight status: classes 1, 2, 

3 and 4 corresponded to <18.5, 18.5-24.9, 25-29.9 and ≥30.0 kg m-2, suggestive of 

underweight, healthy weight, overweight and obese patients, respectively (data not 

shown).(149) The BMI ranges when the data was split into three classes were similar 

to those for weight status: 1 = <24.9, 2 = 25.0-28.9 and 3 = ≥29.0 kg m-2.  

 

For both, no correlation was observed between BMI and creatinine levels. The 

seven samples with the greatest positive PC 1 scores values in Figure 3.9 did not 

belong to the class that contained the greatest BMI values. The same applied to ten 

samples when BMI was modelled as being an indicator of weight status.  

 

 
Key: shape -  case and  control; colour - BMI class =  lowest,  middle and  

highest 

Figure 3.9 PCA scores plot of PQ normalised urine data coloured according to 
three classes of BMI (kg m-2) value (one-third of samples in each class).  

 

Creatinine positively correlates with muscle mass(167,168) to a greater extent than 

with BMI(166) and because the latter is not a measure of muscle mass this could 

explain why correlation is not shown between creatinine and BMI. 

 

Analysis was previously performed excluding samples that contained 

acetaminophen signals (Section 3.1.2) and sample 2023, which was included in the 
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best age matched samples, had these signals present. Given there was no 

separation between the ten case and ten control samples analysis using a 

replacement for this sample was not performed. Additionally, the age range would 

increase if 2023 (63 years) was substituted by the sample from the patient with the 

next closest age to the median (Table 3.7). A similar argument applies to the best 

BMI matched samples. Samples 2017, 2023 and 2026 would need to be replaced 

and there was not clear separation between the 10 control and seven other case 

samples. 2023 was also one of the five best BMI, age and ‘never smoked’ samples 

and, again, a model was not created using a replacement. 

 

Table 3.7 Current and potential range of parameters with acetaminophen 
containing samples included (current range) or excluded (potential range). 

Parameter(s) 

Matched 

Samples to be 

Replaced 

Current Range Potential Range 

Age 2023 60-64 60-67 

BMI 2017, 2023, 2026 25.8-28.7  25.5-28.9  

BMI, age and 

‘never smoked’ 

2023 24.7-29.1 and 56-68 23.9-29.1 and 56-78   

or 

24.7-32.4 and 56-68 

Units: BMI = kg m-2. For best matched BMI, age and ‘never smoked’ samples, all samples 

were from patients who had never smoked and the first range value refers to BMI and the 

second age; the potential range would depend on whether greater emphasis was placed on 

BMI or age. 

 

3.2 Conclusions 

 

Non-prescribed medication can exert a strong influence on metabolomics 

investigations as shown by the presence of signals originating from acetaminophen 

or acetaminophen breakdown products. 

 

Exclusion of acetaminophen regions resulted in creatinine and hippurate 

dominating loadings space but discrimination based on case and control samples 

and numerous descriptors of tumours was not possible. Additional exclusion of 
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these two metabolites generally made building of models unfeasible and removal of 

samples that contained acetaminophen signals did not provide further information 

regarding separation of the remaining samples. Analysis of select samples matched 

according to age, BMI or BMI, age and ‘never smoked’ status did not differentiate 

between case and control samples. 

 

Analysis of urine data did not provide discrimination between samples based on 

various descriptors for this sample set. 
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Chapter 4. SHY Analysis of Plasma and Urine Data 

 

SHY is an extension of STOCSY and allows latent variables to be identified between 

data acquired using different platforms, such as NMR spectroscopy and MS, or 

between different biofluids and/or tissues.(96) Covariance between signal intensities 

in the same or related molecules is analysed.(95) If different technologies were used 

and a known signal from NMR spectroscopy data was shown to be correlated to an 

unknown ion from MS, identification of that ion could be possible. The reverse 

could also apply if the origin of the signal in NMR spectra was uncertain due to low 

intensity or it being poorly resolved.(169) Different metabolites that are not common 

to both of the data acquisition methods but are linked via metabolic pathways 

could also be highlighted. By using different sample types the same principles 

would apply. Additionally, if tissue was used as one of the sample types or one of 

the biofluids was more difficult to obtain than the other and covariances were 

identified, the need to collect the more invasive biofluid or tissue would be 

reduced.(96,170) This would have positive implications for patients.  

 

4.1 Data Acquisition Methodology 

 

Plasma (Chapter 2) and urine (Chapter 3) NMR spectroscopy data from the same 

patient set were analysed by SHY however full resolution data was used.(96) For 

both biofluids PQN was applied (Section 8.3.1.2) and Table 8.7 lists regions included 

in the calculation of the median quotient. Case and control samples were analysed 

separately to allow any potential differences in correlations to be visualised. 

Correlation coefficients were calculated between data point intensities of the two 

biofluids as detailed in Section 8.6. The script used in MatLab, version 7.12.0.635 

(R2011a) (The MathWorks, Inc., Natick, Massachusetts, USA) to generate 

correlation coefficients was written in-house by C. McRae and modified by T. 

Bansagi. Pearson’s(95,96,170,171) and Spearman’s correlation coefficients(96) have been 

used in previous studies. The magnitude of correlation coefficients is indicated by 

the colourmap of plots: darkest red shows the strongest positive correlation and 



94 
 

darkest blue the strongest negative correlation. Numerically +1 indicates perfect 

correlation and -1 perfect anti-correlation. Correlation coefficients with p-value 

>0.001 were considered to be spurious(95,96,171) and set to zero, appearing as white 

in plots. The stringent p-value limit was implemented to reduce spurious 

correlations and is equivalent to a Bonferroni correction for 50 independent 

tests.(96) Other studies have not considered a correction factor implementing p 

<0.05 as the cut-off value.(170) The same study argued that only correlations 

between the same signals from the same metabolites in different biofluids could be 

investigated but this eliminates many benefits of performing SHY. Even using a 

confidence level of 99.9% spurious correlations will result through random chance 

due to thousands of points present.(171) However, by using full resolution data the 

two-dimensional space occupied in the plot by each potential correlation is smaller 

and it is unlikely that multiple spurious points would result at regions of signal 

intensity in both biofluids. Additionally, it would be possible to observe potential 

correlation that involved a metabolite whose signal overlapped with that of a non-

correlated metabolite, which could be obscured using binned data. Larger areas of 

correlation would be investigated to confirm whether the correlation was non-

spurious by distinguishing points that are clustered or arranged in patterns that 

coincide with the spectra.(95) 

 

Data points were used in analysis with conversion to chemical shift values 

implemented for clarity in this chapter including labelling of SHY plots. Processing of 

full resolution data is intensive in terms of computing power: a personal computer 

(Evesham Technology, Evesham, Worcestershire, UK; processor speed = 3.0 GHz, 

random access memory (RAM) = 2032 MB, processor type = Intel(R) Pentium(R) 4 

central processing unit (CPU)) could only process data that resulted in 

approximately a 6,000 x 6,000 matrix and the highest specification personal 

computer (Dell Inc., Round Rock, Texas, USA; processor speed = 2.93 GHz, RAM = 

16 GB, processor type = Intel(R) Core(TM) i7 CPU) accessible for which these 

analyses could be performed was unable to produce a square 37,815 matrix that 

included p-values. Removal of the 4.500-6.200 ppm region that had been set to zero 

because it contained water and additionally urea for urine, reduced each spectrum 
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to 30,852 data points but generation of a SHY plot was still not possible. Removing 

regions that had a value of zero for all samples resulted in 9,060 and 27,450 data 

points for plasma and urine, respectively, and allowed plot generation. PQN was 

implemented for both data sets.(96) 

 

Due to the large number of data points in plots, subsequently points have been 

approximated to the nearest 25; this number of points equates to approximately 

0.006 ppm. Within the text a capital letter and in some instances additionally a 

number, in parentheses refers to an area highlighted in Figures. 

 

4.2 Results 

 

4.2.1 Pearson’s Analysis 

 

Figure 4.1 shows the SHY plot for case samples obtained using full digitised data 

excluding regions that had an integral value of zero for all samples with Figure 4.2 

the equivalent for control samples. Differences in covariance can be identified 

between case and control samples. For example, there is strong correlation for 

cases in areas A and B whereas for controls this is not apparent. The reverse applies 

to areas C and D. To assess the validity of correlation, determination of the cause(s) 

is required. 

  



 
 

 

Figure 4.1 Output from Pearson’s SHY analysis of urine and plasma data from case samples. The colour bar indicates the Pearson correlation 
coefficients. Boxed areas, with labels, highlight areas referred to in the text.  
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Figure 4.2 Output from Pearson’s SHY analysis of urine and plasma data from control samples. The colour bar indicates the Pearson 
correlation coefficients. Boxed areas, with labels, highlight areas referred to in the text.  
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Areas of potential true correlations for case samples were investigated. Figure 4.3 is 

an expansion of Figure 4.1 that includes areas A and B. The Figure shows strongest 

correlation of plasma occurs at 0.956 ppm (P1). The correlated urine ppm values, 

with ranges in parenthesis, are 8.128 ppm (8.123-8.133 ppm; U1), 8.311 ppm 

(8.299-8.323 ppm; U2), 8.448 ppm (8.445-8.450 ppm; U3), 8.500 ppm (8.494-

8.506 ppm; U4) and 8.567 ppm (8.555-8.579 ppm; U5). In plasma, strong 

correlation centred at 2.058 ppm (P3) is visible with the aforementioned urine 

areas (U1-U5) though the correlation area at 8.448 ppm (U3) is very small. The 

plasma correlation region centred at 2.058 ppm (P3) extends from 2.046 ppm to 

2.070 ppm whereas for 0.956 ppm the continuous region is between 0.932 ppm 

and 0.981 ppm (P1) and for the non-continuous region the range is 

0.932-1.042 ppm (P1+P2). The majority of an upfield signal of a valine doublet and 

likely a leucine triplet, possibly with an underlying isoleucine triplet, are contained 

between 0.932 ppm and 0.981 ppm (P1).(103) Extending the range to 1.042 ppm 

(P1+P2) incorporates the whole of the valine doublet and the upfield half of 

another valine doublet as well as an isoleucine doublet. The correlation region 

2.046 ppm to 2.070 ppm (P3) consists of indistinct signals.  

 

 

Figure 4.3 Expansion of output from Pearson’s SHY analysis of urine and plasma 
data from case samples showing the urine 8.079-8.665 ppm and plasma 
0.871-2.100 ppm area. The colour bar indicates the Pearson correlation 
coefficients. Boxed areas, with labels, highlight areas of correlation referred to in 
the text.  

Urine (data point x10

P
la

sm
a 

(d
at

a 
p

o
in

t 
x1

0

 

 

0.240.260.280.300.320.340.360.380.400.420.440.460.48

0.65

0.70

0.75

0.80

0.85

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Urine (data point x104) 

U1 U3 U4 U5 

P3 

P2 

U2 

P1 

 
2.03 

 

1.86 

 

1.32 

 
1.19 

 

0.94 

         8.13               8.23               8.32               8.42               8.52               8.62 
Urine (ppm) 

P
la

sm
a 

(p
p

m
) 



99 
 

Sample 2039 contains a broad singlet in each of the aforementioned urine ranges 

whereas other samples only display noise. The exception is 8.555-8.579 ppm, which 

contains the upfield half of a very broad signal visible in most samples; this range 

has the least strong correlations. To determine whether the correlations are due to 

sample 2039 alone the urine and plasma signal intensities of all samples were 

plotted for the data point that has approximately the strongest correlation in each 

region. The plot related to 0.956 ppm and 8.311 ppm in plasma and urine spectra, 

respectively, is shown in Figure 4.4. One sample, 2039, is vastly different to all 

others and would heavily influence the correlation coefficients and p-values. The 

same applies to the equivalent plot (data not shown) using the same plasma value 

but 8.567 ppm for urine. Replacing 0.956 ppm with 2.058 ppm for plasma also 

resulted in a similar plot (data not shown) to that shown in Figure 4.4. The unique 

signals to sample 2039 were not able to be identified. 

 

 

Figure 4.4 Scatter plot for case samples showing intensities of data points with 
maximum correlation within urine 8.299-8.323 ppm and plasma 0.932-0.981 ppm 
ranges. 
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signals:(103,142) a complete doublet of doublets centred at 3.65 ppm is contained in 

P3 and two downfield peaks of another are located in P1, the other two peaks 

overlap with a glycine signal (Figure 4.6). Additionally, a threonine doublet(103,142) is 

present that spans 3.58-3.61 ppm but this is approximately the area in Figure 4.5 

that correlations are not present (P2). Glycerol is a component of triglycerides and 

phospholipids.(103) 

 

 

Figure 4.5 Expansion of output from Pearson’s SHY analysis of urine and plasma 
data from control samples showing the urine 4.198-6.411 ppm and plasma 
3.519-4.113 ppm area. The colour bar indicates the Pearson correlation 
coefficients. Boxed areas, with labels, highlight areas of correlation referred to in 
the text. 
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Figure 4.6 Expansion of plasma spectra that incorporates 3.555-3.677 ppm for 
which positive correlation is present with urine. 
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range;(103,172) the remaining signals would be obscured by large glucose signals. 

Additionally, Nicholson et al.(142) reported glycerol presence at 3.87 ppm. 

 

In Figure 4.7 the trend of signal intensities for the data point with the strongest 

correlation between urine and plasma (U2 centre, P3 centre) can be approximated 

as linear with a percentage increase in one mirrored by the other; an outlying 

sample is not causing correlation. Identification of the urinary metabolite 

responsible for correlation could not be established. 

 

 

Figure 4.7 Scatter plot for control samples showing intensities of data points with 
maximum correlation within urine 4.222-4.497 ppm and plasma 3.555-3.677 ppm 
ranges. 
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metabolism and endogenous methanethiol metabolism.(174) Medical records for the 

patient indicated no drug or supplement history but given acetaminophen was 

detected in a number of urine samples (Chapter 3) despite no record of 

consumption it is conceivable that the patient neglected to inform of DMSO2 usage 

especially because it is a non-prescribed supplement. Most of the urine chemical 

shift values do not correspond with maximum intensities of signals and no clear 

intra-sample pattern is observed between signal intensities of the aforementioned 

urine regions. It is indicated that correlations resulted due to the effect of one 

sample. 

 

 

Figure 4.8 Expansion of output from Pearson’s SHY analysis of urine and plasma 
data from control samples showing the urine 6.899-8.689 ppm and plasma 
2.426-3.250 ppm area. The colour bar indicates the Pearson correlation 
coefficients. Boxed areas, with labels, highlight areas of correlation referred to in 
the text. 
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Figure 4.9 indicates, through paucity of correlation in areas A and B, the 

correlations exhibited in Figure 4.1 in these areas were as the result of unique 

signals in sample 2039. 

 

The largest area exhibiting strong (positive) correlation is in area E, centred at 

1.275 ppm and 1.285 ppm for urine and plasma, respectively. The latter 

corresponds to presence of lipids(142) and is further verified through a smaller area 

of correlation (F) displayed in the same urine region but at 0.901 ppm for plasma, 

also characteristic of lipids.(103,142) A number of sources(103,158-160,163,175) were used in 

an attempt to identify the urine signal that was present in all samples but the 

singlet was not been able to be assigned. However, Engelke et al.(176) determined 3-

hydroxyisovaleric acid as the species responsible for a singlet at 1.28 ppm. 

 

The concentration of 3-hydroxyisovaleric acid is an indicator of reduced activity of 

the biotin-dependent enzyme 3-methylcrotonyl-CoA carboxylase.(177) The enzyme 

converts 3-methylcrotonyl-CoA, which is derived from leucine, to 3-

methylglutaconyl-CoA but with reduced enzyme activity the pathway to 3-

hydroxyisovaleryl-CoA is favoured. CoA and 3-hydroxyisovaleric acid are the 

degradation products of 3-hydroxyisovaleryl-CoA.(103) In summary, SHY indicates 

positive correlation between 3-hydroxyisovaleric acid, and hence negative 

correlation between biotin, and lipids; negative correlation between biotin levels 

and plasma lipids has been reported.(178,179) The most abundant biotin signal, a 

triplet at 2.21 ppm,(103) was not detected in either biofluid. A study reported 

3-hydroxyisovaleric acid was greater in urine for smokers than control subjects and 

suggested smoking increased biotin catabolism.(180) 

 

Smoking parameters were evaluated relative to the normalised value for the data 

point at 1.275 ppm in urine, corresponding to the tentatively assigned 

3-hydroxyisovaleric acid signal. Different smoking statuses (‘current smoker’, ‘ex-

smoker’ and ‘never smoked’ assigned as per Chapter 2 and Chapter 3) were not 

grouped relative to data point integral. When ranked on integral value the ‘ex-

smoker’ group occupied the highest and lowest (36th) positions whilst ‘current 
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smoker’ group ranged between 3rd and 34th and ‘never smoked’ 5th to 35th. The 

number of cigarettes smoked also did not correlate with integral value. Of the 20 

patients who did not form the ‘never smoked’ class, consumption was highest for a 

current smoker whose integral was ranked 34th. Ranks 1 to 4 corresponded to 18th, 

16th, 6th and 19th greatest amount of cigarettes smoked. No evidence is presented 

to suggest a correlation between the signal area at 1.275 ppm and smoking.  

 

Figure 4.10 shows similar correlation coefficients to Figure 4.2 for area D (urine 

4.222-4.497 ppm and plasma 3.555-3.677 ppm). Due to the robust test and high 

confidence level used it is indicative that the correlation in the aforementioned 

area, for which responsible signals were assigned to glycerol in plasma, is not 

spurious. Within the aforementioned urine region negative correlation is shown 

with the plasma region 0.810-1.267 ppm (G and H) and the strongest (negative) 

correlation is located between 0.810 ppm and 0.883 ppm (G). The latter region 

corresponds to part of a lipid signal: the upfield side to approximately 0.005 ppm 

from the maximum intensity. The upfield side of another lipid signal corresponds to 

1.267 ppm; the maximum intensity is located at approximately 1.285 ppm.  

 

The urine metabolite shows opposite associations with glycerol and part of lipid 

signals. Glycerides are lipid esters of the glycerol molecule and fatty acids, with 

triglycerides having three fatty acids. Triglycerides are a major component of very 

low density lipoproteins (VLDL),(181) which of the lipoprotein types contributes most 

strongly to the downfield part of the aforementioned lipid signals whereas high 

density lipoproteins (HDL) influences the upfield region of lipid signals.(128) This 

would indicate negative association between glycerol and HDL in control patients 

but conversely negative association has been observed between triglycerides and 

HDL-cholesterol in patients with breast cancer compared to controls;(182) CVD is 

indicated by this triglyceride/HDL-cholesterol profile.(183) Although breast cancer is a 

risk factor for developing CVD(182) non-breast cancer medical conditions are not 

known for patients in this study so it is conceivable that control patients could have 

been afflicted by CVD. 

  



 
 

 

Figure 4.9 Output from Spearman’s SHY analysis of urine and plasma data from case samples. The colour bar indicates the Spearman 
correlation coefficients. Boxed areas, with labels, highlight areas referred to in the text. 

Urine (data point x10

P
la

sm
a 

(d
at

a 
p

o
in

t 
x1

0

 

 

0.511.522.5

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Urine (data point x104) 

P
la

sm
a 

(d
at

a 
p

o
in

t 
x1

0
4
) 

 

A 

B 

E 

F 

 

8.46 

3.78 4.08 

3.78 3.78 

3.78 3.53 

3.29 

2.44 

2.15 

1.86 

1.19 

0.82 

P
la

sm
a 

(p
p

m
) 

             1.09                                2.37                                3.67                                6.63                               8.03                               9.73 
Urine (ppm) 

1
0

6
 



 
 

 

Figure 4.10 Output from Pearson’s SHY analysis of urine and plasma data from control samples. The colour bar indicates the Spearman 
correlation coefficients. Boxed areas, with labels, highlight areas referred to in the text. 
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4.3 Conclusions 

 

Incorporating a stringent p-value into both Pearson’s and Spearman’s tests for 

covariance reduced the chance of spurious correlations between urine and plasma 

data but because of the many thousands of data points some erroneous 

correlations have occurred. Deciphering true and false correlations was problematic 

though larger areas and greater intensity correlations indicated potentially 

biologically relevant correlations.  

 

Both tests indicated glycerol in plasma from case samples was positively correlated 

to a urine species that could not be identified. Further, Spearman’s analysis showed 

the urine area was correlated with the upfield section of lipid signals for which a 

speculative hypothesis has been reasoned involving triglyceride presence in 

lipoprotein species of different density. 

 

Spearman’s correlations identified a urine signal, tentatively identified as 

3-hydroxyisovaleric acid, to be connected with plasma lipid signals in an inverse 

relationship. Relationships between 3-hydroxyisovaleric acid, biotin and lipids are 

established that corroborate the SHY findings.  

 

SHY has provided data that could relate metabolites in urine and plasma for which 

it may have been difficult to discern connections. However the non-spurious nature 

of the correlations would need to be established before more definitive conclusions 

could be made. Spearman’s analysis is an initial step towards this, here showing 

some correlations were due to unique or greatly elevated signal intensities and 

highlights the need for detailed medical records including consumption of non-

prescription drugs and supplements. 
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Chapter 5. Gas Chromatography Analysis of Plasma 

 

The concentrations of amino acids (AAs) in plasma, as determined by GC, will be 

described in the following chapter. Aliquots of plasma obtained from the same 

cohort as described in Chapter 2 were available, comprising of 33 case and 24 

control samples. 

 

MVA and univariate analysis of the GC data was performed in an attempt to identify 

possible AA biomarkers of breast cancer occurrence and progression. MVA and 

univariate analysis were performed as described in Section 8.4 and Section 8.5, 

respectively, with the exceptions that data were not normalised and UV scaling was 

performed rather than Pareto.  

 

5.1 Determination of Amino Acid Concentrations  

 

The commercially available system EZ:Faast (Phenomenex, Macclesfield, UK) has 

been developed for quantitative analysis of amino acids in a number of biological 

matrices, including plasma and urine. Briefly, the procedure involves a solid phase 

extraction step followed by derivatisation and a liquid/liquid extraction with the 

sample preparation procedure followed that was listed in the information booklet 

that accompanied the system. Further details of the methodology are in Section 8.7. 

Following earlier ‘in-house’ studies (E. Turner, unpublished work) it was decided to 

use this system to test whether AA biomarkers could be established for the sample 

set available. 

 

Each sample was injected three times and any chromatogram that was deemed not 

to have sufficient signal to noise ratio, whereby the signal area was unduly affected 

by noise, was discarded. For two control samples and one case sample two 

chromatograms were considered too poor to use so without a replicate the data 

from the acceptable chromatogram was excluded from analysis. Resultantly, data 

from 32 case and 22 control samples were used in analysis. For five control samples 
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and six case samples data from one chromatogram was considered too poor to use 

so the average values for the concentrations of AAs were calculated using two runs 

of the samples. 

 

Every sample contained an internal standard (IS) that allowed determination of AA 

concentrations relative to it. However, the detector response factor is dependent on 

the AA so a calibration curve for each of the 26 AAs was required (structures and 

retention times shown in Appendix 2, Table A2.1). Calibration curves were created 

using data obtained from calibration standard sets that consisted of three runs, 

each of a different concentration (50, 100 and 200 nmol ml-1), containing all of the 

AAs. Multiple injections of the same standard set were performed. A gradient from 

the calibration curve was obtained for every run of each standard set. Upon 

optimisation of the gas chromatograph parameters three runs each from two 

standard sets were disregarded to account for variability in detector response 

resulting from a change of settings. A single run of a standard set was performed 

prior to the initial run of the first test sample. After every 10 test samples a standard 

set was run. Up to three runs per standard set were performed within a 24 hour 

time period (the maximum storage time at room temperature recommended by the 

kit manufacturers). In total, calibration curves were generated for 20 runs from 

seven calibration sets. A representative chromatogram from a standard is shown in 

Figure 5.1. 

 

The calibration curve gradient was analysed across the 20 runs of calibration 

standard sets. The maximum value of the gradient divided by the minimum value 

(max/min) and residual standard deviation (RSD) determined the consistency of 

calibration curve gradient values. For six of the 26 AAs calibration curve gradients 

were not obtainable for all runs of standard sets. This was due to the concentration 

being below the lower limit of detection (LLOD) of the gas chromatograph for all 

three concentrations within a run of a standard set. When the max/min value was 

less than or equal to 1.5 the RSD range was 6.9-12.8% so the calibration curve 

gradient value was deemed acceptable; for metabolomics studies where GC-MS has 

been employed, use of an RSD of less than 20%(184) or 30%(185) as the determinant 
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for data retention has been applied. Seven of the max/min values were 1.6 or above 

(RSDs 13.0-31.8%) thus leaving concentrations of 13 AAs to be investigated in the 

biological samples (Table 5.1). 
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Table 5.1 Retention times and further investigation status of AAs. 

AA Retention Time 

(minutes) 

Further 

Investigation Full Name Abbreviation 

Alanine ALA 1.59 Yes 

Sarcosine SAR 1.65 Yes 

Glycine GLY 1.69 Yes 

α-Aminobutyric acid ABA 1.79 Yes 

Valine VAL 1.88 Yes 

β-Aminoisobutyric acid β-AIB 1.96 Yes 

Norvaline (internal standard) IS 2.00 N/A 

Leucine LEU 2.08 Yes 

Allo-Isoleucine α-ILE 2.11 Yes 

Isoleucine ILE 2.14 Yes 

Threonine THR 2.34 No 

Serine SER 2.38 No 

Proline PRO 2.45 Yes 

Asparagine ASN 2.54 No 

Aspartic acid ASP 3.05 Yes 

Methionine MET 3.09 Yes 

Hydroxyproline HYP 3.22 No 

Glutamic acid GLU 3.39 No 

Phenylalanine PHE 3.43 Yes 

α-Aminoadipic acid AAA 3.68 No 

Glutamine GLN 4.01 No 

Ornithine ORN 4.37 No 

Lysine LYS 4.62 No 

Histidine HIS 4.80 No 

Tyrosine TYR 5.07 No 

Tryptophan TRP 5.36 No 

Cystine C-C 6.01 No 

 

In addition to the detector response factor differing inter-AA, variation could occur 

intra-AA with time due to column degradation. Running a set of standards regularly 

between samples reduced the impact of potential response factor deviations. For 

every AA that was investigated further the calibration curve gradient from every run 

of standards was plotted against run order. Despite all but one of the new gradients 

being negative, the r2 values were low with values ranging between -0.03 for VAL 
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and -0.49 for both LEU and GLY (Appendix 2, Figure A2.1). For ASN, which had a 

positive gradient, the r2 value was 0.04. For an intra-AA difference in response factor 

to be concluded much higher (modulus) r2 values than those observed would be 

required. 

 

Collectively, AA response factor variation was assessed through interpretation of IS 

area divided by total amino acid area (IS/AA) values. For each concentration the 

values were plotted against run order of calibration standard sets. Plots indicated 

weak positive association between IS/AA and run order (data not shown). Given the 

weak negative association shown between individual AA calibration curve gradient 

values and run order, the finding was not unexpected. Given that the maximum r2 

value of the three plots was 0.32 and the fourth set of standards consistently 

provided some of the highest IS/AA values there was no clear evidence of differing 

response factor for AAs collectively.  

 

Additionally, for each concentration of every calibration standard set, IS/AA values 

of runs were plotted against run order. For some calibration standard sets there was 

strong negative association between IS/AA and run order. The first, second and 

third runs of Standard VII and Standard VIII at 100 nmol ml-1 and Standard XI at 50 

nmol ml-1 showed almost perfect correlation with r2 values all in excess of -0.99 

(data not shown). All but one of the plots revealed a negative correlation (data not 

shown) but with just three points the gradient and r2 value can be heavily influenced 

by a single point. Degradation of standards with time could also be assessed by 

evaluation of the plots. If degradation occurred, strongest negative association 

would be expected to be shown by plots for standards that had the longest time 

period between the first and last run. This time was 23 hours 55 minutes for both 

Standard X and Standard XI but stronger negative association was not observed than 

for standards with a shorter elapsed time such as Standard VII, which had an 

equivalent time of 6 hours 30 minutes (Appendix 2, Figure A2.2). There is no 

evidence to suggest degradation of standards and because the elapsed time 

between runs of test samples was no more than the maximum time between runs 

of standards it can be postulated no degradation of test samples occurred.  
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5.2 Results 

 

Having performed the appropriate calibration procedures the concentrations of the 

13 AAs were investigated in the plasma samples. No more than four samples 

exhibited detectable levels of SAR, β-AIB, α-ILE and ASP so these AAs were excluded 

from analysis. ABA and MET were detectable in the majority of samples so were 

retained in analyses; for some samples not all runs provided a signal for either AA or 

MET that was above the LLOD so the average was calculated using only the runs 

where the signal was quantifiable. A typical chromatogram of a sample is shown in 

Figure 5.2.  
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5.2.1 Amino Acid Concentration as a Function of Case and Control Samples 

 

5.2.1.1 Application of Multivariate Analysis 

 

Usually MVA is used when there are more variables than observations. In the case 

of the GC analysis procedure used here this is not the situation. However, MVA has 

been employed to allow potential interconnectivities between AAs to be visualised. 

For NMR spectroscopy data pareto scaling is normally preferred to UV scaling to 

avoid the over-inflation of spectral noise regions (Section 1.4.1.3) but for GC data 

the difference in magnitude between the smallest and largest values of AA 

concentrations is substantially less so UV scaling is suitable.  

 

Prior to averaging concentrations the reproducibility of GC data was assessed by 

PCA of individual runs. NMR spectroscopy produces data that is highly 

reproducible,(50) hence replicates are not required, but GC is less robust.(186) ABA 

and MET were excluded because presence was not detectable in all runs of samples. 

The scores plot (Figure 5.3) of the one component model (R2X = 0.439 and Q2X = 

0.252) shows that multiple runs are needed because the positions of the runs from a 

sample in scores space are not the same. However, they are sufficiently similar to 

allow analysis of sample data that has been averaged from runs. 
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Key: shape -  case and  control 

Figure 5.3 PCA plot of individual runs of case and control samples. Adjacent runs 
with the same colouring originate from the same sample. Label numbering refers 
to the order of runs. 
 

AA concentrations from runs were averaged, including those for ABA and MET, and 

PCA was performed. A one component model was created with an R2X value of 

0.386 and a Q2X value of 0.234 (data not shown). There was no separation between 

case and control samples. The data could not be modelled using PLS-DA. 

 

The average concentration values for ABA and MET were not as accurate as for 

other AAs. Calculating the average signal area, and hence concentration, through 

division of the sum of detectable signal areas by the number of runs for which the 

signal was detectable produced a concentration value higher than the true value: if 

a signal was present but below the LLOD the area was not recorded and hence could 

not be included in concentration calculations. Averaging over all runs irrespective of 

whether the signal area was below the LLOD produced a lower value than the true 

one because any area less than that could be detected was set to zero. For ABA the 

average concentration of case (22.0 nmol ml-1) and control samples (20.7  nmol ml-1) 

combined was 21.5 nmol ml-1 (excluding samples for which the average was zero; 

range 9.3-38.2 nmol ml-1) and the lowest concentration of any run was                    

8.2 nmol ml-1, which is an indicator of the LLOD. Given this value is almost 40% of 

the overall average, values just below the LLOD could strongly influence the sample 
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average. For MET, the equivalent case, control and combined concentrations were 

19.6, 19.9 and 19.7 nmol ml-1, respectively, whilst the range was 9.4-33.2 nmol ml-1 

and the lowest concentration of a run was 9.2 nmol ml-1. Including zero sample 

averages the combined average was reduced to 17.9 and 11.2 nmol ml-1 for ABA and 

MET, respectively. 

 

Repeating PCA with ABA and MET excluded had little effect on the appearance of 

scores and loadings plots (data not shown; one PC model, R2X = 0.463 and 

Q2X = 0.259). 

 

5.2.1.2 Application of Univariate Analysis 

 

The mean concentrations of AAs in case and control samples were evaluated to 

establish whether significant differences were present between sample types. All 

data were tested for normality with a null hypothesis that data distribution was 

normal (Section 1.4.2.1). A Shapiro-Wilk p-value ≥0.05 led to the conclusion that the 

data was normally distributed, hence the Student’s t-test was used but if non-

normal distribution of data was proven, as evidenced by p-value <0.05, the Mann 

Whitney U test was performed to determine whether potential differences were 

statistically significant. The null hypothesis was no difference between mean 

concentration values for the two sample types.  

 

Box plots (Figure 5.4) summarised the data and allowed possible outliers to be 

identified. All chromatograms were reinvestigated if an AA concentration was 

observed beyond the whiskers of the plot. On 14 occasions (including plots for ABA 

and MET that excluded samples with zero average) for the nine AAs, case or control 

sample concentrations were more extreme than 1.5 times the respective 

interquartile range beyond the upper or lower quartile. Every sample was retained 

because all runs provided consistent signal areas therefore no reason could be 

identified to permit exclusion. 



 
 

   

   
Figure 5.4 Box plots of nine AA concentrations for case and control samples. Except where specified the plots represent data from 54 
samples. Red filled box = control samples, black filled box = case samples. * = samples more extreme than 1.5 times the interquartile range 
beyond the upper quartile, coloured as per filled box with sample label. Numbers on the y-axis relate to AA concentration (nmol ml-1 x101).  
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The mean concentrations of case and control samples were calculated for each AA 

and a conclusion forwarded as to whether there was a significant difference 

between values (Table 5.2). For all tests performed a p-value >0.05 resulted so the 

null hypothesis was retained in each case: there was no difference between mean 

concentration values for case and control samples. Correction for multiple testing 

did not need to be performed. For ABA and MET, excluding samples that had an 

average concentration of zero did not change the conclusion that there were no 

differences between the concentration values of the two sample types. 

 

Table 5.2 Summary of data regarding mean concentration differences of AAs 
between case and control samples. 

AA Number 

of 

Samples 

Mean 

Concentration 

(nmol ml-1) 

Data 

Distribution 

Uncorrected 

p-value 

Mean 

Concentration 

Conclusion 

Control Case 

ALA 54 308.7 297.5 Non-normal 0.660 No difference 

GLY 54 275.3 257.8 Non-normal 0.408 No difference 

ABA 54 17.0 18.6 Normal 0.819 No difference 

ABA 

(excluding 

zero sample 

averages) 

45 20.7 22.0 Normal 0.499 No difference 

VAL 54 342.8 320.6 Non-normal 0.958 No difference 

LEU 54 109.0 117.4 Non-normal 0.379 No difference 

ILE 54 59.4 62.8 Non-normal 0.561 No difference 

PRO 54 230.4 243.2 Non-normal 0.916 No difference 

MET 54 13.5 9.5 Non-normal 0.322 No difference 

MET 

(excluding 

zero sample 

averages) 

30 19.9 19.6 Normal 0.927 No difference 

PHE 54 58.9 57.0 Non-normal 0.846 No difference 
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5.2.2 Amino Acid Concentration as a Function of Breast Cancer Grade 

 

Two individuals included in this study were reported to have been diagnosed with 

more than one invasive tumour. Consequently, samples from these patients were 

excluded from analysis. The remaining 30 case samples were graded 0, 1, 2 or 3 with 

7, 5, 9 and 9 samples, respectively.  

 

5.2.2.1 Application of Multivariate Analysis 

 

PCA was performed on the 30 samples resulting in a one component model 

(R2X = 0.392 and Q2X = 0.219; scores plot shown in Figure 5.5 but loadings plot not 

shown). No clear separation was observed between the four groups and a PLS-DA 

model was not able to be created. Excluding ABA and MET from PCA resulted in a 

one component model (R2X = 0.478 and Q2X = 0.282; data not shown) but, again, no 

clear separation was observed between the groups in the scores plot. A PLS-DA 

model was not able to be generated. 

 

 
Key: grade =  0,  1,  2 and   3 

Figure 5.5 PCA scores plot for single tumour case samples coloured according to 
tumour grade. 
 

It was proposed that assessing two groups might reveal separation of samples that 

was not apparent when the four groups were considered together. The model 

parameters, including and excluding ABA and MET, are summarised in Table 5.3 and  
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Table 5.4, respectively. 

 

Table 5.3 Parameters for models that included ABA and MET. 

Grades 

Compared  

PCA PLS-DA 

PCs R2X(cum) Q2X(cum) PCs R2X(cum) R2Y(cum) Q2Y(cum) 

0 v. 1 2 0.812 0.453 4 0.915 0.917 0.658 

0 v. 2 1 0.385 0.107 0 / / / 

0 v. 3 2 0.707 0.269 0 / / / 

1 v. 2 1 0.345 0.040 2 0.542 0.682 0.454 

1 v. 3 0 / / 1 0.268 0.54 0.203 

2 v. 3 0 / / 0 / / / 

 

Table 5.4 Parameters for models that excluded ABA and MET. 

Grades 

Compared  

PCA PLS-DA 

PCs R2X(cum) Q2X(cum) PCs R2X(cum) R2Y(cum) Q2Y(cum) 

0 v. 1 2 0.841 0.425 1 0.647 0.352 0.212 

0 v. 2 1 0.480 0.191 0 / / / 

0 v. 3 2 0.787 0.388 0 / / / 

1 v. 2 1 0.425 0.095 3 0.759 0.759 0.523 

1 v. 3 2 0.784 0.495 1 0.375 0.437 0.202 

2 v. 3 0 / / 0 / / / 

 

PCA did not show separation between any of the pairs of groups when incorporating 

all nine AAs (data not shown). Tentative separation could be viewed between the 

groups in the three PLS-DA models (data not shown). For each model all AA 

concentrations except ABA were indicated as being lower in grade 1 samples. Given 

the previously stated problems with ABA (and MET) concentration measurements 

and small number of samples in the groups, it is not possible to make reliable 

conclusions at present and further samples would be required to increase 

confidence in this observation. 

 

Excluding ABA and MET data resulted in tentative separation between most grade 0 

and 1 samples when PCA was employed (Figure 5.6); this model gave the best 

separation between any combinations of two groups. R2X(cum) and Q2X(cum) 

values (Table 5.4) were high though with only seven variables it would be expected 
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that the model represented the data to a high level. The loadings plot (data not 

shown) indicated all of the AA concentrations were elevated in samples located in 

positive PC 1 scores space compared to those in negative space. Similar 

observations, though not as pronounced, were made when grade 1 samples were 

compared to grade 2 or 3 samples. No improvement in separation was visible upon 

application of PLS-DA for grade 0 and 1 samples (data not shown); the scores plot 

generated using grade 1 and 3 samples displayed similar positioning of samples in 

scores space (data not shown), as did the scores plot for grade 1 and 2 samples 

(Figure 5.7). 

 

Validation of PLS-DA results is always required; the ‘leave one out’ method was 

employed for the three models that were generated using data from seven AAs. 

Associated information for the grade 1 and 2 model is shown in Table 5.5. 

 

 
Key: grade =  0 and  1 

Figure 5.6 PCA scores plot for grade 0 and grade 1 samples excluding ABA and MET 
data. 
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Key: grade =  1 and  2 

Figure 5.7 PLS-DA scores plot for grade 1 and grade 2 samples excluding ABA and 
MET data. R2X = 0.375 and 0.266, R2Y = 0.541 and 0.108 and Q2Y = 0.393 and 0.118 
for PC 1 and PC 2, respectively. 
 

Table 5.5 ‘Leave one out’ cross-validation parameters for the PLS-DA model shown 
in Figure 5.7.  

Sample 

Excluded 

Number of 

Components 

R2X 

(cum) 

R2Y 

(cum) 

Q2Y 

(cum) 

Grade Y-Predicted* 

1 2 

2002 3 0.774 0.781 0.521 2 0.396 0.604 

2009 4 0.877 0.848 0.463 1 1.087 -0.087 

2010 1 0.377 0.527 0.294 1 0.530 0.470 

2011 3 0.760 0.804 0.465 2 0.550 0.450 

2013 1 0.329 0.521 0.308 1 0.769 0.231 

2017 1 0.370 0.539 0.349 1 0.556 0.444 

2018 2 0.703 0.665 0.451 2 -1.307 2.307 

2019 1 0.432 0.539 0.449 2 0.392 0.608 

2022 1 0.349 0.575 0.486 2 -0.407 1.407 

2026 5 0.957 0.883 0.697 2 0.334 0.666 

2030 1 0.379 0.542 0.468 2 0.307 0.693 

2034 1 0.314 0.509 0.415 1 0.925 0.075 

2037 1 0.393 0.565 0.493 2 0.355 0.645 

2039 1 0.326 0.581 0.419 2 -0.330 1.330 

*A sample was regarded as belonging to a grade by having a Y-predicted value >0.50. 

Incorrect classification is represented by red shading and correct by pink, orange or green 

corresponding to a Y-predicted value of <0.60, 0.60-0.70 or >0.70, respectively. 
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All but one of the 14 samples was correctly predicted, giving a 93% predictive 

ability. The PLS-DA loadings plot (data not shown) indicated all AAs were elevated in 

grade 2 samples. The accuracy of class prediction is reduced for samples as the 

Y-predicted value tends towards 0.50; predictions made based on values less than 

0.60, of which there are two, as indicated by pink shading in Table 5.5, should be 

treated with caution whilst those made using values greater than 0.70 (shaded 

green) could be regarded as the most reliable. The extent of the Y-predicted value 

beyond 0.5 is not regularly considered.(140)  

 

Of the 12 grade 0 and 1 samples 50% were correctly predicted, the percentage 

expected by random chance, with two having a Y-predicted value of over 0.70. For 

grade 1 and 3 samples, nine from 14 (64%) samples were correctly predicted. Only 

two predictions were made based on 0.60-0.70 Y-predicted values and the rest from 

values greater than 0.70, though one value was generated using a one component 

PLS-DA model that had a negative Q2Y value. Despite high Y-predicted values for 

correctly predicted grade 1 and 3 samples, the combination of a predictive ability 

that is too close to 50% and high Y-predicted values (up to 1.010) for incorrectly 

predicted samples does not allow the conclusion to be made that grade 1 samples 

have lower concentrations of seven AAs.  

 

Although there is closeness in scores space between some of the grade 1 and 2 

samples, the high predictive ability percentage could indicate that grade 1 samples 

have lower concentrations of ALA, GLY, VAL, LEU, ISO, PRO and PHE. Validation 

using a prediction set is a more rigorous method than ‘leave one out’ 

cross-validation because for the latter method the predicted samples would have 

been used to build the original model. Given the small number of samples in each 

grade a prediction set was not available. However, permutation testing did validate 

the model and supported ‘leave one out’ cross-validation findings. The associated 

plot for the grade 2 class (Figure 5.8) shows all but 15 of the 999 permuted models 

to have lower R2Y values than the original model whilst the equivalent for Q2Y is two 

permuted plots. The intercept values of the regression lines for R2Y and Q2Y are 

0.367 and -0.369, respectively. The permutation testing plot for the grade 1 class 
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(plot not shown) displayed R2Y and Q2Y intercept values of 0.357 and -0.375, 

respectively, with six and one permuted models having higher R2Y and Q2Y values, 

respectively. Although the original model should have higher R2Y and Q2Y values 

than the permuted models as one of the criteria for validation, using 999 

permutations, the maximum that SIMCA-P+ software can perform, it is not 

unexpected that a small proportion will be higher than the original model in some 

cases. The R2Y intercept values are close to 0.4, the maximum value to allow the 

original model to be validated. The better the model, the lower the intercept values 

and the fewer permuted models that will have R2Y and Q2Y values above those of 

the original model. This could explain why classes were correctly predicted using 

‘leave-one-out’ cross-validation for seven of the 13 samples with Y-predicted values 

between 0.50 and 0.70.  

 

 
Key:  R2Y and  Q2Y 

Figure 5.8 Permutation testing plots for the grade 2 class in the PLS-DA model 
shown in Figure 5.7. The R2Y and Q2Y intercept values of the regression lines are 
0.367 and -0.369, respectively. 
 

5.2.2.2 Application of Univariate Analysis 

 

Mean concentrations of nine AAs were compared for every combination of two 

groups to determine whether there were significant differences between tumour 
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and Figure 5.9 the box plots. All chromatograms from a sample were reinvestigated 

if any AA concentration was more extreme than 1.5 times the interquartile range 

beyond the upper or lower quartile of the group; this was performed for 19 

instances. Every sample was retained because all runs provided consistent signal 

areas therefore no reason could be identified to permit exclusion. 

 

Table 5.6 Mean concentration of AAs with different breast cancer grades. 

AA 
Number of 

Samples 

Sample Grade Mean Concentration (nmol ml-1) 

0 1 2 3 

ALA 30 321.8 233.6 321.6 288.4 

GLY 30 247.1 205.2 266.7 255.8 

ABA 25 25.0 23.0 22.7 19.2 

VAL 30 348.2 282.8 359.9 286.6 

LEU 30 136.3 101.9 117.7 109.8 

ILE 30 77.3 51.7 59.8 60.9 

PRO 30 2.419 165.7 301.1 232.3 

MET 15 20.5 19.4 23.7 17.2 

PHE 30 61.5 48.9 59.7 56.1 

 

For the seven AAs present in all samples, as listed previously, all were normally 

distributed for all grades with the exception of GLY for grade 1, PRO for grade 2 and 

both VAL and ILE for grade 3. Significant differences in concentrations of these 

seven AAs between grades are summarised in Table 5.7. Corrections for multiple 

comparisons were performed using FDR. Due to different numbers of samples in 

groups that contained ABA and MET, these two AAs were analysed separately and 

their p-values were not included in the aforementioned multiple test correction 

calculations. 

  



 
 

 

Figure 5.9 Box plots of concentrations of AAs for case samples of different grade. * = samples more extreme than 1.5 times the interquartile 
range beyond the upper or lower quartile. Numbers on the y-axis are AA concentration (nmol ml-1 x101). 
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Table 5.7 Summary of differences in the concentrations of AAs excluding ABA and 
MET between grades. ↑ or ↓ indicates whether the AA mean concentration is 
higher or lower (though not necessarily significantly) in the first listed grade 
compared to the second; only concentrations of AAs listed under the ‘mean 
concentration conclusion’ heading are significantly different. 

Grades 

Compared 

AA 

Identified 

Data 

Distribution 

p-value Mean 

Concentration 

Conclusion 
Uncorrected Corrected 

0 v. 1 
↑ALA  Normal 0.033 0.154 No difference 

↑PRO  Normal 0.044 0.154 No difference 

0 v. 2 None / / / No difference 

0 v. 3 None / / / No difference 

1 v. 2 

↓ALA Normal 0.047 0.122 No difference 

↓PRO  Non-normal 0.007 0.049 ↓PRO 

↓PHE  Normal 0.018 0.063 No difference 

1 v. 3 None / / / No difference 

2 v. 3 None / / / No difference 

 

MVA had indicated concentrations of all AAs except ABA were lower in grade 1 

samples compared to other grades. This was substantiated by Table 5.6 but nearly 

all of the differences were not statistically significant (Table 5.7). A few AAs were 

identified as potentially significantly different between grades (uncorrected p-value 

<0.05) but after correction for multiple comparisons only PRO was significantly 

different between grades 1 and 2. Data verification proceeded to investigate the 

reliability of the result due to the influence of sample 2018. Although the sample’s 

chromatograms had been concluded to be suitable for analysis the mean PRO 

concentration was much higher than for any other sample. The concentration of the 

three runs ranged from 722.1 to 804.7 nmol ml-1 with a mean of 777.0 nmol ml-1. 

The mean concentration range was 144.7-204.5 nmol ml-1 for grade 1 and 152.7-

362.4 nmol ml-1 for grade 2 excluding sample 2018. With a mean of more than 

double that of the sample with the next greatest concentration, sample 2018 had a 

large influence on the group mean especially given the small number of samples in 

the group (nine). Analysis was repeated that excluded sample 2018. The difference 

in mean concentrations between the groups was no longer significant (Table 5.8). 

Clear justification for removing the sample cannot be provided but due to the 
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sample’s vastly greater concentration and the borderline difference at the 95% 

significance level when the sample is included, further samples would be required to 

verify a potential difference in the mean concentration of PRO between grades 1 

and 2. 

 

Table 5.8 Summary of differences in the concentration of PRO between grades 1 
and 2. ↓ indicates (non-significantly) lower mean concentration in grade 1 
compared to grade 2. 

Grades 

Compared 

AA 

Identified 

Data 

Distribution 

p-value Mean 

Concentration 

Conclusion 
Uncorrected Corrected 

1 v. 2 

(excluding 

2018) 

↓PRO  Normal 0.027 0.095 No difference 

 

Table 5.9 shows the sample distribution of ABA and MET. It was deemed there were 

sufficient numbers of ABA samples in each of the groups for mean concentrations to 

be compared for all combinations of two groups. For MET, only one sample 

belonged to the grade 1 group so comparison of concentrations excluded this group 

thus reducing the number of combinations of groups to three. For all tests no 

p-value was less than 0.05 so it was concluded there was no difference in the 

concentration of ABA or MET between different grades of tumour. 

 

Table 5.9 Sample distribution of ABA and MET with breast cancer grade. 

           Grade 

AA 

0 1 2 3 

ABA 6 5 7 7 

MET 6 1 4 4 

 

5.3 Conclusions 

 

Due to max/min and RSD values obtained from calibration standards being 

unacceptably high for some AAs only 13 from 26 were able to be quantified in 

samples. For the 9 AAs present in the majority or all of the samples none of the 
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mean concentrations were revealed to be significantly different between case and 

control samples. MVA did not show clear separation between the different types of 

samples. In an analogous manner to Chapter 2 where NMR spectroscopy was used, 

there is no evidence to suggest an association between breast cancer and a change 

in AA concentrations that were determined by analysis of data acquired by GC. 

Furthermore, the conclusion can generally be extended to different grades of breast 

cancer though there is some evidence to suggest that grade 1 samples have lower 

concentrations of ALA, GLY, VAL, LEU, ISO, PRO and PHE. The numbers in each class 

were small and further samples would be necessary for rigorous validation of 

models. Univariate analysis generally did not confirm MVA observations regarding 

grade 1 samples to the extent that they were statistically significant thus indicating 

the differences observed were not due to individual AA concentration variance, with 

the possible exception of PRO. Further experimentation in the form of increased 

sample numbers would be needed to determine whether there is a significant 

difference in the mean concentration of PRO between grades 1 and 2 as identified 

when no potential outlying samples were excluded from analysis. 
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Chapter 6. NMR Analysis of Tissue Extracts 

 

Analysis of aqueous and lipophilic tissue extract data acquired by 1H-NMR 

spectroscopy will be detailed in the following chapter. Breast cancer tissue (Tumour) 

samples and adjacent non-cancerous tissue (Normal) samples were available from 

15 post-menopausal women with differing severity of disease: 5 each with single 

occurrence grade 1, 2 or 3 tumours. The receptor status of the tumours was highly 

uniform with 12 samples having ER+, PR+ and HER- status, 11 of which are known to 

be DCIS positive (Table 6.1). The patient cohort is different to that of previous 

chapters. 

 

Table 6.1 Receptor and DCIS statuses of Tumour samples. 

Tumour Receptor Status (Subtype) 
DCIS Status 

Present Unknown 

ER+, PR+, HER- (Luminal A) 11 1 

ER+, PR-, HER- (Luminal A) 0 1 

ER+, PR+, HER unknown (Luminal A or B) 0 1 

ER-, PR-, HER- (Basal) 0 1 

 

Samples were prepared as per Section 8.1.1.3 and data collected as detailed in 

Section 8.2.3. Section 8.3 applies for spectral processing with dark regions listed in 

Table 8.5 and Table 8.6 for aqueous and lipophilic extracts, respectively. Constant 

sum normalised data was used initially. MVA and univariate analysis were 

performed as detailed in Section 8.4 and Section 8.5, respectively, in an attempt to 

identify possible biomarkers of breast cancer occurrence and progression in both 

extract types.  

 

6.1 Results 

 

Each tissue sample was given an identifier during collection, the format dependent 

on the source site and generalised for this work as a three or four digit number to 
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establish the ‘non-identifiable’ patient provider combined with N or T to describe 

Normal or Tumour tissue sample types, respectively.  

 

Samples from nine patients, thus 18 samples in total, were sourced from the Breast 

Cancer Campaign Tissue Bank (BCCTB). For this chapter a paired sample is described 

as a single sample, either N or T, for which the other tissue sample type is available 

from the same patient. Of the 18 paired samples, 12 were collected at Site A and six 

at Site B. The remaining 12 paired samples were sourced directly from Site A. 

 

The frozen weight and appearance of samples was recorded. In addition the 

appearance of the non-homogenised part of the sample was noted along with both 

wet and air-dried non-homogenised weights. After addition of extraction liquids the 

colour was recorded as for cellular debris following centrifugation. Due to the small 

size of some samples, volumes of extraction liquids had to be scaled up from the 

values calculated using the ratios detailed in Section 8.1.1.3.1 to achieve the 

minimum required for homogeniser use (200 µl). 

 

One tissue sample (T6876; ER+, PR+, HER-, DCIS present) was destroyed during 

homogenisation and one lipophilic extract sample (T6758; ER+, PR+, HER-, DCIS 

present) contaminated during processing. An aqueous sample (N116; paired 

Tumour sample ER+, PR+, HER-, DCIS present) spectrum was not suitable for 

analysis. Numbers of samples available for data analysis are summarised in Table 

6.2.  

 

Table 6.2 Summary of sample numbers available for data analysis. Paired relates 
to number of samples, either Normal or Tumour type, with opposite sample type 
from the same patient. Values in parentheses refer to breast cancer grades 1, 2 
and 3, respectively. 

                      Sample 

Extract Type 

Normal Tumour Paired 

Aqueous 14 (4, 5, 5) 14 (5, 4, 5) 26 (8, 8, 10) 

Lipophilic 15 (5, 5, 5) 13 (5, 4, 4) 26 (10, 8, 8) 
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6.1.1 Aqueous Extracts Analysis  

 

A high level of citrate was present in the aqueous extract spectrum of two samples. 

This unnatural level is undesirable for metabolomics studies and is known to source 

from sodium citrate that is present in certain collection tubes(185) so for the two 

samples it is possible that the collection tubes were the source of  citrate. The 

region 2.517-2.750 ppm that contained citrate signals was removed from all 

samples in further analysis. The region 3.341-3.371 ppm was excluded because it 

contained methanol from the extraction process. A typical spectrum that did not 

contain citrate is shown in Figure 6.1. A variety of sources were used to identify 

metabolite signals.(103,118,135,136,138,141,142,187-191)  
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Chemical Shift (ppm)10 8 6 4 2

 

 

 

 

 

 

 

Figure 6.1 1H-NMR spectrum of tissue aqueous extracts from a Tumour sample. a) 
main: whole spectrum; inset: aromatic region. b) aliphatic region. The x-axis is 
chemical shift in ppm.  
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6.1.1.1 Evaluation of Breast Cancer Occurrence 

 

6.1.1.1.1 Analysis Implementing Sum Normalisation 

 

PCA was performed initially for 28 samples. A model could not be generated so 

components were forced to investigate the samples. The first two components 

showed T132 to be greatly separated in scores space (Figure 6.2). The sample was 

noted as unusual during data acquisition because spectrometer tuning was not able 

to be performed to the usual standard and presence of signals (large, broad singlets 

at 3.619 and 3.882 ppm) that were non-standard compared to other samples 

(excluding citrate signals). The loadings plot (Figure 6.3) confirmed the signals 

unique to the sample were causing scores space isolation for the sample. 

 

 
Key:  Tumour and  Normal 

Figure 6.2 Forced PCA scores plot coloured according to tissue type for all 28 
aqueous extract samples. 
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Figure 6.3 PCA loadings plot corresponding to the model displayed in Figure 6.2. 
The blue ellipse highlights bins containing unknown signals unique to T132 areas. 
 

Unlike citrate, the unidentified signals could not be attributed to a source, either 

natural or ‘contaminant’. Given this, the influence of the signals in PCA and 

importantly irregularities during data acquisition, sample T132 was removed from 

all further analysis. The signals were not present in the Normal sample from the 

same patient. 

 

PCA was repeated and a three PC model was generated with R2X(cum) and 

Q2X(cum) values of 0.594 and 0.337, respectively. The scores plot is shown in Figure 

6.4 and loadings plot in Figure 6.5. 

 

The majority of Normal and Tumour samples were separated diagonally along PC 1 

and PC 2 (Figure 6.4). The loadings plot indicated bins centred at 1.329, 3.228 and 

4.112 ppm strongly contributed to positive p[1] and negative p[2] loadings space in 

Figure 6.5, which discriminated Tumour from Normal samples and indicated 

increased levels in Tumour samples. The first and last bin contained lactate signals 

whilst for the other both GPC and PCho were present. 
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Key:  Tumour and  Normal 

Figure 6.4 PCA scores plot coloured according to tissue type for aqueous extract 
samples excluding T132 showing the first two model components. R2X = 0.311 and 
0.184, and Q2X = 0.171 and 0.151 for PC 1 and PC 2, respectively. 

 

 

Figure 6.5 PCA loadings plot corresponding to the model displayed in Figure 6.4. 

 

Other bins were present in the same loadings quadrant, though less influential, as 

well as in the opposite quadrant, the latter indicating lower signal levels in Tumour 

samples. A cut-off loadings value was used to determine whether the bin would be 

investigated further in determining significant differences between mean levels of 

metabolites in this study for the two sample types. One of the lesser intensity peaks 

of the lactate quartet (bin centred at 4.136 ppm) had a loadings value between 0.08 
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and 0.09 in the first component; due to the diagonal nature of separation the 

modulus loadings values of the first and second components were combined and a 

cut-off value of 0.08 employed for bins located in the two quadrants previously 

referred to. This allowed signals of lesser intensity to be considered without 

incorporating too many bins otherwise the purpose of using MVA would not be able 

to be upheld. Some discretion was used regarding bins that had a high loadings 

value in one component but were just outside of either quadrant in question, such 

as the bin centred at 1.305 ppm (Figure 6.5) For instances where a metabolite signal 

was present in an adjacent bin(s) to those identified in the loadings plot the 

normalised integrals were summed across all of the bins.  

 

In total, 24 integral regions were evaluated (Figure 6.6) though other bins were also 

identified. The bin centred at 3.469 ppm had the largest p[1] scores value in the top 

left (negative p[1] and positive p[2]) quadrant; the signal present was attributed to 

glucose. Numerous other glucose containing bins that fulfilled the criteria for 

further investigation were located in the same quadrant including those centred at 

3.491, 3.507, 3.522, 3.669, 3.697, 3.716, 3.729, 3.829, 3.855, 3.880, 3.909, 4.638, 

4.663 and 5.239 ppm. Due to α- and β-glucose signals centred at 5.233 and 

4.648 ppm, respectively, being readily resolved and no signals from other 

metabolites contained in the same bins, the integrals of the bins for these 

resonances were analysed to determine whether there was a difference between 

mean integrals of glucose for Tumour and Normal samples. α- and β-glucose are the 

same molecule but were evaluated separately to enable a relative overview of the 

ratios between the two sample types. 

 

Due to a Normal and Tumour sample emanating from the same patient the samples 

could not be treated as independent and metabolite level differences between the 

sample types from a patient, i.e. paired samples, had to be considered. As a result, 

the unpaired samples were excluded, thus leaving 24 samples for univariate 

analysis. Box plots in Figure 6.6 summarised the paired sample data.  
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All data were tested for normality with a null hypothesis that data distribution was 

normal. A Shapiro-Wilk p-value <0.05 led to the conclusion that the data was not 

normally distributed, hence the Wilcoxon signed rank test was used but if normal 

distribution of data was proven, as evidenced by p-value ≥0.05, a paired Student’s t-

test was performed to determine whether there was a difference between the 

mean levels of metabolites in Normal and Tumour samples. The null hypothesis was 

no difference between mean integral values for the two sample types. FDR was 

used to correct for multiple comparisons. Table 6.3 displays the bins identified as 

having potentially different mean integrals and conclusions regarding whether the 

difference was statistically significant.  
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a)  b)  

c)  d)  

e)  f)  

g)  h)  

 
Figure 6.6 Box plots of integrals for Normal (N, red filled box) and Tumour (T, black 
filled box) paired samples. * = samples more extreme than 1.5 times the 
interquartile range beyond the upper or lower quartile, coloured as per filled box 
with sample label. Refer to Table 6.3 for assignments of spectral regions.  

 
 



145 
 

i)  j)  

k)  l)  

m)  n)  

o)  p)  
 

Figure 6.6 Continued. 
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q)  r)  

s)  t)  

u)  v)  

w)  x)  
 

Figure 6.6 Continued.  



 
 

Table 6.3 Summary of data regarding mean integral differences between tissue types from bins identified in Figure 6.5. 

Identified Bin 

[centre] (ppm) 

Bin Range 

Tested (ppm) 

Major Metabolite Shapiro-Wilk 

p-value (1st = 

N, 2nd = T)  

Data 

Distribution  

p-value Mean Integral 

Conclusion 
Uncorrected Corrected 

0.879-0.890 [0.885] 
0.879-0.934 CH3 of fatty acid chain 0.400, 0.000 Non-normal 0.084 0.119 No difference 

0.890-0.920 [0.905] 

1.136-1.165 [1.151] 1.126-1.165 Unidentified 0.056, 0.647 Normal 0.044 0.075 No difference 

1.188-1.217 [1.203] 1.188-1.217 3-hydroxybutyrate 0.058, 0.082 Normal 0.077 0.116 No difference 

1.276-1.286 [1.281] 

1.276-1.315 CH2 of fatty acid chain 0.001, 0.000 Non-normal 0.034 0.063 No difference 1.286-1.297 [1.292] 

1.297-1.315 [1.306] 

1.315-1.344 [1.329] 1.315-1.344 Lactate 0.826, 0.213 Normal 0.003 0.018 ↑T 

1.483-1.507 [1.495] 1.439-1.507 Alanine 0.504, 0.382 Normal 0.026 0.052 No difference 

2.153-2.182 [2.168] 2.153-2.182 Glutamate 0.849, 0.202 Normal 0.013 0.035 ↑T 

2.246-2.275 [2.261] 2.246-2.275 Lipid 0.061, 0.426 Normal 0.007 0.024 ↑N 

2.346-2.371 [2.359] 2.346-2.371 Glutamate 0.874, 0.452 Normal 0.002 0.016 ↑T 

2.447-2.472 [2.459] 2.447-2.472 Glutamine 0.041, 0.023 Non-normal 0.012 0.035 ↑T 

2.948-2.978 [2.963] 2.948-2.978 Unidentified 0.042, 0.443 Non-normal 0.060 0.096 No difference 

3.021-3.050 [3.035] 3.021-3.050 Creatine 0.000, 0.030 Non-normal 0.182 0.190 No difference 

3.216-3.241 [3.229] 3.216-3.241 GPC and PC 0.010, 0.887 Non-normal 0.158 0.181 No difference 

3.254-3.284 [3.269] 3.254-3.284 Taurine 0.000, 0.400 Non-normal 0.099 0.132 No difference 

3.405-3.435 [3.420] 3.405-3.435 Taurine 0.370, 0.469 Normal 0.782 0.782 No difference 

3.922-3.947 [3.935] 3.922-3.947 Creatine 0.004, 0.020 Non-normal 0.182 0.190 No difference 

1
4

7
 



 
 

Table 6.3 Continued. 

Identified Bin 

[centre] (ppm) 

Bin Range 

Tested (ppm) 

Major Metabolite Shapiro-Wilk 

p-value (1st = 

N, 2nd = T)  

Data 

Distribution  

p-value 

 

Mean Integral 

Conclusion 

Uncorrected Corrected 

3.958-3.968 [3.963] 3.958-3.997 Unidentified 0.127, 0.883 Normal 0.002 0.016 ↑T 

3.968-3.997 [3.983] 

4.085-4.098 [4.092] 

4.085-4.144 Lactate 0.759, 0.419 Normal 0.000 0.000 ↑T 4.098-4.128 [4.113] 

4.128-4.144 [4.136] 

4.154-4.183 [4.169] 4.154-4.183 Glycerophospholipid 0.000, 0.127 Non-normal 0.136 0.172 No difference 

4.364-4.394 [4.379] 4.364-4.394 Glycerophospholipid 0.302, 0.180 Normal 0.149 0.179 No difference 

4.499-4.529 [4.514] 4.499-4.529 Unidentified 0.040, 0.090 Non-normal 0.019 0.044 ↑T 

4.628-4.648 [4.638] 4.628-4.678 β-glucose 0.182, 0.554 Normal 0.007 0.024 ↑N 

5.224-5.253 [5.239] 5.224-5.253 α-glucose 0.452, 0.001 Non-normal 0.005 0.024 ↑N 

5.315-5.344 [5.330] 5.294-5.374 CH=CH of fatty acid chain 0.070, 0.135 Normal 0.020 0.044 ↑N 

 

1
4

8
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Discussion will ensue on conclusions of mean integral analysis for those integrals 

where a significant difference was identified. Many of the species are connected 

and their relationships are summarised in Figure 6.7.  

 

 

Figure 6.7 Simplified summary of relationships that include many metabolites 
whose levels were significantly different between Tumour and Normal samples. 
Green lines indicate the border of mitochondria and cytosol; pink and red boxed 
species are present in the cytosol. NADP+ = nicotinamide adenine dinucleotide 
phosphate; NADPH = reduced form of NADP+; PDH = pyruvate dehydrogenase; TCA 
= tricarboxylic acid and coA = coenzyme A. 
 

Lactate levels were concluded to be significantly higher in Tumour samples 

compared to Normal samples. This is in agreement with the Warburg effect 

whereby glucose uptake and lactate formation are both increased.(25,147) Glucose 

levels were higher in Normal tissue, again supporting the Warburg effect. 

Additionally, the same p-values indicated a similar ratio of α- and β-glucose for 

Normal and Tissue samples. Production of lactate and alanine has been attributed 

as accounting for over 90% of total glucose metabolism in cancer cells.(28) 
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Increased alanine has been associated with cancerous tissue(135,192) though for this 

study after adjustment for multiple testing the p-value was just above the threshold 

for which the null hypothesis could be rejected. When cells undergo glycolysis 

greater levels of pyruvate result, a precursor of both alanine and lactate, but under 

these conditions activity of pyruvate dehydrogenase (PDH) is impaired.(135) PDH 

converts pyruvate to acetyl-CoA, which is part of the TCA cycle, so with reduced 

levels of conversion more lactate is produced(193) and more pyruvate could be 

converted into alanine through a transaminase reaction with glutamate that also 

produces 2-oxoglutarate.(118,135) Due to reduced PDH activity acetyl-CoA also derives 

from glutaminolysis (oxidation of glutamine).(194) 

 

Glutamine is readily consumed by cancerous cells in addition to glucose.(28,195) A 

high proportion of glutamate is initially synthesised from glutamine(135) with lactate 

and alanine subsequently produced.(28,196) Glutamine can be converted into 

2-oxoglutarate through a transaminase reaction as described previously, along with 

production of alanine, or by glutamate dehydrogenase (GDH). Upon 

implementation of the latter, malate is formed from 2-oxoglutarate after a number 

of intermediate metabolites and can subsequently undergo reaction with NADP+ to 

form NADPH, the reduced version of NADP+, and pyruvate, and hence lactate.(194) 

Production of lactate and alanine has accounted for 60% of total glutamine 

utilisation in cancer cells.(28) From this evidence it would be expected levels of the 

first two metabolites to be elevated in Tumour tissue and the opposite for 

glutamine and glutamate. Levels of lactate and alanine have been discussed; 

glutamine and glutamate, however, were also elevated in Tissue samples. An 

increase in glutamine and glutamate has previously been associated with breast 

cancer(135) and severity of meningioma,(197) a common form of brain tumour; an 

elevated glutamate level has been associated with tumour recurrence(198) and 

tumour versus normal cell lines.(199) Kung et al.(200) note that whilst the importance 

of glutamine has been shown in many cancer types, for breast cancers its 

prominence is not well defined. The authors provide evidence that breast tumour 

subtypes vary in their glutamine dependence observing luminal-type breast cancer 

cells were much more glutamine independent than basal-type breast cancer cells 
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with regards to survival. In this study 14 out of 15 Tumour samples were luminal 

type (13 luminal A and one unknown luminal A or B) with just one basal-type thus 

greatly reducing metabolic effects due to subtype variation. 

 

Glutathione can be synthesised from glutamate,(201) and vice-versa,(199) and a similar 

trend between levels of the two metabolites have been observed with regards to 

tumour severity in MAS of brain tissue: increased amounts with higher cancer 

grade.(197) Glutathione may act both as a protective and pathogenic factor in that it 

is an antioxidant in cells but increased levels in tumour cells, including breast,(202) 

can interfere with the cytotoxic action of a number of anticancer drugs.(203) 

Although Monleon et al.(197) identified glutathione in tissue they have stated it is 

relatively difficult to find in tissue extracts and signals cannot be attributed to the 

metabolite in this study.  

 

Citrate is formed in the TCA cycle from the reaction of acetyl-CoA and oxaloacetate 

(OAA). Much citrate reforms OAA and acetyl-CoA in the cytosol.(194) Fatty acids are 

synthesised from acetyl-CoA and malonyl-CoA in the presence of NADPH.(204) Due to 

the high level of lactate produced from glutamate sufficient NADPH is generated to 

enable fatty acid synthesis.(28) OAA can lead to the formation of pyruvate via 

malate, which generates further NADPH and allows the cycle to continue.(194) Due 

to much citrate leaving the mitochondria the TCA cycle would be depleted but 

glutamate can contribute to formation of metabolites within the cycle further to 

previously described. Instead of conversion to pyruvate from glutamate derived 

malate, OAA can be produced thus providing an essential metabolite for the 

synthesis of fatty acids. 

 

Lipid levels at 2.261 ppm and 5.330 ppm were adjudged to be higher in Normal 

samples. Healthy tissue samples have a higher level of adipocytes than Tumour 

tissue samples, which are mainly composed of epithelial tissue.(135) It could be 

expected to observe increased levels of some lipids in samples that contain a higher 

amount of fat. Changes in metabolite levels have been observed between healthy 

samples that had different amounts of fatty tissue and fibrotic tissue.(135) Histology 
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records were not available for the samples but notes made related to appearance 

during the homogenisation process were assessed relative to lipid level in the 

aforementioned regions. The majority of samples were pink or light orange with 

some primarily dark (black/brown/grey) and others mainly white. No correlation 

was observed between lipid amounts and any of the groups.  

 

Alanine, CH2 of fatty acid chain and an unassigned resonance in the 

1.126-1.165 ppm bin displayed significantly different levels before multiple test 

correction but not afterwards. With an increased number of tests there is an 

increased chance of false outcomes; if fewer tests were performed the multiple test 

correction applied would be less severe.(92)  

 

PLS-DA was also applied, the scores and loadings plots are shown in Figure 6.8 and 

Figure 6.9, respectively. 

 

 

Key:  Tumour and  Normal 

Figure 6.8 PLS-DA scores for aqueous extract samples excluding T132. Classed 
according to tumour type. 
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Figure 6.9 PLS-DA loadings plot corresponding to the model displayed in Figure 

6.8. 

 

The one component model (R2X = 0.275, R2Y = 0.613 and Q2Y = 0.487) separated the 

majority of Tumour and Normal samples from each other. The bins that contained 

lactate, centred at 1.329 and 4.112 ppm, were the two most influential in the 

loadings plot (Figure 6.9) with the bin centred at 3.228 ppm also contributing to the 

separation, all three of which were indicated to be raised in Tumour samples. 

PLS-DA can overfit data so validation is required.(79) ‘Leave-one-out’ cross-validation 

was performed using 27 samples with unpaired samples predicted singly and paired 

samples predicted together. Table 6.4 summarises the results. 
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Table 6.4 ‘Leave-one-out’ cross-validation parameters of the PLS-DA model shown 
in Figure 6.8. 

Sample 

Excluded 

Number of 

Components 

R2X 

(cum) 

R2Y 

(cum) 

Q2Y 

(cum) 

Y-Predicted* 

N T 

N007 1 
0.261 0.647 0.456 

0.415 0.585 

T007 1 0.104 0.896 

N014 1 
0.256 0.594 0.383 

1.000 0.000 

T014 1 -0.017 1.017 

N023 1 
0.254 0.648 0.470 

0.693 0.307 

T023 1 0.384 0.616 

N040 1 
0.244 0.624 0.420 

0.768 0.232 

T040 1 -0.164 1.164 

N093 1 
0.266 0.620 0.457 

0.681 0.319 

T093 1 0.298 0.702 

N122 1 
0.271 0.668 0.523 

0.137 0.863 

T122 1 0.288 0.712 

N6758 2 
0.417 0.779 0.530 

0.307 0.693 

T6758 2 -0.161 1.161 

N7178 1 
0.238 0.635 0.460 

0.996 0.004 

T7178 1 0.174 0.826 

N7242 1 
0.274 0.672 0.568 

0.791 0.209 

T7242 1 0.983 0.017 

N7388 1 
0.246 0.648 0.502 

1.146 -0.146 

T7388 1 0.453 0.547 

N7428 1 
0.251 0.613 0.426 

0.689 0.311 

T7428 1 -0.028 1.028 

N015 1 
0.273 0.663 0.533 

0.556 0.444 

T015 1 0.511 0.489 

T116 1 0.251 0.630 0.460 0.298 0.702 

N132 1 0.260 0.603 0.379 1.060 -0.060 

N6876 1 0.449 0.744 0.405 0.935 0.065 

*A sample was regarded as belonging to a grade by having a Y-predicted value >0.50. 

Incorrect classification is represented by red shading and correct by pink, orange or green, 

corresponding to a Y-predicted value of <0.60, 0.60-0.70 or >0.70, respectively. 

 

Of the 14 Normal samples, 11 (79%) were predicted correctly whilst the predictive 

ability of Tumour samples was 85% due to having 11 of 13 samples correctly 

predicted. Both percentages were high, which indicated the classes were modelled 
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well and the data was not overfitted. Of those samples correctly predicted, 64% of 

Normal samples had a Y-predicted value greater than 0.70 and for Tumour samples 

82% achieved this figure. The accuracy of class prediction is reduced for samples as 

the Y-predicted value tends towards 0.50 so classifications based on values less than 

0.60, coloured pink in Table 6.4, should be treated with caution: both N015 and 

T7388 samples had low modulus t[1] values. Given the positioning of N122 and 

T7242, both located in scores space that was predominantly occupied by the 

opposite sample type, incorrect class prediction of the two samples was not 

unexpected. 

 

Permutation testing was also performed for further validation of the model. Figure 

6.10 shows all but two of the 999 permuted models for the Tumour class to have 

lower R2Y and Q2Y values than the original model. The intercept values of the 

regression lines for R2Y and Q2Y are 0.239 and -0.148, respectively. The 

permutation testing plot for the Normal class (plot not shown) displayed R2Y and 

Q2Y intercept values of 0.240 and -0.146, respectively, with no permuted models 

having higher values. Both R2Y values are less than 0.4 and both Q2Y values are 

below 0.05 so it is indicated that the model is validated thus furthering the 

conclusion from ‘leave-one-out’ cross validation. 

 

Validation of the PLS-DA model supported the observation that Tumour samples can 

be distinguished from Normal tissue using MVA. 
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Key:  R2Y and  Q2Y 

Figure 6.10 Permutation testing plots for the Tumour class in the PLS-DA model 
shown in Figure 6.8. The R2Y and Q2Y intercept values of the regression lines are 
0.239 and -0.148, respectively. 

 

6.1.1.1.2 Analysis Implementing Probabilistic Quotient Normalisation and Removal 

of Sample N122 

 

Using sum normalisation N122 was observed on eight occasions as more extreme 

than 1.5 times the interquartile range beyond the upper quartile of Normal samples 

in Figure 6.6. Sample preparation and data acquisition records were investigated 

but no anomalous factors were apparent. Visual inspection of spectra showed N122 

to contain very little glucose, which was surprising since glucose levels were 

generally higher in Normal compared to Tumour samples (Table 6.3). The next 

lowest Normal sample glucose level, as measured by β-glucose signal integral, was 

nearly five times that of N122. Glucose is prevalent in spectra so for samples with a 

low level, normalisation is affected resulting in increased integrals for all other 

signals. Ascertaining whether differences for this sample were due to genuine 

variation of metabolite levels or the effect of normalisation was difficult. Using the 

bin containing GPC and PCho as an example, N122’s normalised integral value was 

more than 20% larger than the next greatest irrespective of sample type and almost 

twice the value of the second largest Normal sample integral. N122’s integral was 
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more than nine-fold larger than that of the paired Tumour sample. Given the 

potential problem using sum normalisation, PQN was used. 

 

PQN has been advocated as superior to constant sum normalisation(69) but the 

method has been shown to be not always the optimum choice when many 

normalisation methods were compared,(158) hence why it was not used from the 

beginning of analysis. Section 8.3.1.2 describes the PQN methodology and Table 8.7 

lists regions included in the calculation of the median quotient. The scores and 

loadings plots were very similar using both normalisation methods as shown by PC 1 

in Figure 6.11 and Figure 6.12, respectively. A three component model was 

produced in each case with R2X(cum) values of 0.594 and 0.602 for sum 

normalisation and PQN, respectively, and related Q2X(cum) values of 0.337 and 

0.307.  

 

Although the scores and loadings plots generated using the two different 

normalisation methods were of similar appearance PQN was employed due to 

potential weakness of sum normalisation: the inability to account for presence or 

absence of a large signal(s) in certain samples without affecting normalised 

intensities of other signals of that sample, in this case the much reduced presence 

of glucose signals in N122. 
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a)  

b)  

Key:  Tumour and  Normal 

Figure 6.11 PCA scores plot of PC 1 coloured according to tissue type for aqueous 
extract samples using a) constant sum normalisation (0.311, 0.171) and b) PQN 
(0.311, 0.174); R2X and Q2X values, respectively, in parentheses.  
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a)  

b)    

Figure 6.12 Loadings plot of PC 1 for aqueous extract samples using a) constant 
sum normalisation and b) PQN. 
 

Quotients of spectra relative to the median (reference) spectrum varied between 

0.74 and 1.25 with a value of 0.97 for N122. After multiple test correction the same 

conclusion regarding difference between mean integral values of sample types 

applied to 22 of the 24 bin regions tested including 10 of the 11 bin regions 

previously identified as significantly different (Table 6.5). Alanine had a p-value 

>0.05 when constant sum normalisation was used but upon implementation of PQN 

it could be concluded a significantly greater concentration was present in Tumour 

samples, however, the reverse was applicable to CH=CH of fatty acid chains 

(5.294-5.374 ppm) with the level no longer being significantly greater in Tumour 

samples. 
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Due to the small sample set of 12 pairs, N122 and T122 were removed from analysis 

because one paired sample could greatly influence univariate analysis results. PQ 

normalised data was retested for normality of distribution and pair-wise testing 

applied as previously. Ten bin region mean integral values that were significantly 

different between sample types when samples N and T 122 were included remained 

so with only 2.246-2.275 ppm, the signal assigned to lipids, no longer significantly 

different (Table 6.5). Seven additional bin regions were concluded to be significantly 

different and contained an unidentified resonance (2.948-2.978 ppm), creatine 

(3.021-3.050 ppm and 3.922-3.947 ppm), GPC and PCho (3.216-3.241 ppm), taurine 

(3.254-3.284 ppm) and glycerophospholipid (4.154-4.169 ppm and 4.364-

4.394 ppm). Levels were increased in Tumour compared to Normal samples for all 

bins. Metabolic reasoning for the findings will be discussed. 

 



 
 

Table 6.5 Summary of data regarding mean integral difference between tissue types for different normalisation methods and after exclusion 
of a sample using PQN; sum normalised data, also shown in Table 6.3, has been included to aid comparison. Non = non-normal, ND = no 
difference, N = Normal, T = Tumour and ↑ = significant increase.  

Identified Bin 

[centre] (ppm) 

Bin Range 

Tested (ppm) 

Major Metabolite Data Distribution Corrected p-value Mean Integral 

Conclusion 

Sum PQN Exc 122 Sum PQN Exc 122 Sum PQN Exc 122 

0.879-0.890 [0.885] 
0.879-0.934 CH3 of fatty acid chain Non Non Non 0.119 0.284 0.328 ND ND ND 

0.890-0.920 [0.905] 

1.136-1.165 [1.151] 1.126-1.165 Unidentified Normal Non Non 0.075 0.176 0.052 ND ND ND 

1.188-1.217 [1.203] 1.188-1.217 3-hydroxybutyrate Normal Normal Normal 0.116 0.214 0.219 ND ND ND 

1.276-1.286 [1.281] 

1.276-1.315 CH2 of fatty acid chain Non Non Non 0.063 0.181 0.208 ND ND ND 1.286-1.297 [1.292] 

1.297-1.315 [1.306] 

1.315-1.344 [1.329] 1.315-1.344 Lactate Normal Normal Normal 0.018 0.032 0.032 ↑T ↑T ↑T 

1.483-1.507 [1.495] 1.439-1.507 Alanine Normal Normal Normal 0.052 0.033 0.032 ND ↑T ↑T 

2.153-2.182 [2.168] 2.153-2.182 Glutamate Normal Normal Non 0.035 0.043 0.032 ↑T ↑T ↑T 

2.246-2.275 [2.261] 2.246-2.275 Lipid Normal Normal Non 0.024 0.043 0.052 ↑N ↑N ND 

2.346-2.371 [2.359] 2.346-2.371 Glutamate Normal Normal Normal 0.016 0.030 0.012 ↑T ↑T ↑T 

2.447-2.472 [2.459] 2.447-2.472 Glutamine Non Non Non 0.035 0.033 0.032 ↑T ↑T ↑T 

2.948-2.978 [2.963] 2.948-2.978 Unidentified Non Normal Non 0.096 0.092 0.032 ND ND ↑T 

3.021-3.050 [3.035] 3.021-3.050 Creatine Non Non Normal 0.190 0.181 0.049 ND ND ↑T 

3.216-3.241 [3.229] 3.216-3.241 GPC and PCho Non Non Non 0.181 0.144 0.032 ND ND ↑T 

3.254-3.284 [3.269] 3.254-3.284 Taurine Non Non Non 0.132 0.181 0.049 ND ND ↑T 

1
6

1
 



 
 

Table 6.5 Continued. 

Identified Bin 

[centre] (ppm) 

Bin Range 

Tested (ppm) 

Major Metabolite Data Distribution Corrected p-value Mean Integral 

Conclusion 

Sum PQN Exc 122 Sum PQN Exc 122 Sum PQN Exc 122 

3.405-3.435 [3.420] 3.405-3.435 Taurine Normal Normal Non 0.782 0.730 0.298 ND ND ND 

3.922-3.947 [3.935] 3.922-3.947 Creatine Non Non Normal 0.190 0.176 0.049 ND ND ↑T 

3.958-3.968 [3.963] 
3.958-3.997 Unidentified Normal Normal Normal 0.016 0.030 0.012 ↑T ↑T ↑T 

3.968-3.997 [3.983] 

4.085-4.098 [4.092] 

4.085-4.144 Lactate Normal Normal Normal 0.000 0.024 0.024 ↑T ↑T ↑T 4.098-4.128 [4.113] 

4.128-4.144 [4.136] 

4.154-4.183 [4.169] 4.154-4.183 Glycerophospholipid Non Non Non 0.172 0.181 0.049 ND ND ↑T 

4.364-4.394 [4.379] 4.364-4.394 Glycerophospholipid Normal Normal Normal 0.179 0.181 0.049 ND ND ↑T 

4.499-4.529 [4.514] 4.499-4.529 Unidentified Non Non Normal 0.044 0.050* 0.024 ↑T ↑T ↑T 

4.628-4.648 [4.638] 4.628-4.678 β-glucose Normal Non Non 0.024 0.032 0.024 ↑N ↑N ↑N 

5.224-5.253 [5.239] 5.224-5.253 α-glucose Non Non Non 0.024 0.030 0.024 ↑N ↑N ↑N 

5.315-5.344 [5.330] 5.294-5.374 
CH=CH of fatty acid 

chain 
Normal Non Non 0.044 0.092 0.074 ↑N ND ND 

*p-value <0.05 when more than three decimal places retained.

1
6

2
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The creatine level was significantly elevated in Tumour samples when samples N 

and T 122 were not included in analysis (Table 6.5). HR-MAS of tissue showed raised 

creatine levels in head and neck squamous cell carcinoma compared to normal 

adjacent tissue.(205) This observation was supported by reduction of creatine kinase 

in oral squamous cell carcinoma.(206) The enzyme catalyses the reversible process of 

phosphorylation of creatine to creatine phosphate so a reduction in the enzyme 

level would inhibit the process in this direction thus creatine, as the reverse 

direction product, would be expected to be present in a greater quantity.(207) 

 

The same conclusion as for creatine was made regarding the bin at 3.254-3.284 ppm 

that contained taurine. Taurine has been shown to be increased in breast tumour 

samples compared to non-tumour samples.(135,141) Taurine has been postulated as 

being an antioxidant(208,209) and marker of increased cell proliferation.(135) Glucose 

was also present in the downfield bin (3.405-3.435 ppm) that contained taurine. 

This observation could explain why a significant difference in mean integrals was not 

observed for this bin; increased glucose in Normal samples could be counteracted 

by up regulation of taurine in Tumour samples. 

 

Altered choline metabolism is indicative of cancer but the role of choline-containing 

metabolites is poorly understood.(119,210) In this study the mean integral level for the 

bin 3.216-3.241 ppm containing GPC and PCho (Table 6.5) was significantly 

increased in Tumour samples when samples N and T 122 were not included in the 

analysis. GPC has a higher chemical shift than PCho.(118,188,211) Elevations in total 

choline metabolites(210,212) and PCho(134,210,212) have been observed though both an 

increase(141) and decrease(213) in GPC have been reported and consensus cannot be 

achieved regarding the GPC to PCho ratio. Breast cancer tissue and cells have 

exhibited a decrease in the ratio(141,213) and Stewart et al.(210) cite this ratio change as 

indicative of cancer whereas Moestue et al.(214) argue the opposite. It has been 

postulated that the micro-environment of the tumour affects choline 

metabolism(212) such that in vivo tumours could evolve further mechanisms 

compared to in vitro tumours.(215) Due to the aforementioned region containing two 

overlapping signals assessment of the mean values between the tissue sample types 
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for GPC and PCho cannot be performed. Figure 6.13a shows N122 and N7428 to 

have very similar levels of the greater intensity signal (GPC) but different amounts of 

the lower intensity signal (PCho) whilst for T7388 it is difficult to establish the two 

separate signals. Figure 6.13b shows more clearly the composition of the signals 

within the region for the majority of samples but it cannot be ascertained whether 

the ratio trend of the two signals is different between Normal and Tumour samples 

nor can it be established whether the increased Tumour sample mean integral of 

the region was due to an integral value change in both signals or just one. 

 

Betaine production and phosphatidylcholine (PDC) synthesis are the two major 

pathways of intracellular choline metabolism.(212) Betaine is further synthesised to 

glycine(119) and subsequently, in order, to glutathione, glutamate and glutamine,(199) 

the last two of which were identified in spectra and raised in Tumour samples. PCho 

is an intermediary of PDC production and GPC and free fatty acids are degradation 

products of PDC.(119) PDC, a glycerophospholipid, is the most abundant membrane-

forming phospholipid in cells.(119,216) 

 



165 
 

 

                  a) 

 

                 b) 

Figure 6.13 ACD normalised view of 1H-NMR spectrum section of aqueous extracts 
including 3.216-3.241 ppm region, which contains GPC (most downfield signal) and 
PCho signals. a) Vertical integral range to include all samples and b) lower vertical 
integral range to emphasise the majority of samples. Spectral line of sample: red = 
Normal, black = Tumour. 
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The signals tentatively assigned as glycerophospholipids(187) in bins 4.154-4.183 ppm 

and 4.364-4.394 ppm were elevated for Tumour samples when samples N and T 122 

were excluded. Given increased choline metabolites and GPC in tumour tissue and 

the relationship with glycerophospholipids an explanation is provided for the 

aforementioned observation. 

 

6.1.1.1.3 Analysis Excluding Lactate 

 

Lactate is prevalent in Tumour samples (Figure 6.1) and can strongly influence 

positions of samples in scores space. Scaling can be used to reduce the disparity in 

influence signals of different intensities have. Pareto has been used in these 

analyses as the de facto scaling method but MVA is still strongly influenced by large 

intensity bins. Non-normalised data from lactate containing bins (1.314-1.374 ppm 

and 4.085-4.144 ppm) was removed before PQN was employed.  

 

The scores (Figure 6.14) and loadings plots (Figure 6.15) for PC 2 versus PC 1 of the 

three component model (R2X(cum) = 0.584 and Q2X(cum) = 0.251) were very similar 

in appearance (vertical reflection excluded) to those for which lactate was included 

(Figure 6.4 and Figure 6.5, respectively). 

 

Scores and loadings plots (data not shown) associated with the one component 

PLS-DA model (R2X = 0.217, R2Y = 0.541 and Q2Y = 0.362) were very similar to the 

equivalent that included lactate (Figure 6.8 and Figure 6.9, respectively). 

 

Further information in relation to metabolites differing between Tumour and 

Normal samples was not gained upon exclusion of lactate from MVA.  
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Key:  Tumour and  Normal 

Figure 6.14 PCA scores plot coloured according to tissue type for aqueous extract 
samples excluding lactate regions showing the first two model components. R2X = 
0.251 and 0.212, Q2X = 0.039 and 0.041 for PC 1 and PC 2, respectively. 
 

 

Figure 6.15 PCA loadings plot corresponding to the model displayed in Figure 6.14. 
 

6.1.1.1.4 Analysis of Aromatic Region Only 

 

Figure 6.1a shows the spectrum of aqueous extracts is dominated by the aliphatic 

region and signals in the aromatic region are of much lower intensity. Beckonert et 

al.(135) reported differences between Tumour and Normal samples in the aromatic 

region of aqueous extracts of breast cancer tissue. In this study visual differences 

were observed but no bins were identified by MVA when considering the whole 
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spectrum. To circumvent the scaling issue referred to in Section 6.1.1.1.3 only the 

aromatic region (5.446-9.362 ppm) was analysed.  

 

The majority of Tumour and Normal samples were separated along PC 1 (Figure 

6.16) in the two PC model (R2X(cum) = 0.331 and Q2X(cum) = 0.007) with the same 

two Normal samples, N007 and N122, located amongst the majority of Tumour 

samples as per inclusion of the aliphatic region (Figure 6.4). The loadings plot (Figure 

6.17) indicated levels of many metabolites were raised in the aforementioned 

grouping of samples with a corresponding decrease in formate (8.452 ppm) and a 

singlet at 7.675 ppm tentatively assigned as pyridoxine.(191) Four Tumour samples 

were isolated from the majority of Tumour samples, occupying similar PC 1 scores 

space to Normal samples. The reverse was true regarding levels of metabolites for 

this grouping. 

 

 
Key:  Tumour and  Normal 

Figure 6.16 PCA scores plot coloured according to tissue type for the sum 
normalised aromatic region of aqueous extracts.  

 

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0

t[
2]

t[1]

N007

N122

SIMCA-P+ 12.0.1 - 2012-12-30 10:51:03 (UTC+0) 



169 
 

 

Figure 6.17 PCA loadings plot corresponding to the model displayed in Figure 6.16. 

 

Metabolite levels were investigated within bins that possessed the greatest 

modulus PC 1 loadings values in Figure 6.17. Bins with a modulus p[1] value equal to 

or greater than 0.105 were analysed: inspection of spectra showed the bin centred 

at 7.709 ppm contained distinguishable signals for only four samples, this was 

deemed an insufficient number upon which conclusions could be based. Bins with a 

p[1] value at least equal to that of the aforementioned bin were investigated to 

ensure a signal(s) was present for numerous samples before univariate analysis was 

performed and all bins identified conformed. In total 14 bin regions were used in 

analysis. Box plots in Figure 6.18 provide an overview of paired sample data whilst 

Table 6.6 displays the bins identified as having potentially different mean integrals 

and conclusion regarding whether the difference was statistically significant. 

Adenosine 3',5'-diphosphate,(103) pyridoxine(191) and UDP-GlcNAc and UDP-

GalNAc(189,190) have been tentatively assigned. 

 

When all 24 paired samples were included no bin mean integral values were 

significantly different between Tumour and Normal samples once adjustment for 

multiple testing was performed. The box plots showed N122 to be more extreme 

than 1.5 times the interquartile range beyond the upper quartile on four occasions. 

Previously, when the whole spectrum was considered analysis was performed that 

excluded the sample, and the paired Tumour sample, because the same observation 
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was noted on multiple occasions (Figure 6.6) and was attributed to the sample 

containing a very low level of glucose. The paired 122 samples were also excluded in 

aromatic region only analysis and results incorporated into Table 6.6. Resultantly, 

UDP-GlcNAc and UDP-GalNAc in the regions 5.973-6.015 ppm and 6.108-6.124 ppm 

and unidentified signals in 8.178-8.200 ppm and 8.200-8.229 ppm regions were 

significantly increased in Tumour samples. 
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a)  b)  

c)  d)  

e)  f)  

g)  h)  
  
Figure 6.18 Box plots of aromatic region integrals for Normal (N, red filled box) 
and Tumour (T, black filled box) paired samples. * = samples more extreme than 
1.5 times the interquartile range beyond the upper or lower quartile, coloured as 
per filled box with sample label. Refer to Table 6.6 for assignments of spectral 
regions. 
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i)  j)  

k)  l)  

m)  n)  
 
Figure 6.18 Continued. 



 
 

Table 6.6 Summary of data regarding mean integral difference between tissue types before and after exclusion of samples from aromatic 
region bins identified in Figure 6.17. Non = non-normal; ND = no difference; N = Normal; T = Tumour; ↑ = significant increase. 

Identified Bin 

[centre] (ppm) 

Bin Range 

Tested (ppm) 
Major Metabolite 

Data Distribution  
p-value Mean Integral 

Conclusion Uncorrected Corrected 

All Exc 122 All Exc 122 All Exc 122 All Exc 122 

5.973-5.985 [5.978] 
5.973-6.015 UDP-GlcNAc and UDP-GalNAc Non Non 0.071 0.013 0.168 0.046 ND ↑T 

5.985-6.015 [6.000] 

6.108-6.124 [6.116] 6.108-6.124 UDP-GlcNAc and UDP-GalNAc Non Non 0.012 0.003 0.168 0.042 ND ↑T 

6.124-6.146 [6.134] 
6.124-6.175 Adenosine 3',5'-diphosphate Non Non 0.071 0.033 0.168 0.077 ND ND 

6.146-6.175 [6.160] 

6.900-6.925 [6.912] 6.900-6.925 Tyrosine Normal Normal 0.146 0.081 0.252 0.126 ND ND 

7.172-7.195 [7.183] 
7.172-7.225 Tyrosine Normal Normal 0.224 0.090 0.285 0.126 ND ND 

7.195-7.225 [7.209] 

7.329-7.345 [7.336] 7.329-7.345 Phenylalanine Normal Normal 0.586 0.381 0.631 0.410 ND ND 

7.422-7.451 [7.436] 7.422-7.451 Phenylalanine Normal Normal 0.077 0.026 0.168 0.073 ND ND 

7.661-7.690 [7.675] 7.661-7.690 Pyridoxine Non Non 0.638 0.424 0.638 0.424 ND ND 

7.946-7.972 [7.958] 
7.946-7.995 UDP-GlcNAc and UDP-GalNAc Non Non 0.182 0.050 0.255 0.100 ND ND 

7.972-7.995 [7.983] 

8.178-8.200 [8.188] 8.178-8.200 Unknown Non Normal 0.028 0.006 0.168 0.042 ND ↑T 

8.200-8.229 [8.214] 8.200-8.229 Unknown Non Non 0.071 0.010 0.168 0.046 ND ↑T 

8.251-8.280 [8.265] 8.251-8.280 Adenosine 3',5'-diphosphate Non Non 0.347 0.182 0.405 0.212 ND ND 

8.438-8.468 [8.452] 8.438-8.468 Formate Non Non 0.084 0.062 0.168 0.109 ND ND 

8.619-8.647 [8.632] 8.619-8.647 Adenosine 3',5'-diphosphate Normal Normal 0.162 0.105 0.252 0.133 ND ND 

1
7

3
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From glucose, fructose 6-phosphate can be produced via glycolysis, which in turn 

can react with glutamine to produce glutamate and glucosamine 6-phosphate.(217) 

The former product has been identified as raised in Tumour samples previously in 

this study whilst the latter is a constituent of UDP-GalNAc. UDP-GalNAc can be 

reversibly catalysed to UDP-GlcNAc. Another UDP-GalNAc moiety, acetyl CoA, can 

be made from pyruvate or by fatty acid oxidation.(189) Reduced glucose and 

increased glycolysis product levels, such as lactate, in Tumour samples was 

concluded earlier in this work therefore increased levels of UDP-GlcNAc and 

UDP-GalNAc, derived from glycolysis, in Tumour samples complements the previous 

conclusion.  

 

O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is the glycosylation 

of proteins with O-linked β-N-acetylglucosamine (O-GlcNAc).(190) Several tumour-

associated proteins have been identified as glycosylated O-GlcNAc proteins and 

levels in breast tumour tissue are increased compared to corresponding adjacent 

tissue.(218) Gu et al.(218) have reasoned that a raised level of UDPGlcNAc and 

subsequently GlcNAcylation might be one of the reasons why the Warburg effect is 

present for tumours. 

 

It can be speculated as to why the UDP-GlcNAc and UDP-GalNAc signals between 

7.946 ppm and 7.995 ppm were not significantly raised in Tumour samples: 

underlying signals could be present that do not follow the same trend or due to the 

low signal intensity noise could reduce the magnitude of difference between sample 

types. 

 

Box plots (Figure 6.18) for 8.178-8.200 ppm and 8.200-8.229 ppm bins show sample 

N122 was more extreme than 1.5 times the interquartile range beyond the upper 

quartile as it was for two of the three UDP-GlcNAc and UDP-GalNAc containing 

regions. It can be tentatively speculated that signals could be from metabolites 

related to glycolysis. 
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6.1.1.2 Evaluation of Breast Cancer Severity 

 

6.1.1.2.1 Analysis of Whole Spectrum 

 

Further to discriminating between Tumour and Normal samples, breast cancer 

grade was investigated in an attempt to reveal metabolic markers of disease 

severity. 

 

PCA of PQ normalised data produced a one component model (R2X = 0.387 and 

Q2X= 0.174) when Tumour samples alone were included. Scores and loadings plots 

are shown in Figure 6.19 and Figure 6.20, respectively. 

 

 
Key: grade =  1,  2 and   3 

Figure 6.19 PCA scores plot for aqueous extract Tumour samples. Samples 
coloured according to tumour grade. 
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Figure 6.20 PCA loadings plot corresponding to the model displayed in Figure 6.19. 
 

No distinction in scores space based on tumour grade was observed. Although 

many studies have identified metabolic differences between tumour and non-

tumour breast tissue samples very few have reported differences between tumour 

grades. This could be due to composition of the tissue because the composition is 

linked with levels of metabolites.(136,141) For tumours of the same grade the cancer 

cell percentage has been reported to vary from 0% to over 50%. Histopathological 

analysis was not possible for this study but if a similar observation was present for 

all grades this could explain why no separation between samples based on grade 

was present. Hilvo et al.,(219) using LC-MS, showed phospholipids were increased in 

grade 3 samples compared to those in the combined grade 1 and 2 group but 

triglycerides were unchanged and no change was observed for either lipid species 

between grade 1 and 2 samples. In one of the first tissue MAS studies Cheng et 

al.(137) indicated lactate and PCho increased in grade 3 compared to grade 2 

samples through an elevation in the lactate:choline and PCho:choline ratios. For 

this study, although lactate (1.329 and 4.112 ppm) and PCho and GPC (3.228 ppm) 

containing bins were shown to be highly discriminatory between samples with 

levels significantly higher in Tumour samples, correlation was not present with 

tumour grade.  
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Although metabolites were not identified that were reflective of tumour grade 

investigation ensued to determine whether there was a connection between 

Tumour sample grade and the paired Normal sample. For example, whether both 

paired samples were in the same scores space relative to other samples of the same 

type or whether positioning in scores space of Normal samples was dependent on 

the grade of the Tumour counterpart. Figure 6.21 shows the scores plot whilst the 

loadings plot (data not shown) was the same as Figure 6.5 (model statistics related 

to this figure apply). Samples T116, N6876 and N132 were included to show 

positions relative to other samples despite not having a paired sample. 

 

 

Key: shape -  Tumour and  Normal; grade =  1,  2 and   3 

Figure 6.21 PCA scores plot for aqueous extract samples. Tumour samples 
coloured according to tumour grade and Normal samples coloured according to 
the grade of Tumour counterpart. R2X = 0.311 and 0.184, Q2X = 0.171 and 0.151 for 
PC 1 and PC 2, respectively. 
 

No pattern is apparent in scores space between paired Tumour and Normal 

samples. Normal samples do not show a metabolite profile that is related to Tumour 

sample grade and through non-clustering of Normal samples coloured the same in 

Figure 6.21, grade of the paired Tumour sample cannot be estimated, i.e. a raised or 

reduced metabolite(s) level in Normal samples does not indicate corresponding 

Tumour sample grade. Additionally, using PLS-DA, models were not able to be 

generated for the data used in the above two PCA models. 
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6.1.1.2.2 Analysis Excluding Lactate 

 

Lactate has been shown to be significantly increased in Tumour samples compared 

to Normal samples but different grades of Tumour samples have not been 

distinguished when lactate signals have been included. It was hypothesised that 

exclusion of lactate (1.314-1.374 ppm and 4.085-4.144 ppm) could reveal influential 

metabolites of smaller intensities. 

 

PCA generated a three component model (R2X(cum) = 0.683 and Q2X(cum) = 0.215) 

but separation based on grade was not observed (data not shown; PC 1 similar to 

Figure 6.19 and Figure 6.20 for scores and loadings plots, respectively). A PLS-DA 

model was not able to be created nor a PCA model incorporating Tumour and 

Normal samples. 

 

6.1.1.2.3 Analysis of Aromatic Region Only 

 

For reasons previously stated the aromatic region alone was analysed. PCA 

produced a one component model (R2X = 0.274 and Q2X= 0.071) when only Tumour 

samples were included. No separation based on tumour grade was observable 

(Figure 6.22). Nearly all of the bins identified when Tumour and Normal samples 

were analysed displayed the greatest modulus p[1] values in the loadings plot (data 

not shown). Two of the most prominent bins were centred at 6.000 ppm and 

7.958 ppm; both contained UDP-GlcNAc and UDP-GalNAc. The two metabolites 

have been associated with breast cancer progression.(135,218) Beckonert et al.(135) 

used self organising map (SOM) plots to visualise tissue extract data and these 

indicated UDP-GlcNAc and UDP-GalNAc were highest in grade 3 samples and lowest 

in control with grade 2 having an intermediate level though the observation was 

much closer to that of the former. Quantification and hence statistical significance 

of differences was not performed by the authors. 

 

Application of PLS-DA was made and a one PC model (R2X = 0.148, R2Y = 0.378 and 

Q2Y = 0.070) was built. Group 1 samples were separated from group 2 and 3 
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samples; there was no separation between groups 2 and 3 (Figure 6.23). The 

loadings plot (data not shown) indicated the unidentified signal at 8.188 ppm was 

elevated in grade 1 samples and UDP-GlcNAc and UDP-GalNAc (5.978 ppm, 

6.000 ppm and 7.598 ppm), adenosine 3',5'-diphosphate (6.134 ppm, 6.160 ppm 

8.265 ppm and 8.632 ppm), pyridoxine (7.675 ppm) and formate (8.452 ppm) were 

raised in grade 2 and 3 samples. The six metabolites were identified in the loadings 

plot (Figure 6.17) as strongly contributing to Tumour and Normal samples’ scores 

positions.  

 

PLS-DA was repeated using two classes: grade 1 and grades 2 and 3 combined. The 

scores and loadings plots of the one PC model (R2X = 0.152, R2Y = 0.727 and 

Q2Y = 0.264) were not shown due to the similarity when three classes were used.  

 

 
Key: grade =  1,  2 and   3 

Figure 6.22 PCA scores plot of the aromatic region for aqueous extract samples of 
Tumour samples. Coloured according to tumour grade. 
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Key: grade =  1,  2 and   3 

Figure 6.23 PLS-DA scores plot of the aromatic region for aqueous extract samples 
of Tumour samples. Classed according to tumour grade. 
 

Univariate analysis was performed to determine whether levels of metabolites were 

significantly different between grade 1 and grades 2 and 3 combined. Box plots 

(Figure 6.24) provided an overview of data from the two classes and Table 6.7 

concluded whether any difference was statistically significant. Before correction for 

multiple testing adenosine 3',5'-diphosphate (8.619-8.647 ppm) was significantly 

increased in grade 2 and 3 samples compared to grade 1 samples but after 

correction the difference was no longer statistically significant. There was no 

difference between classes for all other bin integral values tested.  

 

‘Leave-one-out’ cross-validation was performed to test whether PLS-DA overfitted 

the data (Table 6.8). Although seven of nine (78%) grade 2 or 3 samples were 

correctly predicted with five of those having a Y-predicted value of over 0.70, only 

one of four (25%) grade one samples were correctly predicted and the Y-predicted 

value for that sample was only 0.557. Figure 6.25 shows many permuted models for 

the ‘grades 2 and 3 combined’ class to have higher R2Y and Q2Y values than the 

original model. The intercept values of the regression lines for R2Y and Q2Y are 

0.586 and -0.058, respectively. The R2Y value is much greater than 0.4 so it is 

indicated that the model has overfitted the data thus furthering the implication 

from ‘leave-one-out’ cross validation. The permutation testing plot for the control 

-0.5

0.0

0.5
t[

1]

T7428

T6758

T7242

T023

T040

T7178

T7388

T014

T015

T122 T007

T116

T093

-3 SD

-2 SD

2 SD

3 SD

SIMCA-P+ 12.0.1 - 2013-01-06 16:20:46 (UTC+0) 



181 
 

class is not shown but with R2Y and Q2Y intercept values of 0.582 and -0.053, 

respectively, the same conclusion was made. Being unable to validate the model 

would explain why no significant differences between classes were observed. Using 

PQN a PCA model was not able to be built when all samples were included.  

 

It is concluded that there is no evidence to suggest a difference between 

metabolite levels of samples with different tumour grades. 
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a)  b)  

c)  d)  

e)  f)  

g)  h)  

  
Figure 6.24 Box plots of aromatic region integrals for grade 1 (green filled box) and 
grade 2 and 3 combined (pink filled box) Tumour samples. * = samples more 
extreme than 1.5 times the interquartile range beyond the upper quartile, 
coloured as per filled box, with sample label. 

 



 
 

Table 6.7 Summary of Tumour sample data regarding mean integral differences of aromatic region bins between grade 1 and grades 2 and 3 
combined. 

Identified Bin [centre] 

(ppm) 

Bin Range 

Tested (ppm) 

Major Metabolite Data 

Distribution  

p-value Mean Integral 

Conclusion Uncorrected Corrected   

5.973-5.985 [5.978] 
5.973-6.015 UDP-GlcNAc and UDP-GalNAc Non-normal 0.106 0.243 No difference 

5.985-6.015 [6.000] 

6.124-6.146 [6.134] 
6.124-6.175 Adenosine 3',5'-diphosphate Normal 0.139 0.243 No difference 

6.146-6.175 [6.160] 

7.661-7.690 [7.675] 7.661-7.690 Pyridoxine Non-normal 0.260 0.320 No difference 

8.178-8.200 [8.188] 8.178-8.200 Unknown Normal 0.320 0.320 No difference 

8.251-8.280 [8.265] 8.251-8.280 Adenosine 3',5'-diphosphate Normal 0.057 0.200 No difference 

8.438-8.468 [8.452] 8.438-8.468 Formate Normal 0.284 0.320 No difference 

8.619-8.647 [8.632] 8.619-8.647 Adenosine 3',5'-diphosphate Normal 0.028 0.196 No difference 

 

1
8

3
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Table 6.8 ‘Leave one out’ cross-validation of the PLS-DA model in Figure 6.23. 

Sample 

Excluded 

Number of 

Components 
R2X(cum) R2Y(cum) Q2Y(cum) 

Y-Predicted* 

1 2 or 3 

T7178 3 0.506 0.918 0.338 -0.107 1.107 

T7388 3 0.493 0.926 0.293 0.292 0.708 

T7428 1 0.157 0.739 0.260 0.274 0.726 

T6758 1 0.165 0.732 0.271 -0.085 1.085 

T7242 1 0.172 0.768 0.411 0.728 0.272 

T122 1 0.175 0.673 0.325 0.304 0.696 

T007 3 0.499 0.899 0.118 0.296 0.704 

T023 1 0.179 0.701 0.208 -0.089 1.089 

T014 1 0.153 0.784 0.272 0.505 0.495 

T015 1 0.169 0.716 0.228 0.346 0.654 

T116 1 0.153 0.812 0.211 0.323 0.677 

T040 1 0.157 0.750 0.249 0.400 0.600 

T093 3 0.506 0.917 0.193 0.557 0.443 

*A sample was regarded as belonging to a grade by having a Y-predicted value >0.50. 

Incorrect classification is represented by red shading and correct by pink, orange or green, 

corresponding to a Y-predicted value of <0.60, 0.60-0.70 or >0.70, respectively. 

 

 
Key:  R2Y and  Q2Y 

Figure 6.25 Permutation testing plots for the ‘grades 2 and 3 combined’ class in 
the PLS-DA model shown in Figure 6.23. The R2Y and Q2Y intercept values of the 
regression lines are 0.586 and -0.058, respectively. 
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6.1.1.3 Investigation of Processing Time 

 

The time that tissue samples are not in the frozen state must be kept to a minimum 

both at the time of collection and processing.(51) Regarding the latter, a number of 

steps were taken to ensure the extraction procedure adhered to this and was 

consistent. The samples were still frozen upon first contact with organic extraction 

solvents as stipulated by Beckonert et al.(51) but one variable that could not be 

controlled was the time required to ensure as much as possible of the sample was 

homogenised in a suitable timeframe due to variation in size and composition. 

Enzymatic changes can occur rapidly and levels of certain metabolites can alter on a 

millisecond timescale.(51) 

 

To test the effect of variable homogenisation time a large sample (T6758) was 

processed as normal. Immediately after the sample was placed on ice following all 

solvent addition steps non-homogenised tissue was removed and the extraction 

procedure repeated. The processing steps between the end of homogenising and 

tissue removal was approximately two minutes.  

 

Both samples were included in PCA. The samples were positioned very closely in 

scores space both in PC 2 versus PC 1 plot (data not shown; very similar to Figure 

6.4) and PC 3 versus PC 2 plot (Figure 6.26). For the three PC model R2X(cum) was 

0.604 and Q2X(cum) equalled 0.324. T6758L was not used in any other analysis. 

 

The closeness in scores space indicates the time taken for homogenisation due to 

variance in sample size and consistency does not impact strongly on the aqueous 

extraction profile and consistency of homogenisation is a more important factor. 
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Key:  Tumour and  Normal 

Figure 6.26 PCA scores plot coloured according to tissue type for aqueous extract 
samples showing the second and third model components. R2X = 0.179 and 0.127, 
and Q2X = 0.172 and 0.084 for PC 2 and PC 3, respectively. ‘L’ at the end of the 
tissue sample code denotes the sample with the longer processing time. 
 

6.1.2 Lipophilic Extract Analysis 

 

Regions pertaining to the solvent signals of methanol (3.321-3.450 ppm) and 

chloroform (7.403-7.594 ppm) were removed and PCA of sum normalised data 

performed initially. These signals are shown on a typical spectrum in Figure 6.27. A 

variety of sources were used to identify metabolite signals.(103,135,142,220-223)  
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Figure 6.27 1H-NMR spectrum of tissue lipophilic extracts from a Normal sample. 
a) Whole spectrum, b) expansion of 3.1-6.5 ppm region. The x-axis is chemical shift 
in ppm. DAGPLs = diacylglycerophospholipids  
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6.1.2.1 Evaluation of Breast Cancer Occurrence 

 

PCA was performed and a two PC model (R2X(cum) = 0.821 and Q2X(cum) = 0.735) 

was generated with scores and loadings plots shown in Figure 6.28 and Figure 6.29, 

respectively. 

 

 
Key:  Tumour and  Normal 

Figure 6.28 PCA scores plot for lipophilic extract samples using 0.02 ppm variable 
bins coloured according to tissue type. Samples most remote from the majority 
are labelled.  
 

 

Figure 6.29 PCA loadings plot corresponding to the model displayed in Figure 6.28. 
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Table 6.9 shows the bins that had a positive or negative p[1] value greater than 0.15 

and were the most influential regarding separation of samples along PC1. One 

Normal and four Tumour samples were clearly separated from the other 23 samples 

in this component. The high R2X value of 0.607 indicated the PC captured a large 

amount of the total variance of the data.  

 

Table 6.9 Identity of lipids causing separation of samples in Figure 6.28. 

Bin Centre 

(ppm) 
Lipid 

Lipid Level in Five Most 

Separated Samples in 

PC 1 Scores Space 

0.895 CH3 fatty acid ↓ 

1.019 C-19 CH3 cholesterol ↑ 

1.275 

Bulk CH2 fatty acid ↓ 
1.299 

1.323 

1.353 

1.630 β-CH2 fatty acid ↓ 

2.027 Allylic CH2 fatty acid ↓ 

2.350 α-CH2 fatty acid ↓ 

3.215 Choline phospholipids ↑ 

 

With only four Tumour samples separated from the majority of Normal samples 

little information could be gained about potential metabolic differences between 

cancerous and non-cancerous tissue. A number of strategies to resolve this were 

employed including PQN, removal of select samples, removal of heavily influential 

bins and use of smaller bin size. 

 

Employing PQN rather than sum normalisation on the same pre-normalised data 

generated a two PC model with R2X(cum) = 0.938 and Q2X(cum) = 0.914. The scores 

plot is shown in Figure 6.30 and loadings plot in Figure 6.31. 
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Key:  Tumour and  Normal 

Figure 6.30 PCA scores plot for lipophilic extract samples using PQN coloured 
according to tissue type. Samples most remote from the majority are labelled. 

 

 

Figure 6.31 PCA loadings plot corresponding to the model displayed in Figure 6.30. 
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the five separated samples were less prominent using PQN. In conclusion, PQN 

alone did not enhance knowledge of potential metabolic changes between tissue 

types compared to sum normalisation but unless specified otherwise PQN data was 

used in further work due to its potential advantages.(69) 

 

The next approach was to remove Tumour samples 040, 7178, 7388 and 7428 and 

Normal sample 6876. The first two PCs of the six component model 

(R2X(cum) = 0.968, Q2X(cum) = 0.877) are exhibited in the scores plot shown in 

Figure 6.32. The complementary loadings plot was very similar to Figure 6.29, for 

which no samples were removed, so is not shown. Approximately, an amplification 

of the centre of the scores plot shown in Figure 6.30, i.e. where 23 of the 28 

samples were located before any were excluded, is exhibited in Figure 6.32. 

Removal of five samples still resulted in the same bins influencing the position of 

samples in scores space and similar relative positions of the remaining samples.  

 

 
Key:  Tumour and  Normal 

Figure 6.32 PCA scores plot showing the first two model components for lipophilic 
extract samples using PQN excluding the five samples with largest scores values in 
Figure 6.28. Coloured according to tissue type. R2X = 0.649 and 0.227, and Q2X = 
0.528 and 0.270 for PC 1 and PC 2, respectively. 
 

The spectrum, as shown in Figure 6.27, contains a large resonance from bulk 

methylene protons at 1.30 ppm and also a number of very small intensity signals. 
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Excluding the aforementioned large resonance (1.200-1.458 ppm), which accounted 

for 59-71% of the total spectral integral, would increase the influence of all other 

signals when repeating analysis. The loadings plot of the two PC model (R2X(cum) = 

0.886 and Q2X(cum) = 0.855) in Figure 6.33 shows an amplification of the p[1] values 

of bins compared to the same bins in Figure 6.31, for which the 1.200-1.458 ppm 

region was not excluded. The complementary scores plots were similar: data not 

shown for exclusion of bulk methylene resonance. 

 

 

Figure 6.33 PCA loadings plot for lipophilic extract samples using PQN excluding 
1.200-1.458 ppm.  
 

Removal of the bulk methylene region provided little extra information on 

influential bins. To allow assessment of small intensity signals all of the large signals 

were excluded. Large signals were defined as being visible in the spectrum in Figure 

6.27a and accounted for 89.7-99.3% of normalised integrals of samples. Over 99% of 

the lipophilic extracts spectrum has been attributed to triglycerides.(135) The five 

labelled samples in Figure 6.28 possessed the five greatest amounts of small signals 

(4.9-10.3%) thus providing numerical evidence as to why scores plots indicated the 

five samples contained lesser amounts of triglyceride signals.  

 

The same five samples were still separate from the majority in PC 1 though T014 

was additionally present in similar scores space (Figure 6.34). The complementary 
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loadings plot of the two PC model (R2X(cum) = 0.637 and Q2X(cum) = 0.402) is 

displayed in Figure 6.35. 

  

 
Key:  Tumour and  Normal 

Figure 6.34 PCA scores plot for lipophilic extract samples excluding large signals. 
Coloured according to tissue type. Samples most remote from the majority are 
labelled. 
 

 

Figure 6.35 PCA loadings plot corresponding to the model displayed in Figure 6.34. 
 

Tumour samples 014, 040, 7178, 7388 and 7428 exhibited raised levels of signals in 

bins centred at 3.103, 3.595, 4.007 and 4.037 ppm. Signals in the first bin were 

attributed to –CH2NH2 head group of ethanolamine phospholipids, the second bin to 

–CH2N– head group of choline phospholipids and the third and fourth bins to both 
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glycerol C-3 methylene proton of diacylglycerophospholipids (DAGPLs) and –OCH2 

head group of ethanolamine phospholipids.(220) N6876 contained greater levels of 

C-18 and C-19 CH3 cholesterol at 0.694 and 1.019 ppm,(220) respectively, and an 

unidentified metabolite at 1.843 ppm. C-18 CH3 cholesterol has been shown to be 

raised in grade 3 versus non-tumour breast cancer tissue.(135) Assessment 

concerning sample grade will be discussed in section 6.1.2.2.2. Assignment of signals 

that were decreased in the aforementioned six samples was unable to be made. 

PLS-DA scores plot (Figure 6.36; one PC model, R2X = 0.395, R2Y = 0.324 and 

Q2Y = 0.196) identified the same five Tumour samples as separate from the majority 

of samples but N6876 was no longer distinctly positioned in scores space, being 

closer to the majority of samples rather than the five separated Tumour samples. 

The four bins previously discussed as increased in the five Tumour samples were 

again highlighted in the loadings plot (not shown) and likewise those bins associated 

with a decreased level. 

 

 
Key:  Tumour and  Normal 

Figure 6.36 PLS-DA scores plot for lipophilic extract samples excluding large 
signals. Classed according to tissue type. Samples labelled as per Figure 6.34. 
 

Similar results for the majority of samples in terms of PCA scores space separation 

were observed when including and excluding large signals. A previous study(135) 

concluded self-organising map (SOM) plots showed similar results when sum 

normalisation was performed for the whole spectrum and non-triglyceride regions, 

which accounted for less than 1% of the total spectral integral. Although N6876 
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contained a greater amount of low intensity signals along with five Tumour samples 

than the majority, the composition of these signals was shown to be different 

between the samples in question. 

 

The six labelled samples in Figure 6.34 were excluded from PCA to further 

investigate potential separation between the other 22 samples. A one component 

model (R2X = 0.262 and Q2X = 0.134) was generated but the scores plot (Figure 6.37) 

did not show separation between Tumour and Normal samples. However, it is 

interesting to note that nine of the 14 Normal samples had the greatest t[1] values 

with six clearly separated from Tumour samples. The loadings plot (Figure 6.38) 

indicated levels of C-18 CH3 cholesterol (0.694 ppm), –CH2N– head group of choline 

phospholipids (3.595 ppm) and glycerol C-3 methylene proton of DAGPLs and –OCH2 

head group of ethanolamine phospholipids in the bin centred at 4.000 ppm were 

reduced in the nine aforementioned Normal samples. This observation will be 

investigated in context of breast cancer grade in Section 6.1.2.2.2. A PLS-DA model 

was not able to be generated. 

 

 

Key:  Tumour and  Normal 

Figure 6.37 PCA scores plot for lipophilic extract samples excluding large signals 
and the (labelled) six samples most remote from the majority in Figure 6.34. 
Coloured according to tissue type. 
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Figure 6.38 PCA loadings plot corresponding to the model displayed in Figure 6.34. 

 

Composition of the same lipid species can affect signal positions in spectra, for 

example bulk CH2 of fatty acid resonance appears further upfield with increased 

HDL lipoproteins, the reverse is applicable to increased VLDL lipoproteins.(128,224) It 

was postulated that use of small bins may provide information into lipid 

composition. 0.001 ppm fixed bins were employed but a similar outcome ensued in 

terms of position of samples in the scores plot (Figure 6.39). Smaller bins allowed 

further insight into which part of the CH2 resonance discriminated samples primarily 

in PC 2 (Figure 6.40).  

 

The bin centred at 1.275 ppm, range 1.261-1.291 ppm, discriminated between 

samples in PC 2 when 0.02 ppm variable bins were used but use of 0.001 ppm fixed 

bins showed many bins in the 1.26 ppm region caused the trend and bins in the 

1.27-1.28 ppm region aided separation along PC 1. Spectral investigation showed 

samples with a high PC 2 scores value generally displayed the maximum intensity 

part of the resonance at the highest upfield chemical shift. Tumour and Normal 

samples are not separated based on this observation. As previously, part of the CH2 

resonance around 1.32 ppm and choline phospholipids had high p[1] modulus 

values. There is potential to indicate predominant density, either high or low, of 

lipoproteins relative to other samples in the data set by using small bins though 

peak shifting, for instance due to difference in pH and small variation in 
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temperature between samples,(225) needs to be fully accounted for and 

deconvolution of the signal is advocated to accurately determine the amount of 

different density lipoproteins.(224) 

 

 
Key:  Tumour and  Normal 

Figure 6.39 PCA scores plot for lipophilic extract samples using 0.001 ppm fixed 
bins. Coloured according to tissue type. Samples most remote from the majority 
are labelled.  
 

 

Figure 6.40 PCA loadings plot corresponding to the model displayed in Figure 6.39. 
Selected bins are labelled. 
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6.1.2.2 Evaluation of Breast Cancer Severity 

 

6.1.2.2.1 Analysis of Whole Spectrum 

 

In an analogous manner to aqueous extracts, breast cancer grade was investigated 

in an attempt to reveal metabolic markers of disease severity. 

 

PCA of PQ normalised data produced a two component model (R2X(cum) = 0.964 

and Q2X(cum) = 0.945) when Tumour samples alone were included: scores plot 

shown in Figure 6.41 but loadings plot not shown due to similarity with Figure 6.31, 

for which Normal samples were included. 

 

 
Key: grade =  1,  2 and   3 

Figure 6.41 PCA scores plot for lipophilic extract Tumour samples. Samples 
coloured according to tumour grade. Samples most remote from the majority are 
labelled.  
 

The four Tumour samples that were most remote from the majority along PC 1 

when Normal samples were included in analysis were still separated. That two grade 

3 samples (T023 and T7242) had high positive scores values indicated no separation 

based on tumour grade. One sample was ER, PR and DCIS positive and HER negative, 

which follows the status of descriptors for almost all samples for which data was 

recorded. The other sample was also ER and PR positive but status of DCIS and HER 
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was not recorded. Based on these four tumour descriptors there is no reason to 

explain the positioning of the two samples. Exclusive of these two samples tentative 

separation could be viewed, with the progressive nature of tumour severity being a 

possible reason for distinction within grade 2 samples, but grounds for exclusion of 

the two grade 3 samples in question do not exist. 

 

As per aqueous extracts, investigation ensued to determine whether there was a 

connection between Tumour sample grade and the paired Normal sample. Figure 

6.42 shows the scores plot; model statistics apply from previous work related to 

Figure 6.30 as does the loadings plot shown in Figure 6.31. Samples N6758 and 

N6876 were included to show positions relative to other samples despite not having 

a paired sample. 

 

 
Key: shape -  Tumour and  Normal; grade =  1,  2 and   3 

Figure 6.42 PCA scores plot for lipophilic extract samples. Tumour samples 
coloured according to tumour grade and Normal samples coloured according to 
the Tumour counterpart. 
 

No pattern is apparent in scores space between paired Tumour and Normal samples 

though for each of 007, 023 and 7242 the paired samples are located in close 

proximity to each other; positioning of Tumour samples for the last two has recently 

been discussed. As also concluded from aqueous extracts analysis, adjacent tumour 
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free (Normal) tissue does not show a metabolite profile that is related to Tumour 

sample grade. 

 

6.1.2.2.2 Analysis of Spectra Excluding Large Signals 

 

Using PCA a one PC model (R2X = 0.499 and Q2X = 0.367) was built for the 13 

Tumour samples. Figure 6.43 shows the scores plot whilst the loadings plot has been 

omitted due to similarity with Figure 6.38. T014 belongs to grade 2 class and is more 

distant from grade 1 samples than when the whole spectrum was used (Figure 6.41) 

but the two grade 3 samples are still positioned in scores space that is populated by 

grade 1 samples. 

 

If a relationship between Normal samples and grade of Tumour samples was 

present it would be expected that groups of Normal samples in scores space would 

be present dependent on the grade of the paired Tumour sample irrespective of the 

positioning of the Tumour sample. Figure 6.44 does not show this observation 

indicating the relationship is not present. Samples N6758 and N6876 were included 

to show positions relative to other samples despite not having a paired sample. The 

scores plot in Figure 6.35 applies and associated model statistics. 

 

As shown by Figure 6.37, the nine samples with greatest positive t[1] values when 

the six samples most remote from the majority were removed were Normal 

samples but grade of the corresponding Tumour sample (Figure 6.45) is not related 

to this observation. Four, two and three samples are associated with grades 1, 2 and 

3, respectively. The scores plot also shows more clearly than Figure 6.44 that 

positioning of grade 1 Tumour samples and counterpart Normal samples does not 

appear to be related. 
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Key: grade =  1,  2 and   3 

Figure 6.43 PCA scores plot for lipophilic extract Tumour samples excluding large 
signals. Samples coloured according to tumour grade. 
 

 
Key: shape -  Tumour and  Normal; grade =  1,  2 and   3 

Figure 6.44 PCA scores plot for lipophilic extract samples excluding large signals. 
Tumour samples coloured according to tumour grade and Normal samples 
coloured according to the Tumour counterpart.  
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Key: shape -  Tumour and  Normal; grade =  1,  2 and   3 

Figure 6.45 PCA scores plot for lipophilic extract samples excluding large signals 
and the (labelled) six samples most remote from the majority in Figure 6.44. 
Tumour samples coloured according to tumour grade and Normal samples 
coloured according to the Tumour counterpart. 
 

PLS-DA models were not able to be built for data used in the above three analyses. 

PCA of either whole spectra or small intensity signals did not provide information on 

metabolite changes that were related to breast cancer severity as assessed through 

tumour grade.  

 

6.2 Conclusions 

 

For proliferation cancer cells require large quantities of lipids and macromolecules, 

which are mostly synthesised from intermediates of glycolysis and glutaminolysis. 

Analysis of aqueous extracts from breast tissue biopsies revealed a number of 

metabolites were significantly up- or down-regulated between Normal and Tumour 

samples. In accordance with the Warburg effect, glucose was decreased and lactate 

and alanine increased in Tumour samples. Glutamine, glutamate, GPC, PCho, 

glycerophospholipids, taurine, creatine and as yet unidentified signals were raised in 

Tumour samples. Glycolysis derived UDP-GlcNAc and UDP-GalNAc were identified as 
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signals increased levels predominantly of head groups of various phospholipids 

were observed in Tumour samples in the aforementioned sub-group. Normal and 

Tumour samples, however, could not be discriminated either inclusive or exclusive 

of the sub-group of samples.  

 

Breast cancer severity as assessed through tumour grade did not correlate with 

differences in levels of metabolites in analyses of either aqueous or lipophilic 

extracts. Normal samples did not reveal the propensity of complementary Tumour 

samples in terms of grade nor was there correlation between metabolite levels of 

paired samples. 

 

Results from both aqueous and lipophilic extracts showed the importance of 

normalisation and scaling methods. 

 

The hospital site of sample collection, as inferred throughout by no separation of 

samples based on length of code identifiers (which was different for the two 

hospital sites) was not relevant to the findings of this study. This also applied to the 

source of samples, either BCCTB or direct, collected from the same site. 

 

This is the first study, to the author’s knowledge, that has used de facto pattern 

recognition techniques, i.e. PCA and PLS-DA, for analysis of both aqueous and 

lipophilic aqueous extracts of breast tissue. The sample cohort is very well defined 

in terms of menopausal status and subtype, grade and DCIS status of the tumour; 

due to heterogeneity of the disease reducing factors that can affect the outcome of 

results is very important especially in small sample number metabolomics studies. 

Conclusions made here with regards to relatively homogeneous breast cancer could 

be supposed to other statuses of the disease, due to certain common features, as 

hypotheses to be verified or disproved.  

  



204 
 

Chapter 7. Conclusions 
 

1H-NMR based metabolomics has successfully been applied to the field of breast 

cancer. GC analysis of amino acid concentrations has also been implemented. 

 

7.1 Identification of Breast Cancer Status using Plasma and Urine  
 

Metabolomics analysis of plasma or urine was unable to identify differences 

between patients with breast cancer and those who exhibited non-cancerous breast 

abnormalities.  

 

Glucose, lactate and lipids were the most abundant metabolites in plasma. Exclusion 

of glucose due to levels being highly affected by diet did not result in improved 

separation between samples based on a number of descriptors. 

 

Known potential confounding factors reported in the patients’ medical records were 

accounted for as much as possible. Individually, none were shown to be the major 

contributor to positioning of samples in multivariate space. When differences in 

BMI, age and smoking status were minimised together (for the whole spectrum) 

tentative separation was observed between case and control samples based on 

increased levels of lipids and lactate and a decreased level of glucose for the former. 

A larger number of samples that conformed to strict criteria for all three of the 

variables would be needed to validate the observation.  

 

Analysis of urine from the same cohort revealed that many patients consumed 

acetaminophen that was not recorded in their medical records. Neither exclusion of 

the signals pertaining to acetaminophen and acetaminophen by-products nor the 

exclusion of samples containing the signals revealed information to determine case 

from control samples. 
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Unlike plasma, minimising BMI, age and smoking status did not reveal metabolites 

that potentially distinguished between those afflicted with breast cancer and non-

afflicted patients. 

 

Amino acid (AA) concentrations were quantified using GC for plasma aliquots 

obtained from the same cohort as for the NMR analysis. Of the 26 AAs extracted 

using a commercially available system only nine were used in analysis due to 

presence at insufficient concentration for quantification or unsatisfactory 

reproducibility of the other AAs. Significant differences in the AA levels were not 

present between case and control samples. 

 

7.2 Identification of Breast Cancer Tumour Descriptors using Plasma 
and Urine  

 

Amongst those afflicted by breast cancer, the grade of tumour was not able to be 

distinguished using either plasma or urine. This was true of all tumour types and the 

preponderant type, invasive ductal carcinomas. Samples were not differentiated 

based on ER or PR scores or HER2 status. For urine, whereby all three descriptors 

were combined, tumour subtype was not responsible for the positioning of samples 

in scores space. 

 

Using GC for quantification of AAs, tentative separation was observed between 

certain tumour grades. A validated PLS-DA model indicated concentrations of the 

seven AAs present in all samples (ALA, GLY, VAL, LEU, ISO, PRO and PHE) were 

greater in grade 2 samples compared to grade 1 samples. Univariate analysis 

revealed that PRO was decreased in the latter grade. However, a grade two sample 

had much a greater concentration of PRO and upon removal the difference was no 

longer significant. It must be stressed that there was no justification for this action 

because the concentrations in all three replicates were comparable but highlights 

the influence that one sample can have on small data sets.  
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7.3 SHY Analysis of Plasma and Urine Data Related to Breast Cancer  

 

Tentative correlations were revealed between full resolution plasma and urine data 

when SHY was applied that otherwise would not have been identified.  

 

Pearson’s analysis was susceptible to outlying samples. Broad, unique singlets in the 

urine range 8.123-8.579 ppm for a case sample caused positive correlation with two 

plasma regions. The origin of the urine signals was not able to be established. For 

control samples, many areas of positive correlation were present that were related 

to the signal at 3.15 ppm in plasma. The signal was attributed to DMSO2, a common 

dietary supplement, and one sample contained a substantially greater amount than 

any other. However, it was revealed that for case samples glycerol in plasma was 

positively correlated to (an) unidentified urine species within the range 4.259-

4.296 ppm and was confirmed by the more rigorous Spearman’s analysis. 

 

Spearman’s analysis also revealed that the aforementioned urine area was 

negatively correlated with the upfield section of lipid signals. This indicates a 

negative correlation between glycerol and lipids. It was speculatively hypothesised 

that levels of HDL, which exhibits the greatest upfield shift and contains lesser 

amounts of triglycerides compared to LDL and VLDL, were related to glycerol due to 

the connectivity between glycerol and glycerides and hence triglycerides. Negative 

association has been observed between triglycerides and HDL-cholesterol in CVD 

but patients’ medical records do not contain information related to this affliction. 

 

7.4 Identification of Breast Cancer Status and Tumour Descriptors 

using Tissue Extracts 

 

Due to the heterogeneity of breast cancer reducing factors that can affect the 

outcome of results is very important especially in small sample number 

metabolomics studies. The sample cohort is very well defined in terms of 

menopausal status, DCIS presence and subtype and grade of the tumour.  
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7.4.1 Aqueous Extracts  

 

Analysis of aqueous extracts from breast tissue biopsies revealed a number of 

metabolites that were significantly up-regulated or down-regulated in Tumour 

samples compared to Normal samples. Decreased glucose and increased lactate was 

present in Tumour samples, which is in accordance with the Warburg effect. The 

different levels were clearly visible from inspection of spectra. Alanine, glutamine, 

glutamate, GPC, PCho, glycerophospholipids, taurine, creatine and as yet 

unidentified signals were raised in Tumour samples. 

 

For proliferation, cancer cells require large quantities of lipids and macromolecules, 

which are mostly synthesised from intermediates of glycolysis and glutaminolysis; 

many metabolites are connected with the TCA cycle. 

 

Due to the small size of signals in the aromatic region compared to those in the 

aliphatic region, changes in signal intensity were not apparent in loadings space. 

Upon MVA of the aromatic region alone UDP-GlcNAc, UDP-GalNAc and unknown 

signals in the range 8.178-8.229 ppm were identified as elevated in Tumour 

samples. Glucose can undergo a series of reactions to form a moiety of UDP-GalNAc, 

which can be reversibly catalysed to UDP-GlcNAc. Acetyl CoA, another moiety, can 

be made from pyruvate, which is abundant due to increased glycolysis in Tumour 

cells. 

 

Grade of tumour could not be distinguished by levels of metabolites and there was 

no indicator of prediction from Normal samples of the grade of the paired Tumour 

sample. 

 

7.4.2 Lipophilic Extracts 

 

Five samples, four Tumour and one Normal, were distinct from other samples and 

dominated scores space. This was attributed to containing lower levels of α-, β-, 

allylic and bulk CH2 fatty acid and bulk methylene fatty acid whilst levels of choline 
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phospholipids were increased. Removing the five samples did not discriminate 

between Normal and Tumour samples. Neither removal of the bulk CH2 fatty acid 

region, which contributed to over half of the spectrum integral, or all of the large 

signals that accounted for approximately 90% of the spectrum integral separated 

Tumour from Normal samples. The same samples were still isolated and the Tumour 

ones were shown to contain increased levels of head groups of various 

phospholipids.  

 

Grade of tumour could not be distinguished by levels of metabolites and the grade 

of Tumour samples could not be indicated from the paired Normal samples. 

 

7.5 Further Work 

 

Verification of the findings that indicated a difference between groups of samples is 

required in a larger cohort, which is more representative of the patient population 

and reduces the impact of individual samples on the statistical significance of 

results. 

 

Confounding factors can obscure potential differences between classes of samples. 

A larger cohort could provide greater numbers of samples that are matched 

according to various parameters known to influence metabolomics studies or 

maintain similar numbers that are sourced from a more defined cohort. 

 

Breast cancer is a heterogeneous disease so determining whether the findings from 

the tissue extracts analysis, which used a well defined cohort in terms of tumour 

status, applied to other types of tumour would provide information on the extent to 

which the various types are different.  

 

In addition to collecting tumour and adjacent normal tissue samples, if less-invasive 

samples were obtained from the same patients, such as plasma and urine, SHY 

could be performed on multiple sample types. If covariances were identified 
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between extracts of tissue samples and biofluid samples the need to collect the 

tissue sample would be reduced. In addition to benefits to the patient, sample 

integrity would be easier to maintain because tissue samples require immediate 

snap-freezing and the processing steps for metabolomics studies are more involved. 

In this study, SHY revealed covariances between plasma and urine that included 

lipids and non-lipids, which indicated that there could be increased value for 

investigation into covariances between different biofluids and both lipophilic and 

aqueous tissue extracts. For SHY analysis of control samples, identification of the 

unknown urine metabolite that was shown to correlate with glycerol and lipids in 

plasma could aid interpretation of the metabolic pathways connecting the species. 

 

MS has greater sensitivity than NMR spectroscopy(45,52) but metabolite identification 

is not as universal.(52,53) Use of the former technique could reveal further differences 

in metabolite levels with SHY being employed to determine whether correlations 

were present between the two platforms, which could reveal information related to 

metabolic pathways.  

 

Due to SHY being in its infancy a reduction in the number of spurious covariances 

and the processing power required whilst retaining non-spurious covariances could 

result from establishing the optimum number of data points to be used.  
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Chapter 8. Experimental Methods 

 

8.1 NMR Sample Preparation 

 

Chemicals were purchased from Sigma-Aldrich Company Ltd. (Poole, Dorset, UK), 

unless otherwise stated. NMR tubes (S-5-500-7, Norell) were purchased from GPE 

Scientific Ltd. (Leighton Buzzard, Bedfordshire, UK). 

 

8.1.1 Samples for 1H-NMR Analysis 

 

8.1.1.1 Plasma Samples (Chapter 2) 

 

Samples were stored at -80oC before defrosting at room temperature. Samples were 

centrifuged (Hettich Mikro 120 (C1204) Centrifuge, angle rotor A1242) at 11,992 g 

for 5 minutes. 350 µl of plasma supernatant was added to 408 µl of deuterium oxide 

(D2O). The mixture was vortexed for 8 s before transferring 600 µl to a 5 mm NMR 

tube. Samples not analysed immediately were stored at 4oC for a maximum of 

1.5 hours. 

 

8.1.1.2 Urine Samples (Chapter 3) 

 

Samples were stored at -80oC before defrosting at room temperature. Samples 

were centrifuged (Hettich Mikro 120 (C1204) Centrifuge, angle rotor A1242) at 

11,992 g for 5 minutes. 460 µl of urine supernatant was added to 230 µl of 

phosphate buffer. 100 ml of stock phosphate buffer solution (pH 7.43) contained 

2.885 g sodium phosphate monobasic (Na2HPO4), 0.525 g sodium phosphate dibasic 

(NaH2PO4), 0.0172 g (1 mM) trimethylsilyl propanoic acid (TSP) and 0.0195 g (3 mM) 

sodium azide (NaN3) in 20 ml of D2O and 80 cm3 of ribonuclease (RNase) free water. 

The phosphate buffer was shaken thoroughly and placed in a sonicator, 

interspersed by shaking, until salts dissolved. The urine/phosphate buffer mixture 
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was vortexed for 8 s before transferring 600 µl to a 5 mm NMR tube. Samples not 

analysed immediately were stored at 4oC for a maximum of 1.5 hours. 

 

8.1.1.3 Tissue Extracts (Chapter 6) 

 

8.1.1.3.1 Separating Aqueous and Lipophilic Components 

 

Samples were stored at -80oC and surrounded by dry-ice during transferral 

(<2 minutes) to the processing laboratory. The frozen weight was recorded and the 

sample returned to the dry-ice. For samples >41 mg, 4 ml g-1 of methanol and 

0.85 ml g-1 of water were added. The volume to weight ratio was increased for 

samples ≤41 mg to provide a minimum of 200 µl and the same scaling factor applied 

to subsequent volumes of extraction solvents. Following homogenisation (Omni 

Tissue Homogeniser; Camlab, Over, Cambridgeshire, UK) at 35,000 rpm using a 

stainless steel probe and glass vial, the sample was vortexed for 5 s. 2 ml g-1 of 

chloroform was added and vortexed for 5 s. A further 2 ml g-1 of chloroform and 

2 ml g-1 of water were added and vortexed for 5 s. The sample was left on ice for 

15 minutes before centrifugation at 1,023 g for 15 minutes. The solutions separated 

into an upper methanol/water phase (with polar metabolites) and a lower 

chloroform phase (with lipophilic compounds) with protein and cellular debris 

between the two layers. The upper layer was removed and was snap frozen using 

N2. The lower layer was removed and transferred to a glass vial. 

 

8.1.1.3.2 Processing of the Aqueous Component 

 

Methanol and water were removed from the upper layer using a speed vacuum 

concentrator and the extracts stored at -80oC. The extracts were resuspended in 

680 µl of a 0.17% weight to volume solution of the sodium salt of TSP in D2O, 

vortexed for 5 sec and centrifuged at 11,992 g for 5 minutes. 600 µl was transferred 

to a 5 mm NMR tube. All samples were analysed immediately. 
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8.1.1.3.3 Processing of the Lipophilic Component 

 

Chloroform was removed from the lower layer under a stream of N2 and the 

extracts resuspended in 430 µl of deuterated chloroform (CDCl3; 99.8%), containing 

0.03% volume to volume of tetramethylsilane (TMS), and 215 µl of deuterated 

methanol (CD3OD; 99.8%; Eurisotop, Gif-sur-Yvette, Paris, France). The solution was 

stored at 4oC for a maximum of three days before centrifugation at 1,023 g for 5 

minutes and transferral of 600 µl to a 5 mm NMR tube. All samples were analysed 

immediately. 

 

8.2 NMR Data Collection 

 

All 1H-NMR spectra were acquired on a Varian Unity Inova 500 spectrometer (Varian 

Inc., Palo Alto, California, USA) operating at 499.97 MHz proton frequency, at 20oC. 

Samples were loaded into the probe and left for 5 minutes to allow temperature 

equilibration. 

 

8.2.1 CPMG Experiment (Chapter 2) 

 

The CPMG pulse sequence [RD – 90o – (τ – 180o – τ)n – acq] was used to obtain 

metabolic profiles for all plasma samples. The relaxation delay (RD) was 2 s, during 

which the water resonance was selectively saturated, τ was 1.5 ms and n was 150. 

For each spectrum 512 transients were collected into 16,384 pairs of data points 

with a spectral width of 8,000.00 Hz.  

 

8.2.2 1D NOESY Experiment (Chapter 3) 

 

The 1D NOESY pulse sequence [RD – 90o – t1 – 90o – tm – 90o – acq] was used to 

obtain metabolic profiles for all urine samples. The RD was 2 s, tm was 1.5 ms and t1 

was 3 µs. For each spectrum 512 transients were collected into 16,384 pairs of data 

points with a spectral width of 8,000.00 Hz.  
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8.2.3 Presaturation Experiment (Chapter 6) 

 

The presaturation (PRESAT) pulse sequence was used to obtain metabolic profiles 

for all tissue extracts. For each aqueous and lipophilic spectrum 512 and 256 

transients, respectively, were collected into 16,384 pairs of data points with a 

spectral width of 6,000.15 Hz. The RD was 0.5 s. 

 

8.3 NMR Spectral Processing 

 

All spectral data were processed using ACD Labs software 12.01 (Advanced 

Chemistry Development, Inc., (ACD/Labs), Toronto, Canada). An exponential line 

broadening was applied to each free induction decay (FID) prior to zero filling to 

65,536 points and Fourier transformation. The resulting spectra were phased, 

baseline corrected and referenced. Details of parameters are listed in Table 8.1 

 

Table 8.1 NMR spectral processing parameters 

Samples Pulse 

Sequence 

Line 

Broadening 

(Hz) 

Reference 

Compound Chemical Shift 

(ppm) 

Plasma CPMG 0.5 α-glucose 5.23(142) 

Urine 1D NOESY 0.5 TSP 0.000(142) 

Aqueous tissue 

extracts 

PRESAT 0.5 TSP 0.000(142) 

Lipophilic tissue 

extracts 

PRESAT 0.5 TMS 0.000(226) 

 

8.3.1 Additional NMR Data Processing for Multivariate Statistical Analysis 

 

8.3.1.1 Binning and Dark Regions 

 

Normalisation to constant sum and spectral binning was performed using ACD Labs 

software 12.01. All datasets were integrated into bins of 0.02 ppm width 

implementing 50% ‘looseness’, which allowed bin width to vary between 0.01 and 
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0.03 ppm. The software used an algorithm that simultaneously adjusted starting 

and final points of two adjacent bins to minimise the overall height of their borders 

resulting in bin divisions being more likely to occur at the edges of peaks. The 

lipophilic extract dataset was also binned using 0.001 ppm fixed widths. 

  

Prior to binning over a spectral range (Table 8.2), several dark regions were created 

for spectra from plasma (Table 8.3), urine (Table 8.4), aqueous tissue extracts (Table 

8.5) and lipophilic tissue extracts (Table 8.6) to exclude signals, such as from the 

water region, contaminants and certain metabolites, from subsequent MVA. 

 

Table 8.2 Spectral range for which binning was performed. 

Sample Range (ppm) 

Plasma 0.000-10.000 

Urine 0.150-10.000 

Aqueous tissue extracts 
0.210-10.000 

5.446-9.362  

Lipophilic tissue extracts 0.230-10.000 

 

Table 8.3 Dark regions used for the plasma spectra (Chapter 2).  

Dark Region 

(ppm) 

Excluded  Comment 

4.20-5.70 Water region  Variable water suppression 

efficiency 

3.18-3.94 Glucose Excluded later to remove 

influence from statistical 

models 
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Table 8.4 Dark regions used for the breast cancer urine spectra (Chapter 3). 

Dark Region 

(ppm) 

Excluded  Comment 

4.500-6.200 Water region and urea Variable water suppression 

efficiency 

2.143-2.200 

3.588-3.664 

3.883-3.926 

7.120-7.166 

7.300-7.386 

7.434-7.481  

Acetaminophen and acetaminophen 

by-products 

Excluded later to remove 

influence from statistical 

models 

3.034-3.064 

4.043-4.073 

Creatinine Excluded later to remove 

influence from statistical 

models 

3.954-3.984  

7.530-7.590 

7.611-7.662 

7.815-7.867 

Hippurate Excluded later to remove 

influence from statistical 

models 

 

Table 8.5 Dark regions used for the breast cancer aqueous tissue extracts spectra 
(Chapter 6). 

Dark Region 

(ppm) 

Excluded  Comment 

2.520-2.750  Citrate Possible contaminant from 

collection tube 

3.341-3.371  Methanol Extraction solvent 

4.750-5.000 Water region Variable water suppression 

efficiency 

1.314-1.374 

4.085-4.144 

Lactate Excluded later to remove 

influence from statistical 

models 
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Table 8.6 Dark regions used for the breast cancer lipophilic tissue extracts spectra 
(Chapter 6). 

Dark Region 

(ppm) 

Excluded  Comment 

3.321-3.450  Methanol Extraction solvent 

7.403-7.594  Chloroform Extraction solvent 

1.200-1.458 Bulk CH2 fatty acid Excluded later to remove 

influence from statistical 

models 

0.796-0.961 CH3 fatty acid 

Excluded later to remove 

influence from statistical 

models 

1.117-1.787 Bulk CH2 and β-CH2 fatty acids 

1.932-2.191 Allylic CH2 fatty acid 

2.268-2.446 α-CH2 fatty acid 

2.701-2.964 Diallylic CH2 fatty acid 

3.147-3.450 Methanol and choline phospholipids 

4.083-4.758 glycerol C-1 methylene protons of 

diacylglycerophospholipids 

5.056-5.606 Olefinic CH fatty acid and glycerol C-2 

proton of diacylglycerophospholipids 

7.210-7.725 Chloroform containing region 

 

8.3.1.2 Probabilistic Quotient Normalisation 

 

Urine (Chapter 3), full resolution plasma and urine (Chapter 4), and aqueous and 

lipophilic tissue extracts (Chapter 6) data sets were PQ normalised.  

 

Constant sum normalised data was exported from ACD Labs software 12.01 into 

Excel 2007 (Microsoft, Redmond, Washington, USA). For all “control” spectra the 

median of every variable (bin/data point) was calculated; this acted as the reference 

spectrum.(69) For each test spectrum quotients were calculated for every variable 

relative to the reference spectrum. The median of these quotients, excluding noise 

regions (regions included in the calculations are shown in Table 8.7), was calculated 

per test spectrum and all variables of the test spectrum were divided by this 

median. If regions were subsequently excluded from MVA, new constant sum 

normalised data was obtained and the PQN steps repeated. 
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Table 8.7 Regions included for the calculation of the median quotient of test 
spectra. 

Samples Urine Plasma (full 

resolution)   

Urine (full 

resolution)   

Aqueous 

tissue 

extracts 

Lipophilic 

tissue extracts 

Region 

(ppm) 

0.494-4.500 0.807-1.053 0.493-3.588 0.725-2.520 0.559-3.321 

6.200-9.162 1.173-1.385 3.664-3.883 2.750-3.341 3.450-3.752 

9.261-9.301 1.452-1.495 3.926-4.500 3.371-4.750 3.828-5.766 

9.344-9.374 1.851-1.921 6.200-7.120 5.164-6.175 5.892-6.043 

9.668-9.726 1.965-2.165 7.166-7.300 6.507-6.544 6.249-6.371 

9.957-10.000 2.188-2.295 7.386-7.434 6.764-8.045 7.011-7.403 

 2.317-2.480 7.481-9.000 8.098-8.730 7.594-7.748 

 3.022-3.978 9.022-9.162 8.812-8.872 8.107-8.137 

 4.035-4.149 9.261-9.301 8.926-8.953  

 6.861-6.910 9.344-9.375 9.136-9.165  

 7.021-7.051 9.666-9.726 9.323-9.352  

 7.162-7.206    

 7.721-7.748    

 8.440-8.459    

 

8.4 Multivariate Statistical Analysis 

 

All multivariate statistical analyses were performed using SIMCA-P+ software, 

version 12.0.1.0 (Umetrics, Umeå, Sweden). This software was used to scale (Pareto 

unless otherwise stated) and mean centre the data. 

 

PCA was performed to view any intrinsic clustering in the samples, which can be 

seen in the scores (t) plots. The loadings (p) plots were used to identify regions of 

the spectra (bins) responsible for any clustering or outliers in the scores plot. 

 

PLS-DA was performed to improve distinction of separation between groups of 

interest and to produce models from which classes of samples not used in that 

model could be predicted. Scores plots allowed observation of class discrimination 

and w* plots were used to identify the bins accounting for the discrimination.  
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The quality of each model was assessed by the goodness of fit (R2X) and the ability 

to predict the class membership of new sample (Q2X for PCA and Q2Y for PLS-DA) . 

In addition, for PLS-DA the proportion of the classification data (Y) accounted for 

(R2Y) was also considered. The predictive ability of the PLS-DA models was assessed 

by ‘leave-one-out’ cross-validation. Further validation was performed using 

permutation testing whereby the classes of samples were randomised and a PLS-DA 

model built. The R2Y and Q2Y values should be less than those generated for the 

original model, which were based on the real classifications. The maximum number 

of permutations permissible by the software was performed, 999.  

 

8.5 Univariate Statistical Analysis 

 

Univariate tests of statistical significance were performed on any bins that were 

considered influential in a trend of interest. The integral values of bins were tested 

for normality using the Shapiro-Wilk test. If the data distribution was normal and 

the variances of the two groups were equal the Student’s t-test was performed. If 

the variances were not equal the Welch-Aspin test was used, a modification of the 

Student’s t-test. For non-normal data the non-parametric Mann-Whitney U test was 

used instead. For both, the mean integral values were compared between groups 

and a p-value obtained for the statistical significance of the difference between 

groups. For tissue extracts data, samples belonged to the same patients when the 

two groups being tested were Tumour and Normal. Therefore, the data were paired 

and required the use of the paired-samples t-test or the Wilcoxon test for normal or 

non-normal data, respectively. All tests of normality and significance were 

performed in IBM SPSS Statistics 20.0 (IBM Corporation, Armonk, New York, USA). 

Resulting p-values were adjusted for multiple comparisons using the FDR correction 

in R software, version 2.7.0 (R Foundation for Statistical Computing, Vienna, 

Austria). 
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8.6 SHY Analysis of Breast Cancer Plasma and Urine (Chapter 4) 

 

PQ normalised case and control sample matrices were analysed separately. The 

Pearson’s and Spearman’s correlation coefficients and their statistical significances 

(through p-values) were calculated for every column in the plasma matrix against 

every column in the urine matrix using the “corr(x,y)” function in MatLab, version 

7.12.0.635 (R2011a) (The MathWorks, Inc., Natick, Massachusetts, USA). In the 

resulting correlation matrix any correlations with p-value >0.001 were set to zero to 

reduce spurious correlations. The correlation matrix was plotted using the 

“imagesc” function.  

 

A personal computer (Evesham Technology, Evesham, Worcestershire, UK; 

processor speed = 3.0 GHz, RAM = 2 GB, processor type = Intel(R) Pentium(R) 4 CPU) 

was used in an attempt to produce a correlation matrix generated from every data 

point of full resolution data (37,815 data points per spectrum) but the processing 

requirements surpassed the capabilities of the personal computer. Approximately a 

square 6,000 matrix was the maximum correlation matrix size that could be 

generated. A higher specification personal computer (Dell Inc., Round Rock, Texas, 

USA; processor speed = 2.93 GHz, RAM = 16 GB, processor type = Intel(R) Core(TM) 

i7 CPU) was used but a square 37,815 correlation matrix was not able to be 

generated. The data points pertaining to the region 4.500-6.200 ppm, which 

contained water and additionally urea for urine, were excluded resulting in 30,852 

data points per spectrum but generation of a correlation matrix was not possible. 

Removing data points that had a value of zero for all samples resulted in 9,060 and 

27,450 data points per spectrum for plasma and urine, respectively (Table 8.7, third 

and fourth columns), and allowed generation of a correlation matrix. 

 

Integrals of the data points were plotted in OriginPro 8 SR4, version 8.9051 

(OriginLab Corporation, Northampton, Massachusetts, USA).  
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8.7 GC Analysis of Breast Cancer Plasma (Chapter 5) 

 

The EZ:Faast (Phenomenex, Macclesfield, UK) system was used to extract and 

derivatise AAs from breast cancer plasma samples. The sample preparation 

procedure listed in the information booklet that accompanied the system was 

followed. The solid phase extraction step was performed via a sorbent packed tip 

that bound AAs but allowed interfering compounds to flow through. AAs on the 

sorbent were extruded into the sample vial and derivatised with a reagent in 

aqueous solution. Derivatised AAs concomitantly migrated to the organic layer and 

were additionally separated from interfering compounds. An aliquot (2 µl) from the 

organic layer was analysed by GC with FID using an Autosystem XL gas 

chromatograph (Perkin-Elmer, Waltham, Massachusetts, USA). A ZB-AAA 10 m x 

0.25 mm column (Phenomenex, Macclesfield, UK) was used in constant flow mode 

with a split ratio of 1:15 at 250oC, a helium flow rate of 1.5 ml min-1 and a 

temperature increase of 32oC min-1 between 110oC and 320oC. 

 

Using the EZ:Faast system, calibration standard sets used for AA quantification were 

made and consisted of three samples containing all 26 AAs that could be quantified 

at increasing concentration (50, 100 and 200 nmol ml-1). Up to three injections of 

the same standard set were performed within a 24 hour period (the maximum 

storage time at room temperature recommended by the manufacturers). After 

every 10 test samples a standard set was run. Three injections of every test sample 

were performed within a 24 hour period. 

 

Multivariate and univariate statistical analysis was performed as described in 

Section 8.4 and 8.5 with the exceptions that data were not normalised and UV 

scaling was performed rather than Pareto.  
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Appendices 

 

Appendix 1: Arterial Disease 

 

Initial work focussed on arterial disease, as discussed below, but due to samples 

(plasma, urine and carotid or femoral plaques) being unavailable for a substantial 

period of time that would be collected specifically for metabolomics studies, 

investigation into metabolic markers related to breast cancer ensued. 

 

A1.1   Introduction 

 

Atherosclerosis is a disease of large and medium-sized arteries. It is the most 

important contributor to CVD(227) and heavily affects the burden of myocardial 

infarction (MI; heart attack) and stroke. Published work provides various, but high, 

figures for the seriousness of the problem. In Westernised societies atherosclerosis 

is the main cause of morbidity and mortality, (228) contributing to about 50% of all 

deaths.(229,230) CVD is the most common, and second most common, cause of death 

in European men and women respectively, who are under 65 years of age(231) and 

the disease is expected to become the leading cause of death worldwide in the 

twenty-first century.(227,231,232) It is estimated that CVDs affect 57 million Americans, 

and each year causes 954,000 deaths and costs $259 billion.(230) Imaging techniques 

commonly employed clinically are biased towards the detection of severe, flow-

limiting stenoses (narrowing of blood vessels) and are relatively poor at detecting 

early disease.(233) Consequently, the first presentation of arterial disease is often an 

acute event such as myocardial infarction or stroke.(233) 

 

The effect of atherosclerosis depends on where it occurs: in the arteries that 

perfuse the brain it can cause stroke and transient ischaemic attacks (TIA) whereas 

in the heart it can lead to myocardial infarction and heart failure.(234) Stroke is often 

preceded by TIA(234) whereby reduced supply of blood and oxygen occurs to the 

brain temporarily so the symptoms soon go unlike for stroke. It is sometimes called 
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a mini stroke. Renal impairment, hypertension, abdominal aortic aneurysms and 

critical ischaemia (CI) can occur if atherosclerosis affects other arteries.(235) 

Peripheral arterial disease (PAD) normally occurs in legs with symptoms most 

common in calf muscles with some patients being affected in the thigh and buttock 

regions.(236) There are various categories associated with progression of the disease. 

Intermittent claudication is a less severe form with the symptoms being aching or 

pain in the legs reproducibly brought on by walking and relieved by rest.(237) CI is 

more severe with pain at rest. Ulceration and gangrene can occur and if 

revascularisation surgery is not performed in time amputation is required.(236) Over 

£200 million is the estimated annual cost to the UK of CI.(236) Patients suffering from 

PAD have more than twice the risk of exhibiting coronary heart disease (CHD) 

events, such as MI, but only 25% of patients are undergoing treatment.(238) 

 

A1.2   Previous Metabolomics Studies of Arterial Related Diseases 

 

There have been a number of metabolomics studies into arterial disease and 

associated factors.(145,239-243) Many potential markers have been identified in relation 

to blood pressure in urine by 1H NMR: formate, sodium and alanine are positively 

correlated with blood pressure, with hippurate showing the inverse association.(145) 

4-hydroxyproline was identified as the metabolite of interest in plasma of patients 

with non-ST-elevation acute coronary syndrome (NSTEACS) using GC-MS.(240) ST is 

the segment between S and T time points in an electrocardiogram (ECG). An 

elevated ST segment is associated with acute MI.(244) The authors have suggested 

the decrease in plasma hydroxyproline levels in NSTEACS versus control may reflect 

a status of low collagen synthesis and turnover. Analysis of gas chromatography 

coupled to time-of-flight mass spectrometry (GC-TOF-MS) serum data identified 

pseudouridine, 2-oxoglutaric acid, 2-hydroxy, 2-methylpropanoic acid, erythritol, 

and 2,4,6-trihydroxypyrimidine as showing significant differences in levels between 

patients with systolic heart failure and controls.(239)
 2-oxoglutarate is a major 

intermediate of the TCA cycle and a change in several other constituents of the TCA 

cycle has been shown in plasma using LC-MS: 6 of the 23 most-changed metabolites 
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after exercise in patients with inducible ischaemia are involved in the Krebs 

cycle.(241) The same study also showed the six most discordant metabolites between 

cases and controls are citric acid, γ-aminobutyric acid, uric acid, MET193, MET 200 

and MET288. One of the first metabolomics human studies had shown that 

metabolomics can diagnose the presence and severity of CHD(242) but a later study 

proved the results were due to a confounding factor, statin treatment, which 

caused decreases in cholesterol, low-density lipoprotein (LDL) and triglycerides, thus 

affecting the lipid peak contributions in the spectra.(243) Most arterial disease studies 

have focussed on coronary related problems with many fewer concerned with 

PAD.(245) 

 

A1.3   NMR Analysis of Plasma  

 

The following chapter will describe 1H NMR analysis of plasma obtained from 75 

patients who conformed to a control group or one of two arterial disease groups 

(Table A.1); one group exhibited coronary problems whilst the other consisted of 

patients suffering from claudication. 

 

Prior to detailed analysis of the NMR spectra it was immediately apparent that 

citrate was present as a contaminant: two large doublets centred at 2.52 and 

2.65 ppm.(246,247) The most likely source of the ‘contamination’ was sample 

collection vessels that used citrate as an anti-coagulant. Vacuettes coated with 

lithium heparin have become the usual vessels for blood collection but previously 

citrate and ethylenediaminetetraacetic acid (EDTA) had been used extensively 

especially for “bio-bank” samples.(246) The region 2.461-2.741 ppm containing the 

citrate resonances was excluded from subsequent analysis. 
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Table A1.1 Summary of patients’ demographics. 

         Descriptor 

 

Group 

Total Male 

Female 

Non-Diabetic 

Diabetic 

Non-Smoker 

Smoker 

Claudication 26 

18 

13 
7 

6 

5 
4 

1 

8 

8 
4 

4 

0 
0 

0 

Coronary 23 

18 

14 
11 

3 

4 
3 

1 

5 

5 
3 

2 

0 
0 

0 

Control 26 

19 

17 
15 

2 

2 
1 

1 

7 

4 
2 

2 

3 
1 

2 

 

A1.3.1   Reference Compound Investigation 

 

A number of different metabolites have been used to reference 1H-NMR spectra, 

including lactate, alanine, acetate and glucose(71,246,248,249) rather than TSP,(48,250) 

which has been used traditionally, but spectra and results showing comparison are 

not readily available. Signals referenced to TSP can exhibit sizeable chemical shift 
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variation between samples.(251) Additionally, in plasma, due to binding with albumin, 

TSP cannot be used to quantify the concentration of other compounds,(252) which is 

its secondary use. Using a CPMG pulse sequence heavy molecules are filtered out so 

TSP bound to albumin is not detected and because the ratio of unbound to bound 

TSP changes, variable levels of TSP result in CPMG spectra. The chemical shift of 

metabolite signals was investigated when spectra were referenced to different 

compounds (Table A1.2). 

 

Table A1.2 Maximum chemical shift of signals using various reference compounds.  

Reference Compound 

Chemical Shift (ppm) 

Reference Signal(103) 
Maximum Variation of 

Other Signals* 

TSP 0.000 0.011 

Lactate (CH3) 1.317 0.004 

Alanine (CH3) 1.463 0.006 

Acetate (CH3) 1.910 0.004 

Glucose (H1’ α) 5.223 0.004 

*Not including those in the table. 

 

The maximum chemical shift variation of peaks was greater when referenced to TSP 

than to any of the other compounds. Most signals exhibited no more than 

0.001 ppm variation when referenced using lactate, acetate or glucose. 

 

Excluding TSP, when alanine was used as the reference compound the chemical shift 

range of other metabolites varied the most and when referenced to other 

compounds the alanine signal exhibited greater chemical shift range than lactate, 

acetate or glucose. 

 

Of the 75 samples included in the analysis the one that exhibited the greatest 

upfield chemical shift of signals when referenced to TSP contained a greater 

quantity of unbound TSP. Data acquisition was not possible for two prepared 

plasma samples (not included in Table A1.1) and due to volume loss during the 

refreezing cycle insufficient quantity was available. Further deuterium oxide 

(D2O)/TSP solution was added to provide the standard volume for data acquisition 
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(Section A1.5.2). The data were not included in MVA. Upfield chemical shift of 

signals was also displayed by the two samples (Figure A1.1a). Conversely, when 

referenced to acetate, alanine, glucose or lactate, the three samples showed greater 

downfield shift of TSP (Figure A1.1b) but not of other signals. These observations 

can be explained by protein interactions causing chemical shift variation:(251) the 

greater the amount of protein binding relative to the amount of TSP, the greater the 

downfield chemical shift of signals when referenced to TSP and vice-versa.  

 

Of the reference compounds investigated acetate, glucose and lactate were 

superior to alanine and TSP. Signal overlap with underlying lipid resonances can 

occur for the lactate doublet at 1.317 ppm although this problem does not occur for 

the quartet at 4.103 ppm. The H1’ α-glucose doublet at 5.223 ppm will be used for 

referencing in future blood vessel disease work because it is readily resolved and of 

the alternative reference compounds to TSP has found common use.(246,249) 

 

a)  b)  
Figure A1.1 Chemical shift of spectra showing a) lactate signal referenced to TSP 
and b) TSP signal referenced to lactate. Sample included in MVA with the greatest 
amount of TSP shown in bold red and the two excluded refrozen samples shown in 
bold blue and green. 
 

A1.3.2 Metabolomics Investigation 

 

A1.3.2.1 Analysis of Disease Type Groups 
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PCA was performed with samples assessed according to disease type category 

(claudication, coronary or control). Scores and loadings plots of the five PC model 

(R2X(cum) = 0.693 and Q2X(cum) = 0.456) are shown in Figure A1.2 and Figure A1.3 

respectively. 

 

 
Key:  coronary,  claudication and  control samples. 

Figure A1.2 PCA scores plot for CPMG plasma data showing the first two model 
components. R2X = 0.291 and 0.177, and Q2X = 0.196 and 0.138 for PC 1 and PC 2, 
respectively.    
 

 

Figure A1.3 PCA loadings plot corresponding to the model displayed in Figure A1.2. 
 

No separation was present in scores space between the three groups of samples. 

Lactate (all bins that had a p[1] value greater than 0.10; centred at 1.321, 4.081 and 
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4.121 ppm) and glucose (all bins that had a p[1] value less than -0.005; centred 

between 3.201-3.921 ppm, inclusive) containing bins dominated the loadings plot 

therefore the different sample groups were not represented by levels of the two 

metabolites. PC 5 versus PC 3 scores plot showed very tentative separation between 

the three sample groups based primarily in PC 3 (Figure A1.4). The loadings plot 

(Figure A1.5) indicated lipids (0.881 and 1.281 ppm) were highest and lactate lowest 

in coronary samples that were broadly identified by the red ellipse whilst for 

claudication samples broadly identified by the blue ellipse the reverse was implied; 

levels of the metabolites were of intermediate values for the control group. 

However, there were quite a few coronary samples positioned in scores space 

primarily populated by claudication samples and two of the samples with greatest 

t[3] values belonged to  the claudication group. Additionally, the R2X and Q2X values 

were low for both PCs (Figure A1.4 legend). 

 

A one component model (data not shown; R2X = 0.267, R2Y = 0.075 and Q2Y = 0.006) 

was generated using PLS-DA but with such a low Q2Y value little credence can be 

attributed to the findings. Separation in scores space similar to that in PC 3 of the 

PCA model was observed but based on glucose and lactate with the former raised in 

claudication samples and the latter raised in coronary samples. 

 

Levels of lactate(253) and glucose(66) in biofluids can be highly dependent on diet. Due 

to the impracticality of restricting patients’ food and fluid intake prior to sample 

donation, the time of their last meal varied and drink types and quantities 

consumed were not recorded. Glucose (3.181-3.941 ppm) and lactate 

(1.301-1.341 ppm and 4.061-4.141 ppm) containing bins were excluded to allow 

other metabolites that are less influenced by diet to determine scores space 

positions of samples. 
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Key:  coronary,  claudication and  control samples. 

Figure A1.4 PCA scores plot for CPMG plasma data showing PC 5 v. PC 3. R2X = 
0.091 and 0.061, and Q2X = 0.065 and 0.091 for PC 3 and PC 5, respectively. Ellipses 
coloured according to the key indicate areas occupied by many samples of the 
respective groups and are for display only. 
 

 
Figure A1.5 PCA loadings plot corresponding to the model displayed in Figure A1.4. 
 

Figure A1.6 and Figure A1.7 show the scores and loadings plots, respectively, of PC 1 

and PC 2 upon removal of glucose and lactate regions. Separation of the three 

groups was not present in these components or when other components of the four 

PC model (R2X(cum) = 0.601 and Q2X(cum) = 0.423) were visualised (data not 

shown).  
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Key:  coronary,  claudication and  control samples. 

Figure A1.6 PCA scores plot for CPMG plasma data excluding glucose and lactate 
regions showing the first two model components. R2X = 0.309 and 0.129, Q2X = 
0.262 and 0.093 for PC 1 and PC 2, respectively. 
 

 

Figure A1.7 PCA loadings plot corresponding to the model displayed in Figure A1.6. 
 

Lipids are important in determining the position of samples in scores space as are 

the bins, amongst others, centred at 2.041 ppm, the resonance arising from acetyl 

groups of glycoprotein, and 0.961 ppm, which contains the majority of the leucine 

triplet and upfield peak of valine doublet. PLS-DA produced a non-discriminatory, in 

terms of the three disease type groups, one PC model (data not shown; R2X = 0.213, 

R2Y = 0.084 and Q2Y = 0.002) that had a very low Q2Y value. 
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Although both are related to blood vessels, coronary and claudication afflictions are 

distinct so analysis was performed using all combinations of two disease type 

groups to investigate whether there were metabolic differences that were 

previously obscured when analysing all three groups. A summary of the models is 

shown in Table A1.3. 

 

Table A1.3 Summary of models for all combinations of two disease type groups. 

Groups Included 

PCA PLS-DA 

Number 

of PCs 

R2X 

(cum) 

Q2X 

(cum) 

Number 

of PCs 

R2X 

(cum) 

R2Y 

(cum) 

Q2Y 

(cum) 

Coronary and control 3 0.544 0.384 0 / / / 

Claudication and control 3 0.553 0.378 2 0.408 0.399 0.087 

Coronary and  claudication 4 0.630 0.445 0 / / / 

 

No separation between groups was observed in PCA for any combination of two 

disease type groups (data not shown). Only the combination of claudication and 

control groups generated a PLS-DA model (scores plot shown in Figure A1.8 and 

loadings plot in Figure A1.9). 

 

 
Key:  claudication and  control samples. 

Figure A1.8 PLS-DA scores plot for CPMG plasma data excluding glucose and 
lactate regions of claudication and control samples. 
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Figure A1.9 PLS-DA loadings plot corresponding to the model displayed in Figure 
A1.8. 
 

The model was tested by cross-validation through exclusion of one-third of samples 

that were randomly assigned and their class predicted from the resultant model 

with the process performed three times to ensure the operation was applied to 

every sample. Of the 52 samples, 28 (54%) were predicted correctly (Y-predicted 

value >0.50) with 9, 6 and 13 having Y-predicted values of <0.60, 0.60-0.70 and 

>0.70, respectively, and 24 incorrectly predicted. Not many more samples were 

correctly predicted than would be expected by chance hence the PLS-DA model in 

Figure A1.8 was surmised to have poorly fitted the data leading to the conclusion 

that there was no difference in metabolite levels in claudication and control samples 

when all samples were assessed. Permutation testing (plots not shown) also 

indicated the model was poor due to the high number of permuted models that had 

R2Y and Q2Y values in excess of the values for the original model. 

 

A number of confounding factors are known such as race,(254) sex(40,255) and diabetic 

state.(256,257) All samples were obtained from white European patients but the other 

two factors were not consistent for all samples (Table A1.1). Of the 75 samples, 55 

were from males of whom 44 did not have diabetes. Analysis based on disease type 

group was performed for the reduced numbers in the sample cohort (“male, non-

diabetic”). 
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A three PC model (R2X(cum) = 0.562 and Q2X(cum) = 0.369) was generated using 

PCA. The scores plot is shown in Figure A1.10 but the loadings plot is not shown due 

to the similarity (vertical mirror image excepted) with Figure A1.7, for which all 

samples were included. Control samples tended to be positioned in low PC 2 scores 

space with coronary and claudication samples possessing greater, either positive or 

negative, t[2] values. The contribution to the predicted variation (Q2X) was low in 

the second component, being only 0.017, and no separation was present in the first 

component. Using PLS-DA, a model was unable to be made. The three combinations 

of two disease type groups were analysed but separation was not present between 

any of the groups (data not shown; summary of models displayed in Table A1.4).  

 

 
Key:  coronary,  claudication and  control samples. 

Figure A1.10 PCA scores plot for CPMG plasma data excluding glucose and lactate 
regions of “male, non-diabetic” samples showing the first two model components. 
R2X = 0.337 and 0.126, Q2X = 0.293 and 0.017 for PC 1 and PC 2, respectively.  
 

Table A1.4 Summary of models including only “male, non-diabetic” samples for all 
combinations of two disease type groups. 

Groups Included 
PCA PLS-DA 

PCs R2X(cum) Q2X(cum) PCs 

Coronary and control 1 0.379 0.325 0 

Claudication and control 2 0.482 0.300 0 

Coronary and  claudication 3 0.598 0.345 0 
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Smoking is another factor that can influence metabolomic profiles(255) and previous 

studies have excluded patients who smoke.(258) Excluding current smokers from the 

“male, non-diabetic” cohort reduced the sample number to 33. Analysis as 

previously reported was performed. No separation between disease type groups of 

the “male, non-diabetic, non-smoker” cohort was observed; scores and loadings 

plots are not shown due to similarity with those produced using “male, non-

diabetic” samples. Table A1.5 provides a summary of the models. 

 

Table A1.5 Summary of models including only “male, non-diabetic, non-smoker” 
samples for all combinations of two disease type groups. 

Groups Included 
PCA PLS-DA 

PCs R2X(cum) Q2X(cum) PCs 

Coronary, claudication and control 2 0.493 0.344 0 

Coronary and control 1 0.414 0.352 0 

Claudication and control 1 0.403 0.318 0 

Coronary and  claudication 2 0.502 0.304 0 

 

A final approach to analysis of disease type was to remove all samples that were not 

part of the “male, non-diabetic, never smoked” cohort. Smoking is a risk factor for 

blood vessel disease and although the risk for PAD decreases with time of 

abstinence, former smokers still have a greater risk than those who have never 

smoked.(259) Additionally, the risk increases with total cigarettes smoked(259) so the 

metabolic profile could be affected by previous smoking. Despite providing a well-

defined cohort, including samples only from “male, non-diabetic, never smoked” 

patients substantially reduced the data to be analysed: of the 14 samples, three, five 

and six were coronary, claudication and control, respectively. 

  

Figure A1.11 shows the PCA scores plot of the one component model (R2X = 0.365 

and Q2X = 0.214) for “male, non-diabetic, never smoked” samples indicating no 

separation was present between the three disease type groups. The loadings plot is 

not displayed due to similarity with PC 1 of Figure A1.7, for which all samples were 

included. Due to the small number of coronary, claudication and control samples 

analysis was not performed between any two of the disease type groups.  
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Key:  coronary,  claudication and  control samples. 

Figure A1.11 PCA scores plot for CPMG plasma data excluding glucose and lactate 
regions of “male, non-diabetic, never smoked” samples.  
 

Irrespective of how defined the cohort was through elimination of potential 

confounding factors in a step-wise manner, coronary, claudication and control 

samples could not be distinguished according to their metabolic profile. 

 

A1.3.2.2   Analysis of Other Sample Descriptors 

 

In addition to disease type, sex and smoking and diabetic statuses many other 

sample descriptors were recorded (Table A1.6). Whether these affected the 

positioning of samples in scores space and their potential relevance to disease type 

groups was investigated.  

 

For scores plots, samples were coloured according to data classified either by 

percentile or value classification (Table A1.6). Where values are commonly used in 

the medical profession to describe defined parts of the category, value classification 

for this study has been used, as for ankle brachial index (ABI) (Table A1.7) and body 

mass index (BMI) [weight (kg)/height (m2)] (Table A1.8). For percentile classification, 

as near as possible 20% of samples were in classes 1 to 5. Cholesterol, glucose, 

glycated haemoglobin, HDL, LDL and triglyceride values were recorded to one 
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decimal place so multiple values could occur resulting in non-exact percentile 

distributions.  

 

Table A1.6 Sample categories investigated with classification used in analysis. 

Category Data Classification 

ABI Percentile and Value 

Age Percentile 

BMI Percentile and Value 

Cholesterol Percentile 

Glucose Percentile 

Glycated Haemoglobin Percentile 

HDL Percentile 

LDL Percentile 

Triglycerides Percentile 

Percentile classification: as near as possible 20% of samples in classes 1 to 5 with 1 having 

the lowest level and 5 the highest level. 

 

Table A1.7 ABI classification for this study with corresponding indication of 
medical condition.(260) 

ABI Value Value Classification Indication of Medical Condition 

0.50-0.79 1 Moderate arterial disease 

0.80-0.89 2 Some arterial disease 

0.90-0.99 3 Acceptable 

1.00-1.19 4 Normal 

1.20+ 5 Abnormal blood vessel hardening 

 

Table A1.8 BMI classification for this study with corresponding weight 
category.(254) 

BMI Value Value Classification Weight Category 

<18.50 1 Underweight 

18.50-24.99 2 Normal 

25.00-29.99 3 Overweight 

>30.00 4 Obese 

Units: BMI = kg m-2. 
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Some separation was observed between triglyceride percentiles in PC 2 versus PC 1 

and PC 4 versus PC 2 scores plots (Figure A1.12 a and b, respectively) when all 

samples (data available for 72 samples) were included (four component model, 

R2X(cum) = 0.604 and Q2X(cum) = 0.417). Most of the class 5 samples (highest 20% 

of values) are clearly separated from samples with lower triglyceride values. 

Loadings plots (data not shown for PC 2 versus PC 1 due to similarity with Figure 

A1.7; PC 4 versus PC 2 shown in Figure A1.13) indicate class 5 samples have the 

highest lipid levels and generally a lower lipid level is associated with lower class 

value. Triglycerides are a type of lipid so connection between the two would be 

expected: NMR spectroscopy based metabolomics can provide an indication of the 

relative amount of triglyceride in blood plasma for larger data sets. In smaller data 

sets, i.e. “male, non-diabetic, non smoker” samples, a similar trend could not be 

observed. This provides an example of the need for balance between a well-defined 

cohort and suitable sample numbers.  

 

Previously, disease type groups had been tentatively separated (Figure A1.4) with 

lipids being important to the discrimination (Figure A1.5); triglyceride percentile 

classes were incorporated into the scores plot (Figure A1.14). It can be observed 

that all control samples (diamonds) except one are within the ellipse (brown) drawn 

to show positioning of many control samples whilst the t[3] range for coronary 

(triangles) and claudication (squares) samples is much greater despite all three 

disease type groups containing samples from the most extreme percentile classes. 

Speculatively, this could infer that patients who are not afflicted by coronary or 

claudication complications can regulate their metabolic profile better than some 

patients with similar lipid/triglyceride levels who are afflicted with blood vessel 

disease. 

 

Classes of other categories (Table A1.6) did not determine sample positioning in any 

PC combination of scores space and were not associated with disease type groups. 

PC 2 versus PC 1 scores plots for all samples and “male, non-diabetic, non-smoker” 

samples of the various categories are referred to in Table A1.9 along with 
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summaries of models. PLS-DA models, where generated, were not shown because 

Q2Y values were too small for the models to be considered reliable. 

 

a)  

b)  
Key: shape -  coronary,  claudication and  control samples, 

colour - class  1,  2,  3,  4 and  5.  

Figure A1.12 PCA scores plot for CPMG plasma data excluding glucose and lactate 
regions showing a) PC 2 versus PC 1 and b) PC 4 versus PC 2. Coloured according to 
percentile classification of triglyceride level (Table A1.6). R2X = 0.309, 0.129 and 
0.069, and Q2X = 0.268, 0.076 and 0.035 for PC 1, PC 2 and PC 4, respectively. 
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Figure A1.13 PCA loadings plot corresponding to the model displayed in Figure 
A1.12b). 
 

 

Key: shape -  coronary,  claudication and  control samples, 
colour - class  1,  2,  3,  4,  5 and  no data.  

Figure A1.14 PCA scores plot for plasma data including glucose and lactate regions 
showing PC 5 versus PC 3. Coloured according to percentile classification of 
triglyceride level (Table A1.6). R2X = 0.091 and 0.061, Q2X = 0.065 and 0.091 for PC 
3 and PC 5, respectively. Red, turquoise and brown coloured ellipses indicate areas 
occupied by many samples of coronary, claudication and control groups, 
respectively, and are for display only. 
 

-0.20

-0.10

-0.00

0.10

0.20

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

p
[4

]

p[2]

0.1610.201
0.2410.2810.3210.3610.4010.4410.4810.5210.561
0.6010.6410.6810.7210.7610.801

0.8410.881

0.921

0.961

1.0011.041

1.081
1.1211.161

1.201

1.2411.281
1.361 1.401

1.441
1.481

1.521
1.5611.6011.6411.6811.7211.7611.8011.841

1.881
1.921

1.961

2.001

2.041

2.081

2.121

2.161
2.201

2.241
2.281

2.321
2.361 2.401

2.441

2.761

2.801
2.841

2.881
2.921
2.9613.001

3.041

3.081

3.121

3.161

3.9614.001

4.041

4.161

4.201
4.2414.281

4.3214.361
4.401

5.441
5.481

5.521
5.5615.601

5.641
5.6815.7215.761

5.8015.8415.881

5.921
5.9616.0016.041
6.081
6.121

6.1616.2016.2416.281
6.3216.3616.4016.4416.481
6.521
6.561

6.601

6.6416.6816.7216.7616.8016.841

6.881
6.921
6.9617.0017.0417.081

7.121
7.161

7.201
7.2417.281

7.321

7.3617.4017.4417.4817.521
7.561
7.601

7.641
7.681
7.721

7.7617.8017.8417.8817.9217.9618.0018.0418.081
8.1218.1618.2018.241

8.281
8.3218.3618.401

8.441

8.4818.5218.561

8.6018.6418.681
8.721

8.7618.8018.8418.8818.921
8.961

9.001
9.041

9.0819.1219.161
9.2019.2419.281

9.321
9.361
9.401
9.441

9.481
9.5219.5619.6019.641
9.681
9.7219.761

9.8019.8419.8819.921
9.961
9.99

SIMCA-P+ 12.0.1 - 2013-01-10 18:02:59 (UTC+0) 

-0.40

-0.30

-0.20

-0.10

-0.00

0.10

0.20

0.30

-0.40 -0.30 -0.20 -0.10 -0.00 0.10 0.20 0.30 0.40

t[
5]

t[3]
SIMCA-P+ 12.0.1 - 2013-01-08 16:48:51 (UTC+0) 

Lipids 



 
 

Table A1.9 Summary of models created using various sample descriptors (categories) as the class identifier. M, ND, NS   “male, non-diabetic, 
non-smoker” samples.  

Category Samples 
Included 

Number of 
Samples 

Figure PCA PLS-DA 

PCs R2X 
(cum) 

Q2X 
(cum) 

R2X of 
PC 2/PC 1 

Q2X of 
PC 2/PC 1 

PCs R2X 
(cum) 

R2Y 
(cum) 

Q2Y 
(cum) 

ABI All 70 Figure A1.15 a) and c) 3 0.549 0.425 0.330/0.128 0.290/0.110 0 / / / 

M, ND, NS 31 Figure A1.15 b) and d) 1 0.396 0.339 0.000/0.396 0.000/0.339 0 / / / 

BMI All 75 Figure A1.16 a) and c) 4 0.601 0.423 0.309/0.129 0.262/0.093 0 / / / 

M, ND, NS 33 Figure A1.16 b) and d) 2 0.493 0.344 0.370/0.124 0.309/0.050 0 / / / 

Age All 75 Plots not shown 4 0.601 0.423 0.309/0.129 0.262/0.093 2 0.424 0.116 0.008 

M, ND, NS 33 Plots not shown 2 0.493 0.344 0.370/0.124 0.309/0.050 0 / / / 

Cholesterol All 73 Plots not shown 4 0.604 0.397 0.309/0.130 0.266/0.097 0 / / / 

M, ND, NS 31 Plots not shown 2 0.500 0.348 0.374/0.126 0.314/0.049 0 / / / 

Glucose All 74 Plots not shown 4 0.602 0.396 0.308/0.130 0.267/0.088 1 0.278 0.050 0.003 

M, ND, NS 32 Plots not shown 2 0.496 0.348 0.370/0.126 0.312/0.052 0 / / / 

Glycated 
Haemoglobin 

All 72 Plots not shown 3 0.542 0.402 0.313/0.129 0.276/0.070 0 / / / 

M, ND, NS 32 Plots not shown 2 0.496 0.348 0.370/0.126 0.312/0.052 0 / / / 

HDL All 74 Plots not shown 4 0.602 0.396 0.308/0.130 0.267/0.088 0 / / / 

M, ND, NS 32 Plots not shown 2 0.496 0.348 0.370/0.126 0.312/0.052 0 / / / 

LDL All 70 Plots not shown 4 0.601 0.406 0.312/0.122 0.276/0.050 0 / / / 

M, ND, NS 30 Plots not shown 2 0.504 0.355 0.374/0.130 0.309/0.066 1 0.371 0.087 0.007 

2
4

0
 



 
 

a)  b)  

c)  d)  

Key: shape -  coronary,  claudication and  control, 
colour - class: a) and b)  1,  2,  3,  4 and  5, c) and d)  1,  2,  3,  4 and  5 

Figure A1.15 ABI: PCA scores plots for plasma data excluding glucose and lactate regions showing PC 2 versus PC 1 for a) and c) all samples 
and b) and d) “male, non-diabetic, non-smoker” samples. Coloured according to a) and b) percentile classification (Table A1.6) and c) and d) 
value classification (Table A1.7). 
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a)  b)  

c)  d)  

Key: shape -  coronary,  claudication and  control samples, 
colour – class: a) and b)  1,  2,  3,  4 and  5, c) and d)  1,  2,  3,  4 and  5  

Figure A1.16 BMI: PCA scores plots for plasma data excluding glucose and lactate regions showing PC 2 v. PC 1 for a) and c) all samples and 
b) and d) “male, non-diabetic, non-smoker” samples. Coloured according to a) and b) percentile classification (Table A1.6) and c) and d) 
value classification (Table A1.8). 
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A1.4   Conclusions 

 

The degree of chemical shift variation between samples is dependent on the 

reference compound. TSP, which has traditionally been used, has been shown to be 

inferior to acetate, glucose and lactate. Due to the readily resolvable nature of H1’ of  

α-glucose this was selected as the reference compound for all further work. 

 

Plasma spectra were dominated by diet dependent metabolites, namely glucose 

and lactate, and distinction between coronary, claudication and control samples 

was not present in the higher PCs. Tentative separation was visible in lower PCs 

based on lipid levels with the indication that levels were highest in coronary samples 

and lowest in claudication samples. Upon removal of glucose and lactate, separation 

between the three disease type groups was not visible. Through removal of 

samples, certain known confounding factors were accounted for such as sex, 

smoking and presence of diabetes. Samples from the optimum cohort in terms of 

retaining sufficient sample numbers, which was the “male, non-diabetic, non-

smoker” cohort, did not provide further information regarding differences between 

the groups. Consideration has to be made between reducing confounding factors 

whilst providing a suitable number of samples for analysis.  

 

Clinical laboratory recorded triglyceride levels corresponded to relative lipid levels 

as shown by scores and loadings plots for larger data sets therefore NMR 

spectroscopy based metabolomics could provide an indication of the relative 

amount of triglyceride levels in blood plasma. It was tentatively implied that for 

patients whose triglyceride levels were similar those not afflicted by coronary or 

claudication complications could regulate their metabolic profile better than some 

patients who were afflicted with blood vessel disease. 
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A1.5   Experimental Methods 

 

A1.5.1   NMR Sample Preparation 

 

Chemicals were purchased from Sigma-Aldrich Company Ltd. (Poole, Dorset, UK). 

NMR tubes (S-5-500-7, Norell) were purchased from GPE Scientific Ltd. (Leighton 

Buzzard, Bedfordshire, UK). 

 

A1.5.2   Samples for 1H-NMR Analysis 

 

Samples were stored at -80oC before defrosting at room temperature. Samples were 

centrifuged (Hettich Mikro 120 (C1204) Centrifuge, angle rotor E2384) at 12,009 g 

for 5 minutes. 350 µl of plasma supernatant was added to 408 µl of a 0.17% weight 

by volume solution of TSP in D2O. The mixture was vortexed for 8 s before 

transferring 600 µl to a 5 mm NMR tube. Samples not analysed immediately were 

stored at 4oC for a maximum of 1.5 hours. 

 

A1.5.3   NMR Analysis 

 

All 1H-NMR spectra were acquired on a Varian Unity Inova 500 spectrometer 

(Varian Inc., Palo Alto, California, USA) operating at 499.97 MHz proton frequency, 

at 20oC. Samples were loaded into the probe and left for 5 minutes to allow 

temperature equilibration. 

 

A1.5.3.1   CPMG Experiment 

 

The CPMG pulse sequence [RD – 90o – (τ – 180o – τ)n – acq] was used to obtain 

metabolic profiles for all plasma samples. The relaxation delay (RD) was 2 s, during 

which the water resonance was selectively saturated, τ was 1.5 ms and n was 150. 

For each spectrum 512 transients were collected into 16,384 pairs of data points 

with a spectral width of 8,000.00 Hz.  
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A1.5.4   NMR Spectral Processing 

 

All spectral data were processed using ACD Labs software 12.01 (Advanced 

Chemistry Development, Inc., (ACD/Labs), Toronto, Canada). An exponential line 

broadening of 1.applied to each FID prior to zero filling to 65,536 points and Fourier 

transformation. The resulting spectra were phased, baseline corrected and 

referenced (Table A1.10). 

 

Table A1.10 Reference Compounds Used  

Reference Compound Chemical Shift (ppm) 

TSP 0.000(142) 

Lactate 1.317(103) 

Alanine 1.463(103) 

Acetate 1.910(103) 

α-glucose 5.223(103) 

 

A1.5.5   Additional NMR Data Processing for Multivariate Statistical Analysis 

 

A1.5.5.1   Binning and Dark Regions 

 

Spectral binning was performed using ACD Labs software 12.01. The data set was 

integrated into fixed bins of 0.04 ppm.  

  

Prior to binning over the spectral range 0.141-0.998, several dark regions were 

created for spectra to exclude signals from subsequent multivariate analysis (Table 

A1.11). 

 

Table A1.11 Dark regions used for spectra.  

Dark Region (ppm) Excluded  Comment 

2.461-2.741 Citrate Possible contaminant from collection tube 

4.421-5.421 Water region Variable water suppression efficiency 

1.301-1.341  

4.061-4.141 

Lactate 
Excluded later to remove influence from 

statistical models 
3.181-3.941 Glucose 
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A1.5.6   Multivariate Statistical Analysis 

 

All multivariate statistical analyses were performed using SIMCA-P+ software, 

version 12.0.1.0 (Umetrics, Umeå, Sweden). This software was used to scale and 

mean centre the data. 

 

PCA and PLS-DA was performed. The predictive ability of the PLS-DA models was 

assessed by exclusion of a third of the samples and their class memberships 

predicted using models built from the remaining samples, where the samples were 

randomly allocated into three exclusion groups using a random number generator 

(Microsoft Excel 2007). Further validation was performed using permutation testing 

whereby the classes of samples were randomised and a PLS-DA model built. The R2Y 

and Q2Y values should be less than those generated for the original model, which 

were based on the real classifications. The maximum number of permutations 

permissible by the software was performed, 999.  
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Appendix 2: Gas Chromatography 

 

 

Figure A2.1 Calibration curve gradient of glycine (GLY) for all runs of standards 
against run order.  

 

 

Figure A2.2 Plot of IS area/total AA area against run order of 200 nmol ml-1 
standards that had different elapsed times between first and last runs: a) 
Standard VII, 6 h 30 min, b) Standard X, 23 h 55 min and c) Standard XI, 23 h 55 
min. 
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Figure A2.2 Continued. 

 

 

 

 

 

 

 
r² = 0.70 

6.60E-02 

6.70E-02 

6.80E-02 

6.90E-02 

7.00E-02 

7.10E-02 

7.20E-02 

7.30E-02 

7.40E-02 

7.50E-02 

1 2 3 

IS
 A

re
a/

To
ta

l A
A

 A
re

a 
x1

0
-2

 

Run Order of Standard X 

 
r² = 0.47 

6.60E-02 

6.70E-02 

6.80E-02 

6.90E-02 

7.00E-02 

7.10E-02 

7.20E-02 

7.30E-02 

7.40E-02 

1 2 3 

IS
 A

re
a/

To
ta

l A
A

 A
re

a 
x1

0
-2

 

Run Order of Standard XI 

b) 

c) 



249 
 

Table A2.1 Structure and retention times of AAs identifiable by GC analysis of 
plasma. 

AA Retention 

Time (minutes) 

Structure 

Full Name Abbreviation 

Alanine ALA 1.59 

 
Sarcosine SAR 1.65 

 
Glycine GLY 1.69 

 
α-Aminobutyric acid ABA 1.79 

 
Valine VAL 1.88 

 
β-Aminoisobutyric acid β-AIB 1.96 

 
Norvaline (internal 

standard) 

IS 2.00 

 
Leucine LEU 2.08 

 
allo-Isoleucine α-ILE 2.11 
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Table A2.1 Continued. 

Isoleucine ILE 2.14 

 
Threonine THR 2.34 

 
Serine SER 2.38 

 
Proline PRO 2.45 

 
Asparagine ASN 2.54 

 
Aspartic acid ASP 3.05 

 
Methionine MET 3.09 

 
Hydroxyproline HYP 3.22 

 
Glutamic acid GLU 3.39 
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Table A2.1 Continued. 

Phenylalanine PHE 3.43 

 
α-Aminoadipic acid AAA 3.68 

 
Glutamine GLN 4.01 

 
Ornithine ORN 4.37 

 
Lysine LYS 4.62 

 
Histidine HIS 4.80 

 
Tyrosine TYR 5.07 

 
Tryptophan TRP 5.36 

 
Cystine C-C 6.01 
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