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Abstract 

In this thesis the following aspects have been investigated: 

(i) the numerical solutions for unsteady 2-dimensional, 

incompressible viscous fluid flows induced by a harmonically 

oscillating cascade, and (ii) the fluid flows in industrial cyclones 

and their separation efficiencies. In the first part of the thesis 

we deal with fluid flows induced by harmonically oscillating 

cascades of cylinders with different cross sectional shapes. 

Numerical solutions for large amplitude oscillations of a cascade of 

normal flat plates are obtained by using a finite-difference method 

and it is found that solutions are in good agreement with some 

related experimental results. For small amplitude oscillations a 

perturbation method, series truncation technique and 

finite-difference methods are used to obtain solutions for cascades 

of normal flat plates and square cylinders. By assuming that the 

streaming Reynolds number is 0(1) then the outer streaming flows for 

cascades of square cylinders, normal flat plates and circular 

cylinders are investigated numerically for the streaming Reynolds 

number Rs up to 70. Conformal mapping, grid generation and boundary 

element methods are used to deal with the different geometries in 

order to determine the outer potential flows. For small values of 

the streaming Reynolds number it is found experimentally that the 

flow remains symmetrical and the numerically predicted fluid flow is 

in good agreement with the experimental results. As the value of the 

streaming Reynolds number increases then it is found experimentally 

that the flow develops asymmetries and this occurs when 8<R <9, and 

the numerically predicted results are also in good agreement with 



- 11 - 

the experimental data. A stability analysis is presented for the 

outer streaming flow for the cascade of circular cylinders which 

reveals the reasons for the break-down in the symmetry. 

In the second part of the thesis the fluid flow In industrial 

cyclones has been investigated numerically. The influence of various 

aspects of the design parameters of the cyclone have been studied 

numerically and some important factors which affect the separation 

efficiency of the cyclone are identified. Numerical results are also 

compared with some existing experimental data and there is good 

agreement. Correlations for both the loss factor and d50, the 50% 

cut-off particle diameter, with other parameters and operating 

conditions of the cyclone performance have been developed using 

a regression method with the existing experimental results. Finally, 

the separation efficiency of a small personal cyclone (10mm in 

diameter) is also investigated. 
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Nomenclature for Section 1: 

a: amplitude of the oscillation of the cascade, 

b: angular frequency of the oscillation, 

d: typical size of the body (=diameter for a circular bar or the 

length of a side of a square bar or the length of a normal 

flat, 

h: mesh size for space variable, 

Y: half distance between two successive cylinders (see 

Figs. 1.5-1.7), 

L: =Y/d, 

R: Reynolds number, =abd/v, e 

Rb: frequency Reynolds number, =bd2/v, 

R: streaming Reynolds number, =alb/v, 

t: time, 

t: non-dimensional time, =bt 

Ute: typical velocity, =ab, 

UP: potential flow speed at the outer edge of the boundary-layer, 

(u, v): velocities in the x and y directions, respectively, 

$ 
(x 

,y): dimensional coordinate system, 

(x, y): non-dimensional coordinate system fixed in space, 

(X, Y): non-dimensional coordinate system fixed in space, 

(cc, tj): coordinate system in the computational domain, 

xL: left limit of solution domain in the (x, y) plane, 

xR: right limit of the solution domain in the (x, y) plane, 

XL : left limit of solution domain in the (X, Y) plane, 

XR: right limit of solution domain in the (X, Y) plane, 
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Greek: 

0: perturbation function to the 0(c) steady streamfunction, 

Ii: streamfunction in the (x, y) plane, 

41: streamfunction in the (X, Y) plane, 

q/0 0(1) streamfunction, 

W(S): 0(c) steady streamfunction, 

Tli) i=1,2,0(c) unsteady streamfunction, respectively, 

41 
2,91 3: 

0(c2), 0(c3) streamfunctions, 

W: vorticity, 

wo: 0(1) vorticity, 

w(s): 0(c) steady vorticity, 

C: =a/d, 

i: mesh size for time, 

v kinematic viscosity of the fluid, 

6u thickness of the unsteady boundary-layer. 

Nomenclature for Section 2: 

Latin 

C: angular momentum of the flow at the cyclone entry, 

d50: the particle diameter for which fifty percent separation 

efficiency is achieved, i. e. the 50% cut size, 

D inlet diameter of cyclone, 

E: separation efficiency of cyclone (main flow), 
M 

Eb: separation efficiency in the top boundary-layer, 

E: overall efficiency of cyclone, 
0 

h0: length of the cylindrical portion of cyclone, 

hl: length of the vortex finder, 

Le: overflow leakage, =QL/Q, or =QL, /Q, 
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Q: total flux of fluid through cyclone, 

QL: meridional flux of fluid through the top boundary-layer, 

QL: leakage of fluid through the top boundary-layer, 

QLv: leakage of fluid through the top boundary-layer between the 

equilibrium point for a particle with size d and the top wall, 

Q flux of fluid through main flow, 

R, z, A: cylindrical coordinate system, 

Ra variable in R-direction determined by ensuring 0=1 joins with 

vortex finder tangentially, 

R: radius of the cylindrical portion of the cyclone, C 

RE: a variable in the R-direction which varies within (R1, Rte) 

R radius of the overflow, 
0 

Rf: ratio of the flux of fluid through the underflow to the total 

flux of fluid through the cyclone, 

Rin: inlet Reynolds number, =DIWJv, 

R: radius of the underflow tube, 
U 

SQL: a scale for the flux of fluid in the boundary-layer at top wall 

of the cyclone, 

tRz: =R /Z 
CI 

T thickness of the vortex finder, 
V 

u, v, w: velocity components in R, z, A directions, respectively, 

U: main flow velocity component in the R-direction at the outer 

edge of the top boundary-layer, 

U 
SC 

:= Q/(2rrR 
CZc), 

scale for velocity u, 

V: = Q/(2nR2), scale for velocity v, SC c 

Wsc: = Wo, scale for velocity w, 

Vo: vertical velocity at annulus entry of the cyclone, 

W: main flow spin velocity at the outer edge of the top 
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boundary-layer, 

Wo: average spin velocity at the entry to the cyclone, 

Zc: length of the conical portion of the cyclone, 

Greek: 

a: equivalent loss factor, 

a full angle of the conical portion of cyclone, 

µ: coefficient of viscosity of the fluid, 

v: kinematic viscosity of the fluid, 

-Q: a boundary-layer variable which measures the distance normal to 

the top wall of the cyclone, 

oa 
constant value such that 0<71 

0<1 
which satisfies f(ii)=0 (see 

equations (8.5.4), 

-0 d an equilibrium point which satisfies equation (8.5.12), 

p: density of the fluid, 

p density of the particle, 
P 

0: streamfunction, 

ö: thickness of the boundary-layer on the top wall of cyclone, 

Subscripts: 

i: inlet conditions, 

k: values used by Kelsall (1952). 
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CHAPTER 1 GENERAL INTRODUCTION 

1.1 Oscillatory Flows 

The problem of fluid flow induced by a harmonically oscillating 

cylinder (or cylinders) has for a long time received much attention, 

theoretically, experimentally and numerically. The early theoretical 

and experimental work was mainly performed when there is only one 

oscillating body and usually this has been a circular cylinder. 

Typically, the problem investigated is that of the two-dimensional 

fluid flow induced by a cylinder (or cylinders), with a typical 

dimension d and of infinite length, which oscillates harmonically in 

the direction which is perpendicular to the axis of the cylinder in 

an incompressible, viscous fluid which is otherwise at rest. The 

s 
x -component of the displacement s(t of the oscillation may be 

s 
written as a function of time t as 

s(t )=a sin(bt (1.1.1) 

where a and b are the amplitude and angular frequency of the 

oscillation, respectively. 

It has been identified, see for example Riley (1967), that the 

flow induced by the harmonic oscillation can be characterized by the 

folloiding parameters, namely 

(i) R, the Reynolds number with the length scale based on the 
e 

typical size of the body, d, and the maximum speed of the 
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oscillation, U 
CO 

=ab, i. e. Re =abd/v, where v is the 

coefficient of kinematic viscosity of the fluid. 

(ii) Rb, the Reynolds number with the length scale based on the 

typical size of the body and the speed on the frequency of 

the oscillation b, i. e. Re bd2/v, 

(iii) c, the ratio of the amplitude of the oscillations, a, to 

the typical size of the body, d, i. e. c=a/d, 

(iv) R, the streaming Reynolds number with the length scale 

based on the amplitude of the oscillation and the speed on 

the maximum speed of oscillation, i. e. R =alb/v, 
s 

It should be noted that only two of the above parameters are 

independent, for example if Rc and Rb are taken to be the two 

independent parameters then c and R can be expressed as follows 
s 

e= RelR6 RS = R2 R (1.1.2) 

Experimentally, the first report of the presence of an induced 

steady circulation over vibrating plates was due to Faraday (1831) 

and then further observations of induced steady motion in a tube was 

made by Dvorak (1874). Typically, the fluid flow induced by a 

harmonically oscillating body with a small value of the parameter c 

consists of two components, namely an unsteady velocity component 

which is periodic in time, t, and a steady component of the flow. 

This steady component of the flow is usually referred to as 

'streaming flow' or 'steady streaming' or 'secondary flow'. It is 

this streaming flow which has interested scientists for more than a 

hundred years. In order to illustrate the streaming flow phenomena 

Fig. 1.1 shows a photograph, taken by Tatsuno, of the streaming flow 

induced by a harmonically oscillating circular cylinder in an 
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Fig. 1.1 Streaming flow patterns around a harmonically 

oscillating circular cylinder. 

incompressible viscous fluid which is otherwise at rest, the E 

indicates the direction of the oscillation and the direction of the 

streaming flow is also shown on the picture. After the work of 

Faraday and Dvorak, both hydrodynamicists and acousticists have 

investigated streaming flows in various flow regimes which depend on 

the parameters R, Rb, R and c. Numerous experimental work has been 
es 

reported in the cases when c«l for various values of the parameter 

Rb, see for example Carriere (1929), Andrade (1931), Schlichting 

(1932), Holtsmark et al. (1954), Tatsuno (1973,1974,1980), 

Bertelsen (1974) and Kim and Troesch (1989). 

Almost all the early experimental investigations were performed 
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with c«1 and when the oscillating body is a long circular cylinder 

but quite different results were obtained for different values of 

Rb. For the induced streaming flow Carriere (1929) showed that when 

Rb is small then the direction of the streaming flow was towards 

the body along the axis of oscillation at an 0(1) distance from the 

body whilst when Rb is large then the experimental results of 

Andrade (1931), Schlichting (1932) and Holtsmark et al. (1954) 

showed the streaming flow in the opposite direction. An explanation 

of these controversial sets of experimental results has long been 

established and we will return to this later. 

Theoretically, using the boundary-layer technique Schlichting 

(1932) investigated the non-linear effects of periodic oscillating 

flows in the case when c«1, Rb»1 and RS «1. He studied the fluid flow 

induced by an oscillating circular cylinder in a fluid at rest when 

R «1 whilst his experimental results were for R »1. It can be shown, 
s5 

see for example Schlichting (1932), that the potential velocity at 

the outer edge of the boundary-layer, due to a body performing 

harmonic oscillations as described in equation (1.1.1), may be found 

in the form 

U(x', tf)- =U (x' )cos(bt*), (1.1.3) 
P 

where UP is the potential flow velocity at the outer edge of the 

boundary-layer. Standard boundary-layer techniques then result in 

the following well-known first-order Stokes solution in the 

boundary-layer, 

u' =U [cos(bt*) - e-7)cos(bt*-n)] (1.1.4) 
1P 

where ii = y' (b/2v), x' and y' are independent variables along and 
1"2 
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normal to the surface of the oscillating body, respectively, and u' 

(and later v') are the velocity components along (and normal to) the 

surface of the body. 

It can also be shown that the second-order term for the 

velocity contains two components, i. e. both a steady and an unsteady 

part. The unsteady component contains terms of the form cos(2bt ) 

and sin(2bt ). It was Schlichting (1932) who first recognised that 

at the outer edge of the Stokes-layer the magnitude of the steady 

part of the second-order boundary velocity (tangential velocity) may 

be non-zero and proportional to the pressure gradient along the 

surface of the body. That is to say that the 'inner' streaming layer 

induced by the oscillation may extend further than the Stokes-layer 

into the potential flow and the zero steady tangential velocity 

boundary condition on the outer edge of the Stokes-layer should 

therefore be abandoned. 

The streaming flow outside the Stokes-layer is actually driven 

by the tangential velocity along the outer edge of the Stokes-layer, 

as mentioned in the last paragraph. In the case when the frequency 

of the oscillations is large, i. e. Rb»1, then for a fixed body 

dimension, the thickness of the unsteady Stokes-layer, 

ö= (v/b)1/2, becomes very small and as a result the steady 
u 

tangential velocity at the outer edge of the Stokes-layer can be 

assumed to be located at the surface of the oscillating body. 

The third- and fourth-order boundary-layer effects on an 

oscillating body were investigated by Andres and Ingard (1953a) 

where both R and R »l and c«1, i. e. the linearisation of the 
ieb 

boundary-layer equations is valid. The third-order effects are 

purely periodic with angular frequency b and 3b whilst the 
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fourth-order effects contain both an unsteady and a steady 

component, the ratio of this steady correction to the 0(c) steady 

solution is O(c2). 

For a valid boundary-layer approximation to the Navier-Stokes 

equations the thickness of the Stokes-layer should be very small 

compared to the body dimension, i. e. 

2 
u v 1 

= _ «1 
2 li d bd b 

(1.1.5) 

Thus when Rb is very small the boundary-layer theory breaks down and 

Andres and Ingard (1953b) solved the Stokes-Oseen equations. They 

found, theoretically, that when c«1 and Rb«1 the streaming flow near 

the body is in the opposite direction to that when Rb is very large, 

Rb»1 (see Andres and Ingard (1953a)). Their analysis is, of course, 

only valid for R «1 since R =cR b. ee 

As observed earlier, most of the early work on harmonically 

oscillating flows was performed when c is very small. This has the 

advantage for theoretical investigators that a perturbation 

technique (with perturbation parameter e) may be employed. Using the 

full Navier-Stokes equations, Holtsmark et al. (1954) have 

considered a perturbation solution, for c«1, for both unbounded and 

bounded flows, for the case of a harmonically oscillating circular 

cylinder and hence their result is valid for Rb = 0(1) and R <<1. The 

first-order solution was obtained explicitly and the formal solution 

for the 0(c) correction was also given. Calculations for the 

perturbation quantities were facilitated by the tabulation of some 

specialised functions, related to the Hankel function. Experiments 

were also performed which supported their theory even for Re =0(1). 
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This is not surprising since, as explained by Riley (1967), the flow 

structures are quite similar for Re «1 and R=0(1) and the solutions 

" for the 0(c) steady streaming are identical to each other in each of 

these two cases. By extending the solutions of Holtsmark et al. 

(1954) so that they are valid for large values of Rb, Raney et al. 

(1954) showed that the steady streaming in the Stokes-layer 

increases in thickness as R decreases. 
b 

It has long been understood that the conformal mapping 

technique is a very useful technique for solving the Navier-Stokes 

equations. This is because there is no substantial complexity 

introduced into the governing equations other than by adding a 

Jacobian. Segel (1961) used a conformal transformation to study the 

flow between two concentric circular cylinders with the outer 

cylinder performing small amplitude, low frequency harmonic 

oscillations, i. e. his analysis is valid for c«1 and Rb«1. 

Taking c and Rbliz as the perturbation parameters, Riley (1967) 

examined, in his excellent review article, the fluid flow induced by 

i 

a harmonically oscillating cylinder (not necessarily a circular 

cylinder). The unbounded ambient viscous fluid was at rest at 

infinity and he considered a wide range of parameters, namely Re «1, 

Re=0(1), Rb» 1 and RS=00). By using an 'outer' and 'inner' expansion 

technique, up to second-order accuracy, steady and unsteady 

solutions were obtained in both the 'inner' and 'outer' flow 

regions. Using a similar perturbation and 'outer' and 'inner' 

expansion techniques, Wang (1968) also studied the fluid flow 

inducgd by an oscillating circular cylinder in the case of small 

Reynolds number flows such that c«R« 1/c with the value of c 
e 

being very small. 
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The controversial experimental observations of Carriere (1929), 

Andrade (1931), Schlichting (1932) and Holtsmark et al. (1954) for 

the streaming flow induced by the oscillating circular cylinder were 

explained some time ago and reviewed, for example, by Riley (1967) 

(also see Rott (1964) and Stuart (1963)). When Rb»1 the viscous 

length (v/b)1/2 is small compared with the geometric length d, thus 

the leading term (of the first-order 'inner solution') of the 

streaming flow (see Riley (1967)) shows that within the Stokes-layer 

the steady part of the tangential velocity undergoes a change of 

sign. The direction of the tangential velocity is such that outside 

the Stokes-layer fluid is carried over the surface of the body and 

out away from the body along the direction of the oscillation. So 

the fluid adjacent to the surface of the body within the 

boundary-layer flows in the opposite direction to that outside the 

Stokes-layer. Continuity of fluid within the boundary-layer is 

maintained by the streamlines forming closed loops. As Rb decreases, 

the viscous length (v/b)1/2 increases and the Stokes-layer increases 

in thickness until we see, at an 0(1) distance from the body, 

streaming in the opposite direction to that when Rb is very large: 

What we are seeing in this case is the inner part of the closed 

streamlines which are originally associated with the Stokes-layer. 

When Rs is very small the outer streaming flow is governed by 

the biharmonic equation. This flow vanishes far from the body but on 

the surface of the body it matches with the inner streaming flow and 

takes the tangential velocity at the outer edge of the 

Stokes, -layer(Riley (1967), Telionis (1981)). 

When R >-0(1), the 0(c) outer streaming flow induced by the 
S 

harmonic oscillation of a body is governed by the full steady 
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Navier-Stokes equations with R the streaming Reynolds number as the 
s 

governing parameter (Riley (1967)). This steady Navier-Stokes 

equations can be solved for the streaming flow on any solution 

domain. The importance of the streaming Reynolds number was 

theoretically first recognized by Stuart (1963,1966) although in 

the earlier work of Andres and Ingard (1953a/b) the authors did 

mention that the structure of the streaming flow depends only on the 

streaming Reynolds number. For c«1, R? 0(1) implies that Rb»1 so the 

Stokes-layer is very thin. Numerically, Haddon and Riley (1979) 

solved the Nävier-Stokes equations, based on the analysis of Riley 

(1967), for the 0(c) outer streaming flow outside the Stokes-layer 

in the closed domain between two concentric circular cylinders that 

Bertelsen (1974) considered in his experiments for R =90 and 400 and 
s 

they found a good agreement between their experimental results. 

When R »1 the outer streaming flow has the character of a 

boundary-layer structure with a boundary-layer thickness 0(R 1"2d) 

(Stuart (1966)). Using a perturbation scheme, Stuart solved the 

boundary-layer equations for the outer streaming flow by introducing 

a small artificial perturbation parameter, o' say, finding that the 

solution converges in practice as far as a=1. Stuart (1966) 

predicted that a collision of the boundary-layers will take place 

resulting in the emergence of a jetlike flow along the axis of the 

oscillation. Later, Davidson and Riley (1972) examined in detail the 

structure of this outer boundary-layer for an oscillating cylinder 

with an elliptical cross section for various aspect ratios. They 

confirmed, experimentally, the existence of the jetlike outer flow 

(near the surface of the body). Using a perturbation scheme with a 

perturbation parameter R 1/2 
and higher-order boundary-layer 

s 
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techniques, Riley (1975) studied the steady streaming due to an 

oscillating circular cylinder in the case when RS »1 and c«1. His 

results show good agreement with those obtained experimentally by 

Bertelsen (1974). Another important piece of work which should be 

mentioned here is that of Duck and Smith (1979) who investigated the 

oscillatory fluid flow between two concentric circular cylinders 

when the inner cylinder performs small amplitude oscillations (i. e. 

c«1). Using a perturbation and series expansion technique they 

studied the streaming flow due to the oscillations for both RS «1 and 

R »1. The effect of the outer cylinder on the solution in the 
s 

'inner' layer was discussed and they found that as the radius of the 

outer cylinder tended to infinity their solutions tended to those 

obtained by Riley (1967) and Wang (1968) in the case when there was 

no outer cylinder. A flow model appropriate for large values of R 

and a large value of the ratio of radius of the outer cylinder to 

that of the inner cylinder was also presented which gave details of 

the outer streaming flow structure between these two cylinders. More 

recently, work on the fluid flows when the values of Rb and c are 

small has also been performed theoretically by Amin (1988). He 

investigated the fluid flow induced by an oscillating circular 

cylinder using 'outer' and 'inner' expansion techniques and he 

indicated that the work of Andres and Ingard (1953b) is 

unnecessarily complicated. 

Recently, some work on flows induced by a harmonically 

oscillating body with a cross-section other than circular has been 

reported' Tamada and Miyagi (1974) investigated the streaming flow 

induced by a symmetric Joukowski profile. Their analysis was based 

on the theory of Schlichting (1932) and is applicable to the case 
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when Rb»1 and RS«1. The experimental investigation of this problem 

can be found in Tatsuno's work (1980) where the streaming flow 

initiated by a cylinder with a fan-shaped cross section was also 

studied experimentally. In the case when the oscillating body is a 

square cylinder Tatsuno (1974) showed, experimentally, for c«1 and 

Rb<4 that the structure of the induced streaming flow consists of 

four symmetric vortices around the square cylinder with one in each 

quadrant of the square, see Fig. 1.2a. The direction of the flow at an 

0(1) distance from the cylinder is towards the cylinder along the 

direction of the oscillation. As the value of R increases from 
b 

about 4 then newly created vortices appear near the cylinder, so 

that there are now eight vortices situated around the square with 

two in each quadrant, see Fig. 1.2b. As Rb increases further from 

OOOO ýo1aý 
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(a) R, <4 (b) 4. R, <4 (c) 8.3100 

Fig. 1.2 Streaming flow patterns around a harmonically 

oscillating square cylinder. 

about 100 all these vortices become of comparable strength, see 

Fig. 1.2c. Irani (1982) and Pattani and Olson (1987,1988) used a 

finite element method in order to investigate the fluid flow induced 

by a harmonically oscillating cylinder in an unbounded viscous 

fluid. Irani concentrated on the flow induced by a square cylinder 
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for large amplitudes of oscillations, whereas Pattani and Olson 

(1987,1988) investigated the flow induced by both a circular 

cylinder and a square cylinder and in the parameter range c«1 and 

R ? 0(1). 
S 

Kim and Troesch (1989) extended the work of Haddon and Riley 

(1979) to include the fluid flow between two cylinders with the 

inner cylinder being square but the outer one being circular. 

Conformal mapping and finite-difference techniques were used to 

study the outer streaming flow when R =0(10). The conformal mapping 

technique made it easier to deal with the complex geometry and their 

numerical results compare well with their experimental 

investigations. 

Historically, the streaming phenomenon induced by the 

oscillating body was the domainant interest of many experimental 

investigators and less attention was paid to the unsteady flow 

pattern at different times during a period of the harmonic 

oscillation. Williamson (1985) investigated the fluid flow induced 

by large amplitude oscillations of a circular cylinder (c=0(1)). His 

attention was focused on the instantaneous flow patterns 

(instantaneous recirculating flows) induced by the oscillations of 

the cylinder at different times. Also in Williamson's work (1985) 

the flow induced by two circular cylinders oscillating in phase and 

the effect of varying the distance between the axes of the cylinders 

was investigated experimentally. 

Tabakova and Zapryanov (1982) and Zapryanov et al. (1988) used 

conformal mappings and 'inner' and 'outer' expansion techniques to 

investigate the streaming flow initiated by two circular cylinders 

with parallel axes. They considered two cases, namely, (i) when the 
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cylinders oscillate in phase and parallel to the plane containing 

their axes, and (ii) when the cylinders are equal in diameter and 

oscillate in phase but perpendicular to the plane containing their 

axes. Their methods were based on a perturbation analysis and their 

results are valid for Rb»1 and e«1. 

To sum up, Fig. 1.3 shows a schematic diagram of the parameter 
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Fig. 1.3 Schematic diagram of the parameter ranges of the 

oscillatory flows reviewed in this thesis (see table. 1.1 

for details). 
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ranges investigated by previous authors when considering the fluid 

flow induced by an oscillating body (or bodies) with different cross 

sectional shapes and Table 1.1 gives a brief description of the 

authors, date, body shape, methods used and the parameter ranges 

considered for each of the investigations reviewed in this thesis. 

No. Authors Dates Shapes Parameters Methods 

1 Andrade 1931 C. C. R >>1, c<<1 Exp. 
S 

Andres & R »» 1' R »» 1' 
2 1953a C. C. e b B. L. 

Ingard c«1 

Andres & R «1, R «1, 
3 1953b C. C. e b S. O. A. Ingard E« 1 

4 Amin 1988 C. C. Rb« 1, C<<1 O. I. E. 

Bertelsen 1973 R =0.75,90, 
5 C. C. C. Exp. 

et al. 400, c«1 

6 Bertelsen 1973 C. C. C. R : 50(l), c< <l 
P. M. & 

et al. & C. C. S Num. 

=60,90,400, R 
7 Bertelsen 1974 C. C. s Exp. 

c=1/20,1/24 

: 5150, R Exp. & 8 Bittleston 1986 C. C. A. e 
0(1)ße«100 Num. 

Davidson & B" L. & 9 1972 E. C. R »1, c«1 
Riley S Num. 

P. M., C. C. & c<<1, R <<1; 10 Duck & Smith 1979 s C. P. 
C. C. C. R >>1 & Num. 

8 

Haddon & R =90,400, 11 1979 C. C. C. s Num. 
Riley c«1 

Holtsmark C. C. & «1, c«1, R 12 1954 e P. M. 
et al. C. C. C. =0 (1) R 

b 
c=0(1), Exp. & 

13 Ingham et al. 1990b F. P. C. R =R X30 Num. 
eb 

Table 1.1 The oscillatory flows reviewed in this thesis 

(to be continued). 
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No. Authors Dates Shapes Parameters Methods 

=0(10), R Exp. & 14 Kim & Troesch 1989 S. C. S 
c<<1 Num. 

R «1, e«1, 
15 Lane 1955 Sphere R 

=O(1) 
P. M. 

b 

Tamada & « 1, R »1 R P. M. & 16 Miyagi 1974 J. C. s b 
c«1 

Morton & 0.3-R : 535 17 1990 S. C. 5 , Exp. 
Ingham c=0.05 

Pattani & 2--5R 1120, 
18 1987 S. C. 

b Nun . Olson 0.06ýc 0.1 

Pattani & 1: 5R X324, 
19 1987 C. C. b Num. 

Olson 0.038: 5c: 50.046 

Pattani & R =278, 
20 1988 C. C. b Num. 

Olson 0.038: 5c: 50.046 

21 Raney et al. 1954 =0(1) R «1, R P. M. C. C. C. e b 

22 RaylOigh 1883 Tube, R «1, e«1 P. M. Plate s 

23 Riley 1965 S. M. C. »1, c«1 R O. I. E. 
S 

R =0(1), R «1, 
se 

24 Riley 1967 G. C. «1, =0(1), R R O. I. E. 
b e 

c«1 

25 Riley 1975 C. C R »1, c«1 B. L. 
S 

C. C. R »1, c«1 Exp 
26 Schlichting 1932 S 

C. C. «1, c<<1 R B. L. 
S 

27 Segel 1961 C. C. C. R « 1, e« 1 C. M. 
b 

B" L. , P. M 
28 Stuart 1966 C. C. R »1, e«1 

S &F M . 

<100, R 29 Tatsuno 1973 C. C. b Exp. 
0.092<c<0.9 

Table 1.1 The oscillatory flows reviewed in this thesis 

(to be continued). 
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No. Authors Dates Shapes Parameters Methods 

2--R <1282, 
30 Tatsuno 1974 S. C. b Exp. 0.02: 5c 0.3 

0(1): 5R <6400 
31 Tatsuno 1974 D. S. C. b Exp. 0.02: 5cS0.16 

32 Tatsuno 1980 C. C. Rb-278' Exp. 
E=0.046 

R =156, b 
33 Tatsuno 1980 T. C. 0.0238: 5cS0.308; Exp. 

=2345, c=0.0424 R 
b 

55SR X1334 
34 Tatsuno 1980 J. C. 

0.004b 6ýeý0.064 
Exp. 

Tatsuno & 0.78tR X25.5, 
35 Bearman 1990 C. C. 

b 

0.24ýe<2.39 Exp. 

36 Wang 1968 C. C. «1/e small, c«R R 0. I. E. 
e e 

37 Williamson 1985 C. C. =4587,0<c 6.37; R Exp. 
b 

38 Williamson 1985 T. C. C. =4587,1.1<e58.5 R Exp. 
b 

Zaprryanov 0. I. E. 
39 

et al. 
1988 T. C. C. Rb»1, s«1 & C. M. 

Table 1.1 The oscillatory flows reviewed in this thesis. 

The notation is as follows: B. L. -boundary-layer method, 

C. C. -circular cylinder, C. C. A. -circular cylinder array, 

C. C. C. -concentric circular cylinders, C. M. -conformal 

mapping method, D. S. C. -diagonally oscillating square 

cylinder, E. C. -elliptic cylinder, Exp. -experimental 

method, F. M. -Fettis' method, F. P. C. -flat plate cascade, 

G. C. -general cylinder, J. C. -Joukowski- cross-section 

cylinder, Num. -numerical method, 0. I. E. -outer and inner 

expansion method, P. M. -perturbation method, S. C. -square 

cylinder, S. F. -steady flow, S. M. C. -symmetrical cylinder, 

S. D. A. -Stokes-Oseen approximation method, T. C. C. -two 

circular cylinders in parallel, T. C. -triangular cylinder. 
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1.2 The Fluid Flow in an Industrial Cyclone 

Over many years a great deal of effort has been devoted to 

obtaining a better working knowledge of industrial cyclones. This 

has been due in no small part to the apparent simplicity of 

operation and design inherent in this device. Conceptually the 

principle of operation is straightforward. Fluid containing 

particles of a different density, or even two fluids, is injected 

tangentially at high speed into a vessel of circular cross section. 

The high rotational vorticities so generated produce centrifugal 

accelerations which cause the particles to move relative to the 

fluid and therefore offer the possibility of separation or 

classification subject to some means of collecting the distinct 

phases. The very high radial accelerations produced allow for a 

relatively rapid migration of particles thus allowing a large rate 

of volume flux through the equipment. 

Fig. 1.4 shows the typical geometry of a conical cyclone. It can 

be seen that the main body of the cyclone is a conical vessel, 

s 
usually of small included angle, a say, surrounded by a cylindrical 

section with a lid. At the top of the cylindrical section there are 

one or more inlet nozzles which direct the feed tangentially into 

the upper part of the body. Most of the fluid, which is fed into the 

cyclone through the tangential inlet (inlets), leaves through a 

tube, known as vortex finder or overflow, which is located centrally 

through the lid. At the apex of the cone there is an orifice, called 

the underflow, through which the rest of the fluid entering the 

cyclone is allowed to leave. The high speed fluid through the inlet 

of the cyclone produces strong centrifugal forces which cause the 

particles to move relative to the fluid and towards the side wall of 
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Fig. 1.4 The cyclone geometry and the coordinate systems. 

the cyclone, as a result some particles with higher densities or 

larger sizes may be moved to the side wall before being discharged 

to the underflow and hence are separated. The centrifugal forces, 

produced by the fluid with the tangential speed, may not ^large 

enough to move the particles with smaller sizes or lower densities 

to the side wall before these particles are discharged to the 

Overflow Tangential inlet 
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overflow and these particles are consequently not separated. A 

cyclone can be operated with different fluids: one which operates 

with a liquid is referred to as a hydrocyclone, whilst one operating 

with a gas is called a gas cyclone or simply a cyclone. However the 

basic principle of separation is identical in both cases. 

On entry into the cyclone the fluid passes through a nozzle 

which generates high speeds and then the fluid goes through what is 

effectively an expansion where streamlines diverge and quite 

significant energy losses may occur. Also the fluid has to adjust to 

the no slip conditions at the solid boundaries across 

boundary-layers and, again, energy losses will arise. Account is 

usually taken of these energy losses by regarding the effective 

azimuthal velocity (spin velocity) at entry to the cyclone as a 

proportion (less than unity) of the actual entry spin velocity. The 

constant of the proportionality is called the loss factor, a say. 

The fluid then spirals down the outer parts of the cyclone and, 

since most of the fluid leaves through the vortex finder, spirals up 

to the inner region around the axis of the cyclone. In the absence 

of any losses, so that angular momentum is conserved, the reduction 

in radius of curvature of the streamlines in the horizontal planes 

cause the spin velocity to increase and so increase the radial 

acceleration of the fluid. The very high fluid speeds which arise 

near the axis produce a low pressure and this results in a gas 

liquid interface in the case of a hydrocyclone. If this core region 

communicates with the atmosphere then an air core is formed. 

Otherwise, if the pressure is sufficiently low then the liquid 

vaporises and a vapour core is formed. In the upper part of the 

cyclone the rapid motion down the wall of the cyclone causes a 
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toroidal vortex to be formed which usually extends beyond the lower 

end of the vortex finder. Clearly some radial motion must exist and 

this will play a significant part in determining whether a particle 

will be separated or not since the radial acceleration simply gives 

an indication of the migration of a particle relative to the 

surrounding fluid. The means of removal of separated dense particles 

from the device relies on the intricate mechanics of the 

boundary-layers on the solid boundaries. 

Because the Reynolds number of flow in the cyclone is generally 

very large, boundary-layers in which inertial and viscous stresses 

balance, form on the walls of the cyclone. In the main flow the 

motion of the fluid around the axis is maintained by a pressure 

gradient directed towards the axis. Because the pressure is a 

constant across a boundary-layer, and within the boundary-layer 

spinning motion is attenuated through the action of the viscosity, 

an imbalance exists between pressure and inertial stresses. This 

imbalance causes fluid in the boundary-layer to be driven in the 

direction of the pressure gradient giving rise to secondary flows. 

In the case of the boundary-layer on the side wall of the cyclone, a 

component of the radial pressure gradient drives fluid through the 

boundary-layer towards the vertex of the core and this assists in 

the removal of dense solid particles through the underflow. However, 

the boundary-layer on the lid drives the fluid which has just 

entered towards the vortex finder where it escapes to the overflow 

carrying with it particles which have not been subjected to the full 

separating mechanism of the cyclone. This is commonly referred to as 

the 'short circuit flow' or 'leakage effect' or even simpler 

'leakage'. 
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The very simplicity of the cyclone operation has probably 

dictated the course followed by many investigations. The fact that 

the mechanism of particle separation seemed straightforward together 

with the readily available information on particle drag at low 

concentration levels allowed intuition to play a significant part in 

the development of the parameter grouping relevant to the operation 

of the cyclone. This in turn was supported by extensive experimental 

investigations into the separation efficiency, the meaning of which, 

although it can be defined in a variety of ways, is adequately 

conveyed by its title. Not surprisingly, with this volume of data 

available and the intuitive understanding of the role played by 

various parameters it was possible to develop quite successful 

empirical formulae which predicted the performance of cyclones. 

There are several ways to measure the separation efficiency of a 

cyclone, the most important and frequently used one is the 50% cut 

size, dso say, i. e. the diameter of the particle which has a 50% 

separation efficiency. 

Among the large number of investigations on the cyclones, 

Rietema (1961) published an extensive piece of work on the design 

and performance of the cyclone. However the first major review work 

on the cyclone (hydrocyclone) was published by Bradley (1965) and 

more recently there has been an excellent review of all aspects of 

the operations of hydrocyclones by Svarovsky (1984). 

The first major contribution towards an understanding of the 

fluid mechanics of the cyclone is due to Kelsall (1952). He studied 

experimentally the velocity distributions within the cyclone and his 

results have frequently been used as a standard by later 

investigators. From the results of Kelsall (1952) it is clear that 
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the spin velocity in the cyclone is almost independent of z. In 

fact, away from the axis of the cyclone the spin velocity w 

satisfies wRm=constant and Kelsall showed for his experiments that 

mzO. 84. It should be noted that m=1 gives the free vortex flow which 

inviscid theory predicts. There is a sharp transition from the near 

free vortex flow to solid rotation which occurs near the axis of the 

cyclone. 

As cyclones became more widely used, problems in the operation 

and the need for a more fundamental and theoretical study became 

apparent. It was recognised that a better understanding of the fluid 

mechanics was required and it was probably at this stage that the 

complexity of the flow problem became manifest. This, and again the 

fact that the cyclone operated by centrifugal separation, dictated 

that early theoretical investigations concentrated on the spin 

velocity. Fontein and Dijksman (1953), recognising that in the 

majority of the cyclone the spin velocity was likely to be that 

associated with a free vortex whilst near the axis of the cyclone 

solid body rotation existed, suggested that the spin velocity was of 

the form k1/R + k2 R, where R is the radial distance from the axis of 

the cyclone and kl and k2 are constants to be determined. However no 

values of kl and k2 were given by Fontein and Dijksman. This 

relationship would be of value if k1 and k2 were allowed to vary 

with R, in particular kl should be zero for small values of R. 

Ohasi and Maeda (1958) investigated experimentally the velocity 

distributions in a hydrocyclone by taking photographs of the loci of 

the particles within the cyclone. Errors due to density differences 

and the centrifugal force were taken into consideration for the 

radial velocity component. The experimental setup used was similar 
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to that of Kelsall (1952) but with a much shorter vortex finder. 

Ohasi and Maeda (1958) found, by taking averages at different levels 

in the cyclone that m--0.79. 

Kelsall's excellent work (1952), as mentioned earlier, supplied 

the type of information which was much needed in order to obtain 

some insight into the fundamentals of the fluid mechanics of the 

cyclone. Indeed, using Kelsall's data, Rietema (1961) solved the 

azimuthal component of the Navier-Stokes equations assuming a 

constant eddy viscosity. His results show a strong similarity with 

the experimentally determined spin velocity profiles but no detailed 

comparisons were made. 

Knowles et al. (1973) also studied the velocity distributions 

within a cyclone which has no air core. In order to obtain the 

velocity profiles high speed movies of droplets of anisole were 

taken in two perpendicular horizontal directions and the analysis of 

these films gave results for the velocity distributions. The cyclone 

setup was one which was recommended by Rietema (1961) and was 

performed in similar conditions to those described by Kelsall (1952) 

and Ohasi & Maeda (1958). However, they found that mzO. 25. 

The early emphasis on just the spin velocity is understandable 

but with the benefit of hindsight it is probably true to say that 

this emphasis was, to some extent, misplaced. When the cyclone is 

used to separate dispersed dense particles the later work of Bloor 

and Ingham (1974) has shown that it is the spin velocity in the 

outer region of the cyclone which is of significance. Of course it 

is in this region where this velocity component is most easily 

determined theoretically because generally speaking viscous losses 

have not become significant. However, when a dispersed light phase 
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is to be separated then the magnitude of the velocity near the axis 

is of paramount importance. 

The recent major contributions to the understanding of the 

fluid mechanics in the cyclone were, perhaps, due to Bloor and 

Ingham. Many research papers which involve various aspects of the 

cyclone such as velocity distributions, the separation efficiency 

and entry conditions etc., have been published by Bloor and Ingham 

since the early 1970's. In fact they (see Bloor and Ingham (1973a)) 

obtained the cross-plane velocities in the form 

1 alp 
= 

1B(rO)-li2(3a 
0) (1.2.1) ýr 

r2sin9 ao 22- 

q6 rsine ä-r - _23 - 0) (1.2.2) 

where tP is the streamfunction and B Is a constant which can be 

evaluated by the knowledge of the operating conditions and the 

geometry of the cyclone. Their results predicted, as pointed out by 

Ferguson (1989), the locus of the zero axial velocity to be at 

0=0.3a , whilst the experimental work of Bradley (1965a) gives 

0=0.305a . Having obtained the cross-plane velocities Bloor and 

Ingham (1975) then obtained the spin velocity profile assuming that 

the viscosity was of an anisotropic nature. Actually it was assumed 

that the flow was inviscid in the cross-plane and viscous in the 

A-plane (see Fig. 1.4 for the co-ordinate system) and the flow was 

turbulent. Using the three velocity profiles available they also 

obtained the efficiency curves for particle separation. 

Having obtained the basic flow model in the cyclone, Bloor and 

Ingham (1976) investigated the boundary-layer flow near the walls of 

the cyclone. A Pohlhausen and a finite-difference technique were 
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used to solve the momentum integral equations and a comparison 

between these two methods was made. Later the presence of particles 

in the boundary-layer flow was also investigated by Bloor et al. 

(1980) and Laverack (1980a, 1980b). 

Boysan et al. (1982) suggested a mathematical model for the 

turbulent gas flow in a cyclone. They assumed that the flow was 

incompressible and the turbulence was modelled using a Reynolds 

stress technique and closure was obtained by relating the Reynolds 

stresses to the time averaged fluctuating velocity components. 

More recently, an investigation of the influence of the entry 

conditions on the separation efficiency of a cyclone has been 

performed by Bloor and Ingham (1987). By solving the inviscid flow 

equations they suggested three models for the vorticity 

distributions at the entry of the cyclone and found that the 

following model gives the best representation of the flow in the 

cyclone, especially in those of Kelsall (1952) and Knowles et al. 

(1973). 

'Induced azimuthal vorticity model: An inlet flow where the 

fluid enters the cyclone with angular velocity which varies 

with the radius of the cyclone, corresponding to an axial 

component of vorticity. The geometry of the cyclone then 

ensures than an azimuthal component of vorticity is generated. ' 

The velocity distributions obtained by Bloor and Ingham were 

based on the assumption that the cyclone is conical in shape. In 

order to deal with a practical cyclone more precisely, Ferguson 

(1989) extended the work of Bloor and Ingham to include a 

recirculation region in the cylindrical part of the cyclone. He 

investigated both viscous and inviscid flows in the cyclone by using 
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numerical techniques and found that a very good model for the entry 

conditions is vital for predicting the flow in the cyclone. 

1.3 Outline of the Thesis 

Almost all investigations on the flow due to a harmonically 

oscillating body have been performed when there is only one, or at 

most two, oscillating bodies. The oscillatory flows induced by a 

cascade of cylinders has not as yet been reported. So in the first 

part of this thesis we investigate the fluid flows induced by 

cascades of various shaped cylinders which oscillate harmonically in 

an unbounded, incompressible viscous fluid which is otherwise at 

rest. For the study of the problem of viscous flow through an array 

of cylinders such as the cascade mentioned earlier, apart from the 

interest from an academic point of view, it also has a number of 

important industrial applications, including the modelling of flows 

through a porous material and in the construction of certain heat 

exchangers. Several cascades have been studied but in this thesis 

we concentrate on three, namely, 

(i) A cascade of normal flat plates. The cascade is assumed to 

consist of an infinite number of flat plates which are of 

s infinitesimal thickness in the x -direction, of uniform 

width d in the y -direction and of infinite extent in the 

r 
z -direction. The plates occupy the plane x =0 at time 

t*=0 with edges at y*=-2+2k$ and y*-2+2k2, where k=0, ±1, 

±2,..., and $ is the half-width of the plates plus gap, 

see Fig. 1.5. 
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- 21 dö x* 

T 

s(t*) =a sin(bt*) 

Fig. 1.5 The geometry of the cascade of normal flat plates. 

(ii) A cascade of square cylinders. The cascade is assumed to 

consist of an infinite number of square cylinders which 

have a width d in the x- and y -directions and of 

infinite extent in the z -direction. The cylinders occupy 

the space between the planes x*=-2, x =2, y*=-2d +2kX and 

yf=2+2k$ at time t =0, where k=0, ±1, ±2,..., see Fig. 1.6. 
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y 

X* 

s(t*) =a sin(bt*) 

Fig. 1.6 The geometry of the cascade of square cylinders. 

(iii) A cascade of circular cylinders. The cascade is assumed 

to consist of an infinite number of circular cylinders of 

uniform diameter d whose axes occupy the plane x =0 at 

time t =0 with each axis at y =2k$, where k=0, ±1, ±2,..., 

see Fig. 1.7. 
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x* 

s(t) =a sin(bt*) 

Fig. 1.7 The geometry of the cascade of circular cylinders. 

The motion of the flow is assumed to be laminar and 

two-dimensional throughout chapters 2 to chapter 5 and the 

x*-component of the displacement of the oscillations of the cascade 

at time t is given by equation (1.1.1). With respect to rectangular 

Cartesian coordinates (x , yý), the governing equations of the flow 

may be written in the form 

au*+u*au+vau_ laP*+vV2u* (1.3.1) 

at ax* ay p aX 

av 
+ u# 

av 
+ v* 

av 
_-1 

aP 
+v V2v (1.3.2) 

at* ax* ay* P ay* 
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au av 
ax ay 

(1.3.3) 

where (u 
,v) are the velocity components of the flow. It is usual 

to work with non-dimensional quantities and b 1, d and U (=ab) are 

used as scales for time, length and speed, respectively. Then the 

non-dimensional governing equations, in terms of the streamfunction, 

ft, and vorticity, w, can now be written as follows 

w-R V2w (1.3.4 ) ät+ E{a-y X-x 
Y. 

ay} Yb 

v2 ci = -w 

where 

äX ay (1.3.6) 

is the scalar vorticity and the streamfunction 0 is defined in terms 

of the velocity components (u, v) by 

äY, 
v= -äX. (1.3.7) 

The equations (1.3.4)-(1.3.7) have been solved for different values 

of the parameters c, R 
e, 

Rb and R subject to the appropriate 

boundary conditions depending on the parameter ranges 

considered. 

Ingham et al. (1990a) have investigated, both numerically and 

experimentally, the two-dimensional steady flow through a uniform 

cascade of normal flat plates. They have shown that the length of 

the wake bubble behind the plate when the blockage ratio is unity is 

proportional to the Reynolds number. In chapter 2 we extend this 

work to include the two-dimensional flow which is induced by a 
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cascade of normal flat plates which perform harmonic oscillations. 

In most of the calculations it has been assumed that the 

non-dimensional amplitude of the oscillation, c, is 0(1) and 

numerical results have been obtained for values of R up to 30. The 
e 

numerical results compare well with some related experimental 

results. Some results for very large amplitude oscillations (e=1000) 

are also discussed. 

When only one body oscillates in a fluid at rest and c«1 then 

the Stokes-layer near the body generated by the oscillation becomes 

thicker as Rb decreases. The question arises as to what happens when 

there is more than one oscillating body? In chapter 3 both a series 

truncation and a numerical technique is used to study the flow due 

to an oscillating cascade of both normal flat plates and square 

cylinders. It is assumed that c«1 and Rb is 0(1), i. e. there are no 

boundary-layers on the surface of the cascade. We use a perturbation 

method, with parameter c, and the separation of variables method. 

The resulting coupled set of partial differential equations for the 

0(1) flow are then solved by both a numerical and a series 

truncation method. Further, a numerical technique is employed to 

obtain both the steady and unsteady flows for the 0(E) 

approximation. 

In chapter 4 we focus attention mainly on the streaming flows 

induced by a harmonically oscillating cascade of both square 

cylinders and normal flat plates in the case when c<<1 and R5 '-: 0(1)- 

The conformal transformation technique is employed to obtain the 

boundary values for the steady streaming tangential velocity which 

is required when the governing equations for the streaming flow is 

to be solved. A special central finite-difference scheme has been 
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used to solve the full steady state Navier-Stokes equations which 

govern the outer streaming flow and numerical results have been 

obtained for values of R up to 70 for both cascades. 
S 

In chapter 5 the streaming flow induced by an oscillating 

cascade of circular cylinders is obtained numerically for c«1 and 

for streaming Reynolds numbers up to 100. A grid generation method 

is first used to transfer the physical geometry onto a simpler 

mathematical domain and then the Navier-Stokes equations are solved 

on the newly transformed plane. Some related experimental 

investigations show that when R is sufficiently large, the 
S 

streaming flow induced by the oscillating cascade is no longer 

symmetrical and an asymmetrical flow develops. Therefore in chapter 

5 we solve numerically the steady state Navier-Stokes equations 

which govern the outer streaming flow due to the oscillating cascade 

of circular cylinders subject to both symmetrical and asymmetrical 

boundary conditions. Numerical results show that the break-down of 

symmetry occurs when 8<R <9. In order to identify the reason for 
S 

this break-down, a stability analysis is presented for two model 

problems. 

Although cyclones can be used to separate solids from solids, 

solids from liquids and even liquids from liquids, in this thesis we 

will study cyclones which are used to separate solid particles from 

a fluid, either a liquid or a gas. The main purpose of the work in 

the second part of this thesis is to predict theoretically and 

numerically the separation efficiency of a cyclone as a function of 

afferent 
operating conditions and cyclone design. Because the 

underlying fluid mechanics of the cyclone governs the separating 



- 33 - 

process, some of the work in this thesis involves also an 

investigation of the fluid flow within the cyclone. In particular we 

investigate the following aspects: 

(i) The velocity distributions in the cyclone. 

(ii) The influence of the cyclone geometry on the separation 

efficiency. 

(iii) The influence of the operating conditions on the 

separation efficiency. 

(vi) Comparisons of our mathematically predicted results with 

some available experimental data. 

(v) Correlations of d50 and the loss factor a with the cyclone 

geometry and operating conditions. 

In chapter 6 we investigate how different estimations of (i) 

the angular momentum at the entry of the cyclone affect the 

cross-plane velocity distribution, (ii) the vorticity in the 

recirculation region affect the cross-plane flow pattern, and (iii) 

the angular momentum at the entry of the cyclone and the vorticity 

in the recirculation region affect the separation efficiency of the 

cyclone. 

Based on the mathematical model for the fluid flow in the 

cyclone as described in chapter 6, we investigate in chapter 7 the 

the effects of the cyclone geometry and operating conditions on the 

separation efficiency of the cyclone. The effects of most of the 

parameters involved in the cyclone configuration have been 

investigated numerically. It is found that the most important 

parameter which affects the separation efficiency of the cyclone is 

the spin velocity at the entry to the cyclone. 

Having studied the influence of the cyclone geometry and the 
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operating conditions on the separation efficiency of a cyclone, we 

then, in chapter 8, compare our theoretically and numerically 

predicted results with the available experimental data such as those 

of Stairmand (1951), Smith et al. (1979) and Kim and Lee (1990). As 

d50 and the loss factor a are two very important factors involved in 

estimating the performance of a cyclone, in chapter 8 we also apply 

a regression analysis to correlate d50 and the loss factor a with 

the cyclone geometry and operating conditions using some of the 

available experimental data. 

Since the small personal cyclone, which is typically 10mm in 

diameter, is extensively used in the mining and health and safety 

industries we therefore identify in chapter 9 the differences in the 

cyclone performance between the small personal cyclones and the 

larger cyclones investigated in chapters 6 to S. Also in chapter 9 

we demonstrate how our numerical methods can be applied to the small 

personal cyclone. 

Finally, in chapter 10 some general conclusions are made and 

suggestions for further studies on both the oscillatory flow 

problems and the industrial cyclone are presented. 



- 35 - 

CHAPTER 2 NUMERICAL SOLUTIONS FOR THE FLUID FLOWS INDUCED BY LARGE 

AMPLITUDE HARMONIC OSCILLATIONS OF A CASCADE OF NORMAL 

FLAT PLATES 

2.1 Introduction 

As observed in chapter 1, most investigations of the fluid flow 

induced by oscillating bodies have been performed when c«1 and Rb»1, 

i. e. the amplitude of the oscillations is very small compared with 

the dimension of the body whilst the frequency of the oscillations 

is high. However, recently Williamson (1985) studied, 

experimentally, the two-dimensional laminar fluid flow induced by 

two circular cylinders which perform large amplitude and low 

frequency oscillations, typically c=0(1) and Rb 4587 and the effect 

of varying the distance between the two axes of the cylinders was 

investigated. His attention was mainly focused on the vortices that 

are generated along the axis of the oscillation of the cylinders. 

For the fluid flow past through more than two bodies, Gordon 

(1978) solved the steady two-dimensional fluid flow with a uniform 

velocity at infinity, past an array of circular cylinders using a 

finite-difference method for Reynolds numbers up to 20. The array of 

the cylinders was arranged such that all the axes of the cylinders 

were parallel to the z axis and there was an infinite number of 

cylinders in the y -direction and a finite number of rows in the 

x -direction, and the distribution of cylinders in the x -y plane 
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was symmetrical about the x axis. Later, Bittleston (1986) extended 

Gordon's work to both the steady and oscillating cases and 

calculated the fluid flow due to an array of cylinders, both 

circular and elliptical, such that the distribution of cylinders was 

periodic in both the x and y directions. Using a grid generation 

method and a finite-difference technique he was able to obtain both 

the steady and unsteady solutions of the full Navier-Stokes 

equations. The parameter range for his steady solutions was OAR X200 
e 

whilst the parameter ranges for his unsteady solutions were: 

0 :: SR 
e . 

5150 and c= 0(1) to 0(102). Ingham et al. (1990a) investigated 

the two-dimensional steady flow through a uniform cascade of normal 

flat plates, see Fig. 1.5, and, with a careful treatment of the 

singularity in the vorticity at the corners of the plates, they were 

able to obtain solutions for values of R up to 500. 
e 

The use of circular and elliptical cylinders makes it easier 

for investigators to solve the Navier-Stokes equations in terms 

of the streamfunction and the vorticity as there are no 

singularities in the vorticity in the solution domain, see for 

example Gordon (1978) and Bittleston (1986). However, singularities 

arise in the vorticity near the corners of the cylinders when the 

array consists of cylinders with sharp corners such as normal flat 

plates. It is these singularities that make the numerical 

calculations more difficult. 

In this chapter we Investigate the two-dimensional fluid flow 

induced by a cascade of normal flat plates which perform harmonic 

oscillations in the direction normal to the plane of the plates in 

an unbounded incompressible fluid which is otherwise at rest. The 

Navier-Stokes equations are written in terms of the streamfunction 
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and vorticity and are solved using an implicit second-order-accurate 

finite-difference scheme which is based on a modified procedure to 

preserve accuracy and iterative convergence at large values of the 

Reynolds numbers. Singularities in the vorticity near the edges of 

the plates are treated in the way which is similar to that developed 

by Moffatt (1964) in the steady case. Interest is mainly 

concentrated on small and moderate values of the Reynolds number as 

much more computation time is needed in order to obtain accurate 

solutions at large values of the Reynolds number. Therefore, in this 

chapter we mainly present results for c= 0(1) and for values of R 
e 

up to 30. However, the numerical scheme is applicable to any value 

of c and the Reynolds number. Also in this chapter an asymptotic 

approximation is developed which is valid at large distances from 

the cascade in order for the numerical scheme to adequately deal 

with the boundary conditions at large distances from the cascade. 

2.2 Governing Equations and Boundary Conditions 

The cascade considered is assumed to consist of an infinite 

number of normal flat plates as described in chapter 1 (see Fig. 1.5) 

and the harmonic oscillation of the cascade is given by (1.1.1). The 

non-dimensional governing equations for the flow are equations 

(1.3.4)-(1.3.7) and due to the symmetry of the physical geometry, we 

need only consider the flow in the non-dimensional region 

-co <x< co, 0y{ 2/d ° L. 

Equations (1.3.4)-(1.3.7) now must be solved subject to the 

boundary conditions 

=y cos(t), 
äX 

= 0, on x= c sin(t), 0sys2 (2.2.1a) 

LEEDS UNIVERSITY LIBRARY 
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ýi=w=0, ony=0 andy=L, -m <x <oo (2.2.1b) 

ax-º0, 
äy--º0, 

w--º0, asx-º±co, 0ý ysL (2.2.1c) 

Clearly the numerical implementation of the boundary condition 

(2.2.1a) is not easy so we consider the problem with the coordinate 

system fixed in the cascade. We therefore make the following 

coordinate transformation, 

Y=y 

X=x-c sin(t) (2.2.2) 

T(X, Y, t) = IP(X, y, t)-ycos(t) 

Then the equations (1.3.4)-(1.3.7) become 

aw aw aw aW aw 1a2wa2w 

at ay ax ax ay Rb aX2 ay 2 

22 
a- +a =-w (2.2.4) 
ax 2 aye 

where 

U= 8alp Y v= ax (2.2. s) 

w=av _au (2.2.6) ax ay 

and the boundary conditions (2.2.1) become 

WY= a %p -0, onX= 0, O±, 0ý Y{ 2 (2.2.7a) 
X 

ý w=0, onY0, -co <X<oo ý 
(2.2.7b) 

%P - -L cos(t), w 0, on Y L, -oo <X< 

ä-x -º 0, äY 
-º -cos (t), w -º 0, 

as X--º±oo, 0 :5Y: 5 L (2.2.7c) 
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For viable computations we must limit the length of the 

computational region in the X -direction to XL tX XR, say, 

without introducing any significant errors into the computations, 

see Fig. 2.1, 

Y 

X 

As quantities change more rapidly near the cascade than at 

large values of IX' we introduce the following coordinate 

transformation 

h+ln(1+D(X-h)) X>h 

-h-ln(1-D(X+h)) X <-h (2.2.8) 

=Y 

where D is a constant which can be adjusted. In this chapter we take 

h= In (1+Dh), (2.2.9) 

where h is a constant mesh size in the q-direction, so that all the 

meshs in the region [-2h: sXs2h, O: 5YSL] are square. The governing 

equations (2.2.3)-(2.2.6) may now be written, for ji>h, 

aw E2 aw w1 2Ö 
2w a 2w 

-+ (cEU ±-)4. ev`ýö= (E +) (2.2.10) 
8t Rb ace äy, Rb ax 

2 
alj2 

Fig. 2.1 The geometry of the computational domain. 
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22 

Ea(a +aP l +a =-w (2.2.11) 
as 

2 
a[C alf2 

with 

U=äv= -E 
aý (2.2.12) 

w=Eä7-ä (2.2.13) 

where E=D exp(+(cc±h)) and the upper and lower signs refer to a>h 

or a< -h, respectively. The governing equations for z=0 are those 

given in (2.2.3)-(2.2.6) except with a replacing X. 

We determine the vorticity on the plate of the cascade at 

points other than at the edge of the plate using the method of Woods 

(1954), which gives 

3UB 3c' wi 

8h h2 2 
(2.2.14) 

where the subscript B denotes a value at a boundary grid point and 

the subscript I at the first internal grid point along the inward 

normal to the solution domain at the point B. The quantity UB is the 

velocity of the plate (in the (X, Y) co-ordinate system) in the 

X-direction at the point B. 

In order to reduce the solution domain in which we seek a 

solution we investigate the asymptotic solution of the Navier-Stokes 

equations for large positive values of X. Using a method similar to 

that described for a steady state problem by Wilson (1969), Bramley 

and Dennis (1984) and Ingham et al. (1990a), we write, for large 

positive values of X, 

T= -Ycos(t) + e-f(Y, t) (2.2.15) 
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where a(> 0) is an unknown constant and f(Y, t) is an unknown 

function. It is clear that (2.2.15) satisfies the boundary condition 

(2.2.7c). Substituting expression (2.2.15) into equations 

(2.2.3)-(2.2.6) and neglecting terms O(e-ZaX) and higher, we obtain 

242f 
f (cacos(t) + at) 

(OC2f 
+a2, =1 

(a 
+ 2aß + a4fl (2.2.16) 

ay b äY äY 1 

We now look for a separable solution of this partial differential 

equation. Further, as the solution is periodic in Y we assume that 

f= sin(ßY)F(t), where ß is a constant to be determined, and we 

obtain 

4-t- + accos(t)F =R (a2-ß2)F 
b 

(2.2.17) 

In order to obtain solutions which are periodic in time then a= 13 

and 

F(t) =c exp(-3csin(t)) (2.2.18) 

where c is an unknown constant; hence 

_ -Ycos(t) +c exp(-ßX) exp(-ßesin(t)) sin(1Y) (2.2.19) 

In order to satisfy the boundary conditions (2.2.7b) we require that 

ß= ßi = in/L (i=l, 2,3,... ) and the leading terms in the expansion 

(2.2.19)are when ß= ßl = n/L. 

For X<0, a similar procedure may be followed and finally we 

obtain 

41 = -Ycos(t)+ c1,2exp(+LIr Tr X) exp(-Lcsin(t)) sin(LY) 

asX-º±co, 0 YsL (2.2.20) 
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where cl and c2 are constants to be determined for X>0 and X<0, 

respectively, and the upper (lower) signs correspond to X>(<)0. 

Implementation of the boundary conditions (2.2.20) is rather complex 

so we eliminate the constants cl and c2. This leads to the following 

asymptotic boundary condition, 

aX =+ L(ýY+ycos(t)), as X-* ± co (2.2.21) 

which in terms of a becomes 

Ea (w+tjcos(t)) =+ 
L(4, +q. cos(t)) as cc-* ± co (2.2.22) 

One grid point that needs special attention is the corner of 

the plate (S in Fig. 2.2) where the vorticity is singular. 

4 

a: 

Fig. 2.2 Singular & typical grid points in (cc, q) plane. 

At the points 01,02 and 03, which are internal grid points 

near the point S (see Fig. 2.2), the usual finite-difference scheme 

can not be used. Two ways of dealing with this singularity will be 

discussed in the next section. 
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2.3 Numerical Procedure and Singularity at the Sharp Corner 

A Crank-Nicolson scheme is used to solve the vorticity equation 

(2.2.10) except that the non-linear terms are treated in a similar 

way to the method described by Dennis and Hudson (1978) and Ingham 

et al. (1990a) for a similar steady problem in which second-order 

accuracy is maintained. The choice of the constant D in equation 

(2.2.9) means that at for X=0 and 0Y .5L the mesh is square and 

there are no difficulties encountered in writing down the 

finite-difference equations on this line. If h and z are the mesh 

sizes in space and time, respectively, and the subscripts 0,1,2,3 

and 4 denote the grid points (ih, jh), (ih+h, jh), (ih, jh+h), 

(ih-h, jh) and (ih, jh-h), respectively, then the finite-difference 

representation of equations (2.2.10) and (2.2.11) become 

k+l k+1 k+l k+1 k+ 
CW +C W +C 

11223 

b q/ 
k+1 

+b %P 
k+l 

+b 41 
k+l 

112233 

where 

1Wk+l+Ck+1ýk+1_Ck+1 k+l+Q (wk)_0 (2.3.1) 
34400 

+b yk+l _b Tk+1 +h 2W k+1 
_0 (2.3.2) 

44000 

E2-hE (R Uk+1+E )/2+h2(R Uk+1±E )2 
k+lo oeooeoo 

/8 xl>h 
(2.3.3) 

1 1-hR Uk+1/+h2R 2(Uk+1)2/8 ImIýh 
eoe0 

c k+l_1 
- hR Vk+l/2 +h2R 2(Vk+1)2/8 (2.3.4) 

2eoeo 

E2+hE (R Uk+1+E )/2+h2 (R Uk+1+_E )2/8 1 cc1 >h 
ck+l_ o0e00e00 (235) 

3 1+hR Uk+i/+h2R 2(Uk+1)2/8 1GC1Sh 
e0e0 

ßk+1=1 + hR Vk+l/2 + h2R 2(Vk+1)2/8 (2.3.6) 
4eoeo 

Ck+1=Ck+1+ Ck+l+ Ck+l+ Ck+l+ 2R h2/Z (2.3.7) 
o1234b 

Q(Wk)= C Ckwk+ Ckwk+ CkWk- (c k_ 2R h2/T)wk (2.3.8) 
11223344obo 
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E2 (1 + h/2) 1 ca I >h 
b1 = (2.3.9) 

1 Ia I_h 

E2(1 ± h/2) IaI>h 
b3 =° (2.3.10) 

11 101sh 

b2 = b4= 1 (2.3.11) 

bo =b+ b2 + b3 + b4 (2.3.12) 

where the superscripts k represent the value of the function at time 

t= kt. 

The matrix associated with the set of finite-difference 

equations (2.3.1) is diagonally dominant under all circumstances. 

This is because the coefficient of each grid value, ci+1 (i = 1,2, 

3,4 and k=1,2,3,... ), may be expressed in the form 

'd 2(1+2µ+2µ2) (2.3.13) 

and for all values of z and µ this expression is always greater than 

zero. Thus 

Ck+1 Ck+l+ Ck+l+ Ck+l+ Ck+l 
01234 

(2.3.14) 

and the matrix associated with the set of finite-difference 

equations (2.3.2) is also always diagonally dominant. Hence an over 

relaxation iterative scheme may be employed in order to reduce the 

number of iterations required for convergence. It should be noted 

that in the unsteady case considered here the convergence may be 

quicker than that in the steady case because the diagonal dominance 

is improved in the unsteady case and this can be seen from (2.3.7). 

It should also be noted that the iterative procedure may be 
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used at every mesh point except the points 01,02 and 03 since the 

evaluation of w at these three points involves knowledge of the 

value of w at the point S, which is infinite. In order to determine 

the value of the vorticity at these three points we employ two 

methods. 

Method I uses the modified finite-difference scheme described 

0 
above except that the finite-difference grid is rotated through 45 

at the points 01,02 and 03, see Fig. 2.2. Thus, for example, the 

values of the functions are used at the points P1(0,1 - h), 

P2(2h, 2- h), P3(2h, 2+ h) and 02(0,2 + h) to determine the 

vorticity at the point 03 and similarly for the points 01 and 0Z 

The possibility of being able to use this technique was brought 

about by the choice of the constant D. This method has been used 

very successfully in other related problems by Dennis and Smith 

(1980) and Bramley and Dennis (1984) and full details of this method 

are to be found in these papers. 

An alternative method, II, of dealing with the singularity in 

the vorticity near S is based on the theory which is valid for 

steady state flows and was developed by Moffatt (1964) and later by 

Lugt and Schwiderski (1964), see for example Bramley and Dennis 

(1984) and Badr et al. (1985). For unsteady flows equations (2.2.3) 

and (2.2.4) near the corner S reduce to 

Rb 
ö 

tV2q/ = V4c' (2.3.15) 

We now look for a solution near S in the form 

co a 
WY = Co r1 Gi(0, t) (2.3.16) 
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where (r, 0) are the polar coordinates shown in Fig. 2.2, 

al < A2 <... are some unknown constants and G(0, t) are unknown 

functions of 0 and t. Substituting expression (2.3.16) into equation 

(2.3.15) and retaining only the leading terms as r-)0 on both sides 

of the equation gives 

A1-2 a ä2G ? L, -41 a4G 

Rr+... -r1+... (2.3.17) 
b at ae2 ae4 

a -2 
It is seen that the term of order r1 on the left hand side 

of this equation is small compared with the term in r on the right 

hand side of the equation. This indicates that the form of the 

solution as obtained for the steady flow is appropriate for the 

unsteady flow if Rb is not large. Therefore on substituting 

expansion (2.3.16) into the governing equation, 04T = 0, and solving 

subject to the boundary conditions (2.2.7a) gives 

r3/2(A*(t)(Icos(30)+ Cos( 
0)) 

+ B(t)(sin(0)-sin(3e))) 
32222 

+ r2C*(t)(1- cos(2e)) + r5/2(D*(t)(cos(0)- Cos( 
o))+ 

22 

+ E*(t)(sin(e) - sin(5e)) +,,. (2.3.18) 22 

and therefore 

w r-1/2(-2A; (t)cos(e) + 2B*(t)sin(e)) - 4C*(t) 2 

+ r1/2(-6D*(t)cos(0)- 6Et(t)sin(0))+... (2.3.19) 
22 

where A#(t), B#(t), C*(t), Do(t) and Ef(t) are some unknown 

functions of t. These five functions are determined at each time 

level and during each iteration by using values of either, or both, 
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T and w at points near S (but not the points 01,02 and 03). This 

.. *. 

results in five equations in five unknowns. Once A, B, C, D and 

E have been evaluated at a given time then the values of the 

vorticity at the points 01,02 and 03 may be determined from 

expression (2.3.19). 

It should be noted that the expansion (2.3.19) is only valid 

provided that r is sufficiently small and the larger the value of Rb 

then the smaller is the mesh size that is required to obtain an 

accurate solution. Ingham et al. (1990a) have pointed out that in 

the steady flow situation the inclined finite-difference scheme near 

the point S does not give accurate results even at Reynolds number 

zero and we have also found in this oscillatory flow that this 

method is inaccurate. Hence all the results presented in this 

chapter have been obtained using the method II. 

Having obtained the finite-difference equations (2.3.1) and 

(2.3.2) we now use an iterative procedure in order to obtain their 

solution. The point relaxation iteration method is used and Wg+l 

k+1 
and Tk+l are obtained from the following expressions 

(WB+im+i=(1-? 
B)(WB+i)m+AB(3UB+i/h-3, 

P 
-- r+l 

m (2.3.20) 

(Wo+l )m+1=(1-A )(Wo+l) + +A (Ci+1c +C2+1WZ+1 

+Ck+1k+1e+1wk+1+Q(0) 
k)/Ck+1 )m (2.3.21) 

33(: 4 40 

(4'k+1)m+1=(1-A ) (,, k+l )m+Ä (BTk+1+BTk+1 
0I0I122 

+B tP k+1 +B ýk+l+h2wk+1/b (2.3.22) 
334400 

respectively, where Ck+1= ck+l/ck+l and B=b /b (i = 1,2,3,4). 
11oiio 

The superscript m on the right hand side of the above equations 
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refer to the most recent estimates of 
k+l k+l 

and 41k+l and A and 

AB are relaxation parameters. 

The order of the solution procedure was as follows: 

(i) At time t= (k+1)T one complete iteration for all the 

internal grid points, except 01,02 and 03, was performed 

using expression (2.3.21). 

(ii) One complete iteration over all the internal grid points 

was performed using expression (2.3.22). 

(iii) The values of w at points 01,02 and 03 were then 

determined using expressions (2.3.18) and (2.3.19). 

(iv) The boundary values of w were calculated using expression 

(2.3.20). 

(v) The boundary conditions at X= XL and X= XR were 

satisfied using condition (2.2.21). 

C (Wk+l)m 
(vi ) If 

/ 
1- 

(ýk+l )m+1 
> c1 (2.3.23) 

where the summation refers to all the grid points and ei 

is a pre-assigned tolerance, then go to M. 

(vii) Otherwise 41k+l, wk+1' %P k+i and wk+l are the solutions for 
00BB 

time t= (k+l)r. We now use these solutions at time 

(k+l)i as the initial guesses of the solution at the time 

(k+2)-r and the above procedure is repeated. 

For a given value of cl and Rb the calculations were started 

at time t=0 with the steady state solution with the cascade moving 

at its maximum speed using the method described by Ingham et al. 

(1990a). The calculations were carried out until t was sufficiently 

large so that the solution had almost reached a 'periodic' solution. 
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It should be noted that due to the non-linear terms in the governing 

equation a purely periodic solution will never be reached 

everywhere. So the term 'periodic' here means a solution which at 

time t is very little different from the solution at time t-2n for 

all sufficiently large values of t. Further, as the solution decays 

to zero at large distances from the cascade then these non-linear 

effects will not be important in this region. . 

2.4 Flow Visualisation Experiments 

In this section we describe the experimental methods by which 

some experimental results related to this thesis were obtained. 

A general schematic layout of the equipment in the Geophysical 

Fluid Dynamics Laboratory at Monash University is shown in Fig. 2.3. 

The experiments were performed in a large rectangular tank of length 

2m, width 0.36m filled to a depth of approximately 0.20m with water. 

Within this tank there is a 'smaller perspex tank of length 1m, 

width 0.14m and filled with water to a depth of approximately 0.12m 

and the smaller tank is fixed at about 0.04m above from the bottom 

of the larger tank. The temperature of the water in the outer tank 

was refrigerated and carefully controlled by having a large 

recirculation of water in the tank so that the temperature on the 

boundary of the inner tank may be assumed constant. The water in the 

outer tank was slightly cooled so that there was no loss of heat 

from either the side or the bottom of the small tank. On top of the 

small tank there was placed a sheet of perspex, which was covered 

with bubble plastic in order forijto float. The perspex is painted 

All experimental results used in this thesis were obtained by 
professor B. R. Morton at Monash University, Australia. 
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d) 

'd 

Fig. 2.3 Schematic diagram of the experimental apparatus 

in the Geophysical Fluid Dynamics Laboratory at Monash 

University, Australia. (a) the cascade, (b) the 

refrigerated outer tank, (c) the inner tank, (d) the 

camera, (e) illuminated strip of light, (f) a trolley 

which is free to move horizontally (the double arrows 

indicate the motion is harmonic), (g) connecting rod and 

(h) a geared-down D. C permanent magnet motor with a number 

of fixed displacement cams. 

black in order to reduce the reflection of the light and to increase 

the contrast in the photographs. However, the main aim of the 

covering of the top of the small tank was to reduce water 

evaporation from the surface which causes recirculations. As we are 

investigating both the instantaneous flow and the second-order 

effects (in chapter 5) it is absolutely essential that as much care 

as possible is -taken in eliminating thermally driven flows albeit 
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they are very small. Throughout the experiments the temperature in 

the test tank was taken at numerous positions within the tank. It 

was found that typically the temperature in the test tank was 

position independent, being 12.2°C±O. 1°C, whilst the ambient 

temperature was 19.60C and the dew point temperature 8.4"C. The 

closeness of the small tank temperature and the dew point 

temperature ensures that only a very small amount of evaporation 

takes place. The surface temperature is higher than the side wall 

temperature but this just ensures that the water is thermally 

stratified. 

Harmonic oscillations were achieved by using a geared-down D. C. 

permanent magnet motor with a number of fixed displacement cams. 

From the cam a connecting rod is attached to a freely moving trolley 

which runs on top of the large tank. The cascades are firmly fixed 

to the trolley such that they are vertical and at right angles to 

the axis of the small tank. The cascade of normal flat plates was 

made from a thin aluminum plate with teeth of uniform width 0.01m 

and separated by uniform gaps of 0.01m, i. e. L=1. Also cascades of 

rectangular bars and circular cylinders were made from perspex, the 

rectangular bars were of O. OlmxO. 02m rectangular sections 

(O. OlmxO. Olm in the case of the square cylinders) whilst the 

circular cylinders were of diameter 0.01m. Both the square bars and 

circular cylinders were mounted such that they were 0.01m apart and 

lie in a plane. The cascades were mounted such that 

the - teeth of the cascade were about 0.002m above the 

bottom of the tank and extend out of the water. This configuration 

minimizes the end effects. 

The visualisation was achieved by seeding the entire water with 
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polyester spheres used in Dulux emulsion paints. These spheres are 

coated with titanium oxide and have a mean diameter 1711m and only 3% 

of the mass of particles having a diameter greater than 30µm. The 

specific gravity varies but is generally within about 5% of that of 

water and hence the particles settle out of suspension extremely 

slowly. It is found they stay long enough in suspension for the 

purpose of photography over a period of about ten hours. However, 

the tank is stirred every four hours when performing the 

experiments. Further the length of time taken between photographing 

different runs varies according to the frequency and amplitude of 

the previous oscillation. It was found - in all experiments 

performed here that if 20 minutes is left between each set of runs 

then the residual motion in the tank is minimal when viewing the 

flow. 

The marker particles are illuminated using light from good 

quality projectors with slits in their focal planes focused into 

thin horizontal sheets of light between 0.002 and 0.005m thickness 

in the working section. Two opposed projectors were required to 

obtain records adequately illuminated both upstream and downstream 

of the cascade from either side of the tank with one projector 

upstream and one downstream at the moment of the record. The 

recording camera was fixed under the tanks and looked vertically 

down the face of the centre body of the cascade and the thickness of 

the light sheet in the working section was chosen to illuminate just 

sufficient particles for a clear record in an exposure time which 

was variable according the period of oscillation of the cascade and 

the type of flows 9 interest, For the unsteady instantaneous flow 

(in this chapter) the exposure time was 2 to 4 seconds whilst for 
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the streaming flow it was about 10 times the period of 

oscillation of the cascade. 

2.5 Results and Discussion 

Numerical results have been obtained over a wide range of small 

and moderate values of Re and Rb. However, in this chapter we 

concentrate mainly on the case when Re= Rb as the results obtained 

when Re and Rb are of comparable size show the same general flow 

structure as when Rý= Rb. The results presented here have been 

obtained using mesh sizes h= 1/20,1/30 and 1/40 and z= n/20, u/40 

and rr/60. 

Most of the results presented correspond to z= n/60 and 

h= 1/40 and the graphical results given are almost 

indistinguishable from those obtained using the slightly coarser 

mesh. At small values of Rb the very coarse mesh is quite adequate. 

Various values of X and X were taken but it was found that 
LR 

-X LXR= 10 was sufficiently large so that any larger values produced 

almost graphically indistinguishable results. Several values of L 

have been investigated but in this chapter we concentrate on L=1. 

Results obtained with other values of L show the same general flow 

characteristics. The tolerance, cl, was chosen such that all values 

of ' were accurate to at least two significant digits. The values of 

the relaxation parameters varied according to the values of the 

Reynolds numbers, Re and Rb, but typically AI-1.2 and AB-0.2 have 

been found appropriate. 

In the steady state situation, with the coordinates fixed in 

the body, the length of the recirculating eddy behind each plate of 

the cascade, Lb, is approximately O. 1Re, see Ingham et al. (1990a), 
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and in a related problem Smith (1985) also obtained a similar 

result, see Fig. 2.4. Of course, in the harmonically oscillating 

cascade situation the eddy length will vary with time and the length 

of the eddy was measured when the cascade had reached its maximum 

velocity, i. e. at times t= ku (k = 1,2,3,... ) for various values 

of R. Fig. 2.4 also shows the variation of Lb as a function of R at 
ee 

time t= 10n. At times t= kn, where k is an integer greater than 10 

then the values of Lb are graphically indistinguishable from those 

obtained when t= 10n. Since in the oscillating case the cascade is 

Lb 
3.0 r 

2.5 

2.0 

1.5 

1.0 

--ý-- Experimental results 

13 - Present numerical results 

A Ingham et al 

--- Smith 

0.5 

0.0 
05 10 15 20 25 

Fig. 2.4 The length of the recirculating eddy behind each 

plate of the cascade as a function of the Reynolds number, 
Re, in the steady case as obtained by Ingham et al. 

(1990a) and Smith (1985) and in the unsteady case 

considered here at t=10n and R =R 
eb 

I Re 

30 
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at its local maximum Reynolds number when at the centre of its 

oscillation it is not therefore surprising that the eddy length will 

be less than that obtained in the corresponding steady state 

configuration, see Fig. 2.4. 

Both the time at which the recirculating eddies behind the 

plates of the cascade begin to form and the time variation of the 

length of the eddy behind the plates, Lb, depend on the Reynolds 

number. The length of the eddy as a function of time for Reynolds 

numbers Re= Rb 1,5,10,20 and 30 is shown in Fig. 2.5. It is 

observed that, as expected, the larger the values of R the earlier 
e 

the eddy appears and the longer is the eddy at a given time. Further 

the eddy length is not a maximum when the cascade is moving at its 

maximum speed. As the time approaches (k+0.5)ir then the eddy length 

begins to grow very quickly and eventually becomes infinite at time 

t= (k+0.5)rr (k, an integer) and therefore it is very difficult to 

determine accurately the value of Lb for (k+0.4)n <t< (k+0.5)tr. 

In the experimental investigation, periods of oscillation in 

the range 25-200 seconds were used and this corresponds to values of 

the Reynolds number of between 3 and 28. If much shorter periods of 

oscillations are used then the flow becomes asymmetric and it is 

therefore not possible to compare the results with those calculated 

numerically. A further difficulty that arises when one compares the 

experimental and numerical results at a particular cascade 

displacement is that the camera only records the average flow over 

the period of the film exposure time. In all the results presented 

in this chapter a film exposure time of between 2 and 4 seconds has 
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Fig. 2.5 The length of the recirculating eddy behind each 

plate of the cascade as a function of time t for various 

values of Reynolds number Re (=Rb). 

been used. Any shorter period of film exposure does not give 

sufficient time for the flow streamlines to be identified. The 

finiteness of the exposure time has two effects, namely, 

(i) the flow patterns are not as sharp as those obtained when 

determining the corresponding steady state problem, see Ingham et 

at. (1990a), and 

(ii) the streamline flow shown on the photographs are an 

average of the flow over the exposure time. 
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Several photographs were taken at different frequency of 

oscillations and with an exposure time T (T =2 or 4 seconds, 

normally) such that the cascade passes through its mean position at 

time T/2. The length of the corresponding eddy as a function of R 
e 

is shown in Fig. 2.4. During most of the time interval of the 

exposure the length of the recirculating eddy behind each plate 

grows linearly with time, see Fig. 2.5, and hence the assumption made 

in plotting the data on Fig. 2.4 that the eddy length during the 

exposure is its mean value during the exposure seems to be 

reasonable. There is also some experimental error in measuring 

exactly the length of the recirculating eddy and the limit of the 

experimental error is shown in Fig. 2.4. The larger the value of the 

Reynolds number then the larger will be the experimental error 

because of the averaging process. It is observed that the 

numerically predicted value for the eddy length falls within the 

experimental data points although there is a tendency for the 

experimental data to be, on average, slightly higher than" the 

numerical predictions. However, bearing in mind all the experimental 

difficulties that occur, the agreement between the theoretical and 

experimental results is encouraging. As an example of the 

experimental observations Fig. 2.6 shows the streamlines when the 

Reynolds number are 5.6,6.7,13.1 and 27.8 and the cascade is 

passing through its mean position T/2 seconds after the film 

exposure has started. Although the cascade consists of 7 plates only 

the flow near two of the plates is shown since if all seven plates 

are shown much detail is lost in the flow in the recirculating 

eddies behind the plates. It is seen that the flow is symmetrical 

but the termination of the eddy is not too clear and there is some 
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(a) 

(b) 

Fig. 2.6 The instantaneous streamlines obtained 

experimentally at the time when cascade passes through its 

mean position (Re= Rb). (to be continued). 
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(c) 

(d) 

Fig. 2.6 The instantaneous streamlines obtained 

experimentally at the time when cascade passes through its 

mean -position (Re Rb). (a) Re= 5.6, (b) Re 6.7, 

(c) R= 13.1, (d) R= 27.8. 
ee 
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uncertainty in the flow directions. It is seen that the flow 

separates from the edges of the plates forming an attached bubble 

consisting of a vortex pair. All these can be seen in our numerical 

predictions for Re = Rti 5.6,6.7,13.1 and 27.8 which are plotted 

in Fig. 2.7a, Fig. 2.7b, Fig. 2.7c and Fig. 2.7d, respectively. A clear 

agreement between the numerical and experimental results can be 

observed from Fig. 2.6 and Fig. 2.7. The diagonal patterns in Fig. 2.6 

are caused by the use of light sources slanting rearwards to the 

left and forwards to the right; these produce bright diagonal bands 

where the marker particles are illuminated by both sources, and 

darker bands of roughly half the intensity when one beam is 

obstructed by a tooth of the cascade. 

Numerically it has been found that after t= 10n all the 

results presented here have reached their 'periodic' states, i. e. 

the results obtained at time t and those obtained obtained at time 

t+2n are graphically indistinguishable everywhere in space, see 

section 2.3 for a full discussion. Fig. 2.8 shows the streamlines as 

obtained from the numerical scheme with the co-ordinate system fixed 

in the cascade for R=R= 10 at several values of time between 
eb 

t= (10.5+1/40)n and t= 11.5ir. At time t= 10.571 the cascade has 

come to rest at its maximum positive amplitude. After one further 

time interval, t= (10.5+1/40)n, then the cascade has moved to the 

left and set up a circulation, in the upper part of the upstream 

flow near the cascade, which is not attached to the cascade. This is 

in direct contrast to the conventional recirculating flow behind a 

bluff body. As time increases this recirculation becomes weaker and 

disappears after a short interval of time. The recirculating eddy 

behind the plate of the cascade does not appear immediately but by 
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Fig. 2.8 The streamlines T obtained numerically for 

Re Re 10 at different times t. Streamlines labelled 1, 

2, ... , 19 correspond to 9, = -0.5, -0.4, -0.3, -0.2, -0.1, 

-0.01, -0.1X10-3, -0.1x 105, -0.1X10 
9,0,0.1X10-9, 

S 0.1x10 , 
0.1x10 3,0.01,0.1,0.2,0.3,0.4,0.5, 

respectively. (a) t=(10.5+1/40)n, (b) t=10.77r, (c) t=117r, 

(d) t=11.3n, (e) t=11.5n. 



- 63 - 

the time t= 10.7ir the eddy has been formed, see Fig. 2.8, This 

bubble becomes longer and larger as time increases and it is again 

interesting to note that the length of the recirculating region at 

time t= 11rr, i. e. when the cascade is moving at its maximum speed, 

has not reached its maximum value but it continues to grow until the 

cascade comes to rest at time t= 11.5n. At this time the velocity 

is zero at the body and at infinity but is finite, albeit small, 

near the cascade. Just before the cascade comes to rest the flow 

near the plates of the cascade develops a 'bubble' structure and 

this is presented in Fig. 2.8 at time t= 11.5n. At time t= 11.5Tr 

the cascade starts to move in the positive x-direction and the whole 

process that occurred for 10.5ir {t< 11.5tr starts to develop for 

11.57r <_ t< 12.5n except that the cascade is now moving in the 

opposite direction and the flow has almost periodic behaviour of 

period 2rr. 

In order to illustrate the streamline pattern as shown in 

Fig. 2.8 at a time immediately after the plate has come to rest 

experimental evidence was sought. Bearing in mind that this flow 

pattern only exists for a short period of time and that the exposure 

time of the photograph is limited to a minimum of 2 seconds in order 

to obtain some detail of the flow streamlines then it may be 

expected that it would be very difficult to observe such a flow. 

However, if extreme care is taken then such flows may be observed 

and Fig. 2.9 shows two such flow patterns for Re= Rti 13.1. These were 

obtained using a2 seconds exposure starting with the plate at its 

maximum amplitude at x= ±a. At the Reynolds number involved this 

implies that the exposure time was (1/30)th of the period of the 
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(a) 

(b) 

Fig. 2.9 The flow patterns for Re Rb =13.1 soon after 

the cascade has come to rest (exposure time =2 seconds). 
(a) Right end, (b) Left end. 
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oscillation. Hence Fig. 2.9 represents the numerical solution at 

approximately the mid time of the photograph exposure time. It is 

observed that there is reasonable agreement between the results 

obtained in Fig. 2.9 and the numerical predictions 

of Fig. 2.10 at time t= (10.5+2/40)it and t= (11.5+2/40)n 

and that the results obtained in Fig. 2.9a and Fig. 2.9b show very 

similar flow streamlines except that one is the mirror image of the 

(a) 

22- 
-2---/- 

ý- 

ý-, mac»ý_, _ 
(b) 

Fig. 2.10 The instantaneous streamlines obtained 

numerically for RRb= 27.8 soon after the cascade has 

come to rest. (a) Right end: at t= (10.5+2/40)n, (b) Left 

end: at t= (11.5+2/40) n. 
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other and these can also be observed 
Prow the numerical results 

shown in Fig. 2.10a and Fig. 2.10b. 

Fig. 2.11 shows the length of the recirculating eddy, Lb, behind 

each plate of the cascade at time t= kn (k is an integer greater or 

equal to 10) for Re= 10 and various values of Rb. It is observed 

that Lb becomes shorter as the value of Rb increases, i. e. c 

decreases. This is to be expected since in this limit of parameter 

Lb 

1.1 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

0246 8 10 12 14 

Fig. 2.11 The length of the recirculating eddy behind each 

plate of the cascade at t=12rz as a function of the 

Reynolds number Rb for Re=10. 

I Rb 

16 
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space steady streaming occurs and a Stokes-layer is formed on the 

plates of the cascade. On the other hand, as Rb becomes smaller, 

i. e. c becomes larger, the eddy appears to get longer and at Rb=1 

the value of Lb is 1.04 and this represents a length of 

approximately 0.1R . This is not surprising because the governing e 

equations (2.2.3) and (2.2.4) are dominated by the time independent 

terms and therefore the steady state flow as given by Ingham et al. 

(1990a), may be an appropriate approximation and in this case the 

length of the recirculating eddy behind each plate is 0.1R as Rb 

tends to zero. Actually as c -º oo the flow will become quasi-steady 

and we will return this later. 

Using the transformation (2.2.2) the solution of the problem 

with the coordinate system fixed in space can be obtained. Fig. 2.12 

shows the streamlines for R=Rb= 10 for various values of time 
e 

between t= (10.5+1/40)n and t= 11.5n. At time t= 10.5n the 

cascade is at its maximum amplitude in the positive x-direction and 

at time t= 10.5n+n/40 it has just started to move from rest in the 

negative x-direction. It is observed that the fluid is being pumped 

around the plate from infront of the plate to the low pressure area 

being produced behind the plate. In front of the plate is one large 

recirculating eddy whilst behind there are two recirculating flows. 

Clearly the flows alternate in the directions of their 

recirculations. As time increases and the cascade approaches its 

mean position the two recirculating regions behind the cascade are 

swamped in intensity by the flow emanating from just in front of the 

cascade and these two recirculations disappear. This general flow 

picture continues right up to the point where the cascade comes to 

rest at its maximum amplitude with a negative x-displacement. This 
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(a) 

(b) 

Cc) 

Cd) 

(6) 

Fig. 2.12 The streamlines 0 obtained numerically for 
R=Rb 10 at different times t. Streamlines labelled 1, 

2, ... , 19 correspond to %P = -0.5, -0.4, -0.3, -0.2, -0.1, 

-0.01, -0.1X10-3, -0.1X10 
5, 

-0.1X10-9,0,0.1X10-9P 

0.1x10 5,0.1x10-3,0.01,0.1,0.2,0.3,0.4,0.5, 

respectively. (a) t=(10.5+1/40)Tr, (b) t=10.7n, (c) t=11n, 
(d) t=11. irr, (e) t=11.57r. 

-6 -5 -4 -3 -2 -1 012345X6 
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process repeats itself over the next time interval of it except that 

the cascade is travelling in the positive x-direction and the whole 

process, is repeated every 2n time intervals. It is also seen that 

the fluid ahead of the plate is almost stationary as is the flow 

which is behind the recirculation region and this is predicted in 

Fig. 2.12. 

As observed above, see Fig. 2.12, there is always a secondary 

circulation generated which is in the opposite direction to the 

primary circulation at a distance ahead of the cascade. The line, M, 

which separates the two counter rotating circulations occurs at a 

station which is almost y independent. The x-component of the 

distance between the line M and the plane of the cascade, Ld, varies 

with time and the Reynolds number and the variation of Ld as a 

function of time t is shown in Fig. 2.13 for different values of the 

Reynolds number Re (=Rb). It is observed that as the Reynolds number 

increases the length Ld decreases. This is to be expected since, no 

matter what the value of the parameter c, if the Reynolds number is 

sufficiently large then there will be a region very close to the 

cascade where the flow oscillates from being in front to being 

behind the cascade. Further this motion will take place in a Stokes 

boundary-layer which decreases in thickness as the Reynolds number 

increases. 

For a given value of the Reynolds number, R the value of Ld 

becomes smaller as R increases and the variation of L as a bd 

function of Rb is shown in Fig. 2.14 for Re 10. As Rb increases, 

for a given value of R, then c decreases and a Stokes-layer 
e 

develops on the surface of the plates of the cascade. Therefore Ld 
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Fig. 2.13 Distance between the line, M, dividing the 

counter rotating circulations and the plane of the cascade 

as a function of time for R =R. 
eb 

I Ld 

7 

will decrease and this is shown in Fig. 2.14. However, if Rb 

decreases then c increases and the flow is then governed by the 

quasi-steady flow equations and the Stokes-layer becomes very thick. 

Therefore the division between the two counter rotating circulations 

becomes large as indicated in Fig. 2.14. 
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Fig. 2.14 Distance between the line, M, dividing the 

counter rotating circulations and the plane of the cascade 

as a function of the Reynolds number Rb for Re=10. 

I Rb 

16 

In all the calculations performed for c=1 it is observed that 

the length of the wake bubble behind the body, Lb, starts to be 

developed soon after the cascade moves from its position of 

instantaneous rest. Then Lb increases in length until the cascade 

comes to rest again, see Fig. 2.5. However when c»l, i. e. R »R 
b, 

this 
e 

is not true and the unsteady flow may become quasi-steady. In this 

case the flow at time t may be approximately found by solving the 
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steady state Navier-Stokes equations for the instantaneous Reynolds 

number and the recirculating region behind the body will increase 

(decrease) in size as the cascade accelerates (decelerates) and 

disappear when the instantaneous Reynolds number is zero. In order 

to illustrate this phenomena numerical results were obtained for 

Re= 10 and c= 1000 and the results shown in Fig. 2.15 for different 

values of the time t. 

The length of the bubble behind the body for Re= 10 and 

c= 1000 as a function of t for half a period of oscillation is 

plotted in Fig. 2.16 along with the results obtained by Ingham et 

al. (1990a) on solving the corresponding steady state problem. It is 

observed that there is very little difference between two sets of 

results and this suggests that for R= 10 a value of c=1000 may be 
e 

considered sufficiently large for the flow to be considered 

quasi-steady. 
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Fig. 2.15 The streamlines ' obtained numerically for R =10 
e 

and c=1000 at different times t. Streamlines labelled 1, 
2, 

... , 
19 correspond to WY = -0.5, -0.4, -0.3, -0.2, -0.1, 

, -0.01, -0.1X10 
3, 

-0.4x 10-6, -0.1X10-10 , 0,0.1X10-10 

0.4x10 6,0.1x10-3,0.01,0.1,0.2,0.3,0.4,0.5, 

respectively. (a) t=10.5n, (b) t=(10.5+1/30)ir, 
(c) t=(10.5+3/10)7r, (d) t=llir, (e) t=(11+1/5) 7r, 
(f) t=(11+4/5)ir, (g) t=(11+14/15)ir. 
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1.5708 2.3562 3.1416 3.9270 4.7124 

Fig. 2.16 The length of the recirculating eddy behind each 

plate of the cascade as a function of t for R =10 and e 

c=1000. present work, Ingham et al. (1990a). 

2.6 Conclusions 

A finite-difference scheme which is suitable for a wide range 

of two-dimensional incompressible, viscous, unsteady problems has 

been used to solve the oscillating cascade flow. By carefully 
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dealing with the singularity in the vorticity near the sharp edge of 

the plate and the boundary conditions at large distances from the 

body, accurate numerical results have been obtained for the fluid 

flow induced by an oscillating cascade of normal flat plates for 

different values of the Reynolds number up to 30 and c= 0(1). 

However, the numerical methods used in this chapter can be used for 

larger values of the Reynolds number and other values of c, 

especially for c 0(1). Numerical results obtained by numerical 

means show a very good agreement with those obtained experimentally. 
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CHAPTER 3 NUMERICAL SOLUTIONS FOR THE FLUID FLOWS INDUCED BY A SMALL 

AMPLITUDE HARMONICALLY OSCILLATING CASCADE 

3.1 Introduction 

In chapter 2 we have investigated the fluid flow induced by an 

oscillating cascade of normal flat plates for c= 0(1) and R 30 
e 

and in this chapter we study the same problem but for c«1 and 

Rb 0(1). This problem has been previously studied by Holtsmark et 

al. (1954) when there is just one circular cylinder performing 

harmonic oscillations. They demonstrated that for very small values 

of c the inner streaming layer increases in thickness as Rb 

decreases. Tatsuno (1974) investigated, experimentally, the 

streaming flow between two concentric circular cylinders of which 

the inner one performs harmonic oscillations with Rb 0(1), he found 

that for small values of c the streaming flow has an 'inner' flow 

structure, i. e. the direction of the flow is along the axis of the 

oscillation and towards the the inner cylinder. Tatsuno (1974) has 

also studied, experimentally, the streaming due to a harmonically 

oscillating square cylinder. He showed that for small values of c 

and Rb (226.01) there is an inner layer structure with four vortices 

which are symmetrically situated around the square and the direction 

of the streaming flow is along the axis of the oscillations and 

towards the cylinder. These four vortices develop into eight 

vortices with two in each quadrant when Rb is larger, 119.7 say. In 
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this chapter we investigate the flow induced by a cascade of normal 

flat plates and a cascade of square cylinders which perform harmonic 

oscillations in an unbounded, incompressible fluid which is 

otherwise at rest. We concentrate on the case when c«1 and 

Rb = 0(1), i. e. no boundary-layers exist, and investigate how the 

value of Rb affects the streaming flow due to the oscillations. We 

use a perturbation method with c the small parameter and use the 

method of separation of variables. The resulting coupled set of 

partial differential equations for the 0(1) flow are then solved by 

both a numerical and a series truncation method. Further, a 

numerical technique is employed to obtain both the steady and 

unsteady flow for the 0(c) approximation. 

3.2 Governing Equations and Perturbation Procedures 

In this chapter the fluid flow induced by the oscillations of 

two infinite cascades of bodies have been investigated, namely, (i) 

a cascade of normal flat plates and (ii) a cascade of square 

cylinders, see Fig. 1.5 and Fig. 1.6. 

The fluid at large distances from the cascade is assumed to be 

at rest and the displacement of the cascade has only a non-zero 

component in the x 
*-direction 

and it is given by expression (1.1.1). 

The non-dimensional governing equations in terms of 0 and w can be 

written as (1.3.4)-(1.3.5). 

Due to the symmetry of the problem we need only consider the 

flow in the regime -co <x< co and 0yL, see Fig. 3.1, for the 

geometry of the solution domain for the cascade of normal flat 

plates, 
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Fig. 3.1 The geometry of the solution domain for the 

cascade of normal flat plates. 

In order to illustrate the method used we will describe in 

detail the formulation for the cascade of the normal flat plates but 

the extension of the method to deal with cascade of square cylinders 

is straightforward and has therefore not been included. 

Equations (1.3.4)-(1.3.5) must be solved subject to boundary 

conditions (2.2.1), namely, 

vycos(t), 
ao 
8x 

on x=c sin(t)±, 0y2 (3.2.1a) 

Vi=w=0 ony=Dandy=L, -oo<x<oo (3.2.1b) 

ax -º 0, äy 
--+ 0, w-+ 0 as x. - ±o, 0 :5y :5L (3.2.1c) 

Due to the difficulty in dealing with the boundary condition on 

the oscillating body, i. e. condition (3.2.1a), we introduce the 

transformation (2.2.2) and fix the co-ordinate system, (X, Y), in 

the body. Then the governing equations (1.3.4)-(1.3.5) become 

(2.2.3)-(2.2.4) which need to be solved subject to boundary 

conditions (2.2.7), namely, 



79 

T =O, 
a-x=0 

onX=O+ andX=O-, 0ýY: 2 
äx (3.2.2a) 

ýY=w=0 onY=O, -oo<_X: s m (3.2.2b) 

41 = -L cos (t) , w=0 on Y=L, -oo <_ X co (3.2.2c) 

ay 
-4 -cos(t), w-º0 as X-º±oo, 0 Ys L (3.2.2d) äY 

As we have assumed that c is small so we look for a solution of 

equations (1.3.4) and (1.3.5) in the form 

[P=Oo(x, Y, t)+c(IPlu) (x, Y, t)+IP(S) (x, y))+0(c2) (3.2.3a) 

w=wo(x, Y, t)+c(wiU) (x, Y, t)+wis) (x, y))+O(c2) (3.2.3b) 

where the superscripts (s) and (u) denote the steady and unsteady 

components of the 0(c) perturbations, respectively. 

Substituting (3.2.3) into equations (1.3.4) and (1.3.5) and 

equating the coefficients of the same powers of c we obtain 

0(1) terms: 

äw 1 

öt0 R VZwo (3.2.4a) 
b 

02lio -mo (3.2.4b) 

0(c) terms: 

ato (U) a([v 
,) 

(u) 

8t1 +1ä (x, y) =1 02W(u) (3.2.5a) 
R 

b 

ozViiu) = -w 
(u) (3.2.5b) 
1 

a(W 
, Iýf ) 

(8) 

=R v2wis) (3.2.6a) 
a (x, y) b 
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v 
(s) 

_ _w(s) lp 
11 

(3.2.6b) 

In the co-ordinate system fixed in the body we write W and w in 

the forms 

ql=qf0(X, Y, t)+c(IY(u) (X, Y, t)+cl(i) (X, Y))+0(e ) (3.2.7a) 

w=w(X, Y, t)+c(w(u) (X, Y, t)+w(s) (X, Y))+0(e2) (3.2.7b) 

which on substituting into equations (2.2.3)-(2.2.4), and collecting 

up the same powers of c, gives, 

0(1) terms: 

aw 1 
öto RV2W0 

(3.2.8a) 

b 

v2410 -wo (3.2.8b) 

0(c) terms: 

(u) (u) äw1 
+ö 

two' 
o1 02w(`ß) (3.2.9a) 

at 

18(X, 

Y) Rb i 

02qf1u) _ -W1(u) (3.2.9b) 

(s) 
ö (wo 

01 v2w(s) (3.2.10a) 
ä (X, Y) Rb 

02ýis) -wis) (3.2.10b) 

3.3 The 0(1) Approximation Using The Series Truncation Method 

The first-order approximation is now governed by equations 

(3.2.4) along with the boundary conditions (3.2.1) with c=a. We 

therefore look for a solution in the form 
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do = f0(x, y)sin(t) + F0(x, y)cos(t) (3.3.1a) 

Wo = g0(x, y)sin(t) + G0(x, y)cos(t) (3.3.1b) 

where f0(x, y), F0(x, y), go(x, y) and G0(x, y) are unknown functions 

which have to be determined. Substituting expressions (3.3.1) into 

equations (3.2.4) and equating like terms of sin(t) and cos(t) leads 

to the set of partial differential equations 

v2fo= -go (3.3.2a) 

O2F = -G (3.3.2b) 
00 

V2go= -RbG0 (3.3.2c) 

02G0= Rbgo (3.3.2d) 

Bearing in mind that both the governing equations and the 

boundary conditions are symmetrical about x=0 the boundary 

conditions (3.2.1) may now be written in the form 

fo= 0, FO= y, 

on x=0,0-S y: 5 
2 (3.3.3a) 

af aF 

8x0 = 0,8x0 = 0. 

fo = Fo = go= Go= 0 

on y=0 and y=L, -o, <x< oo (3.3.3b) 

afo afo aFo OFo 

. 
8x = 0, äy = 0,8x = 0, äy = 0, go= Go= 0 

asx-*a', 0 ýy: s L (3.3.3c) 

ofo OFo ago 0G0 
. 3.3d) 

äX = aX = ax = äX =o on x= oý ysL (3 

and solutions are only sought for x>O. Since y=0 and y=L are 
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streamlines, with help from boundary condition (3.3.3b), it can be 

shown that boundary condition (3.3.3c) may be written as follows: 

f 
o, 

Fo, go and G0 -º 0 as x-* co, 0 -5 y -5 L (3.3.30 

Because of the periodic nature of the cascade in the y 

direction we assume that the functions fo, Fo, go and Go may be 

expressed in the following forms 

f (x, y) 
Co 

()sin-L_ _f (3.3.4a) 
0 On 

n=1 

F (x, y) _F (x) sinn' 
c" 

(3.3.4b) 
0 On 

n=1 

g (x, y) 
to 

()sin-j7 =Zg (3.3.4c) 
o on 

n=1 

G (x, y) 
Co 

(x)sinnry =ZG (3.3.4d) 
o on 

n=1 

where fOn(x), FOn(x), gOn(x) and GOn(x) (n=1,2,3,... ) are unknown 

functions of x which are to be determined. 

Substituting expressions (3.3.4) into the equations (3.3.2) and 

assuming that the infinite series may be differentiated term by term 

twice then we obtain the following four infinite sets of ordinary 

differential equations, 

co d2f co 

ni dx2n 

nL )2fon sinn Ly 
nE1gonsinnLY 

(3.3.5a) 

00 dZF m 

nl dx2n 

nL )Z Fon sin1 
ný1Gonsinn-y 

(3.3.5b) 

2 d gen 
(nL )Zgon sinnt' = -Rb 

V GonsinnLy (3.3. SO 

n=1 dx n=1 
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Co d2G Co 

L 2n - (nL )2GOn sinnLy = Rb Z g0nsin- (3.3.5d) 
n=1 dX n=1 

and these equations are identically satisfied if 

d2f 
On 

- 
z 

(nIt )2f 
Lo __ g0 (n=1, 2,3,... ) (3.3.6a) 

dx n n 

d2F 
On 

- 
nrt z ()F = -G (n=1, 2,3, ... 

) (3.3.6b) 
dxz L On On 

d2 gon 
- (nL ) 2go = -RbGo (n=1, 2,3,... ) (3.3.6c) 

dx n n 

d2G 
on (nL )2G = g R (n=1, 2,3.... ) (3.3.6d) 

dx2 on b On 

On substituting equation (3.3.6d) into (3.3.6c) and making the 

assumption that GOnE C4(-co, +o, ) then we obtain 

d4G d2G 
On 

_ 2(nL )2 
dx2 

On+ [( Lrz)2+R 
b on 

21 G=0 
dx4 

(n=1,2,3... ) (3.3.7) 

The corresponding characteristic equations are 

ý4 - 2(nL )2A2 + [(nL )2+ Rb2l =0 (3.3.8) 

and the roots are given by 

e0 
Anl = An(cos2n + isin2n) (3.3.9a) 

e0 
Ant = -An (cos- + isin2n) (3.3.9b) 

0 0 
Ana = An(-cos Zn + isin-n) (3.3.9c) 

00 
An4 = An(cos2n - isin2n) (3.3.9d) 
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r 1/4 

where An L(nL)4+Rb21 (n=1,2,3,... ) are the magnitudes of k 

(1=1,2,3,4) and 0n (n=1,2,3, 
... 

) are the arguments of Anl 

Hence the solutions of equations (3.3.7) have the form 

ax 
Gon(x)= e° (cnlcos(ßnx)+cn2sin(ßnx))+ 

-a x 
en (cn3cos(ßnx)+cn4sin(ßnx)) (3.3.10) 

00 
where an Ancos( 2n) and f3 Ansin( Z") (n=1,2,3,... ). Finite 

solutions are only possible if c 
nl 

=c 
n2 

=0 and then, from equation 

(3.3.6d), we obtain 

-a x [a2_02_ 
onX)= 

R 
nnnL)21 

Gon+ 2anßne n 
"b j 

ICn3sin(ßnx)-cn4cos(ßnx)11 (n=1,2,... ) (3.3.11) 

Now from equations (3.3.6) we have 

2 

dx2(Gon+RbfOn)-(nu)2(Gon+RbfOn) 
=0 

(n=1,2,3,... ) (3.3.12a) 

(g RbFOn)-( L 
n)2(gOn RbFOn) =0 

dx2 On 

(n=1,2,3, 
... 

) (3.3.12b) 

and therefore 

nmc nnx 

G+Rf=ke L+ keL 
On b On nl n3 

(n=1,2,3, 
... 

) (3.3.13a) 

nmc ntcx 
LL 

goy - RbFOn = -knee + kn4 e 

(n=1,2,3.... ) (3.3.13b) 
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where kn1 (n=1,2,3,..., i=1,2,3,4) are unknown constants. 

Because we require solutions which are finite then k 
nl 

=k 
n2 

=0 

(n=1,2,3,... ) and we obtain 

_mrx 
fOn(x)={knie L- Goy}/Rb (n=1,2,3, 

... 
) (3.3.14a) 

l 

nTrx 

FOR(x)=jkn4e L+ 
gon}/Rb (n=1,2,3, ... ) (3.3.14b) 

Applying the boundary conditions (3.3.3d) we now find that 

kn3 (ancn3_ßncn4) 
nn 

(n=1,2,3,... ) (3.3.15a) 

kn4= (cc Cancn3+9 Cßncn4) - (n=1,2,3,... ) (3.3.15b) 

n 
where Can= 3ßn-an+( L2 Cßn San2 -ßn ( nL 2 ) (n=1,2,3,... ). 

Boundary conditions (3.3.3a) may now be written in the form 

Z fon(0) L' cosnL' =00ty2 (3.3.16a) 
n=1 

Co Fon(0) nn cosnL' =1 0-5 y2 (3.3.16b) 
n=1 

and on using expressions (3.3.15) then fOn(0) and FOn(0) can be 

expressed in the terms of cn3 and cn4 as follows, 

La -nn Lß 
fOn(0)- 

nnn R ßn3 
nnRn 

cna 
bb 

(n=1,2,3.... ) (3.3.17a) 

aL +nnM ß (C -2nna ) 
F, (O)_ nnnn ßn nc 

On 
nuR 

2 n3 
nuR 

2 n4 
bb 

(n=1,2,3, ... ) (3.3.17b) 



86 - 

where L= 3ß2-a2+( nn )Z, M= 2ß -L (n=1,2,3, 
... 

). 
nnnLnnn 

As it is impossible to solve infinite sets of equations we 

terminate all the infinite series after N terms. Although the 

constants cni (n=1,2,3,... and 1=1,2,3,4) will depend on the 

value of N we will assume that the value of N is sufficiently large 

that this effect is negligible and continue to use c 
ni 

whatever the 

value of N. Later calculations will confirm the validity of this 

assumption. Further, for convenience we will take N to be an even 

positive integer. 

Multiplying both expressions in (3.3.16) by cos-t_ (m=1,3, 

5,..., N-1) and integrating the resulting expressions with respect 

to y between 0 and gives 

1/2 
N 

(0) Ef L- cos! Ly cosmLy dy =0 (3.3.18a) 
On n=1 O 

1/2 1/2 
N 

(0) LF nL 
cosnLy cosmLy dy = cos- 

- dy (3.3.1Sb) 
on 

n=1 0 O 

(m=1,3,5,..., N-1) 

Now equations (3.3.18) form N equations but involve 2N unknown 

coefficients. Therefore we require N further conditions and these 

are obtained by using the last two conditions in (3.3.3d), i. e. 

dx g0n(0) sinny =0 (1 -y -- L) (3.3.19a) 
2 

n=1 

co dE 
dx G0n(0) sinnLy =0 (Z sy< L) (3.3.19a) 

n=1 

Equations (3.3.19) are now multiplied by sinmny L (m=1,3,5,..., N-1) 

and integrated with respect to y from 
2 

to L and we obtain 
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Nd 
(0) g = nny 

s2n L 
mny 

sin L dy = 
1 0 (2 <y< L) (3.3.20a) 

On dx 
l n i 

NdG 
(0) s1nnýy sinmy dy = 0 (1 <_ y' L) (3.3.20b) dX On L L 2 

n=1 1/2 

(m= 1,3,5,... N-1) 

where 

dg (0) = 
ra 

(2ß2-M )c +ß (2a2+M )c 
11 

(3.3.21a) 
dX On Lnnn n3 nnn n4 R 

b 

c (n=1,2,3,.. 
., N) (3.3.21b) 

dx 
r'on(0) = -ancn3 +ßn 

n4 

Equations (3.3.18) and (3.3.20) form a linear system of 2N 

equations and 2N unknowns cn3 and cn4 (n=l, 2,..., N) which has to 

be solved numerically and then using expressions (3.3.15) all the 

unknown coefficients in the solution may be determined. 

3.4 The 0(1) Solution Using a Numerical Technique 

In this section we solve equations (3.2.8) subject to the 

boundary conditions (3.2.2). As in section 3.3 we write 

q/ 
o= 

f0(X, Y)sin(t) + F0(X, Y)cos(t) (3.4.1a) 

wo = g0(X, Y)sin(t) + G0(X, Y)cos(t) (3.4.1b) 

where fop Fo, go and Go are unknown functions of X and Y to be 

determined. On substitution of expressions (3.4.1) into equations 

(3.2.8) and equating terms in sin(t) and cos(t), we obtain 

02 fo= -go (3.4.2a) 

V2F0= -Go (3.4.2b) 
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02go= -RbG0 (3.4.2c) 

42G0= Rbgo (3.4.2d) 

which have to be solved in X>-0 subject to the boundary conditions 

f = 0, F = 0, 
0 o 

öf äF 
e 

=0 = 0 ax ax 

onX=O, 0:!: - Yt 
2 (3.4.3a) 

fo = Fo = go= Go =0 

f0= 0, Fo= -L, go= Go= 0 

of aF 

ay =0' 8Y = -1 

go = 0, Go =0 

afo aF0 ago 8G0 

ax ax - ax - ax -0 

onY=0, X>0 
(3.4.3b) 

on Y=L, X>0 

asX-ºoo, 0 :5Y: 5 L (3.4.3c) 

on X=0,2ý Y< L (3.4.3d) 

bearing in mind that the flow is symmetrical about X=O. 

A standard second-order accurate central finite-difference 

discretisation of equations (3.4.2) was made and the resulting set 

of coupled finite-difference equations solved using a relaxation 

procedure. The numerical procedure used is similar to that described 

in chapter 2 and therefore the full details are not presented. 

However one or two points are worthy of mention. 

As the flow changes most rapidly in the vicinity of the plates 

it is advisable to use a finer mesh in this vicinity. This was 

achieved by introducing the co-ordinate transformation (2.2.8). 

At large distances from the cascade we assume that the flow 

approaches its asymptotic value exponentially in X, and the 

asymptotic solution has been found in chapter 2 as (2.2.20), or 
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alternatively, as equation (2.2.21) which in terms of f0 and Fo 

becomes 

of 
ax Lfo as X--+ co, 0: 5 YtL (3.4.8) 

öX(Fo+Y) = -L(Fo+Y) asX-+co, 0 :5Y: L (3.4.9) 

In practice the boundary conditions (3.4.8) and (3.4.9) have to be 

applied at a finite value of X and these are taken to be X= XL, to 

represent the condition at X= -co, and X= XR for X= +co. The values 

of IXLI and IXRI have to be taken to be sufficiently large so that 

any increase in these values results in a negligible change in the 

calculated solution. 

Another difficulty which arises is that the vorticity on the 

plate is unknown and in order to determine this we use the method 

devised by Woods (1954), namely we write 

3S 
go$ =-f 

2I - 
I+ý- 0 ýlz) 

, 
GoB = __ 

2-GI 
-ý 

o (h2) (3.4.10) 
2h2 

where the suffices B and I refer to the value on the body and the 

first internal grid point normal to the body. 

Also the solution near the point (0, requires special 

attention since the vorticity is infinite at this point. In order to 

deal with this singularity two Methods have been used, namely, 

Method I: we use the inclined finite-difference scheme as 

described in detail by Ingham et al. (1990a). The discretisation of 

the functions go and Go at the grid points (h, 0.5), (0,0.5+h) and 

(-h, 0.5) using a square mesh of size h involves the values of g 
0 

and G0 at the point (0,2). To overcome this difficulty we rotate 

the mesh through 450 so that the solution at the point (h, 0.5), for 



- 90 - 

example, may be obtained in terms of the functions at the points 

(0,0.5-h), (2h, 0.5-h), (2h, 0.5+h) and (0,0.5+h) rather than at 

the points (0,0.5), (h, 0.5-h), (2h, 0.5) and (h, 0.5+h). 

Method II: We use the analysis similar to that described in 

section 2.3. In the vicinity of the rigid wall the Navier-Stokes 

equations (1.3.4)-(1.3.5) and (3.2.8) may be written in terms of f0 

and F0 in the following form, 

v4f =o 
0 

v4F =o 
0 

(3.4.11) 

(3.4.12) 

these have to be solved subject to the boundary conditions (3.4.3a) 

and equations (3.4.11) and (3.4.12) now give the solutions for g 0 

and G0, exactly the same as in equations (2.3.18) and (2.3.19) 

except that %F and w in chapter 2 are replaced by f0 (or F0) and go 

(or Go), respectively. The coefficients appearing in equations 

(2.3.19) are determined in the same way as described in section 2.3 

and are therefore not presented here. 

Both methods I and II have been used and it is found that they 

give similar results but with method II giving the more accurate 

solutions for a given mesh size. Therefore throughout the remainder 

of this chapter method II has been employed. 

3.5 0(c) Solutions 

Now we seek the solutions of equations (3.2.9) and (3.2.10) 

subject to the boundary conditions (3.2.2). It Is well known that 

for this kind of problem in which harmonic oscillations occur that 

there exist terms in the solution in both sin(2t) and cos(2t) due to 
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the non linearity of the problem. Hence we write 

Wiu)= f1(X, Y)sin(2t) + F1(X, Y)cos(2t) (3.5.1a) 

w(u) = gI(X, Y)sin(2t) + G1(X, Y)cos(2t) (3.5.1b) 

where fl, F 
is g1 and G1 are some unknown functions to be determined. 

Substituting expressions (3.4.1) and (3.5.1) into equations (3.2.9) 

and (3.2.10) and collecting up terms with the same coefficients in 

cos(2t), sin(2t) and those independent of the time t gives 

o2g1 = x'o- 2RbG1 (3.5.2a) 

02G1 = Ya+ 2Rbg1 (3.5.2b) 

Q2w(S)= eo (3.5.2c) 
1 

V2f 
1= -gl (3.5.2d) 

V2F = -G (3.5.2e) 

02%P (s)= 
-w(s) (3.5.2f) 

11 

where 

R L9 (G 
,f) 

3(g F) 

o 2b a(X, Y) + a(X, Y) 
(3.5.3a) 

R ä(G ,F) 
a(g ,f 

_b00 
o2 8(X, Y) _0O a(X, Y) 

(3.5.3b) 

R ö(g ,f) 
ä(G ,F) 

to 
2b ä(X, Y) + a(X, Y) 

(3.5.3c) 

The boundary conditions (3.2.2) can now be written, 
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f1- F 1 
of 

1 
öF on X=0,0 (3.5.4a) 

-5 Y1 

i 1=0 
= äx äx 

f = F =g =G =0 on Y=0, IXI>0 
1 1 1 1 (3.5.4b) 

f = =G =0 F =g on Y=L, IXI>0 
1 1 1 1 

öf öF 

äy = 0, öYl = 0, g1= G1= 0 

as 1 XI-+ co, 0 :5YL (3.5.4c) 

aql(s) 
411 

L9 X1 =0onX=0, O Y-2 (3.5.5a) 

'I' =wis)=0 onY=0andY=L, IXI>0 (3.5.5b) 

ay = 0, wis)= 0 as IXI-º co, 0sYL (3.5.5c) 

It should be noted that unlike the 00) solution, the flow may 

be symmetrical 43r C,, bou---t X==(). 

Following the derivation of the asymptotic boundary condition 

in section 2.2, and the boundary conditions on the plate for the 

00) formulation we obtain, 

af aF 
I= 

-Tr f1= _71 F as X-4 ±oo, 0 :5Y :5L (3.5.6) 
ýi-x E -x 1: 1 

a 41 (S) 
1= -Tr 41 (S) 

as X-+ ±oo, 0 :5Y :5L (3.5.7) 
ax 1: 1 

and 

3f 
1I 

_ 

911, 

g1B 
h2 2 

3F G 
G-- 1I 

- 
lI 

1B h2 2 

3%P (s) 
W(s) (s) 11 1I 

W=--- 
lB h2 2 

X=0,0 <Y< 
1 (3.5.8) 

X=0,0 <Y< 
1 (3.5.9) 
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Again a second-order accurate central finite-difference 

discretisation of the equations (3.4.2) and (3.2.10) was made and 

the resulting set of coupled finite-difference equations solved in a 

similar manner to that described in section 3.4. 

3.6 Results and Discussion 

Results were obtained using a central finite-difference 

discretisation and an iterative process for values of the frequency 

Reynolds number, Rbý1,5,10,50,100 and 200 with mesh sizes 

h=1/40,1/60 and 1/80. All the results presented in this chapter 

were obtained with h=1/80 but the results obtained with h=1/60 are 

graphically indistinguishable from those obtained using h=1/80. 

Further, when Rb is small a mesh size of h=1/40 is found to be 

adequate but as Rb increases then the flow field changes more 

rapidly near the plate and therefore a smaller value of h is 

required in order to adequately describe the flow field. In order to 

illustrate the numerical method we present results only for L=1 

although calculations have been performed over a wide range of 

values of L and the results show the same general flow 

characteristics. Several values of X and X have been tried and it 
RL 

was found that for the values of Rb considered, a value of about 15 

(the exact value depends on the mesh size employed in the 

X-direction) gave results which were graphically indistinguishable 

from those obtained using -X L=XR 
z1O. In the series truncation method 

the series was truncated after N=100,150 and 200 terms and it was 

found that a value of N=200 was sufficiently large in order to 

obtain solutions which are correct everywhere to less than 1%. 

Fig. 3.2 shows the instantaneous streamline pattern for Rb =5 for 
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various values of time using the series truncation and the numerical 

scheme for the 0(1) solution. It is seen that the two methods give 

solutions which are almost the same and this agreement is typical of 

the results obtained. At time t=2nTr (n an integer) the plate is 

moving from left to right and is at its maximum speed. The plate 

starts to slow down and by the time t=2n7r+0.3Tr the recirculation 

region that existed at time t=2nir and centred at xz6 has been 

annihilated. The plate continues to slow down and comes to rest when 

t=2nn+0.5n. As the plate then starts to move from right to left it 

develops a recirculating flow around the plate in the opposite 

direction to the original recirculating flow. The new recirculating 

flow becomes stronger and the original one becomes weaker and this 

phenomena persists until t=2n7r+n and then the whole process Is 

repeated. 

Fig. 3.3b shows the instantaneous streamline pattern for Rb =50 

for various values of time using the numerical scheme for the 0(1) 

solution. The results obtained using the series truncation method 

show very little difference and are shown in Fig. 3.3a. The solution 

for Rb =50 shows a similar behaviour to that obtained for Rb =5 except 

that the development of the counter rotating eddy is not so 

pronounced and this is to be expected as the effects of diffusion 

are much smaller at this value of the Reynolds number. 
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Fig. 3.2a The instantaneous streamlines for the first-order 

unsteady solutions obtained from the series truncation 

method for Rb =5 at different times, t. (a) t=2nTr, 

(b) t=(2n+0.3)n, (c) t=(2n+0.5)Tr, (d) t=(2n+16/30)ir, 

(e) t=(2n+0.6)n, (f) t=(2n+0.8)n, (g) t=(2n+l)n. The 

streamline labelled 1,2,... 
' 

19 corresponds to ip=-0.5, 

-0.4, -0.3, -0.2, -0.1, -0.01, -0.0001, _0. lX10-6, 

_10 -10 -6 
-0.1X10 , 0, '0.1X10 , 0. lX10 , 0.0001,0.01,0.1,0.2, 

0.3,0.4,0.5, respectively, and n is an integer. 

0123456789 10 
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Fig. 3.2b The instantaneous streamlines for the first-order 

unsteady solutions obtained from the the numerical method 
for Rb =5 at different times, t. (a) t=2nTr, 

(b) t=(2n+0.3)7r, (c) t=(2n+0.5)7r, (d) t=(2n+16/30)7r, 

(e) t=(2n+0.6)ir, (f) t=(2n+0.8)7r, (g) t=(2n+l)ir. The 

values of the streamfunction are the same as those given 
in the caption to Fig. 3.2a. 

0123456789X 10 
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Fig. 3.3a. The instantaneous streamlines obtained from the 

series truncation method for the first-order unsteady 

solution for Rb =50 at different times, t. (a) t=2n7r, 

(b) t=(2n+0.3)ir, (c) t=(2n+0.5)Tr, (d) t=(2n+16/30)Tr, 

(e) t=(2n+0.6)Tr, (f) t=(2n+19/30)Tr, (g) t=(2n+l)Tr. The 

values of the streamfunction are the same as those given 

in the caption to Fig. 3.2a. 
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Fig. 3.3b The instantaneous streamlines obtained from the 

numerical method for the first-order unsteady solution for 

Rb =50 at different, times t. (a) t=2nTr, (b) t=(2n+0.3)Tr, 

(c) t=(2n+0.5)Tr, (d) t=(2n+16/30)n, (e) t=(2n+0.6)Tr, 

M t=(2n+19/30)ir, (g) t=(2n+l)n. The values of the 

streamfunction are the same as those given in the caption 

to Fig. 3.2a. 
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The steady streamlines for Rb 1,5,10,50 and 100 are shown in 

Fig. 3.4. It is observed that the vortex motion becomes stronger as 

the parameter Rb increases. This is to be expected since increasing 

Rb is equivalent to increasing the frequency of the oscillations of 

the cascade. This implies pumping more energy into the system and 

hence the strength of the vortex motion must increase. In order to 

demonstrate this phenomena more clearly the variation of the steady 

vertical velocity as a function of X at Y=1/2 for R 
b= 

1,5,10,50, 

100 and 200 is shown in Fig. 3.5. This figure also illustrates that 

the larger the values of Rb the larger the velocity gradients near 

the plate and hence the need for the finer mesh which is employed 

near X=O in order to obtain accurate solutions. 

Figs. 3.4 and 3. S illustrate that as Rb increases then the 

position of the centre of the vortex gets closer to the plate. 

Fig. 3.6 shows the variation of the X-component of the distance of 

the centre of the vortex, D as a function of Rb. As the parameter 

Rb increases we expect that the flow will consist of an outer 

inviscid flow and a viscous inner flow and therefore we may expect 

the value of D to decrease as R increases. 
Vb 

Numerical results have also been obtained for a grid of 

rectangular cylinders rather than the normal flat plates. In 

particular detailed solutions have been obtained when the cylinders 

are of square cross section, see Fig. 1.6, and when L=1. The 

singularity in vorticity that occurs at the corners of the squares 

was treated in a similar way to the singularity at the edges of the 

plates and all other details are very similar to those presented in 

chapter 2 for the cascade of normal flat plates and are therefore 

not presented. 
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(a) 

(b) 

(c) 

(ä) 

(e) 
X 

Fig. 3.4 The streaming streamlines (Eulerian) for various 

values of Rb. (a) R 
b'=l' 

(b) R JS' (c) RJ 10, (d) Rb =50, 

(e) R =100. The values of the streamfunction are the same 

as those given in the caption to Fig. 3.2a. 
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Fig. 3.5 The vertical velocity as a function of X at 
Y=0.5 for Rb =1,5,10,50,100 and 200. 
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0.1 

0.0 

Fig. 3.6 The X-component of the centre of the vortex as a 

function of R 
b 

Fig. 3.7 shows the steady streamline patterns for Rb =1,5,10, 

50 and 100 with -X L =X R =15. Mesh sizes are again the same as those 

used for the cascade of normal flat plates and the results from 

Rb 

different mesh sizes show very good consistency as the mesh size is 

reduced. It is observed from Fig. 3.7 that there are now eight 

vortices arranged around each cylinder (due to the symmetry of the 

problem only 4 vortices are shown). At small values of Rb the two 

vortices between the square cylinders are very weak and small in 

0 50 100 150 200 
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(e) 
X 

Fig. 3.7 The steady streamlines for various values of Rb 

with the cascade of square cylinders. (a) R 
bý- 

1, (b) Rb : --5, 
(c) R J10' (d) R J50' (e) RJ 100. The values of the 

streamfunction are the same as those given in the caption 
to Fig. 3.2a. 
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size. However, as the frequency of the oscillations increase all the 

vortices become much stronger and those between the cylinders 

increase in size. This effect is again to be expected as increasing 

Rb effectively increases the energy being pumped into the system. As 

in the case of the cascade of normal f lat plates, as the value of R 

increases then the centre of vortices at the side of the cascade 

also becomes closer to the cascade. 
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CHAPTER 4 STREAMING FLOWS INDUCED BY A CASCADE OF 130DIES WHICH IS 

OSCILLATING WITH A SNALL-AMPLITUDE AT A HIGH-FREQUENCY 

4.1 Introduction 

In chapter 2 numerical solutions were obtained for the fluid 

flow induced by a harmonically oscillating cascade of normal flat 

plates with relatively large amplitude and low frequency, i. e. c, 

RR and R were all 0(l), whilst in chapter 3 we assumed that 
bS 

C << 1 and Rb "_ 0(1) and as a result the streaming Reynolds number, 

R, was much smaller than unity. When -- remains very small and Rb 

increases then the streaming Reynolds number, RS, will Increase. 

When R= 0(1) the streaming flow outside the Stokes-layer induced 
S 

by the oscillating body is governed by the full Navier-Stokes 

equations which is characterised by the Reynolds number R, see, for 
S 

example, Riley (1967). Taking advantage of the conformal mapping 

technique Kim and Troesch (1989) were able to solve, using a 

finite-difference method, the streaming flow between two cylinders 

of which the inner square cylinder performs a harmonic oscillation 

with R 00) and the outer cylindrical cylinder is at rest. 

In this chapter we investigate, numerically, the flow induced 

by a cascade of normal f lat plates and a cascade of square bars 

which perform harmonic oscillations with c<1 and R ý: 0(1) in an 
S 

unbounded, incompressible fluid which is otherwise at rest. 
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Consistent with the early theories, the leading-order unsteady outer 

flow is given by the unsteady velocity potential. This flow is 

determined using both a conformal mapping technique and a standard 

finite-difference method, which takes into account the corner 

singularities, and these results are shown to be in good agreement. 

It is assumed, as Kim and Troesch (1989) did, that the flow does not 

separate and that in the corner region the standard boundary-layer 

assumption holds. Given the tangential velocity next to the body 

these inner boundary-layer equations may be solved. The 0(c) outer 

flow may be determined and this consists of an unsteady component 

and a steady streaming flow. In this chapter we use a specialised 

finite-difference scheme to solve for the steady streaming flow and 

great care has to be taken near the corner singularities. In the 

case of the cascade of square bars the steady streaming flow has 

eight recirculating flows close to each bar whereas for the cascade 

of flat plates there are four such recirculations. When dealing with 

a single square bar Kim and Troesch (1989) observed very similar 

flows. 

4.2 Formulation 

Mathematically the fluid flows induced by the oscillation of 

two infinite cascades of bodies have been investigated, namely, 

Ma cascade of normal flat plates and (Ii) a cascade of square 

cylinders as described in chapter 1, see Fig. 1.5 and Fig. 1.6. The 

cascade oscillates harmonically and perpendicular to the plane of 

the cascade such that the displacement of the cascade is only in the 

x -direction and given by equation (1.1.1). The governing equations, 
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with the co-ordinate system fixed in the cascade and in terms of the 

streamfunction and vorticity can be written as (2.2.3)-(2.2.4), or 

alternatively, as 

aw 
_E3(', 

w) 
2_ 

02w (4.2.1) äT a (x, Y) R 
8 

v2ýp = -w (4.2.2) 

Due to the symmetry of the problem we need only consider the flow in 

the region -w< X <w and 0 :5Y :5L, where L= Y/d. 

Equations (4.2.1) and (4.2.2) have now to be solved subject to 

the boundary conditions (2.2.7) with boundary condition (2.2.7a) 

being replaced by 

aT =0 on the body surface (4.2.3) 
an 

where n is the outwards normal to the body surface. 

As we have assumed that v<1 and R 00) we therefore write the 

streamfunction in the form, 

%p = %p (X, Y, t)+1T (X, Y, t) 
R 1/2 01 

sA 

(X, Y, t) + 71 pl, lu, (X, Y, t 10 R 
1/2 /c 11 

s 

+ 
[W(s(XY) 

+W ) (X, Y, t) 
Re iz 11 

s/ 

2 %p 
2 

(X, Y, t) +c3T3 (X, Y, t) + o(c 4)... (4.2.4) 

see Riley (1967). On substitution of expression (4.2.4) into the 

governing equations (4.2.1) and (4.2.2) gives, to the leading order 

(i. e. 0(i)), 
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8t(V2qfo)= 
o (4.2.5) 

Subject to the no-slip boundary condition on the surface of the body 

equation (4.2.5) gives only the trivial solution q/ 
0 =0. Therefore the 

no-slip boundary condition must be relaxed and we have to introduce 

a boundary-layer in which we write the streamfunction, ý;, as 

_0R 
112 

hol t) 

s 

+ cf(Vu ( 
, -1, t) + 

VU) 
, 10 Rii2 /c 

s 

+ý 
cs)( 

, ý) + 
R1/2/e 

9 

+0 2(e) (4.2.6) 

where 

R1/2qI RL2. 
Y= 

21/2£ 
- Xi 

21/2E 
(4.2.7) 

and (x', y' ) are the unscaled boundary-layer variables along and 

normal to the surface of the body, respectively. The 0(1) solution 

outside the boundary-layer, after relaxing the non-slip boundary 

condition, is then given by 

W =eit41 (4.2.8) 
0p 

where TP is the steady potential f low past the cascade and hence 

satisfies 

vz91 =0 (4.2.9) P 
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In the boundary-layer the 00) unsteady solution which 

satisfies the no-slip boundary condition on the surface of the body 

and matches the potential f low (4.2.8) at the outer edge of the 

boundary-layer can be shown, see for example, Riley (1967), to be 

given by 

1+ ý; 
0=U eltfl - 2(1-i)(1-e-(1 

1) (4.2.10) 

The leading order of the O(c) unsteady solution outside the 

b oundary-layer, q, (U) is given by 
10 , 

lp (U) 0 (4.2.11) 
10 

whilst the leading order of the 0(c) unsteady solution in the 

boundary-layer, Vu), 
is given by 

10 

dU (U) 
t) =Up-2 

Itf 
-1+' + 

10 p ziý 
4 V-2- 

+ 
i77 

e- 
(1+1)71- 1+i 

2 (4.2.12) 
4, , r2- 

Expression (4.2.12) satisfies the no-slip boundary condition on the 

surface of the body and matches the outer solution (4.2.11) at the 

outer edge of the boundary-layer. For the O(c) boundary-layer 

solution, Vjt, 71), it is proven, see for example, Schlichting 

(1932), Stuart (1966), Riley (1967) and Wang (1968), that 

a ý' -a) must be finite (but non-zero) if the no-slip boundary an 
1 

7)=00 

condition on the surface of the body is to be satisfied. This 0(c) 

steady boundary-layer solution can be written as 

;ý (s) 
-u 

dU 
p 13 31 -277 -_Q 

j-E 
(8-v-ue-e 

sinh)- 
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3 
e-71 

1 'nsin( 
cos oe- -n) 

) 
(4.2.13) 

which gives the tangential velocity at the outer edge of the 

boundary-layer as 

3 dU 
u-_: __U (0 as 71 ----> co (4.2.14) 

S4p dý 

In this chapter we concentrate on the steady component of the 

0(c) solution outside the boundary-layer. On substitution of 

expression (4.2.4) into the governing equations (4.2.1) and (4.2.2) 

and equating the coefficients of the 0(c 3) terms gives the following 

(S) set of equations to be satisfied by the 0(c) steady solution 41 

+1V2W (S) 
=0 (4.2.15) 

aM Y) R 
S 

02if (s) 
= -w(s) (4.2.16) 

and these equations have to be solved subject to the boundary 

conditions 

---) 0, w 
(S) 

--4 0 as X --4 co, 0 :5Y :5L (4.2.17) 
ay 

41 (S) M 0) =T 
(s) M L) =w 

(S) M 0) =w 
(S) (X, L) =0 (4.2.18) 

T (s) 
=0 

q, (s) dU 

s= _ZUp dE 

q, (s) (0, Y) =0 

on the surface 
(4.2.19) 

of the cascade 

0: s Y: s L (4.2.20) 

In order to solve equations (4.2.15)-(4.2.20) for %P (S) 
we need 

first obtain %P 
p 

and hence uS. Equation (4.2.9) has been solved using 

both the conformal mapping technique, a standard central 
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finite-difference discretisation and a direct inversion of the 

resulting equations. Singularities occur near the sharp corners of 

the body and in the finite-difference method they have been dealt 

with in a manner similar to that described by Motz (1946). In order 

to illustrate the conformal mapping technique we present the method, 

method 1, for the cascade of normal flat plates only. The extension 

to other shaped bodies, such as a cascades of square bars, is 

trivial. 

Using the Christoffel-Schwarz mapping 

az )- 1/2 )- 1/2 

aý bd 
(4.2.21) 

then the region shown in Fig. 4.1a in the z-plane, i. e. the X-Y 

plane, is conformally mapped onto the upper half C-plane as shown in 

Fig. 4. lb. 

a e 

c 
-A- L 

0.5 

bld 
0 

(a) z-plane (i. e. X-Y plane). 

Co Co 
) 

(b) ý-plane. 

Fig. 4.1 The conformal mapping given by (4.2.21). 

The quantities k, ýb and Cd are constants to be determined and ýa, 

C 
and ýe are chosen to be -co, 0 and 1, respectively. The complex 

potential in the ý-plane due to a sink of strength u 
00 

Lcos(t) at ý 
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uL 
is W= c" ln(ý-1)cos(t) and so the complex velocity potential is 

Ir 

Upe it, where u CO =1 is the non-dimensional velocity at infinity and 

Co 
L (ý-ý 

b)- 

1/2 (ý-ý 
d 

)-1/2 

kný 
(4.2.22) 

From the boundary conditions at infinity in the z-plane, i. e. 

as co 

as C--) 
00 

(4.2.23) 

then k=LAT and 
b= -V(1-ýd) . Further, on integrating the 

differential equation (4.2.21) between z=c and z=d gives 

fd 

L 

d/"-ýd) 
)1/2 (ý-V 1/2 

dC (4.2.24) 

This equation is solved numerically in order to find ýd and then Cb 

is determined. It should be noted that in order to avoid the 

singularity which occurs at ý=ý 
d 

the following transformation 

ý, = (ý 
d- 

0 1/2 (4.2.25) 

was introduced when solving equation (4.2.24)-for ýd numerically. 

The relationship between a point z in the z-plane and the 
0 

point ý0 in the -ý-plane is obtained by integrating expression 

(4.2.21) to give 

z1= 
11 f dC (4.2.26) 

0-2 EL 1/2 (C-C 1/2 (<-l) 

Thus in order to find the velocity on the plate of the cascade at 

the point z0 we f ind the corresponding value of ý0 in the C-plane 
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from expression (4.2.26) by using a numerical integration method and 

then the velocity may be obtained from expression (4.2.22). 

As an alternative, a central-difference discretisation and an 

iterative scheme, method II, is also used in order to solve equation 

(4.2.9) subject to the potential flow boundary conditions. The 0(c) 

steady tangential velocity on the surface of the cascade (see 

expression (4.2.14)) is obtained by using both the conformal mapping 

technique and the finite-difference method and the results are 

compared in Fig. 4.2. When using method II results have been obtained 

us 

-1000 

-900 
AnaLytic 

-800 

-700 

-600 

-500 

-400 

-300 

-200 

-100 

0 

0.0 0.1 0.2 0.3 0.4 

- N= 120 

- N= 90 

- N= 60 

- N= 30 
-iY 
0.5 

Fig. 4.2 The steady vertical velocity uS on the surf ace 

of the plate - ------- numerical, - analytical. 
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for different mesh sizes, namely 1/30,1/60,1/90 and 1/120 and 

these results are shown in Fig. 4.2. It is clear that the results 

from these two methods are, in general, in very good agreement, and 

as the mesh size tends to zero the solution obtained from method II 

approaches that obtained using method I. As the conformal mapping 

technique is an analytical method it gives the results for u 

accurately and easily and therefore It has been used throughout the 

remainder of this chapter. 

Thus we have determined the tangential velocity on the surface 

of the cascade and this forms the inner boundary condition when 

determining the outer steaming flow at the outer edge of the 

Stokes-layer. 

4.3 The Outer Streaming Flow 

In this section we consider the streaming f low due to a 

harmonically oscillating cascade of bodies which have sharp corners, 

i. e. cascades of square cylinders and flat plates, see Fig. 1.5 and 

Fig; 1.6. The equations of motion are (4.2.15) and (4.2.16) and these 

have to be solved for the case of the cascade of square cylinders 

subject to the boundary conditions (4.2.17)-(4.2.20). A detailed 

description of the method used will be given for the cascade of 

square cylinders and as the technique is very similar for a cascade 

of flat plates only a brief description for this geometry will be 

presented. 

To adequately deal with the more rapidly changing flow near to 

the cascade more mesh points are required In this vicinity. In order 

to achieve this we introduce the following co-ordinate 
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transformation 

x= ln(1 +D (X-0.5» + 0.5 0.5 :sX< Co (4.3.1) i 

ii = ln(1 +D (Y-0.5» + 0.5 0.5 :sY :5L (4.3.2) 

x=0<x<0.5 (4.3.3) 

q=0<y<0.5 (4.3.4) 

where Dx and DY are constants which will be specified later. Thus if 

a constant mesh is set up In the (a:, 4V) coordinate system then there 

will be more mesh points near the cascade than at large distances 

from the cascade. It is found convenient to use a mesh size, h, in 

both the x- and q-directions and for the mesh to be square in both 

the X- and Y-directions on X=1/2. Hence we choose Dx =D 
Y 
=-D, say, such 

that 

h= ln(l+Dh) (4.3.5) 

A typical grid system is shown in Fig. 4.3 with h=1/20 and L=l. 

Y 
1r 

0 

Fig. 4.3 The grid system generated by the transformations 

(4.3.1)-(4.3.4) for the cascade of normal flat plates with 
h=1/20. 

On using the transformation (4.3.1)-(4-3.4) the governing 

equations (4.2.15) and (4-2.16) may be written in the following form 

01234X5 
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in the region 0.5: 5(c<co, 0.5: 5q: 5, V 
L 

2 (s) (S) 2 (s) 
E (X)2(a W_ aW 

+ E(,, ), ra w aw 
+ E(a: )E(q) a (41 ,w )- 0 

R aa: 2 
R taq 2a (a:, q) 

s 
(4.3.6) 

E (,, ) 2(a 
2p (S) 

- 
8, p (S) 

+E (q)2 (a 
2p (S) 

C9, p 
(S) 

-W(S) (4.3.7) ( aa: 
2 

atj 
2 

-'t 

in the region O: sx<0.5,0.5: 5ýq 
L: 

1a2 G) 
(S) E(q )2 (a 2w (S) aw(s) (,. ý (s (, ) (S) )= 

Ra X2 

+Rs (aq2 
-If 

)+E 
(q)'3 

a (a:, q) -0 (4.3.8) 

a2T 
(S) 

- (, V) 
2a2 41(s) aq, s +E (4.3.9) 

aX2 a42 aq 

and in the region 0.5: 5x<co, 0-sq<O. 5: 

E (a: ) 2a2 
(1 

(S) 

- aw(s) +1a2w 
(S) 

+EWa(, P(s w 
(S) 

0 (4.3.10) 
(aX2 

2a (x, RsRs aq 

E 
(a 2 4' (S) 

- aq, (S) 
+a2 

41 (S) 

= -W (4.3.11) t 
Cq X2 aq 

2 

where 4V L =ln(l+D Y 
(L-0.5))+0.5, 

E(, V)=D exp(-q+0.5). 

Denoting the points with coori 

(ih, (j+l)h), M-M, jh) and Uh, 

respectively, then the standard 

discretised form of equation (4.3.6) 

E(x)=D exp(-x+0.5) and 

dinates (ih, jh), ((i+l)h, jh), 

(j-l)h) by 0,1,2,3 and 4, 

5 point central-difference 

can be written as 

(S) (S) (s)+ - (S) - (S) 
cw+ to +wcw-c0w0=0 (4.3.12) 

where 
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12 
-7-E - 

LE (E +ERU 
h2 X0 2h X0 X0 YO .0 
LE 2 

- 
LE (E +E RV), 

2 h2 YO 2h 
YO YO XO s0 

c 
12 
-2-E 

1 
+ -E (E +ERU (4.3.13) 

3 h2 XO 2h X0 X0 YO s0 

c 
12 
-E 

1 
+ -: m-E (E +ERV 4 h2 YO 2h 

YO YO X0 s0 

-C + -C +ý+ ý 
0 1 23 4 

and 

(s) 

0 
(s) 

> 

-- - nalEr )0 

(4.3.14) 

with E 
X0 =E (x 

0) and EYO=E(qo). Similar discretisations can be written 

down for equations (4.3.8) and (4.3.10). 

The matrix associated with the set of finite-difference 

equations (4.3.12) is not always diagonally dominant and therefore 

S. O. R. iterative methods may not always be convergent. In order to 

obtain a discretised system of equations which is diagonally 

dominant but still has an accuracy O(h 2) we use a specialised 

central finite-difference scheme. The method is similar to that 

developed by Dennis and Hudson (1978) and was successfully used and 

extended by Ingham et al. (1990a) on a related problem and is that 

employed in chapter 2. Therefore the detailed derivation of the 

finite-difference equations Is not presented and they are given by 

w 
(s) 

+cw 
(s) 

+cw 
(s) 

+cw 
(Z) 

-cw 
(s) 

=0 (4.3.15) 
1122334400 

b 41 (S) 
+bT 

(S) 
+b %P 

(S) 
+b %P 

(s)- bT (S) 
+h2w 

(S) 
=0 (4.3.16) 

11223344000 

where 
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rE 
2-hE (E +E RU+h (E +E RU21 X<co, 

1 

X0 ýý X0 X0 Yo s8 X0 Yo 25 

c =. 1- hER U+ h2E2R2u20: 5x< 
(4.3.17a) 

12 Yo s0 YO so2 

2hh2 )2 1 
-E xo-2 

E 
X0 

(E 
X0 

+R 
.U. 

)+ iF (E 
X0 

+R 
sUo 2ý5x<co, 0: 5q5ý 

,E2hE (E +E RV (E +E RV )2 aXoo, 
1 

yo-2 YO YO XO so YO XO so 
12ýVVL 

cE2hE (E +R V )+ 
h 

(E +R V )2 O<X< 
1 

Tstl (4.3.17b) 
2ý' YO-2 YO YO so 

T- YO 2- L 

hh22221 
2 X0 s08 XO so 

,E2+hE (E +E RU)+h (E +E RU)21 X<co, X0 ýý X0 X0 YO s08 X0 Yo s0 2- L 

hh2221 
(4.3.17c) 

c3 =' 1+2E 
Yo 

RsUo +ý--EYOR 
s 

UO O: sx< -2ý1L 

,E2+hE (E +R U)+hE +R U21 X<co, 0: 5y,: 5 
1 

X0 ýý XO - XO so8 XO so 

rE 
2+hE (E +E RV)+h (E +E RV2 
YO ýý YO YO XO 

) '9 YO XO 

1 1 
-4: 57L 

so s0 

E2+hE (E +R V )+ h (E +R V )2 
Y ýý YO YO O. CT<', 

i-q: 
54 2- 

(4.3.17d) 
O .0 YO so L 

., +h 
h2222 

2 XO so8 XO so 

1 1 

E2(, _h X0 X<00, 0: 5q: 5q 
L b (4.3.18a) 

0. - 5x <2 , 

2h 
E (1-2) 

YO 
O. -5a: <Co, -q: sq 2- L b (4.3.18b) 

2 1 
cc<co, 0: 5q: sl 

E2 (1+ h 
X0 x<co, 0: 59: stj 

L b 
3 l i (4.3.18c) 

05x< 
, 

-q: 5q 
2- L 

E 
20 (1 +h 
y 

0: 51c<co, 
ilwstl 
2 L b 1 1 

(4.3.18d) 
1 25x<co, 0: 5q: 5ýý 
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c =c +c +c +c 
01234 

b =b +b +b +b 

1 
(4.3.19) 

Although boundary condition (4.2.17) applies as X-)w for 

computational purposes we have to apply this condition at a finite, 

but large, value of X, say X=X 
R. 

In order to choose XR as small as 

possible we look for an asymptotic solution of equations (4.2.15) 

and (4.2.16) which is valid at large values of X. We assume, as is 

common in this type of flow, that 

41 (S) 
= e-aXf (Y) (4.3.20) 

where (x (>O) is an unknown constant and f(Y) is unknown function of 

Y. On substituting of expression (4.3.20) into the equations 

(4.2.15) and (4.2.16) we find that if the boundary condition 

(4.2.18) is satisfied then 

nTrX 
co L. nnY dne sin-, T for large X (4.3.21) 

n=1 

where d are unknown constants. Taking the leading-order in the 
n 

expression (4.3.21) we obtain the following condition 

Tr 
on 0 .5Y .5L, as X (4.3.22) 

ax L 

and this is in a much more convenient form of boundary condition 

than condition (4.3.21) to be applied at X=X 
R. 

For the boundary 

condition on the vorticity on the surface of the cascade we use the 

scheme which was derived by Woods (1954), as given in (2.2.14) in 

which UB is the steady streaming velocity of the fluid at the point 

B and is given by expression (4.2.14). 

The cascade has sharp corners. Therefore the potential flow is 
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singular at these points and hence the boundary condition (4.2.14) 

needs further discussion. In this chapter we use the method derived 

by Kim and Troesch (1989) to deal with this problem. They found that 

the flow around the corner is composed of three regions, namely at 

the corner the locally valid Stokes region, I, next to this is the 

unsteady boundary-layer, II, and outside is the potential flow 

region, III. For small values of the distance from the corner, r, 

the tangential velocity, u, will behave as u-r0.54448 in region I 

and u -r-1/2 in region III. In the intermediate boundary-layer 
P 

region, II, the two velocities have to be matched. The maximum 

potential velocity in region II occurs at a point which is at a 

distance 6 from the corner of the body and the choice of the value 

of 6 is that as described by Kim and Troesch (1989). 

In the case of a harmonically oscillating cascade of normal 

flat plates the analysis follows in a manner very similar to that 

described above for the cascade of square cylinders. For this case 

we use the following co-ordinate transformation, 

ln(l+D X) 0 :5X<w, 0 :5YL (4.3.23) 
x 

ln(l+D (Y-0.5)) + 0.5 0 :5X<YL (4.3.24) 

Y0 :5X<0Y1 (4.3.25) 

Again D and D are taken to be constants and determined from 
xy 

equation (4.3.5). The governing equations (4.2.15) and (4.2.16) now 

become: 

In the region 0: 5oc<co, 0. Ssýq 
L 
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(a: ) 2 (a 2 
&) (s) a (s) 

+E 
(tj )2a2w (S) 

EWE(q)"ý(s)'o)(s)) ýax2 
-- 

) 

.. s 

(av 
2a (x,, v) 

(4.3.26) 

2 (s) 2 (s) (S) 
(cc E _)2(a 

p- aq, (S) 
+E (q) 2 (a q, ap (4.3.27) ý 

aX2 
( 

a, 12 - 

and in the region 0: 5a: <co, 0: 5ý0-5: 

E (X 2 (S) 
_)2 (a 2w (S) 

- aw(s) -1 1aw+EWa op (s 
0 (4.3.28) 

R 
(ax 2R 

aq 
29 (X-, q) 

ss 

E (a: ) 2 (a 2 
'P (S) 

- aq, (s) 
+a2 

41 (S) 
(4.3.29) [ 

aX2. aV2 

where E(x)=D exp(-x), E(tj)=D exp(-tj+0.5). 

Equations (4.3.26)-(4.3.29) are put into finite-difference form 

using a specialised scheme which retains O(h 2) 
accuracy but makes 

the associated matrix to the finite-difference equations diagonally 

dominant. The infinity boundary condition (4.3.22) is again applied 

at X=X 
R and the determination of the vorticity on the plates of the 

cascade are given by equation (2.2.14). 

The f low structure near the corner of the plate is again 

assumed to be composed of the three regions, the locally valid 

Stokes region I, the unsteady boundary-layer II and the potential 

region III. In region I u-O(r 1/2 ) whilst in region III u-r-1/2 and 
P 

these two velocities are matched to region II using the method as 

described by Kim and Troesch (1989). 

4.4 Results and Discussion 

Numerical results have been obtained for values of the 

streaming Reynolds number RS =1,1.4,5,10,20,30,40,50,60 and 
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70 with mesh sizes h=1/20,1/40 and 1/60. All the results presented 

in this chapter are the h2-extrapolation of these results. For small 

values of the streaming Reynolds number the results obtained with 

the coarsest grid gives reasonably accurate results but as the 

Reynolds numbers increase then a finer mesh sizes is required. 

However, even at R =70 the results obtained using h=1/60 and the 
S 

h2 -extrapolated results are almost graphically indistinguishable. In 

order to illustrate the numerical method we present results only for 

L=1 although calculations have been performed over a wide range of 

values of L and all the results show the same general flow 

characteristics. Further, the experimental investigations that have 

been performed have also been restricted to L=1. Several values of 

XR have been tried. It is found that as the streaming Reynolds 

number increases then the strength of the recirculating eddies that 

are formed increases both in magnitude and in physical size and 

therefore XR must be increased as R increases. It has been found 

that for R : 530 a value of XR =10 Is sufficiently large but for R =70 

a value of XR =15 is necessary. Computations were performed over a 

wide range of values of XR and the results shown in this chapter are 

graphically indistinguishable if XR is taken any larger than the 

values used in the figures presented. 

4.4.1 The Cascade of Square Cylinders 

The numerical results were first obtained for a cascade of 

square cylinders with L=1 and RS =1.4 with h=1/20 and XR =5. Using a 

point by point successive relaxation procedure with the relaxation 

parameter being 1.2 for the vorticity everywhere, except on the 
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boundary, 0.2 for the vorticity on the boundary and 1.2 for the 

streamfunction a converged solution was obtained In about 30 CPU 

seconds on an Amdhal-5860 computer at Leeds University. In order to 

find a first approximation to the solution with h=1/30 the results 

obtained using h=1/20 were extrapolated to the new mesh system and 

again an S. O. R. technique was used to obtain a convergent solution. 

The same process was used to obtain the solution for h=1/40. Using 

the solutions obtained with R =1.4 as a first guess the solutions 
S 

with R =5 were obtained using S. O. R. and with h=1/20,1/30 and 1/40. 

This whole process was continued until results were obtained for 

values of R up to 70. Then the value of XR was increased for each 

value of h and R until any further increase in XR resulted in only 

negligible changes in the solutions obtained. The smallest value of 

the relaxation factors used was when R =70 and h=1/60 and in this 
S 

case the relaxation factor on the vorticity was 1.1 at all points 

other than on the boundary, 0.1 for points on the boundary and 1.1 

for the streamfunction. The whole process was repeated for the 

cascade of normal flat plates, see section 4.4.2. 

Fig. 4.4 shows the outer streaming streamlines for RI =1.4,10, 
S 

30,50 and 70 for the harmonically oscillating cascade of square 

bars with L=1 and c<<1. It is observed that there are eight 

recirculating flows associated with each square bar of the cascade. 

The flow goes out along IXI> 1 
and JYJ> 1 

and towards each corner of 

the square and the flow never goes round the corners of the square. 

This phenomena has also been observed by Kim and Troesch (1989) who 

investigated the harmonic oscillation of a single square bar. As the 

value of R increases then the centre of each of the recirculating 
S 
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(a) 

f2 

(b) 

12 

(c) 

U 

(d) 

12 

(e) 

Fig. 4.4 The outer streaming streamlines for the cascade 

of square cylinders obtained numerically for different 

values of the streaming Reynolds number R The 

streamlines labelled 1-23 correspond to 4( 1.5, -1.3, 

-1.1, -0.9, -0.7, -0.5, -0.3, -0.1, -0.01, -0.001, 

-0.0001,0,0.0001,0.001,0.01,0.1,0.3,0.5,0.7,0.9, 
1.1,1.3 and 1.5, respectively. (a) R=1.4, (b) R=10, 

(c) R =30, (d) R =50, (e) R =70. 
SSS 

12 

f2 

12 
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regions in increases its 1XI-component but the Y-component Ix 

remains very close to IY1 --2 Also the strength of these 

recirculating regions increase as the streaming Reynolds number 

increases and this is not surprising since increasing R, for a 
S 

given cascade and fluid, implies increasing the amplitude of the 

oscillatory motion of the cascade and hence increasing the amount of 

energy being put Into the system. 

4.4.2 The Cascade of Normal Flat Plates 

Results for the outer streaming flow for RS =1,10,30,50 and 

70 for the harmonically oscillating cascade of normal flat plates 

with L=1 and c<<1 is given in Fig. 4.5. Unlike the situation of the 

cascade of square bars there are only four recirculating flows 

associated with each plate much the same as is observed when a 

circular cylinder performs harmonic oscillatory motion. Again, as 

expected, as the streaming Reynolds number increases so does the 

strength of the recirculating region and the centres of the 

recirculating regions have a large X component. 

4.5 Conclusion 

Flows induced by the small-amPlitude and high frequency 

harmonic oscillations of a cascade of bodies in an unbounded fluid 

which is otherwise at rest have been Investigated theoretically. In 

this theoretical study we separate the flow into inner and outer 

regions with the inner flow being governed by the Stokes 

boundary-layer equation. The first-order outer flow is governed by 

the potential solution which is found by using both a conformal 
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(d) 
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Fig. 4.5 The outer streaming streamlines for the cascade 

of normal flat plates obtained numerically for different 

values of the streaming Reynolds number R The 
S 

streamlines labelled 1-19 correspond to IP 
(S) 

= -1.5, -1.2, 
-6 10 

-0.9, -0.6, -0.3, -0.03, -0.0003, -0.3xlO 0.3xlO 

- 10 -6 0,0.3xlO , 0.3x1O , 0.0003,0.03,0.3,0.6,0.9,1.2 

and 1.5, respectively. (a) R=1, (b) R=10, (c) R=30, 
SS 

(d) R =50, (e) R =70. 
SS 

to 

fo 

to 

fo 
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mapping technique and a finite-difference method. The second-order 

outer streaming flow (O(c)) is governed by the full Navier-Stokes 

equations and which has been solved using a modified 

central -d if f erence scheme for cascades with square cylinders and 

flat plates for values of the streaming Reynolds number, R., up to 

70. The structure of the outer streaming flow is complicated but it 

is quite similar to those observed when there is only one 

oscillating cylinder, see for example the results obtained by Kim 

and Troesch (1989) for an oscillating single square cylinder. 
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CHAPTER 5 STREAMING FLOWS INDUCED BY AN OSCILLATING CASCADE OF 

CYLINDERS 

5.1 Introduction 

Similar to those investigated in chapter 4, in this chapter we 

numerically investigate the flow induced by a cascade of circular 

cylinders which performs harmonic oscillations with very small 

amplitude (c<<1) and have a large frequency (i. e. R 2: 0(1)) in an 
S 

unbounded, incompressible fluid which is otherwise at rest. 

Consistent with the early theories, the leading-order unsteady outer 

flow is given by the unsteady velocity potential and this flow is 

determined using a conformal mapping technique. It is assumed, as 

Kim and Troesch (1989) did when investigating the harmonic 

oscillations of a single square cylinder, that the flow does not 

separate. Given the tangential velocity next to the body then these 

inner boundary-layer equations may be solved. The 0(c) outer flow 

may be determined and this consists of an unsteady component and a 

steady streaming flow. In this chapter we use a finite-difference 

scheme, which is similar to that used in chapter 4, to solve for the 

steady streaming flow and different kinds of boundary conditions are 

employed to see their influence on the solution. It is observed that 

when the streaming Reynolds number is small then the outer streaming 

flow around each cylinder of the cascade is similar to that in the 

case of one oscillating circular cylinder whilst different 
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phenomena are observed when this Reynolds number is increased. As 

the Reynolds number increases then the symmetry of the streaming 

flow breaks down, i. e. a bifurcation occurs at a critical value of 

RR say, and we have shown, numerically, that 8<R <9. It is 
so so 

well known that this kind of break-down of symmetry may be due to 

the instability of the flow at high values of the Reynolds number 

(see for example Fearn et a]. (1990)). In order to investigate why 

the break-down occurs at small values of Ra stability analysis of 

the streaming cascade flow is presented. The numerical results 

compare well with some related experimental data. At small values of 

the streaming Reynolds number the steady streaming flow is 

symmetrical whilst at large values of R the flow becomes 

asymmetrical and the experimental results compare well with the 

present numerical calculations. Finally, the experimental results of 

the streaming flow induced by oscillating cascade of square and 

rectangular cylinders are also discussed. 

5.2 Governing Equations and Boundary Conditions 

Mathematically the fluid flow induced by the harmonic 

oscillation of an infinite cascade of circular cylinders has been 

investigated. This cascade of circular cylinder is as described in 

chapter 1 (see Fig. 1.7) and oscillates harmonically and 

perpendicular to the plane of the cascade in an unbounded, 

incompressible fluid which is otherwise at rest. The displacement of 

the cascade is in the x -direction and is given by equation 0.1.1). 

The governing non-dimensional equations for the 0(c) outer streaming 

flow, with the co-ordinate system fixed in the cascade and in terms 

of the streamfunction and vorticity, are equations (4.2.15) and 
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(4.2.16), namely, 

(S) (S) 
a (w , 41 1V2 

to 
(S) 

(5.2.1) 
a (X, Y) R 

V2 41 -W (5.2.2) 

Equations (5.2.1) and (5.2.2) must be solved subject to the 

following boundary conditions 

aqf (S) 3 du 
p us= --- 

I 

X2 2=0.52 = -- u- (5.2.3) in 
+ (Y±2kfl 4p ds 

vp 
(S) (X, y: X2+ (Y±2kX) 2=0.52 )=0 (5.2.4) 

a q, (S) 
)0, L)(S) )0, ay 

for all values of Y as X--+O (5.2.5) 

where k is an integer, s and n are the variablesalong and normal to 

the surf ace of the body, uS is the tangential velocity along the 

surf ace of the body and u is the potential tangential velocity 
P 

along the surface of the body due to the cascade of the circular 

cylinders, see Riley (1967). 

Mathematically one would expect the flow to have several 

symmetries and hence a numerical solution should only be sought in 

the region 0 :5X< +C0 ,0 :sY :5L, see Fig. 5.1a. However, 

experimentally we observe that above a critical value of the 

Reynolds number the fluid flow breaks these symmetries and hence 

numerical results have been obtained in solution domains which 

invoke other symmetries and we will return to these flows in section 

5.4. 

In order to solve the problem described by equations 
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(5.2.1)-(5.2.5) we first transform the solution domain of the 

problem in the M Y) plane onto a simple domain in a new 

computational plane and then determine u 
P 

5.3 Grid Generation and Potential Velocity u 
P 

Due to the complexity of the physical domain of the problem, we 

transform it onto a simpler one. In general one can use the 

following transformation (see Thompson et al. (1974)) 

v2x= P (x, y) (5.3.1) 

vy= Q (x, y) (5.3.2) 

to transform the domain 0P in the (X, Y) plane onto domain 0P in the 

new (x, y) plane (where the functions P and Q are arbitrary 

functions which can be used to control the density of the grid 

lines). The problem is that, In general, transformations (5.3.1) and 

(5.3.2) are not conformal so some substantial changes will be 

introduced into the governing equations and the potential surface 

velocity may be difficult to obtain. However, if we take P=Q=O then 

equations (5.3.1) and (5.3.2) reduce to 

vx= 

2 vy 

(5.3.3) 

(5.3.4) 

and, subject to some appropriate boundary conditions, equations 

(5.3.3) and (5.3.4) may become a conformal transformation and the 

velocity u on the surface of the body may be obtained. 
P 

Clearly the physical domain of the problem described by 

equations (5.2.1)-(5.2.5) is infinite in both the X- and 
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Y-directions. Because the solution domain is periodic in the 

Y-direction we would expect to have to solve the problem in the 

domain as shown in Fig. 5.1a, as explained earlier. Thus the 

equations (5.3.3) and (5.3.4) have to be solved subject to the 

following boundary conditions: 

ax =O, when X2+y 
2= 

0.5 
2 

ä-n 

0.5. --5 X< +co, Y=0; 0: 5 X< +co, Y=L (5.3. Sa) 

ax 
=1, when X= +oo, 0 :5Y :5L (5.3.5b) 

an 

X=O, when X=0,0.5 :5Y :5L (5.3.5c) 

Y=O, when X2+ y 2= 
0.5 2; 0.5: 5 X< +co, Y=0 (5.3.6a) 

Y=Y, when X +m, 0 :5Y :5L (5.3.6b) 

y=L, when 0 X< +m, Y=L (5.3.6c) 

ay 
=0, - - when X= 0, 0.5 :5Y .5L (5.3.6d) 5 n 

where L=Y/d. Equations (5.3.3)-(5.3.6) now define a conformal 

transformation from the (X, Y)-plane to the (x, y)-plane. The 

governing equations (5.2.1) and (5.2.2) become 

(S) (S) a(W ,T1V2W 
(S) (5.3.7) 

a(x, Y) R 
S 

v2 ýp 
(s) 

= -w 
(s) P (x, (5.3.8) 

where J(x, y) is the inverse Jacoblan of the transformation. 

We now solve equations (5.3.3)-(5.3.6) to obtain x, y, 
Lx 

and an 
ay 

on aQ and u on the surf ace of the body using the Boundary Tn PP 
Element Method (BEM). The corresponding Inverse problem is solved in 



135 - 

the (x, y) plane to obtain X(x, y) and Y(x, y) and hence J(x, y) 

(=-II(J(X, Y)). In this way we can obtain the value of J(X, Y) at any 

given point (x, y). 

5.3.1 The Boundary Element Method 

The basis of the BEM Is Green's integral formula. For any 

sufficiently smooth function u which satisfies the Laplace equation 

in OER 2 
with a piecewise smooth boundary ao, we may write 

aG (p, q) au( 
-q(p)u(p) u(q)z-ýq EL2)G(p, q)dq (5.3.9) 

892 q 
92 

anq 

where P=(Plp P2 )EQ, q= (q 
19q2 

WO, G(p, q)=lnlp-ql is the 

fundamental solution of the Laplace equation, nq is the outward 

normal to ag at q and 

21r when pEQ 

7)(p) when pao, 0 is the angle between the (5.3.10) 
0 

tangents to aQ on either sides of p. 

Taking the prime U) to denote the derivative in the direction 

of the outward normal and the boundary values of u(p) to be O(p), 

then for any p, qEao we have 

fo (q)ln'lp-qldq - 
fol (q)lnlp-qldq = 71(p)o(p) (5.3.11) 

X2 ao 

If we now know either O(p) or 0' (p) on aQ, we can obtain the unknown 

function by using equation (5.3.11). We may then substitute both 

these values into equation (5.3.9) in order to obtain the solution 

of the Laplace equation in 92. 

In order to obtain the numerical solution of the Laplace 
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equation from the integral equations (5.3.9) and (5.3.11) then the 

linear BEM is used. This is achieved by first subdividing the 

boundary aQ into N segments aQ 
iI 

j=1,2,..., N. On each segment 0 and 

0' are approximated by a linear function, i. e. on each segment M10 

we use 

0= (1-00(p 
i)+ 

<0 (p 
J+l 

) (5.3.12) 

0'= (1-00' (P 
i)+ 

ýO, 

to represent 0 and 0' in the jth segment [p 
19 Pj+l I on aQ 

i. where C 

is a linear function which increases from zero at pi to unity at 

p J+I . 
Substituting (5.3.12) and (5.3.13) into equations (5.3.9) and 

(5.3.11) gives 

NN 

E* G, 
jo 

0 oj Z i=l, 2,..., N (5.3.14) 
J=l J=l 

where 01 and 01 denote q5(p i) and O'(p 
i 

), respectively, and 

E*J+I-ý)ln' lpl-qldq+ In'lp -qldq -n 6 
i 

fý 
II Ij 

ao ao i J-1 
j=2,..., N (5.3.15) 

G 
J=f 

(1-C)Inlp, -qldq + ýlnjp -qldq j= 2,..., N (5.3.16) f 

ao aQ J-1 

E*l= f (1-C) ln' IP -q I dq + <ln'lp -qldq -n a (5.3.17) 
11f 

k ao 

f (1-ý)Injp -qldq + ýInIp, -qjdq 
f 

an ap N 

(5.3.18) 

If the segment aQ 
i 

is a straight line, then the integrals 
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occurring in equations (5.3.15)-(5.3.18) may be written as 

f In'lp-qldq =I it 
f lnlp-qldq =J (5.3.19) 

ao ao 

f 
ýln'lp-qjdq =h1 (h 

a 
cosp II +1 

2 
(5.3.20) 

aQ ab 

1 
<lnlp-qldq = ii 

1- (h 
. 

cosß J1 +j 
2) 

(5.3.21) 

ab 

where, see Manzoor (1984), 

I, = x, j1=ha cosß (lnh, -lnh b 
)+ h 

ab 
(Inh 

b- 
1)+ ha ysinß 

I=h sin[3(Inh - Inh )J= (h 2 Inh -h21 nh ) /2 - (h 2 
-h 

2)/4 
2aba2bbaaba 

and if p 
aj 

and p 
bj 

denote the endpoints of an 
i 

then ha, hb and h 
ab 

are the lengths of the straight lines pp 
aj I pp 

bj 
and p 

ajpbj' 

respectively. Further f3 and 7 are the angles p bj Pai p and pai Ppbj' 

respectively, see Fig. 5.2. 

P 

Pbj 

Pad 

Fig. S. 2 The notation for the analytic evalution of 

integrals on straight-line segment geometry. 
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5.3.2 The Direct Problem 

It is noted that equations (5.3.3) and (5.3.4) are actually two 

Laplace equations and only one of them has to be solved and the 

solution of the other equation may then be obtained by using the 

Cauchy-Riemann equations. Here we solve equation (5.3.4) subject to 

the boundary conditions (5.3.6) and at the same time obtain the 

tangential velocity on the cylinder due to the potential flow 

induced by the motion of the cascade. 

For viable computation we must limit the length of the 

computational region (say 0 :Sx :5xR) without introducing 

significant errors into the results obtained numerically in this 

region. So the finite value X=XR at which boundary condition 

(5.3.6b) (also (5.2.5)) must be applied should be very large. 

Given the value XR and the mesh size h, the boundary ao is 

divided into N segments: N=N 
I 
+N 

2 
+N 

3 
+N 

4 
+N 

5' 
with NI =int((u/4)/N 3), 

N int((X 5)/h), N int(L/h), N int(XR/h) and N, =int((L-0.5)/h) 
2R34 -0. 

being the number of segments on AB, BC, CD, DE and EA (see 

Fig. S. 1a), respectively, then the counterpart of the algebraic 

system (5.3.14) which corresponds to the problem (5.3.4) and (5-3.6) 

may be written as 

N 
EEZ BM i=l, 2,..., N (5.3.22) 

J=l 

N 

where BM= Gz fZ )N= yyy If 

J=1 
Ij ij1 

fy 

I N-N 
5, 

N-N 
5 

+1 N 

j2 IN= fy I Nu(y, IN and all of the elements of E and 0 are known. The 
1111jI 

system of equations (5.3.22) can now be solved by the standard 

Gaussian-elimination method. 
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The values of xi and xi on ag 
p can now be calculated by using 

the Cauchy-Riemann equations 

i9x - 
Dy ax 

= -ay (5.3.23) ä -y- -ä -x- ä-x ä-y- 

5.3.3 Tangential Velocity on the Surface of the Body 

If the solution y represents the potential flow due to the 

cascade then u can be obtained from 
p 

u -C, 
y 

p an 
(5.3.24) 

The problem now is to find an appropriate value of XR such that the 

BEM gives a solution of (5.3.4) and (5.3.6) to a high degree of 

accuracy. In all the calculations presented in this chapter it is 

found that XR= 15 is sufficiently large since any further increase 

in this value only results in changes in the value of u of less 
p 

than one percent. 

S. 3.4 The Inverse Boundary Element Problem 

On knowing all the values of x, x', y and y' we can now use 

them to calculate the corresponding values of X, X', Y and Y' on aQ 
P, 

in the (x, y) plane and then calculate X=X(x, y) and Y=Y(x, Y) in 

the domain as shown in Fig. 5.1b using the Green's integral formula. 

Hence J(X, Y)= 11J(x, y) may be obtained and X(x, y) and Y(x, y) 

satisfy the Laplace equations 

v2 X= 0 (5.3.25) 

v2 Y= 0 (5.3.26) 

Knowing the values of X, X, Y and Y' on ao 
p, 

the solutions of the 



- 140 - 

equations (5.3.25) and (5.3.26) may be obtained by using the Green's 

integral formulae: 

-q (p) x (p) = 
IX (Q)ln"IP-QldQ -1 X'(Q)InlP-QldQ (5.3.27) 

80 an 
pp 

(P) y (P) = 
fy (Q)ln'IP-QldQ -f Y"(Q)lnlP-QldQ (5.3.28) 

ao aQ pp 
where P= (P 

IIP2 
)EQ 

P 
Q= (QI 

IQ2 
)Eau 

P 
G(P, Q)=lnlP-Ql is the 

fundamental solution of Laplace equation, nQ is the outwards normal 

to ao at Q and 

21r when PEf2 
p 

(P) when PEap 
p. 

e is the angle between the (5.3.29) 

tangents to ap p 
on either sides of P. 

On knowing X=X(x, y) and Y=Y(x, y) the Jacobian of the 

transformations (5.3.3) and (5.3.4) can be obtained by numerical 

means at any required point (x, y)e E2 
P 

5.4 Numerical Procedure 

5.4.1 Boundary Conditions 

Apart from the boundary conditions (5.2.3) and (5.2.4) we 

require to determine the vorticity on the surface of the body, i. e. 

for lxl: sx 
b, 

y=O+ in the (x, y) plane, see Fig. 5.1b. Using the Taylor 

expansion method at a boundary point B then for the first internal 

point frOM B, say i, it can be shown that: 

61p (s)- 6%P 
(s)- 

6h u 
(a y) 

-h2 J(X 
9y 

)w (s) 

(s) 
=B1y 

s/ (A) 
ByBBI 

Bh2 [hy (0 J (X, Y). ) 
+ 2J ay 

B 

(XB' YB)] 
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It should be noted that expression (5.4.1) can not be used at 

the points (X 
13 0YB )=(0.5,1) and (-0.5,1) due to the singularity of 

the transformation (5.3.4)-(5.3.6). However, bearing in mind that 

both the streamfunction and the vorticity are not singular at these 

points, then the values of the vorticity at these points may be 

obtained using an (r, 0) co-ordinate system. Thus at 

(rBGB)= (0.5,0) and (0.5, TO, which correspond to 

(X 
BYB 

)=(O. S, 1) and (-0.5,1) in the (X, Y)-plane, respectively, 

the vorticity is given by 

6r 2 
(1 

(S) 6r 2 (1+k)w (S) 

61P (S) 
- 6T (S) 

+25r(3-38r+46r 2 )u + il I 
(S) BI. k(k+l) k (5.4.1a) 
B 6r 2 (3+26r- 2+k 

1 

where n is the second internal point from the boundary point B, 

0B )=(0.5,0) or (0.5, TO), (3r=r 
I- 

rB and k= (r 
ii- 

rB )/6r. 

Due to the symmetry of the problem, in addition to the boundary 

conditions (5.2.3)-(5.2.5) and (5.4.1) the following symmetrical 

boundary conditions are applied: 

DMO: Mathematically we can enforce a set of symmetrical boundary 

conditions about both X=O and Y=O and then take the solution 

domain as shown in Fig. 5.1a due to the symmetry of the physical 

domain, i. e. 

when X2: 0.5, Y=O, 
q, 0 

and when O: SX: SX , Y=L 
(5.4.2a) 

T (S) 
=0 when X=O, 0.5: 5Y: sL (5.4.2b) 

However, the physical solution of the problem may not be 

symmetrical for large values of R Indeed, as will be shown in the 
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experimental results (see section 5.7), the streaming flow is 

symmetrical when the streaming Reynolds number R is small and 
S 

asymmetrical when RS is large. This break-down in symmetry of the 

flow is similar to that observed in the two-dimensional sudden 

expansion channel f low which becomes asymmetrical at about R =40, 
e 

see Fearn et al. (1990). In order to predict the experimentally 

observed solutions then the boundary condition (5.4.2) must be 

relaxed. Therefore some further different asymmetrical boundary 

conditions for the possible solution domains as shown in Fig. 5.1 

have been considered, namely: 

DM1: We relax the symmetrical boundary conditions about Y=O and 

solve the problem in the solution domain DM1 (see Fig. 5.1c) subject 

to the following boundary conditions: 

41 1 
Y=L 

I 
Y=-L when 0 -S X .5X (5.4.3a) 

(s) (s) IY=L 1 
Y=-L 

(s) 
-T 

(s) 
ax 

1 
(0, Y) ax 

1 
(0, -Y) 

aw (s) 
-aw 

(s) 

ax 
1 

(0, Y) ax 
1 
(0, -Y) 

when 0 :sX --s X (5.4.3b) 

when 0.5 :5Y :5L (5.4.3c) 

when 0.5 :5Y :5L (5.4.3d) 

The vorticity on O: sx<x 
b and y=O+ is given by expression (5.4.1) 

whilst on 0: 5x<x 
b and y=O-, see Fig. 5.1d, the vorticity is given by 

(S) (S) 2 (S) 

W 
(S) 

= 

64F 
B- 

6T 
1+ 

6h 
Yu 

Y) 

B-hY 
J(X 

B, 
YB )w 

I 
(5.4.3e) 

Bh2 [h 

y(aJ(X, 
Y)) 

+ 2J (XB' Y) 
Y ý- 8Y 

BB] 

DM2: We now relax the symmetry conditions about X=O and Y=O and 

therefore we have to solve the governing equations (5.2.1) and 
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(S. 2.2) in the solution domain as shown in Fig. 5.1e. Hence the 

boundary conditions (5.4.3a) and (5.4.3b) must be supplemented by 

the boundary conditions 

T -) I 
Y= when X :5X :5X (5.4.4a) I 

Y=L 'p 
-L LR 

(S) I 
Y=L w 

(S) I 
Y=-L when XL :5X :5XR (5.4.4b) 

The boundary condition for the vorticity on the surface of the 

body, i. e. on -x b 
<X<X 

b and y=O+ in the (x, y) plane, see Fig. S. 1f, 

is given by expression (5.4.1) whilst on -x b 
<X<X 

b and y=O- the 

vorticity is given by expression (5.4.3e). 

DM3: In this case we assume, again, that the flow is periodic in the 

y-direction but with the period of symmetry being four times that of 

the fundamental solution. Hence we solve the governing equation 

(5.2.1) and (5.2.2) in the region described by Fig. 5.1g. Hence the 

boundary conditions (5.4.2) have to be supplemented by the following 

boundary conditions 

41 = 'p when 0 :5X :5X (5.4.5a) 
Y=3L Y=-L R 

W 
(S) I = W 

(S) I when 0 :: 5 X :5X (5.4.5b) 
Y=3L Y=-L R 

ail(s) (S) when -L--Y: 5-0.5 l 1 
(5.4.5c) 

ax (0, Y) ax (0,2L-Y) or 0. 5: sY: sL 

aw (S) aw (S) when -L--Y: 5-0.5 l 1 
(5.4.5d) 

ax (0, Y) ax (0,2L-Y) or 0. 5: sY: sL 

The boundary conditions for the vorticity on the surface of the 

bodies, i. e. on O: sx<x 
b and y=O+, y=2L+ are given by expression 

(5.4.1) whilst on 0: 5x<x 
b and y=O-, y=2L-, see Fig. 5.1h, the 

vorticity is given by (5.4.3e). 
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DM4: In DMI we have used antisymmetrical boundary conditions about 

X=O and periodic boundary conditions on Y=-L and Y=L. In this 

section we apply the following boundary conditions to the solution 

domain DM1, see Fig. 5.1c: 

lp 
(s) I = 'ý 

(s)I 
when 0 .5 X ý5 X (5.4.6a) 

Y=L Y=-L R 

ca 
(S) I = w 

(S) I when 0 :: s X :5X (5.4.6b) 
Y=L Y=-L R 

when -L :: s Y :5 -0.5, 
if (S) I 

= -T 
(. ) I 

(5.4.6c) 

(X, Y) (-X, Y) 0.5 :5 Y :5 L 

when -L :s Y :5 -0.5, 
W 

(S) I 
= -(j 

(S) I (5.4.6d) 
(X, Y) (-X, Y) 0.5 :5 Y :s L 

and the boundary conditions for the vorticity on the surface of the 

cylinder are those used in DMI and are given by expressions (5.4.1) 

and (5.4.3e). 

Other less severe symmetries can be considered but this will 

increase the size of the computational domain and hence the 

computational time. Hence such flows have not been investigated. 

If the solution at a given value of R is symmetrical about X=O 

then the solution obtained by solving in domain DM1 will be the same 

as that obtained when using domain DM4. 

5.4.2 Numerical Procedure 

The numerical procedure used in this chapter is as follows: 

(a) Take XR =15 and obtain u (see section 5.3.3), 

(b) Solve equations (5.3.3) and (5.3.4) subject to the boundary 

conditions (5.3.5)-(5.3.6) on LM and then solve the 
P 

inverse problem (5.3.25) and (5.3.26) on ao 
P 

by using the 

BEM (see sections 5.3.1-5.3.4), 
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(c) Use Green's integral formula to calculate X=X(x, y) and 

Y=Y(x, y) and then obtain J(X, Y) in the (x, y) plane, and 

(d) Solve the equations (5.3.7) and (5.3.8) according to the 

numerical scheme as follows: 

Following Ingham and Yan (1989), in order to reduce the number 

of grid points in the x-direction and at the same time maintaining 

the number of grid points near x=O (i. e. near the cylinder) we 

introduce the following transformation, 

x when IxI: sx 
b 

xxb+ In[l +Ad (x -xb )I when x>x 
b 

(S. 4.7a) 

I -x b- 
Infl +A (x 

b- X) I when x<-x 

4 :.,: (S. 4.7b) 

where xb is the x component of the image of B (see Fig. 5.1) in the 

(x, y) plane and Ad is a constant such that the mesh sizes in the 

x-direction on both sides of x=x b are the same for a given mesh size 

in the x-direction of the (x, V) plane. 

The governing equations (5.3.7) and (5.3.8) now become: 

When 1, zl>x 
b 

(s) (s) 

EE 
(x) aw 

ff äx 
s 

=1 
[E 2 (x) a2w (s) 

+a2w 
(s) ] 

(5.4.8) 
22 

ce aq 

E2 (x) 
ra 2 

'P 
(s) 

Z 
a, 2 (s) 

1a2 
qf (s) 

-w 
(s) P (x (£c) i) (5.4.9) 

ýx2 
-- 

1 

ay 2 

When IxI -x 

6 (w (s) 
, %p 

(s) )ý, ra 2w (s) 

+a2w 
(s) 

(5.4.10) 
a (X, q) F2 

sx -t 

1 
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a2q, a2 q/ 

aa: 2 
aV2 

where xUd is the inverse function of (5-4.7a) and 

E (cc) = exp (- (a: -x b)) 
(5.4.12) 

or EW = exp(a: +x b) 
(5.4.13) 

depending on whether a: >x 
b or x<-x b, respectively, and the upper sign 

in the equations (5.4.8) and (5.4.9) occurs when a: >x 
b whilst the 

lower sign occurs when a: <-x 
b. 

A modified central -dif f erence scheme (see Dennis and Hudson 

(1978)) which is similar to that used in chapter 2 is used to 

discretise equations (5.4.8) and (5.4.10). Taking h 
a: and h 

tj 
to be 

the mesh sizes in the a: - and q-directions, respectively, and using 

the subscripts 0,1,2,3 and 4 to denote typical grid points 

(ih t jh ), ((i+l)h ih s 
(j+l)h (ih M-1)h , jh 

x x 
(ih 

, 
(j-1)h respectively, then the finite-difference 

a: 

representation of the equations (5 . 4.8)-(5.4.11) can be written as 

cW 
(S) +c (') 

(S) +c CO 
(S) +CW (S) 

- cW 
(S) 

=0 (5.4.14) 
112 23344 00 

b IP (S) +bT 
(S) +b9, (S) +b4, (S) 

_b IP 
(S) 

+h2h2 to 
(S) /J(x(x )'q ) =0 112 23344 00x 'V 000 

(5.4.15) 

where 

hh2 
Eh2+ RU +xu £EI r0 jjý 

172 T[E, 
) -- 01 8 

[E 

0+Re; 0] 

2ý 

c2 
hh2 

h21- __2ýR U+ XR2U 1x1: 5x 
Ivý 2s08s 0) b 
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1hh2 
6c 

h21- --IR EV+ _I R2E 
2V2 ja: I>x 

2s00s00 

hh2 
2 

h21- --IR V+ --IR 
2V2 1 ic 1 

--x a: 
ý 

2s 

hh2 
Eh21±x 

[Eo 
±RU+x 

[E 
±R Uoi lxl>x 

0 tjf 2s 01 80sb 

3ý' hh2 
h21+ --ER U+ --ER 

2U2 Ix1: 5x 

lvf 2s08s Oj b 

hh2 
h21+ -IR EV+ _M R2E2V lxl>x 

a: 
ý 

2s008s0 
oý b 

hh2 
h2 1+ 

-AR V+ -AR 
2V0 

£C -! 5x 
il 2s08sb 

=c+c+c+c 
01234 

and 

h2E2 OT-h /2) 
b0X 

h2 
q 

h2E2 (1±hx/2) 
b tj 0 

h2 
IV 

=bh2 24 oc 

=b+b+b+b 
01234 

u0=(0V0= 

-( 
The matrices associated with the set of finite-difference equations 

(5.4.14) and (5.4.15) are diagonally dominant under all 

circumstances and therefore an over relaxation iterative scheme may 

be employed in order to reduce the number of Iterations required for 
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convergence. 

5.5 Numerical Results 

Calculations have been obtained for several values of the 

blockage ratio, d/22, from 0.25 to 0.75, which are 0(1) and they all 

show very similar trends. In order to be able to compare with the 

experimental data and the available steady state calculations of 

Ingham et al. (1990a) and the streaming flow calculations of Ingham 

and Yan (1991) we have concentrated in this chapter on producing 

detailed results only for L=1. It has been found that XR =10 is 

sufficiently large for R : 515 whilst XR =15 has to be used for R >15 

and XL =-X R 
has been taken when a solution is required in X<O. Mesh 

sizes h 
IV 

=1/20 and hx =x b 
/25 or h 

IV 
=1/40 and h 

a: =x b1/50 
have been used 

depending on the value of the streaming Reynolds number. In order to 

reduce the complexity of the computer program it is convenient to 

take the mesh size on both sides of the lines x=±x to have the same 
b 

magnitude and hence the constant Ad in expression (5.4.7) is 

determined according to 

hx= ln(l+A 
dhX) 

(5.5.1) 

For RS : 515 it is found that the results obtained with hx =xb. /25 and 

hq =1/20 are not significantly different from those obtained with 

h 
a: =Xb, 150 and hq =1/40. So the results shown here for RS : 515 have been 

obtained with the larger mesh whilst the results for R >15 have been 
S 

obtained using the finer mesh. It has been found that further 

decreasing the mesh size for R >15 results in graphically 
S 

indistinguishable solutions from those obtained with hx =x,, /50 and 

h =1/40. 
IV 
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5.5.1 Boundary Conditions - DMO 

Numerical results have been obtained for values of R up to 
S 

100. Fig. S. 3 shows the outer steady streamlines for R =0.636,10,35 
S 

and 70, respectively, using the solution domain and boundary 

condition described as DMO. The value of R=0.636 was chosen as 

experimental results have been obtained for this value of the 

Reynolds number, see section 5.7 (experimental data has also been 

obtained for values of R=2.54 and 8.9). It is found from Fig. 5.3 
S 

that there are 4 recirculating regions between each successive 

cylinders with the directions of the flow being along the direction 

of the oscillations away from each cylinder (i. e. along Y=2kL, where 

k is an integer) at a distance OM from the body and towards X=O 

along Y=(2k+l)L. The magnitudes of all the recirculations are very 

weak at large distances from the cascade and the general flow 

structure is very similar for all values of R. However, as the 
S 

value of R increases then the centres of these 4 recirculating 
S 

regions occur at increasing distances from the plane of the axes of 

the cylinders and the strengths of the recirculations Increase, see 

Figs. 5.3b, 5.3c and 5.3d. This is because more energy is being put 

into the system as the value of R increases. 
S 

Fig. 5.4 shows the variation of the minimum distance between the 

centre of each of the recirculating regions and the axis of the 

nearest cylinder, d, and the streaming Reynolds number, RS. It is 

observed that for R >25 then d Is almost directly proportional to 
sC 

R and we find that dz0.037R + 0.5. 
SCS 
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0.5 

0.0 

R 

Fig. S. 4 Distance between the centres of the 

recirculations and the axis of the cylinder. 

5.5.2 Boundary Conditions-DM1 

Numerical results for the outer streaming flow have been 

obtained for R =0.636,2.54,5,6,7,8,9,10,10.9,15,20, 
5 

60. Fig. 5.5 shows the streamlines of the outer streaming flow with 

R =0.636,2.54 and 10.9 and it is clear that at the smaller values 
S 

of R the streaming flow is almost symmetrical about both the axes 
S 

X=O and Y=O, and the values of streamfunction on Y=L and Y=-L for 

any value of X are very small. Further, the results at the smaller 

values of R are almost identical to those obtained by using the 
S 

0 20 40 60 80 100 
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Fig. 5.5 The streamlines for the outer streaming flow 

obtained by using DM1. (a) R =0.636, (b) R =2.54, 
SS 

(c) R =10.9. 

boundary conditions described in DMO. 

As the value of R increases the symmetry of the numerical 
S 

results begin to break down and the flow becomes asymmetrical. 

Instead of four recirculations of equal strength occurring between 

any two successive cylinders of the cascade, as there are at smaller 

values of R, two of the recirculations become stronger than the 
S 

0.0 

2 3 4 X 

-4 -3 -2 -1 Ö 
(b) 

-4 -3 -2 -1 01234X 
(c) 
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other two (see Fig. 5.5). As a result fluid flows in the Y-direction 

are generated at distances of just over 1 diameter from the 

cylinders, and the strength of this flow becomes stronger, at a 

given distance from the body, as the value of RS increases but 

decreases in strength as IXI increases. 

The results indicate that there exists a critical value of R 
S 

R 
so 

say, such that 8<R 
so 

<9 for which the flow is symmetrical about 

both the axes X=O and Y=O f or RS <R 
so 

and antisymmetrical for RS >R 
so 

(see Fig. 5.5). The induced velocity on Y=L in the Y-direction for 

R =10,15,20 and 25 as a function of X is shown in Fig. 5.6. It has 
S 

1.0 

0.5 

0.0 

-0.5 

-1.0 

-1.5 

Fig. 5.6 The vertical velocity at Y=1 as a function of X 

for R =15. S 
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been found that there exists a non-zero Y component of negative 

vertical velocity for all values of RS and this contrasts with the 

results obtained for RS <R 
so 

where the vertical velocity at Y=L is 

always zero. 

In order to measure the asymmetry of the flow we def ine the 

quantities (p and (r such that 
Uv 

a- 
2uI 

X=OdY 
(5.5.2) 

u 

and 

2= 
fR 

Ivi dX (5.5.3) 
Y=L m x 

L 

Physically, a- 
2 

represents the mass exchange across X=O in any 
u 

interval [2kL-L, 2kL+Ll (k=l, 2,.... ) and a- 
2 the mass exchange 
V 

across any line Y=(2k+l)L in the interval [X 
L0XR1. 

As XL and XR 

tends to -w and +co, respectively, a- 
2 becomes the total mass exchange 
V 

across Y=(2k+l)L. 

The variations of a- and T as a function of R as obtained 
UVS 

using the DM1 conditions are shown in Fig. 5.7 and Fig. 5.8, 

respectively. It is clear that both (P and (r are Identically zero 
UV 

when R <8 whilst they become non-zero when R >9, i. e. a bifurcation 
S S~ 

via the break-down of symmetry occurs when the streaming Reynolds 

number lies somewhere between 8 and 9. 

5.5.3 Boundary Conditions - DM2 

Again, numerical results for the outer streaming flow have been 

obtained for R =0.636,2.54,5,6,7,8,9,10,10.9,15,20, 
S 

60. Fig. 5.9 shows the streamlines for the outer streaming flow with 
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Fig. S. 9 The streamlines for the outer streaming flow 

obtained by using DM2. (a) R =0.636, (b) R =2.54, 
SS 

(c) R =10.9. 
S 

RS=0.636,2.54 and 10.9. It is again clear that the flow is almost 

symmetrical about both the axes X=O and Y=O at the smaller values of 

R but - the f low becomes more asymmetrical as the value of R 
SS 

increases. The critical value for the streaming Reynolds number R 

was found to lie somewhere between 8 and 9 as was the case for the 

boundary conditions DMI. 

Further the bifurcation diagrams according to the values of a- 
U 

and (p for the different values of R that we have investigated are 
VS 
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shown in Fig. 5.7 and Fig. 5.8, respectively. It is observed that both 

the values of a- and LT are almost zero when R <8 whilst both of 
UVS, 

them are non-zero when R >9, Le. the bifurcation via the break-down 
I- 

of symmetry about both the X- and Y-axes occurs at about the same 

value of R as they did for the boundary conditions DMI. 
S 

5.5.4 Boundary Conditions - DM3 

Numerical results have been obtained for R =0.636, 
S 

2.54,..., 10.9,..., 60 and it is found that all of the results 

obtained are similar to those obtained when using DMI and DM2. The 

critical value for R was, again, found to be between 8 and 9, and 
S 

no further period doubling solutions have been found for the values 

of R that we have investigated. 
S 

The values of quantities cr and a, as functions of R are 
UVS 

plotted in Fig. 5.7 and Fig. 5.8 and it Is observed the results show 

very similar tendency to those obtained using DM1 and DM2. In 

particular, both (r and a- are almost identical to those obtained 
Uv 

using the boundary conditions DMI. This Is not surprising since the 

solutions here are periodic in the Y-direction with a period of 21. 

and in this case the boundary conditions (5.4.3) are included in the 

boundary conditions (5.4.5) and therefore the solutions obtained 

here should be identical to those obtained when using the boundary 

conditions DMI. 

5.5.5 Boundary Conditions - DM4 

Numerical results have been obtained for R =0.636,2.54,5,6, 
S 

7,8,9,10,10.9,15,..., 55 and 60. It is found from these results 

that the streaming f low is symmetrical about both the axes X=O and 
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Y=O when R <8 and this is consistent with the numerical results 

obtained when using the solution domains DMO, DM1, DM2 and DM3 

subject to the corresponding boundary conditions. When Rs>9 the 

streaming flow is no longer symmetrical about the axis Y=O and two 

of the four recirculations around each cylinder become stronger than 

the other two. In order to show the flow structure In this case the 

streamlines are plotted for R =8,15 and 25 in Fig. 5.10 where a 
S 
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Fig. 5.10 The streamlines for the outer streaming flow 

obtained by using DM4. (a) R =8, (b) R =15, (c) R =25. SSS 
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clear tendency of how the f low structure changes with R can be 
S 

observed. 

The bifurcation diagrams according to the functions (r and a- 
UV 

as a function of R are plotted in Figs. 5.7 and 5. B. The values of 

a- are always zero as symmetrical boundary conditions have been used U 

on X=O and clearly the tendency of cr is similar to those obtained 
V 

when using the boundary conditions DM1, DM2 and DM3. 

It is obvious from Figs. 5.7 and 5.8 that unless symmetry is 

enforced by the use of the boundary conditions DMO then the 

streaming flow becomes asymmetrical either about X=O or Y=O when 

R >9. This suggests that a bifurcation has occurred via the 
S, 

break-down of symmetry. 

5.6 Stability of the Streaming Flow 

In order to understand the mechanism of the break-down in the 

symmetry of the flow we now study the stability of the streaming 

cascade flow. Stability and bifurcation of parallel flows have been 

of interest to researchers for a long time and much work has been 

reported, see for example Betchov and Criminale (1967), Sobey and 

Drazin (1986) and John (1984). If the main flow can be assumed to be 

parallel and the disturbance to the main flow is to be 

infinitesimally small then the linear stability analysis of the 

problem may be reduced to finding the solution of the well known 

Orr-Sommerfeld equation. Thomas (1953), Osborne (1967) and Gary and 

Helgason (1969) have solved the Orr-Sommerfeld equation for 

Poiseuille flow using several different numerical techniques. Sobey 

and Drazin (1986) used a stability analysis to study the 

two-dimensional sudden expansion symmetrical channel flow and showed 
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that symmetrical flow about the central line of the channel breaks 

down at a critical value of the Reynolds number, i. e. a bifurcation 

occurs. In order to test if this kind of break-down is due to the 

asymmetry of the sudden-expansion channel flows Fearn, et al. (1990) 

performed an experimental investigation for a slightly asymmetrical 

geometry and found that the break-down is in fact due to the flow 

rather than the imperfection in the symmetry of the channel. 

In this chapter we follow the analysis of John (1984) and 

assume that we have an undisturbed two-dimensional parallel flow 

and then introduce a linearised disturbance to the parallel flow. 

Then the streamfunction may be written in the form 

41 (S) (X, Y, t) =1P 
('-) (X, Y) +qj (s) (X, Y, t) =41 

(s) (X, Y) +0 (Y) ei 
(ocX-13t) (5.6.1) 

00 

where %P (S) is the main flow and 4, (S) is the disturbance component to 
01 

%P W. Here O(Y) determines the shape of T (S) in the cross-stream 

direction whilst a-=a +iOC 
I and 13-=13 

r 
+iP 

I 
determine the growth or decay 

of the disturbance in space and time, respectively. 

The simplified equation for the disturbance, i. e. the equation 

for the perturbation function 0, i. e. the eigenfunction, then 

satisfies the Orr-Sommerfeld equation (see for example Betchov and 

Criminale (1967)) 

2 
95 )_U�95 = _i 

IV_ 2,0"+«4 (u-c)(0'*'- a zuz (95 2« . 95) (5.6.2) 

where the derivatives are with respect to Y and c=-13/(x. This equation 

may now be solved numerically for both the eigenvalue c (or a. ) and 

the eigenfunction q5 if a (or 13) is specified and the appropriate 

boundary conditions for 0 specified. For temporal instability one 

needs to solve for c for a specified real value of a and for spatial 



- 161 - 

stability one needs to solve for a provided a real value of c (or 13) 

is given. 

Using a central -difference scheme, equation (5.6.2) along with 

the appropriate boundary conditions may be approximated by the 

solution of the following set of linear equations in the form 

Moc, c)ý= (5.6.3) 

where A(a, c) is a matrix which is a function of both a- and c. In 

order to obtain the non-trivial solution for 0 then we must have 

MAN, ONO (5.6-4) 

For temporal stability the eigenvalue c (or a) can be obtained for a 

given (real) wave number a (or P). Full details of the numerical 

methods for solving equation (5.6.4) are similar to those described 

by John (1984) and therefore are not presented in this chapter. 

5.6.1 A Model Problem 

As already shown in section 5.5, the velocity of the streaming 

flow induced by an oscillating cascade of circular cylinders is 

dominated, for L=1, by the u-velocity component in the majority of 

the flow. This is particularly true when X>0.5. Thus as a first 

approximation the streaming flow may simply be approximated by a 

parallel flow in the X-direction at any station, say X=X , and 0 
therefore in this model we specify a u-velocity profile for the main 

flow as 

u= cos (7rY/L) (5.6.5) 

and set v-=O. This has the simple property that the f low is periodic 
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in the Y-direction and the f luid speed has a maximum and a minimum 

as one would expect physically, when Y=2kL and Y=(2k-l)L, 

respectively, where k is an integer. Here (u, v) are the velocity 

components in the (X, Y) directions. It may be expected that the 

most unstable region will be close to the body since the flow is 

driven by the tangential component of the velocity. In section 5.5 

we have shown that the numerical results obtained using DM1, DM2, 

DM3 and DM4 are all periodic in the Y-direction with a period of 2L. 

In order that the stability analysis here may predict the 

asymmetrical phenomena we now solve equation (5.6.2) in this model 

problem subject to the following periodic boundary conditions in 

(with period 2L in the Y-direction), 

01 
Y=L=o 

1 
Y=-L 

(5.6.6) 

o*» 1 
Y=L=0" 

1 
Y=-L 

(5.6.7) 

for the perturbation function q5. For a given value of a we are 

interested in the eigenvalue which has the largest imaginary part 

since this, physically, corresponds to the most unstable solution of 

the flow. Eigenvalues of the most unstable solutions have been 

obtained for 0< (x : 515 and for streaming Reynolds numbers up to 100. 

The imaginary part of c, i. e. cI (the flow is stable when cI <0 and 

unstable when c >0), as a function of the streaming Reynolds number 

R and (x is plotted in Fig. 5.11. 
S 

It is observed from Fig. 5.11 that for values Of UE(O. 4,3.5), 

approximately, there exists a critical value of RS, say R 
SM, 

such 

that for R <R the flow is stable whilst for R >R the f low is 
S SM S SM 

unstable. As a increases from 0.4 the value of R decreases from 
SM 
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about 7 and reaches its minimum value of R z6 when (xzl. 1 and then 
SM 

increases again to about 25 when cc--3. This suggests that, for 

O<a--15, the wave number azzl. l is the most unstable solution for 

0: 5R : 5100. 

It is also observed from Fig. 5.11 that for a-<0.4 and a>3.5 that 

the value of cI is negative for all values of R : 5100, i. e. for these 

initial disturbances which correspond to a wave number cc--0.4 or 

3.5<cc<15 the flow is always stable for O: sR :: 5100. As a Increases from 
S 

0.4 to about 1.1 then cI increases for all values of R 1. e. the 

flow becomes more unstable as R increases. As a- increases further 
s 

from 1.1 to 3.5, then c decreases for all values of R considered 
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C; 
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Fig. 5.11 Stability diagram of the model problem. 
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here, and this suggests that the unstable f low becomes more stable 

as a increases in the range from 1.1 to 3.5 for any given value of 

R E(O, 100). 
S 

It is also clear from Fig. 5.11 that there exists another local 

unstable region in the stable region [60<R 
S 
: 5100,4.0<m-<151. For any 

given value of R>60 then az-7 gives the most unstable solution 

region. 

5.6.2 Stability for the Streaming Cascade Flow 

Having developed the mathematical technique to investigate the 

stability of the flow in the model problem we now investigate the 

stability of a more realistic model for the streaming flow induced 

by an oscillating cascade of circular cylinders. Instead of 

specifying the velocity profile as given by expression (5.6.5) we 

use the u-component of the velocity profile obtained according to 

the mathematical model DMO at X=X 
0 

and assume that the v-component 

of the velocity is zero since the streaming is dominated by the 

u-velocity. We then investigate the effects on stability of changing 

the value of X0. The equation (5.6.2) for 0 must now be solved 

subject to the boundary conditions (5.6.6) and (5.6.7) since we 

still assume that the flow is periodic with a period 2L in the 

Y-direction. 

Again the eigenvalues for the most unstable solutions for 

0.01: 5a.: 515.0 are obtained. The stability diagrams in the (R 
S, 

(x) 

plane for X0 =1,2 and 3 are given in Fig. 5.12. It is found that for 

any value of a the f low becomes more unstable as the value of RS 

increases for all values of X0 investigated (X 
0 E(O, 15)). This 

indicates that the most unstable region of the flow occurs close to 
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the cascade. For all values of X0 that we have Investigated it has 

been observed that as R Increases the flow changes from being 
S 

stable to unstable, for a given value of a, at a critical value of 

RpR say, i. e. the flow is stable when R <R whilst it is 
S SOC S Scc 

unstable when R >R 
S Sce 

15 

a -XO= 1 

12- ........... 

------ xo 

9 

Stable Region 

6- 

3- --------- 
Unstable Region 

............... ... .. 0 
0 20 40 do ýO 100 

Rs 

Fig. 5.12 Stability diagram of the streaming cascade flow. 

For a given value of X0 then R 
SU 

depends on a and it is found 

that there exists a minimum value of RpR say, which occurs at 
,a sMn 

a certain value of a, a 
MI 

say, for different values of X0. The 

values of R 
SUM 

and a 
MI 

as a function of X0 is given Table S. 1. As 

t, 
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the value X0 increases then the value of R 
SOCM 

increases and the 

variation of R 
SOCM 

as a function of X0 is presented in Fig. 5.13 where 

x 1 2 3 4 5 6 7 
0 

R 5 14 27 42 57 73 91 
s am 

1 0.95 0.95 0.8 0.77 0.75 0.75 
ml 

Table 5.1 Variation of R 
Sam 

with a 
MI 

for various values of X0. 

we can see that for X0 >7.5 the value R 
SOCM 

is beyond the range of 

values of R that we have investigated here. 
S 

100 

Rs,,,. 

80 

60 

40 

20 

0 
10 

X0 

Fig. 5.13 Critical streaming Reynolds number as a function 

of X 
0 
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It is also demonstrated in Fig. 5.12 that the most unstable 

region is when a<13 for X0 =1 and a-<6 for X0 =3, and as X0 increases 

this region becomes smaller and smaller and eventually at X0 >7.5 the 

flow becomes stable for all the values of a and R that we have 

investigated. 

5.7 Comparison with Experiments 

As we observed in section 5.5 the numerical results obtained 

using the boundary conditions DM1, DM2, DM3 and DM4 are similar to 

each other for all the values of R that we have investigated. The 
S 

numerical results for the streaming flow when R =0.636,9 and 15 are 
S 

shown in Fig. 5.14 whilst the experimental results for R =0.636,2.54 

and 8.9 are shown in Fig. 5.15 where the values of c for the 

experimental data are 1/40,1/20 and 1/20, respectively. Clearly the 

tendency of the numerical results show good agreement with the 

experimental investigations. It can be observed that the symmetry of 

the experimental result for R =0.636 is good whilst for RS =2.54 the 

flow is starting to show signs of symmetry breaking. For R=8.9 a 

break-down in the symmetry is clearly observed from the experimental 

results and a comparison with the numerical results show qualitative 

agreement. 

It should be noted that it is very hard to obtain exactly 

symmetrical experimental pictures even for very small values of RS 

and in order to determine exactly the critical value of R 
so 

from the 

experimental work is extremely difficult. The discrepancy between 

the experimental and numerical solutions is probably due to M the 

axes of the cylinders are not exactly in a plane; (ii) the use of a 
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Fig. 5.14 The streamlines from the numerical results for 

the outer streaming flow. (a) R =0.636, (b) R =9, 
SS 

(c) R =15. 
S 

finite number of the cylinders in the experimental work; (iii) the 

effects of the free surface and the bottom of the tank being at a 

finite distance from where the experimental results were obtained 

and (iv) the value of c is finite in the experiments. 
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Experimental results for streaming flows have also been 

obtained for cascades of square and rectangular cylinders which 

oscillate harmonically in an unbounded, incompressible viscous fluid 

which is otherwise at rest. The cascade of rectangular cylinders is 

assumed to consist of an infinite number of rectangular cylinders 

which have sides of length dI and d in the x and y -directions, 

respectively, and of infinite extent in the z -direction (for the 

co-ordinate system see Fig. 1.7). The cylinders occupy the space 

dddd 
between the planes xxy2 +2kY and y2 +2k_V at 

time t =0, where k=O, +-1, +-2,. In the case when d1 =d this 

rectangular cascade becomes a square cascade, see Fig. 1.6. The 

experimental setup for the cascades of square and rectangular 

cylinders are exactly the same as those used for the cascade of 

circular cylinders, see chapter 2 for detailed experimental methods. 

In the experiments the values of d, dI and 2 are chosen to be 0.01m, 

0.02m and 0.02m, respectively. 

Fig. S. 16 shows the streaming flow induced by a harmonically 

oscillating cascade of square cylinders in a fluid at rest for 

c=1/40. At R =0.318 the flow is almost symmetrical about both the X- 
S 

and Y-directions (see Fig. 5.16a) whilst at R =0.636 the streaming 

flow has started to show signs of being asymmetric (see Fig. 5.16b), 

and finally at R=2.23 the streaming flow has developed a very 

asymmetrical structure with a strong vertical flow on both sides of 

the cascade at a distance of the order of the size of the cylinder. 

Fig. 5.17 shows similar flow structures to those observed in Fig. 5.16 

for the streaming flow induced by an oscillating cascade of 

rectangular cylinders where the values of R and c are the same as 
S 
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those in the case of the cascade of square cylinders. It can be seen 

that these results for the cascades of square and rectangular 

cylinders show very similar tendencies to those obtained for the 

cascade of circular cylinders, i. e. for small values of the 

streaming Reynolds number the streaming flow is symmetrical about 

both the X- and Y-axes whilst it becomes asymmetrical as the value 

of R increases. Generally, for both of these cascades considered 
S 

when R is small there are eight recirculating vortices around each 

of the bar with two vortices in each quadrant of the flow. 

It should be noted that on the photographs shown in 

Figs. 5.15-5.17 there is a diagonal pattern. This is caused by the 

use of light sources slanting rearwards to the left and forwards to 

the right; these produce bright diagonal bands where the marker 

particles are illuminated by both sources and darker bands of 

roughly half the intensity where one beam is obstructed by a tooth 

of the cascade. 
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rectangular cylýnders. (a) RS =0.318, Cb) RS =0.636, 

(c) R =2.23. 
S 

(a) 

(5) 

(c) 



175 - 

5.8 Conclusions 

The outer streaming flow induced by a harmonically oscillating 

cascade of circular cylinders has been investigated both numerically 

and experimentally. The complex physical domain has been conformally 

transformed onto an rectangular solution domain and then the 

Navier-Stokes equations are solved using a speciallsed 

finite- difference technique. Various solution domains and boundary 

conditions have been applied in order to solve the problem and it is 

found that it is not always possible to obtain symmetrical flows for 

all values of the streaming Reynolds number R although, 
S 

mathematically, symmetrical flows can always be predicted. The 

numerical results indicate that the boundary conditions on Y=kL (k 

an integer) are very important in predicting the observed flow. 

Numerical results for the flow field show a reasonable agreement 

with those obtained experimentally. A stability analysis for the 

streaming flow induced by an oscillating cascade of circular 

cylinders has been investigated numerically and the results show 

that the flow is stable for small values of R but unstable for 
S 

large values of R the regimes of R within which the flow is 
S 

stable (unstable) predicted by the stability analysis are typically 

the same as those predicted by the full numerical calculations and 

the experimental work. Experimental results for cascades of both 

square and rectangular cylinders have also been obtained and they 

show a similar tendency for the structure as for the cascade of 

circular cylinders. The numerical results and stability analysis 

have not been presented here for the streaming flow induced by an 
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oscillating cascade of square and rectangular cylinders, however we 

believe that, in principle, the numerical methods in this chapter 

may be applied to these types of cascades. 
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CHAPTER 6A NUMERICAL INVESTIGATION INTO FLUID DYNAMICS OF THE 

INDUSTRIAL CYCLONES 

6.1 Introduction 

There has been much work performed on the design and operation 

of cyclones, most of it being experimental and empirical, see for 

example Kelsall (1952), Bradley and Pulling (1959) and Rietema 

(1961). Kelsall's (1952) fundamental experimental investigation 

provides very detailed velocity distributions within the cyclone and 

has been used to test subsequent theoretical studies. Theoretical 

workers, for example Bradley and Pulling (1959), Rietema (1961) and 

Bloor and Ingham (1983), have concentrated on both the velocity 

distributions and the relationship between the separation efficiency 

and other physical quantities such as the pressure drop, the flow 

rate, the geometry of the cyclone, the particle characteristics, 

etc. Ferguson (1989) improved the inviscid fluid flow model of Bloor 

and Ingham (1987), which accurately predicts the flow field below 

the level of the vortex finder, by including the details of the 

recirculating flow which occurs above the level of the vortex 

finder. 

In this chapter, we describe an inviscid mathematical model for 

the fluid flow in the cyclone and simulate, numerically, the fluid 

flow inside the cyclone. The velocity distributions, the particle 

trajectories and the separation efficiency have been investigated 
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numerically for cyclones whose geometry is that as shown in Fig. 1.4. 

The influence of a small perturbation to the angular momentum on the 

separation efficiency of the cyclone has also been studied. Finally, 

based on the theories of Batchelor (1956) and Riley (1981), the 

influence of different estimates for the vorticity in the 

recirculating region, which occurs in the upper part of the cyclone, 

on the flow field and the separation efficiency Is also studied. The 

numerical results have been compared with the experimental data of 

Kelsall (1952). 

6.2 Equations of Motion and Boundary Conditions 

Using cylindrical polar co-ordinates (z, R, A), see Fig. 6.1, 

the continuity equation for an incompressible fluid is: 

av 
+1a (Ru) =0 (6.2.1) ý-z K ýý-R 

where u and v are the velocity components in the R- and 

z-directions, respectively, and the assumption of axially symmetric 

flow in the cyclone ensures that all derivatives with respect to X 

are identically zero. 

In many cyclones the inlet Reynolds number based on the spin 

velocity and the typical diameter of the inlet tube is of the order 

of tens of thousands and it is reasonable to assume that the main 

flow in the cyclone is inviscid, i. e. everywhere outside the 

boundary-layers that exist near solid surfaces and the air core. 

Therefore the momentum equation, in vector form, may be written as: 

V(P +q2!! A w=0 (6.2.2) 
p 

in the main body of the cyclone, where p is the modified pressure, 
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w= (w ,wR &) A) is the vorticity, q is the magnitude of the 

velocity 11 (v, u, w) and p is the density of the fluid. 

.............................. ................. 

......................... .................... CrF 
oz 
.................. ,ý=1 

......................................... 

.................. 

Fig. 6.1 The computational Geometry of the cyclone. 

In the polar coordinate system (z, R, A) (see Fig. 6.1) the 

vorticity components are defined by: 

1a (Rw) (6.2.3a) 
R aR 

Wý _1 
a (Rw) (6.2.3b) 

RR az 
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au av äz - äR (6.2.30 

In order to satisfy the continuity equation (6.2.1) a 

streamfunction qj is also introduced such that 

I ao Uý -A TZ 

1 ao Vý R aR 

(6.2.4a) 

(6.2.4b) 

Following Batchelor (1967), it is convenient to introduce the 

quantity H, the total head of the fluid, defined by: 

R+1q2 (6.2.5) 
p2 

Taking the scalar product of equation (6-2.2) with a line element 

parallel to u, it can be shown that the term in w is eliminated and 

using equations (6.2.4) and (6.2.5) then Bernoulli's equation is 

obtained in the form 

12 
H(O) + -ýq (6.2.6) 

p 

Writing equation (6.2.2) in its components, we have: 

in the R-direction: 

1 ap au av aw 
p aR +u aR +v äR-- +W ä-R - wwz + vwx -. '2 0 (6.2.2a) 

in the A-direction: 

1 ap 
+1(,, au ., av +, aw) - v. + uw =0 (6.2.2b) 

p 5-A ff ýý-x ýi -A ýý-Aj Rz 

in the z-direction: 

1 ap 
+u 

au 
+v 

av 
+W 

aw 
- uw + ww =0 (6.2.2c) 

p az az az 8ZAR 

Using the assumption of axially symmetric flow in the cyclone 
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and equation (6.2.3), equation (6.2.2b) can be written as 

v1a+u1L (Rw) =0 (6.2.7) Fi a R) R ýiz 
1a1a Since v jj ýýz +u ff ýjR represents differentiation along a streamline 

equation (6.2.7) can be integrated to give 

wR =C (0) (6.2.8) 

where COP) is the angular momentum of the flow. This implies that 

the angular momentum of the fluid is conserved along each 

streamline. 

On substituting equation (6.2.8) into equation (6.2.3a) we have 

(i "1 
dc aq, a-0 ý-R (6.2.9) 

and using equations (6.2.4), (6.2.6), (6.2.8) and (6.2.9) then 

equation (6.2-2a) becomes 

dH a vi 1a ip to C(o) I dC aO I=0 
dip aR +[RARR do aR 

wA1C dC dH 
i. e. -=-- (6.2.10) 

RR2 dip do 

Since we assume that the fluid flow in the cyclone is axially 

symmetric we would expect that the boundary conditions on the entry 

to the cyclone can be modelled as if it is two-dimensional. The 

three - dimensional entry Is taken account by assuming that the 

fluid enters the cyclone vertically through the lid of the cyclone 

within the region RI <R 
E 

<R 
C 

(where RC is the radius of the cyclone) 

with uniform speed V0 and angular momentum C. The value of RI is a 

quantity which has to be determined and this will be discussed 

later. Thus the boundary conditions at the entry of the cyclone are 
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v=V0, u=0, w= w(R R : 5R SR (6.2.11) 

C=RE w(R 
E)R1 : sR 

E : 
sR (6.2.12) 

12 2) 
ýý V0 (R -RERI:: SR 

E : 
SR (6.2.13) 

Further it is assumed that at the entry the fluid has zero azimuthal 

vorticity so equation (6.2.2a) reduces to 

1 dp w2 (6.2.14) 
p dR R 

Using equations (6.2.6), (6-2-12), (6.2.13) and (6.2.14) it can be 

shown from equation (6.2.10) that in the main flow region (see 

Ferguson (1989)) 

wA1 
CýC (R 2 

-R 
2) 

RR2VR3 
dR E 

0EE 

(6.2.15) 

Using equations (6.2.3c) and (6.2.4) equation (6.2.15) can be 

written as 

a20-i LIP +a20-1 -C 
dC (R 2 

-R 
2f 

or IP :51 (6.2.16) 
aR 2R 

aR az 
2VR3 dR 

EE 
0 

It is this equation which governs the main flow in the cyclone. It 

is clear from equation (6.2.16) that the main flow is influenced by 

the angular momentum at the entry to the cyclone and we will 

investigate in section 6.6.2 how different estimates of C(Vj) at the! 

entry to the cyclone affect the flow in the cyclone and the 

separation efficiency of the cyclone. 

. 
It is expected that in the cylindrical section of the cyclone a 

circulation region will develop due to the viscous action of the 
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main flow forcing the fluid into the annular region between the 

vortex finder and the cyclone wall and hence into a closed region 

which is similar to that discussed by Batchelor (1956) and Riley 

(1981). Batchelor (1956) showed that at high values of the Reynolds 

number, for a steady laminar flow with closed streamlines, the 

azimuthal vorticity component is as follows: 

wA dH 
= constant= Dl, say R Tq-j (6.2.17) 

which governs the flow in the recirculation region in the upper part 

of the cyclone. It is difficult to solve equation (6.2.17) since the 

value of the constant D1 in the recirculation region is not known. 

By using Stokes' theorem it is, however, possible to find an 

estimate of the area of the recirculation region as follows: 

By using Stokes' theorem we have: 

fk Dl dS =f u-ds 

ss 

(6.2.18) 

where S is the recirculation region and sa closed contour which 

defines the surface S. Using the mean value theorem and equation 

(6-2.17) we have 

Rs=v ds 
v 

JS (6.2.19) 

where S is the area of the recirculation region, R E(R 9 R) with R 
V ýE 0C0 

being the overflow radius, and V9 the magnitude of the velocity 

somewhere on the curve s. 

Although we do not know the exact bounds of the recirculation 

region, a crude, but reasonable, assumption is available, see 

Ferguson (1989). He assumed that the recirculation region Is 
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equivalent to a circle of radius R. /2, with half the circumference 

representing the solid boundary, where the velocity is zero, and the 

other half representing the shear layer of the main f low, where the 

magnitude of the velocity is a constant and equal to V0. In other 

R2 

words, by taking R 
ie =Rc pV =V 0' 

SV =n 
(2 C) and 

fs ds=irRJ2, Ferguson 

(1989) obtained in the recirculation region 

A 
2V 

op, 
2 

Rc 
(6.2.20) 

and using equations (6.2.3c) and (6.2.4), equation (6.2.20) becomes 

a2 lp 1a lp qj z22 + 
ýL 

-2V R /R f or ip >1 (6.2.21) 
aR 2R aR az 20c 

It is this equation which governs the flow in the recirculation 

region in the upper part of the cyclone. Further, it is found that 

this assumption, as Ferguson pointed out, works well for the 

experimental data of Kelsall (1952) since the cyclone that Kelsall 

used had an extra long vortex finder and a very high spin velocity 

at the entry to the cyclone. As a result, the recirculation region 

was well established in the upper part of the cyclone. However, 

other approaches in choosing values of R 91 VSV and 
fs ds are 

available, and we will return to this in section 6.6.3. 

Now we have seen from (6.2.16) and (6.2.21) that the governing 

equation for the flow in the cross plane of the cyclone is as 

follows 

I dC 22 
--i c 

aff- (R -R f or Vi :5 

a21 avi a2 vi 0EE 

--+- (6.2.22) 
aR 2R aR az 2 

-2V R2 /R 2 for >I 
0c 
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At this stage it is useful to Introduce the following 

non - dimensional quantities: 

RRRR RR R RR 
EcEc 

zZczQCW0RcC 

uQvQWW 
sc 21iR 

c2c sc 217R 2 sc 0 
c 

where R and Z are the radius and the length of the conical portion 
CC 

of the cyclone, respectively, Q is the total flux of fluid through 

the cyclone and OQ= Q/27r. Also Wa is the average spin velocity at 

the entry of the cyclone and R1 is the inner radius of the annulus 

in the lid of the cyclone and is determined by the flux of the fluid 

through the cyclone. In fact Q= nV (R 2_ R2) where R :5R :sR 0CIIEC 
It is then shown that the governing equations of motion for the 

cross plane flow field, equation (6.2.16) and (6.2.21), can be 

written as: 

rA 
1 
-C 

dC (R 2 
-R 

2 for IP --5 1 
23j R-- E 

a2 ip _1 
ap + t2 (320 

REE 
(6.2.23) 

aR2R cIR 
RZ az 

2 

, -4R2/Al for IP >1 

where the non - dimensional notation, ^, has been dropped for 

convenience. Also: 

t Rc/Zc, AR2 
Rz 1 

7IR W2 
2c 01 2= 

A= 2R A4QjjR1-A 
1)P- 

Equations (6.2.23) have now to be solved subject to the 

following boundary conditions (see Fig. 6.1), 



- 186 - 

(1-R 
E 

)/A, when RI :sRE :51, z= 1+ho/Zc (6.2.24) 

when R=0,0: 5 z: s 1+h, /Z. 

0 when R=Z, 0: 5 R: 5 1 (6.2.25) 

when R=1,1: 5 z: s 1 +h 
O/ZC 

when R =Ro/'Rc, 1+(ho-hl)/Zc: 5z--51+ho/Zc 

when R0 /R 
c 
: 5R-- (R 

0 
+T 

v 
)/Rcy z=l+(ho-h 

I 
)/Z 

c 

when R =(R 
0 

+T 
v 

)/Rcl 1+(ho-h 
I 

)/z 
c 

: c-z. -51+ho/Z 
c 

when (R 
0 

+T 
v 

)/R 
c 
: 5P.: 5R, /Rc 

(6.2.26) 

aqj 
-0 when 0:: ý Rs- R. /Rco z=l +h (6.2.27) ýiz O/Z. - 

Another boundary condition that is required is the angular 

momentum at the entry to the cyclone, i. e C(R 
E) 

for R1 : sR 
E 

:51. 

Ferguson (1989) showed that in order to obtain the correct form of 

the cross plane flow, including the jetting of the fluid down the 

side wall of the cyclone and a recirculating zone in an annular 

region outside the vortex finder, it is necessary to choose C(R 
E) 

such that the value of C(R ) dC 
is negative. More details of the 

Eý 
E 

influence of the choice of the form of C(R 
E) will be given in 

section 6.6. 

Given the cyclones geometry and operating conditions the only 

unknown parameter is the value of R This parameter is fixed by 

ensuring that the streamline kb =I joins the vortex finder 

tangentially, see Bloor and Ingham (1987). 

6.3 The Spin Velocity 

The assumption of inviscid flow implies that the spin velocity 
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in the cyclone is dependent on R and the angular momentum at the 

entry to the cyclone, see equation (6.2.8). In non-dimensional form 

equation (6.2.8) can be written in the form 

w= C(O)/R (6.3.1) 

where C(O) is the non-dimensional angular momentum which is 

conserved on any streamline. 

Equation (6.3.. 1 ) predicts that the spin velocity will become 

infinite at R=0 which is clearly inappropriate as viscous effects 

become important near the axis of the cyclone where the spin 

velocity will be solid body rotation. Nevertheless, 

equation (6.3.1 ) accurately predicts the spin velocity in the main 

body of the cyclone where viscous effects are unimportant, see for 

example Bloor and Ingham (1983) and Ferguson (1989). For the purpose 

of calculating the separation efficiency of the cyclone, this is 

adequate as most of the separation processes occur in the main body 

rather than near the axis of the cyclone. 

6.4 Efficiency of the Cyclone 

Theoretically, a cyclone can separate particles with different 

shapes from the fluid which carries them into the cyclone providing 

that the density of the particles is greater than that of the fluid. 

The separation efficiencies for particles with different shapes are 

usually different even when the densities and the volumes are the 

same. However, in this chapter we will not study the influence of 

the shape of the particle on the separation' efficiency of the 

cyclone and assume that all particles have their Stokes diameters. 

(The Stokes diameter of a particle is the diameter of a sphere of 
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equal volume to that of the particle. In the following description, 

diameter or size relating to a particle will be taken to mean the 

Stokes diameter). 

By assuming that the particle Reynolds number is small, the 

drag on the particle can be accurately described by the Stokes drag 

law. The drag force on the particle with a diameter d is 

31rliU d 
p 

(6.4.1) 

where ji is the viscosity of the fluid, UP is the drift velocity for 

the particle. Equating this force to the applied centrifugal force 

gives 

3 
31rpU d=6 (p -P) (W 

0 
w) 

2 /(R R) (6.4.2) 

from which we have the drift velocity for the particle 

1d2 (w W), 
U=-0 (pp- P) 

p 1811 RR 
c 

(6.4.3) 

where p and p are the densities of the particle and the f luld, 
P 

respectively. Neglecting gravitational effects, the trajectory of 

the particle is then given by the following non - dimensional 

ordinary differential equation: 

u dR v dz) U 
sc 

u+U 

sc 

(6.4.4) 

which can be written in the following easily integrable form as 

dR 
=u+ 

cw 
2A 

(6.4.5) 
dz v 

where 

2nW 2R(p- p)d 
2 

0cp (6.4.6) 
18pt 

Rz 
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By assuming that the particle distribution in the fluid at the entry 

to the cyclone is homogeneous, the trajectory of a particle of size 

d may be found by integrating equation (6.4.5) as an initial value 

problem starting from the particles radial position at the entry to 

the cyclone. This Integration can be repeated for a large number of 

entry positions and therefore an accurate estimate of the efficiency 

for a particle of diameter d may be found. If (1+h 
pR), where 

O/Z Cd 

RI : 5R 
d : 

51, is a position at the entry to the cyclone such that a 

particle of diameter d which enters the cyclone from there is 

separated, whilst the particle of the same diameter which enters the 

cyclone from any position (1+ho, /Z 
C, 

R), in which R1 : sR<R 
d, at the 

entry is not separated and discharged to the overflow, then 

iP(1+hO/Zc* Rd) is the efficiency for particle of the diameter d. 

6.5 Numerical Methods 

Equation (6.2.23) is discretised using central-difference 

techniques. Using subscripts 0,1,2,3 and 4 to denote typical grid 

points (ih, jh), ((I+I)h, jh), (ih, (j+l)h), M-M, jh) and 

(ih, (j-l)h), where h is the mesh size in both the R- and 

z-directions, then the discretised form of equation (6.2.23) at the 

point 0 may be written as 

a itpi +a P2 +a 303 +a P4 -aooo-RIT 0 =0 

where 

a, =1-1/(2( 
. 
1-1)) 

a =a =t 
2 

24 Rz 
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a =1+11(2(1-1)) 3 

a =a +a +a +a 
01234 

RI To= 
[A 

-' C-5C (R 2 
-R 

2 )]. 
2h3 dR E 

EE 

A numerical solution of equation (6.5.1) is obtained using the 

Gauss - Seidel Relaxation technique. Convergence is achieved when 

the norm of the local error in the numerical solution between two 

successive iterations is less than a given tolerance, say c. 

Equation (6.4.5) is solved using the improved Euler method, 

coupled with bi-linear, or bi-cubic B-spline surface interpolation, 

(see Hayes and Halliday (1974)), in which the information at some 

grid points (4 for the bi-linear surface interpolation and 16, or 

36, or 64 for the spline) around a typical non-grid point P is used 

to estimate the right hand side of equation (6.4.5) at the point P, 

where the numerical solution of equation (6.2.23) is not available. 

It is found that the splines obtained by using information at 16 

points are sufficiently accurate for assessing the separation 

efficiency of the cyclone so they are used throughout all the 

calculations presented in this thesis. 

6.6 Results and discussion 

In this section we first test the numerical model developed 

here with the experimental work of Kelsall (1952). The influence of 

different choices of C(R 
E) at the entry to the cyclone on the 

velocity distributions and the separation efficiency of the cyclone 

is then investigated. Finally, effects of the different ways of 
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estimating the vorticity in the recirculation region of the cyclone 

on the separation efficiency are studied. 

6.6.1 Kelsall's Work 

We test the numerical model developed here with the 

experimental results of Kelsall (1952) where a long vortex finder 

was used in order to ensure that the flow was axially symmetric in 

the main body of the cyclone. The inlet Reynolds number for the flow 

was of the order of tens of thousands, typically 50,000, and hence 

the assumption of inviscid flow in the main body of the cyclone is 

valid. It is therefore appropriate to test the numerical model using 

the operating conditions and geometry given in Kelsall's series I 

experiments (KEL-I). One reason for this is that although a number 

of experimental investigations (see for example, ter Linden (1949), 

Kelsall (1952), Ohsai and Maeda (1958) and Knowles and Woods (1973)) 

have been performed on water cyclones, Kelsall's work on the 

velocity distribution within the cyclone is probably the most 

comprehensive. A more important reason is that the typical spin 

velocity in the cyclone is not high enough in some of the other 

experimental work and as a result the flow in the main body of the 

cyclone can not be modelled as an inviscid flow. Also, even though 

the inlet Reynolds number was large enough in Kelsall's series II 

and III experiments, the flux of fluid to the underflow was greater 

than that in the KEL-I, so a comparison was not made as the 

numerical model here does not include the treatment of the fluid 

flow to the underflow. 

We first choose the angular momentum at the entry to the 

cyclone as 
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C (R K1 E iF 
E 

(6.6.1) 

This choice ensures that C(1)=l (required by equation (6.3.1)), 

and the product of C(R ) and 
dC 

is less than zero, as suggested by 
E dR 

E 

Ferguson (1989) for the flow field to be in good agreement with the 

experimental data. Neglecting the leakage to the overflow and the 

fluid discharged to the underflow, solving equation (6.2.23) gives 

the stream-function and the velocity distribution and these are 

shown in Figs. 6.2 and 6.3, respectively. It is seen from 1ýig. 6.2 

that a jetting flow exists down the side wall of the cyclone from 

the entry to the lower part the cyclone and this f low is then 

discharged to the overflow with the flow being almost axial. Between 

this flow and the top of the cyclone there develops a recirculation 

region which has been observed by many experimental investigators, 

e. g. ter Linden (1949), Kelsall (1952), Bradley and Pulling (1959), 

Ohsai and Maeda (1959) and Knowles and Woods (1973). 

Fig. 6.3 shows the axial velocity component of the flow at seven 

levels in the main body of the cyclone and it can be seen that there 

is excellent agreement between the numerical solution and the 

experimental data of Kelsall (1952). Even the region where the 

flow is recirculating has been well modelled, as is shown at 

levels 6 and 7. 

The free vortex flow, as given by equation (6.3.1), accurately 

predicts the form of the spin velocity profile given in Kelsall's 

experiments in the main flow (away from the axis of the cyclone) in 

the cyclone, see for example Bloor and Ingham (1983). It was found 

though, that in order to estimate the magnitude of the spin velocity 
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Fig. 6.2 The streamlines for Kelsall's work. The values of 

the lines (from side wall to the axis) are 0.2,0.4, 

0.6,..., respectively. 

at the periphery of the cyclone, in relation to the mean spin 

velocity at entry, a loss factor of about 0.6 must be introduced. 

This loss factor is a well known parameter, as we mentioned in 
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chapter 1, and Is , primarily associated with the sudden expansion 

of the flow at the inlet to the cyclone and the friction at the 

solid walls of the cyclone. An accurate estimate of this loss factor 

is clearly extremely important if the flow model is to accurately 

predict the separation efficiency of the cyclone. 

7 

8- 
5- 
4- 
3- 
2- 
1- 

Fig. 6.3 The vertical velocity of Kelsall's work. 

Fig. 6.4 gives the numerically predicted variation of the 

separation efficiency of the cyclone as a function of the particle 

size for Kelsall's operating conditions and geometry with a loss 

factor of a=0.6. It is found that d 
50 -ý; 7.0p, and this compares 

reasonable well with the experimentally predicted value of about 101L 
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Fig. 6.4 The efficiency curve for Kelsall's work with n=1.0. 

and the difference between the these values is probably due to the 

exclusion of the boundary layers in this model. A consequence of 

this is an absence of the leakage effect, as we assumed earlier, and 

this will result in a smaller value of d 
50 . 

Another important factor 

is the assumption of the free vortex flow, as given by equation 

(6.3.1), which, although being a reasonable assumption for the flow 

where the separation is taking place, will result in a slightly 

improved separation efficiency when viscous effects are taken into 

account. Physically, the spin velocity profile near the axis of the 

cyclone is no longer given by equation (6.3.1) but tends to be solid 

body rotation. 

2.0 4.0 6.0 8.0 10.0 12.0 
d (microns) 
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6.6.2 The Influence of Different Choices of C(R ) 

As stated in section 6.2, all the boundary conditions except 

the choice of C(R 
E) can be easily determined by either the geometry 

of the cyclone or the property of the flow. Although the choice of 

C(R 
ER1 

gives reasonable agreement with Kelsall's experiments it 
E 

is still necessary to see how much influence different choices of 

C(R 
E) 

have on both the flow structure and the separation efficiency. 

Since we require C(R )>0, in order that C 
dC 

<0 then C (R 
E ý-T- E 

E 

must increase as RE decreases. Hence we solve equation (6.2.23) with 

)=( I- 
C(R 

E --iý 
)n 

and n=0.5,1.0 and 2.0. 

Figs. 6.5,6.2 and 6.6 show the streamlines for n=0.5,1.0 and 

2.0, respectively. It can be seen that the larger the value of the 

index n then the higher is the density of streamlines near the side 

wall of the cyclone. This is because the larger the value of n, then 

dC the higher is the value of C 
dR , i. e. the larger the value of the 

E 

vorticity present at the entry of the cyclone leading to' a thinner 

jetting flow. Furthermore, the value of A1 is smaller and a stronger 

recirculation region develops. 

As a result of the different flow structures for different 

values of n, different separation efficiencies result. Fig. 6.7 shows 

the efficiency curves for n=0.5,1.0 and 2.0 with a loss factor 0.6. 

The value of d 
50 

f or n=O. 5,1.0 and 2.0 are f ound to be 7.3p, 7. Op 

and 6.1p respectively. It is clear that a small perturbation in the 

angular momentum at entry does not affect the separation efficiency 

significantly but the efficiency is better the larger the value of 

n. However, a further increase in the value of n gives a significant 

change in the flow field because of the large amount of vorticity 
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present at the entry to the cyclone, therefore a large value of n 

may not be suitable. 

Physically, from the few experimental investigations available, 

see for example ter Linden (1949), Kelsall (1952), Ohsai and Maeda 

Fig. 6.5 The streamlines for Kelsall's work with n=0.5. The 

values of the lines (from side wall to the axis) are 0.2, 

0.4,0.6,..., respectively. 
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(1959) and Knowles and Woods (1973), in which the velocity 

distributions are shown, it is unlikely that the vertical velocity 

near the side wall in the cylindrical portion of the cyclone is very 

large and this therefore suggests that a smaller value of n should 

be used than that used in Fig. 6.6. 

Fig. 6.6 The streamlines for Kelsall's work with n=2.0. The 

values of the lines (from side wall to the axis) are 0.2, 

0.4,0.6,..., respectively. 
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Fig. 6.7 The efficiency curves for Kelsall's work with 

n=O. 5,1.0 and 2.0 

We conclude that although the different values of n in the 

angular momentum result in some changes in the flow structure, their 

influence on the separation efficiency remains small. At this stage 

one may ask how much influence do the different estimates of 

vorticity in the recirculation region have on the flow structure and 

the separation efficiency of the cyclone. 

6.6.3 The Estimation of the Vorticity in the Recirculation Region 

Here we investigate the influence of different estimates of the 

vorticity in the recirculation region on the flow field and the 

separation efficiency. Three methods have been employed to estimate 

the vorticity in the recirculation region. First, similar to that 

2.0 4.0 6.0 8.0 10.0 12.0 
d (microns) 
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described by Ferguson (1989) we take RE =Rc/2, Sv=T' (Rc/2) 2, v Cv 0 and 

fs ds=7rRc/2 in equation (6.2.19), and secondly we estimate the 

integration on the right hand side of equation (6.2.18) by numerical 

integration and use this value when equation (6.2.23) is being 

solved. The flow streamlines for the two methods are shown in 

Figs. 6.8 and 6.9, respectively. 

Fig. 6.8 The streamlines for Kelsall's work with n=1.0 and 

RýýRc/2. The values of the lines (from side wall to the 

axis) are 0.2,0.4,0.6,..., respectively. 
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Fig. 6.9 The streamlines for Kelsall's work with n=1.0 and 

the vorticity in the recirculation region determined by 

computer. The values of the lines (from side wall to the 

axis) are 0.2,0.4,0.6,..., respectively. 

It is clear that the first estimate gives a stronger 

recirculation region than that obtained by the second method. The 

result obtained using the method described by Ferguson (1989), i. e. 
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the third method shown in Fig. 6.2, lies between these two 

solutions. In comparison with the experimental data (see Kelsall 

(1952)) it is postulated that the first and the third estimates 

overestimate the level of the vorticity and that the second method 

is more appropriate. Fig. 6.10 shows the efficiency curves 

corresponding to all the three estimates for the vorticity and it is 

observed that there is very little difference in the resulting 

separation efficiencies. So at this stage we may postulate, without 

considering the other operating conditions, that the separation 

efficiency is unlikely to be very sensitive to the estimates of the 

vorticity in the recirculation region. 

1.0 

0.8 

ti 
(1) 

9 
0 

0.4 

U3 
0.2 

0.0 -t- 0.0 

Fig. 6.10 The efficiency curves for different estimations 

of vorticity in the recirculation region (n=1.0). 

2.0 4.0 6.0 8.0 10.0 12.0 
d (microns) 



- 203 - 

6.7 Conclusions 

An accurate numerical model for the simulation of very high 

Reynolds number flow in the cyclone has been developed and 

theoretical efficiency curves have been given which are in good 

agreement with some experimental data. The influence of different 

estimates of the vorticity in the recirculation region on the 

velocity distributions and the separation efficiency has also been 

investigated numerically and it is found that there is very little 

difference in the separation efficiency among the results obtained 

with the 3 estimates we described in section 6.6.3. Furthermore, it 

has been found that the assumed functional form of the angular 

momentum given to the fluid at entry is well described in this 

model, as any small perturbation does not induce a dramatic change 

to the separation efficiency in the main body of the cyclone. 
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CHAPTER 7A NUMERICAL INVESTIGATION OF THE CYCLONE EFFICIENCY 

7.1 General Consideration 

The main purpose of this chapter is to assess the separation 

efficiency of the cyclone so that the best design of cyclone may be 

predicted. Although cyclones may be regarded as one of the simplest 

pieces of equipment for separating solid from a liquid it has 

numerous geometrical parameters. Hence it may be very costly to 

perform a series of experiments in order to investigate the 

influence of the various parameters on the separation efficiency. To 

the best of our knowledge this kind of systematic test has not been 

reported but there are some individual reports on certain aspects of 

the design of the cyclone. 

Knowing the influence of different choices of C(R 
E) 

and 

different estimates of the vorticity in the recirculation region on 

the velocity distribution and the separation efficiency of the 

cyclone, it is necessary for us to further numerically investigate 

how different parameters of the cyclone geometry affect the 

separation efficiency of the cyclone. So a basic understanding, at 

least for the model we have used here which is valid at high values 

of the Reynolds number, of these influences may be reached and hence 

suggest guidelines for the improvement of the design of the cyclone. 

In this chapter we study numerically the influence of the 

cyclone geometry, operating conditions and similarities of the 



- 205 - 

cyclone configuration on the separation efficiency of the cyclone so 

some general parameters which affect the cyclone performance may be 

identified. 

7.2 Effects of the Cyclone Geometry 

Although the separation efficiency of the cyclone may be 

affected by both the cyclone geometry and the operating conditions, 

it may be wise to investigate the influence of the geometrical 

parameters on the efficiency first since the influence of the 

operating conditions can be studied for a given cyclone. So we begin 

with the influence of the geometrical parameters of the cyclone on 

the separation efficiency. 

As has been observed in section 6.6.2, a higher value of the 

index n results in a flow structure which may be far from that which 

occurs in reality. Consequently, throughout this section, equation 

(6.2.23) is solved with either C(R )=(l/R ) 0.5 
or C(R )=l/R and the 

EEEE 

parameters used are based on Kelsall's (1952) work with a high flow 

rate, i. e. series I of his experiments, unless stated otherwise. It 

will be seen that the two choices of C(R 
E) 

have only a small 

influence on the separation efficiency, but, as we have seen in 

section 6.6.2, the separation efficiency for C(R 
E 

)=l/R 
E 

is higher 

than that for C(R 
E 

)=(l/R 
E)0.5 

in almost all situations for Kelsall's 

work (1952). 

7.2.1 Influence of the Cyclone Diameter 

Changing only the length of the vortex finder to two thirds of 

that in Kelsall's work, we use three values of R to test how the 
C 

efficiency changes with the cyclone radius. We take R to have the 
C 
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values 0.5R 
ck' 

1. OR 
ck 

and 1.5R 
ck' 

where R 
ck 

is the radius of the 

cyclone used by Kelsall (1952). The resulting efficiency curves for 

C=(l/R 
E 

)"' are plotted in Fig. 7.1. It is obvious that a cyclone 

1.0 

0.8 

0.6 

91 
0 . -4 

,'0.4 
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&=Rck 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 
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Fig. 7.1 The efficiency curves for different RC (with n=0.5 

and all other parameters fixed). 

with a smaller diameter gives a lower efficiency. The fifty percent 

cut size, d 
50, 

for these three cyclones with C=1/R 
E 

are 9.4p, 7. Op 

and 5p, respectively; and for C=(l/R 
E)0.5 are 9.3p, 7.3p and 5.6p. 

Bradley (1958) gives the following empirical formula for d 
50 : 

tan((x*/2)[L(1-R 1/2 2.3D D2 

50 Q (p -P) Ra 

where a-, D,, pandR r are the full angle of the cyclone, inlet 

diameter, fluid viscosity and the ratio of the underflow to total 

flow rate, respectively. It can be shown from formula (7.2.1) that 
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d 
50 (xl/R 

r, . 
Our results here conf irm this behaviour and any 

differences may be due to different loss factors, underflow rates 

and the neglect of any overflow leakage. 

7.2.2 Influence of the Length of the Conical Portion 

We now investigate the influence of the length of the conical 

portion of the cyclone on the separation efficiency. Again three 

values of the length of the conical portion, ZC, were chosen, namely 

Z =0.15,0.2161 (the value used by Kelsall) and 0.3. The resulting 
c 

values of d are shown in Table 7.1. 
so 

z 0.15 0.2161 0.3 
c 

n=O. 5 9 7.3 6.2 

d 
50 n=l 8 7 6 

Eqn. 
(7.2.2) 11.6 9.7 8.2 
(m=O. 8) 

Table 7.1: d 
50 

for different lengths of the conical 

portion of the cyclone. 

In another attempt to find d 
so empirically, Bradley and Pulling 

(1959) used the formula, 

d =3.2 (0.43) .D1 
tan(cc /2)M(1-R 

f) 
1/2 

(7.2.2) 
50 cc 

1 
2R 

cQ 
(P 

P-P) 

1 

where m is a constant which is to be determined by the performance 

of the cyclone. 

It is noted that R =Z tan((x*/2), so expression (7-2.2) Is in 
CC 

1/2 
fact independent of RC and a: and hence d 

so -O/z 
C). 

Hence a 
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longer conical portion gives a higher efficiency, and from 

Table 7.1, we observe that the change of d 
50, with varying values of 

ZC, is in reasonable agreement with that given by Bradley and 

Pulling (1959). The value of d 
so as obtained using equation (7.2.2) 

with R =0, m=0.8 and a=0.6 is also shown in Table 7.1 where one can 

see that there is a reasonable agreement between the present 

numerical results and those obtained from the empirical formula 

(7.2.2). The differences may be due to the use of the wrong values 

of the loss factor and/or the parameter m. Another reason for the 

differences may be due to the exclusion of the influence of oc and 

R. This may not be true since if one attempts to increase the 
C 

efficiency of the cyclone by increasing ZC only, and with RC being 

very small, then the efficiency may not continue to increase as an 

over long conical portion increases the losses in energy. 

7.2.3 Influence of the Angle of the Cyclone 

It is now straightforward to discuss the influence of the 

cyclone angle, a on the efficiency. Changes of the cyclone angle 

may be done in two ways: namely change R with ZC fixed or change ZC 

with R fixed. So what we require is to find the influence of the 
C 

cyclone diameter and the influence of the length of the conical 

portion in terms of the angle of the cyclone. 

In section 7.2.1, we investigated three values of R which 
C 

corresponded to values of the cyclone angle cc*= 10.10,200 and 

29.60, respectively, whilst the three values of Z, in section 
C 

7.2.2, correspond to a 
4, 
=28.5", 20" and 14.5", respectively. 

Table 7.2-shows the separation efficiency for the different cyclones 

with these different angles. 
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a C) 10.1 14.5 20.0 28.5 29.6 

n=O. 5 9.3 6.2 7.3 9.0 5.6 

d 
50 

(A) n=l 9.4 6.0 7.0 8.0 5.0 

eqn 
(7.2.1) 17.5 8.8 5.8 10.5 7.4 

Table 7.2: d 
50 

cut size for different cyclone angles. 

The results are significantly different to those predicted by 

equation (7.2.2). As mentioned earlier, equation (7.2.2) is an angle 

free formula so if it is applied here then all the efficiencies with 

the same Z will be the same provided the loss factors are the same. 
C 

Hence we obtain d 
so 

from equation (7.2.1) and the results are shown 

in Table 7.2 and this shows that there is no clear tendency as to 

how, in general, a affects the efficiency. So we conclude the 

following: 

d 
50 

decreases as ix increases by means of Increasing the 

diameter of the cyclone; 

d 
50 

increases as a increases by means of decreasing the length 

of the conical portion of the cyclone. 

From equation (7.2.1), d 
so ocl/(R 

CzC 
1/2 ) which is, to some 

extent, in reasonable agreement with the results obtained here. 

7.2.4 Influence of the Length of the Cylindrical Portion of the 

Cyclone 

There are only a few investigators who have looked at the 
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influence of the length of the cylindrical portion of the cyclone on 

the separation efficiency. However, since the separation does occur, 

more or less, in this part of the cyclone it is worth investigating 

numerically this influence on the separation efficiency. In this 

section we will consider the cylindrical portion to have lengths 

h0 =0.5h Ok ph Ok and 1.5h 
Ok . where h 

Ok 
is the length used by Kelsall 

(1952). All other parameters are the same as those used by Kelsall 

(1952) and we investigate the influence of this length on the 

separation efficiency of the cyclone. Table 7.3 shows the value of 

d for the different values of h and index n. so 0 

h 0.5h h 1. Sh 
0 Ok Ok Ok 

n=. 5 7.3 7.3 7.2 
( 1) 1 50 

n=l. 6.5 7.0 7.0 

Table 7.3: d 
50 

for different lengths of the cylindrical 

portion of the cyclone. 

It Is concluded that the effect of changing h0 is quite 

negligible and this has been observed experimentally (see, for 

example, Bradley (1958) and Bradley and Pulling (1959) where the 

formulae (7.2.1) and (7.2.2) for d 
50 

are independent of the value of 

h ). Fig. 7.2 shows the efficiency curves for C=1/Ro' 5 
and 1/R for 

0EE 

these three values of h It is clear that the influence of h is 
00 

small on the separation efficiency for all values of the particle 

diameters (not just d 
so 

) and this Influence may therefore be 

neglected. 
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Fig. 7.2 The efficiency curves for three different lengths 

of cylindrical portion. 
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7.2.5 Influence of the Length of the Vortex Finder 

It is known that the length of the vortex finder, h1. plays an 

important role in the cyclone performance and the influence of it on 

the separation efficiency of the cyclone is now Investigated. Again 

three values of hI are taken, namely hl=hk/3,2hk/3 and hk where hk 

is the value of hI used by Kelsall (1952). The value of d 
50 

obtained 

is approximately the same In all cases, e. g. 7p for C=1/R and 7.311 
E 

0.5 for C=(l/R 
E), 

but this may be due to the exclusion of the 

overflow leakage. A longer vortex finder gives particles more chance 

to be separated and a small amount of leakage and that is why an 

appropriately longer vortex finder gives a higher efficiency in 

practice. However an overlong vortex finder will Increase the energy 

losses and therefore will decrease the efficiency. 

7.2.6 Influence of the Overflow Radius 

Three values of the overflow radius were taken in order to 

investigate its influence on the efficiency, namely 0.5R 
ok' 

R 
ok 

and 

1.5R 
ok' 

where R 
ok 

is the radius of the overflow tube used by Kelsall 

(1952). The numerical estimates obtained for d 
so are shown in 

Table 7.4. 

R0 0.5R 
ok 

1. OR 
ok 

1.5R 
ok 

n=. 5 6.7 7.3 8.0 
( ) p 50 

n=l. 6.5 7 7.5 

Table 7.4: d 
50 

for different overflow radius. 

Hence the smallest overflow radius gives the highest efficiency and 

a further decrease in the overflow radius suggests an even higher 
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efficiency. This is not true in practice because near the axis of 

the cyclone the viscosity of the fluid becomes more important and 

the flow rotates as a solid body and the spin velocity tends to zero 

as R tends to zero. This contradicts the free vortex model assumed 

here where the spin velocity tends to infinity as R tends to zero. 

7.3 The Influence of the Operating Conditions 

In this section we investigate how different operating 

conditions, e. g. flux rates for a given spin velocity and for a 

given inlet area, affect the separation efficiency for a given 

cyclone. This time all the results were only obtained with 

C (R )=(l/R 
E 

)0,5 since we have seen that the difference between the 

results obtained using C=(l/R 
E)0.5 

and those obtained using C=I/R 
E 

are insignificant in all the cases considered. 

7.3.1 Different Flux Rates for a Given Spin Velocity at Entry 

When the spin velocity at the entry is given, an increase in 

the flux rate means increasing the inlet area. Thus the flow field 

and the efficiency will be changed because the right hand side of 

the equation (6.2.23) is a function of DI. The three flux rates used 

for the numerical investigation were Q=Q 
kI 

Q=2Q 
k and Q=3Q 

k, where Qk 

is the flux rate used by Kelsall (1952). Fig. 7.3 gives the cyclone 

efficiency as a function of the particle size and it is observed, 

maybe surprisingly, that a larger flux rate gives a lower 

efficiency. It should be noted that increasing the separation 

efficiency by means of increasing the flow rate is true only when 

the spin velocity at the entry also increases at the same time. 
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Fig. 7.3 The efficiency curves for 3 different flow rates 

with W0 unchanged (n=0.5). 

Table 7.5 shows the numerically predicted values of d 
50 and those 

predicted by equation (7.2.1). Note we have taken the value 

predicted by equation (7.2.1) for Q=Q 
k 

to be 7.311 and then based on 

this value worked out values for Q=2Q 
k and Q=3Q 

k* 
This is because we 

are mainly interested here in the change in the value of d 
so with 

different flow rates and not the exact values of d. On the other so 

Q Q 2Q 3Q k k k 

Numerical 7.3 11.7 15.0 
( ) p 

50 Eqn. 
take 7.3 10.3 12.6 (7.2.1) 

Table 7.5: d for different flow rates. 50 

3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 
d (microns) 
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hand, comparison between the exact values predicted by the numerical 

method and those predicted by equation (7.2.1) may be meaningless, 

because the loss factor has been taken to be 0.6 which may not be 

the real value of the loss factor for the geometry and operating 

conditions of the cyclone we used here. 

We may conclude that Increasing the flow rate by increasing 

only the inlet diameter results in a decrease in the separation 

efficiency. 

7.3.2 The Different Flux Rates for a Given Inlet Area 

If the inlet diameter, or more precisely the inlet area, of a 

cyclone is given, changing the flow rate implies changing the spin 

velocity at the entry to the cyclone. As will be seen in section 

7.4, the cross plane flow streamlines do not depend on Q but the 

efficiency will improve, in this case, since increasing the flow 

rate by a factor 6 would result in an increase in the spin velocity 

at the cyclone entry by a factor 6 and consequently the value of 

W2 would change by a factor S. As an example, if Q is doubled then ; /Q 

the centrifugal force applied on a particle with the same size would 

also be doubled so that the separation efficiency In this case would 

certainly increase. For the numerical test, as in section 7.3.1, the 

efficiency curves for Q=Q 
kp 

2Q 
k and 3Q 

k are plotted in Fig. 7.4 and 

it is observed that the values of d 
so 

for Qkj 2Q 
k and 3Q 

k are 7.311, 

5.3p and 4.4p, respectively. In reality it may be expected that the 

values of d 
50 would be little different from those of d 

50 predicted 

numerically here since the loss factors for different flux rates 

will be different. 
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Fig. 7.4 The efficiency curves for different flow rates 

with the cross area of the inlet unchanged (n=0.5). 

From this section we conclude that: 

(1) increasing the f low rate by increasing the inlet area only 

gives no improvement in the separation efficiency of a cyclone; 

(ii) increasing the flow rate by increasing the spin velocity at 

cyclone entry results in an increase in the separation 

efficiency of a cyclone provided that the values of the loss 

factor are the same for different flow rates and spin 

velocities at the cyclone entry. 

7.4 The 'Similarity' of Cyclones 

In this section we assume that the properties of the fluid and 

particle and the loss factor are unchanged for two cyclones, say 

2.0 4.0 6.0 8.0 10.0 12.0 
d (microns) 
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cyclone 1 and cyclone 2 and discuss some problems which are, to some 

extent, related to the similarity of cyclones or velocities and to 

investigate how these similarities affect the flow field and the 

separation efficiency. So a certain kind of performance of a cyclone 

may be reached for a required separation efficiency. 

7.4.1 Effect of Different Flow Rates 

Here we investigate differences which may exist in the velocity 

distributions (u and v) obtained with a flux rate Q1 compared with a 

f lux rate Q 
2* 

Physically, we expect that any two different flow 

rates which operate on a given cyclone will yield two different 

velocity distributions. However, the mathematics predicts that, 

except for the different scales for the two distributions, the 

non-dimensional velocity distributions are the same for these two 

flow rates because the resulting governing equations (6.2.23) and 

boundary conditions (6.2.24)-(6.2.27) are identical and so their 

solutions are the same. 

7.4.2 Two Similar Cyclones 

In this section we investigate what kind of operating 

conditions are required for cyclone 1 and cyclone 2, if: 

i) all the geometrical lengths of cyclone 2 are a factor 13 

different from these of the cyclone 1, 

ii) the same efficiency is required for the two cyclones. 

It can be seen that if the governing equations of (6-2-23) and 

(6.4.5) for these two cyclones are exactly the same then the 

efficiencies will also be the same. 

First, we assume that the loss factors for these two cyclones 
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are the same and using subscripts 1 and 2 to denote 

those quantities in cyclones 1 and 2, respectively, then 

13=Z 
C2/zC I=R c2/Rcl 

=ho/hol=. .., and f rom (6.2.23) and (6.4.5) we have 

(W 
OI/Qj)2=134(W 02/Q2 

)2 (7.4.1) 

RW2 /Q, ='3Rc, W 2 (7.4.2) 
cl 01 OYQ2 

i. 

w 
02ýpw 01 

(7.4.3) 

Q2 =18 3 Ql* (7.4.4) 

For example if P=2, then cyclone 2 needs eight times the flux and 

twice the spin velocity at the inlet to that required in cyclone 1 

for same efficiency. This gives us a way of determining how to 

operate two 'similar' cyclones to obtain the same efficiency, and a 

way of changing the cyclone geometry without changing the separation 

efficiency. 

Furthermore if there are two different loss factors, aI and a2 

for cyclone 1 and cyclone 2, respectively, then equation (7.4.2) 

becomes 

2R W2 a2 PR W2 (7.4.5) 
1 cl 01/Qlz- 2 cl 02/Q2 

which, when combined with equation (7.4.1), gives 

w 
02 2w 01 

(7.4.6) 

(Y 
2 

(X 
2ß3 
1 

--Q (7.4.7) 
221 

et 
2 
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It is now clear from expressions (7.4.6) and (7-4.7) how the 

loss factor affects the relationship between Q 
it 

W 
01 and Q29W 

02 

respectively. A smaller loss factor requires both a larger flux Q2 

and a larger spin velocity at the entry to the cyclone. 

7.4.3 Two Cyclones 'Similar' in One Direction 

Let us first consider that all the geometrical lengths in the 

R-direction of cyclone 2 are scaled by a factor f3 in comparison to 

those of the cyclone 1 whilst in the z-direction both cyclones have 

the same dimensions. We now investigate the effect of f3 on the 

cyclone efficiency given that the flow rate and the loss factors for 

these two cyclones are the same. 

For the numerical investigation, we take Kelsall's (1952) 

cyclone and consider the effects of scaling all the parameters that 

occur in the R-direction by a factor 13. The numerical predicted 

efficiency curves for these three cyclones (with C=0/R 
E)0.5 

) are 

shown in Fig. 7.5, where cyclone 1,2 and 3 refer to 0=0.5,1 and 2, 

respectively. It is clear that the cyclone which is smaller in the 

R-direction gives a lower efficiency if the total flux through the 

cyclone is fixed and therefore one can improve the separation 

efficiency by making the cyclone larger in the R-direction. 

Furthermore we consider the efficiencies of similar cyclones 

for which all the geometrical lengths In the z-direction of cyclone 

2 are scaled with the same factor 13 compared with those of cyclone 1 

whilst in the R-direction all dimensions are the same. We now 

investigate the cyclone efficiency if the flow rates and all other 

factors for these two cyclone are assumed to be the same. Again, as 

an example, we take Kelsall's cyclone and operating conditions. 
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Fig. 7.5 The efficiency curves for different cyclones which 

are similar to each other in the R-direction (n=0.5). 

Using Zk to denote a typical length in the z-direction in Kelsall's 

cyclone, then the above three cyclones have the lengths of 0.5Z 
kp 

1. OZ 
k and 1.5Z 

k 
in the z-direction. The numerical predicted values 

of d 
so 

for these three cyclones with C=(l/R 
E)0.5 are shown in 

Table 7.6. So the longer the cyclone the more efficient it is. This 

is because a longer cyclone gives the particles more opportunity to 

Z 0.5z 1. oz 1.5z 
1d 

(iL) n=. 5 11 7.3 6.2 

Table 7.6: d 
50 

for cyclones similar in the z-direction. 
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be separated. On the other hand, a cyclone with an over long size in 

the z-direction could cause too much loss of energy as the flow goes 

down to the cyclone and as a result the separation efficiency may be 

lower than that predicted here, or in other words the loss factor 

has increased. 

7.5 Conclusions 

In this chapter various aspects of the influence of cyclone 

dimensions, operating conditions and similarities of cyclones on the 

separation efficiency have been investigated numerically. With the 

assumption of the validation of the Stokes drag law and a known 

value of the loss factor the following conclusions may be obtained: 

E Increasing the cyclone diameter with all the other 

parameters remaining unchanged yields an increase in the 

separation efficiency; 

m The length of the cylindrical portion has little influence 

on the efficiency; 

m Increasing the length of the conical portion of the 

cyclone with all other quantities remaining unchanged 

gives a higher efficiency; 

For a fixed values of ZId decreases as oc increases by 
C 50 

means of increasing the cyclone diameter; 

For af ixed cyclone diameter, d 
so 

increases as a* 

increases by means of decreasing the conical length; 

M Increasing the overflow diameter gives a lower efficiency 

if all other parameters are unchanged; 

Two 'similar' cyclones can give the same efficiency if 

and W0 are chosen as given in section 7.4 and the overflow 
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leakage is neglected; 

If two cyclones are 'similar' in the R-direction then the 

larger the value of R, the higher the efficiency; 
C 

If two cyclones are 'similar' in the z-direction then the 

longer the cyclone, the higher is the efficiency; 

Increasing the flow rate Q by increasing the inlet area 

does not increase the efficiency if leakage is ignored; 

Increasing the flow rate Q by increasing the inlet spin 

velocity yields an increase in the efficiency. 
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CHAPTER 8 AN INVESTIGATION INTO SOME EXPERIMENTAL WORK 

8.1 Introduction 

Knowing the details of the influence of the cyclone geometry, 

of the operating conditions and of the similarities on the 

separation efficiency of the cyclone, we may need to investigate 

further how the model we used can be applied to cyclones in 

practice. In this chapter we will investigate some available 

experimental data in which the full dimensions of the cyclone were 

included and compare our numerical results with this experimental 

data. 

It has 
. 

been noted that the most important factors 

measuring a cyclone performance may be the loss factor and d 
so' 

the 

50% cut diameter. Through numerical investigation of some 

experimental work, in this chapter, a relationship between d 
so' 

the 

loss factor, a, and other parameters such as cyclone diameter, flow 

rate and the spin velocity at entry to the cyclone etc. is presented 

by using a regression analysis method. Finally at the end of this 

chapter the leakage of fluid to the overflow is investigated. 

8.2 Investigation of Experimental Work 

In this section some experimental work, in which the full 

dimensions of the cyclone were included, is numerically investigated 

and the ways in which the mathematical model described in chapters 6 
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and 7 works for the cyclone in practice are shown. 

8.2.1 Stairmand's Work 

Stairmand (1951) suggested two kinds of cyclones, namely, one 

with a high efficiency and another with a high gas flow rate. The 

first (with an inlet Reynolds number of about 50,000) was chosen to 

test the methods discussed in chapter 6. Due to the absence of 

detailed knowledge of how to determine the loss factor at the entry 

to the cyclone, a loss factor (x=0.45 was assumed here. The value of 

d 
so 

for a-=0.45 is about 211 which Is in reasonable agreement with the 

experimental data. A further investigation however, shows that in 

order to obtain an efficiency curve which is also in reasonable 

agreement with the experimental data it is not just a matter of 

finding a loss factor which gives the appropriate value of d5o but 

it must also make the slope of the efficiency curve fit with the 

experimental data. As mentioned in chapter 6, the free vortex spin 

velocity tends to infinity as R-40 but in practice the spin velocity 

tends to zero as R--+O. Hence if we use the f ree vortex spin 

velocity to calculate the separation efficiency, the spin velocity 

will be higher than that which occurs in practice. In reality, the 

spin velocity takes a maximum value at a small value of R and after 

that falls very quickly to zero. This suggests that in the region 

where R is small little separation takes place. Based on this a 

cut-off region, R_-R , within which no separation takes places, is 
ns 

assumed. On introduction of such a region the numerically predicted 

efficiency curve gives a much better agreement with the experimental 

data. For Stairmand's work, it was found that if R =0.35 and 
ns 

a=0.666 then the numerical efficiency curve is in reasonable 
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agreement with the experimental data, especially for particles 

smaller than d 
80 . 

The efficiency curve as predicted by the numerical 

method and that obtained by Stairmand are shown in Fig. 8.1. There is 

reasonable agreement; the differences In the results at larger 

values of d may be due to the leakage and this will be discussed in 

section 8.5. 

1.0 

0.8 

;00.6 

91 
0 
:0 
g o. 4 
P4 
0 

cn 

0.2 

0.0 -jr- 0.0 

Fig. 8.1 The efficiency curves for Stairmand's work. 

8.2.2 Kim and Lee's Work 

Kim and Lee (1990) obtained experimental results for nine 

different cyclones, each with three flow rates, and these are 

summarized in Table 8.1. 

1.0 2.0 3.0 4.0 5.0 6.0 
d (microns) 
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Cyclone 
No. 

R 
c 

(M) 

R 
0 

(M) 

h 
0 

(M) 

h 
1 

(M) 

z 
C 

(M) 

Cyclone 
angle 

KI-1 0.01095 0.0040 0.045 0.036 0.15860'- 7.9 

KI-2 0.01095 0.0050 0.045 0.036 0.1586 0 7.9 

KI-3 0.01095 0.0068 0.045 0.036 0.15860 7.9 

KI-4 0.01095 0.00875 0.045 0.036 0.15860 7.9 

KII-1 0.01555 0.0040 0.045 0.036 0.096584 18.3 

KII-2 0.01555 0.0050 0.045 0.036 0.096584 18.3 

KII-3 0.01555 0.0068 0.045 0.036 0.096584 18.3 

KII-4 0.01555 0.0875 0.045 0.036 0.096584 18.3 

KIII-2 0.02055 0.0050 0.045 0.036 0.07874 29.25 

Table 8.1: Dimensions of the cyclones of Kim and Lee (1990). 

Three flow rates were used for each cyclone, namely Q 
it 

Q2 and 

Q3 which have values of 0.00014667 (8.8 lpm), 0.00026667 (12.4 Ipm) 

and 0.000306667 (18.4 Ipm) m 
3/sec, respectively, and the 

corresponding spin velocities at the inlet are 2.0389,2.0873 and 

4.263 m/sec, respectively. The numerically predicted efficiency 

curves were obtained for most of the cyclones except those which 

have a very large overflow diameter (cyclories with very large 

overflow diameters will give a low separation efficiency and so are 

not of interest to us) and these curves are shown in Figs. 8.2,8.3 

and 8.4. It can easily be seen that the efficiency curves as 

obtained from the numerical calculations give a reasonable agreement 

with those obtained experimentally except in the upper region of the 

curves where larger differences are observed. This may be due to the 

exclusion of the overflow leakage. The values of R, which defined 
ns 

the cut-off region, and the values of loss factor which were 
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Fig. 8.4 The efficiency curves for cyclone KIII-2. 

-- numerical results, - experimental results 
(QI=8.8 Ipm, Q 

2=12.4 
Ipm, Q 

3= 
18.4 lpm). 

determined according to d 
50exp 

(the experimental values of d 
50 

) used 

for these results are shown in Table 8.2. 

As Q3 >Q 
2 
>Q1P it is clear from Table 8.2 that for Kim and Lee's 

experiments the value of the loss factor increases as the flow rate 

increases for most of the cyclones considered and this implies that 

the energy loss for a given cyclone with a higher flow rate is less 

than that with a lower flow rate. However, due to the complexity of 

cyclone performance the relationship between the flow rate and loss 

factor is much more complicated than the above implies. It can also 

be seen from Table 8.2, viewed with Table 8.1, that for a given 

cyclone, the difference between the loss factors for two given flow 
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Cyclone 
Flow rate R a (X(Q )-(X(Q )=-(x No. ns Ij 

Q2 
0 26 0 1822 KI-1 . . 

Q3 
0.26 0.2300 (X 

32 0.0478 
Q2 

0 32 0 1848 
KI-2 . . 

Q3 
0.32 0.2117 32 0.0269 

Q2 
44 0 0 2029 

KI-3 . . 
Q3 

0.44 0.1997 32 -0.0032 
Q1 

0.18 0.1990 

KII-I 
Q2 

0.18 0.2202 21 0.0212 
Q3 

0.18 0.2935 31 0.0945 
Q1 

0.21 0.2173 

KII-2 
Q2 

0.21 0.2437 (X 
21 0.0264 

Q3 
0.21 0.3325 31 0.1152 

Q1 
0.31 0.2449 

KII-3 
Q2 

0.31 0.2410 21 -0.0039 
Q3 

0.31 0.2651 CC31- 0.0202 
Q1 

0.39 0.2466 

KII-4 
Q2 

0.39 0.2515 CC 
21 0.0049 

Q3 
0.39 0.2563 31 0.0097 

Q1 
0.17 0.1899 

KIII-2 Q2 0.17 0.2231 (X 21 : 0.0332 

Q3 0.17 0.2593 a 
31 : 0.0694 

Table 8.2: Cut-off regions and loss factors for the 

cyclones of Kim and Lee (1990). 

rates varies as the overflow diameter changes, with RJR 
C 

within the 

range 0.2: sR. /R 
C 
: 50.35 giving the larger differences. From this point 

of view, if one wants to increase the separation efficiency by 

increasing the flow rate (in fact, here by increasing the spin 

velocity at the entry to the cyclone), he/she should increase the 

flow rate when 0.2: 5R /R : SO. 35 since this will give a better 

improvement in the separation efficiency for a certain amount of 
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increment of the flow rate. From the work of Kim and Lee (1990), it 

can be seen that doubling the flow rate results in almost halving 

the value of d 
so 

for the cyclones with 0.2: 5R 
0 
/Rc:: 50.3' (I-1, II-1, 

11-2 and 111-2 in Kim and Lee's work (1990)), while doubling the 

flow rate for 11-4 (RO/RczO. 56, see Kim and Lee's work (1990)) only 

results in a 24% decrease in d 
so 

The question now is how to choose the value of R 
ns 

and hence 

the value of the loss factor. We will return to this question in 

section 8.3. 

8.2.3 Smith et al's Work 

Smith et al. (1979) investigated, experimentally, a five stage 

cyclone in which five cyclones with different geometries are used 

under different conditions such as temperature, density of the 

particles etc. Because most cyclones normally perform at room 

temperature we investigate here only those used by Smith et al. 

(1979) which operated at 25'OC and with a flow rate Q=0.0004717 

m3 /sec (28.3 Ipm) to see how the numerical model developed here 

predicts the separation efficiency. The geometries of the cyclones 

we investigated are shown in Table 8.3: 

Cyclone 
Cyclone R h h z anvle 

No. c 0 0 1 c 
(M) (M) (M) (M) (M) 

SRI-1 0.02235 0.0075 0.0224 0.0157 0.08129 30.8 

SRI-2 0.01830 0.00525 0.0211 0.0157 0.07274 28.3 

SRI-3 0.01555 0.00415 0.0140 0.0108 0.04645 37.0 

SRI-4 0.01270 1 0.00295 1 0.0103 1 
0.0058 0.02865 47.8 

SRI-5 

1 

0.00760 
1 

0.00180 
1 

0.0047 
1 

0.0043 0.02884 29.5 

Table 8.3: Dimensions of the cyclones of Smith et al. (1979). 
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It is found that if the values of R and the loss factor oc 
ns 

were chosen as those shown in Table 8.4 then the efficiency curves 

from the numerical model again show good agreement with those 

obtained experimentally, see Fig. 8.5. 

Cyc I one 
No. 

Flow rate R 
ns cc 

SRI-1 0.0004716667 0.235 0.2988 

SRI-2 0.0004716667 0.200 0.4580 

SRI-3 0.0004716667 0.187 0.4987 

SRI-4 0.0004716667 0.163 0.5552 

SRI-5 1 0.0004716667 1 0.167 1 0.3920 

Table 8.4: Cut-off regions and loss factor for the cyclones 

of Smith et al. (1979). 

All the cyclones here have the same flow rate but have 

different geometries and this gives us an opportunity to see how the 

loss factor and d 
50 change with changing geometries. It is clear 

that the values of the loss factor are, generally, larger than those 

obtained in section 8.2.2. As has been stated in the last section 

the difference between two loss factors corresponding to two flow 

rates for one cyclone is larger when 0.2: sR /R : 50.35. The flow rate 

her6 is higher than those in the last section and all the values of 

RO/Rc are within this range and hence a larger loss factor is 

produced. The values of a for SRI-1 and SRI-5 are relatively smaller 

than those for cyclones SRI-2, SRI-3 and SRI-4; this may be because 

the values of R. /R 
C 

for these two cyclones are larger than those for 

the other three cyclones. As a result the particles which flow down 

the side wall may have more chance of being picked up again by the 

air and delivered to the overflow, so the separation efficiency, 
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and hence the loss factor, may be lower than that for a larger value 

of R. /R 
C. 

It can also be seen from Table 8.4 that SRI-4 has the 

largest loss factor. The reason for this could be that both R 
O/Ttc 

and Ru/R 
C 

for this cyclone are the smallest of those considered and 

as a result particles in this cyclone have more chance of being 

separated than those in the other cyclones. It is not sufficient to 

state the relationship between the spin velocity at the inlet of the 

cyclone and the loss factor without considering other factors such 

as the geometry of the cyclone, because a very large value of W0 may 

give rise to a large energy loss due to the sudden expansion. This 

can be seen from SRI-5, where W0 for this cyclone was 66.7 m/sec but 

its loss factor was smaller than that of SRI-4 where the spin 

velocity was only about 23 m/sec. The reason for this may be due to 

the differences in the geometries of the cyclones considered. 

8.3 Determination of R and (x 
ns 

In section 8.2 we have obtained many efficiency curves which 

compared well with the related experimental data. However, these 

agreements depend on the choice of the value of the loss factor, (x, 

and R (non-dimensional) which defines a cut-off region, 
ns 

0 :5R :5R 
ns , 

such that within which no separation is assumed. Almost 

a hundred runs with different combinations of a and R revealed 
ns 

that the cut-off region could be defined by R 
ns 

; ý', O. 7RO/R 
C, 

i. e a 

value of about seventy percent of the overflow radius. The values of 

R in the numerical results of the work of Kim & Lee (1990) and 
ns 

Smith et al. (1979) were all about 0.7R /R 
, with the loss factor 

01 C 

obtained af ter prescribing the values of R 
ns 

and d 
so 

from the 

experimental data. Of course this cut-off region will depend on 



- 23S - 

other parameters, but in practice we may take Ra little larger 
ns 

than that we have suggested if R, /Rc is very large (?: 0.6, say), 

while an over small value of Ru/R 
C 

may have little effect on the 

choice of R 
ns 

Tarjan (1962) suggested for a water cyclone that there exists 

an air core along the axis of the cyclone of radius Ra such that 

0.06R 
C . 

5R :: 50.33R in the vicinity of the axis within which, of 

course, no separation occurred. Further, Fontein et al. (1962) 

reported that the diameter of the air core increases with increasing 

the oVofflow diameter. The results here show a reasonable agreement 

with that suggested by Fontein et al. (1962); indeed the cut-off 

region for different cyclones investigated here is proportional to 

the overflow diameter. 

8.4 Correlations for d and the Loss Factor 
50 

Using the information obtained in sections 8.2 and 8.3, from 

the experimental data we may obtain correlations for both d 
so 

and 

the loss factor a by using regression analysis method and hence to 

have some general ideas on how the geometrical parameters of a 

cyclone and operating conditions affect on d 
so 

and a. 

8.4.1 Correlation for d 
so 

An important factor In measuring the separation efficiency of a 

cyclone, d 
50, 

the 50% cut size, has been studied by many authors. By 

assuming that there is an equilibrium surface Bradley (1958) 

obtained the formula (7.2.1). In another experiment Bradley and 

Pulling (1959) gave another formula, equation (7.2.2), for d 
so which 

is said to be suitable for cyclones with any included angle. In 
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investigating 90 and 20 0 cyclones, Dahlstrom (1949) worked out a 

correlation for d 
so' namely, 

d =81 
(2R 

cDI)0.68 1.73 0.5 

so Q 0.53 

fp 

P-P 

I 
(8.4.1) 

where DI and R are measured in inches, Q in U. S. gallon, p and p in 

3 
9/cm , etc. In a study of a cylindrical gas cyclone, Vaughan (1988) 

gave d 
50 as 

d 
so =K/Q (8.4.2) 

with K and N being constants determined by the cyclone performance. 

Saltzman and Hochstrasser (1983) were able to find the 

following relationship between d 
so' 

RC and RC, the outlet Reynolds 

number of cyclone performance, namely, 

'2R ) =K 
1000 0 713 

(8.4.3) d --L SVI cd( RL) 

where Kd is a constant which varies over a small range of values for 

all the 15 cyclones he considered with a constant diameter. Later 

Saltzman (1984) used the same method to work out a similar formula 

for a total of 30 different cyclones and obtained 

0.0001429 <Kd<0.0004461 with the exponent on the right hand side 

of expression (8.4.3) changing from 0.713 to 0.83. Although Kd is 

small and varies over a small range, the ratio of the maximum to the 

minimum value of Kd is greater than 3 and this suggests that the use 

of formula (8.4.3) to predict the separation efficiency for a 

pre-designed cyclone is not very useful. 

As cyclone designs depend on of some 10 parameters, a small 

change in even one of those parameters may make a large change in 
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one or more of the parameters that appear in all the present d 
so 

correlations. For this reason it may be very difficult to obtain a 

universal formula for cyclones. Nevertheless In this section we try 

to use regression analysis on some of the experimental data 

available, namely, Smith et al. (1979), Saltzman and Hochstrasser 

(1983), Saltzman (1984) and Kim and Lee (1990), to evaluate the 

relationship between d 
so and some other quantities such as RC, ZC 

W0 etc. for small air cyclones. 

In a similar manner to the empirical formulae (7.2.1), (7.2.2), 

(8.4.1) and (8.4.2), we assume that d 
50 

has the following form 

(X (x «- aa (x 

d 
50 

=(x 
0Rc1R0 

2R 

u 

3Z 

c4 
(1+ho/Zc) S(l+h1/Zc ) 6. 

cc cc cx 
Q7w8 (p 

p- 
P) 

9 
(8.4.4) 

where a0, aI.... a9, are constants which have to be determined by 

using the available experimental data. A linear regression analysis 

gives: 

-0.3275 0.6177 0.5239 0.03616 -36.23 
d 

50 =27.688R 
cR0Ruzc 

(1+ho/Z 
c) 

17.032 0.02120 -0.8055 -1.2755 

(1+h, /Z 
c)Qw0 

(p 
P-P) 

(8.4.5) 

where all the quantities used in this formula are measured in SI 

units. 

It should be noted that the quantity 2 is not the general 
c 

length of the conical portion of the cyclone, but the mathematical 

length of the conical portion, i. e Zc=R 
CZ rc/(R C -R u) 

provided that 

Z is the conical length of the cyclone. 
rc 

From equation (8.4.5) it can be seen that the value of d 
50 

decreases as R and R decreases whilst it Increases as the cyclone 
0u 
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radius decreases. This agrees with section 7.2.1 where we have 

assumed a loss factor a=0.6 for different values of R 
C 

Although it seems from expression (8.4.5) that d 
50 

is 

proportional to Q 0.02120 1. e the value of d 
50 will be almost 

independent of the value of Q, it must be remembered that the inlet 

diameter of the cyclone is not involved in the formula so if the 

inlet diameter is kept constant then the spin velocity at entry to 

the cyclone will increase as Q Increases. As a result a higher flow 

rate gives a higher efficiency, or in other words, a smaller value 

of d 
50 . 

On the other hand, if the value of W0 is kept constant as Q 

increases then the value of d 
50 will remain almost unchanged. This 

also suggests that if one wishes to increase the separation 

efficiency of the cyclone by increasing the flow rate, as already 

pointed out in section 7.3, one should increase the flow rate by 

increasing the spin velocity at the entry to the cyclone rather than 

by making the inlet diameter larger and keeping W0 constant. 

The exponent for (p -p) in expression (8.4.5) is -1.2755 and 
P 

this is different from that (for water cyclones) in equations 

(7.2.1) and (7.2.2) where it was shown to be -0.5. The reason for 

this is not clear but clearly the gas cyclones are, to some extent, 

different from liquid cyclones. 

Table 8.5 shows some quantities of the experimental data used 

in the determination of expression (8.4.5) and the values of d 
so 

predicted by this formula. 

It can easily be seen from Table 8.5 that almost all the 

errors for the predicted values of d 
50 are within about 20% of the 

measured values. Bearing in mind the complexity of the cyclone 

geometries Involved in expression (8.4.5) this agreement is good and 



- 239 - 

one can therefore use it with confidence in the design of small gas 

cyclones. 

It should be noted that the experimental data used here is 

limited and may be only suitable for small gas cyclones (diameters 

(pred) Data d d Flow rate Cyclone d 
Cyclone so 50 so I- 

(exp. ) Ref. (m 3 /Sec. ) diameter (Exp) (Pred) d 
50 

(X10 4 (M) 
2 

(M) 
X100 % 

(Xio (Xio 

3.0667 3.3 3.673 11.29 
KI-1 2.0667 5.1 5.005 -1.86 

1.3003 6.7 6.549 -2.25 
3.0667 4.3 4.215 -1.97 

KI-2 2.0667 6.0 5.745 -4.26 2.19 
1.3003 7.3 7.517 2.97 
3.0667 6.0 5.097 -15.05 KI-3 
2.0667 7.2 6.946 -3.53 
3.0667 6.7 5.956 -11.10 KI-4 
2.0667 8.5 8.117 -4.51 Kim & 
3.0667 2.9 3.216 10.91 Lee 

KII-1 2.0667 4.7 4.384 -6.73 
1.3003 6.2 5.735 -7.49 (1990) 
3.0667 2.9 3.692 27.30 

KII-2 2.0667 4.7 5.032 7.06 
1.3003 3.11 6.2 6.583 6.18 
3.0667 4.4 4.464 1.45 

KII-3 2.0667 5.9 6.084 3.12 
1.3003 6.9 7.959 15.36 
3.0667 5.4 5.216 -3.41 

KII-4 2.0667 6.7 7.108 6.08 
1.3003 8.1 9.301 14.83 
3.0667 3.6 3.344 -7.10 

KIII-2 2.0667 4.11 5.1 4.558 -10.62 
1.3003 7.1 5.964 -16.00 
4.7167 3.8 3.277 -13.76 SRI-I 
2.3583 

4.47 
5.9 5.644 -4.34 

4.7167 1.5 1.662 10.78 
SRI-II 

2.3583 
3.66 

2.4 2.862 19.24 
4.7167 0.95 0.830 -12.64 SRI-III 
2.3583 

3.11 
2.1 2.421 15.28 Smith et a 

4.7167 0.64 0.754 17.75 (1979) 
SRI-IV 2.4583 2.54 1.5 1.298 -13.47 

1.1782 2.5 2.244 -10.22 
4.7167 0.32 0.433 35.31 

SRI-V 2.4583 1.52 0.85 0.746 -12.27 
1.1782 1.5 1.284 -14.38 

Tab Ie8.5: Some of the experimental data and the 

calculated values of d 
50 
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(pred) Data Flow rate Cyclone d d d 
Cyclone so so so 

3 (exp. ) Ref. /Sec. ) diameter (Exp) (Pred) d (M 
50 

(X10 4 (M) 
2 

(M) ýM) 
X100 (Xio (XIO ) 

3.1767 2.09 2.133 2.04 
S&H-1 3.8667 1.82 1.822 0.09 

1.6667 3.30 3.437 4.16 
S&H-2 2.7667 2.29 2.310 0.87 

3.8667 1.87 1.776 -5.00 
1.6667 3.42 3.375 -1.33 

S&H-3 2.7667 2.43 2.268 -6.68 
3.8667 1.97 1.744 -11.47 
1.9833 2.55 2.749 7.81 
2.2167 1.905 2.50 2.566 2.64 

S&H-4 3.3167 1.67 1.906 14.16 
3.8667 with 1.58 1.628 3.06 
1.6667 2.79 3.073 10.14 

S&H-5 2.7667 different 2.02 2.065 2.22 
3.8667 l 1.43 1.588 11.06 
1.6667 va ues 3.07 3.017 -1.74 

S&H-6 2.7667 1.90 2.027 6.69 
3.8667 of R&2 

CC 1.46 1.559 6,78 
2.0167 2.30 2.364 2.76 Saltzman 

S. &H-7 2.2167 2.32 2.243 -3.31 and 3.3167 1.72 1.661 -3.45 
1.6667 2.42 2.677 10.61 Hochstras 

S&H-8 2.7667 1.65 1.799 9.01 
3.8667 1.37 1.383 

.0 
ser 

1.6667 2.35 2.628 11 (1983) 
S&H-9 2.7667 1.47 1.766 19.98 

3.8667 1.40 1.358 -2.30 
2.7667 2.23 2.117 -5.05 S&H-10 3.8667 1.71 1.628 -4.77 
1.6667 2.80 3.073 9.75 

S&H- 11 2.7667 2.09 2.065 -1.20 
3.8667 1.63 1.588 -2.57 
1.6667 3.02 3.017 

. -0.11 
S&H-12 2.7667 2.10 2.027 -3.47 

3.8667 1.55 1.559 0.58 
2.7667 1.92 1.844 -3.94 S&H-13 3.8667 1.71 1.418 -17.05 
1.6667 2.65 2.677 1.01 

S&H-14 2.7667 1.87 1.799 -3.81 
3.8667 1.62 1.383 -14.61 
1.6667 2.90 2.628 -9.39 

S&H-15 2.7667 1.89 1.766 -6.57 
3.8667 1.63 1.358 -16.68 

Table 8.5 (cont. ): Some of the experimental data and the 

calculated values of d 
so' where S&H-i stands for the ith 

cyclone used by Saltzman & Hochstrasser (1983). 
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between 15.2-44.7 mm). The prediction of (8.4-5) for cyclone 

conditions beyond the range of cyclone geometries and flow rates 

etc. used here may be not as good. 

8.4.2 Correlation for the Loss Factor 

Although d 
so 

is a very popular measure of the performance of a 

cyclone, a cyclone may not be designed just on the basis of d5o but 

we require the performance of a cyclone for all values of d. We now 

try to use some of the experimental data to work out the 

relationship between the loss factor and the operating conditions, 

fluid and particle properties and the dimensions of the cyclone. If 

the loss factor for a cyclone is known then it is straightforward to 

obtain the efficiency curve for the cyclone by using the numerical 

method as described in this thesis. 

We first use the values of d 
so and other experimental data in 

Smith et al. (1979), Saltzman and Hochstrasser (1983) and Kim and 

Lee (1990), by using the numerical method mentioned earlier in this 

thesis, to obtain the values of the loss factor for each cyclone 

performance (with R 
ns 

=0'7(R. /R 
C 

), as used in sections 8.2.2 and 

8.2.3, the value of Rb being 0.8, see section 8.5). We then use all 

the values of the loss factor and other data in Smith et al. (1979), 

Saltzman and Hochstrasser (1983), Saltzman (1984) and Kim and Lee 

(1990), by applying regression analysis, to obtain the relationship 

between a and the operating conditions, fluid and particle 

properties and the dimensions of the cyclone. 

The plot of a against other cyclone parameters suggests that 

the loss factor may have the following form, 
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oc=k 0- exp (k 
IRc 

+k 
11 

)-exp(k 
2Ro 

+k 
21 

)- exp (k 
3Ru +k 

31 
)- 

exp (k 
4Zc 

+k 
41 

)-exp(k 
5h0 

+k 
51 

)-exp(k 
6h1 

+k 
61 

)- 

exp (k 
7Q 

+k 
71 

)-exp(k 
8W0 

+k 
81 

)- exp (k 
9p 

+k 
91 

) (8.4.6) 

or, alternatively, 

a=K-exp(k IR 
)-exp(k 

2R 
)-exp(k 

3R 
)-exp(k 

4Z 
)-exp(k 

5h0 
)- 

exp (k 
6h1)- exp (k 

7 
Q) - exp (k 

8W0)- exp (k 
9p) 

(8.4.7) 

where K, kI (i=l, 2, ... 9) are constants to be determined. By using 

the loss factors we obtained from the numerical methods and the 

experimental data of Smith et al. (1979), Saltzman and Hochstrasser 

(1983) and Kim and Lee (1990), regression analysis gives 

K=exp(-40.183), k1 =-52.109, k 
2= 

21.400 1 

k3 =-152.30, k 
4=-9 . 2345, k5=136.18, k6=1.356ý (8.4.8) 

k7= 597.6, ka= 0.010646, k9 =1984047.1 

It is now easy to see how the value of the loss factor varies 

with the cyclone geometry and the fluid viscosity for small gas 

cyclones. We will not discuss in detail these variation here but 

give some comparisons of the experimental values of the loss factor 

and the numerical values as predicted by expression (8.4.7) in 

Table 8.6. 

As in section 8.4.1, it is evident that almost all the errors 

for the predicted values of the loss factor are within 20% of those 

obtained from the numerical methods. As noted in section 8.4.1, 

expression (8.4.7) may be only suitable for those gas cyclones whose 

diameters (for instance) are in the range we have investigated. 



- 243 - 

C clone 
RC zC Q w0 a a (urim ) y 

- . 1- Ref (m) (m) 
3 

(m /S. ) (M/S. Eqn. a (pred) 

(Xio 2 (Xio 2 (XIO 4) Num. (8.4.7' X100% 

3.0667 4.263 . 24408 . 21160 -13.31 
KI-1 2.0667 2.873 . 19419 . 19639 1.13 

095 860 15 1.4667 2.039 . 17756 . 18780, 5.77 
1. . 3.0667 4.263 . 22851 . 21617 -5.40 

KI-2 2.0667 2.873 . 20196 . 20064 -0.65 
1.4667 2.039 . 19961 . 19186 -3.88 
3.0667 4.263 . 32271 . 29447 -8.75 

KII-1 2.0667 2.873 . 24720 . 27365 10.70 Kim & 
1.4667 2.039 . 22684 . 26135 15.22 Lee 
3.0667 4.263 . 37661 . 30084 -20.11 (1990) 

KII-2 2.0667 2.873 . 28928 . 27957 -3.36 
1.555 9.6854 1.4667 2.039 . 26606 . 26701 0.36 

3.0667 4.263 . 29121 . 31265 7.36 
KII-3 2.0667 2.873 . 26988 . 29055 7.66 

1.4667 2.039 . 27994 . 27749 -0.87 
3.0667 4.263 . 28421 . 32597 14.70 

KII-4 2.0667 2.873 . 28515 . 30293 6.34 
1.4667 2.039 . 28636 . 28932 1.03 
3.0667 4.263 . 29696 . 27405 -7.72 

KIII-2 2.055 7.874 2.0667 2.873 . 26408 . 25467 -3.56 
1.4667 2.039 . 23106 . 24323 5.27 
4.7167 3.723 . 32823 . 33663 2.56 

SRI-I 2.235 8.129 2.3583 1.862 . 31170 . 28664 -8.04 
4.7167 5.887 . 50720 . 57601 13.57 

SRI-II 1.830 7.274 2.3583 2.944 . 46695 . 48485 3.83_ 

SRI-II 555 1 4 645 4.7167 10.676 . 55284 . 49259 -10.90 Smith 
. . 2.3583 5.338 . 45424 . 40420 -11.02 et al 4.7167 23.089 . 59961 . 54390 -9.29 . (1979) 

SRI-IV 1.270 2.865 2.4583 11.545 . 37657 . 41777 10.94 
1.1782 5.743 

,. 
33605 . 36600 8.91 

4.7167 66.727 . 41215 . 39813 -3.40 
SRI-V 0.760 2.884 2.4583 33.364 . 22593 . 24242 7.30 

1.1782 16.682 . 18955 . 18915 0.21 
3.3167 8.731 . 22242 . 21408 -3.75 S&H-1 7.617 3.8667 10.661 . 23531 . 22582 -4.03 
1.6667 4.595 . 27235 . 26386 -3.12 Salt- 

S&H-2 0.9525 3.808 2.7667 7.628 . 29773 . 29104 -2.25 man 
3.8667 10.661 . 30415 . 32102 5.54 (1984) 
1.6667 4.595 . 31296 . 3036 -2.96 

S&H-3 2.286 2.7667 7.628 . 33344 . 
ý3495 0.45 

3.8667 10.661 . 34279 . 36946 7.78 

Table 8.6: Some experimental data, numerical and predicted 

values of the loss factor (to be continued). 
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C clon 
Rc zc Q w0 a cc(num. ) y 1 - - Ref 

(m) (m) 3 (m /S. ) (m/Sec) Eqn. pred) iR 

(Xio 
2 (xio 2 (xio 4 Num. 

(8.4.7ý X100% 

1.9833 5.468 . 20270 . 18773 -7.39 
2.2167 5.974 . 19458 . 19139 -1.64 S&H-4 7.617 
3.3167 8.731 . 23518 . 

21049 -10.50 
3.8667 10.661 . 22903 . 22204 -3.05 
1.6667 4.595 . 27882 . 25944 -6.95 

S&H-5 3.808 2.7667 7.628 . 29288 . 28616 -2.29 
3.8667 10.661 . 34642 . 31563 -8.89 
1.6667 4.595 . 30991 . 

29859 -3.65 
S&H-6 2.286 2.7667 7.628 . 38052 . 32935 -13.45 

3.8667 10.661 . 41394 . 36327 -12.24 
2.0167 5.560 . 18981 . 18511 -2.48 

S&H-7 7.617 2.2167 5.947 . 
17743 . 18811 6.02 

3.3167 8.731 . 
19174 . 20694 7.93 

1.6667 4.595 . 26682 . 25506 -4.41 
S&H-8 3.808 2.7667 7.628 . 29571 . 

28133 -4.86 
3.8667 10.661 . 

29571 . 31031 4.94 Salt- 
1.6667 4.595 . 30433 . 29355 -3.54 

S&H-9 0.9525 2.286 2.7667 7.628 . 36686 . 32379 -11.74 
man 

3.8667 10.661 . 
32163 . 35714 11.04 (1984) 

2.7667 7.628 . 19487 . 20130 3.30 
S&H-10 7.617 

3.8667 10.661 . 21279 . 
22204 4.35 

1.6667 4.595 . 27963 . 25944 -7.22 
S&H-11 3.808 2.7667 7.628 . 28443 . 28616 0.61 

3.8667 10.661 . 30492 . 31563 3.51 
1.6667 4.595 . 31588 . 

29859 -5.47 
S&H-12 2.286 2.7667 7.628 . 34481 . 32935 -4.49 

3.8667 10.661 . 39081 . 36327 -7.05 
2.7667 7.628 . 16960 . 19791 16.69 

S&H-13 7.617 
3.8667 10.661 . 

19177 . 21829 13.83 
1.6667 4.595 . 24127 . 25506 5.72 

S&H-14 3.808 2.7667 7.628 . 25674 . 
28133 9.58 

3.8667 
. 
10.661 . 24653 . 31031 25.87 

1.6667 4.595 . 27167 . 29355 8.06 
S&H-15 2.286 2.7667 7.628 . 31893 . 32379 1.52 

3.8667 10.661 . 30959 . 
35714 15.38 

Table 8.6 (cont. ): Some experimental data, numerical and 

predicted values of the loss factor (see related 

references). 

In practice, if the loss factor for a cyclone is unknown we may 

use expression (8.4.7) to obtain the loss factor first, and then 
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substitute into our numerical procedure to obtain both the value of 

d 
50 and the efficiency curve for the cyclone performance. 

8.5 The Overflow Leakage 

Up to now almost all that we have discussed has been based on 

the assumption that the overflow 'leakage' may be neglected. The 

' leakage' is the amount of fluid which does not take part in the 

full separating procedure. Instead, it takes a short circuit to the 

overflow carrying with it some of the suspended particles. Leakages 

of the order of 10% to 15% exist in many situations and it is 

therefore worth discussing here the influence of the leakage on the 

overall separation efficiency. Because of the very small amount of 

knowledge available on how to estimate the leakage in this work, we 

will give two practical ways to treat leakage. 

8.5.1 A Simple Model 

First, we assume that only a flux of fluid Q =(I-Le)Q, where 
S 

O<Le<l, actually flows through the cyclone and the separation 

efficiency in the top boundary-layer Is neglected. This means that 

LeQ is the flux of fluid through the top boundary-layer. With these 

assumptions and the assumption that the particle distribution is 

homogeneous at entry to the cyclone, It is straightforward to work 

out the overall separating efficiency of the cyclone, E, by using 
0 

the Stokes drag law, if the separation efficiency for the flux Q is 

known. 

Let E(d be the efficiency of a particle with diameter d1 for 

the flow rate Q and the corresponding spin velocity at the entry to 

the cyclone is W0. The flow fields (solutions of equation (6.2.23)) 
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are the same for Q and W as those for Q =(l-Le)Q and W =(l-Le)W 0 OS 0' 
From equation (6.4.5), we observe that In order that the efficiency 

for the particle with diameter d2 for given Q and W 
Is 

is equal to 

E(d 
I 

), the particle with diameter d2 must satisfy the equation 

w2d2w2d2 
Os 2- 01 

Q 

giving 

1/2 
dd (I-Le) (8.5.2) 

Then, if dx (Q 
S, 

W 
OS 

) is the x% cut size (diameter) for a cyclone 

with flow rate QS and spin velocity at entry to the cyclone Wos, 

then d 
XO-Le) 

will be x(1-1.0% cut size for the total flow rate Q 

which has a leakage of LeQ. For example, In section 7.2.1 we 

predicted a value of d 
so of 7.3p and this would give rise to a value 

of d, 
o,,,, 

=8.91i if Le: --10%, and dsoý9.5g if Le=15%. 

For Stairmand's experimental work (1951) the overall 

efficiency, E09 as a function of the particle diameter is plotted in 

Fig. 8.6 and It is clear that the agreement between theory and 

experiment is reasonable. 
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Fig. 8.6 The overall efficiency for Stairmand's work. 

8.5.2 A Boundary-layer Model 

Secondly, we try to seek the leakage of f luld through the 

boundary-layer at the top wall of the cyclone and then the leakage 

of a particle with a given diameter. 

Assume that across the top boundary-layer the velocities u and 

w have the forms (Bloor and Ingham (1983)), 

u=U f (7)) w=w gW (8.5.3) 

where U and W are the u and v outflow velocities at the outer edge 

of the boundary-layer respectively, and 

f=T-a 3_ (1+2y ). 02+ (2+z)71 

(8.5.4) 

g=27) -7) 
2 

1.0 2.0 3.0 4.0 5.0 6.0 
d (microns) 
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with -X being a constant determined by the scale of the outflow at 

the outer edge of the boundary-layer. 

In terms of the dimensionless merldional leakage flux Q' and L 

the thickness of the boundary-layer 6'=S'(R) which have been 

non-dimensionlized by (P/P 
P) 

I/(i+w) (W 
0RC) 

1/(1+CO) RC =_ S 
QL and 

(II/P 
P) 

W/ (I + CO) (W 
0RC 

-W/(l+w) RC =6 QL9 respectively, the governing 

equation in the top boundary-layer can be written (see Bloor and 

Ingham (1983)) in the form 

dQ` 
LDc 

iF 1 
(8.5.5) 

Q, 2 (31 Q dQ' Q' %dA ttQz' c Q" Rw 
DdLI +D -2 

L 
6V 

L__LL 
=- 

2 Lf 
(311 

(8.5.6) 
dRý R6' fR0 dR c2 dR FIFS 71 R5' 

0 

where 

c1 =2 

c 2= 
12(z+2)/(z+8) 

I 
C0=f (-q)d7) 

0 

DI =C 0 
f(l-g)d-q 

0 

D212f, f2 d7l 
c0 

0 

D3f, (1_82 )dn 

0 

(8.5.7) 

(8.5.8) 

with -n=n'/S'(R) (n' is the boundary coodinate which is normal to the 

top wall of the cyclone but in the opposite direction to the 

wdirection ) and w=1 (for a laminar boundary-layer). 

The boundary conditions for equations (8.5.5) and (8.5.6) are 

Q1 = a/ =0 at R=l. (8.5.9) 
L 
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The fourth order Runge-Kutta method was used to solve equations 

(8.5.5) and (8.5.6) with the singularity at R=1 being treated in the 

way suggested by Bloor and Ingham (1983). 

As pointed out by Bloor and Ingham (1983), Q' and S' are fairly 
L 

insensitive to the value of 7 in the range of -co<T---25. In practice 

,x is a large negative quantity so we have taken the value of y to 

be -80 in all the computations performed here. 

The trajectory of the particle in the boundary-layer may be 

determined by the equivalent of equation (6-4.5), namely, 

QI dQ 
L dö' ý '0 

äj-- jff 71f(-q) - jF 
1 f(7»d-q 

d7l_ -o dö" (8.5.10) 
dR (P -p) d 2W 6' dR 

p02 Q', f (-n) +-g (-q)ö' f (-q)d-q 
187)R 

c 

It is found from the numerical solution of equation (8.5.10) 

that if a particle enters the boundary-layer through its outer edge 

then instead of being released to the main flow again it will be 

discharged to the overflow through the inner part (the region near 

the wall) of the boundary-layer. We assumed earlier that if a 

particle in the main flow has not been separated then it will be 

discharged to the overflow. Further due to the complexity of the 

flow at the entry to the cyclone near R=1, we also assume that all 

the particles that enter into the top boundary-layer do so in an 

area near R=1. 

Because in this section we are only interested In the particles 

which are discharged to the overflow through the boundary-layer, 

from the above assumptions we may choose a position which Is near to 

R=1 where the complexity of the flow near the entry to the cyclone 
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is assumed to have been sufficiently diminished, say R 
býo- 

S' to 

obtain the leakage flux of fluid Q' through this position, i. e. L 
Q' (R ). Q' (R ) consists of two parts: one part, Q' , in which fluid LbLb Lv 

f lows towards the vortex f inder and another part, Q, in which 
LRO 

fluid flows in the opposite direction, i. e. Q'(R )=Q' +Q' (see 
Lb Lv LRO 

Fig. 8.7). Physically the flow near the entry to the cyclone is very 

complicated and it is very difficult to know what exactly happens 

there. Nevertheless, we may assume that within the cyclone the 

separation efficiency can be obtained by combining the separation 

efficiency in the top boundary-layer and that in the main flow. The 

separation efficiency in the main flow has been discussed earlier in 

this thesis while the separation efficiency in the top 

boundary-layer may be calculated in the following way. 

We assume that the separation In the top boundary-layer is 

achieved by the f luld which f lows towards the vortex f inder in the 

upper part of the top boundary-layer. The amount of this f luid may 

be shown to be (see Bloor and Ingham (1983)): 

710 

(R R )=--2nS Q' (R )=-2nS RS' (R )U f (71)d-q 
Lv cb QL Lv b QL b0 

where O<n 
0 
<1 and satisfies f(71o)=O (see equation (8.5.4) and 

Fig. B. 7). 

Now, given a particle with diameter d, we can f ind an 

equilibrium point at R=R 
b. where the drag force applied on the 

particle is balanced by the centrifugal force due to the rotation of 

the flow, say -Q=n d* 
Therefore nd satisfies 

Q, f+ 
(p 

p -P)d2W 02 (-Q) 3,1 f (n)dn=O (8.5.12) 
L 187IRc 

fo 
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R 

77, 

77o 

77 

main flow 

Fig. 8.7 Details of the flow structure at the top 

boundary-layer near R=Rb. 

By assuming that the particle distribution is homogeneous in 

the upper part of the top boundary-layer, the separation efficiency 

for the particle with diameter d can now be shown to be 

7) 
d 

7) 
0 

Eb (d) = 
fo f (-n)d*q/f 

0f 
(-q)d7l. (8.5.13) 

The flux of fluid in the main flow of the cyclone, Q, can now 
S 

be written as QS =Q-Q Lv 
(R 

CRb) 
and the separation efficiency in the 

main f low, E, can be obtained by using the method provided in 
M 

chapters 6 and 7. 

It is now straightforward to work out the overall separation 

efficiency for a given cyclone, 

E (d)Q +E (d)Q (R R 
E (d) m, b Lv cb 

outer edge of the boundary-layer 
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As an example, the overall efficiency curve for the 

experimental data of Stairmand (1951) is shown in Fig. 8.6. It is 

clear that this curve shows a better agreement with the experimental 

data than that obtained in section 8.5.1 where we assumed that all 

the particles in the leakage flow are discharged to the overflow. 

8.6 Conclusions 

Various experimental data has been investigated numerically and 

it is found that the numerical methods used in this thesis predicts 

the experimental findings reasonable well. Correlations for both the 

loss factor and d 
So 

have been obtained from some experimental data 

available which predict well both the loss factor and d 
50 . 

Unlike 

some other formulae which characterize the cyclone performance, the 

formula for d 
so 

developed here contains no constants which need to 

be determined from the cyclone performance so it may be used to 

predict d 
50 

if the cyclone geometry and operating conditions are 

known. 

With a given cyclone geometry one may use these correlations 

to predict both the values of the loss factor and d 
50 and hence to 

predict the efficiency curve numerically providing the predicted (or 

otherwise obtained) value of the loss factor is available. 

The leakage to the overflow has also been treated in two 

practical waysand the efficiency which takes account the separating 

process in the boundary-layer has been calculated. 
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CHAPTER 9A NUMERICAL INVESTIGATION INTO THE EFFICIENCY OF SMALL 

PERSONAL CYCLONES 

9.1 Introduction and Previous Work 

In the last 3 chapters we have investigated both the fluid flow 

in the cyclone and the factors which affect the separation 

efficiency. In chapter 7 various aspects which affect the separation 

efficiency were studied providing we known the value of the loss 

factor. In chapter 8 investigations into some available experimental 

data were mainly on the larger cyclones and therefore the validation 

of the conclusions reached may be limited because the diameters of 

the cyclones used were, typically, greater than 10mm, see for 

example Smith et al. (1979) and Kim and Lee (1990). 

From the f luid dynamics point of view the model used in the 

last 3 chapters should also predict the flow field in small 

cyclones. On the other hand, some experimental work has been 

reported on the separation efficiency (or in other words the 

penetration) for small gas cyclones (although the full dimensions of 

the cyclones used were, sometimes, not reported), see for example, 

Bartley & Breuer (1982), Kenny et al. (1987) and Lid&n & Kenny 

(1990). 

Ogden et al. (1983) studied the flow dependence of the Casella 

cyclone and found that the relationship between the penetration, 

P, and flow rate through the cyclone has the form 
en 
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aQ 
Nd 

en ae 
(9.1.1) 

where d is the aerodynamic diameter of the particle which 
ae 

penetrates through the cyclone, Q is the f low rate and a and N are 

constants which have to be determined (in the case that particles 
1/2 

are spherical and in the Stokes regime d. 
'ýd(p , where p is 

P/PW W 
the density of water, see Vincent (1989)). They found for the flow 

rates they investigated that if (I-P 
en 

) 0.5 was plotted against the 

aerodynamic diameter of the particle, a straight line was obtained 

and the penetration curve compared well with the BMRC definition for 

respirable dust. 

Using a regression analysis method Lid&n and Kenny (1990) gave 

an empirical model which can predict the penetration curve for 5 

versions of the British gas cyclone by applying the so called 

Blachman-Lippman equation (Blachman and Lippman (1974)) 

p 
en 

= 0.5(1-tanh(k 
1x+k2x2)) 

1/[l + exp(2(k 
Ix+k2 

X2))] (9.1.2) 

d -d 
where X ae 50 (9.1.3) 

d 
ae 

By using a regression analysis they were able to predict the 

constants k1 and k2 in equation (9.1.2) and then the penetration 

curves for 4 versions of the British small gas cyclone, namely, 

Higgine BCIRA, Danish version, SIMPEDS 1-hole and two SIMPEDS 

4-holes. They found that their model gave good agreement with their 

experimental investigation. LId&n and Kenny (1990) found for the 

SIMPEDS (1-hole) cyclone that the value of d 
50 

decreases at a rate 
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almost inversely proportional to the flow rate through the cyclone. 

They claimed that the penetration curves for the British cyclones 

investigated had some differences in shape with those obtained by 

several earlier investigators, see Higgens and Dewell (1967), 

Maguire et al. (1973) and Ogden et al. (1983), who found that the 

penetration curves appeared to follow the BMRC definition of 

respirable dust, although with ad so slightly less than 5p. 

Kenny et al. (1987) investigated several different samplers, 

including the Casella cyclone, and again by using regression 

analysis, found that the relation between the penetration, the 

separation efficiency E and aerodynamic diameter is 

0.5 ln (E/P )=k+kd+kd2 
en 01 ae 2 ae 

-with k., k1 and k2 constants which may vary with the flow rate and 

are to be determined from the experimental data. They also found 

that their curves were different in shape to the BMRC definition of 

respirable dust. It can be seen that the penetration curves of Kenny 

et al. (1987) fitted well with their experimental data, but the 

constants in the regression equation (9.1.4) need also to be 

determined from the experimental data, as we have seen from Lid6n 

and Kenny (1990). Also, for different flow rates, different 

regression equations may be obtained, i. e. one can obtain the 

penetration curve only after the experiments have been performed. 

Bartley and Breuer (1982) investigated the possibility of 

optimizing the performance of the 10mm cyclone. The model which was 

used to predict the efficiency curve was as follows (see also Held 

and Cooper (1979)) 
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d 

ae exp[-ln(d'-iL )/(20_2)j 

E (d 
ao 

)=1- --c 
c dd` 

0' -F2-7r d' 

= 0.5 + 0.5erf[(ln(d 
ae 

)-p 
c 

)/((r 
c 
4-2)] (9.1.5) 

where p and a- are constants to be determined. It is clear that the 
CC 

parameters pC and (r 
C 

characterize the cyclone performance and the 

50% cut-off diameter d 
so 

is given by 

50 

where a, is related to the sharpness of the cut since 
C 

d aEl 1 (9.1.7) 
d=d a- ýF2-Tr so c 

Again using regression analysis the values p and c were determined 
CC 

by fitting expression (9.1.5) to the experimental data (certainly pC 

and (r 
C 

will vary for different flow rates). It was found by Bartley 

and Breuer (1982) that the recommended flow rate for the 10mm 

cyclone investigated (MSA cyclone) was not the best one which fitted 

the BMRC definition for respirable dust but a flow rate of 1.2 lpm 

seemed to follow the definition quite well. In order to determine 

the values of the characterizing parameters p and c- in the 
cC 

vicinity of a fixed flow rate Q0, they used a truncated Taylor's 

series in lnQ. Expanding about lnQ 
0, 

this gives 

it c 
(Q) = 11 c 

(Q 
0)+ cc A 

In (Q/Qo ) 

ec (Q) = a-c (QO )+ (x 0' 
in (Q/Q, ) 

(9.1.8) 

(9.1.9) 

so the flow dependence is then characterized by the constants cc 11 and 

a 
(r 

which must then be determined f rom the experimental data which 
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depends in turn not only on the flow rate Q but also on the flow 

rate Q 
o» 

As d 
so 

is a very important parameter for the performance of a 

cyclone many authors have paid particular attention to it. One of 

the most popular empirical formulae for d 
50 

is 

d 
so = kQ-li (9.1.10) 

where k and N are constants which characterize the cyclone 

performance in a similar way that p and c- did in Bartley and 
cC 

Breuer's work (1982). Usually the values of k and N differ from 

cyclone to cyclone, see for example Ogden et al. (1983). For Casella 

cyclones Ogden et al. (1983) found that the value of the index N is 

about 0.7. 

It seems that in order to predict the cyclone penetration (or 

separation efficiency) curve appropriately one may need at least 2 

parameters which will characterize the cyclone performance. This is 

because, mathematically, in order to determine the shape of the 

curve one needs at least its slope and another parameter, say for 

example d 
so* 

In order to investigate the cyclone performance more 

fundamentally, Boysan et al. (1982), Ferguson (1989) and Wen et al. 

(1990) have solved the full governing flow equations in order to 

study the fluid dynamics in the cyclone. In the last 3 chapters we 

have been able to predict the cyclone performance reasonably well 

for those cyclones with diameters which are typically greater than 

10mm. Although many experimental investigations are available for 

small gas cyclones, it Is, nevertheless, worth studying the 



- 258 - 

performance of this kind of personal cyclone further by numerical 

techniques, as performing calculations form a cost effective 

alternative to performing the corresponding experimental work. 

In this chapter we use a similar numerical technique to thdt 

described in the last 3 chapters of this thesis in order to 

investigate the small gas cyclone (10mm in diameter) and to see 

whether, the previous work in this thesis is valid for this kind of 

personal cyclone. Details of the techniques used here may be found 

in the previous chapters and only the extra information that is 

required will be presented here. For the geometry of the cyclone and 

the computational domain of the problem see Fig. 1.4 and Fig. 6.1, 

respectively. 

9.2 Mathematical Model and Numerical Techniques 

All details of the mathematical model and the numerical 

techniques used in this chapter are similar to those used in the 

last 3 chapters and hence will not be described again here. 

9.3 Results and discussion 

The Casella 10mm personal cyclone with different flow rates has 

been investigated in this chapter. The mesh size used in the 

numerical results are 1/80 in both the R- and z-directions since a 

further decrease in the mesh size results in almost no difference in 

the separation efficiency. Although in the last chapter we gave an 

empirical formula for predicting the value of the loss factor, it is 

only appropriate for cyclones for which the diameter is much greater 

than 10mm and it is not therefore suitable to use it for cyclones 

which have diameters of 10mm that have been investigated In this 
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chapter. The numerical model employed earlier in this thesis 

requires a value of d 
so or of the loss factor (which may be obtained 

from the experimental data or by other means). In this chapter the 

value of d 
50 used is obtained from the experimental results (Kenny 

et al. (1987)) and hence the loss factor may be found. Then the 

separation efficiency can be determined by the numerical method 

described in chapters 6,7 and S. 

Fig. 9.1 shows the penetration curve obtained from the numerical 

technique using R 
ns 

=0.7Ru/R 
C 

(R 
U 

is the under-f low radius of the 

1.0 

0.8 

0.6 
. _f 

0 
0.4 

0.2 

0.0 

Fig. 9.1 Penetration curves obtained from the numerical 

technique and from the experimental data of Kenny et al. 

(1987). 

46 10 
d.. (microns) 
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cyclone) and including the effects of leakage as predicted in 

chapter 8 of the thesis. Also shown in Fig. 9.1 is the experimental 

data given by Kenny et al. (1987) with a flow rate of 1.9 lpm for 

the PVA particle. The horizontal axis in Fig. 9.1 is the aerodynamic 

diameter (in microns, 11) whilst the vertical axis is the 

penetration, P, which has the following relationship with the 
en 

separation efficiency E 

P =l-E 
en 

(9.3.1) 

It can be seen from Fig. 9.1 that the penetration curve obtained 

from the numerical technique for a solid aerosol particle shows 

rather a poor agreement with that obtained from the experimental 

data (Kenny et al. (1987)). The upper portion of the penetration 

-curve obtained from the numerical technique is well below that 

obtained from the experimental data. This suggests that a further 

increase in the value of R (which define the cut-off region such 
ns 

that if R<R there will be no separation (see chapter 8)), above 
ns 

0.7RPc may be needed. Another observation from Fig. 9.1 is it is 

clear that the leakage for this kind of cyclone seems to be very 

small and in fact is almost negligible. On increasing the value of 

R 
ns 

to 0.9Ru/R 
C, 

the upper portion of the penetration curve as 

obtained from the numerical technique becomes closer to that 

obtained from the experimental data but the lower portion of the 

curve is still higher than that obtained from the experimental data. 

This may mean there is a small (or zero) leakage for this kind of 

the cyclone. The numerical penetration curve obtained from the 

numerical method by putting R 
ns=l' 

lRu/R 
C 

and a zero leakage is also 

shown in Fig. 9.1 and, clearly, in this case the agreement between 
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the numerical results and the experimental data is much better than 

that in the situations where a smaller value of R has been used. 
ns 

This suggests that a value of 1.1RAfor R 
ns 

is required and that 

a leakage of zero may be required for small cyclones. 

In order to confirm if the above suggestions are valid for 

other kinds of aerosols and flow rates, numerical results with 

R 
ns 

=1.1RA 
C 

and a zero leakage are compared with the experimental 

results of Kenny et al. (1987). Fig. 9.2 shows the penetration curves 

for different flow rates from 1.3 Ipm to 2.5 Ipm by using the 

numerical technique described in the last 3 chapters of this thesis 

with R 
ns 

=0.7Ru/R 
C 

and including a leakage. The corresponding 

experimental results for liquid particles (Silicone oil, S200) are 

drawn from the work of Kenny et al. (1987) and are also shown in 

-Fig. 9.2 for comparison. Again, as in the situation for solid 

particles, it can be seen that the numerical penetration for the 

particles with diameters larger than d 
50 

is lower than that obtained 

experimentally whilst that for the particles with a diameter smaller 

than d 
so 

is higher than that obtained experimentally. A further 

increase of R 
ns 

from 0.7Ru/R 
C 

to 0.9RP 
C 

gives the numerical 
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0.0 

Fig. 9.2 Penetration curves obtained from the numerical 
technique with R 

ns 
=0.7R, /Rc and with a leakage obtained by 

the method shown in section 8.5 for different flow rates 

and from experimental data of Kenny et al. (1987). The 

flow rates for the penetration curves (from right to left) 

are 1.3,1.5,..., 2.5 lpm respectively. 

penetration in better agreement with the experimental data as shown 

in Fig. 9.3. 

The numerical results obtained with R 
ns 

=1.1RAC and a zero 

leakage are shown in Fig. 9.4 where again it may be seen, as in the 

case of solid aerosols, that the numerical penetration gives much 

46 10 
d.. (microns) 
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Fig. 9.3 Penetration curves obtained from the numerical 

technique with R 
ns 

=0.9Ru/R 
C 

and with a leakage obtained by 

the method shown in section 8.5 for different flow rates 

and from experimental data of Kenny et al. (1987). The 

flow rates for the penetration curves (from right to left) 

are 1.3,1.5,..., 2.5 lpm respectively. 

better agreement with the corresponding experiments (Kenny et al. 

(1987)). 

Kenny et al. (1987) have also studied the penetration curve at 

the same flow rate for different versions of the Casella cyclone and 

argued that the difference between the penetration curves of the 

cyclone with 1 inlet hole and that with 4 inlet holes was not 

46 10 
d.. (microns) 
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Fig. 9.4 Penetr 

technique with 

different flow 

et al. (1987). 

(from right 

respectively. 

ation curves obtained from the numerical 

R 
ns 

=1.1RP 
C 

and with a zero leakage for 

rates and from experimental data of Kenny 

The flow rates for the penetration curves 

to lef t) are 1.3,1.5,..., 2.5 lpm 

significant. So at this stage we may confirm that a symmetrical 

inviscid flow model within the cyclone may be considered a valid 

assumption for a small gas cyclone, Le the techniques used in the 

last 3 chapters can be used for small gas cyclones but the value of 

R 
ns 

should be 1. lRu/Ru and a zero leakage must be assumed. 

The inviscid f low model used in this thesis was based on the 

468 10 
d.. (microns) 
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assumption that the Reynolds number at the inlet of the cyclone is 

sufficiently large that the spin velocity in the cyclone may be 

assumed to have the form 

wR = constant +c (9.3.2) 

where c is a very small positive quantity. For small cyclones the 

values of the Reynolds number may not be sufficiently large to 

assume that the flow may be treated as inviscid and some adjustments 

due to the viscosity of the fluid may be required. It is well known 

(Bloor and Ingham (1987)), that if the viscosity is included in the 

azimuthal direction, the spin velocity is governed by an ODE. whose 

solution is such that near R=O the spin velocity is zero. 

For large values of the Reynolds number the solution of the ODE 

is in good agreement with expression (9.3.2) for most values of R 

(except those very near R=O) whilst for small values of the Reynolds 

number the agreement between the numerical solution and expression 

(9.3.2) is only good away from R=O. This phenomenon is shown 

schematically in Fig. 9.5 and it is probable that this is the reason 

why we need to take a larger value of R 
ns 

for the small cyclones 

than that required for the larger cyclones studied earlier in this 

thesis. 

It should be noted that the numerical model used here requires 

all the dimensions of the cyclone and the operating conditions. Due 

to the lack of information about all the dimensions of the cyclones 

used in many of the experimental investigations we can not, at the 

moment, compare our mathematical model with any other experimental 

data. 

It is also of interest to note that the results obtained 
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R 

Fig. 9.5 The spin velocity in a cyclone for different 

values of the Reynolds number (schematic). 

experimentally for different kinds of aerosols (physical properties 

such as shape, solid or liquid) are usually different, see for 

example Kenny et al. (1987), where a value of d 
so 

for the liquid 

aerosol was 5.2p whilst a value 4.8[t was obtained for the solid 

aerosol for the same cyclone and the same operating conditions. The 

numerical method used here disregards the difference in the physical 

properties of the particles and only requires the diameter and 

density of the particle. In order to study these differences further 

investigation on the interaction between the fluid and the particle 

will be required. 
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9.4 Conclusions 

The mathematical model and numerical techniques used in the 

last 3 chapters have again been employed in order to investigate the 

separation efficiency of small gas cyclones whose diameters are, 

typically, about 10mm. The numerical results show a reasonable 

agreement with those obtained experimentally. 

It is found that in order to use the model and numerical 

methods for small gas cyclones, the cut-off region which we 

introduced in chapter 8 needs to be larger than when the diameters 

of the cyclones were greater than 10mm. Due to the absence of the 

full dimensions in the experimental work, we are unable to compare 

the present model with any other experimental data. However, the 

results we have obtained for the small gas cyclone suggest that the 

cut-off region should be about 1.1R. /Rc rather than 0.7RM 
C 

as used 

for the larger cyclones. 
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CHAPTER 10 CONCLUSIONS 

10.1 Oscillatory Flows 

In the f irst part of this study, the two-dimensional, 

incompressible viscous fluid flow induced by oscillating cascades of 

cylinders with different cross-sectional shapes have been studied. 

All problems involve solving numerically the Navier-Stokes equations 

in terms of the streamfunction and vorticity. Most of the numerical 

solutions have been obtained using a second-order-accurate 

finite-difference scheme which is based on a modified procedure to 

preserve accuracy and iterative convergence at large values of the 

Reynolds number. The main difficulties encountered In obtaining 

accurate numerical solutions are, (I) the presence of the 

singularity in vorticity near the sharp corners of the body; 

(ii) the satisfactory treatment of the boundary conditions at large 

distances from the bodies, and (III) the development of efficient 

numerical techniques which are suitable for the different geometries 

of the cascade. To overcome the first difficulty the appropriate 

forms of the analytical solution In the vicinity of the singularity 

have been derived and some constants involved in the analytical 

solutions have been determined using the information in the vicinity 

of the singularity. In order to satisfactorily deal with the 

boundary conditions at large distances from the cascade appropriate 

asymptotic solutions which are valid at large distances from the 

cascade have been developed and put into an easily usable form for 



- 269 - 

numerical calculations. In order to overcome the third difficulty, 

transformations have first been introduced in order to ensure that 

there are more mesh points near to the cascade, where the flow 

changes dramatically, than at large distances from it. Then a 

second-order-accurate finite-difference scheme, which is based on a 

modified procedure to preserve accuracy and iterative convergence at 

large values of the Reynolds number, and which Is suitable for a 

wide range of two-dimensional incompressible, viscous, unsteady flow 

problems has been developed. Using this numerical scheme accurate 

results have been obtained to a variety of problems and they show 

good agreement with those obtained In some related experimental 

investigations. Further, for moderate values of the frequency 

Reynolds number, Rb, a series truncation and a numerical technique 

have been used to investigate the cascade flow (chapter 3) and the 

'results from these two methods show good agreement. 

By using a conformal mapping technique and the Boundary Element 

Method the secondary f lows induced by cascades of square and 

circular cylinders have been investigated for RS?: 0(1) in chapters 4 

and 5, respectively. At higher values of the streaming Reynolds 

number, the streaming f low induced by the cascade of circular 

cylinder becomes asymmetrical, and a stability analysis has been 

derived. The theoretical predictions of when instabilities first 

appear are in good agreement with some related experimental 

investigations. The numerical results and stability analysis have 

not been presented here for the streaming flow induced by an 

oscillating cascade of bodies with other shapes but, in principle, 

the numerical methods derived in this chapter may be applied to 

these types of cascades. 
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As the Reynolds number increases, say R in chapter 2 or R in 
eS 

chapters 4 or 5, then finer mesh sizes are clearly required in order 

to obtain accurate solutions. However, the computer time is too 

expensive to obtain convergent and accurate solutions for large 

values of the Reynolds number If the present methods are used. So, 

clearly, improvements that could be made to the present work in the 

future is the introduction of more efficient solvers, such as the 

multi-grid technique, when solving the present problems at large 

values of the Reynolds number. 

Another possible extension of the present work is to 

investigate the stability of the steady cascade flow, as in the case 

investigated by Ingham et al. (1990a), and the unsteady cascade 

flow, as studied in chapter 2. It is postulated that the stability 

analysis presented in chapter 5 for the streaming cascade flow can 

be used in these two cases without encountering many difficulties. 

So far most of the theoretical investigations on the fluid flow 

induced by harmonically oscillating bodies are based on perturbation 

and/or boundary-layer techniques. In most cases the perturbation 

parameter chosen is c, which is assumed to be very small, and then 

attention is directed as to how the flow changes with another 

independent parameter, say Rb. when c is very small. However, the 

experimental results of Tutsuno (1974) showed for a given value of 

Rb that there are large changes in the flow structure as c increases 

from being very small to a small finite value. In order to 

investigate how the flow changes with c when Rb is very large it may 

be interesting to use the quantity 1/R 
b, 

in which Rb is assumed to 

be very large, as the perturbation parameter and study how the 

structure of the flow changes as a function of c. 
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10.2 Industrial Cyclones 

In the second part of this thesis systematic investigations on 

the fluid flow In the cyclone and the separation efficiency of the 

cyclone have been performed. In particular, 

(I) An accurate numerical model for the simulation of the flow 

in the cyclone at very high values of the Reynolds number has been 

presented. It has been found that the functional form of the angular 

momentum given to the fluid at the entry to the cyclone is described 

well in this model since any small perturbation in its value 

produces only a small change in the predicted separation efficiency. 

The theoretical efficiency curves based on the flow model have been 

given which also compare well with those which have been obtained 

experimentally. 

(il) The effects of changing the various parameters that occur 

I in the problem on the separation efficiency of the cyclone have been 

investigated. The most Important factors which affect the fluid flow 

and the separation efficiency of the cyclone have been identified. 

This provides us with a basic understanding of how the geometry of 

the cyclone affects the separation efficiency and therefore gives a 

clear guide as to how the cyclone should be designed. 

(III) Using a regression analysis correlations of the value of 

d 
so and the loss factor for the the cyclone are obtained and again 

these results show reasonable agreement with the experimental data. 

Unlike some previously published formulae which characterize the 

cyclone performance the formula developed here contain no constants 

which need to be preassigned and hence it may be used with 

confidence to predict d 
50 given the geometry of the cyclone and the 

operating conditions. 
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(iv) The differences in the performance between large 

industrial and small personal cyclones (typically 10mm in diameter) 

have been identified. 

In this thesis the spin velocity in the main body of the 

cyclone has been assumed to be a free vortex flow, Le wR=constant, 

and this assumption has been shown to be in reasonable agreement 

with most of the available experimental data. However, this 

agreement becomes worse as R tends to zero since the viscous effects 

near the axis of the cyclone become more important and eventually 

dominate the flow. Thus it is not appropriate to use the free vortex 

flow for the spin velocity in the vicinity of R=O in order to 

calculate the separation efficiency of the cyclone. In order to 

overcome this difficulty a value of R=R was assumed such that no 
ns 

separation occurs in the region O: sR--R the quantity R is 
ns ns 

actually unknown and its value must be obtained empirically. In 

reality separation does occur to some extent in the region O<R<R 
ns 

and therefore a better model is required for determining the spin 

velocity near the axis of the cyclone. This model should take into 

account the effects of viscosity near the axis on the cyclone in a 

manner similar to that described by Bloor and Ingham (1983). The 

spin velocity as determined by Bloor and Ingham (1983) has been 

shown to be in good agreement with some related experimental data 

even in the region near to the axis and hence could be used. The 

estimation of the vorticity in the recirculation region in the upper 

part of the cyclone can then be performed in a similar way to that 

as described in chapter 6 since the flow can still be treated as 

inviscid in the region of flow not close to the axis of the cyclone 

and hence the theory of Batchelor (1956) is still valid. 
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Alternatively, an improvement in the prediction of the spin velocity 

can be achieved by using an Inviscid model, as shown in this thesis, 

In the main body of the cyclone, and a viscous model, - as developed 

by Ferguson (1989), in the vicinity of R=O, and then matching these 

two solutions. Clearly the model of Bloor and Ingham (1983) will be 

easier to apply than the alternative model described above but the 

alternative model has the advantage that the viscous effects can be 

taken into account in both the spin and the cross-plane velocity 

components. Hence an Improvement in the agreement between the 

theoretical and experimental results for the cross-plane velocities, 

u and v, will also be achieved. 

In the mathematical model used in this thesis the 

three-dimensional flow at the entry to the cyclone is modelled by a 

two-dimensional axisymmetric f low, and the distribution of the 

velocity in the cyclone depends critically on this entry condition. 

The distribution of the velocity in the main body of the cyclone 

from this model has been shown to be In good agreement with some 

related experimental data. However, in practice the flow near the 

entry to, or more precisely in the upper part (in the cylindrical 

portion, say) of the cyclone is three-dimensional, especially for 

those small cyclones which operate with low flow rates. Hence a full 

three-dimensional investigation Is needed in order to model the flow 

in this part of the cyclone (but not including the f low in the 

overflow pipe) more accurately. As indicated by some experimental 

data the flow in the lower part and in the region of the overf low 

pipe of the cyclone is almost axisymmetric. Hence the axisymmetric 

model used in this thesis, or alternatively that developed by Bloor 

and Ingham (1983), can be used to model the f low In this region of 
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the cyclone. The solutions In these two region must then be matched. 

The three-dimensional investigation would require a large amount of 

computer storage and time and hence an adaptive mesh algorithm 

together with a multi-grid technique would be essential if accurate 

solutions are to be found. This adaptive algorithm could allow a 

f ine mesh to be used In regions of the f low where high gradients 

occur, such as near to the entry to the cyclone, and relatively 

coarse mesh in regions of the flow where small gradients occur, such 

as far from the walls of the cyclone. The size of the mesh can be 

determined by estimating the gradients of the velocity of the flow 

in different directions. Special care is needed in the entry region 

of the cyclone since the flow in this region Is very complicated and 

therefore the treatment of the boundary conditions here requires 

special attention. Energy losses due to the sudden expansion of the 

If low in the entry of the cyclone need to be estimated and some 

information about the flow even in the inlet pipe near to the entry 

is also required since the vorticity in the entry to the cyclone 

must be determined. 
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