
Search-Based Generation of Human Readable Test
Data and Its Impact on Human Oracle Costs

by

Sheeva Afshan

Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy at

The University of Sheffield

Department of Computer Science

March 2013

Abstract

The frequent non-availability of an automated oracle makes software testing

a tedious manual task which involves the expensive performance of a human

oracle. Despite this, the literature concerning the automated test data gen-

eration has mainly focused on the achievement of structural code coverage,

without simultaneously considering the reduction of human oracle cost.

One source of human oracle cost is the unreadability of machine-generated

test inputs, which can result in test scenarios that are hard to comprehend

and time-consuming to verify. This is particularly apparent for string inputs

consisting of arbitrary sequences of characters that are dissimilar to values a

human tester would normally generate. The key objectives of this research

is to investigate the impact of a seeded search-based test data generation

approach on test data oracle costs, and to propose a novel technique that

can generate human readable test inputs for string data types.

The first contribution of this thesis is the result of an empirical study

in which human subjects are invited to manually evaluate test inputs gen-

erated using the seeded and unseeded search-based approaches for 14 open

source case studies. For 9 of the case studies, the human manual evaluation

was significantly less time-consuming for inputs produced using the seeded

approach, while the accuracy of test input evaluation was also significantly

improved in 2 cases.

The second contribution is the introduction of a novel technique in which

a natural language model is incorporated into the search-based process with

the aim of improving the human readability of generated strings. A human

study is performed in which test inputs generated using the technique for 17

open source case studies are evaluated manually by human subjects. For 10

of the case studies, the human manual evaluation was significantly less time

consuming for inputs produced using the language model. In addition, the

results revealed that accuracy of test input evaluation was also significantly

enhanced for 3 of the case studies.

Acknowledgement

First and foremost, I would like to acknowledge the enthusiastic and sup-

portive guidance of my supervisor, Dr Phil McMinn. His helpful discussions

and extensive knowledge of this subject has provided the means to develop

new approaches to solve problems. I am indebted to Dr Mark Stevenson

for providing the source code of the language model and for his technical

assistance. Also, I would like to thank Dr Neil Walkinshaw for his useful

comments on the thesis.

I would like to say a special thank you to all the people in my research

group (Verification and Testing) who have provided help during my studies,

and for completing my questionnaires and their beneficial feedback.

I am also thankful to the project sponsor. This work would not have

been possible without the financial support, EPSRC, for which I am eternally

grateful.

Finally, I would like to thank my beloved parents, my dear auntie and

my fiancé for their understanding, endless patience, and constant encour-

agement.

Publications

• S.Afshan, P. McMinn and M. Stevenson. Searching for Readable

String Test Inputs using a Natural Language Model to Reduce Hu-

man Oracle Cost. In Proceedings of the International Conference

on Software Testing, Verification and Validation (ICST 2013). IEEE

Computer Society.

• S.Afshan and P. McMinn. An Investigation into Qualitative Human

Oracle Costs. Proceedings of the Psychology of Programming Interest

Group Annual Workshop (PPIG 2011).

Contents

1 Introduction 1

1.1 Overview . 1

1.2 The Topic Explored in This Thesis 2

1.3 Overall Research Aims and Objectives 3

1.4 Research Hypotheses . 4

1.5 Contributions of this Thesis 6

1.6 Overview of The Structure of The Thesis 7

2 Literature Review 9

2.1 Introduction . 9

2.2 Structural (White-Box) Testing 9

2.2.1 Basic Concepts . 11

2.2.2 Random Testing . 13

2.2.3 Symbolic Execution 13

2.3 Meta-heuristic Search Techniques 14

2.3.1 Hill Climbing . 16

2.3.2 Simulated Annealing 16

2.3.3 Evolutionary Algorithms 18

2.4 Search-Based Test Data Generation 23

2.4.1 Fitness Function for Branch Coverage 24

2.4.2 IGUANA . 25

2.4.3 Applying Alternating Variable Method 27

2.4.4 Applying (1+1) Evolutionary Algorithm 28

2.4.5 Search-Based Test Data Reduction Techniques 30

2.4.6 Seeded Search-Based Techniques 31

i

CONTENTS ii

2.5 Test Data Evaluation . 35

2.5.1 Pseudo Oracle . 36

2.5.2 Specification-Based Oracle 38

2.5.3 Invariant-Based Oracle 39

2.5.4 Metamorphic Based Oracle 39

2.5.5 Consistency Oracle . 41

2.5.6 Heuristic Oracle . 41

2.5.7 Human Oracle . 42

2.6 Mutation Analysis . 43

2.7 Software Engineering Empirical Studies 46

2.7.1 Human Empirical Studies 47

2.7.2 Crowd-Sourcing in Empirical Studies 49

2.8 Conclusions . 52

3 An Investigation into a Seeded Search-Based Approach For

Branch Coverage 53

3.1 Introduction . 53

3.2 The Search-Based Technique 54

3.3 Experimental Study Methodology 55

3.3.1 Case Studies . 56

3.3.2 Human Study Protocol 58

3.3.3 Participant Selection 59

3.3.4 Generating Test Inputs 63

3.3.5 Basic Definitions . 64

3.3.6 Research Questions . 65

3.4 Experimental Results . 66

3.5 Threats to Validity . 82

3.6 Conclusions . 85

4 An Investigation into a Seeded Search-based Approach For

Oracle Cost 86

4.1 Introduction . 86

4.2 Experimental Study Methodology 87

4.2.1 Test Input Selection 88

CONTENTS iii

4.2.2 Human Study Protocol 88

4.2.3 Participant Selection 90

4.2.4 Usable Judgements . 91

4.2.5 Basic Definitions . 91

4.2.6 Research Questions . 92

4.3 Experimental Results . 92

4.4 Threats to Validity . 99

4.5 Conclusions . 100

5 Test Data Generation Using A Language Model 102

5.1 Introduction . 102

5.2 Language Models . 104

5.3 Incorporating a Language Model Into Search-Based Test In-

put Generation . 107

5.4 Experimental Study Methodology 109

5.4.1 Case Studies . 110

5.4.2 Generating String Test Inputs 113

5.4.3 Test Input Selection 114

5.4.4 Human Study Protocol 114

5.4.5 Participant Selection 115

5.4.6 Usable Judgements . 116

5.4.7 Research Questions . 116

5.5 Experimental Results . 117

5.6 Threats to Validity . 127

5.7 Conclusions . 128

6 Conclusions and Future Work 130

6.1 Summary of Achievements . 130

6.1.1 Hypotheses . 130

6.1.2 Contributions of this Thesis 132

6.2 Summary of Future Work . 133

6.2.1 Investigating Various Seeding Schemes 133

6.2.2 Managing Fault-Finding Capability 133

6.2.3 Improving Readability 134

CONTENTS iv

6.2.4 Test Input Generation for Various Data Types 135

Bibliography 137

Chapter 1

Introduction

1.1 Overview

An important development in Software Engineering Research was the intro-

duction of what became known as “Search-Based Software Testing” in 1976

by Miller and Spooner [88]. The approach was aimed to apply search-based

optimisation techniques to automate or partially automate software testing.

However, despite several improvements to the technique over the last few

decades, the uptake in industry has been low and software testing is still a

laborious and expensive process.

Test data evaluation is a critical component of the software testing pro-

cess that monopolise a large proportion of software testing budgets. With-

out this phase, software testing fails to achieve its fundamental objective

of revealing the system’s failures or ensuring it operates as expected. This

process is however subject to the existence of an automated mechanism,

commonly referred to as an oracle, that can determine the expected be-

haviour of the program under test (Figure 1.1) [87]. As a results, test data

evaluation is performed manually by human testers for many real applica-

tions. This problem is commonly referred to as the oracle problem, and has

been a challenging issue for several decades.

In addition, test data generation using the conventional search-based

approaches often leads to extensive sets of arbitrarily looking values that

are difficult to comprehend from a human perspective. Manual evaluation

Chapter 1 2

Program'Under'
Test'(PUT)'

Results'As''
Expected?'

Test'Input'
Generator'

Specifica?on,'
Requirements,'

etc'

'Test'Input'

Test'Data'Execu.on' Test'Data'Evalua.on'

Pass/Fail'Actual'
Output'

'Test'Input'

Test'Data'Genera.on'

ORACLE'

'Output''

Figure 1.1: The essential phases of software testing: test data generation,

test data execution and test data evalution

of these test inputs can be a tedious, error-prone and time consuming task.

The main objective of this thesis is to propose and develop techniques that

can reduce the human oracle effort associated with automatically generated

test inputs.

1.2 The Topic Explored in This Thesis

Conventional approaches to automatic test data generation [45, 54, 79] tend

to produce large volumes of arbitrarily looking and difficult-to-read inputs

as long as branch coverage (a common objective for structural testing) is

obtained. However, the output of a program, when executed with a gener-

ated set of test inputs, must still be evaluated for its correctness. A human

oracle is often required to comprehend the test scenarios encoded by such

inputs in order to decide wether the program’s output is as expected. This

forms a significant cost frequently referred to as human oracle cost [51, 82].

One source of human oracle cost originates from the quantity of the auto-

matically generated test cases, and consequently the corresponding amounts

of oracle data required for comparison. Automatically generated test suites

often contain a large number of test cases that satisfy the same testing ob-

jectives. Test suite reduction techniques [126] can be applied to condense the

number of test cases in a test set, and also reduce the relevant evaluation

costs. A complete description of these techniques is presented in Section

2.4.5.

Chapter 1 3

Another major source of oracle cost is the difficulty of reading these

test cases. In particular, string values generated by automatic test in-

put generators often appear as arbitrary sequences of characters such as

“f#p%F@}UM%5.*6ZY”for an email address, rather than natural, instantly-

readable strings such as “James@gmail.com”. This results in test scenarios

that are difficult to interpret and test cases that are time-consuming to man-

ually evaluate. This effort adds a cost to the testing process, referred to as

the qualitative human oracle cost [82], and is the main topic of this thesis.

Seeded search-based test data generation approaches can produce read-

able test cases by incorporating additional knowledge into the search mech-

anism [42, 82, 125]. This knowledge is often in the form of readable test

cases that can be used as seeds to commence the search mechanism. These

values can be collated from various resources including program’s source

code, specifications, code comments [82], or the programmer themself. A

recent approach sources readable strings from human-created web pages us-

ing automated web queries [84, 105]. This approach, however, requires the

program to have useful identifiers that can be reformulated into web search

queries, otherwise pages containing suitable strings may not be found.

The application of the seeded search-based approaches depend upon a

ubiquitous resource that can supply sample of test inputs as the starting

seeds. Due to unavailability of such a resource, the ultimate objective of this

research is to propose and develop a novel technique that can automatically

assess and improve the readability of the potential values for string test

inputs. Prior to this, this research inspects the effects of a seeded search-

based test data generation approach on human oracle costs. More details

about this is presented as follows.

1.3 Overall Research Aims and Objectives

The key objective of this thesis is to review the qualitative aspects of human

oracle costs, investigate and establish methods that can effectively reduce

these costs. Firstly the effectiveness and efficiency of a seeded search-based

test data generation approach in producing branch-covering, fault-revealing

and readable test inputs is inspected. Due to the limitations of the seeded

Chapter 1 4

search-based approach, a new technique is then introduced for generating

branch-covering readable values for string inputs. This approach incorpo-

rates a statistical language model into the search-based test data generation

mechanism that can assess and improve the readability of the potential test

inputs. The common aims and objectives of this research can therefore be

summarised as follows:

1. To assess the efficiency and effectiveness of a seeded search-based ap-

proach as a technique for producing branch-covering fault-revealing

test inputs.

2. To assess the effectiveness of the seeded search-based test data gen-

eration approach on test data readability, and its impact on human

oracle costs.

3. To develop and evaluate a novel approach in which test data generation

is integrated with a statistical language model to generate readable

branch-covering values for string inputs, and to assess its impact on

human oracle costs.

1.4 Research Hypotheses

This section sets the overall objectives of this thesis into different research

hypotheses and describes each in detail. Each hypothesis is then be treated

individually, in separate chapters, with a summary at the end.

Hypothesis 1 Seeding the search-based test data generation process with

human-supplied test inputs can produce test data with higher branch cover-

age, and without any detrimental effects on fault-finding effectiveness.

To investigate this hypothesis, a search-based test data generation ap-

proach is seeded with samples of test inputs collated from human subjects for

a number of Java programs. The test data generated using this approach is

then compare with those generated using the standard (unseeded) approach

in terms of branch coverage and fault-finding capabilities. The efficiency

and effectiveness of each approach is also assessed based on the number of

Chapter 1 5

fitness evaluations performed and their success rate in covering individual

branches.

A similar approach was conducted by Fraser et al [42] for object oriented

programs using the test inputs originated from programmers. Alshahwan

et al [15] also proposed a seeded search-based strategy for testing web ap-

plications using the values collected dynamically from the web pages. In

this thesis, the sample test inputs are collated from human subjects via a

crowd-sourcing platform.

The key purpose behind using seeding in this thesis is to reduce human

oracle costs. The Alternating Variable Method (AVM) [71] was chosen as a

local search method to ensure the final test data retains readable character-

istics of the seeded inputs.

Hypothesis 2 Seeding the search-based test data generation process with

human-supplied test inputs can produce readable test data that are less time-

consuming and less error-prone for manual evalution.

To investigate this hypothesis, the oracle costs for test data generated

using both the seeded and unseeded search-based approaches are estimated

using a human empirical study. Human subjects are recruited to manually

evaluate test cases generated using each approach, while being timed during

the process. The time and accuracy of subjects in evaluating test cases of

each approach is used as a measure for test data readability and the corre-

sponding oracle costs.

Hypothesis 3 Incorporating the search-based test data generation process

with a statistical language model can produce more readable test data for

string variables, which are less time-consuming and less error-prone for

manual evalution.

To investigate this hypothesis, the search-based test data generation pro-

cess is incorporated with a language model that can estimate the probability

of a string occurring in a natural language. This probability score can be

viewed as a measure for “likeness” or similarity of a string to naturally oc-

curring words and thus can be used to guide the search towards more natural

Chapter 1 6

and inherently readable string inputs.

The effectiveness of this approach in generating readable branch-covering

string inputs and its real impact on human oracle costs are assessed using an

human empirical study. Human subjects are recruited to manually evaluate

test inputs generated using both the language model and the conventional

search-based approaches, while being timed. The time and accuracy of sub-

jects in evaluating test cases of each approach is assessed and compared.

The effects of this approach on test data fault-finding effectiveness is also

evaluated.

1.5 Contributions of this Thesis

The contributions of this thesis are as follows:

1. The results of an empirical study in which a seeded search-based ap-

proach is implemented and compared against a conventional unseeded

search-based approach for generating branch-covering and fault-detecting

test inputs. The analysis reveals cases in which the seeded approach

outperforms the unseeded approach in terms of branch coverage, effi-

ciency, and fault- finding effectiveness.

2. The results of a human empirical study in which test data generated

using the seeded and unseeded search-based approaches are evaluated

by human subjects. The analysis reveals cases in which test data

generated using the the seeded approach is both less time consuming

and less error-prone to manually evaluate by human subjects.

3. The introduction of a technique that incorporates the search-based

mechanism with a statistical language model to automatically generate

readable branch-covering values for string inputs.

4. The results of a human study in which the language model technique is

compared with the conventional search-based approach. The analysis

reveals cases in which test inputs generated using the language model

Chapter 1 7

approach are both less time consuming and error-prone to manually

evaluate by human subjects.

1.6 Overview of The Structure of The Thesis

This thesis is organised as follows:

Chapter 2 – Literature Review explores the literature in the field of

search-based structural testing. The chapter begins by describing a number

of search-based techniques employed in automated test data generation, in-

cluding Hill Climbing, Simulated Annealing and Evolutionary Algorithms.

It then discusses some of the major issues associated with search-based test

data generation such as the size (quantity) and readability (quality) of gen-

erated test suites and how these aspects can affect the overall testing costs.

The chapter then proceeds to describe the oracle problem and the various

types of oracles, discussing how different aspects of automatically generated

test data can particularly impact the human oracle costs. This is then fol-

lowed by a discussion on various empirical studies in software engineering

and an investigation into mutation testing and mutation analysis as two

major evaluation methods employed in this thesis.

Chapter 3 – An Investigation into a Seeded Search-Based Ap-

proach For Branch Coverage and Fault Finding Capability presents

and analyses the results of an empirical study in which samples of test cases

are gathered from human subjects for a number of Java method. These test

cases are then used as seeds to start the automatic test input generation

process. The seeded search-based approach is then compared against the

unseeded convectional approach with respect to the branch coverage and

fault-finding effectiveness of the test data these generate.

Chapter 4 – An Investigation into a Seeded Search-based Ap-

proach For Oracle Cost presents another empirical study in which hu-

man subjects are recruited to manually evaluate test cases generated using

both the seeded and unseeded search-based approaches by hand, while be-

Chapter 1 8

ing timed during the process. Human subjects are expected to provide the

correct outputs of a number of Java method for a presented set of test

cases. The main objective of this chapter is to assess the time human sub-

jects would require to manually evaluate test cases of each approach, and

to investigate whether test data generated using the seeded search-based

approach are less time consuming and less error-prone to evaluate.

Chapter 5 – Test Data Generation Using A Language Model in-

troduces a new approach in which a language model is incorporated into

the search-based test data generation process to encourage generation of

readable values for string inputs. The language model assigns a probability

score to a string reflecting its likelihood occurring in a natural language.

This chapter describes how this score can be used to form an additional

component of search-based data generation for producing branch-covering

readable string inputs. The technique is then empirically assessed using

a human study. Human subjects are recruited and requested to manually

evaluate test data generated using both this approach and the conventional

search-based approach. The main objective of this investigation is to evalu-

ate wether the incorporation of a language model in search-based test data

generation can significantly improve readability of the string test inputs.

Chapter 6 – Conclusions and Future Work concludes the main body

of the thesis with final comments and avenues for future work.

Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the literature in the field of search-based test data

generation and discusses some of the common problems associated with test

data evaluation.

The chapter firstly describes the basic concepts of structural testing. It

then investigates various search-based approaches to structural test data

generation focusing on two commonly used search-based algorithms; evolu-

tionary algorithms and hill climbing. Particular attention is paid to a local

search method called the “Alternating Variable Method”, first introduced

by Korel [71] and the (1 + 1) Evolutionary Algorithm [118], which are the

two test input generation algorithms, specifically used in this thesis.

The chapter then describes mutation analysis and reviews various hu-

man empirical studies in Software Engineering as the two main evaluation

schemes employed in this thesis. Table 2.1 details where each subsection of

this chapter is of particular relevance to a subsequent chapter.

2.2 Structural (White-Box) Testing

Structural test data generation is the process of deriving test cases from the

internal structure of the program under test (PUT). This section describes

various approaches to structural testing, summarising some of the main

achievements in automated structural test data generation.

Chapter 2 10

T
a
b

le
2.

1:
S

h
ow

s
w

h
er

e
ea

ch
su

b
se

ct
io

n
of

th
e

li
te

ra
tu

re
re

v
ie

w
is

re
le

va
n
t

to
th

e
re

m
ai

n
in

g
ch

ap
te

rs

C
h

a
p

te
r

2
(L

it
e
ra

tu
re

R
e
v
ie

w
)

C
h

a
p

te
r

3
C

h
a
p

te
r

4
C

h
a
p

te
r

5

2.
2

S
tr

u
ct

u
ra

l
(W

h
it

e
B

ox
)

T
es

ti
n
g

3.
3

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

5.
4

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
o
lo

g
y

2.
3

M
et

a
h
eu

ri
st

ic
S
ea

rc
h

T
ec

h
n
iq

u
es

3.
3

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

5.
4

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
o
lo

g
y

2.
3.

1
H

il
l

C
li
m

b
in

g
3.

3.
4

G
en

er
at

in
g

T
es

t
In

p
u
ts

2.
3.

3
E

vo
lu

ti
on

ar
y

A
lg

or
it

h
m

s
5.

4.
2

G
en

er
at

in
g

S
tr

in
g

T
es

t
In

p
u
ts

2.
4

S
ea

rc
h
-B

as
ed

T
es

t
D

at
a

G
en

er
at

io
n

3.
3

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

5.
4

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

2.
4.

3
A

p
p
ly

in
g

A
lt

er
n
at

in
g

V
ar

ia
b
le

M
et

h
o
d

3.
3.

4
G

en
er

at
in

g
T

es
t

In
p
u
ts

2.
4.

1
F

it
n
es

s
F

u
n
ct

io
n

3.
3.

4
G

en
er

at
in

g
T

es
t

In
p
u
ts

5.
4.

2
G

en
er

at
in

g
S
tr

in
g

T
es

t
In

p
u
ts

2.
4.

2
IG

U
A

N
A

3.
3.

4
G

en
er

at
in

g
T

es
t

In
p
u
ts

5.
4.

2
G

en
er

at
in

g
S
tr

in
g

T
es

t
In

p
u
ts

2.
5

T
es

t
D

at
a

E
va

lu
a
ti

o
n

4.
2

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

5.
4

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

2.
5.

7
H

u
m

an
O

ra
cl

e
4.

2.
2

H
u
m

an
S
tu

d
y

P
ro

to
co

l
5.

4.
4

H
u
m

an
S
tu

d
y

P
ro

to
co

l

2.
6

M
u
ta

ti
on

A
n
a
ly

si
s

3.
4

R
Q

4-
T

es
t

D
at

a
F

au
lt

F
in

d
in

g
C

ap
ab

il
it

y
5.

5
R

Q
4-

T
es

t
D

at
a

F
a
u
lt

F
in

d
in

g
C

ap
a
b
il
it

y

2.
7

S
of

tw
ar

e
E

n
g
in

ee
ri

n
g

E
m

p
ir

ic
a
l

S
tu

d
ie

s
3.

3
E

x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

4.
2

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

5.
4

E
x
p

er
im

en
ta

l
S
tu

d
y

M
et

h
o
d
ol

og
y

2.
7.

1
H

u
m

an
E

m
p
ir

ic
a
l

S
tu

d
ie

s
3.

3.
2

H
u
m

an
S
tu

d
y

P
ro

to
co

l
4.

2.
2

H
u
m

an
S
tu

d
y

P
ro

to
co

l
5.

4.
4

H
u
m

an
S
tu

d
y

P
ro

to
co

l

2.
7.

2
U

se
of

C
ro

w
d

so
u
rc

in
g

in
E

m
p
ir

ic
al

S
tu

d
ie

s
3.

3.
3

P
ar

ti
ci

p
an

t
S
el

ec
ti

on
4.

2.
3

P
ar

ti
ci

p
an

t
S
el

ec
ti

on
5.

4.
5

P
ar

ti
ci

p
an

t
S
el

ec
ti

o
n

Chapter 2 11

1 boolean i sVa l i dPro t o co l (S t r ing p ro to co l)
2 {
3 int l en = pro to co l . l ength () ;
4 i f (l en < 1)
5 return fa lse ;
6 char c = pro to co l . charAt (0) ;
7 i f (! Character . i s L e t t e r (c))
8 return fa lse ;
9 for (int i = 1 ; i < l en ; i++)

10 {
11 c = pro to co l . charAt (i) ;
12 i f (! Character . i sL e t t e rOrD ig i t (c) &&
13 c != ‘ . ’ && c != ‘+ ’ && c != ‘− ’) {
14 return f a l s e ;
15 }
16 }
17 return true ;
18 }

1"

4"

6"

7"

5"

9a"

9b"

9c"

11"

8"

17"

e"
12,13"

s"

Figure 2.1: Code and control flow graph (CFG) of isValidProtocol

2.2.1 Basic Concepts

In structural testing, the internal structure of the PUT is identified using

the program’s control flow graph (CFG). This is referred to the graphic rep-

resentation of all paths that may be traversed through the program during

its execution. A control flow graph for a program P is formally defined

as G = (N,E, V) where N is a set of nodes that represent the processing

statements like definition, computation and predicates. E is a set of edges

that represent the control flow between processing statements. V is a set

of basic blocks including the start and end nodes. Each node n ∈ N is a

statement in the program, with each edge e = (ni, nj) ∈ E, representing a

control transfer from node ni to node nj [39].

Chapter 2 12

A sample CFG for the isValidProtocol program is represented in Figure

2.1. In this instance, N = {s, 1, 3, 4, 5, 6, 7, 9a, 9b, 9c, 17, 11, 12, 13, e} is

a set of all the nodes, where nodes 9a, 9b, and 9c respectively represent the

statements i = 1, i < len, and i++ in the for loop at line 9. Nodes 4, 7, 9b,

and 12 are the branching nodes, and outgoing edges from these nodes are

referred to as branches. V = {s, 5, 8, 17, e} is a set of basic blocks including

the start node (s), and the exit node (e).

A program’s control flow graph consists of the following structural ele-

ments:

1. A statement: refers to each declaration or assertion in the source code.

2. A path: refers to a path that is traversed from the start node to an

end node through the program’s execution.

3. A branch: refers to each boolean decision point in the code which leads

to two structural elements: a true branch and a false branch.

Structural test data generation makes use of the information obtained

from at least one of these structural elements. Structural testing for state-

ment and path coverage requires generating test cases that cause the execu-

tion of all statements and all possible execution paths in the program during

the course of testing.

Structural testing for branch coverage requires production of a sufficient

number of test cases that invoke each entry point to the program or subrou-

tine at least once, and can cover all the possible outcomes (true and false)

of each branch at least once.

For instance, to achieve full branch coverage for the isValidProtocol pro-

gram (displayed in Figure 2.1), it is necessary to develop a set of test cases

that exercise all the branches in the code. As clear from the program’s CFG,

branches b4−5, b7−8, and b9b−17 are each covered when protocol.length() < 1,

!Character.isLetter(c), and i > len respectively. Otherwise the final branch

b13−14 is executed when all the remaining characters of the string variable

protocol, starting from index 1 (i.e. the second character) are either al-

phanumeric or one of the characters {., +, -}. A set of appropriate test

Chapter 2 13

cases for this example is therefore {“abcdtsg”, “1bcdtsg”} which covers all

the branches of this program.

2.2.2 Random Testing

Random testing is the process of generating test cases for a program at

random. Targeting a predefined testing goal such as path or branch cov-

erage, the approach attempts to iteratively generate test inputs at random

until test inputs covering the specified path or branch are discovered. This

approach often fails to generate suitable values for programs with complex

branching structure due to the compound constraints of the desired path. In

such scenarios, the randomisation scheme is unlikely to generate test inputs

that cause the execution of a difficult-to-reach branch.

For example, the execution of the branch if(a == b && b == c) requires

generating three equal input values for the three variables a, b and c. This

branch is however very unlikely to be executed at random unless the size of

the input domain is relatively small. As another example, consider the code

fragment shown below:

1 i f (args == ‘ ‘LUCKY’ ’) {
2 //Target
3 }

The probability that a randomly generated input for the variable args

will be equal to the string “LUCKY ′′ is very low. In such situations a more

directed search technique that is capable of locating appropriate test data

is required.

2.2.3 Symbolic Execution

Test data generation using symbolic execution requires computing values of

the variables in the PUT as a set of functions that represents a sequence of

operations. The sequence is accomplished as the execution is traced along

a specific path through the program. Each function represents a series of

constraints in the program describing the execution of a particular path. In

this process, the program’s inputs are represented as symbols and program

outputs are expressed as mathematical expressions involving these symbols.

Chapter 2 14

The state of a symbolically executed program includes the (symbolic)

values of the program variables and a path condition (PC). The path con-

dition is a Boolean formula over the symbolic inputs. This encodes all the

constraints each input must satisfy in order to cause the execution of a par-

ticular path. The paths that are traversed during the symbolic execution of

a program can be represented by a symbolic execution tree. For instance,

symbolic execution of the test me program of Figure 2.2, starts with these

symbolic values: x = X, y = Y , where the initial value for the path condi-

tion is set to true.

As illustrated in the execution tree in Figure 2.2, at each branch point,

the PC is updated with constraints on the inputs to select from the alter-

native paths. After executing line (1) in the code, both alternative paths of

the if statement are achievable. If the path condition becomes false, the cor-

responding path is denoted as invalid, and the symbolic execution excludes

that path. In this example, symbolic execution investigates three dissimilar

valid paths and one invalid path (Path 3). For test case generation, the ob-

tained path conditions are solved and the solutions are used as test inputs

that are guaranteed to exercise all the paths through this code.

The development of programs for symbolic execution is very expensive

due to the presence of loops and computed storage locations. This approach

is therefore mainly used for testing numerical programs, where the cost/ben-

efit relation is acceptable [23].

Dynamic symbolic execution was first introduced by Godefroid et al [46]

to resolve some of the challenges faced by static symbolic execution. This

approach, also known as concolic testing [104], aids symbolic execution by

obtaining information through dynamic analysis of the program under test.

In contrast to static testing, the principle of dynamic approach is to execute

the program under test and to systematically explore all the feasible paths

through the program in order to generate adequate test data.

2.3 Meta-heuristic Search Techniques

Meta-heuristic search techniques refer to methods that adopt heuristic mech-

anisms as the principal search strategies to solve computational problems

Chapter 2 15

1 public void test me ()

2 {
3 int x , y ;

4 i f (x > y)

5 {
6 r e s u l t = x − y ;

7 }
8 else

9 {
10 r e s u l t = y − x ;

11 }
12 }

X:#X,#y:#Y#
PC:#true#

X:#X,#y:#Y#
PC:#X#>#Y#

X:#X,#y:#Y#
Results:#X#1#Y#
PC:#X#>#Y#

X:#X,#y:#Y#
Results:#X#1#Y#
PC:#X#>#Y#
X#–#Y#<=#0#

X:#X,#y:#Y#
Results:#X#1#Y#
PC:#X#>#Y#
X#–#Y#>#0#

X:#X,#y:#Y#
PC:#X#<=#Y#

X:#X,#y:#Y#
Results:##Y#1#X#
PC:#X#<=#Y#

PATH#1# FALSE!#

X:#X,#y:#Y#
Results:#Y#1#X#
PC:#X#<=##Y#
X#–#Y#<=#0#

X:#X,#y:#Y#
Results:#Y#1#X#
PC:#X#<=##Y#
X#–#Y#>#0#

PATH#2# PATH#3#

Figure 2.2: Symbolic execution tree for the test me program . This program

computes the difference between two integers x and y. Path Condition (PC)

is the conjunction of all symbolic constraints along a path. After executing

the first line, both alternative paths of the if statement are achievable. A

false PC implies an invalid path (symbolic execution does not traverse that

path). In this example, symbolic execution investigates three dissimilar valid

paths and one invalid path (Path 3).

Chapter 2 16

within a large search space. Meta-heuristic search techniques such as Hill

Climbing [89], Simulated Annealing (SA) [114], and Evolutionary Algo-

rithms (EA) [124] have been applied on a variety of testing problems in-

cluding test data generation [38, 50, 54, 71, 78, 120]. This section firstly

describes the operation of several search-based techniques and then investi-

gates the application of these techniques on test data generation.

2.3.1 Hill Climbing

Hill Climbing is a well known local search algorithm that attempts to im-

prove a single candidate solution, commencing from a random point in the

search space. The neighbours of the current solution are investigated in the

search space until a better solution is located or the resources are exhausted.

The improvement from one solution to another is completed using either

first ascent or random ascent strategies. In the first ascent approach, all

the neighbours of the current solution are investigated and the neighbour

solution with the greatest improvement replaces the current solution. In

the random ascent approach, the neighbours of the current solution are

evaluated at random. The first improved value then replaces the current

solution. Figure 2.3 presents a high level pseudo code for this algorithm

[79].

This approach is called Hill Climbing for the reason that the underlying

search space can be considered as a landscape with peaks representing points

of higher fitness. The algorithm selects a hill near to the randomly chosen

starting point and moves the current point to the top of this hill [79]. The hill

located by the algorithm is however likely to be a local maxima as opposed

to a global maxima. This is one of the disadvantages of this algorithm,

referred to as the local maxima problem, and is demonstrated in Figure 2.4.

2.3.2 Simulated Annealing

Simulated Annealing (SA) [69, 114] is a global search algorithm that models

the thermal process in which a heated metal freezes into a minimum energy

crystalline structure. This process consists of the following steps:

Chapter 2 17

Hill Climbing()

s← s ∈ S // choose an initial individual s uniformly

from the search space ;

repeat

s′ ← s ∈ N(s) // select a new value from the

neighbourhood of s;

if (obj(s′) < obj(s)) then

//replace the current value with the new one;

s← s′;

end

until (termination codition);

return s;

Figure 2.3: Pseudo code illustrating the Hill Climbing algorithm, for a prob-

lem with solution s, search space S, neighbourhood structure N , and the

objective function obj to be minimised.

."

."

."

Local"Minimum"

Local"Maxima"

Global"Maxima"Search'Space'

Figure 2.4: The local maxima problem in the Hill Climbing algorithm

Chapter 2 18

1. Increasing the heat temperature to a maximum value – the metal

melting point.

2. Slowly decreasing the temperature until the particles are arranged into

a ground state of the metal (the annealing phase).

Simulated Annealing performs similarly to the Hill Climbing, with the

difference that it allows movements to poorer solutions. This enables the

search to have less restricted movements (downhill movements) within the

search space. These movements are implemented during the search based

on the following two parameters:

1. The objective value between two solutions.

2. The control parameter known as the temperature.

The temperature is initially high in order to allow free movements around

the search space. As the search progresses, the temperature decreases ac-

cording to a cooling schedule.

Figure 2.5 presents a high level pseudo code for this algorithm. The

SA algorithm starts with a random solution s, and creates a new solution

s′ by adding small perturbation to the s. If the new solution is better

(obj(s′) < obj(s)), it replaces the current solution. Otherwise, SA applies

a stochastic acceptance criterion based on a certain probability, which is

controlled by the temperature parameter T and is reduced over time.

Simulated Annealing can overcome the local maxima problem when the

local maximum is near the global maximum. In this case, one of the search

movements can be diverted from the local maximum and reach the ascending

slope of the global maximum. For a complete discussion the reader is referred

to reference [79].

2.3.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are one of the most popular meta-heuristic

search algorithms that are inspired by biological evolution: reproduction,

mutation, recombination, and selection. Evolutionary Algorithms operate

Chapter 2 19

Simulated Annealing()

s ∈ S // s is a starting solution selected from the search space S;
i← 0 ;
while (obj(si) > 0 && i < max evaluations) do

t← CoolingSchedule(i) ;
i← i+ 1 ;
while (t > eps) do

s′ ← random neighbor(s);
∆E = obj(s′)− obj(s);
if (∆E < 0) then

s← s′;
else

r ← random number between(0, 1);

if (r < e−∆E/t) then
s← s′;

end

end

end

end

Figure 2.5: Pseudo code illustrating the algorithm for Simulated Annealing.
s represents the initial solution which is iteratively altered while the stop-
ping condition is unsatisfied. s′ is a new solution generated at random in
the neighbourhood of s. t shows temperature level for each solution, eps
represents the lowest temprature. CoolingSchedule is a decrement func-
tion for lowering the temperature (t), and obj is the objective function
to be iteratively minimised within the specified range of fitness evalutions
(max evaluations).

Chapter 2 20

Generate'
Ini*al'

Popula*on'

Result'

Evaluate'Objec*ve'
Popula*on'

Are'Op*misa*on'
'Criteria'Met?'

Best'Individual'

Start'
Recombina*on''Muta*on' Selec*on'

Generate'New'Popula*on'

Generate'
Ini*al'

Popula*on'

Result'

Evaluate'Objec*ve'
Popula*on'

Are'Op*misa*on'
'Criteria'Met?'

Best'Individual'

Start'
Recombina*on''Muta*on' Selec*on'

Generate'New'Popula*on'

No'

Yes'

Figure 2.6: Different phases of a GA

based on iterative searching processes resulting in a ‘population’ of solu-

tions. In each iteration the poor solutions are eliminated and the best-fit

solutions are selected as parents. These are then ‘recombined’ to generate

the individuals of the population for the next iteration. The fitness of each

solution is calculated using a fitness function or some other kind of quality

measure.

Genetic Algorithms

Genetic Algorithms (GAs) belong to the family of Evolutionary Algorithms,

which mimic the process of natural evolution. A population of strings in the

search space, referred to as ‘chromosomes’ or the ‘genotype’ of the genome,

are used to represent a set of candidate solutions referred to as ‘individuals’

or ‘phenotypes’. A genome is made up of primary data types known as genes

which are used to model the behaviour of natural genomes as they evolve.

Chromosomes can be represented as bit string, real numbers or lists of

rules. A standard representation for a GA-based solution is usually a set

of binary strings (from the binary alphabet {0, 1}) that can uniquely be

mapped onto the chromosome structure. Real-valued encodings are often

used in the context of test data generation, which is thoroughly described

in Section 2.4.

To solve a problem, a GA-based solution initially generates a population

of random solutions known as chromosomes or genomes. In each generation,

the fitness of every individual in the population is evaluated, and multiple

individuals are stochastically selected from the current population (based

on their fitness). The selected genomes are then recombined to form a

Chapter 2 21

new population (see Figure 2.6). This iteratively continues until either the

maximum number of generations has been produced, or a satisfactory fitness

level has been reached for the population. The process consists of selection

[47], crossover [62], mutation [59] and reinsertion [121] operators as described

below:

Selection – This is the first phase of a GA, in which a set of individual

genomes are selected from the current population to recombine as parents

for the next generation. The selection is performed based on the fitness of

each individual, and is assessed using various selection algorithms including

fitness proportionate selection [59] and stochastic universal sampling [21].

In fitness proportionate selection, also known as roulette wheel selection,

the fitness of each candidate solutions is used to assign a probability selection

score for that solution. The selection probability of an individual with the

fitness of fi would be fi∑N
i=1 fi

, where N is the number of individuals in the

population [59].

Stochastic universal sampling (SUS) is the developed version of the fit-

ness proportionate selection (FPS). In FPS ‘several’ solutions from the pop-

ulation are used by repeated random sampling. In SUS, however, a ‘sin-

gle’ random value is used to sample all the solutions by choosing them at

smoothly spaced intervals. This provides the weaker individuals in the pop-

ulation a chance to be selected and therefore reduces the bias in the fitness-

proportional selection methods. For more information about this and other

selection algorithms, the reader is referred to references [21, 47, 75].

Crossover – During this phase a new population of offsprings is generated

from combining the selected individuals (parents) from the previous stage.

Crossover is also referred to as ‘reproduction’ or ‘recombination’, and is

a critical feature of Genetic Algorithms. There are various methods for

crossover including multi-point crossover [62] and uniform crossover [61].

In multi-point crossover [62], n crossover points are selected at random

without duplications, which are arranged into ascending order. The vari-

ables between successive crossover positions are then exchanged between the

two parents to produce two new children.

Chapter 2 22

Solu%on'

(75$$12$$$$$$$$$19$$52)$$

(38$$$47$$$$$$$$64$$55)$$
(75$$12$$64$$55)$$$Offspring$2$$$

(38$$$47$19$$52)$$$Offspring$1$$
Parent$1$$
Parent$2$$

Figure 2.7: One-point crossover (recombination) in GA

The simplest variation of multi-point crossover is one-point crossover, in

which the same crossover point is selected in both parent, and the variables

on the right or the left of the crossover point are swapped to produce two

new offsprings that embody the characteristics of their parents. This process

is demonstrated in Figure 2.7. In uniform crossover [61], every position in

the chromosome is a potential crossover point.

Mutation – After recombination every offspring (chromosome) undergo

mutation. Offspring variables are mutated by small perturbations with low

probability in order to preserve and introduce genetic diversity into each

chromosome from one generation to the next. Genetic diversity is required

to prevent the population of chromosomes from becoming too similar.

Genetic diversity for binary encodings is achieved by flipping bits of the

binary strings at low probability pm (i.e. usually less than 0.01). For real-

valued encodings, a gene in the chromosome is replaced with a new value

generated at uniform random or using the gaussian mutation [111], where

the new value is selected using a gaussian distribution around the current

value. In this thesis, the uniform mutation is used to mutate the individuals

in the course of test data generation

Reinsertion – This is the final phase of a GA. During this process, the

offsprings are reinserted into the old population if the number of offspring

produced are more or less than the size of the original population. This

is a necessary step to maintain the size of the original population, and to

determine which individuals are to exist in the new population.

There are various schemes for local and global reinsertion [99, 121]. In

local selection, individuals are selected in exactly the same neighborhood.

Therefore, the locality of the information is preserved. The global reinsertion

schemes include pure reinsertion, uniform reinsertion, elitist reinsertion, and

Chapter 2 23

fitness-based reinsertion.

Pure reinsertion produces as many offspring as parents and replaces all

parents with the offspring. This is the simplest reinsertion scheme, in which,

each individual persists only one generation. However, it is very likely,

that very good individuals are replaced without producing better offspring.

Uniform reinsertion produces less offspring than parents and replace parents

uniformly at random. Fitness-based reinsertion produces more offspring

than required for reinsertion and reinserts only the best offspring. An elitist

strateg to reinsertion replaces the worst of the current generation with the

best offspring.

2.4 Search-Based Test Data Generation

The application of search-based techniques on test data generation requires

defining and converting testing criteria into a set of objective functions that

can be resolved using an appropriate meta-heuristic technique. These pro-

cedures can be summarised into the following steps:

Specifying a Testing Criterion – A common criterion for structural

testing is branch coverage. Based on this objective, locating a set of test

inputs that can obtain the desired level of branch coverage is required.

Representation of Candidate Solutions – The candidate solutions for

the problem at hand must be capable of being encoded so that they can be

manipulated by the search algorithm. This representation is usually se-

quences of elements (e.g. binary, or real values) which form individuals such

as chromosomes in a GA. In test data generation, the most common rep-

resentation of candidate solutions is real-valued encodings, where the input

vector to the program is the direct representation of a candidate solution.

Outlining The Program’s Input Domain – The program’s input do-

main and the search space must be identified. The search space is usually

formed from a combination of all the possible values in the program’s input

domain.

Chapter 2 24

Table 2.2: Tracey’s distance functions [115, 116] make use of a non-zero
positive constant K, which is always added if the term is not true. This
allows the objective function to always return a non-zero positive value when
the predicate is false, and zero when it is true.

Boolean if TRUE then 0 else K
a > b if (b - a) < 0 then 0, else(b - a) + K
a ≥ b if (b - a) ≤ 0 then 0, else(b - a) + K
a < b if (a - b) < 0 then 0, else (a - b) + K
a ≤ b if (a - b) ≤ 0 then 0, else(a - b) + K
a = b if abs(a - b) = 0 then 0, else abs(a - b) + K
a 6= b if abs(a - b) 6= 0 then 0, else K

Defining the Fitness Function – A fitness function must be formulated

to computes the fitness of the candidate solutions with respect to a set of

objective functions. The description of the fitness function used in this thesis

is presented in Section 2.4.1.

2.4.1 Fitness Function for Branch Coverage

The search-based test data generation is essentially the process of refor-

mulating a testing criterion into an objective function, and determining a

fitness function that can guide the search towards appropriate test data with

respect to the defined testing goal.

The common testing goal in structural testing is branch coverage. The

objective function designed for branch coverage must compute the fitness

of candidate test inputs in terms of their branch-covering criterion. This

involves assessing how far away the candidate solutions (test inputs) are from

executing the target branch. This objective function consists of two major

components approach level (AL) [119] and branch distance (BD) [20, 54, 79].

The approach level is an integer value indicating how close a candidate

solution is to a target node in terms of the program’s CFG. This is achieved

by counting the number of unexecuted nodes on which the target node is

transitively control dependant. The branch distance indicates how close

a predicate is to being true, and its calculation varies depending on the

corresponding relational predicates. Table 2.2 shows a list of branch distance

functions for various relational predicates defined by Tracey [115].

Chapter 2 25

The use of approach level and branch distance is demonstrated as an

example shown in Figure 2.8. To produce a test input that causes the

execution of the true branch of the predicate if(p1value < 50) (in line

15), the branch distance is defined as 0 if p1value − 50 < 0, or otherwise

p1value − 50 + K. The value K in this case is a positive constant which

is always added if the term is not true. This information is continuously

updated as to guide the search until the test data of interest is discovered

or resources exhausted. The ‘closer’ the output of the branch distance is

to zero, the ‘closer’ the search-based technique is to finding the test data of

interest.

Formally, the fitness function used for search-based test data generation

is computed as follows [20]:

fitness = AL+ normalise(BD) (2.1)

where the branch distance BD is normalised into the range [0, 1] using the

following function [20, 120]:

normalise(BD) = 1− 1.001−BD (2.2)

This formula ensures the value added to the approach level is close to 1

when the branch distance is very large, and 0 when the branch distance is

zero.

2.4.2 IGUANA

IGUANA [80] is a search-based test data generator tool for C programs.

It has an object-oriented architecture and is written in Java. The meta-

heuristic strategy employed in IGUANA initially generates a random input

vector for a test object and then modifies the input based on the information

obtained from a fitness function. In this process, the search space is formed

from a set of possible input vector parameter-value combinations. The test

object is instrumented to return fitness information. The search applies this

information to explore promising areas of the program’s input domain.

Chapter 2 26

1 public boolean i sVa l i d (S t r ing casNumber) {
2 boolean o v e r a l l = true ;
3
4 // check format
5
6 St r ing format = ‘ ‘ˆ (\\d+)−(\\d\\d)−(\\d) $ ’ ’ ;
7 Pattern pattern = Pattern . compi le (format) ;
8 Matcher matcher = pattern . matcher (casNumber) ;
9 o v e r a l l = o v e r a l l && matcher . matches () ;

10 i f (matcher . matches ()) {
11
12 // check number
13
14 St r ing part1 = matcher . group (1) ;
15 St r ing part2 = matcher . group (2) ;
16 St r ing part3 = matcher . group (3) ;
17 int part1va lue = In t eg e r . pa r s e In t (part1) ;
18
19 // CAS numbers s t a r t a t 50−00−0
20
21 i f (part1va lue < 50) {
22 o v e r a l l = fa l se ;
23
24 } else {
25 int d i g i t = CASNumber . ca l cu l a t eCheckDig i t (part1 , part2) ;
26 o v e r a l l = o v e r a l l && (d i g i t == In t eg e r . pa r s e In t (part3)) ;
27 }
28 }
29 return o v e r a l l ;
30 }

(10)%if(matcher.maches())%

TARGET&MISSED&&
AL=%1%
BD%=%K%

True%

False%

If(part1value%<%50%)%

TARGET&MISSED&&
AL=%1%
BD%=%norm(|part1value%–%50|%+%K)%

TARGET&EXECUTED&
AL=%0%
BD%=%0%

True%

False%

Figure 2.8: Computation of approach level (AL) and branch distance (BD)
in test data generation for isValid method. AL represents the number of
unexecuted nodes from the target node in the program’s CFG. DB indi-
cates how close a predicate is to being true. The function norm is used to
normalise the DB in the range [0 ,1].

Chapter 2 27

This framework can be used to investigate various search-based methods

with different fitness functions, and program analysis techniques for test data

generation.

2.4.3 Applying Alternating Variable Method

One of the earliest algorithms used in search-based test data generation is

the Alternating Variable Method (AVM), proposed by Korel [71]. The AVM

firstly initiates all the input variables of the PUT with a random value, then

attempts to improve the value of each variable in sequence. The method

performs in two phases: the exploratory phase and the pattern phase.

In the exploratory phase the neighbourhood of the first variable is in-

vestigated by applying slight modifications to the initial value generated at

random. This includes adding or subtracting a delta (δ) from the original

value. In this phase, the delta is dir × 10−preci , where dir is either −1 or 1

representing the growth direction, and preci indicates the precision of the ith

input variable. The precision only applies to floating point variables and is

0 for integral types. For example, setting the precision (preci) of an input to

1 restricts the smallest possible movement to ±0.1. Increasing the precision

to 2 limits the smallest possible movement to ±0.01 [53].

If any of these alternations during the exploratory phase leads to a better

solution s′, it replaces the current solution (s) and the search enters the pat-

tern phase. Otherwise the exploratory search is considered as unsuccessful

and proceeds to perform exploratory searches on the remaining variables.

This process continues until either a better neighbour is discovered or all the

variables are unsuccessfully explored. In the latter case, the search restarts

with a new random point. A similar procedure is applied for string types

since strings are treated as vectors of integers representing the correspond-

ing ASCII characters. In this sense, an initial solution for a string input is

a vector of random integers [53].

In the pattern phase, the search attempts to accelerate towards an op-

timum by enlarging the size of the neighbourhood movements on every it-

eration. This involves making larger modifications to the current solution

successively until an optimum is discovered. The amount of delta added or

Chapter 2 28

subtracted from the current value during this phase is calculated using the

formula: δ = 2it × dir × 10−preci , where “it” represents the iteration index

in current movement (pattern phase), and is used as a scale factor for the

size of the neighbourhood movements [53, 54].

A series of similar movements is made until a minimum for the objective

function is found for the input variable. Once no further improvements

can be found for the input, the search continues optimising the next input

parameter, and may recommence with the first input if necessary. In case

the search stagnates, i.e. no move leads to an improvement, the search

reinitiates at another randomly chosen location in the search space. This is

referred to as a random restart strategy and is designed to overcome local

optima by enabling the AVM to explore a wider region of the input domain

for the program under test.

2.4.4 Applying (1+1) Evolutionary Algorithm

A (1 + 1) Evolutionary Algorithm is the most simple variant of an Evolution-

ary Algorithm which performs on population size of 1 [119, 118]. This sim-

ple EA merely operates based on selection and mutation due to the single-

individual population. The term ‘individual’ refers to a ‘search point’, which

is initialised with a randomly selected value using the uniform distribution.

The value is then modified through random changes called mutations, and

replaces the current one if it obtains a superior fitness [35, 72].

In the initialisation phase a value x ∈ Rn is selected randomly using the

uniform distribution. Next, the value x is selected as the current string in the

selection phase. The mutation phase involving binary encodings (bit string

representation x) requires flipping each bit xi independently with mutation

probability pm.

The mutation for real-valued representations involves replacement of a

gene (xi) with a new value generated randomly using a gaussian or uniform

distribution. The main scheme employed in this thesis is the uniform mu-

tation, in which, the value of the chosen gene is replaced with a uniform

random value selected between the user-specified upper and lower bounds

for that gene.

Chapter 2 29

Alternating Variable Method(all variables: vector)
for (i = 1→ all variables size) do

s← random solution ;
if (obj(si) > 0) then

j ← current loop iteration;
s′ ← exploratory move(j, si);
successful← false;
while (obj(s′) > obj(si) && j < max evaluations) do

s′ ← exploratory move(j, si);
end
if (obj(s′) > obj(si)) then

successful← true;
end
if (successful) then

si ← s′;
k ← current loop iteration;
while (obj(si) > 0 && k < max evaluations) do

s′ ← pattern move(k, si);
end
si ← s′;

else
next variable;

end

end
return si;

end
exploratory move(s: candidate solution, it: iteration)
dir ← ±1;
δ ← dir × 10−prec;
s′ ← s+ δ;
if (obj(s’) < obj(s)) then

s← s′;
end
return si;
pattern move(s: candidate solution, it: iteration)
dir ← ±1;
δ ← ×2it × dir × 10−prec;
s′ ← s+ δ;
if (obj(s’) < obj(s)) then

s← s′;
end
return si;

Figure 2.9: Pseudo code illustrating the algorithm for Alternating Vari-
able Method (AVM), obj is the objective function to be minimised. The
search initiates with a random solution s which is modified though the ex-
ploratory and patternt phases (exploratory move and patternt move). δ is
the amount added to or subtracted from the original solution during each
phase. dir indicates the direction of the change (+1 or -1), and prec deter-
mines the precision of the input value.

Chapter 2 30

Evolutionary Algorithm()

s← s ∈ S // choose an initial individual s uniformly from the
search space ;
repeat

s ← mutate (s) // replace the gene with a new randomly
generated value ;
if (obj(s′) < obj(s)) then

s← s′;
end

until (termination codition);
return s;

Figure 2.10: Pseudo code illustrating the algorithm for (1+1) Evolutionary
Algorithm, with an initial solution s, and the objective function obj to be
minimised. The termination condition is satisfied when the search executes
the maximum number of fitness evaluations.

In the final phase the current string s is replaced with the new string s′

if f(x′) ≤ f(x), otherwise the current string s remains the same. The last

two steps continue iteratively until the stopping criterion is satisfied.

The (1 + 1) EA is commonly regarded as a special variant of Hill Climb-

ing and is referred to as a randomised or stochastic Hill Climber [12]. The (1

+ 1) EA commences with one current point in the search space and always

rejects a new point with inferior fitness value. However, as opposed to Hill

Climbing, the search radius is not limited to the current point’s neighbour-

hood. It can therefore reach to any point in the search space in one single

step. Figure 2.10 presents a high level pseudo code for this algorithm.

2.4.5 Search-Based Test Data Reduction Techniques

Test data generation is the process of producing a set of test cases for the

PUT under a pre-defined set of testing requirements. Test data generation

for branch coverage is the process of producing a set of test cases, referred to

as a test suite, which can cover all the feasible branches in the PUT. These

test suites often contain a large number of test cases that must be executed

and evaluated in the later phases. This is a time-consuming process that

may have a severe impact on the overall costs of software testing.

Chapter 2 31

Test data reduction techniques attempt to reduce the size of automat-

ically generated test suites by identifying and eliminating the redundant

and obsolete test cases and forming an optimal representative subset that

can still satisfy all the pre-defined testing objectives. The majority of these

techniques make use of source-code analysers and instrumentations to re-

duce the number of test cases in a given test suite while keeping test data

adequacy unchanged. Despite the significant costs and effort preserved by

these techniques, they are likely to decrease the fault-finding capabilities of

the test suites [102]. Previous empirical studies provide conflicting evidence

on this issue.

Wong et al [123] performed an empirical study to examine the effect on

fault detection when reducing the size of a test set while keeping the cover-

age constant. A large collection of test cases was generated for a number of

programs for branch coverage. The optimal subset of these test cases were

then identified for each program by removing the redundancy while keeping

the coverage constant. The authors reported that the fault-finding capabil-

ities of both sets of test cases for each program remained unchanged. It was

therefore concluded that test cases that do not add coverage to the test set

are likely to be ineffective in detecting additional faults.

Rothermel et al [102] applied test suite reduction on a large number

of test suites generated for various C programs. They assessed the size of

the resultant test suites and their corresponding fault-fining capabilities.

In contrast to the previous studies, the authors concluded that the fault

detection effectiveness of test suites could be severely compromised by test-

suite reduction techniques.

2.4.6 Seeded Search-Based Techniques

Search-based test data generation for branch coverage often results in pro-

duction of arbitrarily looking and difficult-to-read values that are dissimilar

to the test inputs a human would normally generate. Seeded search-based

approaches are proposed to circumvent this issue by incorporating additional

knowledge into the search-based mechanism.

A simple seeded search-based approach is to ‘seed’ the initial phase of

Chapter 2 32

the search process with samples of appropriate inputs [82]. The local search-

based algorithms such as Hill Climbing require only one appropriate input

value to seed the search process. Global search algorithms such as GAs

however rely on several starting points, and thus require at least a few

appropriate input values as the starting points.

Another seeded search-based approach, proposed by McMinn et al [82], is

to influence the search process towards existing points in the input domain,

yet still with the target of covering a branch. A GA-based approach attempts

to bias the search operators such as crossover and mutation towards the

existing points. The biased operators would then search around these points

attempting to generate similar values.

Following sections describe various approaches to the seeded search-

based test data generation.

Search-Based Augmentation Approach

Harman and Yoo [125] proposed a seeded search-based approach in which a

meta-heuristic search algorithm is seeded with existing test cases to generate

additional test data in the context of regression testing. The employed

search-based algorithm in this approach (i.e. Hill Climbing) seeks for a test

case that behaves in the same way as the original one but has a different

value. This is achieved by making two major alterations to the standard

Hill Climbing technique.

Firstly the search is initialised with a global optimum that corresponds

to the existing test data as opposed to adapting from random restart. This

enables escaping from the local optima. Secondly, the search examines the

neighbouring solutions in a random order and moves to the first neighbouring

solution with a higher fitness value as opposed to following the conventional

strategies first-ascent and steepest-ascent in Hill Climbing.

Figure 2.11 demonstrates the pseudocode for the augmentation tech-

nique. The implementation of this algorithm is based on two criteria: the

neighbourhood that determines the neighbouring solutions (near the existing

test data), and the search radius, which determines how far from the existing

test data the search should run (given a definition of near neighbours).

Chapter 2 33

Augmentation Algorithm()

correntSol← existingSol;
while (within the search radious) do

if (neighbours of currentSol contains qualifying
newSol) then

currentSol← newSol;
else

break ;
end

end
return currentSol;

Figure 2.11: Pseudo code illustrating the augmentation algorithm

Semi-Automated Search-Based Approach

Pavlov and Fraser [97] presented a seeded search-based test generation ap-

proach in a unit testing scenario for object-oriented software. In this ap-

proach, the tester is included in the test generation process to improve the

current solution when the search stagnates, and the improvements are then

seeded back into the search. In this process, firstly an initial population

of test suites is generated randomly, which is successively evolved using a

GA. When the search mechanism in the GA stagnates, an editor window

is displayed to the user presenting the current best test suite together with

information on the coverage of the class under test. The tester then applies

appropriate modification to the test suite as required. Finally the result is

inserted back into the population, allowing the GA to continue the search.

The use of this approach however is subject to the tester’s input, as it is a

semi-automated approach.

Seeded Search-Based Test data Generation For Strings

Alshraideh et al [16] presented an approach to automatic search-based test

data generation for programs with string predicates such as string equality,

string ordering and regular expression matching. In this approach, a new

type of search operator was introduced with the intention of skewing the

search towards strings that occur as literals in the program under test.

Chapter 2 34

McMinn et al [84, 105] presented a seeded search-based approach for

generating test cases involving string inputs. This approach attempted to

collate samples of string inputs from the Internet by extracting and refor-

mulating program identifiers into web queries. The resultant webpages were

then downloaded and their content were split into tokens, which were then

used to augment and seed the search-based test data generation process.

The authors performed an empirical study, concluding valid and well-formed

string inputs can be obtained for programs using web queries, and that the

use of this technique can improve the branch coverage of the PUT. The

use of this approach however requires the program to have useful identifiers

that can be reformulated into web search queries, otherwise pages containing

suitable strings may not be found.

Alshahwan et al [15] proposed a seeded search-based approach in the

context of testing web applications. They developed a search-based test

data generator tool, named as SWAT, which collates input values from the

constants in the PHP programs. The values are then used to seed the

search-based test data generation mechanism. The tool was designed to

firstly present the target HTML pages in a structured form so that the

constant values for different input fields could easily be extracted by the

tester. It then seeded the collected values into the search space when tar-

geting their associated branches. The authors performed an empirical study

on the approach, and reported that the efficiency and effectiveness of the

seeded approach was significantly enhanced in comparison to traditional

search-based techniques.

Seeding Strategies

Fraser et al [42] empirically evaluated various strategies to seeding search-

based test data generation for object-oriented software. The main objectives

of this investigation was to firstly inspect the impact of the seeded search-

based test data generation on the obtained results, and secondly, to identify

the best seeding strategies used. In this study the authors applied all the

following seeding strategies to generate test cases for a number of case stud-

ies:

Chapter 2 35

Comparator(

PUT(
Te
st
(D
at
a(

Test(Results(

ORACLE'

Figure 2.12: The test data evaluation process using an oracle

1. Using the constants such as numbers or strings extracted from the

source code to seed the initial population of the search.

2. Applying pre-processing techniques that can improve the initial ran-

domly generated population of the search in terms of diversity and

suitability for the optimisation target.

3. Reusing the previous solutions such as existing or hand crafted test

cases to seed the initial population of the search.

The authors concluded that the seeding strategies do improve the perfor-

mance of the search-based test data generation. However, different strate-

gies do provide different ranges of improvement. In some cases this effect

depends on the type of the system under test. For instance, seeding strate-

gies using constants from the source code can improve the performance,

particularly for classes that rely on string objects. Seeding strategies using

existing hand-written test cases can also improve the performance with high

statistical confidence. Seeding strategies involving pre-processing techniques

can improve the performance depending on the crossover operator and the

employed pre-processing techniques.

2.5 Test Data Evaluation

Test data evaluation is the process of executing the PUT with a generated

set of test cases and verifying whether it behaves as expected. This is an

essential phase of software testing, which is subject to the existence of a

system, commonly referred to as oracle, that can determine the expected

outputs of the PUT. Figure 2.12 demonstrates the process of test data eval-

uation through the use of an oracle.

Chapter 2 36

The term oracle was first used and defined by Howden [60] in 1978.

Later in early 1980’s, Weyuker [122] introduced the notion of non-testable

programs, exploring various types of oracles. Non-testable programs were

defined as those with complex computational patterns for which there ex-

ists no systematic oracles. Since then, various types of oracles have been

proposed for different classes of programs. These include pseudo oracles,

specification-based oracle, heuristic oracle, statistical oracle, consistency or-

acle, and model-based oracle. Each of these are discussed in following sec-

tions.

2.5.1 Pseudo Oracle

A pseudo oracle is defined as an independently implemented version of the

PUT, which performs the same task as the original but using a different

approach. A pseudo oracle can be implemented parallel to the original

program using a different algorithm, a different programming language, or

a different compiler so long as the original specification remains unchanged.

Davis and Weyuker [32] proposed the use of pseudo oracles for non-

testable programs [122]. The idea was to run both program and its pseudo

oracle on identical sets of test inputs, and compare the results. If the outputs

revealed to be the same (or acceptably close in the case of numerical pro-

grams), the original program was considered to be validated. Otherwise, one

of the programs were suspected to represent a failure. Examples of a pseudo

oracle include programs that are implemented by different programming

teams or in different programming languages. A pseudo oracle is expensive

to implement, complex and often time consuming to run. Following section

describes an approach to implementation of a pseudo oracle.

Testability Transformations

Automated generation of pseudo oracles was proposed by McMinn [83]

through the use of program transformations. The idea was to transform

an aspect of the PUT into an alternative version, which can be used as a

pseudo oracle, and to compare outputs from the two versions so as to reveal

potential failures in the original program. In the testing context, this type

Chapter 2 37

of program transformation is often referred to as testability transformations,

since it is mainly designed to improve the testability of a program either by

improving test data generation or by acting as a pseudo oracle [28].

In [83], McMinn introduced the Convert-to-BigDecimal transformation

as a pseudo oracle that can resolve issues regarding rounding errors in Java.

Such errors usually occur when a program contains variables of primitive

numerical types (e.g. int and long types in). Calculations on these variables

normally leads to errors. Certain numbers of finite decimal representation

(e.g. 0.1) is not supported in Java. For example, in Java, the operation

0.1+0.1+0.1 results in 0.30000000000000004 rather than simply 0.3. The ac-

cumulation of these errors can cause serious discrepancies during the course

of the program.

To reveal such errors, the Convert-to-BigDecimal transformation uses the

BigDecimal class in Java, and replaces variables of primitive numerical types

with instances of the BigDecimal class. This transformation can also replace

operations on these variables (e.g. +,−, ∗ and so on) with the appropriate

method invocations (i.e. add, subtract, multiply etc.) on the BigDecimal

object. Table 2.13 shows an example of a pseudo oracle implemented using

Convert-to-BigDecimal transformation.

Testability transformation is a broad topic. As well as acting as a pseudo

oracle [32], testability transformation has been applied to a wide range of

testing scenarios to aid test data generation [49], improve code coverage

and enhance program’s semantics [81]. For more information about this see

references [48, 83].

2.5.2 Specification-Based Oracle

Formal specifications are documentation methods that precisely declare the

expected behaviour of the PUT through the use of mathematical notions.

A popular example for these notations is the Z language [9], which has

been used for writing formal specifications in various software programs.

Other instances include the specification language of the Vienna Develop-

ment Method (VDM) [40], and the Abstract Machine Notation (AMN) of

the B-Method [11].

Chapter 2 38

1 public void withdraw (long withdrawalAmount)

2 {
3 i f (amount > withdrawalAmount)

4 {
5 amount −= withdrawalAmount ;

6 }
7 }

1 public void withdraw (BigDecimal withdrawalAmount)

2 {
3 i f (amount . compareTo (withdrawalAmount)>0)

4 {
5 amount = amount . subt rac t (withdrawalAmount) ;

6 }
7 }

Figure 2.13: Convert-to-BigDecimal Transformation on a simple function

For a program that is formally documented, its formal specification can

be used to derive an oracle to determine whether or not the program per-

forms correctly as expected. Formal verification techniques use this ap-

proach to verify the program’s performance with respect to the existing

specification [14]. The first approach was proposed by Richardson et al

[101] in 1992. A model was developed to presents tools that enhance an

integrated development environment, and enables the user to write formal

specifications in a readable manner. The model then automatically derives

test oracles from the generated specifications [95]. This approach consists

of three essential stages; (1) write a complete specification of the required

behaviour for the program in a formal notation, (2) generate test oracle from

the specification, (3) run the program under test in the test framework using

the test oracle to verify if it passes or fails.

Boyapat et al [22] developed a framework for automatically testing Java

programs. For a formally documented method, the framework uses the

method precondition to automatically generate a set of test cases. It then

executes the method on each test case, and uses the method postcondition as

a test oracle to check the correctness of each output. To generate test cases

Chapter 2 39

for a method, the approach uses a class that represents the methods inputs.

This class has one field for each parameter of the method and a predicate

that uses the precondition to check the validity of methods inputs.

2.5.3 Invariant-Based Oracle

Ernst et al [36] introduced a technique, in which program’s invariants (con-

straints) can be discovered using execution traces to help programmers iden-

tify program properties that must be preserved when modifying the source

code. This technique is used to detect the explicitly stated invariants in a

set of formally-specified programs, and also to infer likely invariants based

on the values of variables in a program using a training test set.

Inferred invariants can be of substantial assistance in understanding,

modifying, and testing a program that contains no explicitly-stated invari-

ants. These can therefore be used as test oracle to check the correctness

of a program’s outputs. Daikon [37] is prototype a invariant detector tool

that implements a set of techniques for discovering invariants from execution

traces.

2.5.4 Metamorphic Based Oracle

Metamorphic testing is the process of generating additional test cases based

on the existing test cases when the existing test cases do not reveal any

failures. This is to allow a program to be further verified against some

necessary properties, called “metamorphic relations”. The main objective

of Metamorphic Testing is to address part of the oracle problem.

Metamorphic relation is a property of a function that always persists

among the multiple executions of the program under test. For example, a

metamorphic relation sin(x+ π) = sin(x) is a metamorphic property of the

function sin(x). This property can be applied on initial input x to produce

x+ π. This transformation allows the prediction of the output - sin(x+ π),

based on the (already known) value of sin(x). If the output is not as expected

(if - sin(x+ π) is not equal to sin(x)), then a defect must exist. Performing

metamorphic testing on a program involves:

1. Identifying metamorphic properties of a program.

Chapter 2 40

2. Specifying the identified properties as a form of a formal specification.

3. Converting the specification into tests.

4. Running the test.

Metamorphic testing can be performed both on functional and system

levels, Metamorphic testing at functional level focuses on individual func-

tions rather than the application as a whole. This allows for the investigation

of more metamorphic properties (and thus more test cases) and better fault

localisation. Corduroy [90] is a tool which automates this process by allow-

ing developers to specify individual functions’ metamorphic properties using

the specification language JML [92]. These properties then can be specified

using an extension to JML, converted to test code, and then checked as the

program runs on test input data.

Metamorphic testing at system level checks that metamorphic proper-

ties of the entire application hold after its execution. This approach treats

the application as a black box and checks that the metamorphic proper-

ties of the entire application hold after its execution. Amsterdam [91] is

a tool that allows checking of the application’s metamorphic properties at

runtime, using the real input from actual executions. Finding metamorphic

properties of functions and applications is not always easy and straightfor-

ward. Furthermore, not all functions and applications have metamorphic

properties.

2.5.5 Consistency Oracle

A consistency oracle refers to a simulator, an equivalent product, a software

from a different platform, or a previous version of the PUT, which can be

used to compare the results of one test execution with subsequent tests.

The role of this oracle is to ensure the software is consistent in terms of the

generated values and the end points.

The main application of a consistency oracle is Regression testing [93],

where the key objective is to verify that alterations made to software have

not adversely affected other parts. Various techniques have been reported

Chapter 2 41

in the literature on how to select regression tests for program revalidation

including [13, 27, 73, 77].

2.5.6 Heuristic Oracle

In situations where complete information is unavailable or impractical to

acquire, a heuristic oracle promises to provide a significant process of ver-

ification. This type of oracle presents precise results for a few inputs and

applies simpler consistency checks (heuristics) for the rest. This oracle es-

sentially selects the known result for the exact comparisons and applies

heuristic for the rest.

For example, heuristic oracle for the cos() function starts with the spe-

cific values for cos(π/2), cos(π), cos(3π/2), cos(2π) (whose results are 0, -1,

0, 1). It then computes values between the four points at slight increments

to the test object. A heuristic is applied to verify that the test object returns

values that are progressively greater (or less) than the last value.

A heuristic oracle is relatively fast and efficient to create and to use. It

can be useful when the program under test has a predictable relationship

between the inputs and the outputs. For instance, a predictable relationship

for the cos() function is that the function decreases between 0 and 180 degree

and increase from 180 to 360. However using this approach, various parts

of the PUT may remain unverified and thus systematic errors may remain

undetected [57].

2.5.7 Human Oracle

In absence of an automated oracle, the human tester is required to manually

interpret the generated test cases and the scenarios the represent by hand.

In this process, the tester is expected to know the software operation and

to identify the software failures. This process is highly depends on the

complexity of the PUT, and is subject to the IQ skills of the tester who

often requires books, tables, or calculators to determine the correct outputs

of a program. This is an expensive, time consuming process that forms a

significant cost, referred as the human oracle cost. The following section

discusses various aspect of the human oracle in detail.

Chapter 2 42

Test Data Quantity

One of the major issues associated with automatically testing is the over-

whelming size of test suites, which has a direct impact on the costs and

the effort of software testing. Literature of late has majorly focused on test

data generation for branch coverage. This has led to production of large

volumes of test data that requires corresponding amounts of oracle data for

comparison.

Test suite reduction and test suite augmentation techniques promise to

reduce this cost by minimising the size and enhancing the quality of gener-

ated test suites respectively [103, 125]. As discussed in Section 2.4.5, these

techniques are however likely to affect the fault-finding capability of the

resultant test suites.

Test Data Quality

In cerain instances the search-based approaches produce test cases that fall

within one the following categories:

1. Out of range numerical values that are generated for primitive vari-

ables. These are digits that occur within −32, 768 to 32, 767 range

drawn from a 16-bit search space. For instance, a machine gener-

ated input for an integer type variable representing the calendar date

is “15148/26308/32447”, instead of a more readable value such as

“10/01/2013”.

2. Non-alphabetical sequence of characters that are generated for string

variables. These are series of characters selected randomly from a

search space of integers. The search space ranges from 0 to 127, which

represents the printable characters defined by their ASCII codes. As

an example, a machine generated string value for an email address

is “f#p%F@}UM%5.*6ZY”, instead of a more realistic value such as

“James@gmail.com”.

The quantitive aspect of oracle costs mainly refers to the difficulty of

reading and comprehending machine-generated inputs, particularly string

Chapter 2 43

values resembling arbitrary sequences of characters. Manual evaluation of

such values and interpreting the scenarios these compromise is a difficult

and time consuming task.

As previously described in Section 2.4.6, seeded search-based approaches

can potentially circumvent the issues regarding the qualitative human oracle

costs. The application of these techniques is however subject to availability

of a permanent resource that can effectively incorporate some form of addi-

tional knowledge about the program’s input domain into the search-based

mechanism.

2.6 Mutation Analysis

The empirical assessment of test data generation techniques plays an im-

portant role in software testing research. In this thesis, mutation analysis is

performed to assess the fault-finding effectiveness of the test suites generated

using the proposed approaches.

Mutation testing was first introduced by DeMillo [33] as a fault-based

testing technique, and was widely explored by Offutt et al [94]. The idea is to

apply artificial faults (referred to as mutations) into the program producing

mutants, and to execute both the program and its mutants with the same

set of test cases. Mutants that result in different outputs to the original

program are said to be dead, otherwise they are referred to as live. A live

mutant indicates that the selected test set potentially fails to detect the

introduced fault and therefore needs improvement.

The mutations are generated using mutation operators to represent typ-

ical programming errors. Mutation operators for imperative languages can

be divided into two different categories method level and class level. The

method level operators are used to modify an expression by replacing, delet-

ing, and inserting primitive operators, and include:

1. Statement deletion.

2. Replace each boolean subexpression with true and false.

3. Replace each arithmetic operation with another one, e.g. + with ∗, −
and /.

Chapter 2 44

4. Replace each logical relation with another one, e.g. > with >=, ==

and <=.

5. Replace each variable with another variable declared in the same scope

(variable types should be the same).

The class mutation operators are used to introduce syntactic alterna-

tions into the programs written in (Object-Oriented) OO languages [68] in

order to produce mutants. The generated mutants can be classified into two

types; First Order Mutant (FOM) which is generated by applying mutation

operators only once. Higher Order Mutant (HOM), which is generated by

applying mutation operators more than once. Figure 2.14 demonstrate an

example of each type of mutants.

While traditional mutation testing applies minor changes to the pro-

gram’s syntax, semantic mutation mutates the program’s semantics (lan-

guage) as opposed to its syntax. Semantic mutation aims to represent po-

tential misunderstandings of the semantics of the language, and thus to

capture a different class of faults. This type of mutation testing was first

introduced by Clark et al [29], and has been implemented as a few tools in-

cluding SMT-C for the C programming language [31]. For more information

about semantic mutation operators the reader is referred to the references

[29, 30, 31].

Mutation analysis is a method for assessing fault-finding capabilities of

automatically generated tests suites. The main adequacy metric for this

assessment is the so-called mutation score (ms), which is defined as the

percentage of mutants a test set T can detect (kill) over the total num-

ber of non-equivalent mutants. This can be calculated using the formula

ms(P, T) = 100× DM(P,T)
M(P)−EM(P) , where DM(P, T) is the number of mutants

killed by the test set T , M(P) is total number of mutants and EM(P) is

the number of mutants equivalent to P . A mutant is said to be equivalent

if there exists no test case that can distinguish the output of the mutant

from the output of the original program. The mutation score ranges from

0 to 100, where 100 is the best score possible, indicating that the specified

test set can kill all the non-equivalent mutants. This score can be used to

measure the effectiveness of a test set in terms of its ability to detect faults.

Chapter 2 45

(a) First Order Mutant

1 boolean i sVa l i dPro t o co l (S t r ing p ro to co l)
2 {
3 int l en = pro to co l . l ength () ;

4 if (len > 1)

5 return fa lse ;
6 char c = pro to co l . charAt (0) ;
7 i f (! Character . i s L e t t e r (c))
8 return fa lse ;
9 for (int i = 1 ; i < l en ; i++)

10 {
11 c = pro to co l . charAt (i) ;
12 i f (! Character . i sL e t t e rOrD ig i t (c) &&
13 c != ‘ . ’ && c != ‘+ ’ && c != ‘− ’) {
14 return f a l s e ;
15 }
16 }
17 return true ;
18 }

(b) Higher Order Mutants

1 boolean i sVa l i dPro t o co l (S t r ing p ro to co l)
2 {
3 int l en = pro to co l . l ength () ;

4 if (len > 1)

5 return fa lse ;
6 char c = pro to co l . charAt (0) ;
7 i f (! Character . i s L e t t e r (c))
8 return fa lse ;

9 for (int i = 1; i < len++; i++)

10 {
11 c = pro to co l . charAt (i) ;
12 i f (! Character . i sL e t t e rOrD ig i t (c) &&
13 c != ‘ . ’ && c != ‘+ ’ && c == ‘− ’) {
14 return f a l s e ;
15 }
16 }
17 return true ;
18 }

Figure 2.14: (a) shows a First Order Mutant (FOM) for the program is-
ValidProtocol, only one mutation operator has been applied to the original
source code. This is shown in line 4, where the original operator < is re-
placed with >. (b) shows a Higher Order Mutant (HOM), where more than
one mutation operators have been applied to the original source code. This
can be noticed from line 4, where the operators < has been replaced with
>, and the variable len have been modified to len+ + in line 9.

Chapter 2 46

Although mutation analysis was originally proposed as part of a testing

strategy, it has been extensively used in literature as a method for evalu-

ating various testing approaches. Andrews et al [18] performed mutation

analysis to compare control flow and data flow test data generation tech-

niques. Thevenod [110] used mutation analysis to evaluate test data gen-

eration using random and deterministic approaches. Bradbury [25] applied

mutation analysis to compare traditional testing and model checking ap-

proaches. Other empirical studies in which mutation analysis is applied as

an evaluation scheme include [17, 26, 68, 86].

In all these empirical evaluations, the researchers follow the pattern of

generating a large test pool of test cases, executing the mutants with all the

test data, and observing which test cases detect which faults. They then use

this result to deduce the fault detection abilities of given test suites drawn

from the pool.

2.7 Software Engineering Empirical Studies

Empirical studies play a fundamental role in science, supporting researchers

gain knowledge by the means of direct observation or experience. Empirical

studies in software engineering [10] often involve the scientific use of quan-

titative and qualitative data to understand and improve the software prod-

ucts or software techniques. The empirical data is essentially be obtained

through the use of formal experiments, case studies, surveys, or prototyping

exercises depending on the relevant research. A reliable empirical analysis

compromise of the following essential components [98]:

1. Research context

2. Hypotheses

3. Experimental design

4. Threats to validity

5. Data analysis and presentation

6. Results and conclusions

Chapter 2 47

The first step of an empirical study is to define a problem, and de-

scribe the relevant terminologies and background information surrounding

the problem. The proposed problem is then formulated into a hypothesis or

a research question to investigate (proposing hypotheses). An appropriate

experimental design should be planned to obtain the data required for in-

vestigating the hypotheses. The experimental design is a detailed plan for

testing the predictions and that can vary depending on the hypotheses and

aim of the study. The results of the experiment is then analysed to conclude

whether the theory on which the hypotheses were based is valid or not.

2.7.1 Human Empirical Studies

This section summarises some of the human empirical studies performed in

software engineering fields.

Empirical Studies in Microsoft Research (MS)

The researchers of Microsoft Research (MS) [6] have performed various em-

pirical studies in software engineering fields and different areas of computer

science in collaboration with academic and industry researchers. This in-

cludes the study presented in [100], in which MS researchers investigated the

effects of teams coordination in development of large-scale software systems.

Large-scale software development requires coordination within and between

large engineering teams that are located in different buildings, or different

campuses of company, even in different countries with dissimilar time zones.

The researchers investigated a 3 year old software application team, consist-

ing of 300 people, based in Redmond. The study aimed to determine how

the team coordinated with three intra-organisations, distributed in different

locations.

The researchers interviewed 26 team members and revealed that how

communication, capacity, and co-operation interchange influences the suc-

cess of software development projects. They reported that the distributed

teams faced additional challenges due to time zone and cultural differences

between the team members. The researchers concluded that the majority of

issues impacting engineers were not directly technical (e.g. code and APIs

Chapter 2 48

related errors), but rather related to co-ordination issues between the team

members.

In another study [19], MS researchers attempted to identify the co-

ordination activities performed during bug rectifying of software systems.

The study aimed to identify and explain the life cycle of bugs and the pro-

cedures of fixing the failure. This study investigated such co-ordination

activities involved in bug fixing on software professionals at Microsoft. The

study aimed to analyse the history of a closed bug in the database during

the life of a project. The requested each person about the history of the

last bug that they resolved or helped in resolving. From the results ob-

tained, the study concluded that the histories of even simple bugs seriously

depends on social, organisational, and technical knowledge and cannot be

solely extracted from the automatic analysis of software repositories.

Software Engineering Observatory Project (in Sheffield)

The software engineering observatory project [8] was a large scale empiri-

cal study, started in 2000, as a collaboration between the Department of

Computer Science and the Institute of Work Psychology at the University

of Sheffield.

The study aimed to understand the processes that form the performance

of software engineering, and to identify how these processes can be combined

with human knowledge and technical factors. This involved observing var-

ious software developers while they were applying particular methodologies

on real industrial projects. The software developers were undergraduate

and postgraduate students who worked on internal and external software

projects as a part of their course.

The empirical study included assessing the benefits of Extreme Pro-

gramming (XP) [58], evaluating the relative merits of software development

methodologies in terms of both the technical aspects and the well-being of

the developers, identifying the factors that would form excellent team-based

software development [64, 65, 66], and investigating the relative importance

of the methodology adopted by the teams in [112].

Some of their findings concluded that effective software managers should

Chapter 2 49

Requestors:*

Create&
Tasks&

Describe&
Tasks&

Upload&
Tasks&

Accept&or&
Reject&

Crowd*Workers:*

Search&
For&Tasks&

Select&
Tasks&

Complete&
Tasks&

Submit&
Task&

Figure 2.15: The crowdsourcing process

not only understand the technical aspects of the work undertaken by their

staff, but should also understand their staff as individuals and how they can

best work together in teams. It was concluded that teams without sufficient

discussion on pertinent issues are most likely to encounter serious project

problems. In addition, certain combinations of personality types that could

be expected to be disruptive to the working of a software development team

were also identified.

2.7.2 Crowd-Sourcing in Empirical Studies

Recruiting the right type and the right number of subjects is a challenging

problem for empirical studies in software engineering. Researchers often use

fewer participants of the right type to restrain to larger groups with the

target population. An alternative solution is to use crowd-sourcing as a

means to empirically assess a software engineering technique or a tool with

aid of online users.

The use of crowd-sourcing enables a client referred to as crowd-sourcer

to access a global community of users referred to as crowd-workers with

different skills and backgrounds who can help performing a task. The task

could be resolving a problem, classifying some data, refining a product or

simply gathering some feedback.

There are various crowd sourcing platforms including Amazon Mechan-

ical Turk (MT) [1], CrowdFlower [4], Crowd Guru [3], etc.

Chapter 2 50

CrowdFlower the Crowd-Sourcing Website

CrowdFlower is one of the various platforms in which tasks or jobs can be

uploaded for completion by crowd-workers for a fee. CrowdFlower divides

complex projects into smaller manageable tasks that can be accomplished

by a single person. These tasks usually require minimal time and effort, and

users are paid a very small amount upon completion (normally a few cents).

CrowdFlower prices each task based on the average time it takes the user

to complete.

On the client side, crowd-sourcers order the number of crowd-workers

they require for each task. The tasks are posted to a number of crowd-

sourcing channels, which are then selected and accomplished by different

contributors. Once the job is completed, CrowdFlower performs a quality

control check, pays the crowd-workers, and then provides the data to the

crowd-sourcers. The CrowdFlower’s quality control check is performed using

a set of hidden tests that are randomly distributed throughout the tasks and

must be answered correctly.

Crowd-sourcing have been applied in a several software engineering em-

pirical studies, including the investigating of code smells [109], fault local-

isation accuracy [44] and patch maintainability [43]. Crowd-sourcing has

widely been used outside software engineering to support studies in human

linguistic annotation [106] and Wikipedia article quality [70].

Kittur et al [70] explored the use of crowd-sourcing markets such as

Amazons Mechanical Turk as promising platforms for conducting various

human study tasks. The crowd-sourcing markets were reported as a suit-

able platform for recruiting a large number of crowd-workers to accomplish

interactive tasks at marginal costs within a timeframe of days or even min-

utes. To maximise the capabilities of the approach, special care must be

taken in the formulating subjective or qualitative tasks such as user mea-

surements.

Snow et al [106] explored the use of Amazons Mechanical Turk as a

significantly cheap and fast method for collating annotations from a broad

base of non-expert crowd-workers over the Web. The authors investigated

five different tasks including affect recognition, word similarity, recognising

Chapter 2 51

textual entailment, event temporal ordering, and word sense disambiguation.

The results revealed that annotations collated from Mechanical Turk non-

experts highly matched with the existing gold standard annotations from

experts.

Stolee et al [109] explored the use of crowd-sourcing to support empir-

ical studies in Software Engineering. The authors assessed the impact of

coding practices such as code smells [41] on the users preference and under-

standability of web mashups [34]. This study investigated the benefits of a

crowd-sourcing platform such as Mechanical Turk to access and manage a

large pool of study participants. Several issues were identified with regards

to the implementation of effective crowd-sourced studies. These included the

additional controls required to recruit the qualified users and to enhance the

quality of the responses.

Fry et al [44] conducted a human empirical study involving a fault local-

isation task. The study aimed to assess the accuracy of human subjects in

locating various types of defects in a few Java programs. For this purpose,

faults were manually injected into the source code and 65 participants were

recruited from Amazon Mechanical Turk to locate these faults. The authors

concluded that certain types of defects were harder for humans to locate

accurately, and certain code contexts were also harder to debug than others

regardless of the type of defect involved.

Fry et al [43] presented another human study involving 32 real-world

defects and 40 distinct patches. In this study, over 150 human subjects were

recruited from Amazon Mechanical Turk to perform tasks that demonstrated

their understanding of the control flow, state, and maintainability aspects of

both human-written and machine-generated code patches. The authors re-

ported that machine-generated patches were slightly less maintainable than

human-written ones, however machine patches that were augmented with

synthesised human-readable documentation presented a reverse trend.

Pastore et al [96] investigated crowd-sourcing as a mean to aid the ora-

cle task during test data evaluation. The oracle process is split into small

threads and uploaded onto the crowd-sourcing website, where it can be ac-

cessed and completed by the crowd. In this study, the authors presented

the crowd users with assertions included in a test case, and requested them

Chapter 2 52

to evaluate whether assertions reflected the current behaviour of the pro-

gram. If the crowd determined that an assertion mismatches the program’s

behaviour (according to the code specification), then a bug has been lo-

cated. The authors reported that crowd users can be used to automate the

oracle problem, although obtaining appropriate results from the crowd is a

notoriously difficult task.

2.8 Conclusions

This chapter explored the literature in the field of search-based structural

testing. The operation of various search-based techniques employed in au-

tomated test data generation were discussed. This included Hill Climbing,

Simulated Annealing and Evolutionary Algorithms.

The chapter then discussed the major issues associated with search-based

test data generation including the qualitative and quantitive aspects and

how these matters can affect the overall testing costs. This was proceeded

with a discussion about the oracle problem and the description of various

oracles, investigating how different aspects of automatically generated test

data can particularly impact the human oracle costs.

The chapter then described empirical studies in software engineering and

presented an investigation into mutation analysis as two major evaluation

methods employed in this thesis.

Chapter 3

An Investigation into a

Seeded Search-Based

Approach For Branch

Coverage

3.1 Introduction

This chapter applies a seeded search-based strategy to the automatic gen-

eration of test inputs, with the aim of producing branch-covering readable

test inputs that are easy for humans to comprehend. As discussed previ-

ously, seeded search-based strategies incorporate the search mechanism with

some additional knowledge [42, 82, 125], that can provide guidance towards

promising areas of the search space. This knowledge is often in the form of

sample test cases that are used as seeds to commence the search process.

These test cases can be collated from various resources including program’s

source code, specifications, code comments [82], Internet web pages [84, 105]

or the programmer themself. In this research, the seeds are collated directly

from human subjects as described in Section 2.4.

An empirical study was performed to assess the effectiveness and effi-

ciency of the seeded search-based approach in generation of branch-covering

and fault-revealing test inputs. The case studies used in this experiment

Chapter 3 54

included 14 Java methods from open source projects. The results revealed

that test inputs generated using the seeded search-based approach obtained

significantly higher branch coverage for 4 case studies. The fault-finding

capability was also found to be improved for 9 of the case studies. The key

contribution of this chapter therefore is:

The results of the empirical study in which both the seeded and unseeded

search-based approaches are compared for generating branch-covering

test suites, revealing cases where the seeded approach improves branch

coverage, efficiency, and fault-finding effectiveness.

The chapter begins by describing the functioning of the search-based

approach used in this study, and how it is seeded with additional information

to guide the test data generation process. The chapter then describes the

human empirical study, detailing the experimental setup. This is followed

in Section 3.4, which discusses the statistical results on branch coverage and

fault finding capability. Section 3.5 describes the threats to validity, while

Section 3.6 concludes the chapter.

3.2 The Search-Based Technique

This study is focused on two variations of a search-based test data genera-

tion technique. The first approach applies the Alternating Variable Method

(AVM) [71] to generate test inputs for a number of Java programs. This

process commences with a randomly generated value in the search space,

which is then continuously augmented during the exploratory and pattern

phases (as detailed in the literature review Section 2.4.3). In this thesis,

this approach is referred to as the unseeded approach in comparison to the

seeded approach presented next.

The Seeded Approach

The AVM is configured to substitute the initial random value with a human-

supplied value to guide the search procedure towards generation of similar

test inputs. In this study, samples of test inputs are collated directly from

Chapter 3 55

!
Random'Generated,

Input!
!

,
AVM,Search,

!

!
Unseeded!Test!Data!

!

!
Human'Supplied,

Input!
!

Starts&&&With&

,
AVM,Search,

!

!
Seeded!Test!Data!

!

!
Human,Subjects!

!

!
!
!

!
!
!

Starts&&&With&

!
Random'Generated,

Input!
!

,
AVM,Search,

!

!
Unseeded!Test!Data!

!

!
Human'Supplied,

Input!
!

Starts&&&With&

,
AVM,Search,

!

!
Seeded!Test!Data!

!

!
Human,Subjects!

!

!
!
!

!
!
!

Starts&&&With&

(a) Unseeded Approach (b) Seeded Approach

Figure 3.1: The operation of the seeded and unseeded search-based ap-

proaches. (a) demonstrates the basic performance of a standard AVM, where

(b) represents the operation of a seeded AVM.

human subjects selected from two broad groups: students in the Depart-

ment of Computer Science at the University of Sheffield, and Internet users

participating via CrowdFlower [4] the crowd-sourcing website.

The human-supplied test inputs are predicted to enclose subtle knowl-

edge about the program’s input profile that is hidden to the current search-

based heuristics. Seeding the AVM with these values should therefore result

in generation of more branch-covering test inputs. The AVM is chosen as

a local search method to ensure the final test data retains the readable as-

pects of the seeded inputs. Section 3.4 and Section 4.3 (of the next chapter)

present the result of this investigation.

3.3 Experimental Study Methodology

An empirical study was performed to assess the branch coverage and fault-

finding capabilities of the test data generated using both the seeded and

unseeded approaches. This involved collecting samples of test cases from

human subjects for the 14 Java programs. The human-supplied values were

Chapter 3 56

Table 3.1: Case studies selected from 7 open source projects. These pro-
grams cover the both primitive and string input types.

Project Class Methods # Branches Parameter
Type

Apache Commons org.apache.commons.math.util.MathUtils factorial 2 Integer
http://commons.apache.org/math gcd 18 Integers

binomialCoefficient 10 Integers
compareTo 4 Doubles

Calendar Calendar days between 32 Integers

Chemeval org.openscience.cdk.index.CASNumber isValid 4 String
http://chemeval.sf.net

Daikon daikon.split.SplitterJavaSource getClassName 2 String
http://pag.csail.mit.edu/daikon protectQuotations 4 String

OpenJDK com.sun.jndi.dns.DnsName isHostNameLabel 4 String
http://openjdk.java.net compareLabels 8 Strings

com.sun.jndi.toolkit.url.GenericURLContext composeName 4 Strings

isValidProtocol 8 String
getURLPrefix 6 String

PuzzleBazar com.puzzlebazar.client.util.Validation validateEmail 24 String
http://code.google.com/p/puzzlebazar

then used as seeds to initiate the automated search-based test data genera-

tion process. The empirical procedures consisted of four key steps:

1. The selection of the case studies as the basis for test data generation.

2. The human study protocol related to the information presented to the

participants and the responses collated.

3. The selection of the human participants.

4. The incorporation of the human-supplied values into the search-based

test data generation process.

The description of these steps are presented in the following sections.

3.3.1 Case Studies

The empirical study was concerned with search-based test data generation

for branch coverage. It was therefore important to include case studies that

have a relatively complex branching structure, where generation of branch

covering test cases is a challenge. Another criteria for selecting case studies

Chapter 3 57

for this experiment was that the operation of each case study is amenable

to being understood from no more than a paragraph of text. The primary

reason this was to avoid so-called fatigue effects, potentially biasing the

results or increasing the number of unusable responses.

The case studies used in the experiment comprised of 14 Java methods

with various primitive input types (string, integer and double) selected from

6 open source projects. The projects and methods are described in more

detail as follows, with a summary presented in Table 3.1.

Apache Commons Mathematics is a library for mathematics and statis-

tics. Four different methods were selected from this project. The method

factorial computes the factorial of a non-negative integer n. The method bi-

nomialCoefficient computes the binomial coefficient
(
n
k

)
which is the number

of ways of selecting k unordered outcomes from n possibilities. The method

compareTo compares two numbers given some amount of allowed error. It

returns 0 if the two numbers (x and y) are equal, or −1 if x < y, otherwise

it returns 1. The method gcd computes the greatest common divisor of two

integers.

Calendar is an open source program that computes the number of days

between the two given dates. Method days between was selected from this

class.

Chemeval is a chemical evaluation framework for inspecting the molecu-

lar structures and the potential risk assessment. One method was selected

from this project: isValid ensures that an input string is a valid CAS num-

ber. A valid CAS number is a string consisting of up to 10 digits (beginning

at 50− 0− 0), separated by hyphens, the last digit serving as a check digit.

Daikon is an invariant generator and a detector tool, used for reporting

likely program invariants. Two methods were selected from its source code:

getClassName deduces a Java class name from a string based on the final

occurrence of the dot character. The method protectQuotations places a

backslash in front of each quotation mark of a string.

OpenJDK is an open source implementation of the Java programming

language, consisting of the Java Class Library and the Java compiler. Three

methods were selected from this project. isValidProtocol, checks the validity

of a protocol name. A valid protocol name is a string of which the length is

Chapter 3 58

greater than one, the first character is an alphabetic letter (upper or lower

case) and each of the remaining characters are either digits, alphabetical

letters or any of these characters: {+, -, .}. The method isHostNameLabel

takes a string as an argument, and returns true if the string is a valid host

name. A valid hostname is considered to be a string where the first and

the last characters are alphanumeric. The remaining characters may be al-

phanumeric or hyphens. The method composeName takes two strings name

and prefix as arguments. If one of name or prefix are null or empty, the

method returns the null or empty argument, otherwise it returns prefix ap-

pended by a forward slash followed by the name. The method compareLabels

compares two labels alphabetically, ignoring case differences.

PuzzleBazar is a web-based system for creating, uploading and playing

various puzzles including learning tools and tutorials. The method valida-

teEmail selected from this platform checks whether the string argument is

a valid email address.

The selected methods compromised of at least 2 to 32 branches (see

factorial and days between as examples). A number of these case studies

had relatively complex, unstructured control flow and unbounded loops,

such as isValid, validateEmail, isValidProtocol and getURLPrefix.

These case studies were categorised into one of the three classes numeri-

cal computation, string validation and string conversion routines. Numerical

computation routines take one or more numerical inputs and return a nu-

merical output, performing some form of computations on the inputs. These

include factorial, binomialCoefficient, compareTo, gcd, and days between.

String validation routines take one or more string inputs and return true

or false, and include isHostNameLabel, isValidProtocol, isValid, and valida-

teEmail methods. Conversion routines take one or more string inputs and

return some string/integer output. These include composeName, getClass-

Name, protectQuotations, and compareLabels.

3.3.2 Human Study Protocol

This phase of the empirical study was concerned with the experimental setup

for collating samples of human-supplied test cases for the 14 Java methods

Chapter 3 59

pdfcrowd.comopen in browser PRO version Are you a developer? Try out the HTML to PDF API

4XHVWLRQ����RI���9DOLGDWH�(�PDLO
7KH�IROORZLQJ�PHWKRG�WDNHV�D�VWULQJ�DV�D�H�PDLO�DGGUHVV��LW�UHWXUQV�WUXH�LI�WKH�H�PDLO�DGGUHVV�LV�YDOLG�
RWKHUZLVH�LW�UHWXUQV�IDOVH�

�
� SXEOLF�ERROHDQ�YDOLGDWH(PDLO�6WULQJ�HPDLO�^
� � ����
� `
�

3OHDVH�SURYLGH�D�WHVW�FDVH�E\�SURYLGLQJ�D�VDPSOH�LQSXW�WRJHWKHU�ZLWK�LWV�H[SHFWHG�RXWSXW�

,QSXW 5HWXUQ�9DOXH
HPDLO� 7UXH� �)DOVH

� �3UHYLRXV 6DYH�	�3URFHHG 6NLS

Figure 3.2: The online TCCollector application displaying one of the 14

questions

detailed in Table 3.1. This process was automated using a web application,

referred to as TCCollector, which primarily presented a brief description

about the study, and requested the participants to provide their level of

education and their field of expertise. The application then presented a

brief description about each of 14 Java methods sequentially, and requested

the participant to supply a sample input and output for each method based

on the description provided. The participant had the opportunity to either

supply an answer, skip the question, or go back and edit their previous

answers. Figure 3.2 shows a screenshot of this application with an example

question.

3.3.3 Participant Selection

Participants for this study were selected from two groups: students from

the Department of Computer Science at the University of Sheffield, and

crowd-workers participating via CrowdFlower the crowd-sourcing website.

All participants were required to have some level of self-reported experience

in computer programming. Students were contacted via emails, and a total

of 29 students participated in the study. One participant chosen at random

was awarded with a 50 pound voucher token at the end of the study.

Chapter 3 60

Figure 3.3: The task interface for the crowd-workers. A link to the TC-

Collector is posted in the task’s description panel. crowd-workers are then

redirected to the application by clicking on the link. Upon the task’s com-

pletion, the qualified participants are provided with a confirmation code,

which should be pasted into the specified text field, in order to claim their

payment.

Chapter 3 61

Reports Your Jobs

Log outAccount

Job 123792 Test Case Evaluation - Extra Round2
Not Ordered

Task Settings

Judgments per unit 100

Units per page 1

Contributor Pay

Complete a sample task to calibrate the "seconds

per unit" option. This will help you price your job

correctly.

Seconds per unit 80

Seconds per page 80

Payment per page (cents) 25

Pay per hour

(Estimated)
$6.75

Cost (for entire job)

Total units 1

Total golds 0

Total judgments 100

Cost per unit $36.575

Job cost $36.58

S A V E A N D C O N T I N U E T O O R D E R

©2011 CrowdFlower Contact About CrowdFlower API Terms of Service Privacy

Overview Data Edit Gold Analytics Reports

← Back to job dashboard

Job Calibration Settings

Figure 3.4: CrowdFlower Job Calibration Settings, where the requester spec-

ifies the job details and purchases the required number of judgments. The

job then appears on a number of crowd sourcing channels, and crowd-workers

can earn money by completing it.

Chapter 3 62

Recruitment of crowd-workers was completed using a CrowdFlower ac-

count, where people can create and run tasks to be completed by crowd-

workers for some fees. The number of crowd-workers required for this ex-

periment, and its price was specified in the job’s calibration settings panel.

Once the order was purchased for the given price, the job would become

available to the crowd-workers (or individual contributors) for completion.

Figure 3.3 shows how the job appears to the crowd-workers, while Figure

3.4 shows a screen shot of the calibration settings panel, indicating the

purchase price paid for the 120 participants ordered for this experiment.

The labour fee for each participant was specified as 25 cents, which would

be given to them upon completion of the task. The total cost for this

experiment was 36.58 USD (117 × 25) including the additional markup for

the CrowdFlower labor costs.

CrowdFlower provides an opportunity for a wide range of people from

all over the globe to accomplish tasks anonymously and earn money. While

this allows a large number of participants to take part in a short time, it also

increases the risk of participants trying to game the system for money by

entering invalid responses. To resolve this issue, a number of crowd-sourced

human studies have proposed to consider the responses from only a limited

subset of participants based on some adequate metric [44, 43, 106, 70].

In this study, selection of participant from CrowdFlower was performed

based on a suspiciousness score, which was assigned to each participant,

and was set to 0 by default. This score would increment every time the

participant entered some invalid data in the provided text fields for each

question. The data validity was detected using different validation rou-

tines employed for each method. For example, string values or alphabetical

characters entered as an input value for factorial, gcd, days between, and bi-

nomialCoefficient would be considered as invalid, since these methods only

operate on integer values. Participants who entered over 7 (out of 14) invalid

responses were disqualified, and were subsequently removed from the study

without payment. A total of 33 participants scored high suspicious scores

and therefore were discarded from the total 150 crowd workers recruited for

this study.

Data obtained from students were also checked for the suspiciousness

Chapter 3 63

score using the same scheme. The results revealed a suspiciousness score

of 0 in all cases, indicating that the data obtained from students did not

contain any invalid responses, and thus, none of the student participants

were disregarded from the study.

Identify Correct Test Case

A validation scheme was then performed to identify correct and unique test

cases provided by human participants for each method. A correct test case

was defined as a test case in which the input and output values were as

expected given the method’s description. A unique test case was defined

as one which was never repeated in the obtained set of test cases for that

method.

Table 3.2 shows the number of unique and valid test cases provided by

both crowd-workers and students. These test cases were used as seeds to

incorporate the test data generation process as explained in the next section.

3.3.4 Generating Test Inputs

This phase of the empirical study was concerned with generating test inputs

for each method using both seeded and unseeded search-based approaches.

Firstly, the standard AVM [71] was used as the unseeded search-based ap-

proach to attempt the full branch coverage of each method, within the max-

imum allowance of 1000 fitness evaluations involving each branch.

Due to the stochastic nature of meta-heuristic algorithms, the AVM was

repeated 50 times on each method with different random seeds. This was

to enlarge the test data’s sample size, and to avoid the potential source of

bias. The number of test suites generated using this approach was therefore

50 for each method.

Next, the full branch coverage of each method was attempted using the

seeded search-based approach. In this stage, the AVM was seeded with a

set of correct and unique test inputs supplied by human participants for

each method. The search process for test data involving each branch was

allowed up to 1000 fitness evaluations. The seeded AVM was repeated for

each program a variable number of times depending on the number of correct

Chapter 3 64

and unique test inputs obtained from the participants. Thus, the number

of test suites generated using the seeded search-based approach differed for

each case study. This is shown in Table 3.2

The search-based testing framework, IGUANA [80] , was used to perform

the test data searches using each approach. In this study, IGUANA was

easily adapted to Java as the selected methods were all static and hence

there was no need to make a method call sequence. The representation for

string inputs were defined as an array of integers representing a sequence of

ASCII characters, s, with maximum length of 50, followed by an additional

integer l, for controlling the string’s length.

Using this representation, a sequence of 51 integers (l1, l2, ..., l51) are

generated, where the integer l51 is used to specify the length of the string

input generated for the method. For instance, if the last integer of the

sequence s is 8, the sub-sequence (l1, l2, ..., l8) is formed. This sequence

corresponds to a sequence of ASCII character (c1, c2, ..., c8) representing the

string input.

Each integer of the sequence (l1, l2, ..., l8) is derived from the ASCII print-

able range of 32 to 126. The test inputs for integer data types ranges from

−32, 768 to 32, 767 which is the range of the short type in Java.

3.3.5 Basic Definitions

Branch Coverage. Branch coverage is defined as the percentage of the

program’s branches a test suite can cover.

Mutation Score. Mutation score is defined as the percentage of mutants

(faults) a set of test cases can detect (kill). More information about this

was presented in Section 2.6.

Success Rate. Success rate is defined as the percentage of all the runs (i.e.

50) for which the test data to execute the branch is found. Success rate

is a basis on which the effectiveness of the search can be compared for the

branch using different approaches (i.e. seeded vs unseeded).

Chapter 3 65

3.3.6 Research Questions

The research questions to be answered by the empirical study are as follows:

RQ 1. Quality of Human-Supplied Seeds. This research question com-

pares the correctness of test cases obtained from crowd-workers and students.

To answer this research question, the percentage of the correct test cases over

the total number of test cases obtained from students and crowd-workers is

computed and compared.

RQ 2. Test Data Branch Coverage. This research question determines

whether the use of human-supplied seeds in the search-based test data gen-

eration process can significantly increase the branch coverage of generated

test inputs. To answer this question, the branch coverage of test inputs

generated using both seeded and unseeded search-based approaches is com-

puted and compared for each program.

RQ 3. Test Data Generation Effectiveness and Efficiency. This

research question inspects whether the incorporation of human-supplied test

inputs into the search-based test data generation process can significantly

improve the performance of the search function in finding the test data of

interest. To answer this question, the efficiency and effectiveness of each

approach is computed based on the following criteria:

(a) Effectiveness: The number of times each branch is successfully executed

over the total number of search runs.

(b) Efficiency: The number of fitness evaluations performed by the search

to cover a branch.

RQ 4. Test Data Mutation Score. This research question investigates

whether the use of human-supplied seeds in search-based test data genera-

tion has any significant impact on the fault-finding capability of the gener-

ated test inputs. To answer this question, mutation analysis is performed to

compute the percentage of mutants that the test inputs for each approach

can detect.

Chapter 3 66

3.4 Experimental Results

This section examines the outcome of the human empirical evaluation, as-

sessing each research question.

RQ1. Quality of Human-Supplied Seeds

To answer this research question, the percentage of correct test cases sup-

plied by crowd-workers and students were computed and compared. The

results are demonstrated as a bar chart in Figure 3.5. The percentage of

correct test cases obtained from students was considerably higher than those

obtained from crowd-workers only for the isValid method. In other cases this

was marginally improved approximately by 5− 10%.

As previously mentioned, the test cases obtained from 117 crowd workers

(out of 150) were used in the study. This allocated each method 117 test

cases obtained from crowd-workers, and 29 test cases from students.

The Fisher exact test with confidence level set to 95% was performed to

indicate the significance between correctness of the test cases obtained from

crowd-workers and students. The result of this, displayed in Table 3.3, re-

vealed that there was no significant differences between these two categories

as none of the corresponding p-values were below 0.05. In addition, obtain-

ing test cases from crowd-workers was significantly faster. A total of 150

subjects participated via CrowdFlower within 61 hours, while it took more

than 3 weeks to gather only 29 volunteer students to complete the study.

Test cases obtained from both groups of participants had numerous rep-

etitions for a few case studies. Table 3.2 shows the number of unique and

correct unique test cases obtained from crowd-workers and students for each

method. As evident from these results, the method factorial received the

lowest number of unique test cases from both groups of participants.

Determining the output of the factorial method requires tedious mathe-

matical calculations due to its arithmetical structure. Manual computation

of this function can therefore be more difficult and error-prone for input

values greater than 10. The majority of participants provided values less

than 10, which are easier to compute.

Chapter 3 67

Table 3.2: The number of correct and correct-unique test cases obtained
from crowd-workers and students. A correct test case refers to the one in
which the two input and output are as expected according to the method’s
description. A unique test case is defined as the one which is never repeated
in the obtained set of test cases for the method.

(a) Crowd-sourced Seeds

Project Method Correct Unique

Apache Commons factorial 86 8
gcd 76 40
binomialCoefficient 60 14
compareTo 48 45

Calendar days between 54 48
Chemeval isValid 38 28
Daikon getClassName 45 45

protectQuotations 38 35
OpenJDK isHostNameLabel 79 76

compareLabels 49 40
composeName 59 59
isValidProtocol 74 68
getURLPrefix 23 23

PuzzleBazar validateEmail 100 100

(b) Student-supplied Seeds

Project Method Correct Unique

Apache Commons factorial 23 12
gcd 22 20
binomialCoefficient 18 12
compareTo 14 14

Calendar days between 16 16
Chemeval isValid 13 13
Daikon getClassName 14 14

protectQuotations 14 14
OpenJDK isHostNameLabel 25 25

compareLabels 19 18
composeName 10 9
isValidProtocol 21 21
getURLPrefix 10 10

PuzzleBazar validateEmail 27 27

Chapter 3 68

co
rr

ec
t P

er
ce

nt
ag

e

0
20

40
60

80
10
0

bin
om
ialC
oe
ffic
ien
t

co
mp
are
La
be
ls

co
mp
os
eN
am
e

co
mp
are
To

da
ys_
be
twe
en

fac
tor
ial

ge
tUR
LP
ref
ix gc

d

ge
tCl
as
sN
am
e

isH
os
tNa
me
La
be
l

isV
alid
Pro
toc
ol
isV
alid

pro
tec
tQ
uo
tat
ion
s

va
lida
teE
ma
il

Crowd-Sourced Seeds

Student-Supplied Seeds

Figure 3.5: Percentage of the correct test cases obtained from crowd-workers

and students

Chapter 3 69

Table 3.3: The results of the Fisher test on correctness percentage of the
test cases supplied by crowd-workers and students

Project Method Correctness p-value
Crowd Student

Apache Commons factorial 73.5 79.3 0.9
gcd 65.0 75.9 0.6
binomialCoefficient 51.3 62.1 0.6
compareTo 41.0 48.3 0.7

Calendar days between 46.2 55.2 0.6
Chemeval isValid 32.5 44.8 0.4
Daikon getClassName 38.5 48.3 0.6

protectQuotations 32.5 48.3 0.3
OpenJDK isHostNameLabel 67.5 86.2 0.4

compareLabels 41.9 65.5 0.2
composeName 50.4 34.5 0.4
isValidProtocol 63.2 72.4 0.7
getURLPrefix 19.7 34.5 0.2

PuzzleBazar validateEmail 85.5 93.1 0.9

RQ2. Test Data Branch Coverage

One of the key aspects of this study was to assess and compare the branch

coverage of test inputs generated using the seeded and unseeded search-

based approaches. Figure 3.6 shows the mean branch coverage for all the

test suites generated using each approach for each program.

The Fisher exact test was performed with a confidence level set to 95%,

to indicate cases where the seeded approach attained significantly higher

branch coverage. Table 3.4 shows the results with significant p-values dis-

played in bold. As evident from these results, test cases generated using

the seeded approach obtained significantly higher branch coverage for pro-

grams getURLPrefix, validateEmail, isValidProtocol, and isValid using the

crowd-sourced seeds. The results from the students also followed a similar

trend, with the exception of isValidProtocol. On average this improvement

was 31.3% for the crowd-sourced data and 33.4% for the student data.

In answer to this research question therefore, the evidence suggests that

the use of the seeded search-based approach has significant effects on the

Chapter 3 70

B
ra

nc
h

C
ov

er
ag

e

0
20

40
60

80
10
0

bin
om
ialC
oe
ffic
ien
t

co
mp
are
La
be
ls

co
mp
os
eN
am
e

co
mp
are
To

da
ys_
be
twe
en

fac
tor
ial

ge
tUR
LP
ref
ix gc

d

ge
tCl
as
sN
am
e

isH
os
tNa
me
La
be
l

isV
alid
Pro
toc
ol
isV
alid

pro
tec
tQ
uo
tat
ion
s

va
lida
teE
ma
il

Crowd-Sourced Seeded

Student-Supplied Seeded

Unseeded

Figure 3.6: Effects of human-provided seeds on branch coverage

Chapter 3 71

Table 3.4: The results obtained from the Fisher exact test on branch cover-
age of test inputs generated using both seeded and the unseeded approaches.
(a) presents the crowd-sourced seeded test data, (b) presents the student-
supplied seeded test data. Bold font indicates the significant cases (with
p-values < 0.05) where the seeded approach outperforms the unseeded ap-
proach.

(a) Crowd-sourced Seeded Test Data

Project Method Seeded Unseeded p-value

Apache Commons factorial 100.0 100.0 1.0
gcd 78.9 78.0 0.9
binomialCoefficient 95.7 80.4 0.2
compareTo 100.0 100.0 1.0

Calendar days between 100.0 100.0 1.0
Chemeval isValid 82.1 50.0 0.009
Daikon getClassName 90.0 78.0 0.5

protectQuotations 100.0 100.0 1.0
OpenJDK isHostNameLabel 75.0 75.0 1.0

compareLabels 100.0 100.0 1.0
composeName 100.0 100.0 1.0
isValidProtocol 93.4 74.0 0.019
getURLPrefix 89.9 37.7 < 0.001

PuzzleBazar validateEmail 77.8 55.2 < 0.001

(b) Student-supplied Seeded Test Data

Project Method Seeded Unseeded p-value

Apache Commons factorial 100.0 100.0 1.0
gcd 78.3 78.0 1.0
binomialCoefficient 92.5 80.4 0.4
compareTo 100.0 100.0 1.0

Calendar days between 100.0 100.0 1.0
Chemeval isValid 79.6 50.0 0.017
Daikon getClassName 85.7 78.0 0.9

protectQuotations 100.0 100.0 1.0
OpenJDK isHostNameLabel 75.0 75.0 1.0

compareLabels 100.0 100.0 1.0
composeName 100.0 100.0 1.0
isValidProtocol 91.1 74.0 0.1
getURLPrefix 90.0 37.7 <0.001

PuzzleBazar validateEmail 73.6 55.2 <0.001

Chapter 3 72

branch coverage of test inputs particularly for methods with string argu-

ments. This is mainly due to incorporation of the human-supplied inputs

that introduce additional guidance to the search process. There was no

evidence to suggest that the use of the seeded search-based approach ob-

structs branch coverage in any of the cases, i.e. it did not reduce the branch

coverage for any of the methods under consideration. This is in line with

the results achieved by Fraser et al [42] as described in Section 2.4.6 of the

literature review.

RQ3. Test Data Generation Effectiveness and Efficiency

A. Effectiveness

The success rate of the seeded and unseeded search-based approaches in ex-

ecuting individual branches were assessed using the Fisher’s exact test. The

termination criterion of each approach was set up to 1000 fitness evalua-

tions for each branch. Table 3.5 and Table 3.6 present the significant results

(p-values < 0.05) for the crowd-sourced seeded and student-supplied seeded

test data respectively.

The Fisher test recorded a significant difference for 26 and 19 branches

in each set of test data presented in Tables 3.5 and 3.6. In none of these

instances, test data searches using the seeded search-based approach re-

vealed to be detrimental. This implies that incorporation of the human-

supplied test inputs (obtained from students and crowd-workers) into the

search mechanism can improve the overall success rate of the test data gen-

eration process.

B. Efficiency

The performance efficiency of each approach was inspected based on the

number of fitness evaluations performed in order to locate test data for each

branch. The Wilcoxon rank sum test, with the confidence level set to 0.95%,

was performed to check the statistical significance.

In addition, the Vargha and Delaney’s Â12 statistic [117] was used to

assess the effect size. The Â12 statistic computes the probability that a run

of the first search-based approach executes a larger number of fitness eval-

Chapter 3 73

Table 3.5: The significant results obtained from the Fisher’s exact test on
the success rate of the crowd-sourced seeded and unseeded search-based
approaches (with the confidence level set to 95%). In all these cases the suc-
cess rate of the crowd-sourced seeded approach is higher than the unseeded
approach.

(a) Crowd-sourced Seeded Test Data

Method Branch Success Rate p-value
Seeded Unseeded

binomialCoefficient 6T 64.3 2 < 0.001
8T 92.9 4 < 0.001

isValid 4T 64.3 0 < 0.001
4F 64.3 0 < 0.001

getClassName 2T 80 56 0.016
isValidProtocol 7F 100 70 < 0.001

9T 100 70 < 0.001
9F 100 70 < 0.001
11T 100 70 < 0.001
11F 95.6 60 < 0.001

getURLPrefix 4F 100 64 < 0.001
7T 91.3 0 < 0.001
7F 100 64 < 0.001
10T 78.3 0 < 0.001
10F 69.6 0 < 0.001

validateEmail 14F 86 50 < 0.001
27T 86 52 < 0.001
27F 86 36 < 0.001
31T 86 38 < 0.001
31F 86 52 < 0.001
34T 81 50 < 0.001
34F 86 52 < 0.001
36T 18 6 0.049
36F 81 50 < 0.001
41T 86 52 < 0.001
41F 86 38 < 0.001
43T 86 36 < 0.001

Chapter 3 74

Table 3.6: The significant results obtained from the Fisher’s exact test on the
success rate of student-supplied seeded and unseeded test data. In all these
cases the crowd-sourced seeded approach has significantly higher success
rate in comparison to the unseeded approach

(b) Student-supplied Seeded Test Data

Method Branch Success Rate p-value
Seeded Unseeded

binomialCoefficient 6T 50 2 < 0.001
8T 75 4 < 0.001

isValid 4T 59.3 0 < 0.001
4F 59.3 0 < 0.001

isValidProtocol 7F 95.2 70 0.027
9T 95.2 70 0.027
9F 95.2 70 0.027
11T 95.2 70 0.027
11F 90.5 60 0.012

validateEmail 14F 85.2 50 0.003
27T 85.2 52 0.006
27F 77.8 36 < 0.001
31T 77.8 38 0.002
31F 85.2 52 0.006
34F 85.2 52 0.006
41T 85.2 52 0.006
41F 77.8 38 0.002
43T 77.8 36 < 0.001
43F 51.9 2 < 0.001

Chapter 3 75

uations compared to that of the second search-based approach. According

to the guidelines presented in the Vargha and Delaney’s paper [117], if the

Â12 <0.5, then the first search-based approach outperforms the second one,

and the opposite is true if Â12 >0.5. Also, depending whether the absolute

difference |Â12 - 0.5| is > 0.21, > 0.14, > 0.06, or ≤ 0.06, the corresponding

effect size can be categorised as large, medium, small or negligible respec-

tively.

Table 3.7 presents the significant results obtained from the Wilcoxon

test and Â12 statistic for both crowd-sourced seeded and unseeded test data.

The Wilcoxon test recorded a significant difference in 75 branches. In 51

cases, the seeded approach performed significantly fewer fitness evaluations

to cover the branch. However, for the remaining 24 branches, the seeded

approach was detrimental, i.e. it performed more fitness evaluations to find

the test data covering the branch.

Table 3.8 presents a similar result for the student-supplied seeded test

data. The Wilcoxon test recorded a significant difference in 71 cases, in

which the unseeded approach outperformed the seeded approach in 23 oc-

casions. For the remaining 48 cases, the seeded approach performed signifi-

cantly fewer fitness evaluations to cover the branch.

The branches for which the seeded search-based approach performed

detrimental includes 4T and 11T in binomialCoefficient, 1F in compareTo,

6T, 32F, 39F, 43F, 47T, 47F, 49T, 49F in days between, 2F in getClassName,

11T in compareLabels, 9F, 11T in isValidProtocol, 4T in getURLPrefix, and

20F, 34F in validateEmail.

The majority of these branches involve simple conditions for which the

test data generation is a straightforward task. In such cases, the initial test

input generated at random can often cover the target branch instantly. As

a results, the search mechanism generates the required test data for that

branch after performing the first fitness evaluation. The use of the seeded

search-based approach can however divert the search towards different areas

of the search space. In this case, the search mechanism would require to

execute at least a few fitness evaluations in order to return to the required

search point, and to locate the test data of interest.

In answer to this research question therefore, the evidence indicates that

Chapter 3 76

Table 3.7: Results of the Wilcoxon rank-sum on the numbers of fitness
evaluations completed by each approach to execute a branch. Columns
Seeded and Unseeded presents the mean number of fitness evaluations for
successful trials using the crowd-sourced seeded approach and the unseeded
approach respectively. Values in bold face indicate the significant cases
where the seeded approach outperforms the unseeded approach, italic font
represents cases where the seeded approach performs detrimental. For the
Â12 statistic, * indicates a small effect size, ** a medium effect size and ***
a large effect size, according to the guidelines of Vargha and Delaney [117].

(a) Crowd-sourced Seeded Test Data

Method Branch FitnessEvals p-value Â12

Seeded Unseeded

factorial 2T 3.4 7.4 0.003 ***0.202
2F 1.2 1 0.014 *0.562

gcd 8T 6.6 15 < 0.001 ***0.075
8F 2.4 31.8 < 0.001 ***0.262
16T 1.3 1 0.005 *0.575
19T 1.2 1 0.011 *0.562
21T 1.2 1 0.011 *0.562

binomialCoefficient 2T 3.1 12.1 0.003 ***0.24
2F 1 4.3 0.046 *0.38
4T 562.4 158.3 < 0.001 ***0.907
4F 1 4.3 0.046 *0.38
8T 2.5 380 0.03 ***0
8F 8.4 4.3 0.031 **0.659
11T 45 24.6 < 0.001 ***0.794

compareTo 1T 11.3 43.6 < 0.001 ***0.273
1F 13.4 6 < 0.001 ***0.724
3F 37.3 48.1 < 0.001 ***0.78

days between 2T 3.8 15 < 0.001 ***0
4F 1 11.5 < 0.001 ***0.25
6T 4.5 1 < 0.001 ***0.896
6F 1.8 15 < 0.001 ***0
8F 4.3 11 0.002 **0.339
10F 1 9.5 < 0.001 ***0.25
12F 1 12.5 < 0.001 ***0.25
14F 1 8.9 < 0.001 ***0.25
16T 15.5 61.3 0.037 *0.62
16F 1 12 < 0.001 ***0.25
18F 1.1 40 < 0.001 **0.292
28T 4.9 120.6 < 0.001 ***0
28F 2.1 1 < 0.001 **0.688
32T 71.3 206.3 < 0.001 ***0.168
32F 5.6 1 < 0.001 ***0.938

Chapter 3 77

Continuation of Table 3.7 - Crowd-Sourced Seeded Test Data

Method Branch FitnessEvals p-value Â12

Seeded Unseeded

34T 72.4 206.3 < 0.001 ***0.168
34F 71.3 206.3 < 0.001 ***0.168
39T 38.3 73.8 0.042 *0.382
39F 5.6 1 < 0.001 ***0.938
43T 6.6 31.9 < 0.001 ***0.764
43F 5.6 1 < 0.001 ***0.938
47T 6.9 1 < 0.001 ***0.979
47F 5.6 1 < 0.001 ***0.938
49T 8.1 1 < 0.001 ***0.99
49F 6.9 1 < 0.001 ***0.979

getClassName 2T 1.5 144.3 < 0.001 ***0.183
2F 12.5 4.8 < 0.001 **0.704

isHostNameLabel 3F 4.1 6 < 0.001 ***0.007
compareLabels 6F 3.2 6.2 < 0.001 ***0.034

11T 168 48.8 < 0.001 ***1
11F 1 14.8 < 0.001 *0.37

isValidProtocol 4T 4 6 < 0.001 ***0.015
9F 131.5 131.1 < 0.001 ***0.189
11T 122.9 40.8 < 0.001 ***0.863

getURLPrefix 4T 123.7 25.9 < 0.001 ***0.935
4F 1 124 < 0.001 ***0.094
7T 12.3 124 < 0.001 ***0.221

validateEmail 7F 9.2 11 < 0.001 ***0.813
10T 1 26.5 < 0.001 ***0.154
12T 1 26.5 < 0.001 ***0.154
12F 1 26.5 < 0.001 ***0.154
14T 1 64.6 < 0.001 ***0.04
14F 137.1 180 0.02 *0.36
20T 1 44.3 < 0.001 ***0.15
20F 496.8 64.4 < 0.001 ***0.835
24T 1 53.6 < 0.001 ***0.156
24F 1 94.1 < 0.001 ***0.039
27T 11 274.1 < 0.001 ***0.019
27F 9.5 98.3 < 0.001 ***0.048
31T 1 94.1 < 0.001 ***0.039
31F 15.9 168.3 < 0.001 ***0.027
34T 1 94.4 < 0.001 ***0.039
34F 762.6 393 0.008 ***0.981
36T 15.9 168.3 < 0.001 ***0.027
36F 3 94.6 < 0.001 ***0.076
41T 9.4 98.3 < 0.001 ***0.048
41F 41.8 274.1 < 0.001 ***0.069
43T 1.3 167 < 0.001 ***0

Chapter 3 78

Table 3.8: The results of the Wilcoxon rank-sum on numbers of fitness eval-
uations performed using student-supplied seeded and unseeded approaches.
The mean number of fitness evaluations for successful trials using each ap-
proach are presented in columns Seeded and Unseeded respectively. The last
column presents the sample’s effect size using Â12 statistic [117].

(b) Student-supplied Seeded Test Data

Method Branch FitnessEvals p-value Â12

Seeded Unseeded

factorial 2T 3.6 7.4 0.004 ***0.248
2F 1.7 1 0.004 *0.583

gcd 8T 7 15 < 0.001 ***0.1
8F 1 31.8 < 0.001 ***0.25
16T 1.2 1 0.006 *0.575
19T 1.2 1 0.006 *0.575
21T 1.2 1 0.006 *0.575

binomialCoefficient 2T 3.6 12.1 0.005 ***0.24
4T 279.5 158.3 0.039 **0.689
8T 2.2 380 0.039 ***0

compareTo 1T 1.5 43.6 < 0.001 ***0.143
1F 7.3 6 0.002 ***0.744
3T 16.6 76.8 0.006 ***0.257
3F 21.4 48.1 0.007 ***0.722

days between 2T 4.4 15 < 0.001 ***0
4F 1 11.5 < 0.001 ***0.25
6T 3.7 1 < 0.001 ***0.844
6F 2.1 15 < 0.001 ***0
10F 1 9.5 < 0.001 ***0.25
12F 1 12.5 < 0.001 ***0.25
14F 1 8.9 < 0.001 ***0.25
16F 1 12 < 0.001 ***0.25
18F 1.3 40 0.004 **0.298
28T 3.7 120.6 < 0.001 ***0
28F 2.8 1 < 0.001 ***0.75
32T 48.4 206.3 < 0.001 ***0.103
32F 6.2 1 < 0.001 ***0.103
34T 49.2 206.3 < 0.001 ***0.103
34F 48.4 206.3 < 0.001 ***0.103
39F 6.2 1 < 0.001 ***0.416
43T 6.2 31.9 < 0.001 ***0.78
43F 6.2 1 < 0.001 ***0.78
47T 7.2 1 < 0.001 ***0.78
47F 6.2 1 < 0.001 ***0.78
49T 8 1 < 0.001 ***0.78
49F 7.2 1 < 0.001 ***0.78

Chapter 3 79

Continuous of Table 3.8 - Student-supplied Seeded Test Data

Method Branch FitnessEvals p-value Â12

Seeded Unseeded

getClassName 2T 1 144.3 < 0.001 ***0.143
2F 22.2 4.8 < 0.001 ***0.761

protectQuotations 3T 20.6 41.7 0.006 ***0.266
isHostNameLabel 3F 4.3 6 < 0.001 ***0.02
compareLabels 6F 2.7 6.2 < 0.001 ***0.051

11T 8.2 48.8 < 0.001 ***0.195
13T 1.4 1.1 < 0.001 **0.681
13F 7.3 81.2 < 0.001 ***0.065

isValidProtocol 4T 4 6 < 0.001 ***0.048
9F 32.8 131.1 < 0.001 ***0.069
11T 28 40.8 < 0.001 ***0.846

getURLPrefix 4T 309.6 25.9 < 0.001 ***0.949
4F 1 124 < 0.001 ***0.094
7T 12.2 124 0.01 ***0.227

validateEmail 7F 9.6 11 < 0.001 ***0.778
10T 43.3 26.5 < 0.001 ***0.227
10F 179.8 202.4 0.008 **0.293
12T 43.4 26.5 < 0.001 ***0.234
12F 43.4 26.5 < 0.001 ***0.234
14T 45.1 64.6 < 0.001 ***0.118
14F 142.1 180 0.002 ***0.236
20T 48.8 44.3 < 0.001 ***0.229
20F 355.4 64.4 < 0.001 ***0.921
24T 50.5 53.6 < 0.001 ***0.233
24F 50.5 94.1 < 0.001 ***0.122
27T 55.2 274.1 < 0.001 ***0.074
27F 55.2 98.3 < 0.001 ***0.118
31T 50.5 94.1 < 0.001 ***0.122
31F 93.6 168.3 < 0.001 ***0.119
34T 51.1 94.4 < 0.001 ***0.132
36T 93.6 168.3 < 0.001 ***0.119
36F 55.7 94.6 < 0.001 ***0.169
41T 55.2 98.3 < 0.001 ***0.118
41F 76.9 274.1 < 0.001 ***0.104
43T 1 167 < 0.001 ***0

Chapter 3 80

the use of the seeded search-based approach can significantly reduce the

number of fitness evaluations required to cover complex branches. In any

cases, the relevant success rate improves when using the seeded search-based

approach. This can be due to the application of the human-supplied seeds

which incorporate subtle knowledge about the program into the search pro-

cess, and assist the search to effectively locate the test data of interest.

RQ4. Test Data Fault Finding Capability

The mutation system for Java programs, MuClipse [7] was used to assess

the fault-finding capability of test data generated using each approach. Mu-

Clipse is a plugin for Eclipse [5], which generates different types of mutants

for both traditional and class-level mutation testing automatically.

The fault-finding capabilities of generated test data were assessed based

on their mutation scores. The Fisher exact test was performed to deter-

mine the statistical significance with confidence level set to 95%. Table 3.9

presents these results with significant p-values displayed in the last column.

Table 3.10 shows the number of mutants generated for each program.

As evident from the Table 3.9, test inputs generated using the seeded

approach have slightly lower mutation scores for programs days between,

protectQuotations, and compareLabels. This difference however, is not sta-

tistically significant as none of the corresponding p-values are within the

significance threshold (< 0.05). Mutation score for composeName is unde-

fined as MuClipse failed to generate any mutants due to the absence of any

syntactic features (e.g. arithmetic operators, unary logic, etc) in the method

that can be modified using the traditional operators.

In response to this research question, the analysis of the results suggests

the use of the seeded search-based approach has no negative effects on muta-

tion score. In fact, it can significantly increase the mutation score in certain

cases. This could be due to the branch-covering characteristics of the seeded

test data which adds more diversity to the generated test suites.

Chapter 3 81

Table 3.9: Fault-finding capability of test suites generated using the seeded
and unseeded search-based approaches, with p-values less than 0.05 diplayed
in bold. Mutation Score is the percentage of mutants a set of test cases
can detect. In all significant cases, the seeded test suites obtain higher
mutation score compared to the unseeded test suites. (a) corresponds the
crowd-sourced seededed test data, while (b) represents the student-supplied
seeded test data.

(a) Crowd-Sourced Seeded Test Data

Project Method Mutation Score p-value
Seeded Unseeded

Apache Commons factorial 82.0 68.0 0.6
gcd 84.0 83.0 0.9
binomialCoefficient 79.0 68.0 0.3
compareTo 69.0 30.0 0.005

Calendar days between 91.0 92.0 0.9
Chemeval isValid 89.0 3.0 < 0.001
Daikon getClassName 80.0 80.0 1.0

protectQuotations 83.0 83.0 1.0
OpenJDK isHostNameLabel 85.0 22.0 < 0.001

compareLabels 94.0 95.0 1.0
composeName - - -
isValidProtocol 97.0 78.0 0.5
getURLPrefix 82.0 27.0 0.008

PuzzleBazar validateEmail 80.0 56.0 < 0.001

(b) Student-Supplied Seeded Test Data

Project Method Mutation Score p-value
Seeded Unseeded

Apache Commons factorial 89.0 68.0 0.4
gcd 85.0 83.0 0.8
binomialCoefficient 78.0 68.0 0.4
compareTo 58.0 30.0 0.031

Calendar days between 91.0 92.0 0.9
Chemeval isValid 88.0 3.0 < 0.001
Daikon getClassName 80.0 80.0 1.0

protectQuotations 77.0 83.0 0.9
OpenJDK isHostNameLabel 73.0 22.0 < 0.001

compareLabels 67.0 95.0 0.1
composeName - - -
isValidProtocol 95.0 78.0 0.5
getURLPrefix 82.0 27.0 0.008

PuzzleBazar validateEmail 78.0 56.0 0.001

Chapter 3 82

Table 3.10: The total number of mutants generated for each method using
MuClipse

Project Method Mutants

Apache Commons factorial 57
gcd 270
binomialCoefficient 223
compareTo 78

Calendar days between 574
Chemeval isValid 129
Daikon getClassName 15

protectQuotations 36
OpenJDK isHostNameLabel 110

compareLabels 121
composeName 0
isValidProtocol 70
getURLPrefix 40

PuzzleBazar validateEmail 466

3.5 Threats to Validity

An important part of any empirical study is to consider the threats to the

validity of the experiment. As this study is concerned with comparison of

two different approaches to test data generation, it is essential to explore

both internal and external validity of the experiment to ensure that the

comparison is as fair as possible. This section discusses these potential

threats and how these were addressed.

Internal validity emphasises on identifying the potential source of bias

in the experimental design that could have affected the obtained results.

In this experiment, one source of bias could originate from the stochastic

behaviour of the meta-heuristic search algorithms employed in test data

generation. The most reliable (and widely used) scheme for overcoming this

threat is to perform the test data generation process using a sufficiently

large data sample. In this study, experiments were repeated 50 times using

the unseeded approach, and a variable number of times using the seeded

approach depending on the supplied number of seeds for each program.

Chapter 3 83

This was extensively explained in Section 3.3.4.

Another potential threat, which is a common drawback of human studies

is the “learning effects”. Participants tend to perform significantly better

at the end of the study due to becoming more familiar with the task. This

can bias the results obtained from the beginning of the study. Converse to

the “learning effects” are the “fatigue effects”, where human subjects tend

to become tired towards the end of long studies or analysis, which could

bias the obtained results. To mitigate these risks skewing the results, only

correct responses from participants (both students and crowd-workers) were

used to initiate the search process.

In practice, the values obtained for seeding may not be pre-filtered. Thus,

filtering the answers obtained from the participants may cause an additional

threat to validity. To investigate this threat, additional work is required to

assess the quality of the seeded data obtained from various resources, and

explore how these may affect the seeding approach in general. More details

about this is presented in Chapter 6.

External validity is concerned with the extent to which the results of

the experiment can be generalised or applied to real world data. A possible

source of bias in this sense is the selection of the programs used in the empir-

ical study. Due to the rich and diverse nature of programs, it is impractical

to sample a sufficiently large set that represents all the characteristics of

all possible programs. In this experiment, wherever possible, a variety of

programming styles and sources were used. The empirical study drew on

14 Java methods comprising of 130 branches, providing a large pool of re-

sults from which to make observations. The selected Java methods included

various primitive input types(string, integer and double) and were selected

from 6 open source projects developed by real programmers.

A potential threat to external validity is due to the type of search-based

algorithm used. The results obtained from analysing one particular search-

based approach may not be applicable using other approaches. In this study,

test data was generated using the AVM, and any patterns observed in these

results may only be applicable to this particular method, and not to other

search-based test data generation approaches in general.

Another source of bias is the use of CrowdFlower the crowd-sourcing

Chapter 3 84

website. One concern about crowd-sourcing studies is the quality of the

collected data due to the diversity of anonymous users, and their unknown

level of experience. This may provide the opportunity for people to mis-

report the level of expertise or “game” the system by providing arbitrary

judgments just s was fully described in Section 3.3.3.

Another threat to validity is the use of students as professionals, and

generalising the outcome to the broad population. University students are

often not appropriate representative of the general population with regards

to a host of issues. Computer Science (CS) students are however an excep-

tion as they tend to be closer to the world of software professionals more

closely than other students (e.g. psychology) are to the general population

[113]. In particular, CS graduate students are so close to professional status

that the differences are marginal. In fact, CS graduate students are techni-

cally more up to date than the “average” software developer who may not

even have a degree in CS. For more information about this, the reader is

referred to [113]. Another argument to this is that professionals with years

of experience may solve a given problem better than appropriately prepared

(graduate) students. Studies have however found that level of professional

experience has little to do with competence [113].

The potential threats concerning the data’s distribution type and the

data sample size were mitigated using the non-parametric statistical mea-

sures. Assumptions regarding the normality of the samples can introduce

a further sources of error into the study. The Fisher’s exact test and the

Wilcoxon rank-sum test were used to indicate the statistical significance.

These are non-parametric statistical hypothesis tests that do not require

any assumptions about the shape of the distribution.

Construct validity refers to the degree to which an experiment can sub-

jectively measure a construct. This relates to the suitability of the em-

ployed measures in defining the performance of a technique. In this study,

the performance of both seeded and unseeded approaches was empirically

assessed in terms of three different criteria; branch coverage, efficiency and

fault-finding capability. These metrics were merely used as a comparison

measure for contrasting the seeded and unseeded approaches.

Chapter 3 85

3.6 Conclusions

This chapter investigated a seeded search-based test data generation ap-

proach, in which the search process was incorporated with human knowledge

that was provided in the form of sample test cases. An empirical study was

conducted to collate examples of test inputs for a number of Java methods

from human subjects. The subjects came from two broad groups: 29 stu-

dents with beginner to advanced programming skills from the Department

of Computer Science at the University of Sheffield, and 117 Internet users,

with self-reported experience in computer programming, participating via

CrowdFlower the crowd-sourcing website. The human-supplied values were

used to seed the search-based test data generation process, and guide the

search mechanism towards similar values.

The results of the empirical analysis revealed that the use of a seeded

search-based approach can indeed improve the branch coverage as well as

mutation score in a number of cases. In cases where branch coverage re-

mained unchanged, the seeded approach performed with relatively higher

efficiency.

Chapter 4

An Investigation into a

Seeded Search-based

Approach For Oracle Cost

4.1 Introduction

As discussed in the literature review Section 2.5.7, one of the sources of

human oracle cost is the difficulty of reading machine-generated test inputs.

Test data generated by automatic test input generators are often arbitrar-

ily looking, and difficult-to-read values that are dissimilar to test inputs a

human tester would normally generate. Manual evaluation of such values

and interpreting the scenarios these arbitrary-looking values represent is a

difficult and time consuming task.

It was shown in the previous chapter that seeding a search-based test

data generation approach with appropriate human-supplied values would

result in production of more branch-covering and fault-revealing test inputs.

This chapter inspects whether the application of such an approach will have

any influence on test data readability, and consequently any impact on test

data oracle costs. This is investigated by an empirical study, in which test

data readability is assessed in terms of manual test data evaluation time.

Programmers were invited to evaluate test cases generated using both

seeded and unseeded approaches, while being timed during the process. The

Chapter 4 87

study found that test inputs generated using the seeded search-based ap-

proach took significantly less time to evaluate for the majority of case stud-

ies. The accuracy of test input evaluation was also found to be significantly

improved in a few cases. The key contribution of this chapter is therefore

as follows:

The results of a human study in which test data generated using both

seeded and unseeded search-based approaches were evaluated by human

subjects. The results revealed cases in which the manual evaluation

task was less time consuming and more accurate for test data generated

using the seeded approach.

This chapter is organised as follows. Section 4.2 describes the empirical

study, depicting the experimental setup. Section 4.3 investigates the results,

while Section 4.4 addresses the threats to validity. Finally, the conclusions

of the chapter is presented in Section 4.5.

4.2 Experimental Study Methodology

An empirical study was performed in which test data produced in the previ-

ous experiment (Section 3.3.4) was used as the basis for a human evaluation

task. The study was designed to record the time human testers required

to determine the expected output of the 14 Java method against a set of

test inputs. The main objective was to assess the time and accuracy human

testers would require to manually evaluate the automatically generated test

inputs by hand. The study consisted of the following major steps:

1. The selection of test inputs as the basis for the test data evaluation

task.

2. The human study protocol regarding the information presented to the

human subjects, and the responses obtained.

3. The selection of the participants.

The description of each stage is presented in the following sections in

sequential order.

Chapter 4 88

pdfcrowd.comopen in browser PRO version Are you a developer? Try out the HTML to PDF API

JFG

6NLS�7KLV�4XHVWLRQ

7KH�IROORZLQJ�PHWKRG�FRPSXWHV�WKH�JUHDWHVW�FRPPRQ�GLYLVRU��JFG��RI�WZR�LQWHJHUV�S�DQG�T�

��SXEOLF�LQW�JFG�ILQDO�LQW�S��ILQDO�LQW�T�^
��������
��`

6XSSOHPHQWDU\�,QIRUPDWLRQ�
��&RPSXWLQJ�JFG
��6FLHQWLILF�&DOFXODWRU

1RWH��3XW�H[FHSWLRQ�DV�\RXU�DQVZHU�ZKHQ�WKH�PHWKRG�WKURZV�H[FHSWLRQ�
7KH�UHWXUQ�YDOXH�RI�JFG�����������������LV�

� 6DYH�DQG�3URFHHG

Figure 4.1: TCEvaluator - Presents a total of 8 questions (inolving a test

cases) successively to each the participant

4.2.1 Test Input Selection

In the previous experiment, a large number of test suites were generated for

the 14 Java programs listed in Table 3.1. These contained various numbers

of test cases for each method depending on the number of branches, and

the search’s number of runs. To create a uniform experimental setup in

the current study, it was necessary to select a fixed number of test inputs

for each program for the evaluation phase. This was implemented using a

randomisation function which would primarily extract all the different test

cases of a test suite, and subsequently select a fixed number of test inputs

among them. This function was set to select a total of 30 diverse test inputs

from each of the seeded and unseeded sets. This allocated each method with

a pool of 60 test inputs, to be evaluated by human subjects at the end of

the evaluation task.

4.2.2 Human Study Protocol

This phase of the empirical study was concerned with assessing the time

human subjects would require to manually evaluate automatically generated

test inputs. This process was automated as a web application, referred to

as TCEvaluator. The application firstly presented a brief description about

the study, and requested the participant to specify their level of education

Chapter 4 89

and their field of expertise. It then displayed the description of one of the

14 methods, and displayed 8 questions to participants to answer.

Each question requested the participant to supply an output for a ran-

domly selected input according to the method’s description. The output

could be a boolean value (i.e. ‘true’ or ‘false’), a string or an integer value

depending on the method in the question. The participant was expected to

enter the output in a provided text field. The time duration taken from the

presentation of each question to the participant entering and saving their

responses was recorded, with the response logged internally as “correct” if

it matched the actual return value of the method.

The selection of each program was determined based on the number

of evaluations the program had previously received. This was computed

using a counter field, which was set to zero by default, and would increment

every time the corresponding program was evaluated by the tester. Once

the application launched, a query would fetch all the programs with the

least number of evaluations from an underlying database used to store all

the results. A randomisation scheme would then select a program from the

fetched list.

As described previously in Section 4.2.1, each of the 14 methods were

allocated with 60 different test inputs selected randomly from a larger set.

For each question, a test input was selected at random from the pool of 60

inputs to be evaluated by the human tester. The main reason for randomi-

sation was to mitigate bias that could be introduced by a fixed ordering of

questions due to the possible “learning” or “training” effects.

Participants were presented with an equal number of seeded and un-

seeded test inputs (i.e. 4 from each category) to evaluate. The questions

were displayed to the participant in a random order, and only one attempt

was permitted to complete the study. In order to familiarise the participant

with the case study, the first two questions were assigned as practice ques-

tions. The answers to these questions were not used in the data analysis

presented in Section4.3.

Figure 4.1 shows a screenshot of the TCEvaluator with an example ques-

tion. Once the “Save and Proceed” button was clicked, no further editing

of answers was allowed.

Chapter 4 90

4.2.3 Participant Selection

Human subjects for this experiment originated from two different groups:

students from the Department of Computer Science, and crowd-workers re-

cruited from the crowd-sourcing channel. All subjects were required to have

some level of self-reported experience in computer programming. Students

were approached via email invitations, while crowd-workers were contacted

through the CrowdFlower website.

As discussed in the previous chapter, crowd-sourcing platforms are open

to participants mis-reporting expertise levels or performing tasks randomly

in order to earn money quickly. To avoid these biasing the final results, only

a limited subset of the total participants were considered in the analysis of

data. This selection was completed based on the correctness of each partic-

ipant in answering the questions they were presented with. Since the study

was not intended to challenge the participants level of ability, a programmer

of even a basic level of competence should have been able to answer the

majority of the questions correctly. On this basis, participants who failed

to answer at least 50% of the questions correctly were discarded from the

study. Thus only participants who evaluated at least 4 out of the 8 test cases

“correctly” were considered as eligible, and their responses were considered

in the data analysis presented in Section 4.3.

This selection scheme, implemented within the TCEvaluator, was used

to provide the participant with a confirmation code if at least 50% of their

responses were correct. Participants were then requested to paste the confir-

mation code into the text box displayed in CrowdFlower interface to claim

their payment. Participants with less than 50% correct responses were not

provided with the right confirmation code, and thus failed to receive any

payments from CrowdFlower. This scheme was also applied on students in

order to identify and discard ineligible participants from the study.

The labour fee for evaluating 8 test cases for each method (consisting of

8 questions) was specified as 25 cents for crowd-workers. This amount would

be given to the participant upon completion of the evaluation task. The total

cost for this experiment was 512.05 USD including the additional markup

for the CrowdFlower labour costs. There was no labour fees specified for

Chapter 4 91

Table 4.1: The number of total and usable responses obtained from stu-
dents and crowd-workers for each case study. The second column displays
the number of case studies (Java methods) evaluated by each group of par-
ticipants. Only 5 Java methods were evaluated by students in total. Each
method was evaluated by a total 4 eligible students. This allocated each
method with a total of 32 (i.e. 4 × 8) responses (including the responces
to the first two training questions). The sixth column displays the number
of remaining responses for each method (excluding the first two). A total
of 84 eligible crowd-workers evaluated each method, which resulted in 672
responses.

Groups Case Studies Participants Responses Fees
All elig All Excl.1-2

Students 5 4 4 32 24 20× 10 GBP
Crowd 14 100 84 672 500 512.05 USD

students. However, 10 students (out of the total 20), chosen at random,

were awarded with a £20 voucher token.

4.2.4 Usable Judgements

A common source of bias in human studies is the potential “learning effects”,

where participants tend to perform significantly better at the end of the

study due to becoming more familiar with the task. To mitigate these

learning effects biasing the results, the answer to the first two questions

(which were assigned as practice questions) were not used in the analysis

of results. These two responses could have been for seeded or unseeded

test inputs. At the end, 250 usable responses were collated involving inputs

generated by each approach for each method (500 for each method in total)

for data analysis presented in Section 4.3.

4.2.5 Basic Definitions

Accuracy Score. This is defined as the percentage of test inputs for which

participants entered the correct outputs for each method in the human eval-

uation task.

Chapter 4 92

Cognition Time. This refers to the time participants required to determine

the expected output of a method for a given input.

4.2.6 Research Questions

The research questions to be answered by the empirical study are as follows:

RQ 1. Test Data Accuracy Score. This research question establishes

whether the use of the seeded search-based approach can significantly in-

crease the accuracy score of generated test inputs. To inspect this, the

percentage of participant responses in which the correct output was entered

for inputs generated using each approach will be computed and compared.

RQ 2. Test Data Cognition Time. This research question inspects

whether the use of the seeded search-based approach can significantly reduce

test inputs cognition time. To answer this, the time participants required to

provide outputs for inputs generated using each approach will be computed

and compared. This is performed on two selections of data: all the collated

responses, and only the responses in which participant provided the correct

output (i.e. correct judgements).

4.3 Experimental Results

This section analyses these results, evaluating each research question.

RQ1 - Test Data Accuracy Score

The main objective of this research question was to determine and compare

the accuracy of humans in manually evaluating seeded and unseeded test

inputs. To inspect this, the accuracy score of test inputs generated using

each approach for each method was computed. As there were two different

groups of participants (students and crowd-workers), Table 4.2 displays these

results separately for each group. The data obtained from students was only

limited to a few case studies due to the limited number of student volunteers

for this task.

Chapter 4 93

Table 4.2: The results of the Fisher’s exact test on the percentage of cor-
rect judgements (accuracy score) obtained from (a) crowd-workers, and (b)
students. Judgments obtained from crowd-workers correspond to the crowd-
sourced seeded test data and unseeded test data generated previously. Sim-
ilarly, judgments obtained from students corespond to the student-supplied
seeded and unseeded test data generated in the previous experiment. These
are presented under column names Seeded and Unseeded in both tables (a)
and (b). Data obtained from students are only limited to a few case studies
due to the low number of participants. A p-value in bold face indicates the
cases where the use of the seeded approach had positive effects on accuracy
score. Italic face indicates cases where the use of the seeded approach was
significantly detrimental (i.e. isValid).

(a) Crowd-Sourced Judgements

Project Method Accuracy Score p-value
Seeded Unseeded

Apache Common factorial 89.6 94.4 0.699
gcd 87.6 70.0 0.106
binomialCoefficient 78.4 65.6 0.213
compareTo 85.2 79.2 0.595

Calendar days between 92.3 17.9 < 0.001
Chemeval isValid 68.8 94.8 0.019
Daikon getClassName 94.4 83.6 0.362

protectQuotations 89.2 84.4 0.694
OpenJDK isHostNameLabel 93.2 84.0 0.434

compareLabels 77.2 32.2 < 0.001
composeName 95.2 76.0 0.099
isValidProtocol 94.0 83.2 0.361
getURLPrefix 78.8 78.0 0.946

PuzzleBazar validateEmail 78.8 95.2 0.168

(b) Student Judgements

Project Method Accuracy Score p-value
Seeded Unseeded

Daikon getClassName 100.0 91.7 1.000
protectQuotations 100.0 100.0 1.000

OpenJDK isHostNameLabel 80.0 93.3 0.795
getURLPrefix 87.5 80.0 1.000

PuzzleBazar validateEmail 92.9 100.0 1.000

Chapter 4 94

The Fisher’s exact test with confidence level of 95% was performed to

verify the statistical significance. This is presented in the last column of

Table 4.2 with significant p-values displayed in bold. As evident from these

results, the Fisher exact test indicated no significant differences between the

seeded and unseeded approaches for the majority of case studies. For one

of the numerical computation methods (i.e. days between) and one of the

string conversion routine (i.e. compareLabels) the seeded search-based test

data revealed a significant improvement in accuracy score. For one of the

string validation methods (i.e. isValid), however, the accuracy score of the

seeded test data revealed to be detrimental.

As discussed in Section 3.3.1, the method isValid ensures the validity of a

string input as a CAS number. A valid CAS number is defined as a sequence

of at least 5 digits separated by hyphens into three distinct parts, with the

last digit serving as a check sum. Manual verification of this method against

the generated set of test inputs can be a complex task since the tester must

ensure each part of the string conforms to the specified format. This involves

checking that the last digit correlates correctly with remaining digits based

on some manual calculations.

Test data generated using the unseeded approach for the isValid method

only included “invalid” values for a CAS number. These were arbitrarily

sequences of characters such as “q5’fy#ap%FAUm”that could be instantly

recognised as “invalid”. Test data generated using the seeded approach,

however, did enclose a number of “valid” test inputs such as “7732-18-5”.

It could be for this reason that the accuracy score for the seeded search-based

test inputs revealed to be detrimental.

There was no evidence to suggest that test inputs generated using the

seeded search-based approach reduce accuracy for any of the numerical com-

putation and string conversion routines. The accuracy score of the seeded

search-based test data revealed to be detrimental for string validation rou-

tines such as isValid. This was due to insufficiency in the number of valid

test cases generated (i.e. low branch coverage) for this method.

In answer to this research question, therefore, the evidence suggests that

the application of the seeded search-based approach can improve the accu-

racy of test input evaluation for programs that perform extensive numerical

Chapter 4 95

calculations (such as days between and compareLabels).

RQ2 - Test Data Cognition Time

The key objective of this research question was to assess and compare the

time human subjects required to manually evaluate seeded and unseeded test

data. To inspect this, the cognition time of each test input was recorded

in the human empirical study using a Javascript running in the webpage.

The timer started as soon as the test input was displayed to the participant,

and stopped whenever they entered an output for the displayed input. This

allocated each judgement collated from the participant with a timing value.

The average of all timing values associated with seeded and unseeded

test inputs were computed separately for each program. This computation

was made on two different selections of the collated data, the first selection

included all the responses regardless of their correctness, and the second se-

lection enclosed only correct responses in which the participant had entered

the correct output for the given input.

Table 4.3 shows mean times for all judgements made by participants,

while Table 4.4 shows the mean times for correct judgements only (i.e where

the participant entered the correct output for the input). Statistical sig-

nificance was tested for using the Wilcoxon rank-sum test at a confidence

level of 95%. For each of these selections, the average cognition time for the

seeded test data revealed to be significantly lower compared to the unseeded

test data for 8 and 9 of the 14 case studies respectively.

Figure 4.2 shows box and whisker plots of the times recorded for correct

judgements. The plots show superiority of the seeded approach in produc-

ing test input that require lower cognition times for method gcd, getClass-

Name, composeName, days between and compareTo. This was confirmed by

computing the effect size using Vargha and Delaney’s Â12 statistic [117],

as recorded in Table 4.3. Methods gcd, getClassName, and composeName

involved large effect sizes. A further 2 methods protectQuotations and com-

pareLabels experienced medium effect sizes, while the effect size was small

for the days between method.

There was no significant difference between seeded and unseeded test

Chapter 4 96

Table 4.3: Cognition time of seeded and unseeded test data according to all
the judgements obtained from (a) Crowd-workers, and (b) Students

(a) Crowd-Sourced Judgements

Project Method Cognition Time p-value Â12

Seeded Unseeded

Apache Common factorial 11.0 9.9 0.003 * 0.576
gcd 18.2 60.0 < 0.001 *** 0.280
binomialCoefficient 24.5 30.6 0.049 0.551
compareTo 22.9 34.5 < 0.001 * 0.393

Calendar days between 51.3 102.5 0.303 0.529
Chemeval isValid 43.4 6.2 < 0.001 *** 0.846
Daikon getClassName 9.8 15.4 < 0.001 *** 0.258

protectQuotations 14.4 23.0 < 0.001 ** 0.327
OpenJDK isHostNameLabel 7.7 10.2 0.034 0.445

compareLabels 28.2 50.4 < 0.001 * 0.364
composeName 15.4 27.7 < 0.001 *** 0.276
isValidProtocol 9.1 8.5 0.628 0.513
getURLPrefix 26.3 18.8 < 0.001 * 0.632

PuzzleBazar validateEmail 9.3 6.8 < 0.001 * 0.611

(b) Students Judgements

Project Method Cognition Time p-value Â12

Seeded Unseeded

Daikon getClassName 8.9 10.2 0.378 * 0.389
protectQuotations 9.6 10.6 0.932 0.486

OpenJDK isHostNameLabel 9.1 8.1 0.128 ** 0.688
getURLPrefix 36.7 56.6 0.799 0.535

PuzzleBazar validateEmail 8.8 9.6 0.630 * 0.562

Chapter 4 97

Table 4.4: Cognition time of seeded and unseeded test data based on the
correct judgements obtained from (a) Crowd-workers and (b) Students

(a) Crowd-Sourced Judgements

Project Method Cognition Time p-value Â12

Seeded Unseeded

Apache Common factorial 10.7 8.7 0.001 * 0.588
gcd 17.7 60.9 < 0.001 *** 0.204
binomialCoefficient 23.5 29.0 0.023 * 0.570
compareTo 21.9 36.2 < 0.001 * 0.370

Calendar days between 42.0 54.9 0.032 * 0.391
Chemeval isValid 52.9 6.2 < 0.001 *** 0.903
Daikon getClassName 9.2 14.4 < 0.001 *** 0.233

protectQuotations 14.6 20.0 < 0.001 ** 0.326
OpenJDK isHostNameLabel 7.4 10.8 0.003 * 0.417

compareLabels 24.7 37.1 < 0.001 ** 0.337
composeName 14.9 24.7 < 0.001 *** 0.273
isValidProtocol 8.9 8.4 0.438 0.521
getURLPrefix 25.3 17.7 < 0.001 ** 0.661

PuzzleBazar validateEmail 8.9 6.4 < 0.001 * 0.612

(b) Students Judgements

Project Method Cognition Time p-value Â12

Seeded Unseeded

Daikon getClassName 8.9 10.2 0.378 * 0.389
protectQuotations 9.6 10.6 0.932 0.486

OpenJDK isHostNameLabel 9.1 8.1 0.128 ** 0.688
getURLPrefix 36.7 56.6 0.799 0.535

PuzzleBazar validateEmail 8.8 9.6 0.630 * 0.562

Chapter 4 98

Ti
m

e
(s

)

bin
om
ialC
oe
ffic
ien
t

co
mp
are
La
be
ls

co
mp
os
eN
am
e

co
mp
are
To

da
ys_
be
twe
en

fac
tor
ial

ge
tUR
LP
ref
ix gc

d

ge
tCl
as
sN
am
e

isH
os
tNa
me
La
be
l

isV
alid
Pro
toc
ol

isV
alid

pro
tec
tQ
uo
tat
ion
s

va
lida
teE
ma
il

0

20

40

60

80

100 Seeded

Unseeded

Figure 4.2: Box and whisker plots displaying the timing distribution for

performing correct evaluations by crowd-workers on seeded and unseeded

test inputs of each method. The centre line represents the median and the

box the distribution of the data between the upper and lower quartiles.

The upper and lower whiskers represent the minimum and maximum value

(excluding outliers).

Chapter 4 99

data for the isValidProtocol method. However, the cognition time of the

seeded test data revealed to be significantly detrimental for methods facto-

rial, isValid, getURLPrefix and validateEmail, with effect sizes of large for

isValid, medium for getURLPrefix and small for the rest.

In answer to this research question, therefore, the evidence suggests that

the use of the seeded search-based approach can reduce the cognition time

of test inputs generated for numerical computation routines and string con-

version routines. For string validation methods however assessing the effects

of the seeded approach on cognition time is not always practical due to the

low number of valid test cases generated for these programs. As described in

the previous chapter, the majority of test cases generated for validation pro-

grams (such as validateEmail were invalid values covering invalid branches

(i.e “f#p%F@}UM%5.*6ZY”). Manual evaluation of such values seem to be

a straight forward task for humans.

4.4 Threats to Validity

As described in the previous chapter, a major source of bias in human em-

pirical studies is the “learning effects”. To alleviate these risks, the first two

input evaluations performed by each participant were discarded from the

analysis of results. To reduce the potential “fatigue effects”, the number of

test inputs the participant were requested to evaluate was kept as low as 8.

The timing data obtained indicated that on average, each participant spent

just under 3.5 minutes on a questionnaire, indicating that the study was not

particularly complex or tedious and thus unlikely to be subject to fatigue

effects.

The main step to mitigate both learning and fatigue effects was to ran-

domise the questions. The test inputs that formed the basis of each question

were selected at random from a pool of 60 test inputs, which were selected

at random from the overall set of inputs generated using each approach.

Moreover, the order in which the questions appeared to the participant was

also randomised. These issues were fully discussed in Sections 4.2.1.

Another potential threat, is the quality of the data collected from Crowd-

Flower due to diversity of anonymous users, and their unknown level of

Chapter 4 100

experience. As previously explained, crowd-sourcing studies are commonly

open to people mis-reporting their level of expertise just to gain money. To

mitigate this concern, the responses from participants who evaluated less

than 4 out of 8 test inputs accurately (i.e. accuracy < 50%) were discarded

from consideration in the data analysis. This issue was extensively reviewed

in Section 4.2.3.

Another potential threat to validity is the use of students as profession-

als, and generalising the outcome. As mentioned in previous chapter, CS

students are known to closely represent the software professionals, and thus

the potential discrepancy would be marginal.

Finally, to mitigate risks regarding the type of distribution and the nor-

mality of timing data, Fisher’s exact test and the Wilcoxon rank-sum test

were used to find the statistical significance. The data effect size was also

checked using the Vargha and Delaney’s Â12 statistic. These are all non-

parametric tests that do not rely on data belonging to any particular distri-

bution, mitigating the introduction of further potential sources of error into

the study.

With regards to construct validity in this part of the study, the perfor-

mance of each approach was mainly assessed in terms of test data evaluation

time. This measurement overlook the familiarity of human participants with

the case studies, their experiences, or their IQ skills in comprehending the

task. To mitigate these risks, the allocation of all the test cases to the

participants for evaluation was purely based on random. In addition, the

non-parametric statistical test were used to determine the significance in

each case.

4.5 Conclusions

This chapter presented an empirical investigation into a seeded search-based

test data generation approach, in which the search mechanism was adapted

to commence with an appropriate human-supplied value. In the previous ex-

periment, human subjects with self-reported competency in computer pro-

gramming were invited to provide samples of test cases for a set of Java

programs. These values were then seeded into the data generation process

Chapter 4 101

to guide the search towards similar values. Test inputs generated using

this approach were expected to have improved readability and thus reduced

evaluation time.

This chapter investigated this hypothesis, through the use of another

empirical study, in which human subjects were invited to evaluate a set of

seeded and unseeded test inputs for a Java program. The subjects were

selected from two different groups: students in the department of computer

science in the University of Sheffield, and Internet users from the Crowd-

Flower website. The time each participant required to provide an output

for the given input was recorded during this process.

The results of this study revealed that test data generated using the

seeded search-based approach was less time-consuming to evaluate in sev-

eral case studies. In addition, the accuracy of test input evaluation per-

formed by human testers was also improved in a few cases. The study thus

concluded that seeding a search-based test data generation approach with

sufficient amount of human knowledge (in the form of samples test cases)

can indeed enhance the readability of resultant test data, and thus reduce

the qualitative human oracle costs.

Chapter 5

Test Data Generation Using

A Language Model

5.1 Introduction

It was discussed in the previous chapters that seeding the search-based test

data generation process with human-supplied values can improve the read-

ability of resultant test cases for certain programs. The application of this

seeding strategy is however subject to presence of a permanent resource

(e.g human tester) that can manually supply appropriate inputs to seed the

search mechanism. This chapter presents a novel approach that can auto-

matically generate readable test inputs for string data types. This approach

incorporates the search-based test data generation with a statistical natural

language model that can assess and improve the readability of string inputs.

A language model assigns a probability score to a string estimating the

chance of that string occurring in the language it models. This chapter shows

how this probability score can be employed as an additional component for

the fitness function, and guide the search-based test data generation process

to produce more readable test inputs. Language models are most frequently

used in natural language processing tasks [76] including machine translation

[74], where they attempt to improve the fluency of machine translated texts

such as predictive text in mobile phones. In speech processing [63] these

are used to assist a speech recogniser evaluate how likely a word sequence

Chapter 5 103

is, and thus make the right assumption when two different sentences sound

the same. Language models have recently been applied to develop a code

suggestion tool that makes use of the existing suggestion facility in the

Eclipse IDE [55].

The capabilities of the language model approach in generating readable

string inputs were investigated using a human empirical study. Human sub-

jects with self-reported competency in computer programming were invited

via the CrowdFlower website to evaluate tests cases for a series of 17 case

studies from open source projects. Test cases were generated using both

a conventional search-based approach, and the language model informed

approach. The study aimed to assess the time participants required to man-

ually evaluate test inputs of each approach. The results revealed that test

inputs generated using the language model approach took significantly less

time to evaluate for 10 case studies. The accuracy of participants in eval-

uating test inputs of the language model approach was also found to be

significantly improved for 3 case studies.

The contributions of this chapter, therefore, are as follows:

1. Introduction of a technique for incorporating the automatic test in-

put generation process with a statistical language model to generate

readable branch-covering string inputs.

2. The results of a human study in which test data generated using the

conventional search-based approach and the language model informed

approach are evaluated by human subjects. The analysis reveals cases

where human evaluation task is less time consuming and more accurate

for test data generated using the language model approach

The chapter begins by describing the operation of the language model

used in this study (Section 5.2), and how it is incorporated into the search-

based test data generation process (Section 5.3). Section 5.4 then introduces

the methodology used in the human study, while Section 5.5 presents the

results. Section 5.6 describes the threats to validity, and finally Section 5.7

concludes the chapter.

Chapter 5 104

5.2 Language Models

A statistical language model assigns a probability score to a string by es-

timating the likelihood of that string occurring in a natural language (e.g.

English, Spanish or Japanese). An accurate language model would there-

fore calculate higher probability scores to strings that resemble well-formed

words, such as “software”and lower scores to strings that do not, such as

“0NytRV8*”.

The main applications of language models are in natural language and

speech processing for a wide range of tasks, including machine translation

[74], automatic speech recognition [63] and information retrieval [107]. Lan-

guage models have also been adapted to simulate programming languages

and used on software engineering tasks [56]. The majority of applications

use word-based language models, which simulate the language as sequences

of words. In this thesis, a character-based language model will be used,

where the language is represented as a sequence of characters.

A character-based language model computes the probability of a string

by analysing a collection of documents known as a corpus. The probability

of the string str, of length n, is estimated by evaluating the number of

instances the string occurs in the corpus (str sum), divided by the total

number of possible strings of the same length (length n sum) within the

corpus, so P (str) = str sum/length n sum. This probability is estimated

using the chain rule of probability as explained next.

Let the string str be a sequence of n characters (c1, c2, c3, ..., cn). Using

the chain rule, the probability of each character ci is calculated based on

the characters that precedes it in (c1, c2, c3, ..., cn). This is computed using

the following formula:

P (c1, ..., cn) = P (c1)P (c2|c1)P (c3|c1, c2)...P (cn|c1, c2, ..., cn−1)

=
n∏

i=1

P (ci|c1, ..., ci−1) (5.1)

where P (ci|c1, ..., ci−1) is the probability of character ci following the se-

quence (c1, ..., ci−1).

Chapter 5 105

However, many of these sequences will not be found even in an extremely

large corpus, making these probabilities impossible to estimate directly. If

we consider the English language for example which has 26 characters in

total (i.e. ignoring case, punctuation and whitespace), the total number of

6 character sequences is over 11 million.

To resolve this predicament, language models approximate the proba-

bility of strings by combining the probabilities of shorter sequences. These

sequences have more reliable probabilities since they can generally be refer-

enced directly from the corpus. One approach is to estimate the probability

of each character based on the character that immediately precedes it:

P (c1, ..., cn) ≈
n∏

i=1

P (ci|ci−1) (5.2)

This type of language model is known as a bigram model. However,

even when using a bigram model some pairs of characters will not be seen

in the corpus. In such situations, The probabilities of individual characters

(i.e. P (ci)) are estimated using smoothing and back-off techniques (for more

details, the reader is referred to the references [63, 67]).

In general, longer strings are less likely to occur than shorter ones, and

the language models assign them lower probabilities. To avoid bias in favour

of shorter strings the probability generated by the language model is nor-

malised by taking the geometric mean, i.e. the score assigned to a string,

score(cn1), is computed as:

score(c1, ..., cn) = P (c1, ..., cn)
1
n (5.3)

Figure 5.1 shows the scores assigned by the bigram language model to

the strings “software”and “0NytRV8*”.

It should be noted that the language model used in this experiment was

implemented by Mark Stevenson. The SRILM toolkit [108] was used to

learn the model and the text used to train it was an electronic version of

the classic novel Moby Dick [85] downloaded from Project Gutenberg1. This

text is freely available and contains 215, 133 words and 1, 235, 150 characters,

which is more than adequate for training a language model.

1http://www.gutenberg.org/ebooks/2701

Chapter 5 106

Bigram Probability Source

so 0.09015836 Direct

of 0.10778375 Direct

ft 0.17874846 Direct

tw 0.02277456 Direct

wa 0.18811646 Direct

ar 0.10431042 Direct

re 0.22745642 Direct

P(‘software’) = 0.14317363

Bigram Probability Source

0N 0.00001776 Inferred

Ny 0.00001399 Inferred

yt 0.07976989 Direct

tR 0.00005748 Direct

RV 0.00771776 Direct

V8 0.00000056 Inferred

8* 0.00000073 Inferred

P(‘0NytRV8*’) = 0.00046853

Figure 5.1: Computing language model probabilities for two strings. The

word “software” receives a higher probability than the random string

“0NytRV8*”. For “software”, all bigram probabilities can be found directly

in the corpus, whereas some bigrams for “0NytRV8*”are not present and

are inferred from probabilities computed for each individual characters of

the bigram separately.

Chapter 5 107

5.3 Incorporating a Language Model Into Search-

Based Test Input Generation

One of the main features of the search-based test data generation tech-

niques is the formulation and application of a fitness function that provides

guidance to the search algorithm. The common test goal in structural test-

ing is branch coverage. As described in the literature review Section 2.4.1,

the fitness function for this criterion consists of two major components ap-

proach level (AL) and branch distance (BD). The fitness function employed

in the conventional search-based test data generation attempts to generate

any inputs that can cover individual branches of the PUT. As a result, the

generated test data can be arbitrarily looking values that are difficult to

understand from a human perspective.

For instance, the input value “#qp}ˆbkJ’; ir9”was generated for the to-

Camel method (in Figure 5.2) during the experiments reported later in Sec-

tion 5.5. The method toCamel converts a string input to the camelCase

format using the under scoring style of joining words, where the first letter

of each word (bar the first) is a capital letter. The conversion process in-

volves finding each underscore in a string, removing it, and capitalising the

following character. Based on the method’s description, the correct output

of this input is “#qp}ˆbkJ’;Ir9”, which is not a instantly recognisable task.

In practice, readable strings such as “my string” would be preferred from a

human perspective, and should be automatically generated.

The language model technique incorporates a statistical language model

into the conventional fitness function designed for structural test data gen-

eration. The language model probability scores can be viewed as a measure

of “likeness” or similarity of a string to natural words. As such, these scores

can be used to form an ideal output of the fitness function in order to guide

the search towards more natural and inherently readable string inputs. In

this process the language model probability scores start to impact the search

mechanism once an input that covers a branch is discovered, as shown in

Figure 5.2.

Prior to locating a branch-covering input, the language model fitness

component (LM) is always 1, and is added to AL and BD. Once a branch-

Chapter 5 108

1 private St r ing toCamel (S t r ing s t r) {
2 S t r i ngBu f f e r sb = new St r i ngBu f f e r () ;
3 boolean wasUnderl ine = fa l se ;
4 for (int i = 0 ; i < s t r . l ength () ; i++) {
5 char c = s t r . charAt (i) ;
6 i f (c == ‘ ’) {
7 wasUnderl ine = true ;
8 cont inue ;
9 }

10 i f (wasUnderl ine) {
11 sb . append (Character . toUpperCase (c)) ;
12 wasUnderl ine = f a l s e ;
13 cont inue ;
14 }
15 sb . append (Character . toLowerCase (c)) ;
16 }
17 return sb . t oS t r i ng () ;
18 }

(4)i<$str.length()$

TARGET&MISSED&&
AL=1
BD$=$norm(str.length()$–$i$+K)$
LM&=&1&

True$

False$

(6)c==$‘_’$

TARGET&MISSED&&
AL=0
BD$=$norm(Math.abs(‘_’Gc)+K)$
LM&=&1&

TARGET&EXECUTED&
AL=0
BD$=$0$
LM&=&1&–&lm_score(srt)&

True$

False$

Figure 5.2: The process of fitness evaluation for generating a readable string
that covers the true branch predicate c ==‘-’ in line 6 of the toCamel
method. The fitness function consists of the conventional approach level
(AL) and branch distance (BD) components (K is a positive constant set to
1 in this study), plus an additional metric (LM) obtained from the language
model. LM is set to 1 while the search is attempting to cover the branch.
Once a string input str covering the branch is discovered, the fitness func-
tion assigns probability scores (between 0 and 1) to the string using lm score,
generated for str by the language model. The higher the value of lm score,
the lower the value of LM, and the higher the similarity str has with strings
in the language.

Chapter 5 109

covering input is found – the point at which the search would normally

terminate – the search process instead continues to optimise the input for

the language model score. With the AL and BD scores both 0, the LM

component returns 1− lm(str), where str is the string input and lm(str) is

the language model function that returns a probability score for the string

str. In other words, lower values of LM reflect “better” strings. The use of

the LM component in the fitness computation almost prevents the search to

reach the global optimum. The search must therefore be stopped at some

suitable fitness evaluations limit. In this study, 100,000 fitness evaluations

is used as the termination criterion.

In contrast to the value “#qp}ˆbkJ’; ir9” generated for the toCamel

method using the conventional approach, the language model approach is

capable of generating strings such as “inererof yo” in the experiments. The

main objective of this chapter is to compare the two approaches in terms of

the time required to manually evaluate the resulting test inputs. This will

be investigated using a human empirical study detailed in the next section.

5.4 Experimental Study Methodology

An empirical study was performed to assess the time required for humans

to manually evaluate string inputs generated using both the conventional

approach and language model approach. The key objective was to inves-

tigate whether the manual evaluation task would be less time consuming

and more accurate when the test data was generated with the assistance

of a language model. This was exploited using a human empirical study

consisting of following essential phases:

1. The selection of the case studies as the basis for test data generation.

2. The process of test data generation for string inputs using the language

model approach and the conventional non-informed approach.

3. The selection of test inputs as the basis for the human evaluation task.

4. The human study protocol including the information presented to the

human subjects, and the responses obtained.

Chapter 5 110

Table 5.1: Case Studies

Project Class Methods Branches

Bots’n’Scouts de.botsnscouts.util.H lesseqString 2
CodeHaggis net.sf.haggis.actions.stringConverter.StringConverter toCamel 6
Daikon daikon.split.SplitterJavaSource getClassName 2

protectQuotations 4
Germoglio P492 translate 2
Jake org.jakedb.UserManager isValidUsername 6
JavaMail javax.mail.internet.InternetAddress isSimpleAddress 2

isGroup 4
JOX com.wutka.jox.JOXBeanOutput stripName 6
Muffin sdsu.util.SimpleTokenizer containsChar 4
OpenJDK com.sun.jndi.dns.DnsName isHostNameLabel 4

com.sun.jndi.toolkit.url.GenericURLContext composeName 4
PuzzleBazar com.puzzlebazar.client.util.Validation validateEmail 24
Rife com.uwyn.rife.tools capitalize 4

encodeClassname 2
needsUrlEncoding 6

Subsonic net.sourceforge.subsonic.service.SearchService containsIgnoreCase 4

5. The selection of the participants.

5.4.1 Case Studies

A total of 17 Java methods with string arguments were selected from 12

open source projects. A summary is presented in Table 5.1. One of the

key points to consider in making this selection was that each case study

would be the subject of human evaluation, and thus, it is important that

the operation of each method is simply understood from no more than a

few lines of text. The main reason for avoiding complicated methods was to

mitigate the “fatigue effects” described in the previous chapter. To further

mitigate fatigue effects biasing the results, the case studies were selected

from simple Java methods with few branches. This was also reflective of

good Java programming style, where short methods are best practice [2].

The case studies summarised in Table 5.1 are discussed in detail below:

Bots’n’Scouts is a multiplayer game on Robot Racing. The method lesse-

qString, selected from this project checks whether a string argument a is

lexicographically less than or equal to another string argument b. If so, it

returns true, otherwise it returns false.

CodeHaggis is an Eclipse code generation plugin, from which the method

toCamel was selected. This method converts a string to a camel case format,

Chapter 5 111

by firstly converting the whole string to lower case, then changing every

character preceded by an underscore to its uppercase version, and finally

removing all occurring underscores from the string.

Daikon is an invariant generator and detector tool, used for reporting

likely program invariants. Two methods were selected from its source code:

The getClassName method takes a string input and deduces a Java class

name from it based on the final occurrence of the dot character in the string.

The method protectQuotations takes a string input and places a backslash

in front of each quotation mark.

Germoglio is a compilation of solutions to various programming problem

contests. The method translate was selected from this project. This method

translates a word string to ‘Pig Latin’ – a game of alterations in English

language, in which words that start with a vowel (A, E, I, O, U) will be

altered to have ‘ay’ appended to the end of the word, and words that start

with a consonant will be changed to have their first character moved to the

end of the word, followed by an ‘ay’. For example, the string ‘test’ will be

converted to ‘esttay’ and ‘evaluation’ will be changed ‘evaluationay’.

Jake is a project that connects online resources such as academic journals

and scholars using its large database. The method isValidUsername, selected

from this project, checks whether the string argument is a valid user name,

by ensuring it consists of at least three characters, and that each character

is either alphabetic or numeric.

JavaMail is a Java API that provides various frameworks for emailing

and messaging applications. Two methods were selected from this project:

The method isSimpleAddress checks whether the string argument is a valid

URL address. A valid URL is considered as a string that does not contain

any forbidden characters including opening and closing brackets (round and

square), colon, semicolon, less-than and greater-than symbols, backslash and

comma. The method isGroup checks whether a string is a group address

according to RFC822 standards, by ensuring it contains a colon and ends

with a semi-colon.

JOX is project that contains a series of Java libraries, which facilitate

transferring data between XML documents and Java beans. The method

stripName, selected from this project, returns the lowercase version of its

Chapter 5 112

string argument, with dash, underscore, dot, and colon characters removed.

Muffin is an internet filtering system which supports removing cookies,

terminating GIF animations and eliminating advertisements. The method

containsChar, selected from this system, tests if a character argument exists

in another supplied string argument.

OpenJDK is the well-known open-source implementation of the Java

programming language, consisting of the Java Class Library and the Java

compiler. Two methods were selected from this project: The method isHost-

NameLabel takes a string as an argument, and returns true if the string is

a valid host name. A valid hostname is considered as a string of which the

first and the last characters are alphanumeric. The remaining characters

may be alphanumeric or hyphens. The method composeName takes two

strings name and prefix as arguments. If one of name or prefix are null or

empty, the method returns the null or empty argument, otherwise it returns

prefix appended by a forward slash followed by name.

PuzzleBazar is a web-based system for creating, uploading and playing

various puzzles, including learning tools and tutorials. The method valida-

teEmail selected from this platform checks whether the string argument is

a valid email address.

Rife is a content management framework used for developing web appli-

cation in Java. Three methods were selected from this framework: capitalize

takes a string and converts the first character to upper case if it is a lower

case letter. The method encodeClassname takes a string and converts it to

a valid Java class name, by replacing any characters that are not letters,

digits or underscores with underscores. The method needsUrlEncoding in-

spects whether or not its string argument requires encoding by checking its

validity as a URL string. In this case, a valid URL is considered as a string

of which, each consisting character is either an alphabetical letter (upper or

lower case), a digit or any of these characters: dash, underscore, dot, and

asterisk. Any other character outside this category is not permitted.

Finally, Subsonic is a web-based music and video streaming application

which allows sharing and listening to music online. The containsIgnoreCase

method selected from this application, checks whether a substring is present

in another string, ignoring casing differences.

Chapter 5 113

These methods can be categorised into string validation and string pro-

cessing routines. String validation routines take one or more string in-

puts and return true or false, where string processing routines take one

or more string inputs and return a string output. Methods containsChar,

containsIgnoreCase, isGroup, isHostNameLabel, isSimpleAddress, isValidUser-

name, lesseqString, needsUrlEncoding, and validateEmail are considered as

string validation routines, and methods capitalise, composeName, encode-

ClassName, getClassName, protectQuotations, stripName, toCamel and trans-

late are classified as string processing routines.

5.4.2 Generating String Test Inputs

The first phase of the experiment involved generating string test inputs for

each method using a conventional search-based approach and the language

model informed approach. The (1+1) Evolutionary Algorithm [119, 118]

was used to attempt full branch coverage within the maximum allowance

of 100, 000 fitness evaluations for each branch. The search mechanism was

repeated 30 times using an identical set of random seeds for each approach in

order to enlarge the test data’s sample size, and therefore avoid the potential

source of bias.

The (1+1) EA is the simplest variation of a Evolutionary Algorithm

which operates based on a continuous process of recombination, mutation,

and selection to produce individuals that are progressively evolved. The

(1+1) EA, similar to Hill Climbing uses only one current point in the search

space, but instead of selecting the next best point in its neighbourhood, it

modifies through random changes called mutations. If the modified value

has an improved fitness than the original value, it replaces the original. The

full description of (1+1) EA was presented in Section 2.4.4.

The conventional approach may terminate before the specified limit of

100, 000 fitness evaluations if the test data covering the branch is located.

The language model approach, however, continues optimising the branch-

covering string input to achieve the best language model score.

The IGUANA toolset [80] was used as a search-based framework for

generating test inputs. The string representation was specified as an array

Chapter 5 114

of characters, s, of length 30, followed by an additional integer l, which

was used to control the string’s length. For instance, if l = 5, the first

five characters of s were used to form a string of length 5. Each character

of s was in the ASCII printable range of 32–126. Mutations were made

at a probability of 1
l+1 using the uniform mutation. Test inputs generated

using both approaches covered exactly the same branches, since the language

model approach is identical to the conventional approach up until a branch

is covered – at which point it begins to improve the readability of the string

input. During test data generation, 100% branch coverage was achieved for

all methods, except for one infeasible branch in validateEmail.

5.4.3 Test Input Selection

Test data generated using each approach for the 17 consisted of large number

test cases due to the 30 runs. This amount varied for each method due to

their various number of of branches. To create a uniform experimental

setup, a fixed number of (30) test inputs were selected for each program

from each approach. This selection mechanism was implemented using the

randomisation scheme employed in previous experiment. The scheme was

set to select a total of 30 diverse test inputs generated using each approach

for each method . This allocated each method with a total of 60 test inputs,

to be evaluated by human subjects at the end of the evaluation task.

5.4.4 Human Study Protocol

This phase of the empirical study was concerned with assessing the time

human subjects required to manually evaluate string inputs generated by

each approach. This process was automated as a web application similar

to the TCEvaluator. The application initially presented a brief description

about the study, and requested the participants to specify their level of

education and their field of expertise. It then displayed a paragraph of

text describing the operation of one of the 17 methods selected at random.

In addition, for the lesseqString method, supplementary information was

supplied regarding the ASCII codes.

The application then displayed 8 questions to the participants to answer.

Chapter 5 115

pdfcrowd.comopen in browser PRO version Are you a developer? Try out the HTML to PDF API

SURWHFW4XRWDWLRQV

6NLS�7KLV�4XHVWLRQ

7KH�IROORZLQJ�PHWKRG�WDNHV�D�VWULQJ�DUJXPHQW��DQG�SODFHV�D�EDFNVODVK��?��LQ�IURQW�RI�HDFK�TXRWDWLRQ�PDUN�����
7KH�UHWXUQ�YDOXH�RI�WKLV�PHWKRG�LV�WKH�VWULQJ�DUJXPHQW�ZLWK�D�EDFNVODVK�SODFHG�LQ�IURQW�RI�HYHU\�RFFXUULQJ
TXRWDWLRQ�PDUN�

��6WULQJ�SURWHFW4XRWDWLRQV�6WULQJ�WH[W�^
��������
��`

&OLFN�QH[W�WR�DQVZHU���TXHVWLRQV�DERXW�WKLV�PHWKRG�

7KH�RXWSXW�SURGXFHG�E\�WKLV�PHWKRG�IRU�WKH�VWULQJ�LQSXW��1RXW�LV�

� 6DYH�DQG�3URFHHG

Figure 5.3: Example of a question in the TCEvaluator

In order to familiarise the participant with the case study, the first two

questions were assigned as practice questions. For each question, a test input

was selected randomly from a pool of 60 inputs, requesting the participant to

simply provide the expected output for the given method. This would be a

boolean value (i.e. the user would be expected to enter “true” or “false”) for

a method in the string validation category. For a string conversion method,

the participant would be expected to enter a string return value.

The time taken from the presentation of each question to the participant

clicking “next” and having entered their response was recorded, with the

response logged internally as “correct” if it matched the actual return value

of the method. Once the participant had completed their their evaluation

task for a case study method, they were not allowed to go back and change

any answers or re-take it with a different set of questions. Figure 5.3 shows

a screenshot of the application with an example question.

5.4.5 Participant Selection

Due to the limited number of volunteer students, the participants for this

study were only included crowd-workers recruited via CrowdFlower. These

participants were required to have some level of self-reported experience in

computer programming. As previously described in the last two chapters,

one of the major risks in crowd-sourcing studies was the quality of data

Chapter 5 116

due to the diversity of online workers, and their unknown level of expertise,

which would allow people to provide arbitrary answers just to gain money.

To avoid this, participants who evaluated less than half of the 8 questions

correctly were considered as ineligible and their responses were discarded

from the analysis of the data presented in Section 5.5.

5.4.6 Usable Judgements

To reduce the potential “learning effects”, the answers of the first two prac-

tice questions were discarded from the data analysis. This resulted in 250

responses involving inputs generated using each approach for each method

(500 for each method in total) for analysis of results presented in Section

5.5.

5.4.7 Research Questions

The research questions to be answered by the empirical study are as follows:

RQ 1. Test Data Language Model Score. This research question inves-

tigates whether incorporating the search-based test data generation process

with a language model can significantly improve the language model scores

of generated strings, and if so, by how much.

RQ 2. Test Data Accuracy Score. This research question checks whether

the use of a language model in the search-based test data generation pro-

cess can significantly increase the accuracy score of generated test inputs.

Accuracy score in this context refers to the percentage of participants who

accurately evaluated test inputs generated using each approach. To answer

this question, the accuracy score for test inputs generated using the language

model will be computed and compared to those generated without the use

of the language model for each case study.

RQ 3. Test Data Cognition Time. This research question inspects

whether incorporation of a language model into the search-based test data

generation process can significantly reduce the evaluation time of the re-

sulting test inputs. To answer this research question, the time required for

Chapter 5 117

participants to enter the correct outputs for the inputs generated using each

approach will be compared. This will be performed on two selections of

data: all the collated responses, and only the responses in which participant

provided the correct expected output (i.e correct judgements).

RQ 4. Test Data Mutation Score. This research question investigates

whether the use of a language model in search-based test data generation

will have significant effects on the fault-finding capability of generated test

inputs.

5.5 Experimental Results

This section discusses the results obtained from the human empirical study,

inspecting each research question.

RQ1 - Test Data Language Model Score

The average language model scores were computed for all non-empty strings

generated using both the conventional and the language model approach.

The results, demonstrated as a bar chart in Figure 5.4, revealed that the

probability scores of strings generated using the conventional approach were

significantly lower than those generated using the language model approach.

This improvement was at the very least doubled (i.e ContainsIgnoreCase),

and in the best cases varied up to several orders of magnitude. Highest

language model scores corresponded to case studies such as containsChar

and lesseqString. These methods implicate few constraints with regards to

the presence of certain characters that generally do not conform to elements

of natural words – for instance the ‘@’ symbol in email addresses.

In answer to this research question, the evidence suggests that the lan-

guage model can successfully be incorporated into an evolutionary algorithm

to generate strings with higher language model scores.

Chapter 5 118

La
ng

ua
ge

 M
od

el
 P

ro
ba

bi
lit

y
S

co
re

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ca
pita

liz
e

co
mpose

Name

co
ntainsC

har

co
ntainsIg

noreCase

enco
deClass

name

isG
roup

isH
ostN

ameLabel

isS
im

pleAddress

isV
alid

Use
rn

ame

less
eqStrin

g

needsU
rlE

nco
ding

protectQ
uotatio

ns

str
ipName

toCamel

tra
nsla

te

va
lid

ateEmail

Language Model Approach

Conventional Approach

Figure 5.4: Average language model scores for string test inputs generated

using the conventional search-based approach in comparison to those gener-

ated using the language model approach

Chapter 5 119

Table 5.2: The results of the Fisher’s exact test on the percentage of correct
judgements obtained (accuracy score) for test inouts of each approach. A
p-value in bold face indicates the cases where the use of language model
approach had possitive effects on accuracy score.

Case Study Lang. (%) Conv. (%) p-value

capitalize 74.4 79.6 0.635
composeName 80.4 82.0 0.894
containsChar 94.0 90.0 0.747
containsIgnoreCase 85.6 84.8 0.948
encodeClassname 97.2 74.8 0.048
getClassName 83.6 80.4 0.790
isGroup 95.6 96.8 0.949
isHostNameLabel 87.6 86.4 0.948
isSimpleAddress 94.4 90.4 0.747
isValidUsername 87.2 94.0 0.604
lesseqString 78.4 78.0 1.000
needsUrlEncoding 95.6 96.8 0.949
protectQuotations 88.0 84.8 0.793
stripName 90.0 59.2 0.003
toCamel 90.4 59.2 0.003
translate 88.4 84.8 0.793
validateEmail 72.0 89.6 0.108

Chapter 5 120

RQ2 - Test Data Accuracy Score

To obtain the accuracy score for each type of test data, the percentage of

test inputs generated by each approach, for which the participant correctly

entered the output were computed for each case study. A Fisher’s exact

test was next performed on the numbers of questions that were correctly

answered at a confidence level of 95%. This test was performed to com-

pare the accuracy rate of test inputs generated using each approach. The

results of this test (presented in Table 5.2) showed no significant differences

between the language model approach and conventional approach for the

majority of case studies. However, three of the string processing methods

such as encodeClassName, stripName and toCamelCase did reveal a signif-

icant improvement when using the language model. In addition, there was

no evidence to indicte that inputs generated using the language model ap-

proach reduced accuracy score significantly in any of the methods under

consideration.

In answer to this research question, therefore, the analysis suggests that

the language model can indeed improve the accuracy of test input evaluation

for certain classes of programs.

RQ3 - Test Data Cognition Time

To answer this research question, the time participants required to answer

each question was recorded. The average time required for all judgements

and the correct judgements were computed saparately. A correct judgment

was defined as the one in which the participant entered the correct output

for the given input. Average in this context was defined as the mean of

timing dataset. The results are represented in Table 5.3.

To investigate statistical significance on mean times required to evaluate

test inputs generated using each approach, the Wilcoxon rank-sum test was

performed at a confidence level of 95%. This test was performed on both

selections of the data: mean times for all judgments and mean times only

for correct judgments. For both of these selections, the average cognition

time for inputs generated using the language model approach revealed to be

significantly lower than those generated using the conventional approach for

Chapter 5 121

Table 5.3: Cognition time for seeded and unseeded test data based to (a)
all judgements, and (b) correct judgements only

(a) All judgements

Case Study Lang. (s) Conv. (s) p-value Â12

capitalize 14.1 16.6 0.820 0.506
composeName 20.6 21.7 0.596 0.514
containsChar 9.1 14.3 < 0.001 *** 0.279
containsIgnoreCase 10.4 10.2 0.877 0.496
encodeClassname 15.1 40.3 < 0.001 *** 0.100
getClassName 10.5 19.5 < 0.001 ** 0.328
isGroup 6.1 6.8 0.006 * 0.429
isHostNameLabel 6.9 8.9 < 0.001 * 0.414
isSimpleAddress 7.9 13.9 < 0.001 ** 0.350
isValidUsername 6.2 5.5 0.946 0.502
lesseqString 14.0 24.0 < 0.001 * 0.407
needsUrlEncoding 8.6 8.8 0.114 0.541
protectQuotations 13.1 15.8 < 0.001 * 0.380
stripName 20.4 42.7 < 0.001 *** 0.194
toCamel 16.4 33.6 < 0.001 *** 0.193
translate 15.5 25.6 0.089 0.456
validateEmail 9.8 7.5 0.136 0.539

(b) Correct judgements only

Case Study Lang. (s) Conv. (s) p-value Â12

capitalize 11.6 12.1 0.333 0.529
composeName 19.2 19.9 0.579 0.516
containsChar 9.2 14.6 < 0.001 *** 0.279
containsIgnoreCase 10.3 9.4 0.707 0.511
encodeClassname 15.0 35.8 < 0.001 *** 0.089
getClassName 10.8 16.8 < 0.001 ** 0.329
isGroup 6.1 6.6 0.014 * 0.435
isHostNameLabel 7.0 9.0 0.005 * 0.422
isSimpleAddress 7.4 13.6 < 0.001 ** 0.335
isValidUsername 6.2 5.3 0.756 0.508
lesseqString 13.7 26.8 < 0.001 * 0.367
needsUrlEncoding 8.8 8.9 0.124 0.541
protectQuotations 13.0 15.7 < 0.001 * 0.371
stripName 20.3 45.0 < 0.001 *** 0.134
toCamel 16.4 32.9 < 0.001 *** 0.178
translate 15.8 25.3 0.552 0.483
validateEmail 8.4 7.5 0.284 0.531

Chapter 5 122

Ti
m

e
(s

)

ca
pit
aliz
e

co
mp
os
eN
am
e

co
nta
ins
Ch
ar

co
nta
ins
Ign
ore
Ca
se

en
co
de
Cla
ssn
am
e

isG
rou
p

isH
os
tNa
me
La
be
l

isS
im
ple
Ad
dre
ss

isV
alid
Us
ern
am
e

les
se
qS
trin
g

ne
ed
sU
rlE
nc
od
ing

pro
tec
tQ
uo
tat
ion
s

str
ipN
am
e

toC
am
el

tra
ns
lat
e

va
lida
teE
ma
il

0

20

40

60

80 Language Model Approach

Conventional Approach

Figure 5.5: Box and whisker plots displaying the timing distribution for
performing “correct” evaluations on test inputs of each approach on each
method. The centre line represents the median and the box the distribution
of the data between the upper and lower quartiles. The upper and lower
whiskers represent the minimum and maximum value (excluding outliers).

Chapter 5 123

10 of the 17 case studies.

Figure 5.5 shows box and whisker plots of the times recorded for correct

judgements. The plots show particular superiority of the language model’s

ability to produce shorter evaluation times for certain case studies, includ-

ing containsChar, encodeClassName, stripName and toCamel. This was

confirmed by the computation of effect sizes, using Vargha and Delaney’s

Â12 statistic [117], and recorded in Table 5.3. According to the informa-

tion provided in Vargha and Delany’s paper an effect size is categorised as

large, medium or small when values are less than 0.29, 0.36 and 0.44 respec-

tively. Based on this classification, cognition times for test inputs generated

using the language model approach had large effect sizes in 4 case stud-

ies: containsChar, encodeClassName, stripName and toCamelCase. The

latter three had revealed significant improvements in accuracy as response

to the previous research question. The results obtained for isSimpleAddress

and getClassName had medium effect size, while isGroup, isHostNameLabel,

lesseqString and protectQuotations experienced medium effect size.

There was no significant difference on the remaining 7 case studies.

Methods capitalize, composeName and translate were classified as string pro-

cessing methods that did not require their string inputs to be fully compre-

hended by testers to provide outputs. capitalize merely required the tester

to check the first character of the string. composeName purely outputs one

of its two arguments or the concatenation of both, without requiring the

two string arguments to actually be read. Method translate, in a similar

style to capitalize, only required examination of the first character of the

string. This can explain why no significant difference was found in terms of

evaluation times for the two approaches in these string processing methods.

containsIgnoreCase was classified as a string processing method, which

did require its string inputs to be fully comprehended by testers. There

was however no significant differences between the two approaches in terms

of evaluation time of test inputs generated for this method. The majority

of the test cases generated for this method using both approaches included

an empty string for the second input variable. Since this method checks

the presence of the second string argument in the first, the empty strings

generated for the second argument would result in trivially returning false

Chapter 5 124

in most cases. This accounts for the lack of difference in times recorded for

both language model and conventional approaches.

Finally, the test data generated for 3 of the string validation routine:

isValidUsername, needsUrlEncoding and validateEmail revealed to present

more straightforward tasks for the human participants, and thus the usage

of a language model failed to produce any significant differences in terms of

relevant evaluation time.

RQ4 - Test Data Fault Finding Capability

To answer this research question, the mutation system for Java programs,

MuClipse [7] was used to assess the fault-finding capability of test inputs

generated using each approach. The Fisher exact test was performed to

determine the statistical significance with confidence level set to 95%. Table

5.4 presents the mutation scores for test cases generated using each approach,

with p-values displayed in the last column. Each test set is compromised of

all diverse test cases generated using each approach for each method. Table

5.5 shows the number of generated mutants, and the number of diverse test

cases of each approach for each program.

As evident from Table 5.4, test inputs generated using the language

model approach have slightly lower mutation scores for programs isSim-

pleAddress, needsUrlEncoding, stripName, and translate. This difference

however is not statistically significant as none of the corresponding p-values are

within the significance threshold (< 0.05). Mutation score for composeName

and encodeClassname is undefined as MuClipse failed to generate any mu-

tants for these methods. This is merely because the traditional operators

only modify syntactic features such as arithmetic operators, unary logic, etc.

These methods do not contain any of such features.

In response to this research question, the analysis of results indicate that,

the mutation score remains unchanged for test inputs generated using each

approach, and thus the use of the language model has no significant effects

on fault-finding capabilities of the test suites.

Chapter 5 125

Table 5.4: Mutation sccore of test cases generated using language model
approach and the conventional approach. Mutation score in this context
refers to the percentage of mutants that each test set can detect.

Project Method Lang. (%) Conv. (%) p-value

Bots’n’Scouts lesseqString 83 83 1.0
CodeHaggis toCamel 19 19 1.0
Daikon getClassName 100 100 1.0

protectQuotations 100 100 1.0
Germoglio translate 83 91 0.6
Jake isValidUsername 100 100 1.0
JavaMail isSimpleAddress 79 81 0.9

isGroup 73 73 1.0
JOX stripName 91 93 1.0
Muffin containsChar 94 94 1.0
OpenJDK isHostNameLabel 100 100 1.0
PuzzleBazar composeName 0 0 1.0
Rife validateEmail 100 100 1.0

capitalize 50 50 1.0
encodeClassname 0 0 1.0
needsUrlEncoding 82 86 0.8

Subsonic containsIgnoreCase 100 100 1.0

Chapter 5 126

Table 5.5: Shows the number of diverse test cases generated using each ap-
proach, the total number of generated mutants, and the number of mutants
that were detected (killed) by these test cases.

Project Method Diverse Mutants Killed
Lang. Conv. Lang. Conv.

Bots’n’Scouts lesseqString 60 60 6 5 5
CodeHaggis toCamel 66 57 139 27 27
Daikon getClassName 56 59 15 15 15

protectQuotations 60 52 36 36 36
Germoglio translate 58 60 137 114 126
Jake isValidUsername 105 92 10 10 10
JavaMail isSimpleAddress 50 55 96 76 78

isGroup 89 90 26 19 19
JOX stripName 59 40 73 67 68
Muffin containsChar 111 63 19 18 18
OpenJDK isHostNameLabel 81 69 110 110 110

composeName 91 90 0 0 0
PuzzleBazar validateEmail 352 687 466 466 466
Rife capitalize 70 60 20 10 10

encodeClassname 30 30 0 0 0
needsUrlEncoding 118 72 153 126 133

Subsonic containsIgnoreCase 93 90 2 2 2

Chapter 5 127

5.6 Threats to Validity

This section discusses the threats to validity associated with the human

empirical study.

As described in Section 3.5 and Section 4.4 in previous chapters, the

main threat to internal validity in empirical studies regarding search-based

test data generation is the stochastic nature of the meta-heuristic search

algorithms. The chosen scheme for mitigating this threat was to perform

the test data generation process using a sufficiently large data sample. The

employed search method (i.e. (1+1) EA) in this study was thus executed

30 times using each approach on each program. This provided a large pool

of test data from which to draw observations, ensuring sample means were

normally distributed. This was extensively explained in Section 5.4.2.

One of the major threats to the external validity is the selection of case

studies, and the possibility of obtaining exclusive results that may not hold

in practice (for other programs). Due to the diversity of real world programs

it is impractical to sample a large set that captures all the possible char-

acteristic of all programs. In order to mitigate these risks, the case studies

were selected from various real world open source projects. In order to facil-

itate capturing various aspects of functionality regarding string inputs, only

methods with string arguments were used. This drew a total of 17 methods

which were selected from 12 open source project. These issues were fully

discussed in Section 5.4.

Another source of potential bias is concerned with the use of the crowd-

sourcing website, and the selection of participants. As reviewed in Section

4.2.3, crowd-sourcing platforms such as CrowdFlower are commonly open to

users mis-reporting experience levels or performing tasks randomly in order

to earn money. To mitigate this, participant selection was performed based

on an independent metric, such as “all participants with ≥ 50% accuracy”.

Based on this metric, only a subset of participants who correctly evaluated

50% or more of the test inputs were considered in the analysis of the results.

This was broadly explained in Section 5.4.5.

As previously discussed, a major source of bias in human empirical stud-

ies is the “learning” or “training” effects. To alleviate these effects in this

Chapter 5 128

experiment the first two responses of each participant were removed from

consideration in the analysis of the results. Steps taken to avoid fatigue

effects was to keep the form of the questions as simple and limit the number

of questions to 8. The analysis of the results revealed that each participant

spent approximately 3 minutes on a questionnaire on average. This indi-

cates that the study was relatively trivial and thus unlikely to be subject

to fatigue effects. However, the main step to discard any bias from learning

and fatigue effects was to randomise the questions and the order in which

they appeared to the participants. The test inputs that formed the basis of

each question were selected at random from a large pool of inputs, and these

were selected at random from the overall set of inputs generated using each

stochastic approach. These issues were fully discussed in Sections 4.2.1 and

5.4.4.

Similar to previous experiments, there are potential threats to construct

validity since the performance of each approach was mainly assessed based

on evaluation time of test data generated using each approach. This essen-

tially originates from the nature of the human empirical study, in which, the

experience and skills of the participants and their familiarity with the case

studies are unknown. These were handled by randomising the order and the

type of the questions for each participant.

Finally, the Fisher’s exact test and the Wilcoxon rank-sum test were

used to test the statistical significance. Vargha and Delaney’s Â12 statistic

was used to test the effect size.

5.7 Conclusions

This chapter introduced a new approach to automatic test data generation

for string inputs. In this approach, a statistical language model was in-

corporated into the search-based test data generation process to optimise

the readability of string test inputs. The empirical study involving human

participants revealed that the string inputs generated using this approach

were significantly quicker to evaluate in several case studies. The accuracy

of test input evaluation were also shown to be improved in certain cases.

Mutation analysis was performed to assess the effects of the language model

Chapter 5 129

approach on mutation score. The outcome revealed that this approach had

no significant changes on the fault-finding capabilities of the resultant test

suites.

Chapter 6

Conclusions and Future

Work

6.1 Summary of Achievements

This thesis explored various aspects of human oracle costs, investigating and

establishing methods that could effectively reduce these costs. The thesis

focused on minimising qualitative oracle expenses by increasing the readabil-

ity of automatically generated test data while maintaining the fault-finding

effectiveness constant. The main hypotheses of this thesis were outlined in

Chapter 1, while each hypothesis was then inspected individually in subse-

quent chapters.

This chapter summarises the discussion of each hypothesis, outlining the

empirical studies performed to determine the validity of each hypothesis. It

then presents the main contributions of the thesis. This is followed by a dis-

cussion on limitations of the research, and avenues for future investigation.

6.1.1 Hypotheses

Hypothesis 1 Seeding the search-based test data generation process with

human-supplied test inputs can produce test data with higher branch cover-

age, and without any detrimental effects on fault-finding effectiveness.

The empirical work in Chapter 3 addressed this hypothesis by performing

Chapter 6 131

an empirical study in which samples of test cases were collated from human

subjects for the Java method listed in Table 3.1. The human-supplied test

cases were then used as seeds to commence the search-based test input gen-

eration process. The results of this empirical study (presented in Section 3.4)

revealed that the application of the seeded search-based approach resulted in

higher branch coverage for a majority of methods with string inputs. There

was no evidence to indicate that the seeded approach had detrimental ef-

fects on fault-finding capabilities in any of the methods under consideration.

Hypothesis 2 Seeding the search-based test data generation process with

human-supplied test inputs can produce readable test data that are less time-

consuming and error-prone for manual evalution.

The empirical work presented in Chapter 4 addressed this hypothesis by

performing an empirical study in which human subjects were recruited to

manually evaluate test cases generated using both the seeded and unseeded

search-based approaches by hand, while being timed. Human subjects were

expected to provide the correct outputs of a Java method for a set of test

cases. The main purpose of this empirical study was to assess the time

human subjects required to manually evaluate test cases of each approach,

and to investigate whether test data generated using the seeded approach

were less time consuming and less error-prone to evaluate. The results of

this study (presented in Section 4.3) indicated that the use of the seeded

search-based approach can have both positive and negative effects on test

data evaluation costs (i.e time and accuracy) depending on the classes of

programs.

Hypothesis 3 Incorporating the search-based test data generation process

with a statistical language model can produce more readable test data for

string inputs, which are less time-consuming and error-prone for manual

evalution.

The empirical work presented in Chapter 5 addressed this hypothesis

by introducing a new approach in which the search-based test data was

Chapter 6 132

incorporated with a language model to encourage generation of readable

values for string inputs. This chapter presented an empirical assessment

of the technique, in which human subjects were recruited and requested

to manually evaluate test data generated using both the language model

approach and the conventional search-based approach while being timed.

The time and accuracy of human subjects in evaluating test cases of each

approach were assessed and compared. The effects of this approach on

test data fault-finding effectiveness was also inspected. The results revealed

that test data generated using the language model approach were less time

consuming to evaluate in several cases, and in certain cases, the accuracy

of test input evaluation with respect to outputs was also improved, with no

detrimental effects on fault-finding capabilities.

Due to frequent unavailability of automated oracles in software engineer-

ing practice, this work therefore revealed an important bearing on lowering

the costs of human involvement in the testing process as an oracle.

6.1.2 Contributions of this Thesis

1. The results of the empirical study in which a seeded search-based ap-

proach was implemented and compared against a conventional un-

seeded approach for generating branch-covering and fault-detecting

test inputs, revealing cases where the seeded approach outperformed

the unseeded approach in terms of branch coverage, efficiency, and

fault- finding effectiveness.

2. The results of a human study in which test data generated using both

the seeded and unseeded search-based approaches were evaluated by

human subjects, revealing cases where seeded test data was both less

time consuming and less error-prone to manually evaluate by human

subjects.

3. Introduction of a technique for incorporating the automatic test in-

put generation process with a statistical language model to generate

readable branch-covering string inputs.

4. The results of a human study in which the language model technique

Chapter 6 133

was compared with a conventional, non-informed approach, revealing

cases where test inputs generated using the language model approach

were both less time consuming and error-prone to manually evaluate

by human subjects.

6.2 Summary of Future Work

The use of the language model approach demonstrated a major difference

in readability of the resultant test data and subsequently a significance re-

duction in test data cognition time. This opens a venue for further research

and investigations that can widen the applicability and scalability of the ap-

proach at minimal costs. This section outlines restrictions and limitations

of the language model approach, and describes how some of these can be

resolved.

6.2.1 Investigating Various Seeding Schemes

The first experiment of this thesis involved investigating a seeding technique

in which seeds were collated directly from humans via a crowd-sourcing

platform. As discussed in Chapter 3, only the correct values obtained from

the crowd were selected and used as seeds. The term “correct values” were

assigned to the pairs of inputs and outputs that correlated correctly against

the methods description. As a results, the pairs of values that did not match

the methods description were eliminated from the study. As explained in

Section 3.5, this step was an essential procedure to prevent unauthorised

users from gaming the system for money.

In practise, the data used for seeding may not be pre-filtered, and thus,

the choice of filtering can add a potential threat to validity. Future work

is required to investigate this, and to explore how different sources of seeds

and the quality of the seeded data can affect the approach.

6.2.2 Managing Fault-Finding Capability

As discussed previously, production of readable test data using the language

model approach had no significant impact on the relevant fault-finding fac-

Chapter 6 134

tor. However, in large scale software systems, locating critical defects may

essentially depend on the presence of unnatural and arbitrary looking test

inputs. It was discussed by McMinn et al [82] that less readable test cases

are in fact more likely to reveal software faults. This implies that more di-

verse or randomly generated test cases are not without a purpose, and that

these are required for revealing software failures.

As a direction for future work, large scale empirical studies involving

Mutation Analysis should be performed to identify the relationship between

readability and fault-finding effectiveness. In any case, the multi-objective

search-based procedures can be applied to determine the optimal trade-off

between reduced human oracle costs and increased fault-finding capabili-

ties. Multi-objective search has previously been employed in search-based

test data generation [52]. Given a certain time budget in which to per-

form testing, readable test cases may be prioritised in order to reduce oracle

checking time and thus increase the number of test cases that may be con-

sidered. Given unlimited time, more faults may be detected with test cases

produced using the conventional techniques.

6.2.3 Improving Readability

While it is important to test programs with unrealistic inputs, it is also im-

portant to test them with natural instantly-readable values. This is mainly

due to the following reasons:

1. Readable inputs are easier to comprehend by human testers and can

therefore reduce oracle checking time.

2. Faults found by readable test cases are more likely to be prioritised for

fixing. According to Bozkurt et al [24], a fault-revealing test case that

rarely or never occurs in practice is unlikely to attract the attention

of a tester who is preoccupied with various tasks such as bug reports.

3. Readable test inputs can represent important corner cases [24] which

are rarely generated using the conventional search-based techniques.

Although the language model approach can generate more readable strings

(such as “s@prerereandes.Nouthin”for an email address) - it is however in-

Chapter 6 135

Table 6.1: Samples of strings generated using the language model approach,
and a set of realistic examples displayed in the last column.

Method LangModel Realistic

toCamel inererof yo persian cat
protectQuotations “Nout He said “Hi”
isGroup in:theandes; recipient-list: tom@ymai.com;
validateEmail heres@pe.HALOL James@gmail.com
capitalize hinthere oxford

capable of producing realistic strings that represent real-world entities or

natural words that exist in the dictionary. Table 6.1 lists samples of strings

generated using the approach and a realistic example for each case.

Further work is required to investigate and improve the readability of

test data generated using the language model approach. This involves ex-

ploring various types of texts employed to train the language models, and to

investigate how these can increase the readability of strings produced. The

text used to train the current language model was an electronic version of

the classic novel Moby Dick [85], consisting of 215,133 words and 1,235,150

characters. Larger corpora containing certain types of text may be more

suitable for certain domains of programs – For instance books regarding dif-

ferent programming languages that contain samples of source codes or even

an electronic version of a dictionary that contains all the existing words in

the language.

6.2.4 Test Input Generation for Various Data Types

The language model is specifically designed for test data generation for string

data types. It is however not applicable on string variables that represent

diverse and complex types of real-world data such as serial numbers, registry

codes, uniform resource locators and international banking digits.

To circumvent this issue, the language model technique can be combined

with the web-query approach [84, 105] (proposed by McMinn et al) to form

an integrated application that can generate readable test data for all data

Chapter 6 136

types. As described in the literature review, Section 2.4.6, the use of the web-

query approach requires the program to have useful identifiers that can be

reformulated into web search queries. Combination of this approach with the

language model technique promises to provide the means to automatically

generated readable inputs for different programs.

The key purpose of future work is further reduction of human oracle

costs. These venues should therefore be explored to efficiently improve the

applicability and scalability of the language model approach, and to assess

its consequential impact on manual evaluation costs.

References

[1] Amazon Mechanical Turk website. https://www.mturk.com/mturk/

welcome.

[2] Android code style guidelines. http://source.android.com/

source/code-style.html#write-short-methods.

[3] Crowd Guru website. http://www.crowdguru.de/.

[4] CrowdFlower website. http://crowdflower.com/.

[5] The Eclipse foundation open source community website. http://www.

eclipse.org/.

[6] Microsoft research. http://research.microsoft.com/.

[7] Muclipse. http://muclipse.sourceforge.net/.

[8] Software observatory homepage. http://observatory.group.shef.

ac.uk/.

[9] Object-z: A specification language advocated for the description of

standards. Computer Standards Interfaces, 17:511 – 533, 1995.

[10] Empirical Methods and Studies in Software Engineering, Experiences

from ESERNET, volume 2765 of Lecture Notes in Computer Science.

Springer, 2003.

[11] J. Abrial, M. Lee, D. Neilson, P. Scharbach, and I. Srensen. The b-

method. In VDM ’91 Formal Software Development Methods, volume

552, pages 398–405.

Chapter 6 138

[12] David H. Ackley. A connectionist machine for genetic hillclimbing.

Kluwer Academic publishers, Norwell, MA, USA, 1987.

[13] Hiralal Agrawal, Joseph R. Horgan, Edward W. Krauser, and Saul

London. Incremental regression testing. In Proceedings of the Confer-

ence on Software Maintenance, ICSM ’93, pages 348–357, Washington,

DC, USA, 1993. IEEE Computer Society.

[14] S.G. Alawneh and D.K. Peters. Specification-based test oracles with

junit. In Electrical and Computer Engineering (CCECE), 2010 23rd

Canadian Conference on, may 2010.

[15] N. Alshahwan and M. Harman. Automated web application testing

using search based software engineering. In International Conference

on Automated Software Engineering (ASE), pages 3 –12, November

2011.

[16] Mohammad Alshraideh and Leonardo Bottaci. Search-based software

test data generation for string data using program-specific search oper-

ators: Research articles. Software Testing, Verification and Reliability,

16(3):175–203, September 2006.

[17] James H. Andrews and Yingjun Zhang. General test result checking

with log file analysis. IEEE Transactions on Software Engineering,

29:634–648, July 2003.

[18] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. Using

mutation analysis for assessing and comparing testing coverage cri-

teria. IEEE Transactions on Software Engineering, 32(8):608 –624,

aug. 2006.

[19] Jorge Aranda and Gina Venolia. The secret life of bugs: Going past

the errors and omissions in software repositories. In Proceedings of

the 31st International Conference on Software Engineering, ICSE ’09,

pages 298–308, Washington, DC, USA, 2009. IEEE Computer Society.

[20] Andrea Arcuri. It does matter how you normalise the branch distance

in search based software testing. In Proceedings of the 2010 Third

Chapter 6 139

International Conference on Software Testing, Verification and Vali-

dation, ICST ’10, pages 205–214, Washington, DC, USA, 2010. IEEE

Computer Society.

[21] James E. Baker. Reducing bias and inefficiency in the selection algo-

rithm. In Proceedings of the Second International Conference on Ge-

netic Algorithms on Genetic algorithms and their application, pages

14–21, Hillsdale, NJ, USA, 1987. L. Erlbaum Associates Inc.

[22] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Ko-

rat: automated testing based on Java predicates. SIGSOFT Software

Engineering Notes, 27(4), July 2002.

[23] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT - A formal system

for testing and debugging programs by symbolic execution. In Pro-

ceedings of the International Conference on Reliable Software, pages

234–244. ACM Press, 1975.

[24] Mustafa Bozkurt and Mark Harman. Automatically generating real-

istic test input from web services. In SOSE’11: Proceedings of the

6th IEEE Symposium on Service-Oriented System Engineering, pages

13–24, December 2011.

[25] Jeremy S. Bradbury, James R. Cordy, and Juergen Dingel. Compar-

ative assessment of testing and model checking using program muta-

tion. In Proceedings of the Testing: Academic and Industrial Confer-

ence Practice and Research Techniques - MUTATION, pages 210–222,

Washington, DC, USA, 2007. IEEE Computer Society.

[26] L. C. Briand, Y. Labiche, and Y. Wang. Using simulation to empir-

ically investigate test coverage criteria based on statechart. In Pro-

ceedings of the 26th International Conference on Software Engineering,

ICSE ’04, pages 86–95, Washington, DC, USA, 2004. IEEE Computer

Society.

[27] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. Testtube:

a system for selective regression testing. In Proceedings of the 16th In-

Chapter 6 140

ternational Conference on Software Engineering, ICSE ’94, pages 211–

220, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[28] J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,

B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Re-

formulating software engineering as a search problem. IEE Proceedings

- Software, 150(3):161–175, 2003.

[29] John A. Clark, Haitao Dan, and Robert M. Hierons. Semantic mu-

tation testing. IEEE International Conference on Software Testing

Verification and Validation Workshop, pages 100–109, 2010.

[30] Haitao Dan and Robert M. Hierons. Semantic mutation analysis of

floating-point comparison. International Conference on Software Test-

ing, Verification, and Validation, 0:290–299, 2012.

[31] Haitao Dan and Robert M. Hierons. Smt-c: A semantic mutation

testing tools for C. International Conference on Software Testing,

Verification, and Validation, 0:654–663, 2012.

[32] Martin D. Davis and Elaine J. Weyuker. Pseudo-oracles for non-

testable programs. In ACM ’81: Proceedings of the ACM ’81 con-

ference, pages 254–257, New York, NY, USA, 1981. ACM.

[33] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data

selection: Help for the practicing programmer. Computer, 11(4):34–

41, 1978.

[34] Julie S. Downs, Mandy B. Holbrook, Steve Sheng, and Lorrie Faith

Cranor. Are your participants gaming the system?: screening mechan-

ical turk workers. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’10, pages 2399–2402, New York,

NY, USA, 2010. ACM.

[35] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of

the (1+ 1) evolutionary algorithm. 276(1-2), April 2002.

Chapter 6 141

[36] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David

Notkin. Dynamically discovering likely program invariants to sup-

port program evolution. IEEE Transactions on Software Engineering,

27:213–224, 2001.

[37] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,

Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon

system for dynamic detection of likely invariants. Science of Computer

Programming, 69(1–3):35–45, Deember 2007.

[38] R. Ferguson and B. Korel. The chaining approach for software test

data generation. ACM Transactions on Software Engineering and

Methodology, 5(1):63–86, 1996.

[39] J. Ferrante, K. Ottenstein, and J. D. Warren. The program depen-

dence graph and its use in optimization. ACM Transactions on Pro-

gramming Languages and Systems, 9(3):319–349, 1987.

[40] John S. Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef. Vienna

Development Method. John Wiley and Sons, Inc., 2007.

[41] M. Fowler and K. Beck. Refactoring: Improving the Design of Exist-

ing Code. Addison-Wesley Object Technology Series. Addison-Wesley,

1999.

[42] G. Fraser and A. Arcuri. The seed is strong: Seeding strategies in

search-based software testing. In Proceedings of the 2012 IEEE Fifth

International Conference on Software Testing, Verification and Vali-

dation, ICST ’12, pages 121 –130, April 2012.

[43] Zachary P. Fry, Bryan Landau, and Westley Weimer. A human study

of patch maintainability. In Proceedings of the 2012 International

Symposium on Software Testing and Analysis, ISSTA 2012, pages 177–

187, New York, NY, USA, 2012. ACM.

[44] Zachary P. Fry and Westley Weimer. A human study of fault local-

ization accuracy. In Proceedings of the 2010 IEEE International Con-

Chapter 6 142

ference on Software Maintenance, ICSM ’10, pages 1–10, Washington,

DC, USA, 2010. IEEE Computer Society.

[45] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated

Random Testing. ACM SIGPLAN Notices, 40(6):213–223, June 2005.

[46] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed

automated random testing. 40(6):213–223, June 2005.

[47] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of se-

lection schemes used in genetic algorithms. In Foundations of Genetic

Algorithms, pages 69–93. Morgan Kaufmann, 1991.

[48] M. Harman. Open problems in testability transformation. In IEEE

International Conference on Software Testing Verification and Vali-

dation Workshop (ICSTW), pages 196–209, 2008.

[49] M. Harman, A. Baresel, D. Binkley, R. Hierons, L. Hu, B. Korel,

P. McMinn, and M. Roper. Testability transformation - program

transformation to improve testability. In Formal Methods and Test-

ing, Lecture Notes in Computer Science, volume 4949, pages 320–344.

Springer-Verlag, 2008.

[50] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener.

The impact of input domain reduction on search-based test data gen-

eration. In Proceedings of the ACM SIGSOFT Symposium on the

Foundations of Software Engineering (FSE 2007), pages 155–164, Ca-

vat, near Dubrovnik, Croatia, 2007. ACM Press.

[51] M. Harman, Sung Gon Kim, K. Lakhotia, P. McMinn, and Shin Yoo.

Optimizing for the number of tests generated in search based test

data generation with an application to the oracle cost problem. In

Third International Conference on Software Testing, Verification, and

Validation Workshops (ICSTW), pages 182 –191, April 2010.

[52] M. Harman, K. Lakhotia, and P. McMinn. A multi-objective approach

to search-based test data generation. In Proceedings of the Genetic and

Chapter 6 143

Evolutionary Computation Conference (GECCO 2007), pages 1098–

1105, London, UK, 2007. ACM Press.

[53] M. Harman and P. McMinn. A theoretical & empirical analysis of evo-

lutionary testing and hill climbing for structural test data generation.

In Proceedings of the International Symposium on Software Testing

and Analysis (ISSTA 2007), pages 73–83, London, UK, 2007. ACM

Press.

[54] M. Harman and P. McMinn. A theoretical and empirical study of

search-based testing: Local, global and hybrid search. IEEE Transac-

tions on Software Engineering, 36:226–247, 2010.

[55] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premku-

mar Devanbu. On the naturalness of software. In Proceedings of the

2012 International Conference on Software Engineering, ICSE 2012,

pages 837–847, Piscataway, NJ, USA, 2012. IEEE Press.

[56] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premku-

mar Devanbu. On the naturalness of software. In Proceedings of the

2012 International Conference on Software Engineering, ICSE 2012,

pages 837–847, 2012.

[57] Douglas Hoffman. Heuristic test oracles. Quality Engineering Maga-

zine, 1999.

[58] Mike Holcombe. Starting an XP Project, pages 73–117. John Wiley

and Sons, Inc., 2008.

[59] J. H. Holland. Adaptation in Natural and Artificial Systems. Univer-

sity of Michigan Press, Ann Arbor, 1975.

[60] W.E. Howden. Introduction to the Theory of Testing. IEEE Computer

Society Press, 1978.

[61] X.B. Hu and E. Di Paolo. An efficient genetic algorithm with uni-

form crossover for the multi-objective airport gate assignment prob-

lem. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress

on, pages 55 –62, September 2007.

Chapter 6 144

[62] Kenneth A. De Jong and William M. Spears. A formal analysis of the

role of multi-point crossover in genetic algorithms. Annals of Mathe-

matics and Artificial Intelligence, 1992.

[63] D. Jurafsky and J. Martin. Speech and Language Processing. Pearson,

second edition, 2009.

[64] J. S. Karn, S. Syed-Abdullah, A. J. Cowling, and M. Holcombe. A

study into the effects of personality type and methodology on cohesion

in software engineering teams. Behav. Inf. Technol., pages 99–111,

March 2007.

[65] John Karn and Tony Cowling. A follow up study of the effect of per-

sonality on the performance of software engineering teams. In ISESE

’06: Proceedings of the 2006 ACM/IEEE international symposium on

Empirical Software Engineering, pages 232–241, New York, NY, USA,

2006.

[66] J.S. Karn and A.J. Cowling. An initial observational study of the

effects of personality type on software engineering teams. IEE Seminar

Digests, 2004(920):155–164, 2004.

[67] S. Katz. Estimation of probabilities from sparse data for the lan-

guage model component of a speech recognizer. IEEE Transactions

on Acoust, Speech, Signal Process, 35(5):400–401, 1987.

[68] Sunwoo Kim, John A. Clark, and John A. McDermid. Investigating

the effectiveness of object-oriented testing strategies with the mutation

method. Software Testing, Verification and Reliability, 11:207–225,

2001.

[69] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by

simulated annealing. Science, 220:671–680, 1983.

[70] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user

studies with mechanical turk. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems, pages 453–456, New

York, NY, USA, 2008. ACM.

Chapter 6 145

[71] B. Korel. Automated software test data generation. IEEE Transac-

tions on Software Engineering, 16(8):870–879, 1990.

[72] Marco Laumanns, Lothar Thiele, Eckart Zitzler, Emo Welzl, and

Kalyanmoy Deb. Running time analysis of multi-objective evolution-

ary algorithms on a simple discrete optimization problem. In Parallel

Problem Solving from Nature PPSN VII, volume 2439 of Lecture Notes

in Computer Science, pages 44–53. Springer Berlin / Heidelberg, 2002.

[73] Zheng Li, Mark Harman, and Robert M. Hierons. Search algorithms

for regression test case prioritization. IEEE Transactions on Software

Engineering, 33(4), April 2007.

[74] A. Lopez. Statistical machine translation. ACM Computing Surveys,

40(3), 2008.

[75] Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Not all parents

are equal for mo-cma-es. In Proceedings of the 6th International Con-

ference on Evolutionary Multi-criterion Optimization, EMO’11, pages

31–45, Berlin, Heidelberg, 2011. Springer-Verlag.

[76] H. Manning and H. Schütze. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, Cambridge, MA, 1999.

[77] Nashat Mansour and Khalid El-Fakih. Simulated annealing and ge-

netic algorithms for optimal regression testing. Journal of Software

Maintenance, Jnuary 1999.

[78] G. McGraw, C. Michael, and M. Schatz. Generating software test

data by evolution. IEEE Transactions on Software Engineering,

27(12):1085–1110, 2001.

[79] P. McMinn. Search-based software test data generation: A survey.

Software Testing, Verification and Reliability, 14(2):105–156, 2004.

[80] P. McMinn. IGUANA: Input generation using automated novel al-

gorithms. A plug and play research tool. Technical Report CS-07-14,

Department of Computer Science, University of Sheffield, 2007.

Chapter 6 146

[81] P. McMinn, D. Binkley, and M. Harman. Testability transformation

for efficient automated test data search in the presence of nesting.

In Proceedings of the UK Software Testing Workshop (UKTest 2005),

pages 165–182. University of Sheffield Computer Science Technical Re-

port CS-05-07, 2005.

[82] P. McMinn, M. Stevenson, and M. Harman. Reducing qualitative

human oracle costs associated with automatically generated test data.

In STOV 2010: Proceedings of the 1st International Workshop on

Software Test Output Validation, 2010.

[83] Phil McMinn. Search-based failure discovery using testability trans-

formations to generate pseudo-oracles. In GECCO ’09: Proceedings of

the 11th Annual conference on Genetic and evolutionary computation,

pages 1689–1696, New York, NY, USA, 2009. ACM.

[84] Phil McMinn, Muzammil Shahbaz, and Mark Stevenson. Search-based

test input generation for string data types using the results of web

queries. In Proceedings of the 2012 IEEE Fifth International Confer-

ence on Software Testing, Verification and Validation, ICST ’12, pages

141–150, Washington, DC, USA, 2012. IEEE Computer Society.

[85] H. Melvile. Moby Dick. Harper and Brothers, 1851.

[86] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. What test

oracle should I use for effective GUI testing? In Proceedings of the

IEEE International Conference on Automated Software Engineering,

pages 164–173. IEEE Computer Society, October 2003.

[87] E. Miller and W.E. Howden. Tutorial, software testing & validation

techniques. IEEE Computer Society Press, 1981.

[88] W. Miller and D. Spooner. Automatic generation of floating-point

test data. IEEE Transactions on Software Engineering, 2(3):223–226,

1976.

[89] M. Mitchell, J. Holland, and S. Forrest. When will a genetic algo-

Chapter 6 147

rithm outperform hill climbing? In Advances in Neural Information

Processing Systems 6, pages 51–58. Morgan Kaufmann, 1993.

[90] Christian Murphy. Using runtime testing to detect defects in appli-

cations without test oracles. In FSEDS ’08: Proceedings of the 2008

Foundations of Software Engineering Doctoral Symposium, pages 21–

24, New York, NY, USA, 2008. ACM.

[91] Christian Murphy, Kuang Shen, and Gail Kaiser. Automatic system

testing of programs without test oracles. In ISSTA ’09: Proceedings of

the eighteenth international symposium on Software testing and anal-

ysis, pages 189–200, New York, NY, USA, 2009. ACM.

[92] Christian Murphy, Kuang Shen, and Gail Kaiser. Using jml runtime

assertion checking to automate metamorphic testing in applications

without test oracles. In Proceedings of the 2009 International Confer-

ence on Software Testing Verification and Validation, ICST ’09, pages

436–445, Washington, DC, USA, 2009. IEEE Computer Society.

[93] G.J. Myers, C. Sandler, T. Badgett, and T.M. Thomas. The Art of

Software Testing. Business Data Processing: A Wiley Series. Wiley,

2004.

[94] A. Jefferson Offutt and Ronald H. Untch. Mutation testing for the

new century. chapter Mutation 2000: uniting the orthogonal. 2001.

[95] David Lorge Parnas and Jan Madey. Functional documents for com-

puter systems. Science of Computer Programming, 25:41–61, 1995.

[96] Fabrizio Pastore, Leonardo Mariani, and Gordon Fraser. Crowdora-

cles: Can the crowd solve the oracle problem? In ICST, page to apear.

IEEE, 2013.

[97] Yury Pavlov and Gordon Fraser. Semi-automatic search-based test

generation. In Proceedings of the 2012 IEEE Fifth International Con-

ference on Software Testing, Verification and Validation, ICST ’12,

pages 777–784, Washington, DC, USA, 2012. IEEE Computer Soci-

ety.

Chapter 6 148

[98] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical

studies of software engineering: a roadmap. In Proceedings of the

Conference on The Future of Software Engineering, ICSE ’00, 2000.

[99] H. Pohlheim. Geatbx - genetic and evolutionary algorithm toolbox.

http://www.geatbx.com.

[100] Christopher Poile, Andrew Begel, and Lucas Layman. Coordination

in large-scale software development: Helpful and unhelpful behaviors.

2009.

[101] Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’Malley.

Specification-based test oracles for reactive systems. In Proceedings of

the 14th International Conference on Software Engineering, ICSE ’92,

1992.

[102] Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, and Christie

Hong. Empirical studies of test-suite reduction. Software Testing,

Verification and Reliability, 12(4):219–249, 2002.

[103] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and

M. J. Harrold. Test-suite augmentation for evolving software. In Pro-

ceedings of the 2008 23rd IEEE/ACM International Conference on

Automated Software Engineering, ASE ’08, pages 218–227, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[104] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing en-

gine for C. In Proceedings of the 10th European Software Engineering

Conference held jointly with 13th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering, ESEC/FSE 2005,

pages 263–272. ACM, 2005.

[105] M. Shahbaz, P. McMinn, and M. Stevenson. Automated discovery

of valid test strings using dynamic regular expressions collation and

tailored web searches. In Proceedings of the International Conference

on Quality Software (QSIC 2012), 2012.

Chapter 6 149

[106] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng.

Cheap and fast— but is it good? Evaluating non-expert annotations

for natural language tasks. In Proceedings of the Conference on Empir-

ical Methods in Natural Language Processing, pages 254–263, Strouds-

burg, PA, USA, 2008. Association for Computational Linguistics.

[107] Fei Song and W. Bruce Croft. A general language model for informa-

tion retrieval. In Proceedings of the eighth International Conference on

Information and knowledge management, CIKM ’99, pages 316–321,

1999.

[108] Andreas Stolcke. SRILM – an extensible language modeling toolkit. In

Proceedings of ICSLP, volume 2, pages 901–904, Denver, USA, 2002.

[109] Kathryn T. Stolee and Sebastian Elbaum. Exploring the use of crowd-

sourcing to support empirical studies in software engineering. In Pro-

ceedings of the 2010 ACM-IEEE International Symposium on Empir-

ical Software Engineering and Measurement, ESEM ’10, pages 35:1–

35:4, New York, NY, USA, 2010. ACM.

[110] P. Thevenod-Fosse, H. Waeselynck, and Y. Crouzet. An experimental

study on software structural testing: deterministic versus random in-

put generation. In Fault-Tolerant Computing, 1991. FTCS-21. Digest

of Papers., Twenty-First International Symposium, pages 410 –417,

June 1991.

[111] David B. Thomas, Wayne Luk, Philip H.W. Leong, and John D. Vil-

lasenor. Gaussian random number generators. ACM Computing Sur-

veys, 39(4), November 2007.

[112] Chris Thomson and Mike Holcombe. The Sheffield Software Engineer-

ing Observatory Archive: Six years of Empirical Data Collected from

73 Complete Projects. Technical report, Department of Computer

Science, University of Sheffield, Sheffield, UK, 2009.

[113] Walter F. Tichy. Hints for reviewing empirical work in software en-

gineering. Empirical Software Engineering Journal, 5(4):309–312, De-

cember 2000.

Chapter 6 150

[114] N. Tracey, J. Clark, and K. Mander. Automated program flaw find-

ing using simulated annealing. In Software Engineering Notes, Issue

23, No. 2, Proceedings of the International Symposium on Software

Testing and Analysis (ISSTA 1998), pages 73–81, 1998.

[115] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated

framework for structural test-data generation. In Proceedings of the

International Conference on Automated Software Engineering, pages

285–288, Hawaii, USA, 1998. IEEE Computer Society Press.

[116] N. Tracey, J. Clark, K. Mander, and J. McDermid. Automated test

data generation for exception conditions. Software - Practice and Ex-

perience, 30(1):61–79, 2000.

[117] Andrs Vargha and Harold D. Delaney. A critique and improvement

of the CL common language effect size statistics of mcgraw and wong.

journal of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[118] Ingo Wegener. Theoretical aspects of evolutionary algorithms. In

Proceedings of the 28th International Colloquium on Automata, Lan-

guages and Programming (ICALP 2001), LNCS 2076, pages 64–78.

Springer-Verlag, 2001.

[119] Ingo Wegener. Methods for the analysis of evolutionary algorithms on

pseudo-boolean functions. In Evolutionary Optimization, volume 48 of

International Series in Operations Research and Management Science,

pages 349–369. Springer US, 2003.

[120] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environ-

ment for automatic structural testing. Information and Software Tech-

nology, 43(14):841–854, 2001.

[121] J. Wegener, H. Pohlheim, and H. Sthamer. Testing the temporal

behavior of real-time tasks using extended evolutionary algorithms.

In Proceedings of the 7th European Conference on Software Testing,

Analysis and Review (EuroSTAR 1999), Barcelona, Spain, 1999.

REFERENCES 151

[122] Elaine J. Weyuker. On testing non-testable programs. The Computer

journal, 25(4):465–470, 1982.

[123] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur.

Effect of test set minimization on fault detection effectiveness. In Pro-

ceedings of the 17th International Conference on Software Engineering,

ICSE ’95, pages 41–50, New York, NY, USA, 1995. ACM.

[124] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and

K. Karapoulios. Application of genetic algorithms to software test-

ing (Application des algorithmes génétiques au test des logiciels). In

5th International Conference on Software Engineering and its Appli-

cations, pages 625–636, Toulouse, France, 1992.

[125] S. Yoo and M. Harman. Test data augmentation: generating new

test data from existing test data. Technical Report TR-08-04, King’s

College London, 2008.

[126] Hao Zhong, Lu Zhang, and Hong Mei. An experimental study of

four typical test suite reduction techniques. Information and Software

Technology, 50(6):534 – 546, 2008.

