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Abstract 

 

The concept of automated species identification is relatively recent and advances are 

being driven by technological advances and the taxonomic impediment. This thesis 

describes investigations into the automated identification of ladybird species from 

colour images provided by the public, with an eventual aim of implementing an 

online identification system. Such images pose particularly difficult problems with 

regards to image processing as the insects have a highly domed shape and not all 

relevant features (e.g. spots) are visible or are fore-shortened. A total of 7 species of 

ladybird have been selected for this work; 6 native species to the UK and 3 colour 

forms of the Harlequin ladybird (Harmonia axyridis), the latter because of its pest 

status. Work on image processing utilised 6 geometrical features obtained using 

greyscale operations, and 6 colour features which were obtained using CIELAB 

colour space representation. Overall classifier results show that inter-species 

identification is a success; the system is able to, among all, correctly identify Calvia 

14-guttata from Halyzia 16-guttata to 100% accuracy and Exochomus 4-pustulatus 

from H. axyridis f. spectabilis to 96.3% accuracy using Multilayer Perceptron and 

J48 decision trees. Intra-species identification of H. axyridis shows that H. axyridis f. 

spectabilis can be identified correctly up to 72.5% against H. axyridis f. conspicua, 

and 98.8% correct against H. axyridis f. succinea. System integration tests show that 

through the addition of user interaction, the identification between Harlequins and 

non-Harlequins can be improved from 18.8% to 75% accuracy.  
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CHAPTER 1   

INTRODUCTION 

This thesis explores the use of colour images for the identification of ladybirds in 

UK. Imagine people using their mobile devices for uploading images through 

entomological websites and receiving feedback from web queries. Nearly four years 

ago, the author embarked on a research to produce a framework for the automated 

identification of ladybirds in the UK. The author realised the massive amount of 

technical work involved, even though nowadays the use of computers in 

identification is far more advanced than those days when William Dawson of 

California took some photos of Lesser yellow-legs bird (Totanus flavipes) near Santa 

Barbara for identification on August 16, 1913 (Dawson, 1913). T. flavipes has 

always been confused with a Tennessee Warbler. Dawson realised using images 

from a camera did not actually improve identification process, except when the 

location of where the photograph was taken is known. This is completely 

understandable considering manual identification using camera was rare in those 

days; one would require the availability of equipment, skills, technology and 
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financial ability. The moral of the story is to have a computerised identification 

system that can perform as good as an expert, but with greater efficiency. 

This research project has included the use of image processing, neural networks and 

expert system in the identification of UK ladybirds and Harlequin ladybirds 

(Harmonia axyridis). Due to potential impacts on economy and biodiversity, the task 

of monitoring the spread of H. axyridis is highly important to the UK (UK Harlequin 

Survey, n.d.). However it is a huge task to be done manually, considering various 

challenges in term of technicality, logistics, data collection and funding. Morphology 

seems to be the best approach and still useful, as other alternatives such as DNA-

based identification is too expensive. Furthermore, it is not readily available for 

users, and best handled by the experts themselves. Automation using ladybird 

images as inputs would be beneficial, and this thesis will show the framework of 

implementation. The purpose of this work is to determine whether automated 

identification of ladybird species, including Harmonia axyridis, is possible. 

 

1.1 Ladybirds in the UK 

Ladybirds are beetles (Order: Coleoptera, family: Coccinellidae), and called 

ladybugs in the USA and some parts of the world. As many as 46 ladybird species 

have been identified in the UK (UK Ladybird Survey, n.d.). However, this project 

focussed on 26 most prominent ladybird species only. A list of 26 ladybird species 

with complete Latin names and authority is given in Appendix I. The list will be 

referred to in this thesis when abbreviations are used. From the twenty six species, 

investigations have concentrated on only the more common 6 species and 1 invasive 

species, H. axyridis.  
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Ladybirds are distinct from insects of other orders in two ways: they have hard 

forewings that cover the abdomen and meet centrally, and they have biting 

mouthparts (UK Ladybird Survey, n.d.). They also have a few general features that 

distinguish themselves from other families; the most obvious is their coloured spots. 

The body is divided into three parts; head, thorax and abdomen, as shown in Figure 

1.1. 

 

 

  

 
Figure 1.1:  Anatomy of a 7-spot ladybird viewed from top 

(UK Ladybird Survey, n.d.) 
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The most visible parts of the ladybird body are the elytra (so called 'wing covers'), 

which cover the abdomen. The elytra are highly coloured and are predominantly red, 

black, brown or yellow. They almost invariably have spots of contrasting colour, for 

example, the 22-spot ladybird has a yellow background with black spots, whereas the 

7-spot ladybird is red with black spots. In some species the pronotum is a different 

colour to the elytra and is generally black and white. Many ladybird species are 

polymorphic, and have a number of different colour forms. For instance, the 2-spot 

ladybird has two colour forms; one has two black spots on a red background, and the 

other has four red spots on a black background. In addition, the spotting patterns can 

be very variable with some specimens having no spots, for example, the Larch 

ladybird. Others have most spots joined together, for instance, the 24-spot ladybird. 

  

1.2 Harlequin Ladybirds 

The Harlequin ladybird has a large number of colour forms and spot patterns. The 

three most identifiable colour forms in the UK are form succinea (orange with 18 or 

19 black spots), form conspicua (black with 2 red spots and black inner spots or 

"bull's eyes") and form spectabilis (black with 4 red spots or crescents); refer to 

Figure 1.2 for images of Harlequin ladybirds. For visual comparison purpose, 

readers can observe their similarities with some local ladybirds in Figure 1.3.     

     
 

 

 

 

 

 

 

 

 

 

 

                                                    

(a) Form succinea                      (b) Form conspicua     (c) Form spectabilis 

 

Figure 1.2: Three different forms of Harmonia axyridis 

 



6 
 

 

 

 

 

 

 

 

 

In terms of distinguishing the Harlequin from other species, there are a few features 

or characteristics which can be helpful. In terms of size and shape, the Harlequin is 

generally large and the length is between 5 mm to 8 mm. It is generally quite round 

and domed. The elytron colour can be highly variable; common colours are pale 

yellow-orange, orange-red and black. The spots can vary between 0 to 21 orange-red 

or black spots, and may be in a grid pattern, as in the case of the form succinea. In 

UK the most common colour forms are orange with 15 to 21 black spots, and black 

with 2 or 4 orange or red spots. The pronotum pattern can be white or cream in 

colour. It can contain up to 5 spots or fused lateral spots forming 2 curved lines, M-

shaped mark or solid trapezoid. The elytra have a wide keel at the back, and the legs 

are almost always brown. With regard to the above characteristics, the main species 

that the Harlequin can be confused with are: 10-spot ladybird, Orange ladybird, Eyed 

ladybird and Cream-streaked ladybird. A complete list of these, together with their 

scientific names, is presented with the other UK species in Table A1, Appendix I. As 

shown in Figure 1.3, these species are similar in colour to Harlequins and have many 

spots. 

                                                    

(a) Orange ladybird                (b) Eyed ladybird                      (c) 10-spot ladybird 

Figure 1.3: Examples of native ladybirds commonly mistaken as Harmonia axyridis 
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The Harlequin ladybird is an invasive species that originates from Asia (UK 

Harlequin Survey, n.d.). Scientifically known as the Harmonia axyridis, it was first 

detected in Britain in Essex on 19 September 2004 (Majerus, Strawson and Roy, 

2006). Beforehand, this ladybird species has been sold as biological control 

throughout Europe since 1982 and becoming established in northern France, 

Germany, Luxembourg and Holland (Katsoyannos et al., 1997; Iperti & Bertand, 

2001). Despite its initial biological use, there have been studies in the USA reporting 

the adverse effects of H. axyridis that outweighs their biological potential (Majerus, 

Strawson and Roy, 2006).  It was used as a biological control agent in the United 

States in 1988, where it is now the most widespread ladybird species. It is an 

aggressive and voracious predator that feeds on aphids as its main food source. 

When aphids are scarce they resort to intra-guild interactions, for instance, 

lacewings, hoverfly larvae and other ladybird species of which they dominate (Ware 

and Majerus, 2008). Averaging between 6 to 8 mm in size, they are bigger than 

many local species, which is advantageous to them. In fact, there is scientific 

evidence of attack on the following British species; Coccinella septempunctata, 

Adalia bipunctata, Thea vigintiduopunctata and Propylea quatuordecimpunctata 

(Majerus, Strawson and Roy, 2006; Ware and Majerus, 2008; Brown et al., 2011). 

So far only the following species are likely to be the least threatened by the 

establishment of H. axyridis in UK: Thea 22-punctata (L.) (Coleoptera: 

Coccinellidae), Subcoccinella 24-punctata (L.) (Coleoptera: Coccinellidae) and 

Coccinella magnifica Redtenbacher (Coleoptera: Coccinellidae) (Pell et al., 2008). 

Harlequins like to over-winter in large groups to hibernate within sheds, attics and 

parts of buildings where the locations are dry and protected. When they are 

disturbed, they emit a foul secretion to deter predators. This may stain fabrics and 
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may cause skin irritations (Just Green, n.d.).  H. axyridis has now spread to most 

parts of England and requires considerable attention due to its impact on ecological 

and biological balance. The distributions of H. axyridis in UK from 2003 until 2010 

are shown in Figure 1.4 (NERC/Field Studies Council, 2010).  

  

 

Figure 1.4: H. axyridis distributions in the UK (NERC/Field Studies Council, 2010) 
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1.3 Manual Identification vs. Automated Identification 

Taxonomy is the science of classifying organisms which has been the foundation of 

all biological sciences (Mohamed, 2000; Simpson, 2010). It is a major part of 

systematics, and part of it is identification. Species identification involves either 

manual or automated identification. Manual identification involves use of physical 

observations on the insect’s body; this includes capturing a few characteristics 

through detailed observations and physical measurements. Observations include the 

body segments, movement, shape, colour, shape of antennae, etc. Measurements 

include size, count of spots, etc. (Glickstein, 1987). The use of dichotomous keys has 

been a continuing practice among taxonomists due to the availability of references 

for identification. Once the keys are accessible, users are guided through step-by-

step query and answers. As the ecology changes, major changes in identification 

techniques are required. For instance, the way taxonomists practice manually 

requires continuing need for rapid field identification and the need for identification 

of large numbers of organisms to provide ecological information (Boddy, Morris and 

Morgan, 1998).  This has been affected by the general decline in the taxonomic 

workforce, which has been part of the taxonomic impediment to biodiversity studies 

(Mohamed, 2000; Hopkins and Freckleton, 2002). The issue is further aggravated by 

changes in the taxonomic community, where floristic and faunistic studies have 

become less attractive and most research funds and effort have been channelled 

towards phylogenetic reconstruction (Weeks et al., 1999). This taxonomic 

impediment will become serious unless solutions are explored to rectify it (Cotterill, 

1995; Zakri, 2000; Macleod, 2007). As per ‘Darwin Declaration’ of 1998 in the 

context of the Convention on Biological Diversity (CBD), removal of the taxonomic 

impediment is an important step towards the conservation of biodiversity (Mohamed, 
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2000). It will require skilled workers and experts for urgent implementation. Other 

than human resources, the number of specimens will need to be large in order to 

perform routine species identifications (Gaston and O'Neill, 2004). As a 

countermeasure, the use of automated identification of ladybirds, may have 

enormous potential and has not been extensively explored.  

 

1.3.1 Automated Species Identification (ASI) 

Automated species identification is an application of general pattern recognition, and 

part of computer-aided taxonomy (CAT) (Chesmore, 1998; 2000). It is one of the 

provisions by Article 7 (Identification and Monitoring) and Article 12 (Research and 

Training) of the CBD (Zakri, 2000). Due to the importance of biodiversity at this 

level, ASI definitely is an interesting path in the application of pattern recognition. 

Pattern recognition itself has many applications including speech analysis, 

handwriting recognition, face recognition, human-computer interaction and 

condition monitoring of machines. There are two main levels of automation; the first 

is full automation meaning complete identification without user interaction, and the 

other is semi-automation. Semi-automation is more realistic than full automation as 

it allows prior sorting into higher taxonomic categories such as genera and more 

likely to be feasible in the short term (Chesmore, 2007). Knowledge-based systems 

have the ability to handle non-linear, fuzzy and incomplete data; therefore, they are 

more suitable as the core for any CAT system (Chesmore, 2007). In this thesis 

reference are made to the design of ANN systems, algorithms and methodologies 

which have been deployed in past literatures. This is elaborated in Chapter 2. 
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1.4 Research Aims 

 

The specific aims of the research project are to: 

 

a) develop algorithms to optimally distinguish Harlequin and other likely ladybird 

species using colour image processing and classification methods, including 

Artificial Neural Networks (ANN); 

b) evaluate classification accuracy;  

c) extend the classification methods to all 26 recognisable species. 

1.5  Hypothesis 

The hypothesis of the research is: 

"It is possible to develop methods for automatically identifying ladybird species 

from colour images." 

The hypothesis means that: 

a) There will be a pre-sorting system to identify some available species of 

ladybirds in the UK, with provision for additional unknown species. 

b) Techniques and algorithms will be developed based on colour images, to 

determine which class a ladybird should belong to. For instance, if an image 

of a ladybird has 2 black spots and red coloured background on its elytron, 

the species is without doubt a 2-spot ladybird. The same will apply to all 

ladybird images. 

In practice, a prototype automated species identification system has been developed 

to distinguish UK ladybird species using techniques such as image processing, ANN 

and expert systems.  This shows that the system has been able to perform pre-sorting 

of the questionable and/or incorrect species, and provides immediate feedback to the 

supplier of the image. Ultimately users will be able to freely access the system and 
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supply images according to specific requirements (viewing angles, size, resolution, 

etc.). The system will be able to process the images to provide automated response 

by pre-sorting the supplied images into a few categories: "definitely", "definitely 

not" and "pass on to the expert". As will be seen later in the coming chapters, the 

achievements are quantified through the use of confusion matrix, Receiver Operating 

Characteristic (ROC) curves, and some statistical measures. The block diagram of 

the proposed hybrid intelligent system is shown as in Figure 1.5, and the details will 

be explained in Chapter 6. 

 

 

 

Figure 1.5: Block diagram of hybrid intelligent system, referred to as Automated Ladybird 

Identification using Expert and Neural Systems (ALIENS) 
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1.6 Issues and Challenges 

In tackling the research hypothesis, the whole process of research did not shy away 

from technical challenges.  Figure 1.6 shows various ladybird images, and the extent 

of the images quality supplied by members of the public to the Centre for Ecology & 

Hydrology (CEH) Wallingford, England.  

    

    

    

    

    

Figure 1.6: Sample images of ladybird species showing various qualities and pose 
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These photographs have been used extensively in the development of the ladybird 

identification system. Most of the photographs suffer from various issues such as 

poor illumination, complicated background, multiple objects, incomplete views etc. 

Furthermore, the ladybirds are three-dimensional insects and it is difficult to 

accurately capture the details of spots on both the elytra and the pronotum from one 

angle only. Another concern is size. Statistically, the size of the ladybirds in the UK 

ranges from 3 mm to 8 mm (UK Ladybird Survey, n.d.).   With an automated 

system, a crude estimate of size is the best the image processing can produce, as the 

actual size and the depth of field are unknown parameters. It has been an interesting 

challenge for the system to tackle due to the many unknowns.  

 

1.7 Cost saving benefits 

In manual identification, a large number of unknown samples/images need to be 

manually examined and responded to by an expert. Morphological features such as 

measurement of body markings are still useful in comparison to DNA-based 

identifications. In fact, DNA-based identifications require higher costs associated 

with its availability, facility and expertise required (Will, Mishler and Wheeler, 

2005; Will and Rubinoff, 2004; Chesmore, Bernard, Inman and Bowyer, 2003). In 

some cases, its use is not necessary such as in the identification of birds (Dunn, 

2003). For the identification of Diptera which has wide overlap between intraspecific 

and interspecific genetic variability, the use of DNA-barcoding can be misleading 

(Meier et al., 2006).  

In contrast, automated identification of ladybirds will reduce the number of images 

to be examined by pre-sorting the questionable and/or incorrect species, and provide 

immediate feedback to the supplier of the image. With the expert’s opinion 
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embedded in the system, and proper system structure it will hopefully generate more 

interest from the general public to contribute ladybird images for automated 

identification, hence saving time and expenses in scientific data collection. 

Moreover, taxonomists’ expertise are highly valuable to the identification loop and 

would not deteriorate or be devalued due to automation. Their input has been 

effectively used in this project, where users interact with the expert system through a 

graphical user interface (GUI). This identification task performed by digital tools 

will not replace the human expert; however, it helps in making faster progress in 

taxonomy (Page et al., 2005). In short, an expert system approach is more superior to 

typical identification tools, like dichotomous keys in terms of efficiency and ease of 

use; tolerance of missing data, explanatory capability and provision for meaningful 

output when an unambiguous identification is not possible (Woolley and Stone, 

1987). 

 

1.8 Contribution towards field 

This thesis has produced the following contributions towards knowledge: 

(a) The whole thesis itself demonstrates a pioneering work in automated 

identification of ladybirds in UK. It contains working modules that can be 

implemented or re-engineered for future improvements. 

(b) The use of CIELAB colour space in the image processing steps is novel. 

(c) Application of decision trees to simplify the feature map, hence minimising 

number of features required for the next stages, is itself a novel technique. 

(d) Experimental studies on the application of Multilayer Perceptron using back 

propagation algorithm, Learning Vector Quantisation (LVQ), Support Vector 

Machine (SVM) and Probabilistic Neural Network (PNN).  
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(e) Application of a fuzzy inference engine which links up with knowledge base, 

neural network and decision tree forming a hybrid intelligent system. 

(f) The system is an improvement from existing automated identification systems, 

by having user inputs and explanation ability of the inference engine. 

 

1.9 Thesis outline  

The remainder of this thesis is outlined as follows: Chapter 2 explains the literature 

surveys containing work involving identification of insects using image processing. 

These will cover various general issues including image processing techniques, data 

representation, feature extraction and classification. Chapter 3 elaborates progress in 

image processing, the various theories applied to experiments, and the results 

obtained. Chapter 4 explains feature extraction and identification systems. Chapter 5 

elaborates on each classifier in use, the algorithms and data partitioning. Chapter 6 

provides detailed results from experiments and analytical discussions. Chapter 7 

explains the overall integrated system between the image processing, neural network 

and the expert system. Chapter 8 concludes the thesis with suggestion on possible 

future improvements. 
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CHAPTER 2   

AUTOMATED SPECIES IDENTIFICATION 

This chapter elaborates the concepts of automated species identification (ASI) and 

provides a review of automated identification systems which use image processing, 

highlighting the advantages and disadvantages of each system. 

 

2.1 Computer Aided Taxonomy 

The word 'taxonomy' means a system for naming and organizing plants and animals 

into groups which share similar qualities (Cambridge Dictionaries Online, 2009). 

According to the Oxford Online English Dictionary (2009), 'taxonomy' is a branch of 

science concerned with classification. In general, most identification methods can be 

divided into two groups. Comparison is normally done when specimen is compared 

with a museum collection or illustrations in a natural history guide book, and then 

will produce an estimate of the similarities between the unknown and a range of 

possible taxa. The taxon that best matches the similarities are selected (Pankhurst, 

1998). In contrast, the elimination method performs diagnostic by asking questions 

regarding the states of one or more characters to be observed. The response acquired 

will effectively eliminate taxa that do not belong to the observation. The diagnostic 
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will ask more questions until all possible alternatives are eliminated, therefore will 

leave only one taxon left as the winner (Pankhurst, 1998).  

Computer Aided Taxonomy (CAT) can be described as the use of computer 

technology to assist the taxonomy-related process. In the author’s opinion, CAT was 

probably inspired by the use of interactive multiple-entry keys to enable biologist to 

identify a specimen with the aid of computers (Goodall, 1968). Multiple-entry keys 

differs from dichotomous keys as they permit the user to choose a subset of 

characters and the order they are used rather than pre-set characters by the maker of 

dichotomous keys. This leads to the development of more interactive keys in 

taxonomy. Interactive keys involve an interactive computer program, where a user 

will enter character-state values of a specimen and interact with the program. The 

program then eliminates taxa whose attributes do not match those of the specimen, 

and the process continues until only one taxon remains (Dallwitz et al., 1998). The 

first international data standard for identification data was created by Dallwitz in 

1980, which was named DELTA Format (DEscription language for TAxonomy). It 

was one of the first standards to be adopted by the Taxonomic Databases Working 

Group (TDWG). DELTA uses ASCII text, and encodes the descriptions of taxa, 

characters and states in a data matrix (Pankhurst, 1998). The DELTA project and 

INTKEY were two identification programs that were based on DELTA format 

(Dallwitz, 1980; Pankhurst, 1998; White & Sandlant, 1998). The next section 

elaborates some biological identification systems that have been deployed, and it will 

explain the various approaches to automate the identification process. It will also 

show some advantages, and disadvantages of each system. 
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2.2 Biological identification systems 

As mentioned earlier, the principle of identification involves the process of 

comparing a representation of an individual specimen with taxa (Dallwitz et al., 

1998; Lebbe and Vignes, 1998). Automated species identification (ASI) involves the 

use of a computer to aid species identification. In this section some biological 

identification systems are reviewed. Unlike earlier computerised identification 

systems, these projects use images of the object at the input stage even though some 

other inputs can be used such as acoustic, radar, flow cytometry and sonar 

(Chesmore, 2007). 

Some of the earliest applications of ASI using image processing involved the 

identification of marine zooplankton and bacteria (Katsinis et. al., 1984; Blackburn 

et al., 1998; Dorge et al., 2000; Walker and Kumagai, 2000; Foreroa et al., 2004). 

There have been applications developed to perform photographic identification of 

mammals such as cheetah, zebras, giraffes, lions, chimpanzees, wildogs (Kelly, 

2001), sea lion (McConkey, 1999) and sea otters (Gilkinson et al., 2007). Some 

researchers reported work on image-based identification of insects, such as 

Lepidoptera (Chesmore and Monkman, 1994; Watson, O’Neill and Kitching, 2003; 

White and Winokur, 2003; Kipling and Chesmore, 2005). Image-based identification 

has also been extended on Hymenoptera, for example on braconid wasps (Weeks, 

O’Neill, Gaston and Gauld, 1997a, 1997b; Gauld, O’Neill and Gaston, 2000), 

honeybees (Daly, Hoelmer, Norman and Allen, 1982; Schroder, Drescher, Steinhage 

and Kastenholz, 1995; Steinhage, Kastenholz, Schroder and Drescher, 1997; 

Steinhage, Schroder, Lampe and Cremers, 2007), solitary bees (Roth, Pogoda, 

Steinhage and Schroder, 1999), ichnumonid wasps (Yu et al., 1992), parasitic wasps 

(Angel, 1999) and leafhoppers (Dietrich and Pooley, 1994). There are also reported 
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works on identification of Arachnids via genitalia images (Do, Harp and Norris, 

1999; Russell, Do, Huff and Platnick, 2007). Dai and Chesmore reported works on 

the location and description of wing venation in Diptera (Dai and Chesmore, 2005).  

Since their introduction for ASI, ANN has been widely used to discriminate a few 

taxa, for instance, six basidiomycetes based on flow cytometric measurements of 

spores, five Penicillium species based on cultural characteristics and also 17 species 

of Pestalotiopsis and the closely related Monochaetia karstenii and Truncatella 

truncate from spore morphometric data. Boddy, Morris & Morgan (1998) reported 

that expert systems could be a further possible method for systematists. However, it 

was a very difficult and time consuming to extract the relevant rules and to encode 

the rules in a formal manner (Boddy, Morris and Morgan, 1998).   

The following are specific examples of image-based ASI systems. They are 

elaborated to show the main similarities and differences with the current project in 

terms of approach and techniques used.  

 

2.2.1 Automatic Bee Identification System (ABIS) 

ABIS is designed to identify species of bees from images of their forewings. ABIS 

uses wing images from both existing collections and in the field (Steinhage, 1997). 

The structure of the wing venation is generally fixed and well-suited to the 

identification of bee species. ABIS uses diffuse background illumination to get the 

image structure of the wing venation. By analysing each wing image then a well-

defined, characteristic morphometric feature can be formed (veins, vein junctions 

and cells) and used in a knowledge-based classification approach. Steps in automatic 

extraction of morphologic wing features are: 
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1) Detect edges in the pattern of wing venation, and formulate hypotheses 

regarding the location of key cells with the aid of genus wing template. 

2) Once the cells are detected, ABIS generates numerical morphometric 

features which describe the cells and the topological relationships. 

3) ABIS inputs the morphometric features to linear discriminant analysis 

(LDA) and non-linear kernel discriminant analysis (NKDA). 

Using this technique generates too many features over a normalised wing image, 

even after down-sampling using second-order Gaussian filtering. The resulting 

intensity matrix is 120x20, forming 240 elements from down sampling called iconic 

features, and 50 morphometric features. In total ABIS produces 290 feature vectors. 

Due to this high dimensionality and small training sets, ABIS applies NKDA instead 

of LDA. When compared with a support vector machine (SVM), NKDA classifier is 

better for this situation because it allows data visualization, and faster due to simpler 

optimization and the ability to handle multiclass problems directly (Steinhage et al., 

2007). The performance of the ABIS system was tested for identifying Bombus 

lucorum, Bombus terrestris, Bombus cryptarum and Bombus magnus. The system 

was initially trained with wing images of 70 individuals per species. It achieved 

more than 95% identification rate by combining both morphometric and iconic 

features. Similar results were obtained for German Colletes, Andrena, and American 

Osmia species (Steinhage, 2007).  

 

2.2.2 SPIDA 

SPIDA stands for ‘Species Identified Automatically’ (Russell et. al., 2007). There 

are two versions of SPIDA; one is a stand-alone and the other is an Internet-based 

version called SPIDA-web. Both were designed with the aim to produce a tool to 
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make routine identifications of any group of organisms by non-experts accurate and 

efficient. An earlier version of SPIDA has proven successful in the identification of 5 

species of Ichneumonid wasp, 6 species of Lycosid spiders, 12 species of North 

American bees and 121 species of the Australasian ground spiders of the family 

Trochanteriidae (Russell et. al., 2007).  They highlighted a few typical problems 

inherent to an automated ID system utilising specimen images. In the species 

identification of spiders of the family Trochanteriidae, the primary character is based 

only on the shape of genitalia which are visible without dissection.  Species can be 

highly similar, possibly limited data per species and high intraspecific variation 

between individuals. From the spider images, features are encoded using wavelet 

transform where both Daubechies 4 and Gabor wavelet function were used. MLP 

was used and then fed with coefficients from both wavelet encoders. There was one 

ANN per species in the group, and each ANN has two output nodes representing 

positive and negative outputs (Russell et. al., 2007). Consequently, the training set 

consists of ‘pro’ or positive training set and ‘anti’ or negative set. By having this 

structure of individually trained species-level ANNs and training sets, the network 

should be able to generalize or classify unseen images (novel species). For the novel 

species test, they randomly selected 20 images from species in related families as test 

images. Cascade correlation was used together with quick propagation to train the 

ANNs.  

For SPIDA-web, the trained ANNs are stored in a server and deal with queries from 

users through an Internet interface. Its website interacts with users and displays 

dynamic data in response to the user’s input. It uses JAVA servlets supported by 

Tomcat, an open source server. To use the system for query, a user would have to 

log in. The image for submission will be sent to the servlet which uses Java 
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Advanced Imaging library for proper scaling and formatting. The wavelet 

transformation is applied and the coefficients forwarded to the trained ANNs. The 

results of identification are then displayed via a Java server page along with other 

information such as distribution maps, line drawings of genitalia, whole-body 

images, technical descriptions, etc. Even though this process should take a few 

seconds to complete on a stand-alone machine, the overall speed of SPIDA-web 

actually depends on server speed and Internet connection speed. The results have 

been quite impressive, with 95% of unknowns correctly classified. It has also been 

tested on reprocessed images, such as effect of cropping and rotation. The system is 

robust for all tests, except for 4-degree rotation where the identification accuracy 

dropped to 40%. In term of performance measures, the developers suggested SPIDA-

web is accurate, accessible, reasonably scalable and flexible. They suggested for a 

general automated ID system must have the capacity to expand or retrained without 

needing much computing time. They also suggested that a sensible auto ID system 

be hierarchical to some degree, and not generic to all groups of organisms to avoid 

accidental similarities between processed images of very different structures (Russell 

et. al., 2007). 

 

2.2.3 DAISY 

The DAISY system was developed by O’Neill et al. with Biotechnology and 

Biological Sciences research Council (BBSRC) and UK Government Darwin 

Initiative funding (Weeks, 1997b). The objectives of DAISY were to overcome the 

taxonomic impediment, and to provide a system which would allow non-specialists 

to identify organisms within arthropod genera using a combination of both 

morphology and molecular data (O’Neill, 2007). A few tests on the completed 
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DAISY system have been performed, inclusive of British Bumblebees (Bombus, 

Megabombus) (Pajak, 2000), Costa Rican Hawkmoths (Xylophanes sp.), Costa Rican 

parasitic wasps (Enicospilus sp.), Palaearctic biting midges (Ceratopogonids) 

(Gauld, O’Neill and Gaston, 2000) and British Lepidoptera (Moths) (Watson, 

O’Neill and Kitching, 2003). On average, the system is able to identify taxa between 

75% to 85% correct identification rate. This has been achieved even when the 

difference between taxa is not substantive, or the pose of specimens was arbitrary 

(O’Neill, 2007). The DAISY system used generic pattern matching technology based 

on plastic self-organising map (PSOM) (Lang and Warwick, 2001, cited by O’Neill, 

2007). It is fast, not restricted to a single organismal group and pattern class, and 

may be trained in real-time, scalable and easy-to-use GUI. A sample GUI of DAISY 

system is shown in Figure 2.1. 

 

 

Figure 2.1: DAISY GUI in operation (O’Neill, 2007) 
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Despite its general ability to identify various insects, DAISY is generic as it tries to 

cover many taxa.  DAISY also requires user to perform manual extraction of the 

region of interest (ROI) in the image, shown as white dots in Figure 2.1. 

Furthermore, DAISY operates well with 2D-images and has not had any success in 

dealing with three-dimensional (3D) images. It down samples images to a size of 

32x32 pixels, which would reduce measurability when morphological features are 

extracted. 

 

2.2.4 Moth ID  

The work by Mayo and Watson on automatic species identification of live moths is 

considered next. They used image analysis on 774 live moth images and data mining 

techniques using WEKA machine learning toolkit to classify 35 UK species (Mayo 

and Watson, 2006). A support vector machine (SVM) was used and 85% accuracy 

was obtained using jackknife test. Other techniques tested were Random Forests, 

Instance-Based Learning 1 (IB1), Instance-Based Learning 5 (IB5), Naive Bayes and 

J48 with accuracies of 83.2%, 71.6%, 65.36%, 65.9% and 58.3% respectively. The 

results were obtained without manual specification of a region of interest on the 

images. Feature extraction was performed both globally and locally, where a total of 

11,300 features were obtained. From that amount, 9,600 local features were obtained 

by placing a grid of 600x600 pixels over the centroid of the image. They have 400 

square patches, and measured the mean, minimum, maximum and standard deviation 

of pixel values over the 30x30 pixels patches. This has been done on both RGB 

(Red, Green and Blue) and HSB (Hue, Saturation and Brightness) colour spaces. 

Colour features were obtained through measurements of global statistics on the 

image, both in binary and colour versions. They made separate measurements on 
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each RGB colour planes of the image. The same process was repeated on a HSB 

version of the image. Some global features were obtained from binary version of the 

image, which include the count of foreground pixels, the number of background 

pixels, the ratio between them, the interior density, the standard deviation of pixel 

positions, skew and kurtosis. These form the total global features obtained from 

binary, RGB and HSB versions of the image. The global features were reported to be 

useful as they are invariant to rotation (Ibid). To improve accuracies, they suggested 

the use of local features over the centroid and to make the features invariant to the 

size of a moth. The use of other colour spaces was also suggested to boost accuracy.  

 

2.2.5 Identification of quarantine fungal pests 

A research project on using image analysis to identify quarantine fungal pest Tilletia 

indica (Karnal bunt) was reported by Chesmore et al. (Chesmore, Bernard, Inman 

and Bowyer, 2003). The work aimed to identify Tilletia indica, a floret-infecting 

smut fungus causing Karnal bunt of wheat. It can be confused with other species 

such as Tilletia walkeri (ryegrass bunt) and Tilletia horrida (rice smut). The image 

analysis system used bleached spores of T. indica, T. walkerii and T. horrida. 

Bleaching showed additional characters for identification. Due to significant overlap 

of characteristics, identification is difficult to achieve for small samples. Molecular 

methods were commonly used, but took a much longer time to diagnose (in the order 

of weeks). For rapid identification, they proposed image analysis and the use of 

Principal Component Analysis (PCA) for character discrimination. It was designed 

to automatically locate and measure all spores in a given image. Only the greyscale 

version of the image was used. Spores were located by scanning the image from top 

left to bottom right. A spore is discriminated from the background and debris 
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through thresholding. After labelling, nine parameters were measured which include 

perimeter, average spine size, number of spines, aspect ratio etc. PCA showed good 

discrimination with little overlap between characters. It was concluded that the ratios 

of internal to external spore diameters were able to discriminate between T. indica 

and T. walkeri giving 97% identification accuracy. 

 

2.2.6    CAT using Structural Image Processing and ANN  

The work involves the use of computer aided taxonomy (CAT) to perform semi-

automated identification of hoverflies and bumblebees using wing images. High 

quality venation diagrams were extracted through both traditional processes and 

novel methods. Traditional processes include grey scale transformation and edge 

detection, while novel methods involve filling, noise filtering, smoothing and 

cutting. Manual processing of vein images are performed through software interface 

to obtain accurate venation in close resemblance to the original vein image. The 

work produced a novel analysis technique based on the venation and relationships 

between veins using tree diagram. The work has also explored taxon identification 

by extracting characteristic features such as cell composition and vein fitting 

coefficients, and these features were then fed to multilayer perceptron (MLP) and 

learning vector quantisation (LVQ) neural networks. Using the tree-based 

identification 100% accuracy was reported for taxa to tribe level for nine hoverfly 

species and three bumblebee species, including two sub-species. Using the LVQ 

neural networks, recognition rates of 90.95% for hoverflies and 95.6% for 

bumblebees were achieved (Jing Dai, 2006). However, for MLP the average results 

were only 60% for hoverflies and 30% for bumblebees. It has been shown that the 
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semi-automated technique using structural image processing was user friendly, and 

can be applied to any insect groups with transparent wings. 

 

2.2.7 Plant Identification Systems  

Plant identification systems involve the identification of plants using their leaves. 

One of the pioneering work by JY Clark of the University of Surrey aims for the 

identification of mature specimens taken from the crown of the tree. The system uses 

characters obtained from cultivated species of the genus Tilia, commonly known as 

lime trees (Clark, 2004; 2007). Each specimen provides 22 morphological characters 

and 57 training records were used. Data is presented in ASCII tabulated numeric 

format to a multilayer perceptron ANN. Input vectors were normalised to the range -

0.9 to 0.9. This was done to ensure the training time is reduced. Clark used the 

squared error percentage when evaluating training, testing and validation test sets. 

Three different partition pairs of training and validation sets were produced, 

however, only one record of each species was randomly chosen to make up a 

validation set. An optimized number of hidden nodes were obtained first after 

obtaining the lowest error on the validation data set. Next, the learning rate was 

obtained when the hidden nodes were fixed. Clark showed that a systematic 

methodology in applying character and measurement data into MLP results in 

effectively tuned system parameters, which could be useful for non-experts to use for 

plant identification.  Results for species identifications were shown in term of 

confusion matrix. The identification performance of the MLP was improved by 16% 

after the inclusion of minimal geographic information, represented in term of 3 

geographic characters in binary code.  
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The MORPHIDAS project (Morphometric Herbarium Image Data Analysis) is 

another project on automatic extraction of leaf information from digital images of 

whole herbarium specimens (MORPHIDAS, online). The by-product is a database of 

1900 images of Tilia specimens from Kew and an automation system for specific 

research tasks. The tasks include locating individual leaves within images, locating 

margins and veins, extracting morphological features, measuring patterns of 

variation of morphological features within and between groups and virtual 

restoration of damaged leaves. MORPHIDAS use advanced image processing 

developed in MATLAB 7.10.0 (R2010a) to capture and measure morphological 

details from the leaves such as the length, width, veins and teeth. The system is able 

to determine the marginal teeth given the image of a single leaf by tracing the outline 

and locates local maxima and minima to find the teeth. Other features include the 

area of each tooth and the tip angle.  

A recent publication by Clark et al. explained the use of multilayer perceptron 

(MLP) used as a tool for automatic plant identification (Clark, Corney and Tang; 

2012). They used morphological characters obtained from images of 4 species of the 

genus Tilia in the Herbarium of the Royal Botanic Gardens, Kew, UK. A simple feed 

forward MLP with one input layer, one hidden layer and one output layer was used. 

There were 22 input nodes corresponding to the number of characters, and 4 output 

nodes representing the four species of Tilia. Input vectors were normalised to (-0.9, 

+0.9) and performed independently for each character over all training periods. It 

was claimed to reduce the training time and help prevent initial weighting of 

characters. Data were divided into three partitions called training, validation and test 

sets in a ratio of 70:20:10. The validation data set was used to reduce over fitting. 

Three different sets called A, B and C were created where stratified cross validation 
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was applied to enable each species be represented the same number of times in the 

training, validation and test set. A constant learning rate of 0.1 and single fixed 

random seed was initially used for training. After a number of trials, the optimum 

number of hidden nodes was determined from the configuration that gave the lowest 

error on the validation set. Once the number of hidden nodes is obtained and fixed, 

similar trial runs were performed to find the optimised value of the network’s 

learning rate. Species identification is represented by a misidentification matrix. It 

also shows the percentage confidence of correct identification (%Conf). Even though 

the results from this work showed lower identification rates of 44% compared to 

earlier similar studies, it showed some significant achievement in innovation because 

some level of automation helped extracted information from images, as compared to 

earlier studies which used manual character extraction.  

 

2.2.8 Leaf Recognition using Probabilistic Neural Network 

As demonstrated in other researchers’ work, in general, artificial neural networks 

have performed well as classifiers. The next work by Stephen Gang Wu et al. used 

image processing and Probabilistic Neural Network (PNN) to build general purpose 

automated leaf recognition for plant classification (Wu et al., 2007). They were able 

to derive 12 leaf features from 5 basic geometric features, which were extracted after 

the implementation of image processing techniques on selected plant leaves. Leaf 

images, which were in 800x600 resolution, were converted from RGB to grey scale. 

The threshold level was selected according to RGB histogram of 3000 leaves. The 

image was subjected to smoothing using 3x3 averaging filter. Shape of the leaves 

was obtained after applying Laplacian filtering. The system was able to 

automatically extract 11 features automatically out of the 12 digital morphological 
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features. From the 12 features, only 5 orthogonalised features were adopted through 

the use of Principal Component Analysis (PCA). An interesting remark pointed out 

by Wu et al. was that since ANN can be treated as a “magical” black box; there is no 

need for a specified algorithm on how to identify different plants. PNN is an ANN 

using radial basis functions at the Radial Basis Layer. This layer evaluates vector 

distances between input vector and row weight vector in weight matrix. The RBF 

scales the distances nonlinearly. The next layer called Competitive Layer finds the 

shortest distance, hence finds the training pattern which is closest to the input pattern 

based on distance. PNN has many advantages: speed, robust to noise, easy to train 

and pose simple structure. Their PNN was trained using 1800 leaves for classifying 

32 kinds of plants. The average accuracy was reported to be 90.312% (Wu et al., 

2007). 

 

2.2.9 VeSTIS 

VesTIS stands for ‘Versatile Semi-Automatic Taxon Identification System from 

Digital Images’ (Nikolaou et al., 2010; Hart and Huang, 2011). It is an identification 

system built on Open Source platform, developed by Nikolaou et al. to classify 5 

different species of marine annelid worms of class Polychaeta (Nematonereis 

unicornis, Marphysa bellii, Polyophthalmus pictus, Armandia polyophthalma and 

Terebellides stroemi) (Nikolaou et al., 2010).  The idea was to provide public access 

to such system, and broad enough in term of identification of taxonomic groups, 

unlike existing identification systems such as SPIDAweb, ABIS and DAISY. It uses 

digital image analysis, image enhancement and pattern recognition algorithms in an 

Open Source platform, so that it is freely accessible, extensible and not tied to any 

commercial software. The system applies Otsu binarisation method for image 
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segmentation. Fourier descriptors were used to mathematically describe the object’s 

contour and parameterised the shape. These are then fed into feed forward ANN for 

identification. Multiple users can also work simultaneously due to the use of SQL-

based database and client-server schema.  
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2.3 Summary 

Table 2.1 provides a summary of past ASI projects and their contributions. 
 

Table 2.1: ASI projects 

System Taxonomic 

Groups 

Input 

Type 

Classifier Results/ 

Accuracy 

References 

ABIS Bombus 

(B. lucorum, B. 

terrestris, B. 

cryptarum, B. 

magnus) 

2D images 

of wing 

venation 

NKDA > 95% Steinhage  

et al., 2007 

SPIDA Ichneumonid 

wasps, Lycosid 

spiders, North 

American bees, 

Australian 

ground spiders 

of family 

Trochanteriidae 

Images of 

genitalia 

Multilayer 

perceptron 

using Back 

propagation 

algorithm 

95% Russell et al., 

2007 

DAISY British 

Bumblebees 

(Bombus, 

Megabombus), 

Costa Rican 

Hawkmoths & 

parasitic wasps, 

Palaearctic 

biting midges 

(Ceratopogonid

s), 

British 

Lepidoptera 

(Moths) 

2D colour 

images 

PSOM Varies according 

to species: 

94% for Costa 

Rican 

ichneumonoids, 

85%-98% for 

Ceratopogonidae, 

35%-100% for 

macrolepidoptera 

O’Neill et al., 

2007 

Moth ID Moths 2D colour 

images 

SVM 

J48 

Random 

Forests 

Naïve Bayes 

IB1 

IB2 

85% 

58.3% 

83.2% 

 

65.9% 

71.6% 

65.36% 

Mayo and 

Watson, 2007 

Quarantine 

fungal pests 

Tilletia (T. 

indica, T. 

walkeri, T. 

horrida)  

2D grey 

scale 

images 

PCA 97% Chesmore et 

al., 2003 

CAT using 

Structural 

image 

processing 

Hoverflies, 

bumblebees 

2D images 

of wing 

venation 

ANN (MLP, 

LVQ) 

MLP: 60% for 

hoverflies, 30% 

for bumblebees 

LVQ: > 90%  

Jing Dai, 

2006 

VeSTIS Marine annelid 

worms 

(Polychaeta) 

Colour 

images 

Feedforward 

ANN  

70% Nikolaou et 

al.,, 2010 

Hart, 2011 

Plant ID system 

incl. 

MORPHIDAS 

Tilia 2D images 

of Tilia 

leaves 

Multilayer 

perceptron 

44% Clark, 2004 

Clark, 2007 

Clark et al., 

2012 

Plant 

Recognition 

System 

32 species of 

Chinese plants 

2D images PNN 90.3% Wu et al., 

2007 
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Some applicable concepts and techniques obtainable from past projects are vital to 

the success of the proposed automated ladybird identification system. The followings 

are some key areas to be considered for implementation: 

 Specific: the system need not be generic (holistic) and may not need to identify 

all ladybird species, unlike DAISY, SPIDA-web.  

 Morphometric: morphometric features have been useful for identification to 

some degree (ABIS, Moth ID, and CAT using Structural Image Processing).  

 Reasoning: the need for a hybrid identification system of human-like learning 

abilities & explanation capabilities, utilising biogeographic information and 

ecological factors. A blend of expert system and ANN capabilities is required. 

 Online: online implementation on mobile device will help taxonomists and the 

public. 
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CHAPTER 3  

DIGITAL IMAGE PROCESSING 

There are two major development works in the investigation, which are image 

processing and intelligent systems. This chapter elaborates concepts and 

experimental work that has been carried out in image processing. The research into 

image processing involves two major processes, which are greyscale operations and 

colour image processing. These operations are implemented in MATLAB. Some 

strategies on image processing are discussed next. 

 

3.1 Image Processing Strategy  

From visual observations, ladybirds possess large variation in body colour. Some are 

quite obvious, for instance, there is a species commonly called ‘orange ladybird’ 

which has orange-coloured elytra and sixteen white spots. There are also ‘striped 

ladybirds’ with brownish elytra and cream-white stripes. Based on colour variation, 

the author has initiated investigating the use of colour as the leading feature for 

identifying ladybird species. This has become the hypothesis for the research. In 

doing so the focus is on two areas of the ladybird body: the elytra and the pronotum. 

Apart from its colour, a ladybird species may also be identified through various 
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physical characters, such as size, shape, number of spots, etc. (Southampton Natural 

History Society, 2005). Ideally, the system will need to evaluate whether the object 

is a ladybird, or not a ladybird. This can be first evaluated through detecting typical 

signs of colour composition of the image, and removing background clutter. The 

next process involves checking whether there are coloured spots on the object. If it 

does contain coloured spots (including white), it is confirmed a ladybird. This kind 

of pre- assurance is difficult to perform and this project has made an assumption that 

all colour images supplied by users of the system contain ladybirds. The system will 

also need to be able to deal with rotation and scaling of the colour images. Using this 

as a basic guideline, other properties are then evaluated through user interaction with 

the expert system which will be discussed in chapter 7.  

 

3.2 Image Preparation 

Before the images can be used for automated processing, they need to undergo a few 

pre-processing steps.  

 

3.2.1 Image Capture & Specification 

There are two sets of images; there is a set which contains ladybird images from UK 

including Harlequin ladybirds, and a second set comes from laboratory image 

capture. The first set has been provided by researchers from the Centre for Ecology 

& Hydrology (CEH), Wallingford. Most of these originated from photographs taken 

by members of the public. Some of the images suffer from various issues such as 

improper illumination, too low a resolution, complicated background, multiple 

objects, incomplete views, etc. This non-standard level of the image quality will be 

an interesting challenge for the system to tackle.  
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3.2.1.1 Hardware 

The hardware for capturing images of ladybird has been setup to prepare samples, in 

light of the various constraints in image qualities. A 12 Megapixels SONY 

Cybershot DSC-HX1 digital camera of has been used to capture image of ladybirds 

in a laboratory setup. Other than this, initially a VEHO USB microscope has also 

been used with an intention to capture more details through its microscopic zooming 

abilities. Unfortunately, at certain magnification level some images can become 

noisy and grainy, subsequently losing details.  

 

3.2.1.2 Software 

From the input stage, ‘MicroCapture’ was used as an interface to the USB 

microscope. The images were saved in the hard disk for later use. For image 

manipulation, ‘GIMP2’ and ‘MATLAB’ was used. GIMP2 is a free GNU-based 

image manipulation program specifically employed to edit ladybird images. 

MATLAB 7 has been extensively used for the feature extraction and intelligent 

system stages. It provides easy access to a range of both elementary and advanced 

algorithms for numeric computing. The algorithms include operations for linear 

algebra, matrix manipulation, basic statistics, linear data fitting, and data reduction. 

MATLAB Toolboxes are add-ons that extend MATLAB with specialized functions 

and easy-to-use graphical user interfaces. The Image Processing Toolbox contains 

powerful built-in functions that allows user to perform data manipulation in image 

processing. This allows faster development of algorithms without the need for run-

time compilation. 
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3.2.1.3 Sample Preparation 

The second set contains images taken from ladybirds in a controlled setting. 

Ladybirds were captured around York, and multiple-view photos of each were taken 

with the background colour set to be light blue. The digital camera was set to macro 

mode for close-up capture. While the intention was to provide the ‘ground truth’ for 

comparison purpose, unfortunately some species are scarce such as five-spot 

ladybird and water ladybird (Southampton Natural History Society, 2005). Here only 

a small number of collections were gathered; these include orange ladybirds, 2-spot 

ladybirds, 10-spot ladybirds and Harlequins. This is due to difficulties in obtaining 

samples of ladybirds for photography. It was therefore decided to use the first set 

from CEH as the main source. The multiple-view ladybird images obtained through 

digital camera are shown in Figure 3.1, and the multiple-view images of ladybirds 

obtained through VEHO USB microscope are shown in Figure 3.2. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 3.1: Example of 3D view photo from digital camera 

(a) top view, (b) left side view, and (c) right side view 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 3.2: Example of images from VEHO USB microscope 

(a) top view, (b) left side view, and (c) right side view 
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3.3 Process Workflow 

 

The image processing steps follow the process flow as shown in Figure 3.3. It shows 

two major processes that an input image must go through to finally produce colour 

and morphological features. 

 

 
Figure 3.3: Workflow of image processing showing a modular approach 

 

The idea is to get both geometrical measurements and colour measurements through 

a parallel and modular approach. Troubleshooting is easier this way. 

 

3.4 Colour Image Processing 

Colour is vital information to use for ladybird identification, mainly because it 

represents the natural characteristic of the ladybird. In fact, colour has been used in 

dichotomous keys for ladybird identification (Paul Mabbott, 2011; Southampton 

Natural History Society, 2005). The following subsections explain colour spaces and 
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how the use of CIELAB colour space has been useful for ladybird identification. 

Initial works on RGB and CIELAB are shown, where much effort has been put to 

determine which colour space to use as colour input to the identification system. 

 

3.4.1 Colour spaces: RGB and CIELAB 

 

It is important that colours in images are able to be represented visually, and colour 

space is the way to present them. The most frequently used is the RGB colour space. 

Note that RGB image is only used as input image at the early stage of the greyscale 

transformation operations. CIELAB, on the other hand, has been used to represent 

pixel colour values obtained from the elytra and spots. A series of experiments have 

been performed to finalise which is more suitable. This is based on the following 

criteria: 

1. The ability of each to perform image processing process such as 

segmentation, in the most efficient and easiest way with minimum effects on 

output 

2. The ability to perform when background clutter is present 

Tests have been performed on both standard test images and ladybird images. The 

results on standard test images are given in Appendix II. CIELAB colour space is 

explained first, followed by test results on ladybird images. 

 

3.4.2 CIELAB Colour Plane  

 

CIELAB is an approximate uniform colour scale to represent visual difference in the 

form of colour plane, and able to represent chroma separately from lightness 

(CIELAB colour models-Technical guides, n.d; Colour models, n.d). The CIELAB 

colour space separates lightness (L*) from the chroma components, a* and b*. It is 
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also able to represent the chroma values in the form of colour plane, as shown in 

Figure 3.4. This permits the visualisation of the clusters of colour. Unlike RGB, 

CIELAB is also device independent. The maximum values for a* and b* are +120, 

while minimum values are -120.  The range for L-axis is 0-100.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

(a) 

 

 
(b)  

 

Figure 3.4: CIELAB colour plane  

(a) 3-axes view, and (b) viewed from L* axis 

(CIELAB colour models-Technical guides, n.d.; Colour models, n.d.) 
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In this work CIELAB values have been used to represent pixel colours of both the 

spots and the elytra of ladybirds. Due to the majority of ladybird images were 

photographed in their natural habitat, CIELAB was selected as the colour space in 

order to counter-act illumination problems. These outdoor-type images are prone to 

illumination issues, which is a variable that is quite difficult to control. By separating 

lightness and chroma using CIELAB as the colour plane, subsequent work has been 

made simpler to model logically (Torres, Reutter and Lorente, 1999; Yip and Sinha, 

2001). This is because one colour is distinct from another colour and the difference 

between chroma values can be calculated (CIELAB colour models – Technical 

Guides, n.d.; Vízhányó and Felföldí, 2000). Figures 3.5-3.7 show evidence of tests 

on a CIELAB version of a scarce 7-spot ladybird image.  

 

 

 

 

 

  
 

(a) Original image     (b) L* layer 

 

(c) a* layer                                                            (d) b* layer 

Figure 3.5: Image of scarce 7-spot ladybird (with background) after conversion to 

CIELAB from RGB 
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(a) Original image                                      (b) Segmented image 

Figure 3.6: Image of scarce 7-spot (with background) after colour segmentation 

showing background clutter 

 

 

Figure 3.7: Magnified view of the binary version of scarce 7-spot ladybird 

showing complicated background and unintelligible image 
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Figures 3.8 - 3.9 show the resultant image of scarce 7-spot without background (after 

manual cut-off using GIMP2). 
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(b) Original image                                                           (b) L* layer 

 

                 (c)  a* layer                                                                      (d) b* layer 

Figure 3.8: Image of scarce 7-spot ladybird (without background) after  

conversion to CIELAB from RGB 

 

 

(b) Original image                         (b) Segmented image 

Figure 3.9: Image of scarce 7-spot ladybird after colour segmentation showing rough 

segments of reddish colour and illumination effects 
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The RGB intensity histograms are compared, as shown in Figure 3.10 (a) and (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

(a) With background 

 

 
(b) Without background 

 

Figure 3.10: Comparison of intensity histograms (RGB) 
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The histogram shows that background clutter has influence on the meaningful 

interpretation of the scarce 7-spot ladybird image. It suggests the image without 

background can be manipulated to obtain elytra markings, including spots and 

pronotum patterns. The whole test shows that: 

 There is a limitation to the use of CIELAB for segmentation purpose. The 

scarce 7-spot image without background reveals elytra markings better than 

the image with background (refer Appendix II). 

 Segmentation of ladybird images should be done in RGB, if required. The 

way forward is to perform body marking measurements in greyscale and 

convert the image into binary format. The colours of the body markings can 

be captured in CIELAB values.  

 

3.4.3 Ladybird Colour Distributions 

 

Based on the previous observations, it is conclusive that the spot colour and the 

elytra colour need to be captured in CIELAB colour space. For each image, CIELAB 

values are obtained by reading the average L*, a* and b* values from a user-

interactive pixel capture box. The size of this capture box is not fixed. It varies 

between 25x25 to 100x100 square pixels depending on the image resolution, hence 

quite user-dependent. Higher resolution images need only smaller capture box, and 

vice versa. If the size of the capture box were fixed, and the image is of low-

resolution then some level of magnification make border pixels indistinct and blurry. 

Once the average values were obtained, each value was normalised to [-1,1]. Figures 

3.11-3.14 show the representation of the spot colour and elytra colour (in CIELAB 

values) on normalised colour planes.  
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Figure 3.11: Elytra colour distributions among local ladybird species 

 

Figure 3.12: Elytra colour distributions among harlequins 
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Figure 3.13: Spot colour distributions among local ladybird species 

 

Figure 3.14: Spot colour distributions among harlequins 
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The normalisation was based on the following formulae: 

Normalised L* = (L*/100)               (1) 

Normalised a* = (a*+120 / 240)     (2) 

Normalised b* = (b*+120 / 240)     (3) 

These values were obtained from various species of local ladybirds and harlequins. 

From the elytra colour planes, it shows how the colours of the elytra (wing case) are 

distributed. They are non-linearly clustered in some way. The pair of values 

clustered near the bottom left are darker, or close to black, than those clustered near 

the top right hand corner. This explains why values for kidney spot ladybird are 

located near the bottom left corner, and why species like two-spot and seven-spot 

ladybird appear to be near the top right corner. Intermediate values like 

orange/yellow group together around the top left corner, while reddish colours group 

together near the bottom right hand corner. The same discussion and explanation can 

be made for the spot’s colour planes.  

 

 

3.5 Greyscale and Binary Pre-processing Steps 

 

For pre-processing the images to get geometrical measurements, greyscale and 

binary image processing were performed rather than using colour image processing 

as it involves minimal complications to perform binary processing in one channel. 

Initially images have been converted to greyscale via the MATLAB function 

‘rgb2gray’ and resized to 640x480 pixels. Figure 3.15 shows the greyscale 

processing steps. The explanation of each block follows. 
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Figure 3.15: Greyscale operations 

Background 

subtraction 

Edge detection 

Thresholding 

 

Morphological 

operations 

Smoothing 



55 
 

3.5.1 Smoothing 

 

Smoothing is filtering an image from noise or distortions using neighbourhood filter 

operations (Gonzalez & Woods, 1992; Jӓhne, 1995). The form of filtering employed 

was spatial average filtering or box filter. The effect was to have neighbouring pixels 

been divided by a common scalar. For example: 

M = 
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3.5.2 Background subtraction 

 

Some images have unwanted background. This requires background subtraction, 

apart from cropping, to reduce clutter for next stages use. This is manually done by 

cutting through the edge of the elytra using ‘scissor’ tool in GIMP2. The portion of 

unnecessary background is removed. Alternatively, ‘free-select’ and ‘eraser’ tools 

can be used sparingly depending on the complexity of image. 

 

3.5.3 Edge Detection 

 

Edge detection determines whether an edge exists between two neighbouring pixels 

by comparing their relative intensities (Bovik, 2000; Gonzalez and Woods, 1992). It 

produces rough shape out of the greyscale image. A number of edge detector 

operators were considered, including Roberts’, Canny’s and Sobel’s.  

The Roberts edge detector operator is based on two masks which give a measure of 

intensity changes in a diagonal direction. This gradient magnitude is calculated by 

computing the square root of the sum of the squares of the differences between 

diagonally adjacent pixels. An edge is detected when the gradient magnitude exceeds 

a threshold (Gonzalez and Woods, 1992).  
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The masks are: 

[
  
   

]   and   [
  
   

] 

Canny’s edge detector is a multi-stage operator. First, smoothing of the image is 

performed by Gaussian convolution. Next, a 2-dimensional first derivative operator 

(for example, Roberts operator) is applied to highlight regions in the image (Canny, 

1986). Edges are shown as ridges. Then, the algorithm tracks the top of the ridges 

and sets to zero all pixels that are not on top of the ridge. The resulting image will 

contain some thin lines due to the detected edges. 

Sobel operator uses two 3-by-3 masks for searching a larger neighbourhood. 

Theoretically, this should give better results than Roberts operator. It calculates the 

gradient of the image intensity and weighs the pixels closer to the centre with higher 

values compared to others (Boyle & Thomas 1988, p.52). Given pixel (i,j), and 

masks as: 

[
    
    
    

]  and [
   
   
      

] 

Calculation-wise, applying the masks on the image produces: 

Δ1 = ( f(i+1,j-1) – f(i-1,j-1) ) + 2( f(i+1,j) – f(i-1,j) ) + ( f(i+1,j+1) – f(i-1,j+1) ) 

Δ2 = ( f(i-1,j+1) – f(i-1,j-1) ) + 2( f(i,j+1) – f(i,j-1) ) + ( f(i+1,j+1) – f(i+1,j-1) ) 

where the gradient, 

 (   )  √  
    

 
 

and the gradient direction,  

       (
  
  
) 
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In general, the algorithm for an edge detector performs the following steps: 

 For each pixel (i,j) in the image: 

If (i,j) differs from (i-1,j) or (i,j-1) by more than a specified threshold 

then edge is found 

Else 

  No edge found 

  End if 

End for 

 

 

3.5.4 Thresholding 

 

This is done by setting a threshold beyond which a pixel value is set to 0 or 1. 

Thresholding effectively produces binary, or black and white output. This effect is 

obtained by finding a suitable threshold using intensity histogram (Low, 1991). The 

intensity histogram shows two peaks; one belongs to the background, and the other 

is foreground peak. Ideally, the two peaks should not overlap because the 

background is uniform. Threshold is selected to be the optimum point between the 

two non-overlapping peaks. 

 

3.5.5 Morphological Operations 

 

At this stage edge detection and thresholding produces rough shape of the ladybird, 

including noisy dots. In some images noise can surmount a whole area, making it 

looks like a genuine ladybird spot. Morphological operations such as erosion and 

dilation were performed to reduce the binary noise. Both morphological operations 

work using Minkowski set addition or subtraction by applying structuring element 

(Haralick, 1987). In MATLAB it is referred to as ‘strel’. Strel can have a user-

specified 2D polygon shapes and radius. Common shape is circular or disk with 

specific radius.  
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Erosion performs Minkowski set subtraction of the structuring element from the 

image. The intersection of the structuring element and the image is found by looking 

for the overlap of the origin of the structuring element corresponding to a pixel in the 

image which belongs to the segmented region. For dilation, when the structuring 

element is stepped over the image it forms ‘union’ with that part of the image. In 

effect, it fills in small holes in the region and making the region expands slightly. 

Effectively, erosion removes spikes from the edges of a region, while dilation 

perform filling on a region’s edge valley (Low, 1991; MathWorks, 2012). This is 

shown in Figure 3.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                         (b)       

 

(c)                                                                                      (d) 

Figure 3.16: Images of (a) an average filtered pine ladybird and (b), (c) and (d)  

its RGB constituents 
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When the two operations are performed one after another, they are called opening 

and closing. Opening is performed when dilation is performed after performing 

erosion. In reverse, closing performs dilation followed by erosion. Figure 3.17 shows 

some of the operations on a ladybird image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

(a)                                                                                         (b)       

 

(c)                                                                                      (d) 

Figure 3.17: Images of (a) an average filtered pine ladybird and (b) Global thresholding, 

(c) Closing and (d) Dilation 
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An image of A. 2-punctata (two-spot ladybird) is used to illustrate the resultant of 

each preceding processes. This is shown in Figure 3.18 and Figure 3.19.  

 

 

 

 

 

 

  

                

(a)                                             (b) 

Figure 3.18:  A. 2-punctata (a) original image (b) completed greyscale and 

binary pre-processing 

                  
                              (a) Smoothing/Filter                        (b) Background subtraction 

                

(c)   After subtraction                       (d) Opening (erosion, then dilation) 

                  

(e)   Hole filling                                       (f) Erosion 

Figure 3.19: Greyscale and binary pre-processing for A. 2-punctata (not to scale) 
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3.5.6 Geometrical Measurements 

Once the image has completed the pre-processing stage and finally in a binary form, 

the next important process will be measurements of body markings. It includes the 

spots. At this moment only the shape is known, and no colour information is 

available. Working in binary made measurements simpler as there is only one 

channel to work with, therefore it minimises computations. The following steps are 

taken to produce geometrical measurements on body markings, first by obtaining 

geometrical properties of the objects in the image and then doing the same for spots 

(Shouche et al., 2001; Du and Sun, 2004; Eddins, n.d.): 

1. Assuming the image is in binary form, use ‘bwlabel’ function to label all 

connected components using the default 8-connectivity. Alternative value is 

4-connectivity. The function ‘bwlabel’ returns a matrix L of the same size as 

the binary image, which contains labels for the connected components in the 

binary image. The labels are set to a max value. The resultant label is 

optimum if objects are not touching each other, else they will be counted as 

one object. 

2. The elements of matrix L contain integer values equal to 0, or greater. 

Background is labelled 0, while pixels labelled 1 belong to the first object, 

label 2 belongs to the next object, etc.  

3. Apply the function ‘regionprop’ which extracts geometrical features by 

measuring a set of properties for each connected component in the binary 

image. The properties are geometrical measurements and pixel value 

measurements.  

4. Apply ‘bwboundaries’ function to trace the region boundaries in the binary 

image. It returns a cell array, each cell contains the row and column 
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coordinates for an object in the binary image. Using the coordinates, plot the 

borders of all the spots on the original greyscale image. Using this function 

allows objects to be displayed in a particular colour, and holes in a different 

colour for better visualisation. 

5. Measure the geometrical properties of the object(s) in the image. These are 

listed in Tables 3.1 and 3.2.  

6. Repeat steps 1 to 5 to determine geometrical properties of markings in the 

object. 

Table 3.1: Geometrical properties determined by ‘regionprop’ 

Area Convex image Extrema Minor axis 

length 

Solidity 

Bounding box Eccentricity Filled area Orientation Subarray 

index 
Centroid Equivalent 

Diameter 

Filled image Perimeter  

Convex area Euler number Image Pixel index list  

Convex hull Extent Major axis length Pixel list  

 

Table 3.2: Pixel value properties determined by ‘regionprop’ 

Max intensity Mean intensity Min intensity 

Pixel values Weighted centroid  

 

Once body markings are labelled, counted and measured they are then sorted out to 

filter genuine spots from noise. Sorting is performed by setting a threshold to the 

markings’ area ratio. Area ratio is the ratio between the area of the object (elytra) and 

the area of the marking. Any markings with area ratio greater than 5 will be 

discarded. This is a non-optimal technique as compared to automated elimination 

technique such as using circularity; however, it is able to perform well (Chang et al., 

2011). The flow chart in Figure 3.20 addresses all processes performed in this 

chapter. 
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Figure 3.20: Flow chart showing image processing techniques used in the thesis 
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values 
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Morphological 
operations 
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Measure object 
properties 

Measure spots 
properties 

Determine ladybird 
size 
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3.6 Summary 

Image processing of the input images is not trivial due to various constraints. Binary 

processing was performed in order to get meaningful geometrical measurements. 

The CIELAB colour distributions for both elytra and spot of ladybirds are valuable 

information to be used in the next stages. These operations were only performed 

semi-automatically during which user interaction is required to crop and capture 

pixel colour information. While this seems non-ideal, as a piece of pioneering work 

in ladybird identification the use of geometrical measurements and the application of 

CIELAB colour space in this area are novel findings. The author foresees this as a 

breakthrough towards a workable feature representation for an automated 

identification system. This is discussed further in the next chapter on feature 

extraction. 
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CHAPTER 4   

FEATURE EXTRACTION AND 

CLASSIFICATION 

Feature extraction is the most important part of the system, whereby features are 

selected and processed. Some typical features for images are shape, texture, size, 

colour, mean or standard deviation of RGB components. Image data is high 

dimensional, therefore it requires specific pre-processing to find a subset of variables 

based on the image data, therefore lowering computational cost (Egmont-Petersen, 

de Ridder and Handels, 2002; Nixon and Aguado, 2008). A perfect feature set is 

where each taxon has a 1:1 correspondence with a set of features. If feature overlap 

occurs then it will produce false identification (Chesmore, 2007). Clearly, feature 

extraction is a necessary step for image segmentation or object recognition to be 

successful.  

 

4.1 Introduction 

Other work dealing with manual species identification vary in many ways, even 

though the same concept of taxonomy applies. Some systems use single key inputs, 
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while others use multiple-keys. Dichotomous keys, for example, tend to use 

monothetic identification criteria (Woolley and Stone, 1987). Even though 

computerized keys have been developed and used, they suffer from the same 

inherent problem of being sensitive to individual characters. Furthermore, they give 

incorrect identification if characters are missing or assessed incorrectly (Woolley and 

Stone, 1987; Boddy et al., 1998).  

Using colour images have an added advantage for this kind of problem, apart from 

the visualisation for an observer. When CIELAB was introduced in the previous 

chapter, the colour planes showed some interesting clusters of colours. These 

clusters contain the vectors of a* and b* values. They have coordinates or location, 

and can be analytically determined such as calculating the distance between vectors 

using Euclidean distance measure. The same can be deduced for ladybirds from the 

same species, or perhaps from other species. To date there has not been any manual 

technique or automated system that has extracted this piece of visual data.  

What an observer will notice from the CIELAB colour distributions are: 

 Values representing ladybirds from the same species tend to group together.  

 Values representing ladybirds from the same species but of different colour 

forms do not cluster together. 

 Both elytra colours and spot colours show similar trends. 

Apart from colour representation, there are also issues on which feature(s) is the best 

representation of the ladybird. These can not be determined visually, therefore some 

forms of analysis is needed. It would be ideal to have a single feature or character for 

species identification. A succesful single feature classification means there is no 

overlapping of feature distributions between taxa. Unfortunately, this demands tight 
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constraint on the input stage. Feature vectors from the same class may also be 

different. Theoretically, the differences are due to three factors (Looney, 1997): 

1. Noise. 

2. Bias in the measurement, data acquisition system and pre-processing. 

3. The natural variation between objects within the same class (intra-class) due 

to unknown influence. 

Classification is defined as the assignment of a signal or pattern to one of a number 

of classes based on features extracted (Schalkoff, 1992). Based on the various 

features, the system will next assign data to one or more specified classes. This 

chapter discusses methods of feature selection and classification in detail. The use of 

decision tree to select and simplify rules is explained, together with some 

mathematical treatments on Bayesian probability. There will be a section on 

classifiers, particularly on neural networks and the backpropagation algorithm. 

 

4.2 Datasets 

To get all feature datasets, the following steps were done: 

Step 1:  Read input image. Perform average filtering. 

Step 2:  Crop region of interest (ROI). 

Step 3: Perform morphological operations to reduce noise and unnecessary 

segments. 

Step 4:  Obtain geometrical measurements. 

Step 5:  Perform colour space conversion from RGB to CIELAB. 

Step 6:  Get average values of a* and b* for both spots and elytra region. 

Step 7:  Normalise all feature sets. 

Step 8:  Repeat for next input image. 
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4.2.1 Geometrical features  

There were six features obtained through the measurements on the elytra of each 

ladybird, four of which were primary measurements and the other two were derived 

from the primary. These features are listed in Table 4.1. Elytra measurements were 

also taken for normalisation purpose. 

Table 4.1: Geometrical features and descriptions 

Features Descriptions 

Spot area Total count of pixel with binary value 1 in a spot 

Spot perimeter Total count of pixel along the circumference of a spot 

Spot max axis length The length of the longest line drawn between two points in the spot 

Spot min axis length The length of the longest line drawn between two points perpendicular 

to the max axis 

Spot area ratio Area divided by the product of max axis length and min axis length in 

a spot 

Spot aspect ratio Ratio between max axis length and min axis length 

 

Generally, geometrical values tend to be bound by the effect of rotation and scale. 

Here, they are rotation and scale invariant due to the way measurements were taken. 

For example, quantities like area ratio and aspect ratio are made scale invariant by 

having measurements taken on both the longest and shortest distance of the spot, 

then the spot measurements are normalised by the  size of the elytra. 

 

4.2.2 Colour features 

Colour features have been generated via the use of a capture box, both during initial 

development and data collection stage. This method was perceived to give good 

collection of pixel values within the box and around the vicinity of the capture box. 

The hue angles were derived from primary colour features a* and b*. Figure 4.1 

shows an example of colour extraction utilising ‘roipoly’ and ‘impixel’, which are 

two useful built-in MATLAB functions. 
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The function ‘roipoly’ lets users to select a polygon region on the elytra and spot. 

This is done through clicking interactively using mouse to produce a polygon. The 

corresponding values of CIELAB quantities are acquired through the function 

‘impixel’ when user is finished with setting the polygon. The primary quantities are 

lightness, spot colour a*, spot colour b*, elytra colour a* and elytra colour b*. 

Consider an arbitrary point on the CIELAB colour plane. This point on the plane is 

actually a vector consisting of magnitude and angle made of both axes, a* and b*. 

The magnitude is called chroma |C*ab| and hue angle called hab, given by the above 

formulae (Fundamentals of colorimetry, 2012). 

 

          |   
 |    √            (4.1) 

                      
  (

  

  
)                (4.2) 

In total there are eight quantities, however, lightness and chroma values are finally 

ignored to make only six usable colour features. The author rejected the two 

quantities for the sake of reducing the number of features, hence trying to reduce 

dimensionality. 

 

Figure 4.1: Example of elytra and spot colour acquisition from image 
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4.3 Data trimming and normalisation 

The idea is to check that the data or features have been stripped of outliers. This is 

done as a preprocessing stage before further work is done. Normalisation has been 

performed on the ladybird data by having each feature limited to a range of 

maximum and minimum values in the interval of [0,1], except for a* and b* which 

use [-1,1]. For example, a normalised version of Area Ratio is obtained through the 

following formula: 

 

                      
              (          )

   (          )    (          )
    (4.3) 

 

By doing so, the feature values are limited to a predetermined range and have equal 

influence on the classifier as would other feature values. For the CIELAB colour 

quantities normalisation on the primary values have been shown in the previous 

chapter. For a secondary quantity like chroma, normalisation limits the values to 

[0,1]. For hue angle, normalisation means making the maximum values to be limited 

to 1, and minimum to -1. The normalisation formula are given as: 

 

             |   
 |   (

√         

√ 
)                                    (4.4) 

 

                  (
   

 
)      (

  

  
)                                         (4.5)      

 

4.4 Feature selection 

It has been shown in the previous sections how features have been generated from 

colour and geometrical properties, where both are the physical traits of a ladybird. 

These are multidimensional quantities projected in the feature space, in which case 
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there is a need for the features to be carefully selected. Some of these features are 

totally ‘unconventional’, unlike the manual key-based systems. Features like area 

ratio, aspect ratio and spot perimeter are some of which have never been obtained 

before for a typical ladybird.  

It is quite difficult for a system to be trained to use all these features, especially when 

the number of features are large because the number of training exemplars need also 

be huge. For a classifier, this means searching for the best features which have the 

best discriminatory power during classification. Without this ‘weighting’ process a 

classifier would make poor decisions due to undertraining or overfitting, therefore 

affecting the overall system performance. Methods exist that help a researcher to 

select best features, and most of the time statistical techniques have been widely 

employed.  In this work, decision tree has been used for feature selection. Before its 

inclusion in the whole identification system, it is important to consider a qualifying 

factor called the dissimilarity coefficient. 

 

4.5 Dissimilarity coefficient estimation 

There are a couple of factors that contributes towards the level of precision. There 

are some input errors obtained during the process of getting colour information from 

both spot and elytra. There are also variations of the CIELAB colour values among 

the different individuals in the same  OTU. This is called intra-OTU variation. There 

is also variation of the CIELAB colour values among different OTUs, which is 

called inter-OTU variation. These factors can be estimated using dissimilarity 

coefficients, obtained from calculating the Euclidean distance between the points 

belonging to OTUs in CIELAB colour plane.  
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This method has been adopted from Liu (1996), who investigated the use of only 

vein points as a single character input to an expert system for the identification of 

Tortricinae (Lepidoptera) (Liu, 1996). Suppose the colour planes in Figure 4.2 are 

generated for all OTUs; one for the spot colour plane, and another for the elytra 

colour plane. To determine  the dissimilarity coefficient between two arbitrary points 

on the colour plane, namely S(a*si , b*si ) and  N(a*ni , b*ni ). The dissimilarity 

coefficient, D(sn), is calculated using the Euclidean distance formula: 

 

 (  )  √(   
     

 )  (   
     

 )      (4.6) 

 

For the ladybird identification, 90 sample data were used with 10 samples from each 

OTU.  The intra-OTU variation was calculated and averaged as variance within three 

forms of H. axyridis. For the inter-OTU variance, the dissimilarity coefficients were 

calculated and averaged as variance between each two different OTUs. The 

coefficients are presented in Appendix III.  
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(a) 

 

(b) 

Figure 4.2: Colour planes comprising all OTUs (a) spot (b) elytra 
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The intra-OTU variance was 0.185 ± 0.086, whereas the inter-OTU variance was 

0.134 ± 0.126. The results showed that the intra-OTU variance was larger than  the 

inter-OTU variance. With this, it can be concluded that the use of only colour 

information a* and b* is insufficient for the classifier to identify the OTUs, and 

more features are required. This has prompted the selection of decision tree as a 

feature selector and minimiser. 

 

4.6 Learning System 

 

In developing an automated identification system, there is a need for a platform for 

software development such as code developing, testing, etc. In this thesis it is called 

the learning system. The learning system supports the core functionality of the 

intelligent system, which also means the use of a reliable platform is essential. For 

instance, during code development there are many tasks involved and it is crucial to 

use a reliable software platform. This platform also serves as a starting point for 

further system redesign in future, if necessary. WEKA and MATLAB R2010 have 

been utilised for system development and testing. Both MATLAB and WEKA have 

made the research more explorable due to their capabilities. WEKA was used mainly 

for the many data mining techniques it contains, and MATLAB was used for image 

processing and neural network tasks. When MATLAB is not capable to perform 

certain algorithms or not as efficient for machine learning, WEKA has been very 

useful for this purpose. 

 

4.6.1 WEKA machine learning toolkit 

 

WEKA is a machine learning tool which stands for ‘Waikato Environment for 

Knowledge Analysis’ (Witten and Frank, 2005). It was developed by researchers in 
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the University of Waikato, New Zealand (Hall et al., 2009). It contains a collection 

of machine learning programs developed in JAVA to facilitate data mining tasks 

such as training and testing artificial neural networks, decision trees and statistical 

visualisations. Classifiers included in WEKA are Bayes, RBF functions, Support 

Vector Machine (SVM),  Multilayer Perceptron (MLP), Learning Vector 

Quantisation (LVQ), J48 decision tree and many more. The user interface is 

presented in Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

A user has four choices when using the program; either as Explorer, Experimenter, 

KnowledgeFlow or Simple CLI. The author opted for Explorer option for ease of use 

and implementation.  

 

4.6.2 Decision tree  

In WEKA, there are many machine learning techniques that a user can use. The 

author opted J48 which is an open source Java implementation of the C4.5 

 

Figure 4.3: WEKA Graphical User Interface (Hall et al., 2009) 
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algorithm. C4.5 was actually derived from ID3. Both are Ross Quinlan’s algorithms 

for generating classification models, better known as decision trees (Quinlan, 1996; 

Witten and Frank, 2005; Omid, 2011). It contains a hierarchy of branches and leaves 

stemming from a root. When a classification is required, a decision tree uses its 

hierarchical and recursive nature to make decisions at each node.  

An example is given in Figure 4.4. Imagine there are 10 samples each for the two 

dummy classes ‘C5’ and ‘C7’. The most important is to determine which attribute or 

feature to place at the root (top most node). The decision tree calculates the values of 

entropy before and after a node. For a binary split, entropy and information gain are 

given as: 

 

Entropy =  - p(a)*log2(p(a)) – p(b)*log2(p(b))   (4.7) 

Information Gain = Entropy Before –Entropy After   (4.8) 

 

Witten and Frank uses the term ‘information value’ instead of entropy (Witten & 

Frank, 2005). The information gain for each candidate attribute is evaluated at each 

node, and the attribute with the highest information gain is selected. 
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Root 

A 

C7 (2.0/1.0) C5 (2.0/1.0) 

B 

C5 

(7.0) 
C7 (10.0/1.0) 

Figure 4.4: Example decision tree for the case of C5 and C7 
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Taking the tree in Fig 4.4 to determine Information Gain for arbitrary attributes A 

and B: 

Before Split: 

C0 N00 

 C1 N01 

After Split: 

 

 

 

 

 

 

  

 

C0 N10  C0 N20 

C1 N11  C1 N21 

 

 

M12 = M1 – M2 

Figure 4.5: Determine entropy for attribute ‘A’  

A 

Node 
N1 

Node 
N2 

M1 M2 

M0 

 

C0 N30  C0 N40 

C1 N31  C1 N41 

 

 

M34 = M3 – M4 

Figure 4.6: Determine entropy for attribute ‘B’  

B 

Node N3 Node N4 

M3 M4 
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The information gain (IG) will be chosen from the attribute with the  highest value: 

Information Gain = M0 – M12  

OR  

Information Gain = M0 – M34 

 

To classify an unknown instance, the tree is traversed based on the values tested in 

successive nodes. If an attribute value is not nominal, the tree will form two subsets 

or branch. The branching depends on which subset the value lies in the decision tree. 

In the case of ladybird identification, the attributes are numeric. At a node, the 

number is checked if it is greater or smaller than a constant. This constant is the split 

criterion, where binary split occurs. Notice the two numbers at some leaves in Figure 

4.4 (the last nodes). The first number represents the total number of instances 

reaching the leaf. The second is the number of those instances which are 

misclassified. In short, the decision tree simplifies the solution when looking for 

which feature to use in a particular identification. It makes automated identification 

easier by reducing number of features and shorten identification time (Ayob and 

Chesmore, 2012).  

 

4.6.3 Comparing decision trees with neural networks 

Artificial neural networks (ANNs) are a promising technology in computer aided 

taxonomy, as they learn from examples presented to them rather than rote learning of 

inputs (Boddy et. al., 2000). ANNs have been used in many areas and proven to 

work to some extent, which will be discussed later. ANNs have been developed to 

mimic the human brain and consists of an interconnected set of basic information 

units called neurons (Ham and Kostanic, 2001; Negnevitsky, 2005). In this section, 
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the applicability of artificial neural networks and their mathematical model are 

investigated. A single neuron is connected to other neurons via weighted links, and 

they form a hierarchy of arranged layers. Each neuron, or node, receives input 

signals through this link. The weighted inputs are combined to give the internal 

activation level, hence producing an output signal. An output signal will only be 

generated once an activation level is triggered. This level is triggered by a factor of 

the inputs and their associated numerical weights, whereby a neuron calculates the 

weighted sum of the input signals and compares the result against a threshold value 

using the following 'sign' activation function (Negnevitsky, 2005): 

 

X = ∑ 
n

i=1  xiwi 

Y =sign { ∑ 
n

i=1  xiwi - ϴ}  (4.9) 

 

where X is the net weighted input to the neuron, xi is the value of input i, wi is the 

weight of input i, n is the number of neuron inputs, and Y is the output of the neuron. 

As neurons are interconnected and form layers, they form a network. The network 

could have one or more hidden layers that do not have direct link to the outside 

world. They only accept input and generate outputs based on their activation. All 

neurons in one layer are connected to other layers via unidirectional links that can 

only transmit in the forward direction (Ham and Kostanic, 2001). In short, a node 

receives a few signals from its input links, computes an activation level and sends an 

output signal via the output links, as shown in Figure 4.7. 
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Neurons will learn through repeated adjustments of the weights after a few iterations 

or after sufficient training. These adjustments of weights  represent the enhanced 

long-term memory in ANN. Therefore, unlike expert system, ANN is not rule-based 

but learns from patterns presented to the input layer.  

With this, there are two schemes of learning, namely ‘supervised’ and 

‘unsupervised’ learning. Supervised learning works by presenting a number of 

known inputs and the corresponding target outputs to the network, as shown in 

Figure 4.8.  

 

 

 

 

 

 

Figure 4.7: Structure of a neuron using mathematical model (Activation function, n.d) 
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After some iterations, the network will adapt its weight based on the patterns. It will 

then try to classify the correct output category based on the learnt patterns, as if there 

is an outside teacher guiding the ANN to correctly classify for the particular pattern. 

Examples of supervised learning are backpropagation and its variants. In contrast, 

unsupervised learning means the ANN is presented with input patterns only, and has 

no teacher. It will perform 'self-discovery' in detecting similarities of the patterns and 

forms classification groups or 'clusters' (Kohonen 1990, 2001; Boddy, Morris and 

Morgan, 1998).   

ANN can be useful in this work since they can cope with partially contradictory 

'fuzzy' data. Implementation wise, unlike expert systems, they do not need a 

taxonomic expert beyond the original determinations of example patterns (species) 

upon which the system is to be trained. A few ANN paradigms are commonly used 

for identification problems; the multilayer perceptron (MLP), the learning vector 

 

 

 

 

 

 

 

 

 

Figure 4.8:  Structure of supervised learning  

(redrawn from http://www.learnartificialneuralnetworks.com) 
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quantization network (LVQ), the radial basis function network (RBF), the 

asymmetric RBF network (ARBF) (Boddy, Morris & Morgan, 1998). 

 

4.6.4 Multilayer Neural Network & Backpropagation Algorithm 

A Multilayer Perceptron (MLP) Neural Network consists of numerous units of 

perceptrons with one or more hidden layers. A perceptron consists of a single neuron 

with adjustable synaptic weights and a hard limiter (Negnevitsky, 2005). The 

weighted sum of the inputs is applied to the hard limiter. The input signals are 

propagated in a forward direction on a layer-by-layer basis. Neurons in the hidden 

layer function to detect the features, because the weights of the neurons represent the 

features hidden in the input pattern. The perceptron gives out +1 if the input is 

positive, while giving -1 if the input is negative. Therefore, the perceptron behaves 

as a simple classifier. In other words n-dimensional space is divided by a hyper plane 

into two decision regions. 

Central to the operations of a MLP Neural Network is the feed forward and 

backpropagation algorithm. Feed forward operation works by introducing input to 

the hidden neuron, firing up neurons, and calculating errors. This is normally done 

during training stage. Training is done by presenting examples of the input and 

output relationship to the neural network. The connection weights will be adjusted in 

order to minimise an error function between the historical outputs and the outputs 

predicted by the neural network. Backpropagation itself means adjusting weights in 

hidden layers by propagating errors back towards the input layer. By doing so the 

changes in input weight and output weight per neuron are calculated (Lang, 2007). In 

order to perform classification hence identification, a neural network algorithm has 

to discriminate taxa by constructing decision boundaries. The boundaries are 
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constructed between example patterns of known taxa in n-dimensional space. A 

simple two-dimensional feature space is shown in Figure 4.9.  

 

 

 

 

 

 

 

 

 

The author will show that the neural network outputs are estimates of Bayesian 

probabilities, hence linking the concept with outputs of a decision tree is a 

possibility. This relationship of decision tree with neural network shows that 

Bayesian probabilities are estimated using a minimum squared-error cost function. 

When Bayesian probabilities are correctly estimated, the errors are minimum and 

outputs are sum to one, hence treating it as probabilities.  

The following arguments are excerpts from Richard and Lippmann’s paper on 

‘Neural Network Classifiers Estimate Bayesian a posteriori Probabilities’ (Richard 

and Lippmann, 1991). Consider assigning an input vector X {xi :  i = 1,…, D} to 1 of 

 
Figure 4.9: Two dimensional feature space and non-linear decision boundary 
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M classes {Ci:  i = 1,…,M}. In this case the input values are continuous numbers and 

the classes are ladybird species.  

The network parameters are chosen to minimise the squared-error cost function: 

   {∑ [  ( )    ]
  

   }                 (4.10) 

where E{.} is the expectation operator. 

Using the definition of expectation, and the joint probability of the input and the ith 

class by p(X,Ci):  

   ∫∑ {∑ [  ( )    ]
  

   } (    )   
 
                         (4.11) 

For a pair of input X and class Ci each error term in the equation is the difference 

between the actual output and the desired output di. The errors are squared , summed 

and weighted by p(X,Cj). By definition, p(X,Cj) = p(Cj | X)p(X). By substitution into 

(4.11) gives the following equation: 
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The fact that   
 ( ) is a function of X and ∑  (   

 
   | )    makes (4.15) into 

   {∑ [  
 ( )     ( )∑    (

 
       )  ∑   

  
    (    )]

 
   }       (4.16) 

      {∑ [  
 ( )     ( ) {  | }   {  

 | }] 
   }          (4.17) 

where  {  | }and  {  
 | } are the conditional expectations of di and   

 . Given the 

conditional variance of di is    {  | }   {  
 | }    {  | }, then (4.17) is 

expanded to become: 

   {∑ [  
 ( )     ( ) {  | }   

 {  | }   {  
 | }    {  | }]

 
   } (4.18) 
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     {∑ [  ( )   {  | }]
  

   }   {∑    {  | }
 
   }   (4.19) 

The first expectation term is the mean squared error between network outputs yi(X) 

and the conditional expectation of the desired outputs. The target is to minimise the 

squared-error cost function, consequently the network parameters are chosen to 

minimise the first term. For a 1 of M problem when input X belongs to class Ci , di 

will equal the value of 1, else equals zero. Consequently, the conditional 

expectations will be: 

        {  | }  ∑    (  
 
   | )            (4.20) 

                         (  | )                   (4.21) 

which is actually the conditional probability of class Ci given the input X.  

Apart form squared-error cost function commonly used by backpropagation 

algorithm for choosing network parameters (eg. updating connection weights), an 

alternative cost function is the cross-entropy cost function.  

 

4.6.5 Cross-entropy cross function 

This cost function is motivated by the assumption that the desired outputs are 

independent and binary random variables. The actual network outputs will be 

continuous, and represent the conditional probabilities that the binary, random 

variables are 1 (Richard and Lippmann, 1991). When the desired outputs are 0 and 1, 

the cross-entropy cost function will be 

    {∑ [        ( )  (    )    (    ( ))]
 
   }   (4.22) 

The cross-entropy cost function weights errors more heavily when actual outputs are 

closer to 0 and 1. When desired outputs are binary, the cross-entropy cost function is 
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minimised when network outputs estimate Bayesian probabilities. Assuming the 

network outputs are binary, the following cross-entropy cost function is obtained: 

    {∑[ {  | }       ( )  (   {  | })     (    ( ))]

 

   

} 

   {∑ [ {  | }       ( )  {  | }      {  | }   {  | }      {  | }  
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 (   {  | })     

    ( )

   {  | }
] 

   }  

 { ∑ [ {  | }      {  | } (   {  | })     (   {  | })]
 
   }    (4.24) 

The first expectation term in (4.24) is minimised when   ( )   {  | } for i = 1,…, 

M. The outputs is an estimate of the conditional expectations of the desired outputs 

since the target is to minimise the cross-entropy cost function by choosing network 

parameters. When the desired outputs are binary, the conditional expectations are the 

conditional probabilities of the desired outputs being 1. For the case of 1 of M 

problems, the conditional expectations are Bayesian probabilities (Richard and 

Lippmann, 1991). It is desirable to see whether the same conditions hold for 

multilayer perceptrons trained using backpropagation algorithm, and radial basis 

functions in Probabilistic Neural Network (PNN). It is also interesting to see the 

relationship between the outputs of a neural network with a decision tree through 

WEKA and MATLAB simulation, as derived in (4.7). The simulation results are 

presented in the next chapter. 
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4.7 Summary 

 

This chapter has elaborated on the concept of feature extraction and classifiers. 

There are two types of features for the ladybirds: geometrical and colour. Feature 

selection is important to reduce dimensions and computations. After feature 

selection, the features have been normalised before they were fed into classifiers. 

Classifiers function to perform input/output mapping. Neural networks require the 

minimisation of cost functions through connection weight adjustments. Neural 

network outputs are estimates of Bayesian probabilities, while decision trees use the 

concept of entropy and information gain to perform decision making at nodes. The 

link between decision tree and neural network permits their usage in hybrid systems. 
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CHAPTER 5   

CLASSIFIERS 

The previous chapter introduced the concepts on feature extraction, neural networks 

and decision tree. This chapter considers classifiers in use, how the datasets are 

partitioned, test run setups, balanced and unbalanced datasets. The chapter aims to 

elaborate the components of supervised classifiers, as well as maintaining a good 

research practice to make the processes technically reproducible for future reference 

(Prechelt, 1995). 

 

5.1 Classifiers 

A classifier functions to map unlabeled instances to a label using internal data 

structures (Kohavi, 1995). For the automated identification of biological species 

involving at least two classes, where each has its associated class labels, then a 

classifier will be required. An exception occurs when more species are involved, 

which will be explained in Chapter 7. The classifiers used are multilayer perceptron 

artificial neural networks (MLP), Probabilistic Neural Networks (PNN), Learning 

Vector Quantisation (LVQ) and Support Vector Machine (SVM). They are 

supervised classifiers, where training is required for the classifier to learn the input 
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patterns. MLP has been explained in Chapter 4; the other classifiers are introduced 

here. 

 

5.1.1 Probabilistic Neural Networks (PNN) 

If a neural network is used the system needs training exemplars and targets. The 

training exemplars are fed into a network or classifier, trained to learn some learning 

functions and produce outputs based on decision boundaries. PNN differ from MLP 

in many ways; however, the most obvious is the learning function they use. In this 

work, the function used was a radial basis function (RBF). PNN implements kernel 

discrimination analysis, meaning the operation are organized into a multilayer feed 

forward neural network consisting of input layer, radial basis layer and competitive 

layer (Wu et. al., 2007; MathWorks, 2012). Figure 5.1 shows the PNN network 

structure. 
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Figure 5.1: Network structure of PNN  
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The input layer consists of nodes that receive the data, labelled as P of size Rx1. The 

radial basis layer contains a probability density function (pdf), using a given set of 

data points as centres. In this layer the vector distance between the weight vector and 

the input vector p are calculated, making a vector of size QxR. This is 

mathematically done using the dot product notation. Next, the vector distance is 

multiplied with the bias vector b through element-by-element multiplication, shown 

as ‘.*’ in Figure 5.1. This effectively produces a resultant n of size Qx1. The 

resultant is fed into the radial basis function ‘radbas’ and correspondingly produces 

the output vector a. When the input p is identical to the i-th row of weight matrix W, 

it is assigned a value of 1. Consequently, a neuron with weight close to the input 

vector p will produce a value close to 1. In the final layer, the vector a is multiplied 

with weight matrix M of size KxQ, therefore producing output vector d of size Kx1. 

The competitive function selects the highest value and determines the class label.  

In general, a PNN for M classes is defined as the following (Foody, 2001; X. Hong, 

2009): 

  ( )  
 

  
∑ 

( 
(‖      ‖)

 

   
)

  

   

 

where j = 1,…, M and nj is the number of data points in class j.  

A decision boundary is found by finding the numerical solution to the above for each 

class. For instance, for a two-class problem this is done by equating y1(x) to y2(x) and 

finding solution using grid search (X. Hong, 2009).  
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5.1.2 Learning Vector Quantisation (LVQ) 

Vector quantisation aims to find prototypes or representatives of the input data that 

provides a good approximation of the original input space (Bullinaria, 2012; Ham 

and Kostanic, 2001). These codebook vectors are used to classify unseen vectors. 

LVQ is a supervised version of vector quantisation. Procedure wise, initially a 

random set of vectors are trained to be the representatives. LVQ uses a winner-takes-

all strategy, where one or more vectors similar to the given input vectors are selected 

and adjusted to come closer to the input vector. The error on the distance is 

determined by the formula: 

  ∑‖    ( )‖
 

 

 

where x are the input vectors and wl(x) are the reference or codebook vectors. 

This process repeats until the distribution of codebook vectors in the input space 

approximates the distribution of the samples from the test dataset. This is similar to a 

self-organising map (SOM), in fact, LVQ embeds SOM in the operation. This is 

shown in Figure 5.2 (Bullinaria, 2012). 

 

 

 

 

 

 

 

 

 

Figure 5.2: A two-stage process involving SOM and LVQ 

 

 

Figure 5.2: A two-stage process involving SOM and LVQ 
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SOM is inspired by the self-organising capability of neurons in the visual cortex, and 

provides a topological feature mapping of the input space to the output space. LVQ 

provides a way to shift cell boundaries for better classification (Bullinaria, 2012). It 

compares the input classes against the classification label for each weight as 

provided by SOM. If x and wl(x) have the same class label, the distance between them 

is shortened. This is governed by the equation 

   ( )( )   ( )(    ( )( )) 

where β is the learning rate, and should decrease with the number of iterations. 

However, for difference in class label they are moved apart by    ( )( )  

  ( )(    ( )( )). The weights for other input regions will remain unchanged. In 

this manner, the winner will eventually be reinforced while others are reduced.   
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5.1.3 Support Vector Machine (SVM) 

SVM is a technique for data classification, where data is non-linearly mapped into a 

higher dimensional space and a separating hyper plane with maximal margin is 

found (Cortes and Vapnik, 1995; Chen and Lin, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

The separating hyper plane is determined by an orthogonal vector w and bias b that 

satisfy the equation          and constrained by     |      |    . Since a 

separating hyperplane in canonical form must satisfy the constraints 

  (      )               

then the hyper plane that optimally separates the data must minimise  

Φ(w) 
 

 
(   ) 

After introducing a slack variable ξi   ,             the constraint becomes 

 

Figure 5.3: Example of separating hyper plane in a higher 

dimensional plane, showing support vectors on the optimal 

margin (Cortes and Vapnik, 1995) 
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  (      )                 

and the optimisation problem becomes  

Φ(w) 
 

 
(   )   ∑   

 
    

where C is a user defined positive finite constant.  

An optimal hyper plane is constructed using support vectors, which is a small subset 

of the training vectors. The optimal hyper plane is defined as the linear decision 

function with maximal margin (Cortes and Vapnik, 1995). According to Kuhn-

Tucker optimisation theory, the optimal solution satisfies  

  [  (      )   ]              

and contains non-zero Lagrange multipliers if the points xi (support vectors) satisfy  

  (      )               

If the training vectors are separated without error by this optimal hyper plane, the 

expectation value of the probability of committing an error on a test example is given 

by 

 [  (     )  
 [                         ]

                          
 

This suggests that if the optimal hyper plane can be constructed from a small number 

of support vectors relative to the size of the training set, then the generalisation 

ability is high (Cortes and Vapnik, 1995). In the thesis, there are two parameters 

which need to be optimised before testing is done. The pair is the penalty term, C 

and the kernel function parameter gamma, γ. They are selected through grid search 

so that the classifier can predict unknown data (Hsu, Chang and Lin, 2003). 
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5.1.3.1 Optimisation of C and γ 

Optimisation is done through selecting a range of values from graphs. One can: 

 Fix the value of C, determine mean squared error (MSE) while varying γ, and 

 Fix value of γ, and determine MSE while varying C 

 

The technique was applied to E. 4-pustulatus and C. 14-guttata where spot colour 

was used as feature, as depicted in Figures 5.4 and 5.5. Using poly kernel, test 

according to the above scheme was conducted and graphs are plotted: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 5.4: MSE vs. γ for various C (E4C14 spot colour data) 

 

 

Figure 5.5: MSE vs. C for various γ (E4C14 spot colour data) 
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The same procedure was applied to elytra colour used as feature, as shown in Figures 

5.6 and 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: MSE vs. γ for various C  (E4C14 elytra colour data) 

 

Figure 5.7: MSE vs. C for various γ (E4C14 elytra colour data) 
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Based on the graphs, a recommended value to use for (C,γ) is (1,1). This value gives 

the lowest MSE. Next, using these values SVM is tested for the rest of the ladybird 

datasets. 

 

5.2 Datasets 

There were 40 samples per species, and a total of 360 samples were obtained. 

Dataset partitioning is performed by dividing a set of data into training and test data, 

and data is selected at random using a MATLAB function ‘dividerand()’. The 

objective of dataset partitioning is to measure network performance. The training 

data is used to produce a model for training, while the test data is used to check the 

network’s ability to generalise on other inputs not been used during training 

(Prechelt, 1998). In this study, 85% of the data is used as training set and the 

remaining 15% used as the test set (MathWorks, 2012). The training data is further 

partitioned into training set and validation set. The training set is used to adjust 

network weights during training. The training set comprises 70% of the total dataset. 

The validation set is to minimise any bias during performance measurement, to 

check if training is completed subject to stopping criteria therefore preventing over 

fitting during training (Prechelt, 1998, Nikolaou, 2010; Clark, 2012). The validation 

set makes 15% of the total dataset. It should be highlighted that the partitioning of 

the datasets applies to experiments involving MLP neural networks only, whereas 

10-fold cross-validation was applied for works involving other classifiers. 

The MLP network was trained for each colour group using the MATLAB R2010 

Neural Network Toolbox. During training, the network was fed with training input 

sequentially in batches, where the parameters are updated when the whole training 

set is completely presented. Initially a total of 12 hidden neurons were used using 
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only one hidden layer. The figure was obtained by experiments, following 

testimonials by researchers such as Looney and Boddy et al. (Looney, 1997; Boddy, 

1994). Other parameters include momentum and learning rate, which were finally set 

to 0.2 and 0.3 respectively. These values are those that gave the best results after a 

number of trials using validation set.  

Momentum is the parameter used to smooth the trajectories for convergence. When 

back propagation is used in a MLP, it will try to converge to a solution but slowly. 

This is due to the change in curvature of the squared error surface over the path of 

the trajectory (Hagan, Demuth and Beale, 2002). To improve the speed of 

convergence, the learning rate will need to be increased. However, it can cause the 

trajectories to produce many local minima and therefore become stuck. To avoid this 

situation, the momentum is adjusted so as to give a smooth transition while training 

is taking place. This is analogous to implementing a low-pass filter to smooth out 

oscillations (Hagan, Demuth and Beale, 2002). 

The initial weights and biases were chosen to be small random values. The neural 

network was trained for 1500 epochs at the maximum, or when the early stopping 

condition is satisfied. This is done by applying the value of 1.0 when using the 

Levenberg-Marquardt network training function ‘trainlm’ (MathWorks, 2012). Early 

stopping was introduced as it is widely used and easier to implement (Prechelt, 

1998).  
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5.2.1 Over fitting 

Over fitting is a situation which occurs during training when a classifier seems to 

memorise training data instead of learning from it. Over fitting needs to be avoided 

because the error on unseen training examples increases while the training error 

reduces (Geman, Bienenstock & Doursat, 1992; Prechelt, 1998). This means the 

generalisation curve is getting worse. Figure 5.8 illustrates the over fitting situation. 

It shows that both the training error and validation error curves reduce against 

training epochs. In short, over fitting occurs when validation error starts to increase 

(Prechelt, 1998).  
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(a) 

 

(b) 

Figure 5.8: (a) Ideal training and generalisation curves, (b) Example of validation error for 

glass dataset (Prechelt, 1998) 
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5.2.2 Cross validation 

Cross validation is a technique commonly used to compare models, to estimate 

accuracy of a classifier and to avoid over fitting (Wolpert, 1992; Kohavi, 1995; 

Schneider, 1997).  Cross validation is performed by partitioning into training and test 

sets, and the simplest version is called the holdout method (Schneider, 1997).  After 

partitioning, a classifier is trained using the training set and then tested using the test 

set which contains examples which have not appeared in the training set. By doing 

so, the generalisation of a trained classifier is assessed against an independent 

dataset.  

A variant of cross validation is called K-fold cross validation, where the dataset is 

partitioned into K equal-sized folds and the holdout method is repeated K times 

(Kohavi, 1995). For each run, one of the folds is used as the test set and the (K-1) 

remaining folds used as the training. Each of the K folds will be used once as 

validation data. After K runs, the average cross validation error across all runs is 

computed. The error is an estimate of how the classifier would perform if the data 

collected is an accurate representation of the real world (Weiss, 2011). In this thesis 

10-fold cross validation was used for works involving J48 decision trees, SVM, 

LVQ and PNN so that their results can be compared (Shri and Sriraam, 2012).  

 

5.2.3 Balanced and Unbalanced set 

It will be useful to observe and analyse the effect of changing the proportion of 

samples used. For instance, given the identification of two arbitrary species, A and 

B, there is a need to check whether a bias towards the count of samples in a 

particular class affects the outcome of the test.  Species A may use only one-third of 
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its total samples, whereas species B uses all of its samples, assuming initially both 

have equal number of samples. For this purpose, an experiment has been setup for 

the identification of a British ladybird species, E. 4-pustulatus and an invasive 

species, H. axyridis f. spectabilis. The analysis involves MLP applying back 

propagation and J48 decision tree, although the same method can also be applied to 

SVM, LVQ and PNN.  

 

5.3 Summary 

The chapter has introduced the concept of classifiers, by explaining how PNN, LVQ 

and SVM work in relation to the ladybird automated identification system. It then 

explains the process of partitioning the input data into three sets (training, validation 

and test sets) to avoid over fitting, the proportions and the use of cross validation. 

Finally, the use of balanced and unbalanced sets in the identification of E. 4-

pustulatus and H. axyridis f. spectabilis has been investigated. The results of MLP, 

LVQ, PNN and SVM are presented in Chapter 6. 
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CHAPTER 6   

IDENTIFICATION RESULTS 

This chapter covers identification methods covered in literature reviewed in section 

2.2, and will explicitly show the identification results of UK ladybirds, including H. 

axyridis. It will also show a novel method of a hybrid system consisting of ANN and 

decision tree.  

 

6.1 Classifiers and Confusion Matrix 

For the identification of biological species, results are typically presented in terms of 

contingency table, or better known as confusion matrix. The confusion matrix shows 

the dispositions of the set of instances in a matrix form.  Suppose an identification 

system involves only two classes, where each has its associated class labels. If a 

neural network is used the system needs training exemplars and binary targets. The 

training exemplars are fed into a network or classifier, trained to learn some learning 

functions and come out with some outputs based on decision boundaries. There will 

be four possible outcomes in this case because it is a binary case. Figure 6.1 shows a 

typical confusion matrix for a binary case. 
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Table 6.1: Confusion matrix 

y                             n 

Y TP FP 

N FN TN 

 

 

The counts of true positive outcomes are labeled as TP, and counts of true negative 

outcomes are labeled as TN as shown in the diagonals of the confusion matrix. There 

could also be instances where false positives and false negatives are obtained; these 

are labeled as FP and FN respectively. A false positive is a negative instance that is 

classified as a positive (false alarm), whereas a false negative is a positive instance 

that is counted as a negative. For a perfect confusion matrix, these off-diagonal 

values FP and FN need to be zero. The total numbers of positives are in column y, 

and total numbers of negatives are given in column n. Hence, true positive rates (also 

called sensitivity, or recall) are calculated as the ratio between the number of true 

positives and the total number of positives, (TP/y). True negative rates are calculated 

as the ratio between the number of true negatives and the total number of negatives, 

(TN/n). The reader is referred to some extension of the metrics derived from the 

confusion matrix in Bradley’s and Fawcett’s work (Bradley, 1997; Fawcett, 2006; 

Omid, 2011). The metrics are: 
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6.1.2 Methodology of Classifier 

The 12 features extracted from an image containing an unknown ladybird, as 

explained in previous chapter, will be fed into a classifier. These feature instances 

are joined together with feature instances owned by, for example, a group of 99 

Harlequin ladybirds. A scheme is shown in Figure 6.1 with an aim to perform pre-

sorting between Harlequins and non-Harlequins. 

 

 

 

 

 

 

 

 

 

Harlequins are labeled H, while non-Harlequins as N. Ideally, test is done after 

training and the confusion matrix will show up as in Table 6.2, where the diagonal 

values sum up to equal the total number of instances, which means no 

misclassification occur.  

Table 6.2: Perfect accuracy confusion matrix 

                  H 

 

N 

H 

 

99 0 

 N 0 1 

 

Misclassification arises, for instance, when N is misclassified as H, as shown in 

Figures 6.3-6.5. Table 6.3 shows that N is misclassified as H. Table 6.4 shows 

another example where some non-diagonal values occurring (labeled as X and Y), 

 
Figure 6.1: Training scheme for sorting Harlequins from non-Harlequins 
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whilst there is no N been classified correctly. Table 6.5 shows another confusion 

matrix, though unlikely to occur due to higher sample numbers, where H is not 

correctly identified. Note that X and Y may not be proportionately balanced. 

Table 6.3: Confusion matrix showing misclassification (example 1) 

                  H 

 

N 

H 

 

100 0 

 N 0 0 

 
Table 6.4: Confusion matrix showing misclassification (example 2) 

                  H 

 

N 

H 

 

100-(X+Y) X 

 N Y 0 

 

Table 6.5: Confusion matrix showing misclassification (example 3) 

                  H 

 

N 

H 

 

0 X 

 N Y 1 

 

The confusion matrices above show how much accuracy, therefore indicating the 

confidence level of correct classification. Confidence level will be revisited in 

chapter 7, when analysis of the integrated system is performed. For now, it suffices 

to mention that confidence level helps during identification. 

 

6.2 Classifier training and test 

6.2.1 Training and test setup 

The tests are categorized into three different groups; namely white, black and red 

groups. The groups have been named based on the ladybirds’ spot colour. Readers 

can refer to Table 6.6 for the groups and the corresponding acronyms.  
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Table 6.6: Ladybird acronyms in bold, arranged in groups according to their spot colours  

 

 

 

 

Species 

Groups 

White Red Black 

 

 C14  

 H16  

 

 E4  

 H1  

 H2  

 

 A2  

 C5  

 C7  

 H3  
 

 

Results are presented in the form of confusion matrix to show level of accuracy for 

the tests. Detailed identification metrics such as TP rates, FP rates are provided in 

Appendix IV. 

 

6.2.2 MLP training and test groups 

The objectives were: 

 To train a MLP neural network using backpropagation algorithm. 

 To determine the identification results. 

 To evaluate the contributions of feature sets on the identification accuracy. 

 

6.2.2.1 Test 1: White set 

Tables 6.7 a, b & c show the resultant confusion matrix for test on all features, 

colour features and geometrical features respectively. Table 6.8 lists relevant metrics 

obtained from all the tests. 

 

Table 6.7a: Confusion matrix for test on White set (all features) 

 C14 

 

H16 

C14 

 

8 0 

 H16 0 4 

 

 

Table 6.7b: Confusion matrix for test on White set (colour features) 

 C14 H16 

C14 

 

6 0 

 H16 2 4 
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Table 6.7c: Confusion matrix for test on White set (geometrical features) 

 C14 

 

H16 

C14 

 

8 0 

 H16 0 4 

 

Table 6.8: Summary of test results for the three feature sets 

Test set True positive rate (%) False positive rate (%) Sensitivity (%) 

White All 100 0 100 

White Colour 75 0 75 

White Geo 100 0 100 

    

Test Precision (%) Specificity (%) Accuracy (%) 

White All 100 100 100 

White Colour 100 100 83.3 

White Geo 100 100 100 

 

In this work, the author is more concerned about the true positives and false positives 

rather than the other detailed metrics, mainly because they show how much accuracy 

is obtained for the identification system (Ayob and Chesmore, 2012). True positive 

rates and false positive rates are columnar ratio and independent of class 

distributions (Fawcett, 2006). For instance, consider the identification results of C. 

14-guttata and H. 16-guttata in Tables 6.7 and 6.8, which show test result for using 

backpropagation algorithm in a MLP neural network. Using colour features only 

made TP rate dropped to 75% from 100%, hence accuracy was reduced to 83.3% due 

to the two false negatives. When geometrical features were used next all results were 

100%, with the exception of false positive rate. This may suggest that colour features 

have not been useful for the identification of  C. 14-guttata and H. 16-guttata using 

MLP with backpropagation algorithm.  

 

6.2.2.2 Test 2: Red set 

The test covers the identification of ladybird species known to have reddish spots. 

Following the same training process as those in white-spotted group, test results 

were obtained as given in Table 6.9a, Table 6.9b and Table 6.9c. 
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Table 6.9a: Confusion matrix for test on Red set (all features) 

 E4 H1 H2 

E4 

 

5 0 0 

H1 

 

0 7 0 

H2 0 6 0 

 

Table 6.9b  Confusion matrix for test on Red set (colour features) 

 E4 H1 H2 

E4 

 

0 0 0 

H1 

 

0 1 0 

H2 3 14 0 

 

Table 6.9c: Confusion matrix for test on Red set (geometrical features) 

 E4 H1 H2 

E4 

 

3 1 0 

H1 

 

0 13 0 

H2 0 1 0 

 

For the test on Red group, there were 6 instances where H.  axyridis f. conspicua 

misclassified as H. axyridis f. spectabilis when all features were used, giving 66.7% 

accuracy only. When colour features were used, there was only 1 instance where H.  

axyridis f. spectabilis was identified correctly giving only 5.6% accuracy. Three 

instances were misidentified as E. 4-pustulatus, and 14 instances misidentified as H. 

axyridis f. spectabilis. From Table 6.9c where geometrical features were used, 3 

correct identifications for E. 4-pustulatus and an instance when it was incorrectly 

identified as H. axyridis f. spectabilis. An abundance of 13 correct identifications 

were registered for H. axyridis f. spectabilis, while there was an instance where H.  

axyridis f. conspicua was misidentified as H. axyridis f. spectabilis. The accuracy 

was 88.9%. 
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6.2.2.3 Test 3: Black set 

Test results were obtained as given in Table 6.10a, b and c. 

Table 6.10a: Confusion matrix for test on Black set (all features) 

 A2 C5 C7 H3 

A2 

 

7 0 0 1 

C5 

 

0 4 0 2 

C7 

 

0 0 6 0 

H3 0 1 0 3 

 

Table 6.10b: Confusion matrix for test on Black set (colour features) 

 A2 C5 C7 H3 

A2 

 

7 1 0 1 

C5 

 

0 8 0 0 

C7 

 

0 0 2 1 

H3 1 0 0 3 

 

Table 6.10c: Confusion matrix for test on Black set (geometrical features) 

 A2 C5 C7 H3 

A2 

 

8 0 0 1 

C5 

 

0 9 1 3 

C7 

 

0 0 0 1 

H3 0 0 1 0 

 

 

For the test on Black group, there was one instance where A. 2-punctata was 

misidentified as H. axyridis f. succinea when all features were used. There were 4 

correct identification for C. 5-punctata, while 2 instances when it was misidentified 

as H. axyridis f. succinea. 6 instances of correct identification was registered for C. 

7-punctata, while 3 correct identification for H. axyridis f. succinea and an instance 

of misidentification as C. 5-punctata. Accuracy was 83.3%. 

Table 6.10b shows A. 2-punctata was correctly identified for 7 instances, and 1 

misidentification as C. 5-punctata and H. axyridis f. succinea respectively.  There 

was an instance of C. 7-punctata misidentified as H. axyridis f. succinea. For H. 

axyridis f. succinea there was an instance where it has been misidentified as A. 2-

punctata. Accuracy was 83.3%. 
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When geometrical features were used, there was an instance where A. 2-punctata 

misidentified as H. axyridis f. succinea. C. 5-punctata was misidentified as C. 7-

punctata for 1 instance, and 3 misidentification as H. axyridis f. succinea. There was 

no correct identification for C. 7-punctata and there was an instance where it was 

misidentified as H. axyridis f. succinea. Similar situation for H. axyridis f. succinea 

where it was misidentified as C. 7-punctata once. Accuracy for the test on 

geometrical feature was 70.8%. 

 

6.2.3 Tests using SVM 

SVM using Sequential Minimal Optimisation (SMO) algorithm has been tested on 

the three colour groups as previously listed in Table 5.1, using both balanced class 

and unbalanced class. The followings are the datasets and results of identification for 

unbalanced class: 

White-spotted group 
 

 

The results for unbalanced dataset in the white-spotted group are given in Tables 

6.11a, 6.11b and 6.11c. 

 

Table 6.11a: Confusion matrix for SVM using SMO  

(C14H16 white group, unbalanced class, all features) 

 C14 H16 

C14 

H16 

9 

1 

0 

40 
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Table 6.11b: Confusion matrix for SVM using SMO  

(C14H16 white group, unbalanced class, colour features) 

 C14 H16 

C14 

H16 

6 

4 

0 

40 

 

Table 6.11c: Confusion matrix for SVM using SMO  

(C14H16 white group, unbalanced class, geometrical features) 

 C14 H16 

C14 10 0 

H16 0 40 

 

 

Balanced class 

 

Table 6.12a: Confusion matrix for SVM using SMO  

(C14H16 white group, balanced class, all features) 

 C14 H16 

C14 40 0 

H16 0 40 

 

Table 6.12b: Confusion matrix for SVM using SMO  

(C14H16 white group, balanced class, colour features) 

 C14 H16 

C14 32 0 

H16 8 40 

 

Table 6.12c: Confusion matrix for SVM using SMO  

(C14H16 white group, balanced class, geometrical features) 

 C14 H16 

C14 40 0 

H16 0 40 

 

 

The unbalanced dataset result in Table 6.11a has 98% accuracy. There was 1 miss 

where C. 14-guttata was misidentified as H. 16-guttata. Using colour features only 

shows a reduced accuracy of 92% compared to using all features. Using geometrical 

features only shows perfect accuracy.  

For the balanced dataset, obvious improvements on all identification metrics can be 

seen on Table 6.12a whereby using all features and geometrical features gave perfect 

class match. For the set which used colour features only, a slight reduction from 92% 

when using unbalanced set to 90% accuracy when using a balanced set was obtained.  
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Red-spotted group: Balanced class 
 

Table 6.13a: Confusion matrix for SVM using SMO  

(E4H1H2 red group, balanced class, all features) 

 E4 H1 H2 

E4 

 

40 2 2 

H1 

 

0 25 11 

H2 0 13 27 

 

Table 6.13b: Confusion matrix for SVM using SMO  

(E4H1H2 red group, balanced class, colour features) 

 E4 H1 H2 

E4 

 

28 10 2 

H1 

 

12 16 6 

H2 0 14 32 

 

Table 6.13c: Confusion matrix for SVM using SMO  

(E4H1H2 red group, balanced class, geometrical features) 

 E4 H1 H2 

E4 

 

40 5 4 

H1 

 

0 28 25 

H2 0 7 11 

 

 

For the results of Table 6.13a, the accuracy is 76.7%, where E. 4-pustulatus was 

correctly identified. Only 25 instances of H. axyridis f. spectabilis correctly 

identified, while 11 instances misidentified as H. axyridis f. conspicua. Similarly for 

H. axyridis f. conspicua, there were 27 instances correctly identified but 13 

misidentified as H. axyridis f. spectabilis. For results using colour features in Table 

6.13b, misidentification occurs on all species and accuracy dropped to only 63.3%. 

Prime suspects are elytra colour and spot colour components. This can only be 

confirmed with tests involving MLP and J48, as results obtained through SVM using 

SMO algorithm does not visually reveal features to be inspected as good as a MLP 

and decision tree. For Tables 6.13a and 6.13c, suspicion arises on why 

misidentification occurs within only the two H. axyridis forms, and not on E. 4-

pustulatus. 
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Table 6.14a: Confusion matrix for SVM using SMO  

(A2C5C7H3 black group, balanced class, all features) 

 A2 C5 C7 H3 

A2 

 

40 4 0 10 

C5 

 

0 32 4 17 

C7 

 

0 4 36 2 

H3 0 0 0 11 

 

Table 6.14b: Confusion matrix for SVM using SMO 

(A2C5C7H3 black group, balanced class, colour features) 

 A2 C5 C7 H3 

A2 

 

24 0 0 11 

C5 

 

8 32 0 10 

C7 

 

8 8 40 8 

H3 0 0 0 11 

 

 

Table 6.14c: Confusion matrix for SVM using SMO 

(A2C5C7H3 black group, balanced class, geometrical features) 

 A2 C5 C7 H3 

A2 

 

39 5 0 11 

C5 

 

0 12 12 13 

C7 

 

0 19 24 10 

H3 1 4 4 6 

 

The identification accuracies for results in Tables 6.14a, 6.14b                                                                                                                                                                                                                                                                                                                                                                                                                            

and 6.14c are 74.4%, 66.9% and 50.6% respectively. The figures are lower than 

White and Red groups, which is to be expected as the numbers of classes in the 

dataset grow. Interestingly observations on the result show that the majority of 

misidentifications revolve around the two species, C. 5-punctata and H. axyridis f. 

succinea. This has been a striking observation; however, no clear conclusion can be 

drawn on their relationship as more tests are needed. 
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6.2.4 Tests using Learning Vector Quantisation (LVQ) 

Using 10-fold cross validation, the following results were obtained for each group: 

 

White-spotted group 
 

The results for unbalanced class distribution are presented first in Tables 6.15a-

6.15c. 

Table 6.15a: Confusion matrix for test using LVQ  

(C14H16 white group, unbalanced, all features)  

 C14 H16 

C14 9 0 

H16 1 40 

 

Table 6.15b: Confusion matrix for test using LVQ  

(C14H16 white group, unbalanced, colour features) 

 C14 H16 

C14 7 0 

H16 3 40 

 

Table 6.15c: Confusion matrix for test using LVQ  

(C14H16 white group, unbalanced, geometrical features) 

 C14 H16 

C14 10 0 

H16 0 40 

 

White-spotted group: Balanced class 

Table 6.16a: Confusion matrix for test using LVQ (C14H16 white group, balanced, all features)  

 C14 H16 

C14 40 0 

H16 0 40 

 

Table 6.16b: Confusion matrix for test using LVQ  

(C14H16 white group, balanced, colour features) 

 C14 H16 

C14 34 2 

H16 6 38 

 

Table 6.16c: Confusion matrix for test using LVQ  

(C14H16 white group, balanced, geometrical features) 

 C14 H16 

C14 40 0 

H16 0 40 

 

Red-spotted group: Balanced class 

Table 6.17a: Confusion matrix for test using LVQ (E4H1H2 red group, balanced, all features)  

 E4 H1 H2 

E4 

 

40 3 0 

H1 

 

0 25 12 

H2 0 12 28 
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Table 6.17b: Confusion matrix for test using LVQ  

(E4H1H2 red group, balanced, colour features)  

 E4 H1 H2 

E4 

 

39 7 3 

H1 

 

0 25 10 

H2 1 8 27 

 

Table 6.17c: Confusion matrix for test using LVQ  

(E4H1H2 red group, balanced, geometrical features) 

 E4 H1 H2 

E4 

 

40 3 1 

H1 

 

0 23 20 

H2 0 14 19 

 

Black-spotted group 

 
Table 6.18a: Confusion matrix for test using LVQ  

(A2C5C7H3 black group, balanced, all features) 

 A2 C5 C7 H3 

A2 

 

40 0 0 6 

C5 

 

0 32 7 11 

C7 

 

0 2 32 8 

H3 0 6 1 15 

 

Table 6.18b: Confusion matrix for test using LVQ  

(A2C5C7H3 black group, balanced, colour features) 

 A2 C5 C7 H3 

A2 

 

23 3 0 7 

C5 

 

8 32 0 9 

C7 

 

5 4 36 3 

H3 4 1 4 21 

 

Table 6.18c: Confusion matrix for test using LVQ  

(A2C5C7H3 black group, balanced, geometrical features) 

 A2 C5 C7 H3 

A2 

 

40 1 0 5 

C5 

 

0 24 8 10 

C7 

 

0 7 27 11 

H3 0 8 5 14 

 

 

Accuracies for the unbalanced class distribution dropped to 94% when only colour 

features have been used. For the balanced group, this observation happened for the 

White group only. It is interesting to see that accuracies reduced almost linearly for 

the Red and Black group when identification were performed using all features, 
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colour and geometrical features one after another. There is no explanation for this 

phenomenon. 

 

6.2.5 Tests using Probabilistic Neural Network (PNN) 

PNN uses normalised Gaussian radial basis functions as a network (Hagan, Demuth 

and Beale, 2002). Using 10-fold cross validation, the following results were obtained 

for each group: 

 

White-spotted group 

 

The results using unbalanced class distribution are shown first. 

 
Table 6.19a: Confusion matrix for test using PNN  

(C14H16 white group, unbalanced, all features)  

 C14 H16 

C14 9 0 

H16 1 40 

 

Table 6.19b: Confusion matrix for test using PNN  

(C14H16 white group, unbalanced, colour features) 

 C14 H16 

C14 9 0 

H16 1 40 

 

Table 6.19c: Confusion matrix for test using PNN (C14H16 unbalanced, geometrical features) 

 C14 H16 

C14 9 0 

H16 1 40 

 

White-spotted group: Balanced 
 

Table 6.20a: Confusion matrix for test using PNN (C14H16 white group, balanced, all features) 

 C14 H16 

C14 40 0 

H16 0 40 

 

Table 6.20b: Confusion matrix for test using PNN (C14H16 balanced, colour features) 

 C14 H16 

C14 37 0 

H16 3 40 

 

Table 6.20c: Confusion matrix for test using PNN (C14H16 balanced, geometrical features) 

 C14 H16 

C14 40 0 

H16 0 40 
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Red-spotted group 

Table 6.21a: Confusion matrix for test using PNN  

(E4H1H2 red group, balanced, all features) 

 E4 H1 H2 

E4 

 

40 1 0 

H1 

 

0 28 17 

H2 0 11 23 

 

 

Table 6.21b: Confusion matrix for test using PNN  

(E4H1H2 red group, balanced, colour features) 

 E4 H1 H2 

E4 

 

34 7 4 

H1 

 

6 25 9 

H2 0 8 27 

 

Table 6.21c: Confusion matrix for test using PNN  

(E4H1H2 red group, balanced, geometrical features) 

 E4 H1 H2 

E4 

 

40 2 1 

H1 

 

0 25 27 

H2 0 13 12 

 

 

Black-spotted group 

 
Table 6.22a: Confusion matrix for test using PNN  

(A2C5C7H3 black group, balanced, all features) 

 A2 C5 C7 H3 

A2 

 

39 0 0 0 

C5 

 

0 34 0 10 

C7 

 

0 0 39 0 

H3 1 6 1 30 

 

Table 6.22b: Confusion matrix for test using PNN  

(A2C5C7H3 black group, balanced, colour features) 

 A2 C5 C7 H3 

A2 

 

30 0 0 5 

C5 

 

0 38 0 6 

C7 

 

2 0 38 0 

H3 8 2 2 29 

 

 

Table 6.22c: Confusion matrix for test using PNN  

(A2C5C7H3 black group, balanced, geometrical features) 

 A2 C5 C7 H3 

A2 

 

40 0 0 0 

C5 

 

0 27 4 12 

C7 

 

0 5 32 7 

H3 0 8 4 21 
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6.3 Analysis 

For a classification system to be useful, the results need to be benchmarked with 

statistical analysis techniques to signify improvements.  

 

6.3.1 Parameter analysis 

Figures 6.2 a-b graphically show the variation in average accuracy and model time 

for White-spotted group when the Minimum Standard Deviation constant 

(MinStdDev) is adjusted from 0 to 1.   

 

Figure 6.2a: Average Accuracy vs. MinStdDev for White-spotted group 
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Figure 6.2b: Average Time vs. MinStdDev for White -spotted group 

Similarly, Figures 6-3 a-b and Figures 6.4 a-b show the variations for the same 

quantities in concern for Red-spotted and Black-spotted groups. 

 

Figure 6.3a: Average Accuracy vs. MinStdDev for Red-spotted group 
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Figure 6.3b: Average Time vs. MinStdDev for Red-spotted group 

 

Figure 6.4a: Average Accuracy vs. MinStdDev for Black-spotted group 
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Figure 6.4b: Average Time vs. MinStdDev for Black-spotted group 
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6.3.2 Test of significance 

In order to measure improvements and validate the results, the author used z-test as 

the test statistics. Here the author assumed the population distribution was a standard 

normal distribution. In term of the features, selected single-feature has been obtained 

from J48 decision tree test. For others, more than one feature is obtained. Some 

examples are given in Table 6.23. 

Table 6.23:  Features obtained after J48 operations for four species 

Features  2-spot 5-spot 7-spot Pine 

Spot area       X 

Spot perimeter         

Spot max axis length       X 

Spot min axis length         

Spot area ratio       X 

Spot aspect ratio         

Spot colour a*         

Spot colour b* X       

Spot hue angle         

Elytra colour a*   X X   

Elytra colour b*         

Elytra hue angle         

 

The test of significance will first consider the null hypothesis and the alternative 

hypothesis (Graham, 2010). Null hypothesis is denoted as Ho, while the alternative 

hypothesis is called H1. The procedure to carry out the hypothesis test is outlined 

below. 

Step 1:  Set up the hypothesis. 

Step 2:  Calculate test statistic, S. 

Step 3: Determine the critical value, C. 

Step 4: Check if S is less than, or equal to C. 

 If this condition is satisfied, reject the alternative hypothesis. 

 

An example calculation on the procedure is explained using the ladybird scenario. 

Suppose data is obtained from a population consisting of two ladybird species; the 
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two-spot ladybird (C. 2-punctata) and h. axyridis f. spectabilis, each of which 

containing 50 samples. From earlier test using J48 decision tree, it is agreeable that 

the useful feature is spot colour (b*). The z-test used the mean value of some 

samples from the population of the feature, which in this case the mean of spot 

colour (b*) is used. Following the above procedure: 

 

Step 1: Set up the hypothesis. 

The alternative hypothesis H1 states that the mean value of spot colour (b*) is 

significantly different from the population mean. The null hypothesis Ho will 

assume otherwise, meaning that there is no significant difference between the spot 

colour of the two species therefore they are the same species. 

Step 2:  Calculate test statistic, S. 

This figure shows how much standard deviation units the samples are from the 

mean. 20 random samples are taken from the population. In this case standard 

deviation, σ, of the population is 0.02376. 

Standard Error, SE = σ / sqrt(n) = 0.005313 

Test statistic, S = ( mean(2-spot) – mean(other) )  / SE = mod(-38.3719) 

Step 3: Determine the critical value, C. 

Use Normal distribution table, a two-tailed test and a 5% level of significance will 

give approximately C = 2.0. 

Step 4: Check if S is less than, or equal to C. 

Since S is larger than C, the alternative hypothesis is accepted and the null 

hypothesis is rejected. On this basis, the samples of ladybirds are significantly 

different from the expected value i.e. they are not the same ladybird species. 
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6.4 Comparison of Classifiers Performances 

Comparison between classifiers is shown in this section to analyse classifiers 

performances.  

 

6.4.1 Balanced class distribution 

The accuracies for identification of C14H16 between each classifier are shown as a 

bar graph format in Figure 6.5: 

 

 

 

 

 

 

 

 

 

 

 

 

When using all features and geometrical features, perfect identification was 

recorded. An obvious observation is the identification rates go lower when colour 

features were used. This happened to all classifiers. It shows that the use of colour 

features are insufficient to completely identify the two species correctly, which 

suggests more useful features to be extracted and utilised by classifiers in addition to 

colour features. The graph also shows PNN is the best classifier for the identification 

between C14 and H16 in a balanced class distribution. 

 

Figure 6.5: Comparison of accuracies between classifiers to identify C14H16 

 (balanced class distribution) 
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6.4.2 Tests using J48 decision tree 

The objectives of the tests were: 

 To investigate the effect of varying sets of features to the identification 

results of both balanced and unbalanced datasets 

 To determine the best feature sets 

 To investigate intra-species variations in H.axyridis 

The tests involve the following groups of species: 

 E. 4-pustulatus and H. axyridis f. spectabilis (E4H1) 

 H. axyridis: f. spectabilis, f. conspicua and f. succinea (H1H2H3) 

10-fold cross validation was implemented for J48 tests.  

 

6.4.2.1 Unbalanced class 1:4 

There was a suspicion on the role of the feature set towards the outcome, that it 

could give way to better results. A simple test was conducted to check this 

possibility. The decision tree obtained through J48 for the test on E. 4-pustulatus and 

H. axyridis f. spectabilis was inspected and revealed three features, as shown in 

Figure 6.6.  

  

 

 

Figure 6.6: Decision tree for the test on E. 4-pustulatus and H. axyridis f. spectabilis 

NormMajAxis 

NormAreaRatio 

E4 (8.0) NormArea 

E4 (2.0) H1 (3.0) 

H1 (37.0) 
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The decision tree indicates that three most important features for the identification of 

E. 4-pustulatus and H. axyridis f. spectabilis were Major Axis, Area Ratio and Area. 

These were part of geometrical feature set. A MLP neural network was trained for 

the unbalanced class, and training results are shown in Table 6.24. 

 

Table 6.24: Training of MLP for unbalanced class of  

E. 4-pustulatus and H. axyridis f. spectabilis 

Run Q N M J I RMS error % Accuracy 

      MLP With 

J48 

MLP With 

J48 

1 50 12 24 2 500 0.45 0.2 80 80 

     1000 0.45 0.29 80 92 

     1500 0.45 0.29 80 92 

2 50 12 22 2 500 0.25 0.45 94 80 

     1000 0.2 0.29 96 92 

     1500 0.2 0.29 96 92 

3 50 12 12 2 500 0.2 0.29 96 92 

     1000 0.2 0.32 96 90 

     1500 0.2 0.29 96 92 

4 50 12 8 2 500 0.2 0.29 96 92 

     1000 0.2 0.29 96 92 

     1500 0.2 0.29 96 92 

5 50 12 4 2 500 0.2 0.29 96 92 

     1000 0.2 0.29 96 92 

     1500 0.2 0.32 96 90 

Note: 

Q = no. of exemplar vectors  N = input features 

M = no. of hidden neurons   J = no. of output neurons 

I =  no. of iterations 

 

Based on the training, 24 hidden neurons were selected as it gave the largest margin 

of improvement. Table 6.25a shows the confusion matrix obtained for the 

unbalanced class, firstly using MLP with backpropagation algorithm. Initially the 

outcome was not favourable for E. 4-pustulatus, where no true positive was obtained 

and striking 100% false negative.  

Table 6.25a: Confusion matrix for unbalanced class using MLP (all features) 

 E4 H1 

E4 0 0 

 H1 10 40 
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Table 6.25b shows the confusion matrix for the decision tree. It is interesting to note 

that the weighted average was based on the number of samples per class. This works 

to a disadvantage for the outnumbered class, in this case it was E. 4-pustulatus. 

Table 6.25b : Confusion matrix for J48 decision tree (all features) 

  E4 H1 

E4 4 2 

 H1 6 38 

 

The results for the combination of J48 decision tree and MLP are given in Table 

6.25c. 

Table 6.25c: Confusion matrix for combination of J48 and MLP (3 features) 

  E4 H1 

E4 9 3 

 H1 1 37 

 

It is clear that J48 decision tree gave better accuracy i.e. an improvement of 5%, than 

using MLP with backpropagation algorithm. The two techniques were merged 

together i.e. the decision tree provided the optimum features and MLP reached a 

minimised MSE through training it’s network using a ‘reduced’ feature set. This is 

shown in Figure 6.7, where this technique has greatly improved accuracy to about 

12% as compared to using MLP alone. 
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Figure 6.7: Cross-validation accuracies for H. axyridis f. spectabilis against  

E.4-pustulatus using BP, J48 and a combination of the two classifiers 

 

On the test of H. axyridis f. spectabilis against other species, the results were 

improved as shown in Figure 6.8. A. 2-punctata scores an improvement around 3%, 

slightly well better than using J48 alone; C. 5-punctata and C. 7-punctata improves 

very little. The test revealed a colour feature ‘Spot colour b*’ a suitable feature that 

minimise the decision tree and simplifies the solution for the test on A. 2-punctata, 

while the colour feature ‘BG colour a*’ is the right feature for the test on both C. 5-

punctata and C. 7-punctata.  

The same test has been conducted on H. axyridis (H1H2H3) to investigate intra-

species identification. Results are shown in Figure 6.9. It shows H. axyridis f. 

spectabilis can be correctly identified against H. axyridis f. conspicua to 72.5% 

accuracy, and 97.5% correctly identified against H. axyridis f. succinea.  
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Figure 6.8: Cross-validation accuracies for H. axyridis f. spectabilis against E.4-pustulatus and 

other species using BP, J48 and a combination of the two classifiers 

 

Figure 6.9: Intra-species cross-validation accuracies for H. axyridis f. spectabilis against H. 

axyridis f. spectabilis and H. axyridis f. succinea using BP, J48 and a combination of the two 

classifiers 
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On average, the area under curve (acronym ‘AUC’) showed significant improvement 

from 0.5 when using MLP alone, to 0.825 using J48 alone, and finally 0.913 using a 

combination of both classifiers. AUC represents “..the probability that a randomly 

chosen positive example is correctly ranked with greater suspicion than a randomly 

chosen negative example” (Bradley, 1997). The use of ROC curves and AUC does 

not depend on class skews, hence they are important metrics to consider for 

evaluating identification systems. The fact that AUC improves show that for the 

identification of E. 4-pustulatus and H. axyridis f. spectabilis, the use of combination 

classifiers can improve their identification. 

 

6.4.2.2 Balanced class 

Next, a balanced class distribution was used, where 40 samples per species were 

trained and tested. The same processes performed on E. 4-pustulatus and H. axyridis 

f. spectabilis in the unbalanced set were repeated for this balanced dataset. Test 

results and the resulting identification metrics for the balanced dataset are given in 

Tables 6.26a -6.26c. Training outcomes are provided in Table 6.27. 

Table 6.26a: Confusion matrix for MLP (balanced class) 

  E4 H1 

E4 40 2 

H1 0 38 

 

Table 6.26b: Confusion matrix for J48 decision tree (balanced class) 

  E4 H1 

E4 37 3 

H1 3 37 

 

Table 6.26c: Confusion matrix for combination of J48 and MLP (balanced class) 

  E4 H1 

E4 40 3 

H1 0 37 
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Table 6.27: Training of MLP for balanced class of E. 4-pustulatus and H. axyridis f. spectabilis 

Run Q N M J I RMS error % Accuracy 

      MLP With 

J48 

MLP With 

J48 

1 80 12 36 2 500 0.46 0.61 78.75 62.5 

     1000 0.16 0.49 97.5 76.25 

     1500 0.16 0.30 97.5 91.25 

2 80 12 24 2 500 0.25 0.19 93.75 96.25 

     1000 0.16 0.19 97.5 96.25 

     1500 0.16 0.19 97.5 96.25 

3 80 12 12 2 500 0.19 0.19 96.25 96.25 

     1000 0.16 0.19 97.5 96.25 

     1500 0.16 0.19 97.5 96.25 

4 80 12 8 2 500 0.19 0.19 96.25 96.25 

     1000 0.16 0.19 97.5 96.25 

     1500 0.16 0.19 97.5 96.25 

5 80 12 4 2 500 0.16 0.19 97.5 96.25 

     1000 0.16 0.19 97.5 96.25 

     1500 0.16 0.19 97.5 96.25 

Note: 

Q = no. of exemplar vectors      N = input features                 I =  no. of iterations 

M = no. of hidden neurons          J = no. of output neurons 

 

It is interesting to note the difference in performances between an unbalanced class 

and a balanced class distribution of the same test dataset, in this case the 

identification of E. 4-pustulatus and H. axyridis f. spectabilis. The metrics in 

concern are accuracy, RMS error and AUC. For 24 hidden neurons, the accuracy of 

the balanced class improved from 93.8% using MLP, to 96.3% when MLP was 

combined with J48. When the number of hidden neurons was reduced, there was 

slight reduction in accuracies for the combination system. This means there were not 

enough neurons to train the network. 

The RMS error values were better for the balanced class. This is observed based on 

the steady minimum values throughout the runs which converge to 0.26 for MLP, 
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and 0.19 for the combination system. In contrast, the unbalanced class gives RMS 

error of 0.2 for MLP, and 0.29 for the combination system. 

It is interesting to note that the results of this test complies with the two-sample 

Kolmogorov’s test, which shows that if the class distribution is not balanced a huge 

value is required for the dimensionality (Evangelista, 2006). This is shown in Figure 

5.14, where N1 is the number of samples in the minority class and N2 is the number 

of samples in the majority class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here Kolmogorov showed that if the classes were more severely imbalanced, the 

curse of dimensionality will grow exponentially. Similar situation occurs for the 

project in hand. 

 

  

 

Fig 6.10: Two-sample Kolmogorov test with fixed N2 =100, α = 0.05  

(Evangelista, 2006) 
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6.5 Summary 

 

Sorting of Harlequins and non-Harlequins using a classifier is proposed. WEKA 

using J48 pruned tree is a useful reference when creating a rule-based expert system 

because it provides the decision paths which create the rules. Inter-species separation 

can be performed using geometrical features or colour features. This selection 

depends on the visual appearance or popular query. For instance, a better scheme 

may ask user for body colour to narrow down query and this can be reconfirmed 

with CIELAB colour check. For some species, intra-species cases may be separated 

using colour features. This is because specimen from same species but different 

forms may have minimal variations in geometrical measurements, and geometrical 

features are linearly related. In this case colour will be an excellent choice, and this 

can be confirmed from statistical data.  

Comparisons of identification using MLP, SVM, LVQ and PNN classifiers for 

ladybird species placed under White, Red and Black spot colour groups have been 

investigated. Analysis based on these colour groups will be useful as a guide when 

the system is tested as a whole with other system components. For the identification 

of E. 4-pustulatus and H. axyridis f. spectabilis, results are discussed on the basis of 

balanced and unbalanced class distributions. This is summarised in Tables 6.28 and 

6.29. It is shown that a balanced class distribution is an excellent choice for 

automated ladybird identification, and has been used as a basis for testing the 

classifiers.  
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Table 6.28: Summary of results (Unbalanced class distribution) 

No Test 

Group 

Classes Classifier(s) Accuracy based on features (%) 

1 Inter-species Geometrical Colour All 

 White C14H16 MLP    

   SVM 100 92 98 

   LVQ 100 94 98 

   PNN 98 98 98 

       

  E4H1 MLP 80 

   J48 84 

   MLP + J48 92 (3 features) 

     

  A2H1 MLP 80 

   J48 96 

   MLP + J48 86 

     

  C5H1 MLP 80 

   J48 98 

   MLP + J48 96 

     

  C7H1 MLP 80 

   J48 98 

   MLP + J48 100 

2 Intra-species 

 H1H2 MLP 70 

  J48 73.8 

  MLP + J48 72.5 

    

 H1H3 MLP 98.8 

  J48 95 

  MLP + J48 97.5 
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Table 6.29: Summary of results (Balanced class distribution) 

No Test 

Group 

Classes Classifier(s) Accuracy based on features (%) 

1 Inter-species Geometrical Colour All 

 White C14H16 MLP 100 83.3 100 

   SVM 100 90 100 

   LVQ 100 90 100 

   PNN 100 96.3 100 

     

 Red E4H1H2 MLP 88.9 5.6 66.7 

   SVM 65.8 63.3 76.7 

   LVQ 68.3 75.8 77.5 

   PNN 64.2 71.7 75.8 

     

 Black A2C5C7H3 MLP 70.8 83.3 83.3 

   SVM 50.6 66.9 74.4 

   LVQ 65.6 70 74.4 

   PNN 75 84.4 88.8 

     

  E4H1 MLP 97.5 

   J48 92.5 

   MLP + J48 96.3 

     

  A2H1 MLP 80 

   J48 94 

   MLP + J48 98 

     

  C5H1 MLP 80 

   J48 98 

   MLP + J48 100 

     

  C7H1 MLP 100 

   J48 98 

   MLP + J48 100 
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CHAPTER 7   

SYSTEM INTEGRATION 

The previous chapter shows the importance of neural networks; they can be a 

learning module inside an automated identification system. Decision trees have been 

working well with neural networks. This chapter will show a use of decision trees 

other than for extracting the most important features. The resultant decision tree can 

be used for creating meaningful rules for a rule-based expert system. This idea is 

elaborated next with a proposed solution for building the overall automated ladybird 

identification system. 

 

7.1 Introduction 

Imagine an expert system query for specific characters or ‘features’ related to a 

ladybird. Typically it will start off with a query on colour, which would reduce the 

problem to a smaller number of species. For typical query, background colour can be 

the primary interrogator followed by spot colour. It may be useful to get extra inputs 

from query (spot count, pronotum patterns and pronotum colour) whenever image 

evident is scarce. Other than characters and geographic information, an expert 

normally requires time of day, season of the year, habitat (grass, trees, wetlands, 
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conifers, coastal, generalist), and context (Atkinson and Gammerman, 1987; Clark, 

2007). 

Whenever both geometric and colour features are required, as in the case of E. 4-

pustulatus vs. H. axyridis f. spectabilis, this means not enough information is 

obtained yet. It could be that the boundary of separation is too small, or training 

samples are insufficient. It may be useful to get other extra inputs (pronotum 

patterns/colour). Hence this suggests the use of an expert system as a knowledge 

base. The neural network may become a source for the database checker in the 

inference system. Expert system implementation can start with using colour as 

primary interrogator. The tests in previous chapter show that spot colour and elytra 

colour are the primary interrogator for the following species: 2-spot, 5-spot and 7-

spot ladybirds. The system will also need extra information like ‘count of spots’ and 

‘pronotum pattern’, which can only be reliably obtained from the image itself, or 

from user’s observation. 

 

 

7.2 Proposed overall ASI system 

 

This thesis is proposing a framework of working and individually tested components 

of a prototype ASI system as shown in Figure 1.5 in Chapter 1 earlier on. It 

emphasizes user interaction and explanation facility. There is a decision tree and a 

rule-based inference engine. The idea on applying rule-based inference engine has 

already been applied by researchers in the field of mechatronics, where Sugumaran 

(2007) has applied the concept in a research on the fault diagnosis of roller bearing, 

and further extended by Saravanan et al. for an application in vibration-based fault 

diagnosis of spur bevel gear box (Sugumaran, 2007; Saravanan, 2009).  In the field 



144 
 

of agricultural industry, Omid designed an expert system for sorting pistachio nuts 

using decision tree and fuzzy logic classifier (Omid, 2011). 

The decision tree uses input from 12 possible features obtained through image 

processing operations, as explained in previous chapters. Due to the ‘curse of 

dimensionality’, there is inherent limitation in the number of features to arrive at a 

solution.  The use of decision tree algorithm has indicated which feature is best for 

classification for the given training set, rather than using all features. This saves 

resources (time and labour).  The root node on top of the tree shows the best feature 

and other nodes show features which are arranged in descending order of 

importance.  The values appearing between the nodes show the level of contribution, 

and they are useful for generating rules.   The rule based part of the system aims at 

embedding structured human expertise into algorithmic form (Kecman, 2001). The 

block diagram is shown in Figure 7.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Block diagram of proposed hybrid system 
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Knowledge-based systems have the ability to handle non-linear, fuzzy and 

incomplete data; therefore, they are more suitable as the core for any computer-aided 

taxonomy (CAT) system (Chesmore, 2007). The proposed system is a dual-action 

system. The pattern recognition sub-system deals with input acquisition from 

images, where inputs are physical features and colours of the taxon. The extracted 

features are then fed to a classifier, while also being channeled to the decision trees. 

The output of the classifier will be stored in the knowledge base. The expert sub-

system contains a rule-based inference engine based on decision trees. This part is 

slightly different from the original ATI system proposed by Chesmore (Chesmore, 

2007). It receives the features and the resultant from the classifier. It also interacts 

with users through user interface. A neural knowledge base about the taxon interacts 

with the inference engine to supply approximate reasoning. While this neural 

network is able to learn, the inference engine should be able to provide reasoning. 

All these forms a recipe for an explanation facility to develop as the system evolves. 

This makes the system unique and differ from existing automated taxon 

identification systems. 

 

7.2.1 Implementation based on MATLAB and WEKA 

Fuzzy-inspired logic is used in the proposed system due to its ability to deal with 

uncertainty (Saravanan, 2009; Negnevitsky, 2005). The knowledge base may get 

information from human interactions, which can be inconsistent hence fuzzy (Zadeh, 

1983). For instance, in the ladybird identification domain, typical characters used by 

experts include the length of body, spot count, elytra colour, spot colour, etc.  Whilst 

a couple of them are precisely measured through image processing techniques, some 

of these are fuzzy in nature. In fact, the interpretation of colour itself varies between 
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individuals, for instance, different users may interpret redness level differently.  

Fuzzy-inspired logic maps the input space to the output space through a list of rules 

in the inference engine. The rules use ‘if-then’ statements which are evaluated in 

parallel. Membership functions are defined based on the decision tree condition at a 

particular node. The curves define the mapping to a degree of membership, normally 

between 0 and 1. Choices for membership function include trapezoidal, Gaussian, 

log, etc. The selection of which membership function to use is arbitrary. In the 

ladybird identification system, trapezoidal membership function is proposed. For 

each trapezoidal function there is a threshold. This threshold value is given by the 

decision tree based on the training dataset. Once the threshold is known, other 

parameters of the trapezoidal function can be determined. In this system, the 

threshold is set to lie in the mid-point along the sloping line formed by the 

interconnection of the points of inflection. This is elaborated in the next sub-section. 

 

7.2.2 Estimating the parameters of membership function 

An arbitrary trapezoidal membership function is shown in Figure 7.2.  

 

 

 

 

 

Let the coordinates X (P, 0) and Y (Δx, 1) be the points of inflection. These points 

are where the gradient starts to change. The aim is to estimate the slope and 

 
Figure 7.2: An arbitrary trapezoidal function 
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inflection points after a threshold Z (T, 0.5), which is also the mid-point, is obtained 

using decision tree. The formulation which follows is defined for an error of ± 0.05 

or 5% due to normalization. The lower and upper limit are set to m = 0 and infinity. 

Since the limit for Δy is 1, slope is given by: 

       
 

  
    (6.1) 

Since T is known, X is obtained from: 

  (  
  

 
  )   

 

7.3 Fuzzy system test results 

In the proposed system WEKA is used for generating decision tree, while the rest of 

the system is designed in MATLAB. The fuzzy logic toolbox is readily available in 

MATLAB, and the ‘if-then’ rules for the inference engine can be entered. In short, 

the sequence of operations is described as: 

1. Ensuring data is normalised, get decision tree. 

2. Define membership functions for all branches. 

3. Set ‘if-then’ rules. 

4. Test. 

For the purpose of showing the usefulness of the proposed system, the same data 

which was used in the previous tests are applied in the proposed system. The 

proposed system has been tested on the following sets of test data: 

 White-spotted ladybird group 

 Red-spotted ladybird group 

 Black-spotted ladybird group 
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For each group, an inference engine was built based on the rules. Membership 

functions have been defined after obtaining the decision tree structure which shows 

threshold values. 

 

7.3.1 White-spotted ladybird group 

The group consists of two white-spotted ladybird species in the training set, namely 

C. 14-guttata (C14) and Halyzia 16-guttata (H16). There were 80 samples in total, 

equally divided between the two species making 40 samples per species. The test 

data is given in Table A2 in Appendix IV. All 12 features have been fed into the 

system and the decision tree generated as shown in Figure 7.3: 

 

 

 

 

 

 

Figure 7.3: Decision tree for White-spotted ladybird group 

 

The rules are: 

1. IF (NormalisedArea is NormArea) THEN (WhitespotLadybird is Orange) 

2. IF (NormalisedArea is not NormArea) THEN (WhitespotLadybird is 

Creamspot) 

The rules stated above apply for all related White-spotted ladybirds. Membership 

functions generated from this operation is given in Figure 7.4.  

 

NormArea 

C14 (40.0) H16 (40.0) 

<= 0.03 >  0.03 
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The rule viewer for one test data (NormalisedArea = 0.0213) is shown in Figure 7.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Membership functions for White-spotted ladybird 

 
Figure 7.5: Rule viewer for test on White-spotted group 
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The output value for ‘WhitespotLadybird’ is 0.43 indicating the resultant 

identification is C14. To avoid results for the fuzzy-inspired system been obtained by 

chance only, random test data is created. Taking random samples of test values and 

making them a test set data; the test set now contains about 20% of the overall 

samples. The membership functions are shown in Appendix V. The test is repeated 

for this test set, and the resultant confusion matrix is shown in Table 7.1. 

Table 7.1: Confusion matrix for White-spotted group 

 C14 H16 

C14 8 0 

H16 0 8 

 

Based on the confusion matrix, perfect classification was obtained for both species. 

This is calculated as: 

           
(     )

(           )
 

C14 and H16 can be identified using the feature ‘NormArea’. This is evident from 

results of decision trees and the rule-based inference engine. Since accuracy is 100%, 

user input for further investigations is not required. 

 

7.3.2 Red-spotted ladybird group 

The group consists of three red-spotted ladybird species in the training set, namely E. 

4-pustulatus (Pine ladybird) and two forms of Harlequin ladybirds (H. axyridis f. 

spectabilis and H. axyridis f. conspicua). There were 120 samples in total, equally 

divided between the three making 40 samples per species. The twelve features have 

been fed into the system and the decision tree as shown in Figure 7.6 is generated: 
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Figure 7.6: Decision tree for Red-spotted ladybird group 

 

The membership functions for input variables are given in Figure 7.7, and 

membership functions for output variables are provided in Figure 7.8. 
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Figure 7.7: Membership functions for input variables (Red-spotted ladybird group) 
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Figure 7.8: Membership functions for output variables (Red-spotted ladybird group) 

 

The rules are: 

1. IF (MinAxis is NormMinAxis) and (SpotColour(b*) is SpotColour (b*)) 

THEN (RedSpotted is H1) 

2. IF (MinAxis is NormMinAxis) and (SpotColour(a*) is not SpotColour (a*)1) 

and (SpotColour(b*) is not SpotColour (b*)) THEN (RedSpotted is H1) 

3. If (MinAxis is NormMinAxis) and (SpotColour(a*) is SpotColour (a*)1) and 

(SpotColour(b*) is not SpotColour (b*)) THEN (RedSpotted is H2) 

4. IF (MinAxis is not NormMinAxis) and (SpotColour(a*) is SpotColour (a*)2) 

THEN (RedSpotted is E4) 

5. IF (MinAxis is not NormMinAxis) and (SpotColour(a*) is not SpotColour 

(a*)2) and (NormArea is NormArea1) THEN (RedSpotted is E4) 

6. IF (MinAxis is not NormMinAxis) and (SpotColour(a*) is not SpotColour 

(a*)2) and (NormArea is not NormArea1) THEN (RedSpotted is H2) 

 

The rule viewers for each species are shown in Appendix V. Similar to the previous 

test, to avoid results for the fuzzy-inspired system been obtained by chance only 

random test data is created for this group. Taking random samples of test values and 
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making them a test set data; the test set now contains about 20% of the overall 

samples. This test data is shown in Table A3 (Appendix IV). The test is repeated for 

this test set, and the resultant confusion matrix is shown in Table 7.2. 

Table 7.2: Confusion matrix for Red-spotted group 

 E4 H1 H2 

E4 8 0 0 

H1 0 8 0 

H2 0 7 1 

 

7.3.3 Black-spotted ladybird group 

The group consists of four black-spotted ladybird species in the training set, namely 

A. 2-punctata, C. 5-punctata, C. 7-punctata and one form of H. axyridis f. succinea. 

There were 160 samples in total, equally divided between the four making 40 

samples per species. The twelve features have been fed into the system and the 

decision tree generated as shown in Figure 7.9. The membership functions, if-else 

rules and rule viewers are given in Appendix V. Similar to the previous tests, 

random test data is created for this group. Taking random samples of test values and 

making them test set data, it contains about 20% of the overall samples. This test 

data is shown in Table A4 (Appendix IV). The test is repeated for this test set, and 

the resultant confusion matrix is shown in Table 7.3. 
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Figure 7.9: Decision tree for Black-spotted ladybird group 

 

 

Table 7.3: Confusion matrix for Black-spotted group 

 A2 C5 C7 H3 

A2 0 8 0 0 

C5 0 1 7 0 

C7 0 3 5 0 

H3 0 0 8 0 
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7.4 Overall Analysis 

 

Table 7.1 shows perfect identification results for both species. However, for Table 

6.2, the percentage of correct identification is lower, just about 70.8%. This is due to 

confusion between H. axyridis f. spectabilis and H. axyridis f. conspicua. Only one 

instance of H. axyridis f. conspicua is correctly identified. It is interesting to note 

that identification accuracy is 100% if separation between E. 4-pustulatus and H. 

axyridis is only required.  

For the confusion matrix given in Table 7.3, the percentage of correct identification 

is only 18.8%. These results are poor due to a few factors. First, there was an 

increased number of classes required to be identified, unlike White and Red groups. 

Secondly, most of the misclassification of A2 during testing showed many 

confusions between A2 and C5. Looking at the decision tree A2 should have been 

easily discriminated by its area ratio, where 33 instances have reached the 

NormAreaRatio leaf and shows only one misclassification. Similar observation is 

profound between H3 and C7. The background colour has been the most prevalent of 

the characters; however, it is also highly variant for H3. Checking through individual 

images for background colour shows the pronotum  colour of H3 is actually highly 

variable from pale yellow-orange to orange-red. This is supported by CIELAB 

colour distribution showing positive correlation. In other words, to discriminate H3 

and C7 two primary characters are needed: the background colour and the spot 

colour. 

From a different perspective, it can be interpreted in a positive way by looking at the 

identification of pairs of species. Looking at the identification of the pair C. 5-

punctata and C. 7-punctata shows there are 7 incorrect identifications in row 2 and 3 

in the third row giving a total of 10 incorrect identifications. This is more than half 
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of the number of samples used to test between the two species. One way would be to 

join the instances together, as in Table 7.4. 

 

Table 7.4: Adjusted confusion matrix for Black-spotted group 

 A2 C5/C7 H3 

A2 0 8 0 

C5/C7 0 16 0 

H3 0 8 0 

 

The accuracy is now 50%, which is an improvement by 31.2%. This scheme will 

work fine because, in reality, the two species are always confused due to their 

similarities in term of colours and physical measurements and there is a need to get 

the best feature to identify them. The number of spots could be the best feature for 

separating them in the feature space, as their species names suggest. Unfortunately, 

the number of spots is not one of the features been used in this work due to potential 

occlusion in images. One way around this is to get user’s confirmation of the number 

of spots, and any extra inputs the system can get to assist identification, such as 

biogeography and distribution data. The knowledge base will need updating. If A2 

and C5/C7 be joined together, the confusion matrix reduces to two ‘groups’; one 

with H3, and another group is non-Harlequin. The revised confusion matrix is shown 

in Table 7.5. 

Table 7.5: Revised confusion matrix for Black-spotted group 

 A2/C5/C7 H3 

A2/C5/C7 24 0 

H3 8 0 

 

The sorting system shown here has an improvement, as now three-quarter of the 

samples is non-Harlequins meaning the accuracy is 75%. However, notice that all 

H3s are still confused as non-Harlequins. The system will need to either query the 

user for extra information, perhaps the location where the unknown taxon was found, 
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the date and time, or check with the recently updated knowledge base.  Once 

supplied by the user, the inference system will need to check this piece of 

information with the knowledge base, which by now should gain updated 

knowledge. If the supplied location is not in the areas where Harlequins are known 

to exist, it may not be a Harlequin at all. This technique also applies to the Red-

spotted group, as per confusion matrix in Table 7.2. 

Readers need to be aware that the proposed system has been proposed using a fuzzy-

inspired expert system and neural knowledge base. In a more realistic way of sorting 

out whether a ladybird is a Harlequin or non-Harlequin, the expert system section 

can be achievable using a rule-based inference engine utilising decision trees. The 

decision trees produce production rules, hence generating pseudocodes for 

implementation. The threshold values at each node, as the name implies, become the 

deciding factor for the identification steps. Users, however, will be prompted for 

some ‘key’ questions. The questions will start by asking user the body length (in 

mm), pronotum pattern, location, time of year, one at a time (Southampton Natural 

History Society, 2005). The system will need to flag either 1 or 0 for each answer, 

where an array of these bits should finally make a justified and reliable 

identification.  
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An instance of identification is shown below: 

>>  Do you have the body size?    Y / N 

>> Is the size less than 6 mm? Y / N 

>> Are there markings on the pronotum? Y / N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>>  Habitat last found: Grassland Y / N 

     Garden Y / N 

     Heathland Y / N 

     Conifers Y / N 

>>  Where did you find the insect (postcode if known): 

>> Estimated date and time found: 

  

 
Figure 7.10: Ladybird anatomy (Southampton Natural History Society, 2005) 
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These questions, as one would have now realised, are definitely absent in an image-

based identification system known to the author. It plays the role of the human 

expert part of the system, much like using dichotomous key, and is actually vital 

towards final identification. This thesis has shown that without denying human 

interaction and expert inputs, reliable identification can be obtained and without 

doubt this is a novel approach. 

In general, the following steps may help users to follow the identification process: 

1. Prepare input image based on requirements. 

2. Feed image of unknown taxa into the system. User captures spot colour and 

elytron colour.  

3. System extracts colour and geometrical features. 

4. Features of an image passed to decision tree, while neural network as 

classifier receive features for training.  

5. The knowledge base supplies the rest of the training data to neural classifier.  

6. The test results of neural classifier become a confidence factor to aid user. 

7. Rule-based inference engine deduce inference based on the rules derived 

from decision trees, and using historical data obtained from knowledge base. 

8. An estimate of identification output is produced. User interactions are 

required to justify uncertainties, for instance, location, number of spots, etc. 

9. Final identification is produced when error goes to minimum. 
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7.5 Summary 

The techniques proposed in the chapter emphasised fuzzy-inspired expert system and 

user interaction to improve ladybird identification. This is a novel aspect of this work 

as it has not been attempted in any automated identification system, making this 

approach in itself a contribution to knowledge in the field. Before applying expert 

system, vital features have been selected through the use of decision tree, which 

makes the subsequent operations more efficient due to the reduced number of 

features in use. In terms of confusion matrix the technique is able to identify species 

of ladybirds, including Harlequins.  Species with similar spot colours, such as C. 14-

guttata and H. 16-guttata can be identified correctly. Identification between E. 4-

pustulatus and Harlequins, H. axyridis f. spectabilis and H. axyridis f. conspicua, 

produces 70.8% accuracy. In delicate situations where similarities between 

Harlequins and non-Harlequins exist, the confidence level can be too low for the 

system to identify a species. Therefore, the identification is aided by additional user 

inputs, which has been shown to improve identification to 75% accuracy.  
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CHAPTER 8   

CONCLUSION AND FUTURE STUDY 

8.1 Conclusion 

The automated identification of UK ladybirds has been investigated and 

implemented. At the start, a literature survey of peer reviewed journal papers and 

conference proceeding has been conducted which has been restricted to image-based, 

semi- and fully automated identification systems.  In addition to image processing 

techniques, the classification methods and their identification accuracies have been 

compared. Some early works used greyscale images, such as the analysis of 

quarantine fungal pests by Chesmore, Bernard, Inman and Bowyer (Chesmore, 

Bernard, Inman and Bowyer, 2003). Some systems such as DAISY, VeSTIS and 

Moth ID, work with 2D-colour images of the specimen. There are researchers who 

work with plant identification systems such as MORPHIDAS by Clark et al., and 

work by Stephen Gang Wu; both using 2D-images of leaves (Clark et al., 2007; Wu 

et al., 2007). Based on the literature survey, so far there has not been an attempt to 

produce an automated ladybird identification system as proposed in this thesis.  

A few key improvements identified from the comparisons require the proposed 

system to be specific rather than holistic, use morphometric features, able to generate 
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reasoning and future online implementation. After the needs are identified, the 

system structure has been formulated which involves colour image processing, 

neural networks, decision trees, fuzzy-inspired inference engine, knowledge-base 

and user interactions. Upon viewing the system as a whole, it is not 100% fully 

automated as it requires user interaction for improved species identification. Pre-

processing of images using standard image processing techniques has been 

performed on all available ladybird images, and is not fully automated. Greyscale 

information in terms of geometrical features was extracted, where they are made 

rotation and scale invariant. Colour information has been manually extracted from 

both elytra and spots via CIELAB colour space. The application of CIELAB colour 

space in this area is novel, as shown in Chapter 3, where colour distributions for both 

spot and elytra have been plotted on CIELAB colour planes. These coordinates are 

meaningful to a designer as feature vectors to use with classifiers.  

The use of J48 decision trees has simplified the feature maps by providing a decision 

path in the form of a tree diagram. It has also revealed threshold points for the use of 

a rule-based inference engine, and become a rule extractor. The rules are used in the 

fuzzy inference engine which controls information flow and initiates inference over 

the neural classifier, which acts as neural knowledge base. Both the decision tree and 

fuzzy inference engine make a fuzzy-inspired expert system. In short, user 

involvements are useful in the feature extraction process and during transitional 

stage between processes. 

Experiments on the following classifiers have been conducted: 

 MLP using back propagation algorithm 

 J48 decision tree 

 PNN 
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 LVQ 

 SVM 

They are subjected to both a balanced and unbalanced class distribution, where it has 

been shown in Chapter 6 that using a balanced class distribution gives better 

accuracies. With that, a summary of results is shown in Table 8.1. It is also noted 

that the preliminary work on image processing, feature extraction and classifier 

results are a success, considering the difficulties faced in tackling the 3D nature of 

the images where spots are obscured.  

 

Table 8.1: Summary of results (Balanced class distribution) 

No Test 

Group 

Classes Classifier(s) Accuracy based on features (%) 

1 Inter-species Geometrical Colour All 

 White C14H16 MLP 100 83.3 100 

   SVM 100 90 100 

   LVQ 100 90 100 

   PNN 100 96.3 100 

 

2 Red E4H1H2 MLP 88.9 5.6 66.7 

   SVM 65.8 63.3 76.7 

   LVQ 68.3 75.8 77.5 

   PNN 64.2 71.7 75.8 

 

3 Black A2C5C7H3 MLP 70.8 83.3 83.3 

   SVM 50.6 66.9 74.4 

   LVQ 65.6 70 74.4 

   PNN 75 84.4 88.8 

 

4  E4H1 MLP 97.5 

   J48 92.5 

   MLP + J48 96.3 

 

5  A2H1 MLP 80 

   J48 94 

   MLP + J48 98 

 

6  C5H1 MLP 80 

   J48 98 

   MLP + J48 100 

 

7  C7H1 MLP 100 

   J48 98 

   MLP + J48 100 
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Evaluation of the results reveals that: 

 PNN is the best classifier for the identification between C14 and H16 in a 

balanced class distribution. 

 Using colour features provided significant improvement in identification 

accuracy for the Black group only, whereas the identification accuracies in 

the White and Red groups did not improve. 

 For a balanced class, identification rates are reduced when only colour 

features are used, hence prompting the use of other features to be used in 

combination. 

 Combination of classifiers improves identification rates for some species, for 

instance, E. 4-pustulatus and H. axyridis f. spectabilis. 

 

The overall ASI system is an improvement over existing automated identification 

systems, as it emphasises the use of fuzzy-inspired expert system and neural 

knowledge base. This is shown in Table 8.2. 

Table 8.2: Summary of results after applying fuzzy expert system 

Test Group Classes Accuracy (%) 

White C14H16 100 

Red E4H1H2 70.8 

Black A2C5C7H3 75 

 

System integration tests show that C. 14-guttata and H. 16-guttata can be identified 

100% correct, and E. 4-pustulatus can be correctly identified against the Harlequins 

(H. axyridis f. spectabilis and H. axyridis f. conspicua) to 70.8% accuracy. Initially 

the result of identification between black-spotted ladybirds shows 18.8% accuracy. 

Through user interaction and re-grouping into Harlequins and non-Harlequins, the 

identification has been improved to 75% accuracy and a pre-sorting mechanism is 

established. It also shows that user inputs can be digested and reused, therefore 
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making use of the explanation ability of the fuzzy inference engine. User input helps 

ladybird identification where ambiguity exists, especially when the important 

character needed does not exist in the 12 extracted features. User input exchanges 

information with the system, and such information may include the location of where 

the ladybird was found, time of year, etc. To the best of the author’s knowledge, this 

feature is non-existent in any automated system for identifying ladybirds. In term of 

software development, the input from entomologists or more specifically, ladybird 

experts is vital to initially determine the classes to which the ladybird samples 

belong. Once the classes are established, non-experts can then explore the system.  

This thesis has shown that the use of image processing, neural networks and expert 

systems can be used to perform automated identification of ladybirds, even though it 

cannot include all 26 UK ladybird species due to shortage of samples for some 

species. It requires maximal user involvement in the image processing stage, even 

though minimal user inputs are needed in the classifier stage. Although the 

components of the system have not been fully integrated, for instance, some 

components are written in MATLAB, whereas others are JAVA libraries, a useful 

prototype has clearly been developed here. With this, the research aims and 

hypothesis have been fulfilled. 

 

8.2 Future work 

There are many ways to improve the existing project. In terms of application, the 

architecture of this project can be slightly modified for the identification of other 

invasive beetles in UK, for instance, rosemary beetle (Chrysolina americana) and 

lily beetle (Lilioceris lilii). These pests have become a threat to rosemary and lily 

growers in UK (Royal Horticultural Society, 2012). For the image processing part, 
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texture analysis of the elytra using Fast Fourier Transform (FFT), fractals or wavelet 

technique can be used to represent the texture even though both frequency-domain 

based technique and morphological measurements are suitable for identification. The 

location of spots can be represented using polar or log-polar coordinates. This 

representation has been applied by Payne (2001) to the analysis of Hawaiian Happy 

Face spider images and might be a useful feature for identification in addition to 

existing features (Payne, 2001).  

Even so, there is always the need to iron out more important issues such as tackling 

the 3D nature of the ladybird images. With an automated system in place and the 

depth of field is unknown, the ladybird size is difficult to estimate. One way around 

this issue, which has been applied to face recognition research, is to have multiple 

cameras to capture images at horizontal angles and reconstruct the image by stitching 

them to prepare for training. The computational loads, however, will be much higher 

to complete per colour images.  

In terms of development software, for applications involving MATLAB there are 

decision trees toolkits currently available in MATLAB. It means concentrating on 

MATLAB as the only development platform rather than multi-platform. For mobile 

applications, developers may use JAVA instead of MATLAB. To developers who 

require more sophistication, decision trees and fuzzy logic inference engine may be 

replaced by rough set, which deals with vagueness and ambiguity in human thinking 

and perception (Pawlak, 1982; Dubois and Prade, 1990; An and Hu, 2012). The 

derivative of rough set theory, called fuzzy rough decision trees (FRDT), may be 

useful in simplifying the system. In contrast to decision trees which require selecting 

nodes and pruning trees, FRDT is generated using fuzzy rough sets in dealing with 

real valued or fuzzy data sets. This is based on fuzzy lower approximation operator 
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and done at the part where there is a need to select nodes and splitting branches, 

rather than using Information Gain (An and Hu, 2012).   
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APPENDIX  I 

LIST OF LADYBIRD SPECIES AND ACRONYM 

Table A1: List of 26 UK ladybird species, including Harlequins 

Sub-family Species Common name Acronym 

Coccinellidae Adalia bipunctata Linnaeus 2-spot ladybird A2 

Coccinellidae Coccinella quinquepunctata Linnaeus 5-spot ladybird C5 

Coccinellidae Coccinella septempunctata Linnaeus 7-spot ladybird C7 

Coccinellidae Coccinella magnifica Redtenbacher Scarce 7-spot ladybird SC7 

Coccinellidae Calvia quattuordecimguttata Linnaeus Cream-spot ladybird C14 

Coccinellidae Halyzia sedecimguttata Linnaeus Orange ladybird H16 

Coccinellidae Harmonia axyridis f. spectabilis Pallas Harlequin ladybird H1 

Coccinellidae Harmonia axyridis f. conspicua Pallas Harlequin ladybird H2 

Coccinellidae Harmonia axyridis f. succinea Pallas Harlequin ladybird H3 

Coccinellidae Adalia decempunctata Linnaeus 10-spot ladybird A10 

Coccinellidae Hippodamia  variegate Goeze Adonis ladybrid AD1 

Coccinellidae Anatis ocellata Linnaeus  Eyed ladybird E1 

Coccinellidae Anisosticta novemdecimpunctata Linnaeus Water ladybird W1 

Coccinellidae Aphidecta obliterate Linnaeus Larch ladybird L1 

Coccinellidae Coccinella hieroglyphica Linnaeus Hieroglyphic ladybird HY1 

Coccinellidae Harmonia quadripunctata Pontoppidan Cream-streaked ladybird H4 

Coccinellidae Myzia oblongoguttata Linnaeus Striped ladybird S1 

Coccinellidae Coccinella undecimpunctata Linnaeus 11-spot ladybird  C11 

Coccinellidae Hippodamia tredecimpunctata Linnaeus 13-spot ladybird C13 

Coccinellidae Propylea quattuordecimpunctata Linnaeus 14-spot ladybird P14 

Coccinellidae Tytthaspis sedecimpunctata Linnaeus 16-spot ladybird C16 

Coccinellidae Myrrha octodecimguttata Linnaeus 18-spot ladybird C18 

Coccinellidae Psyllobora vigintiduopunctata Linnaeus 22-spot ladybird C22 

Epilachninae Subcoccinella vigintiquattuorpunctata 

Linnaeus 

24-spot ladybird C24 

Epilachninae Henosepilachna argus Geoffory in 

Fourcroy 

Bryony ladybird B1 

Chilocorinae Chilocorus  bipustulatus Linnaeus Heather ladybird HE1 

Chilocorinae Chilocorus renipustulatus  Scriba Kidney-spot ladybird K1 

Chilocorinae Exochomus quadripustulatus Linnaeus Pine ladybird E4 



172 
 

APPENDIX II 

COMPARISON OF COLOUR HISTOGRAMS FOR STANDARD IMAGES 

 

Objective:  To determine the range of usability of CIEL*a*b for colour 

segmentation 

Test images:   

 mandril  

 pepper 

 Coccinella magnifica Redtenbacher (scarce 7-spot ladybird)  

 Fabricated image of Adalia 2-punctata and Harmonia axyridis 

form spectabilis 

 Halyzia 16-guttata (orange ladybird/H16) 

 

Test 1: Mandril 

 

 
 

Figure A1:  Mandril image in normalised RGB  

 

Normalised & filtered input image red layer

green layer blue layer
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Figure A2: RGB histogram of mandril image showing range 

 of usable intensity values  

 

 
 

Figure A3: Colour space conversion to CIEL*a*b* 
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Figure A4: Segmentation via a* channel 

 

 

 

 

 
 

Figure A5: GretagMacbeth colour checker as reference 

 

 

Original Image Segmented Image 
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Figure A6: Binary mandril image after segmentation on channel a* 

to detect red and green colours only 

 

  

Segmentation output ch a*
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Test 2: Pepper 

 

 
 

Figure A7:  Pepper image in normalised RGB 

 

 
 

Figure A8: RGB histogram of pepper image showing range 

 of usable intensity values  
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Figure A9: After conversion to CIEL*a*b* 

 

 

 
Figure A10: Segmentation via a* channel 

 

 

Input image L* layer

a* layer b* layer

Original Image Segmented Image 
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Test 3: Comparison of colour histograms for scarce 7-spot ladybird 

 

Scarce 7-spot (with background) 

 

 

 
 

Figure A11: Colour space conversion from RGB to CIEL*a*b* 

 

 
 

Figure A12: RGB histogram for scarce 7-spot (with background) 
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Figure A13: Image of scarce 7-spot (with background) after colour segmentation 

 

 

 

 
 

Figure A14: Resultant binary image showing complicated background 

 

  

Original Image Segmented Image

BW image of LAB
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Scarce 7-spot (without background) 

 

 
 

Figure A15: Colour space conversion from RGB to CIEL*a*b* 

 

 
 

Figure A16: Colour histogram for scarce 7-spot (without background) 
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Figure A17: After colour segmentation showing rough segments of reddish colour 

 

 

 

 

Original Image Segmented Image
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Test on ellipsoids 

 

 

 
Figure A18: Fabricated 2-spot image in normalised RGB 

 

 
Figure A19: Colour histogram of fabricated 2-spot image (with background) 
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Figure A20: Fabricated 2-spot image in CIELAB 

 

 

 

 

 

 

 

fabric image L* layer

a* layer b* layer
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Without background: 

 

 
Figure A21: Fabricated H1 image in normalised RGB 

 

 
Figure A22: Colour histogram of fabricated 2-spot image  

(without background) 
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Figure A23: Fabricated H1 image in CIELAB 

 

 

 

 

 

 

 

 

 

 

 

fabric image L* layer
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Test on Orange ladybird (H16) 

 

 
Figure A24: H16 image in normalised RGB 

 

 
Figure A25: Histogram of H16 image in RGB 
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Figure A26: H16 image in CIELAB 
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H16 with elytra cutout 

 

 
Figure A27: H16 image (elytra cutout) in normalised RGB 

 

 
Figure A28: Histogram of H16 image (elytra cutout) in RGB 
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Figure A29: H16 image (elytra cutout) in CIELAB 

 

 

 

 

 

Overall Observations: 

 

1. Referring to Figure A4 and Figure A7, red colour segmentation works in 

Mandril image, of which values for thresholding obtained from visual checking 

using GretagMacbeth colour checker. 

2. In Figure A11, yellow colours can be segmented using ‘b*’ channel. 

3. Images with complicated backgrounds are difficult to segment from the object, 

and vice versa. Perhaps more data on the chrominance density function and the 

use of colour metrics (eg. Euclidean or Mahalanobis distance) may be able to 

reduce errors. 

fabric image L* layer

a* layer b* layer
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APPENDIX III 

DISSIMILARITY COEFFICIENTS CALCULATIONS 

Intra-OTU dissimilarity calculations 

 

  

|H1-H2| |H1-H3| |H2-H3|

0.085016 0.267334 0.201164

0.115587 0.347429 0.236818

0.071736 0.205272 0.133576

0.04223 0.161891 0.172923

0.146103 0.196719 0.133638

0.107106 0.258153 0.193314

0.242085 0.33536 0.116256

0.132619 0.180451 0.077195

0.30681 0.343052 0.039863

0.216227 0.265717 0.183066

0.219725 0.27278 0.053311

0.169409 0.141174 0.301283

0.157583 0.294636 0.167918

0.137004 0.268601 0.135321

0.077803 0.173511 0.115305

0.192553 0.314481 0.125437

0.256877 0.348586 0.093111

0.138246 0.238974 0.156628

0.211521 0.327761 0.157898

0.096021 0.28567 0.190283

0.058173 0.224436 0.169047

0.22145 0.361573 0.148572

0.209817 0.269135 0.061483

0.259595 0.300903 0.074435

0.03126 0.164571 0.164936

0.210761 0.2827 0.073182

0.24819 0.344297 0.159287

0.0885 0.140719 0.197583

0.064274 0.153787 0.214045

0.092472 0.139495 0.231438

0.104408 0.232845 0.131855

0.237433 0.334523 0.167728

0.29793 0.385673 0.089899

0.250058 0.238044 0.270529

0.042077 0.195959 0.158459

0.197008 0.314708 0.119333

0.057272 0.214678 0.16026

0.135485 0.165437 0.034059

0.03626 0.159535 0.123341

0.188884 0.325022 0.136885

0.153839 0.25439 0.146767 POP. AVERAGE 0.184999 10-SAMPLES AVG 0.183824

0.078878 0.072788 0.059749 0.085558

0.006222 0.005298 0.00357
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Inter-OTU dissimilarity calculations   

|C5-E4| |C5-C14| |C5-H16| |C5-H1| |C5-H2| |C5-H3| |C7-E4| |C7-C14| |C7-H16| |E4-C14| |C14-H16|

0.360954 0.015008 0.005394 0.266582 0.198532 0.160181 0.25977 0.088022 0.097093 0.34733 0.009811

0.300248 0.105495 0.033733 0.351423 0.240983 0.169913 0.306458 0.115796 0.044848 0.308999 0.083517

0.389279 0.009669 0.046787 0.203481 0.131985 0.08019 0.355672 0.047311 0.017759 0.384276 0.038174

0.229965 0.065815 0.062878 0.15538 0.114406 0.116641 0.214781 0.051142 0.049174 0.1644 0.008748

0.249738 0.078918 0.084664 0.215302 0.147686 0.033978 0.22673 0.074537 0.061651 0.179244 0.013811

0.270266 0.045697 0.040738 0.280542 0.208936 0.138208 0.257928 0.0215 0.052545 0.237313 0.052254

0.294306 0.130253 0.009913 0.329845 0.105229 0.076751 0.255615 0.088107 0.038175 0.182454 0.125848

0.381934 0.043741 0.015199 0.173326 0.059897 0.035752 0.381189 0.043084 0.014122 0.338413 0.03385

0.393609 0.003202 0.009009 0.356035 0.060261 0.033463 0.388272 0.008373 0.016108 0.39611 0.00993

0.392864 0.00313 0.001712 0.268169 0.187749 0.105879 0.392831 0.003225 0.0013 0.395886 0.001942

0.326316 0.050093 0.031003 0.260009 0.145566 0.095096 0.303925 0.05411 0.039277 0.293442 0.037788

0.064298 0.044599 0.027767 0.071988 0.062457 0.051518 0.069903 0.037192 0.028332 0.094055 0.039906

0.004134 0.001989 0.000771 0.005182 0.003901 0.002654 0.004886 0.001383 0.000803 0.008846 0.001593

POP. AVERAGE0.133717

0.125931
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APPENDIX IV 

TEST DATA SET AND CLASSIFIER RESULTS 

Table A2: Test data set for White-spotted group 

Spot 
col. 
(a*) 

Spot 
col. 
(b*) 

Spot 
Hue 
Angle 

BG 
col. 
(a*) 

BG 
col. 
(b*) 

Base
Hue 
Angle Area Perim 

Maj 
Axis 

Min 
Axis 

Area
Ratio 

Asp. 
Ratio 

Speci
es 
 
 

0.50

43 

0.51

8 

0.04 0.6

586 

0.78

83 

0.08 0.02 0.14 0.0

8 

0.08 0.68 0.6 C14

14 0.49

44 

0.51

7 

-

0.05 

0.5

713 

0.58

55 

0.11 0.02 0.11 0.1 0.06 0.69 0.55 C14 
0.51

19 

0.54

11 

0.04 0.6

087 

0.63

78 

0.11 0.02 0.1 0.0

9 

0.07 0.76 0.66 C14 
0.55

67 

0.62

5 

0.07 0.6

146 

0.59

43 

0.14 0.01 0.07 0.0

6 

0.05 0.76 0.68 C14 
0.49

44 

0.51

7 

-

0.05 

0.5

713 

0.58

55 

0.11 0.02 0.11 0.1 0.06 0.69 0.55 C14 
0.52

55 

0.56

06 

0.06 0.6

627 

0.67

95 

0.12 0.02 0.09 0.0

8 

0.06 0.7 0.62 C14 
0.55

67 

0.62

5 

0.07 0.6

146 

0.59

43 

0.14 0.01 0.07 0.0

6 

0.05 0.76 0.68 C14 
0.54

92 

0.53

82 

0.14 0.5

842 

0.56

79 

0.14 0.01 0.08 0.0

8 

0.06 0.72 0.59 C14 
0.49

94 

0.50

95 

-

0.01 

0.5

95 

0.76

8 

0.05 0.06 0.11 0.0

7 

0.29 0.73 0.56 H16 

0.51

11 

0.53

68 

0.05 0.6

507 

0.75

39 

0.09 0.12 0.27 0.1

5 

0.12 0.54 0.46 H16 
0.50

71 

0.55

3 

0.02 0.6

212 

0.67

79 

0.1 0.09 0.15 0.1

4 

0.12 0.7 0.55 H16 
0.49

94 

0.50

95 

-

0.01 

0.5

95 

0.76

8 

0.05 0.06 0.11 0.0

7 

0.29 0.73 0.56 H16 
0.49

94 

0.50

07 

-

0.11 

0.5

608 

0.82

65 

0.03 0.05 0.16 0.0

9 

0.07 0.59 0.54 H16 
0.54

69 

0.50

23 

0.24 0.6

407 

0.74

25 

0.08 0.15 0.18 0.2

1 

0.17 0.65 0.59 H16 
0.51

69 

0.56

22 

0.04 0.6

33 

0.71

75 

0.09 0.1 0.18 0.1

7 

0.15 0.62 0.51 H16 
0.49

76 

0.50

75 

-

0.05 

0.5

904 

0.78

83 

0.05 0.09 0.14 0.1

3 

0.11 0.66 0.48 H16 
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Table A3: Test data set for Red-spotted group 

Spot 
col. 
(a*) 

Spot 
col. 
(b*) 

Spot 
Hue 
Angle 

BG col. 
(a*) 

BG col. 
(b*) 

Base
Hue 
Angle 

Are
a 

Peri
m 

Maj 
Axis 

Min 
Axis 

Are
aRa
tio 

Asp. 
Rati
o 

Spe
cies 
 
 

0.764

3 

0.748

3 

0.13 0.496

8 

0.511

7 

-

0.04 

0.0

3 

0.1

3 

0.0

9 

0.0

8 

0.7

2 

0.6

6 

E4 

0.772

1 

0.627

9 

0.18 0.530

7 

0.435

5 

-

0.07 

0.0

3 

0.1

4 

0.1

1 

0.0

7 

0.7

1 

0.4

5 

E4 

0.691

2 

0.662

8 

0.14 0.500

5 

0.505 0.01 0.0

2 

0.1

3 

0.1

2 

0.0

6 

0.6

9 

0.4

9 

E4 

0.704

1 

0.680

3 

0.13 0.498

1 

0.505

2 

-

0.05 

0.0

2 

0.1

1 

0.1 0.0

7 

0.6

5 

0.5

9 

E4 

0.630

5 

0.687

1 

0.1 0.5 0.5 0 0.0

3 

0.1

3 

0.0

9 

0.0

9 

0.7 0.7 E4 

0.704

1 

0.680

3 

0.13 0.498

1 

0.505

2 

-

0.05 

0.0

2 

0.1

1 

0.1 0.0

7 

0.6

5 

0.5

9 

E4 

0.691

2 

0.662

8 

0.14 0.500

5 

0.505 0.01 0.0

2 

0.1

3 

0.1

2 

0.0

6 

0.6

9 

0.4

9 

E4 

0.704

1 

0.680

3 

0.13 0.498

1 

0.505

2 

-

0.05 

0.0

2 

0.1

1 

0.1 0.0

7 

0.6

5 

0.5

9 

E4 

0.619

1 

0.590

7 

0.15 0.502

5 

0.501

2 

0.18 0.2 0.3

1 

0.3

2 

0.3 0.6

5 

0.8

2 

H1 

0.622 0.680

2 

0.09 0.501 0.497

2 

-

0.05 

0.1

8 

0.3

4 

0.3

6 

0.3

3 

0.6

3 

0.8

9 

H1 

0.645

5 

0.739

5 

0.09 0.486

8 

0.528

2 

-

0.07 

0.4 0.5

1 

0.5

3 

0.4

8 

0.5

4 

0.7 H1 

0.580

6 

0.798 0.04 0.510

1 

0.480

9 

-

0.08 

0.2

3 

0.3

4 

0.3

3 

0.3

4 

0.6

5 

0.9

1 

H1 

0.661

1 

0.674

3 

0.12 0.5 0.5 0.25 0.2

5 

0.3

8 

0.3

7 

0.3

9 

0.6

2 

0.8

7 

H1 

0.748

7 

0.750

5 

0.12 0.504

2 

0.508

3 

0.07 0.1

2 

0.2

4 

0.2

7 

0.2

4 

0.6

5 

0.8

5 

H1 

0.523

7 

0.802

2 

0.01 0.5 0.5 0 0.2

2 

0.3

1 

0.3

1 

0.3

1 

0.6

3 

0.6

4 

H1 

0.545 0.794

9 

0.02 0.495

2 

0.511 -

0.07 

0.4

1 

0.6

4 

0.6

5 

0.5

7 

0.4

7 

0.6

2 

H1 

0.601

1 

0.587

6 

0.14 0.491

2 

0.510

8 

-

0.11 

0.2

4 

0.5

3 

0.5

1 

0.5

5 

0.4

5 

0.7

9 

H2 

0.642

9 

0.535

6 

0.21 0.492

1 

0.454

1 

0.03 0.1

9 

0.2

8 

0.2

7 

0.2

6 

0.6

6 

0.7

8 

H2 

0.709 0.719 0.12 0.496

9 

0.503

1 

-

0.12 

0.2 0.2

4 

0.2

5 

0.2

8 

0.6

5 

0.6

6 

H2 

0.595

4 

0.618

3 

0.11 0.503

4 

0.488

4 

-

0.05 

0.2

2 

0.2

7 

0.2

5 

0.2

5 

0.6 0.7

6 

H2 

0.610

5 

0.645

6 

0.1 0.493

9 

0.485

2 

0.06 0.4 0.5

4 

0.5

5 

0.5

1 

0.4

9 

0.4 H2 

0.636

2 

0.572

2 

0.17 0.498

2 

0.504

3 

-

0.06 

0.4

2 

0.6

4 

0.6

2 

0.5

8 

0.4

3 

0.6

2 

H2 

0.748

8 

0.693

3 

0.14 0.507

1 

0.496

5 

-

0.18 

0.1

7 

0.3 0.2

8 

0.2

5 

0.6

3 

0.7 H2 

0.605

7 

0.56 0.17 0.479

1 

0.475

4 

0.11 0.0

4 

0.1 0.1 0.0

9 

0.7

2 

0.7

9 

H2 
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Table A4: Test data set for Black-spotted group 

Spot 
col. 
(a*) 

Spot 
col. 
(b*) 

Spot 
Hue 
Angle 

BG col. 
(a*) 

BG col. 
(b*) 

Bas
eHu
e 
Ang
le 

Are
a 

Peri
m 

Maj 
Axis 

Min 
Axis 

Are
aRa
tio 

Asp. 
Rati
o 

Spe
cies 
 
 

0.478

1 

0.450

9 

0.07 0.570

7 

0.595 0.1 0.1

7 

0.4

7 

0.5

5 

0.3

3 

0.6

2 

0.4

2 

A2 

0.499 0.503

3 

-

0.05 

0.627

1 

0.618

3 

0.1

3 

0.2 0.5 0.5

5 

0.4

1 

0.5

6 

0.5

9 

A2 

0.503

2 

0.499

1 

-

0.21 

0.651

5 

0.636

4 

0.1

3 

0.1

6 

0.5

8 

0.3

4 

0.6

1 

0.4

8 

0.7

4 

A2 

0.497

4 

0.485

1 

0.03 0.749

8 

0.798

1 

0.1

1 

0.2

1 

0.5 0.6

1 

0.3

4 

0.5

8 

0.5

1 

A2 

0.502 0.500

4 

0.22 0.667

6 

0.654

6 

0.1

3 

0.1

9 

0.4

6 

0.4

4 

0.5 0.5

7 

0.6

2 

A2 

0.508

1 

0.513 0.09 0.628

2 

0.615

7 

0.1

3 

0.1

6 

0.4

3 

0.3

9 

0.5

2 

0.4

9 

0.6

8 

A2 

0.484

3 

0.449

8 

0.05 0.514

2 

0.532 0.0

7 

0.1

6 

0.4

9 

0.6

6 

0.2

8 

0.5

7 

0.4 A2 

0.502

2 

0.500

4 

0.22 0.607

1 

0.595

8 

0.1

3 

0.1

9 

0.4

2 

0.3

2 

0.6

9 

0.5

6 

0.8

8 

A2 

0.498

4 

0.504

2 

-

0.06 

0.693

1 

0.685

7 

0.1

3 

0.6

7 

0.8

3 

0.8

1 

0.8

5 

0.6

6 

0.8

5 

C5 

0.506

7 

0.495

7 

-

0.16 

0.676

6 

0.655

6 

0.1

4 

0.4

5 

0.5 0.5 0.5 0.6

9 

0.6

7 

C5 

0.498

4 

0.504

2 

-

0.06 

0.693

1 

0.685

7 

0.1

3 

0.6

7 

0.8

3 

0.8

1 

0.8

5 

0.6

6 

0.8

5 

C5 

0.488

9 

0.505

9 

-

0.17 

0.770

9 

0.717

1 

0.1

4 

0.2

1 

0.3

3 

0.3

5 

0.2

8 

0.6

3 

0.5 C5 

0.498

7 

0.503

7 

-

0.05 

0.642

9 

0.642

3 

0.1

3 

0.2 0.4

4 

0.4

1 

0.4

9 

0.7

3 

0.9

3 

C5 

0.506

7 

0.495

7 

-

0.16 

0.676

6 

0.655

6 

0.1

4 

0.4

5 

0.5 0.5 0.5 0.6

9 

0.6

7 

C5 

0.488

9 

0.505

9 

-

0.17 

0.770

9 

0.717

1 

0.1

4 

0.2

1 

0.3

3 

0.3

5 

0.2

8 

0.6

3 

0.5 C5 

0.499

3 

0.507

3 

-

0.01 

0.667

6 

0.675 0.1

2 

0.4

7 

0.6

9 

0.6

8 

0.7 0.7

2 

0.9

3 

C5 

0.501

2 

0.515

6 

0.01 0.720

8 

0.773

8 

0.1

1 

0.4

1 

0.4

7 

0.4

8 

0.4

4 

0.6

7 

0.8

4 

C7 

0.52 0.544

9 

0.07 0.713

4 

0.795

9 

0.1 0.2 0.2

9 

0.3

1 

0.2

9 

0.7

2 

0.7

6 

C7 

0.498

1 

0.508

7 

-

0.03 

0.744

5 

0.744

2 

0.1

3 

0.7

8 

0.9 0.9

6 

0.8

3 

0.6

4 

0.7

7 

C7 

0.575

1 

0.570

3 

0.13 0.702

5 

0.713

2 

0.1

2 

0.5

8 

0.7

7 

0.7

4 

0.8 0.6

5 

0.8

4 

C7 

0.499 0.523

9 

-

0.01 

0.725 0.792

5 

0.1 0.7

7 

0.8

9 

0.8

8 

0.8

8 

0.6

8 

0.7

4 

C7 

0.52 0.544

9 

0.07 0.713

4 

0.795

9 

0.1 0.2 0.2

9 

0.3

1 

0.2

9 

0.7

2 

0.7

6 

C7 

0.498

9 

0.516

8 

-

0.01 

0.729

1 

0.734

8 

0.1

2 

0.2

9 

0.3

4 

0.3

3 

0.3

3 

0.7

3 

0.8

3 

C7 

0.514

4 

0.512

8 

0.13 0.779

7 

0.735

8 

0.1

4 

0.3 0.4

2 

0.4

4 

0.4 0.6

8 

0.8

4 

C7 

0.582

5 

0.748

4 

0.05 0.500

8 

0.504

6 

0.0

3 

0.2

8 

0.4

2 

0.4

1 

0.4

6 

0.6

1 

0.7

6 

H3 

0.494

8 

0.512

5 

-

0.06 

0.533

3 

0.534

2 

0.1

2 

0.2

2 

0.4

4 

0.4

3 

0.4

6 

0.4

9 

0.6

1 

H3 

0.503

4 

0.509

6 

0.05 0.538 0.571

8 

0.0

8 

0.2

9 

0.7 0.8

7 

0.6

9 

0.2

1 

0.7

9 

H3 

0.497

1 

0.525

3 

-

0.02 

0.649

5 

0.684

8 

0.1

1 

0.1

4 

0.2

1 

0.2

2 

0.2

3 

0.6

8 

0.9

2 

H3 

0.520

7 

0.490

9 

-

0.18 

0.620

6 

0.658

4 

0.1 0.0

1 

0.1 0.1

4 

0.0

9 

0.7

1 

0.6

3 

H3 

0.501

9 

0.497

1 

-

0.09 

0.650

5 

0.640

1 

0.1

3 

0.6

9 

0.8

5 

0.8

7 

0.8

3 

0.6

4 

0.8

1 

H3 

0.493

5 

0.512

2 

-

0.08 

0.737

2 

0.736

5 

0.1

3 

0.2

8 

0.3

3 

0.3

4 

0.3

2 

0.6

6 

0.9 H3 

0.518

5 

0.457

3 

-

0.07 

0.574

3 

0.539

9 

0.1

7 

0.5

5 

0.7

6 

0.7

9 

0.7

4 

0.6

3 

0.9

1 

H3 
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CLASSIFIER RESULTS 

6.2.4.2 SVM using SMO algorithm: test results  

Table 6.11d: Metrics for SVM using SMO (C14H16 white group, unbalanced class, all features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.9 0 1 0.9 0.95 

H16 1 0.1 0.976 1 0.95 

Weighted average 0.98 0.08 0.98 0.98 0.95 

 

Table 6.11e: Metrics for SVM using SMO  

(C14H16 white group, unbalanced class, colour features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.6 0 1 0.6 0.8 

H16 1 0.4 0.909 1 0.8 

Weighted average 0.92 0.32 0.927 0.92 0.8 

 

Table 6.11f: Metrics for SVM using SMO 

 (C14H16 white group, unbalanced class, geometrical features) 

Class TP rate FP rate Precision Recall AUC 

C14 1 0 1 1 1 

H16 1 0 1 1 1 

Weighted average 1 0 1 1 1 

 

Balanced class 

 

Table 6.12d: Metrics for SVM using SMO (C14H16 white group, balanced class, all features) 

Class TP rate FP rate Precision Recall AUC 

C14 1 0 1 1 1 

H16 1 0 1 1 1 

Weighted average 1 0 1 1 1 

 

Table 6.12e: Metrics for SVM using SMO  

(C14H16 white group, balanced class, colour features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.8 0 1 0.8 0.9 

H16 1 0.2 0.833 1 0.9 

Weighted average 0.9 0.1 0.917 0.9 0.9 

 

Red-spotted group: Balanced class 

 

Table 6.13d: Metrics for SVM using SMO (E4H1H2 red group, balanced class, all features) 

Class TP rate FP rate Precision Recall AUC 

E4 1 0.05 0.909 1 0.981 

H1 0.625 0.138 0.694 0.625 0.744 

H2 0.675 0.163 0.675 0.675 0.816 

Weighted average 0.767 0.117 0.76 0.767 0.847 
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Table 6.13e: Metrics for SVM using SMO (E4H1H2 red group, balanced class, colour features) 

Class TP rate FP rate Precision Recall AUC 

E4 0.7 0.15 0.7 0.7 0.838 

H1 0.4 0.225 0.471 0.4 0.588 

H2 0.8 0.175 0.696 0.8 0.844 

Weighted average 0.633 0.183 0.622 0.633 0.757 

 

Table 6.13f: Metrics for SVM using SMO  

(E4H1H2 red group, balanced class, geometrical features) 

Class TP rate FP rate Precision Recall AUC 

C4 1 0.113 0.816 1 0.944 

H1 0.7 0.313 0.528 0.7 0.694 

H2 0.275 0.088 0.611 0.275 0.745 

Weighted average 0.658 0.171 0.652 0.658 0.794 

 

Black-spotted group: Balanced class 

 

Table 6.14d: Metrics for SVM using SMO  

(A2C5C7H3 black group, balanced class, all features) 

Class TP rate FP rate Precision Recall AUC 

A2 1 0.117 0.741 1 0.95 

C5 0.8 0.175 0.604 0.8 0.806 

C7 0.9 0.05 0.857 0.9 0.963 

H3 0.275 0 1 0.275 0.695 

Weighted average 0.744 0.085 0.8 0.744 0.854 

 

Table 6.14e: Metrics for SVM using SMO  

(A2C5C7H3 black group, balanced class, colour features) 

Class TP rate FP rate Precision Recall AUC 

A2 0.6 0.092 0.686 0.6 0.748 

C5 0.8 0.15 0.64 0.8 0.81 

C7 1 0.2 0.625 1 0.769 

H3 0.275 0 1 0.275 0.643 

Weighted average 0.669 0.11 0.738 0.669 0.775 

 

Table 6.14f: Metrics for SVM using SMO  

(A2C5C7H3 black group, balanced class, geometrical features) 

Class TP rate FP rate Precision Recall AUC 

A2 0.975 0.133 0.709 0.975 0.931 

C5 0.3 0.208 0.324 0.3 0.585 

C7 0.6 0.242 0.453 0.6 0.764 

H3 0.15 0.075 0.4 0.15 0.514 

Weighted average 0.506 0.165 0.472 0.506 0.699 
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6.2.5 Tests using Learning Vector Quantisation (LVQ) 

White-spotted group 

 
 Table 6.15d: Metrics using LVQ (C14H16 white group, unbalanced, all features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.9 0 1 0.9 0.95 

H16 1 0.1 0.976 1 0.95 

Weighted average 0.98 0.08 0.98 0.98 0.95 

 

Table 6.15e: Metrics using LVQ (C14H16 white group, unbalanced, colour features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.7 0 1 0.7 0.85 

H16 1 0.3 0.93 1 0.85 

Weighted average 0.94 0.24 0.944 0.94 0.85 

 

White-spotted group : Balanced class 

 
Table 6.16d: Metrics using LVQ (C14H16 white group, balanced, all features) 

Class TP rate FP rate Precision Recall AUC 

C14 1 0 1 1 1 

H16 1 0 1 1 1 

Weighted average 1 0 1 1 1 

 

Table 6.16e: Metrics using LVQ (C14H16 white group, balanced, colour features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.85 0.05 0.944 0.85 0.9 

H16 0.95 0.15 0.864 0.95 0.9 

Weighted average 0.9 0.1 0.904 0.9 0.9 

 
Table 6.16f: Metrics using LVQ (C14H16 white group, balanced, geometrical features) 

Class TP rate FP rate Precision Recall AUC 

C14 1 0 1 1 1 

H16 1 0 1 1 1 

Weighted average 1 0 1 1 1 

Note: Results obtained at learning rate = 0.3, total iterations = 1000, linear decay learning function 

Red-spotted group : Balanced class 

Table 6.17d: Metrics using LVQ (E4H1H2 red group, balanced, all features)  

Class TP rate FP rate Precision Recall AUC 

E4 1 0.038 0.93 1 0.981 

H1 0.625 0.15 0.676 0.625 0.738 

H2 0.7 0.15 0.7 0.7 0.775 

Weighted average 0.775 0.113 0.769 0.775 0.831 

 
Table 6.17e: Metrics using LVQ (E4H1H2 red group, balanced, colour features)  

Class TP rate FP rate Precision Recall AUC 

E4 0.975 0.125 0.796 0.975 0.925 

H1 0.625 0.125 0.714 0.625 0.75 

H2 0.675 0.113 0.75 0.675 0.781 

Weighted average 0.758 0.121 0.753 0.758 0.819 
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Table 6.17f: Metrics using LVQ (E4H1H2 red group, balanced, geometrical features)  

Class TP rate FP rate Precision Recall AUC 

E4 1 0.05 0.909 1 0.975 

H1 0.575 0.25 0.535 0.575 0.663 

H2 0.475 0.175 0.576 0.475 0.65 

Weighted average 0.683 0.158 0.673 0.683 0.763 

Note: Results obtained at learning rate = 0.3, total iterations = 1000, linear decay learning function 

Black-spotted group 
 

Table 6.18d: Metrics using LVQ (A2C5C7H3 black group, balanced, all features) 

Class TP rate FP rate Precision Recall AUC 

A2 1 0.05 0.87 1 0.975 

C5 0.8 0.15 0.64 0.8 0.825 

C7 0.8 0.083 0.762 0.8 0.858 

H3 0.375 0.058 0.682 0.375 0.658 

Weighted average 0.744 0.085 0.738 0.744 0.829 

 

Table 6.18e: Metrics using LVQ (A2C5C7H3 black group, balanced, colour features) 

Class TP rate FP rate Precision Recall AUC 

A2 0.575 0.083 0.697 0.575 0.746 

C5 0.8 0.142 0.653 0.8 0.829 

C7 0.9 0.1 0.75 0.9 0.9 

H3 0.525 0.075 0.7 0.525 0.725 

Weighted average 0.7 0.1 0.7 0.7 0.8 

 

Table 6.18f: Metrics using LVQ (A2C5C7H3 black group, balanced, geometrical features) 

Class TP rate FP rate Precision Recall AUC 

A2 1 0.05 0.87 1 0.975 

C5 0.6 0.15 0.571 0.6 0.725 

C7 0.675 0.15 0.6 0.675 0.763 

H3 0.35 0.108 0.519 0.35 0.621 

Weighted average 0.656 0.115 0.64 0.656 0.771 

 

6.2.6 Tests using Probabilistic Neural Network (PNN) 

White-spotted group 

Table 6.19d: Metrics using PNN (C14H16 white group, unbalanced, all features)  

Class TP rate FP rate Precision Recall AUC 

C14 0.9 0 1 0.9 1 

H16 1 0.1 0.976 1 1 

Weighted average 0.98 0.08 0.98 0.98 1 

 

Table 6.19e: Metrics using PNN (C14H16 white group, unbalanced, colour features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.9 0 1 0.9 0.93 

H16 1 0.1 0.976 1 0.93 

Weighted average 0.98 0.08 0.98 0.98 0.93 

 

Table 6.19f: Metrics using PNN (C14H16 white group, unbalanced, geometrical features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.9 0 1 0.9 0.93 

H16 1 0.1 0.976 1 0.93 

Weighted average 0.98 0.08 0.98 0.98 0.93 
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Note: Results obtained at MinStdDev = 0.1, no. of clusters = 2 

White-spotted group : Balanced 
 

Table 6.20d: Metrics using PNN (C14H16 white group, balanced, all features) 

Class TP rate FP rate Precision Recall AUC 

C14 1 0 1 1 1 

H16 1 0 1 1 1 

Weighted average 1 0 1 1 1 

 

Table 6.20e: Metrics using PNN (C14H16 white group, balanced, colour features) 

Class TP rate FP rate Precision Recall AUC 

C14 0.925 0 1 0.925 0.986 

H16 1 0.075 0.93 1 0.986 

Weighted average 0.963 0.038 0.965 0.963 0.986 

 

Table 6.20f: Metrics using PNN (C14H16 white group, balanced, geometrical features) 

Class TP rate FP rate Precision Recall AUC 

C14 1 0 1 1 1 

H16 1 0 1 1 1 

Weighted average 1 0 1 1 1 

Note: Results obtained at MinStdDev = 0.1, no. of clusters = 2 

Red-spotted group 
 

Table 6.21d: Metrics using PNN (E4H1H2 red group, balanced, all features) 

Class TP rate FP rate Precision Recall AUC 

E4 1 0.013 0.976 1 0.993 

H1 0.7 0.213 0.622 0.7 0.825 

H2 0.575 0.138 0.676 0.575 0.847 

Weighted average 0.758 0.121 0.758 0.758 0.888 

 

Table 6.21e: Metrics using PNN (E4H1H2 red group, balanced, colour features) 

Class TP rate FP rate Precision Recall AUC 

E4 0.85 0.138 0.756 0.85 0.932 

H1 0.625 0.188 0.625 0.625 0.796 

H2 0.675 0.1 0.771 0.675 0.806 

Weighted average 0.717 0.142 0.717 0.717 0.845 

 

Table 6.21f: Metrics using PNN ((E4H1H2 red group, balanced, geometrical features) 

Class TP rate FP rate Precision Recall AUC 

E4 1 0.038 0.93 1 0.988 

H1 0.625 0.338 0.481 0.625 0.711 

H2 0.3 0.163 0.48 0.3 0.724 

Weighted average 0.642 0.179 0.63 0.642 0.808 

Note: Results obtained at MinStdDev = 0.1, no. of clusters = 3 
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Black-spotted group 
 

Table 6.22d: Metrics using PNN (A2C5C7H3 black group, balanced, all features) 

Class TP rate FP rate Precision Recall F-measure AUC 

A2 0.975 0 1 0.975 0.987 1 

C5 0.85 0.083 0.773 0.85 0.81 0.954 

C7 0.975 0 1 0.975 0.987 1 

H3 0.75 0.067 0.789 0.75 0.769 0.935 

Weighted 

average 

0.888 0.038 0.891 0.888 0.888 0.972 

 

Table 6.22e: Metrics using PNN (A2C5C7H3 black group, balanced, colour features) 

Class TP rate FP rate Precision Recall F-measure AUC 

A2 0.75 0.042 0.857 0.75 0.8 0.956 

C5 0.95 0.05 0.864 0.95 0.905 0.972 

C7 0.95 0.017 0.95 0.95 0.95 0.999 

H3 0.725 0.1 0.707 0.725 0.716 0.873 

Weighted 

average 

0.844 0.052 0.845 0.844 0.843 0.95 

 

Table 6.22f: Metrics using PNN (A2C5C7H3 black group, balanced, geometrical features) 

Class TP rate FP rate Precision Recall F-measure AUC 

A2 1 0 1 1 1 1 

C5 0.675 0.133 0.628 0.675 0.651 0.877 

C7 0.8 0.1 0.727 0.8 0.762 0.95 

H3 0.525 0.1 0.636 0.525 0.575 0.837 

Weighted 

average 

0.75 0.083 0.748 0.75 0.747 0.916 

Note: Results obtained at MinStdDev = 0.1, no. of clusters = 4 

 

6.7.2 Tests using J48 decision tree 

6.7.2.1 Unbalanced class 1:4 

Table 6.25d: Metrics for unbalanced class using MLP (all features) 

Class TP rate FP rate Precision Recall AUC 

E4 0 0 0 0 0.5 
H1 1 1 0.8 1 0.5 

Weighted average 0.8 0.8 0.64 0.8 0.5 

 

Table 6.25e: Metrics for J48 decision tree (all features) 

Class TP rate FP rate Precision Recall AUC 

E4 0.4 0.05 0.667 0.4 0.825 

H1 0.95 0.6 0.864 0.95 0.825 
Weighted average 0.84 0.49 0.824 0.84 0.825 

 

Table 6.25f: Metrics from confusion matrix 

Class TP rate FP rate Precision Recall AUC 

E4 0.9 0.075 0.75 0.9 0.913 

H1 0.925 0.1 0.974 0.925 0.913 

Weighted average 0.92 0.095 0.929 0.92 0.913 
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Table 6.26d: Metrics for MLP (balanced class) 

Class TP rate FP rate Precision Recall AUC 

E4 1 0.05 0.952 1 0.975 

H1 0.95 0 1 0.95 0.975 
Weighted average 0.975 0.025 0.976 0.975 0.975 

 

Table 6.26e: Metrics for  J48 decision tree (balanced class) 

Class TP rate FP rate Precision Recall AUC 

E4 0.925 0.075 0.925 0.925 0.959 

H1 0.925 0.075 0.925 0.925 0.959 

Weighted average 0.925 0.075 0.925 0.925 0.959 

 

        Table 6.26f: Identification metrics for combination of J48 and MLP (balanced class) 

Class TP rate FP rate Precision Recall AUC 

E4 1 0.075 0.93 1 0.963 

H1 0.925 0 1 0.925 0.963 
Weighted average 0.963 0.038 0.965 0.963 0.963 
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APPENDIX V 

SYSTEM INTEGRATION TEST RESULTS 

Test results for White-spotted ladybird 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rule viewer for the feature ‘NormalisedArea = 0.0213’ 

 
Rule viewer for the feature ‘NormalisedArea = 0.515’ 

 
Membership functions for output variables  

(White-spotted ladybird group) 
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Test results for Red-spotted ladybird 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Rule viewer for resultant = E. 4-pustulatus 

 
Rule viewer for resultant = Harmonia axyridis form conspicua 



204 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Rule viewer for resultant = Harmonia axyridis form spectabilis 
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Test results for Black-spotted ladybird 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Membership functions for input variables ‘BGColour(a*)’ 

 
Membership functions for input variables ‘BGColour(b*)’ 

 
Membership functions for input variable ‘NormArea’ 
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Membership functions for input variable ‘NormPerimeter’ 

 
Membership functions for input variable ‘NormAreaRatio’ 

 
Membership functions for input variable ‘NormSpotHueAngle’ 
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Membership functions for input variable ‘NormMajAxis’ 

 
Membership functions for input variable ‘NormAspectRatio’ 

 
Membership functions for input variable ‘SpotColour(b*)’ 
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Membership functions for output variables  

(Black-spotted ladybird group) 
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The rules are:  

1. IF (BGColour(a*) is BGC(a*)2) and (BGColour(b*) is BGC(b*)2) THEN (BlackSpot is A2)  

2. IF (BGColour(a*) is BGC(a*)2) and (BGColour(b*) is not BGC(b*)2) 

and(NormAspectRatio is not NormAspectRatio1) THEN (BlackSpot is C5) 

3. IF (BGColour(a*) is BGC(a*)2) and (BGColour(b*) is BGC(b*)1) and (NormAspectRatio is 

NormAspectRatio1) THEN (BlackSpot is H3) 

4. IF (BGColour(a*) is BGC(a*)2) and (BGColour(b*) is not BGC(b*)1) and 

(NormAspectRatio is NormAspectRatio1) and (SpotColour(b*) is SC(b*)1 THEN 

(BlackSpot is C7) 

5. IF (BGColour(a*) is BGC(a*)2) and (BGColour(b*) is not BGC(b*)1) and (NormMajAxis is 

NormMajAxis1) and (NormAspectRatio is NormAspectRatio1) and (SpotColour(b*) is not 

SC(b*)1 THEN (BlackSpot is C7) 

6. IF (BGColour(a*) is BGC(a*)2) and (BGColour(b*) is not BGC(b*)1) and (NormMajAxis is 

not NormMajAxis1) and (NormAspectRatio is NormAspectRatio1) and (SpotColour(b*) is 

not SC(b*)1 THEN (BlackSpot is H3) 

7. IF (BGColour(a*) is BGC(a*)1) and (NormArea is NormArea1) THEN (BlackSpot is H3) 

8. IF (BGColour(a*) is not BGC(a*)1) and (NormArea is NormArea1) and 

(NormSpotHueAngle is NormSHA2) THEN (BlackSpot is C5) 

9. IF (BGColour(a*) is not BGC(a*)2) and (NormArea is not NormArea1) and (NormPerimeter 

is NormPerim1) and(NormAreaRatio is NormAreaRatio1) THEN (BlackSpot is C5) 

10. IF (BGColour(a*) is not BGC(a*)2) and (NormArea is not NormArea1) and (NormPerimeter 

is NormPerim1) and (NormAreaRatio is not NormAreaRatio1) THEN (BlackSpot is A2) 

11. IF (BGColour(a*) is not BGC(a*)2) and (NormArea is not NormArea1) and (NormPerimeter 

is not NormPerim1) and (NormSpotHueAngle is not NormSHA1) THEN (BlackSpot is H3) 

12. IF (BGColour(a*) is not BGC(a*)2) and (NormArea is not NormArea1) and (NormPerimeter 

is not NormPerim1) and (NormSpotHueAngle is NormSHA1) THEN (BlackSpot is C5) 

13. IF (BGColour(a*) is not BGC(a*)2) and (NormArea is NormArea1) and 

(NormSpotHueAngle is not NormSHA1) THEN (BlackSpot is H3) 
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Rule viewer for resultant = A2 

 
Rule viewer for resultant = C5 
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Rule viewer for resultant = C7 

 
Rule viewer for resultant = H3 
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Poster 
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