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Abstract

Entangled polymer solutions and melts show a variety of behaviours under differ-

ent flow conditions. Recent step strain experiments [Macromolecules 42, 6261 (2009)]

demonstrated a fracture-like behaviour that was interpreted in terms of a massive loss

of entanglements after yielding. This was taken to violate the Doi-Edwards tube model

[The Theory of Polymer Dynamics (Oxford University Press, New York, United States,

1986)]. Here this phenomenon is investigated using the Rolie-Poly model, which ap-

proximates a successful version of the DE theory. The results give close quantitative

agreement with the experiments, as well as with the proposal by Marrucci and Grizzuti

in 1983 that entangled polymer liquids possess an elastic instability. The ‘fracture’ is

a transient manifestation of this elastic instability that relies on the amplification of

spatially inhomogeneous fluctuations. Linear stability analysis of the fluid shows that

there is also a viscous contribution to this instability so that this fracture-like behaviour

is possible before the elastic limit is reached.
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Chapter 1

Motivation and Objective

1.1 Motivation

In a series of experiments, Wang and his co workers reported [1, 2, 3, 4] some

unexpected relaxation behaviours of polybutadiene solutions and melts. In the

experiments, the materials were subjected to strong flows, and the movement of

the fluid particles were tracked using particle tracking techniques. Surprisingly, the

fluid seemed to have undergone a fracture with particles distributed on both sides

of a so-called failure plane. The ‘failure plane’ was located in the bulk of the fluid,

but not necessarily at the same position in different runs of the experiment. This

observation is quite strange, and for this reason it became necessary to get some

understanding of the possible cause of this unusual event.

1.2 Objective

In a polymeric liquid of sufficient concentration the long molecules (referred to as

polymer chains or simply chains) of the polymer adopt a conformation such that the

lateral motion of a chain is strongly inhibited by its neighbouring chains. While this

random conformation maximizes entropy, it leads to a situation whereby the chains
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Chapter 1. Motivation and Objective

appear to be confined to some imaginary tube-like regions (the tube model). The

tube represents the constraints imposed on the motion of a chain by its neighbours.

In this entangled state the tubes form a network, which is deformed when the fluid

is made to flow.

The most successful theory for polymeric liquids, namely the Doi-Edwards (DE)

theory [5], predicts that the fluid could become unstable when subjected to strong

shearing forces. Although there has been no direct observation of this instability

in experiments, its signatures have been observed. Notable among them is the

phenomenon of shear banding, a situation whereby the fluid suddenly separates

into regions flowing at different viscosities.

Recently, Wang and his coworkers [4] reported a fracture like behaviour in

concentrated solutions of styrene butadiene (SBR) when subjected to strong flows.

They interpreted this to mean a complete breakdown of the entanglement network

and that this was a violation of the tube model, and they posited that a new

theoretical model would be required to explain this behaviour.

This then raises the question do we need a new theoretical model to

explain this phenomenon? One objective of this project is to check if the tube

model (both the original tube model and its variants) is capable of capturing this

behaviour. If this is possible, then the second objective will be to examine the

underlying physics of this strange behaviour.

1.3 Remarks

The brief description given here serves to give the reader the objective for the cal-

culations presented in the remaining parts of this thesis. The treatise shall proceed

in Chapter 2 with a review of the basic theoretical concepts involved in the study

of polymeric liquids. Chapter 3 will give more detailed description of the exper-

iments that motivated the calculations to be presented in subsequent Chapters.

14



Chapter 1. Motivation and Objective

The theoretical model employed in the calculations shall be described in Chapter

4. Which will then be followed in Chapter 5 by a description of the numerical

schemes used in the calculations. Modelling of this fracture-like phenomenon as

seen in the experiments will be given in Chapter 6, and a comparison of the calcu-

lations with experimental data shall be given as well. In Chapter 7, there will be a

more general analysis of the perturbations leading to this ‘fracture’ phenomenon.

The thesis will finally conclude in Chapter 8 with a discussion of results from the

calculations and suggestions for future work.

15



Chapter 2

Theoretical Background

The objectives and motivation for this work were stated in the previous chapter,

however to make the discussion clearer, it will be necessary to give a brief overview

of relevant theories for this work. It begins with the a description of the state of

stress in a fluid and then some theories that describe the stress tensor.

2.1 The Stress Tensor

The theories that shall be applied in this study are those that are based on the con-

tinuum hypothesis [6] in which properties of the fluid are assumed to vary smoothly

over a small volume of the fluid but large enough as to capture the macroscopic

properties of the fluid. This small volume of fluid is called a fluid element. A

fluid element is a small volume of fluid that contains sufficient molecules such that

the average values of fluid properties in this volume are not affected by variations

due to molecular fluctuations. This approach is sufficient since the properties of

interest here occur on a macroscopic scale much larger than the distance between

molecules. The forces acting on a fluid consist of the long-range body forces (no-

tably gravity or electromagnetic force for a fluid with charged particles) and surface

forces. The surface forces are short ranged, and they decrease rapidly as distance

16



Chapter 2. Theoretical Background

between molecules increase. The short-range forces only become important when

there is direct mechanical contact (as much as their repulsive forces will allow)

between fluid elements. The surface forces are described by the stress tensor.

Figure 2.1: Pictorial representation of the stress tensor.

The stress tensor contains information on the force per unit area that material

exterior to a fluid element exerts on it. The stress tensor is a second order tensor

that can be represented in matrix form as

σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



. (2.1)

Consider the cubic fluid element shown in Figure 2.1. The force per unit area σ on

each of the surfaces of the fluid element is represented by the stress tensor, which

can be put in matrix form as in Equation (2.1). The force per unit area acting on

a surface perpendicular to an arbitrary unit vector n̂ is given as [7]

σj = n̂iσij. (2.2)

17



Chapter 2. Theoretical Background

Equation (2.2) implies that the force σ1 acting on the surface perpendicular to the

unit vector n̂1 = (1, 0, 0) is given as σ1 = (σ11, σ12, σ13). Similarly, the forces σ2

and σ3 acting on the surfaces perpendicular to the unit vectors n̂2 = (0, 1, 0) and

n̂1 = (0, 0, 1) are given as σ2 = (σ21, σ22, σ23) and σ3 = (σ31, σ32, σ33) respectively.

This implies that the ith row of the stress tensor σ is the force per unit area that

material exterior to the fluid element exert on a surface perpendicular to the ith

coordinate axis. This concept is illustrated in Figure 2.1.

While the rows describe the orientations of the surfaces on which the forces

act, the columns give the components of the forces on these surfaces. Hence,

the component σ11 is the force per unit area in the direction 1 on the surface

perpendicular to direction 1. Similarly, the component σ12 is the force per unit

area in the direction 2 on the surface perpendicular to direction 1 and σ13 is the

force per unit area in the direction 3 on the surface perpendicular to direction 1.

The components σij, i 6= j are referred to as shear components or shear stresses

while the components σij, i = j are referred to as the normal components or normal

stresses. When the flow is in direction 1, then the quantity σ11 − σ22 is known as

the first normal stress difference, while the quantity σ22−σ33 is the second normal

stress difference. The total stress T is decomposed into an isotropic stress −pδ

and a deviatoric stress σ as

T = σ − pδ, (2.3)

where the isotropic pressure p maintains incompressibility.

2.2 Shear Deformation

The phenomena of interest in this study arise during shear deformation of polymeric

fluids. In this type of deformation, the fluid is placed between two plates and one

or both plates is moved at some velocity while the fluid response is observed.
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Different kinds of plate configurations exist depending on the nature of the fluid

and the material property of interest. Each of these configurations is referred to as

a rheometer and each rheometer can be operated in different modes. More details

of these kinds of apparatus will be given in the next chapter.

For simplicity, consider a fluid placed between two parallel plates as depicted in

Figure 2.2. The lower plate is fixed, while the upper plate is moved with a uniform

velocity V . The spatially averaged shear rate 〈γ̇〉 is given by V/H, where H is the

gap between the plates. The local shear rate is a function of space y and time t.

It is the spatial derivative of the fluid velocity given by

γ̇(y, t) =
∂vx(y, t)

∂y
, (2.4)

where vx(y, t) is the local fluid velocity. This type of deformation leads to a strain

γ(y, t) in the fluid. The accumulated strain at every point in the fluid from a time

t′ to the current time t is given by

γ(t, t′) =

∫ t

t′
γ̇(t′′)dt′′. (2.5)

This strain causes a shear stress σxy to be generated in the fluid which is related

to the shear rate (or strain rate) in some way.

Figure 2.2: Schematic representation of the parallel plate configuration. The fluid
is placed between two parallel plates and sheared in the x-direction, a velocity
gradient exists in the y-direction, H is the distance between the plates.
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2.3 Steady Shear and Step Shear

Under the shear deformation depicted in Figure 2.2, the moving plate could be

moved at a constant velocity until a steady shear stress is reached, in which case

the protocol is referred to as steady shear. Otherwise a sudden strain γ0 could be

imposed on the fluid by moving one of the plates for a duration t0 at some rate V ;

the bulk fluid deforms at an average rate 〈γ̇〉, so that γ0 = 〈γ̇〉t0. This protocol is

referred to as step strain. In the ideal case, the strain is imposed instantaneously

as

γ(t) = γ0H(t), (2.6)

where H is the Heaviside step function. The shear stress developed then decays to

zero (stress relaxation) in time. In experiments however, the strain takes some finite

time to reach γ0, hence the shear stress takes some time to grow as in Figure 2.3.
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Figure 2.3: Different responses of Newtonian liquids (viscous), polymeric liquids
(viscoelastic) and solids (elastic) to a step strain.

However, the response of a polymeric liquid to step strains is distinct from those

of solids (elastic materials) and Newtonian liquids (viscous liquids). In a solid the

stress generated will remain constant after the step strain, while in a Newtonian

liquid, the stress will relax almost instantaneously. The deviation from the ideal

situation of an instantaneous relaxation is just due to constraints in experiments

and inertia effects. However, for a polymeric liquid, the stress will relax in a finite

measurable time, known as the terminal relaxation time τ . This is illustrated in
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Figure 2.3. The behaviour of polymeric liquids thus lies between those of elastic

materials and viscous liquids, and it is known as viscoelasticity.

In Newtonian fluids, the relationship between the shear stress and the shear

rate (constitutive relation) is given by the simple relation

σxy = ηγ̇, (2.7)

where η is the viscosity. In this case, the fluid viscosity is constant; it is not a

function of shear rate. In Newtonian fluids, the shear rate is uniform throughout the

fluid; that is, the imposed shear rate is the same as the local shear rate. However,

for non Newtonian fluids (otherwise referred to as complex fluids), the viscosity is

not independent of shear rate. Also, when the fluid is placed between two parallel

plates as depicted in Figure 2.2, the shear rate is not necessarily uniform, that is,

the local shear rate is not always equal to the average shear rate. The constitutive

relations for complex fluids are much more involved and depend on the fluid being

described.

For non Newtonian fluids, the normal stress differences are non zero in shear

flow, unlike in Newtonian fluids where the normal stress differences are exactly

zero [8]. The non zero stress differences in non Newtonian fluids are responsible

for a number of interesting behaviours such as the rod climbing effect [8].

2.4 Viscoelastic Models

Theoretical models that try to capture both the elastic and viscous character of

polymeric fluids are known as viscoelastic models. There have been various at-

tempts to develop viscoelastic models for polymeric liquids, both from the phe-

nomenological and molecular points of view.
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2.4.1 Maxwell Model

The first attempt to capture the viscoelastic character led to the Maxwell model [8]

which treats a polymeric fluid as being made of an elastic Hookean spring in series

with a dissipative viscous fluid. The Maxwell model gives a viscoelastic equation

of the form

σxy +
µ

G

∂σxy
∂t

= µγ̇, (2.8)

where µ is the fluid viscosity and G is the modulus of elasticity. The viscoelastic

character of this equation can be easily seen by considering slow and fast deforma-

tions. For slow deformations σxy dominates the left hand side of Equation (2.8),

giving

σxy = µγ̇, (2.9)

which is the Newtonian constitutive Equation (2.7) with µ replacing η. For fast

deformations, the term ∂σxy/∂t dominates the left hand side of Equation (2.8),

and integrating both sides of the resulting differential equation gives

σxy = G

∫ t

t′
γ̇(t′′)dt′′ = Gγ(t, t′), (2.10)

which is Hooke’s law for an elastic solid.

Equation (2.8) can be easily solved by integration by parts to give

σxy =

∫ t

−∞

µ

τ
e−(t−t′)/τ γ̇dt′, (2.11)

where τ = µ/G is the relaxation time. The quantity

G(t, t′) =
µ

τ
e−(t−t′)/τ , (2.12)

is the relaxation modulus which keeps a memory of the deformation history of the
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fluid. The modulus can be written as a complex quantity as G∗ = G′+ iG′′, where

G′, which contains elastic information is known as the storage modulus; and G′′,

which contains viscuous information, is known as the loss modulus. The complex

modulus can be calculated by taking a Fourier transform of iωG as

G∗ =

∫ ∞

0

iωG(s)e−iωsds, (2.13)

where s = t− t′. Using Equation (2.12) gives

G∗ =

∫ ∞

0

iω
µ

τ
e−(iω+1/τ)sds, (2.14)

which gives

G∗ =
iωµ

1 + iωτ
e−(iω+1/τ)s

∣∣∣∣
∞

0

, (2.15)

from which

G∗ =
µω2τ

1 + ω2τ 2
+ i

µω

1 + ω2τ 2
. (2.16)

It follows that

G′ =
µω2τ

1 + ω2τ 2
(2.17)

and

G′′ =
µω

1 + ω2τ 2
. (2.18)

The storage and loss moduli for the Maxwellian fluid for µ = τ = 1 is shown in

Figure 2.4. The frequency at which G′ = G′′ is known as the cross over frequency

and it is equal to the inverse of the relaxation time as indicated in Figure 2.4.

Although the Maxwell model shows a single relaxation time for the fluid, a real

polymer solution shows a spectrum of relaxation times which covers more decades

in frequency as the molecular weight of the polymer is increased. The spectrum of

relaxation times is due to different parts of the polymer relaxing at different times.
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Figure 2.4: Storage and Loss moduli for the simple Maxwellian fluid, showing the
crossover frequency (vertical arrow) where G′ = G′′.

At sufficient concentration and molecular weight the chains get entangled, and this

entanglement also contributes to the spectrum of relaxation times.

2.4.2 Tube model and Reptation

The physics of polymers in melts is greatly simplified by the following two assump-

tions. The chains are ideal, which leads to a Gaussian distribution in equilibrium,

and the drag on one part of a chain does not affect the drag on a remote part of the

same chain. This implies that the hydrodynamic interactions are screened out [7].

Figure 2.5: Cartoons of (left) a chain confined to a tube-like region due to con-
straints from other chains and (right) reptation event, Figures from [9].

Significant progress in understanding the physics of polymer chains in an en-

tanglement network was made in 1971 by de Gennes [10] in his theory of reptation.

In this formulation, the chain is trapped in the mist of fixed obstacles such as a
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rubber network. The strands of rubber in the network are fixed but flexible, hence

restricting the motion of the chain. The chain can only move between the strands

but cannot move across them. Thus the chain diffuses back and forth along its

length, and this motion is called reptation. As a result of the restrictions to its

motion, the chain appears to be confined to tube-like regions as shown on the left

of Figure 2.5.

The motion of the chain along the tube contour is known as the primitive path,

and the conformation of the tube changes as the chain diffuses along its length.

During reptation, when a chain AB confined in the tube shown on the right of

Figure 2.5 moves to another position A′B′, the part of the tube AA′ becomes

empty and disappears, while another part of the tube BB′ is formed. This new

segment takes on any random conformation and becomes a constraint for the rest

of the chain. Therefore the conformation of the tube is a random walk with a step

length referred to as the ‘tube diameter’. The molecular weight of the polymer

between entanglements is called the entanglement molecular weight Me. The time

it takes for a chain to diffuse from its original tube completely is known as the

terminal relaxation time or reptation time τd. Using scaling arguments de Gennes

proposed a proportionality between the reptation time and molecular weight as

τd ∼M3. However, experimental studies show that τd ∼M3.4 [5, 7].

While de Gennes considered the problem of a polymer chain in a fixed network, a

real network of polymer chains is not fixed, as there are no chemical links between

the polymer chains. Doi and Edwards extended the ideas of de Gennes to the

problem of a polymer chain in a network of other polymer chains [5].

2.4.3 Doi Edwards (DE) Theory

Using the reptation model of De Gennes, Doi and Edwards [5, 9, 11, 12, 13] pro-

posed a viscoelastic equation for polymers solutions of different concentration and
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melts. For shear deformations, the equation gives the shear stress as [5]

σxy = G0

∫ t

∞
dt′µ(t− t′)F1(γ(t, t′)), (2.19)

where the dimensionless polymeric stress F1(γ) is given as

F1(γ) =
1

2γ

∫ 1

0

dx

(
1 +

x2γ2 − 1√
x4(γ4 + 4γ2)− 2γ2x2 + 1

)
. (2.20)

The function µ(t − t′) keeps a memory of deformation, while x is an arbitrary

integration variable.

Equation (2.19) predicts a maximum in the shear stress as a function of shear

rate when the shear rate exceeds the inverse reptation time as in Figure 2.6. Thus

for γ̇ > 1/τd the condition dσxy/dγ̇ < 0 is satisfied, which implies that dF1/dγ < 0

(since γ = γ̇t) in this regime.

Figure 2.6: Shear stress (as a function of the shear rate) maximum predicted by
the DE theory at the point A where the shear rate exceeds the inverse reptation
time, from [13].

In the DE theory, the relaxation of the chain after a step strain occurs in two

stages. Before the deformation, the chains are in equilibrium so that the tube

conformation is random. During the deformation, the tube gets aligned in the flow

direction and if the strain amplitude is large enough, the tube is also stretched.

After the step strain, the tube relaxes stretch on a time scale τR known as the

stretch relaxation time or Rouse time, and then after a time τd (known as the
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reptation time) the chain escapes from its original tube and the tube alignment is

lost. This concept is illustrated on the left of Figure 2.7. The processes of stretch

relaxation and reptation are captured in the relexation modulus G(t), which is the

ratio of the shear stress to the applied strain as shown on the right of Figure 2.7.

Figure 2.7: Left: Tube dynamics during stress relaxation before and after a
step strain. A- isotropic conformation in equilibrium before the step strain. B-
anisotropic orientation of the tube during flow. C- stretch relaxation following the
step strain but still oriented anisotropically. D- tube returns to isotropic conforma-
tion as reptation sets in after stretch relaxation. Right: Relaxation modulus after
a step strain, Figures from [5].

The relaxation of stretch after the step strain leads to a quick decay in the

relaxation modulus, which is then followed by a very slow decay (as the chains are

still trapped in their original tubes) during which the relaxation modulus forms a

plateau. However, as reptation proceeds, at a time of the order of the reptation time

the stress experiences a quick decay so that the material relaxes stress completely.

Chain stretch becomes more significant at very fast strain rates, and this can lead

to an increase in the shear stress at these strain rates as illustrated by the dashed

lines in Figure 2.6. Although this mechanism for chain stretch was discussed in the

DE theory, chain stretch was considered to relax too quickly for it to be of much

significance and hence not included in the viscoelastic Equation (2.19). However,

τR and τd are related to the number of entanglements per chain Z as τd/τR = 3Z.

In general, the relaxation modulus is both a function of time and strain, and

then referred to as the nonlinear relaxation modulus G(t, γ). Experiments [14]

have shown that after stretch relaxation, the nonlinear relaxation modulus can be
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separated into the linear part G(t) and the strain dependent part h(γ) as

G(t, γ) = h(γ)G(t). (2.21)

The strain dependent part h(γ) is known as the damping function, and it mea-

sures the amount of strain softening of the material, or equivalently the degree of

deviation from linearity of the material.

Figure 2.8: Damping functions from polystyrenes of molecular weight 8.42 × 106

(filled circles) and molecular weight 4.48× 106 (open circles). Pip up: 0.08 gcm−3,
successive 45 ◦ rotations clockwise correspond to 0.07, 0.06, 0.05, 0.04, 0.03 and
0.02 gcm−3, Figure from [14].

The damping function predicted by the DE theory gave a very good match

with many experimentally measured damping functions as shown in Figure 2.8.

This was taken as a confirmation of success of the DE theory, and materials which

showed this agreement with the DE theory were later classified as type I (or type

A) materials [14, 15].

2.5 Instability in Polymeric Fluids

After the stress maximum predicted by the DE theory, the material begins to re-

spond with a decreasing stress to continuous shearing. This situation which is a

state of instability leads to the possibility that the fluid will undergo ‘strain lo-
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calisation’. That is, a situation whereby an initially applied strain becomes non

uniformly distributed in the fluid with some regions bearing more strain than oth-

ers. This instability has contributions from both elastic and viscous effects in the

fluid. The elastic contribution was described by Marrucci and Grizzuti (MG) [16]

in their calculation to explain the Type C ‘anomaly’ observed in polymeric liquids.

The description of the elastic contribution given by MG bears resemblance to an

instability in multicomponent systems, which leads to the phenomenon of ‘spinodal

decomposition’ as described in the next subsection.

2.5.1 Spinodal Decomposition

In multicomponent systems such as a homogeneous composition c0 in Figure 2.9

made from two different components, the composition c0 which is homogeneous at

temperature T2 could phase separate into two different compositions c1 and c2 if

the temperature of the system is suddenly dropped to T1. This phase separation

is possible because the formation of the two different compositions c1 and c2 is

accompanied by a reduction in the free energy of the system F. What this means is

that the new compositions c1 and c2 are more stable states of the system compared

with the original composition c0, so that this phase separation is not hindered by

any thermodynamic barrier.

Once this process has started, the compositions may continue to evolve until

the equilibrium compositions c0
1 and c0

2 are reached; this process is only limited

by diffusion. This is the phenomenon of spinodal decomposition. The equilib-

rium composition is obtained by performing the equal tangent construction due to

Gibbs [17].

The spinodal region is marked by a transition from a positive free energy curva-

ture d2F/dc2 > 0 to a negative one d2F/dc2 < 0. Thus, the free energy curvature

in the spinodal region (the area under curve C2 in Figure 2.9) is negative, and this
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Figure 2.9: Schematic representation of the free energy profile of a multicomponent
system capable of undergoing spinodal decomposition.

is the signature of linear instability in multicomponent systems. Hence, the stabil-

ity of multicomponent systems can be investigated by calculating the free energy

corresponding to these systems and thus the free energy curvature. In the region

between curves C1 and C2 the free energy curvature is positive, although phase

separation is still possible in this region, but it occurs by a different mechanism

which will not be discussed here.

2.5.2 Elastic Instability

Marrucci and Grizzuti [16] calculated the elastic free energy consistent with the

DE theory, which in shear deformations reduces to [16]

F(γ) =
1

2

∫ 1

0

ln

(
1 + γ2ζ2 + [ζ4(γ4 + 4γ2)− 2γ2ζ2 + 1]

1/2

2

)
dζ, (2.22)

where ζ is an arbitrary integration variable and γ is the accumulated strain.

This free energy exhibits a negative curvature d2F(γ)/dγ2 < 0 at certain val-

ues of γ, and this range of γ where d2F(γ)/dγ2 < 0 plays the role of the spinodal
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region described in the previous subsection and hence an indication of instability.

Although, the initially imposed strain is homogeneous, fluctuations in the system

could induce a nonuniform strain, such that the system behaves like a multicom-

ponent system and undergoes ‘phase separation’.

The free energy F is related to the DE constitutive equation through the func-

tion F1 as dF(γ)/dγ = F1(γ), so that a negative curvature of F implies dF1/dγ < 0,

that is, dσxy/dγ < 0. Hence elastic instability manifests itself during rapid startups

where the applied shear rate γ̇ exceeds the inverse reptation time of the fluid and

the strain amplitude lies in the appropriate range [16, 18].

This leads to a much more strain softening of the nonlinear relaxation modulus

than that predicted by the DE theory, a situation referred to as Type C ‘anomaly’

or Type C behaviour [14, 15, 16, 19], as shown in Figure 2.10

Figure 2.10: Nonlinear relaxation modulus for different strains γ showing Type C
behaviour at high strains, Figure from [19].

Type C behaviour is one of the key signatures of elastic instability in polymeric

liquids. It is characterised by the occurence of a ‘kink’ in the nonlinear relaxation

modulus as shown in Figure 2.10 when the applied strain reaches a certain critical

amount. It occurs in materials of sufficient molecular weight in which the number

of entanglements per chain reaches a critical amount.
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2.5.3 Viscous Instability

While the elastic instability manifests itself during rapid startups, the viscous in-

stability may occur during startup or persist to steady state. It is characterised

by the shear rate separating into two bands so that the fluid separates into re-

gions flowing at different viscosities. This phenomenon is referred to as shear

banding [20, 21, 22, 23].

Shear banding occurs when an entangled polymeric fluid with a nonmonotonic

constitutive relation is sheared at high shear rates, such that the shear rate exceeds

the inverse reptation time. In this regime, the total shear stress (the shear compo-

nent of the total stress T in Equation (2.3)) satisfies dTxy/dγ̇ < 0 as in Figure 2.11,

which implies that the applied shear rate γ̇2 in Figure 2.11 is located beyond the

point of stress maximum. In this case the local shear rate can undergo a ‘phase

separation’. This results in a coexistence of two different regions in the material

where it flows at two different shear rates. This situation occurs because the con-

stitutive relation is multivalued in this regime, such that three different shear rates

correspond to the same total shear stress [22]. This is illustrated in Figure 2.11

where the three shear rates γ̇1, γ̇2 and γ̇3 all correspond to the same total shear

stress T 0
xy. Since the shear rate γ̇2 lies in the unstable region of the constitutive

relation, the fluid separates into two regions where the shear rates correspond to

γ̇1 and γ̇3 which are in the stable region of the constitutive relation.
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Figure 2.11: Illustration of the shear banding phenomenon for a fluid with non-
monotonic constitutive relation.
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In experiments with polymer solutions, shear banding is inferred from the ve-

locity profile of the fluid since the shear rate is related to the fluid velocity as in

Equation(2.4). This has been captured in recent experiments with polymer so-

lutions. An example is the report by Hu [24] of shear banding in an entangled

polybutadiene solution of molecular weight 106 g mol−1. The measured velocity

profiles of this sample at various times during shear banding are shown in Fig-

ure 2.12.

Figure 2.12: Velocity profiles during shear banding in a polybutadiene sample of
molecular weight 106 g mol−1 with 64 entanglements per chain, Figure from [24].

The velocity profiles in Figure 2.12 have been scaled by the velocity of the

plate v0 and the spatial coordinate y by the gap between the plates e. The shear

bands could be transient [25, 26] or persist until steady state. This shear banding

phenomenon which has been captured in other experiments using micellar and

polymer solutions [27, 28, 29, 30] is the key signature of viscous instability in

polymeric liquids [18].
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2.6 GLaMM Model

Apart from the mechanism of stretch which was neglected from the DE viscoelastic

equation, another mechanism that was also discussed by DE is constraint release.

This was considered to be insignificant and thus also neglected from the DE equa-

tion. Early experiments [31] to test the DE theory failed to capture the stress

maximum predicted by the theory and this was considered to be a shortcoming of

the DE theory. To remove the ‘unphysical’ stress maximum from subsequent tube

based models, the mechanism of stretch and constraint release were included in

later modifications of the DE theory [32, 33, 34], which led to viscoelastic models

that could give either a monotonic or nonmonotonic constitutive relation, depend-

ing on the values of relevant parameters.

During reptation, the part of the tube previously occupied by the chain disap-

pears while a new part is formed, as illustrated in Figure 2.5. When this occurs,

the constraint that was imposed by that part of the chain on another chain is lost

and the other chain gets an additional degree of freedom. This event is known as

a constraint release event, this is illustrated in Figure 2.13. This constraint release

event leads to a relaxation. In the linear regime (that is, applied shear rates γ̇

such that γ̇τd < 1) it leads to a reduction of shear stress. However, in the non-

linear regime (γ̇τd > 1) it leads to an increase in shear stress, because the relaxed

tube segment takes on a new conformation which can then be deformed by the

background flow. Also, constraint release occurs due to reptation of surrounding

chains in the linear regime, whereas chain retraction (reduction in chain length

after stretch) contributes to constraint release in the nonlinear regime. The release

rate grows with the convection rate in this regime, and becomes of the order of

the shear rate at high shear rates [34]. This is known as convective constraint

release (CCR).

The most complete theory which includes the mechanisms of stretch and con-
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Figure 2.13: Schematic representation of a constraint release event, Figure
from [34].

straint release in linear chains is due to Graham, Likhtman, McLeish and Milner

otherwise referred to as the GLaMM model [34]. The GLaMM model also includes

the mechanism of contour length fluctuations, in which the length of the tubes

continuously fluctuates due to thermal noise. This is the most up to date theory

for linear entangled polymers of different concentrations and in melt state in both

linear and nonlinear regimes.

2.7 Remarks

The preceding discussion has been a general introduction of relevant theories in-

volved in the calculations that shall follow in the later chapters. This study is

purely theoretical in nature; there will be no presentation of experimental data

except for comparison with calculations. Before proceeding with the calculations,

it will be necessary to give more details of the experiments that motivated the

calculations to be presented later and this will be taken care of in the next chapter.
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Experimental Background

The previous chapter was a review of key concepts commonly encountered in the

theoretical study of polymeric liquids as well as theoretical models that shall be

employed in the calculations that follow later. To proceed with this treatise, it

is also necessary to give a quick review of concepts involved in the experimental

study of polymeric fluids. Also, the key experiments that motivated the study

described in the rest of this thesis will be presented in this chapter. The discussion

in this chapter begins with a description of the apparatus used in typical experi-

mental studies involving shear deformations and then continues to describe the key

experiments of interest.

3.1 Rheometers

The principal apparatus for the experimental investigation of polymeric fluids is the

rheometer. It could either be in the form of parallel plates or concentric cylinders.

Another setup is the cone and plate configuration, but the calculations which will

be presented in the later chapters of this discussion will be based on the first

two configurations mentioned. A typical parallel plate arrangement is shown in

Figure 3.1. The rheometer depicted in Figure 3.1 can be operated either in the
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shear rate controlled mode or in stress controlled mode. These modes of operation

are best understood from the relationship between stress and shear rate in simple

Newtonian fluids, Equation (2.7).

Figure 3.1: Typical setup of a parallel plate rheometer, Figure from [29].

In the shear rate controlled mode, the lower plate is fixed while the upper

plate is moved by the step motor. The resulting force is measured by the force

transducer, while the velocity of the plate is read from the linear variable differential

transformer (LVDT). In this mode, the velocity of the upper plate is kept at a

fixed value and the stress response is monitored. When the viscosity increases,

the stress increases accordingly to keep the imposed shear rate (otherwise referred

to as apparent shear rate) fixed. Otherwise, if the viscosity decreases, the stress

decreases along with it. In the stress controlled mode, a constant force is imposed

on the system by a weight attached to the pulley. In this case, the viscosity and

shear rate respond accordingly to keep the imposed stress fixed at a particular

value.

Another setup that is commonly used is concentric cylinders (also known as

the cylindrical Couette configuration). In this case, the material is placed between

two concentric cylinders. The outer cylinder is held fixed while the inner cylinder

is free to rotate. A schematic representation of such an arrangement is shown

in Figure 3.2. This rheometer works in either the shear rate controlled or stress

controlled mode achieved with the torque transducer. In the stress controlled

mode, a constant torque is imposed on the inner cylinder and the shear rate and

viscosity are allowed to vary, while in the shear rate controlled mode a constant
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Figure 3.2: Basic arrangement of a Couette cell. The sample is placed between
the two cylinders, while the inner cylinder rotates in the θ direction and the outer
cylinder is stationary. The fluid flows in the θ direction while a velocity gradient
exists in the r direction(adapted from [35]).

velocity is imposed on the inner cylinder while the stress and viscosity are allowed

to vary. The cylindrical Couette configuration introduces stress gradients in the

fluid contained between the cylinders due to curvature effects, as will be described

in Chapter 4.

3.2 Step Strains with no Slip Hydrodynamic Bound-

ary Condition (HBC)

In the experimental study of polymeric fluids using different plate configurations, it

is not always possible to maintain a situation of zero slip between the material and

the wall of the plates [36]. This is because of the possibility of polymer molecules

attached to the wall to uncoil and disentangle from the bulk molecules [37]. There

is also the possibility of polymers attached to the wall to detach and thus lead

to slippage [38]. This is unlike the situation of Newtonian liquids where the fluid

velocity at the fixed wall is zero and no slip exists at the moving wall. To overcome

this difficulty of wall slip with polymeric fluids, some experimentalists [4, 39, 40]
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have developed a gluing technique, where the material is glued to the surface of

the walls. This allows them to maintaining zero slip at the walls, which is the case

of no slip HBC.

This gluing technique allows the behaviour of the fluid under strong shear defor-

mation in the absence of wall slip to be studied. The key experiments are described

below.

3.2.1 Experiment I: ‘Fracture’ at Room Temperature

Using melts of styrene butadiene (SBR) whose number of tube entanglements

ranged between 53-160, placed between flat plates, Boukany et al. [4] studied the

stress relaxation behaviour after large step shears. The applied shear rates γ̇ in

the experiments were faster than the stretch relaxation times for the samples (that

is, γ̇τR > 1). Thus the experiments approximated ideal step strains. Tiny silver

coated particles were uniformly dispersed in the samples so that the movement of

the fluid during and after shear cessation could be tracked, and all experiments

were performed at room temperature.

Figure 3.3: Left: Shear stress from startup to shear cessation and beyond for
applied shear rate γ̇ = 0.7s−1 and different strain amplitudes γ. Right: Velocity
profile during ’fracture’ at various times after shear cessation at t0 for γ = 2.1,
Figures from [4].

Different shear rates and strain amplitudes were applied. At sufficiently high
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strain amplitude they noticed that the material appeared to break up after shear

cessation. Upon cessation of shear at time t0 the fluid appeared to come to a

standstill, as shown on the right of Figure 3.3 where the strain amplitude γ =

2.1. The green diamonds on the left of Figure 3.3 show that the shear stress

falls unto a plateau after shear cessation for this strain amplitude as indicated by

‘nearly quiescent’ in the Figure. After some seemingly delay or ‘induction time’,

the shear stress begins to relax quickly in the region indicated as ‘macroscopic

motions’ on the green diamonds on the left of Figure 3.3. These ‘macroscopic

motions’ are fluid particles moving on opposite sides of a ‘failure’ plane, which is

a plane perpendicular to the plane of Figure 3.3 which separates the two layers of

fluid moving in opposite directions. The fluid appears to have broken up in two

layers, with each layer moving in opposite directions. This phenomenon resembles

fracture in a solid and was interpreted to be due to a complete breakdown of the

entanglement network [4]. The fluid resumes the usual quiescent relaxation after

the ‘fracture’ event as indicated by ‘normal quiescent relaxation’ on the left of

Figure 3.3.

This fracture-like behaviour was not observed when the strain amplitude was

insufficient, as in the case of γ = 0.1 and γ = 0.7 on the left of Figure 3.3. Also,

the location of the failure plane was not fixed for different runs of the experiment

but occurred in different positions within the bulk of the fluid. However, the stress

relaxation profile was the same always [4].

Other features of this experiment are summarised below:

I The ‘Fracture’ phenomenon still occurred when shearing is stopped before

‘elastic yielding’ (the stress overshoot) of shear stress or when shearing is

performed slowly.

II The Delay time during initial slow stress relaxation increases with molecular

weight and shear rate, but decreases with increasing strain.
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3.2.2 Experiment II: ‘Fracture’ at High Temperature

Using a similar gluing technique to maintain no slip HBC and particle tracking as in

Experiment I, Fang et al. [40] reproduced fracture-like behaviour in poly(ethylene

oxide) (PEO) melts whose number of chain entanglements was roughly 146. The

experiments were performed in cone and plate configuration in an oven whose

temperature varied between 303 K and 473 K.

Figure 3.4: Left: Shear stress from startup to shear cessation and beyond for
applied shear rate γ̇ = 2s−1 and strain amplitude γ = 6 at a temperature of 353K.
Right: Displacement of fluid particles during ‘fracture’ at various times after shear
cessation at t0. Figures from [40].

Similar to the case of Experiment I, fracture-like behaviour was observed in the

samples after cessation of shear at sufficient strain amplitude. However, the shear

stress does not show a clear ‘induction’ period as seen on the left of Figure 3.4,

unlike the case of Experiment I. The reason for this is not clear but could be related

to some difficulties in the measurements. However, the fluid particles show a clear

‘failure plane’ as seen on the right of Figure 3.4, just like in Experiment I. Also, for

different runs of the experiments, the positions of the ‘failure plane’ was not fixed,

but the stress profile was the same [40].
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3.3 Remarks

The experiments with no slip HBC are quite revealing. Although different vis-

coelastic models have described the elastic and viscous nature of polymeric liquids

to various extents, it is the first time this elastic character has been demonstrated

clearly in an experiment. Also, no calculation has been carried out before now to

demonstrate this phenomenon theoretically. While the experiments are interesting,

they leave a puzzle, ‘what is the mechanism behind this behaviour?’ Otherwise,

one can ask ‘what is the origin of this fracture-like behaviour in a liquid?’ There

have been suggestions that this behaviour originates from a complete breakdown

of the entanglement network which was supposed to be a violation of the tube

model [4], so that new physics will be required to explain this phenomenon. Al-

though tube models are not complete as they stand now [41] since they do not give

an exact quantitative match to some experimental data. However, the qualitative

agreement of tube model predictions with many experimental data is spectacular.

Hence it may be possible to accommodate this phenomenon within the frame work

of current tube models without new physics. This possibility will be examined in

the remaining parts of this thesis. For the purpose of this study, one of the variants

of the tube model shall be employed and it shall be described in the next chapter.
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Theoretical Model

Having described the experiments that motivated the calculations to be presented

during the course of this thesis, the treatise now proceeds with a description of the

theoretical model that shall be employed in the calculations. Different properties

of a fluid can be calculated by solving the relevant hydrodynamic equations. For

the case of Newtonian liquids, the calculation is straight forward since the rep-

resentation of the stress tensor is known. But this is not the case for polymeric

liquids, as they are non Newtonian. Hence, appropriate viscoelastic models have

to be introduced to calculate the relevant stress components. The Rolie-Poly (RP)

model [42], which simplifies the set of equations from the GLaMM [34] model, shall

be employed here. A description of the relevant hydrodynamic equations and the

RP model now follow.

4.1 Flow Field

The velocity vectors in space constitute the flow field. In the current study the

velocity is treated as a function of one spatial dimension and time. The fluid
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velocity is obtained from the momentum equation

ρ
dv

dt
≡ ρ [∂tv + (v · ∇) v] = ∇ ·T, (4.1)

where ρ is the fluid density and T is the total stress tensor defined in Equation (4.2).

The polymeric stress σ is obtained from an appropriate viscoelastic model suitable

for the system under study. In some situations the polymer is dissolved in a solvent,

and the solvent can either be Newtonian or a polymer of lower molecular mass. In

the calculations here, the polymer is assumed to be dissolved in a Newtonian solvent

of viscosity η. So that the total stress from the solution is then the sum of stress

from the polymer σ and that from the Newtonian solvent D (where D = κ + κT ,

and the velocity gradient tensor κ = (∇v)T [43]). This leads to the following

expression for the total stress

T = σ + η(κ + κT )− pδ. (4.2)

4.2 The Rolie-Poly (RP) Model

The GLaMM model [34] introduced in Section 2.6 derives the polymer contribu-

tion to the total stress from the position vector for each tube segment as shown

in Figure 4.1. To this end, the tube of diameter ad is discretized into Z = M/Me

segments S1, S2, ..., Sz whose position vectors are R1,R2, ...,Rz as shown in Fig-

ure 4.1. Where M is the molecular weight and Me is the molecular weight between

entanglements of the polymer. The position vector R(s, t) (where t is time), whose

time evolution is given by a stochastic partial differential equation (SDE) con-

tains information about the shape of the chain, and from this knowledge, various

macroscopic quantities can be derived. This is possible since the SDE has s and t

dependence and it has contributions from various sources of motion of the chain.
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Figure 4.1: Schematic representation of the tube and the position vectors describing
its conformation.

The polymer contribution to the total stress is obtained from the tangent cor-

relation function fkl (where k and l are indices in the Cartesian coordinate system)

as [34, 42]

σkl =
3G

Z

∫ Z

0

fkl(s, s)ds

fkl =

〈
∂Rk(s)

∂s

∂Rl(s
′)

∂s′

〉
,

(4.3)

where G is the plateau modulus. The tangent correlation function contains infor-

mation about tube orientation, chain stretch and chain trajectories.

The GLaMM model is completed with a partial differential equation (PDE)

describing the time evolution of fkl. This PDE is derived from the original SDE

describing the time evolution of R(s, t). The nonlinear PDE describing the time

evolution of fkl has s dependence since it contains many relaxation modes of the

chain, and this makes it difficult to implement in numerical simulations. The

GLaMM model is very successful for linear chains. It was found [34] to give a good

match to a wide class of experimental data; ranging from, linear oscillatory shear to

steady shear viscosity, first normal stress difference, uniaxial extension and more.
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To reduce the difficulty of implementing the GLaMM model in numerical sim-

ulations, the Rolie Poly (RP) model removes all s dependence in fkl making it a

single mode model. Similar to the GLaMM model, the polymer contribution to

the total stress is given by [42]

σ = GW, (4.4)

where W is the tangent correlation function averaged over s. Also, W contains

information about the chain orientation, stretch and constraint release events. It

can be seen as a measure of the strain on the tube. The PDE describing the time

evolution of W is given by the RP model as [42]

dW

dt
= κ ·W + W · κT︸ ︷︷ ︸

I

− 1

τd
(W − I)

︸ ︷︷ ︸
II

− 2(1−
√

3/tr(W))

τR

(
W + β

(
trW

3

)δ
(W − I)

)

︸ ︷︷ ︸
III

,

(4.5)

where I is the identity tensor and the parameter δ is a fitting parameter for experi-

mental data [42]. The CCR parameter β models the degree of convective constraint

release in the system.

The RP model is easier to implement in numerical simulations than the original

GLaMM model. But the RP constitutive equation is nonlinear and this situation

still introduces complications in numerical simulations. The RP model is a good

choice for the kind of study being carried out here because it has been shown to

give a good match to the GLaMM model as well as to experimental data [42] (at

appropriate parameter values) and it contains the necessary physics exhibited by

real polymer solutions at different concentrations.

Real polymer chains get stretched at sufficiently high strain rates and relax

this stretch quickly when the flow is switched off. Although the time scale for this

stretch relaxation is small, it is not negligible (for fast shear flows) as was assumed
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in the DE theory. Also, the CCR parameter in the RP model can be adjusted to

remove the stress maximum predicted by the DE theory and hence obtain better

agreement with experimental data. The CCR parameter can also be adjusted to

recover the original nonmonotonic behaviour of the DE constitutive equation. This

will prove useful here where the ‘fracture’ reported in [4] may be due to the unstable

nature of polymeric liquids.

The RP constitutive equation is easily understood by examining its predictions

for the behaviour of the fluid under step shear. In typical well entangled solutions,

the stretch relaxation time is much less than the reptation time, τR << τd. Thus,

under fast deformations (a large step shear) such that 1/γ̇ << τR << τd, the terms

I dominates the right hand side of Equation (4.5) giving

dW

dt
= κ ·W + W · κT, (4.6)

which then leads to a stress build up. At the end of the step shear (shear cessation),

the tensor κ vanishes. Since τR << τd then the term III dominates the right hand

side of Equation (4.5) at the early stages of stress relaxation. Thus the early stages

of stress relaxation is due mainly to relaxation of chain stretch which occurs on

time scale of τR. In the RP equation, chain stretch is represented by the term

tr(W), so that the effective stress relaxation due to relaxation of chain stretch is

given by

dW

dt
= −2(1−

√
3/tr(W))

τR

(
W + β

(
trW

3

)δ
(W − I)

)
. (4.7)

Finally, at the later stages of stress relaxation, the term II dominates so that

stress relaxation is then due to reptation which occurs on a time scale of τd. In-

formation about chain stretch can be obtained by computing the quantity trW.

Hence the momentum Equation (4.1) can be solved using the Equation (4.5). From
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the velocity field the shear rate can be computed, hence the accumulated strain is

computed.

In the case of steady shear, for times t << τR after startup, the terms II and

III in Equation (4.5) have negligible effect on the stress. Hence, the stress grows

due to the deformation described by the term I in Equation (4.5). However, as

time time approaches τR the term III starts to dissipate the stress, and eventually

the term II contributes to this dissipation. Finally, the stress passes through a

maximum and decreases to some steady value. At this time the terms II and III

balance the term I in Equation (4.5) and the time derivative vanishes, and this

is the steady state situation. However, if the imposed shear rate 〈̂̇γ〉 is such that

〈̂̇γ〉τd < 1, the stress does not pass through a maximum before reaching the steady

state.

4.3 Stress Diffusivity

The RP Equation (4.5) assumes uniform conditions in space, which is not necessar-

ily true. The spatial profile of the shear rate could become non uniform depending

on the average shear rate imposed on the material. To account for this possi-

bility Lu et al. [44, 45] extended the original idea of stress diffusivity introduced

by El-Kareh and Leal [46] to a simpler viscoelastic model known as the Johnson-

Segalmann (JS) model [47].

Similarly, the locality of the RP Equation (4.5) is removed by the addition of

stress diffusivity, and the RP equation with the diffusive term is known as the

diffusive RP equation (DRP) given as [25]

dW

dt
=κ ·W + W · κT − 1

τd
(W − I)

− 2(1−
√

3/tr(W))

τR

(
W + β

(
trW

3

)δ
(W − I)

)
+ D∇2W,

(4.8)
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where D is stress diffusion constant.

The shear stress falls into a plateau in the range 1/τd < 〈γ̇〉 < 1/τR, where 〈γ̇〉

is the spatially averaged shear rate. The presence of stress diffusivity ensures that

the selected plateau stress is unique [44, 45]. Also during shear banding, the width

of the interface between the two bands of fluids at high and low viscosities is set

by the stress diffusion constant [44, 45, 23]. More details of the physical effects of

the diffusive term will be given later in this Chapter.

The phenomena of interest in this study occur when the system is out of equi-

librium, hence it is useful to separate the tensor W into its equilibrium part I (the

identity tensor) and its non equilibrium part ∆, so that W = I + ∆, where ∆ is

zero at equilibrium. Substitution into the DRP equation gives

d∆

dt
= κ ·∆ + ∆ · κT + κ + κT − 1

τd
∆

− 2

τR

[
1−

(
1 +

tr(∆)

3

)−1/2
][(

β

(
tr∆

3
+ 1

)δ
+ 1

)
∆ + I

]
+ D∇2∆.

(4.9)

4.4 Coupled System of Equations in Different Ge-

ometries

For easy comparison of calculations with experimental data, it is necessary to apply

different coordinate systems corresponding to the plate geometries commonly used

in experiments. All calculations presented here will be carried out in 2-dimensions,

considering only the flow and velocity gradient directions.

4.4.1 Flat Plates

For the case where the material is placed between two flat plates (assumed to be

infinite) of separation L as depicted in Figure 2.2, the Cartesian coordinate system
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is used. In this case, the flow direction is x̂ and the velocity gradient direction is

ŷ, so that v = vx(y, t)x̂ and ∆ = ∆(y, t). Using

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
(4.10)

καβ = (∇v)T = ∂αvβ =




0 γ̇

0 0


 (4.11a)

γ̇ =
∂vx
∂y

(4.11b)

∆ =




∆xx ∆xy

∆xy ∆yy


 (4.12)

κ ·∆ + ∆ · κT =




2γ̇∆xy γ̇∆yy

γ̇∆yy 0


 (4.13)

κ + κT =




0 γ̇

γ̇ 0


 (4.14)

and substituting into Equation (4.9) gives

∂∆xx

∂t
= 2∆xyγ̇ −

1

τd
∆xx −

2

τR
[1− A] [(βA+ 1) ∆xx + 1] +D∂

2∆xx

∂y2
(4.15a)

∂∆xy

∂t
= γ̇ + γ̇∆yy −

1

τd
∆xy −

2

τR
[1− A](βA+ 1)∆xy +D∂

2∆xy

∂y2
(4.15b)

∂∆yy

∂t
= − 1

τd
∆yy −

2

τR
[1− A][(βA+ 1)∆yy + 1] +D∂

2∆yy

∂y2
(4.15c)

A =

(
1 +

Tr∆

3

)−1/2

, (4.15d)
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where δ = −1/2 has been used. This value of δ has been shown to give the best

fit to experimental data [42]. Using the rescaled quantities

̂̇γ =γ̇τd

t̂ =t/τd

τ̂R =τR/τd

ŷ =y/L

D̂ =
Dτd
L2

,

(4.16)

gives (writing t̂ as t, τ̂R as τR and ŷ as y for simplicity)

∂∆xx

∂t
= 2∆xy

̂̇γ −∆xx −
2

τR
[1− A] [(βA+ 1) ∆xx + 1] + D̂∂

2∆xx

∂y2
(4.17a)

∂∆xy

∂t
= ̂̇γ + ̂̇γ∆yy −∆xy −

2

τR
[1− A](βA+ 1)∆xy + D̂∂

2∆xy

∂y2
(4.17b)

∂∆yy

∂t
= −∆yy −

2

τR
[1− A][(βA+ 1)∆yy + 1] + D̂∂

2∆yy

∂y2
. (4.17c)

Calculations with the momentum Equation (4.1) can be simplified by taking

advantage of the sluggishness of the polymeric liquids under consideration here.

The dynamics of these liquids is heavily dominated by viscosity as can be seen

by computing their Reynolds number Re using typical material properties. The

Reynolds number determines the balance between inertia and viscosity in a fluid.

The Reynolds number is given as [6]

Re =
ρ̃Ṽ L̃

µ̃
, (4.18)

where ρ̃ is the fluid density, Ṽ is typical velocity of the fluid, L̃ is typical length

scale of the system and µ̃ is fluid viscosity. Typical parallel plate configurations

have gap sizes L̃ ∼ 1mm, and fluid velocity Ṽ ∼ 1mm s−1 [4]. The typical densities
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are fairly close to ρ̃ ∼ 1g cm−3 [48], but the viscosities vary widely depending on

molecular weight. Using viscosity µ̃ ∼ 105Pa s for a polybutadiene sample [49]

gives the Reynolds number as Re ≈ 10−8 << 1.

This implies that the inertia contribution to Equation (4.1) can be neglected

giving

∇ ·T = 0. (4.19)

Equations (4.10) and (4.12) give

∂Txy
∂y

=0 (4.20a)

∂Tyy
∂y

=0, (4.20b)

which implies constant total stress in the space between the flat plates. Taking

the shear component of Equation (4.2) gives

Txy = G∆xy + ηγ̇. (4.21)

Although the quantities ∆xy and γ̇ have spatial dependence, they balance each

other so that Txy is uniform in space. Using

T̂xy =
Txy
G

ε =
η

Gτd
,

(4.22)

gives

T̂xy = ∆xy + ε̂̇γ. (4.23)

Since

T̂xy = 〈T̂xy〉 = 〈∆xy〉+ ε〈̂̇γ〉, (4.24)
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then Equation (4.23) gives

̂̇γ = 〈̂̇γ〉+
1

ε
[〈∆xy〉 −∆xy] . (4.25)

The spatial average of any quantity � is defined as

〈�〉 =

∫ 1

0

�dy. (4.26)

Equation (4.25) allows the calculation of the spatially resolved shear rate from the

spatially averaged shear rate and the polymer stress. The fluid velocity is then

obtained from

̂̇γ =
∂v̂x
∂y

, (4.27)

leading to

v̂x(y, t) =

∫ y

0

̂̇γ(y′, t)dy′, (4.28)

where v̂x = vτd/L.

Using Equations (4.17) and (4.25), the stress components and shear rate can

be computed in space and time. Finally, Equation (4.28) allows the velocity field

to be computed. A discussion of the numerical scheme used in the calculations is

deferred to Chapter 5.

4.4.2 Concentric Cylinders

The representation of a point P in the cylindrical coordinate system is sketched

in Figure 4.2. By translating the plane containing the xy axes, the corresponding

representation of the point P in the Cartesian coordinate system can be obtained.

The representation of a point in the cylindrical coordinate system is completely

specified by the unit vectors (r̂, θ̂, ẑ).

For the case where the material is placed between two concentric cylinders
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Figure 4.2: Sketch of a point P represented in the cylindrical coordinate system
and its corresponding representation in the Cartesian coordinate system.

whose inner radius is R1 and outer radius R2, with the flow in the θ̂ direction and

velocity gradient in the r̂ direction, then v = vθ(r, t)θ̂ and ∆ = ∆(r, t). Using

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
(4.29)

gives

κ = (∇v)T =




0 −vθ
r

∂vθ
∂r

0


 . (4.30)

The quantity

γ̇ =
∂vθ(r)

∂r
− vθ(r)

r

=r
∂

∂r

(vθ
r

)
,

(4.31)
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occurring in the tensor

κ + κT =




0 ∂vθ
∂r
− vθ

r

∂vθ
∂r
− vθ

r
0


 . (4.32)

is defined as the shear rate in the cylindrical coordinates system. Integrating

Equation (4.30) from the inner to the outer cylinder gives

∫ R2

R1

γ̇

r
dr =

∫ R2

R1

∂

∂r

(vθ
r

)
dr, (4.33)

so that using the transformations

ξ =
1

q
ln

r

R1

q = ln
R2

R1

(4.34)

gives

vθ
r

∣∣∣
R2

R1

=

∫ 1

0

qγ̇dξ. (4.35)

In the calculations performed here, no slip boundary conditions are imposed on the

fluid velocity so that the velocities at the boundaries are given by

vθ(R1) = V

vθ(R2) = 0.

(4.36)

Where V is the velocity of the moving cylinder. Hence Equation (4.35) then gives

V

qR1

= −
∫ 1

0

γ̇dξ. (4.37)
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Multiplying through by τd gives

V̂ = −
∫ 1

0

ˆ̇γdξ, (4.38)

where V̂ = V τd/(qR1). Since the integral on the right hand side of Equation (4.38)

is the spatially averaged shear rate 〈ˆ̇γ〉, it follows that the imposed cylinder velocity

is related to the spatially averaged shear rate by

V̂ = −
∫ 1

0

ˆ̇γdξ = −〈ˆ̇γ〉 (4.39)

with these rescaled quantities. Using

∂vθ
∂θ

=
∂θ̂

∂r
= 0, (4.40)

∂r̂

∂θ
= θ̂,

∂θ̂

∂θ
= −r̂, (4.41)

and

∆ =




∆rr ∆rθ

∆rθ ∆θθ


 (4.42)

give

(v · ∇)∆ =
vθ
r




−2∆rθ ∆rr −∆θθ

∆rr −∆θθ 2∆rθ


 , (4.43)

κ ·∆ =



−vθ

r
∆rθ −vθ

r
∆θθ

∂vθ
∂r

∆rr
∂vθ
∂r

∆rθ


 , (4.44)

and

∆ · κT =



−vθ

r
∆rθ

∂vθ
∂r

∆rr

−vθ
r

∆θθ
∂vθ
∂r

∆rθ


 . (4.45)
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Also using

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
, (4.46)

gives

∇2∆ =

[
∂2∆rr

∂r2
+

1

r

∂∆rr

∂r
− 2

r2
∆rr +

2

r2
∆θθ

]
r̂r̂ +

[
∂2∆rθ

∂r2
+

1

r

∂∆rθ

∂r
− 4

r2
∆rθ

](
θ̂r̂ + r̂θ̂

)

+

[
∂2∆θθ

∂r2
+

1

r

∂∆θθ

∂r
− 2

r2
∆θθ +

2

r2
∆rr

]
θ̂θ̂.

(4.47)

Substitution into Equation (4.9) and using Equation (4.31) gives the following

system of coupled nonlinear partial differential equations:

∂∆θθ

∂t
=2γ̇∆rθ −

1

τd
∆θθ −

2

τR

[
1− Ã

] [(
βÃ+ 1

)
∆θθ + 1

]

+ D

[
∂2∆θθ

∂r2
+

1

r

∂∆θθ

∂r
− 2

r2
(∆θθ −∆rr)

]
(4.48a)

∂∆rθ

∂t
=γ̇ [∆rr + 1]− 1

τd
∆rθ −

2

τR

[
1− Ã

] [
βÃ+ 1

]
∆rθ

+ D

[
∂2∆rθ

∂r2
+

1

r

∂∆rθ

∂r
− 4

r2
∆rθ

]
(4.48b)

∂∆rr

∂t
=− 1

τd
∆rr −

2

τR

[
1− Ã

] [(
βÃ+ 1

)
∆rr + 1

]

+ D

[
∂2∆rr

∂r2
+

1

r

∂∆rr

∂r
+

2

r2
(∆θθ −∆rr)

]
(4.48c)

Ã =

(
1 +

∆θθ + ∆rr

3

)−1/2

. (4.48d)

Then, using transformation Equation (4.34), dimensionless time t and τR with

D̂ =
Dτd
qR2

1

(4.49)
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gives

∂∆θθ

∂t
=2ˆ̇γ∆rθ −∆θθ −

2

τR

[
1− Ã

] [(
βÃ+ 1

)
∆θθ + 1

]

+ D̂e−2qξ

[
∂2∆θθ

∂ξ2
− 2q2 (∆θθ −∆rr)

]
(4.50a)

∂∆rθ

∂t
=ˆ̇γ [∆rr + 1]−∆rθ −

2

τR

[
1− Ã

] [
βÃ+ 1

]
∆rθ

+ D̂e−2qξ

[
∂2∆rθ

∂ξ2
− 4q2∆rθ

]
(4.50b)

∂∆rr

∂t
=−∆rr −

2

τR

[
1− Ã

] [(
βÃ+ 1

)
∆rr + 1

]

+ D̂e−2qξ

[
∂2∆rr

∂ξ2
+ 2q2 (∆θθ −∆rr)

]
. (4.50c)

Using

∇ ·T = G∇ ·W + η∇ · (κ + κT ), (4.51)

in the momentum Equation (4.1) and taking the θ̂ component gives

ρ
∂vθ
∂t

= η

[
∂2vθ
∂r2

+
1

r

∂vθ
∂r
− vθ
r2

]
+G

∂∆rθ

∂r
+G

2

r
∆rθ. (4.52)

Upon transformation into dimensionless quantities this becomes

ρ̂q2∂v̂θ
∂t

= ε

[
e−2qξ ∂

2v̂θ
∂ξ2
− q2e−2qξv̂θ

]
+ e−qξ

∂∆rθ

∂ξ
+ 2qe−qξ∆rθ, (4.53)

where

ρ̂ =
ρR2

1

Gτ 2
d

ε =
η

Gτd

v̂θ =
vθτd
qR1

.

(4.54)

Although Equation (4.19) implies constant total stress between flat plates, this
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is not the case for concentric cylinders due to curvature effects. Writing

T =




Trr Trθ

Trθ Tθθ


 , (4.55)

gives

∇ ·T = ∇ ·
[
Trrr̂r̂ + Trθ

(
θ̂r̂ + r̂θ̂

)
+ Tθθθ̂θ̂

]
, (4.56)

which reduces to

∇ ·T =

[
∂Trr
∂r

+
1

r
Trr −

1

r
Tθθ

]
r̂ +

[
∂Trθ
r

+
2

r
Trθ

]
θ̂. (4.57)

Then Equation (4.19) implies

∂Trθ
r

+
2

r
Trθ =0 (4.58a)

∂Trr
∂r

+
1

r
Trr −

1

r
Tθθ =0. (4.58b)

Then,

∂Trθ
r

+
2

r
Trθ =

∂

∂r

(
r2Trθ

)
= 0 (4.59)

leads to

Trθ =
Λ

r2
, (4.60)

where Λ is a constant of integration, and hence the stress gradient in cylindrical

Couette geometry.

Similar to the case of flat plates, the spatial average of each quantity � in

cylindrical Couette geometry is computed as

〈�〉 =

∫ 1

0

�dξ, (4.61)
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which upon use of the transformation Equation (4.34) reduces to

〈�〉 =

∫ R2

R1

�dr
qr
. (4.62)

Taking the zero q limit gives

lim
q→0

r = lim
q→0

R1e
qξ = R1. (4.63)

Hence Equation (4.62) reduces to

〈�〉 =

∫ R2

R1

� dr
qR1

. (4.64)

Expanding q as a Taylor series about the point R1 gives

q =
(R2 −R1)

R1

+O
(
(R2 −R1)2

)
. (4.65)

Hence, Equation (4.64) reduces to

〈�〉 =
1

R2 −R1

∫ R2

R1

�dr. (4.66)

In typical experiments where the gap between the plates is small, the stress com-

ponents and velocity field are taken to vary only in the ŷ direction in the case of

flat plates, and r̂ in the case of concentric cylinders. Hence,

dr ≡ dy, (4.67)

so that Equation (4.66) can then be written as

〈�〉 =
1

y2 − y1

∫ y2

y1

�dy. (4.68)

60



Chapter 4. Theoretical Model

Setting y1 = 0 and choosing by y2 = L reduces Equation (4.68) to Equation (4.26).

Thus, the spatial averages in cylindrical Couette configuration coincide the their

counterparts in flat plates in the zero q limit.

4.5 Effects of Stress Diffusivity

The term

dW

dt
≡ ∂W

∂t
+ v · ∇W, (4.69)

in the RP model (Equation (4.5)) could lead to situations where ∇W contains a

delta function if there is a discontinuity in W [46]. This behaviour of W would im-

ply a discontinuity in the polymer stress across streamlines [46]. This is unphysical

since W contains information about chain stretch and orientation. A discontinuity

in W would then imply a discontinuity in these quantities. To remove this pos-

sible unphysical situation, El-Kareh and Leal [46] used a simple polymer model

(dumbbell model) to derive the requirement to remove this unphysical situation.

It turned out that stress diffusivity was required to remove the possibility of a

discontinuity in the polymer stress.

This stress diffusivity accounts for Brownian motion of the polymer stress across

streamlines. This has the effect of smoothening out any discontinuities in the poly-

mer stress [46]. The stress diffusivity can be thought of as relaxation by diffusion

of differently strained polymer strands [45].

The question of what physical situations could lead to a jump in W is readily

answered by looking at the behaviour of W in curved geometries and during shear

banding. The shear banding phenomenon leads to inhomogeneities in W as can

be readily seen in Equation (4.2) in the limit of small Reynolds number.

For the case of flat plates, Equation (4.19) implies a constant total stress be-

tween the plates. When shear banding occurs, such that ̂̇γ becomes inhomogeneous
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as in Figure 4.3(b), then ∆xy must become inhomogeneous to maintain a constant

total shear stress in Equation (4.23). This inhomogeneity in ∆xy could then lead

to a discontinuity in ∆xy if stress diffusivity is neglected.

In the case of concentric cylinders, Equation (4.19) does not necessarily imply

a constant total stress as seen in Equation (4.60). But the occurrence of inhomo-

geneities in ̂̇γ during shear banding will still lead to inhomogeneities in ∆rθ. This

is because the stress gradients in Equation (4.60) have no ̂̇γ dependence.

The shear banding phenomenon that occurs in a polymeric liquid with a non-

monotonic constitutive relation was introduced in Section 2.5. When the applied

shear rate satisfies 1/τd < 〈γ̇〉 < 1/τR, the total shear stress forms a plateau, for

example the plateau at T̂ 0
xy in Figure 4.3(a). This is because the constitutive rela-

tion is multivalued in the unstable part of the constitutive relation as discussed in

Section 2.5.
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Figure 4.3: (a) Constitutive curve and hypothetical stress plateaus for the DRP

model with 〈̂̇γ〉 = 200 and D̂ = 10−5. (b) Corresponding shear rate profile for the
applied shear rate in (a).

However, Figure 4.3(a) shows that there are many possible values of T̂xy which

correspond to shear rates ̂̇γ1 and ̂̇γ2, for an applied shear rate 〈̂̇γ〉 as indicated in

Figure 4.3(a). For example, the shear stresses T̂ 1
xy and T̂ 2

xy both correspond to the

shear rates ̂̇γ1, 〈̂̇γ〉 and ̂̇γ2 as shown in Figure 4.3. This situation is unphysical, as

experimental data has shown that the selected plateau is unique [50]. The addition
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of stress diffusivity [44, 45] removes this unphysical possibility.

Figure 4.3(b) shows the corresponding spatially resolved shear rate profile for

the applied spatially averaged shear rate 〈̂̇γ〉 = 200. The values of the spatially

resolved shear rate ̂̇γ1 and ̂̇γ2 which fall in the stable branches of the constitutive

curve in Figure 4.3(a) are shown in Figure 4.3(b). They are separated by an

interface of width li in Figure 4.3(a). The stress diffusion constant sets the value

of the width li of this interface [44, 45].

4.6 Remarks

The RP model was chosen for this work because it captures the essential physics

associated with the behaviour of linear chains under shear deformation and an-

other kind of deformation known as extensional deformation. However, only shear

deformation is being considered in this thesis. The RP model contains only the

relaxation mode of the whole chain unlike the full GLaMM model which has many

relaxation modes down to the relaxation of an entanglement segment. The re-

laxation time of a segment τe is very small, so that the time step required to do

numerical simulation of this time scale will be very small, and this will lead to

very long simulation times. This single mode RP model which has been shown to

give good agreement with experimental data in the past [42, 51] does not have this

time constraint. The smallest time scale involved in the RP model is τR which is

reasonably large for simulations.

Computations with the RP model are difficult because the RP model equation

is nonlinear, however the complications with the nonlinearities can be reduced by

using semi-implicit finite difference schemes. Explicit schemes would be much easier

to code, but they become unstable when the time step is too large. The procedure

for implementing a semi-implicit finite difference scheme to the RP model equation

will be described in the next chapter.
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The equations shown in this chapter were derived from the DRP model equa-

tion in two geometries commonly used in experiments: flat plates and concentric

cylinders. A third configuration commonly used is the cone and plate arrangement,

which is not discussed here. The calculations from the concentric cylinders converge

to the case of cone and plate under suitable values of the parameter q = ln(R2/R1).

They also converge to the case of flat plates as q → 0. Hence by using sufficiently

small values of q such that the calculations become q independent a direct compar-

ison can be made between calculations from concentric cylinders and experimental

data from flat plates. To make a direct comparison with the Experiment I described

in Chapter 3 which were done with flat plates, the calculations to be presented in

Chapter 6 will be done with flat plates. However, there will be a brief discussion

of curvature effects on the calculations at the end of Chapter 6.
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Numerical Scheme

The system of partial differential equations derived for the plate configurations

in the previous Chapter contains nonlinearities. These kind of coupled system of

nonlinear partial differential equations have no analytical solution. It then be-

comes necessary to employ appropriate numerical techniques in solving these kinds

of problems. The numerical schemes used in solving the system of equations en-

countered in the current study will be described in this chapter. The illustration

presented in this chapter is for the case of concentric cylinders, while the approach

is the same for the case of flat plates.

5.1 Steady State Solutions

The first step in this study is to investigate the behaviour of the system at steady

state when the time derivatives vanish. In the case of flat plates, setting D̂ = 0

in Equation (4.17) ensures spatial homogeneity, but this is not so for the case of

concentric cylinders due to the inherent spatial gradients given by Equation (4.60).

However, in the limit of q → 0, the condition D̂ = 0 in Equation (4.50) ensures

homogeneity in the gap between the cylinders. Then phenomena such as the effect

of the CCR parameter in changing the system from a stable to an unstable one
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can then be investigated without the complications of spatial inhomogeneities.

In steady state, with q = 0 and D̂ = 0 the system of Equations (4.50) become

2ˆ̇γ∆rθ −∆θθ −
2τd
τR

[
1− Ã

] [(
βÃ+ 1

)
∆θθ + 1

]
=0 (5.1a)

ˆ̇γ [∆rr + 1]−∆rθ −
2τd
τR

[
1− Ã

] [
βÃ+ 1

]
∆rθ =0 (5.1b)

−∆rr −
2τd
τR

[
1− Ã

] [(
βÃ+ 1

)
∆rr + 1

]
=0, (5.1c)

which is a system of nonlinear equations. Equations (5.1) can be solved by the

Newton algorithm.

5.1.1 Newton algorithm

The Newton algorithm is described in most literature describing solution of systems

of equations, for example [52]. The Newton algorithm gives an iterative procedure

for solving a system of nonlinear equations. Hence, it is suitable for finding the

steady state solution (the solution at long times) of Equation (4.50). This steady

state is defined by Equation (5.1).

Consider the system of nonlinear equations given by

f1(u1, u2, . . . , um) =0 (5.2a)

f2(u1, u2, . . . , um) =0 (5.2b)

...

fm(u1, u2, . . . , um) =0, (5.2c)

where each of the function fi, i = 1, 2, . . . ,m maps a vector u = (u1, u2, . . . , um)T

of the m dimensional space <m into the real line < [52]. Introducing the function
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F which maps <m into <m allows Equation (5.2) to be written as

F(u) = (f1(u), f2(u), . . . , fm(u))T = 0, (5.3)

where fi, i = 1, 2, . . . ,m are the coordinate functions of F. Using an initial condi-

tion u0, the approximate solution of the set of Equations (5.2) at un+1 is given by

the iterative scheme [52]

un+1 = un −
F(un)

F′(un)
, n = 0, 1, 2, . . . , (5.4)

where F′(un) is the Jacobian matrix at the iterate n.

To solve the nonlinear system of Equations (5.1), one writes

f1(∆rr,∆rθ,∆θθ) = 0 (5.5a)

f2(∆rr,∆rθ,∆θθ) = 0 (5.5b)

f3(∆rr,∆rθ,∆θθ) = 0, (5.5c)

where

f1 =2ˆ̇γ∆rθ −∆θθ −
2τd
τR

[
1− Ã

] [(
βÃ+ 1

)
∆θθ + 1

]
(5.6a)

f2 =ˆ̇γ [∆rr + 1]−∆rθ −
2τd
τR

[
1− Ã

] [
βÃ+ 1

]
∆rθ (5.6b)

f3 =−∆rr −
2τd
τR

[
1− Ã

] [(
βÃ+ 1

)
∆rr + 1

]
(5.6c)

The solution will then be obtained by performing the iterations,

∆n+1 = ∆n −
F(∆n)

F′(∆n)
, n = 0, 1, 2, . . . . (5.7)
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The Jacobian matrix F′(∆n) at the iterate n is given by:

F′(∆) =




∂f1
∂∆rr

∂f1
∂∆rθ

∂f1
∂∆θθ

∂f2
∂∆rr

∂f2
∂∆rθ

∂f2
∂∆θθ

∂f3
∂∆rr

∂f3
∂∆rθ

∂f3
∂∆θθ



, (5.8)

where the function F(∆) is defined by as in Equation (5.3). The iterations are

performed using a fixed value of ˆ̇γ until the system converges to a solution. Other

values of ˆ̇γ are then used until the desired range of ˆ̇γ is covered.

This method of solution allows the quantity ∆rθ to be computed. Taking the

shear component of Equation (4.2) and rescaling gives

T̂rθ = ∆rθ + εˆ̇γ, (5.9)

where T̂rθ = Trθ/G. Equation (5.9) then allows T̂rθ to be computed from ∆rθ

calculated by the Newton algorithm. The results of this calculations are shown

in Figure 5.1 where the shear stress changes from monotonic to non-monotonic

behaviour depending on the value of the CCR parameter used.
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Figure 5.1: Steady state constitutive curves for the RP model for different values
of the CCR parameter β for q = 10−10, Z = 72, calculated from Equation (5.9)
using the Newton algorithm.

The red diamonds in figure 5.1 shows the steady state solution for the case of

β = 0 which is non monotonic. However, the green circles in figure 5.1 shows the

case for β = 0.8 which is monotonic.
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5.2 Dynamics For a Spatially Homogeneous Sys-

tem

In some situations where it is necessary to study the time evolution of the system

in the absence of spatial gradients, the parameters q = 0 and D̂ = 0 are used in

the set of Equations (4.50). The set of coupled PDEs (4.50) then reduces to a set

of coupled ordinary differential equations (ODEs). This set of coupled ODEs can

be solved using the 4th order Runge-Kutta scheme (RK4).

5.2.1 4th Order Runge-Kutta Scheme (RK4)

Consider a system of ODEs defined as

du1

dt
=f1(u1, u2, . . . , um) (5.10a)

du2

dt
=f2(u1, u2, . . . , um) (5.10b)

...

dum
dt

=fm(u1, u2, . . . , um), (5.10c)

which is subject to the initial conditions

u1(0) =u1,0 (5.11a)

u2(0) =u2,0 (5.11b)

...

um(0) =um,0, (5.11c)
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where t is an independent variable. The set of Equations (5.10) and (5.11) can be

rewritten as

dui
dt

=fi(u1, u2, . . . , um) (5.12a)

ui(0) =ui,0, i = 1, 2, . . . ,m. (5.12b)

The RK4 scheme gives the solution to the system of ODEs defined by Equa-

tion (5.12) as

un+1 = un +
1

6
[Γ + 2Ξ + 2Π + Ψ] , (5.13)

where

Γ =δtF (un) (5.14a)

Ξ =δtF

(
un +

1

2
Γ

)
(5.14b)

Π =δtF

(
un +

1

2
Ξ

)
(5.14c)

Ψ =δtF

(
un +

1

2
Π

)
, (5.14d)

where the independent variable t has been discretized with step size δt and index

n, and the corresponding values of the dependent variables u have index n. The

function F has the same meaning as in Equation (5.3).

The RK4 scheme is easily applied to the set of Equations (4.50) with q = 0 and

D̂ = 0 by making the following identifications,

u′1 ≡
d∆θθ

dt
(5.15a)

u′2 ≡
d∆rθ

dt
(5.15b)

u′3 ≡
d∆rr

dt
(5.15c)
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and

f1(u1, u2, u3) ≡2ˆ̇γ∆rθ −∆θθ −
2τd
τR

[
1− Ã

] [(
βÃ+ 1

)
∆θθ + 1

]
(5.16a)

f2(u1, u2, u3) ≡ˆ̇γ [∆rr + 1]−∆rθ −
2τd
τR

[
1− Ã

] [
βÃ+ 1

]
∆rθ (5.16b)

f3(u1, u2, u3) ≡−∆rr −
2τd
τR

[
1− Ã

] [(
βÃ+ 1

)
∆rr + 1

]
(5.16c)

5.3 Spatially Inhomogeneous System

When the constraints of q = 0 and D̂ = 0 are lifted in the cylindrical Couette

geometry, the system becomes spatially inhomogeneous. Hence, the full set of

Equations (4.50) needs to be solved with q 6= 0 and D̂ 6= 0. This requires a numer-

ical scheme suitable for solving a system of coupled partial differential equations.

The numerical scheme employed for this purpose is described in the following sub-

section.

5.3.1 Backward Implicit Scheme (BIS)

To obtain the time evolution of the system from startup to steady state, the full

set of Equations (4.50) is solved using the BIS. The Equations (4.50) are of the

form

∂U

∂t
=
∂2U

∂x2
+ f(U), (5.17)

where U is an arbitrary function and f is an arbitrary function of U . To simplify

the analysis, consider the case of f = 0. Then Equation (5.17) becomes

∂U

∂t
=
∂2U

∂x2
. (5.18)
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The finite difference method involves forming the discretised versions of the time

and space derivatives in Equation (5.18). In the BIS, the time and space derivatives

are given as [53, 54]

x ≈jδx, j = 1, 2, 3, . . . (5.19a)

t ≈nδt, n = 1, 2, 3, . . . (5.19b)

U(x, t) ≈U(xj, tn) ≡ Uj,n (5.19c)

∂U

∂t
≈ 1

δt
[Uj,n+1 − Uj,n] (5.19d)

∂2U

∂x2
≈ 1

(δx)2
[Uj+1,n+1 − 2Uj,n+1 + Uj−1,n+1] . (5.19e)

Then substitution into Equation (5.18) gives

(
1 +

2δt

(δx)2

)
Uj,n+1 −

δt

(δx)2
[Uj+1,n+1 + Uj−1,n+1] = Uj,n. (5.20)

A finite difference approximation such as Equation (5.20) is said to converge to

the true solution U of Equation (5.18) if it meets the requirement [54]

∥∥U j,n − Uj,n
∥∥→ 0 as δx, δt→ 0, (5.21)

where ‖.‖ is some suitable norm between the exact value of U(x, t) and the com-

puted value Uj,n at some fixed point j, n. Hence the finite difference approximation

can be brought closer to the true solution by refining the mesh. However, since

the true solution is not known before hand, the convergence is inferred from the

Lax equivalence theorem. This theorem states that if a finite difference scheme is

consistent, then its stability is the necessary and sufficient condition for conver-

gence [54].

The consistency of a finite difference scheme has to do with the truncation

errors associated with the construction of the time and space derivatives [54]. A
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finite difference scheme is consistent if the truncation errors go to zero as δx, δt go

to zero. In this case, the finite difference scheme actually approximates the desired

PDE and not some other PDE [54]. The truncation errors associated with the BIS

vanish as δx, δt→ 0 [54], hence the BIS is consistent.

The stability of a finite difference approximation has to do with the unstable

growth or stable decay of errors in the arithmetic operations needed to solve the

finite difference equations themselves. This has nothing to do with the PDE, the

errors are due to round-off errors from the computer [54]. The errors which occur

in the solution of the BIS equation decay with time for all values of δx and δt.

Thus the BIS is stable for large time steps [54].

Since the BIS is consistent and unconditionally stable (stable for all values of

δx, δt), then the BIS is convergent by the Lax equivalent theorem. However, the

BIS is first order accurate in time so that the rate of convergence is slow. To

increase the rate of convergence the average values of the spatial discretisations at

two time steps will be used in the calculations to follow.

5.3.2 Calculating Stress Using BIS

The BIS is implemented in Equation (4.50) using

ξ ≈ jδξ, j = 1, 2, . . . , Xn (5.22a)

t ≈ nδt, n = 1, 2, . . . , Tn (5.22b)

̂̇γ(ξ, t) ≈ ̂̇γj,n (5.22c)

∆θθ(ξ, t) ≈ ∆j,n
θθ (5.22d)

∆rθ(ξ, t) ≈ ∆j,n
rθ (5.22e)

∆rr(ξ, t) ≈ ∆j,n
rr (5.22f)

(
1 +

∆θθ(ξ, t) + ∆rr(ξ, t)

3

)−1/2

≈
(

1 +
∆j,n
θθ + ∆j,n

rr

3

)−1/2

, (5.22g)
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where Xn is the number of spatial points and Tn is the number of time steps. The

zero gradient boundary conditions on ∆ give

∆1,n+1
rr =∆2,n+1

rr (5.23a)

∆Xn−1,n+1
rr =∆Xn,n+1

rr , (5.23b)

and similarly for the other components of ∆. The time and space discretisations

for the case of ∆rr take the form

∂∆rr

∂t
≈ 1

δt

[
∆j,n+1
rr −∆j,n

rr

]
(5.24a)

∂2∆rr

∂ξ2
≈ 1

2(δξ)2

[
∆j+1,n+1
rr − 2∆j,n+1

rr + ∆j−1,n+1
rr

]
+

1

2(δξ)2

[
∆j+1,n
rr − 2∆j,n

rr + ∆j−1,n
rr

]
,

(5.24b)

where the spatial derivatives have been averaged at the two time steps n and n+1

to increase the rate of convergence. The time and space discretizations for ∆rθ and

∆θθ are similar to the case of ∆rr as given in Equation (5.24).

The initial conditions are implemented as

̂̇γ(ξ, 0) ≈ ̂̇γj,0 (5.25a)

∆rr(ξ, 0) ≈ ∆j,0
rr (5.25b)

(
1 +

∆rr(ξ, 0) + ∆θθ(ξ, 0)

3

)−1/2

≈
(

1 +
∆j,0
rr + ∆j,0

θθ

3

)−1/2

. (5.25c)

The boundary conditions for the stress were obtained by using the anchoring

potential analogy used in [23]. In this analogy, the viscoelastic stress is connected

to an anchoring potential W as follows:

Dτ n̂ · ∇∆ + W (∆−∆o) = 0. (5.26)
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Here, n̂ is a unit normal to the wall and W is the anchoring potential. For a weak

anchoring potential Equation (5.26) reduces to:

n̂ · ∇∆ = 0, (5.27)

which gives

∂∆

∂ξ
= 0 (at ξ = 0) (5.28a)

∂∆

∂ξ
= 0 (at ξ = 1). (5.28b)

Hence zero gradient boundary condition is used for the calculation of the stress

components.

5.3.3 Calculating the Velocity Field Using BIS

Similar to the case of ∆, the BIS applied to the momentum Equation (4.53) gives

v̂(ξ, t) ≈ v̂j,n (5.29a)

∆rθ(ξ, t) ≈ ∆j,n
rθ (5.29b)

∂∆rθ

∂ξ
≈ 1

4δξ

[
∆j+1,n+1
rθ −∆j−1,n+1

rθ

]
+

1

4δξ

[
∆j+1,n
rθ −∆j−1,n

rθ

]
(5.29c)

∂v̂

∂t
≈ 1

δt
[v̂j,n+1 − v̂j,n] (5.29d)

∂2v̂

∂ξ2
≈ 1

2(δξ)2
[v̂j+1,n+1 − 2v̂j,n+1 + v̂j−1,n+1] +

1

2(δξ)2
[v̂j+1,n − 2v̂j,n + v̂j−1,n] ,

(5.29e)
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where v̂θ in Equation (4.53) has been written as v̂ for simplicity. The no slip

boundary conditions in Equation (4.36) give

v̂1,n = V̂ (5.30a)

v̂Xn,n = 0, (5.30b)

where the moving inner cylinder is indexed j = 1, while the stationary outer

cylinder is indexed j = Xn. Equation (4.39) shows that

V̂ = −〈̂̇γ〉, (5.31)

where 〈̂̇γ〉 is the imposed averaged shear rate. The initial condition is implemented

as

v̂j,0 = v̂j0,0, j = 2, 3, . . . , Xn − 1. (5.32)
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Figure 5.2: Flow curve (triangles) for the DRP model for β = 0 calculated from
Equation (4.50) using the BIS. The solid line shows the constitutive curve calcu-
lated by the Newton algorithm.

The spatially resolved shear rate is obtained by discretising Equation (4.31)

whose dimensionless form is given as

̂̇γ = e−qξ
[
∂v̂θ
∂ξ
− qv̂θ

]
, (5.33)

where q is defined in Equation (4.34). Once ̂̇γ is calculated at the first time step,
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then Equation (4.50) can be evolved one time step forward. The average total shear

stress at the first time step is obtained by taking the average of Equation (5.9) as

〈T̂rθ〉(1) = 〈∆rθ〉(1) + ε〈̂̇γ〉. (5.34)

This process is repeated at subsequent time steps until the time evolution of the

average total shear stress is obtained.

The steady state of the system is determined by defining a tolerance ς which

serves as an upper bound for subsequent values of the average total shear stress.

Then to determine steady state, a suitable range of 〈T̂rθ〉 is chosen such that when

the condition
∣∣∣〈T̂rθ〉(2n)− 〈T̂rθ〉(n)

∣∣∣ < ς (5.35)

is satisfied, then 〈T̂rθ〉 is said to have reached steady state. A suitable value of ς can

be determined by comparing the steady state value of 〈T̂rθ〉 with another steady

value of 〈T̂rθ〉 obtained with a smaller value of ς. The values of ς are decreased

until a consistent steady value of 〈T̂rθ〉 is obtained for a given 〈̂̇γ〉. Then the value

of 〈̂̇γ〉 is increased and a new steady value of 〈T̂rθ〉 is obtained. This process is

repeated until the desired range of 〈̂̇γ〉 is covered. The result which is known as

the flow curve is shown by the blue triangles in Figure 5.2.

5.4 Choice of Parameters

The parameters used in these calculations were chosen to be consistent with typical

experimental data. The value Z = 72 lies in the range of data reported in [4]. The

solvent viscosity η ≈ 1Pa s, τd = 310 s [4] and G ≈ 7 × 103 [55] gives ε ≈ 10−7.

However, fitting the constitutive curve from the RP model with the experimentally

measured constitutive curve in [29] give estimates of ε ≈ 10−4. Hence ε = 10−4 was

used. The results from the simulations do not change qualitatively at smaller values
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of ε but they require smaller time steps due to scaling problems in the coefficient

matrix associated with the finite difference Equation (5.20). This value of ε = 10−4

allows the use of large time steps in the simulations.

For the case of concentric cylinders, typical values of q lie in the range (2 ×

10−3, 2 × 10−4) [25]. However, because the calculations become independent of

system curvature below q = 10−6 a value of q = 10−10 was used to match exper-

imental data from [4]. In the case of concentric cylinders, it is not possible to go

to the q = 0 limit because of the transformation ξ = (1/q) ln(r/R1). However,

repeating the calculations in the case of flat plates (which corresponds to the q = 0

limit) using the same initial conditions give exactly the same results as the case

of concentric cylinders with q = 10−10. Using R1 = 16mm [35], ρ ≈ 103 kg m−3

gives ρ̂ ≈ 3 × 10−10 so that ρ̂ = 10−10 was used in the calculations for concentric

cylinders. Finally, D̂ = 10−5 in the case of flat plates to match experimental data

of [4], and D̂ = 10−5 for the case of concentric cylinders to study curvature effects

on the calculations. The value of D̂ or D̂ used in the simulations puts a restriction

on the spatial width of the mesh used. The width of the interface between shear

bands indicated as li in Figure 4.3(b) is set by the value of D̂ as li ∼
√

D̂ [23].

The scale of stress diffusion constant used in the simulations is typical of polymer

solutions [23].

Although a value of q = 10−10 was used in the calculation with concentric

cylinders to match the flat plates data of [29], the ‘fracture’ effect is still possible

with q 6= 0. The effect of the curvature parameter on the calculations will be

discussed in the next Chapter.

5.5 Test For Convergence

To ensure that the solutions obtained from the numerical scheme actually converged

to the true solution, the calculations were repeated with smaller values of δt and δξ

78



Chapter 5. Numerical Scheme

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.1

0.5

1

t/τd

〈T̂
r
θ
〉

δξ = 0.0017
δt = 10−4

δt = 10−5

δt = 10−6

Figure 5.3: Shear stress during startup and relaxation after a step strain for strain
amplitude γ0 = 2.5. The average total shear stress is calculated from Equation (5.9)
using the BIS for a mesh of 600 grid points Xn (δξ = 1/Xn ' 1.7 × 10−3) for the
time steps δt shown. The profiles begin to converge to some limiting value as δt
decreases. [Parameters: 〈̂̇γ〉 = 200, D̂ = 10−5, Z = 72, ρ̂ = 10−10, q = 10−10]

(starting from suitable initial values) until nearly constant results were obtained.

The choice of parameters to perform the test is very important. In the current

work, the test was carried out when the shear stress was relaxing rapidly following

a large step shear. During this interval, the velocity profile also changes very

rapidly in space and time, and thus the solutions are most vulnerable to errors

in this interval. The velocity profile also develops sharp spatial gradients in this

interval which may lead to jumps in the spatial profile of the velocity.

To obtain the desired shear stress and velocity profiles, Equation (4.50) was

initialised with random perturbations. These perturbations will be described in

Chapter 6. The shear stress and velocity profiles obtained using meshes of different

number of grid points Xn are shown in Figures 5.3 to 5.6. The value of δξ decreases

as the number of grid points is increased since δξ = 1/Xn. The Figures also show

the results for different values of δt. The results show that the velocity profile

and shear stress begin to converge to some limiting value as both δξ and δt are

decreased.
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Figure 5.4: Velocity profiles during stress relaxation after a step strain calculated
from Equation (5.35) for a mesh of 600 grid points Xn (δx = 1/Xn ' 1.7× 10−3).
The profiles converge as δt decreases. Parameters same as Figure 5.3.

Also the inset of Figure 5.4 shows that the velocity profiles change smoothly

around the regions of strong spatial gradients. All the computations were done in

MATLAB R©. All the results presented in this thesis were computed using δt = 10−5

and δx = 10−3. These values of δt and δx require creation of large arrays which

require large amounts of computer memory, and the simulations run into hours.

Hence the computations were done using the advanced research computing (ARC)

infrastructure of the University of Leeds whose configuration is described in [56].
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Figure 5.5: Same as Figures 5.3 and 5.4 with a mesh of 800 grid points.
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Figure 5.6: Same as Figures 5.3 and 5.4 with a mesh of 1000 grid points.
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Figure 5.7: Data showing convergence of calculations as mesh size increases and
time step decreases.

Most of the computations were done with a single processor since the process of

distributing the arrays among many processors resulted in too much communica-

tion overhead among the processors. However, the calculation of the free energy

(Equation (2.22)) does not involve communication between processors. In this case,

it is possible to split the loop index among different processors and the calcula-

tions done in parallel. This was achieved using the Parallel Computing ToolboxTM

of MATLAB R© using its default settings which allows a maximum of eight labs

(processors). All eight labs were used in this case.

As a mean of quantifying the behaviour of of the velocity profiles for different

values of δξ and δt, the quantity 〈|v|〉 defined as

〈|v|〉 =
1

Xn

∑

i

|vi|, (5.36)
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(where the sum is over all spatial position) is computed for different values of δξ

and δt. The results are shown in Figures 5.7(ab). Figure 5.7(a) shows that the

percentage change of 〈|v|〉 reduces to about 4% as the time step is reduced to

δt = 10−6. The data nearly fits a quadratic, which shows that the convergence is

faster than linear. The quadratic behaviour is more prominent at the larger time

steps. Figure 5.7(b) shows a similar situation for Xn = 800 and Xn = 1000.

5.6 Remarks

All the calculations presented in this Chapter are based on the geometry of con-

centric cylinders for the purpose of illustrating the application of the numerical

schemes used in this work. The same procedure is used in the case of flat plates.

No attempt has been made to make a direct comparison with the experimental

data of [4] since they were done with flat plates. In chapters 6 and 7 where the

calculations were done with flat plates, there will be comparisons with the data

of [4]. Figures 5.3 to 5.6 show that the calculations converge as the time and spatial

resolutions increase, which shows that the results from the numerical scheme are

real solutions of the DRP equation and not some artifact from the mesh.

The use of the semi-implicit finite difference scheme allows the use of large time

steps to quickly get results without running into difficulties of instability associated

with explicit schemes. However, to get trusted (converged) calculations, a small

time step and finner mesh is used.
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Modelling Fracture

The previous Chapter illustrated the numerical schemes used in solving the equa-

tions encountered in Chapter 4. The key results of the calculations in the flat plate

geometry will be presented in this Chapter, while a detailed study of the effect of

the perturbations is deferred to Chapter 7. There will also be a brief discussion of

curvature effects on the calculations.

When polymeric liquids are subjected to fast shear deformation such that the

applied shear rate 〈γ̇〉 satisfies 〈γ̇〉τd > 1, then the total shear stress given in

Equation (4.23) grows from startup through a maximum (or stress overshoot), and

finally relaxes to some steady value. The stress overshoot for 〈̂̇γ〉 = 〈γ̇〉τd = 200

is shown in Figure 6.1(a). The overshoot stress T̂ ovxy and strain for overshoot γov

are indicated in the Figure. The overshoot stress varies with applied shear rate

as indicated by the green squares in Figure 6.1(b). For 1 < ̂̇γ < 1/τR
1, the shear

stress relaxes to a plateau after the stress overshoot as shown by the black dashed

lines in Figure 6.1(b). This situation only occurs when the constitutive relation is

non-monotonic as shown by the solid line in Figure 6.1(b).

The Rolie Poly model yields either a monotonic or non-monotonic behaviour

depending on how much Convective Constraint Release (CCR) is allowed in the

1The stretch relaxation time τR has been made dimensionless as defined in Equation (4.16).
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system, as set with the CCR parameter β. This is shown by the curves in Figure 5.1

for β = 0 and β = 0.8. The constitutive relation shown by the red solid line in

Figure 6.1(b) is the case of β = 0.

The ’fracture’ phenomenon as seen in experiments has already been described

in Section 3.2. This discussion now proceeds with a description of the procedure

employed in capturing this fracture-like behaviour. The calculations will be based

on Experiment I described in Sub section 3.2.1.
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Figure 6.1: (a) Shear stress from startup, evolving through a maximum (overshoot)
then towards steady state for 〈̂̇γ〉 = 200. The overshoot stress and strain are
indicated by the arrow. (b) Green squares: overshoot stress at different imposed
shear rates. Red solid line: Steady state constitutive curve for the Rolie-Poly (RP)
model at β = 0 showing nonmonotonic behaviour. Black dashed lines: Flow curve
of the DRP, for β = 0. The labels I, II and III are the stresses at t0 for the Cases
I, II and III as described in the text.(c) Random perturbations used to initialise
the system for the calculations in this Chapter. The initial condition for each of
the quantities ˆ̇γ, ∆xx, ∆xy and ∆yy are indicated. Parameters: Z = 72, β = 0 and
ν = 0.01.

To capture the behaviour reported in [4], Equation (4.17) is initialised 2 with

random perturbations of the form

δu(0, y) = ν

5∑

n=1

(An/n
2) cos(nπy), (6.1)

where u ≡ [̂̇γ,∆xx,∆xy,∆yy]. The vectors An contain the amplitudes of the per-

turbations used to initialise each of the quantities in u. The components Ani of

2For the remaining part of this thesis, all the calculations will be done using the set of Equa-
tions (4.17) since the Cartesian coordinates system is consistent with the flat plates used in the
experiments [4]. However, there will be a brief presentation of curvature effects on the calculations
at the end of this Chapter.
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each vector is chosen randomly from the interval [−1, 1]. The index i = 1, 2, 3, 4

corresponds to each of the quantity [̂̇γ,∆xx,∆xy,∆yy]. The parameter ν sets the

scale of the amplitude [57], the value ν = 0.01 is consistent with the scale of typical

thermal fluctuations [26, 57]. High wavenumbers n are suppressed by spatial gra-

dients in ∆ [57, 58, 59] hence the 1/n2 penalty on the amplitudes Ani. The cosine

modes satisfy the zero gradient boundary condition imposed on ∆.

The system is started with a randomly chosen perturbation at a given applied

shear rate 〈̂̇γ〉, and the flow is switched off at some time t0
3 during which the

system suffers some strain γ0 = 〈̂̇γ〉t0. Different random perturbations give rise

to different velocity profiles after shear cessation at t0. In 300 simulations using

different random perturbations 4, about 34% of the resultant velocity profiles were

similar to the cases reported in [4] (as shown in Figure 3.3) for an applied shear

rate 〈̂̇γ〉 = 200 and strain γ0 = 2.5.

As noted in earlier discussions, when the applied shear rate is such that 〈̂̇γ〉τR >

15, then the chains suffer significant stretch. Also, when 〈γ̇〉τd > 1 the total shear

stress passes through an overshoot before relaxing to some steady value. The stress

overshoot is an indication of an elastic instability as discussed earlier [16, 18].

Hence, deformations in which 〈̂̇γ〉τR < 1 will be referred to as slow or low

shear rate, while the case of 〈̂̇γ〉τR > 1 will be fast deformation or high shear rate.

Also, deformations in which shearing is stopped before the stress overshoot will be

referred to as low strain. When shearing is stopped after the stress overshoot, such

deformation will be referred to as high strain. This will allow possible effects of

chain stretch and elastic effects on ‘fracture’ to be studied.

Thus, using a set of perturbation (shown in Figure 6.1(c)) which are known to

give a fracture like profile, the different cases reported in [4] are simulated.

3The time t is dimensionless as defined in Equation (4.16)
4See Chapter 7 for a more detailed discussion of the perturbations.
5Recall that τd/τR = 3Z.

85



Chapter 6. Modelling Fracture

6.1 Case I: Intermediate Shear Rate, High Strain

In this case, the applied shear rate 〈̂̇γ〉 = 200 gives 〈̂̇γ〉τR ' 0.93 ' 1 and the

applied strain γ0 = 2.5 > γov ≈ 2.1, where γov is the strain for stress overshoot.

The total shear stress at t0 for this Case is indicated by I in Figure 6.1(b). This

implies that the shear stress satisfies ∂Txy/∂γ < 0, which is the requirement for

elastic instability. The velocity profile is nearly perfectly homogeneous just before

shear cessation at t−0 , as shown in the inset of Figure 6.2(a); this is similar to

the experimental data shown in the inset of Figure 6.3. However, just after shear

cessation at t+0 , the velocity profile is nearly zero except with a slight inhomogeneity

due to the initial perturbation as shown in Figure 6.2(a). Subsequently, it begins

to show recoil before developing a fracture-like profile with a so called ‘failure

plane’ separating two layers of fluid moving in opposite directions, as shown in

Figure 6.2(a). This is similar to the experimental data shown in Figures 6.2(b)

and 6.3. Figure 6.2(b) are the velocity profiles at various times after shear cessation

for the material SBR of molecular weight 250000 g mol−1 labelled SBR250K. In this

case, the SBR250K was subjected to a strain amplitude γ0 = 2.1 and shear rate

γ̇ = 0.7 s−1, whereupon after shear cessation it developed a fracture-like profile [4].

The location of the ‘failure plane’ is sensitive to the initial conditions whereas the

stress relaxation profile is not. This is similar to the report in [4] that the location

of the ‘failure plane’ changes in different runs of the experiment whereas the stress

relaxation profile does not.

Figure 6.2(a) also shows dimensionless data taken from Figure 6.2(b) at the time

t− t0 = 32.5s. The experimental data was made dimensionless using τd = 310s for

SBR250K [4] and a gap size of 0.7mm [4]. The velocity profile at the time t− t0 =

32.5s is indicated as Vmax in Figure 6.2(b). This experimentally determined velocity

profile at t − t0 = 32.5s shows very good qualitative match with the calculations

in Figure 6.2(a). However, the magnitude of the largest velocity profile from the
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Figure 6.2: (a) Velocity profiles just after shear cessation at t+0 and during ‘fracture’.
The ‘failure plane’ indicated in the Figure is a horizontal plane perpendicular to
the plane of the Figure separating the regions where the fluid moves in opposite
direction. The inset shows the velocity profile just before shear cessation at t−0 .
The filled triangles are dimensionless experimental data at the time t− t0 = 32.5s
from (b) for direct comparison with calculations. Parameters: 〈̂̇γ〉 = 200, γ0 = 2.5,
Z = 72, β = 0 and ν = 0.01. (b) Experimental data for SBR250K showing velocity
profiles after shear cessation and various times afterwards, Figure from [4].

calculation in Figure 6.2(a) is nearly twice the magnitude of the dimensionless

(experimentally determined) velocity profile in Figure 6.2(a). Hence predictions

from the theoretical model are mostly qualitative than quantitative.

Figure 6.3 shows the displacement of tracked particles during the experiment for

SBR250K for different strain amplitudes. For the low strain amplitudes of γ0 = 0.1

and γ0 = 0.7 no particle displacement is observed after shear cessation. Only at

the sufficiently large strain amplitude of γ0 = 2.1 is particle displacement observed

after shear cessation. The inset of Figure 6.3 is the velocity profile of the fluid just

before shear cessation. These particle displacements in Figure 6.3 corresponds to

the velocity profiles of Figure 6.2(b) [4], which are consistent with the calculations

shown in Figure 6.2(a).

The nearly perfect homogeneity of the velocity profiles just before shear ces-

sation both from the calculations (inset of Figure 6.2(a)) and experiment (inset

of Figure 6.3) clearly shows that the fluid had not gone through shear banding

before shear cessation. However, the velocity profile is not perfectly homogeneous.

It contains a very small degree of inhomogeneity due to the initial perturbation.
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Figure 6.3: Experimental data for SBR250K showing positions of tracked particles
after shear cessation for strain amplitudes γ0 = 0.1 (red squares), γ0 = 0.7 (blue
circles) and γ0 = 2.1 solid green squares. The ‘failure plane’ is indicated in the
Figure, while the inset shows the velocity profile just before shear cessation for all
strain amplitudes, Figures from [4].

0.55 0.6 0.65 0.7

0

150

300

500

y

ˆ̇ γ

t+0 ' 0.01τd

t ' 0.15τd

t ' 0.18τd

t ' 0.20τd

0.55 0.6 0.65 0.7 0.75 0.8
0

10

20

30
γ

y

t+0 ' 0.01τd

t ' 0.15τd

t ' 0.18τd

t ' 0.29τd

(a) (b)

Figure 6.4: Spatially resolved (a) shear rate and (b) strain just after shear cessation
t+0 and during ’fracture’. Calculations corresponding to Figure 6.2(a).

The noise amplitude of ν = 0.01 is about 5% of the steady state stress plateau in

Figure 6.1(b) or about 1% of the overshoot stress in Figure 6.1(a). The tracked

particles used in the experiment of [4] are not small enough to resolve this scale

of perturbations. Hence the velocity profile in the inset of Figure 6.3 appears

homogeneous.

This apparent homogeneity of the velocity profile before shear cessation in the

experiment of [4] was interpreted to mean that the chain network was still intact

before shear cessation, after which it struggled for an ‘induction time’ before un-

dergoing a cohesive failure [4]. However, the excellent qualitative agreement of the
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Figure 6.5: Calculated (a) Chain stretch and (b) Orientation angle of chains rel-
ative to the flow direction just after shear cessation at t+0 and during ‘fracture’.
Parameters as in Figure 6.2(a).

experimental data and the calculations in Figure 6.2 shows that this phenomenon

does not involve such cohesive failure as suggested in [4]. This is because the

theoretical model does not accommodate this process of cohesive failure of tube

entanglements. This clearly demonstrates that new physics are not required to

capture this phenomenon, at least qualitatively.

The calculations reveal that the velocity profile is not perfectly homogeneous.

The slight inhomogeneity is revealed just after shear cessation at t+0 in Figure 6.2(a).

This inhomogeneity then grows to initiate strain localisation in a narrow region in

the fluid as seen in Figure 6.4(b). This ‘phase separation’ of strain implies a narrow

region where the fluid continues to suffer an increasing shear between two outer

layers where the fluid suffers very low shear as shown in Figure 6.4(a).

The shear rate is nearly zero just after shear cessation as in Figure 6.4(a).

However, as time progresses, a narrow region of high shear rate corresponding to

low viscosity develops between two regions of high viscosity as in Figure 6.4(a). As

this low viscosity continues to develop in this narrow region, the two outer regions

of high viscosity begin to slip against each other. The slip velocity is substantial

enough to cause sufficient displacement of tracked particles within the scale of

resolution of the apparatus of experiment [4]. This slip is so substantial that the
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Figure 6.6: (a) Blue circles: shear stress from startup to shear cessation at t0
showing an unusual fast relaxation during ‘fracture’. Green crosses: similar to
blue circles but with a smaller imposed strain. Red solid line: similar to blue
circles but without an initial perturbation. Parameters as in Figure 6.2(a), τR =
τd/(3Z). (b) Experimentally measured shear stress from startup to shear cessation
and beyond for applied shear rate γ̇ = 0.7s−1 and different strain amplitudes γ
showing features similar to the calculations, Figure from [4].

material appears like a solid undergoing fracture.

Figure 6.5(a) shows that the chain stretch is nearly homogeneous just after

shear cessation at t+0 . However, as the internal slip proceeds, the maximum shear

rate ̂̇γmax in the slip layer grows such that ̂̇γmaxτR > 1 as seen in Figure 6.4(a).

This then induces a sizable stretch in the chain segments in the slip layer as seen in

Figure 6.5(a). The stretch grows during ‘fracture’ and finally relaxes to zero. Fig-

ure 6.5(b) shows that the alignment of chain segments relative to the flow direction

decreases during ‘fracture’. The chain alignment angle χ is calculated from [60]

tan 2χ =
2∆xy

∆xx −∆yy

. (6.2)

The increase in stretch and decrease in alignment angle of chain segments in the slip

layer indicate a strong alignment of stretched chain segments in the flow direction

as opposed to the suggestion of a cohesive failure in [4].

With the initial perturbation in Figure 6.1(c) and a strain amplitude γ0 = 2.5,

the shear stress increases from startup and goes through an overshoot just before
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Figure 6.7: (a) Shear stress from startup to shear cessation at t0 with the stretch
relaxation time ts, ‘induction time’ ti and ‘fracture time’ tf indicated. (b) Maximum
chain stretch (red circles) and minimum chain orientation angle (blue solid line) in
space corresponding to the stress profile in (a). (c) Spatial profile of strain at the
time t = t0 + ts just after stretch relaxation. Parameters as in Figure 6.2(a).

shear cessation for the applied shear rate of 〈̂̇γ〉 = 200 as shown by the blue circles

in Figure 6.6(a). However, just after shear cessation, the shear stress shows an

initial quick relaxation. Figures 6.7(ab) show that this initial quick relaxation,

which lasts a duration indicated as ts in Figure 6.7(a), is due to relaxation of

stretch, but the chain alignment angle stays nearly constant during this period.

The shear stress then enters a plateau for a duration indicated as ti ≈ 30τR in

Figure 6.7(a). During this period, the chain stretch only increases slowly while the

chain alignment decreases very slowly as seen in Figure 6.7(b). The shear stress

then relaxes very rapidly for a duration indicated as tf in Figure 6.7(b). During tf

the stretch increases very rapidly and finally relaxes to its equilibrium value and

the chain alignment decreases very rapidly and increases slightly to its equilibrium

value as in Figure 6.7(b). After tf , the shear stress resumes its quiescent relaxation

as shown by the blue circles in Figure 6.6(a). The final slow relaxation almost

coincides with the quiescent relaxation for a material subjected to the same step

shear of 〈̂̇γ〉 = 200 but with a strain amplitude of γ0 = 0.2 as shown by the green

crosses in Figure 6.6(a).
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The red solid line in Figure 6.6(a) shows that with no initial perturbation

the shear stress only goes through a quiescent relaxation after the same strain

amplitude of γ0 = 2.5. For the small strain amplitude of γ0 = 0.2, only a quiescent

relaxation is seen, even with the initial perturbation.

The green squares of Figure 6.6(b) show the behaviour of the experimentally

measured shear stress for the material SBR250K subjected to a shear rate of γ̇ =

0.7s−1 at a strain amplitude γ0 = 2.1. After shear cessation the shear stress falls into

a plateau indicated as ‘nearly quiescent’ in Figure 6.6b. This plateau is consistent

with the plateau shown by the blue circles in Figure 6.6(a) which is indicated by

the time ti in Figure 6.7(b). The stress then shows a quick relaxation indicated as

‘macroscopic motions’ in Figure 6.6(b), which is consistent with the calculations

as shown by the blue circles in Figure 6.6(a) or tf in Figure 6.7(a). Finally the

shear stress resumes its slow relaxation indicated by ‘normal quiescent relaxation’

in Figure 6.6(b). This final slow relaxation nearly coincides with the slow relaxation

of the material subjected to a strain amplitude of γ0 = 0.7 as shown by the blue

circles in Figure 6.6(b). The experimental data of Figure 6.6(b) show that for the

insufficient strain amplitudes of γ0 = 0.1 and γ0 = 0.7, only quiescent relaxation is

observed, and this is consistent with the green crosses in Figure 6.6(a) where the low

strain amplitude of γ0 = 0.2 only leads to a quiescent relaxation. This excellent

agreement of the calculated shear stress and the experimentally measured shear

stress under different strain amplitudes again demonstrates that new physics are

not necessary to demonstrate these phenomena.

The fast stress relaxation during the internal slip or ‘fracture’ is due to dissipa-

tion of elastic energy in the form of stress relaxation. When the fluid is subjected

to sufficiently large strain, and in the presence of nonuniform stresses, the material

will dissipate the accumulated strain or elastic energy nonuniformly. The initial

perturbation induces nonuniform stresses in the material which then induces strain

localisation in the material.
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In the experiments, these perturbations can be induced, say, from non-uniform

relaxation of the material after sample loading, or by temperature gradients in the

material. There is no statement of reproducibility in the report [4] except that the

position of the ‘failure plane’ varies in different runs of the experiment. This make

it difficult to pin down what exactly may have been the cause of the fluctuations

in the experiment. The effect of the initial perturbation in inducing a nonuniform

strain in the material is clearly seen in the strain profile after stretch relaxation as

seen in Figure 6.7(c). The position of the maximum at y ≈ 0.6 coincides with the

region where the slip layer occurs in Figure 6.4(a). In the case where there is no

initial perturbation, this nonuniform strain does not show up. Then the fluid just

dissipates the accumulated strain uniformly and the unusual fast stress relaxation

does not occur as shown by the red solid line in Figure 6.6(a).

The fact that ∂Txy/∂γ < 0 at t0 in Case I suggests a possible elastic instability

in the material. This is coupled with the fact that the applied shear rate satisfies

∂Txy/∂̂̇γ < 0 which is a sign of viscous instability. The instability creates the

environment for the initial perturbation to grow and induce strain localisation

which gives this ‘fracture’ effect. If there is a viscous contribution to the instability,

then ‘fracture’ should occur if shearing is stopped before the condition ∂Txy/∂γ < 0

is reached. This possibility is explored in Cases II and III.

6.2 Case II: High Shear Rate, Low Strain

For the case where the applied shear rate 〈̂̇γ〉 = 900 gives 〈̂̇γ〉τR ' 4.17 > 1 and the

applied strain γ0 = 2.5 < γov ≈ 4.2, then ∂Txy/∂γ > 0 at t0. The total shear stress

at t0 for this Case is indicated by II in Figure 6.1(b). The total shear stress shows

the unusual fast relaxation after an initial delay similar to Case I. This behaviour

is seen in Figure 6.8(a).

The applied shear rate which gives 〈̂̇γ〉τR > 1 is well into the stretching regime.
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Figure 6.2(a), 〈̂̇γ〉 = 900. (b) Experimentally measured shear stress corresponding
to case II, Figure from [4].
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Figure 6.9: (a) Velocity profile during ’fracture’ for Case II. Parameters as in Fig-
ure 6.2(a), 〈̂̇γ〉 = 900. (b) Corresponding experimentally measured velocity profile
for SBR250K consistent with Case II, Figure from [4].

But ∂Txy/∂γ > 0 at t0. This implies that, although the elastic instability is yet

to show up in this regime, there is still sufficient elasticity in the system since the

chains are highly stretched. However, there is obviously a viscous contribution to

the instability. This is because ‘fracture’ is still possible even when ∂Txy/∂γ > 0

at t0.

In this case, the delay time or ‘induction time’ of the shear stress in the plateau

after stretch relaxation is comparable to the Case I. The experimentally measured

shear stresses shown in Figure 6.8(b) show a similar delay before going through a
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fast relaxation for strain amplitudes ≥ 2.1. In both the calculations and experi-

ment, shearing is stopped before the stress overshoot. The overshoot stress and

strain for the calculation is indicated by (T̂ ovxy , γ
ov) in Figure 6.8(a). Similarly, the

overshoot stress and strain in the experimentally measured shear stress is indicated

as (σy, γy) in Figure 6.8(b).

Also, the fluid velocity shows a corresponding fracture-like profile during this

fast stress relaxation as in Figure 6.9(a). The ‘fracture’ profile is very similar

to the experimentally measured velocity profile shown in Figure 6.9(b). The ex-

perimentally measured velocity profile shown in Figure 6.9(b) corresponds to the

experimentally measured shear stress for the applied strain γ0 = 2.1 as shown in

Figure 6.8(b).

6.3 Case III: Low Shear Rate, Low Strain:

Case III explores the situation where the elasticity due to stretch is significantly

reduced as the applied shear rate of 〈̂̇γ〉 = 10 satisfies 〈̂̇γ〉τR ' 0.05 < 1. In

this case, there is no significant chain stretch. Instead, most of the stress comes

from chain alignment in the flow direction. Also, the applied strain satisfies γ0 =

1.3 < γov ≈ 1.4. That is, shearing is stopped before the stress overshoot, so that

∂Txy/∂γ > 0 at t0. The total shear stress at t0 for this Case in indicated by III

in Figure 6.1(b). Hence Case III is dominated by viscous behaviour. It is difficult

to identify any delayed or fast stress relaxation in this Case. The stress seems to

relax quiescently as seen in Figure 6.10(a).

Similarly, the experimentally measured shear stress for this case shows very

little delay, as in Figure 6.10(b). Comparing Figure 6.10(b) with Figures 6.8(b)

and 6.6(b) shows that the delay time for Case III is much less than for the Cases II

and I. However, the calculated velocity profile for this case is more consistent with

the experimentally measured profiles. The calculated profiles in Figure 6.11(a)
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Figure 6.10: (a) Shear stress evolution for Case III. Parameters as in Figure 6.2(a),
〈̂̇γ〉 = 10. (b) Experimentally measured shear stress corresponding to Case III,
Figure from [4].

are roughly two orders of magnitude less than the calculated velocity profiles for

Cases II and I. Similarly, the experimentally measured velocity profiles shown in

Figure 6.11(b) are roughly one order of magnitude less than the experimentally

measured velocity profiles for Cases I and II.

Case III demonstrates the role of viscous effects to the instability leading to

‘fracture’. However, viscous effects alone are not sufficient to bring about significant

‘fracture’ as the ‘fracture’ seen here is very ‘weak’ compared to Cases I and II.

6.4 Characterisation of Fracture

The case III described in the previous section shows that it may be possible to

obtain the ‘fracture’ effect with some parameter values, but the ‘fracture’ may not

be significant. This ‘weak fracture’ may not be measurable experimentally. There-

fore to determine parameter values which yield possible experimentally measurable

‘fracture’, then it is necessary to introduce a criterion for ‘fracture’. To this end,
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Figure 6.11: (a) Velocity profile for Case III. Parameters as in Figure 6.2(a), 〈̂̇γ〉 =
10. (b) Experimentally measured velocity profiles corresponding to Case III, Figure
from [4].

let µ+ and µ− be velocity moments defined as

µ+ =

∑
i viH(vi)∑
iH(vi)

(6.3a)

µ− =

∑
i viH(−vi)∑
iH(−vi)

, (6.3b)

where the sum is over all spatial positions yi and H is the Heaviside step func-

tion. If both positive moment µ+ and negative moment µ occur together at any

time during stress relaxation after shear cessation, then ‘fracture’ has occurred;

otherwise there is no ‘fracture’. When there is no ‘fracture’ µ+ becomes non zero

after shear cessation, but later relaxes to zero while µ stays at zero throughout

the duration of stress relaxation from shear cessation. Otherwise, µ becomes non

zero after shear cessation, and later relaxes to zero while µ+ stays at zero for the

duration of stress relaxation after shear cessation.

For parameter values where

∣∣∣∣
µ

µ+

∣∣∣∣ > 0.7, (6.4)
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at any time after shear cessation, the velocity profiles give a clear ‘failure’ plane

as in Figure 6.2(a), and the shear stress shows discernible slow and fast relaxation

intervals after stretch relaxation. The criterion in Equation (6.4) is somewhat

arbitrary since it is not derived from the model, but based on inspection of the

data. However, it consistently captures the key signatures of the ‘fracture’ phe-

nomenon. Using this criterion in Equation (6.4), the parameter values of β, Z and

γ0 where ‘fracture’ occurs for a given 〈̂̇γ〉 can be explored. The results are shown

in Figure 6.12.

6.4.1 CCR, Strain and Number of Entanglements per Chain

There is a low range of CCR within which ‘fracture’ occurs as shown in Fig-

ure 6.12(a) for different number of entanglements per chain Z and applied strains

γ0. The effect of β on ‘fracture’ can be easily understood since large values of β

removes the nonmonotonic behaviour in the constitutive curve. As β is increased,

the stability of the fluid to small amplitude perturbation increases, so that the scale

of amplitude of the perturbation needs to be increased to yield ‘fracture’. All the

values of β shown in Figure 6.12(a) which yield ‘fracture’ also yield nonmonotonic

constitutive curves.

For any given applied shear rate, there is a lower cut-off for Z below which ‘frac-

ture’ does not occur for any applied strain γ0 as in Figure 6.12(b). Also, there are

left and right boundaries for Z for different values of γ0 as seen in Figure 6.12(b).

The behaviour of ‘fracture’ with γ0 and Z is due to the nature of the free energy

function describing the fluid. This free energy function exhibits a negative curva-

ture at certain range of γ0, where the fluid becomes unstable to small amplitude

fluctuations. The growing perturbation after shear cessation competes with the

background reptation and this competition is mediated by Z. When Z is not large

enough, then the perturbation decays to zero, and no ‘fracture’ occurs. Other-
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of the shear rate in the slip layer during ‘fracture’ which are represented by the
legend.

wise when Z is large enough, the growing pertubation wins the competition and

‘fracture’ occurs. This leads to the minimum in Z seen in Figure 6.12(b). More

details of the effect of γ0 and Z in determining the behaviour of the free energy

will be given in Chapter 7. Figure 6.12(b) shows that the transition to ‘fracture’

from the left boundary is much sharper than the transition to ‘no fracture’ at the

right boundary. This is because the fluid has been sheared for much longer for the

larger strain amplitudes at the right boundary. This allows more reptation to occur

which dissipates some of the elastic energy away as the shear stress moves closer

to the steady state. The severity of ‘fracture’ can be quantified by the peak value

of the shear rate ̂̇γmax in the slip layer during fracture. Figure 6.12(b) shows that

lower values of γ0 yield more severe ‘fracture’. At 〈̂̇γ〉 = 200, the higher strains

have gone further beyond the overshoot bringing the shear stress to a lower value

before shear cessation, so that less stress is released during ‘fracture’, hence the

‘fracture’ is less severe at higher values of γ0 [57].
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6.4.2 Fracture Width

The overshoot strain γov ' 2.1 for the applied shear rate 〈̂̇γ〉 = 200. Then the

strains shown in Figure 6.13(b) already take the shear stress beyond the overshoot.

The higher strains take the shear stress further beyond the overshoot, so that less

elastic energy is dissipated during ‘fracture’, thus leading to less severe ‘fracture’.

This situation leads to a reduction in the peak of shear rate ̂̇γmax as seen in Fig-

ure 6.13(c). The width of the slip layer during ‘fracture’ can be quantified by the

full width at half maximum (FWHM) of the shear rate at the peak of ‘fracture’.

This is illustrated in Figure 6.13(a), where FWHM = y2 − y1. The width of the

slip layer increases as ‘fracture’ becomes less severe at higher applied strains as

shown in Figure 6.13(b).
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Figure 6.13: (a) Illustration of the ‘fracture width’ defined as the Full Width at
Half Maximum of the shear rate profile at the peak of ‘fracture’. (b) ‘Fracture
width’ and (c) maximum shear rate at different strains amplitudes. Parameters:
〈̂̇γ〉 = 200, Z = 72.

6.4.3 Type C Behaviour

Figure 6.14(a) shows that the unusual fast stress relaxation associated with ‘frac-

ture’ is the Type C behaviour earlier reported in the literature, for example [15].

This is revealed by the nonlinear relaxation modulus G(t, γ0) defined as

G(t, γ0) =
Txy(t, γ0)

γ0

. (6.5)
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Figure 6.14(a) shows that G(t, γ0) suddenly develops a ‘kink’ at intermediate times
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Figure 6.14: (a) Calculated nonlinear relaxation moduli at different applied
strains. (b) Corresponding experimentally measured nonlinear relaxation moduli
for polystyrene solutions at different strain amplitudes γ indicated in the Figure.
Figure from [19]. Both Figures show a ‘kink’ in the nonlinear relaxation moduli at
intermediate times for large enough strain amplitude.

as the applied strain γ0 is increased, this is a key characteristic of this behaviour.

Figure 6.14(a) is consistent with the experimentally measured nonlinear relaxation

moduli shown in Figure 6.14(b) which shows a material exhibiting Type C be-

haviour at sufficiently large values of Z and γ0. This Type C behaviour which is

an excessive strain softening at intermediate strains has its origin in the behaviour

of the free energy describing polymeric liquids at intermediate strains. Details of

this discussion will be given in the next Chapter.

6.4.4 Induction Time

The delay time ti (or ‘induction time’) after stretch relaxation decreases as the

number of entanglements Z increases as shown in Figure 6.15(a). Figure 6.15(b)

shows stress relaxation after step shear for strain amplitude γ = 2.1 applied to three

different SBR melts. The melts have molecular weights 174000 gmol−1 (SBR170K),

250000 gmol−1 (SBR250K) and 497000 gmol−1 (SBR500K) [4], and the applied

shear rate to each sample is such that γ̇τR = 3.0. Also, the number of entangle-
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Figure 6.15: (a) Variation of ‘induction time’ with Z at fixed γ0 = 2.5, 〈̂̇γ〉τR = 3.0
and β = 0 from the calculations. (b) Experimentally measured shear stresses for
step shears of the materials indicated in the Figure showing a variation of ‘induction
time’ with molecular weight. Figure from [4].

ments per chain Z for the melts were reported [4] as Z = 53 (SBR170K), Z = 76

(SBR250K) and Z = 160 (SBR500K). Figure 6.15(b) shows that the material with

higher molecular weight exhibits the longest delay before ‘fracture’, while the ma-

terial with the lowest molecular weight exhibits the shortest delay. This suggests

an increase in ‘induction time’ with increasing number of chain entanglement.

However, the inset of Figure 6.15(b) shows that SBR500K which has the highest

molecular weight and Z value has the shortest ‘induction time’. This is followed

by SBR250K which has an intermediate Z. It is not so clear from the inset of

Figure 6.15(b) where the ‘induction time’ of SBR170K lies. The data in the inset

of Figure 6.15(b) have been scaled by τR, and this gives a better agreement with the

calculations. In order to do calculations consistent with Figure 6.15(b), different

shear rates 〈̂̇γ〉 were applied for each value of Z to maintain 〈̂̇γ〉τR = 3. This data

is shown in Table 6.1, where γ0 = 2.5 in all cases. Figure 6.15(a) shows that the

material with the highest value of Z has the shortest ‘induction time’ in agreement

with the inset of Figure 6.15(b). The time axis of Figure 6.15(a) has been scaled

by τR to make it comparable to the inset of Figure 6.15(b).

The quantities in the model Equations 4.17 have been scaled by τd which ef-

fectively sets τd = 1. Hence the procedure of changing Z in the calculations cor-
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Figure 6.16: (a) Variation of ‘induction time’ with applied strains at fixed Z = 72,
〈̂̇γ〉 = 200 and β = 0 from the calculations. The applied strain γ0 = 4.5 gives
negligible ‘induction time’. (b) Experimentally measured shear stresses for step
shears at the applied strains indicated. The material SBR250K exhibits negligible
‘induction time’ at these high strains. Figure from [4].

Table 6.1: Applied shear rates for fixed 〈̂̇γ〉τR at different values of Z

〈̂̇γ〉 Z 〈̂̇γ〉τR
630 70 3
720 80 3
810 90 3

responds to using materials with the same values of τd but different values of τR.

This procedure does not directly match the experimental situation of using samples

of different molecular weights since samples with different molecular weights have

different values of τd and τR. However, materials with higher molecular weights

have a larger separation between τR and τd. This situation is the same with the

calculations. This separation of timescales between τR and τd is more important

than the individual values of τR and τd. Hence the level of agreement found between

Figure 6.15(a) and the inset of Figure 6.15(b).

The decrease in ‘induction time’ with increasing Z seen in Figure 6.15(a) is due

to a ‘weakening’ of the strength of reptation in its competition with the growing

perturbation at higher values of Z. This idea is suggested by the MG theory

103



Chapter 6. Modelling Fracture

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−10

−5

0

5

10

y

̂̇ γ

γ0 = 2.5

γ0 = 2.8

γ0 = 3.1

t = t0 + ts

Figure 6.17: Calculated shear rate just after stretch relaxation (the time t0 + ts in
Figure 6.7(a)) at the applied strains indicated in the Figure. Parameters: same as
in Figure 6.2 but with different strains.

which will be described in Chapter 7. Also, the perturbations grow faster as Z

increases, and hence ‘fracture’ develops more quickly with increasing Z as seen in

Figure 6.15(a). More details of the perturbations will be given in Chapter 7.

The variation of ‘induction time’ with applied strain is easier to compare with

experimental data as this does not involve variation of relaxation times. Fig-

ure 6.16(a) shows that when the applied strain takes the shear stress further beyond

the overshoot, the induction time decreases, which is in excellent agreement with

the experimental data. Figure 6.16(b) shows the experimentally measured shear

stress for the material SBR250K for strain amplitudes γ0 = 5.0 and γ0 = 7.14.

The material shows significantly reduced induction times unlike in the case of Fig-

ure 6.6(b) where the material shows a much more significant ‘induction time’ for

a smaller strain amplitude γ0 = 2.1. In particular, the shear rate γ̇ = 0.7s−1 in

Figure 6.16(b) matches the shear rate in Figure 6.6(b). But in Figure 6.16(b), the

strain amplitude of γ0 = 5.0 shows an insignificant ‘induction time’ compared with

Figure 6.6(b) of a lower strain amplitude. This behaviour agrees very well with

the calculations in Figure 6.16(a) where the strain amplitude γ0 = 4.5 shows an

insignificant ‘induction time’ compared with the smaller strain amplitudes γ0 = 2.8

and γ0 = 2.5.

104



Chapter 6. Modelling Fracture

0 2 4 6 8
0

0.5

1

1.5

2

2.5

γ

T̂
x
y

 

 

〈̂̇γ〉 〈̂̇γ〉τR
γ0 = 2.2

(a)

600

800

1000

2.8

3.7

4.6

Figure 6.18: (a) Shear stress versus strain at the three different applied shear rates
(calculated) indicated in the figure such that 〈̂̇γ〉τR > 1 in all cases. The dashed
line connects the strains for overshoot and their corresponding stresses for each
applied shear rate. The strain γ0 = 2.2 indicated in the Figure lies in the sub
overshoot regime in the three cases. The applied shear rates 〈̂̇γ〉 and corresponding
values of 〈̂̇γ〉τR are summarised in the table in the inset. (b) Experimental data
corresponding to (a) for the material SBR250K. Figure from [4].

Since shearing is stopped at a later time for a higher applied strain, then the ini-

tial perturbation has more time to grow before shear cessation for a higher applied

strain. Since the initial perturbation has grown to a higher amplitude for a higher

applied strain, it induces ‘strain localisation’ faster for a higher applied strain. This

leads to a reduction in the ‘induction time’ for a higher applied strain as seen in

Figure 6.16(a). The amplitude of the growing perturbation is proportional to the

peak of the inhomogeneous shear rate after shear cessation. Figure 6.17 shows

the shear rate profiles after stretch relaxation for three different strain amplitudes

indicated in the Figure. The perturbation had grown the most for γ0 = 3.1 at the

end of stretch relaxation than for γ0 = 2.8 and γ0 = 2.5. However, as the applied

strain is increased further, the ‘fracture’ effect gradually reduces leading to the

insignificant ‘induction time’ seen in Figure 6.16(a). This is due to the increased

dissipation by reptation at higher strain amplitude which reduces the elasticity

in the material. More details of this effect of reptation will be given in the next

Chapter.

Figure 6.18(a) shows the shear stress as a function of strain for three differ-
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Figure 6.19: (a) Variation of ‘induction time’ for the applied shear rates in
Figure 6.18(a). The applied strain γ0 = 2.2 is indicated in Figure 6.18(a).
(b) Experimentally measured ‘induction times’ ∆tind for the material SBR250K
at the applied shear rates indicated in Figure 6.18(b). The applied strain γ0 = 2.1
is indicated in Figure 6.18(b). Figure from [4].

ent applied shear rates such that 〈̂̇γ〉τR > 1 as indicated in the Figure. The

overshoot stresses follow a straight line and they increase with increasing shear

rates and strain. This is in excellent agreement with the experimentally measured

shear stresses at shown in Figure 6.18(b). The applied shear rates in the exper-

imental data of Figure 6.18(b) also meet the same criteria of γ̇τR > 1 as seen in

Figure 6.18(b). For the sub overshoot strain of γ0 = 2.2 in Figure 6.18(a), Fig-

ure 6.19(a) shows that the higher applied shear rate yields the shortest ‘induction

time’. This is at variance with the experimental data which shows that for the sub

overshoot strain of γ0 = 2.1 in Figure 6.18(b), the higher imposed shear rate yields

the longest ‘induction time’ as seen in Figure 6.19(b) and the inset of Figure 6.19(b).

The reason for this discrepancy is not understood at the moment. However, the

calculations to be presented in the next Chapter show that the growth rate of the

perturbation is higher at a higher applied shear rate, so that ‘fracture’ develops

faster at a higher applied shear rate.
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6.5 Curvature Effects

The calculations describing the ‘fracture’ phenomenon presented in the foregoing

discussion have been carried out in the Cartesian coordinates system following

the experiments of [4]. However, this phenomenon can still be realized in curved

geometries, for example in the cylindrical Couette geometry or cone and plate

configuration. For the cylindrical Couette case, the calculations are repeated with

finite inertia (ρ̂ = 10−10) for the initial condition shown in Figure 6.20(a). The

initial condition is applied applied to ∆θθ in Equation (4.50). The same initial

condition shown in Figure 6.20(a) is applied to ∆xx in Equation 4.17 so that the

results can be compared to the case of flat plates. The curvature parameter q = 0

for flat plates, and the value q = 2 × 10−4 for the cylindrical Couette case is

consistent with typical cone angles for cone and plate configurations [25].

Figure 6.20(b) shows the velocity profiles for both cases at the peak of ‘fracture’

where 〈̂̇γ〉 = 200, γ0 = 2.5 and Z = 72. The velocity profiles in Figure 6.20(b)

almost match except for a slight difference in the positions of the ‘failure planes’.

Similarly, the shear stresses for both cases almost match except for a slight delay

in the onset of ‘fracture’ for the cylindrical case as seen in Figure 6.20(c).
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Figure 6.20: (a) Initial condition imposed on ∆xx (flat plates) or ∆θθ (cylindrical
Couette). (b) Velocity profile at the time t ' 0.281τd (flat plates) or t ' 0.296τd
(cylindrical Couette) when the shear rate is maximum during ‘fracture’. (c) Shear
stress from startup and subsequent relaxation after shear cessation at t0 for both
cases. Parameters: q = 0 (flat plates), q = 2 × 10−4 (cylindrical Couette), 〈̂̇γ〉 =

200, γ0 = 2.5, Z = 72, ε = 10−4 and D̂ = 10−5.
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Figure 6.20 shows that the ‘fracture’ phenomenon is not restricted to flat plate

configurations. It can also be realized with the cone and plate configuration. How-

ever, it may not be practical to do this kind of experiment in the cylindrical Couette

geometry as high molecular weight samples are required to see ‘fracture’. It will be

very difficult to load samples of the required molecular weight between concentric

cylinders that are extremely close.

6.6 Remarks

It is quite surprising that this strange fracture-like behaviour can be captured

very well with the simple Diffusive Rolie-Poly (DRP) viscoelastic model without

adding new physics. There have been suggestions before [3, 4] that new physics

will be required to explain this phenomenon. This involves an interplay between

a retraction force in the polymer strands developed during deformation and a

cohesive force that maintains chain entanglement. A cohesive ‘failure’ or ‘fracture’

occurs when the retraction force exceeds the cohesive force during strong flows [3, 4].

The results presented so far show that the physics of chain stretch and alignment

as well as reptation already contained in the DRP model is sufficient to capture

most of the essential aspects of this ‘fracture’ phenomenon. This is not to say

that the current viscoelastic models are complete. There have been discrepancies

reported between calculations from molecular dynamics simulations and predictions

of tube models [41]. Figure 6.19 also shows a discrepancy between experimental

data of [4] and calculation from the DRP whose origin is not clear at this time.

These discrepancies suggest that new physics may still be required to make the

current tube models complete.

Apart from this little discrepancy, the calculations show excellent qualitative

and near quantitative agreement with the experimental data. Although the ‘frac-

ture’ phenomenon seems to be new because it has only been reported recently [4],
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Figure 6.14 shows that it is actually not new. It is the same phenomenon which

has been tagged ‘Type C behaviour’ in the past [15, 16, 19]. If the earlier workers

carried out some visualisation during this Type C measurement they would have

observed ‘fracture’ long before now.

The dependence of ‘fracture’ on spatial inhomogeneities suggest that the ‘frac-

ture’ is just an event that occurs due to imperfections in the experiments and

also thermal fluctuations in the samples. Non uniform distribution of the mate-

rial during sample loading, small temperature gradients or slight misalignments of

plates are possible causes of these inhomogeneities. It will be interesting to see an

experiment where these inhomogeneities are carefully controlled and the possible

dependence of this event on the shape of these inhomogeneities probed.

The high shear rate and small chain alignment angle in the slip layer during

‘fracture’ suggests that the chains become highly aligned in the flow direction

within the slip layer during this ‘fracture’ event. It will be interesting to do a

molecular dynamics simulation of this event where the state of chain alignment or

entanglement during ‘fracture’ can be probed directly.

This discussion now proceeds with a more detailed study of the perturbations

used in initiating this fracture-like behaviour.
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Analysis of Perturbations

The procedure for modelling the ‘fracture’ phenomenon has been presented in

Chapter 6 and the role of small amplitude perturbations has been illustrated. A

more detailed study of these perturbations is now presented in this Chapter. This

will involve checking for possible signs of instability in the system. Although the

nonmonotonic constitutive relation in Figure 6.1(b) already indicates instability in

the system when the applied shear rate satisfies 〈ˆ̇γ〉 > 1, the analysis to be car-

ried out in this chapter will reveal possible elastic or viscous contributions to this

instability.

The initial perturbations used to initiate the fracture-like behaviour discussed

in Chapter 6 were applied using different protocols. In the first protocol, each of

the quantities ˆ̇γ, ∆xx, ∆xy and ∆yy was perturbed with a randomly chosen initial

condition of the form

δu(0, y) = ν
5∑

n=1

(An/n
2) cos(nπy), (7.1)

where u ≡ [̂̇γ,∆xx,∆xy,∆yy]. The components Ani, i = 1, 2, 3, 4 of the vector of

amplitudes A are chosen randomly from the interval [−1, 1]. In this protocol, the

perturbed quantity is initialised with Equation (7.1) such that the component Ani
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corresponding to the perturbed quantity is non zero, while the other components

are set to zero. In the second protocol, all the quantities ˆ̇γ, ∆xx, ∆xy and ∆yy

were perturbed simultaneously with a random perturbation of the same form as

Equation (7.1). In this case, the components Ani corresponding to each quantity is

non zero for all vectors An. In the calculations presented in Chapter 6, a specific

set of perturbations that yields fracture-like behaviour was applied simultaneously

to all quantities. These perturbations are shown in Figure 6.1(c).

The kind of perturbations given in Equation (7.1) could come from various

sources in an experiment. For example, some regions in a sample could still have

finite stresses after loading in a rheometer. There could also be temperature gra-

dients in the sample as experiments are not necessarily performed in isothermal

conditions. All these perturbations have the possibility to grow if the material is

unstable.

7.1 I: Perturbing Each Quantity Separately

In this case, one of the quantities ̂̇γ, ∆xx, ∆xy or, ∆yy is initialized (one at a time)

using a random perturbation of the form given in Equation (7.1). That is, initialize

one of the quantities, such as ̂̇γ(y, 0) 6= 0 while ∆xx(y, 0) = 0, ∆xy(y, 0) = 0 and

∆yy(y, 0) = 0. To determine if ‘fracture’ has occurred or not, consider the ‘velocity

moments’ µ±, defined by Equation (6.3) reproduced here for convenience

µ+ =

∑
i viH(vi)∑
iH(vi)

(7.2a)

µ− =

∑
i viH(−vi)∑
iH(−vi)

, (7.2b)

where the sum is over all spatial positions yi and H is the Heaviside step func-

tion. If both positive moment µ+ and negative moment µ occur together at any

time during stress relaxation after shear cessation, then ‘fracture’ has occurred;
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Figure 7.1: Recoil or ‘fracture’ for different random initial conditions upon per-
turbing ∆xx In all cases, the blue line is the perturbation and the red line is the
velocity profile when both µ± reach their extrema together (for ‘fracture’) or µ±
reach their extrema separately (for recoil without ‘fracture’). The ‘fracture’ profiles
are indicated by the dashed circles. Left axis: perturbation; Right axis: velocity.

otherwise there is no ‘fracture’.

The velocity profiles shown in Figures. 7.1 to 7.4 occur at the time when both

µ+ and µ reach their extrema for the case of ‘fracture’. When there is no ‘fracture’,

either µ+ becomes non zero after shear cessation, but later relaxes to zero while

µ = 0 throughout the duration of stress relaxation from shear cessation; otherwise,

µ becomes non zero after shear cessation, and later relaxes to zero while µ+ = 0 for

the duration of stress relaxation after shear cessation. When there is no ‘fracture’

the velocity profiles are shown when either µ+ reaches its maximum or µ reaches

its minimum. When ‘fracture’ occurs, the position of the ‘fracture’ plane depends

on the shape of the specific perturbation. The stress relaxation is independent of

the position of the ‘fracture’ plane, similar to the report in section IIIA of [4].

Figures 7.1 and 7.2 shows that when the quantities ∆xx or ∆yy receive a pertur-

bation of an appropriate shape then ‘fracture’ occurs after shear cessation. Other-

wise there is no ‘fracture’. However, Figure 7.3 shows that for the case of perturbing
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Figure 7.2: Same as Figure 7.1 but with perturbation to ∆yy.

∆xy, only a weak ‘fracture’ is obtained for some shapes of the perturbation, while

̂̇γ almost gives zero velocity for all shapes of the perturbation.

The zero response of the fluid to perturbations in ̂̇γ can be understood from

the contributions to the total stress as

T̂xy = ∆xy + ε̂̇γ. (7.3)

The ‘Newtonian’ contribution ε̂̇γ is very small compared with ∆xy since ε = 10−4.

But since T̂xy is constant in space, then

∆xy ∼ ε̂̇γ. (7.4)

The two terms balance each other to give a uniform T̂xy in space. Then a small

perturbation in ̂̇γ is scaled to nearly zero by ε. But a small perturbation in ∆xy

is amplified by ε to give a large response in ̂̇γ. This then creates a low viscosity

in a narrow region if the response in ̂̇γ is localised to that region. If this region

of low viscosity occurs between two regions of high viscosity then an internal slip

occurs which is the ‘fracture’ phenomenon. The reason why the components ∆xx
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Figure 7.3: Perturbation of ∆xy. Only a weak recoil or a weak sign of ‘fracture’ is
seen in this case. The blue and red lines have the same meaning as in Fig. 7.1. The
‘weak fracture’ profiles are indicated by the dashed circles. Left axis: perturbation;
Right axis: velocity.

and ∆yy seem to be more effective in inducing ‘fracture’ will be discussed later in

this Chapter after a linear stability analysis has been performed on the system.

7.2 II: Perturbing All Quantities Simultaneously

In this case all the quantities ̂̇γ, ∆xx, ∆xy and ∆yy are initialised simultaneously

with separate random perturbation of the form given in Equation (7.1). Similar to

the previous protocol, the resultant velocity profile after shear cessation is checked

for ‘fracture’ using the ‘velocity moments’ given in Equation (7.2). The situation

in this case as shown in Figure 7.5 is more complex as each quantity receives a

separate random perturbation of different shape. The cases where ‘fracture’ occur

are marked with the dashed circles in the Figures. For detailed analysis of ‘fracture’,

a set of initial conditions such as Subfigure (P1) of Figure 7.5 which is known to

give ‘fracture’ can be chosen to perform all the calculations required to probe the

‘fracture’ phenomenon.
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Figure 7.4: Same as Figure 7.3 but with perturbation to ˆ̇γ.

7.3 Instability

A brief overview of the two kinds of instabilities that could be encountered during

shear deformation of polymeric fluids was given in Section 2.5. As mentioned

before, the elastic instability occurs when the shear stress satisfies

∂T̂x,y(t, γ)

∂γ
< 0, (7.5)

while the viscous instability occurs when the shear stress satisfies

∂T̂x,y(t, ˆ̇γ)

∂ ˆ̇γ
< 0. (7.6)

However, in real step strain experiments the instabilities encountered is usually due

to a combination of both effects [18]. The elastic and viscous contributions to the

instability leading to the ‘fracture’ phenomenon shall be examined in the following

sections.
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Figure 7.5: Recoil or ‘fracture’ upon perturbing all components, with each com-
ponent receiving a separate random perturbation. Red line: perturbation to ∆xx.
Green line: perturbation to ∆yy. Blue line: perturbation to ∆xy. Magenta line:
perturbation to γ̇. Cyan line: recoil or ‘fracture’ velocity profile v. Left axis: per-
turbation; Right axis: velocity. In all cases, the velocity profiles occur at the time
specified in Figure 7.1, and the ‘fracture’ profiles are indicated with the dashed
circles.

7.4 Elastic Instability

The elastic contribution to the instability results in stress overshoots during rapid

startups as in Figure 6.1(a). The origin of elastic instability was described by Mar-

rucci and Grizzuti (MG) [16] in their calculations to explain the Type C ’anomaly’,

as discussed in Section 2.5. The basic idea comes from the principles of the tube

theory which describes a two stage relaxation mechanism for the chain segments

after a rapid step shear. The chain segments are initially oriented randomly in

equilibrium before the deformation. The chain segments get aligned in the flow

direction and stretched during the deformation. This stretching and subsequent

relaxation after the deformation leads to a change in the length and number of chain

segments. However, to simplify their calculation, MG assumed that the length and

number of chain segments at the end of stretch relaxation were the same as their

equilibrium values before the deformation was imposed. Hence they treated the
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chain segments as a system of rigid rods which only respond to deformation by

rotation without stretching. The free energy for this system of rigid rods in shear

deformation is given as [16]

F(γ) =
1

2

∫ 1

0

ln

(
1 + γ2ζ2 + [ζ4(γ4 + 4γ2)− 2γ2ζ2 + 1]

1/2

2

)
dζ, (7.7)

where ζ is an arbitrary integration variable and γ is the accumulated strain.

After stretch relaxation following a step strain, the tube segments can be treated

as having approximately equal length. But the tube segments are still oriented in

the flow direction and hence can be treated as a system of rigid rods which is

described by the free energy function given in Equation (7.7) as shown in Fig-

ure 7.6(a). The curvature for this free energy function is given as [16]

d2F
dγ2

= 2

∫ 1

0

ζ4 (γ2ζ2 + 1)

h3
f (ζ)

dζ − 1

2γ2

∫ 1

0

(
1 +

γ2ζ2 − 1

hf (ζ)

)
dζ

hf (ζ) =
[
ζ4
(
γ4 + 4γ2

)
− 2γ2ζ2 + 1

]1/2
.

(7.8)
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Figure 7.6: (a) The free energy function of a system of rigid rods aligned by an
external shear deformation. The red dash-dot indicate where the curvature becomes
negative. (b) Curvature of the free energy function in (a).

This curvature becomes negative as the strain increases as shown in Figure 7.6(b).

The region of negative curvature of the free energy is shown by the red dash-

dot line in Figure 7.6(a). As reptation proceeds, the tube segments which were
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originally aligned in the flow direction become isotropic. Then the fluid behaves

like a viscous liquid that is stable to perturbations. Hence, an otherwise un-

stable system regains stability. In the absence of reptation during stretch re-

laxation following a step strain, the occurrence of a negative curvature is suffi-

cient to determine elastic instability. The condition d2F/dγ2 < 0 corresponds to

∂T̂x,y(t, γ)/∂γ < 0 [16, 18, 57, 61], so that the fluid goes unstable just at the stress

overshoot during startup. However, some reptation usually accompanies stretch

relaxation following a step strain, which has the effect of stabilizing an otherwise

unstable system.

To account for the effect of reptation on elastic instability, MG introduced the

effective curvature Aeff , which considers the fraction of tube segments still aligned

anisotropically in the flow direction after stretch relaxation:

Aeff = µ

(
d2F
dγ2

)

γ︸ ︷︷ ︸
I

+(1− µ)

(
d2F
dγ2

)

0︸ ︷︷ ︸
II

. (7.9)

where µ is the fraction of chain segments still aligned anisotropically in the flow

direction. Elastic instability of the fluid to an imposed deformation is then deter-

mined by the occurrence of Aeff < 0.

To see this, note that at the end of stretch relaxation some amount of reptation

had already occurred. Then only a fraction µ of the tube segments are still oriented

in the flow direction at the end of stretch relaxation. A fraction 1− µ had already

become isotropic. The elastic fraction µ may become unstable depending on the

applied strain. But the viscous fraction is always stable as seen in Figure 7.6(b).

The contribution I to Aeff is either positive or negative depending on the applied

strain, while the contribution II is strictly positive as in Figure 7.6(b). If the ap-

plied strain is such that I is negative with a larger magnitude than the contribution

II then Aeff may become negative after stretch relaxation.
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For the case where the contribution I to Aeff in Equation (7.9) is negative after

stretch relaxation, the overall sign of Aeff is controlled by the parameter µ. When

µ ≈ 1 after stretch relaxation and the contribution I is negative then Aeff becomes

negative, otherwise it is positive. The magnitude of µ after stretch relaxation is

determined by the amount of reptation which had occurred at that time. If only

a little amount of reptation had occurred after stretch relaxation then µ ≈ 1,

otherwise µ � 1. How much reptation had occurred just after stretch relaxation

depends on the separation of timescales for stretch relaxation and reptation. If

the separation is large, then only a little amount of reptation would have occurred

before stretch is completely relaxed, otherwise a significant amount of reptation

would have occurred at the end of stretch relaxation. The separation of timescales

for stretch relaxation and reptation is controlled by Z = τd/(3τR). Hence, the

elastic instability does not show up at small values of Z. This leads to the lower

cut-off for Z seen in Figure 6.12(b) repeated in Figure 7.7(a) for convenience.
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Figure 7.7: Range of Z and γ0 for which ‘fracture’ occurs exhibiting a lower cut-off
in Z. Parameters: 〈̂̇γ〉 = 200, ε = 10−4, D̂ = 10−5 and β = 0.

At low values of applied strain Aeff > 0 since I is positive at low strains in

Equation (7.9). At higher applied strains I becomes negative, but its magnitude

decreases as the applied strain is increased as seen in Figure 7.6(b). Hence, at

higher strains Aeff > 0 at the end of stretch relaxation due to the effect of µ in
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Equation (7.7). This explains why ‘fracture’ only occurs at intermediate strains

as seen in Figure 7.7(a). This also explains why the ‘induction time’ becomes

negligible at high strains as in the case of γ0 = 4.5 in Figure 7.7(b), and why the

type C behaviour is only observed at intermediate strains [16].

The original formulation by Marrucci and Grizzuti [16] used a form of the relax-

ation function µ that assumes uniform deformation and relaxation of the material.

With an initial perturbation, the material will not necessarily deform or relax uni-

formly. Also, the dynamics for the DRP model is not exactly the same as that of

the original DE model for which µ was employed. Hence it is necessary to compute

a new representation for µ which does not assume homogeneity, and consistent

with the dynamics of the DRP model.

7.4.1 Deformed Chains

All chains that are still oriented anistropically in the flow direction are still in the

deformed state; they only become isotropic with some random orientation after

reptation has completed. To compute this fraction of deformed chains, consider a

blob of fluid roughly in the shape of an ellipsoid (an ellipse in 2 dimensions) due to

the deformation, as shown in Figure 7.8. Its degree of deviation from isotropy can

be quantified by |λ1 − λ2|, where λ1 and λ2 are the eigenvalues of the dimensionless

strain tensor W. Since µ is the fraction of chains still aligned in the flow direction,

it meets the requirement

µ ∈ [0, 1]. (7.10)

Hence µ can be represented as

µ =
|λ1 − λ2|
|λ1 + λ2|

. (7.11)
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Figure 7.8: Approximate representation of entangled chains by an ellipsoidal blob.

In the isotropic state λ1 = λ2 and µ = 0, while in a state of high degree of

deformation, λ1 � λ2 and µ ≈ 1. using

(
λ1 − λ2

λ1 + λ2

)2

=
(λ1 + λ2)2 − 4λ1λ2

(λ1 + λ2)2
, (7.12)

and the following properties of diagonalizable matrices [62]

λ1 + λ2 = tr(W)

λ1λ2 = det(W),

(7.13)

then

µ =

∣∣∣∣
λ1 − λ2

λ1 + λ2

∣∣∣∣ =

√
1− 4det(W)

(tr(W))2
, (7.14)

which allows the computation of the effective curvature given in Equation (7.9).

7.4.2 Validity of the Relaxation Function

In the original formulation of the effective curvature, Marrucci and Grizzuti [16]

defined the relaxation function µ(t) as

µMG(t) =
8

π2

∑

p odd

1

p2
exp (−tp2/τd), (7.15)
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Figure 7.10: (a) Comparison of the relaxation function (symbols, for γ0 = 1) with
the linear relaxation modulus (solid line, for γ0 = 0.2) at the applied shear rates
indicated in the Figure. The applied strain γ0 = 1 < γ∗. (b) Same as in (a) for
γ0 = 4 > γ∗

where τd is reptation time. Equation (7.15) (which was also used in the DE the-

ory [13]) is just the de Gennes expression for the relaxation modulus scaled by the

plateau modulus G0
N [7, 10],

G(t) = G0
NµMG(t). (7.16)

It is not apparent that the relaxation function as given by Equation (7.14) is strain

independent as in the case of Equation (7.15). However, Figure 7.9(a) shows that

µ becomes strain independent at some critical strain γ∗. Figure 7.9(b) shows that
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Figure 7.12: (a) Localisation of strain in the slip layer from the inhomogeneous
strain profile in Figure 7.11(a). (b) Fluid velocity showing fracture-like behaviour
due to strain localisation.

γ∗ initially increases at low applied shear rates (applied shear rates 〈̂̇γ〉, such that

〈̂̇γ〉τR < 1). It then forms a plateau at intermediate and high applied shear rates

(applied shear rates 〈̂̇γ〉, such that 〈̂̇γ〉τR & 1). The critical strain is of order 3 for

these shear rates. This value lies in the ‘fracture’ region as in Figure 7.7(a).

For applied strains γ0 < γ∗, the relaxation function falls below the linear re-

laxation modulus for the low, intermediate and high shear rate regimes as in Fig-

ure 7.10(a). However, for γ0 > γ∗, only the intermediate and high shear rate

regimes give a close match to the linear relaxation modulus as in Figure 7.10(b).

The relaxation function for the low shear rate regime shows a significant deviation

123



Chapter 7. Analysis of Perturbations

from the linear relaxation modulus. Hence, the definition of the relaxation func-

tion given in Equation (7.14) is only valid at an applied shear rate 〈̂̇γ〉, such that

〈̂̇γ〉τR ≈ 1, and strains γ0 & γ∗.

For Case I discussed in Section 6.1, where 〈̂̇γ〉 > 1, 〈̂̇γ〉τR ' 1 and γ0 = 2.5,

Figures 7.11(ab) show that the local maximum in the strain (induced by the initial

perturbation in Figure 6.1(c)) after stretch relaxation in turn induces a local mini-

mum in the effective curvature at y ' 0.6. Figure 7.11(b) shows that this region of

local minimum in Aeff is negative, which is an indication of elastic instability. This

situation allows localisation of strain around this region as seen in Figure 7.12(a)

which leads to the ‘fracture’ event shown in Figure 7.12(b). Figure 7.11(c) shows

that during this ‘fracture’ event the chains in the internal slip layer become strongly

anisotropic, before gradually regaining isotropy so that the slip comes to a halt.

Quiescent stress relaxation resumes at the end of this internal slip.

7.5 Linear Stability Analysis

The relaxation function as defined in Equation (7.14) is only valid for applied shear

rates 〈̂̇γ〉, such that 〈̂̇γ〉τR ' 1, and strains γ0 > γ∗. This is the regime where the

elastic nature of the fluid is dominant. However, experiments [4] have shown that

the ‘fracture’ phenomenon is realisable for applied shear rates 〈̂̇γ〉τR < 1 and strains

of order 1. This situation is shown in Figures 6.10(b) and 6.11(b). The calculations

in Figures 6.10(a) and 6.11(a) show that the theoretical model can also capture

this ‘fracture’ phenomenon in this low shear rate regime. Hence it is necessary

to employ some other technique to determine if the fluid may still be unstable to

fluctuations in this low shear rate and strain regime.

The procedure to be employed here will be to consider a base state made of

the quantities in Equation (4.17) which have been constrained to be homogeneous

in space. Then at every time step during the evolution of this base state, a linear
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stability analysis will be performed to determine if this base state will permit

growth of infinitesimal fluctuations if shearing is stopped at that time. This linear

stability analysis will reveal if the fluid could develop this fracture-like behaviour

when shearing is stopped at some time t0 such that γ0 < γ∗ for the applied shear

rate. The linear stability analysis will also reveal if the fluid could develop fracture-

like behaviour for low applied shear rates. This comes from the fact that a fluid

which permits growth of infinitesimal fluctuations at any time t0 for any applied

shear rate may develop fracture-like behaviour after shearing is stopped at t0, as

long as the fluctuations have sufficient time to grow and initiate ‘strain localisation’

in the bulk of the fluid before other nonlinear effects suppress the growth of these

fluctuations.

7.5.1 Linearized Equations

The base state u ≡ [̂̇γ,∆xx,∆xy,∆yy] which has been constrained to be homoge-

neous in space can be constructed from Equation (4.17) as

∂t∆xx =2∆xy
̂̇γ −∆xx −

2τd
τR

[
1− A

] [(
βA+ 1

)
∆xx + 1

]
(7.17a)

∂t∆xy =̂̇γ + ̂̇γ∆yy −∆xy −
2τd
τR

[
1− A

] (
βA+ 1

)
∆xy (7.17b)

∂t∆yy =−∆yy −
2τd
τR

[
1− A

] [(
βA+ 1

)
∆yy + 1

]
(7.17c)

A =

(
1 +

Tr∆

3

)−1/2

. (7.17d)

At time t0 an inhomogeneous perturbation δu(t, y) is imposed on this base state.

The inhomogeneous perturbation can be separated into a time varying function
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δu(t) and fluctuations in the velocity gradient direction as [58, 59]

δu(t, y) =
∑

k

δuk(t) exp(iky), t ≥ t0

k = nπ, n ∈ [0,+∞).

(7.18)

Then the quantity ũ(t, y) describing the evolution of the perturbation can then be

written as

ũ(t, y) = u(t0) + δu(t, y), t ≥ t0, (7.19)

which can be obtained from Equation (4.17). Substituting Equations (7.19) and (7.18)

into Equation (4.17) gives

∂tδ∆xx,k(t) =2∆xyδγ̇k(t) + 2γ̇δ∆xy,k(t)− δ∆xx,k(t)−
τd

3τR

[
(A

3
δ∆xx,k(t)+

A
3
δ∆yy,k(t))

]
+

τd
3τR

∆xx

[
(β − 1)

(
A

3
δ∆xx,k(t) + A

3
δ∆yy,k(t)

)]

− 2τd
τR
δ∆xx,k(t)

[
1 + (β − 1)A

]
− 2

3
β∆xx

(
A

4
δ∆xx,k(t) + A

4
δ∆yy,k(t)

)

2A
2
βδ∆xx,k(t)− D̂k2δ∆xx,k(t) (7.20a)

∂tδ∆xy,k(t) =− δ∆xy,k(t) + δγ̇k(t) + γ̇δ∆yy,k(t) + ∆yyδγ̇k(t) +
τd

3τR
∆xy

[
(β − 1)

(
A

3×

δ∆xx,k(t) + A
3
δ∆yy,k(t)

)]
− 2τd
τR
δ∆xy,k(t)

[
1 + (β − 1)A

]

− 2βτd
3τR

∆xy

(
A

4
δ∆xx,k(t) + A

4
δ∆yy,k(t)

)
+ A

2 2βτd
τR

δ∆xy,k(t)

− D̂k2δ∆xy,k(t) (7.20b)

∂tδ∆yy,k(t) =− δ∆yy,k(t)−
τd

3τR

[(
A

3
δ∆xx,k(t) + A

3
δ∆yy,k(t)

)]
+

τd
3τR

∆yy

[
(β − 1)

(
A

3
δ∆xx,k(t) + A

3
δ∆yy,k(t)

)]
− 2τd
τR
δ∆yy,k(t) [1+

(β − 1) A
]

+
2βτd
τR

∆yy

(
−1

3
A

4
δ∆xx,k(t)−

1

3
A

4
δ∆yy,k(t)

)
+

2βτd
τR

A
2
δ∆yy,k(t)− D̂k2δ∆yy,k(t) (7.20c)

∂tδγ̇k(t) =− k2

ρ
δ∆xy,k(t)−

k2ε

ρ
δγ̇k(t). (7.20d)
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Rearranging Equations (7.20) gives

∂tδ∆xx,k(t) =

[
τd

3τR
∆xx (β − 1)A

3 − 1− τd
3τR

A
3 − 2

τd
τR

[
1 + (β − 1)A

]
− 2

3
β∆xxA

4

+2βA
2 − k2D̂

]
δ∆xx,k(t)

+ 2̂̇γδ∆xy,k(t)

+

[
(β − 1)

τd
3τR

∆xxA
3 − τd

3τR
A

3 − 2

3
β∆xxA

4
]
δ∆yy,k(t)

+ 2∆xyδ̂̇γk(t) (7.21a)

∂tδ∆xy,k(t) =

[
(β − 1)

τd
3τR

∆xyA
3 − 2

3
β
τd
τR
A

4
∆xy

]
δ∆xx,k(t)

+

[
2β

τd
τR
A

2 − 1− 2
τd
τR

[
1 + (β − 1)A

]
− k2D̂

]
δ∆xy,k(t)

+

[
̂̇γ + (β − 1)

τd
3τR

∆xyA
3 − 2

3
β
τd
τR

∆xyA
4
]
δ∆yy,k(t)

+
[
1 + ∆yy

]
δ̂̇γk(t) (7.21b)

∂tδ∆yy,k(t) =

[
(β − 1)

τd
3τR

∆yyA
3 − τd

3τR
A

3 − 2

3
β
τd
τR

∆yyA
4
]
δ∆xx,k(t)

+

[
τd

3τR
(β − 1) ∆yyA

3 − 1− τd
3τR

A
3 − 2

τd
τR

[
1 + (β − 1)A

]
− 2

3
β
τd
τR

∆yyA
4

+2β
τd
τR
A

2 − k2D̂
]
δ∆yy,k(t) (7.21c)

∂tδ̂̇γk(t) =− k2

ρ̂
δ∆xy,k(t)−

k2ε

ρ̂
δ̂̇γk(t), (7.21d)

where

ε =
η

Gτd
(7.22a)

ρ̂ =
ρL2

Gτ 2
d

. (7.22b)
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In the zero Reynolds number limit ρ̂→ 0 Equation (7.21) reduces to

∂tδ∆xx,k(t) =

[
τd

3τR
∆xx (β − 1)A

3 − 1− τd
3τR

A
3 − 2

τd
τR

[
1 + (β − 1)A

]
− 2

3
β∆xxA

4
+ 2βA

2

−k2D̂
]
δ∆xx,k(t)

+ 2

[
̂̇γ − ∆xy

ε

]
δ∆xy,k(t)

+

[
(β − 1)

τd
3τR

∆xxA
3 − τd

3τR
A

3 − 2

3
β∆xxA

4
]
δ∆yy,k(t) (7.23a)

∂tδ∆xy,k(t) =

[
(β − 1)

τd
3τR

∆xyA
3 − 2

3
β
τd
τR
A

4
∆xy

]
δ∆xx,k(t)

+

[
2β

τd
τR
A

2 − 1− 2
τd
τR

[
1 + (β − 1)A

]
− 1 + ∆yy

ε
− k2D̂

]
δ∆xy,k(t)

+

[
̂̇γ + (β − 1)

τd
3τR

∆xyA
3 − 2

3
β
τd
τR

∆xyA
4
]
δ∆yy,k(t) (7.23b)

∂tδ∆yy,k(t) =

[
(β − 1)

τd
3τR

∆yyA
3 − τd

3τR
A

3 − 2

3
β
τd
τR

∆yyA
4
]
δ∆xx,k(t)

+

[
τd

3τR
(β − 1) ∆yyA

3 − 1− τd
3τR

A
3 − 2

τd
τR

[
1 + (β − 1)A

]
− 2

3
β
τd
τR

∆yyA
4

+2β
τd
τR
A

2 − k2D̂
]
δ∆yy,k(t) (7.23c)

Equation (7.21d) allows δ̂̇γk(t) to be calculated from δ∆xy,k(t) as

δ̂̇γk(t) = −δ∆xy,k(t)

ε
(7.24)

Equation (7.23) shows that the k dependence of the perturbations only come

from the diffusivity D̂. Equation (7.23) is just a homogeneous system of linear

ordinary differential equations which can be written more conveniently as

dδ∆xx,k

dt
=α1δ∆xx,k(t) + α2δ∆xy,k(t) + α3δ∆yy,k(t) (7.25a)

dδ∆xy,k

dt
=α4δ∆xx,k(t) + α5δ∆xy,k(t) + α6δ∆yy,k(t) (7.25b)

dδ∆yy,k

dt
=α7δ∆xx,k(t) + α8δ∆yy,k(t), (7.25c)
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where

α1 =
τd

3τR
∆xx (β − 1)A

3 − 1− τd
3τR

A
3 − 2

τd
τR

[
1 + (β − 1)A

]
− 2

3
β∆xxA

4
+ 2βA

2

− k2D̂ (7.26a)

α2 =2

[
̂̇γ − ∆xy

ε

]
(7.26b)

α3 = (β − 1)
τd

3τR
∆xxA

3 − τd
3τR

A
3 − 2

3
β∆xxA

4
(7.26c)

α4 = (β − 1)
τd

3τR
∆xyA

3 − 2

3
β
τd
τR
A

4
∆xy (7.26d)

α5 =2β
τd
τR
A

2 − 1− 2
τd
τR

[
1 + (β − 1)A

]
− 1 + ∆yy

ε
− k2D̂ (7.26e)

α6 =̂̇γ + (β − 1)
τd

3τR
∆xyA

3 − 2

3
β
τd
τR

∆xyA
4

(7.26f)

α7 = (β − 1)
τd

3τR
∆yyA

3 − τd
3τR

A
3 − 2

3
β
τd
τR

∆yyA
4

(7.26g)

α8 =
τd

3τR
(β − 1) ∆yyA

3 − 1− τd
3τR

A
3 − 2

τd
τR

[
1 + (β − 1)A

]
− 2

3
β
τd
τR

∆yyA
4

+ 2β
τd
τR
A

2 − k2D̂. (7.26h)

Equation (7.25) can be written in matrix form as

dδw̃

dt
= M · δw̃(t), (7.27)

where w̃ = [∆xx,∆xy,∆yy]. The matrix M is given as

M =




α1 α2 α3

α4 α5 α6

α7 0 α8




=




α′1 − k2D̂ α2 α3

α4 α′5 − k2D̂ α6

α7 0 α′8 − k2D̂



, (7.28)
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where

α′1 =α1 + k2D̂ (7.29a)

α′5 =α5 + k2D̂ (7.29b)

α′8 =α8 + k2D̂. (7.29c)

Then Equation (7.28) can be written as

M = M̃− k2D̂I, (7.30)

where

M̃ =




α′1 α2 α3

α4 α′5 α6

α7 0 α′8



, (7.31)

and I is the identity matrix of order 3.

Using the operator

D ≡ d

dt
(7.32)

in Equation (7.25) gives

δ∆xx =
1

α7

[Dδ∆yy − α8δ∆yy] (7.33a)

δ∆xy =
1

α2α7

[
D2δ∆yy − (α1 + α8)Dδ∆yy + (α1α8 − α3α7)δ∆yy

]
, (7.33b)

which together with Equation (7.25) gives

D3δ∆yy − α̃1D
2δ∆yy + α̃2Dδ∆yy + α̃3δ∆yy = 0, (7.34)
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where

α̃1 =α1 + α5 + α8 (7.35a)

α̃2 =α1α5 + α5α8 + α1α8 − α3α7 − α2α4 (7.35b)

α̃3 =α2α4α8 + α3α5α7 − α2α6α7 − α1α5α8. (7.35c)

Equation (7.34) is just a linear homogeneous ordinary differential equation

whose solution can be obtained from the solution of the characteristic equation [63]

m3 − α̃1m
2 + α̃2m+ α̃3 = 0. (7.36)

If the solutions of the cubic Equation (7.36) are ω1, ω2 and ω3, then the solution

of Equation (7.34) is given as [63]

δ∆yy = k1e
ω1t + k2e

ω2t + k3e
ω3t, (7.37)

where k1, k2 and k3 are arbitrary integration constants. Using Equations (7.37)

and (7.33) give

δ∆xx =
1

α7

[
k1(ω1 − α8)eω1t + k2(ω2 − α8)eω2t + k3(ω3 − α8)eω3t

]
(7.38a)

δ∆yy =
1

α2α7

[(
k1ω

2
1 − (α1 + α8)k1ω1 + (α1α8 − α3α7)k1

)
eω1t +

(
k2ω

2
2−

(α1 + α8)k2ω2 + (α1α8 − α3α7)k2) eω2t +
(
k3ω

2
3 − (α1 + α8)k3ω3+

(α1α8 − α3α7)k3) eω3t
]
. (7.38b)
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Hence, the perturbation δw̃(t) in Equation (7.27) can be written as

δw̃(t) =
3∑

i=1

ṽie
ωit, (7.39)

where

ṽ1 =




1
α7
k1(ω1 − α8)

1
α2α7

(k1ω
2
1 − (α1 + α8)k1ω1 + (α1α8 − α3α7)k1)

k1




=




ṽ1xx

ṽ1xy

ṽ1yy



, (7.40)

ṽ2 =




1
α7
k2(ω2 − α8)

1
α2α7

(k2ω
2
2 − (α1 + α8)k2ω2 + (α1α8 − α3α7)k2)

k2




=




ṽ2xx

ṽ2xy

ṽ2yy




(7.41)

and

ṽ3 =




1
α7
k3(ω3 − α8)

1
α2α7

(k3ω
2
3 − (α1 + α8)k3ω3 + (α1α8 − α3α7)k3)

k3




=




ṽ3xx

ṽ3xy

ṽ3yy



. (7.42)

Substituting Equation (7.39) into Equation (7.27) gives

dδw̃

dt
=

3∑

i=1

ωiṽie
ωit = Mδw̃(t) =

3∑

i=1

Mṽie
ωit, (7.43)

so that

ṽiωi = Mṽi. (7.44)

Hence, the roots of the characteristic Equation (7.36) are the eigenvalues of the

matrix M (stability matrix), and ṽi are the corresponding eigenvectors. Thus the

perturbations δ∆xx, δ∆xy and δ∆yy can be written as linear combinations of the
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eigenvectors as

δ∆xx =ṽ1xxe
ω1t + ṽ2xxe

ω2t + ṽ3xxe
ω3t (7.45a)

δ∆xy =ṽ1xye
ω1t + ṽ2xye

ω2t + ṽ3xye
ω3t (7.45b)

δ∆yy =ṽ1yye
ω1t + ṽ2yye

ω2t + ṽ3yye
ω3t. (7.45c)

The growth or decay of these perturbations will then be determined by the

nature of the eigenvalues. Since these eigenvalues are solutions of a cubic equation,

then at least one of them is real. If complex eigenvalues occur, then they must be

complex conjugates. If the largest real part of an eigenvalue ωmax just becomes

positive then the perturbations in Equation (7.45) will grow unbounded. This will

happen for any infinitesimal perturbation.

Equation (7.30) shows that the eigenvalues of M are just the eigenvalues of M̃

with k2D̂ subtracted from them. Hence the fluid is more stable to perturbations

with higher wavenumbers k since the wavenumbers have a stabilising effect. Thus

the k = 0 mode is the most unstable mode in the system.

7.5.2 Dispersion Relation

The dispersion relation is obtained by sweeping through the constitutive curve

shown by the red circles in Figure 7.13(a) using a spectrum of Fourier modes of

different wave numbers k = nπ, n = 0, . . . , L/ad, where L is the gap size between

the plates and ad is the tube diameter discussed in Chapter 4. The wavenumbers

correspond to waves whose wavelengths range from values below the tube diameter,

through the gap size between the plates and up to several orders of magnitude larger

than the tube diameter. The fluctuations in the system will be a superposition of

these modes. In this case, the perturbation δu(t, y) is imposed on the base state
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Figure 7.13: (a) Maximum real part ωmax of eigenvalues of stability matrix M for
k = π (solid line) for different shear rates. Steady state constitutive curve (red
circles) for the same range of shear rates. (a) Same as the solid line in (a) for the
mode number k = 103π.

u after the base state has evolved for a very long time such that it reaches steady

state. The largest real part of the eigenvalues obtained for different values of 〈̂̇γ〉

for modes with k = π and k = 103π are shown in Figures 7.13(ab).

For the low wavenumber k = π, the fluid is stable at low and high shear

rates, but unstable at intermediate shear rates as shown by the solid line in Fig-

ure 7.13(a). The range of shear rates where the fluid goes unstable at steady state

nearly matches the range of shear rates where the steady state constitutive curve

decreases with increasing shear rate as shown by the red circles in Figure 7.13(a).

However, the fluid is stable at all shear rates for the mode with large wavenum-

ber k = 103π as in Figure 7.13(b). This is due to the stabilising effect of k in

Equation 7.30.

Although the k = 0 mode is the most unstable according to Equation (7.30),

the gap size between the plates is equal to 1. Hence the smallest mode which can

fit between the plates is the k = π mode. Thus all subsequent analysis in this

Chapter will be performed with the k = π mode.

134



Chapter 7. Analysis of Perturbations

7.6 Spinodal

Figure 7.13(a) shows that the fluid goes unstable at steady state for intermediate

shear rates. However, this instability does not show up immediately from startup.

The fluid needs to be sheared for some time at the imposed shear rate before the

instability shows up. In other words, the instability shows up after some critical

strain is reached for the applied shear rate in this intermediate regime. Also, for the

high shear rate regime where the fluid is stable at steady state (Figure 7.13(a)),

it is not always stable from startup to steady state. It goes unstable at some

intermediate strains before regaining stability at large strains.
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Figure 7.14: (abc) Largest real part of eigenvalues ωmax for the mode with k = π
as a function of strain for the applied shear rates indicated in the Figures.

This situation is shown in Figures 7.14(abc). For the applied shear rate ̂̇γ =

0.5 < 1, the fluid remains stable at all strains as in Figure 7.14(a). However,

for the intermediate shear rate ̂̇γ = 200 > 1, the fluid is initially stable from

startup before going unstable as the strain increases as in Figure 7.14(b). The

fluid then remains unstable at higher strains until it reaches the steady state as

in Figures 7.13(a) and 7.14(b). In the case of the high shear rate regime where

̂̇γ = 900� 1, the fluid is initially stable from startup, before going through a regime

of instability at intermediate strains, and finally regaining stability at high strain

until it reaches steady state as in Figures 7.13(a) and 7.14(c). The corresponding

shear stresses at the critical strains at which the fluid goes unstable for different

applied shear rates are shown by the blue diamonds in Figure 7.15. The locus of
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Figure 7.15: Blue diamonds: Spinodal (shear stress at which the homogeneous
state goes unstable). Red solid line: Constitutive curve. Black dashed line: Stress
plateau for the DRP model with β = 0, Z = 72.

these stresses is referred to as the spinodal [58, 59]. The range of shear rates at

which the fluid goes unstable nearly matches the range of shear rates where the

steady state constitutive curve decreases with increasing shear rate as shown by

the red solid line in Figure 7.15. This is similar to the situation in Figure 7.13(a).

The range of shear rates where the fluid goes unstable also nearly matches the

range of shear rates where the shear stress from the same fluid (with non zero

stress diffusivity) forms a plateau at steady state. The stress plateau is shown by

the dashed lines in Figure 7.15. The intermediate shear rate regime where ̂̇γ > 1,

where the fluid remains unstable (for k = π) until the steady state lies in the region

where Equation (7.6) is satisfied as seen in Figure 7.13(a). This is an indication of

a viscous contribution to the instability [18].

7.7 Viscous contribution to instability

Figures 7.14(abc) show that the fluid only shows a regime of instability when the

applied shear rate ̂̇γ > 1. In particular, the intermediate shear rate regime where

the instability persists until the steady state is reached is the regime where Equa-

tion (7.6) is satisfied. This indicates that there is a viscous contribution to the
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instability that gives rise to the ‘fracture’ phenomenon. It is for this reason that

the ‘fracture’ phenomenon is still realisable for intermediate shear rates such that

〈̂̇γ〉 > 1 and 〈̂̇γ〉τR < 1 as in Case III of Chapter 6 as shown in Figure 7.16(c).

In Figures 7.16(abc), the black dots in ωmax are the stable part of the eigenvalue,

while the red dashed lines in ωmax are the unstable part of the eigenvalue. Fig-

ures 7.16(abc) show that the fluid has already moved into the unstable regime

before shear cessation for the three Cases I, II and III discussed in Chapter 6. For

Cases I and III, the applied shear rates put the shear stress in the regime where

viscous effect is significant as specified in Equation (7.6), and seen in Figure 7.15.

However, for Case II, the applied shear rate does not satisfy Equation (7.6), but

the applied strain of γ0 = 2.5 lies in the unstable regime as seen in Figures 7.14(c)

and 7.16(b). Also, the applied shear rate satisfies 〈̂̇γ〉τR > 1. Hence there may still

be contributions from both viscous and elastic effects. It is not clear at this stage

where the boundaries between the viscous and elastic effects lie.
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Figure 7.16: Shear stresses from startup to shear cessation at t0 and beyond for
applied shear rate and strain (a) (〈̂̇γ〉, γ0) = (200, 2.5), (b) (〈̂̇γ〉, γ0) = (900, 2.5)
and (c) (〈̂̇γ〉, γ0) = (10, 1.3). The largest real parts of the eigenvalues ωmax for the
stability matrices constructed at each time step are shown. The times at which
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The relaxation of stress at the end of stretch relaxation is strictly due to rep-

tation in the absence of any internal slip. If there is a growing perturbation, this

relaxation by reptation competes with it. To determine the region in space where

the instability grows fastest, consider the base state u at each point in space. Then
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Figure 7.17: Spatial profiles of (a) Strain and (b) Effective curvature and ωmax for
ũ just after stretch relaxation. For β = 0, Z = 72, 〈̂̇γ〉 = 200, γ0 = 2.5.

an eigenvalue analysis can be carried out at each point in space. The eigenvalues of

the stability matrices (at a particular time) at each point in space will then contain

information regarding where in space a particular mode is growing fastest. The re-

gion in space where the unstable mode grows fastest is dictated by the strain. This

is shown in Figures 7.17(ab) which shows that the instability grows fastest in the

region where a local maximum in strain occurs. This matches the region where the

local minimum in the effective curvature occurs as seen in Figure 7.17(b). Hence

both the elastic and viscous contributions to the instability are most significant in

the same region in space as dictated by the strain profile. This then determines

the physical location of ‘fracture’.

7.8 Eigenvectors

The linear stability analysis also gives insight into the behaviour of the system

when the quantities γ̇, ∆xx, ∆xy and ∆yy are perturbed separately. Consider

the base state u at the point in space where the shear rate is maximum at the

end of stretch relaxation. The eigenvector ṽm corresponding to the largest real

eigenvalue is heavily dominated by the ∆xx and ∆yy components. The result is

138



Chapter 7. Analysis of Perturbations

Table 7.1: Components of most unstable eigenvector ṽm for 15 different initial
conditions, for 〈̂̇γ〉 = 200, γ0 = 2.5.

Initial Condition ṽmxx ṽmxy ṽmyy
1 0.9657 -0.0115 -0.2594
2 0.9767 -0.0131 -0.2144
3 0.9678 -0.0118 -0.2516
4 0.9730 -0.0125 -0.2304
5 0.9632 -0.0112 -0.2687
6 0.9667 -0.0117 -0.2555
7 0.9678 -0.0118 -0.2513
8 0.9636 -0.0113 -0.2672
9 0.9739 -0.0127 -0.2266
10 0.9683 -0.0119 -0.2496
11 0.9675 -0.0118 -0.2524
12 0.9742 -0.0127 -0.2255
13 0.9666 -0.0116 -0.2562
14 0.9613 -0.0110 -0.2753
15 0.9596 -0.0109 -0.2812

consistent for 15 different initial conditions that give fracture-like profile. The

components of ṽm corresponding to ∆xx (ṽmxx), ∆xy (ṽmxy) and ∆yy (ṽmyy) are

shown in Table 7.1. The Table shows why the fluid does not ‘fracture’ when ∆xy is

perturbed separately. Since ṽm is heavily weighted by ṽmxx and ṽmyy, then δ∆xx or

δ∆yy will grow much more for a positive eigenvalue and perturbation amplitude due

to the representation of the perturbations in Equation (7.45). Hence perturbing

the components ∆xy separately does not induce ‘fracture’ (as in Figure 7.3) as

compared with perturbing the components ∆xx and ∆yy separately at the same

amplitude (as in Figures 7.1 and 7.2).

7.9 Growth of Perturbations

Some insights into the development of the fracture-like profile can be obtained

by looking at the growth of the perturbations obtained from the linearized Equa-
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predicted by the linear stability analysis. Parameters: 〈̂̇γ〉 = 200, γ0 = 2.5 and
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at the peak of ‘fracture’ for ν = 0.01. Parameters: same as in Figure 7.19.

tions (7.23). This is achieved by analysing the base state u at the point in space

where the shear rate is maximum at the end of stretch relaxation. The time evolu-

tion of any perturbation given to u is described by Equation (7.45). For 〈̂̇γ〉 = 200

and γ0 = 2.5, Figures 7.18(abc) show that these perturbations grow unbounded for

ν = 0.01 in Equation (7.1). The direction of growth of the perturbations are con-

sistent with the shapes of the stress components at the peak of ‘fracture’ as shown

in Figures 7.19(abc). This leads to the shear stress profile in Figure 7.20(a) which

shows the unusual fast relaxation at intermediate times associated with ‘fracture’.

However, for ν = 0.005 and 〈̂̇γ〉 = 200, γ0 = 2.5, Figures 7.21(abc) show that the

perturbation still grow unbounded, but the shear stress only relaxes quiescently as

in Figure 7.20(b). This shows that the perturbation amplitude needs to reach some

critical amount for the perturbation to win the competition against reptation. This

nonlinear effect is not contained contained in the linearized Equations (7.23).

This linear stability analysis also throws some light into why the ‘induction
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Figure 7.20: Shear stress evolution for (a) ν = 0.01 and (b) ν = 0.005. Parameters:
same as in Figure 7.19.
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Figure 7.21: Same as Figure 7.15 for ν = 0.005.

time’ decreases with increasing Z as discussed in the previous Chapter. The per-

turbations grow faster as Z increases as shown in Figures 7.22(abc). The faster

these perturbations grow, the faster they induce ‘strain localisation’, so that ‘frac-

ture’ develops more quickly. This leads to the reduction in the ‘induction time’ as

Z is increased as shown in Figure 7.23.
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Figure 7.22: Same as Figure 7.15 for different values of Z indicated in the Figures.
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Figure 7.23: Stress relaxation after step shear for different values of Z, and 〈̂̇γ〉τR ≈
3 as indicated in the Figure. Parameters: 〈̂̇γ〉 = 200, γ0 = 2.5 and ν = 0.01.

7.10 Mechanism of Fracture

The mechanism of the ‘fracture’ phenomenon will now be summarized in this Sec-

tion based on the calculations which have been presented so far. Although it is

not so clear where the boundaries between the elastic and viscous contributions lie,

there will be an attempt to discuss both contributions separately.

7.10.1 Elastic Contribution

The elastic contribution to ‘fracture’ is easier to understand by considering the

Case I described in the previous Chapter, where 〈̂̇γ〉τR ' 1 and ∂Txy/∂γ < 0 at

t0. The deformation in this regime is sufficiently strong for the chains to suffer

significant stretch and the contribution I to Equation (7.9) has become negative.

The strain amplitude of γ0 = 2.5 imposed in the Case I lies in the region where

d2F/dγ2 < 0 as seen in Figure 7.6. In this regime where the free energy curvature

is negative, the system has the possibility to undergo a ‘phase separation’ of strain

but with the total strain conserved [16]. This ‘phase separation’ of strain will not

occur if the separation of timescales between reptation and stretch relaxation is

not large enough, and if there are no inhomogeneities in the system.

In the absence of inhomogeneities stress relaxation occurs by stretch relaxation
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and reptation. At the end of stretch relaxation, the remaining stress is relaxed

by reptation, which causes the tube segments to lose their orientation, and this

process occurs uniformly in space. The tube segments gradually become isotropic

and the fluid becomes less elastic and more viscous, but with a uniform viscosity

in space.

However, in the presence of inhomogeneities the perturbation has a possibility to

grow and induce a ‘phase separation’ of strain if it can compete with the underlying

reptation. The initial perturbation which had already grown to some extent at the

time of shear cessation at t0, continues to grow until the end of stretch relaxation.

Whether this perturbation will continue to grow after stretch relaxation depends

on the amount of reptation which had occurred at the end of stretch relaxation.

If the amount of reptation which had occurred at the end of stretch relaxation

is small enough, then the system remains unstable to the growing perturbation.

This favourable environment allows the perturbation to keep growing and induce

a region where the tube segments are still aligned in the flow direction. This

situation ‘prevents’ reptation from relaxing these aligned tube segments along with

other tube segments which are already on their way to becoming isotropic. This

then creates a situation of non uniform viscosity in the material which then leads

to slippage in the bulk of the fluid. This slip which resembles fracture in a solid

relaxes most of the stress but comes to an abrupt end as the underlying reptation

continues to undermine the instability. The remaining stress is then relaxed by

reptation at the end of the internal slip.

The validity of this idea of ‘phase separation’ of strain comes from the agree-

ment of Figure 7.7 with the criteria given by MG [16] for the occurrence of this

phenomenon. The MG theory [16] predicts that the ‘phase separation’ will occur

for strain amplitude γ0 & 2 and materials of sufficient molecular weight and con-

centration. This ‘phase separation’ does not occur for materials whose product

of molecular weight and concentration fall below the critical value regardless of
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strain amplitude. This is in excellent agreement with Figure 7.7(a) which shows

a left cut-off of γ0 ' 2 and a lower cut-off for Z. This lower cut-off for Z agrees

with the MG theory since Z is proportional to the product of concentration and

molecular weight. The MG theory also states that in cases where µ 6= 1 a sec-

ond region of stability is created at large strains, so that this ‘phase separation’ is

not possible at large strain amplitudes. This causes the right cut-off in γ0 seen in

Figure 7.7(a). It is also responsible for the negligible ‘induction time’ at γ0 = 4.5

seen in Figure 7.7(b). The experimental investigation by Morrison and Larson [19]

to check the correctness of the MG theory involved using polystyrene solutions

with bi-disperse distribution of molecular weights, with the short chains acting as

solvent for the long chains. As more short chains are added to the mixture, the

amount of reptation which occurs after stretch relaxation increases and hence µ de-

creases. Morrison and Larson [19] found qualitative agreement with the MG theory

for materials whose number of chain entanglements Mw/Me > 60. The agreement

came from the fact that as the fraction of short chain polymers in the mixture is

increased, the type C ‘anomaly’ first disappears at large imposed strains. The type

C ‘anomaly’ eventually disappears at strains of around 2 as the short chain fraction

is increased as predicted by the MG theory. However, the fraction of short chains

required to remove the type C ‘anomaly’ was higher than the MG predicted value

of about 0.1 [19]. The number Mw/Me > 60 is close to the lower cut-off for Z in

Figure 7.7(a). Also, the left cut-off for strain in Figure 7.7(a) is close to 2.

7.10.2 Viscous Contribution

The discussion in the previous Subsection described the role of the elastic instability

which sets in when Equation (7.7) is satisfied. However, since real step strain

experiments are not ideal, then the criterion given in Equation (7.7) is not sufficient

to describe the instabilities that arise during startup. The viscous contribution
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allows instability to arise before the stress overshoot is reached when Equation 7.6

is satisfied [18].

The viscous contribution to the instability is clearly seen in the behaviour of the

eigenvalues, which shows that the fluid goes unstable before the critical strain of

γ0 ≈ 2. However, the growth rate of the instability due to viscous effects increases

with the applied shear rate as seen in the Case II of the previous chapter which

gives a stronger ‘fracture’ compared with the Case III which only gives a weak

‘fracture’. This is because the growth rate of the instability ωmax is nearly one

order of magnitude higher for case II than Case III at the time of shear cessation

t0, as seen in Figure 7.16(bc).

Although the applied shear rate of 〈̂̇γ〉 = 900 for Case II lies outside the

regime where Equation (7.6) is satisfied. The strain amplitude of γ0 = 2.5 lies

in the intermediate region where the fluid is unstable as seen in Figures 7.14(c)

and 7.16(b). This allows the ‘fracture’ phenomenon to be realised in this Case

where γ0 = 2.5 < γov ≈ 4.2. Also, the applied shear rate satisfies 〈̂̇γ〉τR > 1 for

this Case. Thus there is a combination of both viscous and elastic effects which

give rise to ‘fracture’ in this Case, but the boundary between them is not clear.

7.11 Remarks

The foregoing discussion shows the important role played by spatial inhomogeneities

in inducing this ‘fracture’ phenomenon. The experimental data in [4] suggest that

‘fracture’ is more robust than what the current calculations show, and this could be

because the perturbations were only used to initialise the system. No attempt has

been made to include a time dependent perturbation as this will be more involved,

but this may increase the percentage of ‘fracture’ seen in the simulations.

This discussion will now conclude with a quick summary of the key results

from the current study, and a review of outstanding issues which future workers
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in this field may find interesting to examine. Also, a quick summary of assump-

tions/approximations made during the calculations shall be given.
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Discussions

This treatise will now conclude with a brief discussion of the key findings dur-

ing the study. This will be followed by a brief outline of some outstanding issues

related to the current work. Finally, there will be a quick outline of approxima-

tions/assumptions made during the current work.

8.1 Summary of Key Findings

One of the motivations for this work as discussed in Chapter 1 was to determine

if new physics was necessary to demonstrate the experimental data outlined in

Chapter 3. The Calculations presented in this thesis give excellent qualitative and

close quantitative match to the experimental data as outlined below:

I The range of Z (number of entanglements per chain) within which ‘fracture’

occurs in Figure 6.12 lies in the range of Z (53 - 160) reported in [4]. Also, the

values of γ0 (strain amplitude) in Figure 6.12 are close to the applied strains

in Figures 6.2(b), 6.3, 6.8(b) and 6.9(b).

II The calculated velocity profiles during ‘fracture’ in Figures 6.2(a) and 6.9(a)

show very good qualitative match with the experimentally determined velocity

profiles in Figures 6.2(b) and 6.9(b).
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III Similarly, the calculated shear stresses in Figures 6.6(a), 6.8(a) and 6.10(a)

show very good qualitative match with the experimentally determined shear

stresses in Figures 6.6(b), 6.8(b) and 6.10(b).

IV The velocity profiles just before shear cessation in the inset of Figure 6.2(a)

appears to be homogeneous. This agrees with the experimental data of the

inset of Figure 6.3 where the velocity profile appears homogeneous just before

shear cessation.

V The calculations show that the ‘fracture’ phenomenon is not realisable when

the strain amplitude is insufficient as in Figure 6.6(a). This agrees with the

experimental data of Figures 6.6(b) and 6.8(b).

VI The calculated data shows that the ‘induction time’ before ‘fracture’ decreases

as Z increases as seen in Figure 6.15(a) in agreement with the inset of Fig-

ure 6.15(b).

VII The calculations in Figure 6.16(a) show that the ‘fracture’ phenomenon is not

realisable when the strain amplitude takes the shear stress further beyond the

overshoot. This agrees with the experimental data of Figure 6.16(b).

VIII The ‘failure planes’ in the ‘fracture’ profiles indicated by the dashed circles in

Figures 7.1, 7.2 and 7.5 occur in different locations in the gap between the two

plates, but the stress relaxation profiles are always similar to the blue circles

in Figure 6.6(a). This agrees with the report in [4] that the stress relaxation

profiles are always similar to the green squares in Figure 6.6(b) regardless of

the location of the ‘failure plane’ in different runs of the experiment.

The overwhelming evidence outlined above clearly shows that the ‘fracture’

phenomenon does not require new physics to be demonstrated. In fact, it

is actually the ‘Type C’ behaviour [15, 19] which has since been known to the
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community. The association of ‘Type C’ behaviour to this ‘fracture’ phenomenon

is clearly supported by Figure 6.14. Further support is given by the agreement of

Figure 6.12(b) with the MG theory [16] to explain the ‘Type C’ behaviour. The

MG theory predicts a lower cut-off for Z and a bound for γ0 for which ‘Type C’

behaviour is realisable.

However, the current theoretical model shows a discrepancy with the experi-

mental data as seen in Figure 6.19. The reason for this discrepancy is not clear at

this stage. Also, the theoretical model does not give an exact quantitative match

to the experimental data. The theoretical model will require some refinements in

order to give an exact quantitative match with the experimental data. The exact

nature of these refinements is not clear at this stage.

The MG theory and linear stability analysis outlined in Chapter 7 show that

the ‘fracture’ phenomenon is due to the unstable nature of the fluid when it is put

in some flow regime. This instability allows fluctuations in the material to grow

and induce ‘strain localisation’ in the bulk. This then leads to slippage in the bulk

of the material which resembles a solid undergoing fracture.

8.2 Further Considerations

A quick discussion of issues related to the current work now follows.

8.2.1 Stress Maximum?

There has been lots of controversy surrounding the existence of the stress maximum

predicted by the DE theory. Early experiments [31] suggested the stress maximum

did not exist. The existence of a stress maximum can be inferred from a plot of

steady state viscosity versus shear rate. The steady state viscosity is defined as

η(γ̇) =
σxy
γ̇
, (8.1)
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where σxy is the steady state total shear stress. If the shear stress forms a plateau

as in the region between γ̇1 and γ̇2 in Figure 8.1(a), then the total shear stress is a

constant value σpl in this region as in Figure 8.1(a). Then Equation (8.1) becomes

η(γ̇) =
σpl
γ̇
. (8.2)

In this case, the occurrence of a slope of -1 in a plot of η(γ̇) versus γ̇ on a logarithmic

scale will indicate a plateau stress. However, if the total shear stress is increasing

slowly with shear rate as shown by the dashed dotted line in Figure 8.1(a), then it

will increase with some power law as

σxy = σ̃γ̇ϕ, (8.3)

where σ̃ is a constant and ϕ is a positive exponent. In this case, Equation (8.1)

becomes

η(γ̇) = σ̃γ̇−(1−ϕ). (8.4)

Hence, a slope of −(1− ϕ) > −1 on a plot of η(γ̇) versus γ̇ on a logarithmic scale

will indicate a slowly increasing steady state shear stress with shear rate. This is

the situation shown in Figure 8.1(b) which has a slope ≈ −0.7.

The situation shown in Figure 8.1(b) led theorists [32, 33, 34] working with tube

based models to incorporate the mechanisms of convective constraint release and

chain stretch (which were acknowledged but ignored in the original tube model)

into the tube model. These mechanisms removed the ‘anomaly’ of stress maximum

from the tube model, giving a better match for the experimentally measured shear

stress [34].

The observation of shear banding [24, 27, 30] in polymer solutions led Hu et

al. [64] to question the monotonicity of the constitutive relation for entangled poly-

mers. Moreover, the Marrucci Grizzuti (MG) [16] explanation for the Type C
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Figure 8.1: (a) Cartoon of total shear stress as a function of shear rate showing two
possible behaviours. (b) Steady state viscosity versus shear rate for linear polybu-
tadiene samples of different molecular weights. Open squares: 200,000 g mol−1,
filled squares: 350,000 g mol−1, filled circles: 517,000 g mol−1 and open circles:
813,000 g mol−1. Figure from [31].

‘anomaly’ is based on the existence of this stress maximum. The current work

on ‘fracture’ also depends on the nonmonotonicity of the constitutive relation for

polymers, which gives striking qualitative and close quantitative agreement with

the experiments of [4]. This then reinforces the original question by Hu et al. [64],

is the constitutive relation for entangled polymers monotonic?

The stress maximum may not be directly observable in an experiment, but its

signatures of shear banding and fracture-like behaviour can be clearly observed.

Doi and Edwards pointed out that the stress maximum may disappear if τR and

τd are not well separated [13]. This factor seems to be at play in this ‘fracture’

phenomenon which disappears at low Z. A seemingly related observation has been

made in shear banding experiments with polymer solutions. In their experiments

with polybutadiene solutions under steady shear, Ravindranath et al. [30] found

steady state shear banding only for solutions with Z ≥ 40 [30].

Despite the strong indications for nonmonotonicity of the constitutive relation

for entangled polymers, there is an alternative view that the shear banding phe-

nomenon is actually due to a breakdown of the entanglement network [1, 55, 65]

of the polymer solutions during strong flows. The observation of this fracture-like
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behaviour [4, 39] was supposed to confirm the idea of a ‘cohesive failure’ of the en-

tanglement network. This phenomenon of a ‘cohesive failure’ is said to occur when

the ‘retractive forces’ in the chains exceed their ‘cohesive forces’ [3]. The subse-

quent proposal that the fluid remains in a state of inhomogeneous shear to prevent

further loss of entanglements during shear banding [30], suggests that this ‘cohe-

sive failure’ may be restricted to a narrow region in the material. If the ‘cohesive

failure’ is restricted to a narrow region in the material, then it does not necessarily

contradict the tube theory. There is a possibility that some entanglements could

be lost as the chains get aligned in the flow direction. If this is the case, then the

loss of entanglements should not be so severe as to render the continuum picture

of the tube model invalid.

This is reinforced by Figure 6.13(b) which shows that the ‘fracture’ width δx

lies in the range 0.02 . δx . 0.06. For a gap of 1 mm, this corresponds to

20µm . δx . 60µm which is much larger than the tube diameter a ' 3 − 4nm

and also consistent with the width ≤ 40µm reported in [4]. The fact that δx is

much larger than the tube diameter indicates that the ‘fracture’ layer contains a

significant number of tube entanglements which fits the picture of strong alignment

of tube segments in the flow direction during ‘fracture’ as discussed earlier in this

thesis. If there was a complete loss of entanglements, then it will be out of place

for the ‘fracture’ width to exceed the tube diameter. It is left for experimentalists

to come up with new data at finer spatial resolution to determine whether the

‘fracture’ width is smaller than the tube diameter.

8.2.2 Hydrodynamic Boundary Condition (HBC)

In all the calculations presented so far the zero slip boundary condition was imposed

on the fluid velocity and a corresponding zero gradient boundary condition on the

polymer stress, following Experiment I discussed in Section 3.2. The ’fracture’
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phenomenon discussed here is only a part of a more general set of problems reported

in different experiments all involving either wall slip or bulk slip or both [4, 1, 66]. In

the case of ’fracture’, this slip (bulk slip in this case) is accompanied by an unusual

(or abnormal) fast stress relaxation, but this is not always present [4, 1, 66]. The

key experimental findings can be grouped broadly into the following two categories:

No wall Slip HBC and Wall Slip HBC.

Case I: No Wall Slip HBC

The key experiments demonstrating the behaviour of highly entangled polymeric

liquids under this HBC have been described in Section 3.2. During the course of

this discussion, it has been shown that the fracture-like behaviour exhibited by

these liquids under strong deformation is a consequence of their unstable nature.

This instability allows inhomogeneities in the material to grow when the chains are

sufficiently entangled and the strain amplitude is sufficient. The growing instability

then induces nonuniform viscosities in the material which leads to an internal or

bulk slip. This fracture-like behaviour had been interpreted to be due to a ‘cohesive

failure’ of the entanglement network [4], but the current calculations suggest that

such a process, if present, is not dominant. It is now left for future workers in this

field to examine the possible role of wall slip in changing the relaxation behaviours

of these highly entangled polymeric liquids under strong deformation. One of the

key experiments related to wall slip and fracture-like behaviour is discussed in the

next Subsection.

Case II: Wall Slip HBC

In their experiments with polystyrene solutions, Archer et al. [66] reported a ‘de-

layed slip’ phenomenon with an associated ‘kink’ in the shear stress. The material

was placed between two flat glass plates with the upper plate moving and the

lower plate stationary, and the displacement of tracked 1.5µm diameter spherical
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particles dispersed in the polystyrene solution was measured.

Figure 8.2: (a) Displacement of tracked particles dispersed in a polystyrene solution
after shear cessation for strain amplitude γ = 0.5. (b) Shear stress relaxation (filled
symbols) and particle displacement in form of a ‘relaxation’ (open symbols) after
shear cessation for γ = 0.5. Figures from [66].

Figure 8.3: Similar to Figure 8.2(b) for γ = 2. Figure from [66].

They observed that after shear cessation, particles near the upper glass plate

‘recoiled’ in a direction opposite the prior movement of the plate. Similarly, par-

ticles near the stationary lower plate were also displaced by the same amount but

in the opposite direction [66]. For strains γ < 5 most of the particle displacement

was restricted to within 1µm from the plates, with particles in the center plane

remaining nearly stationary. The displacement of particles at long times after shear

cessation D(∞) ≤ 100µm for γ < 2, but exceeded 400µm for γ ≥ 2. The time

evolution of particle displacement D(t) for γ = 0.5 is shown in Figure 8.2(a), while
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Figure 8.4: (a) Similar to Figure 8.2(a) but with displacements near the surface
of the initially moving wall and 40µm away from it for γ = 5. (b)Similar to
Figure 8.2(b) for γ = 5. Figures from [66].

the filled symbols in Figure 8.2(b) show the relaxation modulus for this strain

amplitude. The open symbols in Figure 8.2(b) are the particle displacements rep-

resented as a form of ‘relaxation’ D(∞) − D(t). The relaxation modulus shown

in Figure 8.2(b) shows a nearly uniform slope in time even with the associated

particle displacement near the glass surfaces. This ‘apparent slip’ [66] of particles

at about 1µm from the glass surfaces will be referred to as wall slip for the purpose

of this discussion.

However, the relaxation modulus shows a sudden change in slope at intermedi-

ate times as the strain amplitude is increased to 2. This region where the sudden

change of slope occurs which is referred to as a ‘kink’ [66] is indicated as K in

Figure 8.3. The occurrence of this ‘kink’ is associated with an increase in D(∞)

which then exceeds 400µm. As the strain amplitude increases to 5, significant

particle displacement at about 40µm from the glass plates accompany the particle

displacement near the plates at about 1µm. Figure 8.4(a) shows that initially after

shear cessation at γ = 5, the particle displacement at 1µm from the glass surface

(1µm particles) was nearly the same as that of particle displacement at 40µm away

from the surface (40µm particles). However, at about 100 s after shear cessation,

the 40µm particles begin to exhibit a much larger displacement than the 1µm par-
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ticles. The shear modulus also develops a ‘kink’ at about this time of 100 s as

shown by the filled symbols in Figure 8.4(b). The open symbols in Figure 8.4(b)

is the quantity D(∞) − D(t). Ultimately, the 40µm particles suffer the greatest

displacement. This time delay before the 40µm particles show a sudden increase

in displacement was described as a ‘delayed slip’ in [66].

This ‘delayed slip’ phenomenon bears some resemblance to the facture-like be-

haviour observed in Case I of no wall slip HBC. The delay before the 40µm particles

begin to show a sudden increase in displacement is similar to the delay before the

fast stress relaxation occurs in Case I which is accompanied by particle displace-

ment in the bulk of the material. Similarly, there is always a fast stress relaxation

(indicated by the ‘kink’ in the relaxation modulus) whenever strain amplitude is

sufficient. However, this fast stress relaxation is not observed at low strain ampli-

tudes even with particle displacement near the wall.

There have been similar reports with polybutadiene [1, 49] solutions, where

different degrees of particle displacement in the bulk or near the plates produce

different stress relaxation behaviours. Then it becomes necessary for future workers

in this field to examine how the position and degree of particle displacement affect

the stress relaxation behaviour.

8.2.3 State of Chain Entanglement

One way to address the issue of a possible ‘cohesive failure’ in the entanglement

network during strong deformations is for future workers in this field to do a direct

visualization of the entanglement network. This will allow the state of chain entan-

glements during shear banding and fracture-like bulk slip to be determined. This

can be achieved by means of coarse-grained molecular dynamics (MD) simulations.

It has recently been shown that coarse-grained simulations are capable of capturing

the shear banding phenomenon with just a few entanglements [67]. Hence it may
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be possible to capture these different ‘fracture’ phenomena with sufficient number

of entanglements and appropriate HBC.

8.2.4 Non Bonded Interactions

In the DE theory and subsequent modifications of it, the polymer stress is calcu-

lated solely from bonded interactions along the chain backbone. That is, the stress

is assumed to come from the covalent bonds linking the monomers and these bonds

are treated more or less like elastic springs. However, DE introduced Equation (4.2)

(T = σ + η(κ + κT ) − pδ) to describe the total stress in a polymer solution as

being the contribution from the polymer and its solvent. The contributions from

the polymer is due to bonded interactions along the chain backbone, while the

contribution from the solvent is due to momentum transfer from inter molecu-

lar collisions. For highly concentrated solutions, DE assumed that the ‘Newtonian’

contribution becomes negligible and the total stress comes solely from the polymer.

However, some workers have shown from Molecular dynamics simulations [41, 68]

that the non bonded interactions dominate the total stress at very high shear rates.

Although it is not certain what form this ‘Newtonian’ contribution should take.

Adams et al. [26] in their study using the Rolie-Poly model showed that the ‘New-

tonian’ term in Equation (4.2) was suitable for capturing the behaviour of the shear

stress at very high shear rates. Hence Equation (4.2) is not only suitable for dilute

solutions, but can also be used for concentrated solutions and melts. This approach

of adding a ‘Newtonian’ term to the polymer contribution to make up the total

stress has been applied in the calculations presented in this thesis. However, the

issue of the exact form of these non bonded interactions is yet to be addressed.
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8.3 Approximations/Assumptions

The calculations presented in this thesis made use of a number of assumptions/approximations

which are enumerated below:

Continuum Approximation:– While it is appropriate to model polymeric

liquids by the continuum hypothesis when the chains are uniformly distributed, it

becomes a bit strained if there is ‘massive loss of chain entanglements’ as claimed

in [4], and it occurs at the continuum level. However, the data in [4] shows that

the ‘fracture’ layer contains significant tube segments, so that the application of

the continuum hypothesis is consistent with the data so far.

Non Bonded Interactions:– Equation (4.2) used a ‘Newtonian stress’ to

approximate the fast modes in polymeric liquids at high shear rates. While the

exact form of these fast modes is not known at the moment, it has been shown

in [26] that this treatment is a good approximation.

Constant Chain Entanglements:– This ‘fracture’ phenomenon suggests

that the number of chain entanglements may not be uniform in space. But to a first

approximation, the number of chain entanglements has been treated as a constant

in the calculations presented here. This approach has been able to capture the key

features of the relevant experiments. Even if the number of chain entanglements

is not uniform in space, its average value should not change so much. Besides,

the manner in which chain entanglements change during strong flows is not fully

understood at the moment. In a recent calculation [69], three different assumptions

where made about the state of chain entanglements, but the rheological response

was the same qualitatively.

Zero Inertia:– The calculations presented here have been made in the zero

inertia limit. This is appropriate since the polymeric liquids under consideration

are sluggish with inertia playing a very little role in their dynamics. The inertia

term in Equation (4.1) is of the order 10−10 which is negligible.
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