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ABSTRACT 

 

In the current project, situated at the interface of chemistry and virology, 

complementary drug discovery approaches (high-throughput screening and structure-

based drug design) have been exploited in order to discover novel small molecule 

inhibitors of hRSV.  

Thus, a novel fluorescence-based high-throughput screening assay was developed 

using known anti-virals for validation: EC50 of Ribavirin ca.  30 μM, and EC50 of JNJ-

4749914 ca. 0.4 nM. This assay was then used to screen a natural product-like library. 

 

High-throughput screening assay setup 

 

Library of natural product-like library 

 

The crystal structure of a small molecule in complex with the fusion protein of hRSV 

was used in a virtual high-throughput screening campaign. A range of virtual libraries 

(libraries of likely synthetically accessible and commercially available molecule) were 

screened virtually using eHiTS against this binding cavity. This led to the identification 

of a potential novel series of hRSV fusion inhibitors, whose syntheses and biological 

evaluation have been described.  

 

Novel confocal imaging experiments were also carried out on a known hRSV fusion 

inhibitor (JNJ-4749914) in order to gain more insight in the compound's mode of action 

by visualising virus entry inhibition in epithelial cells. 



iv 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS .......................................................................................... i 

ABSTRACT ................................................................................................................ iii 

TABLE OF CONTENTS ............................................................................................ iv 

ABBREVIATIONS ..................................................................................................... ix 

1 INTRODUCTION ................................................................................................. 1 

1.1 Human respiratory syncytial virus .................................................................. 1 

1.1.1 Historical background ............................................................................. 1 

1.1.2 Phylogenic relationships .......................................................................... 1 

1.1.3 The burden of hRSV ................................................................................ 2 

1.1.4 The hRSV genome and its expression ..................................................... 3 

1.1.5 The role of hRSV proteins in the virus life cycle .................................... 5 

1.1.6 Structural analysis of hRSV proteins ...................................................... 7 

1.2 General introduction to drug discovery ........................................................ 14 

1.2.1 Physico-chemical properties of compound collections ......................... 14 

1.2.2 HTS and vHTS as techniques towards the discovery of new biologically 

active small molecules ............................................................................................ 16 

1.3 hRSV therapies: from proof-of-concept to clinical trials ............................. 19 

1.3.1 Overview of the therapies available to tackle hRSV ............................. 19 

1.3.2 FDA-approved therapies ....................................................................... 22 

1.3.3 High-throughput screening to discover new small molecules anti-virals

 22 

1.3.4 The use of biologics to tackle hRSV ..................................................... 26 

1.3.5 Conclusions and future perspectives ..................................................... 26 

1.4 Project outline ............................................................................................... 28 

 

 



v 

 

2 DEVELOPMENT OF A HIGH-THROUGHPUT SCREENING ASSAY ......... 29 

2.1 Introduction ................................................................................................... 29 

2.1.1 Virus-induced cytopathic effects ........................................................... 29 

2.1.2 Determination of the mode of action ..................................................... 31 

2.1.3 Towards a robust HTS assay ................................................................. 31 

2.2 Selectivity and range of antibody ................................................................. 34 

2.2.1 Western blot analysis ............................................................................. 34 

2.2.2 Enzyme-linked immunosorbent assay ................................................... 37 

2.2.3 Fluorescence-based assay ...................................................................... 38 

2.3 Optimisation of a fluorescence-based assay for hRSV growth .................... 41 

2.3.1 The different steps composing the assay ............................................... 41 

2.3.2 Signal variation across the plate ............................................................ 42 

2.3.3 Effect of the multiplicity of infection on the fluorescence signal ......... 43 

2.3.4 Study of the negative control (DMSO) effects ...................................... 44 

2.3.5 Study of the positive control (Ribavirin) effects ................................... 47 

2.3.6 Robustness of the assay upon using a liquid-handling robot ................ 52 

2.3.7 Further assay validation with a known specific sub-nanomolar inhibitor

 55 

2.4 Summary ....................................................................................................... 62 

3 DESIGN OF POTENTIAL LIGANDS USING VIRTUAL HIGH-

THROUGHPUT SCREENING ...................................................................................... 63 

3.1 vHTS approach to target hRSV .................................................................... 63 

3.1.1 Selection of a target ............................................................................... 64 

3.1.2 Requirements for a virtual library ......................................................... 65 

3.1.3 Virtual screening package ..................................................................... 65 

3.1.4 Selection criteria .................................................................................... 66 

3.1.5 Free energy minimisation ...................................................................... 66 

 



vi 

 

3.2 vHTS campaign ............................................................................................ 67 

3.2.1 Enumeration of a virtual library ............................................................ 68 

3.2.2 Identification of promising scaffolds for further development ............. 69 

3.2.3 Identification of potential hRSV fusion inhibitors to be prepared ........ 72 

3.2.4 Free energy minimisation ...................................................................... 76 

3.3 In silico evaluation of a virtual library with lead-like properties ................. 80 

3.3.1 Identification of an additional series of potential hRSV fusion inhibitors

 80 

3.3.2 Predicted structure-activity relationships using eHiTS ......................... 84 

3.4 vHTS on a virtual library of commercially available compounds ................ 88 

3.5 Summary ....................................................................................................... 90 

4 STUDIES TOWARDS THE SYNTHESIS OF POTENTIAL HRSV FUSION 

INHIBITORS .................................................................................................................. 91 

4.1 Retrosynthetic analyses................................................................................. 91 

4.2 Synthesis of building blocks required for route development ...................... 94 

4.2.1 Synthesis of building blocks required for the synthetic studies towards 

series 1 94 

4.2.2 Synthesis of building blocks required for the studies towards series 2 . 96 

4.2.3 Synthesis of building blocks required for the synthetic studies towards 

series 3 97 

4.3 Synthetic studies towards potential hRSV fusion inhibitors ........................ 98 

4.3.1 Synthetic studies towards series 2 ......................................................... 98 

4.3.2 Synthetic studies towards series 3 ....................................................... 101 

4.4 Synthesis of building blocks required for a focused library of proposed 

inhibitors ................................................................................................................... 102 

4.4.1 Preparation of DL-O-benzyltyrosinol and DL-O-n-propyltyrosinol ... 102 

4.4.2 Preparation of the cyclic sulfamidates derived from DL-O-

benzyltyrosinol and DL-O-n-propyltyrosinol ....................................................... 103 

4.5 Synthesis of a focused library of proposed inhibitors................................. 104 



vii 

 

4.6 Summary ..................................................................................................... 105 

5 EVALUATION OF SELECTED COMPOUNDS AS INHIBITORS OF HRSV

 106 

5.1 Biological evaluation at a single concentration .......................................... 106 

5.1.1 Choice of a compound collection for HTS .......................................... 106 

5.1.2 High-throughput screening results ...................................................... 108 

5.1.3 Evaluation of compounds identified through vHTS ............................ 111 

5.1.4 Therapeutic index ................................................................................ 114 

5.1.5 Dose-response analyses on screening hits ........................................... 115 

5.1.6 Discussion ........................................................................................... 119 

5.2 Biological testing of the intermediates in the synthesis of JNJ-4749914 ... 120 

5.2.1 Dose-response curves .......................................................................... 120 

5.2.2 Confocal imaging of the mode of action of JNJ-4749914 .................. 122 

5.2.3 Discussion ........................................................................................... 123 

5.3 Summary ..................................................................................................... 124 

6 SUMMARY AND FUTURE WORK ................................................................ 125 

7 MATERIALS AND METHODS ....................................................................... 129 

7.1 Buffers and solutions .................................................................................. 129 

7.2 Tissue culture techniques ............................................................................ 130 

7.2.1 Tissue culture plasticware ................................................................... 130 

7.2.2 Maintaining cells ................................................................................. 130 

7.2.3 Freezing cells down ............................................................................. 130 

7.2.4 Using cells from a frozen stock ........................................................... 131 

7.2.5 Counting cells ...................................................................................... 131 

7.2.6 Virus propagation ................................................................................ 131 

7.3 Confocal imaging ........................................................................................ 132 

7.4 Plaque assay ................................................................................................ 133 

7.5 Preparation of cell lysates and western blot analyses ................................. 134 



viii 

 

7.6 Spinoculation .............................................................................................. 135 

7.7 Antiviral assay ............................................................................................ 136 

7.8 Plate reader parameters ............................................................................... 137 

7.9 Cytotoxicity assay ....................................................................................... 138 

7.10 Data analysis ........................................................................................... 138 

7.11 Ribavirin stock and preparation of dilution series .................................. 141 

7.12 Ribavirin master plate to test the robustness of the assay upon using the 

robot 143 

7.13 Mode of action of JNJ-4749914 .............................................................. 145 

7.14 High-throughput screening...................................................................... 146 

7.15 Compounds characterisation ................................................................... 147 

8 REFERENCES ................................................................................................... 197 

9 APPENDIX ........................................................................................................ 212 

 

 



ix 

 

ABBREVIATIONS 

 

General abbreviations 

°C 

3D 

Å 

Ab 

Ac 

App 

Aq 

Ar 

Bn 

Boc 

br 

Bu 

C 

ca. 

CADp  

 

CC50 

CV 

δ 

Da 

dba 

dppb 

DCM 

DEAD 

DMAP 

Celsius degrees 

Three dimensional 

Ångström 

Antibody 

Acetl 

Apparent 

Aqueous 

Aromatic 

Benzyl 

tert-Butyloxycarbonyl 

Broad 

Butyl 

Concentration 

Circa; about 

Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and 

dihydroorotase polypeptide 

50% Cytotoxic concentration 

Coefficient of variation 

Chemical shift 

Dalton 

Dibenzylideneacetone 

1,4-Bis(diphenylphosphino)butane 

Dichlormethane 

Diethyl azodicarboxylate 

4-Dimethylaminopyridine 



x 

 

DHODH 

Direct 

d 

dd 

ddd 

dddd 

dq 

ddt 

dt 

DMAP 

DMEM 

DMF 

DMSO 

EC50 

e.g. 

Et 

et al. 

eHiTS 

ELISA 

FBDD 

FBS 

FDA 

FITC 

GE / GS 

g 

g 

HCV 

hept 

HIV 

HR 

Dihydroorotate dehydrogenase 

Primary antibody conjugated to HRP or FITC 

Doublet 

Double doublet 

Double, double doublet 

Double, double double doublet 

Double quadruplet 

Double, double triplet 

Double triplet 

4-Dimethylaminopyridine 

Dulbecco's Modified Eagle's Media 

N,N-Dimethylformamide 

Dimethyl sulfoxide 

50% Effective concentration 

Exampli gratia; for example 

Ethyl 

Et alii; and others 

Electronic high-throughput screening 

Enzyme-linked immunosorbent assay 

Fragment-based drug design 

Foetal bovine serum 

Food and Drug Administration 

Fluorescein isothiocyanate 

Gene end / Gene start (sequences) 

Gram 

Acceleration 

Hepatitis C virus 

Heptuplet 

Human immunodeficiency virus 

Heptad repeat 



xi 

 

HRP 

(v)HTS 

(h)RSV 

Hz 

IC50 

IR 

iPr 

J 

(c)LE 

LiHMDS 

LIMS 

Lit 

Log 

LsA 

µ 

m 

M 

MAD 

maj 

Me 

mg 

min 

mL 

mM 

m.p. 

μL 

μM 

MOI 

MR 

Ms 

Horseradish peroxidase 

(virtual) High-throughput screen 

(human) Respiratory syncytial virus 

Hertz 

50% Inhibitory concentration 

Infrared 

isopropyl 

Spin-spin coupling constant 

(computational) Ligand efficiency 

Lithium bis(trimethylsilyl)amide 

Laboratory Information Management System 

Literature 

Logarithm in base 10 

Limits of Agreement 

Mean 

Multiplet 

Molar 

Median absolute deviation 

Major 

Methyl 

Milligram 

Minor 

Millilitre 

Millimolar 

Melting point 

Microlitre 

Micromolar 

Multiplicity of infection 

Mean-ratio 

Mesyl 



xii 

 

MSR 

MTT 

MW 

N/A 

NIH 

NIS 

nM 

NMR 

Ns 

PBS 

PDB 

Petrol 

Pfu 

pH 

Piv 

pM 

Pr 

PSA 

q 

RCM 

RdRp 

R.F.U. 

(m / si)RNA 

RNP 

rot 

rpm 

σ 

s 

S:B 

S:N 

Minimum significant ratio 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

Molecular weight 

Not available 

National Institutes of Health 

N-Iodosuccinimide 

Nanomolar 

Nuclear magnetic resonance 

2-Nitrobenzenesulfonyl 

Phosphate-buffered saline 

Protein databank 

Petroleum spirit (b.p. 40-60) 

Plaque forming units 

Potential hydrogen 

tert-Butylcarbonyl 

Picomolar 

Propyl 

Polar surface area 

Quadruplet 

Ring-closing metathesis 

RNA-dependent RNA polymerase 

Relative fluorescence unit 

(messenger / small interfering) Ribonucleic acid 

Ribonucleoprotein (complex) 

Rotamer 

Rotation per minute 

Standard deviation 

Singlet 

Signal-to-background (ratio) 

Signal-to-noise (ratio) 



xiii 

 

SAR(s) 

SBDD 

SDS 

SW 

t 

tt 

TBAF 

TBS 

t
Bu 

tert 

TFA 

THF 

TI 

XTT 

Strucutre-activity relationship(s) 

Structure-based drug design 

Sodium dodecyl sulphate 

Signal window 

Triplet 

Triple triplet 

tetra-n-Butylammonium fluoride 

tert-Butyldimethylsilyl 

tert-Butyl 

Tertiary 

Trifluoroacetic acid 

Tetrahydrofuran 

Therapeutic index 

2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-

carboxyanilide, inner salt 

 

  



xiv 

 

Amino acids 

Alanine (Ala, A) 

Arginine (Arg, R) 

Asparagine (Asn, N) 

Aspartic acid (Asp, D) 

Cysteine (Cys, C) 

Glutamic acid (Glu, E) 

Glutamine (Gln, Q) 

Glycine (Gly, G) 

Histidine (His, H) 

Isoleucine (Ile, I) 

Leucine (Leu, L) 

Lysine (Lys, K) 

Methionine (Met, M) 

Phenylalanine (Phe, F) 

Proline (Pro, P) 

Serine (Ser, S) 

Threonine (Thr, T) 

Tryptophan (Trp, W) 

Tyrosine (Tyr, Y) 

Valine (Val, V) 

 

  



xv 

 

hRSV proteins 

 

F = fusion protiein 

G = glycoprotein 

L = large protein 

M = matrix protein 

N = nucleoprotein 

NS = non-structural protein 

P = phosphoprotein 

SH = small hydrophobic protein  



 

1 

 

1 INTRODUCTION 

1.1 Human respiratory syncytial virus 

1.1.1  Historical background 

 

Human respiratory syncytial virus (hRSV) was originally isolated in 1956 from 

chimpanzees presenting the symptoms of coryza
1
 (respiratory infection with symptoms 

of a cold). As a result, it was known as the chimpanzee
 
coryza agent. It was only 

designated hRSV when it was recovered from the lower respiratory tract of infants a 

year later and its cytopathic effects were characterised in human nasopharynx or liver 

cells
2
. The observation of the formation of large cells with multiple nuclei led to the use 

of the term syncytium
1,2

 (from the Greek syn- together, and kytos cell).  

 

1.1.2  Phylogenic relationships 

 

hRSV is an enveloped virus from the Paramyxoviridae family (order 

Mononegavirales, genus Pneumovirus)
3
. hRSV is classified into two subgroups:  

hRSV-A and hRSV-B
4,5

 on the basis of membrane glycoprotein reactivity to a panel of 

monoclonal antibodies
6,7

. Other members of this family include the human 

parainfluenza virus and measles virus
8-10

. Additional members of the Mononegavirales 

order include Ebola virus
8
 (family Filoviridae) or rabies virus

8
 (family Rhabdoviridae). 

RSV infections are not only limited to humans: several RSV species are also present 

across different hosts such as in bovine (e.g. cow) and ovine (e.g. sheep)
9
.  
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1.1.3  The burden of hRSV 

 

hRSV is one of the major lower respiratory tract pathogens in infants with consistent 

annual outbreaks. 90% of infants are infected with hRSV at least once within the first 

two years of life
11

. It is estimated that, each year, over 2 million children under five 

require hospitalisation as a consequence of hRSV infection in the United States of 

America alone
12

. Elderly patients, patients with chronic heart and lung conditions and 

immunocompromised patients are also at risk
4,13,14

. According to the World Health 

Organization, there are about 60 million people infected and 160,000 deaths every 

year
15

. 

hRSV is spread by large respiratory droplets and can live for several hours on 

objects, requiring close proximity or contaminated objects for viral transmission
16,17

. 

Replication occurs in the upper respiratory tract (nasopharynx) first with an incubation 

period of ca. four days prior to spreading to the lower respiratory tract (lung). The 

symptoms range from mild cough or fever to severe bronchiolitis or pneumonia
18,19

. 

Early acute hRSV infection in infants has also been linked with the development of 

asthma
20,21

. 

hRSV targets superficial layers of ciliated polarised epithelial cells
22,23

 (bronchial, 

alveolar epithelial cells
24

). Following infection, they do not display any signs of 

morphologic changes unlike in non-polarised cell lines (human cervix carcinoma 

epithelial cells also known as HEp-2 cells
25

). However, syncytia are observed in vivo 

when there is a T cell
*
 deficiency

11
. hRSV has been shown to infect dendritic cells 

located in the respiratory tract
26,27

 that play a role in the immune response
28

. Airway 

obstruction and breathing difficulties are a consequence of mucus discharge, debris and 

sloughing of infected epithelial cells
11,14,24

. 

  

                                                 
*
 T cells lead the immune response to hRSV24 Johnson, J. E., Gonzales, R. A., Olson, S. J., Wright, 

P. F. & Graham, B. S. The histopathology of fatal untreated human respiratory syncytial virus infection. 

Mod. Pathol. 20, 108-119 (2006). 
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Over the course of ten years, during the epidemic season (November to March, with 

a peak in January or February in the Northern hemisphere
4,5,11

), scientists in Belgium 

have studied the prevalence and circulation of hRSV-A and hRSV-B strains and 

observed that the two subgroups can co-exist but one subgroup can prevail from one 

year to the other
5
. The co-existence of the two subgroups is thought to be a factor that 

allows hRSV re-infection
4,5

.  

 

1.1.4  The hRSV genome and its expression 

 

The hRSV genome is a single strand of negative-sense RNA, 15,222 nucleotides in 

length (Figure 1.1.A). The infecting hRSV genome is replicated by the virus-encoded 

RNA-dependent RNA polymerase (RdRp) to yield a positive sense anti-genome, which 

is used as a template for the subsequent synthesis of a progeny genome
29

. The genome 

is transcribed sequentially by the RdRp into ten individual capped and polyadenylated 

mRNAs. During transcription, the RdRp can only enter the genome at the 3' leader 

region, and has a polarised movement (3' to 5')
29

. Transcription is a start-and-stop 

process as a consequence of gene start (GS) and gene end (GE) sequences on either side 

of the viral genes. Initiation and capping of each mRNA is signalled by the GS 

sequence, and the synthesised mRNA is polyadenylated and released from the RdRp at 

the GE sequence. After reading the GE sequence, the RdRp scans the intergenic 

sequence until the next GS sequence is reached (Figure 1.1.B). Approximately 30% of 

RdRp molecules disengage from the template within the intergenic region, resulting in a 

polar abundance of transcription products; genes at the 3' end of the genome are 

transcribed with greater abundance than those at the 5' end
11,29

. The replication of the 

hRSV genome and the synthesis of individual viral mRNAs occurs in the cytoplasm of 

infected cells
9,11,30

. 
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A. 

 

B.  

Figure 1.1. A schematic representation of the hRSV RNA genome  and expression 

of the viral genes. A. The hRSV genome is replicated by the synthesis of a positive 

sense anti-genome (template for progeny genome). It is also expressed into individual 

mRNAs by start-and-stop synthesis with decreasing abundance (represented by the 

thickness of the line) from 3' to 5'. NS1, NS2: non-structural protein 1 and 2;  

N: nucleoprotein, P: phosphoprotein, M: matrix protein, SH: small hydrophobic,  

G: glycoprotein, F: fusion, L: large. Adapted from Collins et al.
11

. B. Start-and-stop 

mRNA synthesis with the gene start (GS) and gene end (GE) sequences on either side of 

viral genes. The GE of a viral gene is separated from the GS of the next gene by an 

intergenic sequence (dotted line). Adapted from Fearns et al.
29

. 
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1.1.5 The role of hRSV proteins in the virus life cycle 

 

There are ten viral genes in the hRSV genome that encode for eleven viral proteins: 

M2-1 and M2-2 are expressed from overlapping reading frames in the M2 gene
11

. The 

genome and the viral proteins (except NS1, NS2 and M2-2 which are non structural) are 

components of the viral particle, also known as the virion
11,31

 (Figure 1.2). Collins et 

al.
32

 have demonstrated, using a minigenome system, that RNA replication was 

controlled by the N (role in RNA-binding
11

), P (cofactor for elongation
33

) and L 

(polymerase
34

) proteins. However, it was observed that M2-1 was required for 

transcription of full length mRNAs, and proposed its role as a processivity factor of the 

polymerase
19,34,35

. N, P, L and M2-1 proteins form the ribonucleoprotein complex 

(RNP) with RNA
3
. M2-2 regulates the relative levels of the synthesis of genomic RNA 

and viral mRNAs but its presence is not critical for replication
36

. NS1 and NS2 inhibit 

the synthesis of interferons and have been linked with the inhibition of apoptosis
11,19

. 

The matrix protein is important for viral assembly
9
 and it inhibits host cell transcription 

capabilities
37,38

.   

The remaining three proteins F, G and SH are membrane glycoproteins. The F 

proteins are conserved across hRSV strains (91% sequence conservation
39

) while the G 

gene diverges between hRSV strains (53% sequence conservation
40

). As a consequence, 

G is at the centre of hRSV antigenic variability and the classification of hRSV into two 

subgroups (hRSV-A and hRSV-B
4,5

). hRSV infection and budding in epithelial cells is 

reported to be polarised and occurs preferentially through the apical face of the cell
22,23

. 

hRSV virion entry and syncytia formation occur by cell membrane fusion with the F 

protein. The G protein plays a role in virus attachment
41

 (although is not critical for 

infection
42,43

 or replication
44

 in vitro). The current model for hRSV binding is that 

hRSV binds to glycosaminoglycans
45

 (e.g. heparin) on the cell surface via interactions 

with the G protein
46

, which is followed by the binding of the F protein to nucleolin
47

. 

Proteins involved in virus entry or replication could be attractive targets for therapeutic 

intervention
37,48

. Recently, the SH protein has been classified as a viroporin
49,50

, a group 

of pore-forming, oligomeric transmebrane proteins, which also include the hepatitis C 

virus p7 protein or the influenza A M2 protein
51

.  
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A. 

 

B. 

 

 

Figure 1.2. Organisation of the hRSV virion. A. Electron-microgram showing the 

membrane features of a hRSV virion (courtesy of Kyle Dent). Diameter: ca. 210 nm. 

Scale bar: 2 cm = 85 nm. B. Simplified diagram of the hRSV virion. On the outer and 

inner membranes, the proteins for the viral envelope (F, G, SH and M) are depicted 

individually. The ribonucleoprotein complex is located inside the virion: N is 

encapsidating the RNA genome, P has been found with a binding site on N
52

. Because 

its interaction partners are not defined, M2-1 is not depicted. NS1, NS2, and M2-2 are 

non-structural proteins and are not part of the virion. For ease of illustration, the viral 

proteins are not drawn to scale. Adapted from Ghildyal et al.
9
.  
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1.1.6 Structural analysis of hRSV proteins 

 

Structure-based drug design requires high resolution structural data obtained by 

either X-ray crystallography or NMR spectroscopy (< 2.5 Å in order to be confident 

about the positions of residues and side chains within the electron density map
53

). 

Structural data is available for four hRSV proteins: N, M, SH and F. 

 

1.1.6.1 Crystal structure of the N−RNA complex 

 

A major component of the RNP is the nucleoprotein N, which is responsible for the 

encapsidation of the anti-genome and the progeny genome, as they are synthesised, with 

helical symmetry
15

. One turn of the helical N-RNA complex has been solved by X-ray 

crystallography (3.3 Å) as a decameric ring
54

 (Figure 1.3.A). The authors suggested that 

the polymerase might be able to access the genome without dissociating the N–RNA 

complex (Figure 1.3.B). The structure also revealed a cavity in which RNA bases  

2 to 4 dock (Figure 1.3.C): the cavity–RNA bases interaction seems to be conserved 

across the Mononegavirales order
54

. Finally, resistance that arose from the exposure of a 

specific inhibitor to the N protein has been mapped at the proposed N–polymerase 

binding site
54

 (see Section 1.3.3.3).  
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A. 

 

B. 

 

C. 

 

Figure 1.3. Crystal structure of the N–RNA complex
54

. A. Top view of the crystal 

structure of a decameric N–RNA ring complex (PDB accession number 2WJ8, 3.3 Å), 

shown in solid ribbon. One turn of the helical symmetry of the N-encapsidation process 

is represented. A single N subunit is shown in brown and the RNA is shown in red 

arrows. The N- and C-terminus are burried on the inside of the decameric ring.  

B. Side view of three adjacent N subunits (RNA, shown in red, has been hidden from 

the subunits flanking the N–RNA complex in the middle). C. N–RNA interactions 

(dotted lines). Seven nucleotides are interacting with the N subunit. RNA from adjacent 

subunits is shown in grey. RNA from the main subunit is shown in red. RNA bases are 

shown as thick coloured lines. Adapted from Tawar et al.
54

. Pictures generated with 

Discovery Studio (Accelrys). 
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1.1.6.2 Crystal structure of the M protein 

 

The crystal structure of the M protein has been solved
31

 using X-ray crystallography 

(1.6 Å) (Figure 1.4.A) and consists of two β-sheet domains joined by a flexible linker,  

a feature that is found in other members of the Mononegavirales order
55

. Additionally, 

calculation of the electrostatic potential
56

 revealed an area of positively charged residues 

(Figure 1.4.B), ideally positioned to form complementary interactions with a membrane 

or alternatively with the RNP, both negatively charged
31

. Both of these potential 

interactions would be consistent with the matrix protein being important for viral entry
55

 

and assembly
9
.  

A. 

 

B. 

 

Figure 1.4. Crystal structure of the M protein
31

. A. Crystal structure of the M protein 

(PDB accession number 2VQP, 1.6 Å), shown in solid ribbon, reveals two β-sheet 

domains. Picture generated with Discovery Studio (Accelrys). B. Electrostatic potential 

solved with the Poisson-Boltzmann equations solver
56

 using the CHARMM program
57

 

between −2 (red) and 2 (blue) kcal/mol/e, e is the unit charge. Picture generated with 

PyMOL (Schrödinger). 
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1.1.6.3 NMR structure of the SH protein 

 

Electron microscopy observation of the SH protein by Carter et al.
49

 revealed 

pentameric and hexameric ring-like objects in liposomes or micelles with a central pore 

of 19 nm (pentamer) or 26 nm (hexamer) (Figure 1.5.A). After solution NMR studies in 

micelles and lipid bilayers, Gan et al.
50

 observed that the SH protein adopted an  

α-helical conformation and concluded that the SH protein formed a pentamer  

(Figure 1.5.B, Figure 1.5.C).  

 

 

Figure 1.5. Structural studies on the SH protein. A. Putative five- and six-fold 

symmetries observed by electron microscopy. Image taken from Carter et al.
49

. B. Side-

view of the SH pentamer. The pentamer model was constructed from 2D NMR and 

structure refinement data. Within a membrane, the SH protein adopts an α-helical 

conformation. The length of the channel is ca. 45 Å. Image taken from Gan et al.
50

, as 

PDB coordinates were not released. C. Top-view of the SH pentamer. The pentamer 

model was constructed from 2D NMR and structure refinement data. Image taken from 

Gan et al.
50

, as PDB coordinates were not released. 
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1.1.6.4 F protein and its function 

 

hRSV F protein is a class I fusion protein
58

. Class I proteins are synthesised as an 

inactive precursor that is cleaved into the active fusion sequence. The well-studied 

human immunodeficiency virus type 1 (HIV-1) gp41
59

 is also a class I fusion protein 

and its mechanism of action has been extended by analogy to hRSV
60

. The F protein is 

synthesised as an inactive precursor (F0) that is cleaved into two subunits (F1 and F2) 

(Figure 1.6.A), one of which (F1) undergoes a series of conformational rearrangements 

involving the heptad repeats (HR) of the N- and C-terminus (Figure 1.6.B). Based on 

the structural data available for the parainfluenza virus 5 F protein
61,62

 (another class I 

fusion protein), HR-N is proposed to be buried in the globular domain in the pre-fusion 

state. Upon fusion, an initial conformational rearrangement results in the fusion peptide 

being directed towards the target cell membrane and the HR-C to be extracted from the 

globular domain. A key intermediate in the fusion mechanism is thought to be a 6-helix 

bundle
60

, a homotrimer of antiparallel heterodimers (solved at 2.3 Å, Figure 1.6.C).  

The final intermediate is the more stable post-fusion conformation
63

 (solved at 2.8 Å, 

Figure 1.6.D). Upon discovering resistant strains to a known small molecule inhibitor, 

mutations were observed in the globular domain, which has to undergo conformational 

rearrangement in order for the two heptad repeats to interact (Figure 1.6.B). It was 

proposed that mutation in the globular domain could affect the kinetics of the 

rearrangement
64

. 

 

 

 

 

 

 

 



 

12 

 

A. 

 

B. 

 

C. 

 

D. 

 

Figure 1.6 Fusion protein of hRSV. A. F0 precursor: signal peptide (purple), furin-like 

proteolytic cleavage site (arrow), putative fusion peptide (red), HR-N (green), HR-C 

(orange) and a transmembrane anchor (black). B. Proposed intermediates involved in 

hRSV fusion. In the fusion-ready state, the putative fusion peptide (red) is directed 

towards the target cell. A series of conformational rearrangements lead HR-N and HR-C 

to form a 6-helix bundle. The final intermediate is the more stable post-fusion state.  

For ease of representation, the globular domain is only shown in the pre-fusion state.  

C. Crystal structure of the 6-helix bundle (PDB accession number 1G2C, 2.3 Å), shown 

in solid ribbon, reveals a homotrimer of antiparallel heterodimers
60

. D. Crystal structure 

of the hRSV fusion protein in the post-fusion conformation (PDB accession number 

3RRR, 2.8 Å) shown in solid ribbon
63

. The fusion peptide is not shown. The presence of 

the 6-helix bundle suggests the protein might in the post-fusion state. The binding site 

of prophylactic antibodies (Section 1.3.2) is also shown
63,65

. Picture generated with 

Discovery Studio (Accelrys). 
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The association of HR-C and HR-N is responsible for merging the viral and cellular 

membranes
60,66

. From the crystal structure of the 6-helix bundle
60

, it appears that the 

HR-C peptide binds inside a hydrophobic groove composed of two adjacent HR-N 

peptides (Figure 1.7). The resulting complex is held together by key hydrophobic 

interactions between residues L481, F483 and F488 of HR-C and the hydrophobic 

groove. Residues 480 to 520 of HR-C and 180 to 199 of HR-N are conserved between a 

range of hRSV strains (B1, B18537, A2, Long). By analogy with the HIV-1 gp41 

crystal structure
59,67

, the hydrophobic pocket occupied by F483 and F488 constitutes a 

potential target for small molecule inhibitors. The specific interactions observed in the 

complex between the F protein and a specific inhibitor will be described in  

Section 1.3.3.2. 

 

 

Figure 1.7. Hydrophobic groove of the 6-helix bundle. A. The formation of a 6-helix 

bundle (an intermediate in the pre-fusion to the post-fusion complex of the F protein) 

involves the formation of a hydrophobic groove formed by two adjacent HR-N peptides 

shown as a surface area (noted HR-N and HR-N'). HR-C, shown in solid ribbon, binds 

in the resulting hydrophobic groove, (1G2C, 2.3 Å). B. HR-C binds through three key 

hydrophobic interactions involving residues L481, F483 and F488. For ease of 

visualisation, only the residues that are involved in the interactions with the 

hydrophobic groove are shown (yellow sticks) and part of the α-helix is shown as a line, 

(1G2C, 2.3 Å). Picture generated with Discovery Studio (Accelrys).   
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1.2 General introduction to drug discovery 

 

There are a range of complementary approaches that may be exploited in the 

discovery of small molecules with specific biological activity
68

 including:  

i) modification a known drug or a natural product, ii) high-throughput screening (HTS), 

iii) structure-based drug design
69-74

 (SBDD), iv) fragment-based drug discovery
68,75,76

 

(FBDD).  

SBDD and, in general, FBDD rely on the availability of high-resolution structural 

data (X-ray or NMR). SBDD can follow de novo design approaches
69,73

  

(e.g. SPROUT
70

) or virtual high-throughput screening
69,71,72,74

 (vHTS). FBDD and de 

novo approaches were not used in the present study and are not discussed. 

HTS has been widely used in the discovery of small molecule anti-virals against 

hRSV (see Section 1.3) and vHTS has been used against hRSV as part of the present 

study (see Chapter 3). Both HTS and vHTS allow for the screening of large compound 

collections, under different settings: in biological systems for the former and using in 

silico methods for the latter.  

 

1.2.1 Physico-chemical properties of compound collections 

 

A key characteristic to take into account in drug discovery is the interdependence 

between the absorption / permeation of a small molecule and its molecular weight, 

lipophilicity and hydrogen bond potential. This has been illustrated by the Lipinski “rule 

of five”, which is generally used to indicate the “drug-likeness” (good potency, good 

cell-wall penetration and rapid absorption) potential of a small molecule
77

. An initial 

screening campaign generally aims at screening lead-like compounds, which are going 

to be optimised during later stages of development. In order to comply with the Lipinski 

parameters in a drug candidate, a different set of criteria has been defined for lead-like 

compounds (Table 1.1). The criteria are more stringent for “lead-likeness” as the lead 

optimisation process
78

 is likely to add on key functionalities (to increase potency) which 

will usually increase lipophilicity and molecular weight (Figure 1.8).  
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Table 1.1: Specific parameters to take into account in the drug discovery process 

 Lead-like
78 

Drug-like
a, 77 

Lipophilicity
77,78

 −1 ≤ cLogP
b
 ≤ 3 cLogP

b
 ≤ 5 

Molecular weight
77-79

 (g/mol) 
200 ≤ M.W. ≤ 350 

(14 to 26 heavy atoms) 
M.W. ≤ 500 

Hydrogen-bond donor
77,80

 ≤ 3 ≤ 5 

Hydrogen-bond acceptor
77,80

 ≤ 8 ≤ 10 

Polar surface area (PSA)
78

 75 Å
2 
≤ PSA ≤ 120 Å

2
 75 Å

2 
≤ PSA ≤ 150 Å

2
 

a: Lipinski proposed that drug-like compounds generally complied with at least four of these criteria;  

b: P is the partition coefficient between water and n-octanol. 

 

 

Figure 1.8. Chemical space relevant to small molecule drug discovery. The drug-

like space is bounded by the Lipinski “rule of five” parameters (red line). The lead-like 

space is defined by the lead-like parameters (dotted line). The likely increase in 

lipophilicity and molecular weight as a result of optimisation is indicated by the blue 

arrow. Adapted from Nadin et al.
78

. 
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1.2.2 HTS and vHTS as techniques towards the discovery of new biologically active 

small molecules 

1.2.2.1 Summary of the discovery process 

 

There are a number of steps
81

 required for the identification of new compounds with 

biological activity. A typical campaign would start by the selection of a target  

(HTS: protein, whole cell, virus; vHTS: protein with structural data available). The next 

step of the discovery process would be the identification of “hits” followed by the 

optimisation of validated “hits” using iterative rounds of synthesis and testing. As a 

final step of the discovery process, it is crucial to determine the mode of action of the 

optimised compound (e.g. knowing if it targets a specific protein or finding out at which 

stage of the virus life cycle the compound is active). The discovery process for the 

identification and optimisation of many new biologically active small molecules is 

represented in Figure 1.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Step-wise discovery of new biologically active small molecules with 

activity against a chosen target. Once a target has been selected, HTS and vHTS 

“hits” are identified after screening for biological activity. Only the non-cytotoxic hits 

will undergo optimisation through analogue synthesis and the study of structure-activity 

relationships (SARs). The final step is the determination of the mode of action of the 

optimised hit(s).  
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1.2.2.2 High-throughput screening 

 

In HTS, in order to screen large compound collections
†
 against the chosen target, it is 

critical to use a robust screening assay. If the target is novel, the development of a new 

screening assay, according to robust statistical parameters, might be required.  

Inglese et al.
82-84

 have summarised which statistical parameters are important for the 

validation of an assay performed at a single concentration based on the results of both 

the internal positive and negative controls. A description of the statistics parameters that 

need to be considered is available in Appendix 1. Once “hits” have been identified, they 

must be validated (cytotoxic and secondary screening). The screening of large 

compound collections has the disadvantage of generating false positives and false 

negatives
76,82

. In order to circumvent these two issues, the use of quantitative HTS, in 

which each compound is screened at a range of concentrations, has been reported
85

.  

 

1.2.2.3 Virtual high-throughput screening 

  

In vHTS, an approach that relies on the availability of structural data (X-ray or 

NMR), the selection of the protein model that will form the basis of the in silico 

screening is important for the outcome of the campaign. Several parameters may 

influence the choice of the protein model for vHTS: single (X-ray crystallography) or 

multiple conformations (NMR spectroscopy), resolution with respect to side chain 

positioning, ionisation state of the residues, selection of the binding region, presence of 

tightly bound solvent molecules, flexibility. In order to screen compound collections
‡
 

against the chosen target, it is critical to have an in silico screening program available. 

Once the in silico screening process has been carried out, virtual “hits” may usually be 

purchased or synthesised in order to validate the predicted activity and verify that the hit 

is not cytotoxic.  

  

                                                 
†
 For HTS, compounds from a compound collection are compounds that are either commercially 

available or proprietary. 
‡
 For vHTS, compounds from a compound collection are compounds that could be acquired from a 

commercial supplier (virtual library of commercially available compounds) or that could be prepared in 

the laboratory (virtual library of synthetically accessible compounds).  
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1.2.2.4 HTS and vHTS as complementary approaches. 

 

There are some literature reports where both HTS and vHTS have been used in 

parallel to aid the identification of novel scaffolds against a chosen biological target. 

Shoichet et al.
86

 used HTS and vHTS in parallel to target the tyrosine phosphatase-1B 

protein. Using HTS, they screened a proprietary library of 400,000 compounds and 

found 85 hits (hit-rate of 0.021%). Using vHTS, they screened a virtual library of 

235,000 commercially available compounds and found 365 virtual hits. Upon biological 

testing, they could confirm 127 hits (hit-rate of 34.8% compared to the 365 virtual hits 

or 0.05% compared to the full library). In another experiment, Paiva et al.
87

 screened a 

Merck proprietary collection against dihydrodipicolinate reductase using HTS (hit-rate 

< 0.2%) and vHTS (hit-rate ca. 6% for a diverse subset of the full collection after 

biological testing of the virtual hits). From these two studies, it seems that the hit-rate is 

higher for vHTS
87,88

 for those compounds that are actually assayed, circumventing the 

need for a high-throughput assay. It is also thought that when structural data is available 

vHTS could be used to identify common scaffolds predicted to be active  

(vHTS of small subsets of the full collection) that would then be screened using HTS 

methods
89

, making the two methods complementary. 
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1.3 hRSV therapies: from proof-of-concept to clinical trials 

 

There are no vaccines or potent small molecule anti-virals currently available for 

hRSV for use in the clinic. The effects of supportive treatments (e.g. bronchodilator, 

steroids) remain marginal or controversial
90

. However, for children in hospitals,  

the preferred treatment remains the use of oxygen in order to prevent death
90,91

.  

Neither live attenuated vaccine, nor subunit vaccine has been reported to be effective 

in preventing hRSV
92
. Rather, the opposite effects are observed: ‘immunopotentation’ 

and vaccine-enhanced disease
91,93,94

. Two vaccines developed by MedImmune are 

currently in Phase I/II clinical trials
95

. 

 

1.3.1 Overview of the therapies available to tackle hRSV  

 

A wide variety of small-molecule anti-virals have been developed against hRSV 

(Table 1.2 and Figures 1.10 and 1.11). They can be classified in three categories 

depending on their target: broad-spectrum i.e. active against non-viral proteins  

(Table 1.2, entries 1 to 3 and Figure 1.10), replication inhibitors (Table 1.2, entries 4 to 

9 and Figure 1.10) and entry inhibitors (Table 1.2, entries 10 to 19 and Figure 1.11).  

An additional point of comparison has been added to describe the chemical genetics 

approach that was used to discover the compounds
96

. Some small molecules were 

identified on the basis of their phenotype (forward chemical genetics approach), and 

other molecules were discovered on the basis of activity against a specific viral protein 

(reverse chemical genetics approach).  

The discussion of the small molecules and biologics presented in Table 1.2 and 

Figures 1.10 and 1.11 will start with the presentation of the treatments that have been 

approved by the FDA for use against hRSV. The discussion will continue with the 

presentation of the small molecule anti-virals that have been identified in phenotypic 

assays and will end with the presentation of the biologics developed against hRSV. 

  



 

20 

 

Table 1.2: Summary of the target, activity, clinical trials status and chemical 

genetics approach for known anti-hRSV agents. 

Entry Active agent Target Activity
a 

Clinical trial 
Chemical 

genetics 

1 
Ribavirin 

(Virazole®) 
N/A

 
-
b 

Approved
97

 N/A
e 

2 1 DHODH
c 

EC50 =  7 nM
98

 N/A N/A
e 

3 2 CADp
d 

EC50 = 86 nM
98

 N/A N/A
e 

4 RSV604 N EC50 = 500 nM
99

 PII Forward 

5 ALN-RSV01
 

N IC50 = 0.7 nM
100

 PII N/A
e
 

6 P siRNA
 

P IC50 = 18 nM
93

 N/A N/A
e
 

7 3 M2-1 Putative
94

 N/A Reverse 

8 Amantadine SH Putative
101

 N/A Reverse 

9 YM-53404 L EC50 = 200 nM
102

 N/A Forward 

10 T-118 F EC50 = 51 nM
103

 N/A N/A
e 

11 
Constrained 

peptide 
F IC50 = 36 nM

104
 N/A N/A

e 

12 
Palivizumab

 

(Synagis®) 
F Kd = 2.6 nM

105
 Approved

97
 N/A

e 

13 Motavizumab F Kd = 34.9 pM
105

 Rejected
106

 N/A
e 

14 JNJ-2408068 F EC50 = 0.16 nM
107

 N/A Forward 

15 TMC353121 F EC50 = 0.13 nM
108

 
Pre-clinical 

evaluation 
Forward

 

16 4 F IC50 = 0.11 µM
109

 N/A Forward 

17 5 F IC50 = 0.13 µM
109

 N/A Forward 

18 VP-14637 F EC50 = 1.4 nM
110

 Discontinued Forward 

19 BMS-433771 F EC50 = 20 nM
111

 Discontinued Forward 

a: EC50 / IC50: 50% effective (or inhibitory) concentration. The data was reported as it was found in the 

literature. For virus inhibition, no distinction should be made between the EC50 and IC50;  

b: see Section 2.3.6.2, c: DHODH = dihydroorotate dehydrogenase; d: CAD carbamoyl-phosphate 

synthetase 2, aspartate transcarbamylase, and dihydroorotase; e: no chemical genetics data for biologics; 

f: SAR = structure-activity relationship. 
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Figure 1.10. Small molecule anti-virals or inhibitors. Ribavirin, 1 and 2 are broad-

spectrum anti-virals. RSV604 targets the N protein, YM-53404 targets the L protein,  

3 and amantadine are putative inhibitors of the M2-1 and SH proteins, respectively. 

Biologics are not shown. 

 

 

Figure 1.11. Small molecule inhibitors of the hRSV fusion protein. Biologics are not 

shown.  
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1.3.2 FDA-approved therapies 

 

The treatments currently approved by the US Food and Drug Administration
97

 are 

ribavirin (Table 1.2, entry 1) and palivizumab (Table 1.2, entry 12). Ribavirin 

(developed by Valeant) is a purine analogue whose mode of action is not well-

defined
112

. It is a broad-spectrum anti-viral with susceptibility varying between different 

cell lines
112

. Additionally, it is not very efficient
113

 and it is a suspected teratogenic
10,91

. 

Palivizumab (developed by MedImmune) is a humanised monoclonal antibody which 

targets the F protein
10,91,114

. The next generation of humanised antibody (Motavizumab) 

has been discontinued by AstraZeneca / MedImmune at the end of 2010 after reaching 

phase III clinical trials
106

. 

 

1.3.3  High-throughput screening to discover new small molecules anti-virals 

1.3.3.1 Small molecules identified in phenotypic assays 

 

High-throughput screening has given rise to a variety of small-molecule inhibitors 

targeting either a host protein (broad-spectrum) or a viral protein. Recently, the 

discovery of two new small molecules inhibitors (from a commercially available 

screening collection by ChemBioNet) of the F protein has been reported by  

Lundin et al.
109

 (Table 1.2, entries 16 and 17). After screening a National Institute of 

Healths-wide screening collection, Bonavia et al. have reported the discovery of two 

new classes of compounds: the isoxazole-pyrazole 1 (Table 1.2, entry 2) and the proline 

derivative 2 (Table 1.2, entry 3). Both ligands targeted de novo pyrimidine biosynthesis 

pathways and showed nanomolar activity against different hRSV strains as well as HCV 

or HIV
98

. The isoxazole-pyrazole compound 1 targeted dihydroorotate dehydrogenase
98

 

(DHODH) and the proline derivative 2 targeted carbamoyl-phosphate synthetase 2, 

aspartate transcarbamylase, and dihydroorotase
98

 (also known as the CAD polypeptide).  

Both ligands displayed cytotoxicity in highly proliferating T and B lymphoid-derived 

cells which require more production of pyrimidine for proliferation
115

. The authors 

hypothesised that targeting cellular proteins / processes that have direct interactions 

with a viral protein might lead to less toxicity. VP-14367
110

 (Table 1.2, entry 18) and 

BMS-433771
111

 (Table 1.2, entry 19), both F protein inhibitors, have been discontinued 
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because resistant strains arose rapidly in the laboratory
97

. No data is currently available 

on the status of the polymerase inhibitor YM-53404 (Table 1.2, entry 9) developed by 

Sudo et al.
102

. 

 

1.3.3.2 Small molecules optimised using a medicinal chemistry approach 

 

TMC353121 (Table 1.2, entry 15), developed by Johnson & Johnson, is currently 

undergoing pre-clinical evaluations with Tibotec. TMC353121 targets the F 

protein
108,116

 and antiviral activity was observed in a mouse model
117

, as a prophylactic 

agent or even at 48 h post-infection
118

. TMC353121 was discovered following the 

optimisation of the pharmacokinetic properties
119

 (long tissue retention time) and 

activity
108

 of JNJ-2408068
107

 (Table 1.2, entry 14 and Figure 1.12.A) through iterative 

rounds of synthesis and assaying. JNJ-2408068 was the first such small molecule 

inhibitor reported in the literature
107

. It was discovered by looking at the  

structure-activity relationships (SARs) of a lead (not disclosed in the literature). In dog, 

monkey and rat, JNJ-2408068 had long tissue retention times, which was addressed by 

another round of SARs which gave rise to 6 (Figure 1.12.A) with a loss of activity
119

.  

A final round of SARs coupled to molecular modelling gave rise to TMC353121
108

 

(Figure 1.12.A).  

TMC353121 was successfully co-crystallised with the 6-helix bundle (1.5 Å)  

(Figure 1.12.B). Its mode of action was proposed to be through the stabilisation of a 

non-productive 6-helix bundle, rather than through the prevention of the formation of 

the 6-helix bundle. Both heptad repeats domains are required for TMC353121 binding 

to occur. TMC353121 makes key non-covalent interactions with the F protein  

(Figure 1.12.C). TMC353121 is involved in hydrogen-bond interactions between its OH 

group and pyridine ring and E487 (HR-C) through a water bridge, and in π-π stacking 

interactions between its pyridine ring and Y198 (HR-N) and F488 (HR-C). Mutations 

were observed in the F gene after exposure to the compound at ca. 1000 × EC50 for 

three passages
107

 and were mapped in the 486-489
108,116

 region of HR-C (e.g. D486N) 

as well as in the globular domain
116

 (S398L, K394R). Mutations in the globular 

domains have been linked with effects on the fusion kinetics
64

. 
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A. 

 

B. 

 

C. 

 

 

Figure 1.12 TMC353121, inhibitor of hRSV fusion protein. A. TMC353121 is the 

product of iterative rounds of synthesis and assaying from JNJ-2408068. EC50 values 

for anti-viral activity in a cell-based assay are given between brackets. B. The X-ray 

crystal structure of TMC353121 within its protein target (PDB accession number  

3KPE, 1.5 Å) reveals key non-covalent interactions. Picture generated with Discovery 

Studio (Accelrys). C. 2D representation of the key non-covalent interactions 

TMC353121 makes with its protein target. The amino acids involved in non-covalent 

interactions have been coloured following the colour Scheme previously used: green for 

HR-N and orange for HR-C.     

 

As can be seen from the discovery of TMC353121, the compounds to be taken 

forward for clinical trials are often quite different from the primary hits. In this case, the 

active core remained unchanged but appendages may be modified in order to determine 

structure-activity relationships and to optimise the compounds properties  

(e.g. physico-chemical, metabolism or bioavailability). This process is done by 

designing focused libraries which are libraries of compounds around active hits
120

 and a 

chemical approach is used for the systematic variation of the initial active compounds.  
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1.3.3.3 Small molecule undergoing clinical trials 

 

RSV604 (Table 1.2, entry 4), developed by Arrow Therapeutics (now AstraZeneca), 

is the most advanced small-molecule inhibitor project: it has passed phase II clinical 

trials. It was discovered from a high-throughput screen of an in-house library 

identifying a lead that was optimised through iterative rounds of synthesis and assaying. 

It targets the N protein
99

 and inhibition was observed in a human airway epithelial 

model
23

, even at 24 h post-infection. The exposure of the virus to increasing 

concentrations of RSV604 allowed the isolation of resistant strains after eight 

passages
99

. Sequencing revealed that resistance arose at the proposed N-polymerase 

binding site
54

 giving rise to the mutations N105D, K107N, I129L and L139I
99

. 

Although RSV604 has not been co-crystallised with its protein target
54

, the availability 

of the decameric N-RNA complex structure could suggest a proposed binding site for 

RSV604 (Figure 1.14). According to the protein structure, the N-RNA interaction is 

likely to be unaffected by RSV604. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14. Mutations arising from exposure to RSV604. The four residues 

(Asn105, Lys107, Ile129, Leu139, shown in yellow and stick representation) that have 

been observed in RSV604 resistant strains have been located at a proposed interaction 

site between the N-RNA complex and the polymerase. RNA is shown in red. Adapted 

from Tawar et al.
54

. Picture generated with Discovery Studio (Accelrys). 
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1.3.4 The use of biologics to tackle hRSV 

 

A variety of biologics have been discovered with activity against hRSV. As reported 

in Section 1.1.6.4, both hRSV F protein and HIV-1 gp41 proteins are class I fusion 

proteins. For HIV-1, a 36-amino-acid synthetic peptide (T-20, derived from the HR-C 

of gp41) has been developed
121,122

. A similar approach was used against hRSV, which 

led to the discovery of T-118 (Table 1.2, entry 10), a 35-amino-acid synthetic peptide 

corresponding to the HR-C of hRSV
103

. Such peptides are proposed to bind to the 

hydrophobic groove formed by two adjacent HR-N peptides, preventing the 

conformational rearrangement leading to the 6-helix bundle formation
121

.  

Later, Shepherd et al. developed a 13-amino-acid constrained peptide (Table 1.2, entry 

11)  based on the HR-C of hRSV
104

. Proof-of-concept studies have led to the discovery 

of double-stranded small interfering RNA (siRNA) targeting the N protein
100

 (Table 1.2, 

entry 5) and the P protein
93

 (Table 1.2, entry 6). Only the siRNA targeting the N protein 

(named ALN-RSV01 and developed by Alnylam Pharmaceuticals) has been taken into 

Phase II clinical trials
123

. 

 

1.3.5 Conclusions and future perspectives 

 

ALN-RSV01, RSV-604 and TMC353121 are the only anti-viral projects known to be 

undergoing clinical trials. The work by Bonavia et al.
98

 set methods for the discovery of 

new small molecules bioactives, while more mode of action studies are required for the 

work presented by Lundin et al.
109

. Additional small molecules have also been proposed 

as putative hRSV inhibitors. The classification of the SH protein as a viroporin suggests 

it may be targeted in the same way the hepatitis C virus p7 protein, using viroporin 

inhibitors such as amantadine
101

 (Table 1.2, entry 8). M2-1 contains a zinc-finger motif 

and dithiodipyridine 3 (Table 1.2, entry 7) has shown zinc-finger motif activity in 

retroviruses
94

.  
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There are a few explanations for the failure of hRSV treatments to date
91,93

: hRSV is 

prone to the development of mutations as its RNA replication occurs without 

polymerase proofreading; cellular proteins found in purified hRSV virions and the 

intricacy of hRSV make the development of vaccine difficult; the discovery of 

palivizumab has resulted in a decrease of the research effort throughout the world 

leaving the field without a potent small molecule antiviral or a vaccine. The patent for 

palivizumab is set to expire in 2015 but there are doubts whether or not this will make it 

affordable for the developing world. The earliest expectations for the availability of an 

anti-viral is 2015 and for a vaccine is 2020
95

. 
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1.4 Project outline 

 

The project described herein was concerned with the use of complementary 

approaches to drug discovery, namely high-throughput screening and structure-based 

drug design, in order to discover new small molecule modulators of human respiratory 

syncytial virus.  

Chapter 2 describes the development and optimisation of a phenotypic cell-based 

assay that satisfies recognised statistical parameters, for the identification of small 

molecules with anti-viral activity against hRSV. The use of fluorescence for the 

detection of virus inside cells conferred novelty to this assay. Additionally, it allowed 

for a quicker detection of anti-viral activity.   

Chapter 3 describes the use of structure-based drug design (virtual high-throughput 

screening) in order to identify potential inhibitors to the fusion protein of hRSV.  

A novel approach, using virtual libraries based on synthetically accessible compounds 

has been used. A virtual library of commercially available compounds was also used. 

Chapter 4 describes the preparation of the potential inhibitors discovered in Chapter 3.  

Chapter 5 describes the biological evaluation of proprietary compounds, using the 

robust screening assay reported in Chapter 2. The compounds prepared in Chapter 4 or 

identified from a commercial library and reported in Chapter 3 have also been evaluated 

for anti-viral activity against hRSV. 
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2 DEVELOPMENT OF A HIGH-THROUGHPUT SCREENING 

ASSAY 

 

This Chapter describes the development of a novel high-throughput screening assay 

for the detection of anti-viral activity against hRSV. The selection of the detection 

method is outlined in Section 2.2; the optimisation of the assay for the internal negative 

control and the internal positive control is discussed in Section 2.3. 

 

2.1 Introduction 

2.1.1 Virus-induced cytopathic effects 

 

The detection of anti-viral activity against hRSV has been achieved using HTS 

looking at the decrease in the display of virus-induced cytopathic effects  

(e.g. virus-induced cytotoxicity
99,107,124

 or virus-induced plaque formation
102,125-127

).  

In the case of the discovery of RSV604
99

 and JNJ-2408068
107

 anti-viral activity was 

defined as a decrease of the virus-induced cytotoxicity over the course of four to seven 

days
99,107

, using serial dilutions of compounds. However, the assays differed in the 

agent used for the evaluation of cell viability (XTT for RSV604, and MTT for  

JNJ-2408068). Mock- and virus-infected controls were also run.  

In living cells, tetrazolium salts such as MTT
128

 (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide) or XTT
129

 (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-

2H-tetrazolium-5-carboxyanilide, inner salt) are reduced to the corresponding formazan 

by mitochondria hydrogenase (Figure 2.1). 

Rasmussen et al.
124

 have commented on the instability of virus stocks and have 

proposed a small modification to the detection of hRSV cytopathic effects. They used 

frozen-infected cells and reported a coefficient of variation of 4% over a ten month 

period for the tissue culture infectious dose 50%. Cell viability was evaluated using a 

luminescent-based detection
130

.  
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Figure 2.1. Non-radioactive cytotoxicity assay. Top: MTT assay, bottom: XTT assay. 

Absorbance at 450 nm (XTT) or 570 nm (MTT) is measured to calculate cell viability. 

An extra solubilisation step with DMSO is required for the MTT assay. 

 

An alternative to the detection of virus-induced cytotoxicity is to look at  

virus-induced plaque formation. The discovery of YM-53403
102

 was done using a 

plaque reduction assay carried out three days post-infection in which the plaques were 

stained. Cannon
125

 has reported a rapid (24 or 48 h) microplaque assay based on the 

detection of plaque using indirect antibody detection of hRSV and relying on the 

enzymatic activity of enzymes such as horseradish peroxidase (HRP). However, the use 

of microplaque assays has not been reported in an anti-viral screening assay.  
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2.1.2 Determination of the mode of action 

 

In a phenotypic cell-based assay, the specific protein target is unknown. Therefore, it 

is crucial to determine the mode of action of a novel small molecule with anti-viral 

activity against hRSV. This can be done by isolating and characterising  

compound-resistant viruses. The development of drug resistance can be assayed through 

serial passages
131

 in the chosen cell line using increasing concentration (e.g. from EC50) 

of the inhibitor. The resistant strain can also be used during drug-free passages to 

observe if resistance is maintained after drug-free passages. Using the reverse 

transcription polymerase chain reaction from total RNA extraction from infected cells, it 

can be identified if the resistance arose from a mutation in the viral genes. Such 

mutation(s) can be confirmed as being responsible for resistance by reverse genetics
99

. 

The mutations would be introduced individually into the corresponding gene(s) of a 

plasmid expressing the viral anti-genome and the resulting recombinant virus exposed 

to the compounds to observe the effect on anti-viral activity. 

Further understanding into the specific mode of action of a compound can be gained 

by carrying out time course analyses of the antiviral effect
116,118

. The compound may 

also be tested against different strains of the same virus (within the A and B subgroups), 

and from the same family in order to demonstrate the specificity of the potential  

anti-viral or the general applicability of the strategy (e.g. broad-spectrum anti-viral).  

 

2.1.3 Towards a robust HTS assay 

 

In order to consider HTS as a means to discover new small molecules with anti-viral 

activity against hRSV, it is crucial to have a robust screening assay. The discovery of 

novel small molecules with anti-viral activity against hRSV relies on the reliable 

distinction between “hits” and inactive molecules using a HTS assay. This starts by the 

selection of a suitable detection method. Then it is important to establish the assay 

performance based on the selection of internal positive and internal negative controls, 

provided they can be tolerated (e.g. non-toxic) by the assay. 
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2.1.3.1 Overview of detection methods 

 

Most high-throughput screening assays involve isolated proteins in cell-free 

systems
82

. Such cell-free systems have also been reported in anti-viral research with the 

use of liposome to find inhibitors to purified proteins of the hepatitis C virus
101

. 

However, when the protein target is not known, phenotypic cell-based assays are 

required
99,107,132

.  

Once the assay strategy has been defined, including the format (normally multi-well 

plates for HTS), the detection method should be chosen with respect to availability and 

cost of reagents, dynamic range
§
, interference of compounds with the output signal and 

finally if it allows continuous or end-point detection
82,133

. Typical detection methods 

include absorbance
99,134

, chemiluminescence
135

 and fluorescence
133

. Absorbance and 

chemiluminescence both rely on the enzymatic activity of enzymes such as horseradish 

peroxidase (HRP) while fluorescence relies on the detection of a fluorophore such as 

fluorescein. Compounds activity is related to a decrease of the output signal.  

The selection of the detection method chosen for the present study will be discussed 

in Section 2.2.  

 

  

                                                 
§
 The dynamic range is defined as the ratio between the highest and lowest values that can be detected. 
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2.1.3.2 Validation of the assay performance 

 

A range of statistical parameters have been reported
82-84

 for the validation of an assay 

performed at a single concentration based on the results of both the internal positive and 

negative controls. They are: the coefficient of variation (assay variability)
82,84

,  

signal-to-noise (signal quality) and signal-to-background (dynamic range) ratios
82,84,136

, 

signal window (separation between the controls)
137

,  Z'-factor (assay quality
136

). When 

possible, the assay should be run on a subset of compounds representing the whole 

library
136

. In which case, a Z-factor
**

, still indicative of assay quality, is calculated. In 

practical terms, a Z'-factor > 0.5 allows for distinction between hits and control. A 

visual description of the parameters described herein is given in Figure 2.2. 

 

 

Figure 2.2. Normal distribution of the positive and negative controls. Idealised 

normal (Gaussian) distribution of the positive (+ve) and negative (−ve) controls. µ and 

σ refer to the mean and standard deviation, respectively. The data variability band 

corresponds to six times the mean of either sample. Adapted from Zhang et al.
136

.   

                                                 
**

 The Z-factor is calculated for the control displaying the desired effect and the compounds tested 

while the Z'-factor is calculated for the positive and negative controls 
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2.2 Selectivity and range of antibody 

 

In the present study, we have chosen to use antibodies to detect hRSV in human 

epithelial cells (HEp-2 or A549). The detection can be done directly, when the probe 

(HRP or fluorescence tag) is conjugated to the primary antibody, or indirectly, when the 

probe (HRP or fluorescence tag) is conjugated to the secondary antibody. First, we 

needed to make sure that the antibodies were selective for infected cells only  

(Section 2.2.1). Then we looked at two different detection methods: absorbance 

(Section 2.2.2) and fluorescence (Section 2.2.3). 

 

2.2.1  Western blot analysis 

 

The selectivity of the antibodies chosen to detect, directly or indirectly, hRSV in 

cells was analysed by Western blot, comparing mock- and hRSV- (A2 strain) infected 

samples. 

 

2.2.1.1 Direct and indirect antibody detection 

 

 Western blot analyses of mock- and hRSV- (A2 strain) infected samples were 

carried out using a range of antibodies raised against hRSV. Direct antibody detection 

(with a goat anti-RSV polyclonal primary antibody conjugated to HRP) and indirect 

antibody detection (with a goat anti-RSV polyclonal primary antibody and a rabbit  

anti-goat polyclonal secondary antibody conjugated to HRP) were investigated  

(Figure 2.3). 
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A.                                                             B. 

 

 

 

 

 

 

 

Figure 2.3. Determination of the selectivity of anti-hRSV antibodies using Western 

blot analyses. The indirect (A) and direct (B) detection methods were compared for 

mock-infected (M) and A2-infected (I) A549 and HEp-2 cell lysates. The films are 

slightly overexposed in order to ensure there was no background binding to the mock-

infected samples. The antibodies were provided by Abcam. 

 

According to the Western blot analyses presented above, both the indirect and direct 

methods could be used in an enzyme-linked immunosorbent assay (ELISA) as no 

background binding could be observed in the mock-infected samples. In the case of a 

fluorescence-based assay, both the direct and indirect detection methods were available. 

However, only the indirect virus detection was selected for sensitivity reasons: the 

FITC-conjugated secondary antibody, which is polyclonal, will amplify the signal as 

multiple secondary antibodies will be able to bind to the primary antibody. 

 

2.2.1.2 Comparison of anti-RSV primary antibodies from different manufacturers 

  

Primary antibodies raised against hRSV isolates were available from two different 

companies: Abcam and AbD Serotec. The Abcam antibody was ca. ten times more 

expensive than the AbD Serotec one. It was important to compare the detection quality 

offered by the two antibodies. Western blot analyses were carried out using both 

antibodies in an indirect detection setting (Figure 2.4). 
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A.                                       B. 

 

 

 

 

 

 

 

 

Figure 2.4. Comparison of anti-hRSV antibodies from different suppliers using 

Western blot analyses. The indirect detection method was tested using primary 

antibody manufactured by Abcam (A) and AbD Serotec (B) on mock-infected (M) and 

A2-infected (I) A549 and HEp-2 cell lysates. The two films have been aligned in order 

to match the molecular weight markers. 

 

According to the Western blot analyses presented above, neither primary antibody 

gave rise to background detection in the mock-infected samples. The lower signal when 

the primary antibody from AbD Serotec was used is explained by the lower stock 

antibody concentration provided by the manufacturer (1 mg/mL as opposed to 4 mg/mL 

for Abcam). Also, the concentrations were not optimised for Western blot analyses as 

the experiment was carried out to assess the selectivity of the different antibodies. 

 

2.2.1.3 Conclusion of the Western blot analyses 

 

From the Western blot analyses, it was clear that all the antibodies tested were 

selective for the A2 strain of hRSV without any background binding detected on the 

mock-infected samples (all the membranes were over-exposed in the present study).  

The signal of lower intensity for the direct detection is probably due to the fact that 

there is no secondary antibody to amplify the signal, combined to the gradient in protein 

expression. Because these antibodies were raised against hRSV isolates, and not 

individual proteins, the bands were not labelled according to the molecular weights. 

Rather, the expected molecular weights of the eleven proteins are summarised in  

Table 2.1. 
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Table 2.1: The eleven viral proteins of hRSV and their expected molecular weights. 

Protein 
Molecular 

weight (kDa) 
Protein 

Molecular 

weight (kDa) 

NS1 15.6 G 32.6 

NS2 14.7 F 63.5 

N 43.5 M2-1 22.2 

P 27.1 M2-2 10.7 

M 28.7 L 250.4 

SH 7.5   

 

Western blot analyses revealed that both direct and indirect detection methods could 

be suitable for ELISA or fluorescent-based assays. The HEp-2 cell line was preferred to 

A549 cells due to easier tissue culture handling.  

With the selectivity of a range of anti-hRSV antibodies now established, we started 

to analyse which detection method (absorbance or fluorescence) would be more suitable 

for the development of a new HTS assay for the detection of anti-viral activity against 

hRSV. 

 

2.2.2  Enzyme-linked immunosorbent assay 

 

For a direct ELISA detection, the manufacturer (Abcam) recommended using 

dilution ratios ranging from 1:200 to 1:1000. Unfortunately, the background for  

mock-infected cells was varying from medium (absorbance at 450 nm around 0.250) to 

high (absorbance at 450 nm around 0.7). Additionally, Canon
125

 reported high 

background on virus-infected samples when the inocula had not been removed.  

At this point, the decision was made to switch from ELISA assay to a cell-based 

fluorescence assay.  
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2.2.3  Fluorescence-based assay 

2.2.3.1 Visualisation of hRSV into cells 

 

Before any optimisation of the cell-based fluorescence assay could be done, it was 

important to verify that infection could be visualised in cells.  

The A2 strain of hRSV was propagated in HEp-2 cells and infectivity of the stock 

was verified using confocal microscopy on fixed mock- and A2-infected HEp-2 cells 

(Figure 2.5). The comparison of mock- and A2-infected confocal images also confirmed 

the selectivity of the fluorescein isothiocyanate (FITC) conjugated primary antibody 

raised against hRSV towards infected cells.  

 

 

 

 

 

 

Figure 2.5. Confocal imaging of a freshly grown virus stock. Merged confocal 

images (63× lens) of mock- and A2-infected HEp-2 cells. The nuclei were stained with 

DAPI (blue) and hRSV was detected by indirect antibody detection (green). Cells were 

infected at a M.O.I. of 3. Scale bars are 10 µm. Images kindly provided by Diane 

Munday, a PhD student in the Hiscox–Barr group. 
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2.2.3.2 Working dilution ratios for the chosen antibodies 

 

The working dilution ratios for the antibody manufactured by AbD Serotec were 

analysed in order to attain a signal-to-background ratio >2. In the laboratory, the 

antibodies manufactured by Abcam would routinely be used at the following dilution 

ratios for confocal imaging: 1:50 (direct antibody detection) and 1:100 (indirect 

antibody detection). Such dilution would not have been sustainable with regards to cost 

management in a high-throughput screening campaign. Therefore, a range of dilution 

ratios were studied for the indirect detection of hRSV using the primary antibody 

manufactured by AbD Serotec and the secondary antibody conjugated to FITC.  

The results were compared to the working dilution ratios of the Abcam antibodies  

(primary: 1:200, secondary 1:200) and the appropriate controls (Figure 2.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Working dilution ratios for the primary antibody manufactured by 

AbD Serotec. The effects of multiple dilution ratios of the primary antibody from AbD 

Serotec (1:20 to 1:1000) and the secondary antibody conjugated to FITC (1:100 to 

1:500) on the fluorescence signal in relative fluorescence units (R.F.U.) were 

investigated. The results were compared to the appropriate mock- (Abcam and AbD 

Serotec) and A2-infected (Abcam) HEp-2 controls. The error bars refer to the standard 

deviation of two replicates. Dilution ratios that afforded a 2-fold signal-to-background 

(S:B) ratio are marked with a star (*). 
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According to the above bar chart, the primary/secondary antibody dilution ratios that 

afforded a 2-fold signal-to-background ratio (given in brackets) were: 1:20/1:100 (ca. 

3.3), 1:20/1:200 (ca. 2.2), 1:50/1:100 (ca. 2.4), 1:50/1:200 (ca. 2.2). Cost-wise, the only 

sustainable dilution ratios would be 1:100/1:200. Under the present conditions  

(40 μL and 2 hr incubation at 37 °C), the signal-to-background ratio was ca. 1.5. The 

signal-to-background ratio was increased to ca. 2.5 by increasing the antibody volumes 

from 40 µL to 50 µL and incubating the primary antibody overnight at 4 °C. 
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2.3 Optimisation of a fluorescence-based assay for hRSV growth 

2.3.1  The different steps composing the assay 

 

The library of compounds was added by a robot, which operates under non-sterile 

conditions. Therefore, the compounds, at the chosen assay concentration, had to be 

added first (25 µL), followed by the addition of cells (50 µL) and of hRSV (25 µL)  

24 hrs after adding the cells. 24 hrs post-infection, the plate was worked-up and the raw 

results were obtained using a fluorescence plate reader. Finally, the data was processed 

and analysed thoroughly using suitable statistical tools (Figure 2.7). 

 

Figure 2.7. High-throughput screening assay setup. Day 1: HEp-2 cells are seeded 

into a 96-well plate containing compounds (columns 2 to 11) and appropriate controls 

(columns 1 and 12). Day 2: hRSV (A2 strain) is added to the plate. Day 3: the plate is 

fixed, treated with antibodies, and read on a plate reader. The data are then processed 

and statistical parameters are analysed. Statistics pictures are taken from Inglese et al.
83

. 
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2.3.2  Signal variation across the plate 

 

In a 96-well plate, reagents are added sequentially from column 1 to column 12. 

Therefore, it was important to investigate whether or not the fluorescence output varies 

across the plate in order to validate the assay. Mock-infected controls were added in 

column 1. Column 12 contained empty wells and was not incubated with any 

antibodies. The mean of the fluorescence intensity of column 10 and 11 is slightly lower 

than that of columns 2 to 9. However, it remains within standard error (Figure 2.8). 

Therefore, there is no significant signal variation across the plate. Additionally, the 

results show that it is easy to distinguish between infected wells and mock-infected 

wells.  

 

 

Figure 2.8 Signal variation across the plate. Mock and A2 refer to mock-infected and 

A2-infected HEp-2 cells, respectively. Numbers 1 to 11 refer to the column position in a 

96-well plate. Mock-infected samples were in column 1, A2-infected samples were in 

columns 2 to 11, and column 12 was left empty. The error bars refer to the standard 

deviation of eight replicates. 
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2.3.3  Effect of the multiplicity of infection on the fluorescence signal 

 

In order to attain an acceptable signal-to-background ratio, it was important to decide 

on the average number of infected particles per cell to be selected for the HTS assay. 

This number is given by the multiplicity of infection (M.O.I.) and we looked at whether 

or not the M.O.I. had an influence on the fluorescence output. For this, a total of ten 

different M.O.I. values, ranging from 17 to 1.7 × 10
-4

, were assayed and the effect on 

the signal-to-background (> 2) ratios were compared (Figure 2.9). The fact that the 

signal increases upon dilution of the virus stock (up to a M.O.I. of 0.34) suggested that 

at a high M.O.I. (average of 17 virus particle per cell), the virus cytopathic effects were 

strong and were preventing the signal from being maximum. A lower M.O.I. (ca. 0.3) 

reduced the cytopathic effects associated with hRSV infection and the signal was 

maximum. In order to ensure a signal-to-background ≥ 2 and reduced viral cytopathic 

effects, the M.O.I. chosen for the HTS assay was between 0.5 and 1. 

 

 

Figure 2.9. Effect of the multiplicity of infection on the normalised signal. Mock 

refers to mock-infected HEp-2 cells. M.O.I. values are for A2-infected HEp-2 cells and 

range from 17 to 1.7 × 10
-4

. The serial dilution of virus added in columns. The results 

are expressed as the ratio to A2-infected cells at an M.O.I. of 17.  

S:B = signal-to-background. The error bars refer to the standard deviation of three 

replicates.  
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2.3.4 Study of the negative control (DMSO) effects 

 

DMSO was chosen as the internal negative control for the HTS assay. In Leeds and 

as is common practice throughout the pharmaceutical industry
138

, compounds are stored 

as 10 mM solution in DMSO. It was therefore important to establish the tolerance 

(cytotoxicity, Section 2.3.4.1 and influence on the fluorescence signal, Section 2.3.4.2) 

of the assay to DMSO.  

 

2.3.4.1 Cytotoxicity of DMSO 

 

The assay conditions (Section 2.3.1) imposed a 1:4 dilution of the DMSO 

concentration, meaning that the highest DMSO concentration that could be tested was 

25%. A total of eight DMSO concentrations were assayed for cytotoxicity, ranging from 

25% to 0.25%. The experiment was run on two different 96-well plates, each 

concentration in quadruplicate, on two different days and the results were combined 

(Figure 2.10). 

Analyses of the results revealed that any concentrations above 1% DMSO had an 

effect on the mitochondrial dehydrogenase activity (which correlates to cell viability
128

) 

with  ≤ 40% of cell viability. Over the two experiments, it appeared that only a final 

concentration of 0.25% DMSO afforded total cell viability.  
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Figure 2.10. Effects of eight DMSO concentrations on cell viability. Cytotoxicity 

refers to the ratio of cells treated with DMSO to the cell control (i.e. 1.0 is not 

cytotoxic). Cell control refers to HEp-2 cells treated with growth media only. 

Absorbance was read at 570 nm. The error bars refer to the standard deviation of eight 

replicates (four on day 1, four on day 2). 

 

The selection of 0.25% DMSO imposed that the maximum assay concentration for a 

given library compound would be 25 μM (from a 10 mM stock in 100% DMSO).  

In order to validate the use of 0.25% of DMSO as the final internal negative control 

assay concentration, it was critical to look at the potential effects of DMSO on the 

fluorescence signal. 

 

2.3.4.2 Comparison of the fluorescence signal with and without DMSO 

 

The comparison of the fluorescence output in mock- and A2-infected HEp-2 cells 

treated with either media only or with a final concentration of 0.25% was carried out 

(Figure 2.11). This data validated the use of 0.25% of DMSO as the final internal 

negative control assay concentration as the differences observed between the datasets 

are within standard errors. 
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Figure 2.11 Effects of DMSO on the fluorescence output. Mock and A2 refers to 

mock- and A2-infected HEp-2 cells, respectively. The other two bars are the 

comparison of infection with the A2 strain without (media) and with 0.25% DMSO 

(DMSO). The error bars refer to the standard deviation of three replicates. 

 

With the DMSO tolerance established, the assay response had to be tested with the 

internal positive and negative controls and attention should be paid to variability and 

reproducibility of the results
82,83

. 
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2.3.5  Study of the positive control (Ribavirin) effects 

 

Ribavirin is a known hRSV anti-viral (Section 1.3.2) and was chosen as the internal 

positive control for the HTS assay. Using Ribavirin, we established the robustness of 

the assay (Section 2.3.5.1). Because our assay conditions were different to what had 

previously been reported in the literature, it was crucial to estimate the EC50 of 

Ribavirin and the 50% cytotoxic concentration (CC50) under the new conditions 

(Section 2.3.5.2). The choice of the Ribavirin assay concentration will be discussed in 

Section 2.3.5.3. Finally, we looked at the influence of the M.O.I. on the EC50 of 

Ribavirin (Section 2.3.5.4). 

 

2.3.5.1 Establishing the robustness of the assay (between and within plates) 

 

In order to assess the variability within and between plates, on three different days 

and at different cell passages, five plates were seeded (two on day 1, two on day 2 and 

one on day 3). A total of sixteen different Ribavirin concentrations, ranging from  

2.5 mM to 10 nM, were assayed in a single 96-well plate with each concentration being 

assayed in triplicate (see Section 7.1 for the layout of the 96-well plate). 

The following statistical parameters (Section 2.1.4 and Appendix 1) were looked at  

i) the coefficient of variation for each set of controls and Ribavirin dilutions,  

ii) the signal window, and iii) the Z'-factor. 

As can be seen in Appendix 9
††

, displaying the normalised values of each plate 

(labelled 1 to 5), the coefficient of variation (< 20% or < σmax signal when > 20%), the 

signal window (> 2) and the Z'-factor (> 0.5) criteria were all satisfied. Additionally, the 

remainder of the statistical parameters presented in Appendix 9 were also satisfied: 

signal-to-noise ratio (strong signal), signal-to-background (> 2). The intra-plate 

variability was therefore minimal, while the signal strength, the dynamic range and the 

separation between the controls were optimal. 

 

 

                                                 
††

 Curve fitting for each plate is shown in Appendices 2 – 6. 
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There were two ways of looking at the variability between plates: either by 

combining the normalised values obtained in each plate and determine whether or not 

the statistical parameters were satisfied (Appendix 9 – overall), or by looking at plate 1 

and plate 3 as being two runs for one compound and plate 2 and 4 as being two runs for 

another compound and looking at the minimum significant ratio
139

 even though the two 

compounds are the same (Table 2.2).  

For the former, every time the coefficient of variation is above 20%, due to low mean 

values, the standard deviation was smaller than that of the maximum signal, hence 

satisfying this criterion. Additionally, the signal window was > 2 (11.2). The Z'-factor, 

calculated for the positive (A2-infected) and negative (mock-infected) signals was > 0.5 

(0.7). After combining the data for the five plates, the evolution of the Z'-factor with 

different concentrations of Ribavirin was also observed. This revealed that the cut-off 

concentration for a “good assay”
136

 was 50 µM (25µM for plate 2, 40 µM for plate 3 

and 4). For the latter, the data required for the minimum significant ratio  

(MSR, Appendix 1) and limits of agreements (LsA) calculations are summarised in 

Table 2.2. 

 

Table 2.2: Determination of the minimum significant ratio and limits of 

agreements between two sets of two runs for Ribavirin 

 

Both the MSR (1.04) and the limits of agreement [1.00, 1.10] are satisfied. This 

concludes that the assay is reproducible. 

 

  

Plate # Log(EC50) Difference σd µd MSR LsA 

1 −4.51 

0.03 

0.01 0.02 1.04 

MR = 1.05 

MR/MSR = 1.00 

MR×MSR = 1.10 

3 −4.48 

2 −4.51 

0.01 

4 −4.50 
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2.3.5.2 Antiviral effect, cytotoxicity of Ribavirin 

 

In order to look at the overall antiviral effect of Ribavirin, the data for the five plates 

used to validate the assay were combined (Figure 2.12). Additionally, the effect of 

Ribavirin on the fluorescence inside the wells was compared to the untreated A2- and 

mock-infected samples. In order to assess the cytotoxicity of Ribavirin, four plates were 

also seeded on four different days using cells at four different passages. Because no 

virus was used in the cytotoxicity assay, the virus control wells (Section 7, Figure 7.1) 

were replaced by cell controls. The results of the four experiments were combined and 

are shown in Figure 2.12. 

 

 

Figure 2.12 Overall antiviral effect of Ribavirin. The anti-viral dose-response to 

Ribavirin in HEp-2 cells describes a sigmoidal curve (χ
2
/degree of freedom: 0.23,  

R
2
: 0.998, A1: 0.02±0.01, A2: 1, log(EC50): −4.50±0.02, p: −1.93±0.17). The results are 

expressed as the ratio to untreated A2-infected cells at an M.O.I. of 0.85. Microscope 

images at five different concentrations (2.5 mM, 60 µM, 40 µM, 25 µM, 15 µM,  

10 nM) were compared to the A2-infected and mock-infected cell controls to observe 

variation in fluorescence intensity (magnification: 10×). The error bars refer to the 

standard deviation of fifteen replicates (three per plate) An additional y-axis has been 

added to show the cytotoxic dose-response of HEp-2 cells to Ribavirin. The results are 

expressed as the ratio of the Ribavirin-exposed cells to the unexposed cells against 

logarithm to base 10 of the Ribavirin concentrations (in molar). Absorbance was read at 

570 nm. The error bars refer to the standard deviation of twelve replicates (three on days 

1, 2, 3, and 4). 
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For this particular set of data, the EC50 was calculated to be 31.4 µM  

(Appendix 9 – overall). In the literature, for the A2 strain, it is possible to find a range 

of values for the reported EC50 of Ribavirin: 19 µM
99

, 23 µM
102

 (where the assay used 

are plaque reduction assay: lower multiplicity of infection and the cells are grown over 

the course of a few days), 36.7±1.8 µM
124

 (where frozen infected stocks were used and 

the endpoint was the observation of cytopathic effects), and ca. 41 µM
140

 (where all the 

components were added at the same time).  

Regarding the cytotoxicity curve, it was only plotted as scattered points for the ease 

of visualisation. Further data points above 2.5 mM are required to describe the curve as 

fully sigmoidal. However, a CC50  was calculated at 40.6 µM, diverging from previous 

reports in the literature, assuming they are referring to the final assay concentration: ca. 

2 mM
140

, > 500 µM
141

, or 26 µM
142

. Overall, it is difficult to compare our results to 

those from the literature as it is unclear whether our assay conditions are the same 

(compounds added before or after the cells, incubation period in the presence of 

Ribavirin). 

 

2.3.5.3 Normal distribution of the data 

 

Another way to look at the above results is by plotting the normalised Gaussian 

function (normal distribution) for each of the Ribavirin concentrations along with the 

A2-infected control (Appendix 10).  

Because the cut-off concentration for a “good assay”
136

 was 50 µM, the size of the 

data variation band (width of the Gaussian) was only calculated for concentrations 

above 50 µM. The widths of the distribution are thin for the following concentrations: 

2.5 mM, 1 mM, 500 µM, and 250 µM. The widths of distribution are adequate to detect 

the hits for the following concentrations: 100 µM and 50 µM. The distribution width 

appeared wider for samples with a standard deviation greater than 0.06, especially the 

A2-infected control (σ = 0.061) and 50 µM of Ribavirin (σ = 0.063). The separation 

band for the A2-infected control is 0.8 when compared to the ideal sample with 

complete reduction of the fluorescence signal (µ = 0) without any variation (σ = 0),  

and 0.75 when compared to the 2.5 mM, 1 mM, 500 µM, and 250 µM Ribavirin 

samples (Appendix 10). The separation band decreases to values below 0.7 for 

concentrations of 100 µM and less. 
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The concentration of Ribavirin as the internal positive control was determined 

according to three criteria: i) a large separation band, i.e. concentration above 100 µM, 

ii) an acceptable Z'-factor, i.e. concentrations of 50 µM and above, iii) a complete 

reduction of the signal. An assay concentration of 2.5 mM was chosen, despite its 

toxicity to cells (only around 40% cell viability), in order to simulate compounds 

showing activity only because they are toxic to the cells (i.e. false positives). 

 

2.3.5.4 Effects of the multiplicity of infection on Ribavirin 

 

Further to the study on the effect of the M.O.I. on the fluorescence output in Section 

2.3.3, the effects of the M.O.I on the EC50 were also investigated (Table 2.3). 

 

Table 2.3: Evolution of the EC50 of Ribavirin with varying M.O.I. 

M.O.I. EC50 

17 > 250 µM 

2 > 500 µM 

0.85 ca. 31.4 µM
a
 

0.5 14.9 µM 

0.25 10.3 µM 

0.1 8.5 µM 

a: EC50 for a M.O.I. of 0.85 was combined over the results obtained for five plates. 

 

The decrease in the effect of Ribavirin between an M.O.I. of 17 and 2 might also be 

explained by the cytopathic effects of hRSV at a high M.O.I., therefore reducing the 

effects of Ribavirin. As soon as the M.O.I. becomes lower than 1, i.e. less than one viral 

particle in each cell (on average), the EC50 reached the micro-molar range. 

The final step was to assess the robustness of the assay by simulating how the robot 

was going to make the assay dilution of the library using a Ribavirin plate. 
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2.3.6 Robustness of the assay upon using a liquid-handling robot 

 

A Hamilton liquid-handling robot was chosen to rapidly add the compounds to 

screen to assay plates, at the right concentration: 100 µM for a final assay concentration 

of 25 µM, after the 1:4 dilution imposed by the assay configuration (from a 10 mM 

solution in 100% DMSO). Therefore, it was crucial to determine the robustness of the 

assay when the robot was used. 

The 1:100 dilution from the original stock is prepared in two steps by a  

liquid-handling robot: i) 1:20 followed by ii) 1:5. In order to simulate that process, a 

master plate of Ribavirin concentrations in 100% DMSO was prepared (see Section 

7.12 for the layout of the 96-well plate).  

One plate was prepared by the liquid-handling robot and one plate was prepared by 

hand. The two plates were then incubated, infected (M.O.I. of 0.5) and analysed in 

parallel. The resulting dose-response curves are presented in Figure 2.13 and 

Appendices 7 and 8. 
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Figure 2.13 Comparison of Ribavirin EC50 when the plate is prepared by hand and 

by the Hamilton robot.  The dose-response curve to Ribavirin in HEp-2 cells describes 

a sigmoidal curve. The results are expressed as the ratio to untreated A2-infected cells at 

an M.O.I. of 0.5. The error bars refer to the standard deviation of three replicates.  

A2 was set at 1 in the fitting function. In the case of the sigmoid for the robot curve, if 

this parameter is set at 0.93, the EC50 becomes 6.1 µM. Hamilton robot: Z' = 0.74, 

signal-to-background = 2.1; hand: Z' = 0.83, signal-to-background = 2.2. 

 

When the Ribavirin concentrations were prepared using the liquid handling robot, the 

EC50 was calculated as 5.1 µM. The EC50 observed rose to 14.9 µM when the Ribavirin 

dilutions were prepared by hand. The potencies are different but remain in the same 

micromolar range. The difference can arise from multiple causes, which include 

inaccuracies when pipetting small volumes, working with low masses when preparing 

the Ribavirin stock, or variations in the titre of the virus stock
124

. 

The statistics of the two plates were then looked at (Appendix 9 – hand, robot):  

for the robot plate, two concentrations (25 and 20 µM) did not satisfy the coefficient of 

variation criteria but both Z'-factors were greater than 0.5. The plate prepared by hand 

had all its coefficients of variation below 20%, even for those concentrations with a low 

mean. For the robot plate, the cut-off concentration for a good assay was 10 µM  

(as opposed to 20 µM when prepared by hand). In order to validate the robustness of the 

assay, the raw data for the robot plate were analysed (Table 2.4). 
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Table 2.4: Raw data for the concentrations of Ribavirin that did not satisfy the 

coefficient of variation (%) when it was calculated on the normalised data (25 and 

20 µM). 

 25 µM 20 µM 

Fluorescence 

intensity 

(R.F.U.) 

24418 24500 

22488 23242 

24047 23845 

20904 20551 

µ 23651 23862 

σ 1024 629 

CV
a
 (%) 4.3 2.6 

a: CV = coefficient of variation 

 

The fact that the raw data satisfied the coefficient of variation criteria validated the 

study with respect to the coefficient of variation. On the normalised Gaussian function 

(normal distribution) for each of the Ribavirin concentrations along with the  

A2-infected control (Appendices 11 and 12), the widths of the distribution are thin, and 

probably ideal for 40 µM and above. The separation band is around 0.7 only for the 

following concentrations: 2.5 mM, 1 mM, 500 µM, 250 µM, 100 µM, and 60 µM 

(Appendix 12). Taken together, these results confirm the robustness of the assay.  
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2.3.7 Further assay validation with a known specific sub-nanomolar inhibitor 

 

As outlined in Section 1.4, the current project is also concerned with the discovery of 

a potential new fusion inhibitor. Therefore, it was critical to find out whether or not 

known fusion inhibitors could be detected using the assay described herein. 

Additionally, different assay conditions were tested in order to target virus-induced 

fusion more specifically. 

 

2.3.7.1 The choice of a known specific inhibitor 

 

The compound JNJ-2408068 has previously been reported
107

 with sub-nanomolar 

activity (EC50 = 0.16 nM) against hRSV, and its synthesis has also been described in the 

literature
143

. For ease of synthesis and because the difference in anti-viral activity was 

marginal, JNJ-4749914 (EC50 = 0.40 nM), a close analogue of JNJ-2408068,  

was prepared (Figure 2.14).  

 

 

Figure 2.14. Chemical representations of JNJ-240868 and JNJ-4749914. The 

additional methyl group would lead to the formation of regioisomers upon introducing 

the hydroxypyridine moiety. EC50 values for anti-viral activity in a cell-based assay are 

given between brackets. 
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2.3.7.2 Synthesis of JNJ-4749914 

 

JNJ-4749914 was prepared in five steps from commercially available  

2-chlorobenzimidazole 7 following a literature route reported by Bonfanti et al.
108,119,143

 

(Scheme 2.1). The synthesis started with the melting reaction of 2-chlorobenzimidazole 

7 with ethyl-4-amino-1-piperidine 8 to give the benzimidazole 9 in 38% yield. 

Subsequent treatment of 9 with the chloride 10
‡‡

 and potassium carbonate yielded the 

N-alkylated benzimidazole 11 in 18% yield. Boc deprotection, by treatment with 

hydrobromic acid, furnished the secondary amine 12 in 80% yield. Nucleophilic 

substitution of tert-butyl N-(2-bromoethyl)carbamate 13 gave the carbamate 14. Acid-

mediated Boc deprotection of 14 by treatment with hydrochloric acid afforded  

JNJ-4749914 (15) in 0.7% overall yield. 

 

 

Scheme 2.1. Preparation of JNJ-4749914 from 2-chlorobenzimidazole 7. 

 

JNJ-4749914 was subsequently used for the validation of the cell-based fluorescence 

assay developed with Ribavirin. 

                                                 
‡‡

 The chloride 10 was prepared in a single step from commercially available 2,6-lutidine-α2,3-diol 

144 Gong, Y. & Kato, K. Facile synthesis of o- and p-(1-trifluoromethyl)-alkylated phenols via 

generation and reaction of quinone methides. Synlett. 2002, 431-434 (2002). 
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2.3.7.3 Biological evaluation of JNJ-4749914 

 

Following the verification of the assay suitability using the broad-spectrum anti-viral 

Ribavirin, the assay was tested on the known inhibitor JNJ-4749914. A total of twenty 

different JNJ-4749914 concentrations, ranging from 25 μM to 0.022 pM, were assayed 

in a single 96-well plate with each concentration being assayed in quadruplicates 

(Figure 2.15). 

 

 Figure 2.15. Overall antiviral effect of JNJ-4749914. The dose-response to  

JNJ-4749914 in HEp-2 cells describes a sigmoidal curve, log(EC50): −8.40±0.09,  

p: −0.90±0.15). The results are expressed as the ratio to untreated A2-infected cells at 

an M.O.I. of 0.5. Microscope images at five different concentrations (25 µM, 11 nM, 

1.3 nM, 0.4 nM, 0.022 pM) were compared to the A2- and mock-infected cell controls 

and 2.5 mM Ribavirin control to observe variation in fluorescence intensity 

(magnification: 10×). An additional y-axis has been added to show the cytotoxic  

dose-response of HEp-2 cells to Ribavirin. The results are expressed as the ratio of the 

JNJ-4749914-exposed cells to the unexposed cells against logarithm to base 10 of the 

JNJ-4749914 concentrations (in molar). Absorbance was read at 570 nm. The error bars 

refer to the standard deviation of four replicates. 
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For this particular set of data, the Z'-factor was 0.52 (> 0.5) and the EC50 was 

calculated to be 4 nM. This compares to a reported EC50 of 0.4 nM for a different assay 

of its activity
107

. The CC50 is > 25 μM. Although our EC50 is ten times higher than the 

reported value, it remains in the nanomolar range. In the literature, the sub-nanomolar 

activity of JNJ-4749914 was calculated looking at the decrease in the display of  

virus-induced cytopathic effects after seven days.  JNJ-2408068 was also assayed by 

Douglas et al.
64

, looking at a reduction of the cytopathic effect four days post-infection, 

as opposed to seven days
107,108,119

. They calculated an EC50 of 2.1 nM . This is to 

compare to an EC50 of 0.14 nM reported by Andries et al.
107

 or 0.25 nM reported by 

Bonfanti et al.
119

. Here we are looking at a decrease in the number of virus particles 

inside cells upon exposure to JNJ-4749914 for 24 hours. 

 

2.3.7.4 Alternative assay conditions to look at fusion directly 

 

In order to make the assay more specific towards the detection of fusion inhibitors, 

three alternative conditions were investigated (Figures 2.16 to 2.18). In the first one, the 

M.O.I. was decreased to 0.05. In the second one, the compounds were added on the 

second day, immediately before the infection step. In the third one, the compounds were 

added on the second day, immediately before the infection, and after one hour 

incubation, the compound–virus solution was replaced by fresh media. The latter two 

conditions were designed to reduce any potential cytotoxicity as the time the cells have 

been exposed to compounds has been halved. 
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A.  

B.  

 

Figure 2.16. JNJ-4749914 assayed with a M.O.I. of 0.05. A. Assay setup. B. The 

dose-response to JNJ-4749914 in HEp-2 cells describes a sigmoidal curve,  

log(EC50): −8.08. The results are expressed as the ratio to untreated A2-infected cells at 

an M.O.I. of 0.05. Microscope images at five different concentrations (25 µM, 34 nM, 

1.3 nM, 40 pM, 0.022 pM) were compared to the A2- and mock-infected cell controls 

and 2.5 mM Ribavirin control to observe variation in fluorescence intensity 

(magnification: 10×). An additional y-axis has been added to show the cytotoxic  

dose-response of HEp-2 cells to Ribavirin. The results are expressed as the ratio of the  

JNJ-4749914-exposed cells to the unexposed cells against logarithm to base 10 of the 

JNJ-4749914 concentrations (in molar). Absorbance was read at 570 nm. The error bars 

refer to the standard deviation of four replicates. 

 

For this particular set of data, the Z'-factor was < 0. The explanation for the quality 

of the assay lies with a small proportion of cells that had been infected as a consequence 

of the low M.O.I.. The EC50 was calculated to be 8.2 nM. However, the Z'-factor 

suggests that the assay setup is not suitable. 
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A. 

 

B.  

 

Figure 2.17. JNJ-4749914 assayed with addition immediately before infection on 

day 2. A. Assay setup. B. The dose-response to JNJ-4749914 in HEp-2 cells describes a 

sigmoidal curve, log(EC50): −8.63. The results are expressed as the ratio to untreated 

A2-infected cells at an M.O.I. of 0.5. Microscope images at five different concentrations 

(25 µM, 3.8 nM, 1.3 nM, 0.4 nM, 0.022 pM) were compared to the A2- and  

mock-infected cell controls and 2.5 mM Ribavirin control to observe variation in 

fluorescence intensity (magnification: 10×). An additional y-axis has been added to 

show the cytotoxic dose-response of HEp-2 cells to Ribavirin. The results are expressed 

as the ratio of the JNJ-4749914-exposed cells to the unexposed cells against logarithm 

to base 10 of the JNJ-4749914 concentrations (in molar). Absorbance was read at  

570 nm. The error bars refer to the standard deviation of four replicates. 

 

For this particular set of data, the Z'-factor was 0.52 (> 0.5) and the EC50 was 

calculated to be 2.4 nM (higher than the reported 0.4 nM
107

). Combined with a  

Z'-factor > 0.5, these results suggest that the assay condition are suitable. 
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A. 

B. 

 

Figure 2.18. JNJ-4749914 assayed with addition imediately before infection on  

day 2 and subsequent PBS wash. A. Assay setup. B. The dose-response to  

JNJ-4749914 in HEp-2 cells describes a sigmoidal curve, log(EC50): −6.82. The results 

are expressed as the ratio to untreated A2-infected cells at an M.O.I. of 0.5. Microscope 

images at five different concentrations (25 µM, 926 nM, 11 nM, 1.3 nM, 0.022 pM) 

were compared to the A2- and mock-infected cell controls and 2.5 mM Ribavirin 

control to observe variation in fluorescence intensity (magnification: 10×).  

An additional y-axis has been added to show the cytotoxic dose-response of HEp-2 cells 

to Ribavirin. The results are expressed as the ratio of the JNJ-4749914-exposed cells to 

the unexposed cells against logarithm to base 10 of the JNJ-4749914 concentrations  

(in molar). Absorbance was read at 570 nm. The error bars refer to the standard 

deviation of four replicates. 

 

For this particular set of data, the Z'-factor was 0.52 (> 0.5) and the EC50 was 

calculated to be 152 nM. The values are not in the same nanomolar range as the 

reported literature value (0.4 nM
107

). These conditions also detect fusion inhibitors. 
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2.4 Summary 

 

The robustness of a high-throughput screening assay in HEp-2 cells and for the 

subgroup A of the human respiratory syncytial virus based on indirect fluorescence 

detection was established.  

In short, antibody dilutions affording an acceptable signal-to-background ratio (> 2) 

for indirect fluorescence detection were chosen. The tolerance of the assay to DMSO 

was established (ca. 80% viability for 1% DMSO and lower) with a chosen assay 

concentration of 0.25% (no influence was observed on the fluorescence output).  

The variability (intra- and inter-plate or day-to-day) of the assay was investigated using 

a range of concentrations (2.5 mM to 10 nM) of Ribavirin (internal positive control) 

over the course of three days. The results were in agreement with recognised statistical 

parameters: signal-to-noise ratio (strong signal), signal-to-background ratio (>2, good 

dynamic range), coefficient of variation (<20%, low well-to-well variability), signal 

window (>2, good separation between the controls). The Z'-factor > 0.5 coincides with a 

‘good’ assay, with a cut-off concentration of 50 µM. In terms of reproducibility, both 

the MSR (<3) and the LsA (MR / MSR and MR × MSR were between 0.33 and 3) were 

within their respective acceptance criteria, concluding on the reproducibility and 

performance of the assay. The activity and cytotoxicity of Ribavirin with the present 

assay were established: CC50 = 40.6 µM and EC50 = 31.13±1.27 µM (at an M.O.I. of 

0.85). The assay concentration for the internal positive control was set at 2.5 mM.  

The results presented for JNJ-4749914 suggests that the optimised assay conditions are 

suitable for the detection of known specific inhibitors which are not broad-spectrum. 

Taken together, the results show that a robust high-throughput screening assay for 

the detection of small molecule inhibitors of hRSV was developed. Additionally, the 

detection of anti-viral activity was observed in three days, which is half the time 

required in all the previous assays published for hRSV drug discovery. 
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3 DESIGN OF POTENTIAL LIGANDS USING VIRTUAL HIGH-

THROUGHPUT SCREENING 

 

This Chapter describes the computational approach used to support the discovery of 

novel series of potential hRSV fusion inhibitors. The computational approach that was 

used is introduced in Section 3.1. The design and optimisation of a virtual library is 

discussed in Section 3.2. The results of the in silico screening campaign and the 

presentation of the novel series of potential hRSV fusion inhibitors are outlined in 

Sections 3.3 to 3.5.  

 

3.1 vHTS approach to target hRSV 

 

Our vHTS approach can be divided into four main parts (Figure 3.1). In order to start 

the virtual screening campaign, it is important to select a suitable protein target  

(i.e. structural data available ideally with a known small molecule binding cavity).  

A virtual library of molecules likely synthetically accessible
145

 using methods 

developed within the Nelson group, as well as a virtual library of commercially 

available compounds, were used to identify potential hRSV inhibitors. The virtual 

library was optimised through iterative rounds of virtual screening and property 

evaluation. The approach enabled a range of molecules to be nominated for evaluation.  

 

 

 

 

 

 

 

Figure 3.1. Virtual screening strategy.   
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3.1.1 Selection of a target 

 

We based our vHTS approach on the availability of a crystal structure of a small 

molecule (TMC353121) in complex with the F protein (PDB accession number 3KPE, 

1.5 Å). The binding cavity of TMC353121 has been described in Chapter 1. Key non-

covalent interactions help explain the sub-nanomolar activity reported by Bonfanti et 

al.
108

. One key interaction involved a water bridge between TMC353121, Glu487 and a 

water molecule
116

. The binding cavity with the water molecule was selected for the 

vHTS campaign. However, 3KPE is the only structure of a small molecule in complex 

with the F protein. Therefore, it is not possible to guarantee that the water molecule is 

tightly bound. As such, the binding cavity without the water molecule was chosen for 

further validation of the virtual hits identified (Figure 3.2). 

 

 

Figure 3.2. Protein targets for the vHTS campaign. A. Binding cavity of 

TMC353121 with the water bridge. The specific interactions that the water bridge 

makes with 3KPE are also shown. B. Binding cavity of TMC353121 without the water 

molecule. Pictures generated with Discovery Studio (Accelrys) from PDB accession 

number 3KPE.  
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3.1.2 Requirements for a virtual library 

 

In Chapter 1, the concept of virtual libraries was introduced. There are two types of 

virtual libraries available: libraries containing commercially available compounds and 

libraries generated on the basis of reliable synthetic reactions. For the latter, a set of 

building blocks (or reactants), and reliable reactions, were imported into a software 

package (Pipeline Pilot) which generated a virtual library of likely synthetically 

accessible molecules (see Section 3.2.1). The virtual libraries were then converted into 

3D using a 3D structure generator (CORINA). 

 

3.1.3 Virtual screening package 

 

Performing vHTS requires the use of virtual screening packages in order to perform 

the docking of molecules (i.e. the prediction of a binding pose inside the cavity) inside a 

protein target
71

. One such package is eHiTS from SymBioSys Inc.
146

. 

In short, eHiTS decomposes each ligand into small rigid fragments (and connecting 

chains), which are then docked inside the binding pocket covering the available 3D 

space, independently of each other. The fragments are then reassembled using the 

flexible connecting chains to match the original molecule while retaining the best 

possible binding pose in the target protein. The eHiTS package also takes into account 

all possible protonation states of the ligand and protein. Prior to performing the scoring 

function algorithm, a local energy minimisation step
146

 (torsion angles, rotation and 

translation) for the ligand is performed.   
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3.1.4 Selection criteria 

 

Using an empirical and statistical scoring function, the eHiTS package returns a 

score which correlates
§§

 to the binding affinity
147

. Predicted scores may be normalised 

to the number of heavy atoms (C, N, O, S, halogens) in a molecule, to yield a predicted 

ligand efficiency
148

 (cLE
***

). cLE predicts how efficiently a molecule may bind to its 

target. It is likely that molecules with a high experimental ligand efficiency (LE > 0.3) 

might be developed into nanomolar ligands by maintaining LE during optimisation
68

. 

 

3.1.5 Free energy minimisation 

 

Additional free energy minimisation steps, using force field-based methods (potential 

energy given as a function of distance and angle between atoms) may be required in 

order to minimise the conformational energy of the predicted binding pose.  

Two protocols may be followed: either the predicted binding conformation is minimised 

to the closest local energy minimum, not taking into account the protein environment, or 

the predicted binding conformation is minimised within the binding cavity residues in 

close proximity (up to 3 Å). The former is referred to as rigid minimisation; the latter is 

referred to as flexible minimisation. Such minimisation steps may be performed by the 

molecular modelling module MacroModel
149

, from the Maestro suite (Schrödinger). 

  

                                                 
§§

 eHiTS score ~ −log(Ki); e.g. a score of −9.0 corresponds to a predicted nanomolar affinity. 
***

 Predicted ligand efficiency is defined as: c    
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3.2 vHTS campaign 

 

A virtual library was designed to be based on diverse scaffolds and to provide 

appendages capable of non-covalent interactions (see Section 3.2.1). Common 

substructures found widely in the virtual hits would then be fed into the design of a 

refined substructure virtual library (see Section 3.2.2). The identification of common 

scaffolds allowed the design of a more focused library (Section 3.2.3) which led to the 

identification of novel series of potential hRSV fusion inhibitors (see Section 3.2.4). 

The overall approach is summarised in Figure 3.3. 

 

 

Figure 3.3. Overview of the virtual screening campaign adopted against hRSV. The 

steps leading to the identification of novel series of potential hRSV fusion inhibitors, 

from library enumeration to the final selection criteria, are highlighted. 
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3.2.1 Enumeration of a virtual library 

 

At the start of the virtual screening campaign, a building-block based virtual library 

of likely synthetically accessible molecules was designed (ca. 5,000,000 molecules, 

Figure 3.4). The enumeration of this new virtual library was based on the  

diversity-oriented synthesis chemistry that was successfully developed within the 

Nelson group
150

, and that had yielded natural product-like molecules of unprecedented 

scaffold diversity
151-153

. Key to this approach was the use of a toolbox of available 

virtual reactions (e.g. amide bond formation, Mitsunobu) for the combination of 

building blocks (see Appendix 13 for the full set of building blocks used). 

 

 

Figure 3.4. Enumeration of a virtual library. A building-block based approach was 

used for the generation of a virtual library of ca. 5,000,000 molecules. The examples of 

products shown stem from two possible combinations of the building blocks. 
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3.2.2 Identification of promising scaffolds for further development 

 

With the newly generated virtual library, our initial objective was the identification 

of promising scaffolds for further development. The first step towards this objective was 

the identification of common substructures found in promising ligands. Therefore,  

a randomly selected 1% (53,640 molecules) subset of the full library was screened 

against 3KPE using eHiTS (the screening of ca. 5,000,000 molecules was too 

computationally demanding). The spread of the data, with respect to cLE and ALogP is 

shown in Figure 3.5. Molecules with cLE > 0.275 and ALogP < 3.5 were analysed and 

14 common substructures (see Appendix 14) were identified. 

 

Figure 3.5. eHiTS results for a random 1% of the building-block based virtual 

library (53,640 molecules). Each molecule, shown by a red dot, is represented by its 

predicted ligand efficiency (cLE) and its predicted hydrophobicity (ALogP). The blue 

box represents those molecules with cLE > 0.275 and ALogP < 3.5. Graph generated 

using Vortex (Dotmatics). 
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This selection of substructures would then be used in the identification of promising 

scaffolds. Therefore, it was decided to extract additional molecules based on these 

substructures (up to 1,600 molecules / substructures) from the virtual library. 15,728 

molecules were selected and screened against 3KPE using eHiTS (Figure 3.6.A).  

The molecules with cLE > 0.275 (675 molecules; 133 had cLE > 0.3) were also 

screened against the binding cavity without the bound water molecule. In that case,  

135 molecules had cLE > 0.3, 65 of which were common to both datasets  

(Figure 3.6.B). These results were used for the identification of 21 promising scaffolds 

amongst those molecules with cLE > 0.3 (both with and without the bound water 

molecule) (see Appendix 15). 
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A. 

 
B. 

 
Figure 3.6. Identification of promising scaffolds. A. eHiTS results for the 

substructure virtual library (15,728 molecules). Each molecule, shown by a red dot, is 

represented by its predicted ligand efficiency (cLE) and its predicted hydrophobicity 

(ALogP). The blue box represents those molecules with cLE > 0.275. Graph generated 

using Vortex (Dotmatics). B. Influence of the water-bridge on the predicted results.  

675 molecules with cLE > 0.275 in the presence of the bound water were screened 

against the cavity without the bound water. The blue box presents those molecules with  

cLE > 0.3 in both screens (65 molecules). Red dots represent individual molecules. 

Graph generated using Vortex (Dotmatics). 
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3.2.3 Identification of potential hRSV fusion inhibitors to be prepared 

 

In order to identify potential hRSV fusion inhibitors to be prepared, we started by 

creating a more focused library based upon the 21 scaffolds (Figure 3.7.A). For this, the 

scaffolds were decorated virtually (Pipeline Pilot) with a range of groups corresponding 

to commercially available reagents. The reagents (acyl chloride, sulfonyl chloride and 

isocyanate) were selected on the basis of their diverse properties (size, hydrophobicity, 

basicity, hydrogen-bond character). The details are summarised in Appendix 16.  

The revised enumerated library (13,159 molecules) was screened against 3KPE with the 

bound water using eHiTS (Figure 3.7.B).   
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A. 

 

B. 

 

Figure 3.7. Characteristics of a focused library. A. Generic representation of the 

focused library. R and R
1
 groups are shown in Appendix 16. B. Spread of the eHiTS 

results for a focused library of 13,159 molecules with respect to the predicted ligand 

efficiency (cLE) and the predicted hydrophobicity (ALogP). The box represents those 

molecules with cLE > 0.295 and ALogP > 0.5. Red dots represent individual molecules. 

Graph generated using Vortex (Dotmatics). 
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A range of selection criteria (cLE > 0.295, ALogP > 0.5, eHiTS < −7,  

350 ≤ M.W. ≤ 500, Figure 3.8.A) was applied to the focused library in order to ensure 

the predicted drug-likeness of the molecules. The criteria afforded the identification of 9 

potential hRSV fusion inhibitors (Figure 3.8.B). A summary of the predicted non-

covalent interactions that the 9 molecules are predicted to make with 3KPE is shown in  

Table 3.1. 

 

A. 

 

B. 

 

Figure 3.8. Novel series of proposed hRSV fusion inhibitors identified via vHTS.  

A. A range of selection criteria was applied in order to select 9 potential hRSV fusion 

inhibitors. B. Representation of the 9 selected molecules (split into 6 series).  

The numbers correspond to the entry numbers in Table 3.1. 
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Table 3.1: Summary of the predicted non-covalent interactions between the 9 selected molecules and 3KPE. 

 

 

 

 

Entry D194 L195 Y198 
S485 

(OH) 

D486 

(CO2
−
) 

E487 

(CO2
−
) 

D489 

(CO2
−
) 

H2O eHiTS cLE ALogP M.W. 

1     √ √ √ √ −9.68 0.31 1.42 423 

2    √ √ √ √ √ −9.62 0.31 1.49 424 

3     √ √  √ −9.29 0.30 1.42 423 

4 
√ 

(CO2
−
) 

 
√  

(π-π) 
     −9.17 0.30 1.63 429 

5    √ √ √   −8.64 0.30 1.61 405 

6 

√ 

(C=O 

backbone) 

√    √  √ −7.98 0.31 0.75 434 

7   
√ 

(π-σ) 
    √ −7.85 0.30 2.33 366 

8     √  √  −7.75 0.30 1.04 352 

9    √ √    −7.69 0.30 1.24 400 

√ indicates a predicted interaction with 3KPE. 
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3.2.4 Free energy minimisation 

 

Two series of molecules (Figure 3.9) were chosen on the basis of the consistency of 

the binding pose. Members from series 1 are among the best scoring molecules and the 

virtual hit 16 also appeared as a virtual hit in the virtual screening without the bound 

water molecule. Series 2 was chosen on the basis of the novelty of the proposed binding 

pose. Both series underwent a round of rigid free energy minimisation (Section 3.1.5) to 

observe if the predicted non-covalent interactions would be retained once the molecule 

has been minimised. In contrast, flexible minimisation resulted in the removal of the 

bound water molecule from the binding site and was therefore not considered further.  

 

 

Figure 3.9. Novel series of potential hRSV fusion inhibitors. 

 

3.2.4.1 Free energy minimisation for series 1 and series 2 

 

In the raw predicted binding pose of the proposed inhibitor 16 (Figure 3.10.A),  

non-covalent interactions are predicted to be made with the bound water, directly with 

Glu487. Additionally, 16 is predicted to interact with Asp486 and Asp489  

(eHiTS = −9.38, cLE = 0.31). After the rigid minimisation step (Figure 3.10.B),  

only the interaction with the bound water is predicted to be retained (eHiTS = −7.71,  

cLE = 0.25). The naphthalene group docks in a hydrophobic cavity formed by residues  

197-202
108,116

. 
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A. 

 

B. 

 

Figure 3.10. Predicted binding poses of the molecule representative of series 1.  

A. Raw binding poses (eHiTS = −9.38, cLE = 0.31). B. Binding pose after rigid 

minimisation (eHiTS = −7.71, cLE = 0.25). Pictures generated with Discovery Studio 

(Accelrys). Two faces of 3KPE are shown. 

 

The raw predicted binding mode of the proposed inhibitor 17 is different to that of 

the proposed inhibitor 16 (Figure 3.11.A). A hydrogen-bond interaction is predicted 

with Asp194 (eHiTS = −9.17, cLE = 0.30). Additionally, the para-fluorophenyl ring is 

predicted to be involved in π-π stacking interaction with Tyr198. After the rigid 

minimisation step (Figure 3.11B), only the π-π stacking interaction is retained  

(eHiTS = −8.18, cLE = 0.26). The backbone of the proposed inhibitor 17 docks in the 

same hydrophobic cavity as the naphthalene group of the proposed inhibitor 16.  
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A. 

 

B. 

 

Figure 3.11. Predicted binding poses of the molecule representative of series 2.  

A. Raw binding poses (eHiTS = −9.17, cLE = 0.30). B. Binding pose after rigid 

minimisation (eHiTS = −8.18, cLE = 0.26). Pictures generated with Discovery Studio 

(Accelrys). 

 

3.2.4.2 Free energy minimisation using the cavity without the bound water molecule 

 

The representative member of series 1 was also screened virtually against the binding 

cavity without the bound water molecule and subsequently underwent rounds of free 

energy minimisation (Figure 3.12). When screened virtually against the binding cavity 

without the bound water, series 2 did not appear as a hit. 
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A. 

 

B. 

 

Figure 3.12. Predicted binding poses of the molecule representative of series 1, 

docked against the cavity without the bound water molecule. A. Raw binding poses  

(eHiTS = −9.35, cLE = 0.30). B. Binding pose after rigid minimisation (eHiTS = −7.65, 

cLE = 0.25). Two faces of 3KPE are shown. 
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3.3 In silico evaluation of a virtual library with lead-like properties 

3.3.1 Identification of an additional series of potential hRSV fusion inhibitors 

 

In order to increase the range of series of potential hRSV fusion inhibitors, a new 

virtual library was exploited. This virtual library had been enumerated by  

Giorgia Magnatti, a PhD student in the Nelson group, and contained 85,115 molecules 

that had been filtered for lead-like properties (Table 3.2). A similar approach to that 

outlined in Section 3.2.1 had been used to enumerate this library. A set of building 

blocks (see Appendix 17 for the full set of building blocks used) were used to yield a 

library based on 5-,6- and 7-membered heterocycles using a different toolbox of 

available virtual reactions (e.g. aminoarylation
154

, allylic amination
155

, metathesis). 

Representative examples of the virtual library are shown in Figure 3.13. 

 

Table 3.2: Lead-like properties filters applied to a new virtual library  

 Filter
 

Aromatic ring ≤ 2 

Saturated ring > 1 

Hydrophobicity 0.0 ≤  ALogP ≤ 3.5 

Heavy atoms 16 ≤ # ≤ 23 

 

Figure 3.13. Enumeration of a virtual library. A building-block based approach was 

used for the generation of a virtual library of ca. 85,000 molecules. The examples of 

products shown stem from two possible combinations of the building blocks. 
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The overall virtual screening approach is summarised in Figure 3.14.  

George Karageorgis, an MSc student working in the Nelson group, screened ca. 13,000 

diverse molecules selected from the virtual library against 3KPE with the bound water 

using eHiTS. This screening resulted in the selection of 7 common substructures 

amongst those molecules with cLE > 0.275. It was decided to extract additional 

molecules based on these substructures from the virtual library. An additional  

13,872 molecules were selected and screened against 3KPE with the bound water using 

eHiTS. The molecules with cLE > 0.275 (141 molecules) were also screened against 

3KPE without the bound water; 100 molecules had cLE > 0.275 against 3KPE with and 

without the bound water (Figure 3.15.A). Those molecules were used for the 

identification of 2 promising scaffolds amongst those molecules with cLE > 0.30  

(both with and without the bound water): γ-lactams and 5-membered ring cyclic ureas.  

Therefore, those scaffolds were targeted in a more focused library with a range of 

groups corresponding to commercially available reagents (101 aryl / heteroaryl and  

80 benzyl bromides). The resulting virtual library of 2,644 molecules was screened 

against 3KPE with and without the bound water using eHiTS (Figure 3.15.B).  

The selection of an additional series of potential hRSV fusion inhibitors was carried out 

in two steps. First, molecules with cLE > 0.29 were extracted.  

Second, George Karageorgis observed that only γ-lactams had cLE > 0.31 against 3KPE 

with and without the bound water.  This observation resulted in the selection of  

γ-lactams as an additional series of potential hRSV fusion inhibitors for further 

evaluation (virtual hit 18, series 3, Figure 3.14). 
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Figure 3.14. Overview of the virtual screening campaign carried out by George 

Karageorgis. The steps leading to the identification of novel series of potential hRSV 

fusion inhibitors, from library enumeration to the final selection criteria, are 

highlighted. A representative member of series 3, potential inhibitor 18 is shown.  
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A. 

 
B. 

 
Figure 3.15 Identification of a new series of potential hRSV inhibitors. A. Virtual 

screening of substructure library (13,872 molecules) against 3KPE with the bound 

water. Molecules with cLE > 0.275 were also screened virtually against 3KPE without 

the water molecule. γ-Lactams and 5-membered ring cyclic ureas had cLE > 0.3  

(both with and without the bound water). Red dots represent individual molecules. 

Diagram prepared by George Karageorgis. B. Virtual screening of more focused library 

(2,644 molecules) against 3KPE with and without the bound water. Molecules with  

cLE > 0.29 were extracted. Blue diamond: γ-lactam, red dots: 5-membered cyclic urea. 

Diagram prepared by George Karageorgis.   
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3.3.2 Predicted structure-activity relationships using eHiTS 

 

Having identified a novel series of potential hRSV inhibitors, it was decided to 

understand the predicted structure-activity relationships.  This analysis was expected to 

allow prioritisation of compounds for synthesis within this project. 

First, we analysed the predicted binding pose of the virtual hit 18 in more detail 

(Figure 3.16) after screening 18 against 3KPE with the bound water using eHiTS. The 

virtual hit 18 was predicted to be involved in a range of non-covalent interactions 

(Figure 3.16.A): the phenyl ring of the OBn group was predicted to fit into a 

hydrophobic pocket; the phenyl ring at the 5-position was predicted to be involved in  

π-π stacking interactions with Tyr198 and Phe488; and the amine group at the  

3-position was predicted to make ionic interactions with Asp486 and Asp489. 

Interestingly for 18, cLE increased from 0.28 to 0.31 upon minimisation  

(Figure 3.16.B). 

 

A. 

 

B. 

 

Figure 3.16. Predicted binding poses of virtual hit 18, a representative molecule of 

series 3. A. Raw binding poses (eHiTS = −6.74, cLE = 0.28). B. Binding pose after 

rigid minimisation (eHiTS = −7.42, cLE = 0.31). Pictures generated with Discovery 

Studio (Accelrys). Two faces of 3KPE are shown. 
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With the predicted binding pose of the potential hRSV fusion inhibitor 18 analysed, 

and accounting for synthetic accessibility, a focused library was designed for synthesis 

in this project (Figure 3.17.A). The resulting focused library of 48 members was 

screened against 3KPE with the bound water using eHiTS (Figure 3.17.B). The general 

conclusion was that the combination of R = 
i
Pr, R

1
 = OBn and R

2
 = NH2 was predicted 

to yield the best potential inhibitor, with the trans diastereoisomer scoring better than 

the cis. The R group had little influence on the eHiTS score except when R
1
 = OBn and 

R
2
 = NH2. The predicted eHiTS score decreased from R

2
 = NH2 to R

2
 = CO2Et (because 

of the loss of the predicted ionic interaction with the aspartate residues). As the 

molecules screened virtually become smaller (from R
1
 = OBn to R

1
 = OPr to R

1
 = H), 

the predicted eHiTS score becomes less negative, yet the predicted ligand efficiency 

increases.  
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A. 

 

B. 

 

Figure 3.17. Focused library of γ-lactams. A. Generic representation of the members 

of the focused library of inhibitors generated based around the virtual hit 18.  

B. Predicted structure activity relationships of a focused library of γ-lactams. The 48 

compounds are split into 6 groups of 8 molecules: 4 stereoisomers, 2 possible R groups 

(R = 
i
Pr and R = n-Pr), resulting in two different symbols per group. Graph generated 

using Vortex (Dotmatics).  
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The results from the virtual screening of the focused library against 3KPE with the 

bound water molecule have helped to prioritise which compounds to nominate for 

synthesis. The best scoring molecule from the focused library had R =  
i
Pr.  

Therefore, this group was chosen as the R group. The predicted fitting into the 

hydrophobic pocket will be probed by preparing molecules with R
1
 = OBn, OPr, H. The 

predicted ionic interactions with Asp486 and Asp489 will be probed by preparing 

molecules with R
2
 = NH2, CO2Et. A summary of the molecules nominated for synthesis 

is shown in Figure 3.18. 

 

 

Figure 3.18. Molecules nominated for synthesis 
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3.4 vHTS on a virtual library of commercially available compounds 

 

After exploring two different libraries of likely synthetically accessible compounds, 

we turned our attention to virtual libraries of commercially available compounds to 

identify alternative interesting scaffolds as potential hRSV fusion inhibitors.  

Thus, a virtual library of 26,493 diverse molecules, prepared by Dr. Richard Foster  

(School of Chemistry) on the basis that it contained a diverse set of molecules from a 

range of commercial suppliers (Asinex, ChemBridge, ChemDiv, AMRI, Peakdale 

Molecular) was used. The molecular properties of the library are shown in Table 3.3.  

 

Table 3.3: Molecular properties for a virtual library of commercially available 

26,493 molecules. 

Property Range [min, max] μ σ 

M.W. [136, 813] 362 65 

logP [−2.0, 7.2] 3.0 1.2 

H-bond acceptors [0, 9] 3.4 1.3 

H-bond donors [0, 5] 0.9 0.7 

 

The virtual library of 26,493 molecules was screened against 3KPE with the bound 

water using eHiTS. 55 compounds had cLE ≥ 0.295 (Figure 3.19.A). 82% of the 

molecules with cLE > 0.295 had a molecular weight below 250 and can be considered 

as fragments (Figure 3.19.B). The predicted binding poses of the highest scoring ligand 

with a cLE ≥ 0.295 (eHiTS = −7.43, cLE = 0.30) is shown in Figure 3.19.C. The highest 

scoring ligand with cLE ≥ 0.3 (virtual hit 26) was predicted to make a hydrogen bond 

interaction with Asp194. Thus, 55 compounds were nominated for biological evaluation 

(Chapter 5). 
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A. 

 
B. 

 
C. 

 
Figure 3.19. eHiTS results for a virtual library of commercially available 

compounds (26,493 molecules. A. Each molecule, shown by a red dot, is represented 

by its predicted ligand efficiency (cLE) and its predicted hydrophobicity (ALogP). The 

blue box represents those molecules with cLE > 0.295. Graph generated using Vortex 

(Dotmatics). B. Spread of the properties for the 55 molecules identified with  

cLE > 0.295. Red dots represent individual molecules. Graph generated using Vortex 

(Dotmatics). C. Predicted binding pose of the top-scoring molecule (virtual hit 26) 

amongst the most ligand efficient molecule (eHiTS = −7.43, cLE = 0.30). Pictures 

generated with Discovery Studio (Accelrys).  
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3.5 Summary 

 

The binding cavity of a known small molecule inhibitor to hRSV (TMC353121) was 

targeted using in silico methods and virtual libraries of likely synthetically accessible 

and commercially available compounds. The vHTS campaign described in the present 

Chapter has led to the discovery of three potential series of hRSV fusion inhibitors. 

In order to achieve this, two different libraries of likely synthetically accessible 

compounds were enumerated. The virtual library enumeration was based on sets of 

building blocks and reliable synthetic reactions. After iterative rounds of virtual 

screening against 3KPE using eHiTS and property evaluation, three new series of 

potential hRSV fusion inhibitors were identified following this process. 

Molecules from series 1-3 (Figure 3.20) were nominated for synthetic studies which 

will be discussed in Chapter 4. The 55 commercial compounds with cLE > 0.3 were 

purchased and nominated for biological testing which will be discussed in Chapter 5. 

 

Figure 3.20. Series of molecules nominated for synthetic studies. A. Illustrative 

molecule from series 1. B. Illustrative molecule from series 2. C. Specific examples of 

molecules from series 3. 
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4 STUDIES TOWARDS THE SYNTHESIS OF POTENTIAL HRSV 

FUSION INHIBITORS 

 

This Chapter describes the studies directed towards the synthesis of three series of 

potential hRSV fusion inhibitors (Figure 4.1). The common retrosynthetic analysis will 

be described in Section 4.1; the synthetic studies towards the preparation of the 

potential hRSV fusion inhibitors are outlined in Sections 4.2 and 4.3; and the synthesis 

of a focused library of potential inhibitors is discussed in Section 4.4. 

 

 

Figure 4.1. Examples of compounds from three series of potential hRSV F protein 

inhibitors.  

 

4.1 Retrosynthetic analyses  

 

It was proposed that each of the series of molecules might be prepared using a 

building block-based approach. In each case, the retrosynthetic analysis yielded a 

cyclisation precursor which would be prepared from the appropriate building blocks. 
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It was envisaged that the proposed fusion inhibitor 16 might be prepared using the 

approach outlined in Scheme 4.1. It was proposed to exploit a ring-closing metathesis 

(RCM) reaction of the cyclisation precursor 27. The RCM precursor 27 would be 

prepared by linking building blocks 28-30 using Fukuyama–Mitsunobu
156

 reactions.  

 

 

 

 

 

 

 

Scheme 4.1 Retrosynthetic analysis of ligand 16, a representative compound from 

vHTS series 1. Ns = 2-nitrobenzenesulfonyl, Boc = tert-butyloxycarbonyl. 

  

It was envisaged that the proposed fusion inhibitor 17 might be prepared using the 

approach outlined in Scheme 4.2. It was proposed to exploit a metathesis cascade 

reaction of the precursor 31. The precursor 31 would be prepared by linking building 

blocks 32-34 using a palladium catalysed allylic amination
157,158

 and a  

Fukuyama–Mitsunobu reaction. The combination of these reactions should yield a 

trans-substituted cyclopentene (31) from the cis-substituted building block (33).  

 

 

Scheme 4.2 Retrosynthetic analysis of ligand 17, a representative compound from 

vHTS series 2.  
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It was envisaged that the proposed fusion inhibitor 18 might be prepared using the 

approach outlined in Scheme 4.3. It was proposed that the γ-lactam scaffold 35 could be 

prepared by cyclisation of the precursor 36, itself prepared by opening of the cyclic 

sulfamidate 37 with the enolate derived from the glycine imine 38.  

 

 

Scheme 4.3. Retrosynthetic analysis of the γ-lactam scaffold 35, a generic 

representation of series 3. 
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4.2 Synthesis of building blocks required for route development 

 

For each series of ligands, a robust synthetic route was required. This Section 

describes the synthesis of the building blocks required for these synthetic studies. 

 

4.2.1 Synthesis of building blocks required for the synthetic studies towards series 1 

 

A seven-step synthetic route was devised for the preparation of the building block 

30, starting from commercially available D-allylglycine 39 (Scheme 4.4) in 14% overall 

yield. The synthesis started with the formation of D-allylglycine methyl ester by 

treatment of 39 with methanolic hydrochloric acid; the resulting methyl ester was then 

immediately reduced with LiAlH4
159

 to give the corresponding amino alcohol 40 in 90% 

yield over two steps. Subsequent treatment of 40 with 2-nitrobenzenesulfonyl chloride 

furnished the sulfonamide
156

 41 in 55% yield. The sulfonamide 41 was then treated with 

methanesulfonyl chloride and triethylamine to provide a mesylate
160

 that was 

immediately treated with sodium azide to give the azide 42 in 54% yield over two steps. 

The azide 42 was then reduced
161

 with PPh3 to afford, after hydrolysis, the amine 43 in 

69% yield. Finally, the amine 43 was protected by treatment with di-tert-butyl 

dicarbonate and Hünig's base
162

 to afford the building block 30 in 75% yield. 

 

 

Scheme 4.4. Synthesis of the building block 30. 
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It was envisaged that the synthesis of the building block 28 could start with the 

formation of the amide 46 (Scheme 4.5). First, a mixed anhydride
163

 was formed 

between Boc-β-alanine 44 and pivaloyl chloride, which was treated with  

(+)-pseudoephedrine 45
164

; the resulting crude amide was immediately treated with 

hydrochloric acid in methanol–water to afford the amide 46 in 47% yield over two 

steps. Unfortunately, treatment
165

 of the amide 46 with LiHMDS and subsequent 

allylation was unsuccessful. As a consequence, the synthesis of building block 28 was 

abandoned.  

 

Scheme 4.5. Attempted synthesis of the building block 28. Piv = tert-butyl-CO, 

LiHMDS = lithium bis(trimethylsilyl)amide. 

 

Only one of the three building blocks (30) required for the preparation of the RCM 

precursor 27 was successfully prepared. Accordingly, the synthesis of series 1 was 

discontinued. 
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4.2.2 Synthesis of building blocks required for the studies towards series 2 

 

The building block 32 was prepared in nine steps from cis-2-butene-1,4-diol in 11% 

overall yield. The synthesis involved the preparation of the alkene 53, a key 

intermediate whose synthesis has previously been described by Carreira et al.
166

 

(Scheme 4.6). The synthesis started with the lithiation of tributyltin hydride 48,  

by treatment with lithium diisopropylamide, and subsequent reaction with 

paraformaldehyde to give the alcohol 49 in 76% yield. The alcohol 49 was then treated 

with N-iodosuccinimide and PPh3 to give the iodide 50
167

 in 87% yield. Subsequent 

nucleophilic substitution by a sodium anion of the alcohol 51 furnished the stannane 52 

in 71% yield. The stannane 52 was then treated with n-butyllithium, leading to a  

[2,3]-sigmatropic rearrangement
168,169

 to yield the alkene 53 in 63% yield. Silyl ether 

deprotection, by treatment with tetra-n-butylammonium fluoride (TBAF), and 

immediate treatment with acetyl chloride, provided the diacetate 54 in 82% yield over 

two steps. The diacetate 54 was desymmetrised by treatment with Pseudomonas 

fluorescens lipase
170,171

 following a known literature procedure with established 

stereoselectivity (90% e.e
171

) to give the hydroxyacetate 55 in 60% yield. Subsequent 

treatment of 55 with NsBocNH 56, PPh3, and diethyl azodicarboxylate (DEAD), 

followed by Boc deprotection, afforded the building block 32 in 78% over two steps. 

 

 

 

 

 

 

 

Scheme 4.6. Synthesis of the building block 32. NIS = N-iodosuccinimide,  

DMAP = 4-dimethylaminopyridine, TFA = trifluoroacetic acid. 
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The other required building blocks were prepared in a single step from commercially 

available materials (Scheme 4.7). The preparation of the sulfonamide 34 was achieved 

from allylamine by treatment with
172

 2-nitrobenzenesulfonamide and potassium 

carbonate in 77% yield. cis-3,5-Diacetoxy-1-cyclopentene was desymmetrised
173

 by 

treatment with Candida Antarctica lipase following a known literature procedure with 

established stereoselectivity (>99% e.e.
173

) to afford the hydroxyacetate 33 in 80% 

yield.  

 

Scheme 4.7. Preparation of the sulfonamide 34 and the hydroxyacetate 33 building 

blocks. 

 

4.2.3 Synthesis of building blocks required for the synthetic studies towards series 3 

 

The building block 61 was prepared in four steps from L-phenylalaninol 59 in  

48% overall yield (Scheme 4.8). The synthesis started with the reductive amination
174

 of  

L-phenylalaninol using propan-2-one and MgSO4. The resulting imine was then 

immediately reduced with NaBH4 to give the corresponding N-isopropyl amino alcohol 

60 in 65% yield over two steps. The amino alcohol 60 was then treated with thionyl 

chloride
175

 in the presence of triethylamine and imidazole; the resulting cyclic 

sulfamidite, which was not isolated, was then oxidised by treatment with sodium 

periodate and 1 mol% RuCl3
176

 to give the corresponding cyclic sulfamidate 61. 

 

 

Scheme 4.8. Preparation of the cyclic sulfamidate building block 61 from  

L-phenylalaninol 59. 
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4.3 Synthetic studies towards potential hRSV fusion inhibitors 

 

For each full set of building blocks, approaches for the preparation of potential hRSV 

fusion inhibitors were investigated. This Section describes reactions undertaken to link 

the requisite building blocks. 

 

4.3.1 Synthetic studies towards series 2 

 

Upon completion of the syntheses of the three key building blocks required for the 

preparation of the proposed inhibitor 17, a representative compound from vHTS series 

2, reactions to link the building blocks were investigated. Specifically,  

palladium-catalysed allylic amination and Fukuyama–Mistunobu reactions were 

investigated. 

 

4.3.1.1 Initial linking strategies 

 

It was envisaged that the preparation of the cyclisation precursor 31 could start by 

the palladium-catalysed allylic amination between building blocks 33 and 34  

(Scheme 4.9.A), leading to the formation of the diene 62 in 54% yield. Alternative 

synthetic pathways were also envisaged (Schemes 4.9.B and 4.9.C). First, the building 

blocks 32 and 33 were treated with PPh3 and DEAD; the resulting sulfonamide was 

immediately treated with ammonia in methanol to give the sulfonamide 63 in 62% over 

two steps (Scheme 4.9.B). Second, the hydroxyacetate 33 was treated with NsBocNH 

56, PPh3, and DEAD, followed by Boc deprotection (Scheme 4.9.C). Unfortunately, in 

this case the sulfonamide 64 was not isolated. 
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Scheme 4.9. Investigation into reactions for linking the required building blocks. 

A. Palladium-catalysed allylic amination between building blocks 33 and 34.  

dba = dibenzylideneacetone, dppb = 1,4-bis(diphenylphosphino)butane. 

B. Fukuyama–Mitsunobu reaction between building blocks 32 and 33.  

C. Transformation of the building block 33 into a nucleophile for Fukuyama–

Mitsunobu reaction.  

 

4.3.1.2 Synthetic studies towards the cyclisation precursor 31 

 

The adduct 62 was treated with thiophenol and potassium carbonate to give the 

amino alcohol 65 in 70% yield (Scheme 4.10). Treatment of the amino alcohol 65 with 

tert-butyl isocyanate afforded the allylic alcohol 66 in 84% yield. Unfortunately, the 

reaction between the allylic alcohol 66 and the sulfonamide 32 with PPh3 and DEAD 

did not afford the triene 67: instead, the building block 32 was recovered after 

purification. 
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Scheme 4.10. Investigation into a Fukuyama–Mitsunobu reaction to link the 

required building blocks.  

 

In the case of the Fukuyama–Mitsunobu adduct, the resulting sulfonamide 63 

underwent Ns deprotection
156

, by treatment with thiophenol and potassium carbonate, to 

give the aminodiol 68 in 87% yield (Scheme 4.11). Unfortunately, treatment of the 

aminodiol 68 with an excess of 4-fluorophenylacetyl chloride 69 did not afford the 

diester 70.  

 

 

Scheme 4.11. Synthetic pathway involving the Fukuyama–Mitsunobu adduct 63.  

 

Two routes were investigated for the preparation of the cyclisation precursor 31: 

palladium-catalysed allylic amination following by Fukuyama–Mitsunobu reaction 

(Scheme 4.10) or Fukuyama–Mitsunobu reaction followed by palladium  

catalysed-allylic amination (Scheme 4.11). Unfortunately, neither synthetic route could 

be completed. Accordingly, the synthesis of series 2 was discontinued. 
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4.3.2 Synthetic studies towards series 3 

 

Five-membered ring cyclic sulfamidates are prone to nucleophilic opening at the  

5-position. Thus, diethyl malonate 71 was treated with sodium hydride and reacted with 

the cyclic sulfamidate 61 (Scheme 4.12). Acidification, neutralisation and subsequent 

heating in toluene yielded the γ-lactam 72,73 in 53% overall yield with the following 

configuration trans-cis 71:29 as assigned by nuclear Overhauser spectroscopy  

(Figure 4.2).  

 

 

Scheme 4.12. Preparation of the γ-lactam scaffold derived from L-phenylalaninol. 

  

 

Figure 4.2. Assignment of the major and minor isomers by nuclear Overhauser 

spectroscopy. 
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4.4 Synthesis of building blocks required for a focused library of proposed 

inhibitors 

 

The preparation of a focused library of γ-lactams (virtual hits 19, 21-25) was 

proposed to be possible from the cyclic sulfamidate building block 37 (Scheme 4.3).  

As outlined in Section 4.2.3, we proposed to derive cyclic sulfamidates from amino 

alcohols. First, we envisaged to prepare a focused library of proposed γ-lactam 

inhibitors, based on virtual hits 19, 21-25, starting from the racemic amino alcohols 74 

and 75 (Figure 4.3). 

 

 

 

Figure 4.3. Amino alcohols required for the preparation of the cyclic sulfamidates 

74 and 75. 

 

4.4.1 Preparation of DL-O-benzyltyrosinol and DL-O-n-propyltyrosinol 

Baran et al.
177

 have established a route for the preparation of L-O-benzyltyrosinol in 

five steps from commercially available L-tyrosine. This route was adapted  

(Scheme 4.13) for the preparation of DL-O-benzyltyrosinol 75 (50% overall yield) and 

DL-O-n-propyltyrosinol 74 (27% overall yield). The synthesis started with the stepwise 

protection of DL-tyrosine 76. First, DL-tyrosine methyl ester (which was not 

characterised) was formed by treatment with methanolic hydrochloric acid, and was 

immediately treated with di-tert-butyl dicarbonate to yield the carbamate 77 in > 98% 

over two steps. O-Alkylation with benzyl bromide or propyl bromide in the presence of 

potassium carbonate gave the amino acid derivatives 79
178

 and 78 in 86% yield.  

The methyl ester of 79 and 78 was then reduced to the corresponding alcohols 81 and 

80 by treatment with LiBH4
179

 (generated in situ from NaBH4 and lithium iodide) in 

74% yield. The Boc derivative was deprotected with para-toluenesulfonic acid
†††

 to 

afford the O-alkylated DL-tyrosinol 75 and 74. 

                                                 
†††

 When TFA is used, O-benzyl deprotection has been observed 179 Oila, M. J., Tois, J. E. & 

Koskinen, A. M. P. Ligand creation via linking a rapid and convenient method for construction of novel 

supported PyOX-ligands. Tetrahedron 61, 10748-10756 (2005). 
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Scheme 4.13. Synthesis of DL-O-benzyltyrosinol 75 and DL-O-n-propyltyrosinol 74. 

pTSA = para-toluenesulfonic acid. 

 

4.4.2 Preparation of the cyclic sulfamidates derived from DL-O-benzyltyrosinol and 

DL-O-n-propyltyrosinol 

 

The cyclic sulfamidates 84 and 85 were prepared in three steps from the amino 

alcohols 74 and 75 (Scheme 4.14). Following the conditions reported in Section 4.2.3, 

the amino alcohols 74 and 75 successfully underwent reductive amination with propan-

2-one and NaBH4 to yield the corresponding N-isopropylated amino alcohols 82 and 83. 

Subsequent treatment with thionyl chloride in the presence of triethylamine and 

imidazole afforded cyclic sulfamidites, which were immediately oxidised to the 

corresponding cyclic sulfamidates 84 and 85 by treatment with sodium periodate and  

1mol% RuCl3.  

 

 

 Scheme 4.14. Preparation of the cyclic sulfamidates 84 and 85. 
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4.5 Synthesis of a focused library of proposed inhibitors 

 

The γ-lactams were prepared by reaction between a cyclic sulfamidate and an enolate 

derived from either diethyl malonate 71 or the benzophenone-derived glycine imine 38. 

In each case, the pronucleophile was treated with sodium hydride, and reacted with the 

required cyclic sulfamidate; acidification, neutralisation and subsequent heating in 

toluene yielded the γ-lactams 86-89. The results are summarised in Schemes 4.15 and 

4.16. 

 

 

Scheme 4.15. Preparation of the γ-lactams by reaction of cyclic sulfamidates with 

diethyl malonate 71. 

 

 

Scheme 4.16. Preparation of the γ-lactams by reaction of cyclic sulfamidates with 

the benzophenone-derived glycine imine 38. 
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4.6 Summary 

 

Retrosynthetic analyses revealed that the potential fusion inhibitors 16-18 might be 

prepared using a building block-based approach, involving a cyclisation precursor as a 

key intermediate. The syntheses of the proposed building blocks and the synthetic 

studies towards the cyclisation precursor, leading up to the proposed hRSV fusion 

inhibitor have been discussed. For series 1, it was only possible to prepare one of the 

three required building blocks. For series 2, all three required building blocks were 

successfully prepared. However, our synthetic studies directed towards linking the 

required building blocks were unsuccessful.  

For series 3, the synthesis of a focused library of the proposed γ-lactams inhibitors 

was achieved (Scheme 4.17). Three cyclic sulfamidates (61, 84 and 85) were prepared 

from commercially or synthetically accessible amino alcohols (59, 74 and 75).  

The cyclic sulfamidates 61, 84 and 85 successfully underwent nucleophilic opening 

leading to the corresponding γ-lactams 72,73 and 86-89 (Scheme 4.17). The evaluation 

of these compounds was expected to allow structure-activity relationships to be defined.     

 

 

Scheme 4.17. Focused library of γ-lactams. 
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5 EVALUATION OF SELECTED COMPOUNDS AS INHIBITORS 

OF HRSV 

 

This Chapter describes the biological evaluation of selected compounds as inhibitors 

of hRSV. The evaluation of compounds at a single concentration and dose-response 

analyses of selected hits is discussed in Section 5.1; and the evaluation of the 

intermediates leading up to JNJ-4749914 is discussed in Section 5.2. 

 

5.1 Biological evaluation at a single concentration 

5.1.1 Choice of a compound collection for HTS 

 

Initially, we chose to use a HTS approach to find new small molecule inhibitors of 

hRSV. To date, the distribution of scaffolds amongst known organic compounds is 

remarkably uneven
180

 and could potentially trap drug discovery into small regions of 

chemical space, that may not be biologically relevant
181

. One way of increasing the 

chances of finding actives through HTS would be to use a library that populates broad 

tracts of biologically-relevant chemical space. A synthetic approach that has been 

developed within the Nelson group
150

 has yielded a library of natural product-like 

molecules of unprecedented scaffold diversity
151-153

. Compounds from this library were 

screened for anti-hRSV activity (Figure 5.1).  
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Figure 5.1 Representative examples of a natural product-like library with >80 

distinct scaffolds prepared within the Nelson group. 

 

The molecular properties of the library are shown in Table 5.1. Most molecules 

appear to adhere to the “rule-of-five”: the number of H-bond acceptors increased with 

the molecular weight and one molecule with molecular weight >500 also had logP >5.  

It has been reported
182

 that natural products libraries “largely adhere” to Lipinski's rule. 

 

Table 5.1: Molecular property ranges for the natural product-like library 

screened against hRSV. 

Property Range [min, max] μ σ 

M.W. [164, 813] 410 148 

logP [−1.4
a
, 5.7

b
] 1.8 1.3 

H-bond acceptor [1, 12
c
] 5.8 2.6 

H-bond donor [0, 5] 1.2 1.0 

a: ten molecules had a negative logP; b: two molecules had logP > 5; c: six 

molecules had more than 12 HBA groups. 
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5.1.2 High-throughput screening results 

 

In the Leeds screening collection, compounds are stored as 10 mM solutions in 

DMSO. As described in Section 2.4.1, the assay setup required a final concentration of 

0.25%, meaning that the highest concentration of assay compounds was 25 μM.  

A selection of 160 compounds, from the diversity-oriented synthesis screening library 

was screened against hRSV at 25 µM. The assay consisted of using a combination of 

antibodies raised against hRSV and fluorescent antibodies for the detection of virus in 

cells. Antiviral activity was defined as a decrease in the fluorescence intensity. 

Unfortunately, activity could be the result of the compounds targeting cellular 

mechanisms important for cell viability. It was crucial to make sure that activity was the 

result of the compounds interfering with the course of hRSV, rather than the compound 

being toxic to cells (i.e. false-positive). As such, the compounds were also tested in a 

cytotoxicity assay (MTT) in order to evaluate their potential toxicity. The results are 

presented in Figure 5.2. Four compounds are missing from Figure 5.2 as they suffered 

from‘aberrant’
‡‡‡

 fluorescence. The detailed statistical parameters for each plate are 

shown in Table 5.2. 

  

                                                 
‡‡‡

 When observed under the microscope, some wells contained auto-fluorescent particles. Each of 

these wells was observed under the microscope and, no significant decrease in fluorescence could be 

observed by eye. 
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Figure 5.2. Antiviral activity and cytotoxic screen of 160 compounds from the 

diversity-oriented synthesis library. Each compound was screened at an assay 

concentration of 25 µM. On the x-axis (cytotoxic screen), the results are presented as a 

ratio to the untreated control (i.e. DMSO at 0.25%, the internal negative control).  

µ: mean of normalised activity of the 160 compounds (μ = 0.96), σ: standard deviation 

of the normalised activity of the 160 compounds (σ = 0.14). Ribavirin was used at  

2.5 mM and resulted in 45% cell viability. Also shown is a line representing 80% cell 

viability. On the y-axis, the results are presented as normalised to the A2 control.  

The cells were infected at an M.O.I. of 0.5. µ: mean of the normalised activity of the 

160 compounds (μ = 1.01), σ: standard deviation of the normalised activity of the  

160 compounds (σ = 0.13). Highlighted by the green box is the ideal quadrant were 

activity from the screening is not associated with cytotoxicity.  
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Table 5.2: Statistical analysis for the screening of 160 compounds from Leeds 

collection carried out in two batches of 80 compounds. 

 
Plate 1 

Plate 2 
Replicate 1

a 
Replicate 2

a 

Signal-to-

background 
1.85 1.86 1.82 

Signal-to-noise 24.23 12.19 14.79 

Signal window 36.23 16.83 29.08 

Z'-factor 0.81 0.64 0.72 

Z-factor 0.59 0.44 0.49 

a: the library was split into two batches of 80 compounds, only the first set was screened 

in duplicate.    

 

The plates did not perform well in terms of Z-factor and signal-to-background ratio 

(both marginally below the recommended minimum values of 0.5 and 2, respectively). 

However the Z'-factor was within the acceptable range (> 0.5). The low value for the  

Z-factor could be explained by the small number of compounds screened, resulting in a 

high standard deviation when a few hits are observed. The low value for the  

signal-to-background could be explained by the higher background observed with the 

2.5 mM Ribavirin control than with the mock-infected controls. Alternative 

explanations for the lower-than-expected statistical parameters include a poor batch of 

antibody or the inherent instability of virus stocks
124

. 

For the selection of potential hits, a hit threshold (    ) was defined and 

molecules with a normalised anti-viral activity below the hit threshold were marked as 

potential hits (Figure 5.3). The cytotoxic screen revealed that the three potential hits 

also had an effect on mitochondrial activity (<80% cell viability). The dose-response 

analyses of the three hits are discussed in Section 5.1.5. 
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78% decrease in signal 42% decrease in signal 100% decrease in signal 

Figure 5.3 Compounds identified as potential ‘hits’ after screening for anti-viral 

activity against hRSV. The compounds were screened at 25 μM and anti-viral activity 

is reported as the influence on the normalised signal. 

 

5.1.3 Evaluation of compounds identified through vHTS 

 

A virtual screening campaign carried out against the fusion protein of hRSV 

identified potential hRSV fusion inhibitors (Chapter 3). The potential inhibitors of 

hRSV fusion could be split into two categories depending on whether they originated 

from a virtual library of synthetically accessible compounds or from a library of 

commercially accessible compounds. Both sets were screened for anti-viral activity 

against hRSV but also in a cytotoxicity assay (MTT) in order to evaluate toxicity of the 

molecules tested (Figure 5.5 and Appendix 18). The former set consisted of 8 molecules 

(Figure 5.4), whose synthesis was reported in Chapter 4, tested for anti-viral activity 

against hRSV at 80 and 20 μM (Figure 5.5.A). The latter consisted of commercially 

available compounds tested for anti-viral activity against hRSV at 20 μM  

(Figure 5.5.B).  
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Figure 5.4 Focused library of potential γ-lactams inhibitors. The preparation of 

molecules 72,73-89 was described in Chapter 4. Molecules 93, 94,95 and 96,97 were 

prepared by George Karageorgis
183

. 
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A. 

 

B. 

 

Figure 5.5. Antiviral activity and cytotoxic screen of 65 compounds screened 

following a vHTS campaign. A. Synthetically accessible compounds screened at  

80 µM (black triangles) and 20 µM (black dots). B. Commercially accessible 

compounds tested at 20 µM. On the x-axis (cytotoxic screen), the results are presented 

as a ratio to the untreated control (i.e. DMSO at ca. 1%, the internal negative control). 

µ: mean of normalised activity of the compounds (μ = 0.95), σ: standard deviation of 

the normalised activity of the compounds (σ = 0.13). Also shown is a bar representing 

80% cell viability. On the y-axis, the results are presented as normalised. The cells were 

infected at an M.O.I. of 0.5. µ: mean of normalised activity of the compounds  

(μ = 1.06), σ: standard deviation of the normalised activity of the compounds (σ = 0.20). 

The assay performed at a Z'-factor of 0.11 (feasible), with a signal-to-background ratio 

of 1.28 (< 2). Inactive molecules are in the oval. Both sets of compounds were screened 

on the same 96-well plate, therefore the statistical data have been combined. 
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Only a small number of compounds were assayed and a visual selection of hits for 

further evaluation was carried out (Figure 5.6). The potential hits 26, 98, 99 were 

selected for dose-response analyses (Section 5.1.5). The pyrrolidones 87 and 89 were 

found to have anti-viral activity at 80 µM. However, this activity was lost as soon as the 

concentration was decreased to 20 µM. Therefore, 87 and 89 were not considered 

further for dose-response analyses. The cytotoxicity screen revealed that the 

pyrrolidones hits and hit 26 were also cytotoxic (<80% cell viability).  

The dose-response analyses of the three hits are discussed in Section 5.1.5. 

 

 

  

  

47% decrease 

in signal 

53% decrease 

in signal 

41% decrease 

in signal 

75% decrease 

in signal 

28% decrease 

in signal 

Figure 5.6 Compounds identified as potential ‘hits’ after screening for anti-viral 

activity against hRSV. Compounds 26, 98, 99 were seen as hits at 20 μM and 

compounds 87 and 89 were seen as hits at 80 μM. Anti-viral activity is reported as the 

influence on the normalised signal. 

 

5.1.4 Therapeutic index 

 

Anti-viral activity could also be a consequence of the compounds targeting cellular 

proteins and therefore being cytotoxic. Therefore, it was important to verify that the hits 

identified by HTS possess a “favourable” therapeutic index
184

 (TI), which is a measure 

of the safety window of any given compound (Figure 5.7). There is no set value for an 

ideal TI but for hRSV, a favourable TI (
    

    
   ) is desired

184
.  
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Figure 5.7. Representation of the therapeutic index. The efficacy curve 

(determination of the EC50, black), and the safety curve (determination of the CC50, red) 

are shown. The safety window is represented by the double-headed arrow.  

Adapted from Muller et al.
184

. 

 

5.1.5 Dose-response analyses on screening hits 

 

In order to assess the TI of the hits identified following our screening campaign, 

dose-response analyses (25 µM to 1.3 nM) were carried out on the following compound 

groups: i) three hits from the HTS campaign (Figures 5.8.A-5.8.C), ii) four cytotoxic 

compounds not identified as hits during the screening campaign (shown in Appendices 

19-22), iii) one compound not identified as a hit and not classified as cytotoxic 

(negative compound, shown in Appendix 23), iv) three hits from the vHTS campaign 

(Figures 5.8.D-5.8.F).  
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A. 

 

B. 

 
C. 
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D. 

 

E. 

 

F. 

 

Figure 5.8 Dose-response analysis of the potential HTS and vHTS hits. The results 

are expressed as the ratio to untreated A2-infected cells at an M.O.I. of 0.5.  

An additional y-axis has been added to show the cytotoxic dose-response of HEp-2 cells 

to the hit. The results are expressed as the ratio of the hit-exposed cells to the unexposed 

cells against logarithm to base 10 of the hit concentrations (in molar). Absorbance was 

read at 570 nm. The error bars refer to the standard deviation of four replicates.  

A. Hit 90, Z'-factor = 0.89, signal-to-background = 1.51. B. Hit 91, Z'-factor = 0.61, 

signal-to-background = 1.62. C. Hit 92, Z'-factor = 0.14, signal-to-background = 1.49. 

D. vHTS hit 26, Z'-factor = 0.75, signal-to-background = 1.52. E. vHTS hit 98,  

Z'-factor = 0.75, signal-to-background = 1.52. F. vHTS hit 99, Z'-factor = 0.17,  

signal-to-background = 1.27. 
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For the potential HTS hits, the dose-response analyses revealed that the antiviral and 

cytotoxic profiles were similar for the potential hits 90-92 identified in the  

single-concentration screen. For the potential vHTS hits 26 and 98, the observed 

activity at 20 μM was confirmed upon carrying out dose-response analyses.  

The dose-response analyses for the vHTS potential hits also revealed that the antiviral 

and cytotoxic profiles were similar. The activity of 99 observed at 20 µM was not 

reproduced in the dose-response analysis. 

The TI does not appear to be favourable (≤ 1). Therefore, the hits are more likely to 

make cells unviable rather than genuinely targeting viral proteins.  
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5.1.6 Discussion 

 

After two screening campaigns for anti-viral activity against hRSV, six compounds 

were identified as potential hits and were therefore selected for dose-response analyses. 

Unfortunately, the dose-response analyses revealed that the antiviral and cytotoxic 

profiles were similar (TI estimated
§§§

 at ca. 1), which was not considered sufficient to 

proceed with any of those hits. However, under the assay conditions reported in Section 

2, the TI of Ribavirin is at best marginal (EC50 = 31.4 μM, CC50 = 40.6 μM;  

TI = 
    

    
 = 1.4). At 25 μM, Ribavirin afforded a 40% decrease in the fluorescence 

signal for 84% cell viability. At 25 μM, the hit 90 afforded a 78% decrease in the 

fluorescence signal for 60% cell viability. The extra activity is probably a consequence 

of the increased cytotoxicity of 90 at 25 μM. However, the data suggest that Ribavirin 

and 90 appear to have similar activities, and that further development could lead to the 

compounds being used as probes, as has recently been reported by Moore et al.
185

. 

Moore et al. discovered 100, a novel hRSV small molecule probe (Figure 5.9) with a 

favourable TI of ca. 13 (EC50 = 2.3 μM, CC50 = 30.9 μM), starting from a hit with a  

TI of ca. 6 (EC50 = 5.0 μM, CC50 = 31.5 μM). In their assay, the TI for Ribavirin was 

ca. 4 (EC50 = 28.4 μM, CC50 = 113.9 μM).   

 

 

 

 

Figure 5.9. Novel small molecule inhibitor probe
185

. EC50 = 2.3 μM, CC50 = 30.9 μM. 

 

  

                                                 
§§§

 TI value given is only an estimation as the 10 mM stock solution did not allow 

screening at concentration >25 μM, which would have been required to obtain full 

sigmoidal curves.  
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5.2 Biological testing of the intermediates in the synthesis of JNJ-4749914 

 

In order to gain more insight into the SAR of JNJ-4749914, we carried out  

dose-response analyses on the synthetic intermediates described in Section 2.3.7.2 

(Figure 5.10). 

 

Figure 5.10. Focused library of benzimidazole derivatives. 

 

5.2.1 Dose-response curves 

 

A total of twenty different concentrations, ranging from 25 μM to 0.022 pM, were 

assayed in a single 96-well plate with each concentration being assayed in 

quadruplicates for the intermediates 9, 11, 12, 14, 15 (Figure 5.11).  

At the concentration analysed, benzimidazole 9 displayed no antiviral activity  

(EC50 > 25 μM) and no cytotoxicity. The dose-response analysis for the N-alkylated 

benzimidazole 11 revealed that as soon the hydroxypyridine moiety was added, antiviral 

activity was detected at high concentrations (EC50 > 1 μM). However, the exact EC50 

could not be determined due to the lack of data points at concentrations greater than 25 

μM. No cytotoxicity was observed at the concentrations tested. Upon removal of the 

ester group, no changes in the antiviral and cytotoxic profiles were detected. The 

addition of the Boc ethylamine residue on the secondary amine 12 increased the anti-

viral activity: EC50 tentatively calculated at ca. 700 nM despite the missing data points 

at high concentrations (C > 25 μM). The cytotoxic profile remained unchanged. 

Removal of the Boc group resulted in a 100-fold increase in the antiviral activity 

without any modifications on the cytotoxicity profile. 
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A. 

 

B. 

 

C. 

 

D. 

 

E. 

  

Figure 5.11. Dose-response analysis of benzimidazoles 9, 11, 12, 14, 15. The results 

are expressed as the ratio to untreated A2-infected cells at an M.O.I. of 0.5.  

An additional y-axis has been added to show the cytotoxic dose-response of HEp-2 cells 

to the compound tested. The results are expressed as the ratio of the compound-exposed 

cells to the unexposed cells against logarithm to base 10 of the compound 

concentrations (in molar). Absorbance was read at 570 nm. The error bars refer to the 

standard deviation of four replicates. A. Dose-response analysis of benzimidazole 9,  

Z'-factor = 0.56, signal-to-background = 1.35. B. Dose-response analysis of the  

N-alkylated benzimidazole 11, Z'-factor = 0.56, signal-to-background = 1.35.  

C. Dose-response analysis of the secondary amine 12, Z'-factor = 0.76,  

signal-to-background = 1.38. D. Dose-response analysis of the carbamate 14.  

Z'-factor = 0.76, signal-to-background = 1.38. E. Dose-response analysis of  

JNJ-4749914 (15), Z'-factor = 0.52, signal-to-background = 1.29.  



 

122 

 

5.2.2 Confocal imaging of the mode of action of JNJ-4749914 

 

The JNJ compounds as well as the TMC compounds are all reported hRSV fusion 

inhibitors in the literature
107,108,116,119

. However, to date, there has been no confocal 

imaging experiment visualising the inhibitory properties of the compounds such as that 

developed by Johnson & Johnson / Tibotec on cell fusion and cell-to-cell fusion
186

. 

Therefore, we decided to look at the effects of JNJ-4749914 on A2-infected cells using 

confocal microscopy (Figure 5.12). The comparison between merged Panel B  

(A2-infected) and merged Panel C (A2-infected in the presence of JNJ-4749914) 

confirmed that JNJ-4749914 prevented virus entry, as shown by lack of fluorescence
8
. 

Closer analysis of the merged pictures in Panels B and C revealed that syncytia
****

 are 

observed in A2-infected cells whereas they are not present in A2-infected treated with 

JNJ-4749914, suggesting that JNJ-4749914 also prevents cell-to-cell fusion
8
. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Analysis of the effect of JNJ-4749914 using confocal microscopy.  
A. Mock-infected HEp-2 cells. B. A2-infected HEp-2 cells, treated with media only.  

C. A2-infected HEp-2 cells, treated with JNJ-4749914 (JNJ). For all panel, the marker 

represents 10 μm. Images acquired by Dr. Jamel Mankouri (University of Leeds).  

                                                 
****

 In the case of hRSV, syncytia are a consequence of neighbouring cells merging their membranes. 

The consequence is the observation of cells with multiple nuclei. 
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5.2.3 Discussion 

 

Bonfanti et al.
108

 carried out molecular modelling experiments in order to better 

understand the binding of JNJ-2408068 (Figure 5.13). They predicted that the hydroxyl 

group of the hydroxypyridine moiety might be making hydrogen-bond interactions with 

Lys196 and Asp200. Assuming the binding mode of JNJ-2408068 (or JNJ-4749914) is 

similar to that of TMC353121, the key π-π stacking interaction could explain the  

anti-viral activity observed upon addition of the hydroxypyridyl moiety. The 

hydroxypyridyl moiety was not tested as a fragment alone and future work could 

involve its biological evaluation. The benzimidazole ring is also predicted to make σ-π 

interactions with Tyr198. The presence of the methyl group on JNJ-2408068, as 

opposed to hydrogen in JNJ-4749914, could explain the higher activity of JNJ-2408068. 

The σ-π interaction is not strong enough to observe anti-viral activity with the 

benzimidazole 9. Finally, the ethylamine group of JNJ-4749914 is predicted to make 

hydrogen-bond interaction with either Gln202 or Asn208. The decreased anti-viral 

activity of the carbamate 14 could be explained by a lack of shape complementarity 

with the pocket where the ethylamine group of JNJ-4749914 is predicted to bind due to 

the bulk imposed by the Boc group.  

A. B. 

  

Figure 5.13. Prediction of the non-covalent interactions of JNJ-4749914. A. Part of 

the hydrophobic groove of hRSV F protein (PDB accession number 1G2C)  

JNJ-2408068 is predicted to make interactions with. N208 in HR-N' was not part of the 

crystal structure. Pocket refers to the pocket where the ethylamine group of  

JNJ-2408068 is predicted to dock. Picutre generated with Discovery Studio (Accelrys).  

B. 2-D representation of the key-non covalent interactions JNJ-4749914 is predicted to 

make with the hydrophobic groove of hRSV F protein. Adapted from Bonfanti et al.
108

. 
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5.3 Summary 

 

The biological evaluation of selected compounds as inhibitors of hRSV has been 

described. In the primary screen, three compounds from a natural product-like library 

were found with antiviral activity against hRSV at 25 μM (Figure 5.14.A).  

Three compounds from a commercially available library (identified by vHTS) were 

found with antiviral activity against hRSV at 20 μM (Figure 5.14.B). Unfortunately, 

upon dose-response analyses, none of the molecules displayed a sufficient TI to be 

taken forward as leads. Some of designed γ-lactams had anti-viral activity against hRSV 

at 80 μM (abolished upon testing at 20 μM).  

 

A. HTS 

compounds 

 
 

 

B. vHTS 

compounds 

 

  

Figure 5.14. Compounds identified as potential ‘hits’ after primary screen 

screening for anti-viral activity against hRSV.  

 

We also probed the structure-activity relationships of JNJ-4749914 by carrying out 

dose-response analyses on four isolated intermediates. Our conclusions were that the 

hydroxypyridyl moiety and the ethylamine chain proved critical for the display of 

nanomolar activity. Confocal imaging experiments confirmed that JNJ-4749914 acted 

as a cell entry inhibitor. 
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6 SUMMARY AND FUTURE WORK 

 

The objective of the work described in this thesis was to discover new small 

molecule inhibitors of the human respiratory syncytial virus (hRSV). To do so, 

complementary approaches were used: high-throughput screening and virtual  

high-throughput screening.  

In order to assess reliably activity against hRSV, it was crucial to develop a robust 

phenotypic high-throughput screening (HTS) assay. Thus, a novel fluorescence-based 

assay for the detection of hRSV in human epithelial cells (HEp-2) was developed which 

afforded the fast and reliable determination of anti-viral activity. The assay was 

validated for use in a high-throughput format using Ribavirin (an FDA-approved 

therapy for hRSV), JNJ-4749914 (a known hRSV fusion small molecule inhibitor) as 

reported in Table 6.1 and DMSO (negative control) as appropriate plate-based controls. 

Using the robust HTS assay, a library of natural product-like molecules was tested for 

anti-viral activity at 25 μM. Three compounds (out of 160) were selected as “hits” and 

nominated for dose-response analysis. Unfortunately, these analyses revealed that the 

therapeutic index was not sufficient in order to confirm the hits as active against hRSV. 

 

Table 6.1: Summary of the activity (EC50) and cytotoxicity (CC50) of known hRSV 

inhibitors 

Small molecule Assay Literature 

 

EC50 ca. 30 μM 

CC50 ca. 40 μM 

EC50 from 19 µM99 to 41 µM140 

CC50 from 26 µM142 to 2 mM140 

 

EC50 ca. 0.4 nM 

CC50 > 25 μM 

EC50 ca. 0.4 nM107 

CC50 N/A 
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The results of the biological testing for anti-viral activity highlighted some of the 

challenges faced by drug discovery carried out in academia
187

: the small size of the 

proprietary compound collection and the lack of diversity of commercially available 

compounds
188-190

. The natural product-like library tested was rich in diversity, offered 

novel coverage of the natural product chemical space, but only 160 molecules were 

screened for anti-viral activity against hRSV. Therefore, it is possible that the areas 

covered were not overlapping with the hRSV-relevant chemical space. In order to 

bypass the lack of diversity from commercial vendors, a novel approach to vHTS was 

devised, relying on the use of virtual library of likely synthetically accessible 

compounds
145

. Two virtual libraries of likely synthetically accessible compounds, which 

identified three new series of potential hRSV fusion inhibitors, and a virtual library of 

commercially available compounds were used. 

The in silico method used to generate the proposed inhibitors from series 1 and 2 was 

based on the diversity-oriented synthesis building block approach. This building block 

based approach has previously yielded molecules with unprecedented scaffold 

diversity
151-153

 using synthetically accessible building blocks and robust linking 

strategies. The present report highlighted the difficulties behind the prediction of 

synthetic accessibility, even for established robust methodologies. Pfizer have designed 

their own virtual library of likely synthetically accessible compounds  

(Pfizer Global Virtual Library
145

, ca. 10
14

 compounds) based on twelve years of parallel 

synthesis data collection. In the present report, some of the building blocks required for 

the preparation of the proposed inhibitors could not be prepared, despite being closely 

related to known building blocks. Additionally, the linking strategies were similar to 

what had been reported previously but were unsuccessful in the present work.  

A different outcome was observed for series 3 suggesting that careful synthetic planning 

could afford the synthesis of compounds from a library of likely synthetically accessible 

compounds. A total of 63 compounds, identified by vHTS were screened for anti-viral 

activity against hRSV at 20 μM; three compounds were selected as “hits” and 

nominated for dose-response analysis. Unfortunately, these analyses revealed that the 

therapeutic index was not sufficient in order to confirm the hits as active against hRSV. 
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The results obtained for the compounds identified by vHTS highlighted the problems 

associated with the prediction of affinity using scoring functions. The scoring function 

used by eHiTS is empirical in nature
146

, i.e. the score is a function of weighted 

parameters such as hydrogen bond or ionic interactions, π-π stacking or non-compatible 

interactions. The scoring functions are refined using datasets of known high-affinity 

protein-ligand complexes: PDBbind
191

 with a set of 1,300 complexes or Astex Diverse 

Set
192

 with 85 complexes, both dating from 2007. eHiTS was refined using a set of  

133 complexes
146

, and was reported as one of the best in silico pose prediction software 

with the PDBbind dataset
193

. However, problems may arise in translating the results to 

lower affinity ligands or to novel protein-ligand complexes. The 3D conformation 

generation software has also been reported to influence the outcome of the docking 

software
194

. Finally, the displacement of water molecule in the binding site was not 

taken into account by eHiTS, and could also account for the lack of correlation between 

the predicted score and the observed affinity. Computational methods such as 

WaterMap
195

 are available to estimate the free energy of hydration but are not included 

in the eHiTS package. 

Finally, the work described in the present report allowed gaining more insight into 

the key groups (hydroxypyridyl and aminoetyl groups) responsible for the nanomolar 

activity of JNJ-4749914. Additionally, we provided additional data regarding the mode 

of action of JNJ-4749914, using confocal images to show that  

JNJ-4749914 inhibited cell entry. The work carried out of JNJ-4749914 highlights two 

avenues that could be explored in the future. First, there are reports that TMC353121 

acts as a cell-to-cell fusion inhibitor
116

. However, there are no reported confocal 

microscopy evidence to support that claim. It could be possible to verify those claims 

using JNJ-4749914 by adding it at a given time after infection (up to 48 h  

post-infection
118

) and observe whether or not syncytia are formed. Second, the 

hydroxypyridyl fragment itself was not tested for anti-viral activity against hRSV. More 

generally, fragment-based drug discovery could be used to target the small molecule 

binding cavity of 3KPE.  
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The discovery of a ligand efficient fragment with a well-defined biding mode could 

provide a valuable starting point for structure-based drug design. Fragments could be 

docked in silico and the most ligand efficient fragments screened for anti-viral activity 

or a diverse subset of available fragment libraries could be screened for anti-viral 

activity in a high-throughput format. Follow up experiment would be the connection of 

promising fragments and the analysis of the evolution of anti-viral activity. Both 

avenues could be explored using methods reported in the present thesis. 
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7 MATERIALS AND METHODS 

7.1 Buffers and solutions 

 

PBS (10 × stock): NaCl (137 mM), KCl (2.7 mM), Na2HPO4 (10 mM), KH2PO4 (2 

mM) pH 7.4 upon dilution to 1×PBS, referred to as PBS. 

Cell permeabilisation & non-specific antibody binding washing: PBS-Tween: 5% 

Tween® 20 (Merck) in 1×PBS, referred to as PBST. 

Table 7.1: cell lysates and Western Blot buffers and solutions: 

Lysis buffer (referred to as RIPA buffer): 

- 50 mM Tris (pH 7.5) 

- 150 mL NaCl 

- 1% NP40 

- 0.5% sodium deoxycholate 

- 0.1% SDS 

- 1× protease inhibitor (Roche) 

5× Loading buffer:  

- 600 µL 1M Tris.HCl (pH 6.8) 

- 5 mL 50% Glycerol 

- 2 mL 10% SDS 

- 500 µL β-mercaptoethanol 

- 1 mL 1% bromophenol blue (filtered) 

- 900 µL water 

12% resolving gel: 

- 4 mL 30% acrylamide 

- 2.5 mL 1.5M Tris-HCl (pH 8.8) 

- 3.3 mL water 

- 100 µL 10% SDS 

- 100 µL 10% ammonium persulphate 

5% stacking gel: 

- 830 µL 30% acrylamide 

- 630 µL 1M Tris-HCl (pH 6.8) 

- 3.4 mL water 

- 50 µL 10% SDS 

- 50 µL 10% ammonium persulphate  

50 µL (25 µL for the stacking gel) of N,N,N',N'-tetramethylethylenediamine 

Dry transfer buffer (also known as Towbin buffer): Tris (25 mM), glycine (1.92 M), 

methanol (20%). 

Chemiluminescence (reagents provided by Sigma–Aldrich): 

- Solution 1: 200 µL luminol (250 mM, in DMSO), 88 µL p-coumaric acid (90 mM, in 

DMSO), 2 mL 1M Tris-HCl (pH 8.5), up to 20 mL with water 

- Solution 2: 12 µL 30% (w/w) H2O2, 2 mL 1M Tris-HCl (pH 8.5), up to 20 mL with 

water 
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7.2 Tissue culture techniques 

7.2.1  Tissue culture plasticware 

 

T25, T75, and T175 tissue culture flasks (Corning) were used. The number refers to 

the growth area in cm
2
. 6-well plate (Corning, 9.5 cm

2
), 24-well plate (Corning, 1.9 

cm
2
) and 96-well plate (Greiner, 0.34 cm

2
) were also used. 

 

7.2.2  Maintaining cells 

 

HEp-2 (Human cervix carcinoma epithelial cell
25

, Health Protection Agency culture 

collections), A549 (Human lung carcinoma epithelial cell
196

, Health protection agency 

culture collections) cells were grown at 37°C with 5% CO2 in Dulbecco's Modified 

Eagle's Media (DMEM) supplemented with 10% foetal bovine serum (FBS) and 1% 

penicillin/streptomycin, referred to as DMEM. At 70-80% confluency in a T175 tissue 

culture flask, cells were washed with PBS, trypsinised for 5-10 min at 37 °C, and fresh 

DMEM was added to neutralise trypsin. At which point, cells were either counted or 

split 1:10 in a T175 tissue culture flask. HEp-2 cells were used from a frozen stock at 

passage 11 and were discarded at passage 25. Cells were routinely checked for 

mycoplasma infection by Carsten Zothner using the MycoAlert Mycoplasmadetection 

kit (Lonza). 

 

7.2.3  Freezing cells down 

 

From a confluent T175 tissue culture flask, cells were washed with PBS, trypsinised 

and centrifuged at 1,500 rpm for 5 min at room temperature. Cells were then washed 

once with PBS, centrifuged and 5 mL of the cryopreservation mix (9:1 FBS–DMSO) 

was added. It was then split into five cryogenic vials (1 mL). 
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7.2.4  Using cells from a frozen stock 

 

The cryogenic vial, which was stored either in liquid nitrogen or in a –80 °C freezer, 

was thawed in a water bath at 37 °C. The cells were centrifuged at 1,500 rpm for 5 min 

at room temperature. The cryopreservation mix was discarded and the cells were 

washed three times with PBS (with a centrifugation step in-between each wash), and 

once with DMEM. The cells were then transferred to a T25 tissue culture flask. Once 

confluent, the cells were trypsinised and transferred a T75 tissue culture flask. Once 

confluent, the cells were trypsinised and transferred to a T175 tissue culture flask to be 

used for further experiments.  

 

7.2.5  Counting cells 

 

The cell suspension obtained after trypsin neutralisation was transferred into a new 

15 mL universal. In duplicates, 100 µL of this suspension was added to 100 µL of 

Trypan Blue Stain (GIBCO), in order to count viable cells only. 10 µL of each replicate 

was then loaded on a haemacytometer for cell counting. A total of 10 counting areas 

were used to count cells. The number of cells per millilitre of suspension was calculated 

as follow: 

                                 

                       
                                 

 

7.2.6  Virus propagation 

 

The laboratory adapted A2 strain of hRSV, previously passaged through Vero cells 

(Monkey African green kidney epithelial cell), was obtained from labelled passage 

number 2 and used  up to passage number 4 (for this report). HEp-2 cells (2×10
6
) were 

incubated for 24 hrs in a T175 tissue culture flask. The growth media was discarded and 

replaced by fresh DMEM (5 mL). 500 µL of the previous A2 stock was added to the 

T175 and incubated for 2 hrs on a rocker at 37 °C. DMEM (15 mL) was then added to 

the T175 and it was incubated for 4 to 5 days. 
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7.3 Confocal imaging 

 

In a 6-well plate, glass coverslips (ø19 mm, VWR) were added to the bottom of the 

wells, and A549 cells (2×10
5
) were added to DMEM (2 mL) and incubated until 60% 

confluent (normally 24 hrs). When ready, DMEM was removed and the monolayer was 

washed carefully three times with PBS, and freshly prepared virus was added (400 µL) 

to the wells (one well was kept for the mock-infected control), and the plate was 

incubated for 2 hrs on a rocker at 37 °C. After which the inocula were removed and 

replaced by fresh DMEM (2 mL). The plate was then incubated for 24 hrs, and the cells 

were: 

i) Washed three times with PBS (2 mL) and  fixed with methanol (1 mL) for 

10 min at –20 °C 

ii) Washed three times with PBS (2 mL) and were permeabilised with PBST  

(1 mL) for 15 min at room temperature, and washed three times with PBST 

(2 mL) 

iii) Blocked with PBST with 5% skimmed milk (Fluka) (1 mL) for 1 hr at room 

temperature, and washed three times with PBST (1 mL) 

iv) Incubated with a goat anti-RSV polyclonal primary antibody conjugated to 

fluorescein isothiocyanate (ab20391, Abcam) in PBST with 5% skimmed 

milk (1:50, 50 µL), applied directly onto the coverslips, for 1 hr at room 

temperature, and washed three times with PBST (150 µL) 

v) Were washed twice in PBS (1 mL) and the coverslips were mounted onto 

glass slides (Agar Scientific) using VECTASHIELD Mounting Medium 

with DAPI (VECTOR Laboratories). The slides were stored in the dark at 4 

°C until confocal imaging. 

vi) Confocal sections of fixed samples were captured on the laser scanning 

microscope 510 META Microscope (Carl Zeiss Ltd) equipped with a 40× 

and 63×, NA 1.4, oil immersion lens. 
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7.4 Plaque assay 

 

The virus titres were evaluated in HEp-2 cells using a plaque assay method based on 

antibody detection
126,127

.  

i) In a 24-well plate, HEp-2 cells (1×10
5
) were added to DMEM (1 mL) and 

incubated until confluent (normally 24 hrs). When ready, DMEM was 

removed and the monolayer was washed once with PBS.  

ii) Virus dilutions (mock, 1:10
3
, 1:10

4
, 1:10

5
, 1:10

6
, 1:10

7
) were prepared in 

DMEM and added (200 µL) in triplicate. The plate was then incubated for  

2 hrs on a rocker at 37 °C.  

iii) The inocula were removed and replaced by DMEM–methylcellulose  

(1:1, 1 mL) and the plate was incubated for 4 to 5 days. The overlay was 

removed using an aspirator and cells were fixed with methanol (1 mL) for 1 

hr at 4 °C 

iv) The cells were permeabilised with PBST (1 mL) for 15 min at room 

temperature, and washed three times with PBST (1 mL) 

v) The plate was blocked with PBST with 5% skimmed milk (1 mL) for 1 hr at 

room temperature, and washed three times with PBST (1 mL) 

vi) The cells were incubated with a goat anti-RSV polyclonal primary antibody  

(7950-0004, AbD Serotec) in PBST with 5% Skimmed milk (1:100, 200 µL) 

for 1 hr at room temperature, and washed three times with PBST (1 mL) 

vii) The cells were incubated with a  rabbit anti-goat polyclonal secondary 

antibody conjugated to horseradish peroxidase (ab6741, Abcam) in PBST 

with 5% Skimmed milk (1:1000, 200 µL) for 1 hr at room temperature, and 

washed three times with PBST (1 mL), and washed two times in PBS (1 mL) 

viii) The cells were incubated with 4-Chloro-1-naphtol (Pierce) substrate (200 µL) 

for 10 min, and the reaction was neutralised by washing once with water 

(1mL) for 5 min. Preparation of the 4-chloro-1-naphtol substrate: 1 mL of a 3 

mg/mL stock solution (prepared in methanol) was added to 10 mL of PBS. 10 

µL of 30% (w/w) H2O2 (Sigma) was added prior to incubation. 
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ix) Plaques were counted for wells which only had between 10 and 100 plaques, 

and were averaged over the replicates. The titre, expressed in plaque forming 

unit per millilitre (p.f.u./mL) is calculated as follow: 

average of the number of pla ues

volume of virus added  mL    dilution considered
 

 

7.5 Preparation of cell lysates and western blot analyses 

 

For each cell line, two T25 tissue culture flasks were seeded (3×10
6
), and incubated 

for 24 hr. The flasks were then used for mock-infection and for infection with the A2 

strain (M.O.I. = 1), and incubated for 1 hr on a rocker at 37 °C. Then, the inocula were 

removed and replaced by fresh DMEM. The cells were incubated for 24 hr. After 

which, the media was removed, the cells washed with PBS and trypsinised (1 mL). 

Once detached, the cells were pipetted into a 1.5 mL Eppendorf tube and centrifuged at 

1,500 rpm for 3 min. The cells were then washed with PBS (1 mL) and centrifuged at 

1,500 rpm for 2 min. The cell pellets were re-suspended in RIPA buffer (1 mL) and 

incubated on ice for 30 min. The mixture was then centrifuged at 13,000 rpm for 2 min 

and the supernatants collected in fresh Eppendorf tubes. 

Total protein was quantified by BCA assay (Pierce), where the concentrations are 

compared to bovine serum albumin standards as per the manufacturer’s instruction.   

2 µg of total protein from each sample in 1×loading buffer were denatured at 95 °C for 

5 min. In order to estimate the molecular weight of the proteins, protein markers 

(P7708S from NEB or LC5925 from Invitrogen) were loaded alongside total proteins. 

These samples were separated by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (15 mA for 5% stacking gel and 25 mA for the 12% resolving gel) and 

electrophoretically transferred to Immobilon™ transfer  membranes (Millipore) at 15V 

for 1hr using a semi-dry blotter.  
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The membrane was: 

i)  blocked overnight at 4 °C in PBST with 5% skimmed milk 

ii) incubated for 1 hr with either a goat anti-RSV polyclonal primary antibody 

(ab20745, Abcam) in PBST with 5% skimmed milk (1:1000), or a goat anti-

RSV polyclonal primary antibody  (7950-0004, AbD Serotec) in PBST with 

5% skimmed milk (1:500), both for 1 hr at room temperature.  

iii) washed three times with PBST, and incubated with a  rabbit anti-goat 

polyclonal secondary antibody conjugated to horseradish peroxidase 

(ab6741, Abcam) in PBST with 5% skimmed milk (1:1000) for 1 hr at room 

temperature, and washed three times with PBST with 5% Skimmed milk 

iv) washed three times with PBST, followed by a final water wash. 

v) Reactive bands were detected by chemiluminescence (1:1, 

Solution 1 – Solution 2). 

vi) Films (x-ray, Kodak) were exposed to the membranes at various exposure 

times and developed using x-ray film developer (Konica).  

 

A goat anti-RSV polyclonal primary antibody conjugated to horseradish peroxidase 

(ab20686, Abcam) in PBST with 5% Skimmed milk (1:500) was also used for direct 

detection: it did not require the use of a secondary antibody. The final washing steps 

were identical.  

 

7.6 Spinoculation 

 

Spinoculation, or the centrifugation of the multi-well plate just after infection, has 

been reported to increase the efficiency of virus infection (hRSV
197

: 1,750g for 15 min 

at 4 °C in HeLa cells; human immunodeficiency virus type 1
198

: 1,500g for 60 min at 

room temperature in human primary monocytes; Kaposi's sarcoma-associated 

herpesvirus
199

: in human umbilical vein endothelial cells). The purpose of the current 

research was not to further study the effects of spinoculation on hRSV. However, it was 

assumed that spinoculation at low speed and below room temperature (15 °C) would 

ensure that all cells would be infected at the same time (hRSV binds to its cellular target 

at 4 °C but fusion only occurs at temperature >18 °C in HEp-2 cells
200

). 
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7.7 Antiviral assay 

 

All liquids were dispensed using the 10-100 µL or 30-300 µL Research® multi-

channel pipettes (Eppendorf). 25 µL of DMEM containing either i) 1% DMSO, or ii) 

Ribavirin concentration (in quadruplicate), or iii) 25 µL of compounds library (100 µM) 

were added to a black 96-well plate (µClear®, Greiner). HEp-2 cells were then seeded 

(50 μL at 8.4 × 10
3
) and incubated for 24 hrs. At which point, the cells were infected 

with hRSV (A2 strain) at a M.O.I. of 0.5 (25 μL), unless otherwise stated, and were 

centrifuged at 1,000g at 15 °C for 30 min, and were incubated for 24 hrs, giving a final 

1:4 dilution of DMSO or any compound used. 

24 hr post infection, the cells were: 

i) Washed three times with PBS (100 µL) 

ii) Fixed with methanol (100 µL) for 10 min at –20 °C, and washed three times 

with PBST (150 µL) 

iii) Permeabilised with PBST (100 µL) for 15 min at room temperature, and 

washed three times with PBST (150 µL) 

iv) Blocked with PBST with 5% skimmed milk (100 µL) for 8 hrs at 4 °C, and 

washed three times with PBST (150 µL) 

 

The virus was detected by indirect fluorescence. The cells were: 

i) Incubated with a goat anti-RSV polyclonal primary antibody  (7950-0004, 

AbD Serotec) in PBST with 5% skimmed milk (1:100, 50 µL) overnight at  

4 °C, and washed three times with PBST (150 µL) 

ii) Incubated with a donkey anti-goat polyclonal secondary antibody  

conjugated to fluorescein isothiocyanate (ab6881, Abcam) in PBST with  

5% skimmed milk (1:200, 50 µL) for 2 hrs at 37 °C, and washed three times 

with PBST (150 µL) 

iii) Washed two times in PBS (150 µL) prior to the final addition of PBS  

(50 µL) 
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iv) The plate was either stored at 4 °C, or read on a plate reader (Fluostar, BMG 

LABTECH) or was also observed under a benchtop inverted fluorescent 

microscope attached to an imaging computer (Nikon) equipped with 4×, 

10×, 20×, 40× lenses. 

v) The data from the plate reader are expressed in relative fluorescent units 

(R.F.U.). 

 

7.8 Plate reader parameters 

 

The program used to read the plate was as follow:  

i) The bottom optics of the plate reader were used 

ii) The excitation and emission filters were set at 485 nm and 520 nm 

respectively 

iii) The gain was calculated automatically for every plate, relatively to the 

brightest well 

iv) The plate was read using the well scanning mode with a scan matrix of 8 × 8, 

a number of flashes per scan point of 10 and a position delay of 0.5 s. 
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7.9 Cytotoxicity assay 

 

All liquids were dispensed using the 10-100 µL or 30-300 µL Research® multi-

channel pipettes (Eppendorf). 25 µL of DMEM containing i) 1% DMSO, or ii) 

Ribavirin concentration (in triplicate), or iii) 25 µL of compounds library (100 µM) 

were added to a clear 96-well plate (Greiner). HEp-2 cells were then seeded  

(50 µL 8.4 × 10
3
) and incubated for 24 hrs. At which point, 25 µL of DMEM was added 

and the plate was centrifuged at 1,000g at 15 °C for 30 min, and were incubated for 24 

hrs, giving a final 1:4 dilution of DMSO or any compound used. 48 hrs post seeding, the 

cells were washed twice with PBS (150 µL). The plate was then incubated with an MTT 

solution (M2128, Sigma) (1 mg/L made in serum-free DMEM, 100 µL) for 30 min at  

37 °C. The MTT mixture was discarded and replaced by 100% DMSO, in order to 

dissolve the cells, and was incubated in the dark, at room temperature for 15 min on an 

orbital shaker (200 rpm). Absorbance was read at 570 nm (DYNEX Technologies). 

 

7.10 Data analysis 

 

The study of the antiviral effects of the internal positive control or the compounds 

library was carried out as follow: 

i) The first step is only for compounds with enough replicate wells, i.e. the 

internal positive (Ribavirin and the internal negative (DMSO) controls. For 

each individual data series (i.e. Ribavirin concentrations or controls i) in 

triplicate for the study of the antiviral effects of Ribavirin, or ii) in 

quadruplicate for the assay plate), an outlier detection was performed using 

the Grubbs' test
201,202

 (http://www.graphpad.com/quickcalcs/Grubbs1.cfm). 

When the test came back positive, the highlighted outliers were discarded. 

 

 

 

 

 

 

http://www.graphpad.com/quickcalcs/Grubbs1.cfm
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ii) The data was then normalised as follow: 

        
        

   
 

N(i,j): normalised values for each sample loaded on the plate in row i, 

column j; x(i,j): samples loaded on the plate in row i, column j, H: high, 

average of maximum signal (virus control for the Ribavirin plate, DMSO 

control for the assay plate), L: low, average of the minimum signal (mock-

infected for the Ribavirin plate, 2.5 mM Ribavirin for the assay plate). 

iii) When serial dilutions were used, average and standard deviation of the 

normalised data series were then plotted using OriginPro 7.5 (OriginLab) 

and fitted to a sigmoid using the Pharmacology-Dose Response fitting 

function with instrumental weighting to take the standard deviation into 

account. The fitting equation is given as: 

      
      

                    
                 

iv) When serial dilutions were used, data variability band: for this, we used 

normalised Gaussian (normal distribution): 

     
 

     
      

      

   
  

µ and σ are the mean and standard deviation of the normalised N(i,j), respectively. x is 

between 0 and 1 with 0.01 increments. 

v) Alternatively, we determined hits as follow: normalised value greater than 

three standard deviation of the plate (without including the controls). 
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The study of the cytotoxic effects of the internal positive control or the compounds 

library was carried out as follow: 

i) The first step is only for compounds with enough replicate wells, i.e. the 

internal positive (Ribavirin and the internal negative (DMSO) controls. For 

each individual data series (i.e. Ribavirin concentrations or controls i) in 

triplicate for the study of the antiviral effects of Ribavirin, or ii) in 

quadruplicate for the assay plate), an outlier detection was performed using 

the Grubbs' test
201,202

 (http://www.graphpad.com/quickcalcs/Grubbs1.cfm). 

When the test came back positive, the highlighted outliers were discarded. 

ii) The data was expressed as the ratio of the compounds (i.e. average of 

Ribavirin concentrations for the Ribavirin plate, or single value for the assay 

plate) to the average of the untreated cells 

iii) Average and standard deviations of the expressed data were then plotted 

using Origin 7.5 (OriginLab). 

 

  

http://www.graphpad.com/quickcalcs/Grubbs1.cfm
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7.11 Ribavirin stock and preparation of dilution series 

 

Ribavirin (R9644, Sigma) was prepared as a 1M stock in DMSO and stored at –20 

°C. Ribavirin antiviral and cytotoxic studies were carried out using sixteen different 

Ribavirin concentrations, ranging from 2.5 mM to 10 nM (assay concentration). These 

concentrations were prepared as described in Table 7.2. 

The plate layout was as follows (Figure 7.1): the mock-infected cell controls and the 

A2-infected cell controls were added in column 1 with their respective positioning 

swapped in column 12. Additionally, twelve A2-infected cell controls were dispensed 

between column 2 and 11 in order to correct for potential tailing off of the fluorescence 

signal.  

 

 

Figure 7.1 Typical layout of the 96-well plate to study the cytotoxic and antiviral 

effects of Ribavirin. The top and bottom rows were never used and are shown in black. 

Mock refers to non-infected HEp-2 cells treated with growth media only, A2 refers to 

the A2-infected HEp-2 cells. The concentrations are the final assay concentrations. 
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Table 7.2: Preparation of the sixteen serial dilutions of Ribavirin (dispensed by 

hand): 

Reference 

number 

Ribavirin 

concentration 
Volume of diluents 

Volume and 

source of 

Ribavirin 

Ribavirin assay 

concentration 

1 10 mM 495 µL of DMEM 5 µL of stock 2.5 mM 

2 4 mM 
150 µL of DMEM 

(1% DMSO) 
100 µL of 1 1 mM 

3 2 mM 
200 µL of DMEM 

(1% DMSO) 
50 µL of 1 500 µM 

4 1 mM 
270 µL of DMEM 

(1% DMSO) 
30 µL of 1 250 µM 

5 400 µM 
180 µL of DMEM 

(1% DMSO) 
20 of 2 100 µM 

6 240 µM 
220 µL of DMEM 

(1% DMSO) 
30 of 3 60 µM 

7 200 µM 
360 µL of DMEM 

(1% DMSO) 
40 of 3 50 µM 

8 160 µM 
230 µL of DMEM 

(1% DMSO) 
20 of 3 40 µM 

9 100 µM 
180 µL of DMEM 

(1% DMSO) 
20 of 4 25 µM 

10 80 µM 
230 µL of DMEM 

(1% DMSO) 
20 of 4 20 µM 

11 60 µM 
170 µL of DMEM 

(1% DMSO) 
30 of 5 15 µM 

12 40 µM 
160 µL of DMEM 

(1% DMSO) 
40 µL of 7 10 µM 

13 20 µM 
990 µL of DMEM 

(1% DMSO) 
10 µL of 3 5 µM 

14 4 µM 
180 µL of DMEM 

(1% DMSO) 
20 µL of 12 1 µM 

15 400 nM 
180 µL of DMEM 

(1% DMSO) 
20 µL of 14 100 nM 

16 40 nM 
180 µL of DMEM 

(1% DMSO) 
20 µL of 15 10 nM 
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7.12 Ribavirin master plate to test the robustness of the assay upon using the 

robot 

 

Ribavirin (R9644, Sigma) was prepared as a 1M stock in DMSO and stored at –20 

°C. The robustness of the assay upon using the robot (Hamilton) was assessed using 

sixteen different Ribavirin concentrations ranging from 2.5 mM to 10 nM  

(assay concentration). These concentrations were prepared as described in Table 7.3. 15 

µL was required for each replicate. The robot would do a 1:100 dilution as follow, as it 

would do for the compound library: 1 µL from the master plate to 19 µL of DMEM 

(this would constitute the dilution plate). 5 µL of dilution plate to 20 µL of DMEM  

(this would constitute the assay plate). The same procedure was used  

(10 mM to 100 µM for a final assay concentration of 25 µM) to prepare the assay plate 

from the master plate of the library of compounds. 

The master plate layout was as follows (Figure 7.2): the mock-infected cell controls 

and the A2-infected cell controls were added in column 1 with their respective 

positioning swapped in column 12. Additionally, sixteen A2-infected cell controls were 

dispensed between column 2 and 11 in order to correct for potential tailing off of the 

fluorescence signal. 

 

Figure 7.2 Layout of the Ribavirin master plate. Mock refers to non-infected HEp-2 

cells treated with growth media only, A2 refers to the A2-infected HEp-2 cells. The 

concentrations are made in 100% DMSO. Shown in brackets are the final assay 

concentrations. 
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Table 7.3: Preparation of the sixteen serial dilutions of Ribavirin (dispensed with 

the robot): 

Reference 

number 

Ribavirin 

concentration 

Volume of 

DMSO 

Volume and 

source of 

Ribavirin 

Ribavirin 

assay 

concentration 

1 1 M N/A Stock 2.5 mM 

2 400 mM 60 µL 40 µL of 1 1 mM 

3 200 mM 100 µL 25 µL of 1 500 µM 

4 100 mM 90 µL 10 µL of 1 250 µM 

5 40 mM 90 µL 10 µL of 2 100 µM 

6 24 mM 88 µL 12 µL of 3 60 µM 

7 20 mM 90 µL 10 µL of 3 50 µM 

8 16 mM 92 µL 8 µL of 3 40 µM 

9 10 mM 90 µL 10 µL of 4 25 µM 

10 8 mM 92 µL 8 µL of 4 20 µM 

11 6 mM 85 µL 15 µL of 5 15 µM 

12 4 mM 90 µL 10 µL of 5 10 µM 

13 2 mM 90 µL 10 µL of 7 5 µM 

14 400 µM 90 µL 10 µL of 12 1 µM 

15 40 µM 90 µL 10 µL of 14 100 nM 

16 4 µM 90 µL 10 µL of 15 10 nM 
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7.13 Mode of action of JNJ-4749914 

 

In a 6-well plate, glass coverslips (ø19 mm, VWR) were added to the bottom of the 

wells, and: 

- Mock- and virus-infected wells: 500 μL of DMEM (1% DMSO) were added 

to the corresponding wells or, 

- Virus-infected and treated with JNJ-4749914: 500 μL of a solution of  

JNJ-4749914 in DMEM (100 μM, 1% DMSO) were added to the 

corresponding well 

HEp-2 cells (1.5 mL / well, 2×10
5
) were then added to the 6-well plate and incubated 

for 24 hr at 37 °C. 500 μL of DMEM (mock-infected control) or 500 μL of virus at a 

M.O.I. = 0.5 (virus-infected control and virus-infected treated with JNJ-4749914) were 

added and the plate was incubated for 24 hr at 37 °C. The media was then removed and 

the cells washed three times with PBS (2 mL), and replaced by: 

- Mock- and virus-infected wells: 2 mL DMEM (0.25% DMSO) 

- Virus-infected treated with JNJ-4749914: 2 mL of a solution of JNJ-4749914 

in DMEM (25 μM, 0.25% DMSO) 

The plate was then incubated until syncytia could be observed (at least 3 days), and 

the cells were: 

i) Washed three times with PBS (2 mL) and  fixed with methanol (1 mL) for 

10 min at –20 °C 

ii) Washed three times with PBS (2 mL) and were permeabilised with PBST  

(1 mL) for 15 min at room temperature, and washed three times with PBST 

(2 mL) 

iii) Blocked with PBST with 5% skimmed milk (Fluka) (1 mL) overnight at  

4 °C, and washed three times with PBST (1 mL) 

iv) Incubated with a goat anti-RSV polyclonal primary antibody   

(7950-0004, AbD Serotec) in PBST with 5% skimmed milk (1:100, 1 mL) 

for 1 hr at 37 °C, and washed three times with PBST (150 µL) 
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v) Incubated with a donkey anti-goat polyclonal secondary antibody  

conjugated to fluorescein isothiocyanate (ab6881, Abcam) in PBST with  

5% skimmed milk (1:200, 1 mL) for 1 hrs at 37 °C, and washed three times 

with PBST (150 µL) 

vi) Were washed twice in PBS (1 mL) and the coverslips were mounted onto 

glass slides (Agar Scientific) using VECTASHIELD Mounting Medium 

with DAPI (VECTOR Laboratories). The slides were stored in the dark at 4 

°C until confocal imaging. 

vii) Confocal sections of fixed samples were captured on the laser scanning 

microscope 510 META Microscope (Carl Zeiss Ltd) equipped with a 40× 

and 63×, NA 1.4, oil immersion lens. 

Each condition was tested in duplicate. 

 

7.14 High-throughput screening 

 

The results were stored within a Laboratory Information Management System 

(LIMS). The LIMS tracks the location of compounds in bar-coded plates and integrates 

biological (assay) and chemical (structural) data. The screening data were then 

rigorously analysed
81-83

 (e.g. Z-factor, as a measurement of the assay quality
136

) and 

active compounds are selected as having an activity greater than three standard 

deviations from the normalised mean
81,83,136,203

. 
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7.15 Compounds characterisation 

 

All reactions were carried out in oven-dried glassware under an atmosphere of N2 

from a Schlenk line fitted with a nitrogen bubbler, using dry techniques. 

Tetrahydrofuran, dichloromethane, toluene, acetonitrile were dried and purified by 

means of a Pure Solv MD solvent Purification System (Innovative Technology Inc.) or 

obtained from Oxford sure/seal™ bottles from Sigma-Aldrich. All other solvents used 

were chromatography or analytical grade. Chemicals used were supplied by  

Sigma–Aldrich, Alfa-Aesar, Fluka, and TCI Europe. 

Thin layer chromatography was carried out on aluminium backed silica (Merck silica 

gel 60 F254) plates supplied by Merck. Visualisation of the plates was achieved using an 

ultraviolet lamp (λmax = 254 nm), KMnO4 and anisaldehyde.  Flash chromatography was 

carried out using silica gel 60 (35-70 μm particles) according to the method of Still, 

Kahn and Mitra
204

.   

Optical rotation measurements were carried out at room temperature either on a 

Perkin-Elmer AA-1000 with a path length of 0.5 dm or on a Schmidt+Haensch 

Polartronic H 532 with a path length of 1 dm; concentrations are g/100mL and the 

optical rotations are given in 10
-1

 deg cm
2
g

-1 
(omitted). Infrared spectra were recorded 

on a Perkin-Elmer one FT-IR spectrometer and the wavelengths (υmax) are given in cm
−1 

(omitted).  

Proton and carbon NMR data were collected on an Avance 500, DPX500 and Bruker 

DPX 300. All shifts were recorded against an internal standard of tetramethylsilane 

(TMS). Solvents (CDCl3, C6D6, DMSO-d6 and MeOD) used for NMR experiments 

were obtained from Sigma-Aldrich. Splitting patterns in this report have been recorded 

in an abbreviated manner, s (singlet), d (doublet), t (triplet), q (quartet) and m 

(multiplet). See the abbreviations section for additional splitting pattern abbrevation. 

NMR data was recorded in the following format, PPM (splitting pattern, number of 

protons, coupling constant (Hz), proton ID). Signal assignments were made by the aid 

of COSY, DEPT 90 and 135, HMQC, HMBC, and NOESY. 
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Low resolution mass spectra data were recorded on a Agilent 1200 series LC system 

compromising a Bruker HCT Ultra ion trap mass spectrometer, a high vacuum degasser, 

a binary pump, a high performance autosampler, an autosampler thermostat, a 

thermostated column compartment a diode array detector. The system used two solvent 

systems: MeCN/H2O + 0.1% formic acid with a Phenomenex Luna C18 50 × 2mm 5 

micron column or MeCN/H2O with a Phenomenex Luna C18 50 × 2mm 5 micron 

column  

Nominal and high resolution mass spectrometry using electrospray ionization was 

recorded by Mrs Tanya Marinko-Covell on a Micromass LCT-KA11 or a Bruker 

Daltronics micrOTOF spectrometer.  Field Desorption Ionisation mass spectra were 

acquired on a Water-Micromass GCT premier spectrometer equipped with a Linden 

LIFDI probe. 

 

Method A: Synthesis of γ-lactams from cyclic sulfamidates 

Diethyl malonate or N-(diphenylmethylene)glycine ethyl ester (2.0 eq.) was added to 

a suspension of sodium hydride (2.0 eq.) in DMF (0.25 M). The resulting mixture was 

stirred at room temperature for 20 min and the cyclic sulfamidate (1.0 eq.) was added in 

one portion. The reaction mixture was heated to 50 °C for 24 h, cooled to room 

temperature and treated with concentrated sulfuric acid (6 drops / mmol) and water  

(6 drops / mmol) (pH < 2) and stirred at room temperature for a further 48 hrs. The 

reaction mixture was neutralised with saturated aqueous NaHCO3 (pH 7-8), diluted with 

EtOAc and dried (Na2SO4). The solvent was removed under reduced pressure to give 

the crude product which was dissolved in toluene (0.05 M) and heated to 60 °C 

overnight and the solvent removed under reduced pressure to give the crude product. 
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Ethyl 4-[(1H-1,3-benzodiazol-2-yl)amino]piperidine-1-carboxylate 9 

 

 

2-Chlorobenzimidazole 7 (3.2 g, 21 mmol) and ethyl-4-amino-1-

piperidinecarboxylate 8 (14.5 mL, 84 mmol) were stirred overnight at 130 °C after 

which the reaction was cooled to room temperature and acetone (30 mL) was added. 

The resulting precipitate was filtered and the filtrate was removed under reduced 

pressure to give the crude which was purified by flash chromatography, eluting with 

95:5:0.1 DCM–MeOH–NH4OH, to give the benzimidazole 9 (2.3 g, 38%) as a light 

yellow solid, Rf = 0.25 (95:5:0.1 DCM–MeOH–NH4OH); 
1
H NMR (500 MHz; MeOD) 

δ 7.26-7.22 (m, 2H, Ar 2-H & 5-H or 3-H & 4-H ), 7.03-6.99 (m, H, Ar 2-H & 5-H or  

3-H & 4-H), 4.17 (q, J = 7.1 Hz, 2H, Et 1-H2), 4.19-4.11 (m, 2H, 2-H or 6-H), 3.86 (tt,  

J = 10.6, 4.0 Hz, 1H, 4-H), 3.08 (br, 2H, 2-H or 6-H), 2.15-2.06 (m, 2H, 3-H or 5-H), 

1.55-1.44 (m, 2H, 3-H or 5-H), 1.31 (t, J = 7.1 Hz, 3H, Et 2-H3); 
13

C NMR (125 MHz, 

CDCl3) δ 157.3, 155.9, 121.4, 112.8, 62.8, 50.9, 44.0, 33.4, 15.0;  HRMS-ES  

m/z 289.1655 (M+H calculated for C15H20N4O2 requires 289.1659).  
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Ethyl 4-({1-[(3-hydroxy-6-methylpyridin-2-yl)methyl]-1H-1,3-benzodiazol-2-

yl}amino)piperidine-1-carboxylate 11 

 

 

 

2-(chloromethyl)-6-methylpyridin-3-ol 10
††††

 (1.2 g, 6.2 mmol) and K2CO3  

(2.3 g, 16.4 mmol) were added to a solution of benzimidazole 9 (1.2 g, 4.1 mmol) in 

acetonitrile (19 mL). The resulting mixture was stirred overnight at 90 °C after which 

the reaction was cooled to room temperature. The solvent was removed under reduced 

pressure to give the crude which was dissolved in 9:1 DCM–MeOH (30 mL). The 

organic phase was washed with a 10% aqueous solution of K2CO3 (15 mL), dried 

(MgSO4) and the solvent was removed under reduced pressure. Acetone was added and 

the precipitate filtered to afford the N-alkylated benzimidazole 11 (370 mg, 18%) as a 

light yellow solid, Rf = 0.57 (9:1 DCM–MeOH); 
1
H NMR (500 MHz; MeOD) δ  

7.47-7.44 (m, 1H, Ar H), 7.33-7.29 (m, 1H, Ar H), 7.19 (d, J = 8.3 Hz, 1H, Py 4-H or  

5-H), 7.10 (d, J = 8.4 Hz, 1H, Py 4-H or 5-H), 7.09-7.02 (m, 2H, Ar H), 5.23 (s, 2H, Bn 

CH2), 4.20 (q, 2H, Et 1-H2), 4.13 (br dt, J = 13.7, 3.7 Hz, 2H, 2-H or 6-H), 4.00 (tt,  

J = 10.1, 3.9 Hz, 1H, 4-H), 3.18 (br, 2H, 2-H or 6-H), 2.47 (s, 3H, Me), 2.23-2.15 (m, 

2H, 3-H or 5-H), 1.64-1.53 (m, 2H, 3-H or 5-H), 1.33 (t, J = 7.1 Hz, 3H, Et 2-H3); 
13

C 

NMR (125 MHz, CDCl3) δ 157.4, 155.9, 151.1, 149.6, 143.6, 142.5, 135.6, 125.4, 

125.2, 122.2, 120.8, 115.9, 109.7, 62.8, 50.9, 44.0, 43.8, 33.4, 23.2, 15.0; HRMS-ES 

m/z 410.2202 (M+H calculated for C22H27N5O3 requires 410.2187).  

 

  

                                                 
††††

 2-(chloromethyl)-6-methylpyridin-3-ol was prepared in a single step from 2,6-lutidine-α2,3-diol 

and was used crude. 
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6-Methyl-2-({2-[(piperidin-4-yl)amino]-1H-1,3-benzodiazol-1-yl}methyl)pyridin-

3-ol 12 

 

 
 

 

A 33% solution of HBr in acetic acid (8 mL) was added to the N-alkylated 

benzimidazole 11 (300 mg, 0.7 mmol). The resulting mixture was stirred overnight at  

60 °C after which the reaction was cooled to room temperature. A 10% aqueous 

solution of K2CO3 (10 mL) followed by K2CO3 (powder) were added to neutralise the 

acid. The solvent was removed under reduced pressure to give the crude which was 

dissolved in 9:1 DCM–MeOH (30 mL). The organic phase was washed with water  

(10 mL) and the aqueous layer was saturated with K2CO3 (powder). The organic layer 

was dried (MgSO4) and the solvent was removed under reduced pressure to give the 

secondary amine 12 (198 mg, 80 %) as a light brown solid, 
1
H NMR  

(500 MHz; MeOD) δ 7.44-7.39 (m, 1H, Ar H), 7.25-7.21 (m, 1H, Ar H), 7.08 (d, J = 8.3 

Hz, 1H, Py 4-H or 5-H), 7.02-6.93 (m, 3H, Ar H, Py 4-H or 5-H), 5.14 (s, 2H, Bn CH2), 

3.93 (tt, J = 10.3, 3.9 Hz, 1H, Piperidine 1-H), 3.34-3.25 (m, 2H, Piperidine 3-H or  

5-H), 3.00-2.92 (m, 2H, Piperidine 3-H or 5-H), 2.39 (s, 3H, Me), 2.23 (m, 2H, 

Piperidine 2-H or 6-H), 1.70 (m, 2H, Piperidine 2-H or 6-H); 
13

C NMR (125 MHz, 

MeOD) δ 156.0, 147.7, 144.1, 142.7, 135.8, 126.4, 125.5, 122.1, 120.7, 115.8, 109.7, 

45.3, 44.3, 32.9, 24.2, 23.1; HRMS-ES m/z 338.1982 (M+H calculated for C19H23N5O 

requires 338.1975). No Rf was recorded as the compound stayed on the baseline in 

50:8:1 DCM–MeOH–NH4OH. 
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 tert-Butyl N-{2-[4'-({1-[(3-hydroxy-6-methylpyridin-2-yl)methyl]-1H-1,3-

benzodiazol-2-yl}amino)piperidin-1'-yl]ethyl}carbamate 14 

 

 

 

tert-Butyl N-(2-bromoethyl)carbamate 13 (159 mg, 0.7 mmol) and Et3N (123 µL,  

0.9 mmol) were added to a solution of the secondary amine 12 (198 mg, 0.6 mmol) in 

DMF (4.5 mL). The resulting mixture was stirred overnight at 80 °C and the solvent 

was evaporated. The residue was dissolved in 4:1 DCM–water (30 mL) and the organic 

phase was dried (MgSO4) and the solvent was removed under reduced pressure to the 

crude product which was purified by flash chromatography, eluting with 9:1  

DCM–MeOH, to give the carbamate 14 (88 mg, 31 %) a yellow solid, Rf = 0.25  

(9:1 DCM–MeOH); 
1
H NMR (500 MHz; MeOD) δ 7.43-7.39 (m, 1H, Ar H), 7.28-7.24 

(m, 1H, Ar H), 7.14 (d, J = 8.3 Hz, 1H, Py 4-H or 5-H), 7.05-6.97 (m, 3H, Ar H, Py 4-H 

or 5-H), 5.16 (s, 2H, Bn CH2), 3.81-3.73 (m, 1H, 4'-H), 3.23 (br t, J = 6.7 Hz, 2H, 1-H 

or 2-H), 3.00 (br dd, J = 11.5 Hz, 2H, 2'-H or 6'-H), 2.54 (t, J = 6.8 Hz, 2H, 1-H or  

2-H), 2.44 (s, 3H, Me), 2.33 (t, J = 10.7 Hz, 2H, 2'-H or 6'-H), 2.18-2.11 (m, 2H, 3'-H or  

5'-H), 1.69 (td, J = 13.8, 3.4 Hz, 2H, 3'-H or 5'-H), 1.45 (s, 9H, 
t
Bu); 

13
C NMR  

(125 MHz, MeOD) δ 158.4 (C=O), 155.8 (Ar C), 151.1 (Ar C), 149.7 (Ar C), 143.5 (Ar 

C), 142.0 (Ar C), 135.5 (Ar C), 125.4 (Ar C), 125.2 (Ar C), 122.3 (Ar C), 121.0 (Ar C), 

115.8 (Ar C), 109.7 (Ar C), 80.2 (C(CH3)3), 58.7 (C-1 or C-2), 53.5 (C-2' and C-6'), 

49.9 (C-4'), 44.1 (C-1 or C-2), 38.5 (Bn CH2), 33.1 (C-3' and C-5'), 28.9 (C(CH3)3), 23.4 

(Me); HRMS-ES m/z 481.2943 (M+H calculated for C26H36N6O3 requires 481.2922). IR 

spectrum could not be recorded.  

  



 

153 

 

2-[(2-{[1-(2-Aminoethyl)piperidin-4-yl]amino}-1H-1,3-benzodiazol-1-yl)methyl]-

6-methylpyridin-3-ol 15 

 

 

5N HCl in propan-2-ol (570 μL) was added to a solution of the carbamate 14  

(45 mg, 94 μmol) in propan-2-ol (5.6 mL). The resulting mixture was stirred at 60 °C 

for 4 hrs and the resulting precipitate was filtered, washed with propan-2-ol and 

diisopropylether to give JNJ-4749914 15 (21 mg, 40%) as a light brown solid, 
1
H NMR 

(500 MHz; CDCl3) δ 7.80 (d, 1H, J = 8.2 Hz, Py  4-H or 5-H), 7.67 (d, J = 8.6 Hz, 1H, 

Py  4-H or 5-H), 7.57 (d, J = 7.5 Hz, 1H, Ar-H), 7.45 (d, J = 7.9 Hz, 1H, Ar-H),  

7.42-7.31 (m, 2H, Ar-H), 5.83 (s, 2H, Bn CH2), 4.26 (br s, 1H, 1-H), 3.91 (br d, J = 12.3 

Hz, 2H, 3-H or 5-H), 3.68-3.55 (m, 4H, Et 1-H2 and 2-H2), 3.49 (br t, J = 11.9 Hz, 2H, 

3-H or 5-H), 2.76 (s, 3H, Me), 2.51 (br d, J = 13.5 Hz, 2H, 2-H or 6-H), 2.45-2.32 (m, 

2H, 2-H or 6-H); 
13

C NMR (125 MHz, CDCl3) δ 153.8, 151.3, 147.8, 137.2, 132.0, 

131.5, 130.5, 129.0, 125.8, 125.4, 113.1, 111.5, 54.7, 53.5, 50.6, 43.2, 35.4, 30.3, 20.2; 

IR (film): 3368, 3043, 2890, 1644, 1618, 1550, 1481; HRMS-ES m/z 381.241  

(M+H calculated for C22H29N5O requires 381.2397). Rf was not recorded. IR spectrum 

could not be recorded.  
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(2R)-2-Aminopent-4-en-1-ol 40 

 

 

Acetyl chloride (4.2 mL, 59.4 mmol) was added to a solution of D-allylglycine 

hydrochloride 39 (1.0 g, 6.6 mmol) in MeOH (14 mL) cooled to 0 °C. The resulting 

mixture was then heated to reflux for 4 h before being cooled to room temperature. The 

solvent was removed under reduced pressure and the yellow oil obtained was dried 

overnight to give the crude methyl ester as a colourless solid. Lithium aluminium 

hydride (531 mg, 14.0 mmol) was added to a solution of the crude methyl ester in THF 

(20 mL) cooled to 0 °C. The resulting mixture was then warmed to room temperature 

and stirred overnight, before being diluted with ether (25 mL). It was then quenched by 

the addition of water (1 mL) and 15% NaOH (1 mL), filtered through a pad of Celite, 

which was washed with ether (50 mL), and dried (Na2SO4). The solvent was removed 

under reduced pressure to give the crude product which was purified by flash 

chromatography, eluting with 50:8:1 DCM–EtOH–NH4OH, to give the amino alcohol 

40
159

 (600 mg, 90%) as a brown oil, Rf = 0.21 (50:8:1 DCM–EtOH–NH4OH);  

[α]D: −22.0 (c. 1.2, CHCl3); 
1
H NMR (500 MHz; CDCl3) δ 5.78 (dddd, 1H,  

J = 16.9, 10.4, 7.9, 6.5 Hz, 4-H), 5.11 (m, 2H, 5-H2), 3.60 (dd, J = 10.7, 3.9 Hz, 1H,  

1-HA), 3.35 (dd, J = 10.8, 7.4 Hz, 1H, 1-HB), 2.93 (m, 1H, 2-H), 2.40 (s, 3H, NH2, OH), 

2.23 (app dddt, J = 14.3, 6.5, 5.2, 1.3 Hz, 1H, 3-HA), 2.04 (app dtt, J = 13.9, 8.0, 1.0 Hz, 

1H, 3-HB); 
13

C NMR (125 MHz, CDCl3) δ 134.9, 117.8, 66.3, 52.1, 38.8; IR (film): 

3354, 3071, 2910, 1641, 1593, 1441, 1360; HRMS-EI m/z 102.0916 (M+H calculated 

for C5H11NO requires 102.0919).  
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N-[(2R)-1-hydroxypent-4-en-2-yl]-2-nitrobenzene-1-sulfonamide 41 

 

 

2-Nitrobenzenesulfonyl chloride (1.0 g, 4.7 mmol) was added to a solution of amino 

alcohol 40 (500 mg, 5.0 mmol) and sodium carbonate (525 mg, 5.0 mmol) in 50:50 

DCM–H2O (6 mL). The resulting mixture was stirred at room temperature overnight 

before being diluted with water and acidified (pH < 2) with 5M aqueous HCl. The 

aqueous phase was extracted with DCM (3 × 20 mL) and the organic washings were 

washed with brine (20 mL) and dried (Na2SO4). The solvent was removed under 

reduced pressure to give the crude product which was purified by flash chromatography, 

eluting with 50:50 petrol–EtOAc to give the sulfonamide 41 (750 mg, 55%) as a viscous 

light yellow oil, Rf = 0.25 (50:50 Petrol–EtOAc); [α]D: −108.3 (c. 1.3, CHCl3); 
1
H NMR  

(500 MHz; CDCl3) δ 8.18-8.12 (m, 1H, Ns), 7.91-7.85 (m, 1H, Ns), 7.78-7.70 (m, 2H, 

Ns), 5.64-5.50 (m, 2H, NH, 4-H), 5.06-4.92 (m, 2H, 5-H2), 3.69-3.52  

(m, 3H, 2-H, 1-H2), 2.35-2.23 (m, 2H, 3-H2), 1.97 (br s, 1H, OH); 
13

C NMR  

(75 MHz, CDCl3) δ 147.8 (Ns), 134.6 (Ns), 133.6 (Ns), 132.9 (Ns), 132.8 (Ns), 130.7 

(Ns), 125.4 (C-4), 119.1 (C-5), 64.5 (C-1), 56.2 (C-2), 36.3 (C-3); IR (film): 3547, 

3340, 3097, 2939, 1594, 1542, 1362; HRMS-EI m/z 287.0700 (M+H calculated for 

C11H14N2O5S requires 287.0702).  
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N-[(2R)-1-Azidopent-4-en-2-yl]-2-nitrobenzene-1-sulfonamide 42 

 

 

Mesyl chloride (100 μL, 1.3 mmols) was added to a solution of the sulfonamide 41 

(338 mg, 1.18 mmols), triethylamine (247 μL, 1.77 mmols) in THF (4 mL) cooled to  

−5 °C. The resulting mixture was stirred at this temperature for 5 min and was filtered 

prior to the solvent being was removed under reduced pressure. The resulting liquid was 

dissolved in EtOAc–H2O (67:33, 15 mL) and the organic phase was dried (MgSO4) and 

the solvent was removed under reduced pressure to give the crude mesylate which was 

used immediately in the next step. Sodium azide (115 mg, 1.8 mmols) was added 

portion-wise to a solution of the crude mesylate (330 mg, 0.91 mmol) in DMF (7 mL) at 

0 °C. The reaction was warmed to and stirred at room temperature for 2 h. Ether  

(10 mL) was added to the reaction mixture and DMF was extracted with brine  

(3 × 10 mL). The organic phase was dried (MgSO4), filtered and the solvent was 

removed under reduced pressure to give the crude product which was purified by flash 

chromatography, eluting with 75:25 petrol–EtOAc to give the azide 42 (200 mg, 54%) 

as a viscous yellow oil, Rf = 0.73 (50:50 Petrol–EtOAc); [α]D: +6.4 (c. 1.2, CHCl3); 
1
H 

NMR (500 MHz; CDCl3) δ 8.17-8.13 (m, 1H, Ns), 7.93-7.88 (m, 1H, Ns), 7.79-7.72  

(m, 2H, Ns), 5.61-5.48 (m, 2H, 4-H and NH), 5.08 (dq, J = 17.1, 1.4 Hz, 1H, 5-HA), 

5.02 (ddt, J = 10.1, 1.8, 1.0 Hz, 1H, 5-HB), 3.66-3.60 (m, 1H, 2-H), 3.42 (dd, J = 5.1, 

2.3 Hz, 2H, 1-HA and 1-HB), 2.33-2.27 (m, 2H, 3-HA and HB); 
13

C NMR (125 MHz, 

CDCl3) δ 147.7 (Ns), 134.8 (Ns), 133.6 (Ns), 133.0 (Ns), 132.0 (Ns), 130.5 (Ns), 125.6 

(C-4), 119.8 (C-5), 54.5 (C-1), 53.9 (C-2), 36.3 (C-3), 36.3 (C-3); IR (film): 3340, 3097, 

2934, 2105, 1643, 1594, 1539; HRMS-ES m/z 334.0583 (M+Na calculated for 

C11H13N5O4S requires 334.058).  
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N-[(2R)-1-Aminopent-4-en-2-yl]-2-nitrobenzene-1-sulfonamide 43 

 

 

Triphenylphosphine (233 mg, 0.9 mmol) and water (0.3 mL) were added to a 

solution of the azide 42 (184 mg, 0.59 mg) in THF (6 mL). The resulting mixture was 

stirred overnight at room temperature  and the solvent was removed under reduced 

pressure to give the product which was purified by flash chromatography eluting with 

90:10 Petrol–EtOAc followed by 50:8:1 DCM–EtOH–NH4OH to give the amine 43 

(117 mg, 69%) as a yellow oil, Rf = 0.5 (50:8:1 DCM–EtOH–NH4OH); [α]D: −100.2  

(c. 0.9, CHCl3); 
1
H NMR (500 MHz; CDCl3) δ 8.18-8.11 (m, 1H, Ns), 7.90-7.83 (m, 

1H, Ns), 7.76-7.68 (m, 2H, Ns), 5.55 (ddt, J = 17.3, 10.1, 7.2 Hz, 1H, 4-H), 4.95 (m, 

2H, 5-H2), 3.48-3.42 (m, 1H, 2-H), 2.79-2.70 (m, 2H, 1-H), 2.68-2.28 (br, 3H, NH), 

2.23 (app t, J = 6.9 Hz, 2H, 3-H2); 
13

C NMR (75 MHz, CDCl3) δ 147.8 (Ns), 135.0 

(Ns), 133.4 (Ns), 133.1 (Ns), 132.8 (C-4), 130.6 (Ns), 125.3 (Ns), 118.7 (C-5), 56.8  

(C-2), 45.1 (C-1), 37.3 (C-3); IR (film): 3426, 3064, 2956, 1648, 1594, 1539; HRMS-

ES m/z 286.0857 (M+H calculated for C11H15N3O4S requires 286.0856).  



 

158 

 

tert-Butyl N-[(2R)-2-[(2-nitrobenzene)sulfonamido]pent-4-en-1-yl]carbamate 30 

 

 

Di-tert-butyl dicarbonate (104 mg, 0.48 mmol) was added to a solution of 

diisopropylethylamine (91 μL, 0.52 mmol) and the amine 43 (117 mg, 0.41 mmol) in 

DCM (7 mL). The reaction mixture was stirred overnight and the organic phase was 

washed with an aqueous solution of 0.5 M citric acid (10 mL), a saturated aqueous 

solution of NaHCO3 (10 mL), brine (10 mL), dried (Na2SO4). The organic phase was 

filtered and the solvent was removed under reduced pressure to give the crude product 

which was purified by flash chromatography, eluting with 67:33 Petrol–EtOAc, to give 

the building block 30 (120 mg, 75%) as an orange oil, Rf = 0.24 (2:1 Petrol–EtOAc); 

[α]D: = −37.2 (c. 1.1, CHCl3); 
1
H NMR (500 MHz; CDCl3) δ 8.15-8.11 (m, 1H, Ns), 

7.89-7.85 (m, 1H, Ns), 7.76-7.71 (m, 2H, Ns), 5.57-5.46 (m, 2H, 4-H and NH(Ns)), 

5.03-4.90 (m, 2H, 5-H2), 4.84 (br s, 1H, NH(Boc)), 3.64-3.55 (m, 1H, 2-H), 3.38-3.29 

(m, 1H, 1-HA), 3.11 (ddd, J = 14.2, 7.3, 6.1 Hz, 1H, 1-HB), 2.29-2.15 (m, 2H, 3-H2), 

1.42 (9H, C(CH3)3); 
13

C NMR (125 MHz, CDCl3) δ 156.3 (C=O), 147.8 (Ns), 134.7 

(Ns), 133.5 (Ns), 132.9 (Ns), 132.4 (Ns), 130.7 (Ns), 125.4 (C-4), 119.3 (C-5), 79.8 

(C(CH3)3), 55.0 (C-2), 44.4 (C-1), 37.4 (C-3), 28.3 (C(CH3)3); IR (film): 3346, 3096, 

2980, 1699, 1643, 1593, 1539; HRMS-ES m/z 408.1211 (M+Na calculated for 

C16H23N3O6S requires 408.12).   
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3-Amino-N-[(1S,2S)-1-hydroxy-1-phenylpropan-2-yl]-N-methylpropanamide 46 

 

 

Pivaloyl chloride (2.2 mL, 18 mmols) was added to a solution of β-Boc-alanine 44 

(3.03 g, 16 mmols) and triethylamine (2.6 mL, 18.7 mmol) in DCM (25 mL) cooled to  

0 °C. The resulting mixture was stirred at 0 °C for 1h. Triethylamine (2.5 mL,  

18 mmols) and a solution of (+)-S,S-pseudoephedrine 45 (2.64 g, 18 mmols) in DCM 

(10 mL) were added and the resulting mixture was stirred at room temperature 

overnight. The solvent was removed under reduced pressure and MeOH–water  

(50:50, 18 mL) was added followed by the addition of concentrated HCl (14 mL) at  

0 °C. The resulting mixture was stirred for 4 hr, the solvent was removed under reduced 

pressure and water (20 mL) was added. The aqueous phase was washed with  

EtOAc–hexane (50:50, 2 × 20 mL) and basified with 50% aqueous NaOH (pH > 12). 

The aqueous phase was then extracted with DCM (5 × 25 mL). The organic extracts 

were combined, dried (Na2SO4), and dried further (K2CO3, overnight). The residue was 

recrystallised from toluene to give the amide 46
164

 (1.8 g, 47%) as a colourless solid, 

[α]D: +107.1 (c. 2.0, CHCl3); 
1
H NMR (500 MHz; CDCl3) δ 7.39-7.24 (m, 8H, Ar 

H
rotA,rotB

), 4.62-4.55 (m, 1.8H, 2'-H
rotA

, 1'-H
rotA

), 4.53 (d, J = 9 Hz, 0.7H, 1'-H
rotB

),  

4.08-4.00 (m, 0.6H, 2'-H
rotB

), 3.11-3.03 (m, 0.6H, 2-H
rotB

 or 3-H
rotB

), 3.03-2.94 (m, 

2.6H, 2-H
rotA

 or 2-H
rotB

 or 3-H
rotA

 or 3-H
rotB

), 2.92 (s, 1.9H, NMe
rotB

), 2.86 (s, 3H, 

NMe
rotA

), 2.84-2.76 (m, 0.9H, 2-H
rotA

 or 3-H
rotA

), 2.73-2.55 (br, 5.5H, OH and NH2), 

2.55-2.47 (m, 1.3H, 2-H
rotA

 or 2-H
rotB

 or 3-H
rotA

 or 3-H
rotB

), 2.44-2.34 (m, 1.8H, 2-H
rotA

 

or 2-H
rotB

 or 3-H
rotA

 or 3-H
rotB

), 1.04 (d, J = 6.6 Hz, 3H, Me
rotA

), 0.96 (d, J = 6.8 Hz, 

1.9H, Me
rotB

); 
13

C NMR (75 MHz, CDCl3) δ 173.8 (C=O
rotA

), 172.9 (C=O
rotB

), 142.3 

(Ar C-1
rotA

), 142.0 (Ar C-1
rotB

), 128.6 (Ar
rotA,rotB

), 128.4 (Ar
rotA,rotB

), 128.1 (Ar
rotA,rotB

), 

127.8 (Ar
rotA,rotB

), 127.0 (Ar
rotA,rotB

), 126.6 (Ar
rotA,rotB

), 76.1 (C-1'
rotA

 or C-2'
rotA

), 75.4 

(C-1'
rotB

), 58.5 (C-2'
rotB

), 57.5 (C-1'
rotA

 or C-2'
rotA

), 38.2 (C-2
rotB

 or C-3
rotB

), 37.8 (C-2
rotB

 

or C-3
rotB

), 36.9 (C-2
rotB

 or C-3
rotB

), 35.8 (C-2
rotB

 or C-3
rotB

), 31.9 (NMe
rotA

), 26.5 

(NMe
rotB

), 15.6 (Me
rotB

), 14.4 (Me
rotA

); IR (film): 3357, 3142, 2931, 1621, 1454, 1416; 

HRMS-ES m/z 237.16 (M+H calculated for C13H20N2O2 requires 237.1598). No Rf was 

recorded. Mixtures of rotamers A (rotA) and B (rotB).   
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(Tributylstannyl)methanol 49 

Bu3Sn OH 

 

n-Butyllithium (2.5 M in hexanes, 15.2 mL, 38.0 mmol) was added to a solution of 

diisopropylamine (722 µL, 40.0 mmol) in THF (140 mL) cooled to 0 °C. The resulting 

mixture was stirred at 0 °C for 30 min, before tributyltin hydride 48 (9.2 mL, 34 mmol) 

was added dropwise. The resulting mixture was stirred at 0 °C for 20 min, before 

paraformaldehyde (1.5 g, 48 mmol) was added as a suspension in THF (20 mL). The 

reaction mixture was warmed to room temperature, stirred for 3 h, and poured into 

water–ether (50:50, 300 mL). The aqueous layer was extracted with ether (150 mL), and 

the organic extracts were combined, washed with water (250 mL), brine (250 mL), dried 

(Na2SO4), and the solvent removed under reduced pressure to give the crude product 

which was purified by flash chromatography, eluting with 83:17 pentane–EtOAc, to 

give the alcohol 49
166

 (8.4 g, 76%) as a colourless oil, Rf = 0.62  

(83:17 Pentane–EtOAc); 
1
H (500 MHz; CDCl3) δ 4.04 (d, J = 4.7 Hz, 2H, CH2OH), 

1.63-1.44 (m, 6H, CH2Bu), 1.37-1.23 (m, 6H, CH2Bu), 0.96-0.81 (m, 15H, CH3Bu and 

CH2Bu); 
13

C (125 MHz, CDCl3) δ 55.6, 29.1, 27.3, 13.7, 8.9; IR (film): 3325, 2926, 

2730, 1745, 1727, 1463, 1376; Mass spectra were unobtainable. 
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Tributyl(iodomethane)stannane 50 

Bu3Sn I  

 

A solution of N-iodosuccinimide (8.8 g, 39.2 mmol) in THF (80 mL) was added 

dropwise to solution of triphenylphosphine (10.3 g, 39.2 mmol) in THF (80 mL). The 

resulting mixture was stirred at room temperature for 10 min, before a solution of the 

alcohol 49 (8.4 g, 26.2 mmol) in THF (45 mL) was added. The reaction mixture was 

stirred overnight at room temperature, before being poured into pentane–H2O (50:50, 

200 mL), and the aqueous phase was extracted with pentane (3 × 100 mL). The organic 

extracts were combined, dried (Na2SO4), and the solvent removed under reduced 

pressure to give the crude product which was purified by flash chromatography, eluting 

with neat pentane, to give the iodide 50
166

 (9.9 g, 87%) as a colourless oil, Rf = 0.78 

(100:0 Pentane); 
1
H (500 MHz; CDCl3) δ 1.95 (t, J = 9 Hz, 2H, CH2I), 1.58-1.49 (m, 

6H, CH2Bu), 1.37-1.28 (m, 6H, CH2Bu), 1.01-0.95 (m, 6H, CH2Bu), 0.91 (dd, 9H, J = 

9.4, 5.3 Hz, CH3Bu); 
13

C (125 MHz, CDCl3) δ 28.8, 27.3, 13.7, 10.7; IR (film): 3018, 

2957, 2871, 2853, 1463, 1417, 1291; Mass spectra were unobtainable. 
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(Z)-4-(tert-Butyldimethylsilyloxy)but-2-en-1-ol 51 

OTBS

HO  

 

tert-Butyldimethylsilyl chloride (10.0 g, 66.3 mmol) was added to a solution of cis-2-

butene-1,4-diol (5.7 mL, 69.7 mmol) in DCM (40 mL). The resulting mixture was 

cooled to 0 °C, and triethylamine (15.7 mL, 112.7 mmol) was added. The reaction 

mixture was warmed to room temperature, and stirred overnight before being quenched 

with water (30 mL), and the aqueous layer was extracted with ether (3 × 80 mL). The 

organic extracts were combined, washed with brine (40 mL), dried (Na2SO4), and the 

solvent removed under reduced pressure to give the crude product which was purified 

by flash chromatography, eluting with 91:9 to 83:17 hexane–EtOAc, to give the alcohol 

51
166

 (8.0 g, 60%) as a colourless oil, Rf = 0.27 (83:17 Hexane–EtOAc); 
1
H (500 MHz; 

CDCl3) δ 5.67 (m, 2H, 2-H, 3-H), 4.22 (dd, J = 5.0 and 0.6 Hz, 2H, 4-H2), 4.15  

(t, J = 5.6 Hz, 2H, 1-H2), 2.35 (t, J = 5.6 Hz, 1H, OH), 0.87 (s, 9H, 
t
BuSi), 0.05 (s, 6H, 

MeSi); 
13

C (75 MHz, CDCl3) δ 131.2, 130.1, 59.6, 58.7, 25.9, 18.3, −5.2; IR (film): 

3325, 3024, 2930, 2858, 1471, 1463, 1255; m/z (ES) 225.1 [M+Na]
+
.  
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(6Z)-11,11-Dibutyl-2,2,3,3-tetramethyl-4,9-dioxa-3-sila-11-stannapentadec-6-ene 

52 

OTBS

OBu3Sn  

 

A solution of the alcohol 51 (8.0 g, 39.5 mmol) in THF (110 mL) was added to a 

suspension of sodium hydride (60 % dispersion in oil, 1.6 g, 40.0 mmol) in THF (140 

mL) at room temperature, before a solution of the iodide 50 (8.5 g, 19.7 mmol) in THF 

(110 mL) was added. The resulting mixture was stirred overnight at room temperature, 

before being quenched with water (200 mL), and brine (60 mL). The aqueous phase was 

extracted with ether (3 × 200 mL). The organic extracts were combined, washed with 

brine (200 mL), dried (Na2SO4), and the solvent removed under reduced pressure to 

give the crude product which was purified by flash chromatography, eluting with 100:0 

to 90:10 pentane–EtOAc, to give the stannane 52
166

 (7.2 g, 71%, mixture) as a 

colourless oil, Rf = 0.8 (100:0 Pentane); 
1
H (500 MHz; CDCl3) δ 5.62-5.55 (m, 1H, 6-H 

or 7-H), 5.50-5.44 (m, 1H, 6-H or 7-H), 4.20-4.14 (m, 2H, 5-H2 or 8-H2), 3.87-3.82 (m, 

2H, 5-H2 or 8-H2), 3.67-3.58 (t, J = 7.5 Hz, 2H, 10-H2), 1.50-1.35 (m, 6H, CH2Bu),  

1.27-1.16 (m, 6H, CH2Bu), 0.90-0.74 (m, 24H, 
t
BuSi, CH3Bu, CH2Bu), 0.00 (s, 3H, 

MeSi), −0.01 (s, 3H, MeSi); 
13

C (125 MHz, CDCl3) δ 131.9, 127.8, 71.1, 61.5, 59.6, 

29.1, 27.2, 25.9, 18.3, 13.7, 8.9, −5.2; IR (film): 3025, 2928, 2857, 2463, 1406, 1253, 

1082; m/z (ES) 507.3 [M+H]
+
; HRMS-ES m/z 507.2672 (M+H calculated for 

C23H50O2SiSn requires 507.2675).  
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2-(tert-Butyldimethylsilyloxymethyl)but-3-en-1-ol 53 

OH OTBS  

 

n-Butyllithium (2.5 M in hexanes, 17 mL, 41.5 mmol) was added to a solution of the 

stannane 52 (7.0 g, 13.9 mmol) in THF (170 mL) cooled to −78 °C. The resulting 

mixture was stirred at this temperature for 2 h, before being quenched with water  

(80 mL), and the aqueous phase was extracted with ether (3 × 80 mL). The organic 

extracts were combined, washed with brine (80 mL), dried (Na2SO4), and the solvent 

removed under reduced pressure to give the crude product which was purified by flash 

chromatography, eluting with neat DCM, to give the alkene 53
166

 (1.9 g, 63%) as a 

colourless oil, Rf = 0.20 (100:0 DCM); 
1
H (500 MHz; CDCl3) δ 5.71-5.62 (m, 1H, 3-H), 

5.16-5.09 (m, 2H, 4-H2), 3.80-3.63 (m, 4H, 1-H2, CH2OSi), 2.55-2.44 (m, 2H, 2-H, 

OH), 0.88 (s, 9H, 
t
BuSi), 0.05 (s, 6H, MeSi); 

13
C (125 MHz, CDCl3) δ 135.8, 117.3, 

66.1, 65.5, 47.4, 30.9, 25.7, 18.2, −5.5; IR (film): 3478, 2955, 2930, 2858, 1640, 1471, 

1390; m/z (ES) 217.2 [M+H]
+
.  
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2-[(Acetyloxy)methyl]but-3-en-1-yl acetate 54 

OAc OAc  

 

Tetrabutylammonium fluoride  (1.0 M in THF, 27 mL, 26.8 mmol) was added 

dropwise to a solution of the alkene 53 (1.9 g, 8.8 mmol) in THF (90 mL) cooled to 0 

°C. The resulting mixture was stirred at this temperature for 45 min, before being 

warmed to room temperature and stirred for 1 h. The solvent was removed under 

reduced pressure to give the crude diol. Triethylamine (3.8 mL, 26.8 mmol),  

4-(dimethylamino)pyridine (110 mg, 0.9 mmol) were added to a solution of the crude 

diol in DCM (20 mL). The resulting mixture was cooled to 0 °C, before acetyl chloride 

(2 mL, 26.8 mmol) was added dropwise. The resulting mixture was stirred overnight 

before being poured into ice-water (100 mL), and the aqueous phase was extracted with 

DCM (3 × 100 mL). The organic extracts were combined, washed with cold saturated 

aqueous NaHCO3 (2 × 60 mL), water (60 mL), 1M HCl (2 × 60 mL), water (60 mL), 

brine (60 mL), and dried (Na2SO4), and the solvent removed under reduced pressure to 

give the crude product which was purified by flash chromatography, eluting with 80:20 

hexane–EtOAc, to give the diacetate 54
171

 (1.4 g, 85%) as a colourless oil, Rf = 0.42 

(80:20 Hexane–EtOAc); 
1
H (500 MHz; CDCl3) δ 5.76-5.67 (m, 1H, 3-H), 5.20 (ddd,  

J = 11.6, 6.4, 1.1 Hz, 2H, 4-H2), 4.12 (m, 4H, 1-H2, CH2OAc), 2.75 (m, 1H, 2-H), 2.05 

(s, 6H, Me); 
13

C (125 MHz, CDCl3) δ 170.9, 134.7, 118.2, 63.9, 20.8; IR (film): 3155, 

2984, 1793, 1735, 1643, 1469, 1380; m/z (ES) 209.1 [M+Na]
+
.  
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(R)-2-(Hydroxymethyl)but-3-enyl acetate 55 

OAc OH  

 

Pseudomonas fluorescens lipase AK (213 mg) was added to a suspension of the 

diacetate 54 (850 mg, 4.6 mmol) in 0.5 M, pH 7.0 phosphate buffer (KH2PO4/K2HPO4). 

The resulting mixture was stirred at room temperature for 1 h, before being filtered 

through a pad of celite. The filtrate was saturated with sodium chloride, and extracted 

with EtOAc (3 × 20 mL). The organic extracts were combined, dried (MgSO4), and the 

solvent removed under reduced pressure to give the crude product which was purified 

by flash chromatography, eluting with 67:33 hexane–EtOAc to give, the hydroxy 

acetate 55
170,171

 (400 mg, 60%) as a colourless oil, Rf = 0.23 (67:33 Hexane–EtOAc); 

[α]D: +24.6 (c. 2.1, CHCl3), (lit.
171

: +24.0 (c. 1.0, CHCl3)); 
1
H (500 MHz; CDCl3)  

δ 5.76-5.66 (m, 1H, 3-H), 5.24-5.14 (m, 2H, 4-H2), 4.23-4.09 (ddd, J = 17.7, 11.1, 6.2 

Hz, 2H, CH2OAc), 3.65-3.56 (m, 2H, 1-H2), 2.62-2.53 (m, 1H, 2-H), 2.04 (s, 6H, Me), 

2.00 (s, 1H, OH); 
13

C (125 MHz, CDCl3) δ 171.4, 135.3, 118.3, 64.0, 62.5, 45.4, 20.9; 

IR (neat): 3445, 3080, 2954, 2890, 1739, 1643, 1468; m/z (ES) 167.1 [M+Na]
+
.  
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tert-Butyl-N-[(2-nitrobenzene)sulfonyl]carbamate 56 

 

 

Di-tert-butyl dicarbonate (5.2 mL, 22.6 mmol) was added to solution of  

2-nitrobenzenesulfonamide (3.8 g, 18.8 mmol), triethylamine (3.9 mL, 28.1 mmol), and  

4-dimethylaminopyridine (216 mg, 1.8 mmol) in DCM (36 mL). The resulting mixture 

was stirred for 1 h at room temperature before being poured in 1N HCl (40 mL), and the 

aqueous phase was extracted with ether (4 × 20 mL). The organic extracts were 

combined washed with brine (2 × 50 mL), dried (Na2SO4), and the solvent removed 

under reduced pressure to give the crude product which was recrystallised from toluene 

to give the sulfonamide 56 (2.4 g, 41%) as yellow plates, Rf = 0.3 (60:40  

Hexane–EtOAc); mp 138.5-139.4 °C (toluene); 
1
H (500 MHz; CDCl3) δ 8.38-8.32 (m, 

1H, Ns), 7.91-7.74 (m, 3H, Ns), 7.49-7.35 (br s, 1H, NH), 1.43 (s, 9H, 
t
Bu); 

13
C  

(75 MHz, CDCl3) δ 148.8, 148.1, 134.6, 133.2, 132.4, 132.1, 125.0, 84.7, 27.9; IR 

(film): 3335, 3249, 3009, 2981, 1746, 1595; m/z (ES) 325 [M+Na]
+
. 
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(2R)-2-[(2-Nitrobenzene)sulfonamidomethyl]but-3-en-1-yl acetate 32 

 

 

Diethylazodicarboxylate (437 µL, 2.8 mmol) was added to a solution of the 

hydroxyacetate 55 (400 mg, 2.8 mmol), NsBocNH 56 (763 mg, 2.5 mmol), and 

triphenylphosphine (795 mg, 3.0 mmol) in THF (23 mL) cooled to 0 °C. The resulting 

mixture was stirred for 30 min at this temperature, before being warmed to room 

temperature and stirred for 2 h. The solvent was removed under reduced pressure to 

give the crude product which was purified by flash chromatography, eluting with 60:40 

hexane–EtOAc, to give a sulfonamide (1.1 g, 95%) as a yellow oil, Rf = 0.31 (60:40 

Hexane–EtOAc); [α]D: +9.0 (c. 2.1, CHCl3); 
1
H  (500 MHz; CDCl3) δ 8.33-8.30 (m, 1H, 

Ns), 7.77-7.71 (m, 3H, Ns), 5.77-5.68 (m, 1H, 3-H), 5.29-5.20 (m, 2H, 4-H2), 4.20 (dd, 

J = 11.2, 5.7 Hz, 1H, 1-HA), 4.08 (dd, J = 11.2, 6.2 Hz, 1H, 1-HB), 3.86 (ddd, J = 23.1, 

14.8, 7.5 Hz, 2H, 2-CH2), 2.93 (m, 1H, 2-H), 2.08 (s, 3H, Me), 1.36 (s, 9H, 
t
Bu);  

13
C (125 MHz, CDCl3) δ 171.0 (C=O Ac), 150.3 (C=O Boc), 147.6 (Ns), 135.1 (C-3), 

134.2 (Ns), 133.7 (Ns), 133.5 (Ns), 131.7 (Ns), 124.4 (Ns), 119.2 (C-4), 85.2 (C(Me)3), 

65.0 (C-1), 49.2 (2-CH2), 43.8 (C-2), 27.8 (C(Me)3), 20.9 (Me); IR (film): 3452, 3083, 

2982, 1737, 1643, 1591, 1543; HRMS-ES m/z 451.1146 (M+Na calculated for 

C18H24O8N2S requires 451.1154).  

Trifluoroacetic acid (3.0 mL, 39.2 mmol) was added to a solution of the sulfonamide 

(1.1 g, 2.6 mmol) in DCM (15 mL) cooled to 0 °C. The resulting mixture was stirred at 

this temperature for 1 h before being warmed to room temperature and stirred overnight. 

The reaction was quenched with saturated NaHCO3 (45 mL), and the aqueous phase 

was extracted with ether (3 × 30 mL). The organic extracts were combined, dried 

(Na2SO4), and the solvent removed under reduced pressure to give the crude product 

which was purified by flash chromatography, eluting with 60:40 hexane–EtOAc, to give 

the building block 32 (690 mg, 80%) as a yellow oil, Rf = 0.25 (60:40 hexane–EtOAc); 

[α]D: −13.0 (c. 2.0, CHCl3); 
1
H (500 MHz; CDCl3) δ 8.19-8.13 (m, 1H, Ns), 7.93-7.87 

(m, 1H, Ns), 7.81-7.75 (m, 2H, Ns), 5.67-5.55 (m, 2H, 3-H and NH), 5.26-5.13 (m, 2H, 

4-H2), 4.14 (dd, J = 11.3, 5.3 Hz, 1H, 1-HA), 3.98 (dd, J = 11.3, 7.2 Hz, 1H,  

1-HB), 3.27 (ddd, J = 12.8, 6.9, 6.0, 1H, 2-CHA), 3.08 (ddd, J = 12.8, 7.3, 5.5 Hz, 1H, 2-

CHB), 2.69-2.60 (m, 1H, 2-H), 2.08 (s, 3H, Me); 
13

C (125 MHz, CDCl3) δ 170.9 (C=O), 
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148.1 (Ns), 134.4 (Ns), 133.7 (C-3), 132.8 (Ns), 131.0 (Ns), 131.0 (Ns), 125.5 (Ns), 

119.4 (C-4), 64.6 (C-1), 44.7 (2-CH2), 42.9 (C-2), 20.8 (Me);  

IR (film): 3337, 3096, 2978, 2897, 1851, 1737, 1643; HRMS-ES m/z 351.0634 (M+Na 

calculated for C13H16O6N2S requires 351.0621). 

 

2-Nitro-N-(prop-2-en-1-yl)benzene-1-sulfonamide 34 

 

 

Allylamine 57 (3.5 mL, 46.7 mmol) was added dropwise to a solution of  

2-nitrobenzenesulfonamide (9.8 g, 44.4 mmol) and potassium carbonate (6.5 g,  

46.7 mmol) in DCM (70 mL). The resulting mixture was stirred overnight at room 

temperature before being quenched with water (20 mL) and 10% HCl in water  

(100 mL). The biphasic mixture was stirred until the organic phase became clear. The 

layers were separated, and the organic layer was washed with saturated aqueous 

NaHCO3 (100 mL), water (110 mL), dried (MgSO4), and the solvent removed under 

reduced pressure to give the crude product which was recrystallised from toluene–

hexane to give the sulfonamide 34
172

 (8.3 g, 77%) as yellow prisms, Rf = 0.6 (50:50 

Petrol–EtOAc); mp 72.2-74.0 °C (toluene–hexane), (lit.
172

: 74.0-75.0 °C  

(toluene–petrol)); 
1
H  (300 MHz; CDCl3) δ 8.16-8.06 (m, 1H, Ns), 7.90-7.81 (m, 1H, 

Ns), 7.79-7.69 (m, 2H, Ns), 5.72 (ddt, J = 17.1, 10.2, 5.8 Hz, 1H, 2-H), 5.47-5.31 (br t,  

J = 4.9 Hz, 1H, NH), 5.19 (dd, J = 17.1, 2.6, 1H, 3-HA), 5.09 (dd, J = 10.2, 2.6 Hz, 1H, 

3-HB), 3.76 (app tt, J = 5.8, 1.6 Hz, 2H, 1-H2); 
13

C (75 MHz, CDCl3) δ 148.0, 134.0, 

133.7, 132.9, 132.5, 131.1, 125.4, 118.2, 46.32; IR (solid): 3330, 3100, 3032, 2943, 

2897, 1671, 1546; m/z (ES) 265.0 [M+Na]
+
.  
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(1R,4S)-4-Hydroxycyclopent-2-en-1-yl acetate 33 

 

 

Candida antarctica lipase (Novozyme 435, 250 mg) was added to a suspension of 

cis-3,5-diacetoxy-1-cyclopentene 58 (1.5 g, 8.1 mmol) in 0.1 M, pH 8.0 phosphate 

buffer (NaH2PO4/Na2HPO4). The resulting mixture was stirred at room temperature for 

18 h, before being filtered through a pad of celite, which was washed with water  

(50 mL), and EtOAc (100 mL). The aqueous layer was extracted with EtOAc  

(3 × 50 mL), and the organic extracts were combined, washed with brine (50 mL), dried 

(MgSO4), and the solvent removed under reduced pressure to give the crude product 

which was purified by flash chromatography, eluting with 50:50 petrol–EtOAc, to give 

the hydroxyacetate 33
173

 (600 mg, 80%) as a colourless solid, Rf = 0.21 (50:50  

Petrol–EtOAc); [α]D: +66.8 (c. 2.0, CHCl3), (lit.
173

: +66.0 (c. 1.0, CHCl3));  

1
H (500 MHz; CDCl3) δ 6.12 (ddd, J = 5.6, 1.9, 1.2 Hz, 1H, 3-H), 5.99 (ddd, J = 5.6, 

2.0, 1.1 Hz, 1H, 2-H), 5.53-5.46 (m, 1H, 4-H), 4.75-4.68 (m, 1H, 1-H), 2.80 (dt,  

J = 14.7, 7.4 Hz, 1H, 5-HA), 2.05 (s, 3H, Me), 1.66 (dt, 1H, J = 14.7, 3.8 Hz, 5-HB);  

13
C (75 MHz, CDCl3) δ 170.8, 138.5, 132.7, 76.7, 74.9, 40.5, 21.2; IR (film): 3379, 

3077, 2949, 1823, 1722, 1577; Mass spectra were unobtainable. 
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(2S)-3-Phenyl-2-[(propan-2-yl)amino]propan-1-ol 60 

 

 

Acetone (2.7 mL, 37.2 mmol) was added to a solution of L-phenylalaninol 59 (2.8 g,  

18.6 mmol), MgSO4 (300 mg) in EtOH (23 mL). The resulting mixture was stirred at 

room temperature overnight and diluted with EtOH (23 mL). Sodium borohydride  

(2.0 g, 54.5 mmol) was added portionwise and the resulting mixture was stirred at room 

temperature overnight before being quenched with 1M aqueous NaOH (34 mL) and 

dissolved with EtOAc (10 mL). The resulting suspension was dried (Na2SO4), and the 

solvent removed under reduced pressure to give the crude product which was purified 

by flash chromatography, eluting with 90:10 DCM–MeOH, to give the amino alcohol 

60
174

 (2.3 g, 65%) as a colourless solid, Rf = 0.26 (90:10 DCM–MeOH); [α]D: +16.2  

(c. 1.0, CHCl3); 
1
H (500 MHz; CDCl3) δ 7.35-7.14 (m, 5H, Ar H), 3.54 (dd, J = 10.5, 

4.1 Hz, 1H, 1-HA), 3.23 (dd, J = 10.5, 5.9 Hz, 1H, 1-HB), 2.96 (m, 1H, 2-H), 2.85  

(hept, J = 6.2 Hz, 1H, iPr CH), 2.76 (dd, J = 13.6, 6.4 Hz, 1H, 3-HA), 2.70 (dd, J = 13.6, 

7.2 Hz, 1H, 3-HB), 1.02 (d, J = 6.2 Hz, 3H, iPr CH3), 0.97 (d, J = 6.2 Hz, 3H, iPr CH3); 

13
C (75 MHz, CDCl3) δ 138.4, 129.2, 128.6, 126.4, 62.9, 57.3, 46.0, 38.5, 23.3;  

IR (film): 3291, 3026, 2964, 1479, 1382, 1177, 1039; HRMS-ES m/z 194.1545  

(M+H calculated for C12H19NO requires 194.1539).  
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(4S)-3-(Propan-2-yl)-4-benzyl–[1,2,3]oxathiazolidine-2,2-dioxide 61 

 

 

Thionyl chloride (950 µL, 13.0 mmol) was added to a solution of triethylamine  

(3.5 mL, 25.3 mmol) and imidazole (3.1 g, 46.0 mmol) in DCM (200 mL) cooled to  

−60 °C. The amino alcohol 60 (2.2 g, 11.5 mmol) was added dropwise over 30 min as 

solution in DCM (30 mL). The resulting mixture was stirred at −60 °C for 2 h before 

being warmed to and stirred at room temperature overnight. The reaction was quenched 

by the addition of water (130 mL) and the aqueous phase was washed with DCM  

(3 × 80 mL). The organic extracts were combined, washed with water (80 mL), brine  

(2 × 80 mL), dried (MgSO4), and the solvent removed under reduced pressure to give 

the crude sulfamidite which was used without further purification. The crude 

sulfamidite was then dissolved in acetonitrile (57 mL) and cooled to 0 °C. Sodium 

periodate (3.7 g, 17.3 mmol), ruthenium (III) chloride (30.1 mg, 1 mol%) and water  

(57 mL) were added sequentially and the resulting mixture was stirred at 0 °C for 1 h. 

The reaction was quenched by the addition of water (40 mL) and the aqueous phase was 

washed with EtOAc (4 × 50 mL). The organic extracts were combined, washed with 

saturated aqueous NaHCO3 (50 mL), brine (2 × 50 mL), dried (MgSO4), and the solvent 

removed under reduced pressure to give the crude which was purified by flash 

chromatography, eluting with 83:17 petrol–EtOAc, to give the cyclic sulfamidate 61 

(2.2 g, 75%) as a colourless solid, Rf = 0.19 (83:17 Petrol–EtOAc); [α]D: −42.5  

(c. 1.1, CHCl3); 
1
H (500 MHz; CDCl3) δ 7.36-7.18 (m, 5H, Ar), 4.30 (dd, J = 8.7, 6.5 

Hz, 1H, 5-HA), 4.21 (dd, J = 8.7, 3,8 Hz, 1H, 5-HB), 3.90 (dtd, J = 9.0, 6.4, 3.8 Hz, 1H, 

4-H), 3.70 (hept, J = 6.7 Hz, 1H, iPr CH), 3.18 (dd, J = 13.6, 6.2 Hz, 1H, 4-CHA), 2.90 

(dd, J = 13.6, 9.0 Hz, 1H, 4-CHB), 1.34 (d, J = 6.7 Hz, 3H, iPr CH3), 1.18 (d, J = 6.7 Hz, 

3H, iPr CH3); 
13

C (75 MHz, CDCl3) δ 135.9 (Ar-C), 129.3 (Ar-C), 128.9 (Ar-C), 127.3  

(Ar-C), 70.3 (C-3), 57.3 (C-4), 50.0 (iPrCH), 39.9 (4-CH2), 20.9 (Me), 19.4 (Me);  

IR (film): 3088, 3032, 2936, 1604, 1499, 1390, 1229; HRMS-ES m/z 278.0824 (M+Na 

calculated for C12H17NO3S requires 278.0821).  
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N-[(1R,4S)-4-Hydroxycyclopent-2-en-1-yl]-2-nitro-N-(prop-2-en-1-yl)benzene-1-

sulfonamide 62 

 

 

 

Sodium hydride (90 mg, 2.3 mmols) was added to a solution of the hydroxyacetate 

33 (300 mg, 2.1 mmols) and the sulfonamide 34 (614 mg, 2.5 mmols) in THF (12 mL) 

cooled to 0 °C. The resulting mixture was stirred at 0 °C for 30 min and 

tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct (55 mg, 50 µmol),  

1,4-bis(diphenylphosphino)butane (90 mg, 0.2 mmol) and DMF (3 mL) were added. 

The reaction was heated to 50 °C overnight, quenched by the addition of water (30 mL) 

and the aqueous phase was extracted with ether (3 × 60 mL). The organic extracts were 

combined, dried (MgSO4) and the solvent removed under reduced pressure to give the 

crude product which was purified by flash chromatography eluting with 50:50  

petrol–EtOAc to give the diene 62 (370 mg, 54%) as a light yellow oil, Rf = 0.20 (50:50 

petrol–EtOAc); [α]D: +2.0 (c. 1.1, CHCl3); 
1
H (500 MHz; CDCl3) δ 8.08-8.04 (m, 1H, 

Ns), 7.72-7.61 (m, 3H, Ns), 5.98 (dt, J = 5.6, 2.1 Hz, 1H, 2-H or 3-H), 5.81-5.72 (m, 

2H, 2-H or 3-H and allyl 2-H), 5.18 (dq, J = 17.1, 1.5 Hz, 1H, allyl 3-HA), 5.07 (dq, J = 

10.2, 1.4 Hz, 1H, allyl 3-HB), 4.91 (br, 1H, 4-H), 4.70 (br, 1H, 1-H), 3.95 (ddt, J = 16.7, 

6.1, 1.2 Hz, 1H, allyl 1-HA), 3.88 (ddt, J = 16.7, 5.7, 1.5 Hz, 1H, allyl 1-HB), 2.70  

(ddd, J = 14.7, 8.5, 7.7 Hz, 1H, 5-HA), 1.91 (d, J = 6.3 Hz, 1H, OH), 1.62 (dt, J = 14.6, 

4.5 Hz, 1H, 5-HB); 
13

C (125 MHz, CDCl3) δ 148.0, 137.5, 135.3, 134.1, 133.6, 133.1, 

131.7, 131.4, 124.2, 118.0, 74.7, 62.5, 47.0, 38.9; IR (film): 3539, 3401, 3094, 2982, 

1643, 1543, 1439; HRMS-ES m/z 347.0677 (M+Na calculated for C14H16N2O5S 

requires 347.0672). 
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N-{(1R,4S)-N'-[(2'R)-2'-Ethenyl-3'-hydroxypropyl]-1-hydroxycyclopent-2-en-1-

yl}-2-nitro-N-(prop-2-en-1-yl)benzene-1-sulfonamide 63 

 

 

Diethylazodicarboxylate (361 µL, 2.1 mmol) was added to a solution of the 

hydroxyacetate 33 (250 mg, 1.8 mmol), the building block 32 (693 mg, 2.1 mmol), and 

triphenylphosphine (647 mg, 2.5 mmol) in THF (35 mL) cooled to 0 °C. The resulting 

mixture was stirred for 30 min at this temperature, before being warmed to room 

temperature and stirred for a further 2 h. The solvent was removed under reduced 

pressure to give the crude product which was purified by flash chromatography eluting 

with 83:17 to 50:50 petrol–EtOAc to give a sulfonamide which was subsequently 

dissolved in saturated ammonia in methanol (18 mL) and stirred overnight at room 

temperature. The solvent was removed under reduced pressure to give the crude product 

which was purified by flash chromatography eluting with 83:17 to 50:50 petrol–EtOAc 

to give the sulfonamide 63 (400, 62%) as a light yellow oil, Rf = 0.43 (100:0 EtOAc); 

[α]D: +26.7 (c. 2.0, CHCl3); 
1
H (500 MHz; CDCl3) δ 8.07-7.61 (m, 4H, Ns), 6.05 (dt,  

J = 5.6, 2.1 Hz, 1H, 2-H or 3-H), 5.81 (ddd, J = 5.6, 2.3, 1.1 Hz, 1H, 2-H or 3-H), 5.69 

(ddd, J = 17.3, 10.4, 8.5 Hz, 1H, ethenyl CH), 5.21-5.10 (m, 3H, 1-H, ethenyl CH2), 

4.97 (br s, 1H, 4-H), 3.69-3.57 (m, 2H, CH2O), 3.22 (ddd, J = 34.3, 15.1, 7.6 Hz, 2H, 

CH2N), 2.52-2.43 (m, 1H, 2'H), 2.12 (ddd, J = 15.0, 7.3, 4.3 Hz, 1H, 5-HA), 1.97 (ddd,  

J = 15.1, 8.3, 3.1 Hz, 1H, 5-HB), 1.91 (s, 1H, OH), 1.76 (s, 1H, 1-OH); 
13

C (125 MHz, 

CDCl3) δ 148.2 (Ns), 138.5 (C-2 or C-3), 136.7 (ethenyl CH), 133.8 (Ns), 133.4 (Ns), 

133.2 (C-2 or C-3), 131.7 (Ns), 131.4 (Ns), 124.3 (Ns), 118.6 (ethenyl CH2), 75.7 (C-1), 

63.9 (C-4), 62.9 (CH2O), 46.7 (C-2'), 46.2 (CH2N), 38.7 (C-5); IR (film): 3532, 3369, 

2942, 2884, 1542, 1373, 1163; HRMS-ES m/z 391.0945 (M+Na calculated for 

C16H20N2O6S requires 391.0934).  
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(1S,4R)-4-[(Prop-2-en-1-yl)amino]cyclopent-2-en-1-ol 65 

 

 

Thiophenol (144 µL, 1.4 mmol) and potassium carbonate (256 mg, 1.9 mmol) were 

added to a solution of sulfonamide 62 (300 mg, 0.9 mmol) in DMF (3 mL) cooled to 0 

°C. The resulting mixture was warmed to room temperature and stirred overnight. The 

solvent was removed under reduced pressure to give the crude product which was 

purified by flash chromatography eluting with 50:8:1 DCM–EtOH–NH4OH to give the 

amino alcohol 65 (90 mg, 70%) as a brown oil, Rf = 0.37 (50:8:1  

DCM–EtOH–NH4OH); [α]D: +16.8 (c. 1.0, CHCl3); 
1
H (500 MHz; CDCl3) δ 5.98-5.84 

(m, 3H, 2-H, 3-H and allyl 2-H), 5.17 (dq, J = 17.2, 1.6 Hz, 1H, allyl 3-HA), 5.08 (ddd, 

J = 10.2, 2.9, 1.3 Hz, 1H, allyl 3-HB), 4.66 (dddd, J = 8.1, 3.9, 1.9, 0.9 Hz, 1H, 1-H), 

3.68-3.63 (m, 1H, 4-H), 3.29-3.25 (m, 2H, allyl 1-H), 2.56 (dt, J = 13.8, 7.3 Hz, 1H, 5-

HA), 2.31 (br s, 2H, NH, OH), 1.42 (dt, J = 13.8, 4.2 Hz, 1H, 5-HB); 
13

C (75 MHz, 

CDCl3) δ 136.4 (C-2 or C-3 or allyl C-3), 136.0 (C-2 or C-3 or allyl C-3), 135.3 (C-2 or 

C-3 or allyl C-3), 116.3 (allyl C-2), 75.3 (C-1), 61.7 (C-4), 50.4 (allyl C-1), 41.4 (C-5); 

IR (film): 3272, 3077, 2966, 1852, 1644, 1450, 1362;  HRMS-EI m/z 120.0820 

(Fragment calculated for C8H10N requires 120.0813). 
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3-tert-Butyl-1-[(1R,4S)-4-hydroxycyclopent-2-en-1-yl]-1-(prop-2-en-1-yl)urea 66 

 

 

tert-Butyl isocyanate (74 µL, 0.6 mmol) was added to a solution of the amino alcohol 

65 (90 mg, 0.6 mmol) in DCM (3 mL). The resulting was stirred overnight at room 

temperature and the solvent was removed under reduced pressure to give the crude 

product which was purified by flash chromatography eluting with 75:25 EtOAc–petrol 

to give the allylic alcohol 66 (130 mg, 84%) as a colourless oil, Rf = 0.28  

(75:25 EtOAc–petrol); [α]D: +51.5 (c. 1.0, CHCl3); 1H (500 MHz; CDCl3) δ 5.96 (dt, 

1H, J = 5.5, 2.1 Hz, 2-H or 3-H), 5.82 (ddd, J = 17.3, 10.3, 4.9, 1H, allyl 2-H),  

5.80-5.77 (m, 1H, 2-H or 3-H), 5.28-5.21 (m, 2H, allyl 3-H2), 5.16-5.10 (m, 1H, 4-H), 

4.74-4.69 (m, 1H, 1-H), 4.45 (br s, 1H, NH), 3.78-3.71 (m, 1H, allyl 1-HA), 3.67 (ddt,  

J = 18.0, 5.0, 1.8 Hz, 1H, allyl 1-HB), 2.76-2.69 (m, 2H, 5-HA, OH), 1.49-1.42 (m, 1H, 

5-HB), 1.30 (s, 9H, 
t
Bu); 

13
C (125 MHz, CDCl3) δ 157.5 (C=O), 136.2 (C-2 or C-3 or 

allyl C-2), 135.9 (C-2 or C-3 or allyl C-2), 134.7 (C-2 or C-3 or allyl C-2), 116.4 (allyl 

C-3), 75.0 (C-1), 59.5 (C-4), 50.8 (C(CH3)3), 46.8 (allyl C-1), 39.1 (C-5), 29.4 

(C(CH3)3); IR (film): 3424, 3061, 2967, 1633, 1529, 1455, 1392; HRMS-ES m/z 

261.1572(M+Na calculated for C13H22N2O2 requires 261.1573).  

 



 

177 

 

(1R,4R)-4-{[(2'R)-2'-Ethenyl-3'-hydroxypropyl]amino}cyclopent-2-en-1-ol 68 

 

 

Thiophenol (163 µL, 1.6 mmol) and potassium carbonate (293 mg, 2.1 mmol) were 

added to a solution of sulfonamide 63 (390 mg, 1.1 mmol) in DMF (3.5 mL) cooled to  

0 °C. The resulting mixture was warmed to room temperature and stirred overnight. The 

solvent was removed under reduced pressure to give the crude product which was 

purified by flash chromatography eluting with 50:8:1 DCM–EtOH–NH4OH to give the 

aminodiol 68 (170 mg, 87%, mixture of diastereoisomers: 83:17) as a yellow oil,  

Rf = 0.13 (50:8:1 DCM–EtOH–NH4OH); 
1
H (500 MHz; CDCl3) δ 6.03 (ddd, 1H,  

J = 5.6,2.0, 0.9 Hz, 2-H or 3-H), 5.99-5.96 (m, 1H, 2-H or 3-H), 5.69-5.61 (m, 1H, 

ethenyl CH), 5.16-5.10 (m, 2H, ethenyl CH2), 4.96 (dqd, J = 3.8, 2.1, 0.9 Hz, 1H, 1-H 

or 4-H), 4.08-4.04 (m, 1H, 1-H or 4-H), 3.75 (ddd, J = 10.6, 4.5, 1.4 Hz, 1H, 1'-HA or 

3'-HA), 3.69 (dd, J = 10.6, 8.0 Hz, 1H, 1'-HB or 3'-HB), 2.96 (ddd, J = 11.6, 4.5, 1.4 Hz, 

1H, 1'-HA or 3'-HA), 2.75 (dd, J = 11.7, 8.8 Hz, 1H, 1'-HB or 3'-HB), 2.52-2.44 (m, 1H, 

2'-H), 2.06 (ddd, J = 14.2, 7.1, 2.8 Hz, 1H, 5-HA), 1.94 (ddd, J = 14.2, 7.0, 4.3 Hz, 1H, 

5-HB); 
13

C (125 MHz, CDCl3) δ 136.7 (ethenyl CH), 136.6 (C-2 or C-3), 135.8 (C-2 or 

C-3), 116.9 (ethenyl CH2), 76.2 (C-1 or C-4), 67.8 (C-1' or C-3'), 63.1 (C-1 or C-4), 

52.0 (C-1' or C-3'), 44.4 (C-2'), 41.4 (C-5); IR (film): 3291, 3076, 2921, 1640, 1444, 

1356; HRMS-EI m/z 184.1342 (M+H calculated for C10H17NO2 requires 184.1338); no 

optical rotation recorded.  
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(2R,5R)- and (2S,5R)-Ethyl 5-benzyl-2-oxo-1-(propan-2-yl)pyrrolidine-3-

carboxylate 72,73 

 

 

By method A, diethyl malonate 71 (304 μL, 2.0 mmols) and the cyclic sulfamidate 

61 (255 mg, 1.0 mmol) gave a crude product which was purified by flash 

chromatography eluting with 75:25 petrol–EtOAc to give the γ-lactam 72,73 (154 mg, 

53%); trans–cis (71:29), Rf = 0.15 (75:25 Petrol–EtOAc); 
1
H (500 MHz; CDCl3) δ 7.35-

7.16 (m, 10H, Ar
maj,min

), 4.18 (q, J = 7.1 Hz, 2H, Et 1-H2
min

), 4.24-4.06 (m, 4H, Et 1-

H2
maj

,  

iPr CH
maj,min

), 3.96 (m, 1H, 5-H
maj

), 3.85 (ddt, J = 11.2, 8.0, 4.0 Hz, 1H, 5-H
min

), 3.36 

(dd, J = 9.3, 8.8 Hz, 1H, 3-H
maj

), 3.33 (dd, J = 10.2, 5.4 Hz, 1H, 3-H
min

), 3.27 (dd,  

J = 13.0, 3.8 Hz, 1H, 5-CHA
min

), 3.16 (dd, J = 13.5, 3.8 Hz, 1H, 5-CHA
maj

), 2.72 (dd,  

J = 13.0, 11.1 Hz, 1H, 5-CHB
min

), 2.52 (dd, J = 13.5, 10.0 Hz, 1H, 5-CHB
maj

), 2.32-2.23 

(m, 1H, 4-HA
maj

), 2.13 (ddd, J = 13.6, 5.4, 4.2 Hz, 1H, 4-HA
min

), 2.04 (m, 1H, 4-HB
min

), 

1.98 (m, 1H, 4-HB
maj

), 1.43-1.35 (m, 12H, CH3
maj,min

), 1.33 (t, J = 7.1 Hz, 3H, Et  

2-H3
min

), 1.27 (t, J = 7.1 Hz, 3H, Et 2-H3
maj

); 
13

C (125 MHz, CDCl3) δ 170.8 (C=O
min

), 

170.4 (C=O
maj

), 169.8 (C-2
maj

), 169.5 (C-2
min

), 137.4 (Ar C-1
min

), 137.0 (Ar C-1
maj

), 

129.2 (Ar), 129.1 (Ar), 128.8 (Ar), 128.7 (Ar), 126.9 (Ar), 126.7 (Ar), 61.6 (Et C-1
min

), 

61.4 (Et C-1
maj

), 58.1 (C-5
min

), 57.1 (C-5
maj

), 48.5 (C-3
min

), 47.8 (C-3
maj

), 45.7 (iPr 

CH
maj

), 45.6 (iPr CH
min

), 41.9 (5-CH2
min

), 41.3 (5-CH2
maj

), 28.0 (C-4
maj

), 27.0 (C-4
min

), 

21.4 (iPr CH3), 19.8 (iPr CH3), 19.6 (iPr CH3), 14.2 (Et C-2
min

), 14.2 (Et C-2
maj

);  

IR (film): 3027, 2976, 1736, 1692, 1603, 1495, 1454; HRMS-ES m/z 312.1575 (M+Na 

calculated for C17H23NO3 requires 312.1570). Maj and min refer to the major and minor 

diasteromer, assigned by observation of NOESY correlations between 5-CH2 and 3-H 

(major) or 5-H and 3-H (minor).  
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DL-Methyl 2-{[(tert-butoxy)carbonyl]amino}-3-(4-hydroxyphenyl)propanoate 77 

 

 

Acetyl chloride (19.4 mL, 270 mmol) was added to a solution of DL-tyrosine 76  

(7.0 g, 39 mmol) in MeOH (160 mL) cooled to 0 °C. The resulting mixture was then 

heated to reflux overnight before being cooled to room temperature. The solvent was 

removed under reduced pressure to give the crude methyl ester as a colourless solid  

(7.5 g, 100%), which was dissolved in EtOH (160 mL). NaHCO3 (32.5 g, 386 mmol) 

and di-tert-butyl dicarbonate (8.4 g, 39 mmol) were added to the resulting suspension, 

which was stirred overnight at room temperature. The reaction mixture was filtered 

through a pad of celite, and the solvent was removed under reduced pressure to give the 

crude carbamate 77
177

 (11.4 g, 100%) as a colourless solid, Rf = 0.6 (50:50  

Petrol–EtOAc); 
1
H (500 MHz; CDCl3) δ 6.98 (d, 2H, J = 8.4 Hz, Ar 2-H), 6.74 (d,  

J = 8.4 Hz, 2H, Ar 3-H), 5.02-4.92 (m, 2H, NH, OH), 4.54 (dd, J = 13.4, 6.1 Hz, 1H,  

2-H), 3.71 (s, 3H, Me), 3.01 (ddd, J = 33.6, 14.0, 6.1 Hz, 2H, 3-H2), 1.42 (s, 9H, 
t
Bu); 

13
C (75 MHz, CDCl3) δ 172.5, 155.2, 154.8, 130.4, 127.9, 115.5, 80.0, 54.6, 52.2, 37.6, 

28.3; IR (film): 3356, 2986, 1906, 1731, 1683, 1611, 1591; HRMS-ES m/z 318.1337 

(M+Na calculated for C15H21NO5 requires 318.1312). 
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DL-Methyl 2-{[(tert-butoxy)carbonyl]amino}-3-(4-propoxyphenyl)propanoate 78 

 

 

Potassium carbonate (6.4 g, 46.0 mmol), and propyl bromide (5.3 mL, 58.5 mmol) 

were added to a solution of the crude carbamate 77 (11.4 g, 39.0 mmol) in acetonitrile 

(39 mL). The resulting mixture was heated to reflux overnight, and the solvent was 

removed under reduced pressure. The resulting solid was dissolved with water (200 mL) 

and the aqueous phase was extracted with DCM (5 × 125 mL). The organic extracts 

were combined, and dried (Na2SO4). The solvent was removed under reduced pressure 

to give the crude product which was purified by flash chromatography, eluting with 

92:8 to 86:14 hexane–EtOAc, to give the propyl carbamate 78 (9.0 g, 69%) as a 

colourless solid, Rf = 0.54 (67:33 Petrol–EtOAc); 
1
H (500 MHz; CDCl3) δ 7.02 (d, 2H, 

J = 8.5 Hz, Ar  2-H), 6.82 (d, J = 8.7 Hz, 2H, Ar 3-H), 4.94 (br d, J = 7.7 Hz, 1H, NH), 

4.53 (br dd, J = 7.8 Hz, 1H, 2-H), 3.89 (t, J = 6.6 Hz, 2H, Pr 1-H2), 3.71 (s, 3H, OMe), 

3.02 (qd, J = 14.2, 6.0 Hz, 2H, 3-H2), 1.83-1.75 (m, 2H, Pr 2-H2), 1.42 (s, 9H, 
t
Bu), 1.03 

(t, J = 7.4 Hz, 3H, Pr 3-H3); 
13

C (125 MHz, CDCl3) δ 172.5 (CO2Me), 158.3 (CO2
t
Bu), 

155.1 (Ar), 130.3 (Ar), 127.7 (Ar), 114.6 (Ar), 79.9 (C(CH3)3), 69.5 (Pr 1-C), 54.6  

(C-2), 52.2 (OMe), 37.5 (C-3), 28.3 (C(CH3)3), 22.6 (Pr 2-C), 10.5 (Pr 3-C); IR (film): 

3357, 2960, 1698, 1614, 1583, 1505, 1391; HRMS-ES m/z 360.1785 (M+Na calculated 

for C18H27NO5 requires 360.1781).  
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DL-Methyl 3-[4-(benzyloxy)phenyl]-2-{[(tert-butoxy)carbonyl]amino}propanoate 

79 

 

 

Potassium carbonate (5.9 g, 42.9 mmol), and benzyl bromide (5.3 mL, 44.5 mmol) 

were added to a solution of the crude carbamate 77 (11.4 g, 39 mmol) in acetone  

(39 mL). The resulting mixture was heated to reflux overnight, before being dissolved 

with water (200 mL). The aqueous phase was extracted with DCM (5 × 125 mL), and 

the organic extracts were combined, and dried (Na2SO4). The solvent was removed 

under reduced pressure to give the crude product which was purified by flash 

chromatography, eluting with 67:33 to 86:14 hexane–EtOAc, to give the benzyl 

carbamate 79
178

 (13.0 g, 86%) as a colourless solid, Rf = 0.42 (67:33 hexane–EtOAc); 

1
H (500 MHz; CDCl3) δ 7.44-7.29 (m, 5H, Bn), 7.03 (m, 2H, Ar 2-H), 6.90 (m, 2H, Ar 

3-H), 5.04 (s, 2H, Bn CH2), 4.95 (d, J = 7.2 Hz, 1H, NH), 4.54 (dd, J = 13.9, 6.3 Hz, 

1H, 2-H), 3.70 (s, 3H, Me), 3.02 (qd, J = 13.9, 5.8 Hz, 2H, 3-H2), 0.42 (s, 9H, 
t
Bu);  

13
C (75 MHz, CDCl3) δ 172.4, 157.9, 155.1, 137.0, 130.3, 128.6, 128.3, 128.0, 127.5, 

114.9, 79.9, 70.0, 54.5, 52.2, 37.5, 28.3; IR (film): 3355, 2976, 1954, 1742, 1704, 1613, 

1585; HRMS-ES m/z 408.1791 (M+Na calculated for C22H27NO5 requires 408.1781). 
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DL-tert-Butyl N-[1-hydroxy-3-(4-propoxyphenyl)propan-2-yl]carbamate 80 

 

 

Lithium iodide (3.9 g, 29.4 mmol) and sodium borohydride (1.1 g, 29.4 mmol) were 

added to a solution of the propyl carbamate 78 (9 g, 26.7 mmol) in THF (100 mL). The 

resulting mixture was heated to reflux overnight, before being cooled to room 

temperature and quenched with a saturated aqueous solution of ammonium chloride 

(145 mL). The aqueous phase was extracted with EtOAc (3 × 200 mL), and the organic 

extracts were combined, and dried (Na2SO4). The solvent was removed under reduced 

pressure to give the crude product which was purified by flash chromatography, eluting 

with 67:33 petrol–EtOAc, to give the alcohol 80 (5.3 g, 64%) as a colourless solid, Rf = 

0.21 (67:33 Petrol–EtOAc); 
1
H (500 MHz; CDCl3) δ 7.11 (d, 2H, J = 8.6 Hz, Ar 2-H), 

6.83 (d, J = 8.7 Hz, 2H, Ar 3-H), 4.71 (br s, 1H, NH), 3.90 (t, J = 6.6 Hz, 2H, Pr 1-H2), 

3.81 (br s, 1H, 2-H), 3.66 (dd, J = 11.0, 3.2 Hz, 1H, 1-HA), 3.54 (dd, J = 10.9, 5.3 Hz, 

1H,  

1-HB), 2.77 (d, J = 7.1 Hz, 2H, 3-H2), 2.36 (br s, 1H, OH), 1.84-1.75 (m, 2H, Pr 2-H2), 

1.42 (s, 9H, 
t
Bu), 1.03 (t, 3H, Pr 3-H3); 

13
C (125 MHz, CDCl3) δ 157.91 (C=O), 156.2 

(Ar), 130.2 (Ar), 129.5 (Ar), 114.6 (Ar), 79.7 (C(CH3)3), 69.5 (Pr 1-C), 64.5 (C-1), 53.9 

(C-2), 36.6 (C-3), 28.4 (C(CH3)3), 22.7 (Pr 2-C), 10.5 (Pr 3-C); IR (film): 3381, 3063, 

2888, 1672, 1611, 1580; HRMS-ES m/z 332.1827 (M+Na calculated for C17H27NO4 

requires 332.1832).  
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DL-tert-Butyl N-{1-[4-(benzyloxy)phenyl]-3-hydroxypropan-2-yl}carbamate 81 

 

 

Lithium iodide (3.8 g, 28.6 mmol) and sodium borohydride (1.1 g, 28.6 mmol) were 

added to a solution of the benzyl carbamate 79 (9.0 g, 26.0 mmol) in THF (135 mL). 

The resulting mixture was heated to reflux for 4 h, before being cooled to room 

temperature and quenched with a saturated aqueous solution of ammonium chloride 

(150 mL). The aqueous phase was extracted with EtOAc (3 × 200 mL), and the organic 

extracts were combined, and dried (Na2SO4). The solvent was removed under reduced 

pressure to give the crude product which was purified by flash chromatography, eluting 

with 80:20 to 67:33 petrol–EtOAc, to give the alcohol 81
179

 (9.0 g, 74%) as a colourless 

solid, Rf = 0.43 (50:50 Petrol–EtOAc); 
1
H (500 MHz; CDCl3) δ 7.44-7.28 (m, 5H, Bn), 

7.12 (d, J = 8.5 Hz, 2H, Ar 2-H), 6.91 (d, J = 8.4 Hz, 2H, Ar 3-H), 5.03 (s, 2H, Bn 

CH2), 4.77 (d, J = 8 Hz, 1H, NH), 3.81 (br, 1H, 2-H), 3.64 (dd, J = 11.0, 3.6 Hz, 1H,  

3-HA), 3.53 (dd, J = 11.0, 5.2 Hz, 1H, 3-HB), 2.77 (app d, J = 7.1 Hz, 2H, 1-H2), 2.51 

(br s, 1H, OH), 1.41 (s, 9H, 
t
Bu); 

13
C (125 MHz, CDCl3) δ 157.6, 156.2, 137.1, 130.3, 

130.1, 128.6, 127.9, 127.5, 115.0, 79.7, 70.1, 64.3, 53.8, 36.7, 28.4; IR (film): 3532, 

3357, 3027, 2932, 1680, 1610, 1583; HRMS-ES m/z 380.1834 (M+Na calculated for 

C21H27NO4 requires 380.1832). 
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DL-2-Amino-3-(4-propoxyphenyl)propan-1-ol 74 

 

 

p-Toluenesulfonic acid (6.5 g, 34.3 mmol) was added to a solution of the alcohol 80 

in 50:50 THF–DCM (172 mL). The resulting mixture was heated to reflux overnight, 

before being cooled to room temperature and diluted with 1M NaOH (170 mL). The 

aqueous phase was extracted with EtOAc (4 × 125 mL), and the organic extracts were 

combined, washed with brine (100 mL), and dried (Na2SO4). The solvent was removed 

under reduced pressure to give the crude product which was purified by flash 

chromatography, eluting with 50:50 petrol–EtOAc followed by 50:8:1 DCM–EtOH–

NH4OH, to give the amino alcohol 74 (2.2 g, 61%) as a colourless solid, Rf = 0.3 

(50:8:1 DCM–EtOH–NH4OH); 
1
H (500 MHz; CDCl3) δ 7.09 (d, 2H, J = 8.5 Hz, Ar  

2-H), 6.84 (d, J = 8.6 Hz, 2H, Ar 3-H), 3.90 (t, J = 6.6 Hz, 2H, Pr 1-H2), 3.62 (dd,  

J = 10.6, 3.9 Hz, 1H, 1-HA), 3.36 (dd, J = 10.6, 7.2 Hz, 1H, 1-HB), 3.07 (m, 1H, 2-H), 

2.72 (dd, J = 13.7, 5.3 Hz, 1H, 3-HA), 2.46 (dd, J = 13.7, 8.5 Hz, 1H, 3-HB), 1.93-.171 

(m, 5H, Pr 2-H2, NH2, OH), 1.03 (t, J = 7.4 Hz, 3H, Pr 3-H3); 
13

C (125 MHz, CDCl3) δ 

157.8 (Ar), 130.4 (Ar), 130.1 (Ar), 114.6 (Ar), 69.6 (Pr C-1), 66.4 (C-1), 54.3 (C-2), 

40.0 (C-3), 22.6 (Pr C-2), 10.5 (Pr C-3); IR (film): 3713, 3359, 2741, 1607, 1578, 1507, 

1469; HRMS-ES m/z 210.1495 (M+H calculated for C12H19NO2 requires 210.1489).  
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DL-2-Amino-3-[4-(benzyloxy)phenyl]propan-1-ol 75 

 

 

p-Toluenesulfonic acid (9.5 g, 50 mmol) was added to a solution of the alcohol 81 in 

50:50 THF–DCM (250 mL). The resulting mixture was heated to reflux for 6 h, before 

being cooled to room temperature and diluted with 1M NaOH (300 mL). The aqueous 

phase was extracted with EtOAc (4 × 250 mL), and the organic extracts were combined, 

washed with brine (300 mL), and dried (Na2SO4). The solvent was removed under 

reduced pressure to give the crude product which was purified by flash chromatography, 

eluting with 50:50 petrol–EtOAc followed by 50:8:1 DCM–EtOH–NH4OH, to give the 

amino alcohol 75
177

 (5.0 g, 78%) as a colourless solid, Rf = 0.25 (50:8:1 DCM–EtOH–

NH4OH); 
1
H (500 MHz; CDCl3) δ 7.45-7.29 (m, 5H, Bn), 7.09 (m, 2H, Ar 2-H), 6.91 

(m, 2H, Ar 3-H), 5.03 (s, 2H, Bn CH2), 3.61 (dd, J = 10.6, 3.7 Hz, 1H, 1-HA), 3.36 (dd, 

J = 10.6, 7.2 Hz, 1H, 1-HB), 3.06 (m, 1H, 2-H), 2.72 (dd, J = 13.6, 5.2 Hz, 1H, 3-HA), 

2.45 (dd, J = 13.6, 8.6 Hz, 1H, 3-HB), 1.98 (br, 3H, NH2, OH);  

13
C (125 MHz, CDCl3) δ 157.5, 137.1, 131.0, 130.2, 128.6, 128.0, 127.5, 115.0, 70.1, 

66.3, 54.3, 40.0; IR (film): 3335, 2905, 2758, 1610, 1581, 1514, 1470; HRMS-ES  

m/z 258.1476 (M+H calculated for C16H19NO2 requires 258.1489). 
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DL-2-[(Propan-2-yl)amino]-3-(4-propoxyphenyl)propan-1-ol 82 

 

 

Acetone (352 µL, 4.8 mmol) was added to a solution of the amino alcohol 74  

(500 mg, 2.4 mmol), and MgSO4 (30 mg) in EtOH (3 mL). The resulting mixture was 

stirred at room temperature overnight and diluted with EtOH (3 mL). Sodium 

borohydride (266 mg, 7.0 mmol) was added portion-wise and the resulting mixture was 

stirred at room temperature overnight before being quenched with 1M NaOH (4 mL) 

and dissolved with EtOAc (10 mL). The resulting suspension was dried (Na2SO4), and 

the solvent removed under reduced pressure to give the crude product which was 

purified by flash chromatography, eluting with 90:10 DCM–MeOH, to give the amino 

alcohol 82 (370 mg, 61%) as a colourless solid, Rf = 0.32 (90:10 DCM–MeOH); 
1
H 

(500 MHz; CDCl3) δ 7.07 (d, 2H, J = 8.5 Hz, Ar 2-H), 6.83 (d, J = 8.6 Hz, 2H, Ar 3-H), 

3.90 (t, J = 6.6 Hz, 2H, Pr 1-H2), 3.56 (dd, J = 10.6, 4.0 Hz, 1H, 1-HA), 3.26 (dd,  

J = 10.6, 6.0 Hz, 1H, 1-HB), 2.95 (m, 1H, 2-H), 2.8 (hept, J = 6.3 Hz, 1H, iPr CH), 2.69 

(qd, J = 13.8, 6.9 Hz, 2H, 3-H2), 2.55-2.00 (br s, 2H, NH, OH), 1.84-1.76 (m, 2H,  

Pr 2-H2), 1.07-0.99 (m, 9H, iPr CH3, Pr 3-H3); 
13

C (125 MHz, CDCl3) δ 157.8 (Ar), 

130.1 (Ar), 130.0 (Ar), 114.6 (Ar), 69.6 (Pr C-1), 62.8 (C-1), 57.6 (C-2), 46.2 (iPr CH), 

37.4 (C-3), 23.2 (iPr CH3), 23.2 (iPr CH3), 22.6 (Pr C-2), 10.5 (Pr C-3); IR (film): 3714, 

3271, 2729, 1614, 1583, 1476, 1380; HRMS-ES m/z 252.1962 (M+H calculated for 

C15H25NO2 requires 252.1958).  
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DL-3-[4-(Benzyloxy)phenyl]-2-[(propan-2-yl)amino]propan-1-ol 83 

 

 

Acetone (287 µL, 3.9 mmol) was added to a solution of the amino alcohol 75  

(500 mg, 2.0 mmol), and MgSO4 (40 mg) in EtOH (3 mL). The resulting mixture was 

stirred at room temperature overnight and diluted with EtOH (3 mL). Sodium 

borohydride (220 mg, 5.8 mmol) was added portionwise and the resulting mixture was 

stirred at room temperature overnight before being quenched with 1M NaOH (3.5 mL) 

and dissolved with EtOAc (10 mL). The resulting suspension was dried (Na2SO4), and 

the solvent removed under reduced pressure to give the crude product which was 

purified by flash chromatography, eluting with 90:10 DCM–MeOH, to give the amino 

alcohol 83 (210 mg, 36%) as a colourless solid, Rf = 0.25 (90:10 DCM–MeOH); 
1
H 

(500 MHz; CDCl3) δ 7.45-7.29 (m, 5H, Bn), 7.09 (d, J = 8.6 Hz, 2H, Ar 2-H), 6.91 (d, J 

= 8.6 Hz, 2H, Ar 3-H), 5.05 (s, 2H, Bn CH2), 3.56 (dd, J = 10.7, 4.0 Hz, 1H, 1-HA), 3.27 

(dd, J = 10.7, 6.0 Hz, 1H, 1-HB), 2.95 (m, 1H, 2-H), 2.88 (hept, J = 6.3 Hz, 1H, iPr CH), 

2.73 (dd, J = 13.7, 7.3 Hz, 1H, 3-HA), 2.68 (dd, J = 13.7, 7.3 Hz, 1H, 3-HB), 2.51 (br s, 

2H, NH, OH), 1.05 (d, J = 6.2 Hz, 3H, iPr CH3), 1.02 (d, J = 6.3 Hz, 3H, iPr CH3);  

13
C (125 MHz, CDCl3) δ 157.5 (Ar C-4), 137.1 (Bn), 130.6 (Ar C-1), 130.2 (Ar C-2), 

128.6 (Bn), 128.0 (Bn), 127.5 (Bn), 115.0 (Ar C-3), 70.1 (Bn CH2), 62.8 (C-1), 57.6  

(C-2), 46.3 (iPr CH), 37.4 (C-3), 23.2 (Me), 23.1 (Me); IR (film): 3297, 3269, 2901, 

1608, 1581, 1511, 1493; HRMS-ES m/z 300.1961 (M+H calculated for C19H25NO2 

requires 300.1958).  
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(4R,4S)-3-(Propan-2-yl)-4-(4-(propyloxy)phenyl)methyl)-[1,2,3]oxathiazolidine-

2,2-dioxide 84 

 

 

Thionyl chloride (120 µL, 1.6 mmol) was added to a solution of triethylamine  

(203 µL, 3.2 mmol) and imidazole (396 mg, 5.8 mmol) in DCM (14 mL) cooled to  

−60 °C. The amino alcohol 82 (365 mg, 1.5 mmol) was added dropwise over 30 min as 

a solution in DCM (15 mL). The resulting mixture was stirred at −60 °C for 3 h before 

being warmed to and stirred at room temperature overnight. The reaction was quenched 

by the addition of water (30 mL) and the aqueous phase was washed with DCM  

(3 × 30 mL). The organic extracts were combined, washed with water (30 mL), brine  

(2 × 30 mL), and dried (MgSO4). The solvent was removed under reduced pressure to 

give the crude sulfamidite which was used without further purification. The crude 

sulfamidite was then dissolved in acetonitrile (7.3 mL) and cooled to 0 °C. Sodium 

periodate (311 mg, 1.0 mmol), ruthenium (III) chloride (4 mg, 1 mol%) and water  

(7.3 mL) were added sequentially and the resulting mixture was stirred at 0 °C for 15 

min. The reaction was quenched by the addition of water (10 mL) and the aqueous 

phase was washed with EtOAc (3 × 5 mL). The organic extracts were combined, 

washed with saturated aqueous NaHCO3 (10 mL), brine (2 × 10 mL), and dried 

(MgSO4). The solvent was removed under reduced pressure to give the crude which was 

purified by flash chromatography, eluting with 91:9 to 67:33 petrol–EtOAc, to give the 

cyclic sulfamidate 84 (220 mg, 50%) as a light yellow solid, Rf = 0.3 (80:20 Petrol–

EtOAc); 
1
H (500 MHz; CDCl3) δ 7.10 (d, 2H, J = 8.4 Hz, Ar 2-H), 6.86 (d, J = 8.7 Hz, 

2H, Ar 2-H), 4.28 (dd, J = 8.7, 6.5 Hz, 1H, 5-HA), 4.20 (dd, J = 8.7, 4.0 Hz, 1H, 5-HB), 

3.90 (t, J = 6.6 Hz, 2H, Pr 1-H2), 3.88-3.82 (m, 1H, 4-H), 3.70 (hept, J = 6.7 Hz, 1H, iPr 

CH), 3.11 (dd, J = 13.8, 6.1 Hz, 1H, 4-CHA), 2.82 (dd, J = 13.8, 9.2 Hz, 1H, 4-CHB),  

1.85-1.75 (m, 2H, Pr 2-H2), 1.34 (d, J = 6.7 Hz, 3H, iPr CH3), 1.34 (d, J = 6.7 Hz, 3H, 

iPr CH3), 1.03 (t, J = 7.43 Hz, 3H, Pr 3-H3); 
13

C (125 MHz, CDCl3) δ 158.5 (Ar), 130.3 

(Ar), 127.5 (Ar), 115.0 (Ar), 70.3 (C-5), 69.6 (Pr C-1), 57.5 (C-4), 49.9 (iPr CH), 39.0 

(Bn CH2), 22.6 (Pr C-2), 20.9 (iPr CH3), 19.4 (iPr CH3), 10.5 (Pr C-3); IR (film): 3727, 
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3037, 2873, 1610, 1581, 1513, 1464; HRMS-ES m/z 336.1236 (M+Na calculated for 

C15H23NO4S requires 336.124). 

 

(4R,4S)-3-(Propan-2-yl)-4-(4-(benzyloxy)phenyl)methyl)-[1,2,3]oxathiazolidine-

2,2-dioxide 85 

 

 

Thionyl chloride (53 µL, 0.7 mmol) was added to a solution of triethylamine  

(196 µL, 1.4 mmol) and imidazole (174 mg, 2.6 mmol) in DCM (8 mL) cooled to  

−60 °C. The amino alcohol 83 (191 mg, 0.6 mmol) was added dropwise over 30 min as 

a solution in DCM (5 mL). The resulting mixture was stirred at −60 °C for 2 h before 

being warmed to and stirred at room temperature overnight. The reaction was quenched 

by the addition of water (7 mL) and the aqueous phase was washed with DCM  

(3 × 5 mL). The organic extracts were combined, washed with water (5 mL), brine  

(2 × 5 mL), and dried (MgSO4). The solvent was removed under reduced pressure to 

give the crude sulfamidite which was used without further purification. The crude 

sulfamidite was then dissolved in acetonitrile (3.2 mL) and cooled to 0 °C. Sodium 

periodate (205 mg, 1.0 mmol), ruthenium (III) chloride (2 mg, 1 mol%) and water (3.2 

mL) were added sequentially and the resulting mixture was stirred at 0 °C for 15 min. 

The reaction was quenched by the addition of water (3 mL) and the aqueous phase was 

washed with EtOAc (3 × 5 mL). The organic extracts were combined, washed with 

saturated aqueous NaHCO3 (5 mL), brine (2 × 5 mL), and dried (MgSO4). The solvent 

was removed under reduced pressure to give the crude which was purified by flash 

chromatography, eluting with 75:25 petrol–EtOAc, to give the cyclic sulfamidate 85 

(128 mg, 53%) as a colourless solid, Rf = 0.27 (75:25 Petrol–EtOAc); 
1
H (500 MHz; 

CDCl3) δ 7.44-7.30 (m, 5H, OBn), 7.11 (d, J = 8.5 Hz, 2H, Ar 2-H), 6.94 (d, J = 8.7 Hz, 

2H, Ar 3-H), 5.05 (s, 2H, OBn CH2), 4.29 (dd, J = 8.7, 6.6 Hz, 1H, 5-HA), 4.19 (dd,  

J = 8.7, 3.9 Hz, 1H, 5-HB), 3.85 (m, 1H, 4-H), 3.70 (hept, J = 6.8 Hz, 1H, iPr CH),  
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3.11 (dd, J = 13.8, 6.2 Hz, 1H, 4-CHA), 2.83 (dd, J = 13.8, 9.0 Hz, 1H, 4-CHB), 1.33 (d, 

J = 6.7 Hz, 3H, iPr CH3), 1.18 (d, J = 6.7 Hz, 3H, iPr CH3); 
13

C (75 MHz, CDCl3) δ 

158.1 (Ar C-4), 136.8 (OBn), 130.4 (Ar C-2), 128.6 (OBn), 128.1 (Ar C-1), 128.0 

(OBn), 127.5 (OBn), 115.3 (Ar C-3), 70.3 (C-5), 70.1 (OBn CH2), 57.4 (C-4), 50.0  

(iPr CH), 39.0 (4-CH2), 20.9 (Me), 19.4 (Me); IR (film): 3063, 2979, 1611, 1583, 1512, 

1465, 1340; HRMS-ES m/z 384.1257 (M+Na calculated for C19H23NO4S requires 

384.124).  
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(2RS,5RS)- and (2RS,5SR)-Ethyl 2-oxo-1-(propan-2-yl)-5-[(4-

propoxyphenyl)methyl]pyrrolidine-3-carboxylate 86 

 

 

By method A, diethyl malonate 71 (97 μL, 0.6 mmol) and the cyclic sulfamidate 84  

(100 mg, 0.3 mmol) gave a crude product which was purified by flash chromatography 

eluting with 80:20 to 50:50 petrol–EtOAc to give the γ-lactam 86  

(67 mg, 60%); trans–cis (67:33), Rf = 0.38 (50:50 Petrol–EtOAc); 
1
H (500 MHz; 

CDCl3) δ 7.13 (d, 2H, J = 8.6 Hz, Ar 2-H
min

), 7.07 (d, J = 8.6 Hz, 2H, Ar 2-H
maj

), 6.85 

(d, J = 8.6 Hz, 2H, Ar 3-H
min

), 6.85 (d, J = 8.6 Hz, 2H, Ar 3-H
maj

), 4.26 (q, J = 7.1 Hz, 

2H, Et 1-H2
min

), 4.24-4.14 (m, 3H, Et 1-H2
maj

, iPr CH
min

), 4.14-4.06 (m, 1H, iPr CH
maj

), 

3.94-3.87 (m, 5H, Pr 1-H2
maj,min

, 5-H
maj

), 3.82-3.75 (app ddd, J = 15.1, 8.0, 4.0 Hz, 1H, 

5-H
min

), 3.36-3.29 (m, 2H, 3-H
maj,min

), 3.20 (dd, J = 13.1, 3.8 Hz, 1H, 5-CHA
min

), 3.08 

(dd, J = 13.6, 3.8 Hz, 1H, 5-CHA
maj

), 2.64 (dd, J = 13.1, 11.1 Hz, 1H, 5-CHB
min

), 2.47 

(dd, J = 13.6, 9.8 Hz, 1H, 5-CHB
maj

), 2.27 (ddd, J = 13.1, 9.4, 8.2 Hz, 1H, 4-HA
maj

), 2.12 

(ddd, J = 13.5, 5.5, 4.2 Hz, 1H, 4-HA
min

), 2.07-2.01 (m, 1H, 4-HB
min

), 1.97 (ddd,  

J = 13.1, 8.7, 2.5 Hz, 1H, 4-HB
maj

), 1.84-1.76 (m, 4H, Pr 2-H2
maj,min

), 1.42-1.34 (m, 12H, 

iPr CH3
maj,min

), 1.33 (t, J = 7.1 Hz, 3H, Et 2-H3
min

), 1.27 (t, J = 7.1 Hz, 3H, Et 2-H3
maj

), 

1.04 (t, J = 7.4 Hz, 6H, Pr 3-H3
maj,min

); 
13

C (75 MHz, CDCl3) δ 170.8 (C=O
min

), 170.4 

(C=O
maj

), 169.9 (C-2
maj

), 169.5 (C-2
min

), 158.1 (Ar C-4
maj

), 158.0 (Ar C-4
min

), 130.2 (Ar 

C-2
maj

), 130.1 (Ar C-2
min

), 129.2 (Ar C-1
min

), 128.8 (Ar C-1
maj

), 114.8 (Ar C-3
maj

), 

114.7 (Ar C-3
min

), 68.6 (Pr C-1
maj,min

), 61.6 (Et C-1
min

), 61.4 (Et C-1
man

), 58.3 (C-5
min

), 

57.3 (C-5
maj

), 48.5 (C-3
min

), 47.8 (C-3
maj

), 45.7 (iPr CH
maj

), 45.5 (iPr CH
min

), 41.0  

(5-CH2
min

), 40.4 (5-CH2
maj

), 28.0 (C-4
maj

), 27.0 (C-4
min

), 22.6 (Pr C-2
maj,min

), 21.4  

(iPr CH3), 19.8 (iPr CH3), 19.6 (iPr CH3), 14.2 (Et C-2
maj,min

), 10.5 (Pr C-3
maj,min

); IR 

(film): 2971, 2878, 1736, 1692, 1612, 1581, 1512; HRMS-ES m/z 370.1999 (M+Na 
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calculated for C20H29NO4 requires 370.1989). Maj and min refer to the major and minor 

diasteromer, assigned by observation of NOESY correlations between 5-CH2 and 3-H 

(major) or 5-H and 3-H (minor).  

 

(2RS,5RS)- and (2RS,5SR)-3-Amino-1-(propan-2-yl)-5-[(4-

propoxyphenyl)methyl]pyrrolidin-2-one 88 

 

 

By method A, N-(diphenylmethylene)glycine ethyl ester 38 (171 mg, 0.6 mmol) and 

the cyclic sulfamidate 84 (100 mg, 0.3 mmol) gave a crude product which was purified 

by flash chromatography eluting with 95:5 DCM–MeOH to give the γ-lactam 88 (31 

mg, 33%); trans–cis (58:42), Rf = 0.25 (95:5 DCM–MeOH); 
1
H (500 MHz; CDCl3)  

δ 7.10-7.06 (m, 4H, Ar 2-H
maj,min

), 6.87-6.82 (m, 4H, Ar 3-H
maj,min

), 4.15-4.07 (m, 2H, 

iPr CH
maj,min

), 3.90 (t, J = 6.6 Hz, 4H, Pr 1-H2
maj,min

), 3.78-3.72 (m, 1H, 5-H
maj

), 3.72-

3.65 (m, 1H, 5-H
min

), 3.43-3.29 (m, 3H, 3-H
maj,min

, 5-CHA
min

), 2.98 (dd, J = 13.7, 3.7 

Hz, 1H, 5-CHA
maj

), 2.52 (dd, J = 13.7, 9.6 Hz, 1H, 5-CHB
maj

), 2.43 (dd, J = 13.0, 10.4 

Hz, 1H, 5-CHB
min

), 2.25 (app dd, J = 12.8, 7.9 Hz, 1H, 4-HA
maj

), 2.20 (ddd, J = 12.9, 

8.7, 6.5 Hz, 1H, 4-HA
min

), 1.85-1.76 (m, 4H, Pr 2-H2
maj,min

), 1.64 (br s, 4H, NH2
maj,min

), 

1.55 (ddd, J = 12.5, 11.0, 8.4 Hz, 1H, 4-HB
maj

), 1.42 (d, J = 7 Hz, 3H, iPr CH3
min

),  

1.38-1.32 (m, 10H, 4-HB
min

, iPr CH3
maj

, iPr CH3
maj,min

), 1.04 (t, J = 7.4 Hz, 6H, Pr  

3-H3
maj,min

); 
13

C (125 MHz, CDCl3) δ 176.2 (C=O
min

), 175.9 (C=O
maj

), 158.1  

(Ar C-4
maj,min

), 130.1 (Ar C-2
maj

), 130.0 (Ar C-2
min

), 129.3 (Ar C-1
maj

), 128.7 (Ar  

C-1
min

), 114.7 (Ar C-3
maj

), 114.7 (Ar C-3
min

), 69.6 (Pr C-1
maj,min

), 56.5 (C-5
min

), 55.4  

(C-5
maj

), 52.7 (C-3
min

), 51.7 (C-3
maj

), 45.3 (iPr CH
maj

), 45.2 (iPr CH
min

), 41.9  

(5-CH2
min

), 40.0 (5-CH2
maj

), 35.1 (C-4
min

), 34.2 (C-4
maj

), 22.6 (Pr C-2
maj,min

), 21.6  

(iPr CH3), 21.4 (iPr CH3), 19.7 (iPr CH3), 19.7 (iPr CH3), 10.5 (Pr C-3
maj,min

); IR (film): 
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3364, 2969, 2935, 2877, 1682, 1613, 1512; HRMS-ES m/z 291.2076 (M+H calculated 

for C17H26N2O2 requires 291.2067). Maj and min refer to the major and minor 

diasteromer, assigned by observation of NOESY correlations between 5-CH2 and 3-H 

(major) or 5-H and 3-H (minor).   
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(2RS,5RS)- and (2RS,5SR)-Ethyl 5-{[4-(benzyloxy)phenyl]methyl}-2-oxo-1-

(propan-2-yl)pyrrolidine-3-carboxylate 87 

 

 

By method A, diethyl malonate 71 (108 μL, 0.7 mmol) and the cyclic sulfamidate 85  

(128 mg, 0.35 mmol) gave a crude product which was purified by flash chromatography 

eluting with 75:25 petrol–EtOAc to give the γ-lactam 87 (88 mg, 63%); trans–cis 

(64:36), Rf = 0.13 (75:25 Petrol–EtOAc); 
1
H (500 MHz; CDCl3) δ 7.45-7.30 (m, 10H, 

OBn
maj,min

), 7.15 (d, J = 8.6 Hz, 2H, Ar 2-H
min

), 7.09 (d, J = 8.6 Hz, 2H, Ar 2-H
maj

), 

6.93 (d, J = 8.6 Hz, 2H, Ar 3-H
min

), 6.93 (d, J = 8.7 Hz, 2H, Ar 3-H
maj

), 5.05 (s, 4H, 

OBn CH2
maj,min

), 4.25 (q, J = 7.1 Hz, 2H, Et 1-H2
min

), 4.24-4.14 (m, 3H, Et 1-H2
maj

, iPr 

CH
min

), 4.14-4.05 (m, 1H, iPr CH
maj

), 3.94-3.88 (m, 1H, 5-H
maj

), 3.79 (ddd, J = 15.2, 

8.0, 4.0 Hz, 1H, 5-H
min

), 3.36-3.30 (m, 2H, 3-H
maj,min

), 3.20 (dd, J = 13.1, 3.8 Hz, 1H,  

5-CHA
min

), 3.08 (dd, J = 13.6, 3.8 Hz, 1H, 5-CHA
maj

), 2.65 (dd, J = 13.1, 11.1 Hz, 1H,  

5-CHB
min

), 2.47 (dd, J = 13.6, 9.8 Hz, 1H, 5-CHB
maj

), 2.28 (ddd, J = 13.1, 9.3, 8.2 Hz, 

1H, 4-HA
maj

), 2.12 (ddd, J = 13.6, 5.4, 4.2 Hz, 1H, 4-HA
min

), 2.07-2.01 (m, 1H, 4-HB
min

), 

1.97 (ddd, J = 13.1, 8.7, 2.6 Hz, 1H, 4-HB
maj

), 1.42-1.32 (m, 12H, iPr CH3
maj,min

), 1.32 

(t, J = 7.1 Hz, 3H, Et 2-H3
min

), 1.27 (t, J = 7.1 Hz, 3H, Et 2-H3
maj

); 
13

C (125 MHz, 

CDCl3) δ 170.8 (C=O
min

), 170.4 (C=O
maj

), 169.9 (C-2
maj

), 169.5 (C-2
min

), 157.8 (Ar  

C-4
maj

), 157.7 (Ar C-4
min

), 137.0 (OBn Ar
maj,min

), 136.9 (OBn Ar
maj,min

), 130.2 (Ar  

C-3
min

), 130.1 (Ar C-3
maj

), 129.7 (Ar
maj,min

), 129.3 (Ar
maj,min

), 128.6 (OBn Ar
maj,min

), 

128.0 (OBn Ar
maj,min

), 127.5 (OBn Ar
maj,min

), 115.2 (Ar C-2
maj

), 115.1 (Ar C-2
min

), 70.1 

(OBn CH2
maj,min

), 61.6 (Et C-1
min

), 61.4 (Et C-1
maj

), 58.2 (C-5
min

), 57.2 (C-5
maj

), 48.5 

(C-3
min

), 47.8 (C-3
maj

), 45.7 (iPr CH
maj

), 45.6 (iPr CH
min

), 41.0 (5-CH2
min

), 40.4  

(5-CH2
maj

), 28.0 (C-4
maj

), 27.0 (C-4
min

), 21.4 (iPr CH3), 21.4 (iPr CH3), 19.8 (iPr CH3), 

19.6 (iPr CH3), 14.2 (Et 2-C), 14.2 (Et 2-C); IR (film): 3031, 2977, 1735, 1689, 1611, 

1583, 1512; HRMS-ES m/z 418.2002 (M+Na calculated for C24H29NO4 requires 

418.1989). Maj and min refer to the major and minor diasteromer, assigned by 
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observation of NOESY correlations between 5-CH2 and 3-H (major) or 5-H and 3-H 

(minor).  

 

(2RS,5RS)- and (2RS,5SR)-3-Amino-5-{[4-(benzyloxy)phenyl]methyl}-1-

(propan-2-yl)pyrrolidin-2-one 89 

 

 

By method A, N-(diphenylmethylene)glycine ethyl ester 38 (144 mg, 0.5 mmol) and 

the cyclic sulfamidate 85 (97 mg, 0.3 mmol) gave a crude product which was purified 

by flash chromatography eluting with 90:10 DCM–MeOH to give the γ-lactam 89  

(23 mg, 26%); trans–cis (71:29), Rf = 0.35 (90:10 DCM–MeOH); 
1
H (500 MHz; 

CDCl3) δ 7.45-7.29 (m, 10H, OBn
maj,min

), 7.13-7.06 (m, 4H, Ar 2-H
maj,min

), 6.96-6.89 

(m, 4H, Ar 3-H
maj,min

), 5.05 (s, 4H, OBn CH2
maj,min

), 4.14-4.07 (m, 2H, iPr CH
maj,min

), 

3.79-3.65 (m, 2H, 5-H
maj,min

), 3.44-3.36 (m, 1H, 3-H
maj

), 3.36-3.29 (m, 2H, 3-H
min

,  

5-CHA
min

), 2.98 (dd, J = 13.7, 3.7 Hz, 1H, 5-CHA
maj

), 2.53 (dd, J = 13.7, 9.6 Hz, 1H,  

5-CHB
maj

), 2.44 (dd, J = 13.0, 10.4 Hz, 1H, 5-CHB
min

), 2.28-2.22 (m, 1H, 4-HA
maj

),  

2.22-2.16 (m, 1H, 4-HA
min

), 1.86 (br s, 4H, NH2
maj,min

), 1.62-1.53 (m, 1H, 4-HB
maj

), 

1.43-1.32 (m, 13H, 4-HB
min

,iPr CH3
maj,min

); 
13

C (125 MHz, CDCl3) δ 176.1 (C=O
min

), 

175.8 (C=O
maj

), 157.7 (Ar C-4
maj,min

), 137.0 (OBn
maj,min

), 130.2 (Ar C-2
maj

), 130.1  

(Ar C-2
min

), 129.8 (Ar C-1
maj

), 129.2 (Ar C-1
min

), 128.6 (OBn
maj,min

), 128.0 (OBn
maj,min

), 

127.5 (OBn
maj,min

), 115.1 (Ar C-3
maj

), 115.1 (Ar C-3
min

), 70.1 (OBn CH2
maj,min

), 56.4  

(C-5
min

), 55.4 (C-5
maj

), 52.6 (C-3
min

), 51.7 (C-3
maj

), 45.4 (iPr CH
maj

), 45.2 (iPr CH
min

), 

41.8 (5-CH2
min

), 40.0 (5-CH2
maj

), 35.0 (C-4
min

), 34.1 (C-4
maj

), 21.6 (iPr CH3
maj

), 21.4 

(iPr CH3
min

), 19.7 (iPr CH3
min

), 19.7 (iPr CH3
maj

); IR (film): 3363, 2973, 1682, 1611, 

1583, 1511, 1454; HRMS-ES m/z 339.2076 (M+H calculated for C21H26N2O2 requires 

339.2067). Maj and min refer to the major and minor diasteromer, assigned by 
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observation of NOESY correlations between 5-CH2 and 3-H (major) or 5-H and 3-H 

(minor).  
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9 APPENDIX 

 

Appendix 1 Statistics behind a high-throughput screening assay (Sections 

2.1.3.2, 2.3) 

 

Appendix 2 – 6 Individual plates (1 to 5) used to determine the overall antiviral 

effect of Ribavirin (Section 2.3.5.1).  

The dose-response to Ribavirin in HEp-2 cells describes a sigmoidal curve. The 

results are expressed as the ratio to untreated A2-infected cells at an M.O.I. of 0.85, 

labelled Antiviral. The error bars refer to the standard deviation of three replicates. 

 

Appendix 7 – 8 Establishment of the robustness of the assay (Section 2.3.6). 

The dose-response to Ribavirin in HEp-2 cells describes a sigmoidal curve. The 

results are expressed as the ratio to untreated A2-infected cells at an M.O.I. of 0.55. The 

error bars refer to the standard deviation of three replicates. Appendix 7: Ribavirin was 

prepared and added by hand; appendix 8: Ribavirin was prepared and added by the 

robot. 

 

Appendix 9 Table summarising the statistical parameters analysed in high-

throughput screening (Sections 2.3.5.1, 2.3.6). 

The following parameters are summarised: mean (µ), standard deviation (σ), 

coefficient of variation (CV), Z'-facor (for Ribavirin and the maximum and minium 

signals), signal window (SW), signal-to-noise (S:N) and signal-to-background (S:B) 

ratios, the calculated EC50 in micromolar as calculated by Origin 7.5. Mock and A2 

refers to mock- and A2-infected HEp-2 cells, respectively. 
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Appendix 10 – 12 Normal distribution of Ribavirin concentrations, (10, Section 

2.3.5.3; 11-12, Section 2.3.6). 

Representation of the frequencies of normalised Gaussians (normal distribution) for 

each of the Ribavirin concentrations along with the A2-infected HEp-2 cells (A2) 

control. M.O.I. was 0.85 for appendix 10 and 0.5 for appendix 11, 12. 

 

Appendix 13 – 18 Input files used for Chapter 3 

Appendix 13: building blocks and electrophiles chosen for enumeration of the virtual 

library described in Section 3.2.1. 

Appendix 14: fourteen common substructures identified by vHTS of 53,640 

molecules against 3KPE with the bound water using eHiTS (Section 3.2.2) 

Appendix 15: twenty-one common scaffolds identified by vHTS of 15,728 molecules 

against 3KPE with the bound water using eHiTS (Section 3.2.2) 

Appendix 16: enumeration of a more focused library (Section 3.2.3) 

Appendix 17: enumeration of lead-like library of 85,115 molecules (Section 3.3.1) 

 

Appendix 18 – Biological testing of the vHTS compounds identified as hits after 

single concentration screening (Section 5.1.3) 

 

Appendix 19 – 23 Dose-response analyses on non-hit controls (Section 5.1.5) 

Dose-response analyses (25 µM to 1.3 nM) carried out on the following compounds 

groups: four cytotoxic compounds not identified as hits during the screening campaign 

(Appendices 19-22); and one compound not identified as a hit and not classified as 

cytotoxic (negative compound, shown in Appendix 23). The results are expressed as the 

ratio to untreated A2-infected cells at an M.O.I. of 0.5, labelled Antiviral. An additional 

y-axis has been added to show the cytotoxic dose-response of HEp-2 cells to the hit. 

The results are expressed as the ratio of the hit-exposed cells to the unexposed cells 

against logarithm to base 10 of the hit concentrations (in molar). Absorbance was read 

at 570 nm. The error bars refer to the standard deviation of four replicates. 
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1 – Statistics behind a high-throughput screening assay (Sections 2.1.3.2, 2.3) 

Coefficient of variation: the coefficient of variation is likely to fail when the samples 

analysed are corresponding to a complete reduction of the signal, hence having a low 

mean value. In such instances, it is recommended to look at the standard deviation of 

the data series and to compare it to that of the maximum signal
84

. 

 Minimum significant ratio: when an assay is carried out with a concentration 

gradient, it is important to introduce another statistical parameter: the minimum 

significant ratio (MSR), a measurement of assay performance
139

. This parameter can 

also be used to assess assay reproducibility, but it needs a minimum of two compounds 

with reportable potencies
139

. The MSR criterion allows room for variation (standard 

deviation of the log difference between two runs lower than 0.24). It also means that as 

long as the difference in log potencies between two runs is consistent (i.e. low standard 

deviation), this criterion will always be satisfied. That is why the limits of agreements 

MR/MSR and MR×MSR have been introduced
139

. MR is the mean-ratio and is defined 

as     , µd is the mean of the di (di is the difference, between two runs, in log potency 

for compound i). These two limits should always fall between 0.33 and 3
84

. Therefore, 

if the difference in log potencies between two runs is consistent but high, the 

performance of the assay might be rejected. 

Hit threshold: the threshold for hit selection, in an unbiased library, is set at three 

standard deviations, i.e. outside the data variability band, from the normalised 

mean
81,83,136,203

 (Figure A.4). An alternative, more resistant to outliers (i.e. false-

positive, “hits”), is to use the median and the median absolute deviation
81,203,205

 

(M.A.D.): 

                                       

x(i,j) is the sample loaded on the plate in row i, column j, and x is the sample. The 

1.4826 coefficient is to allow comparison to the standard deviation when the data fits a 

normal distribution. 

In this instance, the threshold for hit selection is set at three MAD from the median. 

The downside to this selection method is that it will return several weak “hits”, which 

will increase the workload for the follow-up screen. 
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Table 9.1: Statistical parameters required for an assay to be suitable for HTS  

Statistical 

parameters 
Equation 

Assay validated 

if 

Signal-to-noise 

ratio 
 

              

      
 Strong signal 

Signal-to-

background 

ratio 

 
      

      
 

> 2 (good 

dynamic range) 

Coefficient of 

variation (%) 
  

            

            
 

< 20% (low well-

to-well 

variability) 

Signal window  
                                 

      
 

> 2 (good 

separation 

between the 

controls) 

Z'-factor     
                  

                
 

> 0
a
 (feasible 

assay) 

Z-factor      
                         

                       
 

> 0
a
 (feasible 

assay) 

MSR          b < 3 

Separation 

band 
= µ+ve − µ−ve − 3   (σ+ve + σ−ve) - 

µ and σ refer to the average and standard deviation respectively. The formulae's have 

been reproduced to match those used in the present assay. +ve refers to the positive 

control (maximum signal) and –ve refers to the negative control (minimum signal). 
a
: a 

‘good’ assay should have Z' > 0.5.
b
 σd is the standard deviation of the di for all the 

compounds, and di is the difference, between two runs, in potency (log) for compound i. 
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2 – Plate 1 (Section 2.3.5.1) 
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3 – Plate 2 (Section 2.3.5.1) 

 

  



 

218 

 

4 – Plate 3 (Section 2.3.5.1) 
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5 – Plate 4 (Section 2.3.5.1) 
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6 – Plate 5 (Section 2.3.5.1) 
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7 – Ribavirin (hand) (Section 2.3.6) 
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8 – Ribavirin (robot) (Section 2.3.6) 
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9 – Summary of the statistical parameters (Sections 2.3.5.1, 2.3.6) 
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9 – Summary of the statistical parameters (continued) (Sections 2.3.5.1, 2.3.6) 
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10 – Normal distribution of Ribavirin concentrations (overall) (Section 2.3.5.3) 
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11 – Normal distribution of Ribavirin concentrations (hand) (Section 2.3.6) 
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12 – Normal distribution of Ribavirin concentrations (robot) (Section 2.3.6) 
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13 – Building blocks and electrophiles chosen for the enumeration of the virtual 

library described in Section 3.2.1 

Building blocks (set A): 

 

Building blocks (set B): 
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Building blocks (set C): 

 

 

Electrophiles (set D): 
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Appendix 14 – Fourteen common substructures identified by vHTS of 53,640 

molecules against 3KPE with the bound water using eHiTS (Section 3.2.2) 

 

Appendix 15 – Twenty-one common scaffolds identified by vHTS of 15,728 

molecules against 3KPE with the bound water using eHiTS (Section 3.2.2) 
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Appendix 16 – Enumeration of a more focused library (Section 3.2.3) 

R groups: 

 

R
1
 groups: 
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Appendix 17 – Enumeration of a lead-like library of 85,115 molecules  

(Section 3.3.1) 
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18 – Alternative assay conditions (Section 5.1.3) 

 

Alternative assay conditions were reported in Section 2.3.7.4 and were applied to the 

compounds prepared in Chapter 3 as well as the hits following the biological testing of 

the potential inhibitors found in vHTS (Figure Z.1). 

 

Figure Z.1. 11 compounds tested under the alternative assay conditions described 

in Section 2.4.8.4. Compounds tested at 25 μM. 

  

In the first set of new conditions, the compounds were added on the second day, 

immediately before the infection step (Figure Z.2.A). In the second set of new 

conditions, the compounds were added on the second day, immediately before the 

infection, and after one hour incubation, the compounds–virus solution was replaced by 

fresh media (Figure Z.2.B). At 25 µM, no activity was observed under the alternative 

assay conditions. 
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A. 

 

 

B. 

 

 

Figure Z.2. Alternative assay conditions used to assay hRSV fusion. A. Day 1: cells, 

day 2: compounds (25 μM) then virus and incubate for 24 hr. B. Day 1: cells, day 2: 

compounds (25 μM) then virus and incubate for 24 hr then wash with PBS and add 

media, incubate for 24 hr. 
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19 – HTS control compound, no antiviral activity but cytotoxicity observed 

(Section 5.1.5)   
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20 – HTS control compound, no antiviral activity but cytotoxicity observed 

(Section 5.1.5)   
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21 – HTS control compound, no antiviral activity but cytotoxicity observed 

(Section 5.1.5)   
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22 – HTS control compound, no antiviral activity but cytotoxicity observed 

(Section 5.1.5)   
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23 – HTS control compound, no antiviral activity, no cytotoxicity observed 

(Section 5.1.5)  

 

 

 


