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Abstract

The adoption of wireless sensor networks (WSNs) in numerous emerg-

ing applications have prevailed us to realize that smart living is no

longer an imagination, it already exists. In emerging applications, lo-

calization is an essential function so that all the sensed information

can be responded carefully. Among the range free and range aware

localization, range aware localization has been the most promising for

fine-grained accuracy. Range aware localization has two phases, rang-

ing and localization. Location errors always exist no matter which

ranging or localization technique is used. Therefore, there is a need

to optimize range aware localization for better performance.

Firstly, this thesis investigates the performance of time-of-flight (ToF)

and received signal strength (RSS) based ranging using IEEE 802.1.5.4

compliant WSNs nodes in outdoor and indoor for both line-of-sight

(LOS) and non-line-of-sight (NLOS) paths. The fundamental Cramér-

Rao lower bound (CRLB) on ToF and RSS ranging performance is

compared with the performance limits of IEEE 802.1.5.4 compliant

modules. The experimental results for both outdoor and indoor LOS

path demonstrated that RSS is a good candidate for range estimation

at ranges less than 7m. Further analysis over long range demonstrates

that ToF is a good candidate for range estimation at greater than 7m.

In addition to the ranging error, another well-known error mechanism

is the poor geometric anchors placement, which can significantly de-

grade localization performance. In the Global Positioning System

(GPS) community, geometric dilution of precision (GDOP) is a well-

known problem which illustrates the geometric configuration impact-

ing localization accuracy. To analyse the impact of anchor placement
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on localization, performance of three lateration based approaches is

compared in a cooperative fashion. Through results, It is confirmed

that lateration based approaches presents a trade-off for complex com-

putation, thus energy consumption and accuracy. It provided the

needed motivation to investigate and optimize the anchor placement

for better localization accuracy. The impact of anchor placement for

quality reliable localization has been limited to 3-4 anchors with re-

spect to a single subject node for 2-D. Therefore, to model reality

most clearly, it makes sense to step beyond the easy and secure reach

of unrealistic and mostly researched 2-dimensional representations to

the pragmatic world in 3-dimensional visualization. In addition, pre-

vious work for optimal anchors placement has been limited to only

additive noise. To the best of our knowledge, there is no study of

optimization of anchor placement with respect to the multiplicative

noise. Therefore, the optimal anchor placements are determined for

both signal models based on minimum mean CRLB (m-CRLB). It is

confirmed that optimal anchor placement for both signal models is

different and have a serious impact on localization accuracy. The op-

timal anchor placement is further verified by developing a new Range

Aware Localization System (RALS) using IEEE 802.15.4 compliant

devices.

In LOS, quality reliable localization performance can be achieved but

as propagation criteria change from LOS to NLOS, localization per-

formance also changes. In an indoor environment, localization perfor-

mance degrades significantly due to multipath components. To over-

come, a new 3-D scheme named Range Estimate Threshold (RET) is

proposed which exploits field dimensions based on the signal model

and optimal anchor placement to define a threshold. Based on the

defined threshold, RET mitigates the poor range estimates from Mea-

sured Estimation (ME) for better localization accuracy. The ramifica-

tion of RET on ME is explored through additive, multiplicative and

log-normal shadowing models. It is confirmed that localization based

on RET compared to ME showed improved accuracy.
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Âc Selected Anchor Combination

Air Number of in-range Anchor/Pseudo-anchor Nodes

c Speed of Light

xxvii



LIST OF SYMBOLS

Symbol Definition

CAP Collinear Anchor Placement

cm Centimetre

CR Cross-over range

dBm Decibels related to 1 milliwatt

dij Distance between ith anchor and

jth subject node

d̂ij Estimated Distance ith anchor and

jth subject node

dxi Direction Cosines

dyi Direction Cosines

ERMS Root-Mean-Square-Error

ELoc
RMS Root-Mean-Square-Error for Localization

Er
RMS Root-Mean-Square-Error for Ranging

fs Clock Rate

Gr Receiver antenna gain

Gt Transmit antenna gain

GM Geometry Matrix

h Height

hr Receiver antenna height

ht Transmit antenna height

Hz Hertz

I Fisher Information Matrix

xxviii



LIST OF SYMBOLS

Symbol Definition

ℓi NLOS bias

l Length

J Objective function (AML)

k Number of iterations

kB Boltzmann’s constant

Kp Multiple paths

L System loss factor

M Number of subject nodes

m Metre

MSs Mobile Stations

MPL Maximum Possible Locations

N Number of anchor nodes

No Noise power spectral density

Np Noise power

n Error Function of Ranging System

Pr Receive power

Pt Transmit power

Rc Chip Rate

s Second
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Chapter 1

Introduction

1.1 Introduction

The last couple of decades have seen a tremendous development in micro-electro-

mechanical-systems (MEMS), data communication and electronics. In 2002, it

allowed researchers from Intel and UC Berkeley as a part of famous Great Duck

Island project to monitor dozens of petrel’s nesting burrows with small devices

called motes [4]. Each mote is about the size of its power source-a pair AA batter-

ies (energy source), capable of performing some processing (equipped with pro-

cessor), gathering sensory information (small memory), sensing and monitoring

environment (light, humidity, pressure, and heat sensors). Above all, there was

also a radio transceiver just powerful enough to cooperatively communicate with

other connected neighbour motes in the network and to transmit monitored data.

The motes, equipped with five main components as shown in figure 1.1(a), reflect

a future composed by networks of battery powered wireless sensors that monitor

our environment, our machines and even us [4]. Fig. 1.1(b) shows 2.4GHz IEEE

802.15.4 and ZigBee PRO compliant JN5148 micro-controller and sensor board.

It integrates an extremely powerful 32-bit RISC CPU with cumulative memory

inside amounts to 256 kbyte, and, combined with efficient code utilization. This

is enough for a full ZigBee PRO stack and to provide space for applications [1].

WSNs are very application specific networks and composed of a large num-

ber of tiny sensors, which can be deployed over a vicinity of interest. Based on

the type and purpose like continuous sensing and control, event detection and
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1.1 Introduction

(a) (b)

Figure 1.1: Fig. 1.1(a). Smart Sensor Architecture [1]. Fig. 1.1(b). JN5148
Micro-controller and sensor board [1].

identification, monitoring and surveillance they can be deployed in small scale

or large scale networks. The deployment can be with the static constraint of

nodes or considering the mobility based indoor or outdoor with unpredictable

environmental factors. These sensor devices exhibit several limitations in terms

of energy consumption, restricted computation capability, storage capability, sig-

nal processing and short range radio communication [5]. Furthermore, WSNs

differ from traditional wired and wireless networks in terms of the node density

(i.e. large number of sensor nodes in a vicinity), sensor nodes deployment (i.e.

unattainable or remote vicinities), dynamic and unpredictable node mobility (i.e.

may leave or join the network) and node failure (i.e. due to lack of battery power).

Therefore, to address these limitations, there is a need of efficient and optimized

processing, which can reduce the communication cost.

Based on different characteristics as discussed above and application specific

nature of WSNs, the field of WSNs exhibits many challenges. A detailed survey

of different challenges is discussed in [5]. These challenges include, optimization

of localization, energy efficient geographic routing, location aware security, data

storage, location aware inter-node cooperation, data-dissemination incorporating

localization, fault detection and tolerance and others. However, localization of

nodes in such networks exhibit new challenges due to its integration with many

emerging applications and system functionalities.
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1.2 Localization for Wireless Sensor Networks

1.2 Localization for Wireless Sensor Networks

According to Technology Review magazine published by Massachusetts Institute

of Technology (MIT), WSNs are one of the top ten technologies, which will change

the world and the way we live our lives [4]. A wide variety of emerging applications

are considered under the umbrella of WSNs such as, intelligent transport, biodi-

versity mapping, robotic land-mine detection, battlefield surveillance, precision

farming, disaster recovery operations, intelligent buildings, monitoring the flow

of glaciers, critical coastal ecosystems, detect alpha, beta and gamma radiation

and others. In many of these applications, determining the position of sensors

is one of the top priorities. Since, WSNs are application oriented networks, the

ultimate aim of location aware WSNs is to optimize the reliably and precision of

location information for location based services (LBS). It is because that without

the knowledge of geographic information, data passed by sensors is meaningless

or without having the knowledge of location of an event it will be quite useless for

LBS to reply in response to data received from the sensors. In addition, energy

efficient geographic routing has shown great interest, where accurate and reliable

localization is the first basic requirement [6]. Furthermore, system functionalities

like network coverage checking and location-based information querying are de-

pendent on the reliable localization [7]. It previews that; optimized localization

can be further incorporated to optimize the communication mechanism in WSNs.

Localization is used to solve the problem of determining the positions of nodes

or objects. Localization in fact can be used to represents the relationship between

different objects based on the coordination system. Due to the application specific

nature and its integration with many systems functionalities, the localization ap-

proaches in WSNs are classified as range-free [8–10] and range-based approaches

[11–13]. The former is based on the topological relationship and does not utilize

range estimation for localization. One of the main problems with range-free lo-

calization is that this type of localization is suitable for relative location instead

of fixed location as they use proximity information to estimate the location of the

nodes in a WSN, and thus have limited precision. The latter approach (geomet-

rical) is based on using angle estimates [14, 15], or accurate range measurements,

which can be derived from measuring point-to-point propagation time [16, 17] or
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using received signal strength [14]. This thesis addresses the challenge of range

aware localization in WSNs.

1.3 Scope and Motivations

This section states the scope and impetus behind this research in WSNs with

respect to each chapter.

• Motivation 1 - [Chapter 3]: The swift growth of wireless networking

in our daily life has forced the division of wireless applications into differ-

ent standardization directions. One direction getting a lot of attention is

the IEEE 802.15.4/Zigbee [18] global standard for short range, low-data-

rate, low-power, and low-cost applications, which is intended to serve and

be adopted by industrial, scientific and medical (ISM) applications. These

features, differentiate IEEE 802.15.4/Zigbee standard with other standards

such as Wireless Local Area Networks (WLAN), the ubiquitous Bluetooth

devices, different versions of Worldwide Interoperability for Microwave Ac-

cess (WiMAX) such as, fixed WiMAX (802.16d) for faster Wi-Fi style ISP

networks, mobile WiMAX (802.16e) for use as a 3G/HSPA replacement by

mobile phone operators and recently approved WiMAX2/WirelessMAN-

Advanced (802.16m) standard for high-speed wide area wireless networking

and Long Term Evolution (LTE) technology, which are expected to become

the next major global wireless technology. However, all of these networks

focused to achieve high data throughput and high quality of services (QoS)

and it makes IEEE 802.15.4/Zigbee standard an ideal choice for WSNs re-

search community for a wide range of applications as discussed above. In

many of these applications, determining the position of sensors is one of

the top priorities. An alternate to IEEE 802.15.4/Zigbee standard for lo-

cation aware application is Ultra-Wide-Band (UWB), which is developed

by IEEE 802.15.4a Task Group [19] to meet sub-metre accuracy. How-

ever, UWB is limited in operational range (< 100m) because of the Fed-

eral Communications Commission (FCC) regulation on transmission power

[20]. The UWB air interface, which is between 3.1GHz and 10.6GHz, has
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attracted many wireless communication areas, including WSNs due to its

lower power consumption, an increased data rate over comparatively short

range, large bandwidth (minimum of 500MHz), superior performance in

multipath environments, and realization of an ultra-low power with sim-

ple and easy to design transmitters [21]. The poor ranging performance

of non-coherent UWB receivers [22] (i.e. lack of synchronization, channel

estimation and pulse shape estimation, energy detection, and interference)

diverted research towards the fully coherent reception of UWB signals [23].

The performance of these coherent receivers is the result of relatively high

computation and processing requirements, and hardware complexity [21].

The most common technique in locating a wireless device is the so called

trilateration method. In the first phase of this technique, anchor nodes per-

form ranging individually with the subject node and based on this range

information, the second phase (localization phase) estimates the subject

nodes coordinates. It suggests that ranging accuracy is an important as-

pect to consider because a localization system obtains position estimates

using range estimates. Inaccurate range estimation may lead to unaccept-

able localization errors. Hence, for efficient localization, it is imperative

to understand the performance limits of ranging in realistic environments.

Two widely used methods for range estimation are the time-of-flight (ToF)

and the received signal strength (RSS). Recently, commercial products have

been released by several vendors such as Jennic [24], Dust Networks (win-

ner of the best technical development of a WSN/RTLS device, May 2011,

by DTechEx Energy Harvesting and WSN Awards) [25], Texas Instruments

[26], Freescale semiconductor [27], and Atmel [28]. In late 2009, Jennic

introduced IEEE 802.15.4 compliant devices with built-in ToF engine and

RSS capability to revolutionize LBSs. It encouraged us to address the per-

formance limits of ToF and RSS based ranging for IEEE 802.15.4 compliant

devices in realistic environments. The indoor and outdoor experimental re-

sults provided a platform to understand and demonstrate the performance

behaviour of IEEE 802.15.4 ToF based ranging.
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• Motivation 2 - [Chapter 4, 5 and 6]: The last couple of decades have

seen tremendous interest in research towards subject localization, where

the subject position is to be determined from a set of noisy measurements.

This work is mainly focused on range aware localization, where a set of

measurement used to locate the subject node are range estimates between

the subject and a set of fixed nodes (aka anchors). The range estimates

can be obtained via time-of-flight (ToF) or received signal strength (RSS).

Location errors always exist no matter which ranging technique is used. In

addition to the ranging error (as discussed above), another well-known error

source is the geometric placement of anchor nodes, which can significantly

degrade the quality of position estimate based any localization technique.

In NAVSTAR/Global Positioning System (GPS), and Global Navigation

Satellite System (GLONASS) community, geometric dilution of precision

(GDOP) is a well-known problem [29–36] which illustrates the geometric

configuration impacting location estimation accuracy of a localization sys-

tem. Previous work has shown that poor anchor placement can lead to a

substantial degradation in the performance of any range aware localization

technique in terms of accuracy. Although, several schemes and fixes have

been proposed to mitigate the impact of anchor placement on range derived

localization. However, there is little or limited work on the optimization of

anchor nodes placement. The impact of anchor placement for precise and

accurate localization have been limited to 3-4 anchor nodes with respect to

a single subject node for 2-dimensions, hence no optimization of optimal

sensor placement. Moreover, there is a comparatively little extension avail-

able for optimal anchor placement in 3-dimensions. In addition to that, in

terms of the signal model, previous work for geometric placement of anchors

has been limited to only additive noise model. To the best of our knowl-

edge, there is no study of geometric placement of anchor nodes with respect

to the multiplicative noise model. The observation above encouraged us to

investigate the optimization of optimal anchor placement for both additive

and multiplicative noise models, moreover for both 2-D and 3-D scenarios.

In addition, the above observation also motivates to obtain the understand-
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ing of the impact of location error due to the geographic anchor placement

for range derived localization in WSNs.

To understand the impact of geometric placement of anchor nodes, chapter

4 presents the performance analysis of three localization methods. Different

geometric anchor placements have shown the different impact on localiza-

tion accuracy. Particularly, extensive simulations try to discover the im-

pact of anchors/pseudo-anchors geometry by varying the number of anchor

nodes, node density and communication range. The study is expected to

extend the finding of other studies, and also give new insight into optimal

anchor placement. This comparative performance analysis of localization

using optimal and sub-optimal lateration provided the needed motivation

to optimize the anchor placement in order to enhance the performance of

range aware localization.

Various techniques have been developed to solve the trilateration distance

equations. These include the LS methods [37], the weighted LS method [38]

and the maximum likelihood (ML) approach [39]. The performance of these

algorithms is bounded by the Cramér-Rao lower bound (CRLB) which is

dependent on the geometry of the anchors and the target node. The limit

on performance calculated in [40] is based on the additive noise model while

a modified CRLB based on the multiplicative noise model is proposed in

[41]. Noticeably, work in this area [42, 43] has not considered the minimum

mean CRLB (m-CRLB) to optimize the anchor placement. So it is believed

that, it is the first study which takes minimum m-CRLB into consideration

for both additive and multiplicative noise models for optimization of anchor

placement in 2-D as well as in 3-D. It exposes new findings and problems,

which have not been previously discovered or have been miss understood

before due to the widely studied and focused additive signal model.

• Motivation 3 - [Chapter 7]:

The last couple of decades have seen tremendous interest in the implemen-

tation of real time localization system (RTLS) using wireless sensor nodes,

due to the fact that GPS cannot be connected with every single piece of
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sensor node. An added challenge is the fact that in practice the real world

is 3-D, which adds more complexity but on the same time demands for high

accuracy. The localization systems that are implemented using wireless sen-

sor networks (WSNs) are beacon-based localization [8], RSSI based SpotON

[44], and RF and acoustic signal based Calamari [45]. However, these im-

plemented wireless sensor networks are limited to 2-D. These systems are

further discussed in chapter 2. The real sign of motivation here is to un-

derstand the practical issues while deploying a real time location system,

differentiation between the practical deployment and simulation world and

moreover, to verify the impact of optimal anchor placement on a real time

location system, which are derived in chapter 5. The range aware local-

ization system (RALS) uses Jennic’s JN148 compliant devices with built-in

RT-ToF ranging to locate a subject node in 3-D as well as in 2-D.

• Motivation 4 - [Chapter 8]: In recent years, there has been a great in-

terest in research towards positioning of wireless devices in confined areas.

The Global Positioning System (GPS) [29] provides an excellent worldwide

lateration framework for determining geographic position. GPS solution is

famous for outdoor applications. However, this solution has several limi-

tations, the major is of course the dependency on LOS reception, together

with the high power requirement and hardware complexity from satellites.

With such limitations GPS typically fails in harsh environments (i.e. inside

homes, offices, shopping malls, underground and between heavy vegeta-

tive cover) and exhibits suboptimal performance for WSNs. To overcome

these limitations and to enhance localization accuracy, indoor positioning

systems, based on the use of Global Navigation Satellite System (GNSS)

repeaters [46], CarpetLAN [47] which is an indoor broadband-positioning

system, infrared based active-badge system [48], or ultrasounds [49], have

been developed. An overview on indoor application can be found in [50],

which conclude that there is no optimal solution for positioning yet.

While GNSS have become the dominating system for open-sky, several sys-

tems share the indoor market; each having its own drawbacks, such as low

accuracy, sophisticated infrastructures, limited coverage area or inadequate
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acquisition costs [50]. However, their complexity, their power consumption,

and their deployment costs are enduring problems [51]. To overcome, WSNs

have found their way into a wide range of location based services (LBS) in-

cluding indoor localization. Indoor localization has been a great interest

in research because a reliable and accurate localization in harsh environ-

ments is an integral part of many emerging applications including logistics,

medical services (i.e. neonatal monitoring, patient tracking), enclosed in-

door rescue operations (i.e. tunnels, caves, buildings), home automation,

and others. In addition, efficient localization in confined areas helps to en-

hance geographic routing and data dissemination for rescue operations. In

ideal conditions (i.e. LOS case), quality reliable localization performance

can be achieved but as propagation criteria change from ideal LOS to non-

line-of-sight (NLOS), localization performance also changes. The localiza-

tion performance degrades significantly in indoor environment, where range

measurements include NLOS errors due to the excess path length caused

by multipath propagation [52]. The estimated error in such harsh environ-

ments is assumed to have a large positive bias that causes range estimates

to be greater than the actual range. Such indoor environments fail a local-

ization system to mark the required accuracy and therefore, highlight the

indoor localization as a challenging problem. The observation above en-

couraged us to present an attempt along this direction by proposing a new

3-D scheme named Range Estimate Threshold (RET). The proposed scheme

defines a RET based on the 3-D field dimensions and the signal noise model

to mitigate the poor range estimates (d̂pij) from Measured Estimation (ME)

to optimize range estimates.

1.4 Contributions of the Dissertation

The thesis focuses on the optimization of range aware localization in WSNs. The

main novel contributions of this thesis are listed below and further explained in

section 1.5:
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• Performance analysis of round-trip time-of-flight (RT-ToF) and received

signal strength (RSS) for point to point range estimation using 2.4GHz

IEEE 802.15.4 compliant transceivers (Chapter 3)

• Performance analysis of localization using sub-optimal blind lateration (SBT),

optimal multi-lateration (OML), and modified sub-optimal blind trilatera-

tion (MSBT) based on knowledge of geometric dilution of precision (GDOP)

in cooperative fashion (Chapter 4)

• Optimal and worst anchor placements for additive and multiplicative noise

model in 2-D based on minimum mean Cramér-Rao Lower Bound (m-

CRLB) (Chapter 5)

• Optimal and worst anchor placements for additive and multiplicative noise

model in 3-D based on minimum mean Cramér-Rao Lower Bound (m-

CRLB) (Chapter 5)

• Localization performance for additive and multiplicative noise model at

different scales in 2-D and 3-D and their comparison with the lower bound

for optimal, worst and arbitrary anchor placements (Chapter 6)

• Implementation of real time localization system 2.4GHz on Jennic’s JN5147

IEEE 802.15.4 compliant transceivers (Chapter 7)

• A new 3-D scheme named Range Estimate Threshold (RET) for indoor

localization (Chapter 8), which exploits the 3-D field dimensions and noise

model information (Additive noise model, multiplicative noise model for

ToF and log-normal shadowing model for RSS).

1.5 Outline of the Dissertation

This thesis comprises nine chapters as follows:

• Chapter 2: Chapter two presents the localization background study.
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• Chapter 3: Chapter three reports on round-trip time-of-flight (RT-ToF)

and received signal strength (RSS) for point to point range estimation us-

ing 2.4GHz IEEE 802.15.4 compliant transceivers. Firstly, the performance

limits for RT-ToF and RSS based range measurements are compared with

the fundamental Cramér-Rao Lower Bound (CRLB). Secondly the range

where the error for RSS ranging is expected to be greater than the error for

ToF ranging is considered. We term this the ‘cross-over’ range (CR) of RSS

and ToF ranging, where ToF ranging becomes more accurate than the RSS

ranging. Thirdly, using a site survey application, a series of experiments

have been conducted in different environments to make it possible to de-

termine which parameters of the system lead to improved performance and

successful ranging polls. Performance results and channel parameters have

been obtained in outdoor and indoor for the LOS and NLOS environments.

Both indoor and outdoor experimental results and analysis are presented.

• Chapter 4: Chapter four compares methods of two-dimensional (2-D) lo-

calization in order to try and reduce the processing overhead of optimal

multi-lateration whilst still achieving a closer accuracy. Three methods

of localization are examined, firstly sub-optimal blind trilateration (SBT)

which randomly selects the minimum feasible number of anchors. This de-

fines the lower processing limit. Secondly modified sub-optimal blind trilat-

eration (MSBT) which selects anchor nodes based on geometric dilution of

precision (GDOP). Thirdly we compare these with optimal multi-lateration

(OML), which provides the benchmark in terms of accuracy achievable. A

MATLAB based simulation platform is developed to analyse the lateration

schemes in a cooperative fashion.

item Chapter 5: Chapter five investigates the problem of optimal place-

ment of anchor nodes to optimize the range derived localization. The objec-

tive is to minimize the estimate of location uncertainty error by exploiting

the geometric placement of the minimum number of anchor nodes required

to perform the localization in 2-dimensional (2-D) and 3-dimensional (3-D)

scenarios. The localization Cramér-Rao lower bound (CRLB) is derived for

a 3-D case, which in previous work has only been limited to a 2-D plane.
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Conventionally, deploying a large number anchor node reduces localization

inaccuracy; however this holds true only if the anchors are sub-optimally

placed. The optimal and worst anchor positions are determined through

extended simulation by comparing their mean Cramér-Rao lower bound

(m-CRLB). Furthermore, the ramification of additive and multiplicative

noise models on the minimum m-CRLB is explored.

• Chapter 6: Chapter six presents the performance analysis of optimized

anchor placement (as determined and discussed in chapter 5). The least

squares (LS) and approximate maximum likelihood (AML) methods for lo-

calization are used and its performance is compared with the m-CRLB for

optimal and arbitrary anchor placements. It is concluded that the geome-

try of anchors and subject node have a serious impact on the localization

process. In addition, the important question analysed in this chapter is:

If an optimal geometric placement of the minimum required anchor nodes

can optimize the location estimate of subject nodes then why distribute a

large number of arbitrary placed anchor nodes which will increase the com-

plexity and processing in a resource constrained WSNs? Further, it is also

demonstrated that the optimal anchor placement of the minimum number

of anchors outperforms the degraded deployment of many nodes.

• Chapter 7: Chapter seven presents the implementation of real time lo-

calization testbed on JN5148 IEEE compliant devices, where a device (i.e.

subject) capable of performing the localization using LS method using the

estimated RT-ToF measurements.

• Chapter 8: Chapter eight presents an indoor localization by proposing a

new 3-dimensional (3-D) scheme named Range Estimate Threshold (RET).

The proposed scheme defines a RET based on the 3-D field dimensions

and the signal noise model to mitigate the poor range estimates (d̂pij) from

Measured Estimation (ME) to optimize range estimates. The ramification

of RET on ME for indoor localization is explored through additive, multi-

plicative and log-normal shadowing models.
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• Chapter 9: Chapter nine concludes the thesis with the promising future

research directions.
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Chapter 2

Background and Related Work

2.1 Introduction

Throughout history man has always been curious to know where things are; from

navigation by looking at stars to modern techniques such as local positioning

service (LPS) and the global positioning system (GPS), locating objects has in-

variably been of great interest and commercial value. As with most technologies,

localization in wireless networks started in the military circles. Interest in nav-

igation systems for the military use dates back to world war II when the Decca

and Loran systems were implemented. Later on the new systems such as Tran-

sit, Timation, the Omega navigation system, Global Positioning System (GPS),

Global Navigation Satellite System (GLONASS) were developed. GPS is a space-

based global navigation satellite system (GNSS) with 24 operational satellites in

the orbit, providing worldwide positioning coverage. Based on the trilateration

principle, GPS is the most widely used navigation system that provides three-

dimensional (3-D) positioning information at all times, all over the world. It

has a wide range of applications including surveying, vehicle tracking, cellular

positioning, and aircraft tracking. GPS is an accurate satellite system, initially

developed in the late 1970 by the department of defence (DoD) and declared

as fully operational in 1994 [53]. GPS solution is famous for outdoor applica-

tions. However, this solution has several limitations, the major is of course the

dependency on line-of-sight (LOS) reception, together with relatively high power

requirement and hardware complexity from satellites. With such limitations GPS
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typically fails in harsh environments (i.e. inside homes, offices, shopping malls,

underground and between heavy vegetative cover) and exhibits suboptimal per-

formance for WSN applications. In the last two decades, WSNs have become

very popular and localization of nodes in such networks present new challenges.

A list of current location technologies can be found in [54].

2.2 Localization in WSNs

Based on a detailed survey, a seven layer location stack as shown in Fig. 2.1 was

presented in [2]. Layer 1 (Sensors) of location stack defines the sensor nodes capa-

bility to sense a variety of physical and logical phenomena including the infrared

badges, barcode scanners or ToF engine (JN5148). It results in raw data sam-

ples such as RF ToF measurements. Layer 2 (Measurements) uses the different

schemes to convert the raw data from layer 1 into the canonical form (e.g. prox-

imities, distance and angles) along with an uncertainty that is associated with the

task that generated the information [2, 55]. For example, ToF engine produces

the range measurements with respective uncertainty models based on the char-

acteristics of the radio and environment. The basic techniques available used for

the canonical form are time-of-flight (ToF), received signal strength (RSS), angle-

of-arrival (AoA), time-difference-of-arrival (TDoA). Based on the data fusion al-

gorithms, Layer 3 (Fusion) joints all the available data to determine the position

estimation through different localization strategies such as lateration schemes,

proximity sensing, fingerprinting, calibrating, and hybrid approaches [14, 55]. It

can be observed that layer 2 ‘measurements’ and layer 3 ‘fusion’ of the location

stack are important for a robust, reliable and accurate location system. Layer

4 (Arrangements) interrelate the estimated target positions by converting their

coordinates according to a relative coordinate system (i.e. absolute position or

relative position). Layer 5 − 7 (contextual fusion, activities and intentions) are

the elements of application layer. Layer 5 contextual fusion relates the location

information with other contextual information such as temperature in the office,

fire in the forest. Layer 6 activities follow the contextual information to monitor

and analyse the environment. Layer 7 intentions follow the activities from layer

6 to prepare the system for actions to be taken.
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Figure 2.1: Location Stack [2]

2.3 Classification of Localization

Localization systems can be classified into the different approaches due to appli-

cation specific aspects such as signalling scheme, accuracy, infrastructure, deploy-

ment, position estimation scheme, scalability, environment, and security. How-

ever, in general, almost all the sensor network localization algorithms share three

main phases; 1) range estimation, 2) position computation and 3) localization

algorithm [4, 56].

2.3.1 Range Estimation Phase

The techniques to measure distance and/or angle information comes under the

range estimation phase and are the output of the measurement layer as defined by

the location stack [55]. Range based localization schemes rely on the availability

of range estimation. The precision of such estimation, however, is the focus to the

transmission medium and surrounding environment. The commonly considered

ranging techniques are:

2.3.1.1 Angle of Arrival (AoA)

The AoA is a method to measure the angle at which an incoming signal arrives

at the receiver (anchor node), hence its measures the angle between two nodes.
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2.3 Classification of Localization

There are a couple of ways that sensors measure AoA. One category is phase

interferometry, where an angle is estimated by phase differences in the signal

received by two or more individual sensors (microphones for acoustic signals or

antennas for RF signals) [57, 58]. Another category is based on the varying

signal strength, where AoA estimation uses the RSS ratio between two (or more)

directional antennas located on the sensor [59, 60]. Two directional antennas

pointed in different directions, such that their main beams overlap, can be used

to estimate the AoA from the ratio of their individual RSS values [59].

2.3.1.2 Complexity and Error Concerns using AoA

• The accuracy of AoA measurements is limited by the directivity of the an-

tenna, by shadowing and by multipath reflections. A multipath component

may appear as a signal arriving from an entirely different direction and can

lead to very large errors in AoA measurements [14, 15, 59].

• The AoA is not a favourable localization approach for low cost IEEE Zigbee

transceivers as use of directional antenna arrays increases the system cost

and complexity. Furthermore, angle estimation improves at the cost of

additional antennas.

2.3.1.3 Time Difference of Arrival (TDoA)

Conventionally, one-way ToF range measurement requires highly synchronized

clock among the subject and anchors. To overcome this synchronization prob-

lem, TDoA was proposed. TDoA technique can be implemented in two different

possible modes, uplink and downlink [55]. In the uplink mode, subject nodes

broadcast a signal, which arrives at multiple measuring anchor nodes. This differ-

ence in the arrival of time can be treated as a hyperbola, which has two receiving

anchors at its focii. Three anchor nodes are required in 2-D positioning. The

target node is located at the intersection of two hyperbolas. An alternative mode

downlink, where the anchors broadcast the signal simultaneously while the sub-

ject node receives it with different delays. In both cases, the anchor clocks should

be accurately synchronized which are often wired to guarantee synchronization.

The synchronization of the subject node and anchors in this case is however not
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mandatory. In TDoA location estimation is the intersection of all hyperbolas (hy-

perboloids in 3-D). Unlike ToF where localization is the intersection of all circles

(spheres in 3-D). This method is also known as hyperbolic localization method.

Some famous TDoA based systems are Cricket (RF and ultrasound) [49], Active

Bat (RF and ultrasound) [48].

Complexity and Error Concerns using TDoA

• It requires highly synchronized clocks at each of the anchor nodes as preci-

sion of the location engine is directly proportional to the clock accuracy.

• Similar to AoA and ToA, TDoA is also affected by strong multipath com-

ponents, which results in inaccurate range estimation (i.e. intersection of

hyperbolas).

2.3.1.4 Time of Flight (ToF)

In ToF ranging, measurements based on propagation time are used to estimate

the distance between neighbouring devices. ToF is classified as either one-way

propagation time or two-way propagation time measurement based on the num-

ber of packet transmission for range estimation. One-way ToF is less attractive

in WSNs due to size and cost of precise clocks for synchronization between trans-

mitter and receiver. In one-way, the node A transmits the time-stamped signal

at t1 and is received at node B at t2, the distance between the nodes is given by

the equation d = c × ToF2 − ToF1. As compared to one-way ToF, where two

highly synchronized clocks are needed, in two-way ToF the same clock is used

to calculate the round-trip time [16, 17]. Consequently synchronization between

different clocks is not necessary. ToF is further discussed in chapter 3.

2.3.1.5 Received Signal Strength (RSS)

The Received Signal Strength Indicator (RSSI) of a radio channel provides a

feasible way of estimating distance between sensor nodes. It is preferred to use

this distance measurement technique because the sensor nodes do not require any

additional hardware but only a radio transceiver. Both medium characteristics
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and node hardware consistency influences RSS measurement results. Existing

distance-estimation based techniques for localization rely on a log-normal radio

propagation model [61] to estimate inter-sensor distances from RSS measure-

ments. The path loss exponent (η) is a key parameter in the log-normal model

which characterizes the transmission media and accurate knowledge of this fac-

tor is required in order to obtain an accurate estimate from RSS measurements.

Hence to reduce the ranging error for localization, a calibration method (aka

fingerprinting) to map the channel information (i.e. η, shadowing variance, fre-

quency selective fading) has been considered to model an appropriate path loss

model [11, 12, 61].

Most of the previous work is limited to 2-D, and in addition to that optimal

anchor placement is not considered in order to calibrate the channel parameters

[12, 61–63]. However, in practical systems, these calibrated channel parame-

ters may become impractical due to the nuisance in the channel such as, the

background noise and some other environmental factors, such as temperature,

humidity, weather conditions and obstacles to the transmission. In addition,

the hardware device characteristics include the wireless communication part (the

node transmitting power, receiver sensitivity) and antenna (antenna directivity

and antenna gains) [64]. It is therefore, in addition to the prior knowledge of

channel parameters, knowledge of a confined area (indoor environment) can be

utilized to enhance the RSS based localization. RSS is further experimentally

analysed in chapter 3, and a proposed scheme for indoor localization is discussed

in chapter 8.

Due to the complexity and error concerns posed by AoA and TDoA, ToF

and RSS are mainly focused (chapter 3). Round-trip ToF overcomes the ma-

jor problem of synchronization, faced by the one-way ToF, hence it reduces the

complexity and system cost as compared to TDoA and AoA. Whereas, received

signal strength (RSS) is one of the standard parameters available on most of the

wireless devices.
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2.3.2 Position Computation Phase

The second step after achieving accurate range estimate is to find the position

of the subject nodes. Depending on the method used for ranging in phase 1,

an appropriate localization technique is applied in the second phase. A detailed

survey of these approaches can be found in [14, 55, 65]. However, a detailed

analysis of lateration schemes is provided in chapter 4 titled “Localization using

Optimal and Sub-Optimal Multi-lateration.” The main reason to analyse latera-

tion scheme is to understand the impact of geometric placement of anchor nodes

on location accuracy.

• Geometrical Approaches:

– Lateration (Trilateration, Bounded Intersection, Multilateration)

– Hyperbolic localization

– Angulation

– Bounding box

• RSS Based Approaches

– Fingerprinting

– Probabilistic approach

• Hybrid Approaches

– Hybrid angulation and lateration

– Hybrid angulation and hyperbolic localization

2.3.3 Localization Algorithms

In WSNs, the localization algorithm has been categorized into different cate-

gories based on the limited resource and application requirements. A list of such

categories for localization algorithms is listed below [65].
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• Single-hop or Multi-hop localization:

A direct communication link between two nodes is commonly referred to

as a hop. Networks where there is only a single link between nodes for

location purposes are called single-hop. GPS is an example of a single-hop

positioning systems. On the other hand, if the node that is desired to be

localized is out of range of an anchor or BS, a communication link using

intermediate nodes is established, this is known as multi-hop. Single hop

algorithms are simple and accurate but are not scalable, multi-hop algo-

rithms are more scalable due to their distributed nature. The problem of

scalability in single-hop localization can be minimized by the cooperative

localization, where to cover the entire field (i.e. subject nodes), localized

nodes can behave as the pseudo-anchor nodes. This scheme is further dis-

cussed and analysed in chapter 4.

• Centralized or Distributed Algorithms:

Centralized algorithms [12, 48, 66] are based on the central unit, which

collects, process and sent back the processed data in a centralized manner.

In such algorithms, the major problem is the scalability, intrinsic delay,

however the accuracy stay better as they are less prone to error propa-

gation but inefficiency increases as the network size increases, hence more

communication cost and intrinsic delay.

On the other hand, distributed systems [49, 67, 68] can allow the processing

to be performed at each node. Generally, distributed algorithms are more

robust and energy capable since each node determines its position under

the infrastructure (anchor based) or infrastructure less (connectivity based)

networks, without the requirement of sending and receiving location infor-

mation to and from a centralized unit. However, distributed algorithms are

more complicated to implement due to the limited computational capabil-

ities of sensor nodes. Distributed solutions tend to distribute and increase

the error, cumulatively. This is because in multi-hop execution, there can

be a considerable number of subject nodes that cannot directly communi-

cate with any anchor node [65] and accumulate error while being localized

using pseudo-anchor nodes in a cooperative way.
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• With Infrastructure or Without Infrastructure:

Further classification of localization is based on the systems with infras-

tructure and without infrastructure. Infrastructure based systems are those

which are based on the anchor nodes (aka reference nodes). Anchor nodes

are the special capability nodes who know their position usually either

through a GPS receiver installed on them or through pre-programmed con-

figuration. Other unknown subject nodes use these anchor nodes to cal-

culate the location. One of the common examples of infrastructure based

system is GPS. One of the most important factors to consider in infrastruc-

ture based networks is the anchors geometry, which strongly affect the qual-

ity of the localization. In GPS community, this problem has been studied

extensively with respect to the Geometric Dilution of Precision (GDOP)

[30–32, 35] metric but extendible to any range based localization system

[55]. However, in the context of the WSN, GDOP study has been limited

[69–71]. GDOP metric along with the lateration schemes is analyse thor-

oughly in chapter 4. In [42] it is concluded that the one-hop distance-based

localization mechanism has geometry as its foundation. However, the analy-

sis was limited to 2-D as well as Cramér-Rao lower bound (CRLB) metric is

only used at different angles just to analyse the impact of 3 anchors geome-

try on localization accuracy [42, 43]. Furthermore, the analysis was limited

to the additive noise model and no optimal placement is suggested. A

marginal degree of research has been done on optimal anchor placement. In

[72, 73], the authors obtained an analytical solution for the optimal anchor

placement based on the CRLB. Where authors achieve optimality condition

for 3 and 4 anchors only. The relation between lower bound and the Fisher

Information Matrix (FIM) is given as (2.1):

σ2(ŝ) ≥ [I(s)]−1
jj (2.1)

where,
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where σ2(ŝ) can be given as σ2(ŝ) = E
{

(ŝj − sj)(ŝj − sj)
T
}

, (I(s)−1)jj is

the lower bound on the variance of (ŝ) and I(s) is the (FIM) and is defined

as [72]:

I(s) =













N
∑

i=1

cos2(αij)

σ2
ij

N
∑

i=1

cos(αij) sin(αij)

σ2
ij

N
∑

i=1

cos(αij) sin(αij)

σ2
ij

N
∑

i=1

sin2(αij)

σ2
ij













(2.2)

Minimizing the inverse of the FIM is equivalent to maximizing its determi-

nant. The determinant is given as:

det [I(s)] =
1

4σij

[

N2 − (
N
∑

i=1

cos(2αij))
2 − (

N
∑

i=1

sin(2αij))
2

]

(2.3)

The upper bound can be bounded by N2

4σ2
ij

, which is only achieved when:

N
∑

i=1

cos(2αij) = 0,
N
∑

i=1

sin(2αij) = 0 (2.4)

As a consequence, the optimal anchor placement for 3 and 4 anchors is

obtained if:

βij = βij =
2

N
π (2.5)

where N is the number of anchors and βij is the angle subtended at the

target by two anchors. Thus in order to minimize the localization error (i.e.
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MSE) for 3 and 4 anchors, each anchor should subtended the same angle

on the target. For N > 5 anchors, the optimal anchor geometry is not

unique. Furthermore, in both [72, 73], the authors limited the analytical and

simulation to 3 and 4 anchors with their own choice, i.e. without exploiting

all possible combinations. The same approach is applied to TDoA [72] and

RSS [74].

Without Infrastructure:

On the other hand, infrastructures less networks are those, which are with-

out the anchor nodes. The communication in such systems is based on

the connectivity with in-range nodes; hence they provide the location of

sensor node relative to neighbour nodes. The nodes in the infrastructure

less systems show more complexity due to the fact that each node has to

communicate in hop count manner, hence nodes are required to have some

way to access, prioritize the sequence of communication in order to provide

quality of service (QoS).

• Range based or range free:

Range based approaches are discussed above under the process of range

estimation phase in section 2.3.1, whereas range free approach is discussed

below:

This course of localization systems is cost effective because it eliminates

the need of high cost specialized hardware on each sensor node. The cal-

culation in these systems is based on the radio connectivity information

among neighbouring nodes and sensing capabilities (as they use the num-

ber of hops between a node pair as a distance metric) that each sensor node

posses [10, 56, 65]. One of the main problems with range-free localization

is that, this type of localization is suitable for relative location instead of

absolute location tracking. Example of range free localization schemes are

approximate point in triangulation (APIT) [75], Secure Range-Independent

Localization for Wireless Sensor Networks (SeRLoc) [76]. The accuracy of

range-free methods is less than the range-based ones but they satisfy the

requirements for many applications. Because of the hardware limitations

of WSN devices, solutions in range-free localization are being pursued as a
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simple and cost-effective alternative to range-based approaches. The most

obvious disadvantage of this scheme is the fact that it performs poorly [65].

2.4 Localization Techniques and Optimization

Consider a 2-D network, consisting of N anchor nodes whose locations Ai =

[xi, yi]
T for i = 1, . . . , N are known, this can be achieved by placing these anchors

at predefined points or their position can be determined via GPS. Considering

the M number of unknown subject nodes whose true locations are denoted as

sj = [xj, yj]
T for j = 1, . . . , M , where .T is the matrix transpose operation. It is

desired to determine the location of a subject node sj. In practice, actual distance

dij based on ToF is corrupted by the various factors discussed in Chapter 3, hence

the estimate distance (d̂ij) between anchor and subject node can be given as:

d̂ij = dij + nij (i = 1, . . . , N) (2.6)

where dij is the true distance between anchor i and subject node j, given as

dij =
√

(xi − xj)2 + (yi − yj)2. If the noise for each measurement is considered

to be independent zero mean Gaussian random variable with variance σ2
ij (nij ∼

N(0, σ2
ij)). In vector form to include estimated distances from N anchors can be

given as d̂ij = [d̂1j, d̂2j, . . . , d̂Nj]
T .

In general, the range estimates (dij) are not accurate due to the noisy mea-

surements and NLOS bias. Due to the inaccurate range estimates, the lateration

technique yields line of positions (LoPs), which provide a region of uncertainty

instead of a single point as shown in Fig. 2.2(b), resulting in N inconsistent

equations in the form of d̂ij =
√

(xi − xj)2 + (yi − yj)2 for i = 1, , 2, · · · , N .

In this case there will be no unique solution and subject node could be located

within any point in the uncertainty region.

In literature, many localization techniques were proposed to estimate the sub-

ject position from N inconsistent equations, such as:

• Direct Method: Direct method can be used by directly solving a set of

simultaneous equations based on the range estimates.
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(a)

(b)

Figure 2.2: Fig. 2.2(a). Subject node with 3 in-range anchor nodes with actual
ranging. Fig. 2.2(b). Subject node with 3 in-range anchor nodes with noise
range.
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• Iterative Method: The iterative methods perform the location estimation

iteratively. These iterative methods are based on the predefined thresh-

old/criteria and only stops when the predefined criteria is satisfied. Some

famous iterative methods are Taylor series, gradient decent method, and

Approximate Maximum Likelihood (AML).

However, to analyse the impact of optimal anchor placements and their impact on

the location accuracy, Least Squares (LS) and Approximate Maximum Likelihood

(AML) are used for position estimation. The LS is explained in chapter 4 with

lateration schemes and AML is explained below.

2.4.1 Maximum Likelihood algorithm (ML)

The estimated distance can be give by Eq. (2.6), where i = 1, ...N , N is the

number of anchor nodes, while dij is the true distance between anchor i and

subject node j, given as dij =
√

(xi − xj)2 + (yi − yj)2. In vector form to include

actual distances from N anchors can be given as dij = [d1j, d2j, . . . , dNj]
T , and

in vector form to include estimated distances from N anchors can be given as d̂ij

= [d̂1j , d̂2j , . . . , d̂Nj]
T . Its covariance vector is given as [77]:

Q =E
{

nijn
T
ij

}

=







σ2
ij · · · 0
...

. . .
...

0 · · · σ2
ij






(2.7)

If the noise for each measurement is considered to be independent zero mean

Gaussian random variable, then the p.d.f of dij is given as Eq. (2.8) [77]:

p(d̂ij | s) =
N
∏

i=1

1
√

2πσ2
ij

exp

(

−(d̂ij − dij)
2

2σij2

)

(2.8)

p(d̂ij | s) =
1

√

(2π)N det(Q)
exp

{

−J

2

}

(2.9)

where J =
[

d̂ij − dij

]T

Q−1
[

d̂ij − dij

]

. The ML solution would be x that maxi-

mize the probability density function (PDF) or alternatively minimize the J. To
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find the minimum of J, taking the gradient of J with respect to xj and yj (
djJ
dxj

= 0

and djJ
dyj

= 0). The ML solution is given as [77]:

djJ

dxj

= 0 =
N
∑

i=1

(

dij − d̂ij

)

(xj − xi)

dij
(2.10)

djJ

dyj
= 0 =

N
∑

i=1

(

dij − d̂ij

)

(yj − yi)

dij
(2.11)

Since the Eq. (2.10) and Eq. (2.11) are not linear and both depend on the

dij which is unknown, thus an approximate ML solution is required. A solution

based on the approximate Maximum Likelihood algorithm is given below.

2.4.2 Approximate Maximum Likelihood algorithm (AML)

An approximate maximum likelihood solution (AML) is proposed in [77] which

start with ML and converts the ML equations into the linear equation with un-

known (xj, yj), whose coefficients are also dependent on (xj, yj). In order to solve

it, it starts with the initial guess of (xj, yj), and updates (xj, yj) iteratively. After

n number of updates, AML checks the ML cost function with (xj, yj) for each up-

date, and selects the minimum as the estimated location. By substituting
d2ij−d̂2ij

dij+d̂ij

[77]:

N
∑

i=1

(

d2ij − d̂2ij

)

(xj − xi)

dij

(

dij + d̂ij

) = 0 (2.12)

N
∑

i=1

(

d2ij − d̂2ij

)

(yj − yi)

dij

(

dij + d̂ij

) = 0 (2.13)

Writing Eq. (2.12) and Eq. (2.12) in matrix form [77]:
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(2.14)
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where

gij =
xj − xi

dij

(

dij + d̂ij

)

hij =
yj − yi

dij

(

dij + d̂ij

) (2.15)

The equation (2.15) is treated as linear by the ML in terms of s. It is solved by

first giving it an initial guess value of xj and yj to obtain the values of gi and hi.

The LS solution will result in quadratic in s = x2
j + y2j , with two roots r1 and r2.

By using root selection routing (RSR) and selecting positive roots, a new value of

xj and yj will be obtained for next iteration. If both roots are positive, the root

giving minimum J is selected. However if both the roots are negative, the absolute

values are taken. Compute the cost function J for this new of value of xj and

yj. The procedure is repeated a fixed number of iteration and the (xj, yj) giving

the minimum value of J , hence closest estimated location is chosen [77]. AML

approaches CRLB in many scenarios, such as, when there are three anchors on a

straight line, AML gives better location estimate, hence avoiding the dilution of

precision problem. It is further verified in chapter 5 when compared with the LS

method for optimal placement of 3 anchors based on multiplicative noise model.

2.5 Performance metric

Accuracy of a location system is not the only benchmark of its performance;

there are other criterion’s that should also be taken into consideration. The per-

formance of a positioning system can be determined by the following yardsticks.

2.5.1 Accuracy

Accuracy is the most important criterion for a location system. Accuracy can

be defined as the degree of perfection of a measured or calculated quantity to its

true value [78]. Accuracy of a system can be achieved by considering the overall

estimate of the errors including systematic errors. It shows the quality of the

physical measured data by matching it with true measurement. As mentioned
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above, accuracy is also connected with the systematic errors, it can be increased

by proper calibration or making adjustment to the internal system.

2.5.2 Precision

Precision (aka repeatability or reproducibility) can be defined as the measure-

ment stability of the system. It gives the indication of intrinsic variability in the

measurements [79]. The requirement and degree of precision may vary application

to application. Fig. 2.3(c) shows the estimated range with high precision but low

accuracy. The average estimated error of 4m over all repeated samples provide

low accuracy but high precision (i.e. 92% average precision). This is because of

the consistence range estimates in all iterations for the same input signal. The

accuracy and precision are considered as two crucial parameters to describe the

result of a localization system. The concept of accuracy and precision is further

illustrated in Fig. 2.3. In Fig. 2.3(a), an estimated range that is 0.2 to 0.5m

displaced from its actual range in all repeated samples is considered as a measure

of high accuracy and high precision. Whereas, Fig. 2.3(d) shows high accuracy

with low precision due to its high degree of error and large variations in esti-

mated range. A good positioning system apart from being accurate should be

persistent in estimating accurate localization. If two systems have equal accuracy,

the system, which is more precise, is chosen. This decision is normally based on

the cumulative distribution function (CDF) of the distance error, systems with

high precision have steeper CDF graphs. Usually, the precision is measured in

percentile.

2.5.3 Complexity

Localization in low power networks (such as sensor networks) is desired to be

of low complexity. Nodes in such networks have lower computation power and

algorithms requiring low processing are preferred. Other systems, where the

calculations are carried out by an external base station can of course afford high

complexity algorithms. The complexity of the system is normally measured in

terms of the time taken by the network to localize a node.
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Figure 2.3: Precision and Accuracy analysis for randomly selected data: Fig.
2.3(a). High accuracy with high precision, Fig. 2.3(b). High accuracy with low
precision, Fig. 2.3(c). Low accuracy with high precision, Fig. 2.3(d). High
accuracy with low precision.
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2.6 Localization Systems

2.5.4 Robustness

Systems that perform well in harsh conditions (i.e. highly cluttered environments)

are preferred compared to systems, which perform well only in accommodating

scenarios. Thus, systems, which are able to perform localization with incomplete

information, are more robust.

2.5.5 Scalability

The scalability of a system can be measured in terms of geography and density. A

system is geographically scalable if it can perform localization at longer distance;

generally, the performance of a system degrades as the distance between the nodes

increases. On the other hand, the density of a network refers to the number

of nodes per unit area/ volume. The performance of systems deteriorates as

more nodes are added into the network (due to multi-user interference MUI).

Furthermore, scalability also can be assessed whether a system can localize in

two dimensions (2-D) or three dimensions (3-D).

2.5.6 Cost

Another important factor in choosing a positioning system is the cost. Cost

can be in terms of money, energy consumption, size and weight. It might be

desired to install low power and cheap positioning systems with little maintenance

requirement. Such needs cannot be fulfilled by GPS and low cost systems are

generally preferred.

2.6 Localization Systems

2.6.1 Active Badge, 1992

Active Badge localization system introduced by AT&T Cambridge [66] is a cen-

tralized system. This indoor tracking system uses the infrared transmitters (ob-

jects to be located) to periodically transmit the distinctive identification (ID)

every 10s or on demand. The fixed receiver receives this identifier, which is then

collected by centralized server for absolute location information (i.e. room or
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office). It is limited within a room on fixed locations due to the short range of

infrared.

2.6.2 Active Bat, 1999

Active Bat [48] an extension to Active Badge, was introduced by AT&T uses the

TDoA. This centralized system uses an ultrasound ToF to estimate the distance

and multi-lateration technique to provide the more accuracy than Active Badge

[66]. In this system, users or objects carry a transmitter (Active Bat tag). The

system starts, when a controller sends a short radio pulse to the tags. At the

same time, systems sends a reset signal to the ceiling mounted receivers (anchors)

using a wired network. The tag emits an ultrasonic pulse to the grid of the

ceiling-mounted receivers. Each receiver calculates the time interval from reset

to ultrasonic pulse arrival and computes its distance from a tag and reports back

to a central server for multi-lateration. The reported accuracy is 9cm with 95%

precision (i.e. out of 100 samples, 95 samples are within the accuracy of 9cm)in 3-

D. Due to the limited ceiling grid deployment, it requires complex infrastructure

throughout the ceiling, calculation of orientation and deployment overhead, which

increases the system cost and reduces the scalability. Furthermore, Active Bat

employs centralized system architecture and requires a large number of precisely

positioned ultrasonic receivers.

2.6.3 Cricket, 2000

Cricket [49], equipped with the ultrasound transceiver with frequency of 40kHz is

a first distributed (decentralized) 2-D indoor localization support system, where

devices perform their own calculations. Cricket measures the distance using

TDOA (first detect RF wave and then detect the ultrasound) and then calcu-

late the coordinates using triangulation. The reported accuracy to locate 4 × 4

region (absolute location) is with 100% precision in 2-D. However, as addressed by

[50], the ultrasound is sensitive to temperature variations and multipath signals.
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2.6.4 RADAR, 2000

RADAR [12], introduced by the Microsoft Research group, is a centralized indoor

system for locating and tracking users based on IEEE 802.11 standard. It is based

on the RSSI for location awareness between transmitter and receiver. This system

works on different phases. In the first phase, it collects the multiple RF signal

strength from a base station during off-line (i.e. scene analysis phase). In the

second phase, the collected samples are compared with a set of signal strength

measurements at a centralized system for best match. In third phase, a metric is

measured and compared. As it is based on the scene analysis, predefined signal

strength database should be according to the environment.

2.6.5 Horus, 2005

Horus [80], based on the IEEE 802.11 standard is similar to RADAR. It is also

based on the off-line and on-line phases. The system uses the signal strength

observed for frames transmitted by the access points to infer the user location.

Since the wireless cards measure the signal strength information of the received

frames as part of their normal operation, this makes the Horus system a software

solution on top of the wireless network infrastructure.

2.6.6 SpotON, 2001

SpotON, introduced by the Intel Research and University of Washington, is a

RSSI based 3-D locating system. The device to be located holds a SpotON tag,

which measures RSSI to a reader upon hearing the beacons. SpotON, works on

the idea of ad-hoc location sensing to localize the wireless devices relative to one

another rather than to fixed base stations. To enhance the accuracy, it is based

on the calibrated mapping between reader and the tag.

2.7 Applications

The number and variety of WSN applications continues to broaden. Some of the

applications are given below:
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2.7.1 Kid-Spotter

During the trips and visits, the tourist agents and parents can track customers

and children from being lost or to track the location of these, whether they are

within the building or outside the building, either they are within the range of

the tourist point or out of the range through locating with the help of WSNs.

In this type of application tourists, parents and children are moving all around

the vicinity and thus changing geographic position. Apart from the mobility, the

propagation environment (background noise, interference, LOS problem beneath

heavy foliage) is also responsible for the frequent change in location informa-

tion. In this situation, GPS however deteriorates to achieve the desired accuracy.

KidSpotter [81], is one of the world’s first indoor and outdoor tracking system

designed for safety conscious venues. For outdoor, it requests its position on the

planet through GPS satellites, whereas in indoor it asks the Zigbee network for

information on its position [81].

2.7.2 Freight containers Positioning

Today, shipping and cargo in any country have a very important responsibility

to improve financial conditions. As the number of twenty-foot equivalent units

(TEU) is increasing throughout the world, the percentage of containers which are

misplaced or delivered to the wrong destination is also increasing. Localization

and retrieval of freight containers in a port is a challenging problem. One of the

GPS based application is Tamper Resistant Embedded Controller (TREC) [82].

However, in a harsh environment, when the containers are stacked under other

containers, GPS cannot provide the correct position because its GPS antenna

cannot communicate with enough satellites. Here, low power sensor network

localization can enhance the localization performance with cheaper system cost.

2.7.3 Asset Tracking and Management

Recent advancement in WSNs not only revolutionizes the way we live out live

but also the way we identify the things. It helps to identify, track, manage

and monitor the important assets. In addition, safety being a major concern
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motivating building owners to deploy a system, which can track any movement

within certain area of the building. Visitors can be tagged before entering the

building, this will limit their movement. The tags can report to security when

they are taken to a restricted area.

2.7.4 Aid to fire-fighters and police

Sensor network localization can be used for detection of fire-fighters in a building

on fire. Positioning of individuals in such situations is imperative, as visibility in

a smoked filled building is extremely low. Fire-fighters could locate each other

and can also be monitored from an external station. Similarly, police dogs trained

to find explosives in a building could be located by tagging them with sensor-

equipped collars.

2.7.5 Detecting and Locating Radiation Levels

Recent nuclear disaster in Fukushima after the unfortunate earthquake and tsunami

struck Japan motivated researchers towards a new application of WSNs. To de-

tect the radiation level, battery powered Geiger Counter [83] have been created

which can read the radiation levels automatically and send the information in

real time using wireless technologies like ZigBee and GPRS [83].

2.7.6 Smart and Interactive Gaming

Advancement in technology also opened the doors for the gaming industry. Kinect

XBox 360 [84] is the latest example for this type of application. With the help of

a motion sensor, Kinect track the ones entire body. Furthermore, with the help

of sensors, it creates the fingerprints to map the digital skeleton by tracking the

movements. Advancements in this industry reflect the future with more advance

game consoles with location sensors without the LOS constraint.

2.7.7 Habitat Monitoring and Wildlife Tracking

Keeping track of wildlife [85–87] has been of interest to zoologist, knowledge of

animal movement over time can indicate animal behaviour with other species and

37



2.8 Conclusion

interaction with their own kind. The systems that are employed for such purposes

are either using very high frequency (VHF) collars or using GPS chips. Since such

observations are recorded over a long period, regular battery replacement in the

collars becomes impractical. Low power sensor network localization will improve

battery life and guarantee little human interaction with the animals.

2.8 Conclusion

WSNs have received increased attention recently, among different issues, localiza-

tion has been recognized as a very challenging task due to the number of unique

characteristics discussed. In this chapter, several different approaches and prob-

lems currently being faced by WSN localization research are reviewed. In the

next chapter 3, the lateration schemes (sub-optimal, optimal multi-lateration

and lateration incorporating Geometric Dilution of Precision (GDOP) metric)

are analysed in detail in order to observe the impact of anchor placement on

localization accuracy and its trade-off.
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Chapter 3

Performance Analysis of Ranging

with IEEE 802.15.4 Compliant

WSN Devices

3.1 Overview

Recently the area of wireless sensor networks (WSNs) has gained a lot of mo-

mentum and has become increasingly attractive for many emerging applications

due to its low cost, small size, light weight, and potential to be deeply embedded

into the environment for a variety of applications. In many of these applications,

localization has been an active area of research due to the fact that without

the knowledge of sensor location, data passed by sensors will be meaningless.

Here, determining the physical location of subject nodes will provide additional

information in order to quantify the measured data. One of the important tasks

for real time localization in WSNs is the precision and accuracy of range mea-

surement. Hence, for efficient localization, it is imperative to understand the

performance limits of ranging in realistic environments.

This chapter reports on round-trip time-of-flight (RT-ToF) and received signal

strength (RSS) for point to point range estimation using 2.4GHz IEEE 802.15.4

compliant transceivers. Firstly, the performance limits for RT-ToF and RSS based

range measurements are compared with the fundamental Cramér-Rao Lower

Bound (CRLB). Secondly the range where the error for RSS ranging is expected
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to be greater than the error for ToF ranging is considered. We term this the

‘cross-over’ range (CR) of RSS and ToF ranging, where ToF ranging becomes

more accurate than the RSS ranging. Thirdly, using a site survey application, a

series of experiments has been conducted in different environments to make it pos-

sible to determine which parameters of the system lead to improved performance

and successful ranging polls. Performance results and channel parameters have

been obtained in outdoor and indoor for the line-of-sight (LOS) and non-line-of-

sight (NLOS) environments. Both indoor and outdoor experimental results and

analysis are presented. Based on the experimental results for outdoor and indoor

unobstructed (LOS) environment over short range, it is demonstrated that RSS

is a good candidate for range estimation at ranges less than 7m. Uncertainty

in RSS based range estimation increases with distance and beyond 7m severely

limits RSS performance. Further analysis over long range (i.e. up-to 100m)

demonstrate that ToF is a good candidate for range estimation at greater than

7m.

3.2 Introduction

Localization is mainly categorized into range-free and range-based localization

schemes, that differ in what kind of geometric information they use to estimate

locations. The former is based on the radio connectivity information, where each

node estimates the location based on the information received from the neighbour

nodes. The accuracy of range free localization depends on assumption that nodes

in a dense network with radio connectivity are typically in close proximity. How-

ever, node density negatively effects traffic overhead [10]. The latter approach is

based on using angle estimates [14], or range measurements, which can be derived

from measuring point-to-point propagation time [16, 17] or using RSS [14]. In

range-based localization, the process to determine the physical location of sen-

sor nodes consists of two main phases. During the first phase of localization, a

sensor node performs range estimation to a set of anchor nodes, whose positions

are known. Sensor nodes are typically equipped with extra hardware capable of

estimating distance or angle [14, 88]. The second phase uses the range estimation
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as an input to determine the position estimation through different localization

strategies such as trilateration, multi-lateration and triangulation [55].

For the first phase of localization, literature has focused on two classes of

ranging techniques: RF based ranging and acoustic ranging [89, 90]. The RF

method is more cost effective than acoustic signal based ranging schemes, as

it does not require ultrasonic transducers [90]. The basic RF-based techniques

available for the first phase of localization are angle-of-arrival (AoA) [14], time-

difference-of-arrival (TDoA) [91], time-of-flight (ToF) [90, 92] , and received signal

strength (RSS) [12, 93].

The RSS is a standard parameter available on most wireless devices [94]. It is a

popular method of ranging because it does not require additional hardware which

makes it cheap as compared to other methods. Due to the complex behaviour

of RF signal propagation (reflection, diffraction, refraction and scattering) and

different application environments, there are several propagation models devel-

oped to predict signal decay with distance. It is a challenge to set up a model

to predict RSS appropriate to the environment in which the system will be used.

The RSS measurement model and principle of operation is discussed in section

3.6.

In ToF ranging, measurements based on propagation time are used to esti-

mate the distance between neighbouring devices. ToF is classified as either one

way propagation time or two-way propagation time measurement based on the

number of packet transmission for range estimation. In one way, the node A

transmits the time-stamped signal at t1 and is received at node B at t2, the dis-

tance between the nodes is given by the equation d = c × ToF2 − ToF1. As

compared to one-way ToF, where two highly synchronized clocks are needed, in

two-way ToF the same clock is used to calculate the round-trip time [16, 17].

Consequently synchronization between different clocks is not necessary. The ToF

principle of operation is discussed in section 3.5.1. In the context of WSNs, range

based techniques are more suitable due to the requirement of high accuracy and

simple measurement hardware. The two most widely used and accepted tech-

niques in wireless networks are ToF and RSS [90]. These two techniques have

shown great potential for numerous emerging WSN applications, so are the focus

of this chapter.
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This chapter is organized as follows. Section 3.2 followed by the sources of

ranging errors in section 3.3. Section 3.4.2 describes the experimental infras-

tructure and test beds used for point-to-point ranging. In section 3.5 and 3.6

respectively, the principle of operation for ToF and RSS is discussed. Section

3.8.1 explains the cross-over range whereas results and analysis from site survey

are presented in section 3.7. Finally, experimental results and conclusions are

provided in section 3.8 and 3.9 respectively.

3.3 Sources of Ranging Error

Ranging accuracy is an important aspect to consider because a localization system

obtains position estimates using range estimates. An inaccurate range estimation

may lead to unacceptable localization errors. This section categorizes the thermal

noise, systematic parameters and multipath propagation as the main sources of

ranging errors.

3.3.1 Systematic Parameter

One of the crucial factors to consider in time-based ranging is precision of timing

between nodes. Clock Offset is the difference between the time reported by the

clock and the real time. Using the speed of propagation to measure distance will

mean a 0.1µs timing error results in a 30m range error. In reality it is not possi-

ble to have perfectly aligned clocks at the transceiver due to tolerances of quartz

oscillators, temperature variations, and environmental changes and this result in

clock offset. The clock frequency mismatch can be significant in the context of

WSNs, where high-precision oscillators do not comply with cost and size con-

straints. Higher clock inaccuracy will not only increase the estimation error but

also the energy consumption [95] by corrupting the ability to correctly determine

the back-off boundaries of the slotted CSMA/CA mechanism (which requires a

precise clock). The impact of this parameter (clock offset) on ranging accuracy

can be mitigated by high-precision oscillators (which however compromises the

constraints of WSNs) or tight synchronization techniques at the physical layer and

averaging of a large number of measurement samples [96]. In addition to this,
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due to discrete values (clock quantification) of time-based ranging, the measured

ToF is usually higher than the actual one.

3.3.2 Radio Propagation

Due to the unpredictable nature of the wireless medium i.e. space and time varia-

tion, a ranging system may fail to mark the expected accuracy. The unpredictable

behaviour of RF signal propagation can be attributed to reflection, diffraction,

refraction and scattering. It has always been a challenge to set up a model to

predict radio propagation appropriate to the environment in which the system

will be used. Therefore, several propagation models have been developed that

envisage mechanism of RF propagation. To overcome unpredictable RF charac-

teristics in different environments, channel models are broadly classified as large

scale and small scale fading models [94].

3.3.2.1 Large Scale Fading Models

Large scale fading (a.k.a slow fading or shadowing) is a deterministic process

caused by the buildings, mountains, hills, vegetations and other surrounding

objects in outdoor environment. Large scale fading is further categorised into

different models. The most commonly use models are [94]:

• Inverse-square law based model

• Two-ray Ground Model

The model based on inverse-square law considers the ideal environment and

can be given as Eq. (3.1) [94],

Pr(d) =
PtGtGrλ

2

(4π)2d2L
(3.1)

where Pr(d) is the received power at distance d, Pt is the transmit power,

λ is the wavelength, Gr and Gt are the receiver and transmitter antenna gains

respectively and L is the system loss factor [94].
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However the above mentioned model is an ideal case and does not consider an

obstructed environment. A two-ray ground model (direct and ground reflected)

adds the unavoidable reflection to the inverse-square model, when the WSN nodes

are deployed close to the ground [97]. In this case, received power at distance

d for both the direct path and a ground reflection path can be predicted as

Pr(d) = Ptλ2

(4πd)2

[

2 sin(2π
λ

hthr

d
)
]2
GtGr [98], where ht and hr are the heights of the

transmit and receive antennas respectively.

Comparing with the free-space model, signal power in two-ray propagation

model decays at a faster rate (d4) as the distance increases. However in practice,

both the free space and the two-ray model do not correctly predict the received

power strength due to the complex nature of real propagation. The relationship

between distance and path loss exponent in Eq. (3.1) does not consider the

harsh environment, that may experience different propagation at two different

positions with same distance between transmitter and receiver. To overcome

this, a log-normal shadowing model (Eq. (3.2)) is considered, which states that

with a specific value of dij, the η at particular location is random and distributed

as lognormally (normal in dB) about the mean distance-dependent value [98, 99].

Pr(d)[dBm] = Ψ[dBm]− 10ηlog10
d

d0
+ εdB (3.2)

where Ψ is received power at a reference distance d0, η is the path loss exponent

based on the propagation environment (normally taken between 2 and 6) and ε is

the shadow fading (zero mean Gaussian distributed random variable in dB with

standard deviation σ) [98]. In practice, the η will be different in each environment.

Therefore, it is important to approximate this unit-less constant analytically or

experimentally.

3.3.3 Small Scale Fading Models

As opposed to wired channels, the received signal from the wireless channel suffers

from strong amplitude fluctuations that cause fading in the received signal. In a

multipath environment, it is a common to have multiple independent components
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at a receiver. Each component shows independent nature with its own amplitude

and phase (due to reflections, scattering etc). Without any mitigation technique,

a receiver deals with the summation of these multiple signals in a constructive or

destructive manner (depending on the relative phase shift). It causes the signal

to arrive at the receiver by Kp multiple paths with At
k different path amplitudes

and associated delay τk. Assume that the receiver is static, then the received

signal can be given as:

r(t) =

Kp
∑

k=1

At
ks(t− τk) (3.3)

Further, Eq. (3.3) can be presented as Eq. (3.4), which represent the phase

difference between multiple paths.

r(t) =

Kp
∑

k=1

At
k cos 2πfct+ θk (3.4)

Small scale fading is stochastic and caused by the movement of transmitter or

receiver, hence it reflects a change in the amplitude of the received signal. Small

scale fading is further statistically categorised as Rayleigh and Rician distribu-

tions. When a signal arrives at the receiver without any dominant path (i.e. no

line-of-sight path between Transmitter-Receiver (T-R)), the envelope of the sig-

nal is Rayleigh distributed. An addition of a LOS component (non-zero mean) to

the Rayleigh distribution, results the received signal envelope into Rician distri-

bution. Rician becomes Gaussian distribution at large value of rice factor (ratio

of the power of LoS to power of diffuse components).

3.3.3.1 Effect of Frequency Channel on Multipath Performance

A change in frequency will change the fading characteristic. The effect of fre-

quency channel is related to the Coherence bandwidth (Bc). Coherence band-

width is a measure of how much the frequency can be changed while experiencing
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a similar fading environment and can be given by Eq. (3.5) [100]. (Bw < Cc i.e.

narrowband)

Bc =
1

2πTm

(Hz) (3.5)

where Tm is the delay spread. The coherence bandwidth can be used to classify

the channels as flat or frequency selective fading channels.

If all frequency components in the transmitted signal are affected by the same

random attenuation and phase shift, then the channel will be considered as the

frequency flat channel. In this type of the channel, the bandwidth of the trans-

mitted signal is smaller than the channel’s coherence bandwidth, hence minimal

inter-symbol interference (ISI) (i.e. narrowband). On the other hand, frequency

selective fading considers that the frequency components of the transmitted sig-

nal are affected by the different amplitude gains and phase shifts. In this case,

the bandwidth of the transmitted signal is bigger than the channel coherence

bandwidth (Bw > Cc i.e. wideband), hence significant ISI. In spread spectrum,

when the signal bandwidth increases it becomes sufficiently larger than the co-

herence bandwidth. Hence, It is possible that a portion of the signal spectrum

may experience a different fading environment.

Considering an delay spread of 70ns in an indoor environment [100], Eq. (3.5)

provide the Bc of 2.3MHz. Now if the receiver is in deep fade, a shift of 1MHz in

carrier frequency will hold the receiver in deep face. However, a shift of 10MHz

in carrier frequency will allow the receiver to experience a different fading envi-

ronment and can have a better chance of receiving the signal [100].

3.3.4 Thermal Noise

Thermal noise (or Gaussian) will be generated within devices because of agitation

of electrons in a conductor. The power contained within thermal noise is depen-

dent on the temperature, and operating signal bandwidth [101]. This unwanted

intrinsic noise is responsible for introducing errors into precise measurements so

reducing it improves performance. With the context of digital receivers, noise is

46



3.4 Experimental Infrastructure

typically measured by the single-sided noise power spectral density (PSD) given

by Eq. (3.6) [102]:

N0 = kBT [W/Hz] (3.6)

where kB is Boltzmann’s constant which is ∼ 1.381 × 10−23 J/K, T is the

system temperature in kelvin. The thermal noise is additive, that is, the received

signal can be represented as a sum of the transmitted signal and the noise signal

as given by Eq. (3.7) [102].

rij(t) = st + nij(t) (3.7)

where n(t) has Gaussian distribution with zero mean and finite variance σ2.

3.4 Experimental Infrastructure

The Jennic JN5148 series IEEE 802.15.4 transceiver, including ZigBee PRO (Zig-

Bee Compliant Platform) is an ultra low power, low cost wireless micro-controller

that operates in 2.4GHz ISM band (λ = 0.125m) [1]. It uses 2MSps direct se-

quencing spread spectrum (DSSS) with each symbol mapped to a 32− chip PN

sequence. The 32−chip sequence represents each data symbol and therefore chip

rate can be given as 32 times the symbol rate (62.5 kSps), and symbol duration

is given as 1/symbol rate = 16 µs. The bandwidth of Zigbee is 2 MHz. A built-

in ranging engine based on Time of Flight (ToF) calculates the time-of-flight of

a radio signal between two wireless nodes using the two-way (round trip) ToF

ranging. Its integrated power control system enables the system power consump-

tion to be controlled carefully using different modes (i.e., active processing mode,

sleep mode, deep sleep mode) to maximise battery life, hence network life. A

32-bit load and store RISC processor help to minimise the power consumption
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for battery powered application and implementation of protocols with high per-

formance and high level efficient programming. Table 3.1 lists the specification

of IEEE 802.15.4 Compliant Device [19, 24].

Parameter Notation Value
Radio Frequency RF 2.4GHz
Spread Spectrum Ss DSSS
Data Rate Dr 250kbps
Transmit Power Pt 0dBm (1mW)
Modulation Scheme Ms OQPSK
Chip Spreading Sequence PN 32 chips
Symbol Sm PN = 32 chips
Symbol Rate Sr 62.5 kHz (ksymbols/s)
Symbol Duration Time Ts 1/Sr=16µs
Chip Rate Rc Sr × 32 = 2 Mchip/s
Chip Period Tc

1
Rc

= 500 ns

Clock Rate (JN5148) fs 16MHz
Antenna Type Folded-monopole

Table 3.1: Specification of IEEE 802.15.4 Compliant Devices

3.4.1 Antenna Models

Anisotropy is a common and non-negligible phenomenon in wireless networks

caused by different factors such as, antenna type, antenna gain, and environment

dependant path loss [94, 98]. In the age of compact devices, a light weight, small-

sized and inexpensive antenna plays a important role to overcome the deployment

concerns of external mounted antennas. There are many situations in which small

size is important (particular in hand-held equipment). There are two different

variants of Jennic’s wireless modules: modules with an integrated antenna and

modules with an external antenna. Experimental results discussed in this work

are based on the Jennic wireless modules those with an integrated antenna. The

JN5148 modules with integrated antenna are based on a folded-monopole, omni-

directional characteristic [1]. Integrated antenna are useful for many application

(i.e. child locating solution, where a sensor node as wristband with integrated
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antenna can be secured on the wrist of the child, tracking expensive items in

a super market) where mounting an external antenna is not feasible due to the

much required space or volume.

3.4.1.1 Integrated Folded Mono-pole Antenna

The Jennic experimental units include an antenna with a folded-monopole, omni-

directional characteristic [1]. The main radiating lobe of this 2.4GHz ISM band

antenna is projected at right-angles to the PCB ground plane. Fig. 3.1 shows

the measurement planes for the folded mono-pole antenna [3], whereas Fig. 3.2

shows the radiation pattern of the three measurement planes [3]. In order to

optimize the received power, it is important to match the polarization for both

receiver and transmitter antennas particularly when there is a LOS or directional

antenna in use. Considering the fact that antenna polarization is more dynamic

for mobile nodes, a static and approximately aligned configuration is considered

between nodes.

Figure 3.1: Integrated Folded Mono-pole antenna measurement planes [3]. Fig.
(a). XY-Plane Fig. (b). XZ-Plane Fig. (c). YZ-Plane

3.4.2 Experimental Setup for Ranging

The experiments have been performed in an indoor and outdoor environment

with both LOS and NLOS conditions. For each condition three different sets

of experiments have been performed with the transceiver nodes mounted on a
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Figure 3.2: Measured antenna radiation pattern [3]. Fig. 3.2(a). XY-plane
radiation pattern polar plot, Fig. 3.2(b). XZ-plane radiation pattern polar plot
and Fig. 3.2(c). YZ-plane radiation pattern polar plot

tripod at one of 3 specified heights of 0.5m, 1.0m, 1.5m. A Coordinator node was

fixed (connected to laptop) at one side of the field whereas an End device is fixed

at variable distances (i.e. 1m, 2m, · · · 15m). The actual distance between the

nodes was measured using Leica Disto A5 laser distance meter [103]. For each

separation and height between sensor nodes, a total of 700 ranging samples were

collected (a total of 10, 500 for all separations). A coordinator node was used to

capture, process and save the data on a laptop.

3.4.2.1 Outdoor Experimental Setup

The left side of Figure 3.3 illustrates the outdoor test site setup for LOS path.

The outdoor experiments were performed in Hyde Park situated just beside the

University of Leeds. For all LOS ranging samples, a clear LOS is maintained on a

plane open grassy field with no trees or obstacles between or near the transceivers.

The NLOS outdoor experiments are executed in the same park at a location where

the direct LOS was completely blocked for each height with trees and wooden

benches. The obstructions e.g. trees, were of the order of 1m thick so no LOS

existed. The dimensions of the field are 120m×200m.
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3.5 Round-Trip Time-of-Flight (RT-ToF)

Figure 3.3: Outdoor experimental setup with two nodes, tripods and data logger
laptop for range measurements.

3.4.2.2 Indoor Experimental Setup

The indoor experimental setup is illustrated on the right of Figure 3.4. The

indoor experiments were performed in a corridor at Edward Boyle library at the

University of Leeds. The dimensions of the corridor are ∼ 3.5 m x 110m and

floor to ceiling height is 2.5m. For LOS experiments the transceiver were kept in

a straight line in the centre of the corridor. The NLOS experiments were executed

in the extreme left of the corridor where the direct LOS was blocked by the side

concrete walls, furniture and people.

3.5 Round-Trip Time-of-Flight (RT-ToF)

The ToF method used in JN5148 IEEE 802.15.4 compliant device is based on

round-trip time (TRTT) which overcomes the major problem of clock synchroniza-

tion between the nodes for range measurement. The ranging scheme involves

measuring the total duration from sending an outgoing request to receiving an

incoming acknowledgement. The estimated delays in each node are subtracted
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Figure 3.4: Indoor experimental setup with two nodes, tripods and data logger
laptop for range measurements.

from the total duration to obtain the round trip time of flight and hence the

inter-nodal distance. The ToF measurement begins with Node 1 transmitting a

poll at a known time within the Node 1 device time-scale, but essentially an ar-

bitrary time with respect to the Node 2. The poll transmitted by the Node 1 has

a transmit delay Ttx1 and propagation time Ttof between the Node 1 and Node 2.

However, as the Node 2 is not synchronised to the Node 1 the offset it measures is

denoted received delay in Node 2 Trx2, correlation time estimate in Node 2 (Tcor2),

turn-around time measured in Node 2 (Ttat2) and transmit delay (Ttx2) in Node

2. The Node 2 sends a ACK to the Node 1 exactly after the delay information

equivalent to Trx2 + Tcor2 + Ttat2 + Ttx2. The ACK received by the Node 1 has a

received delay Trx1 and correlation time estimate Tcor1. Fig. 3.5 shows the ToF

measurement between two nodes, where Node 1 measures the total time (Ttot)

from sending a poll to receiving the ACK. The RT-ToF is obtained by subtract-

ing the τdelay recorded by both nodes from the Ttot. Eq. (3.8) indicates half the

RT-ToF, that is the ToF on the assumption that the delay in each direction took

an equal amount of time.
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Figure 3.5: Time-of-Flight (ToF) measurement.

Ttof = (Ttot − τdelay)/2 (3.8)

where Ttot is total time measured by node 1 and τdelay can be given by Eq.

(3.9):

τdelay = Ttx1 + Trx1 + Tcor1 + Ttx2 + Trx2 + Tcor2 + Ttat2 (3.9)

where Ttx1 and Ttx2 are transmit delays, Trx1 and Trx2 are receive delays in Node

1 and 2 respectively, Tcor1 and Tcor2 are the correlation time estimate (representing

the processing to obtain received signal correlation peaks within an observation

window) in Node 1 and 2 respectively, and Ttat2 is turn around time measured in

Node 2 using accurate hardware timers running at the system clock frequency.

Given Ttot from Eq. (3.8) and knowing that the radio signal travel at the speed

of light c, the range estimated between two nodes can be given as Eq. (3.10):

d̂ij = c× Ttof (3.10)
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Since the ToF based ranging can be affected by clock frequency offsets and

multipath, hence it relies on the measurement of time at Node 1 and Node 2.

Knowing the fact that error of 1ns in Ttof leads to ranging error of 0.3m, hence

it is required to reduce the ranging error mechanisms. To reduce the impact

of clock frequency offsets and multipath propagation, ranging results obtained

through forward (Node 1 to Node 2) and reverse (Node 2 to Node 1) direction can

be averaged.

3.5.1 Principle of Operation

To perform the ToF measurement, two nodes (i.e. Node 1 and Node 2) must

follow the interface for the request and confirm association primitives as per

IEEE 802.15.4 standard [19]. In order to join a network, a device (i.e. Node 2)

must first find a Co-ordinator (Node 1) by conducting an active channel scan. The

Node 2 can then send an association request to the Node 1, which acknowledges

the request and then determines whether it has sufficient resources to add the

device to its network [24]. The Node 1 will then accept or reject the association

request. Once both the nodes are successfully associated, nodes can perform the

RT-ToF process as described below.

• The ToF process starts when a Node 1 (i.e. subject node) sends a packet

to the Node 2 (i.e. anchor node). In response to this packet from Node 1,

Node 2 performs two sequences. In first sequence, it transmits an acknowl-

edgement (ACK) to Node 1 and then initializes the ToF engine in second

sequence.

• On receiving the ACK from Node 2, Node 1 initializes the ToF engine and

transmits a packet for ToF measurement. It then waits for an ACK from

Node 2.

• When Node 2 receives a ToF measurement packet from Node 1, it starts

time measurement and transmits ACK to Node 1, then stops the time mea-

surement by disabling the ToF engine and preserves the timing information.

During this process, Node 2 does not need clock synchronization with re-

spect to Node 1.
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• On receiving the ACK from Node 2, Node 1 also disables its ToF engine.

By this stage, both nodes have disabled ToF engine. Node 1 and Node 2

process the correlation data. On the same time, Node 2 calculates the delay

information.

• On request from Node 1 for delay information, Node 2 transmits the delay

information.

• On receiving the delay information from Node 2, Node 1 responds to DATA

packet by transmitting an ACK back to Node 2. Node 1 calculates the

ToF and writes the result over the UART. Once ToF calculation is finished,

Node 1 and Node 2 are then ready for another ToF measurement. In case of

multiple measurements (i.e. n polls), the whole process repeats for n times.

Figure 3.6: RT-Time-of-Flight Process

3.5.2 RT-ToF Range Resolution

One of the factor that bounds the ranging accuracy is the resolution, which

is proportionally bounded by the time quantization introduced by the sampling

period [90]. Thus, increasing the sampling period ( 1
fs
) can improve the achievable

accuracy. RT-ToF ranging resolution can be given by Eq. (3.11):
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3.5 Round-Trip Time-of-Flight (RT-ToF)

RRes =
c

2fs
(3.11)

where RRes is the RT-ToF ranging resolution, c is the speed of light, fs is

sampling rate and factor of 2 is due to the forward and backward averages.

Jennic’s JN5148 measures the total time TTOT using accurate hardware timers

running at system clock frequency 16MHz, where a single clock cycle corresponds

to 62.5ns (that is going to be divided by two due to the round-trip). Hence,

31.25ns (9.37m) is sampling period of the received signal. It can be observed that,

in order to enhance the ranging resolution, higher clock frequency is required.

For example, in order to have a ranging resolution of 1.67ns (0.5m), accurate

hardware timers running at system clock frequency 300MHz are required. For

resource constraint WSNs applications, such high frequency system clock is not

ideal.

3.5.3 Cramér-Rao Lower Bound of ToF

The CRLB sets a limit on the mean square error variance of an unbiased estimator

of unknown parameters [59]. The best achievable accuracy of a set of range

estimates derived from narrowband ToF measurements in single path channels

satisfies the following inequality [90]:

σ2
Ttof
≥ 1

8π2SNRβ2
(3.12)

where SNR is the signal-to-noise-ratio and β2 is the mean square effective

bandwidth. The effective bandwidth (also known as the Gabor bandwidth [104])

is given by (3.13) [59], where S(f) is the Fourier transform of transmitted signal

s(t).

β∆

[
∫

∞

−∞
f 2 |S(f)|2 df

∫

∞

−∞
|S(f)|2 df

]1/2

(3.13)
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Figure 3.7: Impact of SNR and β on the fundamental CRLB for ToF ranging
using IEEE 802.15.4 and UWB.

Eq. (3.12) shows that increasing the β and SNR reduce the lower bound,

hence improving the ranging precision. This is because the ranging precision

is related to the achievable time resolution. Figure 3.7 illustrates the bound on

ranging performance for different β values using Eq. (3.12). Ranging performance

for UWB which occupies the effective bandwidth ≥ 500MHz yields a CRLB of

below 1m. As shown, increasing the effective bandwidth and SNR improves the

CRLB, hence ranging precision. This is because the ranging precision is related

to the spread signal bandwidth (i.e. chip rate) and SNR. It reflects the advantage

offered by the UWB over IEEE 802.15.4 in ranging precision. But as discussed in

section 3.2, high ranging precision is the result of high computation, processing

requirement, hardware complexity, hence an increased power requirement.

To evaluate the lower bound on the variance of spread spectrum ToF estima-

tion, Eq. (3.12) can be used by specifying the required parameters as given by

Eq. (3.14) [92].
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3.5 Round-Trip Time-of-Flight (RT-ToF)

σ2
Ttof

=
1

8π2SNRβ2
√
αN

(3.14)

where N is the number of chips in the PN sequence and α is the number

of repetitions of each sequence element. IEEE 802.15.4 uses one of 16 ‘nearly

orthogonal’ 32-chip long PN sequences to represent one of 16 symbols [19]. The

sequence is oversampled by a factor of 8 so each sequence element is repeated and

this enhances the processing gain achievable.
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Figure 3.8: The Fundamental CRLB and measured performance limit of Jennic
JN5148 series ranging module for ToF ranging

The lower bound for the system using Eq. (3.14) is compared with the mea-

sured variance of range estimate derived from ToF estimation. This theoretical

bound is compared with outdoor LOS experimental results to verify the theoret-

ical calculated bound and measured bound. Our test setup is designed with two

JN514x nodes mounted on a tripod and an HP-8593E series spectrum analyzer.

In order to avoid the impact of multipath, a clear LOS existed between Node 1,

the controller, and Node 2. Figure 3.8 shows the fundamental calculated CRLB
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3.6 RSS: Principle of Operation

(Eq. (3.14)) along with the measured variance of ToF ranging measurements for

varying SNR. The required SNR of a signal for a given signal quality was mea-

sured using Eq. (3.15) [105], where (S + N)m dBm is the combined signal and

noise value and Nm dBm is the noise floor after measurements. The power of

the signal is measured by considering the power of the band where the signal was

located. Then, by terminating the input, the power of the noise of the instrument

is measured with same attenuation and resolution bandwidth (RBW) of 100kHz

[21].

SNRm = (S +N)m −Nm dB (3.15)

The measured σ2 of ToF measurements is the result of 700 iterations for each

SNR value. Each correlation is performed using the last 31-chips of each received

32-chip spreading sequence. The correlation is 248-samples in length and operates

at the full receive system sampling clock rate of 16MHz i.e. each of the 31-chips

are oversampled by a factor of 8. It can be seen that the measured performance

limit of Jennic JN5148 series ranging module overstepped the fundamental CRLB

for ToF ranging. A higher sampling rate would be required in order to achieve

the performance limit that meets theoretical performance.

3.6 RSS: Principle of Operation

The maximum value of RSS which can be reported by Jennic for JN− 5148 is

108dB whereas minimum is 20dB, limited by the intrinsic noise floor of the radio

receiver. Hence the dynamic range of RSS for JN− 5148 is 88dB. The RSS value

can be converted in to Pr by using the Eq. (3.16), where RSS(dB) is the measured

RSS value relative to 1dB resolution. The obtained RSS value is the average of

RSS measurements from local and remote node for the same radio link. A local

node sends a command to a remote node to get the RSS value. After receiving

the remote RSS, the local node reads out the local RSS. The average of remote

and local RSS is the measured RSS value.
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Pr(dBm) = RSS(dB)− 108(dBm) (3.16)

The calculated Pr(dBm) can be converted into the distance by using Eq.

(3.2). In this work, constant Ψ is approximated using experimental results at a

reference distance of 1m outdoor and indoor and later used to approximate the η

and variance of the shadowing (σ2
sh) using empirical data. The value of η and σ2

sh

outdoor and indoor is calculated using a minimum mean-square error (MMSE)

fit to experimented measurements, in a similar manner to [98]. The empirical

values of Ψ which are used for the LOS and NLOS path are shown in Table 3.2.

Case ΨdBm d0=1 η σ2
sh dB σdB

Short Range
RSS: Outdoor LOS -42.06 2.12 14.6 3.82
RSS: Indoor LOS -42.06 1.87 14.3 3.78

RSS: Outdoor NLOS -38.14 2.71 14.6 3.82
RSS: Indoor NLOS -38.14 2.59 15.4 3.92

Long Range
RSS: Outdoor LOS -42.06 2.3 14.1 3.75
RSS: Indoor LOS -42.06 2.1 14.6 3.79

RSS: Outdoor NLOS -38.14 3.2 14.7 3.84
RSS: Indoor NLOS -38.14 2.92 14.6 3.83

Table 3.2: Approximated Propagation Parameters

Figure 3.9 presents the RSS versus range for the empirical data and path

loss model based on the approximated propagation parameters as shown in table

3.2. The vertical bars in Fig. 3.9(a) for outdoor LOS and Fig. 3.9(b) for indoor

LOS show the distribution of measured Pr; whereas the dashed line indicates the

average Pr at each range. Average Pr is compared with fitted path loss model,

calculated with respective η (as shown in Fig. 3.9) and d0=1m. Fig. 3.9 shows

that at ranges less than ∼ 7m, the average Pr is comparable to fitted propagation

model. However, an increase in distance shows higher decay in RSS for outdoor

and indoor LOS at antenna height of 1.5m.
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Figure 3.9: RSS versus range for measured data and path loss model. Fig. 3.9(a).
Outdoor LOS at antenna height of 1.5m. Fig. 3.9(b). Indoor LOS at antenna
height of 1.5m.

3.6.1 Cramér-Rao Lower Bound of RSS

In [100], the CRLB for a range estimate derived from RSS measurements is:

√

var(d̂) ≥
(

ℓn10

10

σsh

η
d

)

(3.17)

where σ2
sh is the variance of Gaussian variable N(0, σ2

sh) representing log-

normal shadowing and η is the environment based distance-power gradient and

d is the distance. Compared with Eq. (3.12), Eq. (3.17) shows that RSS mea-

surement does not depend on the bandwidth (β).

Figure 3.10 compares the measured RSS performance with the CRLB for RSS

in outdoor and indoor (LOS) environment. The calculated CRLB is based on

the average η and σ2
sh calculated from measurements using MMSE, as discussed

above. It is apparent that the
√
var of the RSS estimates is above the calculated

CRLB. From (3.17), it is observed that lower bound of RSS estimates increases

with an increase of σ2
sh and decreases with larger η.
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Figure 3.10: The fundamental CRLB limit and measured performance limit of
Jennic JN5148 series ranging module for RSS.

3.7 Site Survey and Analysis

Before commencing a series of experiments, a site survey was carried out to

discover the traffic on each channel. Based on this activity, two different channels

with maximum and minimum traffic were selected for the experiments. Within

the ToF API timings are calculated at each end of the link - such as the time of

arrival of a packet, or the time between sending a packet and receiving the ACK.

The ToF measurements are performed without retries enabled. This means that

there is a chance that some packets or ACKs will get corrupted on air and not

be correctly received. During these calculations, a single ToF poll may result in

one of five ToF status categories as discussed below.

3.7.1 Successful ToF

MAC-ToF-SUCCESS status results when a ToF poll successfully receives the

ACK and DATA packet from a remote node. On a successful poll, it returns the

measured ToF in pico seconds (ps), which can then be equated to a distance.
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3.7.2 Remote Time Value Invalid

MAC-ToF-RT (Remote Time Value Invalid) status results due to an invalid time

sequence in the remote node (i.e. Node 2 in Figure . If the calculation of ToF, or

the time between sending a packet and receiving the ACK results in a negative

time then MAC-ToF-RT will return this error code.

3.7.3 Local Time Value Invalid

MAC-TOF-LT (Local Time Value Invalid) status results due to an invalid time

sequence in a local node (i.e. Node 1 in Figure 3.6).

3.7.4 No Acknowledgement

MAC-ToF-NO-ACK (No Acknowledgement) status results when a local node fails

to receive any ACK for one of the ToF measurement packets from a remote node.

3.7.5 No Data From Remote Node

MAC-ToF-NO-DATA (No Data From Remote Node) status results when a local

node fails to receive any DATA packet from a remote node. If the remote node

identifies that a packet has been lost then it will report a MAC-ToF-DATA-

ERROR.

Table 3.3 shows results for two channels (13 and 26) in the indoor LOS path.

At each range from 2m to 14m, 765 ToF polls were collected (i.e. 5, 355 in total).

As shown in table 3.3, for channel 13 results, the number of successful polls is

5, 047 (94.25%) and 5.74% polls failed due to the 4 reasons listed above. Of the

failed polls 72.18% are due to the condition where a local node failed to receive

the ACK and 16.23% due to the channel being noisy with other traffic (clear

channel assessment (CCA) failure). The results in on air corruption of a packet

causing the arrival time correlators to give a false reading. CCA/CSMA is used

for all packets, this helps to reduce the chance of this type of corruption - but it

does not completely eliminate it.

Figure 3.11 illustrates the comparison of two channels in an indoor and out-

door environment. Comparing the channel 13 with channel 26, it is observed that
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3.7 Site Survey and Analysis

Transceiver Height=1.5m, Indoor LoS, Channel Number=13 and 26
Ranging Polls at each Range (m) = 765

Poll Status Ch: 2 4 6 8 10 12 14 Total
13 760 760 712 753 714 684 664 5047

Successful
26 760 760 761 762 760 755 761 5319
13 3 3 3 7 8 1 8 33

RT Invalid
26 0 0 3 0 0 1 1 5
13 2 0 1 3 6 5 3 20

LT Invalid
26 5 5 0 3 5 9 3 30
13 0 2 19 2 37 55 90 205

No ACK
26 0 0 1 0 0 0 0 1
13 0 0 30 0 0 20 0 50

No Data
26 0 0 0 0 0 0 0 0

Channel 13 - Successful ToF Polls (for all ranges) = 5047 (94.25%)
Channel 13 - Failed ToF Polls (for all ranges) = 308 (5.65%)
Channel 26 - Successful ToF Polls (for all ranges) = 7319 (99.33%)
Channel 26 - Failed ToF Polls (for all ranges) = 36 (0.67%)

Table 3.3: Site Survey Results
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the percentage of failed polls reduced from 5.74% to 0.67% (99.33% successful).

A similar trend was observed for the outdoor environment where successful ToF

reported as 99.24%, about 6.79% higher than the busy channel on the site. Based

on the experimental results, it is observed that operating on the noisy channel

generates a noticeable number of failed polls and effects the RSS estimated range

more erroneously as compared to ToF. It is also observed that indoor path is more

adversely affected by the noisy channel. Based on these observations, further ex-

perimental results were conducted on a quiet channel for enhanced performance.

RT Invalid=4

LT Invalid=25

No ACK=2

No Data=1
(a). Outdoor Quiet Channel

RT Invalid=4

LT Invalid=30

No ACK=1
No Data=1

(b). Indoor Quiet Channel

RT Invalid=66

LT Invalid=25

No ACK=304

No Data=1
(c). Outdoor Busy Channel

RT Invalid=33

LT Invalid=20

No ACK=205

No Data=50

(d). Indoor Busy Channel

Figure 3.11: Comparison of failed ToF polls taking quiet and busy channel in the
account for indoor and outdoor LOS environment (height=1.5 m). (a, b). Quiet
Channel in Outdoor and Indoor. respectively (c, d). Busy Channel in Outdoor
and Indoor respectively.

As seen above, a noisy channel generates a noticeable number of failed polls.

Table 3.7.5 shows the magnitude of mean range error (MMRE) and standard

deviation (σ) for both ToF and RSS for indoor and outdoor LOS environments.

It is observed that RSS estimated range is more erroneously affected by the noisy

channel as compared to ToF. Furthermore, it is noticed that outdoor environment

is more affected as compared to indoor.
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RT-ToF and RSS estimated Range (m)
Transceiver Height=1.5 m

MMRE (m) σ (m)
Ranging Environment Ch 13 Ch 26 Ch 13 Ch 26
RT-ToF Outdoor LOS 8.54 7.09 8.34 5.38
RSS Outdoor LOS 39.7 21.10 29.9 18.8
RT-ToF Indoor LOS 8.97 9.18 8.16 6.36
RSS Indoor LOS 29.2 12.36 18.8 10.5

Table 3.4: Site Survey Results

3.8 Experimental Results and Analysis

In this section, point-to-point experimental data obtained to assess the perfor-

mance in outdoor and indoor environments are analysed and compared. The

experimental setup is discussed above in section 3.4.2 and measurements were

performed using an integrated folded mono-pole antenna. The transmit power

level is 0 dBm for all ranging measurements. The ranging measurements were

done on two different scales. First going from 1 m to 15 m in increments of 1 m

and then 10 m to 100 m in 10 m increments. In the descriptions which follow

these are described as short range (SR) and long range (LR) respectively. The

transmit and receive antennas were approximately aligned for maximum received

power. In Figures, actual range represent the range without error, and it shows

the comparison with estimated range.

Figure 3.12a and Figure 3.12b show the ToF ranging accuracy performance

for the 3 different antenna heights in an unobstructed outdoor and indoor site

respectively. Based on the initial site survey, a low noise channel was selected

to reduce the range measurement errors [106]. Figure 3.12 shows the variation

in the performance of ToF estimated range at all 3 different antenna heights.

However, at antenna height of 1.5m the magnitude of mean range error (MMRE)

for outdoor LOS is found to be lowest 3.41m for 1.5m height compared to 4.48m

and 3.64m at heights of 1.0m and 0.5m respectively. Similarly, the MMRE for

indoor LOS is found to be lowest at 2.83m compared to 3.04m and 4.36m at

heights of 1.0m and 0.5m respectively. Based on the experimental results, it is

observed that at short range ToF range estimates are not significantly effected

66



3.8 Experimental Results and Analysis

by the antenna heights.
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Figure 3.12: Fig. (a). ToF estimated range in outdoor LOS path for different
antenna heights. Fig. (b). ToF estimated range in indoor LOS path for different
antenna heights.

Figure 3.13a and Figure 3.13b show the RSS ranging accuracy performance

for the 3 different antenna heights in an unobstructed outdoor and indoor site

respectively. It is observed that both outdoor and indoor range estimates are more

adversely affected by the antenna height as the range increases; this is attributed

to ground reflection. Results shown in Figure 3.13 indicate that antenna height of

1.5m gives better ranging performance at short range as compared to heights of

0.5m and 1.0m. Beyond 5-7m, RSS ranging performance is seen to be poor for all

3 device heights. However, based on the experimental results, it is observed that

the open outdoor environment effects the RSS estimated range more erroneously

as compared to indoor environment.

Figure 3.14a and Figure 3.14b shows the performance comparison between

ToF and RSS estimated range in outdoor and indoor LOS paths respectively

for antenna height of 1.5m. At ranges of less than 7m, ranging performance for

both environments is seen to be almost the same. Beyond 7m, average ranging

performance in indoor LOS becomes more accurate as compared to the outdoor.

Statistics from the experimented results are provided in table 3.5 which shows

that uncertainty in RSS based estimated range increases with distance and beyond

7m presents severe limitations in using RSS.
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Figure 3.13: Fig. (a). RSS estimated range in outdoor LOS path for different
antenna heights. Fig. (b). RSS estimated range in indoor LOS path for different
antenna heights.
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Figure 3.14: ToF versus RSS estimated range in outdoor and indoor LOS path
for antenna height of 1.5m
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3.8 Experimental Results and Analysis

Antenna Heights=1.5m, Channel Number=26, (R=Range)

Outdoor LOS=OL, Indoor LOS=IL, Outdoor NLOS=ONL, Indoor NLOS=INL

Mean Error Magnitude (m) Mean Standard Deviation (m)

Parameter R=1-6 R=7-15 R=1-15 R=10- R=1-6 R=7-15 R=1-15 R=10-

100 100

ToF OL 2.91 4.12 3.41 2.74 2.04 2.37 2.24 3.20

RSS OL 0.56 9.39 5.86 18.5 0.29 3.86 2.43 5.33

ToF IL 2.27 3.20 2.83 5.3 1.70 2.92 2.43 3.06

RSS IL 0.88 5.89 3.89 15.4 1.52 5.27 3.77 6.40

ToF ONL 9.19 7.13 7.54 6.67 6.52 9.46 8.7 11.2

RSS ONL 7.14 9.36 8.84 21.3 2.91 3.85 4.48 2.94

ToF INL 4.01 5.35 4.82 4.17 5.29 5.78 5.59 5.01

RSS INL 5.72 5.40 5.31 16.25 2.32 2.74 2.57 4.51

Table 3.5: Experimental Results: ToF Vs RSS

Figure 3.15a and Figure 3.15b shows the performance comparison between

ToF and RSS estimated range in outdoor and indoor NLOS paths respectively

for antenna height of 1.5m. The experimental results indicate that at short range

where no LOS exists both ToF and RSS provide poor ranging. This is attributed

to the fact that multipath environment not only changes η and sigmash dynami-

cally to effect the amplitude of the received signal but also introduces the larger

delays over a direct LOS path. Therefore, the estimated distance at short range

based on ToF and RSS is very unreliable. There is a huge requirement to com-

pensate this unreliability with more complex mitigation techniques.

Figure 3.16a and Figure 3.16b show the ToF ranging accuracy performance

over a long range.for LOS and NLOS paths respectively. It is observed that

ToF gives better ranging accuracy over a long range as compared to the short

range (as shown in Figure 3.12). In the case of outdoor and indoor LOS paths,

source and remote nodes were able to perform range estimation over a range of

100m. This maximum radio communication range reduces to 70m for the case of

NLOS paths. Based on our experimental results, it is confirmed that increase of

distance between source and remote node does not effect ToF ranging error (i.e.

no increase in the ranging error with the increase of distance). It establishes that

ToF ranging is a good candidate for long range estimation.
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Figure 3.15: ToF versus RSS estimated range in outdoor and indoor NLOS path
for antenna height of 1.5m
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Figure 3.16: ToF estimated range in outdoor and indoor over long range for
antenna height of 1.5m
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Figure 3.17a and Figure 3.17b show the RSS ranging accuracy performance

over a long range for LOS and NLOS paths respectively. It is observed that RSS

gives poor ranging accuracy over a long range as compared to ToF as shown in

Figure 3.16. Similar to ToF ranging, the communication range is reduced to 70m

in the case of outdoor and indoor NLOS paths. The experimental results indicate

that RSS ranging is a poor candidate for long range due to the fact that ranging

error increases with distance.
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Figure 3.17: RSS estimated range in outdoor and indoor for antenna height of
1.5m

Figure 3.18a Figure 3.18b compare the percentage of MMRE for ToF and RSS.

As shown in Figure 3.18a, approximately 78%-88% of the LOS ToF measurements

are accurate to within 6m for outdoor and indoor LOS respectively. Comparing

with the ToF measurements, a variation in the percentage of MMRE is observed

for RSS measurements. Observing the indoor LOS path, result indicated that

approximately 80% of the RSS measurements are accurate to within 6m, reducing

to 70% for outdoor environment.

In the case of outdoor and indoor LOS channels Figure 3.18a shows, approxi-

mately 30% to 40% of the ToF measurements are accurate to within 2m MMRE.

RSS ranging is seen to be good with 50% and 55% are accurate to within 2m for

indoor and outdoor LOS respectively. As RSS showed good ranging accuracy at

ranges less than ∼ 7m for outdoor and indoor unobstructed paths, approximately

32%-38% of the LOS RSS measurements are accurate to within 1m.
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Figure 3.18: ToF and RSS: MMRE percentage in outdoor and indoor for LOS
and NLOS paths over short range with antenna height of 1.5m.

In the case of outdoor and indoor NLOS channels Figure 3.18b show, approx-

imately 15% to 22% of the ToF measurements are accurate to within 2m MMRE.

RSS ranging is seen to be poor with only 10% are accurate to within 2m for

outdoor whereas indoor NLOS showed better ranging performance. In indoor

NLOS, ∼ 15% results are more accurate to within 2m as compared to outdoor

NLOS. A close percentage of accurate results is observed between ToF and RSS

for indoor NLOS, which also showed more accurate ranging as compared to the

outdoor NLOS. As compared to indoor NLOS environment, outdoor NLOS envi-

ronment showed considerable signal attenuation even at short ranges, where LOS

is blocked by trees and wooden benches.

Figure 3.19a Figure 3.19b compare the percentage of MMRE for ToF and

RSS over long range. As shown in Figure 3.19a, approximately 55%-70% of the

LOS ToF measurements are accurate to within 5m for outdoor and indoor LOS.

Compared with the ToF measurements, a huge variation in the percentage of

MMRE is observed for RSS measurements. Observing the indoor LOS path,

results indicated that approximately 25% of the RSS measurements are accurate

to within 5m, reducing to 10% for outdoor environment. In the case of outdoor

and indoor NLOS channels (Figure 3.19b), approximately 40% to 45% of the
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ToF measurements are accurate to within 5m MMRE respectively. RSS ranging

is seen to be poor with only 20% and 25% accurate to within 5m for outdoor and

indoor NLOS.
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Figure 3.19: ToF and RSS: MMRE percentage in outdoor and indoor for LOS
and NLOS paths over long range with antenna height of 1.5m.

Figure 3.20(a-c) presents the probability distribution plot for 3 individual ToF

estimated ranges over a short range in the outdoor LOS environment. The re-

spective quantile-quantile (Q-Q) plots are shown in Figure 3.20(d-f). As shown in

Figure 3.20(a-c) distribution plots, average results are approximately distributed

according to a normal distribution. Results shown in Figure 3.20(d-f) demon-

strate a correlation where the plotted points fall approximately along the straight

line proving the range estimated to be Gaussian distributed.

Figure 3.21(a-c) presents the probability distribution plot for 3 individual

RSS estimated ranges over a short range in outdoor LOS environment. The

respective quantile-quantile (Q-Q) plots are shown in Figure 3.21(d-f). Figure

3.21(a-c) shows less points due to the overlapping of data points. As shown

in Figure 3.21(a) average results are approximately distributed according to a

normal distribution and its correlation is shown in Figure 3.21(d). Results shown

in Figure 3.21(e) and Figure 3.21(f) demonstrate a low correlation where the

plotted points deviate from the straight line, which corresponds to the best-

fitting normal distribution. It indicates that some of the RSS ranging results are

not normally distributed.
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(f). dij = 13m, σ = 3.13m, µ = 13.37m

Figure 3.20: PDF and Q-Q plot across ToF measurements over short range for
outdoor LOS.
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(f). dij = 13m, σ = 5.81m, µ = 33.30m

Figure 3.21: PDF and Q-Q plot across RSS measurements over short range for
outdoor LOS.
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Figure 3.22(a) and Figure 3.22(c) shows the distribution across all of the ToF

and RSS measurements over short range for outdoor NLOS case, whereas Figure

3.22(c) and Figure 3.22(d) are respective Q-Q plots. Figure 3.22(a-b) indicates

a strong correlation and the plotted points fall approximately along the straight

line showing the range estimates to be Gaussian distributed. In the case of RSS,

where plotted points deviate from the straight line, indicate that average of all

RSS measurements over NLOS short range is not normally distributed. A very

similar trend is observed across all of the ToF and RSS measurements over short

range for indoor NLOS case.

It is further analysed through the moments (skewness and kurtosis) of the

distribution. The skewness of 0.57 which is close to the 0 and kurtosis of 2.29

which is near the expected value of 3 are observed in the case of ToF. It indicates

ToF measurements over a short range is normally distributed. In the case of RSS,

skewness of 1.15 and kurtosis of 1.99 are deviated from the expected value, hence

shows RSS measurements over a short range is not normally distributed.
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Figure 3.22: PDF and Q-Q plot across all of the ToF and RSS measurements
over short range for outdoor NLOS.
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3.8.1 Cross-over Range (CR)

As observed through results and analysis in section 3.8, the variation in RSS

tends to level off after about ∼ 7m, it is difficult to resolve the distances based

on RSSI as the distance increases above this range. It is therefore observed, RSS

ranging system may fail to achieve the required accuracy mark. Unlike RSS, as

the distance increases RT-ToF ranges estimates become better than the RSSI

range estimates. Based on the analysis and looking at the effect of the mean

error, it is crucial to have a cross-over range (CR) where the error of RSS ranging

is known to becomes greater then the error for ToF ranging. To enhance the

ranging performance for localization system, a ranging system based on CR can

be considered, which incorporates both RSS and RT-ToF based on the cross-

over point. In order to compare the experimental CR with theoretical CR based

on IEEE 802.15.4 specification, Eq. (3.14) and Eq. (3.17) can be exploited by

equating as Eq. (3.18) [107]:

c2

8π2SNRβ2
√
αN

=

(

(ℓn10)2

102
σ2
sh

η2
d2
)

(3.18)

CR =
10c

2
√
2π
√
Υ
√
Nα1/4β

η

ℓn10σsh

(3.19)

where the channel parameters η and σsh are calculated using the experimental

data. Figure 3.23 shows the CR for 4 different channel parameters (η and σsh)

for outdoor and indoor LOS case as shown in table 3.2. It can be observed that,

the CR is dependant on the SNR and the channel parameters. At ∼ 6dB− 10dB,

based on the LOS channel parameters, the CR is ∼ 7m. Experimental results

discussed in section 3.8 indicate the ∼ 5-7m as a CR, Hence it suggests that

above CR RSS method should be outperformed by RT-ToF. Knowledge of this

CR can be used to devise a range aware joint (RAJ) estimation scheme to enhance

range estimation hence the localization performance to get the accurate position

estimate.
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Figure 3.23: Cross-over Range using experimental parameters.

3.9 Conclusion

This chapter analyse the performance limits of RT-ToF and RSS based ranging

using Jennic’s JN5148, IEEE 802.1.5.4 compliant WSNs. This chapter starts off

with the RT-ToF, where range resolution is explained and fundamental CRLB

is calculated and compared with the measured CRLB. Later on in the chapter,

RSS propagation model is discussed and principle of operation is explained. The

fundamental CRLB on ToF and RSS ranging performance is compared with the

performance limits of JN5148 series ranging modules. The results indicate that

the measured performance limits of ToF and RSS based range measurement ap-

proaches the theoretical CRLB. In addition to that, cross-over range is calculated

for RSS, which suggest that RSS is a good candidate for short range.

The experimental infrastructure is demonstrated to analyse the performance

of ToF and RSS based ranging using Jennic’s JN5148, IEEE 802.1.5.4 compliant

WSNs nodes in outdoor and indoor environments for both LOS and NLOS paths.

The fundamental CRLB on ToF and RSS ranging performance is compared with

the performance limits of JN-514x series ranging modules. The results indicate

that the measured performance limits of ToF and RSS based range measurement

approaches the theoretical CRLB. Using a site survey tool prior to measuring

ToF and RSS over different lower noise channels helped not only to improve the

confidence in a burst of readings but also improved accuracy.
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3.9 Conclusion

The results over a short range demonstrate that RSS is a good candidate for

range estimation at ranges less than ∼ 7m for outdoor and indoor unobstructed

paths. The experimental results are compared with the calculated Cr to validate

the point that RSS provides better ranging accuracy at short range. This can help

to improve the range accuracy at a short range by alleviating the need for ToF

calculation. Uncertainty in RSS based range estimation increases with distance

and beyond 7m, presents severe limitations in using RSS. Further investigating

NLOS paths, RSS ranging is found to be too erratic to be used in realistic location

systems as compared to ToF at any range.

Comparing ToF on LOS paths for different antenna heights in outdoor and

indoor environment, ToF measurements are seen to be largely independent of

antenna height. However, at antenna height of 1.5m the MMRE is found to be

lowest. As compared to ToF, RSS is found to be more dependent on antenna

heights as range increases. However, antenna height of 1.5m showed better rang-

ing accuracy at range less than ∼ 7m. Comparing with the outdoor for both LOS

and NLOS measurements, outdoor NLOS environment showed considerable sig-

nal attenuation even at short ranges, where LOS is blocked by trees and wooden

benches.
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Chapter 4

Localization using Optimal and

Sub-Optimal Multi-lateration

4.1 Overview

This chapter compares methods of two-dimensional (2-D) localization in order

to try and reduce the processing overhead of optimal multi-lateration whilst still

achieving a closer accuracy. Three methods of localization are examined, firstly

sub-optimal blind trilateration (SBT) which randomly selects the minimum fea-

sible number of anchors. This defines the lower processing limit. Secondly mod-

ified sub-optimal blind trilateration (MSBT) which selects anchor nodes based

on geometric dilution of precision (GDOP). Thirdly we compare these with opti-

mal multi-lateration (OML), which provides the benchmark in terms of accuracy

achievable. A Matlab based simulation platform is developed to analyse the lat-

eration schemes. By exploiting the geometric relationship between nodes, our

analysis and results show that performance of these lateration based approaches

presents a trade-off for complex computation, thus energy consumption and ac-

curacy.
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4.2 Introduction

4.2 Introduction

Accurate positioning of nodes in sensor networks is a key requirement for many

applications. In the last decade many researchers have shown great interest in the

efficient positioning of nodes. Satellite based localization such as the global posi-

tioning system (GPS) provides an excellent worldwide lateration framework for

determining geographic position [53] but cannot fulfil the requirements of WSN

localization due to its high power requirement and line of sight (LOS) constraints.

Localization in WSNs is a very challenging task and there are significant device

constraints which impact upon the design objectives for any practical localization

scheme. One of the important device constraint is simple measurement hardware

for both cost-effectiveness and device size miniaturization [14, 108]. With respect

to this device constraint, range-based localization schemes are far more suitable

than bearing-based approaches as they mandate either little or no additional

hardware requirement to support the small form-factor of WSNs [108]. Hence,

this chapter focuses the range-based localization.

Due to development in micro-electro-mechanical-systems (MEMS), data com-

munication and electronics, deployment in large scale WSNs is rapidly becoming

possible. Where large number of sensor nodes can coordinate with each other to

perform challenging tasks, including localization, search and recovery operation,

monitoring for buildings and bridges, medical, precision farming and environ-

mental monitoring [56, 88]. In a typical localization scenario, a subject node

(sj) can have a number of in-range anchor/pseudo-anchor1 nodes (Ai). Here,

acquiring ranging information from all in-range anchors/pseudo-anchors and us-

ing this whole ranging information to calculate the optimal position estimate of

a node (sj) is termed as ‘optimal multi-lateration’ (OML) [109]. Selection of

anchor nodes to perform localization differentiates optimal ‘multi-lateration’ and

sub-optimal ‘trilateration’. By randomly choosing just three of the in-range nodes

with known estimated position and using them without an associated quality fig-

1Once a sensor node (sj) is localized using optimal multi-lateration or sub-optimal blind
trilateration, it can be used as a pseudo-anchor node in the next iteration to localize other
subject nodes. We term such nodes pseudo-anchors since we range from them as we do anchors
but they will have a location error associated with them.
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ure (describing the position error probability of nodes) to calculate the position

estimate of the subject node (sj) is ‘sub-optimal blind trilateration’ (SBT) [56].

Localization error in the sensor network context is a result of several mecha-

nisms each with different error patterns [68, 110, 111]. These different error pat-

terns are due to inaccurate ranging, propagation of errors due to pseudo-anchors

[17] and bad geometry of anchors [30–32, 91]. Ranging accuracy is an important

aspect to consider because a localization system obtains position estimates using

range estimates. Inaccurate range estimation may lead to unacceptable localiza-

tion errors. Time based ranging is highly influenced by the systematic parameters

such as clock offset, frequency offset and thermal noise. In addition to these sys-

tematic parameters, environmental condition corrupts ToF ranging samples. In

reality it is not possible to have perfectly aligned clocks at the transmitter and

receiver due to tolerances of quartz oscillators, temperature variations, and envi-

ronmental changes and these results in clock offset. The clock frequency mismatch

can be significant in the context of WSNs, where high-precision oscillators do not

comply with the constraints.

In addition to the ranging accuracy, when using a lateration scheme, the

localization accuracy is highly influenced by poor geometry of anchor nodes, hence

the geometry of anchor nodes is an important source of error. The accuracy of

location estimate can vary depending on anchors geometry and which anchors are

used for the range measurement because different anchor geometries can enhance

or reduce the localization accuracy. To consider the anchors geometry and its

impact of localization accuracy, the well-known dimensionless metric, geometric

dilution of precision (GDOP) [30–32, 35] can be used to design the location

system. The GDOP metric is exposed for anchors selection by exploiting the

geometric relation between the number of in-range anchor nodes. In order to

facilitate the performance analysis of SBT, MSBT and OML approaches, the

additive signal model is considered as discussed below.

4.3 Signal Model

To estimate a subject location in 2-D, a subject node requires minimum of three

anchor nodes. Individual distance between each anchor and the subject node is
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represented by a circle or line of position (LoP). Consider a field of dimensions

with length(l) and width (w) for a 2-D network, consisting of N anchor nodes

whose locations Ai = [xi, yi]
T for i = 1, . . . , N are known, this can be achieved by

placing these anchors at predefined points or their position can be determined via

GPS. Considering the M number of unknown subject nodes whose true locations

are denoted as sj = [xj, yj]
T for j = 1, . . . , M , where .T is the matrix transpose

operation. It is desired to determine the location of a subject node sj. In practice,

actual distance dij based on ToF and RSS is corrupted by the various factors

discussed in Chapter 3. The signal received at the subject node from the ith

anchor can be given Eq. (4.1) [102]:

rij(t) = At
ijs(t− τij) + nij(t) (4.1)

where At
ij is the amplitude or attenuation of the signal, τij is the propagation

delay, nij(t) is the ranging error that accounts for ToF errors due to the noisy

measurement. The delay τij that is dependant on the distance between the anchor

and the subject node is given by Eq.(4.2):

τ(x, y, ℓ) =
1

c

√

(xi − xj)2 + (yi − yj)2 + ℓi (4.2)

where c is the speed of the electromagnetic wave (c ⋍ 3 × 108m/s) and ℓi is

non-line-of -sight (NLOS) bias. When dealing with the LOS case, the NLOS bias

is 0 (ℓ = 0).

From Eq. (4.2), we note that the distance between ith anchor and the jth

subject node is given by Eq. (4.3):

dij = cτij (4.3)

In vector form to include distances from N anchors can be given as dij =

[d1j, d2j, . . . , dNj]
T . Thus the estimated distance d̂ij is given as Eq. (4.4)
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d̂ij =
√

(xi − xj)2 + (yi − yj)2 + nij, (i = 1, . . . , N) (4.4)

where d̂ij is the estimated distance between node i and j, N is the number

of anchor nodes. To provide a generic idea of localization errors, it is considered

that nij ∼ N(0, σ2
ij) is the additive white Gaussian noise with constant standard

deviation σ, that is independent of dij .

4.4 Sub-Optimal Blind Trilateration (SBT)

Sub-optimal blind trilateration in a 2-D case requires a minimum of three anchor

nodes. Individual distance between each anchor and the subject node is repre-

sented by a circle or line of position (LoP). The point of intersection of these

circles is the subject node location whereas the centres of these circles are the

locations of anchor nodes as shown in Fig. 4.1. Fig. 4.1 shows an example where

a subject node (sj) with coordinates sj = [xj , yj]
T is surrounded by 3 in-range

anchor nodes whose locations Ai = [xi, yi]
T for i = 1, . . . , 3 are known. This

can be achieved by placing these anchors at predefined points or their position

can be determined via global positioning system (GPS). The true distances (dij)

between the anchors and the subject nodes are the radii of the individual LoP

and from the Pythagoras theorem, the set of equations can be given as:

dij =
√

(xi − xj)2 + (yi − yj)2 (1, . . . , 3) (4.5)

where i is the number of anchor nodes.

In SBT, 3 anchors in-range of a subject node will result in 3 equations in

the form of Eq. (4.5), which leads the following set of equations (Eq. (4.5),

for i = 1, · · · , 3) expressed in matrix form as given by Eq. (4.6):





(x1 − xj)
2 + (y1 − yj)

2

(x2 − xj)
2 + (y2 − yj)

2

(x3 − xj)
2 + (y3 − yj)

2



 =





d21
d22
d23



 (4.6)
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Figure 4.1: Subject node with 3 in-range anchor nodes

Eq. (4.6) is a set of three independent non-linear simultaneous equations with

two unknowns [xj, yj]
T . Since there are more equations than unknowns, the sys-

tem is overdetermined, and in general there is not a unique solution [102]. How-

ever, there is a least squares solution. Optimization techniques for the non linear

equations will involve iterative and extensive complicated algorithms [43, 77].

Different approaches have been proposed to obtain an approximate location es-

timation in the previous studies [69, 77, 112, 113]. The Taylor series expansion

(TSE) method was utilized in [112] to acquire the location estimation from the

time measurements. The scheme requires iterative processes to obtain the loca-

tion estimate from a linearised system. The major drawback of the TSE method

is that it may suffer from the convergence problem due to an incorrect initial guess

of the MSs position [69]. Since, the set of equation (Eq. (4.6)) is quadratic, many

cases of sign would have to be considered. However, if the set of sub-optimal

trilateration equation is linearised, then a simpler linear calculation can be used

to obtain the subject node location.
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4.4 Sub-Optimal Blind Trilateration (SBT)

4.4.1 Least Squares Solution

In general, the range estimates (dij) are not accurate due to the noisy measure-

ments and NLOS bias, as given by Eq. (4.4), where d̂ij is the estimated range.

Due to the inaccurate range estimates, the trilateration technique yields LoPs,

which provide a region of uncertainty instead of a single point, hence no unique

solution and subject node could be located within any point in the uncertainty

region as shown in Fig. 4.2 with dotted circles (red, green and blue). Due to

non-linearity, to solve N equations, it is required to resort to an optimization

scheme to estimate the location. Least-squares method are often used for solv-

ing such optimization problems. In the least squares method, a range estimate

is computed that minimizes the squared error between it and all the calculated

ranges. By removing the the quadratic terms xj and yj, the set of 3 equations

can be written as linear equation [102, 114]. This can be achieved by subtracting

the Eq. (4.5) for i = 3 from i = 1 and i = 2. The resulting two equations can be

given as Eq. (4.7) and Eq. (4.8):

Figure 4.2: Subject node with 3 in-range anchor nodes
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(x3 − xj)
2 − (x3 − xj)

2 + (y1 − yj)
2 − (y3 − xj)

2 = d21 − d23 (4.7)

(x2 − xj)
2 − (x3 − xj)

2 + (y2 − yj)
2 − (y3 − xj)

2 = d22 − d23 (4.8)

Further, Eq. (4.7) and Eq. (4.8) can be expanded as Eq. (4.9) and Eq. (4.10)

respectively:

(x2
1 − 2x1xj + x2)− (x2

3 − 2x3xj + x2) +

(y21 − 2y1yj + y2)− (y23 − 2y3yj + y2) = d21 − d23 (4.9)

(x2
2 − 2x1xj + x2)− (x2

3 − 2x3xj + x2) +

(y22 − 2y1yj + y2)− (y23 − 2y3yj + y2) = d22 − d23 (4.10)

rearranging the terms in Eq. (4.9) and Eq. (4.10) results in Eq. (4.11) and

Eq. (4.12):

2(x3 − x1)xj + 2(y3 − y1)yj = (d21 − d23)− (x2
1 − x2

3)− (y21 − y23) (4.11)

2(x3 − x2)xj + 2(y3 − y2)yj = (d22 − d23)− (x2
2 − x2

3)− (y22 − y23) (4.12)

Following set of equations (Eq. (4.11) and Eq. (4.12)) can be extended to a

matrix form as below:
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As = b (4.13)

where A is a function of the coordinates of the anchor nodes as given by Eq.

(4.14), s is the subject node location as given by Eq. (4.15) and matrix b is

a function of the distance between the anchor nodes to the subject nodes and

the coordinates of the anchor nodes as given by Eq. (4.16). As Eq. (4.14) is a

function of the coordinates of the anchor nodes, therefore it remains same.

A =

[

x2 − x1 y3 − y1
x3 − x1 y3 − y1

]

(4.14)

s =

[

xj

yj

]

(4.15)

b =
1

2

[

(d21 − d22) + (x2
2 − x2

1) + (y22 − y21)
(d21 − d23) + (x2

3 − x2
1) + (y23 − y21)

]

(4.16)

Eq. (4.13) assumes a system with unique solution, but as mentioned above,

in practice, the range estimates are not perfect and a unique solution will not

result:

As− b 6= 0 (4.17)

As a resort to an optimization technique to determine the location estimation

consider the optimization parameter as Eq. (4.18):

As = b− ŝ (4.18)

Here an optimization parameter vector (ŝ = [x̂2, ŷ2]T ) is the quantity to be

minimized. Here minimizing Eq. (4.19) is to minimize the mean square error by

taking derivative with respect to ŝ and setting equal to zero [115], as given below

by Eq. (4.19) and Eq. (4.20):
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ŝ = argmin
s
‖b− As‖2

= [b− Aŝ]T [b− Aŝ]

= bTb− bTAŝ− ATŝTb + ATŝTAŝ (4.19)

ŝ = ∂θ(ŝ) = 0− AT b− ATb + 2ATAŝ

= 2ATAŝ− 2ATb = 0 (4.20)

This leads us to the determined system of the linear equations as given by

Eq. (4.21), for which the unique solution exists under certain conditions (i.e. A

has to have full rank) [102, 115, 116]:

ŝ = (ATA)−1ATb (4.21)

where T is transpose, and ŝ is the estimated subject node. Eq. (4.21) is called

normal equation and a solution will exist for the set of N − 1 linear equations if

the number of equations is at least equal to the number of unknowns. In the case

of SBT, N − 1 must be 2, so at least 3 non-collinear anchor nodes are required

to perform 2-D trilateration.

As mentioned above, when using a lateration scheme, the localization accu-

racy is highly influenced by poor anchor geometry. When using SBT, no unique

solution exists under the following two conditions [117]:

1. If all the anchor nodes involved in trilateration are collinear as shown in

Fig. 4.3(a). In this case, It will be impossible to differentiate which side of

the reference line the subject node is located at due to the symmetry about

the line.

2. If two of the anchor nodes involved to perform trilateration are co-incident

as shown in Fig. 4.3(b).
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(a) (b)

Figure 4.3: Fig. 4.3(a). Subject node with 3 in-range collinear anchor nodes.
Fig. 4.3(b). Subject node with 2 in-range anchor nodes, where 3 anchor nodes
are co-incident.

In addition to these two exceptions, the geometric placement of anchor nodes

may result in a high degree of error, and make sub-optimal blind trilateration an

impractical solution for a scalable network. As a metric to evaluate the lateration

schemes, the root-mean-square error (ERMS) of the location estimate obtained

from N anchors can be given by Eq. (4.22) as below:

ERMS =

√

√

√

√

√

√

k
∑

m=1

(sj − ŝmj )(sj − ŝmj )
T

k
(4.22)

where k is the number of iterations selected for a lateration scheme. It pro-

vides an indication of how well the measured distances converge on the estimated

subject node location. In practices, it shows an estimate of the location uncer-

tainty due to ranging errors (e.g. background noise, multipath components and

interference) along with distorted anchor placement.

Fig. 4.4 shows an estimate of the location error for different anchor combina-

tions along with the ranging errors (e.g. background noise, multipath components

and interference). Fig. 4.4(a) shows the different anchor combinations, where A1,

A2 are considered as fixed anchors and A3 is changed from A3 to A13. For each

combination, the corresponding ERMS is calculated at noise variance of 2, 4, and

6 and for each combination 1000 samples are collected as shown in Fig. 4.4(b).
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Fig. 4.4(c) shows the lowest uncertainty in location error, where A1, A2 and A3

are well separated. An increase in ERMS is observed when an anchor nodes move

from A3 to A7. This is because of the angle between the anchor nodes which

reduces as third anchor moves towards A1 and A2 (i.e. reduces the sides of the

triangle). Fig. 4.4(g) shows the high uncertainty in location error where A1, A2

ad A7 are almost collinear. There is no solution available for combination 6 as

shown in Fig. 4.4(b), which is in accord with the fact that all the three anchors

(A1, A2 and A8) are collinear (i.e. angle between the anchors is zero). Further-

more, as anchor node moves from A9 to A13, it shows a decrease ERMS because

of the increases in angle between anchor nodes. The area within an error equates

to a contour of probability for the estimated location of a subject node. This

varies significantly with anchor selection for sub-optimal blind trilateration. A

large error of a localized node will have a disastrous impact on subsequent phases

of localization, if this node is subsequently used as an anchor, i.e. it becomes a

pseudo-anchor. Fig. 4.5 shows the flow chart for SBT.

As discussed above, SBT selects only three of the in-range anchors/pseudo-

anchors without an associated quality figure to calculate the position estimate

of the subject node. In order to overcome the blind selection of anchor/pseudo-

anchor, SBT is combined with GDOP as MSBT to exploit the geometric configu-

ration between the anchor/pseudo-anchors to reduce the impact of bad geometry

on localization accuracy. In a dense network1, where a subject sensor node may

have choices on the selection of anchor nodes to perform SBT, a candid choice

of anchors geometry based on the knowledge of GDOP can reduce the location

error. GDOP metric is discussed in section 4.5 and a location refinement process

using for MSBT using GDOP is discussed in 4.6

4.5 Geometric Dilution of Precision (GDOP)

In NAVSTAR/Global Positioning System (GPS), and Global Navigation Satel-

lite System (GLONASS), DOP is a well known problem [29–36] which illustrates

1A dense environment, where sensor nodes are closely packed due to low sensing range or
due to a large number of deployed nodes in a limited sensing field. In our case, a large number
of nodes reflect a dense environment. This is scalable depending on transmission power.
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Figure 4.4: Fig. 4.4(a). Anchor combinations, where A1, A2 are fixed anchors
and anchor A3 is changed from A3 to A13. Fig. 4.4(b). ERMS associated with the
position estimate for different anchor geometries as shown in Fig. 4.4(a). Fig.
4.4(c) - Fig. 4.4(h). First 6 anchor combinations from Fig. 4.4(a), where A1, A2

are fixed anchors and anchor A3 is changed from A3 to A8 respectively.
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4.5 Geometric Dilution of Precision (GDOP)

Figure 4.5: Simulation Flow chart for SBT
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geometric configuration impacting location estimation accuracy of a localization

system. As discussed above, in order to locate a subject node, at least 3 range

measurements (i.e. anchors) are required in 2-D. Here, the accuracy of the esti-

mated subject node heavily depends on the geometry of the anchor nodes, which is

characterized by the DOP. To reduce the degree of location error, anchor/pseudo-

anchors nodes must be selected with optimal geometry. This dimensionless value

is divided into various quality ranks for qualitative comparison of diverse geo-

metric configurations. The smallest GDOP value reflects the strong geometric

configuration whereas higher value reflects poor geometry. Table 4.1 shows the

different quality ranks for GDOP [29, 91].

Quality Rank Geometric Configuration
1 Ideal
2-4 Excellent
4-6 Good
6-8 Moderate
8-20 Fair
20-50 Poor

Table 4.1: Geometric Dilution of Precision Quality Rank

The computation of DOP metric can be defined by relating the expected value

of the positional error to expected ranging error as given by Eq. (4.23) [30, 114]:

GDOP =
Eloc

RMS

Er
RMS

(4.23)

where, Eloc
RMS and Er

RMS is the root-mean-square-error of the estimated subject

node and estimated ranges respectively, and assumed to be uncorrelated, Gaus-

sian random variables. The Eloc
RMS and Er

RMS can be given by Eq. (4.24) and Eq.

(4.25) respectively.
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Eloc
RMS =

√

√

√

√

√

√

k
∑

m=1

(sj − ŝmj )(sj − ŝmj )
T

k
(4.24)

where k is the number of iterations selected for a lateration scheme.

Er
RMS =

√

√

√

√

√

√

N
∑

i=1

k
∑

m=1

(dij − d̂mij )
2

N × k
(4.25)

where i is the number of anchor nodes selected for a lateration scheme and

k is the number of the range estimates (d̂ij) performed between an anchor and

subject node. In GPS technology, Er
RMS is known as User Equivalent Range Error

(EURE) [31, 32].

When using lateration, N anchors/pseudo-anchors in-range of a subject node

will result in N equations in the form of Eq. (4.4). By using the subject estimate

(x̂j, ŷj), an approximate range estimate can be given by Eq. (4.26):

d̂ij =
√

(xi − x̂j)2 + (yi − ŷj)2; (i = 1, 2, 3) (4.26)

Defining d̂ij as dij at (x̂j, ,ŷj) the positioning difference can be given as ∆xj =

xj − x̂j and ∆yj = yj − ŷj. The computation of GDOP is based on a geometry

matrix (GM) which can be formed by linearising the set of equations Eq. (4.26)

by using truncated Taylor series around the approximate subject position (x̂j, ŷj)

[53]. The Taylor series at first order by truncating high order terms can be given

as:

dij = d̂ij +
∂d̂ij
∂x̂j

(xj − x̂j) +
∂d̂ij
∂ŷj

(yj − ŷj); (i = 1, 2, 3) (4.27)
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dij − d̂ij =
∂d̂ij
∂x̂j

(xj − x̂j) +
∂d̂ij
∂ŷj

(yj − ŷj); (i = 1, 2, 3) (4.28)

for (i = 1, 2, and 3), Eq. (4.28) can be simplified as below:













∆d1j

∆d2j

∆d3j













=













dx1∆xj + dy1∆yj

dx2∆x+ dy2∆y

dx3∆xj + dy3∆yj













(4.29)

Eq. (4.29) can be rearranged and simplified as Eq. (4.30):

∆d = GM∆ρ (4.30)

where,

∆d =













∆d1j

∆d2j

∆d3j













,GM =













dx1 dy1

dx2 dy2

dx3 dy3













,∆ρ =





∆xj

∆yj



 (4.31)

Here GM is 3 × 2 geometry matrix, since at least 3 anchors are required to

locate a subject node in 2-D. The 3 × 2 geometry matrix for N anchors in 2-D

case can be given as Eq. (4.32):

GM =











dxi dyi
· · · · · ·
...

...
dxN dyN











(4.32)
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where, elements dxi,and dyi defines the direction cosines for subject to ith anchor

nodes can be given as Eq. (4.33) using Eq. (4.31):





dxi

dyi



 =







∂dij
∂x̂j

∂dij
∂ŷj






=







x̂j−xi

d̂ij

ŷj−yi

d̂ij






; (i = 1, 2, 3) (4.33)

where, x̂j and ŷj are the estimated coordinates of jth subject node and d̂ij is

estimated distance between anchor and subject node. Substituting Eq. (4.33) in

Eq. (4.32) yields Eq. (4.34):

GM =









x̂j−x1

d̂1j

ŷj−y1

d̂1j
x̂j−x2

d̂2j

ŷj−y2

d̂2j
x̂j−x3

d̂3j

ŷj−y3

d̂3j









(4.34)

Here LS can be used by multiplying both sides of Eq. (4.30) by matrix trans-

pose of GM .

∆d = (GT
MGM)−1GT

M∆ρ (4.35)

where GT
M is the transpose of GM . Since GT

M has full rank (provided anchors are

not collinear), GT
MGM will be invertible, then Eq. (4.35) can be given as:

∆ρ = (GT
MGM)−1GT

M∆d (4.36)

Let ξp and ξr is the positioning and ranging error respectively. Due to the

random nature of ξp and ξr Eq. (4.36) can be given as Eq. (4.37), which shows

the functional relationship between ranging errors and location error [53].
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4.5 Geometric Dilution of Precision (GDOP)

ξp = (GT
MGM)−1GT

Mξr (4.37)

= Kξr (4.38)

where K is considered equal to (GTGM)−1GT
M . It can be evaluated by the

covariance of the measurement cov(.) [31, 53].

cov(ξp) = E
[

ξpξ
T
p

]

(4.39)

= E
[

KξrK
T ξTr
]

(4.40)

= E
[

((GT
MGM)−1GT

M)(ξrd
T
x )((G

T
MGM)−1GM)

]

(4.41)

= Kcov(ξr)K
T (4.42)

Here cov(ξr) represents the ranging errors. In LOS environments, all the

measurement errors can be considered to be zero-mean independent and identi-

cally distributed Gaussian variables. So the covariance matrix cov(Er) can be

expressed as cov(ξr) = Iσ2, where I is N × N identity matrix. Now, Eq. (4.42)

can be given as:

cov(ξp) = σ2(GT
MGM)−1 (4.43)

where in 2-D cov(ξp) is a 2 × 2 matrix. As cov(ξp) is statistically independent, it

will result in a diagonal covariance matrix. Assume, (GT
MGM)−1 is equivalent to

G and in component form can be given by Eq. (4.44):

G = (GT
M ×GM)−1 =





G11 G12

G21 G22



 (4.44)

The elements of G matrix quantify how ranging errors translate into elements

of cov(ξr). From Eq. (4.44), GDOP is equivalent to taking the square root of the
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sum of the diagonal elements of G as given by Eq. (4.45):

GDOP =
√

tr(G) =
√

G11 +G22 (4.45)

where T and tr indicate the transpose and trace of matrix, respectively. Now,

Eq. (4.43) can be rearranged as:

[

σ2
xj

σ2
xj
σ2
yj

σ2
xj
σ2
yj

σ2
yj

]

= σ2GDOP (4.46)

where left hand side of Eq. (4.46) is cov(ξp). Eq. (4.46) can be related to Eq.

(4.23) as below:

Eloc
RMS = Er

RMSGDOP (4.47)

It can be observed that, Eq. (4.47) is equivalent to Eq. (4.23), where Eloc
RMS

(square root of the sum of the diagonal elements of left hand side of Eq. (4.46))

and Er
RMS is given by Eq. (4.24) and Eq. (4.25) respectively.

In the context of Cartesian coordinate system, GM matrix (from Eq. (4.43))

defines the three DOP mechanism [31, 32, 53], vertical dilution of precision

(VDOP-altitude) for 1-D, horizontal dilution of precision (HDOP-latitude and

longitude) for 2-D plane, and position dilution of precision (PDOP) for 3-D

sphere. The accuracies of these three mechanisms in terms of
Eloc

RMS

Er
RMS

and geometry

matrix can be given by Eq. (4.48), Eq. (4.49) and Eq. (4.50) respectively:

PDOP =
√

G11 +G22 +G33 =

√

E2
RMSx + E2

RMSy + E2
RMSz

Er
RMS

(4.48)
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HDOP =
√

G11 +G22 =

√

E2
RMSx + E2

RMSy

Er
RMS

(4.49)

VDOP =
√

G33 =

√

E2
RMSz

Er
RMS

(4.50)

In the context of GPS, GDOP elements are 4x4, where the 3rd and 4th term

correspond to z-axis and clock corrections [29, 53].

4.5.1 Simulation Results and Analysis

Since the GDOP illustrates the functions of geometric configuration of the an-

chor and subject nodes, it is obvious that certain anchor locations would offer

better accuracy than others. Fig. 4.6 shows a subject nodes with 24 in-range

anchors/pseudo-anchors. In this case, A1 and A2 are considered fixed to location

[0, 5]m and [10, 5]m, whereas A3 is changed from A3 to A24 in anti-clockwise to

get 22 different combinations (i.e. [A1, A2, A3], [A1, A2, A4], [A1, A2, A5], · · · ,
[A1, A2, A24]). For each combination as shown in Fig. 4.6, the corresponding

HDOP and ERMS is calculated at noise variance of 4 and for each combination

1000 samples are collected. It can be observed that as the angle between the

anchors decreases, HDOP increases. This is because a small angle (angles are

not spread) between the anchors will results in large uncertainty region. It can

be observed that as the HDOP increases, ERMS also increases. As shown, the

minimum HDOP is observed when [A1, A2, An] are deployed as shown in Fig.

4.6. It suggests that a combination of anchors/pseudo-anchors with minimum

HDOP can help to enhance the localization accuracy. In next section, the loca-

tion refinement process based on the HDOP is discussed to enhance the estimated

location.

Fig. 4.8 shows a scenario, where anchor nodes are considered as fixed and sub-

ject node location is changed from s1 to s10. The corresponding HDOP and ERMS

is illustrated in Fig. 4.8. It can be observed that, in addition to anchor nodes
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Figure 4.6: Subject node with 24 in-range anchors/pseudo-anchors, where A1, A2

are fixed and A3 is changed from A3 to A24
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Figure 4.7: Comparison of GDOP and ERMS for 24 in-range anchor nodes, where
A1, A2 are fixed and A3 is changed from A3 to A24 as shown in Fig. 4.6.
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4.5 Geometric Dilution of Precision (GDOP)

geometry, subject node placement is very crucial. As the subject node moves

towards the anchor nodes, HDOP hence ERMS increases. The lowest ERMS is

observed at location[5, 4], which also reflects the minimum HDOP hence optimal

subject node placement. In many WSN applications, subjects are often consid-

ered as randomly deployed nodes or their location is not fixed due to the mobility.

It suggests subject nodes an infeasible option to enhance the location accuracy

on the basis of geometry. Hence, it makes optimal anchor nodes geometry an

important criteria to enhance the localization accuracy.
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Figure 4.8: Subject node with 3 in-range anchors/pseudo-anchors, where A1, A2,
A3 are fixed and sj is changed from s1 to s10.

Fig. 4.10 shows a scenario, where anchor nodes are considered as fixed and

subject node location is changed from s1 to s21. In this case, s1-s5 and s17-s21

are deployed outside of the triangle formed by the anchor nodes. The associated

HDOP and ERMS are illustrated in Fig. 4.11. It can be observed that when a

subject node is outside of the anchor’s triangle and away from A1 and A2 (i.e.

s1), it results in poor HDOP. This poor HDOP is the effect of poor subject

node placement. As the subject node enters into the anchor’s triangle and moves

towards the A1 and A2, it decreases the HDOP. The minimum HDOP is observed
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4.6 Modified Sub-Optimal Blind Trilateration (MSBT)
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Figure 4.9: Comparison of HDOP and ERMS for 3 in-range anchor nodes, where
A1, A2, A3 are fixed and sj is changed from s1 to s10 as shown in Fig. 4.8.

when subject node (s16) along with A1 and A2 are collinear, where s16 is almost

at equal distance from A1, A2 and A3). Beyond s16, HDOP starts increasing as

subject nodes move away from the anchor nodes. It can be observed from Fig.

4.9 and Fig. 4.11 that a minimum HDOP is obtained, when a subject node is

almost at equal distance within anchor’s triangle.

4.6 Modified Sub-Optimal Blind Trilateration

(MSBT)

In WSNs, nodes are often deployed in a random fashion with a distributed na-

ture of localization. In such an environment, many nodes can be densely packed

and localization sequence of the subject nodes cannot be guaranteed. Thus we

cannot expect all node being localized with strong geometry. But, as the lo-

calization phase is processed, localized subject nodes turned into pseudo-anchor

nodes and a subject node may have choices on the selection of anchor/pseudo-

anchor nodes with strong geometry to perform the localization. Here, the lo-

cation can be refined on the basis of strong geometry to enhance the location
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Figure 4.10: Subject node with 3 in-range anchor nodes, where A1, A2, A3 are
fixed and sj is changed from s1 to s21.
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Figure 4.11: Comparison of GDOP and ERMS for 3 in-range anchor nodes, where
A1, A2, A3 are fixed and sj is changed from s1 to s21 as shown in Fig. 4.10.
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4.6 Modified Sub-Optimal Blind Trilateration (MSBT)

estimates and to alleviate error propagation by pseudo-anchor nodes. Consider

Fig. 4.12, where a subject node (sj) has five in-range neighbours which can act

as anchors/pseudo-anchors (A1, A2, A3, A4, and A5). A subject node can use

any 3 anchors to perform SBT (i.e. without considering anchor geometry) and

may result in poor localization performance. To overcome poor blind selection,

hence poor localization performance, a subject node can select 3 out of 5 in-

range anchor/pseudo-anchors based on the strong geometry between anchors. To

achieve this, 5 in-range anchors/pseudo-anchors can be exploited in to 10 differ-

ent possible combinations as a set of 3 using Eq. (4.51), where each combination

will exhibit a individual HDOP and ERMS.

Ac =
Air !

AN ! (Air − AN) !
(4.51)

where AN is the number of anchor/pseudo-anchors to use sub-optimal trilat-

eration (i.e. 3) and Air is equal to the number of in-range anchor/pseudo-anchors.

Fig. 4.13(a)-4.13(j) shows the 10 different possible combinations for Fig. 4.12.

Once sub-optimal trilateration is performed with all combinations, HDOP is cal-

culated for each individual combination. Based on minimum optimized HDOP

an anchor/pseudo-anchor node combination set is selected for location estimate

of the subject node (sj). Algorithm 1 shows the different stages of the MSBT for

location refinement and Fig. 4.14 shows the simulation flow chart for MSBT.

Fig. 4.15 shows the comparison between HDOP and ERMS for all 10 anchor

combinations (Fig. 4.13). The averaged HDOP and ERMS are obtained for a

noise variance of 4 and 1, 000 iterations. It can be observed that an increase in

HDOP also increases the ERMS. The minimum GDOP of 1.19 is observed for

anchor combination 2 (Fig. 4.13(b)), which also reflects the highest accuracy in

the estimated location. The maximum HDOP of 2.34 and 2.3 is observed for

anchor combination 6 and 7 with ERMS of 4.28m and 4.26m (Fig. 4.13(f) and

Fig. 4.13(g)) respectively.

It is evident from the results that using location refinement by exploiting

HDOP allow us to select the anchor combination with minimum HDOP, hence
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Algorithm 1 Stages of MSBT Algorithm for Location Refinement

1: % AN is total number of Anchor and Pseudo-Anchor
2: % Air is in-range anchor/pseudo-anchor nodes
3: % Ac is total number of anchor/pseudo-anchor combinations
4: % Âc is the selected anchor/pseudo-anchor combination from Ac based on

minimum HDOP
5: % Eloc

RMS is root-mean-square error of estimated location
6: % Er

RMS is root-mean-square error of ranging error
7: % Estloc is estimated location
8: while sj=1,··· ,N 6= 0 do
9: for j = 1 to sj do
10: for i = 1 to size(AN) do
11: if (sj(j), AN(i)) Adjacent then
12: Air ⇐ In-range AN(i)
13: end if
14: end for
15: % Get all possible AN combinations from Air as a set of 3
16: Ac =

Air!
3!×(Air−3)!

17: for k = 1 to size(Ac) do
18: Perform sub-optimal trilateration for each k
19: Calculate Eloc

RMS of estimated location for each k
20: Calculate Er

RMS of ranging error for each k
21: Calculate HDOP for each k
22: ŝj = Estloc(k), RMSEloc(k), HDOP(k)
23: end for
24: % Get best Ac based on the minimum HDOP

Âc ← min(HDOP)
25: ŝj ← associated with Âc combination
26: end for
27: end while
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Figure 4.12: Subject node with 5 in-range anchor/pseudo-anchor nodes.

highest accuracy in an estimated location. It also helps to reduce the error

propagation due to pseudo-anchors in subsequent phases of localization.

4.7 Optimal Multi-lateration (OML)

Optimal multi-lateration is a technique for determining the location of a node

using the distance from all in-range anchors i.e. optimally using all available

information [109]. In OML, location estimation for a subject node is calculated

by using (4.21) for a set of N−1 linear equations, where N is the number of the in-

range anchors/pseudo-anchors. Fig. 4.16 shows an example where a subject node

sj is surrounded by 8 in-range anchors/pseudo-anchors. In this case, the function

of the coordinates of the anchor nodes A and matrix b which is a function of the

distance between the anchor nodes to the subject nodes and the coordinates of

the anchor nodes is given by Eq. (4.52) and Eq. (4.53) respectively.
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Figure 4.13: Possible anchor/pseudo-anchor node combinations.
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4.7 Optimal Multi-lateration (OML)

Figure 4.14: Simulation Flow chart for MSBT.
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Figure 4.15: Comparison of HDOP and ERMS for all anchor combinations as
shown in Fig. 4.13.
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Figure 4.16: Optimal multi-lateration, where 8 anchor/pseudo-anchor nodes are
in-range of a subject node.
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A =

















x2 − x1 y2 − y1
x3 − x1 y3 − y1
x4 − x1 y4 − y1
· · · · · ·
· · · · · ·

xn − x1 yn − y1

















(4.52)

b =
1

2













(d21 − d22) + (x2
2 − x2

1) + (y22 − y21)
(d21 − d23) + (x2

3 − x2
1) + (y23 − y21)

(d21 − d24) + (x2
4 − x2

1) + (y24 − y21)
· · · · · · · · ·

(d21 − d2n) + (x2
n − x2

1) + (y2n − y21)













(4.53)

The algebraic manipulations lead to a system of linear equations which can

be expressed in matrix form as given by Eq. (4.13) and can be solved by the LS

method to provide an estimated location, as given by Eq. (4.21).

Fig. 4.17 displays the HDOP and ERMS as a function of number of anchor

nodes. It is noted that as the number of anchors increases the effect of noise on

the location error becomes smaller. In this case, HDOP is calculated for 3 to 8

in-range anchor nodes. A considerable improvement is observed by increasing the

number of anchors from 3-8. It can be observed that, using only three anchors

(i.e. A1, A2 and A3), results in a high HDOP value, hence poor localization

accuracy. This is because of the poor geometry of anchors (i.e. A1, A2 and A3),

which are very close to each other. With all in-range anchor nodes, minimum

ERMS value obtained is 3.45m compared to ERMS obtained with only 3 anchors

is 21.3m.

Once a subject node localized its position using all in-range anchors/pseudo-

anchors, it becomes a pseudo-anchor node in subsequent iterations to locate re-

maining nodes. The process repeats until all the nodes in the network are local-

ized. Fig. 4.18 shows the flow chart for OML. In a dense network, a solution

based on optimal multi-lateration (i.e. selecting all in range information) re-

quires more processing time, hence more processing power is required to perform

localization, which is undesirable for resource constrained WSNs. Here, reduc-

ing the number of anchors/pseudo-anchors to limit calculation complexity and

to preserving power resources can improve the network life time at the cost of
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Figure 4.17: HDOP and ERMS for OML, where 8 anchor/pseudo-anchor nodes
are in-range of a subject node as shown in Fig. 4.16.

additional location error.

4.8 Performance Analysis and Results

In this section, a simulation tool is developed to evaluate the performance of the

optimal and sub-optimal schemes. A number of static nodes (i.e. 100, 200, · · · , 600)
are randomly distributed in 2-D. To vary the number of in-range anchors/pseudo-

anchors, transmission range of 40m, 80m and 100m is used within 100m by 100m,

200m by 200m and 400m by 400m networks respectively, as shown in Table 4.2.

Here, all three approaches (SBT, MSBT and OML) are distributed approaches

and each subject nodes can run it individually to be localized. Fig. 4.5, Fig.

4.14 and Fig. 4.18 shows the simulation flowchart for SBT, MSBT and OML

respectively.

To simulate the analysis, the estimated distance (d̂ij) as given by Eq. (4.4)

is considered. Since anchor nodes are considered pre-surveyed, their location is

assumed to be error free. A static and stable sensor network (i.e. no mobility

and no node failures) without obstacles and with nodes having accurate and

symmetric radio ranges is assumed. A subject node (sj) is adjacent to anchor
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Figure 4.18: Simulation Flow chart for OML.
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4.8 Performance Analysis and Results

Table 4.2: Network Simulation Parameters for SBT, MSBT and OML
Parameters Value
Area(m) 100 × 100, 200 × 200, 400 × 400
Transmission Range(m) 40m, 80m, 100m
Subject Nodes 100, 200, 300, 400, 500, 600
Anchor Nodes 3, 4, 5, 6, 7, 8, all in-range

(Ai), if and only if d̂ij ≤ transmission range. All simulations are averaged over

100 random network topologies. In all simulations to keep the processing time

within tolerable limits, the threshold of GDOP to enhance accuracy is set as

below 4. As a metric to evaluate the lateration schemes, the root-mean-square

error ERMS of the location estimate obtained from N anchors as given by Eq.

(4.22) is considered.

Fig. 4.19(a) shows an example of simulation setup with 3 anchors nodes (red

squares) and 200 randomly deployed subject nodes (blue circles). Fig. 4.19(b)

shows the result of different phases of OML lateration scheme at noise variance

of 2. In first phase of the simulation, all subject nodes in-range of 3 anchor nodes

are localized and turned into pseudo anchor nodes as shown by yellow squares

in Fig. 4.19(b). In this case, 3 subject nodes are localized; hence number of

anchor nodes is increased from 3 to 6. The next subsequent phase considered the

pseudo anchor nodes along with anchor nodes in order to locate the remaining

subject nodes. In phase two, subject nodes are localized (pink squares) using 6

anchor/pseudo-anchor nodes. This process continues until all the nodes in the

network have been localized and turn into pseudo-anchors as shown by (cyan

and green squares). As shown, after 4 simulation phases, subject nodes are

progressively changed to pseudo-anchors within the field. In the case of SBT, a

subject node will use blindly 3 from N in-range anchor/pseudo-anchor, whereas

MSBT will make all possible combinations as a set of 3 anchors/pseudo-anchors

by exploiting all in-range anchor/pseudo-anchors.

4.8.1 Impact of Ranging Error

Fig. 4.20 compares the average ERMS of the location estimate for OML, SBT and

MSBT by increasing the ranging error (σ2). As expected, increasing the rang-

113



4.8 Performance Analysis and Results

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (m)

y 
(m

)

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (m)

y 
(m

)

(b)

Figure 4.19: Fig. 4.19(a). Example of simulation setup for 3 anchors (red
squares), subject nodes (blue circles). Fig. 4.19(b). Example of simulation setup
for 3 anchors (red squares), subject nodes (blue circles), and estimated subject
nodes (yellow, pink, cyan and green squares) from each localization phase.
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ing error for each node from 0.1 to 0.5 along with bad geometry associated with

anchors/pseudo-anchors increases the average RMS location error. As expected,

OML and MSBT outperforms SBT (due to the blind selection). MSBT, which

considers the maximum of 56 (8 in-range anchors/pseudo-anchors) different com-

binations in this case to avoid poor topographic arrangement, therefore reduces

the average RMS location error compared with the SBT. The extra processing cost

helps MSBT to outperform OML (with an average number of anchors/pseudo-

anchors equal to 21), by average location error of 0.1140m. At noise variance of

0.3, Fig. 4.20 shows that, It is better to have few good anchor nodes than few

good ones and lots of poor ones. Here, a confidence level can be used to utilize the

information more appropriately. As the cost of processing continues to fall this

approach which trades continuous processing for reliance on a reduced number of

anchors becomes increasingly attractive.
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Figure 4.20: Impact of ranging error on average ERMS for 400 randomly deployed
nodes.
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4.8.2 Impact of Node Density

Fig. 4.21 illustrates the average RMS error comparison by increasing the number

of deployed nodes, which makes the sensing field more complex. Compared with

the SBT, the MSBT scheme achieves better location accuracy as the network den-

sity increases. This is because a dense network provides a large number of com-

binations and makes the MSBT scheme more likely to select the anchors/pseudo-

anchors which are topographically strong which achieves minimum average RMS

location error. Compared with the OML, a proper selection of anchors/pseudo-

anchors based on GDOP helps MSBT to stay very close to OML when the network

density increases.
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Figure 4.21: Impact of node density on average ERMS at σ2 = 0.5m.

Fig. 4.22 illustrates the average number of anchors/pseudo-anchors used by

each subject node for localization with reference to Fig. 4.21. As shown, for

SBT, the number of required anchor nodes is fixed to three. In order to keep

the processing time within tolerable limits for MSBT, the maximum number of

anchors/pseudo-anchors (possible combinations) are set to 8 which shows average

processing of 56 different combinations for each node, even though combinations

may be higher in a dense environment. However, in case of OML there is no
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defined tolerable limit and it reflects the change in number of anchors/pseudo-

anchors as the node density increases. It helps OML to reduce the estimated

location error.
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Figure 4.22: Average number of Anchors/Pseudo-Anchors with respect to Node
Density (σ2 = 0.5m).

4.8.3 Impact of Anchor Nodes on Localization Accuracy

Fig. 4.23 and Fig. 4.24 illustrates the average RMS error comparison by varying

the minimum number of the anchor nodes required to perform the localization.

An increase in the number of deployed and required anchor nodes to perform

localization has a positive impact on estimated location error. As expected,

increasing the required anchors/pseudo-anchors to perform localization improves

the location accuracy.

Fig. 4.25 illustrates the average root mean square error (ERMS) comparison

for MSBT on the basis of the number of possible anchor/pseudo-anchor combi-

nations. The increasing number of combinations (e.g. in-range anchors/pseudo-

anchors) suggests different topographic layouts with different GDOP and helps

to avoid bad geometry, hence an estimated location error. As shown in Fig. 4.25,
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Figure 4.23: Impact of the number of Anchors/Pseudo-Anchors on average ERMS

(σ2 = 5m) in 200m by 200m network.
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Figure 4.24: Impact of the number of Anchors/Pseudo-Anchors on average ERMS

(σ2 = 10m) in 200m by 200m network.

118

Chapter4/Chapter4Figs/EPS/Results/Graph_6a.eps
Chapter4/Chapter4Figs/EPS/Results/Graph_6b.eps


4.8 Performance Analysis and Results

4 20 56 120 220 364
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Possible Anchor Combinations

E
R

M
S
 (

m
)

 

 

Figure 4.25: Impact of possible combinations of anchors/pseudo-anchors on av-
erage RMS location error for 100 randomly deployed nodes (transmission range
= 40m, σ2 = 0.5m) for MSBT.

average RMS location error is inversely proportional to the number of different

combinations. This is because a large number of combinations make the MSBT

scheme more likely to select the anchors/pseudo-anchors which are topograph-

ically strong which achieves minimum average RMS location error. This also

explains the reason that the processing time (power consumption) increases as

the number of combinations increases for a subject node.

4.8.4 Analysis of Computational Complexity

Fig. 4.26 illustrates the comparison on average processing time required to per-

form optimal and sub-optimal lateration. As the number of deployed sensor

node increases (i.e. 200 to 600), the processing time also increases for all ap-

proaches. Fig. 4.26 shows the average processing time where MSBT takes a long

time to perform complex and iterative computations due to choosing a practical

combination of three from maximum of 56 anchors/pseudo-anchors combina-

tions. As shown, for 600 sensor nodes, the average time for SBT is 14.3s and at
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Figure 4.26: Average simulation time for single iteration of computation in 400m
by 400m network with transmission range of 100m

the same time MSBT with maximum of 56 different combinations shows more

than 75 times of SBT. Compared with the OML, the average processing time

of MSBT increases to 70 times of OML as the network density increases. The

process of choosing three anchor/pseudo-anchor nodes increases the computation

complexity from O(1 combination of anchors/pseudo-anchors) to O(combination

of choosing 3 anchors/pseudo-anchors from N anchors/pseudo-anchors combi-

nations) and thus more energy consumption. Compared with the SBT, OML

achieves about 1.173s of extra computation when the network density is high.

This is because a high density network makes the OML more likely to select

the more in-range anchors/pseudo-anchors (with an average of 25) to perform

the localization which achieves the extra power consumption. This also explains

the reason that the power consumption increases as the connectivity of a sub-

ject node with anchors/pseudo-anchors increases. As shown, small average com-

putation time and RMS error of OML compared with SBT and GDOP based

MSBT makes optimal multi-lateration the best option for dense and multi-hop

sensor network localization where primary power and accuracy are major con-
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cerns. GDOP based MSBT outperforms SBT in a dense sensor network, where

primary power is not a major concern (e.g. tracking of freight containers in a

port where primary power can be used perhaps through lighting supplies, which

can help anchors / sensors to work on more complex environment [118]).
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Figure 4.27: Impact of possible combinations of anchors/pseudo-anchors on av-
erage computation time for 100 randomly deployed nodes (transmission range =
40m, σ2 = 0.5m) for MSBT.

Fig. 4.27 shows such a relationship, where increasing the number of anchors/pseudo-

anchors increases the combinations to performMSBT. Considering all the possible

combinations requires more processing, as Fig. 4.27 shows the average processing

time of 250s for 100 randomly deployed nodes with maximum of 364 possi-

ble combinations (14 in-range anchors/pseudo-anchors). The processing time in-

creases with the increase in number of possible combinations and deployed nodes

and considering all possible combinations (not considering any threshold) makes

it attractive in terms of localization performance at the cost of huge computa-

tional overhead.
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4.9 Discussion

In this chapter, optimization of localization accuracy is analysed using SBT, OML

and GDOP based MSBT that quantifies the topographic effects in the presence

of independent range error. In the light of simulation analysis the following are

the main observations. The scheme to combine GDOP with SBT incurs huge

computation overhead and contradicts the benefit we want to achieve from us-

ing sub-optimal lateration and is not affordable where battery power is a ma-

jor problem. The excess computation is particularly acute when the number of

anchors/pseudo-anchors is large; it is in fact larger than using all anchors in an

OML algorithm!

As compared to SBT where selection of anchors/pseudo-anchors depends on

a first-come first-served scheme. It shows first three in-range anchors/pseudo-

anchors will be selected without considering an associated quality figure (to de-

scribe the error probability). In this case, there is no iterative test to validate

the topological layout of anchors/pseudo-anchors to perform localization, thus

blind selection reduces the computation complexity and hence power consump-

tion. However it dramatically increases the location estimation error, especially

in an environment where there are many nodes and they are densely packed. Per-

formance of these lateration based approaches presents a trade-off for complex

computation, thus energy consumption and accuracy.

4.10 Summary

This chapter presents a comprehensive analysis concerning the performance of

lateration based localization techniques in the context of WSNs. As expected,

the simulation results show that OML, considering ranging information from all

in-range anchors/pseudo-anchors to calculate the subjects position performs bet-

ter in terms of accuracy than SBT and stays very closed to MSBT based on

GDOP. The average processing time (close to SBT) and average location error

(close to MSBT) of OML provides the best performance in the context of WSNs.

SBT reduces the computational complexity and processing but increases the lo-

cation errors due to potentially poor selection of anchors/pseudo-anchors and
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ranging error. GDOP has been shown to avoid poor topographic layout during

the selection of anchor/pseudo-anchor nodes in a dense environment at the cost

of very high computation from O(1 combination of anchors) to O(combination

of choosing 3 anchors from n anchors combinations). A combination of SBT and

GDOP provides the minimum estimated location error but leads to a substantial

performance degradation in terms of power consumption (processing) as com-

pared with the SBT and OML. It makes GDOP less attractive approach in the

context of resource constrained WSNs (i.e. where adding extra battery power is

not possible).

This comparative performance analysis of localization using optimal and sub-

optimal lateration provided the needed motivation to optimize the anchor place-

ment in order to enhance the performance of range aware localization. In addition

to that, to model reality most clearly, it certainly makes sense to step beyond the

easy and secure reach of unrealistic 2-D representations to the pragmatic world

in 3-D visualization. This motivation lead to the next chapter, which discusses

the optimization of range aware localization in 2-D (circle representation) and

3-D (sphere representation).
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Chapter 5

The Optimization of Range

Derived Localization in 2D and

3D WSNs

5.1 Overview

One of the key factors involved in the accurate and power efficient localization

of nodes in low power networks such as wireless sensor networks (WSNs) is the

geometric placement of the anchor nodes. This chapter, investigates the problem

of optimal placement of anchor nodes to optimize the range derived localization.

The objective is to minimize the estimate of location uncertainty by exploiting the

geometric placement of the minimum number of anchor nodes required to perform

the localization in 2-dimensional (2-D) and 3-dimensional (3-D) scenarios. The

localization Cramér-Rao lower bound (CRLB) is derived for a 3-D case, which in

previous work has only been limited to a 2-D plane. Conventionally, deploying

a large number anchor nodes reduces localization inaccuracy; however this holds

true only if the anchors are sub-optimally placed. The optimal and worst anchor

positions are determined through extended simulation by comparing their mean

Cramér-Rao lower bounds (m-CRLBs). In many applications the subject node

can be situated anywhere within the localization field. Since the accuracy of

the localization depends on the geometry of the anchor nodes, it is preferred to

choose the anchor placement such that it would minimize the inaccuracy at all
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points within the localization field. Therefore, the m-CRLB is to be minimized.

Furthermore, the ramification of additive and multiplicative noise models on the

minimum m-CRLB is explored.

5.2 Introduction

As discussed in chapter 3, ranging accuracy is an important aspect to consider

because a localization system obtains position estimates using range estimates.

Inaccurate range estimation may lead to unacceptable localization errors. In ad-

dition to the ranging accuracy, the majority of the previous work suggests that

increasing the number of the anchor nodes yield an enhanced location estimation

(see [67, 117, 119–121]). Therefore, in the context of WSNs, it is desirable to

have many anchor nodes. On the other hand WSNs are energy limited, taking

measurements from many anchors and transmitting these measurements reduce

the life time of the network [121]. In [120], different localization techniques (i.e.

DV-Hop, DV-Distance, N-Hop and Terrain) were investigated and showed that by

varying the average connectivity and the number of anchor nodes with an addi-

tional anchor in the centre can help to decrease the estimated location error. The

authors did not consider the optimal placement of the anchor nodes (i.e. placed in

a circular sequence). In [117], the proposed localization algorithm is based on con-

nectivity information for relative position using sub-optimal trilateration, where

each sensor can perform as an anchor node. For better accuracy, distance and an-

gle parameters among anchors are considered to avoid poor geometry. However,

the authors did not consider the burden of computational complexity required for

trying out all possible combinations. In [67], the proposed localization is based

on relative position, where to avoid symmetry ambiguity, line segment and angle

information (additional computation) are used to form a robust quadrilateral as

the starting point and then trilateration is used if two quadrilaterals have three

nodes in common. Geometric dilution of precision (GDOP) has been shown to

avoid poor topographic layout by choosing the best selection of anchor/pseudo-

anchor nodes in a dense environment at the cost of very high computation from

O(1 × combination of anchors/pseudo-anchors) to O(combination of choosing 3

anchors/pseudo-anchors from N anchors/pseudo-anchors combinations) [119]. In
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[122], four, six and seven anchor nodes were placed and deployed in a 2-D square

to evaluate the performance of the localization. In addition to anchor node place-

ment, previous work has shown a great interest in subject node deployment due

to its impact on the quality of location accuracy. Considering the fact that de-

ployment of the subject nodes in WSNs may change over time (i.e. due to the

node mobility), and replacing subject nodes due to depleted batteries in remote

locations. Under these conditions, relocating a large number of the subject nodes

would be a complex and power consuming process. Various techniques have been

developed to solve the trilateration distance equations. These include the LS

methods [37], the weighted LS method [38] and the maximum likelihood (ML)

approach [39]. The performance of these algorithms is bounded by the CRLB

which is dependant on the geometry of the anchors and the target node. The

limit on performance calculated in [40] is based on the additive noise model while

a modified CRLB based on the multiplicative noise model is proposed in [41]. In

this chapter, optimal anchor placement in 2-D and 3-D is investigated for both

models.

A review of the two noise models is discussed in section 5.3. Section 5.4

presents the derivation of CRLB for localization in 2-D and 3-D. In section 5.6,

the optimal and worst anchor placements in 2-D and 3-D is determined through

extensive simulation for both noise models based on the m-CRLB. Section 5.7

provides the discussion, which is followed by the conclusion in section 5.8.

5.3 Signal Models

Consider a field of dimensions (length (l)× width (w)× height (h)) for a 3-D

and (l × w) for a 2D network, consisting of N anchor nodes whose locations

θi = [xi, yi, zi]
T for i = 1, . . . , N are known. This can be achieved by placing

these anchors at predefined spots or their position can be determined via GPS.

Considering the M number of unknown subject nodes whose true locations are

denoted as sj = [xj , yj, zj]
T for j = 1, . . . , M , where {.}T is the matrix transpose

operation. It is desired to determine the location of a target node sj. Two nodes,

node i and node j are considered as adjacent, if and only if the actual range dij

between them is less than the transmission range. In practice, dij between each
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anchor and subject node is corrupted by the various factors discussed in Chapter

2. Then the estimated distance between each anchor and the subject node can

be modelled either by an additive noise model or multiplicative noise model. The

additive noise model is a widely accepted signal model, however the multiplicative

noise model is suitable for multipath propagation channels. The additive noise

model is discussed in section 4.3 of chapter 4 and therefore not included in this

chapter. However, the Eq. (5.1) for additive noise model is given below:

d̂ij = dij + nij (5.1)

where dij is the actual distance between node i and j, nij ∼ N(0, σ2
ij) is

the additive white Gaussian noise with constant standard deviation σ, that is

independent of dij.

Fig. 5.1(a) and Fig. 5.1(b) show how the additive noise model affects the

estimated range at difference noise variances.
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Figure 5.1: Fig. 5.1(a). Effects of additive noise model on the estimated range
at noise variance of 2 and 4. Fig. 5.1(b). Effects of additive noise model on the
estimated range at noise variance of 6 and 8.
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5.3.1 Multiplicative Noise Model

In contrast to distance independent additive noise model (Eq. (5.1)), multiplica-

tive noise model is dependent on the distance between a subject and anchor node.

The noise variance increases together with the distance between a subject and

anchor node. For the multiplicative noise model, Eq. (5.1) can be given as:

cτ̂ij = cτij + cnij (5.2)

Then the CRLB on the variance of ToF estimation can be given by Eq. (5.3)

[92].

σ2(τ̂) ≥ 1

8π2SNRβ2
(5.3)

where SNR is the signal-to-noise-ratio and β is the effective bandwidth of the

signal. The received power at ith anchor is given as Eq. (5.4) [123]:

Pi = Pt
v

dηi
(5.4)

where v is the frequency related reference loss at 1m. It is also dependent on

antenna heights and other physical layer effects. Pt is the transmit power and η

is the path loss exponent, its value is generally taken between 2 and 6 depending

on the environment [123]. The SNR at ith anchor is hence given by Eq. (5.5):

SNR = Pi/Np (5.5)

where Np is the noise power. Putting the value of Pi from Eq. (5.4) in Eq.

(5.5) and then SNR back in Eq. (5.3), the standard deviation on the estimated

distance is given by:
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σ̂ij = κdηij (5.6)

where κ as given by Eq. (5.7) is constant.

κ = c

√

N

8π2β2Ptϑ
(5.7)

Following the multiplicative noise model, Eq. (5.1) can be given as:

d̂ij = dij + κd
η
2
ijǫ (5.8)

where ǫ is random variable with zero mean and unit variance. Eq. (5.8) shows

that the noise is modelled multiplicative due to the term d
η
2
ijǫ. Fig. 5.2 shows the

variation in the estimated range for the model in Eq. (5.8).

Fig. 5.2 shows the estimated range where each range is the mean of 100

ranging samples. Fig. 5.2(a) shows the estimated range when η is 2 and 2.4.

Looking at the error function in Eq. 5.8, it can be observed that when the η is

2, then the estimated error is equivalent to the dij × κ. The estimated ranging

error with respect to distance will increase according to the η and κ. As shown

in Fig. 5.2(d), the variation in the estimated range increases when κ is 0.8.

5.4 Lower Bounds On Localization Error

The CRLB sets a lower bound on the mean square error (MSE) variance of

unbiased estimates of an unknown estimated parameters [124]. It can be used as

a practical performance benchmark in order to evaluate the performance of any

unbiased estimator. Let s = [s1, s2, · · · , sM ]T be the unbiased, position vector

of subject nodes, whereas the estimated position vector can be given as ŝ =

[ŝ1, ŝ2, · · · , ŝM ]T . Then the CRLB inequality can be given by Eq. (5.9) [125]:
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Figure 5.2: Effects of Multiplicative noise model on the estimated range. Fig.
5.2(a). For κ=0.005, η=2 and 2.4. Fig. 5.2(b). For κ=0.005, η=2.8 and 3.2. Fig.
5.2(c). For κ=0.5, η=2 and 2.4. Fig. 5.2(d). For κ=0.8, η=2.8 and 3.2.

σ2(ŝ) ≥ [I(s)]−1
jj (5.9)

where σ2(ŝ) can be given as σ2(ŝ) = E
{

(ŝj − sj)(ŝj − sj)
T
}

, (I(s)−1)ij is the

lower bound on the variance of (ŝ) and I is the Fisher Information Matrix (FIM)

and is defined as [125]:

[I(s)]ij = −E
[

∂2 ln p(d̂; s)

∂θi∂θj

]

(5.10)
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5.5 Optimal Anchor Placement for Minimum CRLB

where E {.} refers to the expected value and is taken w.r.t p(d̂;s) and the

derivatives are taken at the true value of s.

5.5 Optimal Anchor Placement for Minimum

CRLB

5.5.1 Two-Dimensional (2-D Case)

Consider Fig. 5.3, where an anchor node Ai with coordinates (xi, yi) and a subject

node sj with (xj, yj) lie in a 2-D plane, then the following relations hold

Figure 5.3: Geometric relationship between two nodes in 2-D space.

cos (θij) =
xi − xj

√

(xi − xj)2 + (yi − yj)2
(5.11)

sin (θij) =
yi − yj

√

(xi − xj)2 + (yi − yj)2

if d =
[

d(i1 , ··· ,N )(j1 ,··· ,M )

]T
is the vector of the actual distance between the tar-

get node and the anchors, while d̂ =
[

d̂(i1 , ··· ,N )j(1 ,···M )

]T

defines the vector of the

observed (estimated) distances. Then the conditional PDF of d̂ is given as [40]:
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5.5 Optimal Anchor Placement for Minimum CRLB

p(d̂;d) =
N
∏

i=1

1
√

2πσ2
ij

exp

{

− 1

2σ2
i

(d̂ij − dij )
2

}

(5.12)

where dij =
√

(xi − xj )2 + (yi − yj )2 , i = 1, 2, ...,N and N is the total number

of anchor nodes and the log likelihood function of Eq. (5.12) is given as:

ln p(d̂;d) = −N

2
ln 2π − N

2
ln σ2

ij −
1

2σ2
ij

N
∑

i=1

(d̂ij − dij )
2 (5.13)

now Eq. (5.11) takes Eq. (5.14) form by taking derivatives with respect to

the actual value of xj and yj and then taking the expected values:

I(s) =













N
∑

i=1

(xj − xi)
2

σ2
ijd

2
ij

N
∑

i=1

(xj − xi)(yj − yi)

σ2
ijd

2
ij

N
∑

i=1

(xj − xi)(yj − yi)

σ2
ijd

2
ij

N
∑

i=1

(yj − yi)
2

σ2
ijd

2
ij













(5.14)

and using Eq. (5.11) we get (5.15) for 2D [40]:

I(s) =













N
∑

i=1

cos2(αij)

σ2
ij

N
∑

i=1

cos(αij) sin(αij)

σ2
ij

N
∑

i=1

cos(αij) sin(αij)

σ2
ij

N
∑

i=1

sin2(αij)

σ2
ij













(5.15)

The FIM in Eq. (5.14) and (5.15) is given for the additive noise model (Eq.

(5.1)), where αij being the angle of the jth subject node with ith anchor node.

Similarly, for multiplicative noise model (Eq. (5.8)), 2-D FIM takes the form as

[41]:
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I(s) =













N
∑

i=1

vij cos
2(αij)

σ̂2
ij

N
∑

i=1

vij cos(αij) sin(αij)

σ̂2
ij

N
∑

i=1

vij cos(αij) sin(αij)

σ̂2
ij

N
∑

i=1

vij sin
2(αij)

σ̂2
ij













(5.16)

where vij = 1 + η2κ
2
dη−2
ij , which is distance dependent.

5.5.2 Three-Dimensional (3-D Case)

Consider Fig. 5.4, where an anchor node Ai with coordinates (xi, yi, zi) and a

subject node sj with (xj, yj , zj) lie in a 3-D space. Similar to 2-D space, FIM for

additive and multiplicative noise models in 3-D space can be given as below.

Figure 5.4: Geometric relationship between two nodes in 3-D space.

Let an anchor node with coordinates (xi, yi, zi) and a target node at (xj, yj , zj)

lie in a three-dimensional plane (as shown in Fig. 5.4), then the following relations

hold:

cos (θij) sin (φij) =
xi − xj

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
(5.17)
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sin (θij) sin (φij) =
yi − yj

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

cos (φij) =
zi − zj

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

where 0 ≤ θij < 2π is the azimuthal angle in the xy plane and 0 ≤ φij ≤ π is

the elevation angle from the positive z−axis.
Let dij = [dij , dij, ...dN ]

T be the vector of actual distances, where i = 1, · · · , N ,and

j 6= i, while d̂ij =
[

d̂ij , ˆdij, ...d̂N

]T

defines the vector of the observed (estimated)

distances. Then the conditional pdf of d̂ij is given as [40]:

p(d̂ij;dij) =
N
∏

i=1

1
√

2πσ2
ij

exp

{

− 1

2σ2
ij

(d̂ij − dij )
2

}

(5.18)

where dij =
√

(xi − xj )2 + (yi − yj )2 + (zi − zj )2 , i = 1, 2, ...,N and N is the

total number of anchor nodes and the log likelihood function of Eq. (5.18) is

given as:

ln p(d̂ij;dij) = −
N

2
ln 2π − N

2
ln σ2

ij −
1

2σ2
ij

N
∑

i=1

(d̂ij − dij )
2 (5.19)

finally taking derivatives with respect to the actual value of x and y and then

taking the expected values yields

−E
[

∂2 ln p(d̂ij;dij)

∂x2

]

=
N
∑

i=1

1

σ2
ij

(

xi − xj
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

)2

(5.20)

and

− E

[

∂2 ln p(d̂;d)

∂y2

]

=
N
∑

i=1

1

σ2
ij

(

yi − yj
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

)2

(5.21)
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−E
[

∂2 ln p(d̂;d)

∂z2

]

=
N
∑

i=1

1

σ2
ij

(

zi − zj
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

)2

also

− E

[

∂2 ln p(d̂;d)

∂x∂y

]

=
N
∑

i=1

1

σ2
ij

(yi − yj)(xi − xj)

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
(5.22)

−E
[

∂2 ln p(d̂;d)

∂x∂z

]

=
N
∑

i=1

1

σ2
ij

(xi − xj)(zi − zj)

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

−E
[

∂2 ln p(d̂;d)

∂y∂z

]

=
N
∑

i=1

1

σ2
ij

(yi − yj)(zi − zj)

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

then the FIM in Eq. (5.23) takes the form as Eq. (5.24)

[I(s)]ij = −E
[

∂2 ln p(d̂;θ)

∂θi∂θj

]

(5.23)

I(s) =
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ijd

2
ij

N
∑

i=1

(zi − zj)
2
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ijd

2
ij























(5.24)
using Eq. (5.17), we get:

I(s) =















cos2(θij) sin2(φij)
σ2

ij

cos(θij) sin2(φij) sin(θij)
σ2

ij

cos(θij) sin(φij) cos(φij)
σ2

ij

cos(θij) sin2(φij) sin(θij)
σ2

ij

sin2(θij) sin2(φij)
σ2

ij

sin(θij) sin(φij) cos(φij)
σ2

ij

cos(θij) sin(φij) cos(φij)
σ2

ij

sin(θij) sin(φij) cos(φij)
σ2

ij

cos2(φij)
σ2

ij















(5.25)

Now the CRLB for the x, y and z coordinates of the target node can be
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estimated by an unbiased estimator from the FIM

E((x̂− x)2) ≥ [I(s)]−1
11

E((ŷ − y)2) ≥ [I(s)]−1
22 (5.26)

E((ẑ − z)2) ≥ [I(s)]−1
33

and CRLB for the localization of the target node can be estimated by an

unbiased estimator from the FIM

σ2(ŝ) = E {(x̂j − xj)(ŷj − yj)(ẑj − zj)}T ≥ Tr([I(s)]−1) (5.27)

Similar to Eq. (5.25), FIM for multiplicative noise model in 3-D space can be

given by Eq. (5.28):

I(s) =
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(5.28)

Since the lower bounds in both noise models are functions of the geometry

of the anchors and the target node, it is clear that certain anchor locations offer

better accuracy than others. In the next section, we analyse the optimal anchor

placement for both additive and multiplicative noise models and the impact on

the m-CRLB in 2-D and 3-D space.

5.6 Optimal Anchor Placements

The estimation of different subject node positions are subject to different accu-

racies. The objective is to find anchor locations that would provide an overall

best accuracy for all target positions. Thus the anchors that offer the minimum
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of the mean CRB are selected. In the following subsection, the optimal and

worst anchor placement are discussed based on the m-CRLB for both additive

and multiplicative error models as explained above in section 5.3.

5.6.1 Two-Dimensional (2-D) Case

Trilateration in a 2-D case requires a minimum of three anchor nodes. Individual

distances between each anchor and the subject node is represented by a circle

or line of position (LoP). The point of intersection of these circles is the subject

node location. In order to get an insight on how the lower bound is affected by

the relative angle of between the subject and the anchor node, the CRLB for

every point in a 2-D plane is calculated for fixed anchor position. Furthermore,

in order to observe the optimal anchor placement that gives the minimum m-

CRLB and optimizes the range derived localization, a detailed and extensive set

of simulations is executed, where all the combinations of anchors are taken.

Consider a field of 11×11, where a single anchor node can have 121 possible

placements, and so a set of 3 anchors can have 287, 980 different possible anchor

placements in 2-D using Eq. (5.29):

AP =
MPL !

AN ! (MPL − AN) !
(5.29)

where AN is the number of anchors used and MPL is maximum possible lo-

cations equivalent to the product of the field dimensions. Fig. 5.5 shows the

relationship between possible combinations for anchors placement and field di-

mensions. It can be observed from Fig. 5.5(a) and Fig. 5.5(b) that as the number

of anchors increase the possible anchor placements also increases. However, as

the number of anchors cross half of the field dimension or maximum possible

locations (i.e. 4.5 for 3m×3m and 8 for 4m×4m), the possible anchor placements

start decreasing.

It is well known that when all anchors are placed along the same axis (i.e.

when all anchors lie on the same line) then the variance of the CRLB rises to

infinity and in such cases positioning algorithms such as the LS fail to estimate
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Figure 5.5: Fig. 5.5(a) Relationship between possible combinations of anchor
placements and 3×3 field dimensions. Fig. 5.5(b). Relationship between possible
combinations of anchor placements and 4× 4 field dimensions.

the subject node coordinates. Thus in order to avoid this problem and to reduce

the computational cost, all the collinear anchor placements are considered invalid

in our simulations. The number of invalid collinear anchor placements (CAP)

depends on the field dimensions and the number of anchor nodes used and can be

calculated using generalized relation as given by Eq. (5.30). For a 11×11 square

field, 3, 630 collinear anchor placements are avoided.

CAP = l
l !

AN (l− AN) !
+ w

w !

AN (w − AN) !
+ h

h !

AN (h− AN) !
(5.30)

where l, w and h are the field dimensions.

All 287, 980 placements for 3 anchors in 2-D will have a different impact on

the location estimates. In order to optimize the location estimates, it is required

to select the best combination for anchors placement. To select the optimal place-

ment for 3 to 8 anchor nodes, the m-CRLB is calculated for each combination.

The best optimal placement for each anchor node combination (i.e. from 3 to

8 anchors) is selected on the basis of minimum m-CRLB, whereas worst anchor

placement is selected on the maximum m-CRLB. Fig. 5.6 illustrates the m-CRLB

process flowchart, whereas Fig. 5.7 shows the CRLB value for each set of anchor
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5.6 Optimal Anchor Placements

placement and the mean CRLB for all anchor placements for a single node s.

In a similar fashion, each subject location corresponds a mean CRLB. Once all

the subject locations are covered with mean CRLB, N optimal and worst anchor

placements are determined by selecting the N minimum mean and maximum

mean CRLB respectively. The spikes in the Fig 5.7 indicate the poor anchor

placement (i.e. anchors are very close to each other).

(a)

Figure 5.6: m-CRLB Flow Chart.

The average time to determine the optimal anchor placement for 8 anchors in

a 5×5 2-D plane is ∼ 7 days. This processing time is observed on three different

brands (i.e. Dell, Sony and Toshiba laptops) with 2.4GHz processor and 1GB
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(a)

Figure 5.7: CRLB of all possible anchor combinations (placements) for a single
subject location.

random access memory (RAM). As the dimension of the 2-D plane increases,

the possible locations (grid points) also increase. It results in huge number of

combination for anchors placement. Furthermore, it is observed that, due to the

lack of high performance computing systems, MATLAB even failed to generate

the possible combinations for 6 anchors in 10×10 2-D plane. This computational

burden is increased more, when 2-D plane is extended to 3-D space.

5.6.1.1 Optimal Anchor Placement for Additive Noise Model

Fig. 5.8(a) - Fig. 5.8(f) shows the best placement for 3 to 8 anchors in 2-D space

for additive noise model, whereas Fig. 5.9 shows the contour plots for the optimal

anchors placement as shown in Fig. 5.8.

Fig. 5.9(b)-Fig. 5.9(g) obtained for a constant σ2 for all cases (i.e. σ2
ij =

σ2 = 2). It is observed that when only 3 anchors are placed in a square area,

the highest accuracy in the estimated location is achieved when the trio is placed

at the corners of an equilateral triangle. This triangle is of maximum size as 2

anchors are placed at the corners of one side of the square area while the 3rd

anchor is placed at the centre of the opposite side. It is also noted that the

bound increases as the subject node goes near any of the anchor nodes. The best

location for 4 anchors is at the corners of the square area while the best location
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Figure 5.8: Optimal anchor placement for additive noise model in a 11×11 2-D
plane for 3 to 8 anchors.

for an additional 5th anchor is the centre of the area. Similarly such symmetrical

anchor locations are exhibited in Fig. 5.9 (Fig. 5.9(e)-Fig.5.9(g)), where 6, 7 and

8 anchors are used. The white points in the figures show the anchor locations

and subject node placement is not considered valid. It should be noted that these

configurations are independent of rotation i.e. same results are obtained if the

entire set of anchors are simultaneously rotated clockwise or counter-clock wise

by 90◦ or 180◦. Fig. 5.9(a) displays the m-CRLB as a function of variance and

number of anchor nodes. It is noted that as the number of anchors increases the

effect of noise on the m-CRLB becomes smaller.

Furthermore, it is observed that, optimal anchor placement for additive noise

model for any scale remains the same. To illustrate this, simulations are executed

for 8 anchor nodes where different field dimensions are considered for a constant

σ2. Fig. 5.10(a), Fig. 5.10(b) and Fig. 5.10(c) show the contours plot for

8 anchor nodes for 20×20, 30×30, and 40×40 at σ2 = 2 respectively. It can
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Figure 5.9: Optimal anchor placement and corresponding m-CRLB for additive
noise model using 3 to 8 anchor nodes as shown in Fig. 5.8(a) - Fig. 5.8(f) for
deployed subject nodes on a 11×11 2-D plane. Fig. 5.9(a). Impact of anchor
nodes on m-CRLB. Fig. 5.9(b) - Fig. 5.9(g). contour plots for 3 to 8 anchors in
2-D for σ2 = 2.
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5.6 Optimal Anchor Placements

be observed that m-CRLB (1.02m2) remains the same for each scale. This is

because the σ2 is constant for each distance. Unlike multiplicative noise model,

m-CRLB in additive noise model does not vary with distance and therefore Fig.

5.10 shows constant m-CRLB for 8 anchors at each scale. As explored that these

optimal anchor placements are same at any σ2 value, however, the m-CRLB value

increases with the increase of σ2.
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Figure 5.10: Optimal anchor placement for 8 anchor nodes for three different
scales. Fig. 5.10(a). For 21×21. Fig. 5.10(b). For 31×31. Fig. 5.10(c). For
41×41.

Fig. 5.11(a) - Fig. 5.11(f) shows the worst placement for 3 to 8 anchors in

2-D space for additive noise model. Fig. 5.12 illustrates the anchor locations

which exhibit the worst localization accuracy and give the maximum m-CRLB

for the additive noise model using 3 - 8 anchors. It is observed that the variance

of the estimator is the highest if all the anchors are placed at the corner of a

square area. It is also seen in Fig. 5.12(a) that the improvement in performance

is negligible if the number of anchors is increased from 5 - 8 for a poor network

geometry. Furthermore, it is evident from both Fig. 5.9 and Fig. 5.12 that even

if the minimum 3 anchors are placed optimally (m-CRLB = 1.50 and 9.03 for σ2

= 1 and 6 respectively), it outperforms a poor deployment of 8 anchors (m-CRLB

= 13.5 and 81.7 for σ2 = 1 and 6 respectively).
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Figure 5.11: Worst anchor placement for additive noise model in a 11 × 11 2-D
plane for 3 to 8 anchors.
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Figure 5.12: Contour plot of worst anchor placement and corresponding m-CRLB
for additive noise model for 3 to 8 anchor nodes.
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5.6 Optimal Anchor Placements

5.6.1.2 Optimal Anchor Placement for Multiplicative Noise Model

Fig. 5.13 illustrates the m-CRLB contour plots for multiplicative noise model as

a function of the number of anchor nodes placed at the optimal positions for the

additive noise model. The contour plots given in Fig. 5.13(a)-Fig. 5.13(f) are

for κ = 0.001 and η = 2. When compared Fig. 5.13 with Fig. 5.9(b)-Fig. 5.9(g)

(additive noise model), it is observed that the m-CRLB for the multiplicative noise

model is lower than the additive noise model for anchors 3 and more. However

this is not true for all values of κ and η. It is further demonstrated in Fig. 5.14(a)-

Fig. 5.14(c) for different values of η (2.0 and 2.8) and κ (0.002, 0.004, . . . 0.01

and 0.2, 0.4, . . . 1) respectively.
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Figure 5.13: Arbitrary anchor placement and corresponding minimum m-CRLB
for multiplicative noise model using 3 - 8 Anchor nodes as shown in Fig. 5.8(a)
- Fig. 5.8(f) (optimal for additive noise model) for deployed subject nodes on a
11×11 2-D space for η = 2 and κ = 0.001.
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5.6 Optimal Anchor Placements

Fig. 5.14(a) shows that m-CRLB for multiplicative noise model is lower than

the additive noise model (σ2 = 2) for all values of κ when η = 2. Furthermore,

m-CRLB for multiplicative is observed lower even for η = 2.8 and κ below 0.006.

It proves that the m-CRLB for multiplicative noise model depends on the η and

κ in addition to the distance. The m-CRLB becomes higher as values of η and

κ are increased. However, it is observed from Fig. 5.14(a)-Fig. 5.14(c) that as κ

increases for any value of η, the impact of κ on m-CRLB decreases. Fig. 5.14(d)

shows such impact more clearly, where increasing κ shows a very small impact,

hence closer values of m-CRLB at each value of κ.
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Figure 5.14: m-CRLB for multiplicative noise model as a function of the number
of anchor nodes placed at the optimal positions for additive noise model.

The dependency of η and κ on multiplicative noise model distinguishes it

from the additive noise model, therefore this the motivation to determine the
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5.6 Optimal Anchor Placements

optimal anchor placement for multiplicative noise model. To determine the opti-

mal anchors placement for multiplicative noise model, extensive simulations are

executed in the previously described 2-D setup. However, due to the limited high

computing resources and for general comparison between optimal anchor place-

ments for additive and multiplicative noise models, a smaller scale is considered

initially.
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Figure 5.15: Optimal anchor placement for multiplicative noise model in a 4×4
2-D plane for 3 to 8 anchors, where κ = 0.001 and η = 4.

Fig. 5.15(a) - Fig. 5.15(f) shows the best placement for 3 to 8 anchors in

a 4×4 2-D plane for multiplicative noise model. Since the optimality of anchor

placement for additive noise model is independent of scale and therefore Fig.

5.15 (4×4) is compared with the Fig. 5.8 (11×11). Comparison of both Fig. 5.15

and Fig. 5.8 illustrates that the optimal anchor placements for multiplicative are

different from those for additive. Multiplicative noise model suggests that the

m-CRLB of the anchor placement will be minimum, when few of the anchors are

placed in the centre of the field (i.e. Fig. 5.15(a), Fig. 5.15(e), Fig. 5.15(f))
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5.6 Optimal Anchor Placements

because measurement on average will be subject to less noise. It is in conflict

with additive noise model, which suggest the boundary line of the field as optimal

placement for anchors (i.e. when the trio is placed at the corners of an equilateral

triangle, or 4 anchors are at the corners of the square area). Like optimal place-

ment in additive, these placements are independent of rotation i.e. same results

are obtained if the entire set of anchors are simultaneously rotated clockwise or

counter-clock wise by 90◦ or 180◦.

Impact of κ and η on Optimal Anchors Placement

It is assumed that the optimal anchor placement in multiplicative noise model will

vary with respect to the parameters like κ, η and the field dimension. Therefore,

to analyse and to verify the impact of these parameters, firstly, κ and η are

considered by deploying the same 4×4 2-D plane but with different κ and η. Fig.

5.16 shows the optimal anchor placement for multiplicative noise model in a 4×4
2-D plane for 3 to 8 anchors, where κ = 0.005 and η = 2. When Fig. 5.16 is

compared with Fig. 5.15, it is noticed that optimal anchor placement in a 4×4
2-D plane for 3 to 8 anchors at different κ and η is same for 4 and more anchors.

However, the only difference is observed for the 3 anchor’s optimal placement.

Impact of Scale (Field Dimension) on Optimal Anchors Placement

The analysis is further extended by increasing the scale from 4×4 2-D plane to

5×5 2-D plane. Fig. 5.6.1.2 shows the optimal anchor placement in a 5×5 2-D

plane for 3 to 5 anchors, where κ = 0.001 and η = 4. It is noticeable that, optimal

anchor placement is slightly different as the scale is changed from 4×4 (Fig. 5.15)

to 5×5 (Fig. 5.6.1.2). However, this difference is only due to the even and odd

dimensions. Further comparisons can be carried out between Fig. 5.17(a) - Fig.

5.17(c) for 5×5 2-D plane and Fig. 5.17(d) - Fig. 5.17(f) for 6×6 2-D plane,

where anchors configuration is observed to be same, when avoiding the even and

odd scaling factor. In the case of even scaling factor, field will be divided in to

l/2, l/2− 1 grid points, where l is the length of the field, which slightly deviate

the angle for optimal placement.
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Figure 5.16: Optimal anchor placement for multiplicative noise model in a 4×4
2-D plane for 3 to 8 anchors, where κ = 0.005 and η = 2.

Fig. 5.18 shows the contour plot 11×11 2-D plane for optimal anchor place-

ment and corresponding minimum m-CRLB at κ = 0.001 and η = 4. The white

points in the contour plot represent the anchor placement, which is very similar

to the Fig.5.17(a) - Fig. 5.17(c). When comparing with the optimal placement

for additive noise model, it is noticed that when only 3 anchors are placed in a

square area, the highest accuracy in the estimated location is achieved when the

trio is placed at the centre of the square area. This square is of maximum size

as 2 anchors are placed at the centres of one side of the square area while the 3rd

anchor is placed a little below of the centre of the square. It is also noted that

the bound increases as the subject node goes near any of the anchor nodes. The

best location for 4 anchors is at the centre of each side of the square area while

the best location for an additional 5th anchor is also the centre of the area.

Furthermore, to observe the impact of scale on m-CRLB, 11 × 11 optimal

placement is considered and compared with the 21× 11, 31× 31, and 41× 11 as
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Figure 5.17: Fig. 5.17(a)-Fig. 5.17(c). Optimal anchor placement for multiplica-
tive noise model in a 5×5 2-D plane for 3 to 6 anchors, where κ = 0.001 and
η = 4. Fig. 5.17(d)-Fig. 5.17(f). Optimal anchor placement for multiplicative
noise model in a 6×6 2-D plane for 3 to 6 anchors, where κ = 0.001 and η = 2.

x (m)

y 
(m

)

3 Anchors, m−CRLB = 1.16m2

 

 

0 2 4 6 8 10
0

2

4

6

8

10

1 2 3 4

(a)

x (m)

y 
(m

)

4 Anchors, m−CRLB = 0.7m2

 

 

0 2 4 6 8 10
0

2

4

6

8

10

0.4 0.6 0.8 1 1.2 1.4 1.6

(b)

x (m)

y 
(m

)

5 Anchors, m−CRLB = 0.39m2

 

 

0 2 4 6 8 10
0

2

4

6

8

10

0.2 0.4 0.6 0.8 1

(c)

Figure 5.18: Optimal anchor placement and corresponding minimum m-CRLB
at κ = 0.001 and η = 4 for multiplicative noise model using 3-5 anchor nodes for
deployed subject nodes on 11×11 2-D plane.
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shown in Fig. 5.19 respectively. It can be observed that m-CRLB in Fig. 5.19

at each scale is different. This is because the σ̂2 is not constant for each scale.

It increases as the distance between the nodes increases (i.e. field dimension). It

is therefore, unlike additive noise mode, m-CRLB for multiplicative depends on

the scale. It is observable that that an increase in scale increases the m-CRLB

however, the optimal anchor placement remains the same for each scale as shown

above.
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Figure 5.19: Optimal anchor placement and corresponding minimum m-CRLB
at κ = 0.001 and η = 4 for multiplicative noise model using 5 anchor nodes for
deployed subject nodes on 21×21, 31×31 and 41×41 2-D space.

Fig. 5.20(a) - Fig. 5.20(f) show the worst placement for 3 to 8 anchors

in 2-D space for multiplicative noise model. The worst anchor placement for

multiplicative noise model is very similar to the additive noise mode, where all

the anchor are placed at one side of the square.

5.6.1.3 CRLB Analysis of Anchor Node Constraints in 2-D

As discussed in chapter 4, In 2-D trilateration, no unique solution exists under

the following two conditions.

1. If all the anchor nodes involved in trilateration are collinear.

2. If two of the anchor nodes involved to perform trilateration are co-incident.
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Figure 5.20: Worst anchor placement for multiplicative noise model in a 4×4 2-D
plane for 3 to 8 anchors, where κ = 0.001 and η = 4.

Fig. 5.21(a) shows the CRLB for 3 anchors placed on a straight line as [0, 0],

[5, 0], and [10, 0], whereas subject are place on each point of the 10 × 10 grid in

2-D. There is no CRLB observed on a line where the 3 anchors were placed in a

straight line (as shown by bottom row on x-axis in Fig. 5.21(a). As the subject

node moves away from the anchors straight line (i.e. closer to the centre of the

field), a lower value of CRLB is observed, which gradually increases on the other

side of the centre. Fig. 5.21(b) shows the CRLB for 3 anchors placed as [0, 0],

[0, 0], and [10, 10], where two anchors are co-incident. The white diagonal in Fig.

5.21(b) shows the CRLB which reaches to infinity. In this case, LS algorithm

does not bear enough information to decide on which side of the line determined

by the anchors the final position lies, so it outputs results in ambiguity on both

side.
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Figure 5.21: Fig. 5.21(a). CRLB for 3 anchor nodes in 2-D, when anchor nodes
are in a straight line (σ2 = 2 for all anchors). Fig. 5.21(b). CRLB for 3 anchor
nodes in 2-D, when two of the anchor nodes are co-incident (σ2 = 2 for all
anchors).
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5.6 Optimal Anchor Placements

5.6.2 Three-Dimensional (3-D) Case

To determine the optimal anchor placement in 3-D, the 2-D simulation setup

is extended into the 3-D. It is observed from 2-D results that, optimal anchor

placement for additive noise model is independent of field dimensions (i.e. same

optimal anchor placement is obtained at all scales). Based on this observation,

optimal anchor placement for 4-8 anchors in 3-D is obtained in a small scale of

3×3×3 and extended to 11×11×11 scale.

5.6.2.1 Optimal Anchor Placement for Additive Noise Model
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Figure 5.22: Optimal anchor placement for additive noise model in 3×3×3 3-D
space for 4 to 6 anchors.

Fig. 5.22 shows optimal anchor placement for additive noise model in 3×3×3
3-D space for 4 to 6 anchors, which is further extended to 11×11×11 as shown

in Fig. 5.23 for 4 to 8 anchors. The contour plots Fig. 5.24(a)-Fig. 5.24(e) are

obtained for a constant σ2 for all cases (i.e. σ2
i = σ2 = 2). It is observed that

when only 4 anchors are placed in a square area, the highest accuracy in the

estimated location is achieved when the 4 anchors are placed at the corner of the

square with diagonals on the same axis. The best location for 8 anchors is at

each corners of the square area as shown in Fig. 5.24(e). Fig. 5.24(f) displays

the m-CRLB as a function of the number of anchor nodes. As expected, as the

number of anchors increases the variance effect on the m-CRLB becomes smaller

and the bound increases as the target node goes near any of the anchor nodes.
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Figure 5.23: Optimal anchor placement for additive noise model in 11×11×11
3-D space for 4 to 8 anchors.
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Figure 5.24: Optimal anchor placement and corresponding minimum m-CRLB
for additive noise model for 4 to 8 Anchor nodes as shown in Fig. 5.23(a) - Fig.
5.23(e) for deployed subject nodes in 11×11×11 3-D space for σ2 = 2.
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5.6 Optimal Anchor Placements

Similar to 2-D case, optimal anchor placement in 3-D is also independent of

the scale. It can be observed from Fig. 5.25, which shows contour plot for 8

anchors in 5×5×5 and 12×12×12. The m-CRLB for both scales is found to be

the same as for 10×10×10 scale in Fig. 5.24(e).
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Figure 5.25: Optimal anchor placement for 8 anchor nodes in 3-D for two different
scales. Fig. 5.25(a) for 5× 5× 5 scale. Fig. 5.25(b) for 12× 12× 12 scale.
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5.6 Optimal Anchor Placements

5.6.2.2 Optimal Anchor Placement for Multiplicative Noise Model

Fig. 5.26(a)-Fig. 5.26(e) illustrate the multiplicative noise model contour plots

κ = 0.001 and η = 4 using the number of anchor nodes placed at the optimal

positions for the additive noise model as shown in Fig. 5.23. Similar to 2-D,

when comparing the Fig. 5.26 and Fig. 5.24, a higher m-CRLB is observed for

the multiplicative noise model than additive noise model for all 4 to 8 anchors.

However, as explained above, this is not true for all values of κ and η. Similar

to 2-D, it suggests that, the optimal anchor placement for multiplicative noise

model is to be achieved in a similar fashion for 3-D as well.

Fig. 5.27 shows the optimal anchor placement for multiplicative noise model.

Fig. 5.27(a) - Fig. 5.27(c) show the case 1, where κ = 0.005 and η = 2, whereas

Fig. 5.27(a) - Fig. 5.27(c) show the case 2, where κ = 0.001 and η = 4. It

can be observed from the Fig. 5.27(f) that optimal anchor placement is in the

centre of the field to minimize the distance to all possible points. Since the noise in

multiplicative noise model increases with the distance, It is therefore important to

consider the optimal anchor placement in order to minimize the distance between

anchor and subject nodes, hence noise. Based on the determined optimal anchor

placements, it is observed that case 1 for 4 and 5 anchors is similar to additive

noise model. Comparison of both results at small scale suggests that, optimal

anchor placement for multiplicative model in 3-D depends on the value of κ and

η. It can be observed from Fig. 5.27(a) and Fig. 5.27(d) for 4 anchors, which

exhibit the different optimal placement due to the change in η from 2 to 4 and

κ from 0.001 to 0.005. The analysis to optimal anchor placement in 3-D for

multiplicative model is limited to the small scale at this stage, due to the limited

high computing resources. It is further discussed in section 5.7.
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Figure 5.26: Suboptimal anchor placement and corresponding minimum m-CRLB
for multiplicative noise model using 4 - 8 Anchor nodes as shown in Fig. 5.23(a) -
Fig. 5.23(e) for deployed subject nodes on a 11× 11× 11 3-D space for κ = 0.001
and η = 4.
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Figure 5.27: Optimal anchor placement for multiplicative noise model in 3×3×3
3-D space for 4 to 6 anchors. Fig. 5.27(a) - Fig5.27(c). For κ = 0.005 and η = 2.
Fig. 5.27(d) - Fig5.27(f). For κ = 0.001 and η = 4.
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5.6 Optimal Anchor Placements

5.6.2.3 CRLB Analysis of Anchor Node Constraints in 3D

In 3-D, no unique solution exists If all the anchor nodes involved in trilateration

are placed on a single plane. Fig. 5.28 shows the CRLB for 4 anchors placed

on a single plane as [0, 0, 0], [10, 0, 0], [10, 10, 0] and [0, 10, 0] in 3D. There is

no CRLB observed at the bottom of field (spotted by white rows and column),

where the anchors are placed as a single plane. The 2-D and 3-D mathematical

consequence of anchor nodes constraints, which lead to no solution, is that the

matrix expression will be singular.

(a)

Figure 5.28: CRLB for 4 anchor nodes in 3-D, where anchor nodes are placed on
a single plane.

162

Chapter5/Chapter5Figs/EPS/CH_6_3D_Opt_Add/NO_CRLB_2.eps


5.7 Discussion

5.7 Discussion

In this chapter, optimal anchors placement is determined and analysed by exploit-

ing the additive and multiplicative noise models for both 2-D and 3-D case. In

the light of extensive simulation analysis the following are the main observations.

• Optimal anchor placement for both additive and multiplicative noise models

is different.

• Optimal anchor placement for additive noise model is independent of field

dimensions (scale) and depends only on the relative angle between subject

and anchor node.

• m-CRLB of additive noise model for N number of anchor nodes would be

constant regardless of changing the field dimension.

• Similar to additive noise model, optimal anchor placement for multiplicative

noise model is also independent of field dimension.

• Unlike additive noise model, m-CRLB of multiplicative noise model for

N number of anchors will increase with the increase of field dimension.

In addition to that, increasing the value parameters (κ and η) will also

increase the m-CRLB. However, optimal anchor placement will be the same.

However, the only difference in optimal placement can be observed due to

the even or odd dimensions (i.e. optimal placement for even dimension can

be slightly different from odd dimensions due to the centre point.)

Furthermore, looking at the contour plots, it is observed that:

• There is no CRLB (i.e. a singular matrix), when the [xi, yi] = [xj, yj ], as

shown by white points in contour plots.

• A lower value of CRLB is observed, when a subject nodes moves away from

a single anchor node toward the centre of the 3 anchor nodes.

• An increase in CRLB is observed, when a subject node moves outside of

the anchor nodes surrounding.
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5.7 Discussion

• A higher value of CRLB is observed when anchor nodes are placed very

close to each other as shown by worst anchor placement.

In addition to that it is observed that the computational complexity increases

with the increase of field dimensions, where each grid point is analysed in a se-

quence so that none of the point misses out, which may turn into the optimal

placement. As the number of combinations increases, MATALB generates the

’Out of Memory’ errors, which suggests that system has in fact run out of heap

space to hold all of the variables. Hence, there is no unallocated virtual address

space on system for MATLAB to use, and therefore no new variables can be

created. Apart from this, memory fragmentation is also a cause of ’Out of Mem-

ory’ errors. It suggest that, there can be free memory available, but there is no

contiguous piece of memory that is large enough to hold the specified variables.

When virtual memory is used and freed during normal operation of MATLAB,

memory becomes fragmented. This means that the amount of total free memory

is greater than or equal to the amount of contiguous free memory. Since a matrix

in MATLAB must be stored in a contiguous block of virtual memory, the largest

matrix that can be created at a particular point in time is limited by the amount

of contiguous free virtual address space. However to avoid the memory prob-

lem, an effort is made to divide the simulation code into sub-blocks and for each

sub-block code, a separate desktop/laptop machine is used, where fragmentation

(i.e. clearing unwanted variables, writing existing variables off to disk, and then

reloading) is performed before and during each simulation run.

An extension of 3-D from 2-D increased the complexity, where z-axis is taken

into the account. In a scale like 5×5×5, an anchor node can be placed on 125 dif-

ference placements. Hence for 4 anchors in 3-D, a total combination of 969,137,5

anchor placements. In order to calculate the m-CRLB, each subject location (125

in total) individually calculates the CRLB at each anchor placement (969,137,5).

It means that in total 125× 969, 137, 5 = 1.2114× 109 calculations to determine

the m-CRLB. The computational complexity of this simulation requires the high

computing resources. Regardless of the computational complexity and limited

high computing resource, this chapter presents the optimal anchor placement for
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5.8 Conclusion

3 to 8 anchors for both additive and multiplicative noise models in 2-D and as

well as 3-D.

5.8 Conclusion

Range aware localization in WSNs has been intensively studied in recent years

by assuming: 1) the arbitrary anchor placements; 2) the use n number of an-

chor nodes to enhance the localization accuracy; 3) the use of same arbitrary

anchor placement regardless of the signal model (i.e. additive and multiplica-

tive); 4) computationally expensive refinement process to extract a set of optimal

anchors (i.e. GDOP based or exploiting angular information between nodes); 5)

solutions limited to 2-D plane. Unfortunately, in resource constraint WSNs these

assumptions are not truly applicable. This chapter presents the optimized anchor

placements based on the minimum CRLB. The CRLB for the accuracy on local-

ization in a 3-D environment is derived as a function of the elevation and azimuth

angle. The optimality in the anchor placement for both noise models has been

achieved by choosing the combination of anchors with the minimum m-CRLB in

both 2-D and 3-D environments. The purpose of the determining the optimal

anchor placement is to maximize the localization performance by reducing the

uncertainty in localization error due to arbitrary anchor placements, which is

demonstrated in chapter 4 through geometric dilution of precision (GDOP).

To evaluate the effectiveness, it is required to compare the localization per-

formance at determined optimal placement with arbitrary anchor placement in

both 2-D and 3-D environments. The motivation to address performance analy-

sis at optimized anchor placements leads to the next chapter (chapter 6), which

presents the localization at optimal and arbitrary anchor placements and their

comparison with m-CRLB using least squares (LS) and approximate maximum

likelihood (AML) methods.
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Chapter 6

Localization Performance at

Optimized Anchor Placement

6.1 Introduction

This chapter presents the performance analysis of optimized anchor placement

(as determined and discussed in chapter 5). To analyse localization performance

for optimized anchor placement in 2-D and 3-D, a simulation tool is developed

with LS and AML method for position estimation in MATLAB. The LS method

is explained in chapter 4, whereas AML is discussed in chapter 2 and therefore

not included in this chapter. Based on simulation results, It is confirmed that the

optimal anchor placement of the minimum number of anchors outperforms the

degraded deployment of many nodes. Fig. 6.1(a) shows the screen shot of the 2-D

system, whereas 3-D system is illustrated in Fig. 6.1(b). In both cases, subject

nodes are placed at each grid point (i.e. for 11 × 11 field, a total of 121 subject

nodes are placed, where subject nodes with same anchor positions are avoided).

The simulation tool calculates the distance between anchor and subject nodes

based on the additive and multiplicative noise model as discussed in chapter 5.

It is assumed that network is connected and the optimally placed anchor nodes

are aware of their location.

As a performance metric, MSE as given by MSE = Tr(E
{

(ŝ− s)(ŝ− s)T
}

is considered. The MSE for all target locations is computed and its mean is

compared with the m-CRLB. Table 6.1 lists the network simulation parameters
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Figure 6.1: Fig. 6.1(a). Simulation setup in 2-D plane. Fig. 6.1(b). Simulation
setup in 3-D space.

whereas Fig. 6.2, Fig. 6.3 and Fig. 6.4 shows the arbitrary anchor placement

1, 2 and 3 respectively whose performance is compared with the optimal anchor

placement for additive and multiplicative noise models as shown in chapter 4.

Parameters 2-D Case 3-D Case
Area(m) 11 × 11, 5 × 5 11 × 11 × 11
Subject Nodes 121, 25 1331
Anchor Nodes 3, 4, 5, 6, 7, 8 4, 5, 6, 7, 8
σ2 (m2) 1, 3, and 5 1, 3, and 5
η 2.0, 2.4, 2.8, 3.2, and 3.6 2.0, 2.4, 2.8, 3.2, and 3.6
κ 0.001, 0.002, 0.003, and 0.004 0.001, 0.002, 0.003, and 0.004
Iterations 300 200
Iterations for AML 5 5

Table 6.1: Network Simulation Parameters to analyse the anchor placement.
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Figure 6.2: Arbitrary anchor placement 1 in 10×10 2-D space for 3 to 8 anchors.
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Figure 6.3: Arbitrary anchor placement 2 in 10×10 2-D space for 3 to 8 anchors.
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6.1 Introduction
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Figure 6.4: Arbitrary anchor placement 3 in 10×10 2-D space for 3 to 8 anchors.
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6.2 2-D Case: Additive and Multiplicative Noise Model

6.2 2-D Case: Additive andMultiplicative Noise

Model

Fig. 6.5(a)-Fig. 6.5(b) compares the MSE of the LS method with the m-CRLB

for the additive noise model for optimal (Fig. 5.8) and arbitrary anchor place-

ment as shown in Fig. 6.2, Fig. 6.3 and Fig. 6.4 respectively. The variance is σ2

= 1 and 5 for Fig. 6.5(a) and Fig. 6.5(b) respectively. The plot shows the per-

formance for 3-8 anchors. As expected, increasing the σ2 for a given set of nodes,

increases the MSE and also the difference between the bound and MSE. However,

it can be observed that the localization performance at determined optimal an-

chor placement is better than the arbitrary anchor placements. With the increase

in σ2, the MSE difference between optimal and arbitrary anchor placement for

3 anchors increases as compared to 4 and more anchors. For example, the MSE

difference for 3 anchors at optimal placement and arbitrary anchor placement 1

for σ2 = 1 is 2.38m2. This difference is further increased to 5.67m2 for σ2 = 5.

Furthermore, it is observed that, as the number of anchor node increased from

6 to 8, LS showed a very close performance for optimal placement and arbitrary

placement 1 and 2. This is because many of the anchors are placed on the bound-

ary of the field in a similar fashion as of additive’s optimal instead of the centre

(arbitrary anchor placement 3). It should be noted that the MSE error for the 8

anchors at arbitrary placement 3 and for 6 anchors at arbitrary placement 1 and

2 is larger than those of 4 optimally placed anchors.

Fig. 6.6(a)-Fig. 6.5(b) compares the MSE of the AML method with the m-

CRLB for the additive noise model for optimal (Fig. 5.8) and arbitrary anchor

placement as shown in Fig. 6.2, Fig. 6.3 and Fig. 6.4. The variance is σ2 = 1 and

5 for Fig. 6.6(a) and Fig. 6.6(b) respectively. The plot shows the performance

for 3-8 anchors. Similar to LS method, MSE for AML method at optimal anchor

placement was found to be very close for 4 and more anchors at arbitrary anchor

placements 1 and 2, whereas a significant difference is observed for all anchors

at arbitrary anchor placement 3. Compared to LS method, it is noted that MSE

error for AML approaches closer to the m-CRLB as the number anchors increases

for each anchor placement. Further analysis on AML and LS is given below.
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Figure 6.5: Performance of the LS method for additive noise model at optimal
and arbitrary anchor placement and comparison with m-CRLB.
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Figure 6.6: Performance of the AML method for additive noise model at optimal
and arbitrary anchor placement and comparison with m-CRLB.

Fig. 6.7 shows the performance comparison between LS and AML methods

at optimal and arbitrary anchor placements for σ2 = 1 and 5. It can be observed

that at optimal anchor placement, AML outperforms LS (optimal and arbitrary

anchor placement) for all number of anchors. It is important to note that at

arbitrary anchor placement 3, AML outperforms LS at optimal anchor placement

for 5 and more anchors. It suggests that AML with 5 arbitrary anchor nodes

can outperform LS at optimal placement. Furthermore, Fig. 6.7(c) shows the

comparison based on the worst anchor placement. It can be seen that MSE for
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6.2 2-D Case: Additive and Multiplicative Noise Model

AML at σ2 = 5 is nearly attaining the MSE for LS at σ2 = 1. The difference

increases with the increase of number of anchor nodes. However, it is noticeable

from Fig. 6.7(a) and Fig. 6.7(b) that optimal anchor placement for both LS

and AML methods illustrate lower MSE compared to arbitrary and worst anchor

placement.
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Figure 6.7: Performance comparison of LS and AML method for additive noise
model at optimal and arbitrary anchor placement.

For AML method (discussed in chapter 2), one of the major highlighting

points is that AML treats the distance equations as non-linear equations. Based

on the available anchor positions, it determines a guess value for a subject node.

For each guess, it uses n iterations and for each iteration it estimates a new

subject position in order to converge the guess very close to the subject node,
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6.2 2-D Case: Additive and Multiplicative Noise Model

hence minimizing the cost function. The performance of AML increases as the

number of iterations to converge the guess position (minimizing the cost function)

increases. After n iterations, it selects the estimated location that provides the

least value of the cost function. Regarding LS, it is a simple algorithm that

heavily relies upon the reference node and has only one possible opportunity to

estimate the location. Therefore, under any given channel conditions AML will

provide better performance. However, the computational complexity of AML is

a trade off compared to LS.

Fig.6.8 shows the behaviour of the m-CRLB and MSE when the multiplica-

tive noise model is used while the anchors are optimally placed as derived for the

additive noise model and compared with arbitrary placement 2. It can be seen

from Fig. 6.8(a) and Fig. 6.8(b) that m-CRLB of arbitrary anchor placement is

better than the additive’s optimal. In addition, the LS and AML both showed

better accuracy compared to the additive’s optimal. In other words, arbitrary

anchor placement for the additive noise model could perform better for the mul-

tiplicative noise models than optimal anchor placement due to the fact that both

noise models demonstrate different optimal placements. Therefore, optimal an-

chor placement specific to signal model is a major factor to enhance localization

performance.
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Figure 6.8: Performance comparison of LS and AML method for multiplicative
noise model at additive’s optimal placement with arbitrary anchor placement.

Fig. 6.9(a) and Fig. 6.9(b) compare the performance analysis of multiplicative
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6.2 2-D Case: Additive and Multiplicative Noise Model

noise model at optimal and arbitrary anchor placements for κ = 0.001 and η = 4

in 5 × 5 and 11 × 11 2-D plane. The optimal placement for multiplicative noise

model is as shown in Fig. 5.17(a) - Fig. 5.17(c) for 5 × 5 and for 11 × 11 in

Fig. 5.18. The arbitrary placement considered for the comparison is the one,

which is optimal for the additive noise model as shown in Fig. 5.8. It can be

seen from Fig. 6.9(a) and Fig. 6.9(b) that optimal placement for multiplicative

noise model show better performance for 4 and more anchors. It is observed due

to the fact that, the optimal anchor placement for 3 anchors for multiplicative

noise model is closer to the straight line. Thus for LS solution will be closer

to singular matrix compared to any arbitrary position. Furthermore, AML with

multiplicative’s optimal placement outperformed arbitrary placement for 3 and

more anchors.
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Figure 6.9: Performance of the LS and AML method for multiplicative noise
model for κ = 0.001 and η = 4 at optimal and arbitrary anchor placement and
comparison with m-CRLB. Fig. 6.9(b). For 5 × 5, where optimal placement for
multiplicative noise model is as shown in Fig. 5.17(a) - Fig. 5.17(c). Fig. 6.9(a).
For 11× 11, where optimal placement for multiplicative is as shown in Fig. 5.18.
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6.3 3-D Case: Additive and Multiplicative Noise Model

6.3 3-D Case: Additive andMultiplicative Noise

Model

Similar to 2-D, this section demonstrates the performance analysis of localization

using LS and AML methods at optimal anchor placement in 3-D space. As dis-

cussed in chapter 5, an extension from 2-D to 3-D not only adds another dimension

but it also increases the complexity in terms of the computation. The complexity

to handle the huge amount of data sets require high computing resources. To

reduce the computational complexity, number of iterations are reduced to 200

from 300. To analyse the performance of optimal anchor placement for 4 to 8,

three arbitrary anchor placements are considered as shown in Fig. 6.10, Fig. 6.11

and Fig. 6.12 respectively.
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Figure 6.10: Arbitrary anchor placement 1 in 10 × 10×10 3-D space for 4 to 8
anchors.

Fig. 6.13(a)-Fig. 6.13(b) compares the MSE of LS method with m-CRLB for

the additive noise model at optimal (Fig. 5.8) and arbitrary anchor placement as

shown in Fig. 6.10, Fig. 6.11 and Fig. 6.12. The variance is σ2 = 1 and 5 for Fig.

6.13(a) and Fig. 6.13(b) respectively. The plot shows localization performance
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Figure 6.11: Arbitrary anchor placement 2 in 10 × 10×10 3-D space for 4 to 8
anchors.
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Figure 6.12: Arbitrary anchor placement 3 in 10 × 10×10 3-D space for 4 to 8
anchors.

176

Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S02_1.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S02_2.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S02_3.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S02_4.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S02_5.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S03_1.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S03_2.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S03_3.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S03_4.eps
Chapter6/Chapter6Figs/EPS/CH_10_3D_SO1_S02/3D_Opt_Add_S03_5.eps


6.3 3-D Case: Additive and Multiplicative Noise Model

for 4-8 anchors. As expected, localization performance at determined optimal

anchor placement is better compared to arbitrary anchor placements. However,

for 4 anchors, arbitrary anchor placement 2 (Fig. 6.11) showed exactly the same

performance, it is due to the fact that optimal and arbitrary anchor placement 2

for 4 anchors are same. However, it can be seen that, for 5 and more anchors, op-

timal anchor placement outperforms arbitrary anchor placements. Furthermore,
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Figure 6.13: Performance of the LS method for additive noise model at optimal
and arbitrary anchor placement and comparison with m-CRLB.

Fig. 6.14 and Fig. 6.15 demonstrated the same results as observed in 2-D. How-

ever, it is observed that an extension from 2-D to 3-D generated the higher MSE

at the same level of variance σ2 = 1 and σ2 = 5. It is verified that in realistic

environment, a system based on the 2-D plane is likely to generate less error

compared to 3-D. It is therefore important to observe the real time environment

with respect to 3-D localization.
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Figure 6.14: Performance of the AML method for additive noise model at optimal
and arbitrary anchor placement and comparison with m-CRLB.
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Figure 6.15: Performance comparison of LS and AML method for additive noise
model at optimal and arbitrary anchor placement.
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6.4 Conclusion

6.4 Conclusion

In chapter 5, based on the extensive simulation, the optimal positions are deter-

mined for both additive and multiplicative noise models. To analyse the impact

of optimized anchor placement on localization, this chapter demonstrated the

performance comparison between optimal and arbitrary anchor placements using

two different methods, linear (LS) and non-linear (AML). Based on the contour

mapping and simulation results, It is verified that optimized anchor placements

can be used for any range aware localization scheme to get the better localization

accuracy as compared to any arbitrary position.

In corroborative terms, the AML shown a better performance than LS across

all the channel variance and anchor positions in 2-D and 3-D. The major point

to note here is the fact that using 3 anchors AML specifically outperforms the

LS method, however as we move from 4 to 8 anchors the difference between the

LS and AML becomes less and on many locations for example using 6 anchors

the performance of LS and AML in case of 3D becomes the same. This is usually

because for both methods, there are enough anchors and information to zero-

in on the subject node, however with only 3 nodes and limited resources (i.e.

less anchors) the AML gives significantly better performance than LS. Although

this accuracy comes with a trade-off, the trade-off is that the computational

complexity of AML is significantly higher than LS.

The other major factor is that the optimum positions are different for dif-

ferent noise models and have been computed through m-CRLB and using the

combination of given set of anchors that provide minimum m-CRLB. So natu-

rally irrespective of method used (i.e. LS or AML) the optimum anchor positions

are going to compute the location of subject nodes with greater accuracy than

any other arbitrary position. The other notable point is that AML needs at least

4-5 arbitrary placed anchors to give a performance better than the optimally

placed anchors using the LS method. The important thing to note in multiplica-

tive noise model is that the optimal anchor placement for 3 anchors is close to a

straight line (i.e. collinear) and therefore, LS/AML will show poor performance

as compared to any other arbitrary anchor placement (as long as they are not on

a straight line).

179



6.4 Conclusion

Lastly, as expected, extension from 2-D to 3-D using 4 optimal anchors showed

a significant increase in MSE. For example, In 2-D at σ2 = 1, the MSE is 3.5m

whereas in 3-D it is increased to 9.5m. The error significantly increased as σ2

increased to 5. For example, In 2-D, 3 optimally placed anchor show MSE of

18.5m, where in 3-D MSE goes up to 45.5m. The reason is that error increases

with the increase in dimension of the space.

The simulation based interesting results provided the needed motivation to

develop a real time location system. This motivation leads to the next chapter,

which discuss the implementation of Range Aware Localization System (RALS)

in 2-D.
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Chapter 7

Experiencing RALS

7.1 Introduction

In order to analyze the impact of anchor and subject node placement in real time,

a Range Aware Localization System (RALS) is developed on the Jennic JN5148

IEEE 802.15.4 compliant devices on top of the Jennic’s ToF application program-

ming interface (API) [24]. The RALS testbed for localization uses the devices

with 3 different functionalities. The three device types for each functionality are

listed below:

• PAN Coordinator

• Anchor Nodes

• Subject Nodes

IEEE 802.15.4/Zigbee network exhibit three types of devices [18]: 1) Coordi-

nator, 2) Router and 3) End Devices. The design of RALS consider the Coordi-

nator node with JN5148-0010-M03 module as a PAN coordinator, router devices

are replaced as the anchor nodes with same JN5148-0010-M03 modules, whereas

end device used as a subject node with JN5148-0010-M03 module whose position

is to be determined. The eclipse integrated development environment (IDE) is

used on the top of the ToF API to programme the RALS. The corresponding

binary file is downloaded on each of the device using Flash Programmer provided

by Jennic. Before conducting the experiment, channel activity test is conducted
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7.2 Principle of Operation

to determine the less noisy channel to avoid the interference and packet drop ra-

tio. Based on the activity, channel 26 is selected with the maximum transmission

power of 0dBm (1mW).

The localization system as illustrated through flow charts is distributed in

nature where each subject node is capable of performing the on-device localization

based on the LS method using the anchors position and the measured RT-ToF. It

takes less than 2s to produce the results using 100 ranging samples. An important

advantage of on-device location engine is that the algorithm is decentralized,

allowing processing of the localization to be performed at each node. In addition,

unlike centralized systems, it reduces the network traffic and the communication

delay. All these nodes can perform localization standalone, without connecting it

to laptop via UART for post processing. However, the PAN coordinator can be

used to log the estimated data received from the subject nodes to be displayed

on the laptop screen via UART or on the Web, where it can be analyzed from

any location.

7.2 Principle of Operation

A PAN coordinator node (centralized) device is setup to start-up the network and

is responsible for associating anchor and subject nodes, logging ranging and esti-

mated positions via UART on a mobile laptop. After a successful channel scan,

the association process and obtaining the short address as per IEEE 802.15.4

Media Access Control (MAC) Sublayer Management Entity (MLME) takes place

and then wireless nodes (coordinator, anchor and subject nodes) may communi-

cate as required. Subject node search for the required number of anchor nodes

by sending a request packet to all anchor nodes. As soon as a subject node

finds an in-range anchor node, it requests for the coordinates Ai = [xi yi]
T and

starts RT-ToF ranging measurements as discussed in section (3.5.1) of chapter 3.

On successful ranging operation, subject node stores the relevant ranging data

(ToF packet) for further process. The subject node continues the process until

it successfully stores ranging packet from at least 3 anchors (2-D case). After

a successful reception of 3 anchor positions and the corresponding ToF packet,

the subject node performs the localization using the LS method as explained in
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7.3 Experimental Infrastructure and Setup

chapter 4. The actual coordinates of the subject node are programmed in the

node to calculate the root-mean-square-error ERMS. On the completion of the

localization, subject node enters into sleep mode. When the sleep timer stops,

the subject node wake ups and performs localization again.

The general principle of operation for PAN, anchors and subject nodes is given

in 7.1, 7.2 and 7.3 respectively.

(a)

Figure 7.1: Flow Chart for PAN Coordinator node.

7.3 Experimental Infrastructure and Setup

The RALS system is developed using the JN5148− EK010 evaluation kit, which

provides a complete environment for the development of 2.4GHz IEEE 802.15.4,

JenNet and ZigBee PRO applications based on the JN5148 wireless micro-controller
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7.3 Experimental Infrastructure and Setup

(a)

Figure 7.2: Flow Chart for Anchor nodes.

[1]. All five module used in the experimental setup are considered with standard

power modules (JN5148-0010-M03) with uFl miniature coaxial RF connectors for

external antenna (Nearson S131CL-L-PX-2450S [126]). The JN5148s transceiver

provides a RT-ToF engine which is employed for range estimation between each

anchor and the subject nodes. The power supply for the devices was provided by

two 1.5V AAA batteries.

7.3.1 Indoor Setup

The network was deployed in the lecture theatre. The network layout is depicted

by Fig. 7.4(a), where three anchors and a subject node are shown. The lecture

theatre in which the the localization testbed is tested was a 10m×10m. The

initial tested used 5 nodes (1 PAN coordinator, 3 anchor nodes, 1 subject node).
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7.3 Experimental Infrastructure and Setup

(a)

Figure 7.3: Flow Chart for Subject nodes.

A 6m×6m area is used to deploy 3 anchor nodes. Based on the results from

chapter 5 for additive noise model, the trio is placed at the optimal placement

i.e. corners of an isosceles triangle. This triangle is of maximum size as 2 anchors

are placed at the corners of one side of the square area while the 3rd anchor is

placed at the centre of the opposite side, as shown in Fig. 7.4(a). Each anchor

node is programmed with their coordinates as (i.e. anchor 1 with [0m,0m], anchor

2 with [6m,0m] and anchor 3 with [3m,6m],. Initially, the subject node is placed

at the centre of the triangle ([3m,3m]), which is later moved at different placement

to observe the location error. On setup, PAN coordinator, anchors and subject

node perform localization as explained above and shown through flowcharts. Fig.

7.4(b) shows the splash screen on the LCD, when a subject node starts up.
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7.4 Localization Performance Analysis

(a) (b)

Figure 7.4: Fig. 7.4(a). Localization testbed in a Lecture Theatre, where three
anchors are optimally placed, whereas subject node is placed in the centre. Fig.
7.4(b). Jennic JN5148 controller board and LCD splash screen on the subject
node.

7.4 Localization Performance Analysis

Fig. 7.5(a) and 7.5(b) show the estimated coordinates and the root-mean-square-

error (ERMS) in centimetres (cm) on the LCD display, when a subject node is

placed at centre of the field along with the optimally placed anchor nodes. The

reason to perform the calculation in smaller unit (i.e. cm) is to avoid the floating

point routines as they increase code size significantly. It can be seen that when

anchors and subject nodes are optimally placed, ERMS of 0.86m and 0.48m is

observed. A number of readings collected with same setup, and for 90% of the

readings an average ERMS of below 1m is observed. With 100 ranging iterations,

an average time of less than 2 seconds is observed for localization.

Fig. 7.6(a) shows the estimated coordinates and ERMS in centimetres (cm)
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7.4 Localization Performance Analysis

(a)
A1=[0m, 0m], A2=[6m, 0m], A2=[0m, 6m],
sj=[3m, 3m], ŝj=[3.46m, 3.73m]
ERMS=[0.86m]

(b)
A1=[0m, 0m], A2=[6m, 0m], A2=[0m, 6m],
sj=[3m, 3m], ŝj=[2.65m, 2.65m]
ERMS=[0.48m]

Figure 7.5: Estimated subject coordinates and ERMS in cm, when anchors are
optimally placed and subject node is placed at [3m,3m] as shown in Fig. 7.4(a).

when a subject node is placed on the boundary line between two anchor nodes

([3m,0m]). It can be seen that as subject node moved from the optimally placed

location (i.e. centre of the triangle), ERMS is increased to 1.61m. Furthermore,

when the subject node is placed at [0m,3m], ERMS is increased to 2.82m. In

addition, when subject node is placed outside of the triangle at ([3m,9m]) as

shown in the Fig. 7.7(a), ERMS is increased to 5.52m as shown in Fig. 7.7(b).

All these results are in accord with a MATLAB designed simulator and opti-

mized anchor placement that has been done and established that centre position

of the triangle is the optimal position to locate with minimum error. However

Outside the field dimensions, performance of localization is effected as discussed

below for Fig. 7.7. As observed through contour plots in chapter 5 that, each
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7.4 Localization Performance Analysis

(a)
A1=[0m, 0m], A2=[6m, 0m], A2=[0m, 6m],
sj=[3m, 0m], ŝj=[3.19m, 1.60m]
ERMS=[1.61m]

(b)
A1=[0m, 0m], A2=[6m, 0m], A2=[0m, 6m],
sj=[3m, 3m], ŝj=[2.39m, 4.50m]
ERMS=[2.82m]

Figure 7.6: Fig. 7.6(a). Estimated subject coordinates and ERMS in cm, when an-
chors are optimally placed and subject node is placed at [3m,0m]. Fig. 7.6(b). Es-
timated subject coordinates and ERMS in cm, when anchors are optimally placed
and subject node is placed at [0m,3m].

subject location represent a different m-CRLB, hence MSE. The m-CRLB, hence

MSE increases as a subject node moves away from the centre towards the third

anchor, placed opposite to the two anchors. The same relationship is observed

here, as a subject node is placed outside the field towards the third anchor node,

where RMS is increased to 5.52m. In practice, subject nodes can be placed

anywhere within or outside the field and therefore subject nodes cannot be con-

sidered from the optimal placement point of view. Therefore, it is important to

consider the optimal anchor placement which can reduce localization error due

to the geometric placement.
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7.4 Localization Performance Analysis

(a) (b)
A1=[0m, 0m], A2=[6m, 0m], A2=[3m, 6m],
sj=[3m, 9m], ŝj=[2.06m, 3.54m]

Figure 7.7: Fig. 7.7(a). Three anchors are optimally placed, whereas subject
node is placed at [3m,9m] outside of the triangle. Fig. 7.7(b). Corresponding
ERMS(cm).
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7.4 Localization Performance Analysis

7.4.1 Arbitrary Anchor Placement

Fig. 7.8 shows the results, when anchor nodes are placed at the arbitrary place-

ment, whereas subject node is placed at [3m,3m]. It can be observed that, ar-

bitrary anchor placement increase the ERMS compared to the optimal anchor

placement with 0.79m and 0.56m error. As observed in chapter 5 that, when

using the arbitrary anchor placement, more anchors are required to be placed

otherwise the performance of the localization system would be affected.

(a)
A1=[0m,0m], A2=[6m,0m], A2=[6m,3m],
sj=[3m,3m], ŝj=[0.24m,4.55m]
ERMS=[3.23m]

Figure 7.8: Fig. 7.8(a). Subject node estimated coordinates and ERMS when
three anchors are placed at arbitrary placement, whereas subject node is placed
in the centre of the field ([3m,3m]).
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7.5 Summary

7.5 Summary

This chapter explains a real time RALS with the help of the flowcharts, that

is capable of performing the localization in 2-D. The RALS is used to analyse

the localization performance in real time by using the optimal anchor placement

for 3 anchors as derived for the additive noise model. Its distributed nature

allows a subject to localize itself without any centralized calculation of ranging

and localization phase. It takes less than 2 seconds to produce and transfer

localization results using 100 ranging samples. Moreover, this time can be reduced

by avoiding the packet transfer to UART display. For all experimental, same

antenna orientation is considered. Through real time experiments, it is concluded

that anchor placement as well as subject placement is an important parameter to

enhance localization accuracy. In addition to optimal anchor placement, antenna

orientation is an important factor to be considered for reliable localization in

realistic environments.
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Chapter 8

Range Aware 3-D Localization in

Indoor WSNs

8.1 Introduction

In recent years, there has been a great interest in research towards positioning

of wireless devices in confined areas. The Global Positioning System (GPS) [29]

provides an excellent worldwide lateration framework for determining geographic

position. The GPS solution is famous for outdoor applications. However this

solution has several limitations, the major is of course the dependency on line-

of-sight (LOS) reception, together with relatively high power requirement and

hardware complexity from satellites. With such limitations GPS typically fails in

harsh environments (i.e. inside homes, offices, shopping malls, underground and

between heavy vegetative cover) and exhibits suboptimal performance for WSN

applications. To overcome these limitations and to enhance localization accuracy,

indoor positioning system, based on the use of Global Navigation Satellite System

(GNSS) repeaters [46], CarpetLAN [47], infrared based active-badge system [66],

or ultrasounds [49], have been developed. However, their complexity, their power

consumption, and their deployment cost are enduring problems [51]. Wireless

sensor networks (WSNs) have found their way into a wide range of applications

including indoor localization. Indoor localization has been a great interest in

research because a reliable, and accurate localization in harsh environments is
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an integral part of many emerging application including logistics, medical ser-

vices (i.e. neonatal monitoring, patient tracking), enclosed rescue operations (i.e.

tunnels, caves, buildings), home automation, and others. In addition, efficient

localization in confined areas helps to enhance geographic routing and data dis-

semination for rescue operations.

Localization performance is highly dependent on the quality of range esti-

mates, which in-turn highly depend on propagation conditions of wireless chan-

nels. In practice ranging errors inevitably exist, no matter what ranging method

is used. In ideal conditions (i.e. line-of-sight (LOS) case), quality reliable lo-

calization performance can be achieved but as propagation criteria change from

ideal LOS to non-line-of-sight (NLOS), localization performance also changes.

The localization performance degrades significantly in an indoor environment,

where range measurements include NLOS errors due to the excess path length

caused by signal reflect off objects because of reflection or diffraction [52]. The

estimated error in such harsh environments is assumed to have a large positive

bias that causes range estimates to be greater than the actual range. Such in-

door environments fail a localization system to mark the required accuracy and

therefore highlight the indoor localization as a challenging problem.

This chapter presents an attempt along this direction by proposing a new 3-D

scheme named Range Estimate Threshold (RET). The proposed scheme defines

a RET based on the 3-D field dimensions and the signal noise model to mitigate

the poor range estimates (d̂pij) from Measured Estimation (ME) to improve local-

ization performance. The ramification of RET on ME for indoor localization is

explored through three signal models:

• Additive noise model for time-of-flight (ToF)

• Multiplicative noise model for time-of-flight (ToF)

• Log-Normal shadowing model for received signal strength (RSS)

The additive noise model is a widely accepted signal model; however the

multiplicative noise model is more suitable for practical propagation channels.

These two noise models are explained in section 4.3 of chapter 4 and section 5.3.1
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of chapter 5 respectively, therefore not included in this chapter. However, the

Eq. (8.1) for additive noise model and Eq. (8.2) [41] for multiplicative noise are

given below:

d̂ij = dij + nij (8.1)

where dij is the actual distance between node i and j, nij ∼ N(0, σ2
ij) is a

Gaussian distributed random variable with zero mean and standard deviation σ,

that is independent of dij.

d̂ij = dij + κd
η
2
ijǫ (8.2)

where κ is a proportionality constant to capture the combined physical layer effect

on the range estimate [41] and for simplicity, it is assumed to be a constant, η is

the path loss exponent and ǫ is random variable with zero mean and unit variance.

Furthermore, the multiplicative noise model and log-normal shadowing model

are categorized into two different variants based on calibrated channel parame-

ters through Calibrated Estimation (CE). In CE, RSS based ranging information

between anchor and subject nodes is exploited to calibrate channel parameters

such as path loss exponent (η) and shadowing variance (σ2
sh). The calibrated

η is integrated with multiplicative noise model and RSS model to characterize

wireless channel in two different methods [12]:

1. Using an individual calibrated η for each optimally placed anchor node

(ηAi for i = 1, · · · , N , where N is the number of anchor nodes).

2. Using an average of all individual calibrated η for each optimally placed

anchor node (ηµ).

To evaluate, the least squares (LS) method for localization (as explained in

section 4.4.1 of chapter 4) is used, where localization performance of ME and
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CE is compared with RET. Two different 3-D setups are considered in an in-

door environment (research lab and computer cluster lab), where IEEE 802.15.4

compliant devices are used to characterize wireless channel parameters. Based

on derived channel parameters, and extensive simulations in MATLAB, the per-

formance of these three variants is compared in terms of accuracy. The analysis

and comparison validate that localization based on RET provides improved per-

formance compared to ME. This chapter begins with section 8.2, where a GDOP

test for additive noise model from chapter 4 is extended into 3 for optimal an-

chor placement. Section 8.3 explains the RSS propagation model and calibration

process (training and estimation phase) to characterize wireless channel model is

explained in section 8.4, where based on the results from chapter 3, a less noisy

channel is considered. Section 8.5 explains the RET scheme in detail. In section

8.6, simulation results using LS method for ME, CE and RET are presented,

which is followed by summary in section 8.7.

8.2 Geometric Dilution of Precision Test for 3-D

Setup

Before commencing a series of experiments, 2-D GDOP analysis from chapter 4 is

extended in the 3-D context. Fig. 8.1 shows the 7 arbitrary anchor placements,

where (x, y, z)T coordinates of anchor nodes are selected based on the lab

dimensions (12m (l) × 4m (w) × 3m (h)). To evaluate the 3-D anchor placement,

GDOP metric is applied on each anchor placement using Eq. (8.3) for 3-D, which

is discussed in section 4.5 of chapter 4 for 2-D.

G = (GT
M ×GM)−1 =

















G11 G12 G12

G21 G22 G12

G31 G32 G33

















(8.3)
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where GM is the geometry matrix and it’s 2-D form from Eq. (4.34) (chapter 4)

can be extended into 3-D as Eq. (8.4) [30]:

GM =















x̂j−x1

d̂1j

ŷj−y1

d̂1j

ẑj−z1

d̂1j
x̂j−x2

d̂2j

ŷj−y2

d̂2j

ẑj−z2

d̂2j
x̂j−x3

d̂3j

ŷj−y3

d̂3j

ẑj−z3

d̂3j
x̂j−x4

d̂4j

ŷj−y4

d̂4j

ẑj−z3

d̂4j















(8.4)

where, x̂j and ŷj are the estimated coordinates of jth subject node and d̂ij is

estimated distance between anchor and subject node. The elements of GM defines

the direction cosines for subject to ith anchor nodes. From Eq. (8.3), PDOP can

be given by Eq. 8.5:

PDOP =
√

tr(G) (8.5)

Fig. 8.1 shows the 7 arbitrary anchor placements, whereas Fig. 8.2 shows

the simulation setup with anchor placement 1 and 80 randomly deployed subject

nodes. For each anchor placement 80 subject nodes were deployed and 1000

samples were collected at noise variance (i.e. σ2 = 1, · · · , 10). Fig. 8.3 and

Fig. 8.4 compares the impact of anchor placement and σ2 on position DOP

(PDOP) and root-mean-square error (ERMS) (as given by Eq. (4.22) in chapter

4) respectively. Fig. 8.3 shows that anchor arrangement 1 results in lowest PDOP

and ERMS value as compared to other anchor placements. It can be observed that

arrangement 7 shows the worst topology hence high PDOP and ERMS. Based

on this analysis, anchor placement 1 is selected for all three models (additive,

multiplicative and RSS), whose coordinates are shown in Fig. 8.1.
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Figure 8.1: 7 different 3-D anchor placements according to the dimensions of
Wireless Sensor Networks Research Group lab (262b) at University of Leeds.
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Figure 8.2: Simulation setup for anchor placement 1 as shown in Fig. 8.1.
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8.2 Geometric Dilution of Precision Test for 3-D Setup
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Figure 8.3: Impact of noise variance and anchor node placements on PDOP in
3-D context.
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Figure 8.4: Impact of noise variance and anchor node arrangements on ERMS in
3-D context (based on 3-D trilateration using LS method for 7 different anchor
combinations and 50 randomly deployed subject nodes.)
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8.3 Received Signal Strength

8.3 Received Signal Strength

As explained in Chapter 3, In practice, distance dependent, deterministic path

loss model (Eq. (8.6)) [94, 98] do not correctly predict the received power strength

due to the complex nature of real propagation.

Pr(dij)[dBm] = Ψ[dBm]− 10ηlog10
d

d0
(8.6)

where Pr(dij)[dBm] is the received power at node i from a transmitting node

j Ψ is received power at a reference distance d0, η is the path loss exponent

based on the propagation environment (normally taken between 2 and 6) [94, 98].

The relationship between distance and path loss exponent in Eq. (8.6) does not

consider the harsh environment that may experience different propagation at

two different positions with same distance between transmitter and receiver. To

overcome this, a log-normal shadowing model (Eq. (8.7)) is considered, which

states that with a specific value of dij, the η at particular location is random and

distributed as lognormally (normal in dB) about the mean distance-dependent

value [94, 98].

Pr(dij)[dBm] = Ψ[dBm]− 10ηlog10
d

d0
+ σsh (8.7)

where σsh is the shadowing variance (zero mean Gaussian distributed random

variable in dB with standard deviation σ). In practice, the η will be different

in each environment. Therefore, it is important to approximate this unit-less

constant analytically or experimentally.

In an indoor environment, RSS becomes a poor function of ranging, where the

multipath components are common and presents severe limitations. Therefore

an accurate and environment dependent channel model is crucial to alleviate

the limitation due to the multipath components. To alleviate these limitations,

location systems use a priori calibration process to fingerprint (aka profiling)

the area of interest [11, 12]. Most of the previous work is limited to 2-D where
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optimal anchor placement is not considered to calibrate channel parameters [12,

61–63]. Therefore, to profile an area of interest, the link information between each

optimally placed anchor and the subject node can be exploited through different

variants such as:

• Profiling an area of interest by exploiting the link information between pair

of anchors [61, 62] and using the average propagation parameters (i.e. η

and σsh) for each anchor node to characterize a channel model [12, 62]

• Profiling an area of interest by exploiting the link information between pair

of anchor and subject nodes [12] and using the same propagation parameters

(i.e. η and σsh) for each anchor node to characterize a channel model [12]

• Profiling an area of interest by exploiting the link information between pair

of anchors [61, 62] and using the individual set of propagation parameters

(i.e. η and σsh) for each anchor node to characterize a channel model [61]

• Profiling an area of interest by exploiting the link information between pair

of anchor and subject nodes [12] and using the individual set of propagation

parameters (i.e. η and σsh) for each anchor node to characterize a channel

model [12]

As mentioned above, a η can be calibrated by exploiting the link between

anchor nodes but calibrating the path loss exponent in 3-D environment by only

using the link between optimal placed anchor nodes has limited physical justifi-

cation. Consider Fig. 8.5, where 4 anchors are optimally placed in 3-D. Assume,

ηA4A2 (face diagonal) is the η between A4 and A2 and ηA4A3 is the η between A4

and A3. It can be observed that η between anchor 4 and anchor 2 (ηA4A2) or

between anchor 4 and 3 (ηA4A3) has limited channel information. For example,

looking at the optimal placement of the ceiling anchor nodes A4 and A2, they are

most likely in a path with no moving objects in between. Therefore, the relation

between the path loss exponent corresponding to this link, and the one corre-

sponding to the link between A4 and a randomly placed sensor node (that may

experience link obstruction) has limited justification. The same remark holds for

the other link between anchor nodes A4 and A3 or A4 and A1, which shows the
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face diagonal right through the wall without counting the centre. These paths

may experience independent attenuation and fading that are unrelated to the ones

experienced by the link between A4 and a randomly placed sensor node, that may

have close-by objects obstructing the link. It is therefore, path loss exponent for

each deployed anchor node is profiled by exploiting the link information between

anchor and subject nodes instead of exploiting only the link between pairs of

anchors. The calibration of η is explained in section 8.4.1.
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Figure 8.5: Profiling an area of interest by exploiting the link information (face
diagonal) between pair of anchors in 3-D, where 4 anchors are optimally placed.

8.4 Calibration of Path loss Exponent

The path loss calibration process has two phases:

1. Training Phase: In the training phase, a number of RSS measurements

between optimally placed anchor and the subject nodes are logged within

an area of interest for post processing to formulate the lookup tables. The

training phase is discussed in section 8.4.1.

2. Estimation Phase: In the estimation phase, formulated lookup tables are

used to map RSSI in to estimated distance for localization phase.
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8.4 Calibration of Path loss Exponent

8.4.1 Training Phase

The experiments for training phase have been performed in two different lab

environments (Wireless Sensor Networks Research Group Lab (Lab-262b) and

Computer Cluster Lab (Lab160)) in the School of Electronic and Electrical En-

gineering, at the University of Leeds as shown in Fig. 8.6(a) and Fig. 8.6(b).

The dimensions of lab-262b are 12m×4m×3m whereas the dimensions of lab-

160 are 16m×9m×3m. Experimental results are based on the Jennic’s IEEE

802.15.4 compliant modules with an integrated antenna. The integrated antenna

are based on a folded-monopole, omni-directional characteristic [1]. To place the

anchor nodes optimally, tripods and multi-purpose tac are used to mount the

anchors at specified height. The highest transmit power of 0dBm is used for all

ranging measurements. Both labs have furniture, computers, and cabinets.

8.4.1.1 Experimental Infrastructure and setup

To model wireless channel, parameters η and σsh are calibrated for above men-

tioned lab environments. The experimental setup for both labs is comprised of

4 optimally placed anchors (Ai for i = 1, . . . , 4), 8 subject nodes (sj for j = 1,

. . . , 8) and a laptop to log RSSI. For each optimal placed anchor and a subject

node link (Aisj), ∼ 750 RSSI samples were logged via universal asynchronous

receiver/transmitter (UART) port to laptop as shown in Fig. 8.6(c). The LOS in

experimental setup is blocked by the presence of furniture, computers and cab-

inets. Due to the multipath environment, it is possible to have non-symmetric,

therefore, the obtained RSSI is the average of RSSI measurements from anchor

to subject and subject to anchor node for the same radio link.

Fig. 8.7 and Fig. 8.8 shows the node placement for calibration in lab-262b and

lab-160 respectively, where for simplicity only 8 subject nodes are considered and

placed in a circular shape at the height of 1.5m. Fig. 8.9 shows the calibration

process for anchor Ai (for i = 1, . . . , 4), where RSSI between Ai and sj is shown by

RSS-Ais1, RSS-Ais2, RSS-Ais3, RSS-Ais4, RSS-Ais5, RSS-Ais6, RSS-Ais7, and

RSS-Ais8 links. Once RSSI samples between and anchor and the subject nodes

are logged via UART port to laptop, path loss exponent is calculated for each
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(a) (b)

(c) (d)

(e)

Figure 8.6: Fig. 8.6(a). Wireless Sensor Networks Research Group Lab (Lab-
262b) in the School of Electronic and Electrical Engineering at the University of
Leeds. Fig. 8.6(b). Computer Cluster Lab (Lab-160 in the School of Electronic
and Electrical Engineering at the University of Leeds. Fig. 8.6(c). Node mounted
on a tripod and connected to laptop via UART. Fig. 8.6(d). Node mounted with
multi-purpose tac around the corner of the wall. Fig. 8.6(e). Experimental setup
along with anchor nodes arrangement 1.
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8.4 Calibration of Path loss Exponent

anchor node by using a minimum mean-square error (MMSE) fit to empirical

measurements, in a similar manner as discussed in chapter 3.
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Figure 8.7: Node placement for calibration of path loss exponent in Lab-262b.

Table 8.1 contains the calibrated parameters for four anchor nodes, where ηAi

and σsh are approximated separately for each anchor using experimental data.

An averaged calibrated path loss exponent (ηµ) for each anchor node ηAi (for

i = 1, . . . , N number of anchors) can be given by Eq. (8.8):

ηµ =

N
∑

i=1

ηAi

N
(8.8)

where N is the total number of anchor nodes (i.e. 4 in 3-D case) and and ηµ

is the average of all path loss exponents.

It is observed that, η for all four anchors is very similar despite their different

physical arrangement and surrounding. However, for analysis and comparison,

both variants are considered. In a centralized network, the advantage of using an

averaged η is that it avoids the need for individual lookup table of each anchor [12].
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Figure 8.8: Node placement for calibration of path loss exponent in Lab-160.
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Table 8.1: Calibrated Propagation Parameters
Lab-262b Lab-160

Anchors ΨdBm η σshdB ΨdBm η σshdB
A1=ηA1 2.36 2.43
A2=ηA2 -39.12 2.1 3.75∼3.85 -39.12 1.94 3.75∼3.85
A3=ηA3 2.27 2.29
A4=ηA4 1.87 2.2
ηµ 2.15 2.21

However, in a distributed network, where each anchor can have their own lookup

table, using a separate η for each anchor can improve localization performance.

Fig. 8.10(a) - Fig. 8.10(d) illustrate the experimental RSSI ranging samples

between Ai=1, 2, 3, and 4 and subject node (s1) respectively for lab-262b, where dot-

ted points (red) represent the RSSI samples, dotted line represent the averaged

RSSI and solid line (blue) shows the ideal RSSI with parameters ηAi = 2.36,

σsh = 3.85, received power (ΨdBm) of −39.18dBm at reference distance (d0) of

1m.

8.4.1.2 Formulation of Lookup Table

The calibrated channel parameters from training phase (as shown in table 8.1) are

post processed in MATLAB and transformed into lookup tables using Eq. (8.9)

for each anchor node (refer section 3.6 of chapter 3 for detailed explanation on

RSS principle of operation for Jennic IEEE 802.1.5.4 transceiver). Fig. 8.11(a)

and Fig. 8.11(b) illustrate the lookup table graph based on ηAi and ηµ to map

RSSI samples into estimated distance for each anchor node placed in lab-262b

and lab-160 respectively.

dAi = e1/10
ln(10)(−Pr (dBm)+Ψ(dBm)+σ

sh (dB))
η d0 (8.9)

where dAi is the mapped distance for anchor Ai, Pr (dBm) is the received power

at distance dij, ΨdBm is the received power at reference distance (d0) of 1m, η is
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Figure 8.10: RSSI ranging samples between each anchor and subject node 1 as
shown in Fig. 8.7 (lab-262b).
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8.5 Range Estimate Threshold (RET)

the path loss exponent and σsh(dB) is the shadow fading (zero mean Gaussian

distributed random variable in dB with standard deviation σ).
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Figure 8.11: Fig. 8.11(a). Lab-262b lookup table mapping using ηAi and ηµ as
shown in table 8.1 for each anchor node. Fig. 8.11(a). Lab-160 lookup table
mapping using ηAi and ηµ as shown in table 8.1 for each anchor node.

8.4.2 Estimation Phase

The estimation phase is based on a MATLAB designed simulation tool, where

each lookup table based on calibrated path η is mapped with the corresponding

anchor. Two different variants are implemented for both lab environments, (1).

Using ηAi for each corresponding anchor node, (2). Using ηµ for each anchor node.

During range estimation process, RSSI between an anchor and a subject node for

the same radio link is mapped into the estimated distance using the corresponding

lookup table. Fig. 8.12 shows the subject node estimation process, where a

subject node sj obtains range estimates based on channel model corresponding

to each anchor node. Once range estimates (d̂ij) are obtained, LS method is

performed to estimate subject position.

8.5 Range Estimate Threshold (RET)

Research in the field of localization suggest that, providing a prior information

(i.e. finger prints) of an environment is one way to enhance range estimate, hence
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Figure 8.12: Subject node estimation using calibrated path loss exponent with
respect to each anchor node Ai for i = 1, . . . , N .

localization performance [12]. As discussed above, for RSS the prior knowledge of

environment is crucial to model a path loss exponent. Similarly, a prior knowledge

of dimensions of an indoor environment can be used to define a RET. Consider

Fig. 8.6(e), where a subject node acquires the time based or RSS based range

measurement from all 4 in-range anchors to perform localization. Considering

the fact that, in practice ranging errors inevitably exist to make localization in-

accurate therefore it is important to make the best use of known information (i.e.

field dimensions) along with the noise model to mitigate poor range estimates.

Consider Fig. 8.13, where dimensions are fixed, known and equivalent to

lab-262b dimensions. Fig. 8.13 shows the space diagonal (blue dashed line)

and face diagonal (green dashed line) between an anchor and a subject node.

A rectangular cuboid has twelve face diagonals and four space diagonals. The

cuboid’s face diagonals can have up to three different lengths whereas all the

space diagonals have the same and maximum length as given by Eq (8.10).
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Figure 8.13: Space and face diagonal between anchor Ai and subject sj nodes in
3-D for RET.

RET =
√
l2 + w2 + h2 (8.10)

Based on the known field dimensions and signal model, a possible maximum

range (space diagonal) between an anchor and a subject node can be defined as

a threshold for the range measurement phase using Eq. (8.11):

RET =
√
l2 + w2 + h2 + χ (8.11)

where χ is the signal model dependant parameter and can be given as Eq.

(8.12) for additive noise model (χaNm), Eq. (8.13) for multiplicative noise model

using ηµ (χ
ηµ
mNm), Eq. (8.14) for multiplicative noise model using ηAi (χ

ηAi

mNm) and

Eq. (8.15) for log-normal shadowing model respectively.

χaNm = nij (8.12)
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where nij ∼ N(0, σ2
ij) is a Gaussian distributed random variable with zero

mean and standard deviation σ that is independent of distance between node i

and node j.

χµ
mNm = κd

ηµ
2
ij ǫ (8.13)

where κ is constant [41], dij is distance between node i and node j, ηµ is

the path loss exponent for each anchor node, ǫ is a Gaussian distributed random

variable with zero mean and standard deviation σ that is dependent on distance

between node i and node j.

χAi
mNm = κd

ηAi
2

ij ǫ (8.14)

where ηAi is the path loss exponent for anchor i.

χσsh
= σ2

sh (8.15)

where σsh is the shadowing variance with zero mean Gaussian distributed

random variable in dB with standard deviation σ.

Fig. 8.14(a) shows RET for additive noise model whereas Fig. 8.14(b) shows

RET for multiplicative noise model using ηµ and ηAi according to lab-262b di-

mensions. It can be observed from Fig. 8.14(a) that RET for additive noise

model increases as the noise variance increases. Similarly, Fig. 8.14(b) shows an

increase in RET with respect to κ. In addition, due to different η for each anchor

node Fig. 8.14(b) shows different RET to eliminate poor range estimates.

Similarly, Fig 8.15(a) shows space and face diagonal between anchor and sub-

ject nodes in 3-D for lab-160. Based on lab-160 dimensions, RET using space

diagonal for additive and multiplicative noise models is defined as shown in Fig.

8.15(b) and Fig. 8.15(c) respectively.
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Figure 8.14: Fig. 8.14(a). RET for additive noise model where σ2 =
1, 3, 5, 7, and 9. Fig. 8.14(b). RET for multiplicative noise model where
κ = 0.001, 0.003, 0.005, 0.007, and 0.009.

8.5.1 RET Algorithm Description

Algorithm 2 shows the algorithm steps for RET, where RET is space diagonal

of an indoor environment (i.e. Fig. 8.14 for lab-262b and Fig. 8.15 for lab-160).

When a subject node finds 4 in-range anchor nodes, it starts ranging process to

each anchor node. During the ranging process between an anchor and the subject

node (Aisj), sj keeps the record of all ranging samples with corresponding Ai.

Then a check is imposed for preferred range estimates based on the defined RET.

Range estimates (d̂ij) greater than RET are considered as poor range estimate

(d̂pij) and can be defined by Eq.

(8.16):

d̂pij :
{

d̂pij|d̂pij /∈ d̂ij, d̂
p
ij > RET

}

(8.16)

where RET is range estimate threshold based on field dimensions and signal

model. The imposed check mitigates all of the poor range estimates after the

completion of n number of ranging iterations. Similarly, range estimate smaller

than RET are considered as preferred range estimate (d̂oij) as defined by Eq.

(8.17):
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Figure 8.15: Fig. 8.15(a). Space and face diagonals between anchors and subject
nodes in 3-D for RET of Lab-160. Fig. 8.15(b). RET for additive noise model
where σ2 = 1, 3, 5, 7, and 9. Fig. 8.15(c). RET for multiplicative noise model
where κ = 0.001, 0.003, 0.005, 0.007, and 0.009.

d̂oij :
{

d̂oij|d̂oij /∈ d̂ij, d̂oij ≤ RET
}

(8.17)

Once a subject node performs range estimates with all in-range anchor nodes

(i.e. 4), algorithm impose another check on successful ranging iterations. In

iteration check, it finds out the number of successful ranging iterations (i.e. range

estimates smaller than RET) with respect to each anchor node. The purpose of

this iteration check is to make sure that a subject node uses the same number of

iterations with all in-range anchor nodes. If successful range estimates between
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an anchor and the subject node are equal to 0, then ranging process starts again

for n number of iteration. When a iteration check stops, subject node determines

the location estimate using lateration scheme as discussed in chapter 4.
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Algorithm 2 Stages of RET Algorithm

1: % AN is total number of Anchor and Pseudo-Anchor
2: % Air is in-range anchor/pseudo-anchor nodes

3: % d̂pij is poor range estimate (i.e. greater than RET)

4: % d̂oij is preferred range estimate (i.e. smaller than RET)
5: % ERS is equal number of range estimates
6: % Estloc is estimated location
7: % Eloc

RMS is root-mean-square error of estimated location
8: while sj=1,··· ,N 6= 0 do
9: for j = 1 to sj do
10: for i = 1 to size(AN) do
11: if (sj(j), AN(i)) Adjacent then
12: Air ← In-range AN(i)
13: end if
14: end for
15: for k = 1 to size(Air) do
16: for l = 1 to iterations do
17: % d̂ij based on RT-ToF and RSS

18: d̂ij = dij + nij

19: if d̂ij ≥ Range Estimate Threshold (RET) then

20: d̂pij ← d̂ij
21: else
22: d̂o1ij = ← d̂ij
23: end if
24: end for
25: if size(d̂o2ij ≥ 1 then

26: d̂o2ij ← d̂o1ij

27: d̂o1ij → [ ]

28: d̂pij → [ ]
29: else
30: Go to Step 16 to perform range estimates with same anchor node
31: end if
32: end for
33: ERS = Get equal number of ranging samples for a sj to all Ai nodes
34: if size(ERS) ≥ 1 then
35: for k = 1 to length(ERS) do
36: Perform lateration for each k
37: Calculate Estloc for each k
38: Calculate Eloc

RMS of estimated location for each k
39: end for
40: end if
41: end for
42: end while
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8.6 Results and Analysis

In this section, a 3-D simulation tool is developed in MATLAB to evaluate the

performance of ME, CE and RET variants as listed below:

• ME Vs RET for additive noise model

• ME Vs RET for multiplicative noise model using ηAi

• ME Vs RET for multiplicative noise model using ηµ

• CE Vs RET for RSS path loss model using ηAi

• CE Vs RET for RSS path loss model using ηµ

Table 8.2: Simulation Parameters for indoor scenario
Parameter Simulation Case 1 Simulation Case 2
Simulation scenario Lab-262b Lab-160b
Field dimensions (m) 12 (l)× 4 (w)× 3 (h) 12 (l)× 9 (w)× 3 (h)
RET Value Fig.8.14 Fig. 8.15
Anchor nodes 4 4

A1 = [0 0 0] A1 = [0 0 0]
Anchors position A2 = [12 0 3] A2 = [16 0 3]

A3 = [12 4 0] A3 = [16 9 3]
A4 = [0 4 3] A4 = [0 9 3]

Number of subject nodes 100 100
Number of iterations 100 100
Reference distance (d0)(m) 1 1
Reference Pr at d0 (Ψ) (dBm) −39.12 −39.12
Wavelength (λ) (m) 0.12 0.12

ηA1 = 2.36 ηA1 = 2.43
Path loss exponent (ηAi) ηA2 = 2.1 ηA2 = 1.94

ηA3 = 2.27 ηA3 = 2.29
ηA4 = 1.87 ηA4 = 2.2

Path loss exponent (ηµ) 2.15 2.21
Shadowing variance (σ2

sh)(dB) 3.752∼3.852 3.752∼3.852
Noise variance (σ2

RT−ToF)(m) 1, 3, 5, 7, 9 1, 3, 5, 7, 9
κ [41] 0.001, 0.003, 0.005 0.001, 0.003, 0.005,

0.007, and 0.009 0.007, and 0.009
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To evaluate the performance, 100 randomly generated topologies are consid-

ered for 100 subject nodes. Table 8.2 shows the network simulation parameters.

Since anchor nodes are considered pre-surveyed, their location is assumed to be

error free. A static and stable sensor network (i.e. no mobility and no node

failures) without obstacles and with nodes having accurate and symmetric radio

ranges is assumed. As a metric to evaluate performance, the cumulative distri-

bution function (CDF) plot and root-mean-square error (ERMS) of the location

estimate are considered.

8.6.1 Simulation Case 1 : Lab-262b

Fig. 8.16 illustrates the extraction of poor range estimates (d̂pij) which are greater

than the defined RET. Fig. 8.16(a) shows range estimates for additive noise model

at different values of σ2. For each value of σ2, RET changes for preferred range

estimates by excluding d̂pij. In addition, when σ2 increases, the number of d̂pij also

increases. Fig. 8.16 shows ∼ 200 more ranging samples at σ2 = 9 as compared

to ranging samples at σ2 = 1, which greater than the corresponding RET.

Fig. 8.16(b) shows poor range estimates (d̂pij) for multiplicative noise model

based on ηµ and different values of κ. Similar to additive noise model, RET for

multiplicative noise model increases with an increase in κ. Fig. 8.16(b) is based

on ηµ, therefore it shows a flat RET for each anchor node. When compared

with the Fig. 8.16, ∼ 70% less d̂pij (i.e. above RET threshold) are observed for

multiplicative noise model, where noise variance depends on the d̂ij , ηµ and κ.

Fig. 8.16(c) shows the poor range estimates (d̂pij) for multiplicative noise

model based on ηAi and different values of κ. It can be observed that for each

value of κ, RET varies. It is because that each anchor estimates distance with

respect to its corresponding η. It allows each anchor to optimize range estimates

by excluding the d̂pij according to individual defined RET. When compared to

Fig. 8.16(b), where RET is based on ηµ, and therefore same number of d̂pij are

observed, but d̂pij eliminated based on individual RET. Fig. 8.16(d) shows the

extraction of poor range estimates (d̂pij) for RSS path loss model based on the

defined σsh. Compared to additive and multiplicative noise models, RSS path

loss model exclude the d̂pij based on flat RET.
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Figure 8.16: Extraction of poor range estimates (d̂pij) based on RET defined
by using lab262b field dimensions and signal models. Fig. 8.16(a). Additive
noise model. Fig. 8.16(b). Multiplicative noise model using ηµ. Fig. 8.16(c).
Multiplicative noise model using ηAi. Fig. 8.16(d). RSS path loss model.
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Fig. 8.17 compares the CDF of ERMS for additive and multiplicative noise

model based on ηµ and ηAi. For this case, the simulation parameters are shown in

simulation case 1 column of table 8.2. Fig. 8.17(a) shows localization performance

at σ2 = 1 and κ = 0.001. As can be seen for localization based on ME (additive

noise model) that only ∼10% of the results are accurate to within 2.5m. When

compared with the localization based on ME, localization based on RET (additive

noise model) seen to be more accurate and achieved up to ∼40% more accurate

results within 2.5m. Similarly, localization based on ME (multiplicative noise

model) using ηµ and ηAi shown a very close performance, where ∼ 60%−75% are

accurate to within 1m respectively. A slightly improved performance of 10% is

observed, when ηµ is used. However, the performance of both variants is improved

by ∼ 10%, when d̂pij are excluded based on the defined RET. This is because

ME accounts all of the ranging errors, without the consideration of RET, which

excludes all of the d̂pij greater than the defined RET (as plotted in Fig.8.14).

Furthermore, It is observed from Fig. 8.17(a) - Fig. 8.17(e), as σ2 for ad-

ditive noise model and κ for multiplicative noise model increases, localization

performance based on RET also increases. It is because as the noise variance

increases, d̂pij also increases. Hence excluding d̂pij using RET enhance localization

performance. It is further illustrated in Fig. 8.18(a) and Fig. 8.18(b) for additive

and multiplicative noise model, where a significant improvement is observed for

additive noise model. Fig. 8.18(c) illustrates the average of all samples from Fig.

8.17(a) - Fig. 8.17(e) for both additive and multiplicative noise models. It can be

observed from the CDF plot that eliminating poor range estimates helps to reduce

the median error from 8.5m to 4.7m for additive noise model. For multiplicative

noise mode, median error is approximately reduced by 0.7m.
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Figure 8.17: CDF comparison of ME and RET for additive and multiplicative
noise models.
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Figure 8.18: Comparison of ME and RET for additive and multiplicative noise
models. Fig. 8.18(a). Additive noise model. Fig. 8.18(b). Multiplicative noise
model. Fig. 8.18(c). CDF comparison of ME and RET based on all samples at
σ2 = 1 , 3, 5, 7, and 9 for additive and κ = 0.001, 0.003, 0.005, 0.007, and 0.009
for multiplicative noise model from Fig. 8.17(a) - Fig. 8.17(e) for both additive
and multiplicative noise models.
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Fig. 8.19 illustrates the comparison of ERMS for 100 randomly generated

subject nodes for additive noise model at σ2 = 1 and 7. It can be seen from Fig.

8.19(a) that impact of RET compared to ME is not significant for each subject

node, however the performance becomes significant as σ2 changes from 1 to 7, as

shown in Fig. 8.19(b). Furthermore, it is observed that ERMS based on RET is

always smaller than ME and performance becomes significant as σ2 increases.
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Figure 8.19: ERMS comparison for each node index for additive noise model. Fig.
8.19(a) and Fig. 8.19(b) at σ2 = 1 and 7 respectively.

Fig. 8.20 illustrates the comparison of ERMS for 100 randomly generated

subject nodes for multiplicative noise model at κ = 0.001 and 0.007. Fig. 8.20(a)

and Fig. 8.20(b) present the ERMS for each subject node with respect to different

κ. It can be seen from Fig. 8.20(a) that impact of RET compared to ME is

not significant for each subject node, however the difference becomes significant

as κ changes from 0.001 to 0.007, as shown in Fig. 8.20(b). Furthermore, it is

observed that ERMS based on RET is always smaller than ME and the difference

increases with an increase in κ. A very similar trend is observed for Fig. 8.20(c)

and Fig. 8.20(d), where different η is used for each anchor node.
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Figure 8.20: ERMS comparison for each node index for multiplicative noise model.
Fig. 8.20(a) and Fig. 8.20(b). Using ηµ at κ = 0.001 and 0.007 respectively. Fig.
8.20(c) and Fig. 8.20(d). Using ηAi at κ = 0.001 and 0.007 respectively.
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8.6 Results and Analysis

Fig. 8.21 compares the CDF of ERMS using CE with both variants of path

loss exponents (ηAi and ηµ). Fig. 8.21 shows the localization based on ME for

(CE - ηAi) where 60% of the results are accurate to within 5m, however this

percentage is reduced to 50% for ηAµ
, where the average of ηAi=2.15 is used by

each anchor nodes (as shown in table 8.2). It is observed that using a different

but environment based η for each anchor node enhance localization accuracy as

compared to averaged η. This accuracy for CE is further enhanced by using a

defined RET to eliminate the d̂pij from ME. Fig. 8.21 shows that RET achieved

up to ∼65% results more accurate to within 2m for ME (CE - ηAi) and ∼60% for

ME (CE - ηµ) within 2m. This is because ME accounts all of the ranging errors,

without the consideration of RET.
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Figure 8.21: CDF comparison of ME and RET for CE based RSS localization
using ηAi and ηµ in lab-262-b.

Fig. 8.22 illustrates the comparison of ERMS for 100 randomly generated sub-

ject nodes for RSS based on CE. Similar to additive noise model, RET improved

localization performance for each subject node by excluding d̂pij using Eq. (8.11)

and Eq. (8.15). A very similar trend is observed for Fig. 8.22(b), where different
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η is used for each anchor node. Further, improved localization performance is

observed for ME and RET based on CE-ηAi compared to RET based on CE-ηµ.
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Figure 8.22: ERMS comparison for each node index for RSS path loss model based
on CE. Fig. 8.22(a) and Fig. 8.22(b). Using ηµ and ηAi respectively.
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8.6.2 Simulation Case 2: Lab-160

Similar to Fig. 8.16 for lab-262b, Fig. 8.23 illustrates the extraction of d̂pij
according to lab-160 dimensions and signal model. Fig. 8.23(a) illustrates the

RET for additive noise model at different σ2 values. When compared to Fig.

8.16(a), a similar trend is observed, where d̂pij increases as noise variance increases.

It can be seen that, at σ2 = 7, RET is changed to 20.6m from 19m at σ2 = 1.
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Figure 8.23: Extraction of poor range estimates (d̂pij) based on RET defined
by using lab169 field dimensions and signal models. Fig. 8.16(a). Additive
noise model. Fig. 8.16(b). Multiplicative noise model using ηµ. Fig. 8.16(c).
Multiplicative noise model using ηAi. Fig. 8.16(d). RSS path loss model.

Fig. 8.23(b) illustrates the RET and d̂pij for multiplicative noise model with

different κ, where ηµ is averaged η for each anchor. Due to the ηµ for each anchor

node, RET is flat at each value of κ. Fig. 8.23(c) shows the variation in RET,

226

Chapter7/Chapter7Figs/EPS/CH_7_160/RET_Samples_AnM_L160.eps
Chapter7/Chapter7Figs/EPS/CH_7_160/RET_Samples_MnM_Am_L160.eps
Chapter7/Chapter7Figs/EPS/CH_7_160/RET_Samples_MnM_Ai_L160.eps
Chapter7/Chapter7Figs/EPS/CH_7_160/RET_Samples_RSS_L160.eps


8.6 Results and Analysis

where ηAi is used for anchor i. Fig. 8.23(d) illustrates the RET and d̂pij for RSS

path loss model, where RET is flat based on the σ2
sh.
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Figure 8.24: Comparison of ME and RET using additive and multiplicative
noise models for lab-160 dimensions. Fig. 8.24(a). Additive noise model.
Fig. 8.24(b). Multiplicative noise model. Fig. 8.24(c). CDF comparison of
ME and RET based on all samples at σ2 = 1 , 3, 5, 7, and 9 for additive and
κ = 0.001, 0.003, 0.005, 0.007, and 0.009 for multiplicative noise model.

Fig. 8.24(a) illustrates the comparison of ME and RET for additive noise

model. As shown, RET outperformed ME for each value of σ2. At σ2 = 9,
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ERMS of ∼ 10m for ME is reduced to 7m for RET, which is ∼ 1.4m higher than

the difference observed at σ2 = 5. It suggests that, performance of localization

based on RET increases as d̂pij increases. A very close trend is observed, when

compared with Fig. 8.24(a) (lab-262b). Fig. 8.24(b) illustrates the comparison of

ME and RET for multiplicative noise model using ηµ and ηAi. Similar to additive

noise model, RET based on multiplicative model also outperformed ME for each

κ. When compared with ME and RET using ηAi, ηµ shows slightly improved

performance. Fig. 8.24(c) shows the CDF comparison of ME and RET for both

additive and multiplicative noise models, where each curve represent all samples

(i.e. at σ2 = 1, 3, 5, 7 and 9 for additive and at κ = 0.001, 0.003, 0.005, 0.007

and 0.009 for multiplicative) from Fig. 8.24(a) and Fig. 8.24(b) respectively.

For combined samples, ME for additive noise model shows that only 35% of

the results are accurate to within 6m, which are ∼ 25 greater than results for

RET (additive noise model). For multiplicative, RET based on ηµ shows better

performance, where ∼ 82% of the results are accurate to within 4m, which reflects

an improvement of ∼ 22% compared to ME based on ηmu. Similar to Fig. 8.18(c),

Fig. 8.24(c) illustrates the average ERMS of all samples (i.e. σ2 = 1 , 3, 5, 7, and

9) for both additive and multiplicative noise models. It can be observed from

the CDF plot that throwing away range estimates greater than the defined RET

helps to reduce the median error from 9.7m to 6.5m for additive noise model. For

multiplicative noise mode, median error is approximately reduced by 0.7m.

Fig. 8.25 compares the CDF of ERMS for ME and RET using CE with both

variants of path loss exponents (ηAi and ηµ. Localization based on ME for (CE

- ηAi) in Fig. 8.25 shows 70% of the results are accurate to within 6m, whereas

this percentage is reduced to 60% for ηAµ
, where the average of ηAi=2.21 is used

by each anchor (as shown in table 8.2). It is observed that using a different

and environment based η for each anchor node enhance localization accuracy

compared to averaged ηµ. This accuracy for CE is further enhanced by using

a defined RET to eliminate d̂pij from ME. Fig. 8.25 shows that RET is more

accurate and achieved upto ∼85% results more accurate to within 3m for ME

(CE - ηAi) and ∼40% for ME (CE - ηµ) within 3m.

Fig. 8.26 illustrates the comparison of ERMS for 100 randomly generated

subject nodes for RSS path loss model based on CE. Similar to additive noise
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Figure 8.25: CDF comparison of ME and RET for CE based RSS localization
using ηAi and ηµ in lab-160.
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Figure 8.26: ERMS comparison for each node index for RSS path loss model based
on CE. Fig. 8.26(a) and Fig. 8.26(b). Using ηµ and ηAi respectively.

model, RET improved localization accuracy of each subject node by excluding

d̂pij using Eq. (8.11) and Eq. (8.15). A very similar trend is observed for Fig.

8.26(b), where different η is used for each anchor node. Furthermore, Fig. 8.25
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shows improved localization performance for ME and RET based on CE - ηAi
as

compared to CE - ηµ.

8.7 Conclusion

This paper presents an indoor 3-D localization based on three signal models

named additive, multiplicative noise models for time based ranging and log-

normal shadowing model for RSS. Furthermore, the multiplicative noise model

and shadowing model are categorized into two different variants according to

the calibration process of environment dependent channel parameter named CE.

For CE, IEEE 802.15.4 compliant devices are used in two different lab environ-

ments (lab-262b and lab-160) to log RSSI for each anchor node. The logged RSSI

between each anchor and the subject node is exploited to calibrate the ηAi, ηµ

and σsh in order to characterize channel model. Based on the field dimensions

and signal model, a new scheme named RET is proposed for improved localiza-

tion performance. Finally to evaluate, the LS method for localization is used

and performance is compared. Observations based on extensive simulations in a

MATLAB designed tool highlight the following points:

• For additive noise model, the advantage of RET compared to ME depends

on σ2. A smaller value of σ2 indicates the presence of less ranging error,

hence it reduces the occurrence of the poor range estimates (i.e. greater

than the defined RET). As σ2 increases, the advantage of RET compared

to ME also increases, due to the fact that, a larger value indicates the

presence of more poor range estimates. Hence, RET enhance localization

performance by mitigating d̂pij) from ME according to the defined RET.

• For multiplicative noise model, the advantage of RET compared to ME

depends on the η and κ. It is observed that the difference of range opti-

mization through RET compared to ME becomes larger as the value of κ

increases.

• A very close localization performance is observed for multiplicative noise

model based on ηµ and ηAi. However, ηµ showed slightly improved localiza-

tion accuracy.
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8.7 Conclusion

• For RSS, it is observed that the actual knowledge of the η plays a vital role

in the performance of the system. Due to the environment dependent nature

of η, the knowledge of exact η is unattainable. Hence, a priori calibration

may become impractical. To overcome, η should be considered as random

variable instead of a deterministic value.

On the whole, localization based on RET compared to ME showed improved

accuracy for additive, multiplicative and RSS path loss model.
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Chapter 9

Conclusions and Future Research

9.1 Conclusions

This thesis presents a research into optimization of range aware localization in

wireless sensor networks. In general, localization error in the sensor networks

context is a result of several mechanisms such as inaccurate range estimates, er-

ror propagation due to pseudo-anchors, and bad geometric placement of anchor

nodes. This dissertation deals with these location error mechanisms to optimize

the range aware localization. The contribution of this dissertation involve analy-

sis of round-trip time-of-flight (RT-ToF) and received signal strength (RSS) based

ranging using Jennic’s JN5148, performance analysis of lateration based schemes

incorporating geometric dilution of precision (GDOP) and pseudo-anchors, poten-

tial of optimal anchor placement in 2-D and 3-D, implementation of Range Aware

Localization System (RALS) on IEEE 802.15.4 compliant devices and indoor lo-

calization based on range estimate threshold (RET). This chapter summarizes

the contribution for each of the focused area as follows:

• Chapter 3: This chapter analyse the performance limits of round-trip

time-of-flight (RT-ToF) and received signal strength (RSS) based ranging

using Jennic’s JN5148, IEEE 802.1.5.4 compliant WSNs. The fundamental

CRLB on ToF and RSS ranging performance is compared with the perfor-

mance limits of JN5148 series ranging modules. The results indicate that

the measured performance limits of ToF and RSS based range measurement
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approaches the theoretical CRLB. Using a site survey tool prior to measur-

ing ToF and RSS over different lower noise channels helped not only to

improve the confidence in a burst of readings but also improved accuracy.

The results over a short range demonstrate that RSS is a good candidate

for range estimation at ranges less than ∼ 7m for outdoor and indoor unob-

structed paths. Uncertainty in RSS based range estimation increases with

distance and beyond 7m, presents severe limitations in using RSS. Further

investigating NLOS path, RSS ranging is found to be too erratic to be used

in realistic location systems as compared to ToF at any range. Comparing

ToF on LOS paths for different antenna heights in outdoor and indoor envi-

ronment, ToF measurements are seen to be largely independent of antenna

height. However, at antenna height of 1.5m the MMRE is found to be low-

est. As compared to ToF, RSS is found to be more dependent on antenna

heights as range increases. However, antenna height of 1.5m showed better

ranging accuracy at range less than ∼ 7m.

• Chapter 4: When using a lateration scheme, the localization accuracy

is highly influenced by poor anchor placement. Comparative performance

analysis of localization using sub-optimal lateration (SBT), optimal-multi-

lateration (OML), and modified sub-optimal blind trilateration (MSBT)

based on knowledge of geometric dilution of precision (GDOP) is explored.

OML, considering ranging information from all in-range anchors/pseudo-

anchors to calculate the subject position performs better in terms of ac-

curacy than SBT and stays very closed to MSBT based on GDOP. The

average processing time (close to SBT) and average location error (close

to MSBT) of OML provides the best performance in the context of WSNs.

SBT reduces the computational complexity and processing but increases the

location errors due to potentially poor selection of anchors/pseudo-anchors

and ranging error. GDOP has been shown to avoid poor topographic lay-

out during the selection of anchor/pseudo-anchor nodes in a dense envi-

ronment at the cost of very high computation from O(1 combination of

anchors) to O(combination of choosing 3 anchors from n anchors combina-

tions). A combination of SBT and GDOP provides the minimum estimated
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location error but leads to substantial performance degradation in terms

of power consumption (processing) as compared with the SBT and OML.

It makes GDOP less attractive approach in the context of resource con-

strained WSNs (i.e. where adding extra battery power is not possible).

Performance of these lateration based approaches (SBT, OML and MSBT)

presents a trade-off for complex computation, thus energy consumption and

accuracy. It leads to investigate the problem of optimal placement of anchor

nodes to optimize the range aware localization.

• Chapter 5: Conventionally, deploying large number anchor nodes reduces

localization inaccuracy; however this holds true only if the anchors are in

alternative arbitrary placement. The optimality in the anchor placement

for both additive and multiplicative noise models has been achieved by

choosing the combination of anchors with the minimum m-CRLB in 2-D

and 3-D environments. It is concluded through extensive simulations, that

optimal anchor placement for the additive noise and multiplicative noise

model are different. This chapter further extends the understanding of

optimal anchor placement and its impact on range aware localization error.

The anchor placement findings for both noise models are the exploited to

analyse the performance comparison between optimal and arbitrary anchor

placement.

• Chapter 6: The least-squares (LS) and approximate maximum likelihood

(AML) methods are used for localization performance analysis in 2-D and

3-D and their performance is compared with the lower bound for optimal,

worst and arbitrary anchor placements. In corroborative terms, the AML

has shown better performance than LS across all the channel variance and

anchor positions in 2-D and 3-D. It is observed that using 3 anchors AML

specifically outperforms the LS method, however as anchors increase from

4 to 8 the difference between the LS and AML becomes lesser and on many

locations for example using 6 anchors the performance of LS and AML in

case of 3D becomes same. This is usually because for both methods, there

are enough anchors and information to zero-in on the subject node. However

with only 3 anchors, the AML gives significantly better performance than
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LS. Although this accuracy comes with a trade-off, the trade-off is that

the computational complexity of AML is significantly higher than LS. In

addition, it is observed that AML needs at least 4-5 arbitrary placed anchors

to give a performance better than the optimally placed anchors using the

LS method. For multiplicative noise model, It is noticed that the optimal

anchor placement for 3 anchors is close to a straight line (i.e. collinear) and

therefore, LS/AML will show poor performance as compared to any other

arbitrary anchor placement (as long as they are not on a straight line). It

is concluded that the geometry of anchors and subject node has a serious

impact on the localization process.

• Chapter 7: This chapter extends the understanding and importance of

optimal anchor placement through the development of distributed Range

Aware Localization System (RALS). RALS is implemented on IEEE 802.15.4

compliant devices, where a device (i.e. subject node) takes less than 2 sec-

onds to perform localization using LS method. RALS is exploited on a

6m×6m testbed to compare localization performance using different anchor

and subject node placements. It is verified through RALS that, the op-

timized anchor placement is an important factor to enhance localization

accuracy.

• Chapter 8: A new 3-D scheme named Range Estimate Threshold (RET)

is proposed. The proposed scheme defines a RET based on the 3-D field

dimensions and the signal noise model to mitigate the poor range estimates

(d̂pij) from Measured Estimation (ME) to optimize range estimates. The

ramification of RET on ME for indoor localization is explored through ad-

ditive, multiplicative and log-normal shadowing models. Furthermore, the

multiplicative noise model and shadowing model are categorized into two

different variants according to the calibration process of environment de-

pendant channel parameter named calibrated estimation (CE). Performance

comparison based on the extensive simulations in MATLAB designed tool

highlight the following points:
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– For additive noise model, the advantage of RET compared to ME de-

pends on σ2. A smaller value of σ2 indicates the presence of less ranging

error, hence it reduces the occurrence of the poor range estimates (i.e.

greater than the defined RET). As σ2 increases, the advantage of RET

compared to ME also increases, due to the fact that, a larger value indi-

cates the presence of more poor range estimates. Hence, RET enhance

localization performance by optimizing the ME (i.e. mitigates the d̂pij)

according to the defined RET.

– For multiplicative noise model, the advantage of RET compared to

ME depends on the η and κ. It is observed that the difference of range

mitigation through RET compared to ME becomes larger as the value

of κ or η increases.

– For RSS, it is observed that the actual knowledge of the η plays a vital

role in the performance of the system. Due to the environment depen-

dent nature of η, the knowledge of exact η is unattainable. Hence, a

priori calibration may become impractical. To overcome, η should be

considered as random variable instead of a deterministic value based

on the calibration.

On the whole, localization performance based on the RET scheme over ME

showed better localization performance for additive, multiplicative and RSS

path loss model.

9.2 Future Research and Improvements

The following are some promising directions.

9.2.1 Cooperative Localization (Extension to chapter 4)

In many scenarios a number of subject nodes have to be localized, in such cases,

not all nodes are in radio range of the minimum number of anchor nodes. How-

ever, this problem can be overcome by cooperation of nodes with each other.

Thus a subject node, when located can act as a pseudo anchor and then in turn
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locate the unknown subject locations (as explained and simulated in chapter 4).

Furthermore, even if all subject nodes are in radio range of all the anchors, co-

operation between devices can enhance system performance with a trade-off for

complex computation, thus energy consumption. In many cases, the anchor nodes

are to be located via GPS. Positioning with GPS has an inherent location error

associated with it. When these anchors are used in locating subject nodes in a

cooperative environment, the error propagates through the network and the end

subject node location can have unacceptable errors. Thus the distance equation

between the anchors and subject node can now be given as: d̂ij = dij + nij + eij ,

where nij is Gaussian error associated with distance measurement and ei is error

in the anchor location. Furthermore, ei can also be assumed as a Gaussianly

distributed error. Thus there is a need for a comprehensive error analysis for

cooperative localization with the anchors position in error.

9.2.2 Additive/Multiplicative noise model

The additive noise model has been predominantly accepted by researchers. How-

ever, theoretically the accuracy depends on the received signal to noise ratio

(SNR) which in turn depends on the distance. In order to have conclusive evidence

to see which noise model best fits the observed distance, further experimentations

are to be carried out with real time systems. This requires range measurement

at incrementing distances and analyse the variance of the distribution of error.

9.2.3 Gaussianity assumption

Gaussianity assumption is prevalent and fundamental to many statistical theo-

ries and engineering applications. Range measurement errors are generally as-

sumed to reveal Gaussian distribution. We analysed the Xi = N(µ, σ2) for

i = 0, 1, , . . . . . . , n, where n is total number of range measurements X. To

scrutinize this hypothesis, instead of relying on artificially generated random vari-

ables, real time ranging data was obtained from experiments using IEEE 802.15.4

compliant devices, covering outdoor/indoor environment with both line-of-sight

(LOS) and non-line-of-sight (NLOS) conditions [127]. Distribution of range mea-

surements were analysed using four goodness-of-fit (GOF) tests i.e. Graphical
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technique, Linear correlation coefficient, Anderson-Darling, and Chi-squared. It

was observed that majority of the outcomes are same in all the tests with a high

percentage disagreement with the assumption. However further experiments are

to be conducted as future work to conclusively reach a distribution that best

describes the distance error.

9.2.4 Path loss Exponent (η)

In the RSS case and hybrid signal (RSS+TOA) the actual knowledge of the η

plays an important role in system performance. The η in general is considered

to be known and its value lies between 2-6. This is achieved by off-line measure-

ments. However, in real time systems the η is environment dependant and such

prior measurements may become impractical. Hence knowledge of its exact true

value is unattainable. Thus the value of the η has to be estimated instead of

assuming any prior value. In this regard, a joint estimator has been proposed

in [128], which jointly estimates the η alongside the unknown coordinates of the

subject node for the RSS case. For a hybrid signal model case, [129] provides

an error analysis when the η is considered to be in error. However, the η can be

considered as a random variable instead of a deterministic quantity. This calls

for the derivation of Bayesian type estimators where we could use the prior dis-

tribution of the η (obtained through experimentations). This approach promises

better performances and is to be investigated in future work.

9.2.5 Optimal anchor placement

In chapter 5, the optimal anchor placements for anchor nodes were achieved on

the basis of the minimum m-CRLB for additive and multiplicative noise model.

As an alternative, the optimal anchor placement can be based on rejecting all

anchor positions that offer higher than a threshold m-CRLB. This is helpful when

a specific area is chosen and it is desired to obtain higher accuracy within that

area, disregarding other points (such as near the anchors). Thus we might expect

different anchor positions than as shown in chapter 5. Furthermore, optimal

anchor placement for more complex area shapes other than a simple square area

is to be investigated. In addition, the anchor placement as shown in chapter 5 are
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achieved for a uniform (grid) subject node deployment. As a future work, optimal

anchor placement for more distribution such a Gaussian and Poisson subject node

distribution are to be investigated.

9.2.6 Experiencing RALS

Future work will target to enhance the capability of RALS in following areas:

• In this work, RALS is limited to the 3 anchors for localization in 2-D. As

seen in chapter 5 and chapter 6 that increasing the number of anchor nodes

increases the localization accuracy. To analyse the impact on localization

accuracy, future work will target more number of anchor nodes in 2-D and

3-D.

• In addition to RT-ToF, RALS development will be extend by integrating

RSS based localization.

• Implementation of the 3-D proposed scheme RET in different environment

for potential applications in indoor environment.

• Analyses the impact of antenna orientation and height on localization per-

formance using RALS.

9.3 Sectorization Using Optimal Anchor Place-

ment

It is verified in chapter 5 and 6, that for multiplicative noise model that as the

field dimensions increase, the m-CRLB increases at constant κ and η (as shown

in Fig. 5.19(a), Fig. 5.19(b) and Fig. 5.19(c) for 21 × 21, 31 × 31 and 41 × 41

respectively, hence MSE increases. Thus one of the approaches to reduce the

MSE could be dividing a large dimension of area into small sectors, such that

each sector has a smaller dimension to handle. As the anchors would be near to

the subject nodes, the estimated distance, hence noise variance would be fairly

small as compared to un-sectored case
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As it is observed from results in section 6.2 that optimal placement for 3 an-

chors (Fig. 5.18(a)) in multiplicative noise model does not exhibit better accuracy

compared to arbitrary placement (additive’s optimal), it is therefore, additive’s

optimal placement for 3 anchors can be used as optimal anchor placement for

multiplicative. Fig. 9.1(a) - Fig. 9.1(c) show the sectorization of localization

field for 3, 4 and 5 anchors. Fig. 9.1(a) shows that a 100 × 100 is divided in

to the 4 subs-sectors using 4 optimally placed anchor nodes. It can be seen

from sectored scenario Fig. 9.1(d), that it will consume more number of anchors.

However, as observed in chapter 4 that, optimal multi-lateration (OML) needs

extra computation as the number of anchors to perform localization increases,

whereas sub-optimal trilateration (SBT), which limits to the 3 anchors exhibit

lower processing. Thus, it would help to reduce the processing as each sector

would be limited to use minimum 3 or 4 anchors. A further in-depth analysis

of sectorization compared to un-sectored localization field will be carried out in

future work.
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Figure 9.1: Fig. 9.1(a) - Fig. 9.1(c). Sectorization of localization field with
respect to 3, 4 and 5 optimally placed anchor nodes for multiplicative noise model.
Fig. 9.1(d). Simulation setup for sectorization with respect to 4 optimal placed
anchors for multiplicative noise model.
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Pathirana, “Optimality analysis of sensor-target localization geometries,”

Automatica, vol. 46, pp. 479–492, March 2010. [Online]. Available:

http://dx.doi.org/10.1016/j.automatica.2009.12.003 23, 25

250

http://dx.doi.org/10.1016/j.automatica.2009.12.003


REFERENCES

[74] A. Bishop and P. Jensfelt, “An optimality analysis of sensor-target geome-

tries for signal strength based localization,” in Intelligent Sensors, Sen-

sor Networks and Information Processing (ISSNIP), 2009 5th International

Conference on, dec. 2009, pp. 127 –132. 25

[75] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-

free localization schemes for large scale sensor networks,” in MobiCom ’03:

Proceedings of the 9th annual international conference on Mobile computing

and networking. New York, NY, USA: ACM, 2003, pp. 81–95. 25

[76] L. Lazos and R. Poovendran, “SeRLoc: secure range-independent local-

ization for wireless sensor networks,” in WiSe ’04: Proceedings of the 3rd

ACM workshop on Wireless security. New York, NY, USA: ACM, 2004,

pp. 21–30. 25

[77] Y.-T. Chan, H. Yau Chin Hang, and P. chung Ching, “Exact and approx-

imate maximum likelihood localization algorithms,” Vehicular Technology,

IEEE Transactions on, vol. 55, no. 1, pp. 10 – 16, jan. 2006. 28, 29, 30, 84

[78] S. Duggal, A Surveying. Tata McGraw-Hill Education, 2004. 30

[79] D. C. Montgomery, G. C. Runger, and N. F. Hubele, Engineering Statistics.

John Wiley & Sons; 4th Edition edition, 2007. 31

[80] M. Youssef and A. Agrawala, “The Horus WLAN location deter-

mination system,” in Proceedings of the 3rd international conference

on Mobile systems, applications, and services, ser. MobiSys ’05.

New York, NY, USA: ACM, 2005, pp. 205–218. [Online]. Available:

http://doi.acm.org/10.1145/1067170.1067193 35

[81] “KidSpotter,” Dublin, Ireland, 2011. [Online]. Available:

http://kidspotter.com/ 36

[82] S. Schaefer, “Secure trade lane: a sensor network solution for

more predictable and more secure container shipments,” in Com-

panion to the 21st ACM SIGPLAN symposium on Object-oriented

programming systems, languages, and applications, ser. OOPSLA ’06.

251

http://doi.acm.org/10.1145/1067170.1067193
http://kidspotter.com/


REFERENCES

New York, NY, USA: ACM, 2006, pp. 839–845. [Online]. Available:

http://doi.acm.org/10.1145/1176617.1176732 36

[83] D. Gascn and M. Yarza, “Wireless Sensor Networks to

Control Radiation Levels,” Spain, 2011. [Online]. Available:

http://www.libelium.com/libeliumworld/articles/111091091717 37

[84] “Xbox 360 World Premiers Biggest Blockbuster Games and Enter-

tainment,” LosAngels, 2011. [Online]. Available: http://www.xbox.com

37

[85] A. Joshi, I. VishnuKanth, N. Samdaria, S. Bagla, and P. Ranjan, “GPS-less

animal tracking system,” inWireless Communication and Sensor Networks,

2008. WCSN 2008. Fourth International Conference on, dec. 2008, pp. 120

–125. 37

[86] S. Schultz, “Engineers and biologists design wireless devices to unlock se-

crets of animal kingdom,” Princeton, 2002.

[87] J. Li, J. Fang, Y. Fan, and C. Zhang, “Design on the monitoring system

of physical characteristics of dairy cattle based on zigbee technology,” in

World Automation Congress (WAC), 2010, sept. 2010, pp. 63 –66. 37

[88] M. Battelli and S. Basagni, “Localization for Wireless Sensor Networks:

Protocols and Perspectives,” in Electrical and Computer Engineering, 2007.

CCECE 2007. Canadian Conference on, april 2007, pp. 1074 –1077. 40, 80

[89] K. Chintalapudi, A. Dhariwal, R. Govindan, and G. Sukhatme, “Ad-hoc

localization using ranging and sectoring,” in INFOCOM 2004. Twenty-third

Annual Joint Conference of the IEEE Computer and Communications So-

cieties, vol. 4, march 2004, pp. 2662 – 2672 vol.4. 41

[90] T. Karalar and J. Rabaey, “An RF ToF Based Ranging Implementation for

Sensor Networks,” in Communications, 2006. ICC ’06. IEEE International

Conference on, vol. 7, june 2006, pp. 3347 –3352. 41, 55, 56

252

http://doi.acm.org/10.1145/1176617.1176732
http://www.libelium.com/libeliumworld/articles/111091091717
http://www.xbox.com


REFERENCES

[91] K. Bronk and J. Stefanski, “Bad Geometry Influence on Positioning Accu-

racy in Wireless Networks,” in EUROCON, 2007. The International Con-

ference on Computer as a Tool;, sept. 2007, pp. 1131 –1135. 41, 81, 93

[92] S. Lanzisera, D. Lin, and K. Pister, “RF Time of Flight Ranging for Wire-

less Sensor Network Localization,” in Intelligent Solutions in Embedded Sys-

tems, 2006 International Workshop on, june 2006, pp. 1 –12. 41, 57, 128

[93] P. Barsocchi, S. Lenzi, S. Chessa, and G. Giunta, “Virtual Calibration for

RSSI-Based Indoor Localization with IEEE 802.15.4,” in Communications,

2009. ICC ’09. IEEE International Conference on, june 2009, pp. 1 –5. 41

[94] T. S. Rappaport, Wireless Communications: Principles and Practice (2nd

Edition). New Jersey, USA: Prentice Hall PTR, 2002. 41, 43, 48, 199

[95] C. Groß, H. Hermanns, and R. Pulungan, “Does clock precision influence

ZigBee’s energy consumptions?” in Proceedings of the 11th international

conference on Principles of distributed systems, ser. OPODIS’07. Berlin,

Heidelberg: Springer-Verlag, 2007, pp. 174–188. 42

[96] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Win, “Ranging With

Ultrawide Bandwidth Signals in Multipath Environments,” Proceedings of

the IEEE, vol. 97, no. 2, pp. 404 –426, feb. 2009. 42

[97] T. Stoyanova, F. Kerasiotis, A. Prayati, and G. Papadopoulos, “A Practi-

cal RF Propagation Model for Wireless Network Sensors,” in Sensor Tech-

nologies and Applications, 2009. SENSORCOMM ’09. Third International

Conference on, june 2009, pp. 194 –199. 44

[98] A. Goldsimith, Wireless Communications. New York, NY, USA: Cam-

bridge University Press, 2005. 44, 48, 60, 199

[99] B. H. Liu, B. Otis, S. Challa, P. Axon, C. T. Chou, and S. Jha, “On the

fading and shadowing effects for wireless sensor networks,” in Mobile Adhoc

and Sensor Systems (MASS), 2006 IEEE International Conference on, oct.

2006, pp. 51 –60. 44

253



REFERENCES

[100] F. S., Zigbee Wireless Networks and Transceivers. Burlington, USA:

NEWNES, Elsevier Inc, 2008. 46, 61

[101] M. Ab-Rahman, M. Ibrahim, and A. Rahni, “Thermal Noise Effect in

FTTH Communication Systems,” in Telecommunications, 2008. AICT ’08.

Fourth Advanced International Conference on, june 2008, pp. 364 –370. 46

[102] A. Karl, Holger; Willing, Protocols and Architecture for Wireless Sensor

Networks. John Wiley and Sons Ltd, 2007. 47, 82, 84, 85, 88

[103] L. Geosystems, “Leica DISTO A5 The Versatile One

For in and outdoor applications,” 2009. [Online]. Available:

http://www.laser-measure.co.uk/downloads/leicadisto a5.pdf 50

[104] D. Gabor, “Theory of communication. Part 1: The analysis of information,”

Electrical Engineers - Part III: Radio and Communication Engineering,

Journal of the Institution of, vol. 93, no. 26, pp. 429 –441, november 1946.

56

[105] D. Hill and D. Haworth, “Accurate measurement of low signal-to-noise

ratios using a superheterodyne spectrum analyzer,” Instrumentation and

Measurement, IEEE Transactions on, vol. 39, no. 2, pp. 432 –435, apr

1990. 59

[106] H. Maheshwari and A. Kemp, “On the Enhanced Ranging Performance for

IEEE 802.15.4 Compliant WSN Devices,” in New Technologies, Mobility

and Security (NTMS), 2011 4th IFIP International Conference on, feb.

2011, pp. 1 –5. 66

[107] Y. Qi and H. Kobayashi, “On relation among time delay and signal strength

based geolocation methods,” in Global Telecommunications Conference,

2003. GLOBECOM ’03. IEEE, vol. 7, dec. 2003, pp. 4079 – 4083 vol.7.

76

[108] M. Rahman and L. Kleeman, “Paired Measurement Localization: A Robust

Approach for Wireless Localization,” Mobile Computing, IEEE Transac-

tions on, vol. 8, no. 8, pp. 1087 –1102, aug. 2009. 80

254

http://www.laser-measure.co.uk/downloads/leicadisto_a5.pdf


REFERENCES

[109] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-grained lo-

calization in Ad-Hoc networks of sensors,” in Proceedings of the 7th annual

international conference on Mobile computing and networking, ser. Mobi-

Com ’01. New York, NY, USA: ACM, 2001, pp. 166–179. 80, 106

[110] B. Peng, R. Mautz, A. Kemp, W. Ochieng, and Q. Zeng, “On the Effect of

Localization Errors on Geographic Routing in Sensor Networks,” in Com-

munications, 2008. ICC ’08. IEEE International Conference on, may 2008,

pp. 3136 –3140. 81

[111] S. Venkatesh and R. Buehrer, “Multiple-access insights from bounds on sen-

sor localization,” in World of Wireless, Mobile and Multimedia Networks,

2006. WoWMoM 2006. International Symposium on a, mar 2006, pp. 10

pp. –12. 81

[112] W. Foy, “Position-Location Solutions by Taylor-Series Estimation,”

Aerospace and Electronic Systems, IEEE Transactions on, vol. AES-12,

no. 2, pp. 187 –194, march 1976. 84

[113] Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic lo-

cation,” Signal Processing, IEEE Transactions on, vol. 42, no. 8, pp. 1905

–1915, aug 1994. 84

[114] I. Guvenc and C.-C. Chong, “A Survey on TOA Based Wireless Localiza-

tion and NLOS Mitigation Techniques,” Communications Surveys Tutori-

als, IEEE, vol. 11, no. 3, pp. 107 –124, quarter 2009. 85, 93

[115] K. Cheung, H. So, W.-K. Ma, and Y. Chan, “Least squares algorithms for

time-of-arrival-based mobile location,” Signal Processing, IEEE Transac-

tions on, vol. 52, no. 4, pp. 1121 – 1130, april 2004. 87, 88

[116] I. Guvenc, S. Gezici, F. Watanabe, and H. Inamura, “Enhancements to

Linear Least Squares Localization Through Reference Selection and ML Es-

timation,” in Wireless Communications and Networking Conference, 2008.

WCNC 2008. IEEE, april 2008, pp. 284 –289. 88

255



REFERENCES

[117] Z. Chaczko, R. Klempous, J. Nikodem, and M. Nikodem, “Methods of

Sensors Localization in Wireless Sensor Networks,” in Engineering of

Computer-Based Systems, 2007. ECBS ’07. 14th Annual IEEE Interna-

tional Conference and Workshops on the, march 2007, pp. 145 –152. 88,

125

[118] H. K. Maheshwari, A. H. Kemp, and Q. Zeng, “Range Based Real Time Lo-

calization in Wireless Sensor Networks,” in Wireless Networks, Information

Processing and Systems, ser. Communications in Computer and Informa-

tion Science, D. M. A. Hussain, A. Q. K. Rajput, B. S. Chowdhry, and

Q. Gee, Eds. Springer Berlin Heidelberg, 2009, vol. 20, pp. 422–432. 121

[119] H. Maheshwari and A. Kemp, “Comparative Performance Analysis of Lo-

calization Using Optimal and Sub-optimal Lateration in WSNs,” in Third

International Conference on Next Generation Mobile Applications, Services

and Technologies, 2009. NGMAST ’09., sept. 2009, pp. 369 –374. 125

[120] F. Engel and M. Hedley, “A comparison of cooperative localisation tech-

niques for wireless mobile sensor networks,” in Communications and Infor-

mation Technologies, 2007. ISCIT ’07. International Symposium on, oct.

2007, pp. 887 –892. 125

[121] V. Isler and R. Bajcsy, “The Sensor Selection Problem for Bounded Uncer-

tainty Sensing Models,” Automation Science and Engineering, IEEE Trans-

actions on, vol. 3, no. 4, pp. 372 –381, oct. 2006. 125

[122] C.-H. Chang and W. Liao, “Revisiting Relative Location Estimation in

Wireless Sensor Networks,” in Communications, 2009. ICC ’09. IEEE In-

ternational Conference on, june 2009, pp. 1 –5. 126

[123] M. S. Haykin, Modern Wireless Communications. Pearson Prentice Hall,

2005. 128

[124] S. Gezici, Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and

Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning

aspects for future sensor networks,” Signal Processing Magazine, IEEE,

vol. 22, no. 4, pp. 70 – 84, july 2005. 129

256



REFERENCES

[125] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation The-

ory. Upper Saddle River, NJ: Prentice Hall, 1993. 129, 130

[126] “ S131XX-2450 Data Sheet,” 2009. [Online]. Available:

ftp://ftp2.nearson.com/Drawings/Antenna/S131CL-L-XXX-2450S.pdf

184

[127] I. Rasool, H. K. Maheshwari, and A. H. Kemp, “Error distribution of range

measurements in Wireless Sensor Networks (WSNs),” in IEEE 21st Inter-

national Symposium on Personal Indoor and Mobile Radio Communications

(PIMRC), 2010, sept. 2010, pp. 1990 –1995. 237

[128] X. Li, “RSS-Based Location Estimation with Unknown Pathloss Model,”

Wireless Communications, IEEE Transactions on, vol. 5, no. 12, pp. 3626

–3633, december 2006. 238

[129] M. I. V. Martnez, B. T. Sieskul, F. Zheng, and T. Kaiser, “A hybrid SS-ToA

wireless geolocation based on path attenuation under imperfect path loss

exponent,” in n Proc. 18th European Signal Processing Conference 2010,

ser. EUSIPCO 2010, August 2010, pp. 681–685. 238

257

ftp://ftp2.nearson.com/Drawings/Antenna/S131CL-L-XXX-2450S.pdf

	Acknowledgements
	Dedication
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Introduction
	1.2 Localization for Wireless Sensor Networks
	1.3 Scope and Motivations
	1.4 Contributions of the Dissertation
	1.5 Outline of the Dissertation
	1.6 Publications

	2 Background and Related Work
	2.1 Introduction
	2.2 Localization in WSNs
	2.3 Classification of Localization
	2.3.1 Range Estimation Phase
	2.3.1.1 Angle of Arrival (AoA)
	2.3.1.2 Complexity and Error Concerns using AoA
	2.3.1.3 Time Difference of Arrival (TDoA)
	2.3.1.4 Time of Flight (ToF)
	2.3.1.5 Received Signal Strength (RSS)

	2.3.2 Position Computation Phase
	2.3.3 Localization Algorithms

	2.4 Localization Techniques and Optimization
	2.4.1 Maximum Likelihood algorithm (ML)
	2.4.2 Approximate Maximum Likelihood algorithm (AML)

	2.5 Performance metric
	2.5.1 Accuracy
	2.5.2 Precision
	2.5.3 Complexity
	2.5.4 Robustness
	2.5.5 Scalability
	2.5.6 Cost

	2.6 Localization Systems
	2.6.1 Active Badge, 1992
	2.6.2 Active Bat, 1999
	2.6.3 Cricket, 2000
	2.6.4 RADAR, 2000
	2.6.5 Horus, 2005
	2.6.6 SpotON, 2001

	2.7 Applications
	2.7.1 Kid-Spotter
	2.7.2 Freight containers Positioning
	2.7.3 Asset Tracking and Management
	2.7.4 Aid to fire-fighters and police
	2.7.5 Detecting and Locating Radiation Levels
	2.7.6 Smart and Interactive Gaming
	2.7.7 Habitat Monitoring and Wildlife Tracking

	2.8 Conclusion

	3 Performance Analysis of Ranging with IEEE 802.15.4 Compliant WSN Devices
	3.1 Overview
	3.2 Introduction
	3.3 Sources of Ranging Error
	3.3.1 Systematic Parameter
	3.3.2 Radio Propagation
	3.3.2.1 Large Scale Fading Models

	3.3.3 Small Scale Fading Models
	3.3.3.1 Effect of Frequency Channel on Multipath Performance

	3.3.4 Thermal Noise

	3.4 Experimental Infrastructure
	3.4.1 Antenna Models
	3.4.1.1 Integrated Folded Mono-pole Antenna

	3.4.2 Experimental Setup for Ranging
	3.4.2.1 Outdoor Experimental Setup
	3.4.2.2 Indoor Experimental Setup


	3.5 Round-Trip Time-of-Flight (RT-ToF)
	3.5.1 Principle of Operation
	3.5.2 RT-ToF Range Resolution
	3.5.3 Cramr-Rao Lower Bound of ToF

	3.6 RSS: Principle of Operation
	3.6.1 Cramr-Rao Lower Bound of RSS

	3.7 Site Survey and Analysis
	3.7.1 Successful ToF
	3.7.2 Remote Time Value Invalid
	3.7.3 Local Time Value Invalid
	3.7.4 No Acknowledgement
	3.7.5 No Data From Remote Node

	3.8 Experimental Results and Analysis
	3.8.1 Cross-over Range (CR)

	3.9 Conclusion

	4 Localization using Optimal and Sub-Optimal Multi-lateration
	4.1 Overview
	4.2 Introduction
	4.3 Signal Model
	4.4 Sub-Optimal Blind Trilateration (SBT)
	4.4.1 Least Squares Solution

	4.5 Geometric Dilution of Precision (GDOP)
	4.5.1 Simulation Results and Analysis

	4.6 Modified Sub-Optimal Blind Trilateration (MSBT)
	4.7 Optimal Multi-lateration (OML)
	4.8 Performance Analysis and Results
	4.8.1 Impact of Ranging Error
	4.8.2 Impact of Node Density
	4.8.3 Impact of Anchor Nodes on Localization Accuracy
	4.8.4 Analysis of Computational Complexity

	4.9 Discussion
	4.10 Summary

	5 The Optimization of Range Derived Localization in 2D and 3D WSNs
	5.1 Overview
	5.2 Introduction
	5.3 Signal Models
	5.3.1 Multiplicative Noise Model

	5.4 Lower Bounds On Localization Error
	5.5 Optimal Anchor Placement for Minimum CRLB
	5.5.1 Two-Dimensional (2-D Case)
	5.5.2 Three-Dimensional (3-D Case)

	5.6 Optimal Anchor Placements
	5.6.1 Two-Dimensional (2-D) Case
	5.6.1.1 Optimal Anchor Placement for Additive Noise Model
	5.6.1.2 Optimal Anchor Placement for Multiplicative Noise Model
	5.6.1.3 CRLB Analysis of Anchor Node Constraints in 2-D

	5.6.2 Three-Dimensional (3-D) Case
	5.6.2.1 Optimal Anchor Placement for Additive Noise Model
	5.6.2.2 Optimal Anchor Placement for Multiplicative Noise Model
	5.6.2.3 CRLB Analysis of Anchor Node Constraints in 3D


	5.7 Discussion
	5.8 Conclusion

	6 Localization Performance at Optimized Anchor Placement
	6.1 Introduction
	6.2 2-D Case: Additive and Multiplicative Noise Model
	6.3 3-D Case: Additive and Multiplicative Noise Model
	6.4 Conclusion

	7 Experiencing RALS
	7.1 Introduction
	7.2 Principle of Operation
	7.3 Experimental Infrastructure and Setup
	7.3.1 Indoor Setup

	7.4 Localization Performance Analysis
	7.4.1 Arbitrary Anchor Placement

	7.5 Summary

	8 Range Aware 3-D Localization in Indoor WSNs
	8.1 Introduction
	8.2 Geometric Dilution of Precision Test for 3-D Setup
	8.3 Received Signal Strength
	8.4 Calibration of Path loss Exponent
	8.4.1 Training Phase
	8.4.1.1 Experimental Infrastructure and setup
	8.4.1.2 Formulation of Lookup Table

	8.4.2 Estimation Phase

	8.5 Range Estimate Threshold (RET)
	8.5.1 RET Algorithm Description

	8.6 Results and Analysis
	8.6.1 Simulation Case 1 : Lab-262b
	8.6.2 Simulation Case 2: Lab-160

	8.7 Conclusion

	9 Conclusions and Future Research
	9.1 Conclusions
	9.2 Future Research and Improvements
	9.2.1 Cooperative Localization (Extension to chapter 4)
	9.2.2 Additive/Multiplicative noise model
	9.2.3 Gaussianity assumption
	9.2.4 Path loss Exponent ()
	9.2.5 Optimal anchor placement
	9.2.6 Experiencing RALS

	9.3 Sectorization Using Optimal Anchor Placement

	References

