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Abstract

ABSTRACT

Manufacturing functional prototypes and different tools using conventional 

methods usually is a time consuming process with multiple steps. The global economic 

pressure to get products to market faster has resulted in the development o f several Rapid 

Prototyping (RP) techniques.

Layer manufacturing technologies are gaining increasing attention in the 

manufacturing sector. They have the potential to produce tooling either indirectly or 

directly, and powder metal based layer manufacture systems are considered to be an 

effective way o f producing rapid tooling.

Selective Laser Sintering (SLS) is one o f several available layer manufacture 

technologies. SLS is a sintering process in which designed parts are built up layer by layer 

from the bottom up using different powder materials. A laser beam scans the powder bed; 

filling in the outline of each layer’s CAD-image by heating the selected powder pattern to 

fuse it.

This work reports on the results o f an experimental study examining the 

potential o f the selective laser sintering process to produce metallic parts using stainless 

steel powder. One material, a stainless steel powder and one sintering station research 

machine, which was constructed in Leeds, were used during the research. A step-by-step 

investigation was conducted. The research started with sintered tracks and finished with 

multiple layer sintering. The purpose was to find successful conditions and to establish the 

main problems that need to be overcome.

The main achievements o f this thesis have been to develop laser power and scan 

speed sintering maps for a stainless steel powder. The maps have established conditions in 

which multiple layer blocks can be created, have established strategies to enable large 

areas to be sintered without warping and show that powder particle size has an important 

influence on sintering and on the position o f the boundaries in the sintering maps. 

Although this investigation answered some questions, it also raised several more which are 

presented at the end of this thesis for future work.
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The first rapid prototyping technology was started over two decades ago. Rapid 

prototyping technologies have been growing rapidly since then. Rapid prototyping is a 

collection o f processes in which physical prototypes are quickly created directly from 

computer generated 3D models. Today there are around 25 rapid prototyping technologies 

used around the world (Steen et al, 1998). One o f these technologies is Selective Laser 

Sintering, known as SLSIM. Selective Laser Sintering is one o f the leading commercial 

Rapid Prototyping processes which produces fully functional parts directly from polymers 

and metallic powders without using any conventional tooling.

The very first sintering station was built at the University o f Texas, Austin. The 

University of Texas holds the licence of the company DTM Corporation that has launched 

the commercial version o f the Austin sintering station on the market. Over the last decade 

research has been focused on the uses o f  the technology for shortening product 

development times, verification and design, and reducing engineering costs. This research 

has mainly centred on polymer powder models. Current research in rapid prototyping area 

is becoming more focused on new materials, for example metallic powders for the 

production o f tools and parts.

There are still many problems with metal selective laser sintering. A common 

one is part porosity. To gain a high density, the sintered parts need to be taken through a 

subsequent process, such as infiltration. Other problems include the balling phenomenon, 

layer warping and curling and layer oxidation. The main objectives of this research arc to 

increases the understanding, using stainless steel powder. 314HC as an example, of how to 

reduce porosity in large sintered areas, aiming towards total elimination o f post-processing. 

Further objectives are to create sintering maps and development a new scanning strategy to 

choose the best solution for diminishing the balling phenomenon, layer warping and layer 

curling.



1.2 Overview of Rapid Prototyping Technologies

The following section presents a brief account o f the most used rapid 

prototyping technologies around the world. It also includes a short account of the software 

used during the entire process from CAD data to physical models. Figure 1.1 shows the 

most used rapid prototyping technologies today.
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Figure. 1.1 The most used RP technologies in the world today 

(www.manufacturingtalk.com/2002)

Fast and inexpensive production of three-dimensional structures from 

CAD data physical models has become already available in the early phase o f the product 

development process. These models are a valuable assistance during the interpretation o f 

complex designs and help the designer operate more efficiently. Rapid prototyping models 

are suitable for the verification o f component form.

Rapid prototyping technologies can be divided into those needing the 

addition of material and those involving removal of material.

1.2.1 Stereolithography (SLA)

Stereolithography is the most widely used type o f rapid prototyping 

technology. The process is commercialised by 3D Systems Ltd. The main characteristic of 

Stereolithography (SLA) is the ultra-violet laser, which is scanned over a photo curable 

liquid polymer system (figure 1.2).

http://www.manufacturingtalk.com/2002
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Figure. 1.2 Stereolithography scheme (www.manufacturingtalk.com/2002) 

and Vipersi2 SLA machine (3D Systems Inc/ 2002)

The ultra-violet laser causes the photo-curable liquid to polymerise, 

becoming solid. The solid parts are built inside a tank filled with resin on a submersible 

platform. At the beginning, the platform is raised allowing a very thin layer o f polymer 

resin to be on top o f it. The contour o f the layer is scanned and the interior solidly filled. 

The platform is lowered into the vat by the distance o f a layer thickness; the next layer is 

drawn and adhered to the previous layer. These steps are repeated, layer-by-layer. until the 

complete part is built up. There are some problems arising because o f the viscosity o f the 

resin and so called “trapped volume”. A “trapped volume” is a volume o f resin that cannot 

drain through the base o f the part (Beaman et al.. 1997).

The most common build styles used in SLA are ACESIM, STARWEAVE1M 

and QuickCastIM. Each of these styles has its own features and each is presented below:

a) ACESIM the laser almost wholly cures the interior of the part. This is achieved by 

using a hatch spacing that is equal to half the line width. This spacing is chosen such 

that all the photo-curable liquid receives the same UV exposure and hence the 

downward facing surfaces are fiat (3D Systems ltd./2002).

b) STARWEAVEIM provides stability to the solid part by hatching the interior with a 

series of grids that are offset by half of the hatch spacing every other layer. The grids

http://www.manufacturingtalk.com/2002
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are drawn such that the ends are not attached to the part border to reduce overall 

distortion (3D Systems ltd./2002). 

c) QuickCastIM usually is adopted when the prototype is to be employed as a pattern for 

investment casting as it produces almost hollow parts (3D Systems ltd./2002).

The building styles used in Stereolithography are presented here to introduce 

some ideas which will be used in the work presented later in this thesis for the 

improvement of multiple layer sintering using stainless steel powder. Building styles 

described before are for guidance only and these were not used entirely for multiple layer 

sintering o f stainless steel powder, 314HC, during multiple layer sintering tests presented 

later in this thesis.

1.2.2 Selective Laser Sintering (SLS)

Selective Laser Sintering is one o f the most used rapid prototyping 

technologies in the world. One of the big advantages offered by Selective Laser Sintering 

over SLA is the easy way in which the parts can be handled and removed from the 

sintering area. The author wants to emphasise at this stage that figure 1.3 describes the 

DTM selective laser sintering process. There is also a German company, EOS GmbH, 

which produces its own sintering station. While both the DTM and EOS machines are 

based on the same underlying methodology, there are differences in machine 

implementations, including their respective material delivery approaches (Beaman et. al,

1997).

pow der

pow der lev e llin g  

ro ller

J  / /  V V A

Figure 1.3 Schematic view o f Selective Laser Sintering (E. Sachs et al, 1995)
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A CO2 or Nd:YAG laser controlled by a computer is used for heating, melting 

and fusing polymeric and metal powders over a short period of time in a back and forth 

cyclic manner sintering the powders into the shape o f the required cross section.

The principle o f Selective Laser Sintering is similar to SLA. A very thin layer 

o f powder is spread over the sintering area; a CO2 or NdrYAG laser melts and fuses the 

powder. The process operates on the layer-by-layer principle. The sintering process uses 

the laser to raise the temperature of the powder to a point o f fusing. As the process is 

repeated, layers of powder are deposited and sintered until the object is complete. The 

powder is transferred from the powder cartridge feeding system to the part cylinder (the 

working space container) via a counter-rotating cylinder, a scraper blade or a slot feeder. In 

the un-sintered areas, powder remains loose and serves as natural support for the next layer 

o f powder and object under fabrication. No additional support structure is required. An 

SLS system normally contains an atmosphere control unit that houses the equipment to 

filter and re-circulate inert gas from the process chamber. It also maintains a set 

temperature o f the gas flowing into the process chamber.

1.2.3 31) Printing

3D Printing is a process based, like SLS, on joining powder grains together. 

3D printing uses a binder sprayed through a nozzle. This process starts with a level layer o f 

ceramic or metal powder that is spread and levelled by a roller. An ink-jet printing head 

scans over the powder surface dropping a polymer binder material where the solid shape is 

required. As can be seen in Figure 1.4 the unbound powder acts as support material for 

future overhanging structure. In order to avoid the disturbance of the powder when the 

binder hits it, it is necessary to stabilise it first by misting with water droplets (D. T. Pham,

1997). Once the part is completed, it is heated to set the binder. Then the excess powder, 

which has been used as a support, is removed by immersion in water (E. Sachs et al, 1995).
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Figure 1.4 3D printing process (www.orbital.com/2002)

The part is next heated up at 900°C for two hours in order to sinter it. After 

this treatment, the part may be dipped in binder and reheated so that its strength is 

improved.

1.2.4 Layer Object Manufacturing (LOM)

Layer Object Manufacturing process was developed by Helisys’s Laminated 

Object Manufacturing Inc in 1985. The first commercial system was introduced on the 

market in 1991. The principle o f this process is based on a laser beam that cuts the cross- 

section o f the adhesive material. LOM is based on the layer-by-layer principle. Attached to 

two rollers, the adhesive material, usually pre-coated with adhesive, a heat sensitive 

polymer, is passed over the support platform. The laser cuts and cross hatches all the 

excess material and a boundary for removal later. The platform then moves down the 

thickness of the paper. A new layer is advanced from the feed roll and is bonded to the 

previously cut layer. This process uses a laser power o f 25 W to 50 W to cut the material (D. 

T. Pham, 1997). Figure 1.5 shows a commercial machine built by Helisys Inc.

http://www.orbital.com/2002
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Figure 1.5 Layer Object Manufacturing system, Helisys Inc.

1.2.5 Other Free Form Fabrication processes

There are a few other methods used for creating 3D objects direct from a 3D 

CAD model. Free form fabrication processes include extrusion (voxel lines), ink-jets and 

3D welding. The extrusion process, better known as Fused Deposition Modeling (FDM), 

was developed and is commercialised by Stratasys Inc. This process uses a continuous 

thermoplastic polymer or wax filament that is melted and deposited through a resistively 

heated nozzle. The material is heated to slightly above its How point so that it solidifies 

relatively quickly after it exits the nozzle (J.J Beaman, 1997). This process allows building 

short overhanging features without the need for other support.

Ink-jet technologies use ink jets to directly deposit low-melting point target 

materials. Ballistic Particle Manufacturing uses a piezoelectric jetting system to deposit 

microscopic particles of molten thermoplastic. 3D Welding process builds 3D objects 

using an arc-welding robot to deposit successive layers of melted metal.

1.2.6 Summary

Rapid prototyping technologies can theoretically be used to build any complex 

shape at any size and with a sub-mm accuracy. The time to market is reduced significantly 

due to elimination o f intermediary steps in the building process.

Although there is such a diversity o f rapid prototyping technologies available 

and each o f them tries to improve in the way they build up technology, there are still 

problems that arise which need to be solved. The reasons for this vary depending on the 

technique, ranging from inherently weak stock material in some techniques to insufficient 

density o f structural stock material in others. Besides structural properties, the geometric
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accuracy and surface finish o f these techniques may be somewhat limited for certain 

applications.

Figure 1.6 presents a summary of the most used Rapid Prototyping

technologies with their limitations and benefits.

Process SLA LOM SLS FDM

Manufacturer 3D  System s Inc. H elisys Inc. DTM  Corp. Stratasys Inc.
Materials Epoxy resins 

A crylate resins
Paper N ylon  

C om posite nylon  
Polycarbonate 

Rapid steel

A B S
M A BS

Wax
Elastomers

Results E xcellent accuracy  
and repeatability

Fast build time 
G ood for large 

parts

N o support needed  
Flexible parts 

Range o f  materials 
available

Small machine 
N o post-processing  
N o laser or liquids

Limitations Support structures 
Post processing  

Expensive for large 
parts

Poor surface finish 
Fine detail can be 

lost

E xpensive Can not produce 
fine details

A pplications D esign verification  
Low volum e 
prototypes 

T ooling

D esign verification  
Low volum e 
prototypes 

T ooling

D esign verification  
Low volum e  
prototypes 

T ooling

D esign verification  
Low volum e  
prototypes

Figurel .6 Summary of rapid prototyping processes (M. Sarwar et al., 2002)

1.3 Software Issues

The manufacture of the parts begins with a computer generated three- 

dimensional model o f the component. Generating 3D objects by layer-based manufacturing 

requires the conversion of the geometric description o f the shape into a form suitable for 

processing by the Selective Laser Sintering process or by any rapid prototyping process.

Producing a part by SLS requires a complete, mathematical description of the 

part's geometry (Beaman et. al, 1997). There are three types o f modellers used today by the 

designers to create the basic description: surface modellers, solid modellers and layer 

based format. Solid models are well known by their ability to determine explicitly whether 

a point lies inside, outside or on the surface o f the part (Beaman et. al. 1997). Surface 

modellers are mainly used for designing the sculptured surfaces; this provides the ability to 

define a complex surface in terms of series o f parametric surface patches “stitched' 

together such that continuity conditions are maintained at the patch boundaries (Beaman et. 

al, 1997). The layer-based format is the most used for larger manufacture and is derived
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from a 3D CAD model, which is numerically sliced by planes, resulting in a pile of 2D 

sections of the part. Layers are generally 0.05 -  0.3 mm thick. The resulting geometry is 

transmitted in a standard file format, the “STL” file format, to the PC. “STL” file format is 

in fact a STereoLithography format. STL format was developed by 3D Systems to prevent 

losses o f information like in International Graphics Exchange Specification (IGES) format 

and has become a standard input for all rapid prototyping techniques (Thummler et al, 

1993).

These slicing approaches apply to all rapid prototyping technologies and to all 

kinds o f powders or resins used in the processes presented in the previous sections.

STL format uses small planar triangles to approximate the surfaces building a 

faceted representation o f the part geometry. Each triangle is described in STL format by X, 

Y and Z coordinates for the three vertices and a surface normal pointing to the outside of 

the triangle. Figure 1.7 shows the geometrical interpretation o f a triangle in STL format.

Figure 1.7 Interpretation of STL format

The approximation of the original geometry is linear so the number o f 

triangles used to represent a surface dictates the level o f accuracy on a non-planar surface. 

STL format can be accurate for highly curved surfaces but needs to employ a very large 

number o f triangles (Beaman et. al, 1997 and Thummler et al. 1993) 2D contours produced 

during the slicing process will consist o f line segments, which are only an approximate o f 

the model geometry. Figure 1.8 shows model geometry approximated with the help o f line 

segments.
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Co ntour polyline

Figure 1.8 Line segments resulting from slicing a STL model

Slicing of the 3D shape plays an important role during the process. Slicing is 

done by intersecting the 3D CAD model with planes perpendicular to the direction of 

building (Figure 1.8). Errors called “stair-step” commence due to the layerwise 

manufacturing affecting the surface finish o f the part. “Stair-step” error is caused by the 

approximation o f the angled or curved surfaces with stacked layers o f material (Beaman el. 

al, 1997). Figure 1.9 shows the “stair-step” effect and the effect o f adaptive slice thickness 

on part accuracy.

CAD geometry
Steps /

r  _ Build
Direction

\ £
Constant Slice Thickness Adaptive Slice Thickness

Figure 1.9 “Stair-step” and effects of adaptive slice thickness on part accuracy

This problem can be solved partially if an adaptive slice thickness is used. In 

many cases, adaptive slicing results in improving accuracy with fewer total slices, resulting 

in increased build speed (Beaman et. al, 1997). Once the geometric model being produced 

is sliced, the next step is the scanning pattern generation, with particular attention to laser 

based rapid prototyping processes. The scanning of a cross section part area is executed 

using some pre-defined patterns, such as raster (uni or bi-directional), directional, contour 

or any combination of these patterns. Figure 1.10 shows raster and directional scanning.

Raster scanning is the easiest pattern to fill an area. The laser beam for this 

pattern is moving in a zigzag way along the x-axis, while increasing between each scan on 

the y-axis. Directional scanning is characterized by the laser beam following the geometry 

o f the part. In contour scanning the laser follows the contour o f  the 2D geometry o f the 

layer. Contour scanning is used usually when more accurate scanning is needed.
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Figure 1.10 Directional scanning and raster scanning (J..I Beaman, 1997)

Beaman et. al, 1997 pointed out that for a given geometry, raster scanning 

generates a large number o f short scan vectors and directional scanning creates a smaller 

number of long scan vectors. This observation is important because it can be concluded 

that the number and the size o f the scanning vectors influence the accuracy and proprieties 

o f the sintered part. The vector length also influences the density and the strength o f the 

sintered part. It has been pointed out that shorter vectors in the raster scanning strategy 

improves the mechanical proprieties o f the sintered part because o f less delay between 

scans (Beaman et. al, 1997).

Furthermore, an important role is played during the sintering by the powder's 

physical properties. The common use o f polymeric powders, in comparison to metal 

powders, is mainly a consequence o f the ease o f processing at temperatures below 400° C.

Polymers can be classified as being amorphous polymers, polymer chains in a 

disordered state, or crystalline polymers, polymers chains in a streamlined, regular chain 

morphology organised into small regions, called crystals. A glass transition temperature, 

Tg, is present for all polymers; below this temperature the material becomes brittle and 

rigid. Because of this, sintering of polymers is possible only at temperatures above the 

glass transition temperature. A polymer is still hard between Tg temperatures and the 

melting temperature Tm. Although amorphous regions are in a rubbery state its crystallites 

are still rigid. The polymer is solid below Tm and becomes liquid above Tm; at this state the 

polymer chain becomes chaotic like an amorphous polymer. Figure 1.11 shows volume 

change associated with melting o f a crystalline polymer.
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Temperature

Figure 1.11 Volume vs. Temperature for crystalline and amorphous polymers

(J.J Beaman, 1997)

Besides the powder properties, an important factor that affects the final 

accuracy of sintered polymeric parts, as well as metal parts, is the shrinkage phenomena. 

Sintered amorphous polymers present not such a big shrinkage compared to crystalline 

polymers, which have sharp melting transition behaviour and then exhibit high shrinkage 

(Beaman et. al, 1997). Shrinkage in polymers can be prevented by reducing the processing 

parameters in such way as to minimise sintering or by adding an inert binder to the system.

A further important set o f parameters that need to be detailed is the thermal 

properties of the powder bed including thermal conductivity and absorptivity o f the 

polymeric and metal powders. The importance of these parameters is very high during the 

sintering process regardless o f using polymeric powders or metal powders. Part accuracy, 

part strength, sintering time and sintering basic requirements are all dependent on these 

parameters.

The relative d e n s ity ,^ , and the porosity,e ,  of the powder beds are very 

important information for the Selective Laser Sintering process. Apparent density of the 

powder bed is the density when the powder is in a loose state, the tap density is the highest 

density that can be achieved by different methods without applying any pressure over the 

powder bed. Usually, the powder beds have relative densities lying between 35-55% of 

fully dense, p s , which is situated between the apparent densities and tap densities.
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s  = \ - p r (1.2)

Powder bed density, p  , together with thermal conductivity, k. and specific

heat, C, are important properties regarding the study o f sintering process dynamics. 

Combining these three parameters, the result is the thermal diffusivity, k, o f the powder 

bed.

k  = ^ -  (1.3)
p C

Thermal conductivity, k , is a key factor during SLS as k states how the heat 

flows in the powder beds. Thermal conductivity o f the powder beds is influenced by 

factors such as the powder bed temperature and the bed density. It has been observed that 

powder bed density increases with sintering, decreasing the porosity, and the thermal 

conductivity increases.

Calculations o f thermal conductivity have used complex models, considering 

the contribution of many heat transfer mechanisms to powder conductivity. These models 

can predict well the thermal conductivity but a good agreement also could be found using a 

simple model such as used by Ryder [1998J, Childs et aI 11999] or Tontowi [2000J. The 

model calculates the thermal conductivity as a function o f thermal conductivity o f the solid 

material, ks, and the porosity, s (a and b variables are determined experimentally).

—  = (l - a s - b s 2) (1.4)
ks

The absorbitivity o f the powder bed is defined by the ratio o f  the absorbed 

radiation to the incident radiation. The result can be obtained experimentally by measuring 

the reflected radiation at the powder surface using an integrating sphere and assuming that 

the radiation reflected plus the absorbed radiation equals 1 (Nelson et al, 1993). The 

powder bed absorptivity varies with the type o f laser used for sintering, Nd:YAG or CO2 

laser, due to the different behaviour of the powder according to the wavelengths o f the 

laser radiation.

Attempts to process single-phase metallic powders and powder blends such 

as, mild steel, tungsten carbide, stainless steel, bronze-nickel and copper-tin have proven 

complex because o f several factors that directly influence the mechanical and physical 

proprieties o f the parts. The main dissimilarity between the sintering o f metallic powders
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and polymeric powders is the “balling” phenomena that occur during the sintering of 

metallic powders.

The surface tension is a property o f a liquid film where by its magnitude is 

dependent on the energy of surface atoms per unit area. High surface tensions cause a 

material to reduce its free energy by forming spheres, balling, a shape that has the lowest 

area per unit volume. Viscous sintering has been described by Frenkel (1945) using a two- 

sphere model. The neck o f radius x uniting two spheres o f radius R grows according to

(1.5)
R n.

where a  is particle surface tension, qis thermally activated particle viscosity, R is particle 

radius and t is the time (Beaman et. al, 1997).

Liquid phase sintering (LPS) is defined as a heat treatment in which a liquid 

and a solid phase take part so that the sintering materials have more efficient interparticle 

bonds and higher strength. A first requirement for liquid phase sintering is the presence o f 

wetting; the capillary pressure causes rapid densifieation of the powder without using 

external pressure. Liquid phase is present usually during the sintering o f hard metals such 

as high-speed steel, stainless steel and ceramics. The specific surface energies are the main 

factors during the process. The decrease o f the specific surface energies, A^, o f the system

as the driving forces results from the energies involved:

Ar = A ys + Ay, + AySL (1.6)

Ysl ^  Ys +  Yl ( * - 7 )

Yl
( 1.8 )
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Figure 1.12 Particle-wetting angle

The superficial energy of the particles E is the main factor for starting the process.

The sintering process takes place in three stages:

a) Immediately after melting, rearrangement results in rapid densification o f the powder. 

Particles slide on top of each other and inter-particle necks collapse under the effect o f 

capillary pressure.

b) Densification by rearrangement, dissolution and re-precipitation starts to take place, if 

the solid particles are soluble to a certain extent in the liquid phase. Solubility in 

contact amongst the particles is higher than on other solid surfaces. This is reflected in 

the transfer o f material from contact points, thus enabling approach over the centres o f 

the particles and densification.

c) If during sintering the solid particles come into contact without intermediate melting, 

further densification can result only from material transfer in the solid state.

1.4 Powder bed interactions and effects on SLS

The relative density o f the powder bed is directly related to three important 

factors, particle shape, size distribution and powder bed packing. These three factors 

establish the initial density of the powder bed. which in turn affects the sintered part 

density.

The first important factor that influences the powder bed density and also the 

sintering rate is the powder particle shape. Particle shapes can be classified in two general
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categories. First is a circular or a spherical shape and the second is a non-spherical shape. 

Also the shapes can be outside these two categories and can be irregular shapes such as, 

angular, cubic, teardrop, sponge, acicular, ligametal, flake and aggregate. Figure 1.13 

shows some o f particle shapes.

o s p h e r ic a l

a g g re g a te

Figure 1.13 Particle shapes (German, 1994)

Experimental studies have shown that the porosity of the packing depends on 

both the particle size and shape. This is important information in the context o f selective 

laser sintering relating the particle size and distribution to smoothness o f the bed surface, 

bed density and powder flow. The powder's particle size affects the surface flatness and 

feature definition o f the sintered part, the porosity of the powder bed before sintering and 

the rate o f sintering during the process (Nelson. 1993).

Figure 1.14 shows the four common types o f particle size distribution.
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Figure 1.14 Types o f particle size distribution

A monodisperse distribution o f the spherical particles has a packing density o f 

approximate 60% when assembled in an orthorhombic packing pattern (Beaman, 1997). 

Polydisperse gives more advantages in terms of packing density improvement because the 

small particles will pack within the pores o f the large particles (McGeary, 1961) 

Polydisperse is an important type regarding the research undertaken and presented later in 

this thesis.

1.4.1 Powder bed packing

The apparent density o f a bulk powder is defined as the powder mass divided 

by the bulk powder volume. The latter is related to particle packing. This is affected by the 

mode o f filling, the container size and any external vibration during packing. These factors 

have to be kept constant. The variables that control powder packing are the particle 

characteristics o f size distribution, shape, mass, resilience, interparticle friction, the 

container, deposition parameters and finally treatment after deposition (Salak. 1995 and 

Sontea, 1999).

cum ulative
frequency
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By using monosize spherical particles, the maximum packing density 

theoretically achievable with face centred cubic packing is 74%. This value is much larger 

than the density value given by Beaman for a monodisperse orthorhombic distribution. The 

packing density can be increased by additions of much smaller spheres filling the 

interstices between the larger ones (A. Salak, 1995 and F. Thummler, 1993). The 

maximum packing density in close packing o f binary mixures is 86%, with about 73% of 

coarse spheres in the mixture. The limiting densities can only be reached when all the 

particles fall into an ideal position. The packing efficiency decreases with increasing 

deviation from a spherical particle shape and decreasing particle size (A. Salak, 1995 and 

F. Thummler, 1993).

The relevant deposition parameters are the kinetic energy o f the particles and 

the intensity o f deposition. Packing density increases with kinetic energy, but decreases 

when the intensity o f deposition exceeds a critical value (A. Salak, 1995).

The powders may be mixed to produce a powder o f the required uniform 

particle size distribution from different selected fractions or to obtain, if possible, a 

statistical distribution o f the particles for powders produced by different methods.

The aim o f preparing a powder o f specific size composition is to optimise the 

apparent density, flow rate and sinterability. If the mobility and density o f the particles 

differ as a result o f their form and size, the effect o f external forces may cause segregation. 

The susceptibility o f the powders to segregation differs and must be minimised. The 

quality o f the mixture depends on the properties o f the powder, such as density, particle 

form, mixing ratio, mean particle size, particle size distribution, surface structure and type 

o f the mixer (Salak. 1995 and Thummler, 1993).

A non-spherical particle-packing model has been introduced by Buchalter and 

Bradley (1992). They said that orientation order strongly correlates with the density o f the 

particles' packing. The property depends on the deposition rate. A higher density can be 

obtained by a lower deposition rate as this leads to a lower order. The irregularities o f the 

particle surface also affect the packing density. Figure 1.15 shows that packing density 

increases as the particles become more rounded.
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Fig. 1.15 Fractional density o f monosize powder for varying particles roughness

(German, 1994)

increasing particle roughness

As far as selective laser sintering of metallic powders, especially the sintering 

o f stainless steel powders^ is concerned)non-sphericity is not a problem as the gas-atomised ^  

powder is near spherical. Figure 1.16 shows the particle shape o f stainless steel gas 

atomised powder. The round shape of the powder particles can be seen.

Figure 1.16 SEM image of stainless steel particles - gas atomised powder

1.4.2 Powder bed sintering mechanism

This section will explain the process o f material transport during sintering in 

powder beds and present some models developed from material transport mechanisms.

The selective laser sintering process is one that can be identified by the rate ol 

increase of contact area between the powder particles. The contact area depends on the
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mechanism of material transport. Figure 1.17 shows the formation o f the neck between 

two particles. This is the first stage during the mechanism transport.

Figure 1.17 Neck formation schematic and real views between two powder particles

-  first stage (German, 1994)

The model for viscous sintering, already introduced in section 1.3.2, has been 

described using a two-sphere model (Beaman et. al, 1997). The neck joining two spherical 

particles of radius, R. grows according to:

(1.9)

R= —  (1.10)

( x ' 2 _  2 ' at N

2 U ' / J

D

where a  is particle surface tension, r] is thermally activated particle viscosity, t sintering 

time and R is particle radius (Beaman et. al, 1997).

The model of viscous How presented by equation 1.9 applies to an early sintering 

stage and is called the first stage. The second stage takes place later when the material is 

almost solid and the changing geometry results in modification of the equation above.

' * ' a
R R n

( l . i i )

where the notations have the same meaning as in equation (1.9)
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The figure 1.18 shows the neck formation during the second stage of 

mechanism transport.

The model above is considering only the situation when the particles do not 

change their radius during the sintering process. An improved model has been considered 

in which the changing of the particle radius was considered (Beaman et. al.1997).

R (r)= R c
{l + cos[$(/)]}2 {2 -  cos[$(/

( 1.12)

where R(t) is the particle radius at the time t and Ro is the initial radius o f the particle.

The sintering angle, 0, (referred to before as the wetting angle) is defined as

X
sin(0)= — and changing with time becomes:

dO{t) _ a  2 3 cos(#)sin(#)[2 -cos(^)] 

^  [l -  cos($)Jl + COs($)]3

where all notations are the same as in equation 1.9.

(1.13)

1.4.3 Powder delivery systems

Three-powder spreading mechanisms in general use during selective laser 

sintering can be found in the literature. Figure 1.19 shows these three types o f spreading 

mechanisms.
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a b c
Figure 1.19 Different powder delivery systems

The first one (See figure 1.19 a) is based on the use of a scraper blade. This 

method is capable o f spreading a uniform powder layer in one operation. This system gives 

rise to some basic problems; the quantity of powder required cannot be controlled during 

the spreading, the fixed line contact between the blade and the powder bed surface can 

cause irregularities in the powder, the powder cannot be compacted during the deposition 

process and the spare powder increases the weight of the powder shot causing an increase 

in friction between the moving powder heap and the underlying melted layer.

Alternatively, a solution that can avoid some o f the problems associated with 

the blade system is the rotating roller (see figure 1.19 b). The rotary motion o f this 

mechanism can cause turbulence at the contact line between the roller and the powder bed. 

This can break down particle agglomeration, smoothing the powder surface. After the 

roller leaves this contact line, only small disturbances will be visible on the surface of the 

powder bed. Moreover, the roller mechanism has the advantage that a vertical vibratory 

motion can be applied over the powder bed. T his vibratory motion induces a ‘beating’ 

operation over the powder bed which should yield a higher powder density.

To decrease friction between the moving blade or roller and the previously 

sintered layer, a slot feed mechanism can be considered (see figure 1.19 c). This type of 

mechanism continually deposits powder during its movement over the sintering area rather 

than pushing a heap o f powder across the building area. As a result, the contact between 

the sintered layer and the new layer o f fresh powder is minimized. There is no 'beating' 

operation of the powder bed to increase the powder density but the slot feed mechanism 

has proven successful in reducing layer displacement.

Each of these three mechanisms can deliver the powder into the sintering 

zone, but none o f them fulfils all the requirements imposed by the selective laser sintering 

technique. A solution has been proposed by combining two o f these three mechanisms, a
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slot feed mechanism and a rotating roller to create a four stage deposition cycle (C. Hauser, 

2001): the cylinder piston is lowered just below the required layer thickness, the slot feed 

mechanism deposits a layer o f uncompacted powder, the piston rises up to the required 

layer thickness and in the end, the roller crosses the powder bed and compacts the powder 

layer. Although it may be speculated that the powder bed density can be increased close to 

the powder tap density using the two deposition mechanisms presented before, it does 

seam apparent that the irregular distribution of the particles within the powder would make 

compaction difficult. Besides, the irregular distribution o f the particles can also cause the 

previously melted layers to be displaced from their original position.

1.4.4 Summary

The author believes there are four main factors regarding the sinterability o f 

powders. These four main factors, which influence the powder sintering, are powder 

packing, powder particle size, powder transport mechanism and powder flow-ability.

Powder packing, particle shape, particle size and size distribution are the 

important factors that influence powder density and the sintering rate. The initial powder 

bed density can be improved by compacting the powder. Methods to do this can include 

the compacting o f the powder bed by the movement of the spreading roller mechanism, 

mixing the powder for some time to reduce the orientation order o f the particles or shaking 

the powder bed.

An important issue that has also been described is the mass transport 

mechanisms during the sintering o f the powders. The neck formation at the early stage has 

been presented and also the transformation that has taken place during the second stage. A 

mathematical model o f these transformations has also been presented to help understand 

some very important factors that act during the process. These factors are particle surface 

tension, thermally activated particle viscosity, sintering time and particle radius. 

Considering the factors above and the mathematical model, it can be concluded that, based 

on equations 1.9 and 1.11, the material property, which determines the sintering rate, is the

ratio o f surface tension to viscosity, — .
n
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1.5 Thermal conductivity and absorptivity of the powder bed

Thermal conductivity is a physical property of the powder which plays an 

important role during the selective laser sintering process. It determines how the heat 

conducts into the powder bed. The powder bed used for selective laser sintering in these 

experiments is assumed to be packed; voids are still present even if the powder has been 

mixed. The voids are formed within the powder bed because of improper matching among 

the particles during the mixing process. Otherwise, heat transfer within the powder bed can 

be assumed to be controlled by a conduction heat transfer law.

It is well know that steady unidirectional heat transfer is described by the 

following Fourier equation:

dT
Q = -kA

dz

q = Q = - k T ± z L
H A dz

(1.14)

(1.15)

where Q and respectively q are the heat flux and heat-transfer rate per unit area, A 

dT
respectively. —  is the temperature gradient and k is thermal conductivity. Figure 1.20

dz

shows the unidirectional heat transfer representation through a layer of powder, (section

2.2.2 details a conductivity rig which works on this principle)

Insulation

Az

Figure 1.20 Unidirectional heat transfer

There are two main factors that have influences over the thermal conductivity 

o f the packed powder bed. These factors are the void fraction within the powder bed, 

known as porosity, and the operation temperature. The major impact o f the void traction, e,
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over the thermal conductivity, is that at any operating temperature the thermal conductivity 

will always be lower than that of a solid part made of the same material. This happens 

because o f the poor conductivity of the gas that fills the powder voids. Therefore, a 

decrease in the powder bed porosity will be followed by an increase in the thermal 

conductivity o f the powder bed.

The laser energy is converted to heat energy at the surface of the powder bed 

during the sintering process. As the powder starts to melt and sinter due to the increasing 

temperature within the powder bed density begins to rise. At the same time the void 

fraction starts to decrease and a rise in thermal bed conductivity takes place. An important 

relationship for the sintering process, as the thermal conductivity is changing, associates 

the void fraction and operational temperatures with the thermal conductivity o f the powder 

bed.

Consequently, some mathematical models o f thermal conductivity with 

varying porosity fraction have been reported. Table 1.3 shows these models where k is the 

powder conductivity. Models such as Bruggeman-Bottcher, Missenard and Ryder-Childs 

are summarised in the table 1.1 according to the constants a. b. c and d:

k = a ( \ - b e c)dks (1.15)

a b c d Investigators
1 1.5 1 1 Bruggeman-Bott
1 1 1 1.5 Bruggeman-

Veinberg
0.3, 0.5, 1 1.5 1.5 1 Missenard

1 0.5 1 1 Ryder-Childs
Ta }le 1.1 Mathematical models

A particular interest besides powder conductivity is represented by powder 

absorptivity during selective laser sintering process. A laser beam is a light source, hence, 

when it falls on an opaque powder bed. a part o f its energy is dissipated and reflected into 

the surrounding atmosphere. The powder bed absorbs the remaining part o f laser energy. 

The incident laser power (P) will be partially absorbed (PA> and partially reflected (Pr) as 

follows:

P = Pa + Pr = «P + PP (1.16)

where a  is absorptivity ratio and (3 reflectivity ratio.
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Dobranich and Dykhuizen (1998) calculated power absorbitivity for -300pm  

metal powder as being 0.35. On the other hand, C. M. Taylor et al. (2001) found that the 

values were below 0.25. Taylor also said that the quantity measured is heat retained by the 

powder bed. Further losses are accounted for compared to radiation-type measurements,

i.e. heat convection and radiation from the bed surface. Figure 1.21 and table 1.2 show the 

experimental results obtained by C. M. Taylor et al. (2001) for stainless steel powder 

(314s).

Figure 1.21 Powders absorbitivity 

variations C. M. Taylor et al. (2001)

Situation N o. Sintered Geometry Atmosphere Notes a  (0.0-1.0) k (W/rn.K.)
1 60mm single line Air a  example. Fig. 4.2 0 21 0.2S
2 60mm re-scanned line Argon Sec Figure 4.3 0 05-0.13 0.16
3 40x20m m  single layer Argon See Figure 4.4 0 11-0 24 0.19
A 60mm single line Argon D IM  Rapid Steel 2. 

k  example. Fig. 4.J
o.zo 0.20

Table 1.2 C. M. Taylor et al. (2001) experimental results

Table 1.3 shows absorbitivity values o f different powders and solid materials. 

Only a fraction o f the incident laser power is absorbed by a singular metal particle surface. 

On the other hand, for a powder, which contains many particles, a large amount ol the 

reflected energy will fall onto surrounding particles increasing the overall absorbitivity and 

allowing the radiation to interact with these particles (Tolochko et al. 2000). Figure 1.22 

shows the absorbitivity rate for different solid materials using two kinds o f laser.
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W avelength

Figure 1.22 Absorbitivity as a function o f wavelength for a solid, metals 1 (Au. Ag. Cu, )

and metals 2 are transition metals (Fe, Ni, Cr, ....) (Hugel and Dausinger. 1996)

Table 1.3 Absorbitivity rate for some powder and solid materials (Tolochko et al.. 2000; 

Nelson, 1993; Sih and Barlow, 1992)

Material Nd:YAG Laser (X =1.06 pm) CO2 Laser (A,= 10.6 pm)

Iron 0.46 (solid) 

0.64 (powder)

0.45 (powder)

Tin 0.47 (solid) 

0.66 (powder)

0.23 (powder)

Polycarbonate 0.95 (powder)

1.6 Scanning parameters

The influences exerted on the final part by particle size, particle distribution, 

powder bed density, slicing methods, orientation of the part, are very important and affect 

the properties and accuracy of the sintered part. In addition to these parameters, there are 

other parameters which should be considered during selective laser sintering such as laser
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spot diameter, laser power, scan speed, layer thickness and scan spacing. These parameters 

play an important role during the process and each can influence the accuracy of the final 

part.

1.6.1 Spot diameter

Spot diameter plays a crucial role during the sintering process (Steen. 1998). A 

decrease in the spot size will increase the power density that increases energy 

concentration and also a decrease will lead to a reduction in exposure area. A smaller spot 

size allows for increased sintered part definition but will also increse the build time during 

area sintering.

1.6.2 Laser power and scan speed

The main effect caused by increasing the laser power is to allow melting at faster 

speeds and a greater depth of heat penetration. The increased scan speed will shorten the 

time for heating giving less time for the heat to diffuse sideways causing a narrowing of 

the melt region and heat affected zone.

There is a strong association between laser power and speed. A suitable way of 

expressing the interaction time as a function of the power density is in the form of a 

compound variable, which may be referred to as the energy density, Ep, (Deckard. 1995).

Ep = (1.17)
2R • u

It can be observed from equation (1.17) that the energy density delivered to the 

powder bed will increase with increasing also laser power or decreasing spot size and scan 

speed. The equation above can also be used to compare the interaction parameters found in 

it with changes in melt pool size and density, which are almost linear (Gedda. 2000). 

Equation (1.17) gives us only a limited image of the melting response (Gedda. 2000). This 

is because a number of assumptions have been made in order to get this expression. The 

physical and chemical properties o f the material have been considered to be fixed, the 

optical properties o f the powder bed and melted area are assumed to be identical and fixed 

throughout the build cycle, changes in layer geometry and vector length have no influence 

on the melting response and there are no heat losses.
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However, despite these negative aspects, variations in laser power and scan 

speed are used in accordance with to equation 1.12 to observe and compare experimental 

data. The next part in this section will be the discussion o f  two issues and some 

considerations regard the behaviour o f a single track melt bed. Melting o f pre-placed 

powder on top o f an underlying substrate and melting o f pre-placed powder without an 

underlying substrate are also considered.

The first aspect that will be discussed is when the melt track is supported by 

surrounding powder. It has been reported that surface tension forces and surface tension 

drive fluid flow dictate melt pool geometry and stability (Niu et al., 1999 and Abe et. al., 

1995). Thus, because the surface tensions are strong in liquid metals, the melt track will try 

to gain a form such that its surface area will be a minimum and its volume will be a 

maximum. Hence, the melted track has the tendency to form a cylindrical shape with an 

area cross-section equal to that of a circle or an ellipse. Moreover, it has been found that a 

large number o f powder particles will sinter to the core o f the track and deform the final 

shape o f it (Niu et al, 1998). It has also been observed also that surface tension forces try to 

minimise the surface area by breaking the track into a series of balls. This phenomenon can 

be controlled partially by using a low scan speed.

The above problems change when an underlying substrate is used to build a 

track on top it. First, if it is necessary for rastering to be achieved without porosity between 

tracks, the wetting angle, 0. should be lower than 90° (see Figure 1.12). A more detailed 

presentation regarding the wetting angle can be found in section 1.3.2. If the laser power is 

high, so that the absorbed energy is high, we can expect a strong bond between even for a 

large layer thickness (Steen, 1998). Moreover, it is known that the strength o f the fusion 

bond is dependant on Marangoni convection and heat penetration (Steen, 1998). An 

increased melt penetration is followed by an increase in melt aspect ratio (Steen. 1998).

If the boundary between two fluids is exposed to a temperature gradient, its 

surface tension will vary from point to point. These surface tension gradients will induce 

shear stress that result in fluid motion. The effect will cause the fluid to be flowing from 

regions of low surface tensions to regions with high surface tensions. The fluids, which are 

viscous, arc pulled along causing a volume motion and local stirring o f the melt pool. It is 

this phenomenon that is better known as Marangoni convection.
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1.6.3 Scan spacing and layer thickness during SLS

If a sintered layer is to be achieved, overlapping of melt pool tracks will have to 

take place. Research concerning the optimisation o f the scan spacing ratio to achieve 

uniform density and track layer thickness has been well documented and some of this 

research will be presented here.

It has been reported that a high level o f porosity within a single layer occurs at 

conditions where single tracks were found to ball such as high scan speed (H.J. Niu et al.,

1998). It has also been reported that using some pre-defmed patterns such as a rastered or 

unrastered spot influence the behaviour of the melt in much the same way (H.J. Niu et al.,

1998). A process map has been made which summarises the changes in surface 

morphology of a sintered single layer for a scan spacing of 0.15mm and using a range of 

CO2 laser powers and scan speeds (H.J. Niu et al., 1998). Figure 1.22 shows a process map 

for variations in single layer porosity in experiments with a tool steel powder.

Scan rate (mm/s)

Figure 1.22 Variation within single layers porosity (Niu et al., 1998)

The map contains five zones, each one representing a different mode of 

solidification. Zone 1, represents the interconnected porosity which occurs at temperatures 

below the melting point o f the powder. Zone 2 represents the inter-run porosity and zone 3 

is where a highly dense structure can be obtained but with small areas o f porosity. In zone

4 the parts obtained were highly dense but with large areas o f porosity and zone 5 is where 

parts can be made to full density. To conclude, in this example the balling effect can be
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controlled at speeds below 30mm/s and laser powers over 40W (H.J. Niu et al., 1998). This 

is an important observation regarding the research undertaken and presented in this thesis.

The powder sintering process is also influenced by the layer thickness. A thin 

layer o f powder during the process is an important requirement because the bond required 

to fuse consecutive layers is often difficult to achieve (W.M. Steen, 1998). The reason for 

this is because the underlying solidified layer needs to be remelted in order to obtain a 

strong fusion bond. The solidified layer is not directly irradiated during the process; the 

degree of remelting will depend on the transmitted energy through the fresh powder layer.

As the molten front o f the current layer continues through the powder to the 

layer beneath, it will refreeze at the point o f contact due to the additional thermal load 

caused by the high thermal conductivity of the lower layer; to ensure a strong bond the 

current layer must be remelted before the substrate melts (Steen, 1998). It has also been 

ascertained that if the lower layer remains cold, then the current layer will not wet the 

substrate and the ‘balling’ phenomena can occur.

It has been also found that the melt depth of the melt front changes 

depending on the value o f the scan spacing. An increase in scan overlap can cause a 

reduction in melt depth and a decrease in scan overlap can lead to an opposite effect. This 

phenomenon occurs because o f the changes in the absorptivity since the surface and 

porosity o f the powder layer change when it is melted. Hence, a solution for controlling the 

laser penetration within the powder bed includes increasing the scan spacing or reducing 

the layer thickness.

It has also been reported that the melt depth can continually increase at the 

start of a layer only reaching a steady state conditions after 10 consecutive scans.

The total energy E (J) induced into a block with a length /, a width w and a 

height h and built with a layer thickness L, is calculated using the following formula (Laoui 

et al., 2000):

^ p  *
f \

f  h 1£  = — * I* int + i * int — + i
V v \ < A j

where P is the laser power (in Watts), v is the scan speed (in mm/s), s is the scan spacing 

(in mm) and “int” refers to integer.

Laoui [2000] reported that for various combinations o f layer thickness and 

scan spacing the density increased with increasing energy. The influence o f layer thickness
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on density is more pronounced at lower values of supplied energy. With a smaller layer 

thickness, more energy is transferred to the underlying sintered layers improving further 

densification. Layers are often barely distinguishable indicating that a high temperature 

bed and a higher laser power help in improving interlayer bonding.

1.7 Selective laser sintering of metallic powders

A particular issue that will be followed and discussed throughout this thesis 

is concerned with direct selective laser sintering of stainless steel powders. In the last few 

years researchers have made advances in the understanding of polymer powder sintering. 

Conversely, the research involving metallic powders is not very advanced. Because o f the 

high demand for metal tooling, rapid metal tooling development has a position of central 

importance in rapid manufacturing research. DTM introduced its first metal materials 

(RapidSteel 1.0) in 1996. This material was primarily used to create steel/copper mould 

inserts from which large quantities o f plastic parts and prototype quantities o f  pressure die 

cast parts could be produced. In 1998. DTM introduced its next generation o f metal 

material (RapidSteel 2.0), which offered improvements in processing time, finishing time, 

and accuracy. Laserform ST-100 is the latest version o f the DTM RapidTool process. 

Laserform ST-100 is a stainless steel 420 based powder coated with a plastic binder that is 

sintered and infiltrated in one furnace cycle.

There are two approaches regarding selective laser sintering o f metal powders, 

indirect and direct selective laser sintering. Indirect SLS work by melting the polymer 

coating on each metal particle. This "green" part can then be handled with subsequent de

binding, sintering and low melting point infiltration stages which are necessary to produce 

a full density part (Beaman et al., 1997). Direct SLS aims to melt and consolidate the 

chosen metal during the SLS process directly to form a desired shape having full density, 

eliminating the need for debinding and infiltration.

Direct laser sintering is the main concern o f this thesis. Direct SLS is a process 

in which a high energy laser beam directly consolidates a binderless metal powder, to high 

density, preferably with minimal or no post-processing requirements. Larly attempts to use 

SLS to process single phase metals such as tin or zinc were unsuccessful due to the quick 

consolidation of molten powder into a sense o f balls with diameter approximately equal to
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the laser beam diameter (Beaman et al., 1997). To overcome the tendency to form balls, a 

low and high melting temperature powder mixture approach was developed (Bunnell et al., 

1994; Das et al, 2000). The laser power heats the powder bed inducing melting in only the 

low melting point material. The disadvantage of this processing route was that the 

components produced exhibited mechanical properties and characteristics of their weakest 

composite phase, thus lacking the full mechanical functionality required for heavy-duty 

tasks. Klocke et al. (1995) and Kruth et al. (1996) reported that due to the brief heat 

interaction time in SLS processing, the only means o f building parts consisting o f high 

melting point metal is via Liquid Phase Sintering (LPS). The liquid wets the high melting 

point powder and binds it together. Using this two-phase powder approach, it becomes 

possible to induce melting without balling by adjustment o f the volume fraction of the high 

melting point phase. This approach has been used successfully in SLS processing o f metals 

and ceramics such as Cu-Sn bronze-Ni, Ni-Sn, WC-Co and alumina-boron oxide 

(Gopalakrishna and Bourell, 1993; Beaman et al., 1997).

There have been other successful attempts to use direct SLS processing for 

metal and metal-ceramic materials (Deckard et al.. 1993). These material systems include 

binary and ternary mixtures such as bronze-nickel and tungsten carbide-cobalt-nickel. The 

nickel is the high temperature component and bronze forms the liquid phase during SLS 

processing. With this material system densities up to 80% of theoretical density were 

attained. To increase the density o f bronze-nickel parts to 95% of theoretical density, 

traditional liquid phase sintering at elevated temperatures was used (Agarwala et al., 1993).

Carter et al (1993) sintered iron powder using direct laser sintering, but the final 

density was very low (35% of theoretical density). Carter explains that due to the greater 

thermal contraction on the upper surface of each layer the sintered powder tends to warp 

upwards. They built an anchor o f thin sintered layers onto which the actual structure was 

constructed to overcome this problem. Other ways to avoid warping and distortion of 

layers include; heating the powder bed (Carter et al, 1993; Klocke et al., 1995) and 

bonding the part to a rigid sample o f the same material during the first stages o f  the 

sintering process. Simchi et al (2001) investigated laser sintering of steel based powder 

mix. They noted that careful consideration o f shape, size and distribution o f the particles 

and the chemical constitution of the powder system can increase the powder bed density 

for laser processing. They reported densities o f 90-97% theoretical for the laser sintered
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material without shrinkage, and 99% of theoretical density after a post processing step. 

Another material approach was a cermet composite used for the production turbine sealing 

components. This cermet composite is composed o f two different types o f titanium coated 

ceramic abrasive grit, a nickel alloy matrix, and a lower melting point cobalt based braze 

material (Fuesting et al, 1996). They reported that energy densities o f 2000 to 4000 J/cm" 

were required to eliminate porosity. Energy densities of 1900 to 2200 J/crrf produced a 

very fine-grained equiaxed fully dense super-alloy microstructure which may exhibit 

super-plastic properties at elevated temperature, and energy densities in the range o f 2500 

to 3500 J/cm2 produced a fully dendritic microstructure. They also reported that 

mechanical testing results indicated that direct SLS can produce properties equivalent to or 

better than conventional labour intensive processing.

Wilkening (1996) has been successful in sintering a mixture of Ni, Cu, Sn and P 

using direct laser sintering. The porosity o f parts produced by this process is approximately 

25%, which requires a secondary process to fill the pores improving the mechanical 

characteristics o f the part and creating a much smoother surface. This process is 

commercialised by EOS GmbH with the name o f EOSINT M. The EOSINT M builds tools 

for plastic injection moulding and metal die-casting. The system offers a high performance 

layer manufacturing technique where even complex shapes can be built with ease, 

including geometric shapes and internal cooling channels which are impossible to make 

with conventional tools This sinter station machine can build metallic parts up to 250 x 

250 x 185 mm3 using a Nd:YAG laser. The laser scan speed reached 3000 mm/s. Although 

in some studies, as reported above, it is possible to obtain parts with high density using 

direct metal sintering (Klocke and Wirtz, 1996; Das et al., 1997) the materials are limited, 

and the accuracy and surface finishing is poor.

Moreover regarding other aspects o f direct laser sintering. Niu and Chang (1999 

a) discuss surface tension effects and conclude that surface tension driven fluid flow 

dictates the melt pool shape. The strong surface tension forces will act to minimise the 

surface area further by breaking up the liquid bead into a series of balls. This phenomenon 

was found to be a major concern during early direct metal laser sintering research.

Niu and Chang (1999) further discussed that the balling problem for M2 high

speed steel could be controlled at scan speeds lower than 20 mm/s. They also demonstrated 

that at high laser powers (80W-150W) and scan speeds o f 10-20mm/s balling became more
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widespread. Hence a balance between power and speed had to be found. This could be 

achieved by decreasing the scan speed further (<10 mm/s). Niu and Chang (1999) 

attempted to use Raleigh instability to explain the phenomena of melt balling, which 

describes the break up kinetics of a column o f liquid, and could be used to help explain 

melt pool balling during selective laser melting.

O’Neill (2002) using an Nd:YAG laser sintered a 316 L stainless steel powder 

batch. O ’Neill and concluded that the scan spacing and scan length have a high impact 

over the sintered coupons. O ’Neill also discussed that scan spacing had a significant effect 

on the total energy delivered to the powder layer. He added that a small scan spacing 

resulted in an increase in overlap of the scan lines and hence an increase in the total energy 

imparted on the powder layer. Also, a low scan spacing was shown to produce strong 

fusion bonds at high speeds and relatively low powers.

Figures 1.23, 1.24 show some coupons obtained by O'Neill using a Nd:YAG

laser.

Single Layer Coupon produced in CW mode 
at 75W Power, 400mm/s scan speed, 
50micron scan spacing

Single Layer Coupon produced at 
30kHz Pulse frequency, 75W 
average power, 400mm/s scan 
speed, 50micron scan spacing

Figure 1.23 Layers scanned using 75W laser power O'Neill (2001)
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Minimal tearing evident 
as fine tears o n  leading 
e d g e  (left h a n d  side)

Size of tear across 
leading e d g e  increases

Large tear across leading 
e d g e  a n d  multiple small 
tears across surface of 
co u p o n

Increasing size an d  
frequency of tears across 
whole c o u p o n

Large multiple tearing 
across co u p o n  resulting 
In failure to  rem ain Intact

Figure 1.24 Coupons scanned at different scan 

speeds and laser settings using a Nd:YAG 

Laser, O ’Neill (2002)

O’Neill also observed the formation o f a first scan line. He said that as the first 

line is created the temperature distribution is uniform across its cross-section. As further 

lines are scanned a steep thermal gradient is generated and differential thermal expansion 

occurs. At smaller scan spacing, more scan tracks are required to make the layer and the 

cumulative compressive stress is increased and therefore several tears may appear across 

the layer. Regarding the scan length, O'Neill added that the time between scans is a 

significant factor. As the scan tracks increases in length, the time taken to complete a 

single track is increased, resulting in a longer exposure to the heat source. In this case, the 

bending effect appears due to the thermal gradients. Figures 1.25 shows the coupons 

scanned at different scanning conditions (O'Neill 2001).
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In addition, Hauser et al. (1999 a) carried out research using a CO2 laser on 

stainless steel powder. The research proved that the presence of oxygen within the 

sintering atmosphere and powder bed allows surface oxides and slags to form as the 

powder is heated and melted by the scanning laser beam. They added that the elimination 

o f all oxygen is required in order to reduce the melt volume allowing surface tension forces 

to become less dominant. In addition, Hauser et al. (1999 a) found out that in order to 

obtain a good sintered layer the length of scan should be short. They carried out their 

research using direct laser sintering for powder beds at room temperature. Hauser further 

said that the thermal gradients that exist during sintering caused severe warping and stress 

cracking when the scan length was long. Figure 1.26 and 1.27 show the result obtained by 

Hauser et al. (1999 a) using 316s HC powder.

Process conditions.
• 70W at 5mm/s. * ~80mm scan length.
• Scan spacing 0.55mm * 100 scanned lines
• Powder batch -75 + 38^m  - *  Scan direction 

Sintered thickness = 0.60mm

Figure 1.26 Warping coupons with scanned using a CO2 laser (Hauser et al. 1999 a)

Hauser et al. (1999 b) further said that the range o f conditions for successful 

multiple layer sintering were similar to conditions for single layer sintering. They also 

found that higher energy densities (>1.5J/mm2) were needed in order to improve the layer 

bonding.
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► Scan dircct ion

y
-

Proccss conditions.
• 70W at 5min/s.
• Scan spacing 0.55mm
• Powder batch -75 + 38)j.m

Sintered thickness = 0.65mm

Figure 1.27 Influence o f scan length on coupons scanned using a COi laser

(Hauser et al. 1999 a)

120 scanned lines

Dewidar (2002) carried out research using a High Speed Steel powder. The 

laser used during this research was a CO2 laser. Dewidar also added, like all the 

researchers before him, that the length o f each scanned line within a raster scan set is a 

major contributor affecting the degree o f warping of a single layer. As the scan length 

increases the probability o f warping also increases resulting in dramatic upwards 

movements o f single layers. He also noticed that the monolayers built at low laser powers 

were fragile. Figures 1.28 and 1.29 shows some o f the coupons scanned using an argon 

atmosphere by Dewidar (2002).

« Laser Power =70 W.
I . .  Scan speed 2m m /s, and 

ijjjjliljjlj Scan spacing 0.682m m  |j ||ly il||||

Laser Power 60  W,
1 1 I Scan speed 2m m /s, and 

Im m il Scan spacing = 0.682m m

Figure 1.28 Coupons scanned using a CO2 laser in an argon atmosphere (Dewidar 2002)



Dewidar also found that the best conditions to build a good monolayer (high 

quality, uniformity, good density, and repeatability) are: laser power=50 W, scan 

speed=lmm/s, and scan spacing=0.682 mm using a CO2 laser beam with a diameter of 1.1 

mm. He added that even in this case there are possibilities of cracks to appear on the layer 

surface. Dewidar tried different strategies of rastering but each proved to be unsuccessful. 

Figure 1.29 shows some of his attempts.
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Figure 1.29 Rastering strategies used by Dewidar 2002 with a HSS powder

Although in some studies, as reported above, it is possible to obtain parts with 

high density using direct metal sintering (Klocke and Wirtz, 1996; Das et al., 1997. Hauser 

et al. 2001, O ’Neill 2001, Dewidar 2002) the accuracy and surface finish are poor. More 

research is needed to be able to improve the properties and accuracy of parts that are 

produced by direct laser sintering.
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1.8 Present work

In this chapter previous work has been examined regarding various rapid 

prototyping techniques and in particular selective laser sintering. The present work aims to 

gain a better understanding of direct selective laser sintering of stainless steel powder 

without using any binder. The differences between the sintering of polymer powders and 

metallic powders are represented mainly by their properties and how the metallic powders 

act during the sintering process.

1.9 Goals and objectives of the thesis

The main objective of the research presented in this thesis is the improvement of 

the direct selective laser sintering stainless steel, 314HC, powder and to improve the 

powder delivery system in the Leeds High Power Sintering Station. The goal is to develop 

the understanding of the effects of laser scanning parameters, laser power, scan speed and 

scan spacing on processing. Further aims are to understand powder bed properties, to 

develop new overlapping strategies for improving part density, to design a new delivery 

powder mechanism for the sintering area and automation of the entire process. Results of 

this work will then be used to build suspended single layers typically found at the start of a 

build or overhanging features. The results of this research will be used to produce multiple 

layers and to analyse the importance of the layer thickness during the build process.

1.10 Management of the Thesis

This thesis is comprised of five chapters. Chapter 1 contains an introduction 

and literature review of existing knowledge regarding rapid prototyping and in particular, 

the selective laser sintering technique. Chapter two describes the techniques used in 

powder preparation and discusses the apparatus used to measure the powder flowability 

and powder thermal conductivity. The Leeds High Power Sintering Station (LHPSS) and 

the slot feed mechanism design for use with the LHPSS are also discussed. Chapter three 

contains the preliminary experimental tests carried on the stainless steel powder followed 

by sintering tests results for single tracks using different apparatus settings and two 

different atmospheres. Chapter four contains the research results for single layers and



multiple-layers created using different conditions. Chapter five contains the discussions 

and conclusions.
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CHAPTER 2 

EXPERIMENTAL EQUIPMENT AND METHODS

2.1 Introduction

Chapter two of the thesis explains and presents all the equipment and research 

methods used during the research undertaken involving direct selective laser sintering of 

stainless steel powders. Additionally, a part o f this chapter presents the design process of 

the new slot feeder mechanism used in the Leeds High Power Sintering Station.

Before entering into details, a brief survey of the three main parts of the thesis- 

the sintering of single tracks, the sintering of layers and multiple-layers and the 

development of powder mixing and spreading procedures and equipment - is presented, to 

give a context to the remainder of the chapter. The first task of single track melting 

experiments was performed under different conditions using powders from a single size 

range and from a mixed size range. Four batches of powder have been used, each having a 

different particle size, and melted using different laser powers, scan speeds and scan 

lengths for manufacturing a series of line scans. The chamber atmosphere used during the 

experiments was controlled and argon gas was pumped into the chamber continually. The 

experiments include depth, width and mass measurements of the sintered tracks, 

comparative observations between the different powders and microscopy studies 

monitoring the changes in the tracks microstructure. The research regarding line scans has 

been conducted especially to determine the effects of the powder, scanning and chamber 

conditions on melt pool shape. Furthermore, observations were carried out specifically to 

collect information about the differences that took place when mixed powders were used 

compared with single batches of powder. As a result, all the information obtained was 

compared and mapped.

The second task of this research was developed from the information obtained 

from the first task with emphasis on morphological changes, surface roughness and 

porosity during single and multiple layer production.

Finally, since it was important at the beginning of this study to create a level 

of uniformity in the deposited powder layer, it was also thought usetul to use powder-
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mixing equipment to control particle distribution homogeneity in the powder before 

powder spreading over the sintering area. In addition, the necessity of building multi layers 

has required the development and design of a new spreading mechanism trying to replace 

the previous one, which did not meet expectations.

Chapter two is organized in three sections which summarize the materials, 

experimental procedures and equipments, calibration procedures and software used during 

the entire process. Section 2.2 describes the experimental powder, including considerations 

regarding powder mixing, powder flow rate, powder density and powder thermal 

conductivity; section 2.3 describes the experimental sintering station, the Leeds High 

Power Sintering Station (LHPSS). Besides, section 2.3 describes the design process of the 

slot feed mechanism (SFM), which is in use in the LHPSS. Also, this section explains the 

software used for controlling the SFM and the HPGL code used to control the laser beam. 

Section 2.4 describes the experimental conditions and the calibration procedures. Section

2.5 is the chapter summary.

2.2 Powder composition, size range and storage

The four batches of powder used in this research were argon atomised 

austenitic stainless steel alloy of type 314S HC. The acronym HC signifies the high content 

of carbon that existed within the stainless steel alloy powder. Osprey Metals Ltd. supplied 

the powder and each batch is separated by particle size distribution as follows: - 

300+150|xm, -150+75jxm, -75+38p,m and -38|jim. The table 2.1 shows the main 

components which are present in 314S HC powder.

Table 2.1 Composition of 314S HC powder

Elements C Fe Ni Si Cr

W t% 0.4 53.6 20 1 25

The gas atomised production method has been chosen because the particles 

obtained are spherical in shape, show low surface oxidation and smooth surfaces. It was 

considered that these characteristics permit a more accurate evaluation of flow properties 

between the four types of powders and diminish the problems of powder contamination.
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Osprey Metals Ltd delivered the powder in self-sealing containers (figure 2.1) of 

five kilograms each. These containers were used also for powder storing. The experimental 

powder has been filtered to remove the larger bits of melted metal after use in the sintering 

station and stored separately in different containers (figure 2.2).

Figure 2.1 Self-sealing containers Figure 2.2 Containers used for storage

Osprey Metals Ltd (5 kg each) of the used powder

The experimental powder was used in its initial state without attempting to 

change its state by warming it up. But in some experiments the powder was degassed by 

infiltrating argon gas throughout the powder bed during the sintering process.

Throughout the duration of this research the powder handling was kept to a 

minimum. Two reasons were considered for this approach. Firstly, to keep the 

reproducibility of data by preventing particle segregation and exposure during handling. 

Secondly, to reduce the adsorption of contaminants from the atmosphere.

2.2.1 Powder mixing

Powder mixing tests were carried out using five v-cone mixers. The design 

allowed for several different powder samples to be mixed simultaneously. Each v-cone 

(figure 2.3) consisted of two stainless steel tubes welded together to form a 60" V form. 

Powder was placed in the mixer through the tube open ends prior to being sealed using two



threaded caps. Each cap was fitted with a rubber o-ring to ensure the sealing of the v-cone.
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The mixing was carried out using rotation provided by a lathe (figure 2.4). 

The procedures were as follows. All five v-cones were fitted to a central shaft, displaced 

by 72° rotation to reduce the vibration during use. The mixer assembly was placed between 

centres of the lathe and turned for the amount of time required. Figure 2.4 shows the mixer 

assembly fitted between the lathe’s centres.

Revolving centre

Figure 2.4 V-cones mixer assembly used for powder mixing

Chuck ^
V-cones

2.2.2 Powder flow rate, density and thermal conductivity

Powder flow rate

Flowability rate of the powders was characterised by two main methods. Either 

the Hall flowmeter test or the Carney flowmeter test was used. Two methods were needed 

due to the poor flow rate encountered for the very fine particle size powders, as will be
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seen in Chapter 3. A flowmeter was designed, manufactured and supported using a 

laboratory clamp stand. The experiments were carried out in accordance with the standard 

tests for Carney and Hall flow meters. Figure 2.5 shows the Hall funnel built for this study. 

The required specifications and engineering drawings can be found in Appendix A. Figure

2.6 shows the Hall funnel assembly.

Figure 2.5 Hall’s funnel build

Figure 2.6 Hall’s funnel assembly

The flowability is measured by the time required for 50g of a powder to flow 

through the flowmeter under the influence of gravity. The How time of a 50g powder 

sample is determined in seconds. The flow time is dependent in a complex manner on the 

internal friction between the powder particles and the funnel geometry. Flowability is 

greatly affected by the particle size and shape. Very fine powders flow poorly or not at all 

because of the forces which appear at the surface of the powder.

The Carney funnel has the same dimensions as those of Hall's, except for a 

larger orifice diameter of 5mm compared with Hall's of only 2.5mm (figure 2.7).

V.
Powder

Figure 2.7 Schematic view 

of Carney flowmeter

50mm

Flowmeter

Figure 2.8 Schematic view of Carney flowmeter assembly
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Figure 2.8 shows the standard clearance from the flowmeter lower base to the collecting 

container.

In order to determine the influence of the powder flow on direct laser sintering, 

powder flowability rate was measured. Besides mono size powders, mixed powders were 

also used and a comparison between the two types of powders was considered.

Table 2.2 summarises the experimental tests carried out.

Test

number

Powder mix 

(pm)

Powder mixing 

times (min.)

1 1.1 -38(im 15,30,45,60

1.1.2 -75/38 urn 15,30,45,60

1.1.3 -150/75|im 15,30,45,60

1.1.4 -300/150|im 15,30,45,60

1.1.5 -300/150 with addition 

of 0 to 100%, -38|am

15,30,45,60

1.1.6 -150/75 with addition 0 

to 100 %  o f -38|im

15,30,45,60

1.17 -75/38 with addition o f - 

Oto 100 %  o f 38(im

15,30,45,60

1.1.8 -300/150 with addition

o f Oto 100 %  o f-  

75/38nm

15,30,45,60

Table 2.2 Flow rate experimental tests number

Powder density

The powders may be mixed to produce a powder of the required uniform 

particle size distribution from different selected fractions or to obtain, if  possible, a 

statistical distribution of the particles for powders produced by different methods.

The aim of preparing a powder of specific size composition is to optimise the 

apparent density of the powder, flow rate and powder sinterability. The quality of the 

mixture depends on the properties of the powder such as density, particle form, mixing 

ratio, mean particle size, particle size distribution and surface structure.

If  the mobility and density of the particles differ as a result o f their forms and 

sizes, the effect of external forces may cause segregation. The susceptibility of the powders



to segregation was minimised during this research by eliminating the powder storage time 

between mixing and use.

V-cone mixers are used most extensively and are suitable for dust fractions and 

fine-grained materials. The powder mixing experiments were carried out using the V-cone 

mixer. The stainless steel powder was transferred from its sealed plastic container into a 

small plastic tray. The V-cones were filled to 30% of their capacity each. Also, when only 

a small amount of powder was required, only one V-cone was used for mixing, keeping the 

others empty. It was suggested that a powder volume of 25-40% used with the V-cones 

would be optimal for powder mixing process.

The powder mixing times chosen during the experiments were 15min, 30min, 

45min and 60 min. The chuck-selected speed during the mixing process was chosen to be a 

fixed value of 77 rpm. These values were kept constant during the experiments.

In addition, based on results from single powder experiments the batches of 

powder were coupled and mixed together in different size fractions. The measurements of 

different size fractions were carried out using a machined nylon cup.

Figure 2.9 shows the nylon cup of known volume used during powder density 

calculation. The plastic cup physical parameters are as follows: 

weight-4.88 g 

inside height - 10 mm 

inside diameter - 35mm
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Figure 2.9 Machined nylon cup

The powder density was measured before and after mixing. The density o f each 

shot was calculated according to equation 2.1:
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where M is the weight of the powder, Me is the weight of the cup and V is the volume of 

the cup.

Table 2.3 summarises the powder density experimental tests carried out for all 

four batches of powder

Table 2.3 Powder density experimental tests

Test

Number

Powder mix 

(pm)

Powder mixing 

times (min.)

1.2.1 -38(im 15,30,45,60

1.2.2 -75/38 nm 15,30.45,60

1.2.3 -150/75nm 15,30,45,60

1.2.4 -300/150(jm 15,30,45,60

1.2.5 -300/150 with addition 

0 to 100 % o f -38nm

15,30,45,60

1.2.6 -150/75 with addition 0 

to 100 % o f -38nm

15,30,45,60

Powder thermal conductivity

In selective laser sintering (SLS), thermal conductivity of the powder bed plays a 

key role in conducting the heat of the laser beam within the powder bed. Measurements 

regarding the powder thermal conductivity were carried out using a conductivity rig. 

Figure 2.10 shows the schematic view of the conductivity rig, its connectors and PC and 

table 2.4 summarises the thermal experiments carried out.

Figure 2.10 Schematic view of thermal conductivity rig connectors and PC
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Table 2.4 Thermal conductivity experimental tests

Test

number

Powder mix 

(pm)

Heating time 

(min)

1.3.1 -38jim 75,100,125,150

1.3.2 -75/38 urn 75,100,125,150

1.3.3 -150/75nm 75,100.125,150

1.3.4 -300/15Ojim 75,100,125,150

Figure 2.11 Thermal conductivity rig 

Figure 2.11 shows the thermal conductivity rig used during the experimental

tests.

A comparative experimental method was used (A. Tontowi. T.H.C.Childs, 

2001). The heat conduction through a reference disk was compared with that through the 

powder specimens. A heat source situated on top of the rig, was heated up (for a schematic 

view see figure 2.12). The heat was transmitted through the powder specimens and 

reference disk. A one-dimensional flow was created by insulating the stack o f disks, firstly 

placing the disks in a plastic isolator tube and then filling the tube with glass wool. A new 

tube is placed over and locks the whole system.

The temperature variation along the whole assembly is measured by eight 

thermocouples. There are two thermocouples allocated for each reference disk (T1 to T8 

in figure 2.12). The reference disks are disks made of a material with a known thermal 

conductivity. The reference disks were made of austenitic stainless steel 316 with a thermal 

conductivity of 15.3 W/mK. The thermocouples enable the temperature gradient in each of



the four reference disks to be obtained. By extrapolating the temperatures in the reference 

disks to the top surface and bottom surface of each specimen, the unknown conductivity of 

the powder can be estimated. Comparing the temperature gradient in the powder specimens 

with the temperature gradient of the reference disks permits the powder specimens’ 

conductivity to be calculated.

Data collection has been made using the six thermocouples, which were connected 

to an Analogue to Digital Converter PCL818HG and then linked to a PC 386 computer. 

The computer program recorded the temperature gradients of all thermocouples over a 

period of time. The thermocouples used during the experiments were K-type able to 

measure temperatures up to 400°C.

The powders used during the experiment were prepared by loading them directly 

in the thermal conductivity rig. The empty containers each have the same diameter as the 

comparator of 68 mm but the thickness of the containers are different. One has a thickness 

o f 3mm and the other one of 6mm. The powder volume in each container can be calculated 

as follows:

3mm container V3 = 371 (68.14)2/4 mm1 

6mm container V6 = 6n (68.14)2/4 m m '

Then, the powder density can be calculated by dividing the weighed powder mass bv the 

powder volume.

Figure 2.12 shows the conductivity rig. If there is no heat loss through the side

walls:
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K
rdT

V ^  ) comparator

= K.
dT

dz
(2 .2)

where K is the thermal conductivity and
dT_

dz
is temperature gradient along the stack.

Subscripts c and s stands for comparator and sample respectively, l iquation 2.2 holds for

all four comparators and both samples.

The total temperature drop AT sample across a sample has two terms, one, A l 0. due 

to contact resistance at the comparator/sample interfaces, the other due to conduction:
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(IT

dz ) s

Substituting from equation 2.3

A T  _ A Tŝample ~ ^TQ +
KS

Az . (2.3)

V /  comparator

Az, (2.4)

Thus a graph of ATsamp|e against Azs
v Jc

should be a straight line with gradient (Kc/Ks).

If Kc is assumed, Ks can be obtained. This is the procedure adopted in this thesis, 

with checks on the validity of equation 2.2.

Heat Source

(St. Steel 316)

^  Reference

^ Specimen-1 

| SS 3 14s HC Powder 

12si = 6mm

_ J zs2 = 3mm

Specimen-2 

SS 314s HC Powder

Figure 2.12 Schematic cross section view of the conductivity rig
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2.3. The sintering station (LHPSS)

All sintered parts presented later in this thesis have been made using the Leeds 

High Power Sintering Station, which has a maximum laser power of 250W using a 

continuous wave CO2 laser.

The sintering station is formed of six main sub-systems: 1) the laser system 

and optics system, 2) the X-Y scan head, 3) the chamber, 4) the powder spreading 

mechanism, 5) the z-motion control table and 6) the PC which controls all the major 

operations during the experiments. Control of the system is centred mainly on the PC 

which runs the X-Y scan head, and the calibration software, PC-Mark and Postgrid. 

Additionally, the PC runs the motion control program for positioning the table and the 

hopper, DMC motion program, and the software, L-Scan, which generates HPGL data 

files.

2.3.1 The original selective laser sintering station

Figure 2.13 shows the LHPSS. The figure shows all six main sub-systems, 

which make up the sintering station.

Figure 2.13 Schematic view of the Leeds High Power Sintering Station

The laser used during this research was a SYNRAD 240 Watt “Duo-Laser®' 

CO2 Laser firing an infrared beam. The wavelength of the infrared beam is 10.6 pm.
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Two 60-1 series tubes, each of them with an output of 125W, make up the 

laser head. These tubes are mounted one next to the other and each of them is controlled by 

a water-cooled solid-state RF power supply. An optical beam combiner within the laser 

head combines the output from the two tubes. The combiner is almost 100% efficient in 

merging the two linearly polarised beams, providing a maximum laser power output o f 250 

W.

Furthermore, the as-supplied output beam diameter at the laser head system 

was 4.4 mm. V&S Scientific Ltd. supplied a BEZ-10 beam expander. This was positioned 

at 350mm from the laser head and was used to focus the infrared beam onto the powder 

bed. The spot diameter obtained at the surface of the powder bed was 1.1mm and this 

setting was used throughout the duration of this research.

The laser power was controlled either manually or by computer. The manual 

control was realized by using a Synrad UC-1000 universal laser controller that was adapted 

to house a potentiometer with a 1000 division numerical counter. The potentiometer was 

used to manage the laser output power and the accuracy obtained with this was higher than 

when the supplied potentiometer was used (UC-100). Computer control allowed for faster 

processing sequence times but only eight different laser powers could be defined for a 

scanning routine. In conclusion, both control methods have been used during the research.

General Scanning Inc. (Banbury, UK) supplied the type G325DT scan head, used 

to raster the laser beam over the sintering area. The mirrors (figure 2.14) composing the 

scan head are placed perpendicular to each other and each has a scan angle of 40° to the 

highest point. The lower mirror is used for the X scan and the upper mirror is used to 

reflect the X-axis in the Y direction. The Y direction is perpendicular to the powder bed 

and, as a result of the reflection, the laser beam is redirected through 90° onto the powder 

bed surface. Limited rotation closed loop galvanometers control the mirrors' movements 

through a Digital Scanner Controller (Hauser, 2001).
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Figure 2.14 The perpendicular mirrors

The chamber, used for ensuring that sintering atmospheric conditions are met, is 

described in this part o f the thesis. Figure 2.15 shows the build chamber. The chamber’s 

walls and roof were built using 10mm thick stainless steel (AIS1 304L) plates, which were 

welded together and finally attached to a stainless steel base plate, 25mm thick. The cavity 

formed in this way was 460mm long, 260mm high and 250mm deep. Moreover, one of the 

walls was machined and a doorway 250mm long and 150mm high was built in the middle 

of the wall. The doorway gives access to the powder spreading mechanism and to the 

sintering area for removing the sintered parts as well. The doorway is fitted with an access 

plate, which is equipped with a polycarbonate-viewing window.

Figure 2.15 The build chamber

Two holes were machined, one into the base of the chamber to give access to the 

build cylinder and the piston unit and the second one into the chamber root to clear the
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access of the laser beam to the sintering area. Both holes were centred on the same Y-axis 

line and both have the same diameter of 75mm.

On top of the chamber, on the same centre line, was attached a cylinder. 180mm 

long, 6mm wall thickness and the same diameter as the hole. The cylinder was sealed to 

the chamber ceiling with 12 M8 cap head bolts. Also, the upper end of the cylinder was 

capped by a flanged collar which housed a Zinc-Selenium laser window, through which the 

laser beam entered the sintering area.

In addition, other small holes were drilled into the chamber walls, which were 

used to house evacuation pipes and the sealed passage used by the stepper motor to move 

the slot feeder mechanism, situated inside the chamber.

The build cylinder is attached to the chamber floor on the same centre line as the 

hole made in the chamber floor. The hole has two main functions, firstly to contain the 

deposited powder and the sintered parts and secondly to house the piston. The cylinder 

dimensions are 150 mm length, 75 mm hole diameter and 0.6 mm wall thickness. A 

stainless steel flange was welded to one end of the cylinder. The other end of the cylinder 

was sealed with a threaded cap and a vacuum seal. A gas outlet pipe was fitted at the end 

and connected through an Edwards fine leak control valve to the vacuum pump. Moreover, 

the end housed a linear bearing, which is the connection and motion transmitter between 

the motion control table and the piston head.

In addition, the piston head houses a 3065/15M-sintered disc, with porosity of 5 

pm, inserted between two perforated stainless steel plates. The sintered disc allows the 

inert gas to be evacuated from the chamber through the piston head and powder, while 

preventing exit of the powder into the piston head.

All this section has described the sintering machine as developed by others. In 

the next section original improvements of this thesis are described.

2.3.2 Powder spreading development

In order to start the process of building multiple layers it was necessary to 

develop and to implement a new spreading mechanism. The requirements for the new 

system were to spread layers of powder with less then 0.5mni thickness, while creating as
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little disturbance within the already deposited powder bed as possible. A new spreading 

mechanism was required due to the poor quality of the powder bed flatness obtained with 

the old spreading mechanism.

The previous spreading mechanism, used in the LHPSS pushed the powder over 

the sintering area. This process of moving powder by pushing induces a movement of the 

powder particles in the powder bed. The movement of the powder particles affects the 

layers below the sintering surface and can cause a movement of the sintered layers. The 

new spreading mechanism tries to eliminate these problems by dropping powder over the 

sintering area from a slot feed mechanism (SFM).

During the design process other possibilities were considered but proved to be 

not successful. The major problem which had to be overcome was the small volume inside 

the chamber. Besides, this was a need to limit the drilling of new holes into the chamber 

walls because more holes in the chamber walls would have meant more problems 

regarding the sealing of these holes and it would have been more difficult to keep a 

constant atmosphere inside the chamber.

With the aim of building multiple layers in mind, the design process started by 

building an exact replica of the chamber floor outside the chamber. A piece of wood was 

used in which were drilled holes; each one of the holes represents those in the real chamber 

floor. The SFM mechanism was constructed and bench tested offline. The wooden bed was 

also built to fix and align the ball screw, rods and motor.

Engineering drawings of the slot feeder mechanism and a list of necessary 

materials were made. Figure 2.16 show the engineering drawing of the slot feed 

mechanism assembly (at the end of this chapter can be found more drawings of SFM 

parts). The author wants to draw attention to the fact that the figure 2.16 was made at an 

early stage of the design process and that not all the assembly components appear in the 

drawing. Figure 2.16 also shows the frame that initially was intended to support the V- 

hopper. This solution was abandoned later.
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Figure 2.16 Slot feed mechanism assembly

Assembly components used for creating the slot feed mechanism are:

1. Base plate, wood plate;

2. Guide rods;

3. Ball lead screw;

4. Pillow blocks;

5. Hopper end block;

6. Hopper guide plates;

7. Hopper side walls;

8. Pillow blocks spacer;

9. Linear bearings;

10. Clamps;

11. Block spacer;

12. Universal ball joint;

13. Switches;

14. Castellated socket-headed cap screws;

15. Plastic cover;

16. Stepper motor
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The slot feed mechanism for powder deposition works as follow:

1. The hopper is filled up with metal powder.

2. A stepper motor moves the lead screw at a predefined speed.

3. The rotary motion of the ball screw is converted to a linear motion by the pillow block, 

which moves the hopper assembly.

4. As the hopper traverses the build area powder is dropped over the slot.

The slot feed mechanism consists of four principal subsystems: V-hopper. linear 

bearings and hopper guide plates; ball lead screw and the rods; the stepper motor and the 

electronic stepper controller (ESC). Figure 2.17 shows a schematic view of SLF assembly.

The main control unit was centred on a Pentium PC. For security reasons, it could 

be overridden by a manually activated electronic stepper controller. The control unit. CU, 

was used during the research to move the V-hopper in the X direction back and forward 

and to modulate the V-hopper velocity.

Figure 2.17 Schematic top view of the chamber including assembly compounds
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The stepper motor and the electronic stepper controller

Figure 2.18 shows the electronic stepper controller used during the experiments.

8

Figure 2.18 Stepper motor controller

The stepper motor controller was built both as a connecting system between the 

stepper motor and the PC Pentium 386 and as a safety system. Figure 2.18 shows the 

principal functions of the controller. 1 (figure 2.18) represents the limiter button. It is used 

to switch on or off the power of the two switches situated at the end of the two rods. 

Electrical switches were placed as a safety measure in case the V-hopper continues to 

move after the PC inputs the switch off command (figure 2.19 security switches - next 

page).

2 is the button that allows change of the stepper motor's step sequence. It can 

be used to run the motor on full steps or on half steps. Button number 3 (figure 2.18) is 

used for changing the control from manual to automatic.
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Figure 2.19 Security switches - turns the power off

4 is used to vary (increasing or decreasing) the motor’s number of steps. 5 is 

used to change manually the direction of the V-hopper. 6 is used for manual movement of 

the V-hopper, number 7 is the feeder and finally, number 8 is the 25-pin ribbon connector 

with the PC. Alternatively, for easier use of the stepper motor controller an external 

manual switch connected to the SMC using a spiral cable was considered and 

implemented. The external manual switch replaced the button number 6 especially during 

the more delicate positioning manoeuvres of the hopper.

The stepper motor used for moving the ball lead screw was a 5V motor. Figure 

2.20 shows the stepper motor assembly. Trying to avoid drilling more holes into the 

chamber walls, a compromise solution was considered. The pump evacuation pipe was 

moved to the hole in the middle of the chamber wall that was used before by the old 

manual spreading mechanism and the motor shaft was fitted into the old evacuation pipe 

hole.

Furthermore, a complicated solution for holding the stepping motor in place was 

avoided by use of a metal housing block, as shown.
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Figure 2.20 Stepping motor (5 V) assembly
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The V-hopper design was based on the results obtained during the powder 

flowability experimental tests. An association between the V-hopper and Carney 

flowmeter has been kept. For instance, the distance between the two blades of the hopper is 

5mm the same as the Carney flowmeter gap; the angle formed by the blades and flowmeter 

sidewalls is the same.

The V-hopper assembly has two main functions; firstly to sustain the powder 

weight (6-7 kg of powder) and secondly, to ensure a smooth movement of the assembly 

during the powder spreading process.

The V-hopper was made of two stainless steel plates of 1.5mm thickness, 

112mm high and 130mm wide; and two stainless steel sliding bases of 5mm thickness, 

98.4mm high and 107mm wide. The 5mm thick sliding bases were machined to a 

trapezoidal shape (figure 2.21).
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Figure 2.21 The end plate wall of the V-hopper

One face of each sliding base was milled off and a guide supporting rib was 

made (10mm wide and 98.4mm high). The longitudinal ribs were used as a connector and 

sliding system between the V-hopper and the metal plates. Moreover, the distance between 

the hopper and the chamber floor could be adjusted easily using the clamps (figure 2.22) 

situated at the back of the hopper. The clamps are attached by the sliding ribs, described 

before, using an M4 cap head bolt.

Figure 2.22 Side view of the V-hopper (with emphasis on the sliding ribs)
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Furthermore, each linear bearing (C) was attached to a metal plate (A). Two 

linear bearings were used for each side of the V-hopper. A metal shred (D) was used to 

connect the linear bearings and to ensure a constant distance between them as well as to 

keep a constant distance between the two metal plates attached to the bearings (figure 2.22 

and 2.23). Besides, as a safety measure a block spacer was used to keep the distance 

constant (B). Figures 2.22 and 2.23 show different views of the V-hopper assembly. In the 

end, the block spacer (B) was replaced by a female screw not-thread. This variant was 

considered more advantageous, especially during the adjusting of the distance between the 

powder bed and the V-hopper, compared with the previous alternative.

Clamp

It

r

i)

Figure 2.23 Back view of the V-hopper including the clamp and linear bearings
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Figure 2.24 Top view of V-hopper assembly but the side-walls of the hopper

Cross

ribs

The ball lead screw and the connecting tie rods

The ball lead screw plays an important role during the spreading process. The 

precision of the spreading and the flatness of the powder bed depend on the precision and 

smooth movement of the lead screw.

The precision lead screw, was a trapezoidal rolled stainless steel shaft of 12mm 

diameter and the trapezoidal-flanged nut was bronze. They were provided by Ondrives 

(Derbyshire, England). The rods have 14 (jmim shaft diameter and are 390mm long. Figure 

2.25 shows the lead screw and the connecting tie rods placed on the wood replica of the 

chamber floor.
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Figure 2.25 The lead ball screw and the connecting tie rods
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Figure 2.26 Inside view of the chamber, the spacer

Moreover, a rigid band-pass (figure 2.25 and 2.26) was designed especially for 

this project. The band-pass was used to ensure parallel alignment of the rods and the ball 

screw. In addition, it was used for increasing the height ensuring that the lead screw axis is 

collinear with the stepper motor shaft axis (figure 2.26).
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Figure 2.27 The rigid band-pass and the universal ball joint

The connection between the lead screw and the stepping motor was made using 

a universal ball joint (figure 2.27).

Due to the severe conditions inside the chamber, for example powder 

infiltration, the lead screw and the connecting tie rods were protected using a plastic sheet. 

The plastic sheet was wrapped around the rods and sealed at each end using a rubber ring 

fastener. The author wants to emphasise that the protective cover seen in figures 2.26, 2.27 

and 2.28 wrap only the connecting tie rods. Due to the intense use of the V-hopper, the 

lead screw protective cover was tom off and removed.

In the end, the V-hopper feeder mechanism was fitted into the chamber (figure 

2.28). As a result, the thickness of the spread powder layers was reduced from 1mm 

thickness down to 0.3mm.

In addition, the powder bed flatness was improved and disturbance within the 

powder bed during the spreading process eliminated. Further, the V hopper’s side-walls 

have been protected from contact directly with the chamber steel floor and also protected 

from wear by attaching an attrition-resistant plastic sheet. The attrition-resistant plastic was 

attached (glued) to each of the hopper sidewalls and the solution proved to be viable during 

the research carried out on the sintering station. The powder bed flatness was not alfected 

by the using of the attrition-resistant plastic at the bottom of the V-hopper (figure 2.29).
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Figure 2.29 Attrition-resistant plastic attached (glued) by the V-hopper sidewalls
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2.4 Software’s and automation of the process

One of the main goals, besides the improvement of the powder spreading, was 

the automation of the entire process. The automation of the entire process involves the 

movement of the piston-table and the V-hopper.

Initially, a Pascal software program was written for controlling the V-hopper 

spreading process (Appendix B). Later, the Pascal software program implementation was 

discarded because of difficulties in controlling both the V-hopper and the piston-table at 

the same time. Instead, a Galil DMC controller card was adopted. A DMC 1040-control 

card was acquired. 1040 represents a card that can control four moving axes at the same 

time. One axis was used to control the Y-axis, the motion table, another one was used to 

control the X-axis, the V-hopper, and the last two were left empty for future development 

o f the system. A computer software program using a DMC controller program was written. 

The software program could control and modulate all the parameters regarding the 

movement of the motion table and the V-hopper.

A second program was used to create input from the DMC controller. The L- 

scan is a computer program which has two tasks to perform within the LHPSS sintering 

station. In the first place, the L-scan program compiled and output HPGL graphic files. 

HPGL (Hewlett Packard Graphics Language) describes 2D graphic files, raster patterns, 

inputted by the user. Secondly, the program had the role of generating a system parameters 

file for switching the system settings for recalibration of the X-Y scan head when the laser 

is focused from the top of the V-hopper to the powder bed (chamber floor). HPGL codes 

were designed to be used with Hewlett Packard pen plotters. HPGL is an easy to use 

computer program. Each point that is wished to be “plotted” is defined using X-Y 

coordinate system (PRx,y). The points’ coordinates and the commands can be easily 

decoded by PC-Mark MT and transmitted to the mirrors. PC-Mark MT is also used to 

control the laser head output and to mark out eight different laser power settings using one 

HPGL file.



Chapter 2 Experimental equipment and methods 1 1

2.5 Experimental approaches

All the research presented in this thesis was carried out using four batches of 

stainless steel powder; two different chamber atmospheric conditions and a range of scan 

speeds, scan powers and laser scanning condition.

2.5.1 Laser power calibration

The laser power output calibration was performed using two laser power probes 

with a ± 6 % accuracy over 600W. The probes were supplied by L.G. Products Ltd (Slough, 

UK). The power of the laser was measured by placing the heat sink of the power probe in 

the path of the laser beam at a position approximately 160mm above the build zone. T his 

position was not critical provided it was at a location sufficiently away from the focal point 

of the laser. At the focal point the high heat intensities could damage the surface coating on 

the heat sink, compromising the accuracy of the probe.

The probe was exposed to the stationary beam for a period of 20 seconds, 

removed, then left for a further 16 seconds before taking the reading. The reading was then 

multiplied by a factory set laser calibration factor of 1.032 to ensure a ± 6 % accuracy. 

Between all measurements, the UC-1000 controller was left in ‘standby’ mode. This mode 

supplied a tickle or pulse (every lp. sec) below the lasing threshold to maintain the plasma 

in the lasing tubes in an ionised state, allowing positive laser switching therefore 

eliminating the need for a warm up period.

Figure 2.30 shows the calibration curve for manual laser power modulation. 

These data were used through out all the experimental research carried out on the sintering 

station. It is necessary to mention here that laser re-calibration was performed typically 4 

or 5 times per year. The data differences were minimum so that it was considered only one 

chart to be presented in this thesis (see figure 2.30).
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Dial Number

Figure 2.30 Calibration graph for manual laser power modulation 

2.5.2 Chamber conditions

The process chamber used during the experimental work contained either an 

air atmosphere or an argon atmosphere. The argon rich atmosphere was achieved by a 

combination of build chamber evacuation (to approximately 50mbar gauge pressure) 

followed by an argon gas purge until local atmospheric pressure was re-established. This 

procedure was repeated twice before balancing the flow rate of argon through the build 

chamber at a slight overpressure (50mbar). Because no flow gauges were available, to 

maintain consistency the flow rate was balanced at the maximum pumping speed of the 

vacuum pump. The inlet flow from the gas bottle was regulated using the LV10K flow 

control valve connected to the outlet flow of the build chamber. Flow from the build 

cylinder remained closed at all times.

Once the flow rate through the build chamber was balanced the build chamber 

was left for at least a 15 minute settling period before laser exposure. These conditions 

were maintained throughout the duration of each experimental test. The total cycle time for 

build chamber conditioning prior to laser exposure was about 20 minutes. The argon was
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supplied by BOC and was bottled with a 99.9 % purity. Trace elements of other gases, 

particularly oxygen, are still likely to reside within the powder bed and build chamber.

2.5.3 Scanning conditions and procedures

A unidirectional single scan was used to sinter a series of single tracks in the 

powder layer (series 1.1 - 30.8). An experimental tray was filled up with stainless steel 

powder and placed on top of the V-hopper. The powder placed in the tray was levelled 

using a metallic ruler. The scan speed used during the experiments was varied between 

25W and 170W. The detailed scan conditions can be found in Appendix E. Table 2.5 

summarises the powder sintering test conditions.

Table 2.5 Selective laser sintering experimental tests

Test serial numbers Powder size Type o f sintering Laser power range (W ) Scan speed range (mm/s)

Series 1.1 ~ 5.8 -300 Track 25-170 1-17

Series 6.1 ~ 10.8 -38 Track 25-170 1-17

Series 11.1 ~ 15.8 -150 Track 25-170 1-17

Series 16.1 ~ 20.8 -75 Track 25-170 1-17

Series 21 .1- 25 .8 300 add 38 Track 25-170 1-17

Series 26.1 — 30.8 150 add 38 Track 25-170 1-17

Series 31.1 — 35.8 -300 Layer 25-130 1-10

Series 36.1 ~ 40.8 -150 Layer 25-130 1-10

Series 41.1 - 45.8 300 add 38 Layer 25-130 1-10

Series 46.1 - 50.8 150 add 38 Layer 25-130 1-10

Series 51.1 300 add 38 Multiple 60-110 1-8

Series 56.1 150 add 38 Multiple 60-110 1-8

Series 57.1 150 Multiple 60-100 1-8

The length of the scan track was kept constant, 20mm. during the experiments 

regarding the single tracks. The influence of track length was not important at this stage. 

The separation between the sintered tracks in the tray was 8 mm. An 8 mm gap was 

considered sufficient to avoid the thermal influences from one track to another during the 

sintering process.

All experiments regarding single layers were based on the information 

obtained from the single track experiments (series 31.1 — 50.8). The layers were sintered 

using the tray. The main advantage of using the tray was that a large number ol layers 

could be sintered using the same environmental chamber conditions. In contrast to this.
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sintering directly on the powder bed enabled the obtaining of only one layer at the time. 

The main reason for using both, the tray and the powder bed, was the impossibility of 

building multiple layers on the tray. Using the tray at this stage just helped to sinter more 

metallic coupons at one time.

Multiple-layer experiments were carried out using the results collected from the 

previous experiments when were sintered metallic tracks and single layers (series 51.1 

57.1). All the experiments regarding the multi-layers building process were carried out 

using the V-hopper. In addition to the optimal scanning conditions obtained from previous 

experiments, several values of layer thickness were chosen, 1mm, 0.75mm, 0.5nim and 

these remained fixed during the experiments.

2.5.5 Test conditions

During the entire research program, the powder was protected from 

contamination using sealed plastic containers. Also, it was tried to prevent the segregation 

of the powder during the storage period. The caps were removed only when powder was 

needed for experiments. The mixed powder used during the experiments has been sintered 

only in a “fresh” state and after use it has been stored in different containers. Furthermore, 

the unused mixed powder that was not sintered during the experiments has been stored 

separately for future use. Moreover, the “old” mixed powder has been mixed again before 

being used in the sintering station, trying to avoid in this way the segregation of the 

powder.

2.5.6 Repeatability and reproducibility of results

The repeatability of results is defined in this work as the consistency of the 

melted tracks for any given powder deposition and at any given point in time within the 

purge cycle. The data repeatability from testing is important especially when comparisons 

between different tests are required. Therefore, it was important at the onset of this 

research to establish and maintain a sufficient level of consistency in the melting results.

To tests the data repeatability, two tracks and two layers were scanned on the 

same powder sample using the same scanning conditions and over a five minute time 

frame within the purge cycle. Each track or layer was then measured, weighed and the
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most pronounced surface irregularities recorded. However, not all conditions displayed in 

the sintering maps created tracks available for measurement. The range of conditions 

available for measurement fluctuated depending on the powder batch being used. These 

tests were repeated for all six batches of powder and all two atmospheric conditions.

The reproducibility of the data is defined in this work as the consistency of the 

melted tracks produced using different powder deposit from the same batch of powder and 

after prolonged atmospheric conditioning. The importance of data reproducibility is based 

on the following considerations:

- testing was carried out over many atmospheric conditioning cycles;

gas purging was often continuous for up to 3-4 hours when using the build plate;

many powder samples were used;

experimental tests were carried out over a long period of time.

2.5.7 Microscopy and Measurement equipment

All sintered metal parts were prepared for microscopic inspection. First, the 

samples were cut using a Struers Actum 5 circular cutting machine provided with a 356CA 

circular cutting wheel (HV 500 grit). Second, the metal bits obtained after the cutting 

operation were mounted using a hot automatic mounting press. The melted plastic powder 

used for mounting was Bakelite moulding powder. In addition, a cold method of mounting 

was used because it has been observed that the hot automatic mounting press induced a 

displacement force within the sintered part which affected the accuracy of the final parts. 

Third, the polishing processes were carried out in four steps. The sintered parts were 

lapped using a Metaserve 2000 grinding wheel using grinding paper (P800 and P I200) and 

Metalo polishing wheels with encloses of 6 p.m diamond compounds and finally, l|am 

wheel diamond compounds. In the end, each sample was etched using Marble's Reagent 

acid. Etching the samples enabled an easier approach during the microscopic search.

The optical microscope used during the research has a digital vernier calliper, 

which was used for dimensional measurement. Mass measurements were performed using 

an electronic balance with 0 .0 0  lg accuracy.

All dimensional measurements were carried out in the x, y and z directions of 

single tracks, single layers, and multiple layers, produced at different scanning parameter
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settings. The equipment used for dimensional measurement was a digital vernier calliper 

with accuracy 0.01 mm and an optical microscope. Dimensional measurements of melted 

tracks, layers, and multiple layers using the electronic calliper were carried out in three 

steps. The first step was measurement of scan length in the x direction for single tracks, X| 

X 2 X 3 and an average was recorded (figure 2.31). The same method was applied for layers 

and multiple layers. Measurement was then continued by measuring the depth in the y 

direction. Three measurements from each side were taken, Yi. Y 2 and Y 3 , and an average 

value was obtained. The final step was measurement of the track width, layer width, and 

multiple layer width in the z direction. The positions of each are numbered Z|, Z 2 , to Z 3 

The average width was then obtained and recorded by summing up these values then 

dividing by three. The same procedure was used to measure single layers and multiple 

layer samples (figure 2.32).

C  3  } v  Y

X  =  X , ,X2 and X3 
<----------------------------------

Y =  Y h Y 2and Y 3

\r

Y

Figure 2.31 Track measuring procedure
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Figure 2.32 Layer measuring procedure

The sintered part density proved to be difficult to calculate accurately due to 

the complex shape and open porosity. As an alternative assessment, the approximate mass 

per unit length was calculated.

2.6 Summary

This chapter has outlined the experimental procedures, which will be used to 

investigate the direct laser sintering of stainless steel powder using a high power COi laser 

sintering station. The results obtained from the application of these procedures are 

presented in the following chapters.
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Engineering drawings used during design process of slot feeder 

mechanism:

Schematic side views of SFM system
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Single needle roller joint - series MN25

Precision rolling ball screw - series RMS 1202 C75 -350

Shaft diameter - 12mm, Lead =2, Root diameter = 11mm
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CHAPTER 3 

STAINLESS STEEL POW DER PRELIM INARY 

EXPERIMENTAL TESTS

3.1 Introduction

In order to complete the objectives set out in this research several different 

tasks had to be accomplished besides the tasks related to improving the sintering station 

which were detailed in chapter two of this thesis. The first tasks presented in the first part 

of this chapter are focussed on powder bed properties. These tasks comprised experimental 

tests regarding the powder densities, powder flow rates and powder thermal conductivity.

The second part of this chapter (see sections 3.5 and 3.6) sets out the results 

obtained for melted tracks using selective laser sintering. Stainless steel 314HC powder 

was melted using a CO2 laser at various scan speeds and laser powers in an oxygen and 

argon atmosphere as outlined in Table 2.5.

The result obtained during these experiments will help to understand and 

improve the selective laser sintering of 314HC stainless steel powder as well as 

accomplishing the main goal of this thesis, the building of multi layers.

3.2 Powder mixing test results

Different powders may be mixed together to produce a powder of the required 

uniform particle size distribution from different selected fractions or to obtain, if possible, 

a statistical distribution of the particles for powders produced by different methods.

Preparing a powder in this way allows control over the apparent density, flow rate 

and sinterability. The quality of the mixture depends on the properties of the powder such 

as density, particle form, mixing ratio, mean particle size, particle size distribution and 

surface structure.

If the mobility and density of the particles differ as a result of their form and 

size, the effect of external forces may cause segregation. The susceptibility of the powders 

to segregation were minimised during this research by eliminating the powder storage 

time.
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V-cone mixers were used to mix the powder and were suitable for dust fractions 

and fine-grained materials. This is the reason why V-cone mixers were chosen for this 

research. V-cone mixers are described in chapter 2, section 2.3.2.

Using monosize spherical particles the maximum theoretical packing density 

achievable is 74%. The packing density can be increased by the addition of much smaller 

spheres filling the interstices between the larger ones. The limiting densities can only be 

reached when all the particles fall into an ideal position.

The research carried out and presented in this thesis regarding the powder 

mixing was performed in two steps. Firstly, single powders were mixed for 7.5, 15, 30, 45, 

and 60 minutes. Secondly, the powders were mixed together in different percentages using 

V-cones (section 2.2.2).

3.2.1 Single powders

Table 3.1 summarises the conditions of the tests and the collected data for all 

four batches of single powder.

Test Number Mass Mass Mass Avg. mass Powder Density Mixing time
(s) (s) (8) (8) Kg/m (min)

43.5074 43.9657 43.0097 43.4942 4499.549 0

-150 43.9846 43.958 43.762 43.9015 4547.873 7.5

microns 44.1302 44.3725 44.393 44.2985 4594.976 15

powder 43.5112 43.7738 44.0639 43.7829 4533.802 30

43.9343 43.9837 43.9244 43.9474 4553.319 45

43.3237 43.7251 43.8409 43.6299 4515.649 60

42.286 42.4677 42.4152 42.3896 4368.492 0

-75 43.0138 44.1314 43.2395 43.4615 4495.669 7.5

microns 43.9875 43.896 43.932 43.9385 4552.263 15

powder 43.8051 43.2594 43.5204 43.5283 4503.594 30

43.0002 43.8661 43.8285 43.5649 4507.937 45

43.0617 43.4958 44.8822 43.8132 4537.397 60

41.065 41.9693 41.5535 41.5292 4266.408 0

-38 42.2804 42.8518 42.1408 42.4243 4372.609 7.5

microns 42.9341 42.5486 42.0828 42.5218 4384.177 15

powder 42.0737 42.2433 42.0285 42.7817 4415.013 30

41.3612 41.2213 42.1655 41.5826 4272.744 45

40.6154 41.8317 41.6472 41.364 4246.808 60

44.5068 44.5456 44.8958 44.6494 4636.609 0

-300 44.4339 45.1733 44.4822 44.6964 4642.185 7.5

microns 45.7089 45.8846 44.8979 45.4971 4737.186 15

powder 44.6153 44.5463 44.6769 44.6128 4632.267 30

44.5498 44.1331 44.7729 44.4852 4617.127 45

44.7921 45.8395 44.4623 45.0.) 13 4681.92 60

Table 3.1 Single powder tests
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These results are plotted in figure 3.1.

Powders packing density vs. mixing time

T im e  (m ln )

Figure 3.1 Powders packing densities measured

Figure 3.1 emphasises the importance of powder mixing for the attainment of 

higher powder packing densities. It is also clear from the graph that mixing time affects the 

powder density, which peaks after 15 minutes. However, the particle size distribution o f-  

38|am followed a slightly different relationship showing a peak in packing density after 30 

minutes of mixing. Furthermore, the -38p.m powder could be over mixed. It started to re- 

segregate after 60 minutes of mixing. The -38p.m powder density after 60 minutes was 

lower then the initial (0 minutes) measured density. The -300/150|a.m, -150/75fitn and 

75/38)j.m powders did not show big changes of the powder densities for the mixing time 

above 15 minutes.
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3.2.2 Mixed batches of powders

The last section showed that a mixing time of 15 minutes optimised the 

maximum achievable packing density for all the powder batches except for the -38pm 

powder distribution. Although, a 15 minutes mixing time appeared to be the optimal time 

for reaching the highest powder density, it was decided to begin inter-mixing the four 

mixed batches of powder for all four time period; 15, 30, 45 and 60 minutes. It was 

considered that data values obtained would give a full picture of the phenomena that may 

occur.

It is known from the literature that the packing density increases with the particle 

size ratio (large diameter/ small diameter). The optimal ratio for obtaining a high packing 

density, with one small particle filling the triangular pores between the large particles, is 

known to be 7/1-ratio. In our particular case the size average ratio was 5.8/1. The minimum 

size ratio used was 3.9/1.

Figure 3.2 shows the data obtained during the mixing tests for -38|am powder 

with addition of -300/150 pm powder while table 3.2 gives the numerical results. The 

graph shows a mixing time of 15 minutes.

Changes in -300/150 microns powder packing density with percentage additions o f-38 micron

powder

Percept (%)

Figure 3.2 -38pm powder packing density with additions o f-300/150pm powder
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Test Number Mass Mass Mass Avg. mass Powder Density Mixing time

(s) (s) (s) (g) Kg/m3 (min)

80%,300 + 20%,38 49.9213 50.019 50.8235 50.2546 5301.658 15

75%,300 + 25%,38 52.9871 53.1059 53.8718 53.3216 5665.254 15

60%,300 + 40%,38 46.9531 47.1391 47.2837 47.1253 4930.378 15

40%,300 + 60%,38 48.3923 48.7102 48.2481 48.4502 4609.254 15

20%,300 + 80%,38 44.1121 45.0123 44.7192 45.2812 4711.582 15

Table 3.2 Values recorded for —300/150pm powder with additions of-38pm powder

Changes in 150/75 micron powder packing density with percentage additions or 38 micron

powder

Pfrrrnt (%)

Figure 3.3 -38pm powder packing density with additions of-150/75pm powder

Test Number Mass Mass Mass Avg. mass Powder Density Mixing time

(g) (s) (g) (g) Kg/m3 (min)

80%,150 + 20%,38 47.5891 46.9128 47.5874 47.3631 4958.58 15

75%,150 + 25%,38 48.2114 48.1911 48.0442 48.1489 5051.181 15

60%,150 + 40%,38 47.1137 46.9193 46.9925 47.0095 4916.508 15

40%,150 + 60%,38 45.1913 45.2108 45.1541 45.1854 4563 15

20%,150 + 80%,38 45.1121 44.9917 45.1692 45.091 4549 15

Table 3.3 Values recorded for-150/75pm powder with additions of-38pm powder

In this instance the maximum attainable density for a time of 15 minutes mixing 

was achieved with a percentage of 25% -38pm powder and 75% -300+150pm powder. 

This density was found to be approximately 20% and 12% higher than that ol the densities 

of-38pm powder and -300+150pm powder respectfully.

Figure 3.3 and table 3.3 show the data obtained during the mixing tests for - 

38pm powder with addition of — 150+75pm powder. In this case the maximum attainable 

density for a time of 15 minutes mixing was reached with a percentage of 25% -38pm
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density for a time of 15 minutes mixing was reached with a percentage of 25% -38|am 

powder and 75% -150+75jam as well as 20% -38|j,m powder and 80% -300+150|j.m. A 

small improvement in powder densities after mixing can be observed but it is not 

significant. The density was found to be around 10% higher than that of the two mixed 

powder initial densities.

Appendix C (a) shows the data obtained during the mixing experimental tests for 

-75/38 jj.m powder with addition of -150/75(im powder. The maximum attainable density 

was reached for a mixing time of 15 minutes. The percentage used for attaining the highest 

density with these two batches of powder was 40% o f-75/38 (am and 60% of-150/75|am. 

The powder density obtained by mixing these two batches of powder did not show a 

significant powder density improvement. The powder density obtained was 7% higher than 

the initial density measured for each batch of powder.

Appendix C (b) shows the data obtained during the mixing tests for -38pm 

powder with addition of-75+38|am powder. The peak in packing density was reached after 

a mixing time of 15 minutes. Also, a high density was also obtained for a mixing time of 

30 minutes. The packed densities obtained for these batches showed an increase but it was 

only 8 % compared with pre-packed powder densities.

Finally, these results show that the mixing of the four individual particle batches 

increases the powder packing density by an average of 10%. And the mixing together of 

two powders produces a packing density higher than mixed individual powders but not 

significantly higher except for mixing powders of -38j.im powder size with -300+150f.tm 

powder.

It is thought that the influence of the spreading mechanism and the vibration 

within the system will alter the powder densities obtained. It is estimated based on some 

trial tests that a drop of at least 5% would be expected.

It has also come to light that the size of the powder sample used alters the 

calculations for the density. In general, a larger powder sample resulted in a larger 

calculated density. The results presented here are for samples larger than susceptible to this 

effect.
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3.3 Powder flowability tests

Flowability of the powders can be measured using the two main methods 

which were described in the previous chapter (chapter 2, section 2.2.3). Hall’s flowmeter 

was initially chosen for the testing here. However, preliminary trials showed that the finer 

powders did not flow through its <j) 2.5mm orifice. Therefore Carney’s funnel which had a 

larger orifice diameter of (j) 5.0mm was used for the finer powders (-38|am for example).

A flowmeter was designed, manufactured and supported using a laboratory 

clamp stand. The experiments were carried out in accordance with the standards tests 

described in section 2.2.3 for Carney and Hall’s flow meters.

The powder flowability tests were carried out in three stages. Firstly, the 

flowability of raw powders was measured using both flow meters available. Secondly, the 

powders were mixed together for 1 minute in different percentages and the flow rates 

measured. Finally, the powders were mixed together for pre-defined times, 15, 30, 45 and 

60 minutes, and then the flow rates were measured. Numerical results are gathered in 

Appendix D.

3.3.1 Powder flowability for raw powders

Flowability tests for S S  pow der batches

38 75 150 300

P o w d e r typ e

Figure 3.4 Flow rates of the as received state powders
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Figure 3.4 shows the results collected for the measurements of the raw powders. 

The figure presents the results for the Carney’s funnel because when Hall’s funnel was 

used only the 150pm and 300pm powders flowed through it.

These observations may be compared with observations of flow from the V- 

hopper mechanism (section 2.4) during powder bed spreading. These tests showed that it is 

very difficult to obtain a flat powder bed by spreading the -38pm powder using the V- 

hopper mechanism. The powder bed obtained was not regular and it had big gaps within 

the powder bed.

Moreover, the -38pm powder flowed through the V-hopper 5mm gap only 

because of the system vibrations during spreading. In addition, the 300pm and 150pm 

powder flowed very easily during the spreading tests. The amount of powder used during 

the spreading experiment needed to be increased because of “mountains” of loose powder 

at the bottom of the V-hopper spreading mechanism. Furthermore, during the multi-layer 

sintering tests it was observed an influence of the powder flowability proprieties over the 

sintered parts. The powder flowed through the V-hopper gap under the gravity force and 

continuously pushed into the powder bed causing a displacement of the sintered layer.

3.3.2 Powder flowability for mixed powders

The tests for measuring the flowability rates of mixed powders were carried out 

at the same mixing times as those for the powder packing tests. The powders were mixed 

for 15, 30, 45 and 60 minutes. The flowability tests were carried out immediately after the 

mixing process, to avoid the segregation of the powders due to storage.
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Figure 3.5 shows the Carney’s flowability experimental test results obtained for- 

300 +150 pm powder with additions of -75+38 pm powder mixed for the time periods of

15, 30, 45 and 60 minutes.

Flowability rate for -75 microns powder iwth addition of -300 microns powder

Powder percentage (% )

Figure 3.5 Flow rates for-75+38pm powder with addition o f-300/150pm powder for

different mixing times

The flowability of the packed powder tends to increase again when one of the 

powders has a bigger percentage than 80% in the mix. In general, this mixed powder did 

not showed big differences of powder flowability data when the percent of each powder in 

the mix was lower then 80%. The spreading experimental tests with this mixed powder 

showed that the powder bed obtained had a fairly good flatness.

Figure 3.6 shows the flowability rates from the experimental tests for -38pm 

powder with addition of -300+150 pm powder. A sharp decrease of the flow rate was 

recorded after 15 minutes of powder mixing compared to the raw powder flow tests. It was 

also recorded that a percent of -38pm powder bigger a 40% in the mix it made the mixed 

powder to not flow at all. The spreading tests showed a very good quality of the powder 

bed surface when the -38pm powder was less then 40% in the mix.
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Flowability rates for -38 microns powder w ith addition o f-300 microns powder

-  - 38+ -300 microns (\5 minutes
- -38 + -300 microns / 30 min.
-  -38 + -300 microns /45 imn
- -38 + -300 micons/ 60 min

Figure 3.6 Flow rates for -38|nm powder with addition of-300^m powder

for different mixing times

Figure 3.7 shows the flowability rates measured during the experimental tests 

for -150+75 ]um powder with addition of -300+150 (am powder. This also showed a sharp 

decrease of the powder flowability rate after 15 minutes of mixing.

Flowability rates for -150 microns powder w ith addition o f-300 microns powder

Powder percentage (%)

Figure 3.7 Flow rates for - 75p,m powder with addition o f-300 f.un powder lor different

mixing time
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The effect of the powder mixing over the powder flow rate had a significant 

impact but the influences of the surface superficial forces over the small particle flow was 

still predominant.

3.4 Stainless steel powder thermal conductivity tests

The thermal conductivity experimental tests are listed in Table 2.4. In all of 

them, the heated top plate of the rig was held at 150 degrees Celsius.

Figure 3.8 shows a typical variation of the thermocouple temperatures R1 to 

R 6  with time. R 6  was always noisy and may have been damaged.

S S  300 (T h  =  150C)

Figure 3.8 Temperature vs. time for -300+150|am powder heated at 150°C

Figure 3.9 is a single example extended to 24 hours. It ca be seen that a 

steady state is achieved after a time interval from 4 to 5 hours.

S S  38 -  24 h o u rs

Figure 3.9 Temperature vs. time for -38|om powder heated at 150°C for 24 hours
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Figure 3.10 shows how the temperature differences across a comparator vary 

with time. In the steady state (T2-Ti) and (T 4-T3) became equal. This supports the 

assumption of no heat loss from the sides of the rig. (T6-T5) is less then (T2-T1). This fact 

suggests either a heat loss from the lower part of the rig or an error in (T6-T5). It is believed 

there may be errors in T6, indicated by the variation shown in figures 3.9 and 3.9.

In calculations according to the theory of Chapter 2, equation 2.4, (dT/dz) for 

the comparator will be taken from the average of (T2-T1) and (T4-T3) for sample 1 and 

from the average of (T4-T3) and (T6-T5) for sample 2.

Appendix E contains steady state numerical results. These have been used to 

populate Table 3.5. Figure 3.11 is a plot after equation 2.4. From its slopes, the 

conductivity values in Table 3.5 have been deducted.

Figure 3.12 shows the variation of conductivity with powder size. There is no 

significant difference. An average value of 0.31 W/mK is obtained.

S S  -3 0 0  + 1 5 0  m ic r o n s  p o w d e r

Figure 3.10 Temperature difference within the reference disk 

for -300+150 microns powder
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Powder size ATs, ATs2 Azf
V ^  “  J  comp 1

Azf *L-)
v A z J amp 2

Thermal 

conductivity 

k (W/mK)

-38|am 38.5 15 0.80 0.36 0.28±0.05

-75/38pm 27.6 13.8 0.62 0.28 0.32±0.02

-150/75p.m 15.2 14.5 0.47 0.50 0.33±0.06

-300/150pjn 45.2 15.3 0.91 0.40 0.25±0.05

ATS

A zsamp|c(AT /Az)COmparator 

Figure 3.11 ATsamp|e V S. A z sample(A I /A z)COmparator

» -3 8 ,  D T i l  

■  -38. D T i2  

k -75. D T f l  

i - 7 5 . D T « 2

*  -150, D T i l

• -150, D T f2  

f  -300. D T i l

-300. P M

314 He Thermal r.ondiictfvlfy (W/mK)

Kavg = 0.30 W/mK

Figure 3.12 Thermal conductivity 

for all batches of powder
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This section reports the formation of single tracks in powder beds. Six 

different powder batches have been used during the sintering experimental tests. Four 

single size fractions: -300/150pm, -150/75pm, -75/38)iim and -38pm powder, and two 

mixed fractions: 75%, -300/150pm with addition of 25%, -38pm powder and 75%, - 

150/75pm with addition of 25%, -38pm powder. In every case, tracks of 20mm length 

were formed by the scanning laser beam, with powers from 25W up to 170W and scan 

speeds from lmm/s up to 17 mm/s (except in a few cases where the scan speed was 

reduced down to 0.5mm/s). The sintering test results are presented like sintering maps. Due 

to difficulty of classifying the melt pool behaviour, each of the maps was created 

individually using the melt pool growth and shape observed during the experimental tests.

3.5.1 Qualitative observations for tracks scanned in oxygen atmosphere

The experimental tests in an argon atmosphere were done intending to clarify 

the effects and the requirements of the selective laser sintering atmosphere. Particular 

attention in this section of the thesis has focused on the significance of oxygen during the 

formation and growth of the stainless steel melt pool. This includes all four batches of un

mixed powder as the CO2 laser scans the powder bed surface over a range of scanning 

speeds and laser powers.

The oxygen atmosphere was achieved by exposing the stainless steel powder 

bed to laboratory air during the sintering process. The powder was in its as received state. 

No powder pre-heating was carried out prior to the start of the sintering process. However, 

the powder used during the experiments was collected from unbroken sealed containers. 

Prolonged atmospheric exposure caused powder agglomeration because of the moisture 

absorption in the -38pm powder batch and an increased chance of further oxidation from 

all powder during the sintering process.

Conditions for sintering single tracks using an air atmosphere were found to be 

very limiting and this is the reason why the results for single tracks and layers will be 

presented together. Furthermore, the main focus of this thesis is to build multi-layers so 

particular attention was paid to those sintering atmospheres, which help to reach this goal.
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The air atmosphere is not helpful for sintering. From the beginning of the tests it became 

obvious that the oxygen atmosphere was more helpful in understanding the sintering 

phenomenon than using it to build multi-layers.

Figure 3.13 shows the stages of oxidation behaviour observed during the 

experimental tests. Furthermore, information regarding particle bonding and melt pool 

growth and quality during single line scanning had been taken into consideration when the 

sintering maps were made. During sintering, temper coloration following classical 

oxidation theory could be observed on the surfaces of individual 314 HC particles as the 

powder bed was heated by the laser beam. Moreover, as the net energy density increased, 

small droplets of molten metal liquid began to form, covered by a dark surface oxide scale 

and seated within a trail of oxidised powder.

-300 + 150)im

Scanning Speed (mm/i)

-150 + 75(j.m

Scanning Speed (nun/s)

-38nm

Scanning Speed (nm/l)

Seaming Speed 611m s)

Large melt Volume 

Continuous melting and bonding 

exhibiting high surface tension 

phenomena 

Full melting with 

breakage's

Balling

Temper Coloration's and 

partial melting (Bonding).

Temper Coloration's 

(No Bonding).

No Maricing

Bounded area where single 

layer sintering is possible. *

Figure 3.13 Sintering maps for tracks scanned using a oxygen atmosphere 

(C. Hauser, T.H.C. Childs, K Dalgarno and R.B Eane, 1999)

The phenomenon of melt pool balling and breakage was widespread during 

oxygen sintering because of the liquid surface tension forces which were allowed to 

dominate due to large melt volumes and the influence of the surface dark scale. II the 

scanning speed was low, below 8 mm/s, and the laser power was high, it was found out
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that surface tensions became less dominant and the melt pool began to flow more freely. 

The result of this behaviour was a continuous melt pool that solidified into a tubular shape, 

circular or semi-circular in cross section. Still, such high sintering temperatures 

dramatically increased the melt pool volume and a slag believed to be rich in chromium 

( O 2O 3) was observed on the sintered part surface.

Single layer scanning was carried out over a range of conditions where single 

line scanning was successful. It was found out that single layer scanning could only be 

achieved at very high laser energy densities. Furthermore, experimentation showed that if 

the scan spacing was larger then 0 .6  mm then the bonding was limited and if the scan 

spacing was lower the 0.4mm balling occurred. Consequently, the next experimental 

sintering tests for single layers were performed using an average of 0.5mm scan spacing.

The presence of oxygen within the sintering atmosphere and powder bed 

allows surface oxides and slags to form as the powder is heated and melted by the laser 

beam. Moreover, the next experimental tests carried out using argon atmosphere showed, 

together with the results obtained during the air experiments, that the elimination of the 

oxygen is required in order to reduce the melt volume, allowing surface tension forces to 

become less dominant.

3.5.2 Qualitative observations for tracks scanned in argon atmosphere

Figures 3.14 to 3.19 shows photographs of single tracks scanned in an argon 

atmosphere. Four types of melt pool growth were observed. These all can be seen in figure 

3.21, for-75/38|am powder. At the lower laser powers and higher scan speeds, for example 

at 75W laser power and 15 and 17 mm/s scan speed, tracks were hardly formed at all. 

Their edges were irregular. Perhaps they were only partially melted and the liquid that 

formed hardly had time to flow at all. This type of track will be called partially melted.

At the opposite extreme (high powers and low scan speeds), for example 

130W and speeds below 5 mm/s. the tracks were fully melted but were broken into discrete 

lengths. The irregular, bulbous thickness of parts of the tracks is caused by surface tension 

attempting to reduce track surface areas. These tracks will be called fully melted and 

broken.
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At low powers and low scan speeds (for example 25W and 50W and 1 mm/s 

scan speed) tracks were fully melted but were not bulbous in cross-section. Instead their 

surfaces were concave. These will be called fully melted, crescent or half-moon shaped.

Finally, at laser power of 15W and less, the laser beam was not powerful 

enough at any scan speeds to cause any marking on the powder bed surface.
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Figure 3.14 Tracks sintered in argon atmosphere

using -38pm powder batch at different scanning conditions
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Figure 3.15 Tracks sintered in argon atmosphere

using -75/38pm  powder batch at different scanning conditions
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Series 11.1 to 15.8

Figure 3.16 Tracks sintered in argon atmosphere using -150/75f.im powder batch at

different scanning conditions



Series 1.1 to 5.8
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Figure 3.17 Tracks sintered in argon atmosphere

using -3 0 0 /1 50fim powder batch at different scanning conditions
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Series 26.1 to 30.8

£o

Figure 3.18 Tracks sintered in argon atmosphere 

using -150 /75pm  powder with addition 

o f  25%, -38pm powder at different scanning conditions
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Series 21.1 to 25.8
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Figure 3.19 Tracks sintered in argon atmosphere 

using -3 0 0 /1 50(j.m powder with addition 

o f  25%, -38|am powder at different scanning conditions
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Sintering maps were plotted, showing what type o f  track was formed at the different laser 

powers and scan speeds. Figure 3.20 to 3.23 shows the four maps for the four single size 

fraction powders, obtained from figures 3.14 to 3.19. They all have similar regions 

(regions described above). A diagonal line a-b separates fu ll melted  tracks to the left from 

partia lly  melted  tracks to the right. A line a-d separates the half-moon sectioned fully  

m elted  tracks to the left from bulbous tracks to the right. Between lines a-b and a-d. a line 

c-b separates fully melted  continuous tracks to the left from fu lly melted and breakage track 

to the right.

In some cases, it was difficult to decide exactly where a boundary was. for 

exam ple lines a-b and a-b’ in figure 3.20. And indeed in the region between a-b and

Laser power (w)° 8  10 12 

Scan speed (mm/s)

Figure 3.20 Process map o f melting regime fo r -300/150 microns powder irradiated in

argon (series 1.1 -  5.8)

a-b’, maybe the tracks are showing signs o f being irregularly broken, as is certainly the 

case above to the right o f  c-b.

The main difference between the four figures is that as powder size decreases, 

the line c-b moves to the left, to lower (power, speed) combinations. Also, for the -38f.un 

powder (figure 3.21), the half-moon section track region is smaller than for the other 

batches o f  powder.
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S can speed (mm/s)

Figure 3.21 Process map o f melting regime for -3 8  microns powder irradiated in argon

Another difference can be seen, by referring back to figure 3.20. The partially 

melted tracks for the -38p.m powder have much more irregular edges then those for other 

powders.

Scan speed (mm s)

Figure 3.22 Process map o f melting regime for -75/38 microns powder irradiated in argon
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Scan speed (inm/s)

Figure 3.23 Process map o f  melting regime fo r -150/75 microns powder irradiated in argon

Figure 3.24 and 3.25 shows similar maps for mixed powder size fractions. 

Com paring figures 3.24 and 3.25 with figures 3.20 and 3.23 the main difference is the 

m ovem ent o f  the boundary c-b to lower power/speeds in figures 3.24 and 3.25 compared to

Figure 3.24 Process map o f melting regime for -300/150 with addition o f  25%, -38(.tm

powder irradiated in argon



figure 3.20 to 3.23. And also, in figure 3.24, the boundary a-b is more strongly 

demonstrated.
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Figure 3.25 Process map o f melting regime fo r -150/75 with addition o f  25%, -38pm

powder irradiated in argon

Finally, a strong similarity was noticed between the sintering map o f -  

150/75pm powder (figure 3.23) with the sintering map for the mixed powder -3 0 0 /1 50pm 

with addition o f  25%, -3 8 p m  powder (figure 3.24).
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3.5.2 Track dimensional measurements

The single tracks described in section 3.5.1 were lifted, where possible, from 

their beds. A micrometer was used to measure the average widths and depths. The mass o f 

the 20mm lengths were also measured to obtain their weights per unit length. All the 

m easurem ents are collected in Appendix G. Not all weights per length were measured as 

indicated by the gaps in the appendix Tables. Zero entries indicate where it was not 

possible to lift the tracks without destroying them because they were too fragile.

Typical results for the single size powders are shown in figures 3.26 to 3.28. In 

each case, part (a) is for the -300/150 pm powder and part (b) is for -75/38 pm powder. 

These represent examples with small and large regions o f  fully melted and breakage tracks 

(see figure 3.26 a and c), respectively.

-300/150 m icrons pow der

♦ 2 5 W

■ 50W

A 75 W

X 110W

m 130w

• 170W

P /U  (J /n u n )

3.26 (a) Track weight vs. laser energy for -300/150 pm powder
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Figure 3.26 (a) and 3.26 (b) plot measured track masses per unit length against 

P/U, on a linear scale. P/U is the laser energy per unit length directed on to the track. Most 

o f  the results fall within two straight-line regions, labelled "full-m elting" and "partial 

m elting” . The full melting region has a slope o f  unity. The melted track mass is 

proportional to the laser energy used during the sintering experimental tests. It exists for 

P/U > 10 J/mm. Referring to figure 3.26 (a), this coincides with the line a-b ' in that plot. 

For lower P/U values, figure 3.26 (a) shows partially melted tracks, with less mass per unit 

length then for the fully melted tracks. The region marked "fully-melted" contains all the 

data for P/U > 10 J/mm except for the results where the scan speed was less the 1 mm/s (a 

few tests were carried out at 0.75 mm/s and 0.5 mm/s) A progressive reduction in mass per 

length, at a given energy per length, is seen as scan speed is reduced. Also, there are there 

data points, for P=25W , that lie above the rest o f  the data.

-75/38 m icrons pow der

P/U (J/mm)

3.26 (b) Linear scale graph. Track weight vs. laser energy 

fo r -75 /38  pm powder

Figure 3.26 (b) is a similar plot, but for -75/38pm  powder batch. A line marked 

a-a’ represents the non-fully melted data line from part (a). Most o f  the data in figure 3.26 

(b) is a band, o f  slope unity, above the line a-a’, with about twice the mass per unit length 

at a given P/U as in part (a). There is no partial-melting  region. The tracks were either fully
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melted, or not coherent enough to be lifted from the powder bed. Fully melted tracks for 

P/U> 5 J/mm corresponds to the boundary a-b in figure 3.22.

-300/150 m icrons pow der

■  50W 

A 75W

■  HOW 

« 130W 
•  170W

P/U (J/m m )

3.27 (a) Track w x d vs. laser energy fo r-300/150 pm powder

75/38 m icrons pow der

♦  25W 

■ 50W 

A75W 
X I 10W 

X 130W

•  17QW

P/U (J/mm)

3.27 (b) Track w x d vs. laser energy for -75/38  pm powder
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Figure 3.27 (a) and (b) plots similar information to that in figure 3.26 (a) and 

(b) but shows the product o f  track width and depths against P/U. Width times depth is a 

m easure o f  track cross-section area. The pattern o f  behaviour is almost identical to that in 

figure 3.26. The main difference, in figure 3.27 (a), is that the data points at P=25W are not 

separated from the reminder o f the results. The track densities can be estimated from the 

ratio o f  weight /length to area/length. This, with other aspects o f  the results, will be 

considered further in the discussion, Chapter 5.

-300/150 m icrons pow der

25W

■ 50W
75W

HOW
- X - 130W

170W

Scan speed (nun/s)

3.28 (a) Track w/d vs. laser energy fo r -300/150 fam powder

The track aspect ratios, width/depth (w/d) are considered in figure 3.28 (a) 

and (b) in this case on a linear scale. The results for the -75/38(.im powder give a more 

consistent picture then for -3 0 0 /1 50jam powder batch. Figure 3.28 (b) shows that (w/d) at 

first decreases at any power level, as soon scan speed is increased, and then increases 

again. Comparing this figure with figure 3.22, it can be seen that the line a-a‘ in figure 3.28 

(b) that passes through the minimum o f  the (w/d) versus scan speed curves, represents 

approxim ately the same power/speed combinations as the boundary c-b in figure 3.22. The 

same could be written in the case o f  figure 3.20, except that at the power o f  120W. the 

minimum (w/d) occurs at an unexpectedly low scan speed.
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-75/38 m icrons pow der

— 2 3 W 
50W 

- 6 - 7 3 W  
- X - 1 1 0 W  

130W 

- O -  170W

Scan speed u  (mm/s)

3.28 (b) Track w/d vs. laser energy for -75/38 fain powder

Finally figure 3.29 shows (a) a log-log plot o f  the mass o f a 20mm scan 

against P/U and (b) (w/d) against scan speed, for the powder mixture 75%, -300/150pm 

powder with

-300/150 m icrons pow der with addition o f 25°/o, -38 m icrons pow der

♦  25W
■  50W | 
▲ 73W 
X110W
■ 130W

P/U (J/m rn)

3.29 (a) Track weight vs. laser energy fo r -300/150 with addition o f 25%, -38 pm powder

addition o f  25%, -30pm powder.
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Com paring figure 3.20 (a) with figure 3.26 (a), it is seen that the band o f data is at a higher 

mass per 20 mm length at a given P/U, similar in fact to that in figure 3.26 (b). The (w/d) 

data shows minima in the range 5 mm/s (25w) to 13mm/s (130W).

-300/150 m icrons pow der with addition of 25 % , -38 m icrons pow der

— 2 5 W 
—» - 7 5 W  

- * r -  75W 
- X -  110W 

130W

Scan speed (nun/s)

3.29 (b) Track w/d vs. laser energy fo r -300/150 with addition o f  25%, -38 pm  powder

3.6 M icroscopy studies

The first step in the preparation o f  the specimens consists o f  sectioning the 

single sintered tracks. This operation was carried out using an abrasive disc cooled with 

water. To remove any cutting debris from the pores thorough rinsing with water had to be 

carried out.

The specimens were then mounted in Bakelite under pressure and under a high 

temperature o f  (140-160C0). The specimens were then lapped using a series o f  different 

grit papers until the majority o f the scratches were removed. The final operation was then a 

polishing treatment which was carried out with 6  and 3 pm diamond polishing paste.

First physical observation regarding the track cross-section shape was a 

transition area that exists between the transformation o f  the half-moon shape into full-
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moon shape. Referring to figure 3.20, for -300/150 microns powder, the region 20-120W.1 

to 5 mm/s is one o f  the changing track stage. Therefore tracks in this region have been 

chosen for sectioning. Figure 3.30 shows two sets, one at 75W, the other at 110W. both for 

scan speeds o f  1, 3, 5 mm/s. There are low magnifications, to show track section shape. 

They are all the same magnification. Figure 3.31 is similar but for mixed powder. These 

show the changing section shape. In the area o f  3mm/s the cross section shape was found 

to be triangular for all tracks analysed. The triangular shape exists at scan speeds o f 3mm/s 

and on a range o f  scan speed between 65W up to 120W. Figure 3.30and 3.31 emphasis the 

transition area that has been found to exist at a scan speed o f 3mm/s. Figure 3.30 shows the 

tracks cross section for -3 0 0 /1 50|am powder at different scan speeds and laser powers.

75 W laser power (series.3.1. 3.2. 3.3)

lm m /s

V

3 mm/s

O

5mm/s

10W laser power (series 4.1, 4.2. 4.3)

V o

lm m /s 3 mm/s 5mm/s

Figure 3.30 Track cross sections o f  the mixed -300 /150f.im powder
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75 W laser power (series 23.1. 23.2. 22.3)

1 mm/s 3 mm/s 5 mm/s

Figure 3.31 Track cross sections o f the mixed -300 /150pm powder with

addition o f -3  8 pm

It was observed and can be seen in figure 3.30 and 3.31 the cross section shape 

became deeper by increasing the scan speed. It can be seen above that for a scan speed o f 

lm m /s both figures indicate a spread o f the melting front at the surface o f the powder bed. 

Contrary, for the case where the tracks had a “half-moon” shape but there were situated in 

the partial sintering area o f  the sintering maps these were considered not suitable to be 

used for our goal o f building multi-layers because o f the poor quality o f the particle 

bonding.

Figure 3.32 (a) and (b) (pages 117 and 118) displays a melted track sintered at 

75W laser power and lm m /s scan speed using one single size fractions -300/150pm 

powder, and one mixed fraction 75%, -300/150pm with addition o f  25%, -38pm powder. It 

can be easily observed that after the laser source moved on the resolidification process 

started from the coarse area upwards. Moreover, it was noticed a large dendritic area at the 

bottom o f the sintered track, suggesting that the laser power was not high enough to 

penetrate and melt the entire track.

At the beginning, the gas atomise 314 HC powder consists o f  spherical 

particles characterised by the occurrence o f a dendritic microstructure with the increase o f  

the laser power (low power). As the sintering process started the particles are melted and 

the powder microstructure will become coarse grained.

The solid phase is still present at this early stage. However, the speed factor 

(heating/cooling) is so rapid that it is not enough time for induce atom migration and the 

powder particles are still singular.
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A further increase o f  the laser power will induce an increase o f  the particle 

temperatures and liquid phase begin to occur. The presence o f  the liquid action starts to 

cause regions o f  liquid among the dendrites. Furthermore, an increase o f the laser power 

will cause a growth o f the liquid regions and more liquid become available. At this stage, 

the dendritic skeleton starts to coarsen and becomes spherical because the coarsening rate 

increases.

Finally, the dendritic skeleton starts to break and with a further increase o f 

the laser power the temperature gets high enough above the liquidus. The result will be a 

fully liquid phase.

On the other hand, a different morphological behaviour has been noticed 

w ithin the melted track if  the laser power was not very high. If only partial re-melting is 

achieved before the laser source passes, the solid phase starts to re-grow from the solid 

nucleus that are present within the melted track. These solid nuclei represent ideal points 

for resolidification. Furthermore, i f  the tracks are fully melted then there are no nuclei to 

start the re-solidification process within the melt and so solidification must start from the 

nearest solid particles within the powder bed.
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Figure 3.32 (a) Track cross-section, microscopic view for -300/150 microns powder
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Series 23.

Figure 3.32 (b) Track cross-section microscopic view for -300 /150p.m powder with 

addition o f  25%, -38pm powder, (lm m /s scan speed)

It was noticed that at a low scan speed (lm m /s) the track was not fully melted 

(figures 3.32 a and b). Wetting phenomenon was recorded only in the hottest area, middle 

o f  the laser beam, and as the laser moved on the molten metal started to re-sol idify creating

columnar shapes. These columnar shapes can be seen at the top o f  the melted track. 

Bottom o f the track was not fully melted even if  the powders particles were bonded 

together. A big trench was also noticed in the middle o f  the melted track. In addition, the 

un-mixed —300/150fj.m powder has a very similar metalographic structure (figure 3.32 a).
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The only noticeable difference was the trench in the middle o f the track. This trench was 

not observed for the un-mixed powder.

Furthermore, increasing the scan speed (3mm/s) for the same 75W laser power 

the track cross-section started to change and became triangular shape. At the same time the

Figure 3.33 (a) Track cross-section microscopic view for -3 0 0 /1 50fi.m powder hatch

(3mm/s scan speed)

metalographic structure o f  the track started to change. The wetting phenomenon was found 

within the entire melted track and the columnar shapes were observed in different parts of 

the picture not only at the top o f  the track (figure 3.33 a and b). At this early stage it is 

thought that the metal liquid was pushed by the gravitational force downwards and at the 

same time stirred by the melt pool internal forces.
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Figure 3.33 (b) Track cross-section microscopic view for -3 0 0 /1 50pm with addition of

25%, -38 jam powder (3mm/s scan speed)

A further increase o f  the scan speed (5mm/s) for the same laser power (75W ) 

had resulted in full melting behaviour for the mixed -300/150 pm powder with addition ot 

25%, -38pm  powder and in a coarsing structure for single size -3 0 0 /1 50pm powder. It can 

be seen in picture 3 . 3 4  (a) the columnar grains were visible through out all the cross 

section o f  the melted track. Compared to this, figure 3.34 (b) shows a grain structure v\ith 

only very small areas o f  columnar shapes.
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-o
eP*
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Figure 3.34 (a) Track cross-section microscopic view for -3 0 0 /1 5()).im (5mm/s scan speed)

Series 23.3

L a s e rb e a m  direction
Scan speed 5 m m /s and la se r pow er 75W

Powder bed 
direction

C ross section fo r  -300 /150  (un pow der 
w ith add ition  o f 25<M>, 3 8 |u n  po w d er

Figure 3.34 (a) Track cross-section microscopic view for -300 /150f.im with addition ol

25%, -38|^m powder (5mm /s scan speed)
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Figure 3.34 (a) shows a deep line across the section. For a better clarification o f 

this line formation an energy dispersive X-ray (EDX) analysis was performed to detect the 

com ponents o f  the sample and their approximate percentage compositions. The EDX 

results and corresponding quantitative analysis are shown in Figure 3.36. In addition, the 

sample was observed through a Scanning Electron Microscope (SEM) to help understand 

the resolidification process and the appearance o f  the line.

Figure 3.35 shows the SEM view o f the track cross-section from figure 3.34 (a).

Figure 3.35 SEM images o f  the track cross-section of-300/150(j.m  (5mm/s scan speed)
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|X-RflV<2>: 0 - 2 0  keU Super F1TW
Live: 200s Preset: 200s Remaining: Os; 
Real: 210s 5'/. Dead

|X-RflV(2>* 0 - 2 0  keU Super flTW
Live: 200 s Preset: 200s Remaining: Os 
!Reai: 210s 5'/. Dead
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Figure 3.36 Energy dispersive X-ray (EDX) spectrum o f analysed sample

(See figure 3.34(a))

The results proved that the samples quality has been altered during preparation process. An 

early conclusion that can be drawn is that the laser scan speed affects the track cross- 

section, melt pool structure and behaviour in a strong manner. A different behaviour was 

observed for the two batches o f  powder presented as an example. An improvement on 

powder sinterability was noticed for the mixed powders compared to un-mixed powders.

3.5 Summary

This chapter investigated the powder properties as well as the powder 

sinterability. At the beginning, the powder density was measured for all four batches o f 

powder. Furthermore, the powders were mixed together in different percentage and the 

result showed an improvement in the powder density by introducing a small particle size 

powder into a big particle size powder. The second sets o f  test were carried out for 

measuring powder flow rates. The results showed a drop in powder How rate after 15 

minutes o f  mixing time. The flow rate o f  a small particle size powder had a big influence 

over the powder spreading. The third sets o f  measurements were carried out for measuring
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the powder thermal conductivity. The results suggested that the thermal conductivity 

increases by increasing the powder particle size.

In the final part o f  this chapter sintering tests were carried out with all four 

un-mixed batches o f  powder and with two mixed batches o f  powder. The results showed 

an improvement in powder sinterability for the mixed powders. The microscopy studies 

showed full melting behaviour in the mixed powders for scan speeds over 3mm/s but 

below 8 mm/s. The results also suggested that an increase in the scan speed induces a better 

heat absorption into the powder bed and a decrease o f  the heat spread through the powder 

bed. This suggestion is based on the results obtained during the trial tests and presented in 

figurers 3.30 and 3.31. it can be observed a deeper penetration o f  the powder bed for scan 

speeds between 1 and 5 mm/s.



CHAPTER 4 

LAYER AND MULTIPLE LAYER SINTERING 

OF 314HC POWDER

4.1 Introduction

This chapter extends the laser sintering observations from single tracks to 

single layers and then to multiple layers. At each stage, new issues become important. For 

exam ple, single layer’s new issues, compared to single tracks, are layer flatness as well as 

the scan spacing between the consecutive tracks. So, in section 4.2 background testing 

relating to scanning strategies is first described.

The structure o f  chapter four sets out first the scanning strategies adopted 

during layer and multiple layer sintering. This chapter also sets out the results obtained 

from the sintering tests in an argon atmosphere, using four batches o f  powder. This is 

followed by a layer and multiple layer microscopy investigation. Because the layer depth 

plays an important role during multiple layer sintering, sintering maps were also created 

focused on layer depth.

In chapter 3, observations were made o f  powers and scan speeds that resulted 

in full melting without breakage. The sintering tests with —75/38pm and -38pm  powders 

showed small regions o f  full melting without breakage. For this reason, these powders 

were not chosen for the layer and multiple layer sintering tests. As an example, figure 4.1 

shows single layer melt tests, using the -38pm powder. The area o f  each layer was 3()nim x 

30mm and created at laser powers o f  75W to 130W and at a scan spacing o f  0.5mm. 

Although, teach layer was well fused, they were not in fact flat. T his phenomena is 

considered in the next section.
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Scan speed 5 mm/s 

75 W laser power 100W  laser power 130 W laser power

Figure 4.1 Sintered layer scanned using -38pm powder 

Besides, the area o f  half-moon track shape was found to he very limited for 

-75 /38pm  and -38pm powders compared to other batches o f  powder.

4.2 Scanning strategies

Figure 4.2 shows and compares the sintered layers created using a -38pm 

powder and a -300/150pm powder with addition o f 25%, -30pm powder, sintered at the 

same conditions. These two layers are presented for comparisons only. Both were sintered 

using 75 W o f laser power and 3 mm/s scan speed. It can be easily observed that the layer 

flatness o f  the -38pm powder is much worse than that o f the other.

This warped surface affects the quality o f the spread powder when creating the 

next sintered layer. The non-flatness shown here makes it impossible for the V-hopper to 

spread the next layer o f powder without moving the current layer.

-38pm powder -300/150pm powder with addition o f  25%,

-30pm powder

75W , 3m m /s 75W, 3mm/s

Figure 4.2 Sintered layers scanned using -38pm  powder and a mixed powder - side views



Two methods were considered to avoid warping. Published work suggests 

w arping is reduced by heating up the powder bed to at least half its melting temperature. In 

the present case, half o f  the melting temperature is about 600°C - 700°C. Overall heating to 

this level is not practical. The second method relates to the dependence o f  the warping on 

the scanned length o f each track. It is known that a shorter track length reduces layer 

warping. This second solution has been adopted here. Figure 4.3 shows the strategy. Large 

areas have been built by fusing together smaller layers (figure 4.13 and 4.14). Preliminary 

tests show that a scan length o f  1 0mm or less always prevents warping o f layers, when 

using larger powder sizes o f -3 0 0 /1 50|nm or -150/75pm  powder and when using mixtures 

containing 25% o f  -38^m  powder.
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Scan spacing 
direction

x scanning direction

Figure 4.3 Schematic view o f a long layer obtained by sintering together small layers

The scan spacing between tracks was also investigated in prelimary tests. 

Layers were sintered using 0.25mm, 0.5mm and 0.75 mm scan spacing (see fig 4.4).

Laser spot

Scan spacing

Scanning direction

Figure 4.4 Schematic top view o f two consecutive tracks

During the initial layer trials, a further issue was notticed, which was defined 

as first line defect (FLD). FLD is characterized by a first track which is much larger than



subsequent tracks within the same layer. Figure 4.5 shows the FLD at the beginning o f the 

layer, where track diameter H2 is much larger than track diameter, Hi. It is thought that the 

FLD phenomenon is caused byabsorbitivity losses as more tracks are produced. Imediately 

after the first track has been sintered and the second track is melted the first track within 

that layer acts as an “arrester” for the heat because its heat conductivity is much higher 

then the loose powder (15.3 W /mK compared to 0.31 ±0,3 W/mk). In consequence, the first 

track absorbs more heat than the next tracks.
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Scanning direction

y

Figure 4.5 Schematic side view o f  a  layer with a FLD 

and a sintered layer which has FLD 

(m ixed powder-300/150pm +-30pm )

Layer scanned at 130W  laser power and 3mm/s scan speed

FLD 2

During the first track scan it was observed that the melted pool tends to lorm 

the same cross section track shape as those presented in chapter 3 of this thesis for all six 

batches o f  powder analysed. As rastering continues subsequent sintered tracks within the 

layer tend to have a cross section similar to tracks produced at lower energy densities than 

the actual scanning parameters. Moreover, a second type o f  delect was recorded. I I.D2, at 

the beginning o f  each sintered track (picture 4.5 -  FLD 2). One possible reason lor this 

second FLD formation is the delay o f  the mirror before reaching full speed. 1 his delay 

allows longer exposure o f the powder bed in the respective area.
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4.3 Single layer scanning

This section follows the same development as section 3.5 on single track 

observations. First, qualitative observations and mapping are described (4.3.1). Then more 

quantitative aspects, in this case relating to layer density, layer flatness and extension to 

large area scanning are reported (4.3.2). Finally, the results o f optical microscopy o f  track 

sections are reported (4.3.3). The single track observations indicate that the power ranges 

from  50W  to 110W and scan speed ranges from 1 mm/s to 8 mm/s create fully melted 

track regions without breakage for all these powders (though the low power/high speed 

com bination for -3 0 0 /1 50jj,m powder ranges on the partially melted region). These powers 

and scan speed combinations are therefore concentrated here.

The qualitative classifications o f the sintered parts are listed as follow: 

Full-m elting with a poor layer surface quality (figure 4.6 a ) -  a focussed, moving back and 

forw ards Gaussian beam pounding on the surface o f the powder layer causes a full melting 

over a delimited powder surface. The outcome is a sintered layer with a surface which is 

characterised by a violent behaviour o f  the layer internal forces during the sintering 

process. A pronounced FLD was also observed for each sintered layer in this category. A 

high porosity was also observed within the layer in this category.

-150/75|am powder
(a) lm m /s, 50W,

0.5mm scan 
spacing

(b) 5mm/s, 50W.
0.25mm scan 
spacing

Figure 4.6 Quality characterisation o f  the sintered layers

Full-m elting with a so o d  layer surface quality (figure 4.6 b )-  a focussed, moving backing 

and forwards Gaussian beam pounding on the surface o f the powder layer causes a full 

melting over a delimited powder surface. The outcome is a sintered layer which has a top 

surface characterised by a limited behaviour o f internal forces during the sintering process.

Poor quality (a) Good quality (b)



FLD phenom enon was limited. A low porosity was also observed within the layer in this 

category.

4.3.1 Layer qualitative and semi-qualitative observations

Figures 4.7 to 4.10 show the surface appearance o f  10mm x 10 mm single 

layer squares, scanned with both 0.25 and 0.5 mm scan spacing. As already reported, larger 

spacing gives a  lower surface finish. A number o f different qualitative behaviours can be 

seen. The main difference between one and the other concerns surface roughness. In some 

cases (for example figure 4 . 7  (a), 7 5 W, lm m /s), the layer surface solidified relatively 

sm ooth and glazed. But in others (figure 4.7 (a), 75W , 3mm/s), the layer surface had 

solidified rough.
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Figure 4.7 (a) Sintered layers scanned using -300/150f.im powder batch
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Figure 4.7 (b) Sintered layers scanned using -300/150|im powder batch
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Figure 4.8 (a) Sintered layers scanned using-150/75|am powder batch
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Figure 4.8 (b) Sintered layers scanned using -150/75(xm powder batch
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Figure 4.9 (a) Sintered layers scanned using 75%, -30 0 /1 50f.tm

with addition o f 25%, -38|am powder
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Figure 4.9 (b) Sintered layers scanned using 75%, -3 0 0 /1 50pm

with addition o f 25%, -38pm powder
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Figure 4.10 (a) Sintered layers scanned using 75%, -150/75pm

with addition o f  25%, -38pm powder
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Figure 4.10 (b) Sintered layers scanned using 75%, -150/75(xm

with addition o f  25%, -38p.m powder
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The occurrence o f rough and smooth surfaces has been plotted on power/scan 

speed maps, in figures 4.11 to 4.14. Figure 4.11 shows the layer process map obtained by 

jo in ing  the information obtained from single track tests for -150/75(Ltm powder with the 

results from  single layer tests for -150/75jam powder. The dashed heavy lines (d-e and e-j) 

visible on the map defines the area where the single layer tests were carried out.

L ayer process m ap fo r  -150/75 m icrons pow der scanned  in argon  a tm osphere

Full m elted and breakage

P artia l m elted

HalT "m o o n ”  area

20

No sintering area

Figure 4 .1 1 Layer process map for -150/75jam powder, 0.5mm scan spacing

Experimental tests were carried out for scan speeds higher than 15 mm/s and 

17 mm/s, but the sintered layers o f  —150/75jam powder could not be handheld. For a scan 

speed o f  13 mm/s and different laser powers the layer sample showed very high internal 

forces behaviour as well as warping phenomenon and were considered not suitable for 

multiple layer sintering.

The line (f-g-h) is the boundary between regions that produce rough (figure

4.6 a) and smooth (figure 4.6 b) surfaces. The smooth surfaces occurred above line (f-g-h). 

At very low scan speeds (<2mm/s) was recorded that a laser power over 75 W is necessary 

for obtaining a good quality o f  the sintered layer for -150/75|am  powder (i-g). A further 

increase o f the scan speed drops the boundary down to 50W laser power(g-h). In general it 

can be seen in figure 4.11 all good quality layers were obtained above the "hall-moon 

boundary for single tracks. Also, it was observed that the tracks within the sintered layer



obtained for -150 /75pm  powder had a “half-m oon” shape for values o f  the scan speed and 

laser pow er close to the “half-m oon” area boundary. Except for the first track within the 

sintered layer all other tracks were recorded to have a “half-m oon” shape. An explanation 

o t this could be the loss o f  heat during the sintering process and implicit the dropping o f 

the density energy.

Further increases in laser power and variations in scan speed did not show any 

big im provem ents in sintered layer quality. It was observed that scan spacing had a big 

influence over the sintered layer. A scan spacing higher than 0.5mm showed a dropping in 

layer quality. At a scan spacing o f  0.25mm the sintered tracks within the layer were found 

to be very distinctive. The shape o f  the tracks within the sintered layer for a scan spacing 

o f  0.25mm were similar to those presented in chapter 3 o f  this thesis for -150/75pm  

pow der. Moreover, FLD phenomenon was observed to be more acute for scan spacing 

below  0.75mm/s.

Figure 4.12 shows the layer process map obtained by joining the information 

obtained from single track tests for -3 0 0 /1 50|nm powder with the results from single layer 

tests for -3 0 0 /1 50pm powder. The dash lines visible on the map define the area where the 

single layer tests were carried out (d-e and h-j)

L ay er process m ap f o r -3 0 0 /1 50|xm p ow der scanned in arg o n  a tm osphere
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Scan speed (mm/s)

Figure 4.12 Layer process map for -3 0 0 /1 50pm powder, 0.5 mm scan spacing
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It was recorded for the -3 0 0 /1 50jj.m batch powder that at very low scan speeds 

(<4m m /s) and laser powers over 75W was necessary for obtaining a good quality ol the 

sintered layer(f-g). A further increase in scan speed caused the boundary o f  good quality 

layers to rise above 120W laser power for a scan speed o f  lOmm/s (g-h). In general, the 

good quality layer boundary followed the boundary between full-melting  area and _/«//- 

m elting and breakage area  for single tracks.

Also, the scan spacing had a high influence over the sintered layer for the -  

300/150|am powder batch. A decrease o f  the scan spacing below 0.75mm improved the 

layer quality.

Large area tests

The scanning tests were extended to sinter larger areas of the powder bed. I or 

this research conditions were based on the information given in figure 4.1 1 which were 

gained from the -150/75|j.m  powder layer processing map, using scan speeds of 3-5 mm/s 

and laser powers o f  75-110W. Figure 4.13 shows the result obtained for irradiating 

150/75 |am powder in argon atmosphere for different scan speeds. The laser power was 

(75W ) and for a constant 0.5mm scan spacing.

5 mm/s 3 mm/s

Figure 4.13 -150/75|um  powder layer irradiated in argon, using a 75 W laser power



A first observation can be made regarding the flatness o f  the layers. It can be 

seen at the top o f  figure 4.13 that both layers were completely flat. The influence o f  the 

FLD had reduced, but on figure 4.13 the first track is still distinct. The quality o f  the layer 

surface is good but the boundary between two consecutive long layer stripes are still 

visible.

Attempts to assess the layer density were also carried out. Because o f  the task 

difficulty, with a very non-regular surface, the solution adopted was the placement o f  a 

light source at the back o f the sintered layer. Figure 4.14 shows the result o f this test.
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3mm/s 5mm/s

Figure 4.14 Layer density test for-150/75fxm  powder

Sintering tests were carried out for the -300 /150|am powder using different 

conditions to the -150/75|j.m  powder batch. There were carried out for scan speeds ol 

lm m /s besides 3mm/s and 5mm/s. The laser power used was between 75W and 110W. 

Figure 4.15 shows the results obtained for irradiating —300/150 |j.m powder in argon 

atmosphere for different scan speeds, laser power (75W) and a constant 0.5mm scan 

spacing.

5 mm/s 3 mm/s

Figure 4.15 -3 0 0 /1 50^m 

layer irradiated in argon, 

using a 75W laser power
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It can be seen at the top o f figure 4.15 that the layer flatness is fairly good for 

this batch o f  powder even if  the layer bottom has more irregularities then - 1 50/75pm layer. 

The quality o f  the layer surface is good but a high activity o f  the internal forces can be seen 

on the boundary between the two long layers bonded together. These internal forces 

contributed to the appearance o f  a number o f  gaps between the boundaries neighbourhood 

(figure 4.15).

M ix powder sizes

This section o f the thesis is focused on the significance ol mixed powder 

effects during the formation and growth o f  the stainless steel powder melt pool. 1 wo 

pow der mixes were used; -300/150pm with addition o f  25%, -38pm  powder and 

150/75pm powder with addition o f  25%, -38pm powder. The layer sintering maps were 

produced overlapping the information obtained during single track sintering tests for these 

tw o batches o f  powder. Figure 4.16 shows the layer sintering map tor the — 150/75pm 

pow der with the addition o f  25%, -38pm  powder. The dashed lines (j~e_0  define the area 

where the sintering tests were carried out. The thick line on the map separates the area 

between a good quality layer surface (above) and a poor surface layer quality (below). 1 he 

topside o f  the map has also a thick line which has the same role of delimiting the poor 

sintering area (above) and the good sinter area (below this second line). As a result, during 

layer sintering tests for this batch o f  powder shrinkage o f the good sinterability area was 

recorded (see figure 4.16 above the bottom thick line and below the top thick line).
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Figure 4.16 Layer process map fo r-150/75pm  powder with 

the addition o f  25% -38 pm  powder, 0.5 mm scan spacing

Figure 4.17 shows the layer-sintering map for the —300/150pm powder with 

addition o f  25%, -38pm  powder. The dashed line (j-e-f) again defines the area where the 

sintering tests were carried out for this batch o f  powder. Within this area the thick line is 

the boundary between good quality layer (above the line) and bad quality layer (below the 

line).
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Layer process map for -300/150 microns powder with addition of 25% , -38 microns powder

Scan speed (mm/s)

Figure 4.17 Layer process map for -300 /150pm  powder with addition of 25% -38pm

powder, 0.5 mm scan spacing

For this batch o f  powder a small variation o f  the layer surface quality line (f-g) 

was recorded only for small scan speeds (<2 mm/s).

As a conclusion, for all four batches o f powder analysed during these sintering 

tests, it was observed that in fact the dashed lines (f-g and g-h) which separated the two 

areas on the layer sintering maps approximately follows the trend of the boundary of full 

melting and breakage area recorded during single track sintering tests experiments.

Figure 4.18 shows large area sintering results for —300/150pm powder with 

addition o f  25%, -38pm  powder. The sintered layers are flat as can be seen at the top o f  the 

picture. The boundaries between the three long stripes which are sintered together are still 

visible.
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5 mm/s 3 mm/s

Figure 4.18 -3 0 0 /1 50|am powder with addition o f  25%, -38|am powder - large layer 

irradiated in argon and using a 75W laser power, 0.5mm scan spacing

A viable solution has been found to eliminate the visible boundary between the 

sintered stripes within the layer. Taking advantage o f  the mirror delay mentioned before to 

reach the full scan speed, the overlap between two long sintered stripes within a layer was 

decreased from 0.5mm to 0.25mm. In this way, the powder bed along the edge ol first 

sintered strip was exposed for longer to the laser beam and implicitly more heat was 

absorbed. Compered to the 0.5mm overlap, where all heat was absorbed by the sintered 

strip and only a fraction o f  it reached the loose powder resulting in a visible boundary 

between two strips. The results can be seen in figure 4.15. During these tests it was also 

tried to sinter larger areas o f  the powder bed then it was tried before. 1 he results were 

sintered layers o f  60 mm long and 30 mm wide. It can be easily seen from figure 4.15 that 

by decreasing the overlap value the sintered layer flatness was much higher (figure 4.15, 1 

compared to 2). There was also a recorded improvement in part density along the overlap 

boundary within the respective layer for an overlap o f 0.25mm. FLD effect was also 

diminished.
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75 W Laser power 
5 mm/s Scan speed 
0.5mm overlap

Layer side view

75 W Laser power 
5 mm/s Scan speed 
0.25mm overlap

Layer side view

75 W Laser power 
3 mm/s Scan speed 
0.25mm overlap

Figure 4.19 M orphological changes o f  the layer quality by decreasing the overlap size 

between the long sintered stripes, -300/150pm powder with addition o f  25%, -38 pm

powder
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4.3.3 M icroscopy studies

Test samples o f  single layer scans sintered using 314HC stainless steel powder 

w ere sectioned and polished for metalographic inspection. The samples were etched using 

“m arbles reagent” and the microstructure was examined. The melting and re-solidification 

process o f  sintered SS powder has been explained in chapter 3 o f  this thesis for single track 

tests.

Two examples considered representative for each batch o f  powder analysed 

have been chosen to be presented in this part o f the thesis. No examples are given for the -  

150/75}j.m mixed powder because the experimental tests showed them not suitable tor 

m ultiple layer sintering. Anticipating a little bit based on the information gained from 

m ultiple layer sintering tests it was considered that a 75W laser power and 3 —5 mm/s scan 

speeds would be taken as representative conditions for layer sintering tests. Moreover, the 

influence o f the scan spacing over the sintering part was considered. A spacing value of 

0.5m m  was chosen to be presented. Figure 4.16 shows one of these exam ples for the -  

300/150|j,m powder batch.

1 0 0 pm

Figure 4.20 Layer cross section fo r -3  00/150pm powder scanned at 75 W laser power 

and 3 mm/s scan speed in argon atmosphere for 0.5mm scan spacing

Scanning direction

y • ---------- ►*



Firstly, in figure 4.20 -  1, an irregular distribution o f  the wetting front has 

been observed (liquid phase). It can be suggested that a  stirring occurred during the 

sintering test for 3mm/s scan speed. This confirms the phenomenon observed during the 

single track experiments where 3 mm/s scan speed induces a stirring phenomenon within 

the track (see Chapter 3). Secondly, figure 4.20 -2 and 3, an increase ol the powder grain 

size during the melting process has been observed. This fact suggests that a higher 

tem perature was recorded in that specific area than in the neighbour areas. This area where 

a  higher temperature was recorded corresponds to the overlapping area between two 

consecutive tracks.

M oreover, a higher powder volume has been observed that was melted and 

started to be fully sintered in area 3 o f  figure 4.20 than in area 2 o l the same figure. 1 his 

fact suggests that the heat absorbed by the previous sintered track was higher in area 3 than 

in area 2 (the area with FLD). An explanation o f this fact could be the semnificative 

difference between cross section diameters o f  these two tracks.

Figure 4.21 shows the microscopy test result lor —300/150jj.m powder scanned

at 75W laser power and 5 mm/s scan speed.
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1 0 0 )j,m

Figure 4.21 Layer cross section for -3 0 0 /1 50|j,m powder scanned at 75 W laser power

and 5 mm/s scan speed in argon atmosphere for 0.5mm scan spacing

Scanning direction

------------- » y
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Regarding the sintered layer showed in figure 4.21 the internal structure 

p resen ts the same patterns as those presented for the same batch o f  powder but scanned at 

3m m /s. Figure 4 .1 7 -1  shows the microstructure o f  the first line track where there was no 

stirring and no signs o f  wetting. These facts are similar to those presented in chapter 3 for 

single track tests for this batch o f powder. A different metalographic structure has been 

found for the layer section where the overlap between two tracks took place (see 4.21 —2 

and 3). A higher temperature due to a longer exposure o f  the layer to the heat source fully 

m elted  the powder in that region and the wetting areas (liquid phase) formed compared to 

the surrounding dendritic areas. The layer microstructure shows clearly in areas 2 and 3, 

grow th o f  the grain’s diameter.

Figure 4.22 shows the cross section o f  -3 0 0 /1 50pm powder with addition o f 

25% , -38pm  powder scanned at 75W laser power and 3mm/s, for a constant scan spacing 

o f  0.5mm.

Figure 4.22 Layer cross section for —300/150pm  powder with addition of 25%, - j 8 pm 

powder scanned at 75W laser power and 3 mm/s scan speed in argon atmosphere lor

0.5mm scan spacing
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As has been mentioned for all the samples scanned using 3mm/s scan speed, 

the stirring phenomenon was recorded for this layer as well (see figure 4.22 -  1). 

M oreover, the microstructure recorded for this batch o f  powder was not very different from 

that recorded for -300/150pm  powder (see figure 4.12). The only noticeable difference 

w as recorded for the wetting front which was larger for the mixed powder (see figure 4.22 

-  2and 3) then for the un-mixed powder (see figure 4.21 -  2 and 3). Figure 4.23 shows the 

cross section o f  -3 0 0 /1 50pm  powder with addition o f 25%, -38pm powder scanned at 

75 W laser power and 5mm/s, for a constant scan spacing o f 0.5mm.

Scanning direction

• ------•

1 0 0 pm

Figure 4.23 Layer cross section for -3 0 0 /1 50pm powder with addition o f  25%, -38pm 

powder scanned at 7 5 W laser power and 5 mm/s scan speed in argon atmosphere tor

0.5mm scan spacing
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Contrary to the result obtained for single tracks at the same scanning conditions for this 

batch o f  powder and although wetting area (liquid phase) was recorded to be wide spread 

w ithin the layer, the layer was not fully melted. As can be seen in figure 4.23 — 2 and 3 

there are still areas where the particles are still distinctive even if the diameter o f  these 

particles were measured to be 12±0.5(j.m. The exception is made by the first track area (1) 

w here the liquid phase was recorded through out the first track. It is thought that the small 

particles in the mix were fully melted and started to flow (liquid phase) compared to large 

particles which were just melted and started to have a dendritic structure. However, the 

layer bottom side showed an irregular shape compared to the top surface. This fact could 

be a bonus during multiple layer sintering because this batch of powder showed a deeper 

penetration o f the powder bed and implicitly a better penetration o f  the underneath layer. 

And at the same time it had a flat top surface which helps the spreading of the next layer ol 

powder. Figure 4.24 shows the cross section o f — 150/75(j.m powder scanned at 75 W laser 

pow er and 3mm/s, for a constant scan spacing o f  0.5mm.

Scanning direction

lOO^m

Figure 4.24 Layer cross section for -150/75jam powder scanned at 75W laser power 

and 3 mm/s scan speed in argon atmosphere for 0.5mm scan spacing



As can be seen in figure 4.24 the stirring phenomenon occurred for the first 

track within the respective layer (see figure 4.15 -1 ). Moreover, figure 4.24-2 and 3 

present a dendritic structure only where the overlap occurred.

Figure 4.25 shows the cross section o f -150p.m powder with addition o f  

25% , -38|j.m powder scanned at 75W laser power and 5mm/s, for a constant scan spacing 

o f  0.5mm.
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Scanning direction
y • ---------- ► x

1 0 0 ja.m

Figure 4.25 Layer cross section for -150|j,m  powder scanned at 75 W laser power 

and 5 mm/s scan speed in argon atmosphere for 0.5mm scan spacing

By increasing the scan speed (figure 4.25), the scanned layer showed a 

microscopy structure w ithout liquid phase. A very limited liquid phase can be observed 

only where the overlap took place (see figure 4.25 -  2 and 3).
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4.4 M ultiple layer scanning

There are two mechanism o f layer movement within the powder bed during 

the spreading process, that o f displacement and rotation. Layer movement is caused by the 

m otion o f  the powder as the hopper passes over the previous sintered layer. Contributory 

causes are debris that forms on the layer surface or imperfections o f  layer flatness which 

interact with the hopper blades as it passes. The occurrence o f  surface debris is random, 

but can be decreased through a careful selection o f the scanning conditions as has been 

shown during the first part o f  chapter 4. An advantage o f  the new design slot feeder 

m echanism  (SFM ) over the roller spreading mechanism is the total elimination o f  layer 

rotation and a  limitation o f  layer displacement. It was observed during the experimental 

tests that the layer displacement depends very much on surface layer flatness.

During these multiple layer sintering tests, all four batches o f powder were 

used even if  —150/75fun powder with addition o f  25%, -38|j.m powder was considered not 

suitable because o f the poor results obtained during single layer sintering tests.

An important issue during multiple layer sintering process is the layer depth. 

Figure 4.26 shows two multiple layers scanned at different layer depth. A better 

penetration o f  the heat through a smaller layer depth (<0.5mm) was observed than a larger 

one. However, a better penetration did not show an improvement of the layer top surface 

quality but it did show better surrounding surfaces. The gaps between the layers caused by 

layer curl phenom enon were diminished by decreasing the layer depth.

Figure 4.26 Two multiple layer parts (3 layers) scanned using, mix —300/150f.im powder 

with addition o f  25%, -38 ^m  powder, 75W laser power and 3 mm/s scan speed at

different layer depth



In subsequent tests, the layer depth was chosen to be 0.5mm.

C hapter 4 Laver and m ultiple layer sintering o f  314HC powder_____________________
155

2 layers test

Furthermore, the next issue which affects the sintered part is the balling 

phenom enon which occurred during multiple layer sintering tests for one ol the next 

sintered layers o f  powder. This balling phenomenon o f  the next layers o f  powder occurred 

due to the temperature dropping for the first sintered layer. Time measured lor a powder 

layer spreading was around 30 seconds. It is considered that 30 seconds are not enough for 

the  previous sintered layer to cool down but an increase o f  this time will conduct to an 

im portant temperature drop and implicit the next sintered layer to be sintered on a colder 

solid  layer. A  drop o f  the energy is taking place as the previous sintered layer absorb part 

o f  the heat and other part is dissipated because o f  the sintered layer reflectivity. In the end, 

the  total heat remained for the next sintered layers are not enough and the balling 

phenom enon occurred. To prevent this, there were considered two possibilities: the first 

w as to speed up the entire process and the second one was to decrease the laser power in 

such m anner that the layers to have a shine-less top surface. There were made some 

experim ental trial tests with a lower laser power (60W ) and the result are presented in. It 

w as chosen a laser power close to the boundary between good and poor layer quality. I he 

layer depth during these tests has been limited by the SFM mechanism to 0.5mm. An 

observation can be made regarding the parts flatness which it showed an improvement by 

increasing the scan speed. Figure 4.27 shows a side view o f all three sintered parts.

Figure 4.27 M ultiple layers side view (2 layers) scanned lor different scan speed 

and 60W  laser power using mixed powder 

(-300/150|nm powder with addition o f  25%, -38|j.m powder)

An increase o f  the laser power (75W ) for the same batch of powder
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(-300/150pm  powder with addition o f  25%, -38pm ) and a scan speed o f  3 mm/s result in a 

m ultiple layer shape where the warping phenomenon occurred as well as the balling 

phenom enon for the second sintered layer (see figure 4.28). It was observed besides balling 

phenom enon a full-melting and breakage area on the second layer top surface.

Figure 4.28 M ultiple layer sintered using -300/150pm powder with addition o f  25%, 

-38pm  powder at 75W laser power and 3 mm/s scan speed

A further increase o f  the scan speed (5mm/s) did reduced the balling 

phenom enon and eliminated the layer warping. Figure 4.29 shows a multiple layer scanned 

using the same batch o f  powder and a scan speed o f  5 mm/s.

Figure 4.29 M ultiple layer sintered using -300/150pm powder with addition o f  25%. 

-38pm  powder at 75W  laser power and 5 mm/s scan speed
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3 layers sintered tests

During multiple layer the main problem was not bonding two layers together. 

T his task was achieved for all four batches o f  powder in the sintering map areas of good 

layer quality. The main problem was the achievem ent o f  a good layer flatness to enable the 

spreading o f  the third layer o f  powder. Furthermore, the next issue observed during the 

experim ental tests was the third layer’s tendency to bond with the previous sintered layers 

only along the first sintered track (along FLD). Figure 4.30 shows the effect ot the FLD 

over the third scanned layer within the respective sintered sample. Higher heat 

conductivity enables FLD to absorb more heat and the result is a better penetration.

► FLD

Figure 4.30 M ultiple layer side view (3 layers) scanned at 5 mm/s scan speed 

and 60W laser power, using -150/75|Lim powder batch

It is thought that the first track layer bonding phenomenon was helped by 

the slight rotation o f  the layer as the hopper passed.

Gap J L
between — 
second and T  
third layer

< -  --------------- •
x y

7

Figure 4.31 Schematic view o f layer rotation



4 layers sintering tests

Sintering trial tests were extended and more layers (>2 layers) were sintered 

together. An example o f four layers bonded together are shown in figure 4.32. The - 

300/150|nm powder with addition o f 25%, -38(j.m powder scanned at 75 W laser power and

5 mm/s scan speed was used. It can be observed that the layers are bonded together but 

there are gaps between them. Each particular sintered layer can be clearly seen. This fact 

suggest that in fact the layers were not melted together.
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Figure 4.32 Four layers sintered together scanned using -300/150|am powder 

with addition o f 25%, -38|am powder in argon atmosphere

Figure 4.33 shows a multiple layer part sintered using -150/75/am powder at

5 mm/s scan speed and 75W laser power. The same features those presented for figure 4.32 

were observed. The sintered layers are distinctive and are only partial bonded together.

Figure 4.33 Four layers sintered together scanned using -150/75 |im

powder in argon atmosphere
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Balling

Full
melting and 
breakage

Figure 4.34 Multiple layer part scanned using —300/150 jam powder in argon atmosphere

Figure 4.34 shows the multiple sintered part obtained during -300/150|am 

powder sintering tests. The result was a sintered three layers block. The effect of balling 

was recorded at the edges o f the block. In the middle, the full-melting and breakage area 

has been recorded. The apparent density o f the part was measured to be around 68%.

10 layer sintering tests - The next step o f the research was the building o f a sintered part 

with more then 4 layers. The result is shown in picture 4.35 and a top view ol the part can 

be seen in figure 4.36. The part was scanned using 75W laser power and 5mm/s scan 

speed. The apparent density o f the part was measured to be around 70%.

Close view o f the 
sintered layers

Figure 4.35 M ultiple layer part (10 layers) scanned

using -3 0 0 /1 50|am powder with addition o f  25%, -38|am powder in argon atmosphere
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Figure 4.36 Top view of multiple layer part (10 layers) scanned using -300/150pm powder

with addition o f 25%, -38pm powder

The 10 layer sintered block was scanned using a 75W laser power and a 5mm/s scan 

speed. The layer depth used was 0.5 mm, a scan spacing of 0.5mm for the long sintered 

strips and 0.5 mm scan spacing between the long sintered stripes. As can be seen in Figure 

4.35 the balling phenomenon and the full melting and breakage regime were totally 

eliminated. The block was sintered using scanning parameters found in the good quality 

area on the sintering map o f this batch o f powder.

4.4.1 M ultiple layer microscopy studies

Test samples o f multiple layer scans sintered using 314HC stainless steel 

powder were sectioned and polished for metalographic inspection. 1 he samples were 

etched using “marbles reagent” and the microstructure was examined. This section starts 

by presenting Figure 4.37 that shows an example o f two layers sintered together. 1 he first 

observation is regarding the large black gaps that are visible between the layers. It is 

thought that these gaps appeared because o f the round bottom track shape. 1 he second 

observation is regarding the visible boundary between the two sintered layers. I his
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boundary appeared due to the lack o f heat necessary to penetrate and melt the underlying 

layer.

Two layers sintered together

-300/150^m with addition of 25%, -38^m powder 
Argon atmosphere for a scan speed of 5mm/s and a laser power of 75W

*100|im

Figure 4.37 Microscopic cross section view o f two sintered layers using mix powder

Two layer samples from each batch of powder except -150/75|nm with 

addition o f 25%, -38p.m powder have been analysed. The second layer o f -150/75fam with

Figure 4.38 M ultiple layer cross section for -3 0 0 /1 50(^m powder batch



addition o f  25%, -38|am powder batch had a very pronounced balling phenomenon and it 

could not be analysed.

Figure 4.38 shows the multiple layer (2 layers) cross section obtained using 

—300/150 (am powder. The sintered part was scanned using a 75W laser power and a 3 

m m /s scan speed. A displaced layer movement as well as a full-melting and breakage 

phenomenon can be observed. Figure 4.38 -  1 shows the bonding mechanism between 

these two layers. The layers are bonded together only by small metal molten drops with big 

gaps between them.

Figure 4.39 shows the multiple layer (2 layers) cross section obtained using -  

150/75 jam powder. The part was sintered using a 75W laser power and a 3mm/s scan 

speed. The full melting and breakage phenomenon was found to be very wide spread 

within the second sintered layer. A slight displacement o f the second layer can also be 

observed. Like in the previous example the layers are bonded together by small metallic 

droplets.
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Figure 4.39 Multiple layer cross section for-150/75jwn powder batch

Finally in the -300/150fam with addition o f 25%, -38|am powder batch case, 

figure 4.40 shows the multiple layer (2 layers) cross section obtained. In this case a wide
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spread fullmelting and breakage area for the second sintered layer was also recorded No 

displacement o f the second layer during powder spreading process was recorded. Even it 

the second layer had a pronounced full-melting and breakage behaviour the gaps between 

the two layers were not very big.

Figure 4.40 Multiple layer cross section for-300/150pm  

with addition o f 25%, -38pm powder scanned at 3 mm/s scan speed and 75W laser power

4.5 Summary

This chapter investigated possibilities ot single layer sintering and 

furthermore the possibilities o f scanning multiple layers.

The first part o f  this chapter reported on sintering tests for four batches ol 

powder, two un-mixed, -300/150pm powder and -150/75pm  powder, and two mixed 

batches, -300/150pm with addition o f 25%, -38pm powder and -150/75pm powder with 

addition of 25%, -38pm powder. The results were recorded and mapped on to sintering 

maps by overlapping the information obtained from single tracks sintering tests with those 

from single layers sintering tests. Microscopy investigations were carried out lor each 

batch o f powder. Furthermore, based on this information, multiple layer sintering tests 

were carried out. This part o f the thesis, regarding multiple layer scanning, starts by 

presenting some usual problems that had to be eliminated during the sintering tests. I lie



results are shown in figures 4.28 -  4.32. Chapter 4 ends with a microscopy investigation 

regarding multiple layers for different batches o f power scanned with different parameters.
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS

5.1 Introduction

Chapter 1 stated the mains objectives o f this thesis to be reduction o f porosity of 

as-sintered parts, the creation o f sintering maps and sintering strategies to guide processing 

conditions and reduction o f balling, warping and curling. The following has been achieved. 

Powder mixing to increase powder density has created powders that can be sintered 

without balling over a larger range o f laser powers and scan speeds than unmixed powders 

(chapter 3). Dense single layers as judged by absorption o f light, have been achieved (fig 

4.14). The creation o f sintering maps has been extended from single scan to multi-layer 

conditions. The power/speed conditions for successful processing are more limited for 

multiple layers than for single scans. Warping has been avoided by restricting sintered 

strips to an area o f 10 mm width. Larger areas have been created without warping by 

sintering strips next to each other. An important factor for success has been found to be the 

overlap between strips. The tests have shown that the sintering map boundary depends on 

powder size. But it has not been determined definitively what is the cause of these powder 

size effects. It might be the influence o f powder size on its flowability, or it might be 

different interactions (absorption) with the laser beam, or it might be different surface areas 

leading to different oxide levels and surface tension in the melt. These and other aspects 

are considered in later sections.

5.2 Preliminary tests

Mixing the powders for 15, 30, 45 and 60 minutes, as described in section 3.2, 

resulted in an increase o f powder density. Furthermore, the powders were mixed together 

in different size fractions. The peak density was reached after 15 minutes for all batches o f 

powder except -38 |j.m powder. -38|um powder peaked after 30 minutes. The powder How 

rate was also measured and a poor flow rate was recorded for small particle size powders 

compared to big particle size powder. The -38}im powder batch did not flow at all in spite 

of using both flowmeters available. The poor flowability affects the powder sinterability
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for this batch of powder, how this happens will be seen later in this chapter. By mixing the 

powders together in different size fractions the powder flow rate dropped for big particle 

sizes. A drop from 17g/s to 3g/s was recorded for Carney’s flowmeter tests. An 

improvement o f -38)j.m powder batch flow rate was also recorded for a size fraction o f this 

powder less than 40% in the mix. A poor flow rate resulted in poor powder bed flatness 

during spreading tests. System vibration recorded during spreading tests had an influence 

over the spreading process. The spreading tests showed that an increase o f powder particle 

size results in a more flat powder bed surface. In addition, the mixed powder showed good 

powder bed flatness for mixes where the small particle size powder was less then 40% in 

the mix. An increase o f the small particle size over 40% resulted in a poor powder bed 

flatness, compared to the results obtained for un-mixed -38jim powder.

Moreover, thermal conductivity tests carried out for all batches o f powder 

suggested a slight increase o f thermal conductivity by increasing the powder particle size 

except the -300/150)j.m powder which showed a slightly smaller thermal conductivity 

value. On average the thermal conductivity for all batches was recorded to be 0.31 W/mK. 

The conductivity rig check has shown a poor quality o f data readings for the last 

thermocouple (R6) and a loss o f heat at the rig bottom.

5.3 Single tracks

Single track sintering tests identified four types o f melting behaviour. All the 

qualitative track information was mapped. Each sintering map shows these four melting 

behaviour types as follows: no sintering, partial sintering area, fully melted area and fully 

melted and breakage area. Each boundary determined was identified alphabetically (figures 

3.20-3.25).

A first observation from the sintering maps is the movement o f the c-b 

boundary (figures 3.20-3.25). The c-b (c-b’ for -300/150|am) line was found to move 

towards the left side o f the map by decreasing the powder particle size. A possible reason 

could be the poor flow rate o f the fine powders. Figure 3.4, section 3.3.1 shows the 

decrease o f the flow rate with the decrease o f the powder particle size. Powder density may 

have an influence as well.



However, there are other differences between the powder batches as well. 

During the sintering tests the sintered tracks physical proprieties such as, track depth, track 

w idth and track mass were also measured. The dimensional measurements were taken tor 

all batches o f powder but the mass measurements were carried out only for three batches ot 

powder: -75pm, -300pm and -300/150+25%, -38pm powder. Constants o f proportionality 

for the scanned single tracks have been calculated and are shown in table 5.1. The last 

colum n o f the table is the second column divided by the third column and is presented as a 

density check on the measurements.

Table 5.1 Constants o f  proportionality
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Powder size 

(pm)

mass/length /P /U  

(10'3g/J)

w x d / P / U

(mm3/J)

m ass/length/ 

w x d

(p) kg/m3

-300/150 pm 0.3±0.1 0.08±0.02 3,750

-75/38 pm 0.65±0.1 0.14±0.04 4,650

75%,-300/150+ 

25%, -38pm

0.45±0.1 0.11 ±0.08 4,090

It is seen from table 5.1 that the -300/150 pm powder track is lighter per unit

length than is the -75/38pm  one and it also has a smaller cross-section area lor a given 1 A 1

value. The final row is intermediate between these two.

Why the different powder size tracks should have different mass/unit length

and area, when their densities and conductivities are not so different, merits 

discussion. Perhaps they absorb the laser energy by different amounts. The following is 

estimate o f the absorptivity a, based on an energy balance. II a fraction a  of the 

power P is absorbed, then in 1 s, an energy aP Joules is absorbed. If the track mass per u 

length is m ’, the track mass in Is is m ’ x U. If the energy required to melt unit mass, 

heating it from room temperature, To, to the melting temperature, Tm, is [C ( I m f<>) U- 

where L is the latent heat,

a  P = m ’ U [C (Tm -T0) +L] (5-1)
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In the present case C=650 J/kg K, Tm= 1400°C and L=280kJ/kg.

From 1 able 5.1, for -300/150(im powder tracks we also have: 

m 7 (P/U) = (0.3±0.1) 1 O'3 (g/J) (5.2)

We therefore have an estimate for a  as:

a  = (0.3±0.1) 10'6 [650 x 1380 + 280,000] (5.3)

ct-300/150nm = 0.353±0.1 (5.4)

Similarly, using -75/38pm  and 75% -300/l50 + 25%,-38pm powders, we have an estimate 

for a  as:

0-75/38nm  = 0.765±0.1 (5.5)

Ct-300/I50+-38nm = 0.529±0.1 (5.6)

Thus, it is suggested from equations (5.4 and 5.5) that -75/38|am powder 

absorptivity rate is twice as high as -300/150|iim powder absorptivity. And, the mixed 

powder shows an absorptivity rate between the small and large particle size powders 

absorptivity values (equation 5.6). Assuming an effective absorptivity o f 0.35 and 0.76 

results in an absorbed power o f 26.6W and 57W for a 75W laser power used to sinter -  

j00/150pm  powder and -75/38pm  powder respectively. The power absorbed by the mix 

powder is 39.6W for a delivered laser power o f 75W. In conclusion, these calculations 

suggest a small powder particle size absorbs more heat from the heat source than a big 

powder particle size.

This suggestion is also supported by the physical measurements o f the sintered 

tracks and also by powder thermal conductivity tests. Small particle size powder produced 

larger and heavier sintered tracks thanbig particle size powder. The density (p) o f the 

track-melted material may be estimated from the mass/J and mm3/J constants in table 5.1.

II the track cross-section is rectangular, elliptical or triangular, the three relationships 

between track area and w x d are, respectively:

A = w x d (5.6)

A = (7r/4) w x d (5.7)

A = 0.5 w x d (5.8)

In general, A = c ( w x d) (5.9)



with c typically between 0.5 and 1.0. The calculated densities o f the tracks are tabulated in 

table 5.1, based on a value o f c equal to 0.75. The stainless steel density is 7652 kg/nv. The 

results show a 60% dense track for -75/38|j,m powder, a 5 3 ^  dense tiack for mixed

pow der and a 49% dense track for -300/150[J.m powder.

But if  c equal to 0.5 is used, the densities will be as follow:

-75/38^im powder -  7500 kg/nr 

-300/150(j,m powder - 9300 kg/m ’

75%, -300/150|am + 25%,-38^m - 8180 kg/m3

It can be concluded that the calculated values are in a range ot acceptability. 

Due to the very difficult task and the complex shape ot the tracks these values are only a 

estimate. The answer why small powder size absorbs more heat then big particle size

question for future work.
Another observation from the single tracks tests was the changing

sectional shape o f the sintered track as scan speed increases. Three different

sectioned shapes, crescent-shape triangular shape and elliptical shape weie recorded.

shape characteristics were used for c values during the absorptivity calculation. A poss

explanation for the formation of the crescent or half-moon track shape was found tc

evaporation or expulsion o f the melted powder from the inteiaction area during

sintering process. Figure 5.1 shows the powder bed reactions during sinterin&

different scan speeds. The pictures were taken using a SONY digital camera.

C h ap te r 5 Discussion and conclusions______________________ _—--------------------------- --------------------------- - "
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1 mm/s, 75W 5 mm/s, 75W

-

Laser beam

mi111̂111

■

Laser beam

i» *

75%, -300|im + 25%, -38|im powder 

Figure 5.1 Powder bed reactions during scanning tests in argon atmosphere

It can be easily seen from picture 5.1 (left picture) the violent reaction ol the 

powder during the scanning process at low scan speeds (~lm m/s) compared with 

powder reaction on the right side of figure 5.1 at 5 mm/s.

The influence o f the half-moon shape over the full melting and breakage area is 

definitely correlated. A small half-moon area resulted in a bigger full-melting and bicakc.g 

area on the sintering map. Besides, the boundary o f the half-moon area (d a) is paralle 

the full melted and breakage area (c-b). By correlating these two pieces ot informatic n 

conclusion could be drawn that a poor powder flow rate results in a small hall moon c 

for that powder and corresponds to large full melted and breakage area on the 

map.

Furthermore, the sintered tests were carried out for scan speeds below lmm/s 

for some of the powder batches. The results recorded tor U<1 mm/s differ from 

recorded for U> lmm/s. A possible explanation ot this tact can be based on the 

explanation: from conductivity measurements (k«0.31 W/mK), powder bed 

(e«5000Kg/m3) and the average specific heat o f steel in the range 20 C to 1000 C (C
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J/kgK ), the diffusivity o f the powder bed K/e x C »  0.1 mm2/s. The Peclet number Ua/2k 

associated with the scan speed, U, and the laser beam diameter, 2a«lm m , is therefore 2.5 

w hen U= lmm/s. Speed dropping below lmm/s is associated with Peclet number 

approaching 1.0. It is well-known that this is the borderline between a high-speed moving 

heat source temperature distribution and a slow-speed ones. High-speed is associated with 

heat having a long time to diffuse away from absorption region in the time the laser beam 

passes by. Slow-speed means heat has enough time to diffuse away in the time the laser 

beam  passes by. So, the lower weight per length at a given P/U as the scan speed drops 

below  lm m /s can be interpreted as being due to less constrained heating in these cases.

5.4  Single layers

The sintering tests were carried out using four batches o f powder. Two of the 

initial six batches o f powder were eliminated due to a very narrow full melted area 

obtained during single track tests. By joining the information obtained from single tracks 

tests with the information for single layers tests, shrinkage o f the fu ll melted  area for all 

tour batches o f powder was noticed. The boundary between good quality and poor quality 

areas (f-g and g-h) moved upwards relative to the single-track boundary in the area where 

the tests were carried out. Also, the tendency of the boundary g-h to follow the boundary a- 

b was noticed except for -300/150 jam with addition o f 25%, 38j^m powder. The layers’ 

physical properties were measured such as layer weight. The results are plotted on a P/U 

scale and are presented in figures 5.2 and 5.3.
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L ayers weigh! vs. P/U scanned  using -300/150 m icrons pow der a l d ifferen t scan  spacings

P/U (J/inm)

Figure 5.2 Layer weight vs. energy (-300/150jam powder)

Layers w eight vs. P/U scanned  using 75 % , -300/150 + 25°/o, -38 m icrons pow der

P/U  (J/m m )

♦  0.5mm 

■  0.25mm 
, 0.75mm

| ♦ 0 .2 5 m m  

■  0.5mm 
A 0.75mm

Figure 5.3 Layer weight vs. energy (75%, -300/150|am powder with addition

o f  25%, -38(.im powder)
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By comparing figures 5.2 and 5.3 with the data obtained for single tracks 

using the same batches o f powder (see chapter 3, figures 3.27(a) and 3.30(a)) the results 

are very similar. For a very low energy (<25J/mm) the -300/150pm powder batch shows 

the same characteristics o f full melted area as those for single tracks. Dividing the layer 

w eight o f 10 tracks will result in a track weight for any scan spacing on average of 

0.05±00.1g. But, if  the FLD phenomenon is considered, the real track weight within the 

layer is 0.04g. Then, the influence o f the FLD phenomenon does not have a big influence 

over the sintered part for low energies (<25J/mm). A similar observation can be made for 

the mixed powder batch.

Layers weight vs. P/U - scanned using -300/150 microns powder a t different scan spacings

P/U (J/mm)

Figure 5.4 Layer weight vs. energy density (-300/150pm powder)

Figure 5.4 and 5.5 show layer weight versus energy. Layers were scanned at 

different scan spacing. A visible gain in weight was obtained by mixing the powders 

together. The influence of the scan spacing over the sintering part weight has a big impact. 

By comparing these two figures, the measured weight for a scan spacing of 0.25mm in the 

mixed powder case is higher than with a scan spacing of 0.75mm for the unmixed powder. 

Also, a significant difference in coupon weight for coupons scanned using 0.5mm scan



sp ac in g  and 0.75 mm for the -300/150|im powder batch was recorded. In comparison, the 

m ix e d  powder showed a difference only for a scan spacing below 0.3mm.

174
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Layers weight vs. P/U scanned using 75% , -300/150 + 25% , -38 microns powder

Figure 5.5 Layer weight vs. energy (75%, -300/150^im powder with addition

of 25%, -38|am powder)

The density o f the layer o f melted material (player) might be estimated from the 

weight /area /layer depth constants. It was considered that all the tracks within the y 

have the same depth. If the layer area is rectangular, Aiayer -  length x width 100 mm 

Then, piaycr = w e ig h t^ /  areaiayer / layerdepth (kg/m ) (5.10)

The estimated layer densities obtained for a laser power of 75W and three scan spacings 

using the mixed powder are shown in table 5.2. The layer area was considered 

o f 100mm2.
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Laser power(W) Scan speed (mm/s) Scan spacing (nun) p layer (kg/m3)
75 1 0.25 9.008
75 1 0.5 9.216

75 1 0.75 11.118

75 3 0.25 6.327

75 3 0.5 6.43

75 3 0.75 7.375

75 5 0.25 7.663

75 5 0.5 8.693

75 5 0.75 9.367

75 8 0.25 5.191

75 8 0.5 6.842

75 8 0.75 7.876

Table5.2 Estimated 

layer density for mixed 

powder

The calculated values suggested an increase of the layer density by increasing the 

scan spacing. The calculated values are estimates only. If the FLD effect and not totally 

flat surfaces are considered the results would be slightly different. For example, tor a layer 

scanned at 75W laser power, 0.5 mm scan spacing and 5mm/s scan speed, the calculated 

density taking into account the FLD effect would be:

Layer depth -  with first track (FT) -  0.98mm 

Layer depth -  without first track (WFT) -  0.8mm

Then, p iayerW FT = 6.5875 kg/m3 compared to p iayerFT = 8.693 kg/m3. In conclusion, the real
3  i  •

value of layer density could only be estimated to an average value of 7.640 kg/m . This 

value corresponds to 99% layer density. This value could drop by a few percent tor large 

layers duo to the existing gaps between additional small layers.

For comparison, the calculated value o f -300/150|j,m layer density, for the same scanning 

conditions, showed an estimated layer density of p ]ayer f t  = 7.987 kg/m' and player w f t  =  

6.642 kg/m3. The average value is 7.314 kg/m3. This value corresponds to 95% layer 

density.

5.5 Multiple layers

For the trial all four batches o f powder tests were used. The layer thickness 

importance during the tests was proven. A newly designed slot feed mechanism enabled 

layers to be spread with less then 0.5mm thickness. The layer-warping phenomenon was
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diminished by using short (<12mm) raster scanning. A new scanning strategy was 

developed. By adding small layers (10mm by 10mm) together large areas could be scanned 

(60m m  x 30mm) without layer warping. Taking advantage o f the mirror delay and 

decreasing the overlap down to 0.25mm from 0.5mm between two consecutive long stripes 

the boundary visible within the long layers was totally eliminated.

During multiple layer scanning tests two characteristics were determined for the 

second sintered layer: the balling phenomenon and melt and breakage. These are believed 

to be influenced by the cold previous layer underneath. The cold layer acts in the same way 

as the FLD phenomenon by absorbing part o f the heat from the heat source.

5.6  Conclusion

Powder physical properties were found to have an influence over the sintering 

process along with process parameters. It was found out that by mixing the powders for 15 

minutes the powder density and therefore the powder bed density increases. The influence 

ot powder flow rate proved to be decisive during the spreading tests. It is believed that 

powder flow affects the shape o f track cross-sections. The poorer the flow rate, the deeper 

is the track trench. In addition, a poor flow rate stops the fresh powder to flow in the 

sintering area and the existing melted powder is over heated and evaporation occurs. There 

were observed large gaps into the powder bed along the sintered tracks for those batches of 

powder with poor flow rate. The tests for powder thermal conductivity showed no 

important differences between all batches of powder.

A conclusion that can be drawn based on the physical measurement of the 

tracks is the suggestion that the melt pool diameter (D) is smaller then the laser spot for 

energies less than 10 J/mm. The smaller size occurs because o f high scan speeds and 

implies a reduced net power absorbed in the powder bed. Moreover, track measurements 

showed a deeper penetration for 3mm/s scan speed even if  the track width value is smaller 

then at lmm/s scan speed for example. The microscopy studies suggested a stirring 

phenomenon takes place for this particular scan speed of 3mm/s. At this moment any 

plausible explanation could not be presented for this phenomenon. A further investigation 

as is suggested will be seen in next section (section 5.7).
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The next conclusion is based on the absorptivity calculations which showed a 

low powder absorptivity for big particle size powders (0.35) and a high powder 

absorptivity for small particle size powders (0.76). An improvement o f  powder 

absorptivity was obtained for mixed powders. An insertion o f 25% o f -38fam powder in the 

mix with —300/150(j.m powder showed an improved powder absorptivity rate (0.52). Also, 

it was determined that the big particle size powders spread better than the small particle 

size powders. By combining this information it can be said that using a mixed powder the 

chances o f obtaining a good quality layer are higher.

Layer sintering tests showed an improvement o f large layer quality by using 

small layers attached one to another. The warping phenomenon due to thermal gradients 

that existed was totally eliminated. The tests also showed that a full melted and good 

quality track does not necessary mean a good quality layer. The area on the sintering maps 

where good quality layers were obtained proved to be smaller then the full melted area on 

the track sintering maps. The influence o f the FLD phenomenon is considered to be very 

important. By mixing the powders together and careful control o f the sintering parameters 

the FLD phenomenon was almost eliminated.

In the end, the sintering tests showed that it is possible to sinter large areas and 

to bond the layers together in a block (10 layers in our case, chapter 4).

5.7 Future work

The aim of RP technologies is to reduce cost and lead time required for the 

production cycle o f different parts. A successful RP technique using direct selective laser 

sintering o f SS powders should take into account several conditions. Besides the influence 

o f processing parameters, the laser type and powder characteristics are a main concern. It 

was reported (Kruth et al 1999) that an Nd:YAG laser gives better results then the CO2 

laser used in this research. A main bonus from using an Nd.YAG laser is the better 

penetration o f the powder bed and implicitly an increase o f the melted pool size. Moreover, 

the better penetration is a big bonus during multiple layer sintering. These advantages 

make the Nd:YAG laser at the moment the optimal laser for direct laser sintering o f SS 

powders. Additionally, an improvement o f the sintered parts could be obtained, using a 

C 0 2 laser, only by decreasing the laser spot diameter (the actual spot diameter is 1.1 mm).
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The actual work focused on direct SLS o f stainless steel powders and has 

identified the effects o f powder mechanical properties, and determined the optimal 

parameters for obtaining good quality layers and proved the possibility o f building multiple 

layers.
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Appendix B - Pascal program used for Slot Feeder Mechanism (SFM)

PROGRAM StepperController; {written by Radu Eane} 
uses crt;

VAR
steps,dly : integer; 
key : char; 
pos : byte;
dir,hsteps : string[5];

procedure SendSignal; 
var cou n t: integer; 
begin
count:=steps;
gotoxy(l,23);writeln ('Start to move Motor '); 
port[888]:=$00; 
i f  (hsteps-yes') then 
begin
if  (dir='right') then while (count>0) do begin
if (pos=8) then begin port[888]:=$09;pos:=9;gotoxy(l,24);writeln(V');end 
else if  (pos=9) then begin port[888]:=$01 ;pos:=l ;gotoxy(l,24);writeln('-');end 

else if  (pos= l) then begin port[888]:=$03;pos:=3;gotoxy(l,24);writeln('\');end 
else if  (pos=3) then begin port[888]:=$02;pos:=2;gotoxy(l,24);writeln('|');end 
else if  (pos=2) then begin port[888]:=$06;pos:=6;gotoxy(l,24);writeln(’/');end 
else if  (pos=6) then begin port[888]:=$04;pos:=4;gotoxy(l,24);writeln('-');end 
else if (pos=4) then begin port[888]:=$0C;pos:=12;gotoxy(l.24);writeln('V);end 
else if  (pos=12) then begin port[888]:=$08;pos:=8;gotoxy(l,24);writeln('|');end; 

delay(dly); 
count:=count-l; 
end;

if  (dir='left') then while (count>0) do begin
if (pos=8) then begin port[888]:=$lC;pos:=12;gotoxy(l,24);writeln('\');end 
else i f  (pos=12) then begin port[888]:=$04;pos:=4;gotoxy(l ,24);writeln('-');end 
else if  (pos=4) then begin port[888]:=$06;pos:=6;gotoxy(l,24);writeln(7');end 
else if  (pos=6) then begin port[888]:=$02;pos:=2;gotoxy(l,24);writeln('|');end 
else if  (pos=2) then begin port[888]:=$03;pos:=3;gotoxy(l,24);writeln('V);end 
else if  (pos=3) then begin port[888]:=$01;pos:=l ;gotoxy(l ,24);writeln('-');end 
else if  (pos= l) then begin port[888]:=$09;pos:=9;gotoxy(l,24);writeln(7’);end 
else if  (pos=9) then begin portl888]:=$08;pos:=8;gotoxy(l,24);writeln('|');end; 

delay(dly); 
count:=count-l; 

end; 
end
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begin
if (dir='right') then while (count>0) do begin
if (pos=8) then begin port[888]:=$01;pos:=l;gotoxy(l,24);writeln('-');end 
else if  (pos=4) then begin port[888]:=$08;pos:=8;gotoxy(l,24);writeln('|');end 

else if (pos=2) then begin port[888]:=$04;pos:=4;gotoxy(l ,24);writeln('-');end 
else if  (pos=T) then begin port[888]:=$02;pos:=2;gotoxy(l,24);writeln('|');end; 

delay(dly); 
count:=count-l; 
end;
if (dir='left') then while(eount>0) do begin
if(pos= l) then begin port[888J:=$08;pos:=8;gotoxy(l,24);writeln('|');end 
else if (pos=2) then begin port[888]:=$01;pos:=T;gotoxy(l,24);writeln('-');end 

else if  (pos=4) then begin port[888]:=$02;pos:=2;gotoxy(l ,24);writeln('|');end 
else if (pos=8) then begin port[888]:=$04;pos:=4;gotoxy(l ,24);writeln('-');end; 

delay(dly); 
count:=count-l; 
end; 

port[888]:=$00; 
end;
gotoxy(l,23);
writeln('Finished ');
end;

BEGIN
dir:—right';steps:=40;dly:=4000;pos:=l;hsteps:—no';
ClrSer;
writeln ('StepperMotor-Controller 1.0'); 
writeln (' written by Radu EANE'); 
writeln;
writeln ('1 Longer Delay');
writeln ('2 Shorter Delay');
writeln ('3 Change Direction');
writeln ('4 More Steps');
writeln ('5 Less Steps');
writeln ('6 Enable/Disable Half Steps');
writeln ('7 Run Motor');
writeln ('8 Exit');
writeln;
writeln('Please select num ber...'); 
repeat
gotoxy(l ,15);
writeln('Direction : ',dir,' '); 
writeln('Steps : ',steps,' '); 
writeln('Half Steps : ',hsteps,' '); 
writeln('Delay : ',dly,' ms '); 
key:=readkey:
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if  (key-4 ') then begin steps:=steps+l ;if steps=32000 then steps:=29999;end; 
if (k e y -6') then if (hsteps='no') then hsteps:-yes' else begin hsteps:-no':pos:=l ;end; 
if (k e y -5') then begin steps:=steps-l ;if steps=0 then steps:=l ;end; 
if (key='7') then SendSignal;
if (k e y -3') then if (dir='left') then dir:='right' else d ir:-left'; 
if (k e y -1') then begin dly:=dly+l 00;if dly>32000 then dly:=29995;end; 
if (key-2 ') then begin dly:=dly-100;if dly<l then dly:=0;end; 

until (key='8');

END.
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Appendix C -  Packed powder density, experimental test results

(a) -150/75fj.m powder with addition o f -75/38|j.m powder

Powder type M ass M ass Mass Avg. mass Pow der Density Mixing time

(g) (g) (g) (g) Kg/m3 (min)
80% ,150 + 20% ,-75/38 43 .9752 44.0125 44 .1128 44.0035 4875 15
75% ,150 + 25% ,-75/38 44.6122 44 .0258 44 .1132 44.2504 4906 15
60% .150 + 40% ,-75/38 43.4521 43 .5 2 1 7 43.413 43.4622 4807 15
40% .150 + 60% ,-75/38 43.1128 43 .2258 43.4501 4 3 .2627 4782 15
20% .150 + 80% ,-75/38 42.1121 4 2 .9 9 1 7 42.1692 42.4243 4678 15

C hanges in -150/75 m icron pow der packing density with p e rcen tag e  additions 
of -75/38 m icron pow der

P e rc e n t (% )
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(b)-75/38jim  powder with addition of -38fim powder

Powder type Mass M ass M ass Avg. mass Powder Density Mixing time

(g) (g) Gt) (g) Kg/m3 (min)
80% ,-75/38 + 20% ,38 43.5214 43.258 43.0253 43.2682 4782 15
75% ,-75/38 + 25% ,38 43.8675 43.6985 43 .9587 43.8415 4855 15
60% ,-75/38 + 40% ,38 42.0028 43.0258 43 .1857 42.7381 4717 15
40% ,-75/38 + 60% ,38 43 .3187 43.1089 43.9865 43.4713 4808 15
20% ,-75/38 + 80% ,38 42.2014 41 .987 42.4425 42.2103 4651 15

Changes In 75/38 microns powder packing density with percentage additions of 38 micron
powder

P e rc e n t (% )



Appendix D 194

Appendix D -  Powder flow rates (grams/ second)

Powder size 1 %1 Pow der size 2 %2 Tim e (s) M ass (g ) I-'low rate (s/g M ixing time
38 20 300 80 11 55 5 60
38 40 300 60 23 51 2.21 60
38 60 300 40 N ot How 50 N ot flow 60
38 80 300 20 N ol (low 48 N ot flow 60
150 20 300 80 16 50 3.12 60
150 40 300 60 21 51 2.42 60
150 60 300 40 22 55 2.5 60
150 80 300 20 19 50 2.63 60
75 20 300 80 20 55 2.75 60

75 40 300 60 21 50 2.38 60

75 60 300 40 23 49 2.13 60

75 80 300 20 20 48 2.4 60
38 20 150 80 14 52 3.71 60

38 40 150 60 18 51 2.83 60

38 60 150 40 N ot flow 50 N ot flow 60

38 80 150 20 N ot flow 54 Not flow 60

38 20 75 80 26 52 2 60

38 40 75 60 26 51 1.96 60

38 60 75 40 N ot flow 54 N ot flow 60

38 80 75 20 N ot flow 55 N ot flow 60

75 20 150 80 18 52 2.88 60

75 40 150 60 17 51 3 60

75 60 150 40 19 53 2.78 60

75 80 150 20 22 50 2.27 60

Pow der size  1 %1 Pow der size  2 %2 Tim e (s) M ass (e ) F low  rate (s/g ) Mixing time
38 20 300 80 12 48 4 45

38 40 300 60 23 53 2.3 45

38 60 300 40 Not flow 50 Not flow 45

38 80 300 20 Not flow 51 Not flow 45

150 20 300 80 17 55 3.23 45

150 40 300 60 21 48 2.28 45

150 60 300 40 22 52 2.36 45

150 80 300 20 18 50 2.77 45

75 20 300 80 17 51 3 45

75 40 300 60 19 50 2.63 45

75 60 300 40 21 51 2.42 45

75 80 300 20 21 52 2.47 45

38 20 150 80 17 51 3 45
38 40 150 60 20 50 2.5 45

38 60 150 40 Not flow 54 Not flow 45
38 80 150 20 Not flow 50 Not flow 45
38 20 75 80 24 51 2.12 45
38 40 75 60 27 53 1.96 45
38 60 75 40 Not flow 51 Not flow 45
38 80 75 20 Not flow 55 Not flow 45
75 20 150 80 18 52 2.88 45
75 40 150 60 15 51 3.4 45
75 60 150 40 19 50 2.63 45
75 80 150 20 23 55 2.39 45
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Powder size 1 %1 P ow der size  2 %2 Fime ( s) M ass (e ) F low  rate (s /e M ixine time
38 20 3 0 0 80 11 52 4.72 30
38 40 300 60 20 50 2.5 30
38 60 300 40 N ot flow 50 N ot flow 30
38 80 300 20 N ot flow 51 N ot flow 30
150 20 3 00 80 18 53 2.94 30
150 40 300 60 19 51 2.68 30
150 60 300 40 22 54 2.45 30
150 80 300 20 19 52 2.73 30
75 20 300 80 18 55 3.05 30

75 40 300 60 19 50 2.63 30

75 60 300 40 22 49 2.22 30

75 80 300 20 23 50 2 .17 30

38 20 150 80 17 53 3.11 30

38 40 150 60 19 57 3 30

38 60 150 40 N ot flow 48 N ot flow 30

38 80 150 20 N ot flow 51 N ot flow 30

38 20 75 80 26 51 1.96 30

38 40 75 60 25 50 2 30

38 60 75 40 Not flow 55 N ot flow 30

38 80 75 20 N ot flow 54 N ot flow 30

75 20 150 80 20 55 2.75 30

75 40 150 60 17 51 3 30

75 60 150 40 19 50 2.63 30

75 80 150 20 23 51 2.21 30

Powder size 1 %1 Powder size  2 %2 l ime (s) M ass (e ) F low  rate (s /e ) M ixine time

38 20 300 80 10 51 5.1 15

38 40 300 60 22 52 2 .36 15

38 60 3 00 40 N ot flow 51 N ot flow 15

38 80 300 20 Not flow 55 N ot flow 15

150 20 300 80 17 54 3.17 15

150 40 300 60 20 56 2.8 15

150 60 300 40 21 56 2 .66 15

150 80 300 20 18 55 3.05 15

75 20 300 80 18 52 2.88 15

75 40 300 60 20 55 2.75 15

75 60 300 40 22 52 2 .36 15
75 80 300 20 21 53 2.52 15
38 20 150 80 15 51 3.4 15
38 40 150 60 18 50 2.77 15
38 60 150 40 N ot flow 52 N ot flow 15
38 80 150 20 N ot flow 55 Not flow 15
38 20 75 80 25 55 2.2 15
38 40 75 60 25 53 2.12 15
38 60 75 40 N ot flow 51 Not flow 15
38 80 75 20 N ot flow 50 N ot flow 15
75 20 150 80 19 49 2 .57 15
75 40 150 60 16 54 3 .375 15
75 60 150 40 20 52 2.6 15
75 80 150 20 24 51 2.12 15
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Appendix E — Thermal conductivity recorded data

-150+75 batch powder heated at 150 C degrees (steady state)

15620 42.38 41.19 45.57 63.9 69.23 112.4 117.32 4.92 5.33 4.38

15650 36.58 41.19 45.69 64.14 69.23 112.4 117.32 4.92 5.09 4.5

15680 35.87 41.08 45.69 64.14 69.23 112.28 117.32 5.04 5.09 4.61
15710 37.64 41.19 45.69 64.14 69.23 112.28 117.44 5.16 5.09 4.5

15740 35.99 41.08 45.69 64.02 69.11 112.28 117.44 5.16 5.09 4.61

15770 44.03 41.19 45.69 64.14 69.11 112.28 117.44 5.16 4.97 4.5

15800 36.58 41.08 45.69 64.02 69.11 112.28 117.44 5.16 5.09 4.61

15830 36.1 41.31 45.69 64.02 69.11 112.4 117.32 4.92 5.09 4 38

15860 37.88 41.19 45.69 64.02 69.11 112.28 117.32 5.04 5.09 4.5

15890 36.1 41.43 45.69 64.02 69.11 112.52 117.32 4.8 5.09 4.26

15920 41.9 41.43 45.69 64.02 69.11 112.52 117.32 4.8 5.09 4 26

15950 36.46 41.43 45.69 64.02 69.35 112.4 117.32 4.92 5.33 4.26

15980 36.1 41.31 45.69 64.02 69.47 112.4 117.32 4.92 5.45 4.38

15010 37.64 41.43 45.69 64.02 69.35 112.4 117.32 4.92 5 33 4.26

15040 36.22 41.31 45.81 64.14 69.47 112.28 117.32 5.04 5.33 4.5

15070 42.02 41.31 45.69 64.02 69.47 112.4 117.32 4.92 5.45 4.38

15100 36.34 41.31 45.92 64.38 69.35 112.28 117.32 5.04 4.97 4.61

15130 35.99 41.31 45.92 64.38 69.35 112.28 117.44 5.16 4.97 4.61

15160 37.17 41.43 45.92 64.38 69.35 112.28 117.32 5.04 4 97 4.49

15190 36.1 41.43 45.92 64.26 69.35 112.28 117.32 5.04 5.09 4.49

15220 40.37 41.43 45.92 64.49 69.35 112.28 117.32 5.04 4 86 4.49

15250 36.46 41.43 45.92 64.38 69.35 112.28 117.32 5.04 4.97 4.49

15280 36.22 41.43 45.92 64.14 69.23 112.28 117.32 5.04 5.09 4.49

15310 36.93 41.31 45.92 64.26 69.35 112.16 117.44 5.28 5.09 4.61

15340 36.34 41.55 45.81 64.26 69.35 112.4 117.32 4.92 5.09 4 26

15370 39.54 41.43 45.92 64.26 69.23 112.28 117.32 5.04 4.97 4 49

15400 36.58 41.67 45.81 64.14 69.35 112.4 117.2 4.8 5.21 4.14

R7 R6 R5 R4 R 3 R2 R1 A12 A34 A56

-300+150 batch powder heated at 150 C degrees (steady state)

14830 33.5 40.72 44.39 62.48 66.98 116.12 111.32 4.8 4.5 3.67

14860 35.87 40.84 44.15 62.13 67.1 116.12 111.32 4.8 4.97 3.31

14890 33.85 40.84 44.39 62.48 67.1 116.12 111.32 4.8 4 62 3.55

14920 33.5 40.84 44.39 62.6 67.1 116.12 111.32 4.8 4.5 3.55

14950 34.8 40.84 44.39 62.36 67.1 116.12 111.44 4.68 4.74 3.55

14980 33.74 40.84 44.39 62.6 67.1 116.12 111.32 4.8 4.5 3.55

15010 37.64 40.96 44.39 62.48 67.22 116.12 111.44 4.68 4.74 3.43

15040 34.09 40.96 44.5 62.72 67.22 116.12 111.44 4 68 4.5 3.54

15070 33.62 40.96 44.5 62.6 67.22 116.24 111.32 4 92 4 62 3.54

15100 35.51 40.96 44.5 62.72 67.22 116 24 111.44 4.8 4.5 3.54

15130 33.85 40.96 44.5 62.72 67.22 116.24 111.44 4.8 4.5 3.54

15160 43.32 41.08 44.5 62.6 67.34 116.12 111 44 4.68 4 74 3 42

15190 34.45 40.96 44.62 62.72 67.22 116.24 111 44 4.8 4.5 3.66

15220 33.85 40.96 44.5 62.6 67.22 116.36 111.44 4 92 4.62 3.54

15250 36.58 41.08 44.62 62.72 67.34 116 36 111.56 4.8 4.62 3.54

15280 34.09 41.08 44.62 62.72 67.34 116 24 111.56 4.68 4.62 3.54

15310 34.09 41.19 44.62 62.6 67.34 116 36 111.8 4.56 4.74 3.43

15340 34.92 41.08 44.62 62.72 67.34 116.24 111.68 4 56 4.62 3.54

15370 34.21 41.31 44.62 62.6 67.34 116.24 111.8 4 44 4.74 3.31

15400 41.43 41.19 44.62 62.72 67.34 116 24 111.68 4.56 4.62 3.43

15430 34.57 41.43 44.62 62.72 67.34 116.24 111.92 4 32 4.62 3.19

15460 34.09 41.31 44.74 62.72 67.46 116.12 1 1 1 8 4 32 4.74 3.43

15490 36.22 41.43 44.74 62.72 67.34 116.24 111.8 4 44 4.62 3.31
15520 34.21 41.43 44.74 62.72 67.46 116 24 111.8 4 44 4.74 3.31
15550 34.09 41.43 44.74 62.72 67.69 116.24 111.8 4 44 4.97 3.31
15580 34.8 41.43 44.86 62.72 67.46 116.24 111.92 4 32 4.74 3 43
15610 34.21 41.55 44.86 62.84 67.69 116.24 111.92 4.32 4.85 3.31
15640 39 54 41.55 44.86 62.84 67.57 116.24 111.92 4 32 4.73 3.31
15670 34.57 41.55 44.86 62.84 67.69 116.24 111.8 4 44 4.85 3.31
15700 34.21 41.55 44.98 62.96 67.81 116.24 111.8 4.44 4.85 3 43

R7 R6 R5 R4 R3 R2 R1 A12 A 34 A 56
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-75+38 batch powder heated at 150 C degrees (steady state)

14910 31.72 34.09 36.82 49.71 52.78 82.53 85.98 3.45 3.07 2.73
14940 30.3 34.09 36.7 49.59 52.78 82.65 85.86 3.21 3.19 2.61
14970 36.82 34.09 36.7 49.71 52.78 82.65 85.86 3.21 3.07 2.61
15000 30.77 34.21 36.82 49.71 52.66 82.65 85.86 3.21 2.95 2.61
15030 30.3 34.33 36.82 49.71 52.66 82.89 85.86 2.97 2.95 2.49

15060 33.26 34.21 36.82 49.71 52.78 82.77 85.98 3.21 3.07 2.61
15090 30.42 34.33 36.82 49.71 52.78 82 89 85.86 2.97 3.07 2.49
15120 30.3 34.45 36.82 49.83 53.02 82.89 85.98 3.09 3.19 2.37

15150 31.96 34.33 36.82 49.71 52.9 83.01 85.98 2.97 3.19 2.49

15180 30.3 34.33 36.93 49.94 53.14 82.77 85.98 3.21 3.2 2.6

15210 39.42 34.33 36.93 49.83 53.14 82.89 85.98 3.09 3.31 2.6

15240 30.77 34.33 37.05 50.06 53.02 82.77 85.98 3.21 296 2 72

15270 30.18 34.21 36.93 50.06 52.9 82.77 85.98 3.21 284 2.72

15300 33.62 34.21 36.93 50.06 53.02 82.65 86.1 3.45 296 2.72

15330 30.42 34.33 36.93 49.94 52.9 82.77 86.1 3.33 296 2.6

15360 30.3 34.33 36.93 49.94 52.9 82.77 85.98 3.21 296 2.6

15390 31.72 34.33 36.93 49.83 52.9 82.77 86.1 3.33 307 2.6

15420 30.42 34.57 36.93 49.83 52.9 83.01 85.98 2.97 3.07 2 36

15450 36.58 34.33 36.93 49.83 52.9 82.77 85.98 3.21 3.07 2.6

15480 30.89 34.57 36.93 49.83 52.9 83.01 85 98 2.97 3.07 2.36

15510 30.3 34.45 36.93 49.94 53.14 82.89 85.98 3.09 3.2 2.48

15540 33.5 34.57 36.93 49.83 53.14 82.89 85.98 3.09 3.31 2.36

15570 30.42 34.45 37.05 50.06 53.14 82.77 85.98 3.21 3 08 2.6

15600 30.18 34.45 37.05 50.06 53.14 82.77 86.1 3.33 3.08 2 6

15630 31.25 34.45 37.17 50.18 53.14 82.77 85 98 3.21 296 2.72

15660 30.42 34.33 37.05 50.18 53.02 82.77 86.1 3.33 2.84 2.72

15690 37.41 34 45 37.17 50.18 53.14 82.77 86.1 3.33 296 2.72

15720 30.89 34.45 37.17 50.06 53.14 82.77 86.1 3.33 3.08 2.72

15750 30.54 34.57 37.05 49.94 53.14 82 89 85 98 3.09 3.2 2.48

15780 33.26 34.45 37.17 50.06 53.14 82.77 85.98 3.21 3.08 2.72

15810 30.77 34.8 37.05 50.06 53.14 83.01 86.1 309 3.08 225

15840 30.42 34.68 37.17 50.06 53.37 83.01 85 98 2.97 3.31 249

15870 31.72 34.8 37.17 50.06 53.14 83.12 86.1 2.98 3.08 2.37

R7 R6 R5 R4 R3 R2 R1 A12 A34 A56

-38 batch powder heated at 150 C degrees (steady state)

14980 40.48 37.41 40.48 57.99 61.89 103.05 107.24 4.19 3.9 3.07

15010 34.21 37.29 40.48 57.87 61 89 103.17 107.24 4.07 4.02 3.19

15040 33.5 37.29 40.72 57.75 61.89 103.29 107.24 3.95 4.14 3 43

15070 37.05 37.29 40.6 57.87 62.01 103.29 107 12 3.83 4 14 3.31

15100 33 74 37.29 40.48 57.99 61.89 103.17 107.24 4.07 3.9 3 19

15130 33.5 37.29 40.72 57.75 61.77 103.29 107.12 3 83 4.02 3 43

15160 35.04 37 29 40.72 57.75 62.01 103.29 107.12 3 83 4.26 3 43

15190 33.5 37.41 40.6 58.1 62.01 103.05 107.24 4.19 3.91 3.19

15220 43.56 37.41 40.48 58 1 62.01 103.05 107.24 4.19 3.91 3.07

15250 34 21 37.29 40.72 57.87 61.89 103.29 107.24 3.95 4.02 3 43

15280 33 62 37.41 40.6 57.87 62.13 103.29 107.24 3.95 4 26 3 19

15310 36.46 37 41 40.6 57.99 62.13 103.17 107.24 4.07 4.14 3 19

15340 33.62 37.41 40.6 58.1 62.01 103.17 107.24 4.07 3.91 3.19

15370 33.62 3741 40.72 57.87 61.89 103.29 107.24 3 9 5 4 02 3.31
15400 35.39 37.41 40.72 57.87 62.01 103 29 107.24 3.95 4.14 3.31

15430 33.5 37.53 40.6 58.22 62 13 103.05 107.24 4 19 3 91 3.07
15460 42.85 37.53 40.6 58.22 62.13 103 17 107.24 4.07 391 3.07
15490 34.21 37 41 40.6 57.99 62.01 103 17 107.24 4 07 4 02 3.19
15520 33.5 37 41 40.72 57.87 62.25 103.29 107.12 3 83 4 38 3.31
15550 36.58 37 41 40.72 57.99 62.13 103.29 107 24 3.95 4.14 3.31
15580 33.74 37 53 40 6 58.1 62.01 103.17 107.24 4 07 3.91 3.07
15610 33.62 37.41 40.72 57.99 62 01 103.41 107.24 3.83 4 02 3.31
15640 34.92 37 41 40.84 57 99 62.13 103.41 107.24 3 8 3 4.14 3 43
15670 33.62 37.53 40.72 58.22 62.13 103 17 107.24 4 07 3 91 3 19

R7 R6 R5 R4 R3 R2 Rl A12 A34 A5(
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Appendix E — Thermal conductivity

Temperature difference within the reference disk for -38  microns powder 

and temperature vs. time for -38|am powder heated at 150°C

SS -38 m icrons pow der S S  38 (Th = 150C)

Tim e (h)

Time fhl

Temperature difference within the reference disk fo r—75+38 microns powder 
and temperature vs. time for -75+38|im powder heated at 150* C

Tim e (H)
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Appendix F -  Test serial numbers for all sintering experimental tests

C/i

E,
i

&S:

c/o

- «/*! oc O rn - OO o CO •/I r- - m OO o co «/1 r- - co oo o co r- co •A) OO c cO

—

w
1

I

*

25 
w

25
w

25 
w £ !/-> r  i

| 
*Sc

*os 50
w

«os
M

QC 50
w

50
w

*05 50
w if <r,f-*

1 
1

M$ 
I

"S
i

1 
^ *S

i

1__
__

__
__

__
 

75
w

£IT)r-
ifo ifo “fo fo

IlO
w

IlO
w

1__
__

__
__

_
 

IlO
w

IlO
w

1__
__

__
__

_
 

17
0w

17
0w

17
0w

I__
__

__
__

__
 

17
0w

17
0w f©

17
0w

17
0w

Ty
pe

 
of 

si
nt

er
in

ul
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k ued
H Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Po
wd

er
 s

ize
 

1’

oo
rn

ooro oo ccm 00 00rn -3
8 OCro oo 00rn 00r'-i 00CO

8£-
8£-
8£-
8E- ooco OO OOCO ooco ooCO ooco OOCO

8£- 'Xco ooCO ooco oe
r?

ooco 00co 00co oocO 00ro Km occo ooCO ooco occo occo

1 
-3

8

1 T
es

t 
se

ria
l 

nu
m

be
rs 

1
Se

rie
s 

6.1 <N
vO

1 
™ 

1

6.
4

1 
s'9 

1

o
vb

1 
1

1 
89 

1

Se
rie

s 
7.1 z

l

“ 
1

t'i
1 

 ̂
1

9
-L 7.

7 OO
r-

Se
rie

s 
8.1

8.
2 £8 84

«/->
00

vO
00

r-
x

OO
OO

Se
rie

s 
9.1

o'
co
o' 9.

4

__
__

__
_i

i_
__

__
96

r-~
o' 98

Se
rie

s 
10

.1
n
O 10

.3
10

4 © 10
6

1 0
.7

1 
10

8

Sc
an

 
sp

ee
d 

ran
ge

 
(m

m
/s

n

- co <r oo © co •ri r- - co 1/-I oo o co <r, r- - oc o co <r, r- - i/i OO o •n r>- - X o

S
4>Of
Iu.
%
8

J

25
w

25
w

25
w

25
w

25
w

25
w

25
w

25
w

50
w

50
w

50w
 

1
50

w £—iri 50
w

50
w

50
w

75
w •f iJ' r ,

«S
i

«S i
m

S L
1

| i

no
w

IlO
w

IlO
w |

11
0w

IlO
w

17
0w £r- Jr̂ - 17
0w 2r - 17
0w &r ' j

Ty
pe

 
of 

sin
te

rin
al

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k 
!

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k

Po
wd

er
 s

ize
 

1
-3

00
/1

50
-3

00
/1

50 §
1co

0SI/0Q
£- -3

00
/1

50
-3

00
/1

50
 

!
-3

00
/1

50
 

i
-3

00
/1

50
 

!
-3

00
/1

50
-3

00
/1

50
-3

00
/1

50
-3

00
/1

50
-3

00
/1

50 o•Ai

sco -3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50

-3
00

/1
50 ir,

ir^\ -3
00

/1
50

-3
00

/1
50

-3
00

/1
50

i -3
00

/1
50 9 ,

8

-30
0 

15
0

-3
00

/1
50

1 T
es

t 
se

ria
l 

nu
m

be
rs 

1
Se

rie
s 

1.1

<N co Tf 'O t"- oo

Se
rie

s 
2.1

1 
« 

1

CO
f'i

1 
« 

1

r i

1 
. 

«
1 

LZ 
1

00ri

Se
rie

s 
3.1 r)co

1 
« 

1
I 

 ̂
I

r*S

r 
« 

i
1 

u 
1

00m

Se
rie

s 
4.1

1 
 ̂

1
1 

E* 
I

-T-r

1 
sf 

1
I 

I
1 

L* 
1

-Sl'T
<r.
s
■->cu
f

n
»/S

1 
£-s 

1

*•5
1____

« 
1

vO
'r

« 
I

8S 
|



Appendix F 200

C/5

£

4>Cl

-o

I&5
CeOo

C/5

rn *r, OC o rn V) - rn V) OO o rn V) r-
- rn OO O rn •O r-

- rn OC O m r~~-
- rr oc s r*~ «n r-~

—

<u0/
ii—
0s
£
u
1  
—

>r, 
Cs|

£
n

| 
n

1 
1

1 
1

fA
g

z
1 

1

-  
o  
'r,

«
o

s 50
w £

o•n

I 
M

0S 
|

£o 50
w o•o

1 
1

1 
1

1 
 ̂

1
1 

^ 
1

£
>o
r->

1 
1

£
>0
r-

£
r» Il

O
w 1

1 l
O

w

| | | 6 | £
r~

«()/. 1

£
r-~ r-

£
r-

J
o
r-

"O
il &

Ty
pe

 
of 

si
nt

er
in

el
T

ra
ck

Tr
ac

k 
1

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

1 
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck

1 
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

! 
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck U
2
f-

CJ
2
I—

os
—

* 
T

ra
ck

T
ra

ck
T

ra
ck

T
ra

ck

Po
w

de
r 

siz
e 

1
-7

5/
38

-7
5/3

8 
1

-7
5/3

8 
1

-7
5/

38
-7

5/
38

-7
5/

38
-7

5/
38

-7
5/

38
1 

-7
5/

38
-7

5/
38

-7
5/

38
-7

5/
38

-7
5/

38
-7

5/
38

-7
5/

38
-7

5/
38

-7
5/

38 m  
'f.

-7
5/

38
-7

5/
38 X

rn
«/“>
r- -7

5/
38

-7
5/

38 9C
rn
»/">
r-

oo
m
<r.

-7
5/

38
-7

5/
38

1 
-7

5/
38

-7
5/

38
-7

5/
38

-7
5/

38
-7

5/
38

-7
5/

38
-7

5/
38

-7
5/

38
-7

5/
38

-7
5/

38 oo
rn

r-

oo
rn
<r,
r-~ -7

5/
38

1 T
es

t 
se

ria
l 

nu
m

be
rs

 
1

Se
rie

s 
16

.1

1 
™ 

1

1 
™ 

1

1 
™ 

1

L 
;
'9

'

1 
9
<
» 

I

1 
L-
91 

|

oo
vb

Se
rie

s 
17

.1 Z/.1
C'Z.1

rr
r- 17

.5
17

.6

Li 1 
1

oo

Se
rie

s 
18

.1
18

.2
18

.3
18

.4
18

.5
9 

81 18
.7

18
.8

Se
rie

s 
19

.1
19

.2
19

.3
19

.4
19

.5
19

.6
19

7
19

8
Se

rie
s 

20
.1

20
.2 rn

d
04 20

.4
20

.5
2
0
.
6

20
.7

1 
2
0
.
8

c

-o

1C/>

§

m T) oo o rn r-
- rn <0 oo o rn r-

- rn «/■> oo o rn yr. 1 **
- rn OO o rn 'r, r-

- '■n oo 3 rn 'r . 1

>

u
0/
e
2

o>

3
s
£
-J

f
A
S
Z

2
5
w

2
5
w

2
5
w

2
5
w

Am

£
«o
rs)

£
o

__
__
__
__
__
__
_
 

5
0
w

£
o
«/->

£
o

5
0
w -

o o
>r.

■5
©
<r, 7

5
w

7
5
w

7
5
w

7
5
w - 
'r, 
r—

M 
S
L

7
5
w

*
S
L | 1 i 1 1

I
l
O
w

£ | M 6 £ i
r-

j
r-

£
<5 £

r-

T
y
p
e
 

of
 
s
i
n
t
e
r
i
n
e
l

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

T
r
a
c
k

1 
P
o
w
d
e
r
 
si
ze
 

1

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5
 

1

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5
 

1

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

-
1
5
0
/
7
5

r~-
©
>r,

-
1
5
0
/
7
5
 

;

-
1
5
0
/
7
5

-
1
5
0
/
7
5

-
1
5
0
/
7
5
 

!

-
1
5
0
/
7
5

-
1
5
0
/
7
5

-
1
5
0
/
7
5
 

!

-
1
5
0
/
7
5
 

1

-
1
5
0
/
7
5
 

1

-
1
5
0
/
7
5

-
1
5
0
/
7
5

-
1
5
0
/
7
5

-
1
5
0
/
7
5

-
1
5
0
/
7
5

-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

1 
-
1
5
0
/
7
5

I 
-
1
5
0
/
7
5 V)

o

1 
-
1
5
0
/
7
5

1 
T
e
s
t
 
se
ri
al
 
n
u
m
b
e
r
s

Se
ri
es
 
1
1
.
1

r
n
 

|

rn

1
1
.
4

_ 
£
T
I
 

|

o r- oo

Se
ri
es
 
1
2.
1

r
n
 

|

rn
r-j

vz\
£
7
1

9
7
1

£
7
1

8
7
1

Se
ri
e
s 

1
3.
1

Cn|
rn

rn
rn

«
I
 

J

s
e
i

1 
1

1 
1

1 
™

_________
1

Se
ri
e
s 

1
4.
1

™
 

|

1 
£
>
'
 

1

1 
>
*
>
 

1

-f

1 
9
*
1
 

1

1 
1

8
*
1

S
er
ie
s 

1
5.
1

1 
™ 

1

rn
w

t- 
S
I

1_
_
_
_
_
_
_
_
_
_
_
_
_
«•<! 

1

9 
S
I

i-SI 
I

1
5
.
8



Appendix F 201
Sc

an
 

sp
ee

d 
ra

ne
e 

(m
m

/s
)l

- ro i/I OC o ro 1/1 o~ - co |/1 DC © CO <r, o- - C O «/1 OC o co '/I o- - CO OO O CO V> o- - co •/I OC o CO «/■) o-

_a
se

r 
po

w
er

 r
an

ee
 

(W
)l:

25 
w

25
w $«r><N 25
w

25
w 5i/1 25
w £

fN 50
w

50
w

50
w

50
w

50
w £© £OVI 50
w

75
w

75
vv

75 
w

75
w

M
$£ 75

w

ms 
l 75 

w
IlO

w
Il

O
w

Il
O

w
IlO

w
IlO

w
Il

O
w

IlO
w

i 
Il

O
w

17
0w

17
0w

17
0w

; 
17

0w
! 

17
0w

1 
17

0w ifoo- 17
0w

fv
oe

 
of 

si
nt

er
in

el
l

Tr
ac

k
Tr

ac
k

Tr
ac

k 
1

Tr
ac

k
Tr

ac
k 

1
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k 
i

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
1 

Tr
ac

k
i 

Tr
ac

k CJ
pi Tr

ac
k

Tr
ac

k
Tr

ac
k

1 
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k

Po
wd

er
 s

ize
 

1'
-1

50
+ 

-38
 

1
-15

0 
+-

38
-1

50
+ 

-38
 

1
-1

50
+ 

-3
8

-1
50

+-
38

occo
+
o«/i

-1
50

+ 
-38

 
1

-1
50

+ 
-38

 
1

-1
50

+ 
-38

 
1

-1
50

+ 
-38

 
1

-1
50

+-
38

 
1

-1
50

+-
38

 
1

-1
50

+-
38

 
1

-1
50

+ 
-38

 
1

00co
4-
o

ooco
+
o
<r.

-1
50

+-
38

 
1

-1
50

+-
38

 
1

-15
0 

+-
38

 
1

ooco
+
o</i

1 
-1

50
+-

38
1 

-15
0 

+-
38 ro 

+ 
O i/-,

1 
-15

0 
+-

38
1 

-1
50

+
-3

8
1 

-1
50

+
-3

8
1 

-15
0 

+ 
-3

8
1 

-1
50

+
-3

8 OOco

4

1 
-15

0 
+-

38
1 

-1
50

+
-3

8 OOco
+
©in

1 
-1

50
+-

38

ooco
+
O«/1

00CO
+
c

1 
-1

50
+-

38
1 

-1
50

+-
38

1 
-1

50
+-

38

ooCO
+
o
•r.

occO
+
o
V ,

1 T
es

t 
se

ria
l 

nu
m

be
rs

 1
1

Se
rie

s 
26

.1

0 4
vO
<N

Z
9
Z

1 
____________1

1 
s'9r 

1

26
.6

vO<N

893

Se
rie

s 
27

.1
27

.2
27

.3

V
L
Z

«/l
O-’(N 27

.6 
__

__
1

27
.7 

I
27

.8 
1

1 
Se

rie
s 

28
.1

28
.2 

__
__

1
28

.3
28

.4

S'8l 28
.6

28
.7 OO

OO

Se
rie

s 
29

.1
29

.2
29 

3
29

.4
29

.5
29

.6
29

.7
1 

29
.8

Se
rie

s 
30

.1
30

.2
30

.3
30

.4
30

.5
30

.6
30

.7
30

.8
1
S
(Du
1
•ou
£/
§u

- CO >/i OC o CO •r, r-~ - CO vi O co V . O' - CO 'f . oo o CO Tl o- - co >r. © C O 'f. - r'. <r ■5C C CO 'f. r

su.V-u

I
o
3

VIrsj 25
w

25
w £

1/1rs)
£VIrs) 25

w
25

w £i/irs) 50
w ©

1/1
o ©VI

£© 5=©■A,
£©

•C,
© if»/io-

■J<r, 
V-

ms 
l

_ 
*S

L

MS L 'f. O'

ms L i/iO' IlO
w

IlO
w

IlO
w C £©

IlO
w £© | ~O ZO- 17

0w
17

0w 1o- 1O' o-

Tr
ac

k 
1 

17
0w

Ty
pe

 
of 

sin
ter

in
g 

11
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Tr
ac

k
Tr

ac
k

Po
w

de
r 

siz
e 

1’
-3

00
+ 

-38
 

1

oo
CO

+
oo
CO -3

00
+ 

-38
 

1

oc
CO

+
ooco

oo
CO

4o
CO -30

0 
+ 

-3
8_

1
-30

0 
+ 

-38
 

1
-3

00
+ 

-38
 

I
-3

00
+ 

-38
 

1
-30

0 
+ 

-38
 

1

oo
CO

+
©©
CO -30

0 
+ 

-38
 

1

oo
CO

4Oco

1 
-3

00
+-

38
 

1
1 -

30
0+

 
-38

 
1

i 
-30

0 
+ 

-38
 

1
1 

-30
0 

+ 
-38

 
1

[ 
-30

0 
+ 

-38
 

1
1 

-30
0 

+ 
-38

 
1

-3
00

+ 
-38

 
1

00 
CO

1 o
CO

1 
-30

0 
+ 

-38
 

1
1 

-30
0 

+ 
-3

8
i -3

00
+ 

-3
8

1 
-30

0 
+ 

-3
8

1 
-30

0 
+ 

-3
8 oc

CO

+
©©
CO

oo
CO

+
§
CO

oo
CO

4©
CO

oo
CO

+
©
CO

oo
CO

+©~co

oc
CO

+
©©
CO

X
CO

+

CO

oc
CO

+
8
CO

oc
CO

+
c
CO

oo
CO

+

CO

occo

4©
CO

1 
-30

0 
+-

38
1 

-30
0 

+ 
-3

8
1 

-30
0 

+-
38

1 T
es

t 
se

ria
l 

nu
m

be
rs

 1
Se

rie
s 

21
.1

21
.2

21
.3

V
I
Z

1 
™ 

1

21
.6

21
.7

1 
™ 

J

Se
rie

s 
22

.1 zzz 22
.3

22
.4

izz 22
.6 

J

L
Z
Z 22

.8 
I

Se
rie

s 
23

.1
2

3
.2

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

_
1

i
i
Z

'T
COfN

scz
9
£
Z 23

.7
23

.8
1 

Se
rie

s 
24

.1
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
_

1
24

.2

t
f
Z 24

.4

i
i
’Z 24

.6 
_

24
.7

S
t
Z

Se
rie

s 
25

.1
25

.2
25

.3 
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

25
.4

25
.5 vO

ir,r-j 25
.7

25
.8



Appendix F
202

Sc
an

 
sp

ee
d 

ran
ge

 
(m

m
/s'

)!

- ro >r, oc o co '/I r -
- ro <r, oC' o ro •r, r~- - ro >r. cc o ro - ro V) © ro r~~ - ro OO o ro t/~) r -

La
se

r 
po

w
er

 r
an

ee
 

(W
tl

25
w

25
w

25
w

25
w £  

1 r,

*
s
z

*
S
Z

M
0S 50

w
50

w
50

w
50

w «0S 50
w

75
w

M 
S/,

MS i 75
w

1 
^S

i
| 

M
Si 75

w

| 
M

Si 11 
Ow

Il
O

w
IlO

w
Il

O
w

Il
O

w
Il

O
w

Il
O

w
! 

Il
O

w
13

0w
13

0w
13

0w
13

0w
1 

13
0w

13
0w ©

ro
$ofO

Oic
C
&
.c
tr>
<4-C

S
f -

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r 
;

La
ve

r
La

ve
r

I.a
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r o

s
_ La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ye
r

! 
La

ye
r

La
ve

r u
ec

CJ
73

La
ye

r
La

ve
r

La
ye

r
La

ve
r

La
ve

r
' 

La
ve

r
La

ve
r

Po
w

de
r 

siz
e 

1
15

0 o

15
0

15
0

15
0

15
0

15
0

15
0 o

i/">
O>r, 15

0
15

0 o<r> 15
0 o>r, o

•S’)
o  'f, 15

0
15

0 ©

15
0

15
0 © ©'r, 15
0 ©>r, c>r. ©>r, 15
0

15
0 3•r, 15
0

15
0

15
0

15
0 ©

15
0 ©

Vi 15
0

15
0

1 T
es

t 
se

ria
l 

nu
m

be
rs

 
1

Se
rie

s 
36

.1
36

.2

e 
9e

1
 

1

36
.5

1 
9'9£ 

I

36
.7

1
 

8'9£ 
1 '

 
Se

rie
s 

37
.1 

1

Z
L
Z

1
 

™ 
1

3
7

.4
__

__
1

S 
L
Z 37

.6
37

.7
37

.8
Se

rie
s 

38
.1

38
.2

38
.3

38
.4

38
.5

38
.6

38
.7

38
.8

Se
rie

s 
39

.1
39

.2
39

.3
39

4
39 

5
1 

39
.6

39
.7

i 
39

.8
Se

rie
s 

40
.1

40
.2

40
.3

40
.4

40
.5

40
.6

40
.7 ©Tf

1
6
<1>01

■a
8M

- ro 'r. OO o ro 'r , r- - ro >r, OC O ro •r i r-~ - ro <r, 00 © ro */ ■ i - ro >c © ro V r—- ro 1/ . 00 O ro r̂ -

—

1
I—
%

S

25 
w

25 
w £

<N 25
w

25
w

25
w £ 

•r, £•/i(N
£©«r> 50

w £©<r, © 50
w

50
w £©•r, 50
w

75
w £

<r,r- 75
w

75
w

MS i
M

Si
M

Si
M

Si IlO
w

Il
O

w
11 

Ow
Il

O
w

Il
O

w
! 

Il
O

w
1 l

O
w

Il
O

w <cro £ro 1ro jro 1ro 1ro
£©ro Iro

Tv
pe

 
of 

si
nt

er
in

gl
l

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ye

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ye
r

La
ve

r
La

ve
r

La
ye

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ye
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

La
ve

r
La

ve
r

Po
w

de
r 

siz
e 

1
30

0 ©©ro
o©ro 30

0 ©©ro
©©ro

©©ro
©©ro

o©ro
©oro 30

0
30

0 o©ro
o©ro

ooe ©©ro 30
0

30
0

30
0

30
0

30
0 8ro

Osro
©©ro 30

0 ©©ro

ooe oSro 30
0

30
0 ©©ro 30
0

ro 30
0 8ro 30
0

30
0 8

- r*

1 T
es

t 
se

ria
l 

nu
m

be
rs

 
1

Se
rie

s 
31

.1
31

.2
3

1 
.' 

i

V
 It 31

.5
31

.6

1 
™

 
1

31
.8

Se
rie

s 
32

.1
32

.2 
1

32
.3

32
.4_

_

1 
1

32
.6 

1 1 
ro 

1

32
.8 

1
Se

rie
s 

33
.1

1 
«

£
 

1

ro
roro 33

.4

l 
«■« 

l

9'EE
1 

ro 
1

33
.8

Se
rie

s 
34

.1
34

.2
34

.3 -r
-Tro

*/~l
-Tro 34

.6
34

.7
34

.8
Se

rie
s 

35 
.1

35
.2

1 
35

.3 ■*r
ro

1 
35

.5
35

.6
35

.7 oc
•r
r*



Appendix G 203

A p p e n d ix  G  - M e lt  t r a c k  d im e n s io n a l  m e a s u r e m e n ts  

Argon atm osphere track physical m easurem ent results fo r -300+150 microns powder

Experimental results for -300/150 microns powder with areon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weieht

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (K)
1.22 1.45 1.16 1.55 1.19 1.5 1 25 0.0299
0.97 1.35 1.05 1.05 1.01 1.2 3 25 0.0128
0.95 1.01 0.87 0.79 0.91 0.9 5 25 0.0071

0 0 0 0 0 0 8 25 0
0 0 0 0 0 0 10 25 0
0 0 0 0 0 0 13 25 0
0 0 0 0 0 0 15 25 0
0 0 0 0 0 0 17 25 0

Experimental results for -300/150 microns powder with areon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weieht

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (U)
1.14 2.83 1.42 2.97 1.28 2.9 0.5 50 0.0289
1.21 3.14 1.15 3.06 1.18 3.1 0.75 50 0.0223
0.99 2.55 1.1 1 2.61 1.05 2.58 1 50 0.0298
0.85 1.56 0.93 1.6 0.89 1.58 3 50 0.0125
0.61 0.79 0.51 0.99 0.56 0.89 5 50 0.0098

0 0 0 0 0 0 8 50 0
0 0 0 0 0 0 10 50 0
0 0 0 0 0 0 13 50 0
0 0 0 0 0 0 15 50 0
0 0 0 0 0 0 17 50 0

Experimental results fo r -300/150 microns powder with areon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed 1 aser power Weieht

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (U)
1.02 2.17 1.1 2.21 1.06 2.19 0.5 75 0.2108
1.15 2.3 1.11 2.22 1.13 2.26 0.75 75 0.23
1.2 2.31 1.12 2.35 1.16 2.33 1 75 0.2

0.81 1.61 0.97 1.51 0.89 1.56 3 75 0.1282
0.77 1.44 0.81 1.46 0.79 1.45 5 75 0.0581
0.65 0.95 0.57 1.07 0.61 1.01 8 75 0.0125
0.41 0.91 0.49 0.79 0.45 0.85 10 75 0.0089

0 0 0 0 0 0 13 75 0
0 0 0 0 0 0 15 75 0
0 0 0 0 0 0 17 75 0
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Experimental results for -300/150 microns nowder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) <W> <g)

1.54 3.69 1.62 3.87 1.58 3.78 1 110 0.2897
1.43 2.75 1 2.67 1.45 2.71 3 110 0.21
1.05 1.89 1.47 2.07 1.01 1.98 5 110 0.1567
0.91 1.27 0.87 1.29 0.89 1.28 8 110 0.1354
0.82 0.95 0.72 1.03 0.77 0.99 10 1 10 0.0942
0.61 0.71 0.67 0.65 0.64 0.68 13 110 0.0248
0.44 0.53 0.48 0.49 0.46 0.51 15 110 0.0098

0 0 0 0 0 0 17 110 0

Experimental results for -300/150 microns powder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (g)
1.41 2.99 1.51 3.05 1.46 3.02 0.5 130 0.3434
1.35 2.8 1.45 2.64 1.4 2.72 0.75 130 0.3709
1.51 3.12 1.45 3.02 1.48 3.07 1 130 0.4643
1.28 2.08 1.34 1.94 1.31 2.01 3 130 0.2105
1.12 1.48 1.08 1.42 1.1 1.45 5 130 0.1 193
1.02 1.29 0.96 1.33 0.99 1.31 8 130 0.0946
0.98 1.05 0.84 0.97 0.91 1.01 10 130 0.0658
0.91 0.87 0.83 0.91 0.87 0.89 13 130 0.0584
0.68 0.81 0.74 0.73 0.71 0.77 15 130 0.0512
0.49 0.67 0.61 0.71 0.55 0.69 17 130 0.0158

F.xnprimpntal rpsnlts fo r -300/150 microns powder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (R)
2.98 4.3 3.04 4.38 3.01 4.34 1 170 0.8966
1.95 2.38 2.01 2.32 1.98 2.35 3 170 0.4466

1.31 1.57 1.21 1.67 1.26 1.62 5 170 0.2389

0.98 1.58 1.04 1.54 1.01 1.56 8 170 0.1329
0.91 1.4 0.79 1.42 0.85 1.41 10 170 0.1 109

1.15 1.38 1.23 1.34 1.19 1.36 13 170 0.088
0.81 1.55 0.91 1.49 0.86 1.52 15 170 0.0742
0.63 1.37 0.73 1.39 0.68 1.38 17 170 0.0641
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Width/Depth WidthxDeDth Power (PVScan speed (u) Scan speec Laser power
1 mm2 W/mm/s mm/s W

1.26 1.28 25 1 25
1.19 1.08 8 3 25
0.98 0.81 5 5 25
2.26 3.77 100 0.5 50
2.62 3.66 66 0.75 50
2.45 2.21 50 1 50
1.77 1.41 12 3 50
1.59 0.9 10 5 50
2.06 2.32 150 0.5 75

2 2.55 100 0.75 75
2.01 2.2 75 1 75
1.23 1.39 25 3 75
1.84 1.15 15 5 75
1.66 0.62 9.4 8 75
1.89 0.38 7.5 10 75
2.39 5.92 110 1 110

1.82 3.93 37 3 1 10

1.96 2 22 5 110

1.44 1.14 14 8 I 10

1.29 0.26 11 10 110

1.06 0.44 8.5 13 110

1.1 1 0.23 7.3 15 1 10

2.02 4.4 260 0.5 130

1.94 3.81 173 0.75 130

2.02 4.54 130 1 130

1.53 2.63 43 3 130

1.3 1.6 26 5 130

1.32 1.3 16 8 130

1.11 0.92 13 10 130

1.02 0.77 10 13 130

1.08 0.55 8.8 15 130
1.25 0.38 7.6 17 130
1.44 13.06 170 1 170
1.19 4.65 55 3 170
1.29 2.04 34 5 170
1.54 1.58 21 8 170
1.66 1.2 17 10 170
1.14 1.62 13 13 170
1.76 1.31 11 15 170
2.03 0.94 10 17 170
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Appendix G -Melt track dimensional measurements

Argon atm osphere track physical m easurem ent results for 75% , -300+150 microns 
powder with addition o f 25% , -38 microns powder

Experimental results for -300/150 microns powder with addition o f  -38 microns powder
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weieht

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (e)
0.47 1.1 0.51 1.3 0.49 1.2 1 25 0.0378
0.32 0.83 0.38 0.75 0.35 0.79 3 25 0.0187
0.28 0.76 0.26 0.64 0.27 0.7 5 25 0.0084

0 0 0 0 0 0 8 25 0
0 0 0 0 0 0 10 25 0
0 0 0 0 0 0 13 25 0
0 0 0 0 0 0 15 25 0
0 0 0 0 0 0 17 25 0

Experimental results for -300/150 microns powder with addition o f  -38 microns powder
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weieht

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (K)
0.99 2.05 1.13 2.31 1.06 2.18 1 50 0.128
1.3 1.95 1.36 2.05 1.33 2 3 50 0.1376

1 1.39 1.06 1.49 1.03 1.44 5 50 0.0951
0.82 1.19 0.96 1.31 0.89 1.25 8 50 0.0589

0.69 1.08 0.87 1.22 0.78 1.15 10 50 0.0479

0.7 1.2 0.74 1.12 0.72 1.16 13 50 0.037
0.61 1.17 0.71 1.09 0.66 1.13 15 50 0.312

0 0 0 0 0 0 17 50 0

Experimental results fo r -300/150 microns powder with addition of -38 microns powder
Experment 1 Experiment 2 Av. D Av. width Scan speed 1 .aser power Weieht

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (e)
1.28 2.19 1.12 2.27 1.2 2.23 1 75 0.2379
1.47 2.05 1.41 1.91 1.44 1.98 3 75 0.1925
0.96 1.04 1 1.14 0.98 1.09 5 75 0.121 1
0.9 1.17 0.88 1.07 0.89 1.12 8 75 0.075
0.87 1 0.75 1.08 0.81 1.04 10 75 0.0595
0.71 0.95 0.65 1.05 0.68 1 13 75 0.0382
0.6 1.2 0.7 0.96 0.65 1.08 15 75 0.0408

0.31 0.59 0.37 0.73 0.34 0.66 17 75 0.0134
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Experimental results for -300/150 microns powder with addition o f  -38 microns powder
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (g)
1.28 2.7 1.42 2.8 1.35 2.75 1 110 0.4109
1.6 2.45 1.54 2.75 1.57 2.46 3 110 0.175

1.25 1.8 1.29 1.74 1.27 1.77 5 1 10 0.2821
0.93 1.61 1.07 1.53 1 1.57 8 1 10 0.1037
0.82 1.39 0.78 1.45 0.8 1.42 10 110 0.0829
0.47 0.85 0.51 0.91 0.49 0.88 13 1 10 0.0944
0.39 0.78 0.41 0.8 0.4 0.79 15 110 0.0701
0.37 0.65 0.33 0.73 0.35 0.69 17 1 10 0.0542

Experimental results for -300/150 microns powder with addition o f  -38 microns powder
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (g)
1.98 3.15 2.22 3.01 2.1 3.08 1 130 0.6003
2.05 2.71 1.75 2.89 1.9 2.8 3 130 0.4401
1.83 2.53 1.79 2.55 1.81 2.54 5 130 0.4329
1.61 2.08 1.51 1.96 1.56 2.02 8 130 0.389
1.05 1.48 1.15 1.52 1.1 1.5 10 130 0.1089
0.73 1.13 0.67 1.07 0.7 1.1 13 130 0.0814
0.63 0.75 0.53 0.85 0.58 0.8 15 130 0.0879
0.38 0.69 0.44 0.73 0.41 0.71 17 130 0.0625



Appendix G 208

Appendix G - Melt track dimensional measurements

Argon atm osphere results for —75+38 microns powder

Experimental results for -75/38 microns jowder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (8)
0.68 1.97 0.74 1.93 0.71 1.95 1 25 0.1487
0.67 1.4 0.63 1.42 0.65 1.41 3 25 0.1062
0.55 0.99 0.47 0.97 0.51 0.98 5 25 0.713

0 0 0 0 0 0 8 25 0
0 0 0 0 0 0 10 25 0
0 0 0 0 0 0 13 25 0
0 0 0 0 0 0 15 25 0
0 0 0 0 0 0 17 25 0

Experimental results for -75/38 microns powder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth ^  Width (mm) (mm) (mm/s2) ( W ) (g.)
0.77 2.73 0.75 2.69 0.76 2.71 1 50 0.1787
0.61 2.06 0.71 2.1 0.66 2.08 3 50 0.1375
0.59 1.66 0.57 1.72 0.58 1.69 5 50 0.0869
0.53 1.44 0.57 1.38 0.55 1.41 8 50 0.0596
0.53 1.29 0.49 1.25 0.51 1.27 10 50 0.514

0 0 0 0 0 0 13 50 0
0 0 0 0 0 0 15 50 0
0 0 0 0 0 0 17 50 0

Experimental results for -75/38 microns powder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (g)
1.07 2.94 1.09 2.88 1.08 2.91 1 75 0.1876
1.01 2.3 0.95 2.36 0.98 2.33 3 75 0.1976
0.93 1.91 0.89 1.97 0.91 1.94 5 75 0.1069
0.77 1.61 0.81 1.55 0.79 1.58 8 75 0.0709
0.67 1.53 0.71 1.49 0.69 1.51 10 75 0.0588
0.63 1.39 0.59 1.41 0.61 1.4 13 75 0.0437
0.57 1.36 0.53 1.4 0.55 1.38 15 75 0.0391

0 0 0 0 0 0 17 75 0
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Experimental results for -75/38 microns jowder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (s)
2.09 3.78 1.93 3.76 2.01 3.77 1 110 1.0373
1.68 3.01 1.74 2.95 1.71 2.98 3 110 0.4192
1.25 2.2 1.21 2.1 1.23 2.15 5 110 0.2733
1.11 1.93 1.05 1.89 1.08 1.91 8 110 0.1762
0.93 1.67 0.89 1.69 0.91 1.68 10 110 0.1784
0.77 1.66 0.81 1.62 0.79 1.64 13 110 0.1226
0.75 1.63 0.71 1.59 0.73 1.61 15 110 0.1157
0.66 1.56 0.7 1.56 0.68 1.56 17 110 0.1074

Experimental results for -75/38 microns jowder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) (8)
2.64 4.15 2.58 4.07 2.61 4.11 1 130 1.089
2.01 1.91 2.07 3.05 2.04 2.98 3 130 0.5772

1.64 2.35 1.62 2.27 1.63 2.31 5 130 0.4875

1.25 2.13 1.21 2.09 1.23 2.11 8 130 0.2354

1.18 1.88 1.2 1.94 1.19 1.91 10 130 0.1258

0.97 1.87 0.93 1.81 0.95 1.84 13 130 0.1287

0.83 1.75 0.79 1.67 0.81 1.71 15 130 0.1187

0.69 1.72 0.73 1.66 0.71 1.69 17 130 0.1002

Experimental results for -75/38 microns aowder with argon atmosphere
Experment 1 Experiment 2 Av. D Av. width Scan speed Laser power Weight

Depth Width Depth Width (mm) (mm) (mm/s2) (W) '.y
3.15 4.04 3.07 4.14 3.11 4.09 1 170 1.1
2.35 2.87 2.41 2.95 2.38 2.91 3 170 0.687
1.68 2.55 1.74 2.51 1.71 2.53 5 170 0.654
1.27 2.09 1.33 1.93 1.3 2.01 8 170 0.2879
1.06 1.94 0.96 1.66 1.01 1.8 10 170 0.1957
0.81 1.71 0.73 1.67 0.77 1.69 13 170 0.1687
0.63 1.69 0.59 1.61 0.61 1.65 15 170 0.1351
0.61 1.58 0.57 1.44 0.59 1.51 17 170 0.1128
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Width/Depth WidthxDepth Power (P)/Scan speed (u) Scan speed Laser power
w/d w x d (mm2) W/mm/s mm/s W
2.75 1.38 25 1 25
2.17 0.92 8.4 3 25
1.92 0.5 5 5 25
3.56 2.06 50 1 50
3.15 1.37 16.6 3 50
2.91 0.98 10 5 50
2.56 0.78 6.25 8 50
2.49 0.65 5 10 50
2.69 2.36 75 1 75
2.38 2.28 25 3 75
2.13 1.77 15 5 75

2 1.25 9.4 8 75
2.19 1.04 7.5 10 75
2.3 0.85 5.7 13 75
2.5 0.76 5 15 75
1.88 7.57 110 1 110
1.74 5.1 36.6 3 110
1.74 2.64 22 5 110
1.76 2.06 13.7 8 110
1.85 1.53 11 10 110
2.08 1.3 8.5 13 110
2.2 1.18 7.3 15 110

2.29 1.06 6.4 17 110
1.57 10.73 130 1 130
1.46 6.08 43.3 3 130
1.42 3.77 26 5 130
1.72 2.6 16.25 8 130
1.6 2.27 13 10 130

1.94 1.75 10 13 130
2.11 1.38 8.66 15 130
2.38 1.2 7.64 17 130
1.32 12.7 170 1 170
1.22 6.93 56.6 3 170
1.48 4.33 34 5 170
1.33 2.61 21.25 8 170
1.28 1.82 17 10 170
2.19 1.3 13.07 13 170
2.2 1.01 11.33 15 170

2.56 0.89 10 17 170
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APPENDIX H -  TWO LAYERS SINTERED TOGETHER USING 

DIFFERENT SCANNING CONDITIONS IN 

AN ARGON ATMOSPHERE

Two layer sintered together using -300/150|am powder with addition o f 25%, -38fim 

powder scanned at 55 W laser power and 1 mm/s scan speed in argon atmosphere

Two layer sintered together using -3 0 0 /1 50p.m powder with addition o f  25%, -38fim

powder scanned at 55W laser power and 3 mm/s scan speed in argon atmosphere



A ppendix  H 2 1 2

Two layer sintered together using -300/150|am powder with addition o f 25%, -38/.im 

powder scanned at 55W laser power and 5 mm/s scan speed in argon atmosphere
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Appendix I -  Single layer measurements

Single layers Mix 300 + 38 powder Mass Energy
P U S

(W) (irnn/s) (mm) (g) (J/mm)
50 1 0.25 0.607 50
50 1 0.5 0.61 50
50 1 0.75 0.704 50
50 3 0.25 0.528 16.6
50 3 0.5 0.531 16.6
50 3 0.75 0.569 16.6
50 5 0.25 0.424 10
50 5 0.5 0.445 10
50 5 0.75 0.478 10
50 8 0.25 0.327 6.25
50 8 0.5 0.357 6.25
50 8 0.75 0.367 6.25
75 1 0.25 1.085 75
75 1 0.5 0.109 75
75 1 0.75 1.417 75
75 3 0.25 0.911 25
75 3 0.5 0.926 25
75 3 0.75 1.062 25
75 5 0.25 0.751 15
75 5 0.5 0.852 15
75 5 0.75 0.918 15
75 8 0.25 0.462 9.37
75 8 0.5 0.609 9.37
75 8 0.75 0.701 9.37
110 1 0.25 1.498 110
110 1 0.5 1.763 110
110 1 0.75 1.906 110
110 3 0.25 0.781 36.6
110 3 0.5 0.85 36.6
110 3 0.75 0.871 36.6
110 5 0.25 0.824 22
110 5 0.5 0.848 22
110 5 0.75 0.854 22
110 8 0.25 0.785 13.75
110 8 0.5 0.881 13.75
110 8 0.75 0.891 13.75
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Single layers -300/150 microns powder Mass Energy
P U S

(W) (mm/s) (mm) (J/mm)
50 1 0.25 0.588 50
50 1 0.5 0.697 50
50 1 0.75 0.604 50
50 3 0.25 0.409 16.6
50 3 0.5 0.461 16.6
50 3 0.75 0.471 16.6
50 5 0.25 0.39 10
50 5 0.5 0.406 10
50 5 0.75 0.513 10
50 8 0.25 0.335 6.25
50 8 0.5 0.342 6.25
50 8 0.75 0.346 6.25
75 1 0.25 0.718 75
75 1 0.5 0.732 75
75 1 0.75 0.938 75
75 3 0.25 0.699 25
75 3 0.5 0.701 25
75 3 0.75 0.711 25
75 5 0.25 0.607 15
75 5 0.5 0.631 15
75 5 0.75 0.639 15
75 8 0.25 0.439 9.37
75 8 0.5 0.545 9.37
75 8 0.75 0.505 9.37

110 1 0.25 0.876 110
110 1 0.5 0.914 110
110 1 0.75 1.136 110
110 3 0.25 0.654 36.6
110 3 0.5 0.661 36.6
110 3 0.75 0.72 36.6
110 5 0.25 0.568 22
110 5 0.5 0.649 22
110 5 0.75 0.69 22
110 8 0.25 0.581 13.75
110 8 0.5 0.598 13.75
110 8 0.75 0.66 13.75




