

Trusted Product Lines

Stuart Graham Hutchesson

Submitted for the degree of Doctor of Philosophy

University of York

Department of Computer Science

February 2013

2 Abstract

2 Trusted Product Lines – PhD Thesis S G Hutchesson

Abstract
This thesis describes research undertaken into the application of software product line

approaches to the development of high-integrity, embedded real-time software systems

that are subject to regulatory approval/certification. The motivation for the research arose

from a real business need to reduce cost and lead time of aerospace software development

projects.

The thesis hypothesis can be summarised as follows:

 It is feasible to construct product line models that allow the specification of required

behaviour within a reference architecture that can be transformed into an effective

product implementation, whilst enabling suitable supporting evidence for certification to

be produced.

The research concentrates on the following four main areas:

1. Construction of an argument framework in which the application of product line

techniques to high-integrity software development can be assessed and critically

reviewed.

2. Definition of a product-line reference architecture that can host components

containing variation.

3. Design of model transformations that can automatically instantiate products from a set

of components hosted within the reference architecture.

4. Identification of verification approaches that may provide evidence that the

transformations designed in step 3 above preserve properties of interest from the

product line model into the product instantiations.

Together, these areas form the basis of an approach we term “Trusted Product Lines”. The

approach has been evaluated and validated by deployment on a real aerospace project; the

approach has been used to produce DO-178B/ED-12B Level A applications of over 300

KSLOC in size. The effect of this approach on the software development process has been

critically evaluated in this thesis, both quantitatively (in terms of cost and relative size of

process phases) and qualitatively (in terms of software quality).

The “Trusted Product Lines” approach, as described within the thesis, shows how product

line approaches can be applied to high-integrity software development, and how

certification evidence created and arguments constructed for products instantiated from

the product line. To the best of our knowledge, the development and effective application

of product line techniques in a certification environment is novel and unique.

3 List of Contents

3 Trusted Product Lines – PhD Thesis S G Hutchesson

List of Contents
Abstract .. 2

List of Contents .. 3

List of Figures ... 6

List of Tables .. 12

Acknowledgements .. 13

Author's declaration .. 14

1 Introduction ... 15

1.1 Product Line Engineering ... 16

1.2 High-Integrity Software Development ... 17

1.3 Challenges of Trusted Product Lines .. 18

1.4 Thesis Hypothesis ... 24

1.5 Mode of Research .. 25

1.6 Thesis Model & Structure .. 26

2 Literature Review ... 29

2.1 Software Product Line Development ... 30

2.2 BAPO .. 30

2.3 Model-Based Development of Product Lines .. 34

2.4 High-Integrity Software System Development .. 52

2.5 Model Based Development of High-Integrity Systems .. 56

2.6 Product Line Development of High-Integrity Systems ... 64

2.7 Product Lines, Models and High-Integrity Systems ... 69

2.8 Summary .. 70

3 Trusted Product Lines in Context ... 71

3.1 Full Authority Digital Engine Control (FADEC) Systems ... 71

3.2 A History of Reuse in FADEC Systems .. 79

3.3 Other FADECs & Reuse ... 83

4 List of Contents

4 Trusted Product Lines – PhD Thesis S G Hutchesson

3.4 Summary .. 84

4 Defining a High-Integrity Product Line Model ... 85

4.1 Background .. 85

4.2 From Single Systems to Product Lines ... 85

4.3 Product Line Architectural Patterns and Reference Architecture 86

4.4 Product Line Architecture Framework ... 91

4.5 Designing Components .. 100

4.6 Extending Component Contracts with Decisions ... 101

4.7 Component Catalogue, Core Assets and Deployment ... 106

4.8 Mapping to Requirements and Feature Models .. 108

4.9 Conclusions and Observations ... 113

5 Instantiating Products using Model Transformation ... 114

5.1 Research Challenge .. 114

5.2 Solution Strategy .. 123

5.3 Implementing SPL Transformations ... 125

5.4 Conclusions and Observations ... 139

6 Evaluation and Validation .. 143

6.1 Industrial Deployment of Trusted Product Lines ... 143

6.2 Evaluation Methods ... 144

6.3 Evaluation Results .. 146

6.4 Qualitative Evaluation Results ... 164

6.5 Trusted Product Lines Argument Framework .. 165

6.6 Conclusions .. 169

7 Property-Preserving Transformations ... 171

7.1 The Challenge of Property-Preserving Transformation 171

7.2 Diverse Transformation, Contracts and Implementation 179

7.3 Conclusions .. 182

5 List of Contents

5 Trusted Product Lines – PhD Thesis S G Hutchesson

8 Summary & Conclusions .. 184

8.1 Trusted Product Lines Revisited ... 184

8.2 Research Hypothesis & Conclusions .. 186

8.3 Further Work .. 187

8.4 Reflections and Coda ... 188

Appendix A – Development and Modelling of SPARK Programs ... 192

Static Analysis, SPARK and Correctness By Construction .. 192

Modelling SPARK Programs with UML ... 194

Appendix B - Instantiating Products using Model Transformation...................................... 204

Realising Model Transformation for High-Integrity Product Lines 209

Opaque Behaviour and Textual Transformation ... 222

Template Components & Transformation ... 223

Expanding Design Patterns .. 225

Code Generation (Model-to-Text Transformation) ... 231

Appendix C – Case Study .. 232

Model Structure ... 232

Core Asset Components ... 233

Component Deployment ... 239

Core Asset Component with UML Element Variability .. 246

Component Deployment & Code Generation ... 248

Conclusions .. 250

Glossary .. 251

List of References ... 254

6 List of Figures

6 Trusted Product Lines – PhD Thesis S G Hutchesson

List of Figures
Figure 1 Software Product Line Economics [5] .. 19

Figure 2 GSN Form of the Overall Argument for Development of High-Integrity Software

product Lines.. 20

Figure 3 The Role of Property Preserving Transformations in Ensuring Applicability of

Verification ... 22

Figure 4 Alternative forms of Engaged Scholarship (from [13]) .. 25

Figure 5 Annotated Model for Trusted Product Lines Research ... 26

Figure 6 Venn Diagram Denoting Domains of Interest and their Intersections 29

Figure 7 The BAPO concerns [16]... 30

Figure 8 Software Product Line Processes (from [2] with added annotation) 31

Figure 9 FODA Notation as Extended By [9] (Adapted from [10]) ... 33

Figure 10 Classification of Features in a Feature Model [28] .. 35

Figure 11 Classification of Feature Groups in a Feature Model [28] 36

Figure 12 Classification of Product Line Dependencies ... 36

Figure 13 Role of Feature & Family Models in Polzer et al. [32] ... 37

Figure 14 FORM Engineering Process (from [34]) ... 38

Figure 15 UML Profile for Classification of Components in a Family Model (Adapted from

[4]) .. 40

Figure 16 Meta-model mapping Feature and Family Models (Adapted and simplified from

[36]) ... 41

Figure 17 CVL Architecture [30] ... 42

Figure 18 BaseVariationResolution (BVR) Approach [37] .. 43

Figure 19 BaseVariationResolution (BVR) Approach Meta Model [37] 43

Figure 20 Variability Specification (from [37]) ... 44

Figure 21 Variability Model Resolution Process (from[37]) ... 44

Figure 22 Meta model for Hierarchical Variability Modelling (from [21]) 46

Figure 23 Example MontiArchHV Component from [21] ... 47

7 List of Figures

7 Trusted Product Lines – PhD Thesis S G Hutchesson

Figure 24 Example Variant Component described using MontiArchHV from [21] 47

Figure 25 PartialPlasticComponents Meta-Model From [51] .. 48

Figure 26 Reductive/Negative (a) and Additive/positive (b) variability [57] 50

Figure 27 Application Architecture Derivation Process from[26] .. 51

Figure 28 DO-178C/ED-12C Level A Software Verification Processes [66] 55

Figure 29 SCADE Development Model including Simulink Gateway (from [72]) 58

Figure 30 "The ARP 4754/ DO-178B Development Cycle" from [71] 59

Figure 31 “the Use of SCADE vs the Use of Manual Coding" from [71] 59

Figure 32 Generic FADEC Architecture (annotated from [107]) .. 72

Figure 33 EEC Internals Block Diagram (Simplified) ... 73

Figure 34 Typical Phasing of Aircraft, Engine, FADEC and EEC Software Development

Programmes ... 74

Figure 35 US Aircraft Software Dependence [111] .. 80

Figure 36 Code Size Growth – Civil FADEC (Internal Company Data) 80

Figure 37 Timeline of "Reuse" Initiatives for Engine Control Software from the 1980s

onward ... 82

Figure 38 Universal FADEC Concept (From [116]) ... 83

Figure 39 "Three Elements of Universal FADEC (from[116]) ... 84

Figure 40 Prioritised Architectural Design Constraint Diagram ... 89

Figure 41 The Relationship between Product Line Architecture, Components, Instances and

Features ... 92

Figure 42 Engine Control System Product Line – Top level Abstract Architectural Pattern .. 95

Figure 43 Architecture Structure Meta-Model .. 97

Figure 44 Generic Component Interfaces .. 98

Figure 45 The Role of Layers and Components in the Product Line Concept framework ... 100

Figure 46 Components Built from SPARK Classes .. 101

Figure 47 Meta-Model Describing Components Containing Decision Contracts 102

Figure 48 Structure of a Simple PL Component with Containing a Decision Contract 105

8 List of Figures

8 Trusted Product Lines – PhD Thesis S G Hutchesson

Figure 49 Class Diagram Illustrating Variation Points .. 106

Figure 50 Model Hierarchy showing core asset and deployment tree 107

Figure 51 Bind Diagram showing the deployment of the Types component 107

Figure 52 Annotated DO-178C/ED-12C Level A Software Verification Processes 109

Figure 53 Extending the Component Meta-Model with Traceability and Features 110

Figure 54 Diagrammatic View of Feature to Decision to Variation Mapping 112

Figure 55 Essential Challenges of High-Integrity Software Product Line Development

Practices ... 116

Figure 56 "MDA-Style" Artefacts and Transforms Supporting product-Independent and

product-Specific Assets .. 117

Figure 57 EEC Software Layered Architecture and Sources of Change/Variation 118

Figure 58 Accidental Challenges of High-Integrity Software product Line Development

Practices ... 122

Figure 59 Product Line meta-model using Decision Contracts (from Chapter 4) 126

Figure 60 Product Instance SPARK Code Generation from Reference Architecture and

Product Line Components.. 127

Figure 61 Overview of Structure of Model-To-Model Transformation 1 Class Model 128

Figure 62 PL Profile Mapping to UML Meta-Model Elements ... 129

Figure 63 Auxiliary transformations For Model Elements Not Compliant With A Defined

Meta-Model (UML Opaque Behaviour) ... 130

Figure 64 Invoking the Text Transformation for non-meta-model compliant model elements

 ... 131

Figure 65 Igniter Control component showing decisions .. 132

Figure 66 Simple Example of Template Component deployment 135

Figure 67 Separation of Concerns in the Model Transformation Stream 141

Figure 68 Software Product Line Process Flow .. 143

Figure 69 Breakdown of Time against "Representation" .. 147

Figure 70 Breakdown Of Product Specific Time Against "Representation" 148

Figure 71 Breakdown Of Product Lines Time Against "Representation" 148

9 List of Figures

9 Trusted Product Lines – PhD Thesis S G Hutchesson

Figure 72 Breakdown Of Product Specific Time Against Development Process Tasks 149

Figure 73 Breakdown Of Product Lines Time Against Development Process Tasks 149

Figure 74 Breakdown Of Product Specific Time (as defined in SoS) Against "Representation"

 ... 150

Figure 75 Breakdown Of Product Line Time (as defined in SoS) Against "Representation" 151

Figure 76 Breakdown Of Product Specific Time (as defined in SoS) Against Development

Process Tasks ... 151

Figure 77 Breakdown Of Product Line Time (as defined in SoS) Against Development

Process Tasks ... 152

Figure 78 Breakdown Of Development Time for Components Containing No Variability .. 153

Figure 79 Breakdown Of Development Time for Components Containing Variability 154

Figure 80 Breakdown of Development Process Time for Components Not Containing

Variability ... 154

Figure 81 Breakdown of Development Process Time for Components Containing Variability

 ... 155

Figure 82 Number of Decisions in a Component vs Component Cost 160

Figure 83 Number of Options in a Component vs Component Cost 160

Figure 84 Number of Uses of a Decision in a Component vs Component Cost 161

Figure 85 Amount of Code Markup in a Component vs Component Cost 161

Figure 86 SLOC v Component Cost for Non-Variable Components 162

Figure 87 SLOC vs Component Development Cost for Variable Components 162

Figure 88 Average McCabe Complexity vs Component Cost for Non-Variable Components

 ... 163

Figure 89 Average McCabe Complexity vs Component Cost for Variable Components 163

Figure 90 Annotated Trusted Product Lines GSN Argument ... 166

Figure 91 Component Structure showing Decision Contract for IgniterControl Component

 ... 175

Figure 92 Reductive/Negative (a) and Additive/positive (b) variability extracted from [57]

 ... 179

10 List of Figures

10 Trusted Product Lines – PhD Thesis S G Hutchesson

Figure 93 Verifying equivalence via static analysis following the diverse transformation of

contract and implementation .. 180

Figure 94 SPARK Class and Operation .. 195

Figure 95 Information Flow Contract Meta-Model ... 196

Figure 96 SPARK Abstract and Refinement State .. 196

Figure 97 Simple Example of a SPARK Package modelled as a UML Class........................... 197

Figure 98 ARTiSAN Studio View of the SPARK Operation Stereotype Tags for

publicOperation ... 198

Figure 99 SPARKExplorer View of the Initial Contract of SPARK Package plus State

Refinement .. 198

Figure 100 Refinement State shown as Hyperlinks in ARTiSAN Studio 199

Figure 101 Fully Annotated SPARKPackage as Viewed in SPARKExplorer 200

Figure 102 TDK M2M Transform extension ... 205

Figure 103 TDK M2M Class and Association Extensions .. 205

Figure 104 TDK Model Structure .. 206

Figure 105 TDK M2M Transformation to add accessor operations 207

Figure 106 Product Instance SPARK Code Generation from Reference Architecture and

Product Line Components.. 210

Figure 107 Structure of Model-To-Model Transformation 1 Class Model 211

Figure 108 Product Line meta-model using Decision Contracts (from Chapter 5) 212

Figure 109 PL Profile Mapping to UML Meta-Model Elements ... 212

Figure 110 MFindDeployedComponents Class Diagram.. 213

Figure 111 MFilterClasses Class Diagram ... 215

Figure 112 transformation Rule Duplicating Non-Variant Operations 217

Figure 113 transformation Rule Duplicating Variant Operations .. 219

Figure 114 Transformation Rule for Deployment of Enumeration Literals 220

Figure 115 Inheriting Template handling Capabilities ... 224

Figure 116 Apply Development Variable Pattern Transform .. 230

11 List of Figures

11 Trusted Product Lines – PhD Thesis S G Hutchesson

Figure 117 ACS "visitor" transformation which invokes the legacy OCS M2T Code Generator

 ... 231

Figure 118 Model Package Structure for a Product Line Project Instance 232

Figure 119 Layer Structure Reflected in the Core Assets Component Catalogue 233

Figure 120 System Layer Component - Validate Engine Pressure 234

Figure 121 Feature Model Fragment - Engine Pressure Signal Correction 234

Figure 122 Decision Contract for Scale & Convert Option ... 235

Figure 123 Reporting Usage of Decisions in ARTiSAN Studio .. 235

Figure 124 Optional Text in Component Design Description .. 236

Figure 125 Optional Code in Component Body ... 236

Figure 126 Report->Usage on Requirement Tags .. 237

Figure 127 Result of Requirement Usage Query ... 237

Figure 128 Requirements Traceability in Decision SCALE_AND_CONVERT Option "TRUE" 237

Figure 129 Requirements Traceability in Decision SCALE_AND_CONVERT Option "FALSE"238

Figure 130 Feature Model Fragment - Pressure Signal Selection .. 238

Figure 131 Signal Selection Options ... 239

Figure 132 Deployed Component in Package Structure .. 239

Figure 133 Deployed Component Bind Diagram ... 240

Figure 134 Resolution of Decision Contracts - Selected Options .. 240

Figure 135 Links Editor Showing Selection of Requirement Traceability for Run Operation

 ... 244

Figure 136 Decision Contract for VSV Schedule Component .. 247

Figure 137 Reporting Usage of SHAFT_SPEED Decision – Classes and Dependencies

Highlighted ... 247

Figure 138 UML Operation Variation ... 248

Figure 139 UML Dependency Variation ... 248

12 List of Tables

12 Trusted Product Lines – PhD Thesis S G Hutchesson

List of Tables
Table 1 Objectives vs Levels in DO-178B/ED-12B .. 53

Table 2 Objectives vs Levels in DO-178C/ED-12C .. 54

Table 3 Overview of Regulator Stages of Involvement (from [108]) 76

Table 4 Average development Cost Per Component (Variable and Non-Variable) 156

Table 5 Comparative Average Complexity (McCabe) Between Variable and Non-Variable

Components ... 157

Table 6 Comparative Average Code Size (SLOC) Between Variable and Non-Variable

Components ... 158

Table 7 Traceability for Selected Component Options .. 245

13 Acknowledgements

13 Trusted Product Lines – PhD Thesis S G Hutchesson

Acknowledgements

This thesis, and the work it documents, would not have been possible without the support

and encouragement from my colleagues at Aero Engine Controls and Rolls-Royce. In

particular, I would like to thank Dean Armstrong, Duncan Brown and Stuart Jobbins for

their understanding that a part-time PhD is a long commitment that can sometimes distract

one from the immediate job in hand. I would also like to thank Phil Elliott, Ian Hopkins,

Andy Nolan and Francis Thom for helping me crystallise and refine the concepts described

herein such that they may actually be useful.

Many thanks must be given to my supervisor, John McDermid, who was always generous

with his scarce time and abundant wisdom. John skilfully guided the research and thesis

production down a path that had a fighting chance of delivering something tangible at the

end. In addition, I would like to thank Richard Paige for his incisive comments during the

research.

Finally, none of this would have been possible without the love and support of my lovely

wife Beverley, who could not have envisaged the grief involved at the start of this process

(and for actually reading the thing at the end!)

 This work is for her.

14 Author's declaration

14 Trusted Product Lines – PhD Thesis S G Hutchesson

Author's declaration

Some of the material presented within this thesis has previously been published in the

following papers:

1. Stuart Hutchesson and John McDermid, “Development of High-Integrity

Software Product Lines Using Model Transformation”, SAFECOMP 2010, LNCS

2. Stuart Hutchesson and John McDermid, “Towards Cost-Effective High-

Assurance Product Lines”, Proceedings of the 15th Software Product Lines

Conference - SPLC 2011, IEEE

3. Stuart Hutchesson and John McDermid, ”Trusted Product Lines”, Information

and Software Technology Journal, Elsevier, In Press 2012,

http://dx.doi.org/10.1016/j.infsof.2012.06.005

In addition, the following paper has been submitted for consideration:

Stuart Hutchesson and John McDermid,” Certifiable Engine Control System Product Lines:

Principles and Practice”, Special Edition on Variability in Software Architecture, Journal of

Systems and Software, Elsevier

Except where stated, all of the work contained within this thesis represents the

original contribution of the author.

http://dx.doi.org/10.1016/j.infsof.2012.06.005

15 Introduction

15 Trusted Product Lines – PhD Thesis S G Hutchesson

1 Introduction

Trusted (1) – “To have or place confidence in”

Trusted (2) – “To place into the care of another”

 (www.answers.com)

he decision to develop a set of software products as a product line is first and

foremost a business decision. Even if this decision is made on technical grounds, the

development of a product line is committing the business to a significant change in

the way products are developed, managed, supported and funded (if the product line

initiative is to succeed in the long term). When developing high–integrity systems, this

business context also includes the ability to approve or certify a product developed from

the product line, and manage the product in-service, where service life can be measured in

decades for certain classes of system. The recognition of these additional challenges has

led us to introduce the concept of a “Trusted Product Line”.

A Trusted Product Line has two subtle but important interpretations; firstly, the product

line must be capable of creating a product that can be trusted within a defined operational

environment – it must supply the evidence that can be used to satisfy all stakeholders that

a particular instantiated product is fit for purpose. That, primarily, is a technical challenge:

to understand how evidence that traditionally has been created on a single system instance

can be produced when designing for a set of systems. The second interpretation is more of

a business challenge - “To place in the care of another”. Experience has shown that

successful product line approaches are associated with significant organisational change

[1], including the separation of the development of the core product line assets from the

development of any one particular product (sometimes described as Domain Engineering

and Application Engineering [2]). This naturally shifts resource, budget and management

oversight from the traditional product delivery teams into the core-asset development

team. The management responsible for delivering products to end customers have now

“to place in the care of another” the development of substantial parts of their product and

this can lead to a perceived (or actual) loss of control, power, prestige (...) and a concern

that they can no longer be agile in response to customer problems and demands. The

Trusted Product Line concept, therefore, has to deliver significant business advantage, as

well as technical advantage, over single product development models to become accepted

and eventually institutionalised.

T

16 Introduction

16 Trusted Product Lines – PhD Thesis S G Hutchesson

1.1 Product Line Engineering
The SEI define a Software Product Line as follows:

Software Product Line : “A set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed way”[3]

The primary focus of product line research over the past decade has been to enable

productivity gains in the commercial software development industry. It was recognised

that “software reuse” as a concept was not providing the benefits that should be gained

from designing a product once and using many times.

“The efforts to achieve software reuse have led to the general acceptance of two important

lessons. The first is opportunistic reuse ... is not effective in practise; a successful reuse

programme within an organization must be a planned and proactive effort. Secondly

bottom-up reuse ... does not function in practise; successful reuse programmes are required

to adopt a top-down approach.”[1]

Before adopting a software reuse programme, most organisations have a legacy base of

many products and applications. It is very tempting to try to “harvest” these assets in the

name of productivity and efficient code reuse. However it is almost always the case that

these assets were not designed with reusability in mind and, more importantly, were not

developed to fit into a common architectural framework.

This realisation has led to the study and adoption of “Product Lines” as opposed to reuse as

a mechanism for the effective realisation of a “design-once-use-many” approach to

software development. Product Lines are not a small-scale adoption of a reuse library

concept, but a fundamental, organisational-wide change to the way systems are designed

and developed.

“Product lines do not appear accidentally, but require a conscious and explicit effort from

the organisation interested in using the product line approach.”[1]

Product line approaches are not confined to software, although the software development

industry has pioneered the research and application of the ideas. Indeed Bosch [1] makes

the point that organisations need to look at the product line implications of all aspects of

system development if there are significant non-software components in the product:

“If systems, in addition to software, contain considerable pieces of mechanics and

hardware, the product-line approach needs to be synchronised to all three aspects”[1]

The work described in this thesis has been undertaken in the context of an embedded,

electro-mechanical system deployed within an encompassing gas-turbine machine.

Product line initiatives have been applied to all these aspects at various times, but not

necessarily synchronised as recommended by Bosch. This thesis concentrates on a

particular contribution to the development of software product lines within this context.

17 Introduction

17 Trusted Product Lines – PhD Thesis S G Hutchesson

1.2 High-Integrity Software Development
The development of software for deployment in a safety-critical or safety-related system

provides a set of significant engineering challenges. Such systems are widely used in the

aerospace, defence, transport, power generation and medical domains, for example, and

are characterised by their potential to do harm if the systems fail in a hazardous manner.

We will use the term “High-integrity system” generically to describe this class of system

within this thesis, and the term “High-integrity software development” to refer to the

development, verification and approval of the software used in such systems.

The assessment of the hazards posed by a high-integrity system and the analysis and

justification that a system, when deployed in its operating context, is acceptably safe is

performed by systems and safety engineers. They use a variety of techniques, both

quantitative and qualitative, to determine that all potential hazards are identified and

mitigated, and that the system failure rate is acceptable. The evidence required to support

this analysis and associated safety claims varies by industry sector. Many of the industries

and sectors into which such systems are deployed are governed by safety legislation and

are regulated by government bodies. We will use the terms “Regulated domain”,

“Regulators” and “Regulating body” in this thesis to refer to such bodies and their activities.

The regulator’s involvement with the development and deployment of specific systems

varies by industry sector, but most have to approve systems before they can be used “in

service”, and this approval process typically takes the form of audit, review and inspection

of the safety evidence (sometimes called a “safety case”).

High-integrity systems have become reliant on software to operate efficiently and

effectively and perform tasks of increasing complexity. However, providing the evidence

that the software failure rate is acceptable as a component part of an overall system is a

very difficult task. Again, the approach taken differs across industry sectors, but most

require a set of evidence based upon the process used to develop, verify, manage and

control the software. Industry sectors vary in their approach to quantification of software

failure rate, and it is not uncommon to find a qualitative treatment of software issues in

what is otherwise a quantitative safety case.

Within this thesis, we are going to concentrate on the development of high-integrity

software for the civil aerospace domain. This is regulated by government airworthiness

agencies, such as the European Aviation Safety Agency (EASA) (supported by the Civil

Aviation Authority (CAA) in the UK) and the Federal Aviation Administration (FAA) in the

United States. The software developed for this domain has to be approved by a regulator

as part of the certification of an aircraft or engine. This “certification” process takes the

form of ensuring that the software has been developed in accordance with the objectives

set out in DO-178B/ED-12B “Software Considerations in Airborne Systems and Equipment

Certification” [4]. This provides guidance on the development and approval of avionics

software and contains 66 objectives; the applicability and rigour of which depend on the

“assurance level” of the software. There are 5 identified development assurance levels

(DALs) within DO-178B/ED-12B, Levels A to E, where Level A applies to software that can

contribute to “catastrophic” failure of the system, and Level E applies to software that has

18 Introduction

18 Trusted Product Lines – PhD Thesis S G Hutchesson

no safety impact (and therefore the guidance of DO-178B/ED-12B does not apply). In this

context, no attempt is made to quantify the software failure rate, so we will not discuss

software reliability models and estimation in this thesis.

1.3 Challenges of Trusted Product Lines
We have briefly discussed the technical and business challenges of producing a trusted

product line and instantiating a usable product earlier in the introduction to this thesis.

Here we describe the challenges in more detail and propose an approach to ensuring such

an endeavour would be technically successful.

The overall goal of such a project can be summarised as follows:

A Software Product Line approach is used to develop and approve high-integrity software

systems, which yields a significant improvement in development cost and lead-time over

single-system developments, without compromising the system integrity or ability to certify.

Figure 2 below shows a Goal Structuring Notation view of the key goals and strategies that

need to be argued for such a development to be credible.

Firstly we set the development within a specific context – that of civil avionics software

development in accordance with the guidance of DO-178B/ED-12B. Specifically the

development needs to provide assurance evidence that is sufficient to demonstrate

compliance of a product to Level A (the highest development assurance level recognised in

DO-178B/ED-12B).

Secondly, we recognise the business realities of product line development – that

development cost savings are only made after a number of products have been produced.

Industry data indicates that product lines typically break even (or even show a slight profit)

after 3 products have been instantiated and deployed [5] (see Figure 1). This is framed as

an assumption within Figure 2. We will revisit this assumption within the evaluation

section of this thesis to determine if it still holds, given the constraints of a safety-critical

development environment with a formal certification process, when following the

approach advocated in this thesis.

Finally, we recognise that existing product-based techniques for software development,

verification and management may be ineffective, inadequate and/or inappropriate when

applied to product-line development. This is due in part to the additional complexity of

designing solutions for a class of systems, and the problems inherent in verification of

implementations that contain variability. To address this, we research novel techniques in

this thesis (particularly for verification of developments that include transformation) and

we validate the use of existing product-line techniques within the context of high-integrity

software development.

19 Introduction

19 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 1 SOFTWARE PRODUCT LINE ECONOMICS [5]

Given this goal, within the context of civil avionics and the assumption of a 3-project

payback period, we have identified five main technical challenges to address credibly the

overall goal.

1.3.1 PL Scoping is Possible

This challenge relates essentially to the ability to clearly identify a product line scope; i.e. to

be able to define robustly when a specific product is a member of the product line (and

equally when a product is not a member). In addition, it must be possible to identify

common parts of the product line (those aspects that are present in all members) and the

variable parts (aspects included/excluded by selection).

This is primarily an engineering challenge; whilst it is a difficult activity to do well (requiring

domain experts with a significant depth of knowledge) the literature describes a number of

techniques to help perform the scoping exercise [6, 7]. There are also a number of well-

defined techniques for structuring the information relating to the common and variable

parts of the product line [8-10].

A well-defined scope is a necessary pre-requisite to producing a credible product line and

we will discuss novel approaches to capturing and managing this information when

developing a significant high-integrity product-line, especially in the context of providing

traceability for downstream development activities (see chapter 4 section 4.8). However, it

is not the main focus of the research described in this thesis.

Trusted Product Lines

A Software Product Line approach is used to
develop and approve high-integrity
software sytems which yield a significant
improvement in development cost and lead
time over single-system developments.

High-Integrity Development
Context

Products of PL to be deployed
into a regulated domain. Approval
of interest is DAL A to the
guideance defined in DO-178B/
ED-12B

A

Assume a Minimum of 3 Products

Assume the business case has been
made to develop as a product line.
Return on Investment will not be
achieved if less than 3 products are
produced from the PL

PL Scoping is Possible

Argue and demonstrate for an
appropriate specific class of
system that it is possible to
scope a Product Line

Verification Evidence Applies

Argue and demonstrate that
verification performed on the
product line assets can provide
evidence of correctness that is
reusable across product instances

Satisfy Verification Objectives _M2

To satisfy DO-178B/ED-12B Level A
Verification objectives using product line
assets

M2

Reusable Verification _M3

To show that verification evidence gathered
against product line assets hold for product
instance assets

M3

Define PL Requirements _M4

To capture system requirements allocated to
software that identify commonality and variabilty
in the product line in a manageable form

M4

PL Synthesis is Effective

Argue and demonstrate that SPL
techniques can be used to
develop systems in a manner that
provides credible approval
evidence.

CM is Effective

Argue that effective
Configuration Management
can be applied centrally to all
the PL assets

Plans, Processes and Procedures are
Standardised

Argue and demonstrate that a
generic/common set of management
plans and standards can be applied
across the product line and all
products

Effective SPL Development _M5

To define a Software Product Line production
environment suitable for High-Integrity applications,
including the provision of approval/certification
evidence.

M5

Common Plans & Standards _M6

To produce a DO-178B/ED-12B plan set that is
applicable to the product line as a whole and can
be deployed on instantiated product instances

M6

Effective PL-Wide CM _M7

To define and operate a process to control and
manage PL assets in a common and consistent
manner across all product instances.

M7

FIGURE 2 GSN FORM OF THE OVERALL ARGUMENT FOR DEVELOPMENT OF HIGH-INTEGRITY SOFTWARE PRODUCT L INES

21 Introduction

21 Trusted Product Lines – PhD Thesis S G Hutchesson

1.3.2 PL Synthesis is Effective

This challenge relates to the ability to apply product line synthesis techniques to the

creation of product instances from artefacts developed for the product line. Product line

synthesis has its origins in the generative programming work of Czarnecki and Eisenecker

[9] and has been commercialised with tools such as pure::variants and Gears. Support for

the types of transformations required to perform product instantiation is increasingly being

included in modelling environments such as the Eclipse Modeling Project [11] and UML [12]

tools.

However, there remain a number of significant challenges to apply this type of technology

to a high-integrity development domain. The approval and certification regulations

currently have no concept of product lines; the evidence requirements are stated from a

single system viewpoint. Therefore, it must be possible to create artefacts and evidence as

if the product had been developed in isolation. Therefore, the transformations must not

only apply to the production of product source code but also to the development artefacts:

design descriptions, requirements etc. Traceability must also be maintained in a credible

manner to demonstrate the relationships between the development artefacts, in particular

to demonstrate requirements satisfaction.

There are enough significant challenges to the application of this type of development to

high-integrity product lines to make this a worthwhile area for research. The literature has

little to say on the application of generative programming and transformations to high-

integrity applications, and this has not significantly changed for the duration of this

research project (see chapter 2 section 2.6).

1.3.3 Verification Evidence Applies

Verification is the major source of non-recurring cost in the development of high-integrity

systems. Industry data shows that the verification effort can account for at least 50% of

the development costs for traditional high-integrity lifecycles [3]. Therefore, any benefits a

software product line approach can bring to reducing the verification burden or spreading

the cost of verification across multiple product instances would provide business benefit.

Conversely, any product line practice that hinders verification or requires additional

verification activities to be performed must be outweighed by cost and schedule savings

elsewhere. McGregor [4] observed that the ability to reuse test assets could be as

significant as the savings from the reuse of development assets within a software product

line. For high-integrity systems, the ability to minimise the cost of verification across

multiple projects may actually provide greater savings than from the reuse of development

assets.

There is a fundamental issue regarding how to optimise the verification processes for high-

integrity product lines. Key to this is the extent to which verification should be carried out

on the product line assets, as opposed to on the final instantiated product. It is intuitively

attractive to carry out verification on the product line assets because any use is then

“verified by construction”. However there may be many tens or even hundreds of possible

configurations of even a modest-sized component and, further, transformational process

22 Introduction

22 Trusted Product Lines – PhD Thesis S G Hutchesson

may add to the code, e.g. providing interfaces, as well as making selections, so it is not

clear how representative asset-level testing evidence will be of the end product. Product

line practices that enable the product-specific verification to be simply regression

testing/analysis (and ensuring the results are still valid and positive) would appear to be the

most attractive in this regard. However, this may not be achievable if approaches such as

compositional development are adopted, and the transformations used are not property

preserving (see Figure 3).

FIGURE 3 THE ROLE OF PROPERTY PRESERVING TRANSFORMATIONS IN ENSURING APPLICABILITY OF VERIFICATION

Here, we are interested in approaches that do not destroy or call into question the value or

applicability of process evidence that has been gathered during the development of the

product line asset. At the detailed level this may include formal mathematical guarantees

that a given set of model or program semantics have been preserved over a

transformation, however this is not the focus of this research. We wish to construct

arguments that a product instantiated from the product line is fit for purpose whilst

minimising the economic cost of producing that product. Those arguments have to

convince developers, regulators and users that the following hold :

 Applicability – the requested product has been instantiated.

 Conformance – all artefacts conform to the required and declared standards.

 Compliance – all artefacts demonstrably comply to their requirements,

specifications and architectual constraints.

As much of this evidence is gathered today via manual inspection and analysis, and is

expensive and time consuming to collect, its value has to be preserved throughout the

product lifecycle.

23 Introduction

23 Trusted Product Lines – PhD Thesis S G Hutchesson

The verification challenge for high-integrity product lines is therefore one of process

optimisation to give the best return on investment (RoI) over the life of the product line.

One potential approach is to demonstrate that it is efficient to perform the required

verification on the product line assets (i.e. prior to transformation) and then to show

(hopefully automatically) that the verification evidence still holds for the product instance

assets (i.e. post transformation). There is little work in the literature that addresses these

problems and this is a significant research challenge (see chapter 2 section 2.5).

1.3.4 CM is Effective

One of the most challenging practical problems for trusted product lines is to implement

effective configuration management and change control. This encompasses both the

technical challenge of managing component configurations and their changes for the

product line AND the product instantiations, plus the business/political challenge of

persuading project managers to accept the changes and updates made on the product line

into their individual products.

The credibility of the assets and their development process evidence is key to a successful

product approval or certification. This credibility is provided by a well-designed and well-

managed CM process/system and the resultant audit trail provided for each configured

asset. However, this is primarily an engineering and organisational challenge, and

therefore is not considered further in this thesis.

1.3.5 Plans, Processes and Procedures are Standardised

The development of any software system in accordance with the guidelines of DO-

178B/ED-12B is governed by a set of plans, a shorthand for which is the “DO-178B Plan

Set”. The planning documents and their contents are proscribed within the guidance; they

consist of an overarching “Plan for Software Aspects of Certification” (PSAC), and

supporting plans that cover development, verification, quality assurance, configuration

management, and the “qualification” of tools used in the development environment.

These are used both to manage the development of the software system, and as the

primary means of describing the system and development process to the regulating

authority. As mentioned earlier, current regulatory guidance does not recognise product

line development practice and therefore the plan set needs to be carefully structured to be

acceptable to the regulator but also be applicable to the product line development. This is

further complicated by the fact that the regulating authority may differ from product

instance to product instance (e.g. European Aviation Safety Agency (EASA) approval may be

sought for product A whereas the US Federal Aviation Administration (FAA) approval is

sought for product B). Regulating authorities (and indeed individual regulators) can have

slightly different interpretations of the guidance and also have particular interest in certain

parts of the development lifecycle that they want emphasising in the plan set. This

potential for variation in the planning documentation needs to be considered early in the

product line development process to ensure that it does not result in unnecessary cost and

rework when a product is submitted for approval.

24 Introduction

24 Trusted Product Lines – PhD Thesis S G Hutchesson

This is a significant engineering challenge and one that could benefit from research into the

efficient and effective management of the process information. This is not directly

addressed in this thesis.

1.4 Thesis Hypothesis
In the previous section, we identified the major technical challenges in adopting a trusted

product line approach to system development. Of the five challenges identified, three

contained areas of potentially significant or novel research, and we consider two in detail

within this thesis; these are the synthesis of a high-integrity product and supporting assets,

and assuring the reusability and applicability of verification evidence.

It would not be credible or achievable for a single PhD thesis to fully address these issues

with complete satisfaction. However, it should be noted that this research has been

conducted alongside the practical application of product line techniques to a substantial

industrial product line, and therefore a number of these issues have been dealt with

pragmatically on the project.

The areas we wish to focus on specifically in this research are as follows:

 Support for variability in models used to represent software architecture and

design

 The generation of product instances from such models, typically via model

transformation

 Supporting certification evidence and artefacts with such models

 Supporting reusable verification using such models
We focus on these because our experience (including refinement of our approaches) shows

these to be pivotal to the successful application of product lines.

The research hypothesis is therefore:

It is feasible to construct product line models which

a) allow the specification of required behaviour (including the identification of

common and variable aspects in a product-line)

b) allow the definition of a reference implementation architecture which can be

transformed into an effective, efficient and analysable product implementation

and enable suitable supporting evidence for certification to be produced, including

effective verification.

25 Introduction

25 Trusted Product Lines – PhD Thesis S G Hutchesson

1.4.1 Research Value and Relevance

Throughout the thesis, a number of technical options and decisions are discussed and

critically evaluated, and significant/novel research results and conclusions are described in

detail. Whilst the engineering motivation for the research described in this thesis is clear,

there is also original scientific value to the work undertaken. In particular, the objective to

investigate mechanisms for reuse in a high-integrity system engineering context, whlist

making use of higher abstraction engineering artefacts (e.g. via models). Achieving

systematic reuse (and abstraction) while simultaneously sustaining confidence in the

quality of the derived products is both scientifically interesting and a significant challenge.

We discuss at the start of Chapter 5 a set of “Essential” and “Accidental” challenges and

constraints. The essential challenges describe the problems associated with this research

that are of general interest and applicability, and these provide the scientific basis for the

research direction and decisions made in the thesis. The accidental challenges frame the

work within the real industrial context in which it was performed, and addressing these

constraints were the reason the work was successful in realising actual, sizable product and

enabled the quantitative and quantitative analysis of the research to take place.

1.5 Mode of Research
We have conducted the research described in this thesis from the perspective of an

“interested participant”. The purpose of the research has not been to describe/explain

phenomena as a detached observer, rather it has been to demonstrate and validate the

efficacy of an approach within a domain of interest. Van de Ven [13] describes this type of

research as Action/Intervention, where a researcher engages and intervenes in a particular

domain. Figure 4 illustrates how this approach differs from other forms of engaged

scholarship.

FIGURE 4 ALTERNATIVE FORMS OF ENGAGED SCHOLARSHIP (FROM [13])

Region 4 describes most aptly the approach taken in this this thesis, where the researcher

utilises available knowledge to understand the problem at hand. However, existing

knowledge “may require substantial adaptation to fit the ill-structured or context-specific

nature of the client’s problem” [13].

26 Introduction

26 Trusted Product Lines – PhD Thesis S G Hutchesson

Van de Ven notes that this type of research often consists of limited (“N-of-1”) studies

where comparative evidence can be difficult to gather, and may consist of trial-and-error

studies over time. It can be argued that the only way to understand such systems is to

change through deliberate intervention and diagnose responses to the intervention [13].

The research evaluation described in chapter 6 should be read in this light.

1.6 Thesis Model & Structure

FIGURE 5 ANNOTATED MODEL FOR TRUSTED PRODUCT L INES RESEARCH

The diagram provided in Figure 5 shows a conceptual process model for product line
development. The annotations enumerate the areas of research contribution described in
this thesis, and these are described below. It can be seen from the annotations that, in
general, the particular form of each of the artefacts (rounded rectangles) is not the focus of
the research; the areas of interest are in the transformations performed and relationships
between these artefacts.

27 Introduction

27 Trusted Product Lines – PhD Thesis S G Hutchesson

1. The overall scope and form of the product line definition is not of direct interest to
this research, however the relationship between the product line definition and
design model produced in response to this definition is covered in Chapter 4.

2. A major focus of this research is the form of product line design model. In
particular we investigate and propose meta-models to capture product
architectures and component designs suitable for use in a high-integrity context.
This is the major focus of Chapter 4 of this thesis.

3. Mechanisms for transforming a product-line model into a product-instance model
are a central topic of this research. Chapter 5 describes the research undertaken in
this area and Appendix B describes the transformations produced in support of this
research in detail.

4. The automatic creation of the product artefacts (not just the source code) from the
instantiated product model is key to the trusted product line research. This is
discussed in general in Chapter 5 and some of the problems with applying this in
practice are discussed and addressed in Chapters 6 and 7.

5. Generation and management of compelling evidence for the use of product lines in
a high-integrity context is necessary for this approach to be successful in practice.
A framework for the creation, management and analysis of this information was
provided earlier in this chapter, and is critically revisited in Chapter 6. Chapter 6
also provides qualitative and quantitative evidence on the success of the approach
in an industrial context.

6. Successfully arguing the applicability of evidence collected against the product line
in support of the product instance is key to achieving the economic benefits of
product line engineering. The problems with this in a high-integrity context are
explored in Chapter 6, and potential solutions to these problems are provided in
Chapter 7.

The overall model in Figure 5 illustrates how the trusted product lines research has
considered and addressed the full scope of solution-space product line engineering. It is
instructive to note that the major focus of this research is to address the solution-space
issues of engineering a high-integrity product line; this is analogous to “building a software
factory”. Whilst the problem-space product line issues, such as scoping, capturing feature
requirements, analysing feature interaction etc. are interesting and valuable to to study,
they are outside the scope of the research described in this thesis.

The thesis is organised as follows:

 Chapter 2 provides a critical review of the literature on software product line

development, with particular regard to the use of product lines within high-

integrity or related domains, and the use of model-based approaches.

 Chapter 3 discusses the challenges of software product line development within

the context of a specific class of high-integrity systems: Full Authority Digital

Engine Control (FADEC) systems for civil aviation applications, under the regulatory

guidance of DO-178B/ED-12B. The chapter outlines the motivation for the

research work, including the business challenges that make development as a

product line attractive, and the resultant technical, engineering and academic

challenges that are a consequence of this business strategy.

28 Introduction

28 Trusted Product Lines – PhD Thesis S G Hutchesson

 Chapter 4 describes an approach to architectural modelling of a FADEC software

system that enables the development of components in a product line manner. It

defines architectural and component meta-models.

 Chapter 5 describes an approach to the instantiation of product instances from

product line models using model transformation techniques.

 Chapter 6 evaluates the approach described in the previous chapters using data

obtained from industrial use of the technique. The data provides quantitative

information on the cost-effectiveness of the approach and qualitative information

on the ability of the process to provide product approval evidence.

 Chapter 7 discusses improvements to the approach following the critical evaluation

provided in the previous chapter.

 Chapter 8 provides a summary of the work described in the thesis, including overall

conclusions of the research, and identifies areas of potential further investigation.

 Appendix A provides background information on the development of SPARK [14]

programs, including an approach to modelling SPARK using UML [12].

 Appendix B describes in detail the design of the model transformations used to

implement the product instantiation.

 Appendix C contains a case study demonstrating the approach on a number of

example components.

29 Literature Review

29 Trusted Product Lines – PhD Thesis S G Hutchesson

2 Literature Review

his chapter presents a review of the literature relevant to the development and

verification of trusted product lines using models. It concentrates on model-based

approaches to product line development, with an emphasis on material that is

directly or indirectly relevant to high-integrity system development. The most interesting

and fruitful areas for study are those that lie in intersections between the domains. Figure

6 illustrates these intersections and contains annotations that guide the reader through the

contents of this chapter.

FIGURE 6 VENN DIAGRAM DENOTING DOMAINS OF INTEREST AND THEIR INTERSECTIONS

The structure of this chapter is as follows:

2.1 Provides a brief overview of product line theory (Region 1)

2.2 Discusses the development of product lines using model-based techniques,

including a critical review of UML and component-based approaches to product

line design (Region 2)

2.3 Provides an overview of the development and approval/certification of high-

integrity software systems in regulated domains (in particular civil aerospace)

(Region 3)

2.4 Discusses how model-based approaches have been used within the development

of high-integrity software systems (Region 4)

2.5 Provides a critical review of the literature regarding software product line

approaches to high-integrity software development in general; this includes a

review of product line verification, with a particular emphasis on the verification

requirements for regulated domains (Region 5)

T

30 Literature Review

30 Trusted Product Lines – PhD Thesis S G Hutchesson

2.6 Provides a critical review of the literature regarding model-based software product

line approaches to high-integrity software development (Region 6)

(Note: The general topic of model-based development is huge, so this review only covers

the bounded area of application to product-lines and high-integrity domains.)

2.1 Software Product Line Development
Software Product Lines have been applied and studied as a recognised discipline for a

number of years. The concept of studying “a family of programs” can be traced back to

Parnas [15] in the mid-1970s (the terms “Software Families” and “Software Product Lines”

being regarded today as essentially synonymous.) Interest in a product line approach to

software development increased in the mid-1990s when it became clear that simple,

bottom-up “reuse” of software was not delivering the cost and schedule benefits that

might initially be expected [1]. Software Product Lines as a concept is distinguishable from

simple software reuse primarily by its focus on the development of a family of products as

a managed activity, rather than the fortuitous reuse of previously developed software

components [3].

2.2 BAPO
Van der Linden et al. [16] identified four independent concerns that are important when

adopting a product line approach:

 Business - how to make profit from your products

 Architecture - technical means to build the system

 Process - roles, responsibilities and relationships within system development

 Organisation - actual mapping of roles and responsibilities to organisational
structures

These concerns, termed the BAPO model, are represented diagrammatically in [16] as
follows:

FIGURE 7 THE BAPO CONCERNS [16]

31 Literature Review

31 Trusted Product Lines – PhD Thesis S G Hutchesson

“Arrows denote a natural order to traverse the concerns, giving an order to the

acronym as well. The Business is the most influential factor. This has to be set up right in

the first place. The Architecture reflects the business concerns in ... structure and rules. The

Process is set up to be able to build the products determined by the architecture. Finally, the

Organisation should host the process.“ [16]

The importance of architectural design to the success of a product line initiative is made

clear in the BAPO model and is an aspect we will return to later.

2.2.1 Product Line Processes

Product line developments distinguish between the concepts of domain engineering and

application engineering [2]. The domain engineering task is to create a set of assets or

artefacts (commonly termed core assets [3] or family assets [17]) that can be used by the

application engineers to construct useful products [18]. The domain engineers undertake a

development lifecycle similar to that used for single product developments, but are

focussed on the development of assets for the product line as a whole (see Figure 8). In

addition to producing reusable artefacts, the domain engineering task has to understand

how products within the product line vary between each other and then encode this

variability into the assets produced. This information can be captured in a variability

model [2]

PROBLEM SPACE SOLUTION SPACE PROBLEM SPACE

FIGURE 8 SOFTWARE PRODUCT LINE PROCESSES (FROM [2] WITH ADDED ANNOTATION)

32 Literature Review

32 Trusted Product Lines – PhD Thesis S G Hutchesson

2.2.2 Commonality and Variability

The identification of commonality and variability between members of the product line is

one of the main distinguishing aspects of Product Line development. Much of the research

into Product Line development has been concerned with the identification and

management of commonality and variability [19, 20], both in product line requirements

(problem space) and product implementation (solution space):

 Problem space variability is concerned with the scoping of the product line and

differentiating the products in terms of common and variable features.[21]

 Solution space variability is concerned with the artefacts that compose the system

itself and how these can be varied to deliver the required product.[21]

The concepts of problem space and solution space are orthogonal to domain and

application engineering and need to be taken into account in both - see the annotation to

Figure 8. Essentially, this shows that the problem space activities take into account the

development of the requirements for the product line plus a proportion of the verification

that the right product has been built (sometimes termed validation).

The most widely adopted and studied approach to the management of commonality and

variability in the problem-space is Feature Modelling [8, 9].

2.2.3 Features & Feature Modelling

A number of definitions of “feature” exist in the literature; the most useful for our

purposes is the following, paraphrased from [1] :

Feature – A set of related requirements that represent a logical unit of functionality for

the user of the product.

The concept of Feature Modelling was introduced as part of the feature-oriented domain

analysis (FODA) method [8]. A Feature Model describes a tree of features, where

variabilities (alternative features) are indicated using and/or nodes. FODA introduced a

graphical syntax for such feature trees; this has been used extensively within the Product

Lines literature, typically in its extended form as described in [9] and illustrated in Figure 9.

33 Literature Review

33 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 9 FODA NOTATION AS EXTENDED BY [9] (ADAPTED FROM [10])

The “Domain Requirements Engineering” phase of the Product Line processes shown in

Figure 8 concerns itself with the identification of the common and variable aspects of the

Product Line, and typically documenting these in a feature model. This process is also

known as Product Line Scoping [6]. Identifying the set of features (and how these features

vary across the products in the product line) provides the necessary requirements for the

subsequent “Domain Design” process activities. In reality, there is a difference between

true Product Line Scoping and the derivation of the feature model: scoping is primarily a

business-driven activity, focusing on how to generate return on investment by deciding

which products and product features should be in the product line scope. The feature

modelling exercise is then part of a follow-on requirements engineering activity.

2.2.4 Commonality and Variability in the Solution-Space

Pragmatic approaches to solution-space variability dominated the early attempts at

software product line development. For instance, a relatively easy and low-cost approach

to providing variability in software was to make use of the existing conditional compilation

techniques available using language pre-processors provided in the C language (for

example the use of “#ifdef” statements). Many commercial product lines are deployed

using pre-processor directives and conditional compilation to instantiate specific products

from a code-base containing variability [22]. Initially this was the only credible alternative

to deploying so-called “generic” products, where all alternative behaviour was available in

the installed product and was enabled/disabled at run-time via configuration settings. For

34 Literature Review

34 Trusted Product Lines – PhD Thesis S G Hutchesson

commercial applications such as automotive ECUs (Engine Control Units), the overhead of

supporting all variants in a single image can be costly if it requires larger memory devices to

hold the built program, which is one of the reasons why compositional approaches (even

simple “#ifdef”s) are attractive.

Many of the software tools that support product line development augment development

tools that are designed for single system development with the concept of variability.

Tools such as pure::variants [23] and Gears [24] allow models of variability to be

constructed within the tool, and are “aware” of the file formats of the development

environments being used to develop the product line artefacts. In this way, they provide a

more sophisticated and more manageable approach to essentially pre-processing product

line artefacts.

There are issues of scalability and complexities of managing commonality and variability

data when using this type of approach. One solution to this is to adopt the approach that

computer science typically uses whenever faced with complexity problems, and that is to

adopt useful abstractions; hence the interest in model-based approaches to product line

development.

We build upon some of these fundamental concepts of product lines in our research; we

concentrate on solution-space variability, as our motivation is primarily the practical

realisation of a product line rather than the definition of its scope. Our approach to

variability definition and management provides a well-defined structure to the product line

representations and is more than just a source-code manipulation technique.

2.3 Model-Based Development of Product Lines
For many years, the implementation of product lines in real systems relied upon the pre-

processing of artefacts to remove the parts of the product that were not required for that

variant [23, 25]. The BAPO model shows us, however, that for a product line strategy to be

fully effective, the business, architecture, process and organisation aspects all need to be

mature with regard to the product line. This would suggest that any technical approach

that does not treat commonality and variability as “first-class citizens” in the product

design process (as opposed to being a “bolt-on” to traditional methods) would not be fully

effective. The definition of a product-line architecture is one of the main lessons of BAPO;

source-file composition approaches to product lines cannot make use of higher-level

abstractions like “logical architecture and design patterns” [26].

Model-based approaches to solution-space product-line development can provide first-

class modelling concepts to allow the expression of commonality and variability as an

integrated part of the design process. This allows concepts of commonality and variability

to be modelled alongside other design abstractions such as component dependency,

architectural layering etc. (Note that approaches to problem-space modelling do exist, but

they typically provide their own abstractions (e.g. FODA), or extend notations like UML

class modelling to express problem-space concepts such as features – see section 2.3.2.)

35 Literature Review

35 Trusted Product Lines – PhD Thesis S G Hutchesson

2.3.1 Modelling Product Lines with UML

Many software product line modelling approaches target the Unified Modeling Language

(UML) [12] as the modelling language of choice. UML is widely used in industry, and has

built-in mechanisms for extending the language through the use of stereotypes and

profiles. This extension mechanism can be used to provide support for product-line

concepts such as variability that does not exist in the base UML specification. There are a

number of published UML profiles that support the modelling of product line concepts [27-

29], although none have yet been adopted by the Object Management Group (OMG) as a

standardised extension to UML. (At the time of writing the Common Variability Language

(CVL) [30] was in the process of being adopted as an OMG standard – CVL is discussed later

in this chapter.)

2.3.2 Problem-Space Modelling with UML

Gomaa [28] provides a number of suggested UML extensions to support the modelling of

product lines at various levels of abstraction (both in the problem and solution spaces).

Figure 10 shows a set of suggested stereotypes to support feature modelling which are

semantically equivalent to the extended FODA notation we discussed earlier.

FIGURE 10 CLASSIFICATION OF FEATURES IN A FEATURE MODEL [28]

The types of feature that can be identified using this model are as follows:

 Common Feature

Feature provided by every member of the product line.

 Optional Feature

Features that need to be provided by only some members of the product line.

 Alternative Feature

Two or more features may be alternatives. A constraint on the allowable choice of

alternatives (e.g. mutual exclusion) may be given using the Feature Group and

Dependencies mechanisms described later.

 Default Feature

Within a group of alternative features, one may be selected as the default (i.e. the

pre-selected alternative) .

 Parameterized Feature

«metaclass»

Feature

«stereotype»

Common Feature

«stereotype»

Optional Feature

«stereotype»

Alternative Feature

«stereotype»

Parameterized Feature

«stereotype»

Default Feature

36 Literature Review

36 Trusted Product Lines – PhD Thesis S G Hutchesson

A feature whose behaviour varies dependent upon the value of a parameter. The

parameter’s value needs to be defined when configuring a member of the product

line.

Related features can be grouped into Feature Groups which place a cardinality constraint

on how the features are used by a given member of the product line. Figure 11 illustrates

the classification of Feature Groups.

FIGURE 11 CLASSIFICATION OF FEATURE GROUPS IN A FEATURE MODEL [28]

Features may have dependencies on other features – this can be modelled using

stereotyped dependency relationships within the UML feature model. The classification of

dependencies is shown in Figure 12.

FIGURE 12 CLASSIFICATION OF PRODUCT L INE DEPENDENCIES

Note that these relationships are intended to model dependencies across features and

feature groups; they are NOT intended as alternatives to Feature Groups (e.g. do not use

“mutually prohibits” to model an “Exactly one of” feature group.)

Gomaa does not “formally” define a UML profile for feature modelling (the dependency

classifications in Figure 12 are inferred from examples in the book), however there are

enough text references and examples provided to construct a useful set of stereotypes if

UML feature modelling were required. The advantage to this approach is that UML is in

widespread use in industry, and therefore having a modelling environment that can

capture this information that is available and known to practising engineers is of benefit. In

addition, if the implementation is to be modelled in UML, having the feature model

available in the same environment is advantageous. However, class modelling syntax is not

«metaclass»

Feature Group

«stereotype»

Exactly-One-Of Feature Group

«stereotype»

Zero-Or-One-Of Feature Group

«stereotype»

At-Least-One-Of Feature Group

«stereotype»

Zero-Or-More-Of Feature Group

«metaclass»

product line dependency

«stereotype»

requires

«stereotype»

mutually requires

«stereotype»

prohibits

«stereotype»

mutually prohibits

37 Literature Review

37 Trusted Product Lines – PhD Thesis S G Hutchesson

as natural a paradigm as the extended FODA notation for capturing and conveying feature

descriptions. It would be possible, however, to use the UML as the underlying repository

for the information but render it in a more suitable form via transformation if this was

required. It would be possible to automatically map to/from a FODA representation .

2.3.2.1 Solution-Space Modelling with UML

The BAPO model discussed earlier highlighted the importance of architecture in the

development of Product Lines. Academic and industrial case studies into the successful

introduction of product line development indicate that an early focus on architecture,

including the development of a product line architecture (reference architecture), is crucial

to the success of the initiative [1]

A Family Model [31, 32] provides the design response to the Feature Model and the

commonality and variability identified therein. The Family Model encompasses the Product

Line architecture and shows how products can be realised to achieve the requirements

defined in the Feature Model. The central role of Family Models in bridging the gap

between the feature understanding and the product realisation can be seen in Figure 13

which is taken from Polzer et al.[32].

FIGURE 13 ROLE OF FEATURE & FAMILY MODELS IN POLZER ET AL. [32]

Here we can see that the Family Model (B) provides the mapping between the definition of

features (held in a feature model) and the design/solution technologies (Simulink and

XML).

Family Models often contain, or refer to, product line Reference Architectures. A

Reference Architecture [33] provides a standard solution structure for a class of products.

38 Literature Review

38 Trusted Product Lines – PhD Thesis S G Hutchesson

All product instances should conform to the reference architecture and all product

components (be they common assets or project-specific) should comply with the reference

architecture guidelines for component construction and interfacing. Reference

architectures can encompass system, software and hardware representations and can exist

at a number of levels of abstraction. The FORM method [34] is one approach to software

reuse that makes specific use of a reference architecture.

Figure 14 illustrates the FORM engineering process; this shows the central role played by

the reference architecture in the scoping of the product and development of reusable

components that are then made available to the application engineering process.

The Family Model & Reference Architecture approach to the decoupling of problem

domain analysis from solution domain design appears credible and scalable, and is one that

we make significant use of in our research.

FIGURE 14 FORM ENGINEERING PROCESS (FROM [34])

Product variation in Family Models can be captured in a similar manner to feature

variability in Feature Models. Gomaa [4] illustrated a means of capturing commonality and

variability in UML class models using a specialised profile. This is summarised in a

“component profile” in Figure 15.

Figure 15 identifies the following component classifications in the profile:

 Kernel Component

A component provided by every member of the product line.

39 Literature Review

39 Trusted Product Lines – PhD Thesis S G Hutchesson

 Optional Component

A component provided by some members of the product line, but not all.

 Variant Component

One of a set of similar components that have some identical properties and some

different properties. Different components are used by different members of the

product line.

 Default Component

The default (pre-selected) component amongst a set of variant components.

Components of all types can optionally introduce variation via parameterisation. To denote

this, there are a set of “param-vp” versions of each of the component classifications given

above. This indicates that the values of the configuration parameters need to be set by the

individual product line members when using this component. These stereotypes are

explicitly denoted “vp” because product line variability is introduced at this point.

In addition, components of type kernel, optional and variant can be denoted as pure “vp”

components, indicating that product line variability is introduced via specialisation. The

component itself defines the interface that all the specialised components must provide (as

a minimum).

Gomaa’s approach of defining a UML profile to categorise product line/reusable

components and identify the types of variability and component usage is one we make use

of in our approach to some extent. For our purposes, however, the detail of Gomma’s

approach tries to capture too many dimensions that should be kept orthogonal, especially

where components may be reused across multiple product lines. In this case, the

identification of, say, the default component may not hold true across all users of the

component, and therefore this information may need to be held elsewhere in the product

line model.

FIGURE 15 UML PROFILE FOR CLASSIFICATION OF COMPONENTS IN A FAMILY MODEL (ADAPTED FROM [4])

«metaclass»

Component

«metaclass»

Kernel Component

«metaclass»

Optional Component

«metaclass»

Variant Component

«metaclass»

Default Component

«stereotype»

Kernel

«stereotype»

Kernel VP

«stereotype»

Kernel Param VP

«stereotype»

Optional

«stereotype»

Optional VP

«stereotype»

Optional Param VP

«stereotype»

Variant

«stereotype»

Variant VP

«stereotype»

Variant Param VP

«stereotype»

Default

«stereotype»

Default Param VP

41 Literature Review

41 Trusted Product Lines – PhD Thesis S G Hutchesson

2.3.2.2 Mapping Feature Models to Family Models

If we regard a family model as a solution space response to a product line defined within a

feature model, then for the family model to be truly useful in implementing that product

line it must have a mapping back to the parent feature model. In this way the commonality

and variability in the implementation is traceable back to the needs of the product line, and

it provides necessary information for the automation of product derivation. Gomaa and

Shin [35, 36] describe how the UML representations of feature and family models (as class

models) described in the previous section can be mapped; the meta-model for this is

shown in Figure 16.

Noticeable here is the one-to-many mapping of features to components; this would

indicate that:

 Features are realised by sets of one or more components

 Components cannot contribute to more than one feature

It can be argued that this is an overly restrictive mapping between the problem and

solution domains; components may certainly contribute to more than one feature

(particularly “lower-level” components in embedded systems such as components

implementing communications protocols). Also in this approach, variability is implemented

at the component level (replacement, removal and/or inclusion of components to

implement the selected feature set). Other approaches allow a more fine-grained

implementation of variability that can be more useful in certain domains; this is discussed

later in this chapter.

FIGURE 16 META-MODEL MAPPING FEATURE AND FAMILY MODELS (ADAPTED AND SIMPLIFIED FROM [36])

Feature Model

FeatureFeature Group

Zero-Or-One-Of Feature Group

At-Least-One-Of Feature Group

Exactly-One-Of Feature Group

Zero-Or-More-Of Feature Group

Alternative Feature

Parameterized Feature

Default Feature

Common Feature

Optional Feature

Feature Dependency

FeatureFeature Group

Zero-Or-One-Of Feature Group

At-Least-One-Of Feature Group

Exactly-One-Of Feature Group

Zero-Or-More-Of Feature Group

Alternative Feature

Parameterized Feature

Default Feature

Common Feature

Optional Feature

Feature Dependency

Family Model

Component

Kernel Component

Optional Component

Variant Component

Default Component

Component RelationshipComponent

Kernel Component

Optional Component

Variant Component

Default Component

Component Relationship

0..*

2..*
Has

1..*0..1

1..*

1

Realised By

0..*2..*

Has

1..*

0..*

Realised By

Gomaa's metamodel has the restriction of a Component

realises one and only one Feature - do we want this restriction?

42 Literature Review

42 Trusted Product Lines – PhD Thesis S G Hutchesson

2.3.3 Common Variability Language

The Common Variability Language (CVL) [30, 37] has been proposed as a standardised

mechanism to describe variability for MOF-compliant [38] languages (MOF stands for Meta

Object Facility and is a meta-meta-modelling language defined by the Object Management

Group (OMG)). (At the time of writing CVL is in the RFP stage of the OMG standardisation

process.) The Request for Proposal (RFP) for a CVL [30] states that “Product line modeling

includes a base product line model, a (separate) variability specification that applies to the

base model, and resolutions of variabilities in order to generate specific product models.

The objective of product line modeling is that the derivation of specific models based upon

resolutions of variabilities should be as automatic as possible”. This is shown

diagrammatically in Figure 17.

The RFP’s statement that variability models are separate from the product line model is not

necessarily true as a general case for product line modelling. (The RFP goes onto to state

that “the concrete syntax of the specification of the relationships between the variabilities

and the base may appear as annotations to the base notation.” This would suggest that

the base mode would be “polluted” with a degree of variability information.) However, the

objective of automatically deriving specific models based on the resolution of variabilities is

the aim of most product line modelling approaches. The final resolved model is in a form

that can be processed by “regular base language tools” i.e. it is of the same or similar form

to a model of a single product. It is not clear if the RFP requires this model to be available

for inspection, serialisation etc., or whether a transitory model would suffice.

FIGURE 17 CVL ARCHITECTURE [30]

In their proposed implementation of CVL, Haugen et al. [37] provide a meta-model for

specifying variability and a process for variability resolution when instantiating product

models. They term their approach BaseVariationResolution or BVR (Figure 18).

Variability

Model

Base

Model

Resolution

Models
CVL

execution

Resolved

Models

Specification in

standardized

CVL of base

model

variabilities

Product

Line model

in any MOF

compliant

language

Selection of a set

of choices in the

variability model

Product models fully

described in the base

language.

All regular base

language tools can

be applied to these

models

43 Literature Review

43 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 18 BASEVARIATIONRESOLUTION (BVR) APPROACH [37]

In BVR, a single base product-line model is specified whose variability is described in a

separate, orthogonal Variation Model. Products are derived via the definition of a

Resolution Model that specifies the set of variability selections for that specific product.

The BVR meta-model is shown in Figure 19. The definition and relationship of the Variation

Model to the Base Model is clearly shown here, including the mapping of variability

specifications to model elements in the base model.

FIGURE 19 BASEVARIATIONRESOLUTION (BVR) APPROACH META MODEL [37]

More detail is provided regarding the variation via substitution in the meta-model shown in

Figure 20. Here the variability of an attribute in the base model is described, using

substitution of attribute value (Value Substitution), and also potential replacement of the

attribute by another (Reference Substitution). In the reference substitution example, the

variability specification identifies the target attribute in the base model (original), the set of

potential alternatives (alternatives), and when applying a resolution model, the chosen

attribute (chosen).

44 Literature Review

44 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 20 VARIABILITY SPECIFICATION (FROM [37])

The process for resolving a product model is shown in Figure 21.

FIGURE 21 VARIABILITY MODEL RESOLUTION PROCESS (FROM[37])

Here, two transformations are described; the first resolves the variability set by combining

the resolution model and variability model. The second takes this resolved variability and

applies it to the base model to produce the final instantiated product model.

45 Literature Review

45 Trusted Product Lines – PhD Thesis S G Hutchesson

One of the major advantages claimed for the CVL/BVR approach is that it allows the

separation of concerns. The Base model is orthogonal to the Variability model and they can

be developed separately using the skills of product modelling experts (Base) and domain

experts (Variability). However, it would appear that although the base model is free of

variability information; it needs to contain sets of alternatives from which the variability

model can denote choice (as in the Reference Substitution example in Figure 20). This is

problematic in two ways; the developers of the base model need to have a “reason” or

need to include the additional/alternative model elements – this is naturally driven from

the need for variability (i.e. the variability model). Although the variability and base models

may be semantically and syntactically orthogonal, from a process viewpoint they are not.

In addition, it is difficult to verify and validate the base model without the variability model,

as again it would be unclear to the reviewer the rationale for the structure of the base

model without the identified need for variability. Again, the separation of concerns

argument falls down here. CVL/BVR is an interesting approach, but is not built upon

further in the research described in this thesis.

2.3.4 Component-Based Architecture and Variability

The literature contains a number of approaches to component-based software

development [39] that do not use UML as the underlying modelling paradigm or provide

extensions to the UML. Some of these propose graphical notations/concrete syntax and

some provide purely textual representations. A number of these approaches have been

extended to provide variability support [40, 41]. Component modelling approaches such as

Koala [42] , KobrA [43], COPA [44] have been proposed for product line development; some

designed to target specific domains (for example COPA was developed to target

telecommunication infrastructure and medical domains [45])

2.3.4.1 MontiArcHV

In their recent paper, Haber et al. [21] discussed an approach to component-based

development that incorporates variability to enable product line instantiation. Many

approaches to solution space variability propose a model that describes the variability

across the whole system [27, 46]. These variability models [2] can be monolithic and are in

many cases held separately from the system description model. This can result in problems

with management and synchronisation between the separate models. It is argued in [21]

that the development of a system product line using a component-based approach has to

satisfy the following requirements:

1. Component variability and hierarchy need to be treated uniformly in one model

2. Variability must be specified locally to the components.

3. The variability model should allow focussing on the common architecture of all

system variants, on the component variability and on the configuration of the used

components.

4. Design/Configuration decisions at a high level map to variant selection on

components at a low level of the hierarchy.

Point 2 in the above list is especially important if the product line development is to be

undertaken by diverse, geographically separate teams [47].

46 Literature Review

46 Trusted Product Lines – PhD Thesis S G Hutchesson

Haber et al. [21] propose an approach called MontiArcHV which is an extension of an

architectural description language (ADL) MontiArc [48] to include the concept of

hierarchical variability. The extension recognises variation points as first-class citizens in

the modelling language, compliant with the meta-model shown in Figure 22.

The meta-model describes how variability is modelled as a first-class modelling element,

where a VariationPoint is a type of architecture element (ArcElement) in the same manner

as, say, a port or connector. Definitions of variants can be modelled using the MontiArch

component syntax, and a selection made of a valid variant to augment common

component behaviour at the point of product instantiation.

FIGURE 22 META MODEL FOR H IERARCHICAL VARIABILITY MODELLING (FROM [21])

Using this approach, component designs can be created that contain VariationPoints,

enabling variation to be modelled and instantiated at the component level. An example of

this approach is shown graphically in Figure 23 and Figure 24.

47 Literature Review

47 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 23 EXAMPLE MONTIARCH
HV

 COMPONENT FROM [21]

Here, a WindowSystem component for a vehicle is described which exposes a

VariationPoint called MoreWindows, with a [0..1] cardinality. This allows for 0 or 1

variation extensions to be included when instantiating this component into a product.

Figure 24 provides an example of a variant extension, showing how the component can be

extended to provide rear window winder behaviour. The resulting instantiated component

will provide a superset of the common component and variant extension.

FIGURE 24 EXAMPLE VARIANT COMPONENT DESCRIBED USING MONTIARCH
HV

 FROM [21]

The strength of this approach is twofold: the recognition that the modelling of variability

as a first-class citizen in the component design allows the variability to be clearly modelled

at design time, and the component development can be distributed without the

distribution of the complete variability model. It also enables the reuse of components

across disparate product lines, as long as the component-specific variability is of use to the

recipient product line.

The main weakness of the approach appears to be the inability to describe variability other

than the result of additive composition of the modelled components and variants. Indeed

the authors identify as future work the extension of the approach to include “more invasive

composition techniques” [21, 49]. However this work is still probably the closest to our

48 Literature Review

48 Trusted Product Lines – PhD Thesis S G Hutchesson

approach of “decision contracts” (described in [50] and later in this thesis) that exists in the

literature today.

2.3.4.2 PlasticPartialComponents

Plastic Partial Components [51] provide an approach to component-based development

that includes the ability to define internal variation of component behaviour using an

invasive software composition [49] technique. This approach is termed Plastic as the

component behaviour is easily adapted to each product of the SPL, and Partial as they only

participate in the core product line definition with the behaviour that it is common to the

family of products. The Partial Plastic Component meta-model is shown in Figure 25.

The approach defines a specialised component PlasticPartialComponent that aggregates a

set of VariabilityPoints. A VariabilityPoint is characterised by three properties:

 Cardinality defining a “kind of variation”

 “Type” of variability (crosscutting or non-crosscutting)

 Weaving between variant and component

The approach uses an aspect-oriented programming (AOP) [52] approach to defining the

weaving operator, using primitives such as pointcuts, weavings and aspects.

FIGURE 25 PARTIALPLASTICCOMPONENTS META-MODEL FROM [51]

The authors claim that the approach is designed to support the internal variation of

architectural components; where that internal variation is an invasive composition of

aspects and features. One of the weaknesses of this approach is that it appears to regard

internal component variability to be behavioural alone; the “worked examples” given in

[51] describe variability as the replacement of services provided by a component.

Figure 1. Metamodel of Plastic Partial Components

contains a set of inter-related metaclasses. These

metaclasses define a set of properties and services for

each concept considered in the model. Metaclasses,

their properties and their relationships define the

structure and the information that is necessary to

describe Plastic Partial Components. In addition, the

services of metaclasses allow us to develop models by

creating, destroying, adding or removing elements

which are compliant with the constructors of the

metamodel.

A Plastic Partial Component is a specialization of a

component. Both, components and Plastic Partial

Components are metaclasses of the metamodel, called

Component and PlasticPartialComponent, respectively

(see Figure 1). The complete definition of a component

is provided, since the PlasticPartialComponent

metaclass inherits all the properties and behavior of the

metaclass Component. A Plastic Partial Component is

characterized by the definition of a set of variability

points, i.e. the place where the different variants are

hooked to the Plastic Partial Component. This

relationship is modeled by means of an aggregation

called defines (see Figure 1), which relates the

metaclass PlasticPartialComponent with the metaclass

VariabilityPoint. A variability point of a Plastic Partial

Component is characterized by three properties: the

kind of variation, the type of variability point

depending on the variants that it offers to be selected

(i.e. crosscutting or non-crosscutting features), and the

weaving between variants and the component. Next,

they are described in detail. The metaclass

VariabilityPoint defines two attributes that permit to

name a variability point and to specify the kind of

variation. This kind of variation is based on the

variability management of software architectures that

Bachman and Bass set out [4]. These kinds of

variation are specified as cardinality as follows:

- 0..1: optional and unique: when a product is applied

to the product line, it is optional to select the unique

variation of the variability point.

- 1..1: mandatory and unique: when a product is

applied to the product line, it is mandatory to select the

unique variation of the variability point.

- 0..n: optional and multiple: when a product is applied

to the product line, it is optional to select a variation

from the multiple variations of the variability point.

- 1..n: mandatory and multiple: when a product is

applied to the product line, it is mandatory to select a

variation from the multiple variations of the variability

point.

- n..n: multiple and multiple: when a product is applied

to the product line, it is possible to select several

2009 IEEE/IFIP WICSA/ECSA 223

49 Literature Review

49 Trusted Product Lines – PhD Thesis S G Hutchesson

However, internal component variability for many embedded systems may manifest itself

as, for example, variation of data, buffer and array sizes, multiplicity of data sources etc.

In addition, the binding time of variability proposed by the PlasticPartialComponent

approach is unclear; the reliance on AOP would suggest a compile-time or run-time binding

model. (Binding time refers to the point in the software development process at which the

variability is resolved – i.e. the point in time where a specific product instance is defined. In

some products, this can be as late as the execution of the software – so called “run-time

binding”.). The authors claim that one of the benefits of this approach is “easily

adoptability (sic) of the concept of Plastic Partial Component by any architectural model,

that has a meta-model definition” [51] However, as noted in [21], it would not be

applicable to hierarchically modelled components , as variants cannot contain variant

components.

2.3.5 Product Instantiation Using Variability & Transformation

Models can be descriptive (i.e. provide an abstract description of a system to aid

understanding) or prescriptive (i.e. provide a plan, blueprint and/or process which guide

the system’s construction). (This classification is generally used to apply to architectural

models [53] but can equally apply to behavioural models of a system.) The models most

useful to the development of a software system have both prescriptive and descriptive

views; they aid understanding of the system whilst simultaneously defining unambiguously

how to build the system. Prescriptive product-line models that contain well-defined

statements of commonality and variability can be used to automatically generate product

instances, given a set of selections that resolve the variability for that product:

“The objective of product line modelling is that the derivation of specific models based upon

resolutions of variabilities should be as automatic as possible” [30]

For trusted product lines it is also useful to use descriptive models (or the descriptive parts

of models) to automatically produce descriptions and documentation of the instantiated

product.

This process utilises a set of techniques known as model transformation [54] [55]. The

following definition of model transformation is given by Kleppe et al. [56] :

“A transformation is the automatic generation of a target model from a source model,

according to a transformation definition. A transformation definition is a set of

transformation rules that together describe how a model in the source language can be

transformed into a model in the target language. A transformation rule is a description of

how one or more constructs in the source language can be transformed into one or more

constructs in the target language.”

This is generalised by Mens and Van Gorp [55] in their taxonomy of model transformation

to encompass the potential multiplicity of both source and/or target models. Their

taxonomy also distinguishes the following characteristics of model transformation:

Endogenous transformations transform between models compliant to the same underlying

50 Literature Review

50 Trusted Product Lines – PhD Thesis S G Hutchesson

meta-model whereas Exogenous transformations transform between models compliant to

differing meta-models. The taxonomy also distinguishes between transformations that

span differing levels of abstraction (vertical transformations) and those that transform

within the same level of abstraction (horizontal transformations). They also claim that

these characteristics are orthogonal; code generation being an example of an exogenous

vertical transformation and refactoring as an example of endogenous horizontal

transformation. (Note that endogenous transformations are sometimes termed model

manipulation rather than transformation as no change in underlying meta-model takes

place.)

We can further classify transformations based on the form of their input or output. The

output of a Model-to-Model transformation (commonly abbreviated to M2M) is a model

compliant with a target meta-model. In contrast, transformations that result in a textual

output are termed Model-to-Text transformations (M2T). The textual form of the output is

not the only criteria for a transformation to be termed M2T; typically, these

transformations do not attempt to understand or represent the meta-model of the output.

M2T transformations are usually template based, mapping source meta-model elements to

fragments of text.

2.3.5.1 Model Transformation Approaches for Product Line Instantiation

There are essentially two fundamental approaches for realising variability in product lines

via model transformation: reductive and additive transformations (Figure 26).

Reductive Transformations

A reductive transformation (also known as negative variability [57]) removes information

from an overall whole. The removed information is identified as not being required for the

particular instance being instantiated.

Additive (Compositional) Transformations

An additive or compositional transformation adds information to a minimal core or base

model where the optionally included information is identified as being required for the

particular instance being instantiated via transformation [30]. This approach is also known

as model injection [58] or positive variability [57]. Typically, we achieve this type of

transformation by using a form of model weaving approach.

FIGURE 26 REDUCTIVE/NEGATIVE (A) AND ADDITIVE/POSITIVE (B) VARIABILITY [57]

51 Literature Review

51 Trusted Product Lines – PhD Thesis S G Hutchesson

As identified by Voelter [58], the main challenge with a reductive approach is that the

product line model can become big and unwieldy. Voelter [58] also identifies the main

challenge with the additive or model injection approach as being able to precisely identify

the point of injection. It can be argued that there are other challenges with additive

transformations. The “point of injection” issue can become more problematic when

multiple injections are targeted at the same point. Order of application can then become

an issue, especially when the model fragments being injected are related semantically.

Another problem with injection is the identification of the minimal core model. Through a

strict commonality and variability analysis, theoretically it should be possible for the

minimal core model to be identified. However it is not inconceivable that increasing

understanding of the product line scope and application may result in the migration of

what were once common (core) features into points of variation and therefore migrated

out of the core model. If these were themselves the targets for other variation (injection

points) then this can become a non-trivial model management problem.

2.3.5.2 Architectural Transformations

 Architectural transformations allow a product specific architecture to be automatically

derived from a product line architectural description. Botterweck et al. [26] discuss an

approach to derivation of a product specific architecture using a model driven approach.

The derivation process proposed by [26] is illustrated in Figure 27:

FIGURE 27 APPLICATION ARCHITECTURE DERIVATION PROCESS FROM[26]

52 Literature Review

52 Trusted Product Lines – PhD Thesis S G Hutchesson

This approach utilises a feature model mapped to an architectural model. The product

specific architecture model is derived using an ATL transformation. This transformation

selectively copies architectural components as required by the particular product feature

selection. One of the limitations of this approach is that it assumes that the product-line

architecture is structured to allow the inclusion or exclusion of features by the inclusion or

exclusion of complete components. This precludes its use when features are implemented

using internal variability of components (c.f. the PlasticPartialComponents approach [51]).

However, the concept of transforming architectural and component models by the

selective inclusion of architectural elements via transformation is powerful, and is one we

will utilise later in this thesis (see chapter 5 section 5.3)

Botterweck et al. [26] conclude their paper by posing a number of research questions

regarding the use of the generated application architecture model. One of these is how to

use the derived application architecture model as a foundation for an implementation.

This is a key theme to our research and will be addressed later in this thesis (see chapter 4

section 4.7 and chapter 5 section 5.4).

2.4 High-Integrity Software System Development
The domain of high-integrity software development is too wide for a full treatment in this

literature survey. We are particularly interested in the development of software systems

for use in civil aerospace applications, as this is the area of the author’s expertise, and is

the target domain for the systems used as a case study in this thesis. We therefore

concentrate on the current and forthcoming regulatory requirements for the development

and approval of software in civil avionics systems, and any associated literature in this

domain.

2.4.1 DO-178B/ED-12B

Civil avionics is a typical example of a high-integrity regulated domain, in which software is

developed to a set of industry guidelines and is subject to audit and approval by a

regulatory authority or body (sometimes multiple authorities/bodies). Regulatory

authorities are typically a governmental body who must approve products prior to their

public use to ensure safety or security is not compromised. Prior to entry into service, civil

avionics software is required to be approved by an airworthiness authority, a process more

commonly known as “certification”. This approval process typically takes the form of a set

of audits designed to demonstrate the software has been developed in accordance with

the guidance of DO-178B/ED-12B “Software Considerations in Airborne Systems and

Equipment Certification” [4].

DO-178B/ED-12B provides guidance for software development in airborne systems and

takes the form of a set of software development process objectives. In this context, a

process objective describes some facet or attribute of the software development for which

demonstrable compliance evidence needs to be supplied to support the approval of the

software. The guidance recognizes five development assurance levels (DAL levels A to E),

Level A being the most stringent. The software requirements and design process objectives

remain relatively constant across the development assurance levels; however, the

53 Literature Review

53 Trusted Product Lines – PhD Thesis S G Hutchesson

verification process objectives increase both in number and in the level of independence

required as the development assurance levels become more stringent. An example of one

of the software coding objectives is that “Source Code compiles with the Low Level

Requirements” (Objective 1 Table A-5), an objective that needs to be demonstrated with

independence for development assurance level A.

A number of the DO-178B/ED-12B objectives concern the use of tools within the software

development process. Wherever a tool is used to automate part of the software

development activity, and its output is not separately verified, then that tool requires

qualification. Tool qualification provides evidence that a tool is operating as

expected/required when used in support of DO-178B/ED-12B objectives. The requirements

for tool qualification vary dependent upon whether the tool is a verification or

development tool. Verification tools cannot introduce an error into the software product;

they can only fail to detect an error. Therefore, the qualification requirements for

verification tools are relatively straightforward, and take the form of a simple acceptance

test of the tool against a set of operational requirements plus strict revision control.

Development tools, however, produce output that forms part of the software product and

therefore are capable of introducing an error into the product (for example automatic code

generators producing source code). Development tools whose output is not separately

verified are required to be developed to the same assurance level as the software product

they are used to develop.

TABLE 1 OBJECTIVES VS LEVELS IN DO-178B/ED-12B

Level Failure condition Objectives With Independence

A Catastrophic 66 25

B Hazardous 65 14

C Major 57 2

D Minor 28 2

E 0 0

This causes significant problems for organisations wishing to develop and/or use qualified

development tools, particularly for Level A projects. As DO-178B/ED-12B provides

objectives for the software development process to follow, it is almost impossible to

retrospectively provide qualification evidence for an existing tool. In addition, the safety

critical software development tools market is so small that it is hardly ever commercially

viable to develop a tool compliant with DO-178B/ED-12B Level A objectives. Currently the

only commercially available development tool that is qualifiable to DO-178B Level A is the

SCADE “pictures-to-code” environment produced by Esterel [59]; this is discussed later in

this chapter.

54 Literature Review

54 Trusted Product Lines – PhD Thesis S G Hutchesson

2.4.2 DO-178C/ED-12C

DO-178B/ED-12B has been used in the approval of civil aerospace systems since it was

ratified in 1992 (A Frequently Asked Questions/Clarifications document DO-248/ED-94 was

released in 2001). In 2005, RTCA and EUROCAE (the industry bodies that publish the

guidance material) decided to instigate a working group to revise the guidance in light of

emerging technologies increasingly being used in the development of aerospace systems

and to which the guidance was not being consistently applied. SC(Special Committee)-

205/WG(Working Group)-71 was instigated with the terms of reference to produce a suite

of guidance documents that included the following :

 DO-178C/ED-12C “Software Considerations in Airborne Systems and Equipment

Certification” [60]

 DO-278A/ED-109A “Guidelines for Communications, Navigation, Surveillance, and

Air Traffic Management (CNS/ATM) Systems Software Integrity Assurance” [61]

 DO-248C/ED-94C “Supporting Information for DO-178C and DO-278A” [62]

 Technology supplements covering the following :

o DO-330/ED-215 Tool Qualification [63]

o DO-331/ED-218 Model-Based Development and Verification [64]

o DO-332/ED-217 Object-Oriented Technologies and Associated Techniques

[65]

o DO-333/ED-216 Formal Methods [66]

The terms of reference for the updates of the core documents were not to undertake a

radical revision, but to include the errata that had been identified over the years and to

reduce the need for FAQs and discussion papers. A key requirement was to preserve the

66 objectives from the previous guidance; however, some so called “hidden objectives” in

DO-178B/ED-12B were clarified and made visible in the annexe tables that define how the

objectives vary by DAL. The purpose of the technology supplements was to provide an

agreed interpretation of the guidance for the development and approval of systems

employing the technologies identified. This could include the definition of additional or

alternate objectives if appropriate.

TABLE 2 OBJECTIVES VS LEVELS IN DO-178C/ED-12C

Level Failure condition Objectives With Independence

A Catastrophic 71 33

B Hazardous 69 21

C Major 62 8

D Minor 26 5

E 0 0

55 Literature Review

55 Trusted Product Lines – PhD Thesis S G Hutchesson

Figure 28 is taken from DO-333/ED-216, the Formal Methods supplement to DO-178C/ED-

12C [66] – it illustrates the required verification processes for Level A software and the

relationship of these to the design data required for DO-178C/ED-12C compliance. It

provides a very useful overview of the set of verification objectives that should be met

when approving a system as part of an aircraft or engine certification programme.

FIGURE 28 DO-178C/ED-12C LEVEL A SOFTWARE VERIFICATION PROCESSES [66]

The various verification objectives and methods (review, analysis, test) and their

relationship to the development processes can be seen clearly in Figure 28. In the context

of Trusted Product Lines, it must be borne in mind that this set of verification objectives

needs to be satisfied for an instantiated product. We will take this as a framework against

which to assess the effectiveness of the trusted product lines approach later in the thesis.

56 Literature Review

56 Trusted Product Lines – PhD Thesis S G Hutchesson

2.5 Model Based Development of High-Integrity Systems
We do not cover the subject of model-based development in general in this review, as the

literature is vast and wide ranging on the subject. Instead, here we concentrate on the

specific application of model-based techniques to the development of high-integrity

software systems.

2.5.1 DO-331/ED-218 Model Based Development and Verification Supplement

to DO-178C/ED-12C

Model-Based Development and Verification was one of the technology areas for which

supplementary guidance was required as part of the DO-178C/ED-12C initiative. The

interest in this technology supplement was very high; it was the largest sub-group in terms

of attendees at the working group. This level of interest was shown from industry

representatives, tool vendors and regulators, primarily because model-based development

is now widely used for the development of avionics systems and the current regulatory

guidance can be open to interpretation.

The supplement defines a model as:

An abstract representation of a given set of aspects of a system that is used for analysis,

verification, simulation, code generation or any combination thereof. A model should be

unambiguous, regardless of its level of abstraction.[64]

The main guidance provided by the supplement can be summarised as follows:

 Models need requirements

 Simulation is an acceptable means of satisfying certain verification objectives

o Compliance of development (simulated) artefact to parent

o Partially satisfy compliance of Executable Object Code to High Level

Requirements (in specific circumstances)

 Traceability alone is not an acceptable means of identifying unintended

functionality in design models

Primarily, however, most of the guidance is aimed at providing a regulatory framework

around the use of behavioural models; this reflected the interests of most of the working

group participants. The following sections discuss the use of this type of model in relation

to avionics software development.

2.5.2 Model Environments

It is not the intention of this literature review to provide an in-depth study of the research

surrounding the individual, technology-specific modelling approaches discussed here, but it

provides overview of the most widely used techniques in avionics development. Much of

the model-based development in avionics is centred on the construction of behavioural

models of the system; this is prevalent in the development of embedded control systems,

where the design and validation of the control logic is performed by control engineering

specialists. The ubiquitous tool for this type of modelling is Matlab/Simulink [67].

57 Literature Review

57 Trusted Product Lines – PhD Thesis S G Hutchesson

2.5.2.1 Matlab, Simulink & Stateflow

MATLAB is a technical computing environment developed by Cleve Moler in the late 1970s,

and was commercialised by The Mathworks company in 1984 [68]. Its primary users were

control systems design engineers, but its usage has widened into other domains. The wide

use of the tool in control systems designs led to the development of Simulink, a graphical-

based environment for the modelling, simulating and analysis of dynamical systems.

Simulink provides an interactive graphical environment and a customizable set of block

libraries that allows the design and simulation of a variety of time-varying systems [69].

Stateflow is an extension to Simulink providing a design environment for developing state

machines and flow charts [70].

Systems engineers in general, and control engineers in particular, find Matlab/Simulink

useful as it enables the rapid development, simulation and analysis of algorithms and

behavioural system designs. However, its relatively simplistic view of architecture (it

supports a hierarchical functional decomposition) and the lack of formalism underpinning

the semantics of the languages supported mean that it is flawed as a software design tool.

One of the challenges for modelling tool developers and vendors is to provide

environments that are understandable to the problem-domain experts (e.g. control

engineers) but have a sufficiently strong theoretical basis to enable reasoned arguments to

be made about the correctness of the designs and resulting software systems. This is one

of the main reasons for the existence of the SCADE Suite from Esterel.

2.5.2.2 Esterel SCADE

The SCADE Suite[59] from Esterel Technologies has been developed to provide a “correct-

by construction” [71] approach to the development of high-integrity software systems from

model-based representations of software designs. The development of a software design

in SCADE is based upon a graphical block-diagram notation similar to that used by Simulink,

with a complementary “Safe State Machines” notation to describe state- or mode-oriented

computations. (Where a “mode” refers to the specific behaviour of the software system in

a particular run-time context, for example aircraft systems may have differing behaviour

dependent upon whether the aircraft is on-ground or in-flight.) Both of these specification

notations have precise semantics [71]

Esterel [72] identify the fundamental differences between Simulink and SCADE as:

 “SCADE models time in discrete increments whereas Simulink models time

continuously”

 “SCADE is completely modular, meaning that the behavior of a SCADE subsystem

does not depend on its context, whereas the behavior of an equivalent Simulink

‘subsystem’ does.”

One of the most attractive features of the SCADE suite to the avionics development

community is that it offers a DO-178B Level A qualified code generator. This means that

the “Software Coding Process” is automated by a tool that has been developed to the

requirements of DO178B Level A, and therefore the output of the process (source code)

58 Literature Review

58 Trusted Product Lines – PhD Thesis S G Hutchesson

does not need to be verified. The removal of the need to perform the low-level verification

of the source code is seen as a major development process cost saving. “In particular, we

have eliminated the very costly need for MC/DC coverage analysis of the Source Code” [71].

However it should be noted that this has just moved the burden of collecting MC/DC

coverage to the design model stage, where the equivalent of MC/DC coverage at the model

level needs to be collected during simulation to satisfy the guidance (as clarified by the

model-based supplement to DO-178C/ED-12C)

Esterel provide a model interchange tool “SCADE-Simulink Gateway” to enable the

translation of models from Simulink into the SCADE environment for refinement to source

code. This provides a behavioural mapping based upon the syntax and semantics of a

restricted set of Simulink design “blocks” into SCADE – this cannot be an exact semantic

translation as the underlying models of time differs between the two environments.

Esterel identify a model for software development as shown in Figure 29

FIGURE 29 SCADE DEVELOPMENT MODEL INCLUDING SIMULINK GATEWAY (FROM [72])

If we compare the process outlined in Figure 29 with the guidance given in DO-178B, there

is a distinct lack of recognition of the role of software architecture, and the implication

appears to be that the role of the software requirements and design process is purely to

formalise the algorithms allocated to software from the systems engineering process.

Dion [71] attempts to describe the role of SCADE within a DO-178B development process.

Firstly, the development cycle for ARP4754/DO-178B is illustrated (as shown in Figure 30).

ARP4754 [73] is the aerospace recommended practice (ARP) for the certification of

59 Literature Review

59 Trusted Product Lines – PhD Thesis S G Hutchesson

complex aircraft systems, and is used in this context to identify the interface between the

systems and software engineering processes.

FIGURE 30 "THE ARP 4754/ DO-178B DEVELOPMENT CYCLE" FROM [71]

This correctly identifies the development processes and lifecycle data as required by DO-

178B. Dion then describes how the verification objectives of DO-178B change as SCADE

and qualified code generation is used (as shown in Figure 31)

FIGURE 31 “THE USE OF SCADE VS THE USE OF MANUAL CODING" FROM [71]

Here we can see the comparison of the verification activities required for the Manual

Coding and the SCADE-based processes. However, note how the “High Level Software

Requirements” and “Low Level Software Requirements and Architecture” lifecycle data

items have been collapsed into a single entity “Software Requirements”. This is a naive

view of software development for all but the simplest of systems. For systems of even

moderate complexity, an engineered architectural decomposition of the software is crucial

for effective management, maintenance and integration. SCADE is not a software

architecture development or management tool and supports only the “box and line”

functional decomposition of the software in a similar manner to Simulink. Similarly, for

60 Literature Review

60 Trusted Product Lines – PhD Thesis S G Hutchesson

more complex systems, a single requirements/design layer between the System

Requirements Allocated to Software and the Source Code may not be sufficient to

represent the levels of requirements and design decomposition needed to fully specify and

realise the software system.

Product line development adds extra complexity into the software process that requires a

richer and more sophisticated architectural view than is embodied in tools such as SCADE

and Simulink. Their simple approach to functional decomposition is inadequate to cope

with the complexities of commonality and variability modelling and product instantiation

required to support true product line development.

2.5.3 Model Analysis Techniques

The construction of a model of software system function and structure will only bring

significant benefit if it enables the verification and validation of system properties prior to

system realisation. This relies on the development of effective analysis techniques to

demonstrate the presence (or absence) of defined properties in the model (and then

ensuring those properties are preserved in any subsequent translations; this is discussed in

detail later in this thesis). In this section, we review the relevant literature regarding model

analysis techniques.

One approach to model-level analysis would be to utilise static analysis techniques

currently employed on “traditional” programming languages, but raise the level of

abstraction of the analysed artefact. One of the most effective applications of static

analysis for high-integrity software development is in the SPARK language and associated

toolset [14, 74, 75].

The following describes the fundamental requirements used when originally defining the

SPARK language:

“We are mainly concerned with software to perform system control functions. The integrity

of the software is vital: it must be verifiable. We can assume that the programs are to be

developed by professionals, supported by whatever tools are available, and that if

necessary substantial resources will be expended in achieving high integrity of software

prior to its application; but the problems involved in proving its fitness of purpose must be

tractable, in practical terms.”[14]

These principles could equally be applied to models:

 the integrity of the model is vital: it must be verifiable;

 if necessary substantial resources will be expended in achieving high-integrity of

model prior to its realisation (although it should be an aim to minimise the cost of

this)

 the problems involved in proving its fitness of purpose must be tractable

61 Literature Review

61 Trusted Product Lines – PhD Thesis S G Hutchesson

In the following section we look at the attempts to reconcile the SPARK approach with

industry’s desire to use the UML as a software development approach.

2.5.3.1 SPARK and UML

The UML summary describes the language as follows : “The Unified Modeling Language is a

language for specifying, constructing, visualizing, and documenting artifacts of a software-

intensive system”[76] Note that the use of the model for the analysis, validation or

verification of a software-intensive system is not mentioned1. Amey and White [77]

describe an approach which attempts to combine the benefits of UML to describe a

software system architecture with SPARK as a principled implementation language for high-

integrity systems. The approach taken is to essentially overlay UML with SPARK semantics;

UML class diagrams become graphical representations of SPARK packages, and a UML

SPARK profile has been defined to hold information required in SPARK that has no

analogous concept in the UML (for example the information flow contract on a class

operation).

“The semantic precision of SPARK has a significant impact on both the construction of the

UML model of the system to be developed and on the verification of the code generated

from it.”[77]

The approach attempts to combine the INFORMED[78] approach to developing SPARK

systems with the use of UML class diagrams to capture and illustrate the resultant design.

There is no attempt to raise the analysis performed to the model level, however. A code

generator is used to produce SPARK compliant code from the annotated UML class model;

the code generated is a structurally sound, annotated SPARK program minus the

behavioural code (i.e. the code between the begin and end statements). The SPARK

Examiner toolset is then used to determine if the program structure is well formed with

respect to the information flow contracts. As the program behaviour is developed, the

conformance with the information flow (and pre and post-conditions if provided) is

repeatedly checked via analysis. This strong mapping between UML model and code level

semantics, and “early and often” use of the static analysis tools provides an effective

method of ensuring the conformance of the modelled system with a set of predefined

properties. However, this is only achieved by targeting a particular implementation

language technology and reflecting its semantics onto the model. This approach does

provide an indication that effective model analysis is possible, and it is easy to envisage an

approach that verifies the model directly rather than via a code-generation step.

1
 It could be argued that visualization is a weak form of verification – “it doesn’t look quite right”

62 Literature Review

62 Trusted Product Lines – PhD Thesis S G Hutchesson

A mapping of UML to SPARK has also been undertaken by Sautejeu, who claims that there

is significant advantage to be gained by combination of the benefits of UML (e.g. visual

expressiveness, ability to transform or generate from its associated models) with the

qualities of SPARK (e.g. built-in static-analysis capabilities, cost-saving via early error

detection) [79].

Sautejeu does not provide much greater technical insight over Amey and White (apart from

demonstrating a mapping can be captured in iLogix Rhapsody (now IBM Rational Rhapsody)

[80] in addition to the ARTiSAN Studio example of Amey and White). However the paper

makes interesting comments regarding the “required” evolution of UML for high-integrity

systems : “...some evolutions of the UML are needed to integrate requirements derived

from information-flow analysis”, “…the high integrity aspects of systems on which SPARK

focus should now be an essential part of UML models”[79].

2.5.3.2 SPARK and SCADE

An interesting approach is outlined by Amey and Dion [81] who discuss the benefits that

may be obtained in combining a SCADE and SPARK approach to high-integrity software

development. They claim that the formal underpinnings of both tools make the approaches

complementary, and that the combination can address the “overall software development

challenge”.

The paper recognises that complete software systems cannot be built using tools such as

SCADE in isolation; real systems have to interface with hardware devices, whereas SCADE

models and derived code exist within a boundary of hand written interfaces/drivers, whose

integrity has to be established by means other than the SCADE-recommended process. The

combination of a principled model-driven development tool such as SCADE with a target

implementation language that is semantically well defined such as SPARK enables this

“glue” code to be analysed to the same degree of rigour as the model-driven development.

Also the problem of property-preserving transformation of the model can possibly be

addressed by this technique: “The generation of source code in an unambiguous

notation reduces the possibility of the semantics of the model and the semantics of the

generated code differing and therefore increases the value of any model-based

verification that has been carried out”.

However the approach advocated in [81] is missing any recognition of architecture; due to

the affiliations of the authors, the paper naturally focuses on SCADE as the MDD tool of

choice and SPARK as the implementation language. We have already seen [82] that SPARK

systems can be developed successfully from a profiled UML architectural design, and that

this early focus on architecture is extremely useful in ensuring the effectiveness of static

analysis. We have also seen that SCADE’s computational model makes it difficult to

integrate into a wider architectural design without regarding the SCADE design as a sub-

system with well-defined input/output (IO) and run-time behaviour. To summarise,

however, Amey and Dion have identified that the combination of a principled MDD

development approach in conjunction with a well-defined target implementation language

can be an extremely effective technology for high-integrity real-time systems; this provides

63 Literature Review

63 Trusted Product Lines – PhD Thesis S G Hutchesson

a basis for further development, particularly in the integration of principled architectural

design.

2.5.4 Using OCL for model analysis

There is a significant level of research regarding the specification of model constraints using

the Object Constraint Language (OCL) [83] and the validation of UML models against these

constraint sets. The predominant use of this technique appears to be in demonstrating

that a particular model is well-formed against a given criteria set rather than demonstrating

any form of correctness with respect to a higher level specification [84]. Whilst

demonstrating that a model is well-formed is necessary, there are other model properties

that should also be validated.

There has been work in using simple UML simulators for executing and “snapshotting”

model states, then validating that the OCL constraints hold for the “snapshotted” instances

(Richters [85]). However, this appears to be a very simplistic technique that has the same

drawbacks as testing (i.e. verification coverage is only for the snapshot points not the

general case).

The use of OCL to support “design by contract” approaches [86], where invariants, pre-

conditions and post-conditions are defined for classes and operations in the model, has

been of interest in the research community for a number of years.

“Making certain that the invariants, pre-conditions, and post-conditions have been

defined in the model almost always improves the software development effort

dramatically.” [87] (Note the use of “have been defined in the model” rather than “have

been defined and shown to hold true in the model”.)

Although providing operation contracts has been seen as a “good thing” , there has been

little uptake of this technology within industry or by commercial tool vendors, as indicated

by Amey and White [77] in their paper on the integration of SPARK and UML: “The ability

to express a contract for an operation at the UML level is limited, by most tools, to

expressing a type and parameter signature for it. In principle we could strengthen the

contract using the Object Constraint Language (OCL) but this is neither well supported by

tools nor sufficiently well-defined for our purposes. “ [77]

The SPARK language supports a level of design-by contract, utilising the Ada specification

and body separation mechanism to separate the contract (specification) from the

implementation (body) and allowing contracts at various levels of rigour to be specified for

the SPARK sub-programs (data flow, information flow, formal pre and post-conditions).

There has been work on extending OCL to enable the specification and analysis of model

properties such as real-time constraints (Flake & Mueller [88]), particularly for state-

oriented UML diagrams. This would appear to show that the concept is extensible to cover

more of properties of interest in a high-integrity real-time domain.

The definition of an action language that is rich enough to provide domain-specific

representations (and is semantically mapped to an underlying meta-model that also

64 Literature Review

64 Trusted Product Lines – PhD Thesis S G Hutchesson

supports a constraint language rich enough to enable full design-by-contract assertions)

would provide a sound basis for the application of model analysis (and possibly proof) at a

higher level of abstraction than is possible using present “industrial strength” approaches

(i.e. at language level e.g. SPARK).

2.6 Product Line Development of High-Integrity Systems
In this section, we review the literature regarding the development of product lines for

high-integrity systems. Here we start to see smaller numbers of published papers in the

literature as the domain becomes more specialised.

2.6.1 Are Reuse and Dependability Mutually Exclusive?

In their discussion of practical and safe software reuse, Leveson and Weiss [89] quote a

number of high profile examples of where inappropriate reuse has resulted in mission

failure or, in their words, “spectacular losses”. The question posed is whether it is possible

to get benefit from software reuse “without the drawbacks”.

Leveson and Weiss [89] discuss a number of requirements for effective software reuse;

these are summarised below (labelled for cross-reference purposes later in this thesis):

LW1. Documentation of design rationale.

LW2. Documentation of the assumptions about the operational environment implicit

in the software.

LW3. Bi-Directional Traceability from high level system requirements through the

design process to code.

LW4. Documentation of hazard analysis and safety information.

Essentially the message of the paper is that reuse needs to start at the requirements level;

reuse of code is neither useful nor demonstrably safe.

We can compare this view of reuse from a dependability viewpoint (that inappropriate or

badly managed reuse is positively dangerous) with Bosch’s view [1] from a commercial

viewpoint (that unplanned or opportunistic reuse is not economically justifiable). Bosch’s

solution to this problem was to apply product lines; a managed approach to planned reuse.

We need to determine if this approach may be augmented with any lessons from badly-

reused mission and high-integrity software to allow a Trusted Product Line approach to be

defined

2.6.2 Regulatory Constraints & Reusable Software

In 2004, the Federal Aviation Administration (FAA) published an Advisory Circular AC20-148

on “Reusable Software Components (RSC)” [90]. The motivation for this AC was primarily

that applicants were wishing to include third-party components in their software systems.

Components such as Real-Time Operating Systems (RTOS) from third-party vendors,

possibly including communication protocol components for example, were being included

in products requiring regulatory approval. Although it was not produced as a response to a

65 Literature Review

65 Trusted Product Lines – PhD Thesis S G Hutchesson

software product line initiative directly, the guidelines provided in the AC are a useful

insight into the regulator’s view on component reuse in general.

Essentially, the AC identifies two sets of guidelines: those applicable to the component

developer and those applicable to the user of the component. This is analogous to the

domain and application engineering distinctions [2] in product-line development. The

main guidelines provided in AC20-148 are listed below (labelled for cross-reference

purposes later in this thesis):

The guidelines for the RSC developer include:

AC-D1. Produce a Plan for Aspects of Software Certification (PSAC) for the RSC.

AC-D2. Address known issues with software reuse as identified in the AC.

AC-D3. List any information that is preliminary or unknown at the time of

component development (e.g. anything that is target specific or system

specific).

AC-D4. List any assumptions made on the use of the component (e.g. compiler

settings).

AC-D5. Produce an analysis of any behaviour that could adversely affect the user’s

system (e.g. partitioning requirements).

AC-D6. Comply with the stated PSAC/Plans during component development.

AC-D7. Submit a configuration index (SCI) and accomplishment summary (SAS) for

the component through the applicant.

In addition, the RSC developer must supply the following data to the RSC user:

AC-I1. Interface description data describing how to integrate the component both

functionally and temporally.

AC-I2. Integration and/or installation procedures.

AC-I3. Data to support the user’s completion of any partially satisfied/unsatisfied

objectives.

AC-I4. Verification results, cases and procedures, particularly for those activities

that need to be repeated on the integrated system installed on the target

computer.

AC-I5. Identification of any verification data affected by configurable parts of the

RSC (“settable parameters”).

The guidelines for the RSC user include:

AC-U1. Integrate the RSC lifecycle data into that supporting the overall product

(including plan-set, PSAC etc.).

66 Literature Review

66 Trusted Product Lines – PhD Thesis S G Hutchesson

AC-U2. Evaluate the impact of any issues listed in the RSC data on the overall

system.

AC-U3. Propose risk mitigation to address any risks identified with the component.

AC-U4. Validate that any assumptions made in the RSC SAS hold in the integrated

application.

AC-U5. Evaluate the common reuse issues for the integrated application.

AC-U6. Report in-service problems with the RSC to the RSC developer.

AC-U7. Investigate any in-service issues with the RSC (if the RSC has been used

previously).

AC-U8. Establish a legal agreement with the RSC developer about continued

airworthiness support.

The AC lists the following as areas in which “common software reuse issues” can manifest

themselves:

AC-R1. Requirements Definition.

AC-R2. Re-verification.

AC-R3. Interface Issues.

AC-R4. Partitioning and Protection.

AC-R5. Data and Control Coupling.

AC-R6. Use of Qualified Tools.

AC-R7. Deactivated Code.

AC-R8. Traceability.

AC-R9. Robustness.

Although written from the perspective of a “pre-certified” software component from a

third party vendor, many of these issues and guidelines are applicable to development of a

product line, and it is likely that any regulatory audit of a product line development would

use these guidelines as a checklist for regulatory compliance in the first instance.

Habli et al. [91] discussed the challenges of producing a product line for a civil avionics

system that was subject to regulatory approval. The paper concentrates on the areas it

claims are underestimated in the product line lifecycle – configuration management and

certification. In their treatment of certification, the approach taken is very similar to that

recommended by AC20-148, providing much of the plan set and lifecycle data for the

product line components themselves, and only requiring the user projects to produce

integration data. To achieve this, there have to be compromises in the software

architecture; the design rule is that any part developed as part of the product line “should

be composed of large-scale reusable artefacts i.e. not fine grained in order to reduce

67 Literature Review

67 Trusted Product Lines – PhD Thesis S G Hutchesson

integration and testing effort.”[91]. This is a practical example of an issue that is

fundamental to any software product line that requires significant product verification

evidence. There is a tension between the provision of highly variable components to

enable a flexible product line that can instantiate a wide range of products, and the

provision of pre-verified components to reduce the overall verification costs but restrict the

range of products that can be instantiated. The approach we take is distinct, in that it

provides for much finer-grained components.

Dordowsky et al. [92, 93] discuss the development of a software product line for military

helicopter systems. They make many of the same observations as Habli et al., in that they

dismiss SPL approaches that support source code modification based on feature selection,

as this would require significant consequential verification effort, OR the tool performing

the selection would need to be qualified. Their approach to variability is to implement

features within separate code component, and they allow a small amount of run-time

variability. This approach is viable in their particular instance as they have a very tightly

scoped product line (i.e. known variants of the NH90 helicopter). They do not appear to

have the need to instantiate “in-scope but unknown” product variants that would require

finer-grained variability.

Boeing has long been interested in product lines, for example Sharp [94], but there are

relatively few recent publications. Sharp [94] describes an approach to software

component reuse, identifying the importance of a layered architecture to introduce

abstraction and separation of concerns, and discusses a component model that enables

late binding to target processor and hardware. However, this work appears to be at the

conceptual level and there is only a passing mention in the paper’s introduction of the

flight test of a system developed using this approach. It is unclear whether a system has

ever been approved/certified using this approach.

2.6.3 Verification of Software Product Lines

One of the most widely cited references on verification of software product lines is by

McGregor [95]. This provides an overview of available testing techniques (mostly from

single-system development processes) but provides little insight into the problem of

balancing variability and verifiability. Indeed, at the start of a discussion on the testing of

product line assets, the following observation is made: “The number of variation points and

possible values for each variation make the testing of all possible products that can be built

from the product line impossible. This makes it imperative that products be composed of

high-quality components”. We can only assume that the “high quality components”

themselves do not contain variability (c.f. the observations of Habli et al. [91]). If we

assume that components themselves are variable then the testing effort that contributes

to the determination of “high quality” becomes commensurately more difficult and

expensive.

It is intuitively attractive to carry out verification on the product line assets, because any

use is then “verified by construction”. However, as intimated by McGregor, there may be

many tens or even hundreds of possible configurations of even a modest-sized component

68 Literature Review

68 Trusted Product Lines – PhD Thesis S G Hutchesson

and, further, instantiation processes such as transformation, may add to the code, e.g.

providing interfaces, as well as making selections, so it is not clear how representative

asset-level testing evidence will be of the end product. In addition, for DO-178B/ED-12B

Level A, Modified Condition/Decision Coverage (MC/DC) has to be achieved at object code

level, so it is hard to escape the need to do (at least) coverage anaysis on the final product.

Thus, there is a difficult trade to be made about the cost-effectiveness of pre-instantiation

verification for high-integrity product lines.

Lutz [96] produced a survey of product-line verification and validation techniques for NASA

(in 2007) as a deliverable that formed part of a research project on the “Product Line

Verification of Safety-Critical Systems”. Whilst this survey identified some useful

techniques and references, it has an emphasis on verifying “conformance” to product-line

requirements and architectures. This is made clear in the introduction where one of the

questions posed is “How should we verify that delivered software conforms to the product-

line requirements and architecture levied on it and how do we document that

conformance?” This is further emphasised later where “Verification that the software for

each project satisfies its intended product-line constraints is essential” as conformance “will

make or break the product-line approach”.

The focus therefore appears to be demonstration that the product is indeed a valid

member of the product line, rather than provide evidence that the product meets its

specified requirements. This can be a problem when there is discontinuity between the

product-line specification/architecture and the development of the product instance itself.

For NASA this is a problem of ensuring that contractors provide systems that are compliant

to a given product line specification. Here the specification of the product line is

descriptive rather than prescriptive and therefore conformance has to be demonstrated

rather than arguably being a natural consequence of the production process, as should be

the case for prescriptive product-line architectures that make use of models and

transformation to instantiate product. This should provide “conformance by construction”

to the product line, and is an objective for the approach we propose in this thesis.

2.6.4 Formal Analysis of Product Lines

There has been recent work published (2011) on the use of formal techniques to establish

given properties of product lines as distinct from single systems. These approaches

attempt to adapt techniques such as model checking to analyse systems that contain

variability, and address the resulting state explosion problem.

Classen et al. [97] propose a method for symbolic model checking, for example, temporal

properties of product lines. Whilst their approach appears to make the problem tractable

for the examples they provide, this was for a canonical elevator system with 9 independent

feaures (yielding 29 enumerated products). Their approach requires the product line to be

described using a language fSMV based on the input language of the model checker

NuSMV. Whilst it is clear how simple features and changes can be modelled in fSMV, it is

unclear how complex feature to solution interactions could be modelled. This approach

looks promising, however, and as the work matures, it would be interesting to apply to

69 Literature Review

69 Trusted Product Lines – PhD Thesis S G Hutchesson

variable components in the first instance. However the work to date is too immature and

was published too late to be of direct relevance to our research.

Similarly, the work of Apel et al. [98] discusses how undesirable feature interactions can be

detected via the use of model checking. This relies on a formal specification of the

behaviour and constraints of each feature to be constructed. It also appears to impose

architectural constraints on the construction of the program (“we implement and specify

features in separate and composable units”[98]). As with Classen et al. the work is

promising and may be a useful technology in the future; however it appears too immature

for large, existing systems and imposes too many constraints in the form of the

specification and the architectural decomposition of the solution to be directly relevant to

our research.

2.7 Product Lines, Models and High-Integrity Systems
In this chapter, we have discussed both the development of software product lines and the

development of high-integrity software, including a review of the use of model-based

approaches in both domains. In this final section, we bring the two domains together and

provide a review of the literature concerning the model-based development of product

lines for high-integrity systems.

The current literature is very sparse on this specific set of topics. Trujillo et al. [99]

attempted to “foster a discussion” on the issues faced in applying model-based product line

development for dependable systems. The challenges identified in [99] that are supported

elsewhere in the literature include :

1. Certification – Potential incompatibility between the requirements of regulation

and Product Line approaches [91]

2. Modelling Safety Information – Providing a meta-model that allows safety analysis

and assessment information to be held with the product line components [100,

101]

3. Model Transformation for Product Instantiation – How can product assurance

arguments be supported when products have been instantiated using model

transformation? [50, 102]

4. Verification and Test – This is not particularly well articulated in [99], however

there is a significant challenge of providing cost-effective verification for high-

integrity software product lines [103]

In addition to the challenges that are supported elsewhere in the literature, the authors of

[99] identify additional challenges, based on their experience (these are listed below, using

their terminology) :

5. Multi-disciplinary nature of the task

6. System complexity

7. Customisation across multiple domains

8. Reusability of elements within a system

70 Literature Review

70 Trusted Product Lines – PhD Thesis S G Hutchesson

9. “Explicitation” (sic) of the process – it would appear that this challenge is

essentially the introduction of new and unfamiliar processes such as

domain/application engineering, model transformation etc.

10. Distributed and collaborative teams

11. Increased rate of non-functional requirements

12. Impact of model-based product line engineering on the safety-oriented design

It can be argued that points 5, 6, 10 and 11 are not challenges that are specific to product

line development; however, it is certainly true that the challenges are not reduced in any

way when applying product line approaches. Challenges 1, 4, 7 and 8 are a consequence of

the potential mismatch between the technical approaches advocated by the product-lines

community and the regulatory requirements of high-integrity systems (as discussed in the

previous section).

Only the remaining challenges (2, 3, 9 and 12) are a true result of the application of model-

based techniques to high-integrity product lines. Of these, challenge 3 is of most interest in

the context of this thesis; the fact that it is framed as an unsolved problem in a paper

published in 2010 demonstrates that the problem is real and of concern. We articulate our

own set of challenges later in this thesis.

2.8 Summary
The study of high-integrity software product lines includes a number of associated but

different research areas. Our interest in the use of model-based techniques widens the

area of study even further. However, whilst there is a wide body of literature in each of the

related research domains, there is little published on the specific application of product line

techniques to high-integrity system and software development, particularly for regulated

domains that require the system to be certified or approved. In a recent (2012) paper,

Braga et al. [104] recognise the issues regarding certification of product lines, and

comment that approaches are “beginning to emerge to support SPL certification”. They

then proceed to reference our work [50, 105].

Whilst the literature contains a number of examples of successful high-integrity product

lines [91-93], they have all constrained the solution space, particularly with respect to

variability. There appears to be little work (except our own) on the successful application

of fine-grained variability to certified high-integrity software development.

Interestingly, 2012 saw the launch of the VARIES project under the Artemis framework,
whose goal is to “deliver a platform to help Embedded Systems developers to maximise the
full potential of variability in safety critical embedded systems. The focus will be on the
safety critical aspects, in particular the impact of reuse and composition on certification.”
[106]. The declared project duration is from May 2012 to April 2015, and includes a large
consortium of tool vendors and academics (including pure::systems and Atego). It is clear,
therefore, that the problem of using software product lines approaches for high-integrity
systems is relevant, real and non-trivial.

71 Trusted Product Lines in Context

71 Trusted Product Lines – PhD Thesis S G Hutchesson

3 Trusted Product Lines in Context

o gain a full understanding of the implications of developing a Trusted Product Line,

the product context needs to be taken into consideration. This context can have a

major effect on the product line approach used, in terms of development process

and product realisation/instantiation, due to factors such as regulatory requirements,

certification processes, development practices and customer expectations.

The research described in this thesis concentrates on the development and analysis of a

software product line for Full Authority Digital Engine Control (FADEC) systems. Such

systems are deployed on aircraft gas turbine engines; this particular research concentrates

on FADEC systems aimed primarily at the large civil aerospace market. The chapter

outlines the motivation for the research, including the business challenges that make

FADEC development as a product line attractive, and the resultant technical, engineering

and academic challenges that are a consequence of this business strategy.

The purpose of this chapter is to provide context for the research presented in this thesis.

Whilst the author was involved in some of the work described here, this is not regarded as

part of the thesis contribution. The information described in this section is based primarily

on the background and experience of the author, who has worked for over 20 years

developing software for FADEC systems.

3.1 Full Authority Digital Engine Control (FADEC) Systems

3.1.1 Role of a FADEC

The main purpose of a FADEC system is to control the gas turbine engine to provide a level

of thrust as requested by the pilot and the aircraft systems. In addition, the FADEC controls

the engine start and shutdown sequences and monitors engine performance to ensure it is

operating efficiently and within safe limits. It also contains protection functions to shut-

down the engine or reduce engine thrust when potentially hazardous conditions are

detected, for example the mechanical failure of rotating shafts within the engine (“shaft

break”) causing the turbine stages to over-speed.

Figure 32 shows a typical FADEC system architecture in annotated block-diagram form.

FADEC systems have control over a number of engine systems and parameters including

the fuel-flow , fuel shutoff, ignition system , starting system  and the variable parts of

the engine airflow systems . The FADEC is “full authority” in the sense that no backup or

override systems are deployed for ensuring safe operation of the engine with respect to

the controlled parameters. In addition, the FADEC can have partial control over the thrust

reverser systems fitted to the aircraft.

T

72 Trusted Product Lines in Context

72 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 32 GENERIC FADEC ARCHITECTURE (ANNOTATED FROM [107])

At the heart of the FADEC is the Engine Electronic Controller or EEC . A typical EEC

architecture consists of duplicate redundant channels, each capable of controlling the

engine independently. In normal operation, the EEC is configured with one active channel

and one standby channel. A channel change mechanism determines the “health” of the

controlling channel and can instruct the standby channel to take control if required. The

health of a channel may degrade due to failure of the internal components of the EEC, or

loss of one or more of the sensors and actuators connected to that channel. Most engine

parameters are measured using duplicated (duplex) sensors to provide independent

measurements to each channel; some critical parameters may have three or more

independent measurement sensors.

Each EEC channel contains one or more microprocessors. The increasing computation

requirements of gas turbine control and the need to demonstrate separation between the

protection functions and control functions for a number of the FADEC-related engine

hazards is leading to multi-processor per channel architectures.

73 Trusted Product Lines in Context

73 Trusted Product Lines – PhD Thesis S G Hutchesson

EEC Channel A

Protection
Microcontroller

Airframe
Comms

Control
Outputs

FPGA

Protection
Outputs

FPGA

Control
Microcontoller

Control
Inputs
FPGA

Protection
Inputs
FPGA

In
te

r-
P

ro
ce

ss
o

r
C

o
m

m
u

n
ic

at
io

n

EEC Channel B

Protection
Microcontroller

Airframe
Comms

Control
Outputs

FPGA

Protection
Outputs

FPGA

Control
Microcontoller

Control
Inputs
FPGA

Protection
Inputs
FPGA

In
te

r-
P

ro
ce

ss
o

r
C

o
m

m
u

n
ic

at
io

n

Inter-Channel
Communication

FIGURE 33 EEC INTERNALS BLOCK DIAGRAM (S IMPLIFIED)

Figure 33 illustrates the internal architecture of a modern EEC in simplified block diagram

form. This architecture shows the separation of protection and control resources and the

communication paths between processing resources and between channels of the EEC.

This provides the hardware context into which the software is developed.

3.1.2 FADEC Software Development Programmes

Like many avionic systems, managing the development of FADEC systems and software is

complicated by the need to produce a product (and associated evidence) that satisfies

regulatory requirements whilst simultaneously producing interim development versions of

the system to support the embedding system development, integration and verification to

proceed. This is a particular challenge when the containing system is a complex machine

such as an engine or aircraft where the primary verification and qualification mechanism is

extensive and exhaustive development testing. Therefore, there is an over-riding customer

need to deliver functional systems to allow engine and aircraft testing to proceed whilst the

FADEC requirements themselves are immature.

FIGURE 34 TYPICAL PHASING OF AIRCRAFT, ENGINE, FADEC AND EEC SOFTWARE DEVELOPMENT PROGRAMMES

75 Trusted Product Lines in Context

75 Trusted Product Lines – PhD Thesis S G Hutchesson

3.1.2.1 Engine & Aircraft Development

Figure 34 illustrates how the development programmes for the aircraft, engine and FADEC

hardware influence the EEC software development programme and the software standards

(deliveries) required to support the aircraft and engine system development and test

programmes. Here we can see that the software development programme cannot be

regarded as a simple “waterfall” of requirements elicitation, software development,

verification and product delivery. Instead, between the launch of the software programme

and the delivery of the approved, certified software product into service there are a

number of interim software deliveries required to support the engine and aircraft

development. Indeed the early software deliveries typically contain engine test features

and “special functions” that allow special-to-test manoeuvres and operations to be

performed on the engine that are not required in the delivered flight system.

There is an on-going process of identification of requirements for the software as the

system evolves and the behaviour of the FADEC, engine and aircraft becomes known in

more detail. The EEC software therefore can be regarded as both an enabler to the engine

and aircraft development programme as well as a component part of the delivered system.

Figure 34 also shows that the software development does not necessarily finish at aircraft

certification. Typically Post-Entry Into Service (EIS) software builds are required to address

issues found in service and provide additional features for particular aircraft operators (for

example enhanced engine ratings for “hot” operation and routes including high-altitude

airports.)

3.1.2.2 Software Approval for Certification – Planning Documentation

In addition to the planning of the software development schedule to deliver the full and

interim software builds necessary to support the engine and aircraft development, a set of

“planning documents” are required to define how the software programme will comply

with the applicable regulatory requirements. DO-178B/ED-12B [4] requires the following

set of plans to be produced in support of a software programme that is subject to approval

and certification :

1. Plan for Software Aspects of Certification (PSAC)

2. Software Development Plan (SDP)

3. Software Verification Plan (SVP)

4. Software Quality Assurance Plan (SQAP)

5. Software Configuration Management Plan (SCMP)

6. Tool Qualification Plan (TQP)

Together, this set of planning documents provides the software project’s intended means

of compliance to the objectives of DO-178B/ED-12B. They are the main means of

communication with the software development organisation (“the applicant”) and the

regulatory body/ aviation authority who approve the system and software for use (“the

regulator”). They provide the definition of the software development, verification and

management processes used on the project, and should identify the lower-level standards

and procedures that govern the day-to-day activities undertaken by the development staff.

76 Trusted Product Lines in Context

76 Trusted Product Lines – PhD Thesis S G Hutchesson

3.1.2.3 Software Approval for Certification - Stages of Involvement (SOI) Audits

The approval of software as part of an engine or aircraft certification involves the regulator

conducting a series of “Stages of Involvement” (or SOI) audits [108]. The SOI audits allow

the regulator to inspect the state of the software development programme (and the

artefacts produced to date) to determine the robustness of the software product design

and the compliance of the software programme with the objectives of DO-178B/ED-12B.

Failure of an SOI audit can lead to significant levels of redesign and re-verification by the

development organisation, with consequential programme timescale slip and cost

overruns.

The set of SOI audits required during a software development programme are defined in

[108], which contains the following summary table (Note that references to the FAA in the

original have been replaced here by the term “the regulator”) :

TABLE 3 OVERVIEW OF REGULATOR STAGES OF INVOLVEMENT (FROM [108])

SOI Description Data Reviewed Related DO-

178B Table

1 Planning Review

• Assure plans and standards

meet DO-178B objectives

and address other applicable

software policy, guidance,

and issue papers.

• Assure that the processes

described in the applicant’s

plans meet the objectives of

DO-178B and address other

applicable software policy,

guidance, and issue papers.

• Obtain agreement

between the regulator and

applicant on the plans,

standards, and proposed

methods of compliance.

• Plan for Software Aspects

of Certification (PSAC)

• Software Verification Plan

(SVP)

•Software Development

Plan (SDP)

•Software Configuration

Management Plan (SCMP)

•Software Quality

Assurance Plan (SQAP)

•Software Development

Standards (Requirements,

Design, and Coding)

• Safety assessment

(preliminary system safety

assessment (PSSA) or

system safety assessment

(SSA))

• Tool Qualification Plans, if

applicable

• Other applicable company

A-1, A-8, A-

9, A-10

77 Trusted Product Lines in Context

77 Trusted Product Lines – PhD Thesis S G Hutchesson

SOI Description Data Reviewed Related DO-

178B Table

policy, procedures, and

standards

• System requirements

(may be preliminary) and

interface specifications

• Description of any new

technology or novel

methods (typically

contained in the plans)

2 Development Review

• Assess implementation of

plans and standards for the

software requirements,

design, and code, and

related verification, SQA, and

SCM data.

• Assess and agree to plans

and standards changes.

• Assess implementation of

new technology and

methods to ensure

compliance to plans,

standards, and agreements.

• Assure life cycle data

satisfies DO-178B objectives

and other applicable

software policy, guidance,

and issue papers.

• Software Development

Standards (Requirements,

Design, and Coding)

• Software Requirements

Data

• Design Description

• Source Code

• Software Verification

Results (as applied to Tables

A-2 to A-5)

• Problem Reports

• Software Configuration

Management Records

• Software Quality

Assurance Records

• Tool Qualification Data,

if applicable

• Resolution of previous

review findings, if

applicable

A-2, A-3, A-

4, A-5, A-8,

A-9, A-10

3 Verification Review

• Assess implementation of

verification and test plans

• Software Requirements

Data

A-2, A-6, A-

7, A-8, A-9,

A-10

78 Trusted Product Lines in Context

78 Trusted Product Lines – PhD Thesis S G Hutchesson

SOI Description Data Reviewed Related DO-

178B Table

and procedures.

• Assess completion and

compliance of all associated

SCM and SQA tasks.

• Ensure software

requirements are verified.

• Ensure robustness testing

is planned and is being

performed.

• Ensure analyses (including

timing, memory, test

coverage, structural

coverage, and data and

control coupling) are being

performed, as required by

DO-178B.

• Ensure verification

activities satisfy DO-178B

objectives.

• Design Description

• Source Code

• Software Verification

Cases and Procedures

• Software Verification

Results (including review

results, analyses results,

and test results)

• Problem Reports

• Software Configuration

Management Records

• Software Quality

Assurance Records

• Resolution of previous

review(s) findings, if

applicable

4 Final Review

• Assure final software

product meets DO-178B

objectives and is ready for

certification.

• Address any open items.

• Software Conformity

Review Results

• Software Life Cycle

Environment Configuration

Index

• Software Verification

Results (final test, analyses,

and review results)

• Software Configuration

Index

• Problem Reports

• Software

Accomplishment Summary

• Final resolution of all

All

79 Trusted Product Lines in Context

79 Trusted Product Lines – PhD Thesis S G Hutchesson

SOI Description Data Reviewed Related DO-

178B Table

previous review findings

and issues

The need to support SOI audits with accurate and applicable information is a theme we will
be returning to later in this thesis when we discuss the certification of products
instantiated from a product line.

3.2 A History of Reuse in FADEC Systems
Over the past 25 years of engine control system and software development there have

been many attempts at providing value to the business from reuse. Figure 37 below

provides a “timeline” of reuse initiatives for engine control systems and software from the

1980s to the present day. This is elaborated on below:

3.2.1 Low Level Code Reuse

The early generations of software-based digital engine control systems, such as the FAFC

(Full Authority Fuel Control) systems and the first FADEC systems, were developed using a

technique called “threaded code”. This approach was introduced in the very first

experimental FADEC systems, such as those trialled on Concorde in the early 1970s [109].

Languages such as LUCOL [110] were developed to use this approach, where programs are

built from sequences of “modules” which call each other in turn and provide the flow of

control through the program.

The component parts of threaded code languages (e.g. LUCOL “modules”) provide well-

defined operations to perform specific tasks, and in the case of LUCOL the behaviour of

these modules were formally proven [110] against their specification. This type of low-

level code reuse has a number of parallels with modern approaches such as Domain

Specific Languages (DSLs). LUCOL can be regarded as a simple DSL for engine control

constructed from reusable, domain-aligned primitives.

3.2.2 Reuse Libraries

The early 1990’s saw a move away from specific engine control languages towards general

purpose “Third Generation Languages” (3GLs) for the development of FADEC software. The

size, complexity and functional breadth of engine control systems in particular and avionics

software in general was increasing (on a trend that has not stopped to date – see Figure 35,

Figure 36). This posed a problem for domain specific languages such as LUCOL in that the

domain of interest was growing. FADEC systems were not now just targeted at closed-loop

control of gas turbines - the complexity of the avionics/airframe interface was increasing,

and an increasingly significant proportion of the FADEC functionality encompassed fault

detection and accommodation. In addition, engine manufacturers started to recognise that

the control system (in particular, the EEC software) was increasingly important for

optimising the performance and function of the engine. Therefore, general-purpose

languages such as Ada started to be used for FADEC software development, which provided

80 Trusted Product Lines in Context

80 Trusted Product Lines – PhD Thesis S G Hutchesson

a level of abstraction/decoupling from the proprietary hardware provided by EEC

manufacturers.

The provision of “standard” function libraries was still regarded as a good design approach,

however, and many of the functions that were encoded in LUCOL modules for previous

generations of product were now provided as “utilities” or “reuse libraries”. In addition,

more complex utilities were provided to cater for what were regarded as “common”

operations, such as the validation of simplex and duplex inputs for example.

This was regarded generally as a successful approach that utilized the flexibility of the 3GL

but retained some of the LUCOL benefits of “standard” functions.

FIGURE 35 US AIRCRAFT SOFTWARE DEPENDENCE [111]

FIGURE 36 CODE SIZE GROWTH – CIVIL FADEC (INTERNAL COMPANY DATA)

81 Trusted Product Lines in Context

81 Trusted Product Lines – PhD Thesis S G Hutchesson

3.2.3 Opportunistic Functional Reuse

By the mid-1990s, the number of FADEC development projects were increasing. This was

to support new engine and aircraft development, plus the retrofitting of FADEC technology

onto older engines to provide more efficient control and increased airframe avionics

integration. This increasing level of system development required a corresponding increase

in the development staff and resources. Management felt that there must be an approach

to minimising the development resources required for these programmes by reusing

software between the products so that the development time and effort was reduced.

As we have already discussed in Chapter 2, this opportunistic reuse approach did not

provide the level of benefit originally envisaged, due to the problems noted by Bosch [1].

In this particular case, it was typical for the requirements of the donor project to diverge

over time from the requirements of the recipient project. This led to a realisation that

effective software reuse would only be possible when the requirements for the products

were convergent.

3.2.4 Family Analysis

The need to understand how requirements could be produced for a family of products led

to a period of research activity in the late 1990s. Joint industrial/academic research on

reusable requirements, requirements patterns and domain analysis for engine control

systems was funded and progressed for a number of years. This work identified how to

define family requirements through a systematic approach to requirements development

and management [112, 113]. Whilst useful, this work was never adopted on live projects;

problems of technology transfer from sponsored research into company working practice

was a well-known issue at this time [114].

3.2.5 Product Families

The potential benefits of reuse in reducing the cost of system development were still

attractive, and to this end, an internal “product families” team was established in the early

2000’s. The aim of this team was to perform the engine control domain analysis and gather

family requirements in a similar manner to that recommended by the previous academic

work documented in [112], but within the company to try and address the technology

transfer issues.

Before this activity could deliver any meaningful results, it was overtaken by the Product

Lines initiative described below.

82 Trusted Product Lines in Context

82 Trusted Product Lines – PhD Thesis S G Hutchesson

Low-Level

Code Reuse

1

“Reuse

Libraries”

2

Opportunistic

Functional

Reuse

3

Family

Analysis

4

Product

Families

5

Late 1980s

Mid 1990s

Early 2000s

2008 onwards

Software written using Macro

Assembler and threaded code-based

languages like LUCOL where the

language syntax is built from reusable

“modules” encapsulating low-level

control system operations such as

“Differentiate” and “Data Lookup”

Move to 3GL languages such as Ada.

“Useful” reusable functions that were

previously part of the language now

provided as ”Utilitiies”, and expanded to

provide more generic operations such

as signal validation.

Belief that cost and time savings could

be made by reusing functional software

across multiple applications. Attempt to

achieve this by cut-and-paste reuse of

software designs and code. Did not

yield expected benefit as designs and

code needed to change on the receiving

project negating much of the benefit.

Realisation that true cost savings

through reuse can only come when the

requirements are stable across the

products. Research work undertaken in

mechanisms to analyse and structure

requirements for ease of reuse.

Recognition of commonality and

variability in requirements. Research

work never transferred onto live

projects.

Realisation that the requirements

analysis work will only be embedded if

performed within the business. Small

team established to start to gather

requirements across the potential set of

products and undertake the family

analysis.

Business realises that the number of

products to be developed over the next

few years makes a product line

approach imperative. Recognition of

“Software Product Lines” as a well-

defined industry approach.

Understanding of BAPO, greater focus

on business strategy, architecture and

organisation structures as enablers to

SPL success

Product

Lines

6

FIGURE 37 T IMELINE OF "REUSE" INITIATIVES FOR ENGINE CONTROL SOFTWARE FROM THE 1980S ONWARD

83 Trusted Product Lines in Context

83 Trusted Product Lines – PhD Thesis S G Hutchesson

3.2.6 Product Lines

With the increasing demand for FADEC system developments in the late-2000s, it was

realised that the business had to take reuse much more seriously if it was to be able to

deliver the required systems on time and to budget. This realisation moved “product

families” from a small-scale engineering initiative to a “Product Lines” business strategy.

The characteristics of successful product line initiatives in other industries were studied, as

was the more academic study of product lines as published by the SEI and others [3].

Organisation change to reflect domain engineering and application design activities was

undertaken, and the company placed a greater emphasis on architecture as an enabler for

product line delivery (as recommended by the BAPO model [16]).

3.3 Other FADECs & Reuse
The information described so far has been based on the author’s own experience. There is

some published material from other FADEC developers related to reuse programmes, but

nothing of any great substance.

Behbahani [115] [116] discusses the need for a “Universal FADEC”, and provides some

ideas for how this may be achieved, but this is framed from a US Airforce customer

viewpoint. Most of the discussion in [116] is posing challenges for the FADEC suppliers to

meet, rather than provide any solutions to the technical challenges. Indeed, the problem

that Behbahani discusses is that of FADEC obsolescence (primarily driven by electronic

hardware), to which his solution is the provision of a generic “universal” FADEC that is

applicable across engine and airframe types, with variability catered for via use of a

modular “open architecture” (see Figure 38 and Figure 39).

FIGURE 38 UNIVERSAL FADEC CONCEPT (FROM [116])

84 Trusted Product Lines in Context

84 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 39 "THREE ELEMENTS OF UNIVERSAL FADEC (FROM[116])

3.4 Summary
The following points are key to the appreciation of the business and technical environment

surrounding FADEC development:

 Products are developed within certification constraints, and are subject to scrutiny

from regulatory authorities prior to deployment in service.

 The core engine control functionality of FADEC systems is relatively stable;

however, additional functionality is causing growth of code size of approx. 7% per

year.

 Any proposed advances in the development processes must address commercial as

well as technical constraints

 Reuse is seen as a valid and desirable approach to reduce the cost and lead time of

product development; however, the attempts to reuse software have met with

limited success to date.

The research described within this thesis was both motivated by and undertaken in the

business and technical context described above.

85 Defining a High-Integrity Product Line Model

85 Trusted Product Lines – PhD Thesis S G Hutchesson

4 Defining a High-Integrity Product Line Model

e now have an understanding of product line theory and the constraints of high-

integrity software development. In particular, we have an appreciation of the

use of model-based software engineering approaches within high-integrity

developments in general, and embedded real-time control systems in particular. We also

recognise the current sparse state of the literature on high-integrity product line

development. This chapter describes our approach to the definition of a product line

model that allows the instantiation of products that can be approved to the guidance

specified in DO-178B/ED-12B [4], as part of the certification of an airborne system (aircraft

or engine).

4.1 Background
The author has experience of successfully using UML models as part of a DO-178B/ED-12B-

compliant process [82] for single-system development; it was decided to adapt and

augment this approach to cater for product-line development. This adaptation must not

compromise the product and process attributes that contribute to the approval of the

system; however, it must yield business benefit from the design and development of a set

of systems rather than systems in isolation.

We show in this chapter how the single-system product architecture can be extended to

become the reference architecture for a class of products. We define meta-models for

describing product line architectures and components that are suitable for deployment in a

high-integrity development. We describe how components that include variation can be

hosted within, and products can be instantiated from the reference architecture

framework.

4.2 From Single Systems to Product Lines
An approach of using a combination of UML class and structure models to architect single

system applications was adopted successfully on a number of FADEC developments

between 2004 and 2010. This approach used class models to describe the software

structure, and employed a model-to-text transformation to generate a SPARK [75]

implementation. A SPARK profile was used to extend the UML; this allowed the structure

of the SPARK program to be fully described at the lowest modelled level of abstraction [77].

The UML modelling environment was used to define the architectural framework and the

design details for the hosted components. Automatic report generation was used to

produce design artefacts from the UML model that were used as configured design

artefacts to support the software system approval (certification) process. This approach

was successfully applied to a number of projects [82]. (Appendix A contains an overview of

SPARK and details of the approach to modelling of SPARK programs in UML)

To respond to increasing demand for new products, the company decided to launch a

software product line initiative and move the focus of the development process from

single-products to the design of a range of products. As chief software architect, the

W

86 Defining a High-Integrity Product Line Model

86 Trusted Product Lines – PhD Thesis S G Hutchesson

author decided to take the previously successful architectural design approach and use this

as the basis for the product line reference architecture. This had the advantage of enabling

existing components to be donated (“harvested”) into the product line with minimum

rework/refactoring. (Note that the risk of the inappropriate reuse of these components

was mitigated to a large extent by the adoption of the common architectural approach). It

also minimised the learning curve for existing engineers that were used to using the

UML/SPARK development processes.

4.3 Product Line Architectural Patterns and Reference Architecture

4.3.1 Reference Architecture Concept

A Reference Architecture provides a standard template architectural solution for a

particular domain. Reference architectures are used as a basis for the development of

particular software system solutions that fit within the target domain. They are especially

useful as an enabler for a software product-line approach as they provide a framework

within which product line assets can be developed. Assets that are compatible with the

reference architecture will necessarily be compatible with a product instance derived from

that reference architecture.

“The reference architecture is capturing domain knowhow from the past and the vision of

the future to guide architecting of future systems” [33]

The purpose of the reference architecture for the gas turbine control system software

product line is to provide standardised patterns, structure and framework for the

application, enabling the hosting of components that contain variation. Our reference

architecture is an evolution of the architectural concept used for the design of single-

system solutions. The major changes were to address the shortfalls of this concept for the

development of a product line; in particular the explicit support for variability. This was

highlighted in an independent ATAM [117] assessment of the single-system architecture

from the viewpoint of its suitability for use on a product line development [118]. In

addition, we addressed lessons that emerged when adopting the architecture on a second

system, primarily in the area of component interface identification and management.

The reference architecture contains three main facets:

1. Architectural Framework

The Architectural Framework consists of a definition of a Platform (framework aspects that

exist at runtime) and an Environment (design, verification and management processes and

tools to support the use of the platform). The framework identifies the standard software

structure to be employed, defined in terms of software abstraction layers and

communication interfaces. In this way, it structures the software system to solve a

particular class of problems – here this is defined as software for high-integrity, real-time

control, protection and monitoring systems. This very abstract, high-level software system

scope definition actually allows the software architect to start to construct an appropriate

architecture framework early in the project development cycle.

87 Defining a High-Integrity Product Line Model

87 Trusted Product Lines – PhD Thesis S G Hutchesson

The framework provides the following as standard:

 Architectural Layers and Interfaces

 Computational Model (incl. Data Typing)

 Real Time Scheduling Support (including initialisation and modal support)

 Data Transport Infrastructure for distribution

 Monitoring for testing purposes

 Utilities for commonality of implementation

2. Components & Component Rules

A Component provides a set of cohesive functional software and associated provided and

required interfaces. Each component has a well-defined purpose but may contain variation

points to enable system variability to deliver a product line instance. The reference

architecture does not necessarily identify the specific components for a particular

application; however, the rules and constraints that candidate components must respect

are defined as part of the reference architecture.

3. Deployment

The Deployment view shows an instance of the framework deployed on a particular

microprocessor, with an allocated, instantiated set of components and bound set of

interfaces. The Reference Architecture necessarily describes the process by which

deployment is achieved; however, specific deployments are required for each

microprocessor within each product instance.

4.3.2 Architectural Constraints

To enable the reference architecture to be defined, a set of constraints must be identified

against which the architecture concept can be judged (usually qualitatively). Without a set

of (preferably ordered) constraints, it is difficult to make decisions and trade-offs.

4.3.2.1 Product Line Constraints

The following set of constraints on the reference architecture were identified to aid the

definition and management of the product line.

1. All software product line variation points shall be visible, identifiable and traceable in

the product line architectural model (within the framework or within a component)

Rationale: The intent is to deliver a BAPO Level 4 architectural solution. This specifies

that “…all products are developed based on the defined family architecture. In

particular, it specifies how and when to configure variants” [16]. The reference

architecture is the primary vehicle to describe allowable solution-space variation in the

product line.

2. All variation points identified in the architecture shall be traceable to identified product

line stakeholder needs or domain configuration options (e.g. engine and airframe

configuration).

88 Defining a High-Integrity Product Line Model

88 Trusted Product Lines – PhD Thesis S G Hutchesson

Rationale: There needs to be a rationale for every variation point in the software.

Unnecessary variation should be eliminated. If architecture and component variation is

purely identified by analysing variation in previous project instances, then there is the

danger that needless variation may be introduced.

3. All variation point choices that configure a product line instance shall be visible and

traceable in the deployment model for that product instance.

Rationale: There needs to be clarity in the choices made to configure a product

instance – there needs to be an audit trail for each of the decisions made in selecting

the specific product variants.

4.3.2.2 Architecture Design Constraints

A number of different software architectures may produce a solution that meets the

functional requirements of a system; very few will meet both the functional requirements

and the applicable technical and business constraints. The key, therefore, to a successful

architecture and architecture-driven development process is a clear set of prioritised

technical and business constraints.

These constraints can be modelled in the Artisan Studio UML tool using a “Constraints

Diagram” as shown in Figure 40.

The blue curved-cornered rectangles describe constraint types, and the yellow rectangles

describe instances of these types.

The diagram convention is that the constraints are shown in descending order of priority

from left to right. The prioritisation of constraints enables the resolution of conflicting

design approaches via trade-off analysis for example.

FIGURE 40 PRIORITISED ARCHITECTURAL DESIGN CONSTRAINT D IAGRAM

Safety

Performance

Maintainability

Portability

Testability

Software DAL

{DO-178B Level A}

Independence

{Independent Control and

Protection}

Complexity

{As simple as possible

(and no simpler)}

Utilisation

{CPU Utilisation <50% at

EIS}

Response

{All hard real time

transactions met}

Lead Time

{Minimise lead time of a

modification}

Configurability

{Efficiently accomodate

data changes}

Effort

{Minimise testing effort

as a % of overall

development cost}

Platform Abstraction

{Facilitate migration to

other hardware platforms}

Design constraints in order of

importance

Safety

Performance

Maintainability

Portability

Testability

Software DAL

{DO-178B Level A}

Independence

{Independent Control and

Protection}

Complexity

{As simple as possible

(and no simpler)}

Utilisation

{CPU Utilisation <50% at

EIS}

Response

{All hard real time

transactions met}

Lead Time

{Minimise lead time of a

modification}

Configurability

{Efficiently accomodate

data changes}

Effort

{Minimise testing effort

as a % of overall

development cost}

Platform Abstraction

{Facilitate migration to

other hardware platforms}

Design constraints in order of

importance

90 Defining a High-Integrity Product Line Model

90 Trusted Product Lines – PhD Thesis S G Hutchesson

We describe the constraint set shown in Figure 40 in more detail below:

1. Safety

An overall constraint called “Safety” covers the requirements to demonstrate the software,

when integrated within the target system, meets the integrity and availability targets

required for safe operation in service:

a) Software shall be developed to the requirements of DO-178B/ED-12B Level A

b) Control and Protection functions shall be independent

c) Software designs to be made as simple as possible (and no simpler)

2. Performance

The software is embedded within a real-time control system and has to meet hard real-

time deadlines to comply fully with its operational requirements. The performance

constraint also augments the real-time response requirements with resource utilisation

targets:

a) Processor utilisation shall be < 50% at Entry Into Service (EIS)

b) All hard real-time transactions are met

3. Maintainability

The business has on-going targets to reduce lead-time for developing control systems and

respond to customer problems in a timely manner. In software terms, these become

targets for modifiability and maintainability of the software once the original development

is completed:

a) Minimise lead time for a modification

b) Efficiently accommodate data changes

4. Portability

The business has on-going targets to reduce the cost of developing new control systems.

The ability to port application software to other hardware platforms without incurring

excessive redesign costs is important.

a) Facilitate migration to other hardware platforms with minimal effort

91 Defining a High-Integrity Product Line Model

91 Trusted Product Lines – PhD Thesis S G Hutchesson

5. Testability

The testing cost of high-integrity software has been disproportionately high to date (~50%

of development costs):

a) Minimise testing costs as a proportion of total development cost (Goal of 30% of

total software costs)2

4.4 Product Line Architecture Framework
The baseline single-system software architecture was designed to satisfy the set of

architectural design constraints described previously and was used successfully on two

FADEC projects. We migrated this to take into account the product line constraints

described in section 4.3.2.1.

We discussed in Chapter 2 the difference between problem space and solution space

variability

 Problem space variability is concerned with the scoping of the product line and

differentiating the products in terms of common and variable features.[21]

 Solution space variability is concerned with the artefacts that compose the system

itself and how these can be varied to deliver the required product.[21]

The software reference architecture can be regarded as the first stage in the definition and

modelling of the solution space variability (for software). We can model the relationship

between the problem-space view in terms of “features” and the solution-space artefacts as

shown in Figure 41.

2 This is primarily based upon cost effectiveness of testing. The most expensive test vehicle

(Low Level Test) is the one that finds the least number of errors. The business challenge is

to reduce the cost of low-level testing to bring its “cost per error” rate in line with other

testing techniques and thereby reduce the overall test cost as a proportion of total

software development costs.

92 Defining a High-Integrity Product Line Model

92 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 41 THE RELATIONSHIP BETWEEN PRODUCT LINE ARCHITECTURE, COMPONENTS, INSTANCES AND FEATURES

The package model shown in Figure 41 is described in more detail below:

 Product Line Features

Here we use the term Features to describe system and software requirements and

specifications defined for the common and variable parts of the Product Line.

These could be captured in part by using feature-modelling techniques, or could be

modelled using more traditional requirements capture and management tools. The

important aspect is that they are problem-space representations of the product

line features and have clearly identified the required commonality and variability.

The precise notations and representations used to describe product-line features

are out of scope of this thesis. (The initial approach taken to describe product line

requirements used the PLUSS notation [119] to structure textual requirements and

distinguish common/variable aspects. At the time of writing, work was being

undertaken to augment this with a more formal feature model.) It is sufficient to

note that the features should be described and decomposed to a level that allows

traceability from the components in the solution-space that implement them.

 Product Line Architecture

The Product Line Architecture is a framework into which components that may

contain variability can be developed and deployed. As already discussed, this forms

a reference architecture that defines the architectural concept for the product line,

including rules for component construction and interfacing, identification of

variation points and the definition and support for run-time behaviour, for example

the temporal aspects of the software system such as sequencing and scheduling.

The architecture is “informed” by the product line features, to the extent that it

Product Line Features

Product Line Architecture

Product Line Components

Product Instance

Scoped By

Reflects

Consists OfScoped By

Informed By

Product Line Features

Product Line Architecture

Product Line Components

Product Instance

Scoped By

Reflects

Consists OfScoped By

Informed By

93 Defining a High-Integrity Product Line Model

93 Trusted Product Lines – PhD Thesis S G Hutchesson

needs to be appropriate to the class of system being designed, and be able to

support the most stringent requirements/constraints identified in the feature set.

 Product Line Components

Product Line components are developed within the constraints of the architecture.

These components implement the software requirements identified from the

feature set and may contain variation points related to required variability. The

components are “scoped by” the architecture which defines their

provided/required interfaces and level of abstraction.

 Product Instance

A Product Instance is scoped by an identified set of features (including the

resolution of all allowable variability). It reflects the product line architecture as a

blueprint for building the instantiated product. It consists of the set of components

that reflect the selected features, with their variation points resolved

appropriately.

4.4.1 Architectural Pattern - Layered Architecture

The baseline software architecture supporting the single-system developments was

designed using a layered architecture pattern. The layered architectural pattern is

commonly used where the following properties of the software product and development

process are desired [120] :

 Need to localise changes to one part of the solution to minimise the impact on

other parts, reducing the work involved in debugging and fixing bugs, easing

application maintenance, and enhancing overall application flexibility

 Separation of concerns among components (for example, separating the control

logic from the sensor validation) to increase flexibility, maintainability, and

scalability

 Development of components that are reusable by multiple applications

 Independent teams need to work on parts of the solution with minimal

dependencies on other teams and can develop against well-defined interfaces

 Cohesive individual components

 Loosely coupled unrelated components

 Various components of the solution need to be independently developed,

maintained, and updated, on different time schedules.

 The need to deploy the application over multiple physical processors

 The solution needs to be verifiable (analysable and testable)

In a layered architecture the components in each layer are cohesive and at roughly the

same level of abstraction. Each layer is loosely coupled to the layers underneath.

The key to the Layers Architectural Pattern is dependency management. Generally,

components in one layer can depend on peers in the same level or components/interfaces

94 Defining a High-Integrity Product Line Model

94 Trusted Product Lines – PhD Thesis S G Hutchesson

from lower levels. Strict adherence to this principle eliminates or at least minimises

inappropriate dependencies (and therefore maintenance cost). For large solutions

involving many software components, it is common to have a number of components at

the same level of abstraction that are not inter-dependent (i.e. they are purely dependent

on the interfaces provided by the layer below).

Buschmann et al. [120] identifies the following benefits and liabilities of the layered

architecture pattern:

Benefits:

 Reuse of Layers

 Support for Standardisation

 Localisation of Dependencies

 Exchangeability

Liabilities:

 Cascade of Changing Behaviour

 Lower Efficiency

 Unnecessary Work

 Difficult to Establish Correct Granularity

The liabilities need to be taken into account by the architect and mitigated if necessary,

desirable and possible, given other constraints.

4.4.2 Generic Layered Architecture

Figure 42 below shows the abstract layered architectural pattern defined for the gas

turbine control system software product line. A layered architectural concept was chosen

that hosts components at various levels of abstraction. This was essentially unchanged

from the abstract model developed by the author for the single system development

approach.

The purpose of each of the layers is described in the following sections.

95 Defining a High-Integrity Product Line Model

95 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 42 ENGINE CONTROL SYSTEM PRODUCT L INE – TOP LEVEL ABSTRACT ARCHITECTURAL PATTERN

The reference architecture defines standard abstraction layers in which the product line

components are developed, and provides a run-time framework supporting the component

execution. This includes a standardised scheduling/RTOS approach and a standardised data

distribution mechanism to allow multi-processor deployment. The framework and support

components are developed and managed by a central architecture team3, who provide

releases of the framework to the component development and product deployment teams.

The layers are defined as follows:

1. Application Layer

The Application Layer contains components that realise the end user’s requirements for the

system. Components located in the Application Layer should generally not be in support of

other functions but should deliver behaviour that is recognisable externally to the system.

A good test for an Application Layer component is to ask the question “If this component

was all the system functionally delivered, would it still be a useful system?” i.e. does the

3 The author was the Chief Software Architect for this team

Application Layer

System Layer

«Interface»

Hardware Abstraction Layer (HAL)

Service Layer

Operating Software

«use»

«use»

«use»

«use» «use»

«use»

Application Layer

System Layer

«Interface»

Hardware Abstraction Layer (HAL)

Service Layer

Operating Software

«use»

«use»

«use»

«use» «use»

«use»

96 Defining a High-Integrity Product Line Model

96 Trusted Product Lines – PhD Thesis S G Hutchesson

external world have a use for this function? If the answer to the question is no then the

location of the component in the application layer should be questioned.

Application Layer components operate in an idealised world with minimal knowledge of

system configuration (e.g. duplex sensor configuration, processor allocation etc.)

2. System Layer

The System Layer contains components that ensure the continued operation of the system

in the presence of faults (maximising the availability of the system), and to abstract the

details of the system configuration away from the application layer. System Layer

components translate between the ideal world of the application layer and the system

device interfaces provided by the Hardware Abstraction Layer (HAL).

Typical system layer components will validate and select between multiple data sources,

derive model parameter values from other available signals, take abstract demands from

the application layer and convert them to device-specific commands to send to the HAL.

3. Service Layer

The Service Layer abstracts system services from the rest of the system. These services

encapsulate access to generic system resources or collect/distribute non-cohesive data.

Components in the service layer typically provide abstractions for internal and external

communications buses and non-volatile memory storage devices. In addition, the services

are generally provided to multiple application/system components; removal of a single

application/system component should not make a service component redundant.

4. Hardware Abstraction Layer (HAL)

The purpose of the Hardware Abstraction Layer (HAL) is to isolate the Application Software

(AS) from the details of the underlying hardware platform. The layer implements a set of

data classes and accessor operations that allow data transfer between the Operating

Software (OS) and the AS. The layer completely isolates each side from the other, ensuring

portability of the AS and minimising the impact of OS change on the AS.

The hardware abstraction layer provides a standardised interface to the device drivers

provided the lower layers of the software system

5. Operating Software

The Operating Software (OS) provides the software interface to the hardware devices

within the EEC. It converts between the engineering-unit domain of the HAL and the

hardware-specific needs of the EEC electronics. The internal architecture and design of the

OS is beyond the scope of this thesis.

97 Defining a High-Integrity Product Line Model

97 Trusted Product Lines – PhD Thesis S G Hutchesson

4.4.3 Allocation of Components to Layers

FIGURE 43 ARCHITECTURE STRUCTURE META-MODEL

Figure 43 illustrates the meta-model defining how components exist within the layers of

the architecture described earlier. The parts of this model are described below.

1. Sub-Systems

Sub-systems provide a packaging mechanism to group related components within the

component catalogue, and provide a convenient abstraction to describe cohesive

functional groupings within high-level architectural descriptions. Sub-systems are the only

means of providing hierarchical decomposition within the architectural description. Sub-

systems are modelled as Packages within UML.

(Note the «subsystem» stereotype in the standard UML profile only applies to classes.

Here we apply it also to UML Packages (Categories))

2. Components

Each layer of the software architecture contains a number of cohesive components that

have a well-defined function or purpose. The set of components within a layer are

nominally at the same level of abstraction, but are loosely coupled (if at all) to each other.

Each component can have instances of four generic interface types as illustrated in Figure

44.

Layer

Sub-System

Component

Implementation Class

Functional Class Calibration Class Interface Class

Monitoring Interface Provided Interface Required Interface

*
0..1

1..*
0..1

*
1

*

0..1

*

0..1

1

1

is Associated With

1..* 1..*

Maps To

{Interfaces are bound to

layers that (nominally) offer

the service}

{All communication

between components is via

declared interfaces}

Layers are provided by the

architectural framework and are not,

in themselves sources of variation

Sub-systems provide packaged sets

of functional components

associated with an architectual

layer. The sub-system is a

packaging mechanism to allow

component groupings and hierarchy

Components can reside directly in a

layer or be packaged within a sub-

system hierarchy. Components can

be specialised, calibrated

(parameterised), generated and/or

replaced.

Components are constructed from

specialised implementation classes

Layer

Sub-System

Component

Implementation Class

Functional Class Calibration Class Interface Class

Monitoring Interface Provided Interface Required Interface

*
0..1

1..*
0..1

*
1

*

0..1

*

0..1

1

1

is Associated With

1..* 1..*

Maps To

{Interfaces are bound to

layers that (nominally) offer

the service}

{All communication

between components is via

declared interfaces}

Layers are provided by the

architectural framework and are not,

in themselves sources of variation

Sub-systems provide packaged sets

of functional components

associated with an architectual

layer. The sub-system is a

packaging mechanism to allow

component groupings and hierarchy

Components can reside directly in a

layer or be packaged within a sub-

system hierarchy. Components can

be specialised, calibrated

(parameterised), generated and/or

replaced.

Components are constructed from

specialised implementation classes

98 Defining a High-Integrity Product Line Model

98 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 44 GENERIC COMPONENT INTERFACES

The layers, components and interface concept allows the high level software architecture

to be decomposed and allocated to a level from which code components can be identified

and designed. In general, the software implementation details are captured in the lower

level architecture in the UML model.

3. Implementation Classes

a) Functional Class

The functional class(es) provide the implementation to satisfy the requirements of the

component. These classes use the interfaces to communicate between components in

different subsystems.

The functional class exposes a control interface to enable the scheduler to execute the

component’s functionality. The scheduler can support both periodic (time-based) and

sporadic (event-driven) operation. The required scheduling behaviour is defined as

part of the interface specification.

Optionally, components may also present an initialisation interface. Passive

components may present initialisation interfaces (for example, interface components

that have no functional behaviour may need their default values initialising).

b) Calibration Class

Calibration classes are used to provide calibration data that is used by the functional

classes. The data is in the form of Development Variables and Graphical look up tables

that can be calibrated during testing, but are constants when the executable is

delivered for production.

c) Interface Class

i. Provided Interface

MyComponent

: FunctionalClass : CalibrationClass

IRequiredInterface

IProvidedInterface

IMonitoringInterface
IControlInterface

Provides a scheduler

interface allowing the

component to be

initialised and

stimulated

Components generally provide a service to the

rest of the system via data produced/consumed

Components need a service to record

the success/failure of the component's

operation and to monitor internal

behaviourComponents require services of other

components to perform their internal

operations

99 Defining a High-Integrity Product Line Model

99 Trusted Product Lines – PhD Thesis S G Hutchesson

Typically, components perform an activity and produce a set of results useful to

other parts of the system. The result of a component’s operation is presented to

the rest of the system via the provided services interface. This generally forms

part of the containing layer’s interface.

Utility and library components can provide a callable interface that can be used

from other components as part of their execution.

ii. Required Interface

Components require services of other components to perform their intended

operation. The set of required services of a component should be provided by the

available layer interfaces.

iii. Monitoring Interface

Components that need to record failure behaviour make use of a generic

monitoring interface. This enables the centralised health and maintenance

functions that analyse the faults to be loosely coupled to the source components.

This is a required interface i.e. it is provided elsewhere (note the “socket”

notation). In general terms, this means that if this component were to be removed

from the system the interface would still exist, as it is required by other

components.

4.4.4 Compatibility with Previous Projects

The component design specified above is not dissimilar to those used on previous (non-

product line) projects that employed a similar layered architecture and component

breakdown. It is a design aim that the product line architecture can support components

created for these previous projects with minimum change – this allows for the “harvesting”

of existing components as required.

4.4.5 Deploying Architecture and Components

We have identified an architectural pattern for our FADEC software system, and defined

the meta-model to allow components to be developed that comply with this pattern. We

now map this model back onto our view of product line development to clarify how the

reference architecture, product instance architecture and component set map onto the

framework identified in Figure 41.

Figure 45 shows generically how the reference architecture layers define the product line

architecture, and contain a set of product line components. These layers have equivalents

within the product instance, which can host “bound” components, through a model

allocation mechanism discussed later.

100 Defining a High-Integrity Product Line Model

100 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 45 THE ROLE OF LAYERS AND COMPONENTS IN THE PRODUCT LINE CONCEPT FRAMEWORK

4.5 Designing Components
We define a component as a functionally cohesive collection of design, specification and

implementation information, from which other representations can be generated via

transformation. Source code implementations of the components can be generated using

model transformations (as described in chapter 5.) The component is modelled using the

UML class notation to describe its structure; this is augmented with algorithmic design

detail defined using complementary UML notations (for example activity diagrams or state

diagrams), or using functional modelling languages and tools such as Matlab/Simulink [69]

or SCADE [59]. The problems of interoperability between modelling environments based

on a functional/dataflow paradigm and those based on a structural/object paradigm is a

significant issue in embedded system design [121]. Currently our approach uses the UML

modelling environment as the master, and any design descriptions generated in other

environments are imported into the master model as additional annotations (typically) on

operations. Currently no syntactic or semantic integration is attempted between the

modelling environments (this is discussed later in the context of future work in Chapter 8)

The UML definition of an operation is extended with SPARK as shown in Figure 46.

Product Line Features

Product Line Architecture

Layer

Product Line Components

Component

Product Instance

Layer

Component

*

1

1 *

Deployed LayerReference Architecture Layer

*

1

Scoped By

Reflects

Consists Of
Scoped By

Informed By

«bind»

Product Line Features

Product Line Architecture

LayerLayerLayer

Product Line Components

ComponentComponentComponent

Product Instance

Layer

Component

Layer

Component

Layer

Component

*

1

1 *

Deployed LayerReference Architecture Layer

*

1

Scoped By

Reflects

Consists Of
Scoped By

Informed By

«bind»

101 Defining a High-Integrity Product Line Model

101 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 46 COMPONENTS BUILT FROM SPARK CLASSES

SPARK Operations introduce the concept of a SPARK Contract [77]. The SPARK mechanism

allows a range of operation contract levels to be defined, from data-flow contracts to full

pre and post conditions. Our approach uses information flow contracts that define the

required input/output relationship of the operation. The implementation of the

component can be verified against this information flow contract using the SPARK Examiner

tool [75]. The ability to verify statically a component implementation against a contract is

fundamental to our approach towards ensuring the correct generation of product line

components containing variability. Figure 46 shows, in addition, that operations contain

associated design descriptions and implementations, in the form of SPARK-compliant Ada

code bodies.

4.6 Extending Component Contracts with Decisions
Feature model-based product line approaches often maintain a direct relationship between

optional features and variation points with the product line assets. Our approach

introduces a level of indirection into the variability model via the use of decisions [122].

Decisions provide a more granular means of describing variability, and these variability

decisions are typically in the context of the implementation rather than the user-oriented

view provided by the feature model. Significantly, this approach can be used to construct

components before a complete understanding of the product line scope is available. These

component decision points relate directly to variation points within the internals of the

component. These variation points identify model elements that should be included or

removed from the component when associated decisions are resolved.

Relationships can be established between features in a feature model and the component

decisions, enabling feature-driven selection and traceability to be implemented. The

Component

SPARK Class

SPARK Operation

SPARK Contract
{Abstract}

Ada BodyAda Contract
{Abstract}

*

1

*

1

1

1

*

1

*

1

Component

SPARK Class

SPARK Operation

SPARK Contract
{Abstract}

Ada BodyAda Contract
{Abstract}

*

1

*

1

1

1

*

1

*

1

102 Defining a High-Integrity Product Line Model

102 Trusted Product Lines – PhD Thesis S G Hutchesson

provision of a level of indirection between a feature model and an implementation via a

decision model has been demonstrated before [122] and is supported in prototype and

commercial software product line environments. However, our approach is significantly

different and novel in that it makes variability decisions first-class model elements and

contains them within the components exhibiting the variability. In this way, variability

decisions are prominent in the component designer’s mind at the point of component

design, and can be verified alongside the component design and implementation, for

example via peer review. In addition, components containing variability can be shared

between multiple product lines and the mapping between variation points and variability

decisions is maintained.

The approach introduces the concept of decision contracts. The component contract is

augmented by a model element termed a decision. The decision is a public attribute of the

component contract. The decision attribute contains a set of possible resolutions to the

decision, known as options. When a component is deployed, part of the action of

deployment is to resolve each decision in the public decision contract. This involves

choosing an available option for each of the published decisions. A meta-model defining

this approach is shown in Figure 47. It clearly shows how the decision forms part of the

component contract, and how decisions are related to modelling elements identified as

variation points. In this way, the component contains and publishes the available

variability in a concise manner, making the component reusable across product lines in a

much more straightforward manner than would be the case if the variability were defined

separately.

FIGURE 47 META-MODEL DESCRIBING COMPONENTS CONTAINING DECISION CONTRACTS

Component Deployed Component

Contract
{Abstract}

Deployed Contract
{Abstract}

Modelling Element
{Abstract}

Variation Point

Selection Criterion

Decision

Option

Decision Resolution

Selection Option

*

1

*

1

1..*

1

1

1

*

1

*

1

*

1

1

1

1 *

Binds To

1 *

1 *

Resolves

1 *

Selects

* 1

1..*

1..*

0..1

1

Selects

*

0..1 * 0..1

Component Deployed Component

Contract
{Abstract}

Deployed Contract
{Abstract}

Modelling Element
{Abstract}

Variation Point

Selection Criterion

Decision

Option

Decision Resolution

Selection Option

*

1

*

1

1..*

1

1

1

*

1

*

1

*

1

1

1

1 *

Binds To

1 *

1 *

Resolves

1 *

Selects

* 1

1..*

1..*

0..1

1

Selects

*

0..1 * 0..1

103 Defining a High-Integrity Product Line Model

103 Trusted Product Lines – PhD Thesis S G Hutchesson

Component variability is realized via the use of «PL variation point» stereotypes within the

component model. Variation point stereotypes can be applied to any relevant meta-model

element. Each variation point stereotype contains a “select when” attribute; this attribute

holds an expression in terms of component decisions. Evaluation of this expression

determines whether the associated meta-model element is included in the product

instance model. The set of model transformations that evaluate these expressions and

produce a product instance are discussed in the next chapter.

4.6.1 Variability & Variation Points

Variation Points identify places in architecture and the set of components where product-

to-product variability is allowed. In general, component variability can be realised using a

number of different variation techniques, and the selection can be made at different stages

in the development lifecycle (known as the “binding time”). In our approach, most

variability is resolved at code generation time, where model-to-model and model-to–text

transformations produce the instantiated product (as described in Chapter 5).

Our instantiation mechanism ensures that only the functionality required in the specific

product is to be deployed. It is not advantageous to carry round additional functionality as:

 Functions not required but resident in the executable will need to be deactivated.

Any deactivation mechanisms will need to be specified and verified as required by

DO-178B/ED-12B.

 Product Line assets may contain data that is proprietary to specific customers,

however the product line may be instantiating a product for that customer’s

competitor organisations (e.g. for avionics applications the product line may be

instantiating products for both Boeing and Airbus applications, and contain

airframe-specific information). Given that customers may have a right of audit and

scrutiny over the development processes and artefacts it should be possible to

provide development assets that are free from competitor’s protected information.

 Embedded systems can be resource constrained (e.g. the amount of available

PROM space for program storage), so it can be advantageous to remove

unnecessary code.

The following table lists the types of variability provided for each Meta-Model element of

interest when modelling SPARK components:

Meta-Model

Element

Variation

Point?

Comment

Subsystem Yes -

Manually

Subsystems can form part of a hierarchy with

only certain subsystems being required for

particular deployments. The subsystems that

are not required do not form part of the

104 Defining a High-Integrity Product Line Model

104 Trusted Product Lines – PhD Thesis S G Hutchesson

deployment set.

Class Yes Classes marked as variation points are to be

removed from the deployment model

automatically by the transformation if their

selection criterion is not met.

Operation Yes Operations marked as variation points are to be

removed from the deployment model

automatically by the transformation if their

selection criterion is not met.

Parameter No Operation parameters are not modelled as

variation points. Operations that require

varying signatures shall be modelled as

alternate operations.

Attribute Yes Attributes marked as variation points are to be

removed from the deployment model

automatically by the transformation if their

selection criterion is not met.

Types (Sequence,

Record (Structure),

Array, Enumeration)

Yes Types marked as variation points are to be

removed from the deployment model

automatically by the transformation if their

selection criterion is not met.

Record (Structure)

Element

Yes Record elements marked as variation points are

to be removed from the deployment model

automatically by the transformation if their

selection criterion is not met.

Enumeration Literal Yes Enumeration literals marked as variation points

are to be removed from the deployment model

automatically by the transformation if their

selection criterion is not met.

Associations Yes Associations marked as variation points are to

be removed from the deployment model

automatically by the transformation if their

selection criterion is not met.

105 Defining a High-Integrity Product Line Model

105 Trusted Product Lines – PhD Thesis S G Hutchesson

4.6.2 Encoding Variability

We have discussed the concept of decision contracts, and how they map onto variation

points in the software architecture and the components. Here, we illustrate how this is

realised in practice with an example component containing a decision contract and

associated variation points modelled in UML. Figure 48 shows an expanded UML browser

“tree” for a Product Line component named AComponent. The set of icons in the browser

have been extended based upon the UML stereotypes used to implement the trusted

product line meta-model. A Product Line component is modelled as a stereotyped UML

package, and is indicated as in the browser. A Decision is modelled as a stereotyped

UML enumerated type, and is indicated as . In Figure 48, we see that AComponent

publishes two decisions, with Decision1 having two possible options, and Decision2 having

three possible options.

FIGURE 48 STRUCTURE OF A SIMPLE PL COMPONENT WITH CONTAINING A DECISION CONTRACT

Figure 49 shows a class diagram representation of the two classes contained in

AComponent. Here we see that there is an association between the classes that model an

Ada “With” clause. The class diagram also shows that particular operations and attributes

within the classes are decorated with «PL variation point» stereotypes to indicate that

those model elements are optional. Similarly, the association between the classes is

denoted as optional, again via use of the «PL variation point» stereotype.

106 Defining a High-Integrity Product Line Model

106 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 49 CLASS D IAGRAM ILLUSTRATING VARIATION POINTS

The conditions under which each variation point is selected are encoded in the “PL select

when” expression. This is contained in a UML “tag” associated with the «PL variation

point» stereotype. The “PL select when” expression is described in terms of the decisions

and options published in the component’s decision contract.

This approach results in a combined product design and variability model - there is no

separate orthogonal variability model (as discussed with respect to the CVL approach in

section 2.3.3). The single-model approach was chosen primarily for ease of verification-by-

review of the product line models. It was felt that it was more straightforward to manually

review the correctness and completeness of the variability mark-up if the complete set of

information was presented in a single, coherent model. However, this is essentially a

presentation issue (conceivably multiple models could be presented in a coherent

combined view); the ease of verification of differing model forms and view could be the

subject of future research. Also, as was discussed earlier in section 4.6, this approach

allows variable components to be self-contained and therefore enables their reuse across

product-line instances; this would be complicated by the use of separate orthogonal

variability models.

4.7 Component Catalogue, Core Assets and Deployment
We have discussed so far the approach to modelling product line components within UML.

We now look the model management and deployment strategy; i.e. how those

components are stored and managed within a modelling environment and how component

deployment is performed.

Figure 50 shows how components are stored in a “Component Catalogue”, whose structure

reflects the reference architecture layers. This component catalogue allows the storage

and management of both product line components (“Core Assets”), and any components

Class1

«PL variation point» {PL select when = Decision1 = D1Option1}

Operation1 ()

Operation2 ()

Class2

Attribute1

«PL variation point» {PL select when = Decision2 = D2Option2}

Attribute2

Operation1 ()

«Ada Context» {Ada With = Specification}
«PL variation point» {PL select when = Decision1 = D1Option2}

Class1

«PL variation point» {PL select when = Decision1 = D1Option1}

Operation1 ()

Operation2 ()

Class2

Attribute1

«PL variation point» {PL select when = Decision2 = D2Option2}

Attribute2

Operation1 ()

«Ada Context» {Ada With = Specification}
«PL variation point» {PL select when = Decision1 = D1Option2}

107 Defining a High-Integrity Product Line Model

107 Trusted Product Lines – PhD Thesis S G Hutchesson

developed specifically for the project itself (“Project Assets”). Irrespective of their source

or purpose, the components are constructed, managed and deployed in the same manner.

FIGURE 50 MODEL H IERARCHY SHOWING COR E ASSET AND DEPLOYMENT TREE

Products are realised by deploying components onto CPUs; this can be seen in the tree

structure shown in Figure 50, where a deployed version of the “Types” component appears

in the pre-requisites folder for “CPU X” (note the slightly different icon colours for a

deployed component). The actual deployment relationship is modelled in the class

diagram shown in Figure 51.

FIGURE 51 B IND D IAGRAM SHOWING THE D EPLOYMENT OF THE TYPES COMPONENT

Here we see that the components themselves are modelled as stereotyped UML packages,

with a “bind” dependency mapping the deployed component onto the core asset. This is

«PL deployed component»
02 Deployment::CPU X::Prerequisites::Types

«PL component»
01 Component Catalogue::Core Assets::01 Prerequisites::Types

«bind»

Deployed component located

in target CPU. This is empty

apart from a <bind>

dependency to the catalogue

component

Core asset component located in

the catalogue. This contains the

component design ready for code

generation

Bind dependency relates the

deployed component to the core

asset

«PL deployed component»
02 Deployment::CPU X::Prerequisites::Types

«PL component»
01 Component Catalogue::Core Assets::01 Prerequisites::Types

«bind»

Deployed component located

in target CPU. This is empty

apart from a <bind>

dependency to the catalogue

component

Core asset component located in

the catalogue. This contains the

component design ready for code

generation

Bind dependency relates the

deployed component to the core

asset

108 Defining a High-Integrity Product Line Model

108 Trusted Product Lines – PhD Thesis S G Hutchesson

an instance of the meta-model shown in Figure 47, which described the Component, and

Deployed Component classes and the Bind To relationship between them.

4.8 Mapping to Requirements and Feature Models
We discussed the use of feature models in chapter 2, as a means of expressing

commonality and variability in the problem domain. Here we discuss the role of

requirements and specification in high-integrity developments, and the role played by

traceability in justifying the correctness of products, including the absence of unintended

function. We look at the role feature models may play in Trusted Product Line

development, and we examine how traceability spans the problem and solution domains –

including the effect that variability has on traceability.

4.8.1 Requirements & Traceability in DO-178B/ED-12B Developments

Let us revisit the diagram we first introduced in chapter 2 illustrating the objectives of DO-

178B/C and their relationship to the development artefacts. Here (Figure 52), we can see

the central role that traceability plays in the review/analysis of the product. DO-178C/ED-

12C [60] provides the following definitions of Traceability and Trace Data:

Traceability – An association between items, such as between process outputs,

between an output and its originating process, or between a requirement and its

implementation.

Trace data – Data providing evidence of traceability of development and verification

processes’ software life cycle data without implying the production of any particular

artifact. Trace data may show linkages, for example, through the use of naming

conventions or through the use of references or pointers either embedded in or

external to the software life cycle data.

Traceability is one of the primary mechanisms used in DO-178B/ED-12B and DO-178C/ED-

12C to argue and justify that

a) Every part of the software has a reason/rationale for its existence

b) Every requirement placed on the product has been satisfied

i.e. the product does what it is required to do and no more. There is increasing focus by

civil aerospace regulators that “unintended functionality” is identified and eliminated from

software products [123]. This is a clear area of concern for product line approaches that

include design-time variability - they have an inherent risk of inadvertent inclusion of

unintended functionality.

The Trusted Product Lines approach must provide the means to define the Traceability

associations between the lifecycle artefacts in the product line, and to provide the Trace

Data to support the instantiated product.

109 Defining a High-Integrity Product Line Model

109 Trusted Product Lines – PhD Thesis S G Hutchesson

P
ro

b
le

m
 D

o
m

ai
n

So
lu

ti
o

n
 D

o
m

ai
n

A

B

C

D

FIGURE 52 ANNOTATED DO-178C/ED-12C LEVEL A SOFTWARE VERIFICATION PROCESSES

110 Defining a High-Integrity Product Line Model

110 Trusted Product Lines – PhD Thesis S G Hutchesson

4.8.2 Variant Traceability & Feature Linkage

FIGURE 53 EXTENDING THE COMPONENT META-MODEL WITH TRACEABILITY AND FEATURES

Figure 53 shows how the component meta-model introduced in section 4.6 can be

extended to include traceability associations and linkage to the problem-domain

commonality and variability Feature Models. “Normal” DO-178C/ED-12C traceability

associations (establishing traceability instance B from Figure 52) is established via the

association between modelling elements and High Level Requirements. However, some of

this trace data may include traceability to variant requirements. This can easily be

included/removed from the product instance trace data if the modelling element is wholly

included/removed during instantiation. However, there may be instances where a

modelling element traces to both common and variable high-level requirements. Where

the variable requirements are not included in a particular product instance, we need to

remove those references from that product’s trace data.

To address this, our extended component meta-model includes a “traces to” relationship

between a decision option, and the high-level requirements satisfied when that option is

selected. In this way, we can easily identify the set of variable requirements that are

implemented by a product line instance, and produce the correct trace data for that

instance via simple set operations, i.e.

{Product Instance Trace Data} = {Common Trace Data} {Selected Options Trace Data}

Component Deployed Component

Contract
{Abstract}

Deployed Contract
{Abstract}

Modelling Element
{Abstract}

Variation Point

Selection Criterion

Decision

Option

Decision Resolution

Selection Option

High Level Requirement Feature Selected Feature

*

1

*

1

1..*

1

1

1

*

1

*

1

*

1

1

1

1 *

Binds To

1 *

1 *

Resolves

1 *

Selects

* 1

1..*

1..*

0..1

1

Selects

*

0..1
* 0..1

1..*

*

Traces To

*

*

Is Realised By

1..* *

Is Specified By

*

*

Traces To

*

*

Is Realised By

11

Selects

Component Deployed Component

Contract
{Abstract}

Deployed Contract
{Abstract}

Modelling Element
{Abstract}

Variation Point

Selection Criterion

Decision

Option

Decision Resolution

Selection Option

High Level Requirement Feature Selected Feature

*

1

*

1

1..*

1

1

1

*

1

*

1

*

1

1

1

1 *

Binds To

1 *

1 *

Resolves

1 *

Selects

* 1

1..*

1..*

0..1

1

Selects

*

0..1
* 0..1

1..*

*

Traces To

*

*

Is Realised By

1..* *

Is Specified By

*

*

Traces To

*

*

Is Realised By

11

Selects

Traceability

Instance B

111 Defining a High-Integrity Product Line Model

111 Trusted Product Lines – PhD Thesis S G Hutchesson

In practice, the determination of the product-specific model element’s trace data is slightly

more complicated than described above, but still straightforward. The set operations to

determine a product-specific model element’s trace data are as follows:

 () ()

Where:

 Mt is the set of trace data for a model element in the product line

Co is the set of variant trace data for the product line component

Po is the set of selected variant trace data for the specific product instance

Mi is the complete set of trace data for the model element in the product instance

The () term determines the set of common traces from the model element and

the () term determines the selected set of variant traces. The union of the two

sets gives the product specific trace data for the model element.

A complete worked example of this is provided in the Case Studies in Appendix C of this

thesis.

This approach allows a definitive set of trace data to be created for an instance of a

component automatically, given the resolution of a decision contract (i.e. a set of options

are selected).

The extended meta-model in Figure 53 also defines how a problem domain model (e.g. a

feature model) can be associated with a set of components that expose decision contracts.

We discussed the difference between problem-domain and solution-domain models in

Chapter 2. The Decision Contract concept provides the ability to identify and specify

variability in the solution domain. This optionality may be related to feature selections in

the problem domain via the “Is Realised By” associations modelled in Figure 53.

Here, we envisage that the realisation of a Feature is via the inclusion of one or more

components in the software system, and the setting of particular options within the

decision contracts of those components. This, then, decouples the design of components

from the identification of the product line features. In this way, components can be re-

used across multiple product lines, but still be mapped into the feature selection

mechanisms for the product lines to which they contribute. The “Is Realised By”

associations are established downwards from the features to the componentry chosen to

realise those features – either by direct linkage or by an intermediate “mapping model”.

Again, this allows the re-use of components, as there is no hard-coded linkage to product

features in the component.

The overall concept of problem-space feature models being mapped to solution-space

variation points indirectly via the component decision contract is shown diagrammatically

in Figure 54.

112 Defining a High-Integrity Product Line Model

112 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 54 D IAGRAMMATIC VIEW OF FEATURE TO DECISION TO VARIATION MAPPING

Here, we can see clearly that we separate the concerns of the implementation variability

from the definition of the product line features via the introduction of the abstraction

“decision contract”. This is a valuable and generally applicable abstraction that does not

restrict or impose the problem-space representation, and allows the implementation

components to be portable across multiple product lines. It also allows heterogeneous

implementation technologies to be used inside the component as it abstracts away the

peculiarities of the implementation from the user of the component.

113 Defining a High-Integrity Product Line Model

113 Trusted Product Lines – PhD Thesis S G Hutchesson

4.9 Conclusions and Observations
We have defined a meta-model for component based product-line design that includes the

novel concept of decision contracts. We have explained how the meta-model is used to

capture, view and navigate the product-line architecture and component design. We

understand how the meta-model can capture the relationship of the product line

components to high-level requirements and product features, including the management

of traceability and production of product trace data. We understand the use of

architectural models and UML to structure product-line reference architectures, and

understand the unique contribution of the decision contract approach.

This gives us a well-defined framework for designing and modelling product-line software

solutions. We now need to understand in detail how product instances can be created

from these models, largely automatically.

114 Instantiating Products using Model Transformation

114 Trusted Product Lines – PhD Thesis S G Hutchesson

5 Instantiating Products using Model Transformation

e can regard many of the activities undertaken within software development as

“purposeful transformations”. For example, the transformation of

requirements into designs, design to source code, source code to object code.

One technology that is increasing becoming central to a number of software engineering

approaches is that of Model Transformation. Put simply, this is the changing or

modification of a model from one form to another. These transformations become

“purposeful” when both the initial and transformed models have specific, useful purposes

AND they preserve a given set of properties of the initial model in the transformed model.

This becomes even more useful if you can guarantee that the properties of the initial

model are held by the transformed model. There is little in the literature that addresses

the problems of property-preserving model transformation; to our knowledge, no work has

addressed this issue in the context of a formal certification process.

This chapter describes an approach to developing and deploying high-integrity product

lines using a model transformation approach. We have demonstrated the techniques

described by developing a model transformation based code generator, which has been

deployed and used on a real high-integrity development project. Whilst there is pre-

existing work on product lines and on model transformation (see chapter 2) none of the

previous work has fully considered the challenges of high-integrity development (the work

of Esterel and SCADE [59, 71] comes closest, but it does not address product line issues).

This deployment has provided real-world data to demonstrate the applicability and

scalability of the technology; this is evaluated later in the thesis.

Here we detail the design of model transformations to create particular product instances

from a reference architecture model and product line component assets. This focuses on

using components with decision contracts (which is a novel contribution as described in

Chapter 4), resolving those decisions to reflect a particular required product, and using

model-to-model and model-to-text transformations to instantiate the product-specific

assets. Using a chained set of purposeful transformations, whilst not a novel concept per-

se, we believe to be an original contribution for the instantiation of products from product

line assets, particularly in a safety-critical environment.

It should be noted that while this approach has been designed to be applicable to the

development of high-integrity systems, there is nothing inherent in the approach that

prevents its more broad application. Our approach would be useful in any domain

characterised by the need for reusable, variable components, strong architectural focus,

clearly traceable design and credible verification (for example, the development of

automotive and medical systems.)

5.1 Research Challenge
The main research challenge addressed in this chapter is to demonstrate successful

achievement of the following goal:

W

115 Instantiating Products using Model Transformation

115 Trusted Product Lines – PhD Thesis S G Hutchesson

To define a Software Product Line production environment suitable for High-Integrity

applications, including the provision of approval/certification evidence.

This is not a hypothetical or abstract challenge; the Software Product Line production

environment needs to be robust enough to be applicable on real industrial projects, be

used by large (potentially geographically distributed) teams and be subject to the scrutiny

of regulators. These considerations lead to a more detailed set of academically novel sub-

challenges that can be categorised as “Essential” and “Accidental” (a useful philosophical

distinction that is attributed to Aristotle).

5.1.1 Essential Challenges

An essential challenge is one that is a natural consequence of the overall goal; one that

needs to be necessarily considered when undertaking and evaluating the research. The

individual essential challenges arising from the problem of High-Integrity Software Product

Line deployment are detailed as follows:

1. Scale & Size of Product

The approach should be demonstrably applicable to real-world products (of

typically > 100 kSLOC) and not be restricted to a small-scale prototype. (Although a

prototype may be sufficient to demonstrate concepts, scalability can be difficult to

argue; demonstration is preferable.)

2. Deployment into “typical” industrial teams

The approach should be usable by the typical engineering teams employed on

large-scale industrial high-integrity projects. Such projects can use a significant

proportion of sub-contract and offshore labour, with a wide variety of experience

and skills. Therefore usability needs to be argued and (preferably) demonstrated.

We use an approach of appealing to previously successful methods/techniques and

active demonstration and evaluation of the new technology to address this.

3. Enabling the demonstration of requirements satisfaction (validation, traceability,

basic integrity)

The approach should not obfuscate the evidence for the satisfaction of the higher-

level software requirements, or system requirements allocated to software, on a

product line or product specific basis. This is one of the crucial research objectives,

and has not been demonstrated previously in the literature.

Effective SPL Development

To define a Software Product Line
production environment suitable for
High-Integrity applications, including the
provision of approval/certification
evidence.

Essential Challenges

Argue by demonstration and
evaluation that the Essential
Challenges of High Integrity SPL
Development have been met

Accidental Challenges

Argue by demonstration and
evaluation that the Accidental
Challenges of the specific
deployment of High Integrity SPL
development have been met

Scale and Size of Product

The approach should be
demonstrably applicable to
real-world products

DO-178B/ED-12B Context

Approval of interest is DAL A
to the guidance defined in
DO-178B/ED-12B

FADEC Context

The approach is being
deployed and evaluated in the
context of FADEC development
for a large civil gas turbine
engine

Deployment

The approach should be usable by
the typical engineering teams
employed on large-scale industrial
high-integrity projects

Demonstration of Requirements
Satisfaction

The approach should not obfuscate the
evidence for the satisfaction of the higher-
level software requirements, or system
requirements allocated to software, on a
product line or product specific basis

Progressive Addition of Detail

The approach should not require
the introduction of inappropriate
levels of detail too early in the
design hierarchy.

Clarity of Design

The design artefacts need to be clearly
verifiable; to enable verification by review
& analysis any complexity introduced by
the Product Line approach should not
obfuscate the design intent.

Different Sources of/Times for Variation

The approach should allow different
stakeholders to define their
requirements at different times in the
development cycle.

Credible Approval Evidence

The approach must take into account
the ability to produce credible
evidence to support product
certification/approval per product
instance.

Information Partitioning

The approach should allow the
provision of development assets
that are free from competitor’s
protected information.

FIGURE 55 ESSENTIAL CHALLENGES OF HIGH-INTEGRITY SOFTWARE PRODUCT L INE DEVELOPMENT PRACTICES

117 Instantiating Products using Model Transformation

117 Trusted Product Lines – PhD Thesis S G Hutchesson

4. Progressive addition of detail

The approach should not require the introduction of inappropriate levels of detail

too early in the design hierarchy (c.f. MDA approaches that make use of Platform

Independent Models (PIM) and Platform Specific Models (PSM) to introduce the

details of the target implementation platform at the appropriate level in the design

decomposition/hierarchy [124].) Again, there is novelty here; most Product Lines

approaches do not include multiple levels of abstraction or hierarchy in the Feature

Models/Variability Models (see Figure 56).

FIGURE 56 "MDA-STYLE" ARTEFACTS AND TRANSFORMS SUPPORTING PRODUCT-INDEPENDENT AND PRODUCT-

SPECIFIC ASSETS

5. Clarity of design

The design artefacts need to be clearly verifiable; to enable verification by review &

analysis any complexity introduced by the Product Line approach should not

obfuscate the design intent. This is significantly impacted by the variability

approach chosen. (As discussed in Chapter 2, many product line approaches use a

“positive variability” approach (e.g. CVL[30]) which is analogous to aspect-oriented

development. These rely on a base “common” artefact augmented with separate

“advice” to provide the variable aspects.) There does not appear to be any

literature containing a critical review of variability strategies with respect to their

impact on verification by analysis, review or test. This is a novel aspect of the work

described here.

118 Instantiating Products using Model Transformation

118 Trusted Product Lines – PhD Thesis S G Hutchesson

6. Allowing different sources/drivers of variation at different times in the

development

Many product line approaches rely on the up-front development of feature models

to direct the development of implementation assets. This is analogous to a

“waterfall” approach that is not always possible or desirable when developing the

classes of system of interest here. Typically feature requirements for such systems

are sourced from many different stakeholders, who have different (and

asynchronous) product development cycles (for example, engine manufacturers,

airframe manufacturers, system design engineers, electronics design engineers –

see Figure 57.) If this is not recognised in the software development processes

then it can be a major source of requirements volatility and instability. We address

this by providing levels of indirection and abstraction between system-level feature

models and implementation components containing decision contracts. The

recognition of this problem and the use of this abstraction mechanism to allow

deferred requirements and design decisions is novel to the research described

here.

FIGURE 57 EEC SOFTWARE LAYERED ARCHITECTURE AND SOURCES OF CHANGE/VARIATION

7. Credible Certification/Approval

To make an economic argument for product lines, the chosen approach must take

into account the ability to produce credible evidence to support product

certification/approval. In addition, current regulations do not recognise product

line approaches. The detail of the certification guidance is defined for a single

system being subject to certification approval. Any product line evidence has to be

shown to be applicable and credible from the viewpoint of the product instance

being approved.

119 Instantiating Products using Model Transformation

119 Trusted Product Lines – PhD Thesis S G Hutchesson

8. Information Partitioning/“Chinese Walls”

Protection of intellectual property is increasingly important in industry, particularly

when dealing with customer-sourced or export-controlled data. This was discussed

in detail in section 4.6.1. Note the military helicopter product line described by

Dordowsky et al. [93] had a restriction on the contents of an asset “in order to

comply to non-disclosure and customer relevance principles”.

We set out above the engineering challenges for the use of product lines. The analysis of

the essential problems shows that the intellectual/academic challenge is essentially to

support product lines so as to enable cost-effective certification/approval (including

providing evidence) and to support multiple stakeholders with different

development/instantiation cycles (challenges 3,5,6,7).

It is further noted that there are constraints of the engineering setting (1,2,4,8) which need

to be viewed as constraints in solving the above problems.

5.1.2 Accidental Challenges

In this context, an accidental challenge is one that is a consequence of the particular

industrial environment used to deploy and evaluate the approach. Whilst these are not

necessarily a direct result of the overall research challenge, they are still important aspects

of the work as they are typical examples of the problems faced by academic-to-industrial

technology transfer. (It would be interesting to explore the extent to which failures of

academic technology transfer are in fact failures to recognise the importance of accidental

properties.)

Most organisations and individual engineers are change-averse; an evolutionary approach

to process change and improvement is generally preferred to a revolutionary process shift.

Being sensitive to an evolutionary change results in a set of challenges and constraints that

are enablers to the successful adoption of the approach rather than being required to

deploy and evaluate the fundamental research.

We describe below the accidental challenges that arise from the deployment of the

approach on the Large Civil FADEC product line:

1. The constraint of the use of UML models for software architecture and design

The product line processes and design notations needed to be make use of/extend

UML to be acceptable to the development organisation. The two most recent

projects undertaken by the development organisation used UML class models to

develop the software architecture, and automatic generation of the code structure

from these models. This means that there was significant level of experience in

using class modelling techniques, and a legacy of artefacts that could potentially be

“harvested” to ease the transition to a product line approach.

120 Instantiating Products using Model Transformation

120 Trusted Product Lines – PhD Thesis S G Hutchesson

2. The coinstraint of the use of SPARK as the target implementation language

The product line instantiation processes needed to target SPARK as the

implementation language to be acceptable to the development organisation. The

development organisation had significant experience in using SPARK as the target

implementation language, with more than 5 SPARK applications being successfully

developed and approved to DO-178B/ED-12B Level A.

3. Hard Real-Time, Embedded Constraints

Typically, high-integrity avionics applications are deployed as embedded systems

that have the additional challenge of meeting hard real-time constraints. Any

design or development approach that adds a temporal (or, to a lesser extent,

spatial) overhead to the software system is discouraged. (CPU occupancy is usually

at a premium on such systems, and any approach that would increase CPU

utilisation is not acceptable.)

4. Restrictions on the available (incumbent) development environments/tools (e.g.

ARTiSAN Studio)

Organisations are naturally averse to any unnecessary expenditure on IT, and wish

to maximise their investment in the development environment they already use.

As the development organisation had a significant investment in the ARTiSAN

Studio tool to support their existing UML modelling and code generation, the

product line approach had to work within this constraint.

5. Custom and practice, customer expectations

Significant (and often unstated/assumed) non-functional requirements can come

from both customers and “development stakeholders” (i.e. indirect customers that

make use of the system during development, for example engine test and flight

test engineers.) Typically, they have requirements for tuning and calibrating the

behaviour of the system via separately loadable/settable data values (e.g.

Development Variables (DVs), Data “Trims”4, Data Entry Plug (DEP) etc.), and have

4
 “A trimmer or preset is a miniature adjustable electrical component. It is meant to be set correctly

when installed in some device, and never seen or adjusted by the device's user.” (From Wikipedia).

As control systems transitioned from analogue electronic to discrete software implementation, they

retained much of the historic terminology. Therefore, the altering of a nominally constant data

value to “tune” the system response is known as “trimming the software” in the same way as

adjusting a miniature potentiometer to tune an analogue electronic controller was known as

trimming.

121 Instantiating Products using Model Transformation

121 Trusted Product Lines – PhD Thesis S G Hutchesson

test and monitoring equipment for such purposes that are used on many projects.

Such externally driven compatibility requirements can be easily overlooked, but

must be adhered to when instantiating products from the product line.

6. Project management strategies

Whereas certification evidence is required to support the version of the system

that is presented for certification approval, multiple prior development versions of

FADEC systems need to be delivered to customers to support the wider engine and

aircraft development programmes. This means that the system and software

development programme is managed, resourced and scheduled to support

incremental development. The chosen product line approach must be able to

support the development and deployment of incremental functionality, typically

with a sub-set of components in the first instances; otherwise, it will not meet the

organisational need to support its customer’s programme.

Accidental Challenges
Argue by demonstration and
evaluation that the Accidental
Challenges of the specific
deployment of High Integrity
SPL have been met

View

FADEC Context

The approach is being
deployed and evaluated in the
context of FADEC development
for a large civil gas turbine
engine

Using UML

UML is the incumbent modelling
technique, so the Pl approach
shoudl make use of UML where
possiible

Using SPARK

The development organisation has
significant experience in using
SPARK, so SPARK should be the
targetted source language.

Hard Real-Time Embedded

Target systems are hard real-time,
embedded systems, so the
approach should not add
unnecessary run-time overhead.

Specific Development
Environment
ARTiSAN Studio is the
incumbent modelling tool so the
approach needs to be
deployable in this environment

Custom & Practice
Ensure non-functional
requirements from customers
and “development
stakeholders” are not
compromised

Project Management
Strategies

Approach should support the
development and deployment
of incremental functionality

FIGURE 58 ACCIDENTAL CHALLENGES OF H IGH-INTEGRITY SOFTWARE PRODUCT L INE DEVELOPMENT PRACTICES

123 Instantiating Products using Model Transformation

123 Trusted Product Lines – PhD Thesis S G Hutchesson

5.2 Solution Strategy
We have articulated the essential and accidental challenges posed by the desire to apply a

Software Product Line approach to a set of high-integrity software systems. The following

section describes the approach selected to develop the product line and create the product

instances. We begin by discussing model transformation and how it may be used to

instantiate products when using a model-based approach to software development.

We discussed the use of model transformation technology to instantiate product lines in

Chapter 2; this included a discussion on the types/taxonomy of model transformations.

Here we discuss the design of a set of endogenous, horizontal model-to-model

transformations and a final model-to-text transformation that realise the complete product

instantiation transformation.

5.2.1 Transformation Technology

In this section, we provide background on the model transformation tools chosen to

implement the product line transformations. We briefly introduce and describe the

“mechanics” of producing a transformation using the chosen environment; however, the

novelty is in the design of the transformations that are encoded using this technique, and

this is discussed in section 5.3 onwards.

We required a model-to-model transformation technology that had the following

characteristics:

 Deterministic

 Declarative

 Endogenous

 Suitable for repeated application

 Extensible

 Can be augmented with a Model-To-Text transformation

A number of model transformation languages were available, or have been developed over

the duration of the research project described in this thesis. Many of these languages, such

as ATL (Atlas Transformation Language) , ETL (Epsilon Transformation Language),

Operational QVT (Query/View/Transform), have concrete implementations based on the

Eclipse Modelling Framework, requiring the underlying models to be MOF/EMF compliant.

Whilst it is perfectly possible to implement the transformations described in this thesis

using EMF-compliant tools, this was made difficult due to the constraints described earlier

(requiring the research to be undertaken using the incumbent modelling tools in use in the

sponsoring organisation, which made extensive use of the Artisan Studio UML tool.)

Models developed in Artisan Studio are not easily interchangeable with the EMF

framework (the provided XMI interchange being both unreliable and lossy with respect to

the required model elements.)

Therefore the model transformation technology chosen to realise the product line

instantiation was the ACS/TDK (Automatic Code Synchronisation/Template Development

Kit) “4G” technology from Atego (formerly ARTiSAN). The ACS/TDK toolset provides the

124 Instantiating Products using Model Transformation

124 Trusted Product Lines – PhD Thesis S G Hutchesson

basis for the model-to-text code generation and round-trip model and code development

extensions to the ARTiSAN Studio UML environment. The “4G” version of ACS/TDK

augmented this with the ability to perform Model-to-Model transformation.

The decision to use ACS/TDK 4G (hereafter known as TDK) was primarily driven by the need

to develop an instantiation process that could be used for real on a large, multi-developer

avionics project. ARTiSAN Studio was the incumbent modelling tool used on the projects

that formed the baseline for the product line development activities and there was a

substantial investment in tool licenses, existing product models and user knowledge.

The previous projects used a UML to SPARK code generator that was implemented using

OCS (On-Demand Code Synchronisation). OCS is a simple template-based Model-To-Text

code generation engine. OCS scripts are developed in a language called SDL and are

interpreted by the Studio environment on-demand. The customised OCS SPARK generator

makes use of Ada and SPARK profiles which extend the UML class models to capture Ada

and SPARK-specific concepts. This approach was used effectively on two large avionics

projects (approximately 250K SLOC each). (The SPARK OCS generator was originally

produced by ARTiSAN (now Atego), customised by Altran Praxis and subsequently by the

author.)

However, OCS was not suitable for development of the product line transformation and

code generation for a number of reasons. Firstly, the OCS product had been deprecated by

Artisan and replaced by the ACS generator engine. Secondly, OCS had no model-to–model

transformation capabilities. However, legacy OCS generators can be ported to/hosted

within ACS-based generation schemes. This capability meant that it was easy to create the

back end model-to-text transformation shown in Figure 60 from the OCS baseline and this

had a degree of provenance from previous project use. The effort could therefore be spent

on developing the product line transformation rather than replicating a pre-existing code

generator.

In contrast to the interpreted-SDL approach of the OCS generator, ACS generators are

compiled to Win32 DLLs and executed either on demand or as part of a continuous

generation approach. ACS generators can run in the background during a modelling session

and continuously generate code in response to changes in the source model. Round-

tripping is also supported where model elements can be created in response to external

changes to the source code. However, in the context of high-integrity software

development, the generator is used exclusively in forward–engineering mode. (Back-

documentation or reverse-engineering of design information from code is not an

acceptable high-integrity development practise.)

A specific ACS generator DLL is produced by designing a generator model using the Studio

UML tool (augmented with the TDK development kit). A special version of ACS is then used

on the generator model to auto-generate the generator code and DLL.

125 Instantiating Products using Model Transformation

125 Trusted Product Lines – PhD Thesis S G Hutchesson

5.3 Implementing SPL Transformations
This section contains an overview of the model transformation designed to instantiate

products from the product line. A full description of the transformation design is contained

in Appendix B, which also contains an overview of the “TDK 4G” environment used to

develop the transformations.

5.3.1 Realising Model Transformation for High-Integrity Product Lines

The overall model transformation process used to instantiate products from the product

line is illustrated in Figure 60.

The initial M2M transformation takes the deployment model and produces a product

specific model that has all the variation points resolved based upon the selected decision

options. This model is then used by downstream transformations to produce the product-

specific source code and supporting development artefacts.

Once the reference architecture and product line components have been developed,

product instances can be created. Instantiation of products is achieved by the deployment

of the appropriate components in a copy of the reference architecture model and the

selection of the appropriate decision options for each component (either directly, or as the

result of a higher-level feature model selection). Once the components are deployed and

the decision options are resolved, then product-specific assets can be generated using

model transformation.

5.3.1.1 Model-to-Model Transformation 1 – Reductive Product Line to Product

Model Transform

The TDK 4G model transformation environment allows a transform to be described as a

declarative class model. Here we describe the form of the class model that describes the

product line to product instance reductive transformation

Figure 61 shows the complete transform class model (the detail of which is contained in

Appendix B). The instantiation transformation essentially performs the following

algorithm:

for each component included in the deployment model:

 follow the bind link to the catalogue component;

 for each model element in the catalogue component:

 if it is a variation point then

 if selection expression evaluates True then

 duplicate into deployment model;

 end if;

 else

 duplicate into deployment model;

 end if;

 end for;

end for;

The result of this transformation is a complete product specific model under the

deployment model “root” which can be passed to the downstream transformations.

126 Instantiating Products using Model Transformation

126 Trusted Product Lines – PhD Thesis S G Hutchesson

The transformation model is built up from a network of associated “Search” classes to

isolate the meta-model elements that may exhibit variability. Once these elements are

isolated, the selection expressions that guard the inclusion of that element are evaluated

for the particular decision options selected for the particular product. Successful

evaluation of the expression triggers the duplication of that element into the product line

model. Common meta-model elements (i.e. those not stereotyped as variation points) are

always duplicated into the target model.

To understand the transformation performed we have to refer back to the decision

contract meta- model we introduced in Chapter 4 (shown again here in Figure 59)

FIGURE 59 PRODUCT L INE META-MODEL USING DECISION CONTRACTS (FROM CHAPTER 4)

Component Deployed Component

Contract
{Abstract}

Deployed Contract
{Abstract}

Modelling Element
{Abstract}

Variation Point

Selection Criterion

Decision

Option

Decision Resolution

Selection Option

*

1

*

1

1..*

1

1

1

*

1

*

1

*

1

1

1

1 *

Binds To

1 *

1 *

Resolves

1 *

Selects

* 1

1..*

1..*

0..1

1

Selects

*

0..1 * 0..1

Component Deployed Component

Contract
{Abstract}

Deployed Contract
{Abstract}

Modelling Element
{Abstract}

Variation Point

Selection Criterion

Decision

Option

Decision Resolution

Selection Option

*

1

*

1

1..*

1

1

1

*

1

*

1

*

1

1

1

1 *

Binds To

1 *

1 *

Resolves

1 *

Selects

* 1

1..*

1..*

0..1

1

Selects

*

0..1 * 0..1

Populated

Reference

Architecture

Decision Point

(Feature)

Settings

M2M 1

Product Model With

Variation Points

Bound

M2M 2

Product Model With

Design Patterns

Expanded

Ada Source Code

Files
M2T

Model-to-Model Transformation M2M 1 – This is a
reductive transformation that takes the product model and

uses the Component Decision Point (feature) settings to
determine which variation points in the model should be
populated into the product model and which should be

removed

Transitory in MemoryTransitory in Memory

Model To Text
transformation that
converts UML Class
Models to SPARK

Ada

Model-to-Model Transformation M2M 2 – This is a
set of expansive transformations that apply standard
design patterns to identified components to minimise

the implementation-specific content of the source
model

Product Model

including

deployment

options set for

that specific

product

Component

Catalogue

(Under CM)

Reference

Architecture

(Under CM)

FIGURE 60 PRODUCT INSTANCE SPARK CODE GENERATION FROM REFERENCE ARCHITECTURE AND PRODUCT LINE COMPONENTS

FIGURE 61 OVERVIEW OF STRUCTURE OF MODEL-TO-MODEL TRANSFORMATION 1 CLASS MODEL

This part of the

transformation selects

the classes in the

model to which the

transformation is

applied

This part of the

transformation deals

with the duplication of

common parts of the

model

This part of the

transformation deals with

the variable parts of the

model, duplicating those

parts whose selection

criteria meets the selected

options

129 Instantiating Products using Model Transformation

129 Trusted Product Lines – PhD Thesis S G Hutchesson

The UML is extended via a special product line UML profile to realise this meta-model.

Figure 62 shows a model of this profile.

FIGURE 62 PL PROFILE MAPPING TO UML META-MODEL ELEMENTS

At this point in the transformation process there now exists a model in memory that

represents the deployed component set with all variations points resolved. This now needs

to be transformed into a model from which SPARK Ada can be generated. This is achieved

by applying a set of design pattern transformations.

5.3.2 Opaque Behaviour and Textual Transformation

As previously identified, a major issue for this approach is that to be complete, component

and system models can contain important elements which are not compliant with any

defined meta-model. These include many of the operation design elements which have

textual or graphical content that is included from other modelling environments; code

inserts generated in IDEs or text editors; and informal content from word processing and

diagramming tools (in UML terms these are examples of “opaque behaviour” i.e. whose

form is not described by the UML meta-model). However, to deliver successfully a

complete and correct product-specific component, transformations have to be able to

identify and manipulate such content to be able to deliver the required variability.

Whenever the transformation engine identifies this type of content, the M2M

transformation delegates this to a processor that deals with the opaque behaviour. Figure

63 shows this diagrammatically.

«metaclass»

Category

«metaclass»
«stereotype»

PL Component

«metaclass»
«stereotype»

PL Deployed Component

«metaclass»

Typedef

«metaclass»
«stereotype»

PL Component Feature

«metaclass»
«stereotype»

PL Deployed Feature

«metaclass»

Enumerated Typedef

*1

Package

*1

*
1

Note this is not strictly enforced in

the profile - the PL "Feature"

stereotypes are associated with

Typedef model elements, due to the

way enumerated types are

modelled

This stereotype

models the "Decision

Resolution"

This stereotype models

the "Decision"

«metaclass»

Category

«metaclass»
«stereotype»

PL Component

«metaclass»
«stereotype»

PL Deployed Component

«metaclass»

Typedef

«metaclass»
«stereotype»

PL Component Feature

«metaclass»
«stereotype»

PL Deployed Feature

«metaclass»

Enumerated Typedef

*1

Package

*1

*
1

Note this is not strictly enforced in

the profile - the PL "Feature"

stereotypes are associated with

Typedef model elements, due to the

way enumerated types are

modelled

This stereotype

models the "Decision

Resolution"

This stereotype models

the "Decision"

130 Instantiating Products using Model Transformation

130 Trusted Product Lines – PhD Thesis S G Hutchesson

Populated

Reference

Architecture

Decision Point

(Feature)

Settings

M2M 1

Product Model With

Variation Points

Bound

Transitory in Memory

Product Model

including

deployment

options set for

that specific

product

Processor

for Opaque Behaviour

D
e

c
is

io
n

 S
e

tt
in

g
s

Opaque Behaviour Processed Behaviour

Special transformation is
required for model elements

which comply to no
corresponding meta-model.
These are delegated to an
opaque behaviour processor

Component

Catalogue

(Under CM)

Reference

Architecture

(Under CM)

FIGURE 63 AUXILIARY TRANSFORMATIONS FOR MODEL ELEMENTS NOT COMPLIANT W ITH A DEFINED META-MODEL

(UML OPAQUE BEHAVIOUR)

We can see this in use in the UML operation duplication shown in Figure 64 below. The

instantiated operation duplication factory class DuplicateOperation is decorated with

constraints to populate elements of the duplicated operation. These elements are

modelled as text fields with mark-up to denote the common and variable parts. The

internals of the ParseMarkup transformation operation call out to an ANTLR parser [125]

that removes the unwanted variation from the text string and returns the product-specific

string.

131 Instantiating Products using Model Transformation

131 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 64 INVOKING THE TEXT TRANSFORMATION FOR NON-META-MODEL COMPLIANT MODEL ELEMENTS

The mark-up language used has a very simple set of keywords, expressions and region

markers which allows the identification of regions of text as being common or variable, and

provide the expressions which identify whether the region is required in a product variant.

Text strings containing mark-up take the following form:

VPBegin

{

 Some common text

}

VPIf DECISION_EXPRESSION

{

 Some variant text

}

VPEndif

{

 Some more common text

}

VPEnd

CODE L ISTING 1 EXAMPLE VARIATION TEXT 1

The result of parsing this text with DECISION_EXPRESSION evaluating true would yield the

following:

Some common text

Some variant text

Some more common text

The result of parsing this text with DECISION_EXPRESSION evaluating false would yield the

following:

«MCreate»

DuplicateOperation

ParseMarkup (in Source : %string) : %string

Concrete Derives

{ParseMarkup(Self."Concrete Derives")}

Text

{ParseMarkup(Self.Text)}

Concrete Global

{ParseMarkup(Self."Concrete Global")}

Abstract Derives

{ParseMarkup(Self."Abstract Derives")}

Abstract Global

{ParseMarkup(Self."Abstract Global")}

Ada Declaration Text

{ParseMarkup(Self."Ada Declaration Text")}

«MCreate»

DuplicateOperation

ParseMarkup (in Source : %string) : %string

Concrete Derives

{ParseMarkup(Self."Concrete Derives")}

Text

{ParseMarkup(Self.Text)}

Concrete Global

{ParseMarkup(Self."Concrete Global")}

Abstract Derives

{ParseMarkup(Self."Abstract Derives")}

Abstract Global

{ParseMarkup(Self."Abstract Global")}

Ada Declaration Text

{ParseMarkup(Self."Ada Declaration Text")}

132 Instantiating Products using Model Transformation

132 Trusted Product Lines – PhD Thesis S G Hutchesson

Some common text

Some more common text

The conditional constructs can also include VPElse and VPElsif to provide default and

guarded alternatives.

The expression language is a simple set of <decision> = <value> pairs which can be

combined with Boolean operators AND and OR to produce more complex selection

expressions.

5.3.2.1 Worked Example of Text Transformation

Figure 65 below shows the top-level structure of an IgniterControl component with the

main component class expanded to show the run operation, and the set of five decisions

that make up the component’s variation contract. Each of the five decisions are Boolean

selections (true, false).

FIGURE 65 IGNITER CONTROL COMPONENT SHOWING DECISIONS

If we now look at the body of the run operation, we can see the use of the mark-up

language to include/exclude regions of SPARK code in response to each of the decisions in

this component. Code Listing 2 contains the body of the operation and it can be seen that

the code is split into three distinct regions. The start and end of the operation contains

code common to all variants. For each of the five decisions there are individual regions

that can include or exclude the code specific to that decision.

VPBegin

{-- Determine whether dual ignition is required

If IThrustControl.Get.fuelDipIgnInhibit.data or IThrustControl.Get.primingInProgress.data then

 -- Fuel dip or priming requires all ignition to be inhibited

 lclDualIgnCmd := FALSE;

 lclSingleIgnCmd := FALSE;

else

 lclDualIgnCmd := IStarting.Get.igniterCmdAutostart.data = CommonRecTypes.HIGH_IGN or else

 IStarting.Get.igniterCmdManualStart.data = CommonRecTypes.HIGH_IGN;

}

VPIf AUTO_REL_SELECTED = TRUE

{

 if IAutoRelight.Get.igniterCmdAutoRel.data = CommonRecTypes.HIGH_IGN then

 lclDualIgnCmd := TRUE;

 end if;

}

VPEndIf

VPIf QUICK_RELIGHT_SELECTED = TRUE

{

 if IStarting.Get.igniterCmdQuickRel.data = CommonRecTypes.HIGH_IGN then

 lclDualIgnCmd := TRUE;

 end if;

}

VPEndIf

VPIf CONT_IGN_SELECTED = TRUE

{

 if IThrustControl.Get.igniterCmdFuelDip.data = CommonRecTypes.HIGH_IGN then

 lclDualIgnCmd := TRUE;

 end if;

}

VPEndIf

VPIf CHECK_SURGE_STALL = TRUE

{

 if IEngineEvents.Get.igniterCmdSurgeStall.data = CommonRecTypes.HIGH_IGN then

 lclDualIgnCmd := TRUE;

 end if;

}

VPEndIf

VPIf CHECK_WATER_INGESTION = TRUE

{

 if IEngineEvents.Get.igniterCmdWaterIngest.data = CommonRecTypes.HIGH_IGN then

 lclDualIgnCmd := TRUE;

 end if;

}

VPEndIf

{

 -- for a normal start, set single ignition unless dual ignition has already been selected

 lclSingleIgnCmd := not lclDualIgnCmd and

 (IStarting.Get.igniterCmdAutostart.data = CommonRecTypes.LOW_IGN or

 IStarting.Get.igniterCmdManualStart.data = CommonRecTypes.LOW_IGN);

end if;

-- Write ignition request for use by the actuation function.

if lclDualIgnCmd then

 IIgniters.Put.igniterCmd (data => CommonRecTypes.IgnitionLevelRecType'(data => CommonRecTypes.HIGH_IGN,

 flt => FALSE));

elsif lclSingleIgnCmd then

 IIgniters.Put.igniterCmd (data => CommonRecTypes.IgnitionLevelRecType'(data => CommonRecTypes.LOW_IGN,

 flt => FALSE));

else

 IIgniters.Put.igniterCmd (data => CommonRecTypes.IgnitionLevelRecType'(data => CommonRecTypes.NO_IGN,

 flt => FALSE));

end if;

}

VPEnd

CODE L ISTING 2 EXAMPLE OF USE OF MARK-UP TO INSERT VARIATION IN CODE BODIES

135 Instantiating Products using Model Transformation

135 Trusted Product Lines – PhD Thesis S G Hutchesson

5.3.3 Template Components & Transformation

During the development of the product-line component designs, it became apparent that

the generative programming/M2M transformation approach described earlier in this

chapter was not catering for a significant type of variability. This involved components that

contained similar or identical functionality but operated on different signals and data sets.

Typically, this would be handled in the small by producing parameterised library or utility

components. However, it was found that there were significant areas of repeated or

“cloned” functionality for which the overhead of parameterising the interfaces would

significantly degrade the run-time performance of the component. In addition, the data-

types of the parameters may differ between instantiations of the cloned code, making

strong-typing of the component contract difficult.

This type of problem is handled in Ada by the use of the Generic mechanism; however, Ada
Generics were not supported by SPARK5. Therefore, we extended the transformation to
provide a mechanism allowing components to be templated.

5.3.3.1 Use of Template Components

Template components are deployed in the same manner as “standard” product line

components: a “deployed” component is included in the deployment model and is related

back to the product line component using a “bind” association. Template components are

modelled in terms of their formal template parameters, which are shown in class diagrams

as additional decoration on the package icons (see Product Line Component in Figure 66).

FIGURE 66 SIMPLE EXAMPLE OF TEMPLATE COMPONENT DEPLOYMENT

5
 SPARK did not support Ada generics in 2010 when this generator was implemented. However, as

of the 10.1 release of SPARK, limited support for generics has been introduced.

136 Instantiating Products using Model Transformation

136 Trusted Product Lines – PhD Thesis S G Hutchesson

The bind link between the product-line template and deployed components is decorated

with the mapping of formal to actual parameters for that instantiation of the template. In

this way, the deployed component contains behaviour in terms of the actual parameters in

place of the template parameters.

5.3.3.2 Declaration and Transformation of Template Components

The provision of support for the instantiation of templates within the generation

transformation used a similar approach to the handling of opaque behaviour. The

existence of a decorated bind link from deployed to catalogue component indicates to the

transformation tool that template instantiation is taking place. The Formal Parameter ->

Actual Parameter mappings are cached from the bind dependency and are used within a

simple string replacement function that is applied to specific text fields in the catalogue

model as they are duplicated into the transitory deployed model. The model attributes

that are allowed to contain formal template parameters are as follows:

 Class Name

 Operation Name

 Attribute Name

 Typedef Name

 Operation Body

 SPARK Annotations

5.3.3.3 Templates and Variability

It is perfectly possible for template components to also contain decisions and variation

points. This can be a useful mechanism to cater for small variations within template

components. The decision to create two different templates or provide variation in a single

template can be difficult to judge, and currently is based on a subjective assessment of the

resultant complexity of the variable template component.

137 Instantiating Products using Model Transformation

137 Trusted Product Lines – PhD Thesis S G Hutchesson

5.3.4 Expanding Design Patterns

So far, we have discussed the initial model-to-model transformation (M2M1) shown in

Figure 60. Once this transformation has completed, we run a further set of M2M

transformations to expand any design patterns that have been include in the source

components. One of the weaknesses of the architecture-centric approach that was used

previously was that the architectural UML class models created to represent the software

system were too detailed; in particular, they contained too many target-language specific

constructs.

This level of detail was required in the model to enable successful, syntactically complete

code generation. However, it was not required to convey any special characteristics or

design intent; the model detail was mostly implementation of standard design approaches.

With the availability of model-to-model transformation in the code generation process, it

was decided to take advantage of this to enable the use of more abstract representations

of standard designs. The M2M transformation could then expand these at generation time

to produce the syntactically and semantically complete implementations for code

generation purposes. This is analogous to a Model Driven Architecture approach that

distinguishes between a Platform Independent Model (PIM) and Platform Specific Model

(PSM) [124].

The design patterns expanded with this set of M2M transformations are an ordered set; it

is entirely possible that one design pattern will contain reference to another pattern that

requires subsequent transformation. As we perform the transformations in a single pass, a

design pattern may only make use of other patterns processed in a downstream

transformation.

We apply the design pattern transformations in the following order:

1. Apply Development Variable (DV) Pattern

2. Apply Testpoint Pattern

3. Apply Interface Pattern

4. Apply OS Interface Pattern

5. Apply Testport Pattern

6. Apply Graphical Data Pattern

Each of these design patterns encodes the details of a particular idiom or code construct
that is used within the FADEC software. The details of these used to be completed by hand
by the designer, whereas now they can indicate the required style by use of a model
stereotype, and the transformation will add the detail to the model.

138 Instantiating Products using Model Transformation

138 Trusted Product Lines – PhD Thesis S G Hutchesson

5.3.5 Source Code Generation (Model-to-Text Transformation)

The final transformation phase shown in Figure 60 is the Model-to-Text transformation that

produces the SPARK source code. An important property of this phased transformation

approach is that the transitory model presented to the M2T code generator is of the same

form as the single-project UML model that was used in previous, single-system projects.

Therefore, minimal changes are required to the M2T generator to enable its use on a

product line development. As described in section 5.3.3, the original M2T generator was

implemented using the OCS tool. It is possible to “host” OCS-based generators within an

ACS generator; the OCS templates are imported en-masse as operations in a generator

package.

5.3.6 Lifecycle Data Generation (“Model-to-Document” Transformation)

One important aspect in our approach is that the design model and the transformations

support the generation of product-specific lifecycle evidence as well as the product source

code. We have already discussed the importance of traceability in Chapter 4 Section 4.8,

and the process for exporting product-specific traceability was outlined there.

In addition to the code generator and traceability export tools, we have developed

document generation transformations that can produce DO-178B/ED-12B “Low Level

Requirements” artefacts for each of the components in the instantiated product. The

detail of these documentation transformations are not presented in detail in this thesis as

they were developed by other members of the FADEC development team; however they

were based on the meta-model and transformations developed as part of this research and

presented here. The fact that other engineers can understand the underlying meta-model

and transformation approach to a level at which they can produce supporting

documentation tools is a testament to the usability of the approach we have developed.

139 Instantiating Products using Model Transformation

139 Trusted Product Lines – PhD Thesis S G Hutchesson

5.4 Conclusions and Observations
Model transformation and generative programming approaches are fundamental to

software product line developments that exploit commonality and variability to

automatically realise product instances. We have demonstrated in this chapter that given

a product line model conformant to a reference architecture and core asset components

designed that include variation, model transformation can be used to generate product

instances based upon the resolution of variability decisions in deployed components.

5.4.1 Addressing the Challenges

We began this chapter by setting out a number of essential and accidental challenges for

the deployment of High-Integrity Product Lines. We can now start to review our approach

against these challenges to determine qualitatively how well they have been met. We have

to assume that that the “single system development” approach on which our product line

process is built was fit for purpose; however, this was used successfully on two FADEC

development projects prior to development of this approach [82].

5.4.1.1 Accidental Challenges

We start with an assessment of the approach against the accidental challenges described in

5.1.2.

1. Use of UML models for software architecture and design

Chapter 4 described the architecture and component meta-model that is used to

capture our designs within UML. Here we have described how to transform those

models to produce product instances. This challenge is addressed successfully,

with the caveat regarding the use of test transformations for opaque behaviour as

discussed in 5.3.2.

2. Use of SPARK as the target implementation language

It is clear that our approach is successful in generating SPARK-compliant programs.

3. Hard Real-Time, Embedded Constraints

There is nothing in the approach that inherently compromises the ability to meet

the hard real-time constraints. Indeed the use of reductive transformations at

code generation time helps ensure that the source and object code size is

minimised, and does not require the run-time (and verification) overhead of

deactivation mechanisms.

4. Restrictions on the available (incumbent) development environments/tools (e.g.

ARTiSAN Studio)

We have demonstrated that the ARTiSAN Studio model transformation tools can be

used successfully to implement a reductive product line transformation.

140 Instantiating Products using Model Transformation

140 Trusted Product Lines – PhD Thesis S G Hutchesson

5. Custom and practice, customer expectations

The approach we have taken is to build a product line development environment

upon the existing tools and process that are incumbent in the organisation. Much

of the business custom and practice has been encoded in the design patterns that

are applied during the model transformation process.

6. Project management strategies

Again, our approach of building a product line development environment upon the

existing tools and process should minimise the impact on the project management

practices. There is nothing inherent in our approach that requires a change to the

strategies used. However, this does not mean that the issues inherent in managing

the business aspects of a product line (as articulated in the BAPO model[16]) is

alleviated by this approach.

5.4.1.2 Essential Challenges

Assessing our ability to meet the essential challenges from an analysis of the technical

approach is more difficult. Whilst we can argue that we have produced an approach that

meets the technical constraints of the accidental challenges, for many of the essential

challenges we can only argue that we have “done no harm”. To truly asses our success

against a number of these challenges we must test the approach in the real world. The

challenges listed in bold face below require an assessment in use.

1. Scale & Size of Product

2. Deployment into “typical” industrial teams

3. Enabling the demonstration of requirements satisfaction (validation, traceability,

basic integrity)

Here we have demonstrated an approach that allows the capture of traceability

information in a manner that enables product-specific trace data to be produced.

4. Progressive addition of detail

Modelling the variability as decisions in the components themselves means that

they can be developed in isolation, or at least be decoupled from each other.

Componentry can be developed through the product and product line lifecycle, and

it certainly means that prototype product can be instantiated before a complete

product line implementation is defined (also see point 6).

5. Clarity of design

It can be argued that one of the advantages of the reductive transformation

approach is that all the product variability is visible for scrutiny by review, and the

result of variability decisions is clear. This is aided by the decision contract

approach, where the available decisions and their resultant impact is available for

prior verification.

141 Instantiating Products using Model Transformation

141 Trusted Product Lines – PhD Thesis S G Hutchesson

6. Allowing different sources/drivers of variation at different times in the

development

Again, the “component containing a decision contract” approach means that

components can be developed at separate times, by separate teams and then

integrated into the product line architecture when required. Having an approach

that enables a level of flexibility in working arrangement is key to achieving this

challenge. The development process must be capable of supporting the different

phases of FADEC, Engine and Aircraft development test as outlined in Chapter 3.

7. Credible Certification/Approval

8. Information Partitioning/“Chinese Walls”

The ability to produce product-specific documentation as a result of the product

line transformation means that any information that is not pertinent to the product

itself is removed from the documentation. In the extreme, multiple product line

components (or product-specific components) can be produced to separate

intellectual property that resides with different parties.

5.4.2 Summary

We have previously shown how it is possible to move from a single-system model-based

development to a product line, and, via the appropriate separation of concerns in the

model transformation stream (Figure 67), preserve existing code generation strategies

where appropriate, thereby reducing the risk of the final product not being fit for purpose.

We have shown in detail the design of a model transformation suite that employs both

model-to-model and model-to-text technologies to implement a product line code

generator; the resultant generator is not a research prototype, but is actively used to

develop avionics control system software products.

Deployed

Product Line

Model

Decision

Point

Settings

Defined Product

M2M 1

Reduced

Product Specific

Model

M2M 2

Reduced

Product Specific

Model with

Design Patterns

Expanded

M2T
Product-Specific

Source Code

UML to SPARK Transformation

(Identical to “Single System” Development)

Transitory in Memory Transitory in Memory

Well-proven

transformation from

previous applications

Form of this model is

identical to a “Single

System” development

Product Line/Generative Programming Transfomation

FIGURE 67 SEPARATION OF CONCERNS IN THE MODEL TRANSFORMATION STREAM

142 Instantiating Products using Model Transformation

142 Trusted Product Lines – PhD Thesis S G Hutchesson

Any practical approach to product line instantiation using model-transformation must take

into account those parts of the product definition that are not meta-model compliant. That

has been addressed in the approach described in this chapter. However, a long-term

research aim is to develop and/or integrate a set of modelling environments that are rich

enough to capture the full range of specification and design descriptions required for

current and future systems.

The approach outlined here (and in more detail in Appendix B) was designed to be an

industrial strength implementation of a transformational product line approach. This is an

approach that utilises many of the concepts that the product line community have been

researching and advocating, and is applicable to a high-integrity development

environment. To show fully that this approach has met our essential challenges, we now

need to review how well this approach works in practice.

143 Evaluation and Validation

143 Trusted Product Lines – PhD Thesis S G Hutchesson

6 Evaluation and Validation

his chapter evaluates the trusted product line approach described in the previous

chapters using data obtained from industrial use of the technique. The data provides

quantitative information on the cost-effectiveness of the approach and qualitative

information on the ability of the process to provide product approval evidence. This

evaluation will determine if the trusted product line approach is effective in terms of both

development cost and product quality.

6.1 Industrial Deployment of Trusted Product Lines
The approach to software product line development described in the previous two

chapters has been used to develop an engine control system product line for large civil

aerospace gas turbine engine applications. This development began in early 2009, with the

first application of the product line commencing flight test on a “flying test bed” aircraft in

early 2012.

The development approach used is shown pictorially in Figure 68 below:

Reference Architecture & Framework

Development

Component Development Application Development

Application Layer

System Layer

Class Service IF

Class System IF

Class HAL

Service Layer

«component»

ValidateTGT Component

: ValidateTGT

: ValidateTGTDV

Testpoints

PTemperatures

ROS_Temperatures

ROtherChannel

RFault

RSpeeds
: ValidateTGTData

: ValidateTGT

: ValidateTGTDV

Testpoints

PTemperatures

ROS_Temperatures

ROtherChannel

RFault

RSpeeds
: ValidateTGTData

ITemperatures

OS_Temperatures

IOtherChannel

IFault

ISpeeds

Application Layer

System Layer

«component»

ValidateTGT
Testpoints

PTemperatures

ROS_Temperatures

ROtherChannel

RFault

RSpeeds

«component»

ValidateTGT
Testpoints

PTemperatures

ROS_Temperatures

ROtherChannel

RFault

RSpeeds

Testpoints

PTemperatures

ROS_Temperatures

ROtherChannel

RFault

RSpeeds

Class Service IF

: IFault

: IOtherChannel

: IFault

: IOtherChannel

Class HAL

: OS_Temperatures: OS_Temperatures

Class System IF

: ITemperatures : ISpeeds: ITemperatures : ISpeeds

Service Layer

«bind»

«bind»

«bind»

«bind»

«bind»

S
c
o

p
e

 t
h

e

C
o

m
p

o
n

e
n

ts

Instantiate The Reference Architecture

Deploy The

Components

Product Line Architecture Team

Core Component Developers Application Developers (Product)

Feature

Variability

Feature

Selection

Feature Set
A

p
p

lic
a

ti
o

n

FIGURE 68 SOFTWARE PRODUCT LINE PROCESS FLOW

A specialist team (led by the author) defined the reference architecture; this is as described

in Chapter 4 of this thesis. The development of the product line from 2009 onwards

focussed on the creation of core software components (“core assets”) that could be used

to build the product instances using the model transformation approach described in

T

144 Evaluation and Validation

144 Trusted Product Lines – PhD Thesis S G Hutchesson

Chapter 5. The company were hesitant to embrace fully the product lines concept;

therefore, the development effort was split into two development teams. A product lines

component team was established to develop components compliant with a set of product

line software requirements specifications (SRS). These SRSs identified common and variable

requirements for the components against the scope of the proposed product line, with

variability specified using the PLUSS notation [119]. The components produced contained

decision contracts and variation points as described in chapter 4. This team was

responsible for approximately 50% of the functionality required for the first application;

the set of components developed in this way was defined and agreed with the recipient

project in a “scope of supply” (SoS) document. Secondly, a project team was formed to

produce the remaining 50% of project-specific components that did not contain variation,

and to deploy the full set of components to produce the final application. However, it

should be noted that all software components were deployed into the product using the

code generation process described in chapter 5. The only difference between “core asset”

components and “project specific” components is that the project-specific components

typically did not contain variability.

6.2 Evaluation Methods
We employ two complementary evaluation methods to evaluate and assess the

effectiveness and success of the deployed approach. Firstly, we evaluate the cost-

effectiveness of the approach using a quantitative method based upon time booking

(effort) data gathered from the development teams on a weekly basis over a two-year

period (Jan 2009 to Feb 2011). We also critically review the findings of independent audit

of the project against the objectives of DO-178B/ED-12B to determine the effectiveness of

the approach to deliver product assets of the required quality.

6.2.1 Quantitative Evaluation Method

The effort expended by the domain and application teams was collected using a data

collection approach known as Process Engineering Language or PEL [126]. PEL requires the

definition of a grammar to describe development activities, which allow the data collected

to be analysed from a number of different viewpoints and, crucially, those queries do not

need to be defined prior to the collection of the data. As described in [126], the PEL

lexicon provides a constrained vocabulary of terms used to describe a process. This PEL

lexicon is divided into four dimensions: Actions, Stages, Products and Representations:

Actions are verbs that describe the task performed, for example Produce, Review,

Maintain.

Stages provide a time or milestone view of the project, and are typically obtained

from the project or programme management view of the project, for example

Project A, Delivery D4.1. This is traditionally the dimension against which effort and

cost data is collected for budgetary and billing purposes.

Products are the physical or logical components and/or systems that are being

produced, for example Thrust Reverser, Starting System. It is typically the product

breakdown structure as defined in the physical and functional architectures.

145 Evaluation and Validation

145 Trusted Product Lines – PhD Thesis S G Hutchesson

Representations are the process outputs and work products, for example Software

Requirements, Code. This provides the process view on the data and should reflect

the process definitions as worked on the project.

The defined PEL lexicon used to collect the effort metrics on the product line development

is summarised below:

Action Stage Product Representation

Produce <List of Project

Deliveries>

<Product

Component

Structure>

Requirements

Review Asset

Development6

 Architecture

Rework Design

Re-Review Code

Support Builds

Attend Low Level Test

 Integration Test

 Hardware Software

Integration Test

 Documentation

 “Other” (Management)

This allows the development staff to construct cost-booking codes by selecting one item

from each of these columns that most accurately reflects the activity they have performed,

for example:

PersonA books 10 hours to : ”Review“ “Delivery 1.1” “Component X” “Design”

6
 Note that in addition to the list of project software deliveries, the Stage dimension has a category

of Asset Development that allowed the collection of costs for the production of product line assets.

146 Evaluation and Validation

146 Trusted Product Lines – PhD Thesis S G Hutchesson

This method has been used for cost collection on software development within the

company since 1996, and was not specially introduced for evaluation of this research.

6.2.2 Qualitative Evaluation Method

During the period of evaluation, the development project was subject to a number of

independent audits to determine the compliance to DO-178B/ED-12B and the internal

company procedures. These audits provide a view on the development activities that is not

prejudiced by the business focus on product lines; they are intended solely to ascertain

whether the product as designed and built meets the regulatory objectives and company

quality standards. This provides an objective evaluation on the ability of the product line

“factory” to deliver assets of the required quality with the necessary supporting evidence.

6.3 Evaluation Results
This section contains the results of the evaluations undertaken as described previously.

Firstly, we provide the results of the analysis of the PEL cost-booking data, followed by the

qualitative analysis of the audit findings.

6.3.1 Quantitative Evaluation Results - Relative Process Performance

6.3.1.1 Sample Data Set

The effort data analysed comprises the set of time bookings taken between January 2009

and February 2011. This includes both the product lines component development team

and the application development team for the first target project. The data set comprises

15,400 individual time booking entries, made by 184 unique individuals. The total effort

recorded over this period totals 142,000 hours, which is a significant development activity

both in terms of company investment and for arguing the relevance of the data set for

analysis purposes.

We can start to use the PEL classifications identified earlier to understand the data content.

Figure 69 shows the breakdown of the total hours booked by the process area or

“representation”.

147 Evaluation and Validation

147 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 69 BREAKDOWN OF T IME AGAINST "REPRESENTATION"

Here we can see the largest development activity recorded was the design process; in fact,

the design/code activities account for 51% of the activities measured. Understanding this

breakdown is important in interpreting the data presented:

 The data sample covers the major development activities. The verification by test

activities had not started to any great degree over the time period sampled.

(Verification by test accounts for 17% of the time booking data analysed. This has

typically risen to 50% of the total hours expended by completion of a development

project).

 The 6% identified as requirements is primarily requirements review. The SRS set

was developed by a “systems engineering” team which, unfortunately for this

analysis, does not use the PEL booking system for time recording.

We can now attempt to analyse the data set to determine if we can identify and isolate the

effects of development for a product line.

6.3.1.2 Analysis 1 - Total Hours per Process Area by Team

The first comparative analysis provides the breakdown of hours per process

representation, shown separately for the project team (Figure 70) and the product lines

team (Figure 71). This separation of data was made using the “Asset Development”

identifier in the Stage PEL dimension to indicate those hours booked by the product lines

development team.

148 Evaluation and Validation

148 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 70 BREAKDOWN OF PRODUCT SPECIFIC T IME AGAINST "REPRESENTATION"

FIGURE 71 BREAKDOWN OF PRODUCT LINES T IME AGAINST "REPRESENTATION"

We can see here that there is no verification by test activity recorded against the product

lines development team. This is to be expected, as verification by test requires a

149 Evaluation and Validation

149 Trusted Product Lines – PhD Thesis S G Hutchesson

“buildable” product against which to run the tests. For components containing variation,

these need to be instantiated before a buildable component is available.

A view of this data just containing the development activities (requirements, architecture,

design and code) is provided in Figure 72 and Figure 73 below. Using this breakdown, we

can compare and contrast the proportion of development effort across the phases for

product line and non-product line component development as defined by the cost

attribution within the Stage field of the PEL bookings.

FIGURE 72 BREAKDOWN OF PRODUCT SPECIFIC T IME AGAINST DEVELOPMENT PROCESS TASKS

FIGURE 73 BREAKDOWN OF PRODUCT LINES T IME AGAINST DEVELOPMENT PROCESS TASKS

150 Evaluation and Validation

150 Trusted Product Lines – PhD Thesis S G Hutchesson

Here we can see that proportionally there is slightly more effort in requirements review

and code development in the product lines team compared with the product-specific

development team, which we could postulate was due to the added complexity of both

reviewing and implementing artefacts containing variability (this is discussed further in

section 6.4.1.4.)

This data was sub-divided into Product Lines and Product Specific essentially by identifying

the team from which the hours were recorded. This may not necessarily be an absolutely

accurate means of distinguishing between product line and product specific developments,

although it is a strong indicator. The next set of analyses attempts to provide a greater

degree of accuracy in this sub-division.

6.3.1.3 Analysis 2 – Hours by “Scope of Supply”

For this analysis, we use the product breakdown as defined in the project management

documentation for the Product Line; namely that defined in the “Scope of Supply” (S0S)

document. This was an agreement at the start of the Product Line development that

identified those parts of the FADEC software that were to be developed as a product line

asset, and those that were to be developed on project. Figure 74 and Figure 75 show the

relative levels of process effort between the components identified as Product Line and

those developed specifically for the project as defined in the SoS document. Figure 76 and

Figure 77 repeat this but purely for the development tasks.

FIGURE 74 BREAKDOWN OF PRODUCT SPECIFIC T IME (AS DEFINED IN SOS) AGAINST "REPRESENTATION"

151 Evaluation and Validation

151 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 75 BREAKDOWN OF PRODUCT LINE T IME (AS DEFINED IN SOS) AGAINST "REPRESENTATION"

FIGURE 76 BREAKDOWN OF PRODUCT SPECIFIC T IME (AS DEFINED IN SOS) AGAINST DEVELOPMENT PROCESS TASKS

152 Evaluation and Validation

152 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 77 BREAKDOWN OF PRODUCT LINE T IME (AS DEFINED IN SOS) AGAINST DEVELOPMENT PROCESS TASKS

Again, this analysis indicates that the proportion of the engineering effort on requirements

review and code development is slightly greater for the Product Line components then for

the product-specific components; however the differences are quite small.

As with the analysis documented in 6.3.1.2, this breakdown into product line and product

specific components is a project management distinction, and does not necessarily

distinguish whether technically the components contain variability or not. Therefore, we

perform a final comparative analysis, using information extracted from the components

themselves.

153 Evaluation and Validation

153 Trusted Product Lines – PhD Thesis S G Hutchesson

6.3.1.4 Analysis 3 – Hours By Variability

For this cost analysis, rather than distinguishing between “Product Line” and “Product

Specific” components by project management and/or team structure allocation, we

actually distinguish between variable and non-variable components. This identification was

performed by an automated analysis of the UML model used to develop the set of

components. This analysis tool traversed the model in a similar manner to the code

generator and identified those components that contained decision contracts. In this way,

we can identify definitively the components that have had required extra work to provide

variation points.

Figure 78 and Figure 79 show the total process time allocation for non-variable and variable

components respectively, and Figure 80 and Figure 81 show the proportions for the

development processes only.

FIGURE 78 BREAKDOWN OF DEVELOPMENT T IME FOR COMPONENTS CONTAINING NO VARIABILITY

154 Evaluation and Validation

154 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 79 BREAKDOWN OF DEVELOPMENT T IME FOR COMPONENTS CONTAINING VARIABILITY

FIGURE 80 BREAKDOWN OF DEVELOPMENT PROCESS T IME FOR COMPONENTS NOT CONTAINING VARIABILITY

155 Evaluation and Validation

155 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 81 BREAKDOWN OF DEVELOPMENT PROCESS T IME FOR COMPONENTS CONTAINING VARIABILITY

Again, we can see a similar pattern to the previous analyses, however the difference in the

proportionate effort in code development is even more marked (22% for non-variable

components vs 28% for variable). Conversely, there is a marked reduction proportionally

for the architectural development effort (17% for non-variable components vs 10% for

variable).

Whilst these analyses of relative effort per development phase provide an interesting

insight into how the development process may subtly change when developing variable

components, they do not provide any indication on the magnitude of the cost difference

between the two component types. This is addressed in the next section.

156 Evaluation and Validation

156 Trusted Product Lines – PhD Thesis S G Hutchesson

6.3.2 Quantitative Evaluation Results - Absolute Cost Performance

The previous set of analyses concentrated on the relative process cost differences between

product line and project-specific component development. Here we look at the absolute

difference in the component development costs to ascertain if there is a significant cost

differential between the two component types.

Table 4 shows the cumulative development costs for the components on the project,

categorised into variable and non-variable components. (Note that in this categorisation, a

variable component is one that contains a decision contract, as identified by an analysis of

the product UML model.)

TABLE 4 AVERAGE DEVELOPMENT COST PER COMPONENT (VARIABLE AND NON-VARIABLE)

 Variable

Components

Non-Variable

Components

Total Cost (Hours) 37924.05 28883.95

Number of Components Developed 72 140

Average Cost per Component (Hours) 526.7 206.3

Cost Ratio Variable to Non-Variable

Component

2.6

The “Total Cost” row in Table 4 contains the recorded development effort that can be

directly attributable to the components from the PEL cost booking data. Calculating the

mean cost per component for each component type, and calculating the ratio between

them identifies a cost ratio of 2.6 between a variable and non-variable component. Given

that the cost data for variable components will include any deployment costs incurred by

the project, this is closely in line with the industry-accepted view that a product line

approach becomes cost effective at or after 3 deployments.

Whilst this result appears to correlate well with the accepted industry wisdom, we need to

determine which factors are influencing the increased cost of the variable components.

Is the introduction of variability the dominant factor in the cost of these components, or

has the company decided to implement large, problematic or complex components as

product line assets?

To help to identify and isolate the root cause of this cost differential, we analyse the

relative code size and complexity of the variable and non-variable components. In this

analysis, we measure complexity using McCabe’s cyclomatic complexity metric. Code size

157 Evaluation and Validation

157 Trusted Product Lines – PhD Thesis S G Hutchesson

is determined using a number of “source lines of code” (SLOC) counting rules, including

“Non-Blank, Non-Comment” (to give a measure of the “value” of the code) and a simple

“number of lines in the code file” measurement.

Table 5 shows the relative complexity of the component types for a set of instantiated

components (both variable and non-variable). Note that this analysis is post-instantiation;

i.e. this is after deployment options have been selected and code generated for that

particular option set.

TABLE 5 COMPARATIVE AVERAGE COMPLEXITY (MCCABE) BETWEEN VARIABLE AND NON-VARIABLE COMPONENTS

 Number of

Components

Analysed

Sum of

Mean

McCabe

Mean Mean

McCabe

 Sum of

Total

McCabe

Average

Total

McCabe

Variable Components 57 126.48 2.22 1406 24.67

Non-Variable Components 87 164.61 1.89 1422 16.34

Mean McCabe Ratio (Variable/Non-Variable) 1.17

Total McCabe Ratio (Variable/Non-Variable) 1.51

The difference between total and mean McCabe in Table 5 is explained as follows:

McCabe is measured per sub-program (i.e. SPARK procedure or function). A component

may have a number of procedures or functions within its implementation. If the number of

subprograms in a component is denoted as n then:

Total McCabe per Component = ∑ ()

Mean McCabe per Component = (∑ ()
)

We can see from the Mean McCabe ratio in Table 5 that the variable components are not,

on average, significantly more complex than the non-variable components (1.17 times

more complex on average). Certainly, this difference is not enough to account for the

difference in development cost.

The Total McCabe ratio shows a more pronounced difference (1.51 times) – this would

indicate that the variable components are larger, or at least contain more individual

operations than the non-variable components. This may be confirmed by looking at the

relative component sizes as indicated by their Source Line of Code (SLOC) counts, shown in

Table 6.

158 Evaluation and Validation

158 Trusted Product Lines – PhD Thesis S G Hutchesson

TABLE 6 COMPARATIVE AVERAGE CODE S IZE (SLOC) BETWEEN VARIABLE AND NON-VARIABLE COMPONENTS

 Number

of

Comps

Analysed

Total

Code

Lines

Total

Blank

Lines

Total

Cmt

Lines

Total

Lines

 Mean

Code

Lines

per

Comp

Mean

Blank

Lines

per

Comp

Mean

Cmt

Lines

per

Comp

Mean

Lines

per

Comp

Variable

Components

57 59160 35095 147068 241323 1037.89 615.70 2580.14 4233.74

Non-Variable

Components

87 44487 24889 122363 191739 511.34 286.08 1406.47 2203.90

Ratio (Variable/Non-Variable) 2.03 2.15 1.83 1.92

Table 6 records the results of analysing the source code of a set of deployed components; a

total SLOC count is produced for each component, and this is further sub-divided into the

following categories:

 Code Lines – ‘Useful’ lines of program source (sometimes defined as Non-Blank,

Non-Comment)

 Blank Lines

 Comment Lines

Table 6 shows the ratio of average useful Code Lines between Variable and Non-Variable

components to be 2.03, i.e. Instantiated variable components are on average twice the size

of non-variable components (using this SLOC measure).

This size differential could be accounted for in a number of ways:

1. The components that the company has decided to implement as part of a product

line are inherently larger.

2. The variation mechanism used in the product line components results in larger

code files post-instantiation (using this SLOC count) then if non-variant code was

used.

We postulate that the size increase identified is probably a combination of these two

explanations. Because of the SLOC counting convention used in this analysis, the size data

is subject to inflation due to changes in the code layout; for example:

if A and B then

159 Evaluation and Validation

159 Trusted Product Lines – PhD Thesis S G Hutchesson

would count as a single line using this convention, whereas the semantically equivalent:

if A

and B

then

would count as 3 lines. If the “and B” part of that expression was optional as part of a

variability point, then the second form of the code would be used to allow the insertion of

the variability mark-up code, as shown stylistically below :

if A

VpIF option {

and B

}

then

This type of construct naturally leads to inflated code sizes when measuring non-blank non-

comment lines of code. To counteract these effects a semi-colon-based code count

convention (i.e. a count of statement termination) may show that the relative code sizes

are not as different as it appears.

6.3.3 Cost Correlation

Now we have identified the relative cost differential between variable and non-variable

components, it would be useful to determine if there was any clearly identifiable aspect of

a variable component that contributed to the increased cost. To try and identity this we

plotted a number of potential component cost-drivers against component cost to see if any

were closely correlated.

Figure 82 to Figure 85 show various component variability complexity measures (based

upon the number of decisions/options provided to the component user (Figure 82, Figure

83), and how much of an impact those decisions have on the actual variability in the code

(Figure 84, Figure 85)).

160 Evaluation and Validation

160 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 82 NUMBER OF DECISIONS IN A COMPONENT VS COMPONENT COST

FIGURE 83 NUMBER OF OPTIONS IN A COMPONENT VS COMPONENT COST

161 Evaluation and Validation

161 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 84 NUMBER OF USES OF A DECISION IN A COMPONENT VS COMPONENT COST

FIGURE 85 AMOUNT OF CODE MARKUP IN A COMPONENT VS COMPONENT COST

We can see from this analysis that none of these factors could be said to closely correlate

with the cost of the components. The factor with the closest correlation is the number of

options in a component (with an R2 correlation of approximately 0.4) but this is still very

weak.

We also compared the component development costs with both the code size in SLOC and

the code complexity (McCabe). This comparison was performed for both variable and non-

variable components. These comparisons can be seen in Figure 86 to Figure 89.

162 Evaluation and Validation

162 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 86 SLOC V COMPONENT COST FOR NON-VARIABLE COMPONENTS

FIGURE 87 SLOC VS COMPONENT DEVELOPMENT COST FOR VARIABLE COMPONENTS

163 Evaluation and Validation

163 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 88 AVERAGE MCCABE COMPLEXITY VS COMPONENT COST FOR NON-VARIABLE COMPONENTS

FIGURE 89 AVERAGE MCCABE COMPLEXITY VS COMPONENT COST FOR VARIABLE COMPONENTS

Again, there is no close correlation between size or complexity and component

development cost to be seen from this analysis. It is interesting that size and cost for non-

variable components are significantly more closely correlated (R2 = 0.45) than for variable

components (R2 = 0.01).

164 Evaluation and Validation

164 Trusted Product Lines – PhD Thesis S G Hutchesson

6.4 Qualitative Evaluation Results
We have seen in the previous section how the Trusted Product Lines approach has affected

the costs of the software development process. Now we try to assess the effect of this

approach on the quality of the software product produced. This is a qualitative assessment

based on the results of a number of internal audits undertaken on the project deploying

the product line assets.

6.4.1 Pre-SOI2 Audit Findings

The company has a policy of performing “pre-audits” prior to any regulatory audit. These

are held to ensure that the project is ready for that level of scrutiny and are performed by

senior Software Quality Assurance (SQA) staff and the company DO-178B experts.

Typically, the findings of these audits are more extensive than the regulatory audits as the

auditors have more in-depth understanding of the processes and the product.

The criteria used to determine if a project is ready for a pre-SOI2 audit is as follows [127] :

 50% of Requirements written and reviewed

 50% of Design written and reviewed

 50% of Code written and reviewed

 All necessary requirements and design procedures/standards written and
reviewed

 All outstanding SQA actions against design processes closed

The auditors expect to be able to follow a number of traceable “threads” through the
development artifacts from systems requirement to the implementing code.

Two pre-SOI2 audits were held on the project in question [127, 128], and observations
were made regarding the project compliance to the objectives of DO-178B. The
relevant audit findings are discussed below.

6.4.1.1 Initial Audit

The initial pre-SOI2 audit was held at the request of the project, although the auditors

noted that the criteria for SOI2 had not been fully met and, as a result, they recommended

a follow-up audit should be held prior to agreeing the project was fit for scrutiny by the

regulator. Amongst a number of issues found during the audit, the following observations

were raised that are pertinent to the product line approach [127]:

1) Ensure that reviews are managed such that evidence exists of who answered each

review question.

2) Ensure that the evidence of review for the High Level and Low Level software

requirements is complete and explicitly addresses the DO178B requirements

The evidence of review under question was gathered both on the project and during

product-line asset generation.

165 Evaluation and Validation

165 Trusted Product Lines – PhD Thesis S G Hutchesson

6.4.1.2 Follow-up Audit

The follow-up pre-SOI2 audit was held three months after the original, with the project

artefacts in a state compliant with the audit entry criteria. The main product-line related

finding of this audit is as follows [128]:

1) Provide evidence that shows how the review evidence of a generic artefact

deployed on a project meets the DO178B requirements.

This is a more explicit action than raised at the original audit, and it summarises and

encapsulates the problems the auditors had with the use of generic and reusable assets in

general (especially where transformation was involved). It was difficult for the project to

demonstrate the applicability of the verification evidence for the product-line asset on

the deployed project (to the satisfaction of the auditors).

The response to this was for the deployed product line assets to be re-reviewed by the

project to ensure applicable verification evidence was available to support the regulatory

approval. This naturally reduces the value of the product line assets to the deploying

projects.

6.5 Trusted Product Lines Argument Framework
Chapter 1 summarised the five main challenges/strategies that we identified as being

fundamental to the successful application of Trusted Product Lines. As part of the research

evaluation, we now describe how these challenges have been addressed by our approach.

Figure 90 maps the high-integrity re-use issues raised by the FAA and Leveson and Weiss

(as identified and enumerated in Chapter 2) onto the Trusted Product Lines framework to

indicate where these need to be been addressed and/or discharged. It should be noted

that we have shown via the data analysis in this chapter that the assumption “Assume

Minimum of 3 Products” stated in Figure 90 is valid in the context of our Trusted Product

Lines approach.

FIGURE 90 ANNOTATED TRUSTED PRODUCT L INES GSN ARGUMENT

167 Evaluation and Validation

167 Trusted Product Lines – PhD Thesis S G Hutchesson

6.5.1.1 PL Scoping is Possible

We described this challenge as being able to clearly identify a product line scope; i.e. be

able to define robustly when a specific product is a member of the product line (and

equally when a product is not a member). In addition, it must be possible to identify

common parts of the product line (those aspects that are present in all members) and the

variable parts (aspects included/excluded by selection).

We noted in Chapter 1 (1.3.1) that this was primarily an engineering challenge, not

requiring significant research investment. Much of the scoping activity is problem-domain

related, and thus not addressed explicitly by the work described in this thesis. However,

we have provided explicit support to address the solution-domain issues, via our decision

contract approach:

 We clearly identify those components that contain variability, via the existence of a

decision contract.

 We clearly map those decisions onto the variable parts of the component with

navigable associations in the UML model.

 We provide clear traceability back to the High Level Requirements for both

common and variable parts of the components.

 We provide automatically, via transformation, the applicable subset of the

traceability for the instantiated component.

In this way, the solution-domain issues raised by Leveson and Weiss (LW3) and the FAA in

AC-148 (AC-R8) are addressed by our approach.

6.5.1.2 PL Synthesis is Effective

We described this as a demonstration of our ability to apply product line synthesis

techniques to the creation of product instances from artefacts developed for the product

line. The Trusted Product Line development and synthesis approach has to take into

account the characteristics of typical high-integrity development projects. The product line

development approach chosen must be capable of providing credible approval evidence for

the instantiated product. This is a key message of Trusted Product Lines, and we have

successfully demonstrated this in our approach – specifically by the following:

 We base our approach on a proven, certifiable software engineering process based

on UML, SPARK and model-to-text code generators that have been demonstrated

in use on current systems.

 We have defined a reference architecture that can host components containing

variability but also instantiate products whose architecture as deployed reflects

current, certified products.

 We include the SPARK information flow annotations in the component design,

including explicit support for their variability and instantiation into the product

source code.

168 Evaluation and Validation

168 Trusted Product Lines – PhD Thesis S G Hutchesson

 We have defined a decision contract approach that makes explicit the allowable

variability in the component, with navigable links to all the points of variation in the

component to aid review and analysis.

 Traceability links for both common and variable parts of the component are

supported, allowing the variation to be justified and reviewed.

 Documentation can be produced for the product line component, allowing review

and analysis pre-instantiation, and for the product-instance component, providing

the DO-178B/ED-12B Low Level Requirements artefacts to support certification.

 Negative variability ensures that the review and analysis of the product line

artefacts sees the full scope of the variation, and understands how particular

decision options (and combinations) would affect the instantiated product.

 We have defined a deployment process that captures how products are built – i.e.

from product line components allocated to processors, and with specific options

selected to resolve the component variability.

 We have produced transformations that create the Low Level Requirements and

Source Code artefacts for specific products from an architectural model that

contains deployed components and resolved decisions.

 We have demonstrated in practice that this process is deployable on industrial-

sized projects with large development teams who, in many cases, were unfamiliar

with product line techniques prior to the deployment of this process.

Our approach has specifically addressed the associated PL synthesis issues raised by

Leveson and Weiss (LW2 – via the reference architecture and decision contract) and the

FAA in AC-148 (AC-D4, AC- I1, AC-I2, AC-R3, AC-R7).

We remove the need to consider the following, as we are developing as a product line and

not as a reusable software component: AC-D3, AC-U4, AC-R4 and AC-R6.

6.5.1.3 Verification Evidence Applies

This challenge relates primarily to reducing product verification costs via the product line

approach, whilst retaining the ability to demonstrate the applicability of the verification

evidence to the product instance being certified. We have not addressed verification by

test explicitly in this research, however our approach “does no harm”, in that the process

produces artefacts that would enable a traditional verification approach to be followed on

the instantiated product. Theoretically, we should be increasing the maturity of products

instantiated using our approach (reducing the cost of what the company terms “scrap and

rework”) as we enable review of product line assets prior to instantiation. However, as we

have seen in section 6.5, it may be difficult to demonstrate the applicability of this

verification to instantiated product. We address this in Chapter 7.

169 Evaluation and Validation

169 Trusted Product Lines – PhD Thesis S G Hutchesson

6.5.1.4 CM is Effective

The effectiveness of the Configuration Management and Change Control processes to

manage the product assets and associated process evidence is key to the successful

application of a Trusted Product Line Approach. As we noted in Chapter 1, this is primarily

an engineering challenge rather than one that required novel research, and therefore we

have not addressed this further. Furthermore, there is nothing introduced in our approach

that should provide additional CM challenges over and above those existent already with

the configuration of complex models.

6.5.1.5 Plans, Processes and Procedures are Standardised

The consistent management of the engineering process across a product line development

is a significant challenge, as discussed in Chapter 1 (Section 1.3.5). However, it was not

specifically the subject of the research described in this thesis and therefore will not be

considered further.

6.5.1.6 Remaining High-Integrity Reuse Issues

The following issues raised by the FAA in AC20-148 and Leveson and Weiss are not

addressed by the strategies and goals in the trusted product lines approach: LW4, AC-D5,

AC-U2, AC-U3, AC-U4. This is because in general these issues need to be addressed at the

system level rather than the software level.

6.6 Conclusions
In this chapter, we have provided both qualitative and quantitative analyses of the

effectiveness of the product line approach as defined previously in this thesis. We have

analysed the development effort expended on the various project phases and compared

and contrasted this between project-specific and product-line assets. We have analysed

the development cost differential between components containing variation and non-

variant components. Finally, we have started to assess the quality level and regulatory

compliance evidence of the product line assets.

We can draw the following conclusions from this analysis:

1. The relative size of the development process phases does not change to any

significant degree when designing product line assets/variable components.

2. The absolute cost of developing a variant component is greater than developing a

specific component. The data indicates that the average cost differential is 2.6

times. This would appear to be in line with the product line industry heuristic of a

payback on investment after 3 products have been deployed from the product line.

It is interesting to question whether the 2.6 times cost differential is peculiar to or

dependent on the high-integrity nature of the domain. Given that there has been

no distortion or re-profiling of the development process, then it is reasonable to

say that all phases of the development process increase by the same relative

amount. Therefore, it can be assumed there is nothing inherent in the high-

integrity process that contributes to this cost increase. It can be postulated,

therefore, that a similar move to product line development within a different

170 Evaluation and Validation

170 Trusted Product Lines – PhD Thesis S G Hutchesson

domain would result in a similar relative development cost increase; there is little

inherently “high-integrity specific” in this relative cost observation.

3. It has been difficult for projects to satisfy independent auditors that the verification

evidence for product-line assets is applicable when deployed.

A casual observer may argue that due to the experimental data presented in this chapter

being based on a single product instantiation, this weakens the conclusions that can be

drawn. As we discussed in chapter 1, this type of applied industrial research often consists

of “N-of-1” studies [13] and, indeed, we have seen that comparative evidence is difficult to

gather. However, this weakness is outweighed by the size, complexity and diversity of the

product being developed, and the nature of the development process followed. The

development was performed using essentially two parallel teams; one undertaking a

product-line approach containing variability and the other a single-product based

development. This allowed other environmental factors to be discounted when analysing

the comparative data. As this development was undertaken by a typical engineering

organisation for a sizable, important product further provides credibility to the

experimental data.

In summary, the analysis to date has shown that the Trusted Product Lines approach does

not significantly weaken the economic case for a product line approach as compared to

other industries. However, there are opportunities to ensure the quality level necessary for

regulatory compliance that may significantly improve the economic argument. In the rest

of this thesis, we discuss approaches that may address the issues related to the

applicability of evidence at deployment time.

171 Property-Preserving Transformations

171 Trusted Product Lines – PhD Thesis S G Hutchesson

7 Property-Preserving Transformations

he use of transformations to enable a product to be instantiated from assets

designed as part of a product-line is fundamental to the approaches we have

discussed so far in this thesis. Evaluation has shown that, whilst this may be a valid

approach in general, the ability to claim prior verification evidence against a transformed

asset is problematic. This is due to a lack of assurance that the transformation has not

introduced an error into the product. A viable Trusted Product Lines approach requires the

ability to guarantee the correctness of a transformation with respect to a defined set of

properties of the input model. This guarantee must be independent of the particular input

model used. This leads us to investigate the implementation of Property-Preserving

Transformations.

7.1 The Challenge of Property-Preserving Transformation
Ideally, the instantiation of software products from a product line would be performed by

trusted transformation techniques. This would mean that, for a given set of verified input

product-line models and a set of product selection criteria (e.g. feature selections), the

transformation would be guaranteed to correctly instantiate the product instance, and that

instance would be self-consistent, correct, and valid. Current transformation tools do not

provide this level of assurance.

Within an aerospace context, such an automated transformation would be regarded as a

development tool, and be subject to DO-178B/ED-12B[4] tool qualification objectives if its

output was not separately verified (tool qualification is discussed at length in the next

section.) However, requiring extensive separate re-verification of the instantiated product

would begin to undermine the business case for the product-line approach. The challenge

is to make verification evidence gathered for the product-line clearly applicable to a

product instance whilst using a cost effective, affordable transformation to perform the

product instantiation. As discussed in Chapter 1, we must to construct arguments that a

product instantiated from the product line is fit for purpose whilst minimising the economic

cost of producing that product. Those arguments have to convince developers, regulators

and users that the following hold :

 Applicability – the requested product has been instantiated.

 Conformance – all artefacts conform to the required and declared standards.

 Compliance – all artefacts demonstrably comply to their requirements,

specifications and architectual constraints.

In the literature, Jackson et al. [129] discuss an approach to ensuring a reused

transformation still preserves the properties of the original transformation, but do not

address how to show that the transformation itself retains properties from source to

transformed artefact. In fact, their approach is predicated on having performed

verification on the original transformation to “ensure that they behave as desired”.

T

172 Property-Preserving Transformations

172 Trusted Product Lines – PhD Thesis S G Hutchesson

7.1.1 Trusting Tools –The Role of Tool Qualification

Civil aerospace is a typical example of a regulated domain, in which software is developed

to a set of industry guidelines and is subject to audit and approval by regulatory authority

or body. Prior to entry into service, civil avionics software is required to be approved by an

airworthiness authority, a process more commonly known as “certification”. This approval

process typically takes the form of a set of audits designed to demonstrate that the

software has been developed in accordance with the guidance of DO-178B/ED-12B

“Software Considerations in Airborne Systems and Equipment Certification” [4].

The annex A tables in DO-178B/ED-12B provide guidance on objectives for each of the

software development processes and how they vary with assurance level. For example,

DO-178B/ED-12B table A-5 lists the objectives associated with “Verification of the output of

the software coding and integration processes”. Let us assume that most product line

developments will include transformations that produce product source code. We need to

ensure that the transformation does not destroy or compromise any verification evidence

that has been gathered for the product line against these objectives.

The table A-5 objectives for source code are as follows:

 Source Code complies with low-level requirements.

 Source Code complies with software architecture.

 Source Code is verifiable.

 Source Code conforms to standards.

 Source Code is traceable to low-level requirements.

 Source Code is accurate and consistent.

(Note that “Low-level requirements” is DO-178B/ED-12B terminology for the software

design data.)

Typically, compliance to these objectives is demonstrated by “review and analysis”, where

review is usually a checklist-driven peer review of the artefact, and analysis is an

automation verification that a given property holds (or otherwise) for an artefact.

Whilst it is perfectly possible to perform this review and analysis process on a product-line

asset, if that asset undergoes transformation when instantiated it becomes difficult to

argue that the evidence still applies to the resultant asset. This is only possible if the

transformation is “trusted” and typically, the basis of that trust would take the form of tool

qualification evidence – otherwise additional verification of the transformed asset is

required.

DO-178B/ED-12B includes guidance on the use of tools within the software development

process. Wherever a tool is used to automate part of the software development activity,

and its output is not separately verified, then that tool requires qualification. The

objectives for tool qualification vary dependent upon whether the tool is a verification or

development tool. Verification tools cannot introduce an error into the software product;

they can only fail to detect an error. Therefore, the qualification requirements for

verification tools are relatively straightforward, and take the form of a simple acceptance

173 Property-Preserving Transformations

173 Trusted Product Lines – PhD Thesis S G Hutchesson

test of the tool against a set of operational requirements plus strict revision control.

Development tools, however, produce output that forms part of the software product and

therefore are capable of introducing an error into the product (for example automatic code

generators producing source code). Development tools whose output is not separately

verified are required to be developed to the same assurance level as the software product

they are used to develop. Development tool qualification is consequently very costly and is

sometimes impossible to perform. Any use of pre-developed libraries and operating

system components within a tool makes the availability of qualification evidence highly

unlikely.

This causes significant problems for organisations wishing to develop and/or use qualified

development tools, particularly for level A projects. As DO-178B/ED-12B provides

objectives for the software development process to follow, it is almost impossible to

retrospectively provide qualification evidence for an existing tool. In addition, the high-

integrity software development tools market is so small that it is hardly ever commercially

viable to develop a tool compliant with DO-178B/ED-12B Level A objectives. Currently the

only commercially available development tool that can be qualified to DO-178B Level A is

the SCADE “pictures-to-code” environment produced by Esterel [59].

7.1.2 Static Verification of Transformation

If tool qualification is prohibitively expensive (or not even possible) for the transformation

environments used to implement product lines, would it be possible to implement

separate, automatic verification paths to validate the result of the transformation? This

may be possible via performing a type of “regression analysis & review” (analogous to

regression testing) on the transformed artefact. This may allow an argument to be made

that prior verification evidence still holds, and could be more cost effective than complete

re-verification of the artefact. Alternatively, multiple, diverse transformations could be

performed and their results compared (analogous to n-version programming). This would

provide confidence that a single transformation approach had not introduced error into the

product.

A combination of these two approaches, implementing diverse transformation

techniques and automated post-transformation analysis, may be a viable and credible

approach to producing a sufficient level of evidence without the expense of full tool

qualification for the transformation. We illustrate the potential of such an approach in the

following example.

Firstly, we look at static verification of transformed assets to determine if this can increase

confidence in the transformation. We have already seen that our model transformation

process has been used successfully on a large avionics product line to develop components

including variability. However, it has been difficult to reduce the project-specific

verification effort using this approach. This is due to the problems described earlier; the

transformations cannot be trusted to preserve properties from product-line assets to

instantiated components. However, we can start to illustrate how static verification may

be used to demonstrate the correct composition of components with a simple example.

174 Property-Preserving Transformations

174 Trusted Product Lines – PhD Thesis S G Hutchesson

7.1.2.1 IgniterControl Component Example

Consider the simple software component that controls the ignition demand for a gas

turbine engine that we introduced in Chapter 5 (Section 5.3.2.1). We elaborate on the

functionality of this component here.

The ignition demand can be in one of three states: no ignition, low ignition or high ignition.

Igniters are fitted in pairs, although typically only one is used at any one time to ignite the

engine (this is “low ignition”); however both igniters can be commanded on in certain

circumstances (this is “high ignition”).

This is a software product line component, and there are some common and variable

aspects of the ignition control scheme. The common aspects are the determination of the

ignition level from the demands from the automatic start and manual start systems. There

are also variable features: high ignition may be demanded for the following optional

scenarios:

 Automatic Relight in the event of engine flameout

 Quick Relight in the event of the pilot inadvertently shutting the engine down in flight

 Water Ingestion Protection in the event of significant levels of water passing through

the engine core

These optional features can be included in the component in any combination, dependent

upon the type of engine and the type of airframe into which the engine is installed.

This component is implemented in SPARK. If we look at the SPARK annotations for the

common parts of the component, the global derives annotations look as follows:

--# derives IIgniters.igniterCmd from

--# IStarting.igniterCmdAutostart,

--# IStarting.igniterCmdManualStart,

--# IThrustControl.fuelDipIgnInhibit,

--# IThrustControl.primingInProgress;

The final value command to the ignition system is derived from the starting system (manual

and automatic) and the state of the thrust control system (whether the fuel is being primed

or we are specially inhibiting the ignition during a fuel dip manoeuvre). Validation of the

requirements and variation points requires engine and control system knowledge;

discussion of such issues is outside the scope of this paper.

When we select an optional feature, for example the water ingestion protection, this

annotation changes as follows:

--# derives IIgniters.igniterCmd from

--# IStarting.igniterCmdAutostart,

--# IStarting.igniterCmdManualStart,

--# IEngineEvents.igniterCmdWaterIngest,

175 Property-Preserving Transformations

175 Trusted Product Lines – PhD Thesis S G Hutchesson

--# IThrustControl.fuelDipIgnInhibit,

--# IThrustControl.primingInProgress;

The line in bold declares that the water ingestion state of the EngineEvents sub-system

now contributes to the derivation of the igniter command. Similar changes to the “derives”

annotations occur when other features are included in the component.

To implement this component as part of a product line, we first create a UML component

including the optional features as a decision contract (see Figure 91). Within the decision

contract, the component publishes the available variability decisions as first-class model

elements (the nodes denoted with the grey star icon in Figure 91). We then indicate which

parts of the model are variable by use of the «PL variation point» stereotype which can be

attached to any model element of relevance to the code generation process. These

indicate the parts of the model that are included in a product instantiation if the associated

selection expression (an expression in terms of the decisions in the decision contract)

evaluates true.

Using model-to-model and model-to-text transformations, we can generate instantiations

of these product line components that take into account the selected decisions on a

particular project. This works well for first-class UML model elements, however the

implementation requires the capture of information that cannot be modelled within the

standard UML meta-model – for example the code bodies and SPARK annotations. These

are typically captured via text fields in the model, and inserted into the generated code via

the model to text generator. Variability in these text fragments is denoted using a simple

mark-up language and the code generator delegates the processing of this type of field to a

text pre-processor (this process has been described in detail in Chapter 5).

FIGURE 91 COMPONENT STRUCTURE SHOWING DECISION CONTRACT FOR IGNITERCONTROL COMPONENT

This approach has worked well in practice, and can successfully generate product-specific

components with matching SPARK annotations. The marked-up SPARK “derives”

annotation prior to instantiation is shown below.

176 Property-Preserving Transformations

176 Trusted Product Lines – PhD Thesis S G Hutchesson

VPBegin

{# IIgniters.igniterCmd from

}

VPIf AUTO_RELIGHT_SELECTED = TRUE

{# IAutoRelight.igniterCmdAutoRel,

}

VPEndIf

VPIf CHECK_WATER_INGESTION = TRUE

{# IEngineEvents.igniterCmdWaterIngest,

}

VPEndIf

VPIf QUICK_RELIGHT_SELECTED = TRUE

{# IStarting.igniterCmdQuickRel,

}

VPEndIf

{# IStarting.igniterCmdAutostart, IStarting.igniterCmdManualStart,

IThrustControl.fuelDipIgnInhibit,

IThrustControl.primingInProgress}

VPEnd

(Note that the code generator automatically adds the comment marks and “derives”

keyword.)

The simple mark-up language used to denote regions of optional text can be clearly seen

here. The keywords of the mark-up language start with VP, and the regions of text to be

passed through the transform are contained within braces. The mark-up allows

expressions to be associated with conditional (VPIf) statements. If the associated

expression evaluates true with respect to the product options, then the associated text

region is passed through to the product component.

A fragment of the code body that implements the product line component is shown below.

This demonstrates the use of the mark-up language to control the inclusion or otherwise of

Ada source statements in the final product:

VPIf AUTO_RELIGHT_SELECTED = TRUE

{

if IAutoRelight.Get.igniterCmdAutoRel = HIGHIGN then

 lclDualIgnCmd := TRUE;

 end if;

}

VPEndIf

VPIf QUICK_RELIGHT_SELECTED = TRUE

{

 if IStarting.Get.igniterCmdQuickRel = HIGHIGN then

 lclDualIgnCmd := TRUE;

 end if;

}

VPEndIf

As can be seen in the above examples, the mechanism for optionally including SPARK

annotations and Ada source code is using the same mark-up language and is processed by

the same text transformation tools. Therefore, due to the potential for common-mode

error in the transformation of both code and SPARK annotation, using a successful

177 Property-Preserving Transformations

177 Trusted Product Lines – PhD Thesis S G Hutchesson

information flow analysis on a product component is weak evidence of a correct (property-

preserving) transformation. However, there are still advantages to this type of analysis as

is discussed in the following section.

7.1.2.2 Detection of Ineffective Product Variants

An ineffective product variant can be defined as one whose particular set of product-

specific features (decisions) results in a product instance where one feature

implementation is rendered ineffective by another. Deploying each feature in isolation

would result in a functional product; it is the particular combination of features that is

ineffective. The interaction of features/variation points can be very subtle and difficult to

identify using peer review techniques in isolation, but are ideal error categories for

identification by a static analysis approach.

In the following simple example, the software designer decides to “optimise” the

implementation of the igniter control component to assign directly the lclDualIgnCmd

variable to the result of the enumeration checks as follows:

VPIf AUTO_RELIGHT_SELECTED = TRUE

{

 lclDualIgnCmd:= (IAutoRelight.Get.igniterCmdAutoRel = HIGHIGN);

}

VPEndIf

VPIf QUICK_RELIGHT_SELECTED = TRUE

{

 lclDualIgnCmd:=(IStarting.Get.igniterCmdQuickRel = HIGHIGN);

}

VPEndIf

Instantiating each of those decisions in isolation would result in a functional product

implementation, however instantiating a product with both features/decisions selected

would result in the following code:

lclDualIgnCmd:= (IAutoRelight.Get.igniterCmdAutoRel = HIGHIGN);

lclDualIgnCmd:= (IStarting.Get.igniterCmdQuickRel = HIGHIGN);

The first assignment to lclDualIgnCmd is now completely ineffective; however, this would

be caught by a data-flow analysis of the instantiated product such as that performed by the

SPARK Examiner.

A snippet of the SPARK Examiner report on this code is shown below:

78 lclDualIgnCmd := (IAutoRelight.Get.igniterCmdAutoRel = HIGHIGN);

 ^4

!!! (4) Flow Error : 10: Ineffective statement.

This is obviously a trivial example that should be caught by the peer review of the product-

line asset, however one could conceive of much more subtle interactions between

features/decisions that would be very hard to detect by code inspection of the pre-

transformed asset alone.

178 Property-Preserving Transformations

178 Trusted Product Lines – PhD Thesis S G Hutchesson

The above example could be found by a data-flow analysis of the source code in isolation;

however, an information flow analysis against a SPARK contract will catch more instances

of this type of error. (This is because the information flow contract provides a more precise

definition of the required relationship between input and output, and the subsequent

analysis would be more sensitive to ineffective variants.) This analysis is significant, as the

“optimisation” set out above is, in many ways, the natural and elegant way to produce the

code.

7.1.2.3 Detection of Mal-Transformed Product Variants

We have seen how a data-flow analysis can detect the instantiation of ineffective product

variants. A different form of erroneous transformation would be the instantiation of

product variants with missing functionality; i.e. an omission error. The automatic detection

of omission errors requires a means of identifying the required or expected behaviour to

compare against the implemented behaviour. Information flow analysis (as implemented

by the SPARK Examiner) may help in this regard; this form of analysis compares the actual

information flow (simplistically, the relationship between inputs and outputs as

implemented in the source code) with a definition of the expected information flow

provided in the form of source code annotations (“derives” annotations in SPARK).

This is a simple example of a “design-by-contract” approach where an abstract definition of

requirements (“contract”) is shown by analysis to hold in the implementation. Given our

simple IgniterControl example, the derives annotations require that the Water Ingestion

command IEngineEvents.igniterCmdWaterIngest is used in the derivation of the final

Igniter Command value IIgniters.igniterCmd.

--# derives IIgniters.igniterCmd from

--# IStarting.igniterCmdAutostart,

--# IStarting.igniterCmdManualStart,

--# IEngineEvents.igniterCmdWaterIngest,

--# IThrustControl.fuelDipIgnInhibit,

--# IThrustControl.primingInProgress;

If the code that implements this is omitted from the instantiated source, it will still compile

and show no dataflow errors. However, an information flow analysis against the derives

annotation will show that there is missing information. The SPARK Examiner produces the

following errors in this scenario:

!!! (1) Flow Error: 30: The variable IEngineEvents.igniterCmdWaterIngest

is imported but neither referenced nor exported.

!!! (2) Flow Error: 50: IIgniters.igniterCmd is not derived from the

imported value(s) of IEngineEvents.igniterCmdWaterIngest.

Similarly, the erroneous inclusion of functionality (i.e. a commission error) would also be

captured by this technique (if the effect of the additional code was not reflected in the

contract derives annotations).

179 Property-Preserving Transformations

179 Trusted Product Lines – PhD Thesis S G Hutchesson

It is important to remember that in our current approach, both the derives annotations and

the code implementation are transformed using the same transformation engine, which

may lead to a common mode failure masking this type of error.

7.2 Diverse Transformation, Contracts and Implementation

We reviewed the literature with regard to different types of model transformation

approaches in Chapter 2. In particular, we recognised the two approaches for realizing

variability in product lines via model transformation: reductive and additive

transformations (shown again in Figure 92).

FIGURE 92 REDUCTIVE/NEGATIVE (A) AND ADDITIVE/POSITIVE (B) VARIABILITY EXTRACTED FROM [57]

The transformations currently implemented in our approach (as described in Chapter 5) are

reductive, and make use of stereotyped model elements to identify variation points in a

UML design model, and the use of text pre-processing to remove unwanted variation in

text regions (for example code bodies). However, there remains a potential for common-

mode transformation error leading to false-positive static analysis results. This prompted

an investigation into whether multiple diverse transformations would lead to a more

credible analysis.

This revised approach takes advantage of the properties of both reductive and additive

transformations and utilises them with programming languages whose syntax and

semantics allow for the separation of contract (interface) and implementation, for example

SPARK. This approach is not limited to SPARK however; it is applicable to any language that

allows separate contract and implementation.

In general, the component contract specification is declarative; it defines properties that

are expected to hold in the implementation of the component. For product line

components these contractual properties can have common and variable parts, reflecting

the intended variability across the product line. The declarative nature of these contracts

makes them ideal for using a positive variability approach. This would involve the

declaration of the common part of the contract, then providing additional contract

“advice” which is associated with each of the decision options in the decision contract.

Given a product configuration (a specific set of decision outcomes) an additive

transformation can then construct the product specific component contract.

180 Property-Preserving Transformations

180 Trusted Product Lines – PhD Thesis S G Hutchesson

The detail of the implementation can be created separately to meet the product line

contract, but for an imperative language such as Ada (which underpins the SPARK

language) this is most easily achieved using negative variability – identifying text regions

within the source code that are included or removed when the associated decision options

are selected or deselected. A reductive transformation can then be used to generate the

product-specific implementation.

Finally a static analysis can be performed to demonstrate conformance of the

implementation to the contract. This analysis can be as rigorous as the form of the

contract and power of the analysis tools allows. This approach is illustrated in Figure 93.

FIGURE 93 VERIFYING EQUIVALENCE VIA STATIC ANALYSIS FOLLOWING THE DIVERSE TRANSFORMATION OF CONTR ACT

AND IMPLEMENTATION

The potential for using SPARK analysis as a means of demonstrating that properties have

been preserved following an instantiation transformation is very attractive, however we

have seen in the previous section that due to the common transformation used for both

code and annotation, this evidence is relatively weak. It was decided to investigate

whether the annotations could be modelled or encoded in a different form, and whether

an alternative transformation approach could be used.

It is clear that SPARK information flow annotations are declarative – ordering is not

important – and therefore should not be subject to the “point of injection” problems of

positive variability. It was also apparent that the information flow effect of decisions in a

component could be isolated very easily for the examples we studied. Therefore, it was

181 Property-Preserving Transformations

181 Trusted Product Lines – PhD Thesis S G Hutchesson

concluded that rather than modelling annotation variation as negative variability

associated with a code sub-procedure, it should be modelled as positive variability

associated with the decisions in the components decision contract. Each outcome in each

decision would have its associated effect on the information flow within the component

explicitly stated. The information flow for a given instantiated sub-procedure would be the

combination of the common information flow for that sub-procedure and the set of flows

for the decision options selected.

To test this we created a Domain Specific Language (DSL) to capture the positive variability

of annotations, and ease the implementation of the compositional transformation. The DSL

and associated tools were created using the Eclipse Modeling Project tool XText [130]. The

optional annotations for the IgniterControl example discussed earlier can be stated in the

new positive variability language are as follows:

selecting AUTO_RELIGHT_SELECTED as TRUE {

 operation IgniterControl.run {

 abstract{

 derives IIgniters.ignitionCmd from

 IAutoRelight.igniterCmdAutoRel;

 }

 }

}

selecting QUICK_RELIGHT_SELECTED as TRUE {

 operation IgniterControl.run {

 abstract{

 derives IIgniters.ignitionCmd from

 IStarting.igniterCmdQuickRel;

 }

 }

}

selecting CHECK_WATER_INGESTION as TRUE {

 operation IgniterControl.run {

 abstract{

 derives IIgniters.ignitionCmd from

 IEngineEvents.igniterCmdWaterIngest;

 }

 }

}

The language allows for multiple operations to be annotated per decision option, and for

abstract and concrete annotations to be provided if required.

This approach has the advantage that it collects together all the annotations that are

associated with the decision option into one place. This makes it much easier to review the

effect that the selection of a decision option is intended to have on a component, and

makes it much easier to spot mistakes in that information flow contract. It brings the

declaration of the information flow to where conceptually it should be in the component –

the contract.

Once a component has been deployed and the decision options selected, the instantiation

annotation is an additive composition of the common information flow per operation, and

182 Property-Preserving Transformations

182 Trusted Product Lines – PhD Thesis S G Hutchesson

the annotations for the selected options. This approach has two clear benefits over the

text transformation described earlier:

 The total effect of a decision option on the information flow of a component is

clear, held in one place and can be peer reviewed and verified in its entirety.

 The information flow for an instantiated component is generated by a different

transformation to the component itself. Diversity of transformation means that a

successful information flow analysis of the instantiated component provides

stronger evidence that the component has been transformed correctly.

This, then, offers the possibility of avoiding common mode failures in tools, and obtaining

greater benefit from the product line approach.

7.2.1 Transformation of Behavioural Contracts

So far, we have only considered the use of contracts that describe the intended data and

information flow within a component. Languages such as SPARK allow the intended

behaviour of components to be modelled as part of the contract. Tool support is provided

to enable a formal proof to be performed to show that the component implementation

matches its contract specification.

The strongest form of evidence that a component has been transformed correctly would be

to use the diverse transformation approach described in the previous section, coupled with

a contract that includes a behavioural specification. A formal proof that the transformed

component matches its (diversely) transformed specification would provide evidence at

least as strong as testing of the component that the transformation had not introduced

error into the product.

A fully-worked example of the transformation and proof of behavioural specifications is

beyond the scope of this thesis, however the concepts are similar to those we illustrate

above.

7.3 Conclusions
We began this chapter with the understanding that a transformation approach to the

deployment of product line assets was viable for high-integrity systems, but may not have

the level of assurance needed to deliver the full cost-benefits available to commercial

product lines. This was due to the need to re-verify the transformed asset to show that

errors had not been introduced during the transformation. The level of investment needed

to develop a “trusted” transformation has been shown to be prohibitive in most

circumstances, and potentially impossible without developing the technology “from

scratch”.

We have investigated the possibility of using static verification of the transformed asset to

assure its correct transformation, and have shown that this may provide credible evidence

that error has not been introduced. In addition the credibility of this evidence may be

enhanced by the use of diverse transformations to transform contract and implementation,

with their conformance being demonstrated automatically. Finally we have postulated that

183 Property-Preserving Transformations

183 Trusted Product Lines – PhD Thesis S G Hutchesson

a contract containing formal behavioural specifications may provide evidence of

correctness as strong as function test of the transformed component.

The ability to trust that a transformation has preserved properties of the source model and

has not introduced errors into the transformed asset is key to ensuring a Trusted Product

Lines approach is cost effective. We have outlined how static verification may be used to

provide assurance in the correctness of transformation. Whilst a complete process has not

been demonstrated, there is enough experience of the successful uses of SPARK [131] to

have confidence in the viability of the approach.

We can contrast the approach outlined here with other approaches to verifying the

correctness of model transformation, particularly

 Correctness of transformation by construction

 Testing of transformations

Whilst in general these approaches will increase the quality and reliability of

transformations, they would not (in isolation) be acceptable means of compliance with the

objectives of DO-178B/ED-12C for qualified development tools. A qualified development

tool needs to be developed to the same level as the software it is used to develop. We

would need to define “Level A” development and verification processes for the model

transformation environments, including, for example, test coverage metrics for the

transformation definition languages to ensure there is no “dead transformation code”.

As most transformation environments are open-source, it is very difficult to obtain

evidence from their development process to substantiate a tool qualification argument.

Therefore, we will continue to rely on the verification of the output of the transformation

rather than trust the transformation itself for some time yet.

184 Summary & Conclusions

184 Trusted Product Lines – PhD Thesis S G Hutchesson

8 Summary & Conclusions

his final chapter provides a summary of the research described in this thesis and

reviews the results obtained against the original hypothesis. The conclusions to be

drawn from the research are stated and critically reviewed, and we identify possible

further work to expand on the research undertaken.

8.1 Trusted Product Lines Revisited
This thesis has introduced the concept of the Trusted Product Line, where the practices

developed and matured in the software product lines community over the past decade can

be utilised in a principled manner to develop high-integrity systems. We have highlighted

the legitimate concerns that the high-integrity community has over inappropriate software

reuse, and have noted that a product lines approach must show how these concerns are

addressed or negated in the development processes utilised. The development of a

Trusted Product Lines argument has been outlined. This forms a framework for

demonstrating that an instantiated product is fit for purpose within a civil aerospace

context (it meets all applicable development, verification and management objectives, and

product reuse concerns.)

We have shown how a civil avionics product line reference architecture can be defined (as

an extension of single-product architectures), and how a component-based approach can

be used to populate the architecture with product line assets. In particular we have

introduced the novel concept of “decision contracts” which allow a clear definition of the

available variability to the user of the asset.

We have developed a model transformation approach that can operate on instances of the

reference architecture and components to automatically instantiate a product instance,

including instantiating the design documentation to accompany the product. This

transformation is not an academic prototype, but has been used to develop a commercial

FADEC system of substantial size and complexity over the duration of the research period

(and continues to be used at the time of writing). The cost-effectiveness of this approach

was assessed via an analysis of the effort data captured during the FADEC system

development. The analysis of these metrics indicates that the relative effort expended

across the software development process remains similar to the profile for a single-system

development, however the cumulative effort for a product-line asset is significantly greater

than a product-specific asset. The data analysed appears to be consistent with the industry

heuristic of product-line payback over 3 product deployments.

We have discussed the need for property-preserving transformations as a means to ensure

that product-line evidence is applicable to product-specific components. We have begun to

demonstrate that static analysis may be a cost effective way of demonstrating that a

transformed component has retained certain specified properties of the originating

product-line component, certainly for languages with a well-defined syntax and semantics

(such as SPARK), and especially for languages with mechanisms to separate contact and

implementation.

T

185 Summary & Conclusions

185 Trusted Product Lines – PhD Thesis S G Hutchesson

The ability to transform a sub-program’s contract and implementation via diverse means

and then show equivalence via static analysis would provide a greater degree of assurance

in the transformation than a homogeneous transformation of the source code, which is the

current state of the art in most software product line support environments today.

There remains work to be done to validate this approach fully, but the initial results appear

promising. Firstly, we need to argue precisely which properties of the product line

component have been preserved if the static analysis is successful. We can be certain that

an instantiated component is valid SPARK and is compliant with its information flow

contract. Is this sufficient evidence to be able to claim that, say, a code peer review

performed on the product line component is valid against the transformed version and

does not need repeating? The precise nature of each verification claim needed to support

regulatory guidance (DO-178B/ED-12B [4] for example) needs to be examined in the

context of transformed components and the evidence obtained by successful static

analysis.

In addition, the applicability of this technique to stronger forms of static analysis needs to

be investigated. We briefly discussed the ability of SPARK to perform partial proofs of

correctness of the component source code against pre and post-conditions stated in the

component contract. Do these pre- and post-conditions lend themselves to compositional

transformation in a similar manner to the information flow annotations? If so, this could

lead to very strong arguments that the composed component meets its specification via

automated proof checking. Whilst there is more to be done, we have outlined an approach

to tool qualification that has the potential to improve the payback on use of product lines –

perhaps bettering the current industry average of requiring 3 systems to break even on the

cost of development.

186 Summary & Conclusions

186 Trusted Product Lines – PhD Thesis S G Hutchesson

8.2 Research Hypothesis & Conclusions
To draw suitable conclusions from the research described in this thesis, we need to revisit

the research hypothesis described in Chapter 1 (Section 1.4). The hypothesis was stated as

follows:

It is feasible to construct product line models which

a) allow the specification of required behaviour (including the identification of

common and variable aspects in a product-line)

b) allow the definition of a reference implementation architecture which can be

transformed into an effective, efficient and analysable product implementation

and enable suitable supporting evidence for certification to be produced, including

effective verification.

Through the research described in this thesis, we have demonstrated feasibility via the

following:

 The definition of a reference architecture for a particular class of high-integrity

system (civil avionics FADEC) including a component model that allows the explicit

capture and modelling of variability (“decision contracts”).

 The design and implementation of a model transformation toolset to support

product instantiation.

 The use of the reference architecture, component model and transformation in the

development of a commercial FADEC product line.

We have provided an argument framework to enable certification claims to be credibly

made from product line evidence.

We have demonstrated how static analysis techniques may be used to provide effective

verification of the correctness of transformation when instantiating products.

However, we have also recognised the difficulty of claiming the applicability of verification

evidence obtained on a product line asset when used on a product. This was shown in the

qualitative review of the product line described in Chapter 6. We have suggested ways of

addressing this by adopting transformation processes that can be shown to be property-

preserving. Providing cost-effective verification approaches and arguing their applicability

remains the biggest impediment to the more widespread use of product line development

for high-integrity applications.

187 Summary & Conclusions

187 Trusted Product Lines – PhD Thesis S G Hutchesson

8.3 Further Work
A number of necessary or potentially fruitful further areas of research were identified

whilst conducting the work described in this thesis. Progress in these areas would enhance

the quality and/or productivity of a Trusted Product Line approach.

8.3.1 Heterogeneous Modelling Approaches for Product Lines

The work described in this thesis uses extensions to the UML notation to model the

product line reference architecture and components. One of the weaknesses noted in the

thesis is the lack of a usable behavioural notation that can be integrated into the model

infrastructure and transformed in tandem with the UML structures. This has lead to the

component behaviours being modelled as text objects, and transformed using rudimentary

pre-processor techniques.

As was discussed in Chapter 2, the embedded, real-time industry makes significant use of

tools and notations such as Matlab/Simulink (and, for high-integrity aerospace applications

in particular, the Esterel SCADE suite) to model and specify product behaviours. The ability

to produce coherent architectural (e.g. UML) and behavioural (e.g. Simulink) models,

including a coherent identification of variability, and use these as the basis of product

realisation would be of significant benefit to the industry.

8.3.2 Formal Approaches to Product Line Development

We identified the potential advantages of using formal approaches to the construction and

verification of components in Chapter 7. This work mainly focussed on the demonstration

of correct component construction following transformation. The idea of using formal

specifications and performing proof of behavioural correctness of transformed components

was postulated, but a fully worked out demonstration of this was beyond the scope of this

thesis.

In addition, it may be possible to conceive of formal analysis of product-line components

prior to transformation to identify conflicting behaviours and therefore detect invalid

product variants.

8.3.3 Compositional Verification for Product Lines

The dynamic testing of a product is one of the primary verification activities required to

show the behavioural correctness of the product. It is difficult to perform verification by

test on product line assets, especially those containing variation. It is especially difficult to

perform integration tests (where components are built into sub-systems and systems) on

the product line, when the combinatorial effects of the selected variation compound the

problem.

If the tests themselves have to be performed on the instantiated products, is there the

potential to provide a set of predefined test cases as part of the product line? In particular,

can test cases be compositional; that is, can individual tests be defined for common and

variable parts of the components and products, and be composed in a similar manner to

component instantiation?

188 Summary & Conclusions

188 Trusted Product Lines – PhD Thesis S G Hutchesson

8.3.4 Legacy Support & Obsolescence Management

We have seen, both in this research and elsewhere, that the economic argument for

developing a product line is predicated on the development of at least three product

instances. In the aerospace industry, the overall airframe development lead-time means

that there are relatively few new products developed when compared with commercial

industries such as automotive and telecommunications. FADEC manufacturers, for

example, may only start a new product development every 2 or 3 years, meaning that

could be up to 9 years before 3 instances of a product line enter into service. This is a

significant length of time when compared to the rate of change of electronics and software

technologies; the product line could be ready for refresh long before the payback period

for the initial investment. Indeed it would be difficult to make the initial business case for

product lines if the investment did not pay back for 9 years.

However, the rate of change of electronics technology results in another problem for the

industry that may be positively affected by a product line approach. Electronics

component obsolescence is a major problem when providing systems for aircraft and

engines that may have a service life of 30+ years. The continuity of manufacture of

electronics systems for these products relies upon strategies such as so-called “lifetime

buys” of electronic components. Eventually these systems have to be replaced with more

modern versions that can be manufactured and supported. However it is very difficult to

make the decision of precisely when to upgrade due to the non-recurring cost of

redeveloping the system software. Product line approaches may make the economic case

for redevelopment of potentially obsolete systems stronger; if the currently in-service

systems are taken as in-scope when developing a product line, then the development cost

of a replacement system will be borne primarily by the product line.

Research needs to be undertaken into both the technical and economic arguments for

using product lines as a means to cost-effective development of “refresh” and “retrofit”

systems. This is clearly an area where product line approaches would make business sense

within traditionally long lead-time industries.

8.4 Reflections and Coda
There have been some notable successes with software product lines, particularly in taking

cost out of the sustainment of families of complex products. Some of these successes have

been achieved in safety-related domains but, to our knowledge, the work described here is

the first (published) application of product lines in a domain where formal, independent

certification has been carried out, exploiting the product line properties.

The gas turbine control software product line enables the construction of products of the

order of 200kLoC of executable code (and nearer 300kLoC, including the SPARK

annotations.) At present it has not been possible to demonstrate a true return on

investment as insufficient product instances have been produced (recall that new products

are only developed every 3-5 years). However, the metrics collected show that the

development of the reusable assets costs 2.6 times that of a normal “single product” asset,

which suggests that a positive return will be achieved on around three developments,

which is the industry norm, despite the extra constraints of certification.

189 Summary & Conclusions

189 Trusted Product Lines – PhD Thesis S G Hutchesson

There seem to be several keys to this success, which we believe could transfer to other

similar domains, specifically:

 The layering of the architecture, driven by sources of variability and constraints of

the physical environment provides a general architectural pattern which could be

adopted for other embedded systems;

 The enrichment of the product line concepts with the idea of a decision contract

aids in controlling developments and in making the process robust to changes in

requirements; this is particularly useful for any development which uses fine-

grained components;

 The use of transformational tools helps automate the construction of the product

instances, removing some opportunities for human error;

 Where there are certification requirements it is useful to design a verification

strategy, which balances the verification activities between generic components

and instances (indeed, this may be where the process design should start);

 Attention needs to be given to toolset design to avoid the possibility of single

points/common mode failures in the toolset, especially where safety is a concern.

With regard to the latter point, we believe that diversity in transformation helps, but we

have yet to demonstrate this fully.

One of the surprising aspects of the introduction of a PL approach has been the attitudes

and expectations of the asset designers. The development of the approach concentrated

on the technical infrastructure and tools to deliver variation into product designs as

explained above. Less effort was dedicated to the training and education of the design

staff in the “art” of variability, which has resulted in a number of common issues and

misconceptions that have had to be addressed, including:

 “Single products can vary at runtime” – One of the most common misconceptions

was that in-built modal or state behaviour was actually variability. If the product

had different behaviour, say, on the ground and in flight some designers initially

regarded this as variability. It was surprisingly difficult to ensure that they all

understood that variability distinguished between different products and did not

represent different states of the same product.

 “The ability to tune the product performance is variability” – The use of

development variables (DVs) enables product instances to be tuned. It was very

difficult to get the requirements engineers in particular to understand that the

ability to tune and optimise a single product instance was not a variation point (i.e.

it does not distinguish between different products).

 Inclusion of needless variability – It became clear early in the programme that

many of the component designers were including variability that was beyond the

scope of the product line. Their rationale was that they been asked to produce a

190 Summary & Conclusions

190 Trusted Product Lines – PhD Thesis S G Hutchesson

“reusable” component so they were catering for all (foreseen and unforeseen)

eventualities. However, this added cost and complexity to the product assets with

unknown (arguably zero) benefit. The scope of the product line needs to be clear

to the software development teams, and the component development needs to be

closely managed to ensure the variability included is that required to realise the set

of products identified.

Whilst these are particular concerns seen in the context of the gas turbine control software

product line, these issues may be general enough to serve as guidance (warnings) for those

introducing product lines in similar domains.

Future evolution of the product line would need to be carefully planned and executed,

particularly with regards to the impact on the re-verification of the instantiated products.

As product features evolve, the impact on the solution space components (particularly their

coupling and interaction) needs to be understood and managed. However, the decision

contract approach should help minimise or decouple the effect of altered, augmented

and/or replaced components.

Work is currently under way to apply the process to the reworking of a legacy product, to

overcome hardware obsolescence problems. This raises some technical challenges as some

of the “accidental constraints”, e.g. the use of programming languages, are different. One

of the tests of the approach, and perhaps a driver of return on investment, is the ability to

deal with such legacy applications.

One key area of future work is verification, in particular to make more use of static analysis

(and perhaps formal proof), and to use diverse transformational tools to reduce the need

for verification of the delivered product. Another issue is the need to better integrate the

different modelling notations, e.g. Matlab/Simulink and UML, to provide a more cohesive

functional model of the software. This will avoid the use of model annotations to

“supplement” the behavioural description, and enable removal of the model-to-text

transformation tools which currently bypass some of the model-to-model transformations.

These are both important developments that have the potential to improve the return on

investment from the product line approach.

This study of product line approaches for high-integrity software systems was instigated as

part of a wider business strategy towards a “family” development approach for gas turbine

control systems. It became clear that the application of product line theory in this industry

would involve more than a straightforward adoption of understood techniques in a new

domain. Although the mode of research may not have been typical for doctoral study, the

challenges and approaches described here go beyond “good software engineering” into the

advancement of the state-of-the-art and have provided novel and innovative techniques

for both the business customers and the wider discipline.

We also wish to continue to enhance and progress Trusted Product Lines; innovative

approaches, such as that described for diverse transformation, need to be further

researched and demonstrated to fully realise the benefits of product line practices for high-

integrity systems.

191 Summary & Conclusions

191 Trusted Product Lines – PhD Thesis S G Hutchesson

192 Appendix A – Development and Modelling of SPARK Programs

192 Trusted Product Lines – PhD Thesis S G Hutchesson

Appendix A – Development and Modelling of SPARK Programs

 PARK 95 (The SPADE Ada 95 Kernel) [14, 75] (hereafter known as SPARK) is a

programming language which aims, by design, to provide a sound basis for the

development of high-integrity software systems. SPARK programs, by construction

and by analysis, can be shown to be free from certain classes of error, and it is possible to

partially prove the correctness of a SPARK program against a formal specification of

behaviour. The SPARK language is designed to be compiled using a standard Ada 95

compiler, the compliable parts of the language being a carefully selected subset of the Ada

95 language. SPARK is not just an Ada 95 subset, however; equally important to the

language are the annotations that are held as stylised comments in the source program.

These annotations provide information regarding the intended behaviour of the program,

in terms of dataflow, information flow and (optionally) sub-program pre-conditions

(predicates expressing constraints on the imported variables) and post-conditions

(predicates expressing the relationship between the imported variables and exported

variables).

Praxis HIS, the definers of the SPARK language, provides a toolset to support the

development and verification of SPARK programs. The SPARK Examiner tool [75] performs

various levels of analysis of a SPARK program from simple syntactic checks of SPARK

compliance of the source code, through checking conformance of the body of the code to

the dataflow and information flow annotations, to producing and partially discharging

verification conditions (VCs) to prove compliance of the sub-program to any stated pre and

post conditions.

Static Analysis, SPARK and Correctness By Construction
Analysis is the determination that a given system property holds via an inspection (typically

automated) of the system development assets. For software assets, this is sometimes

termed “Static Analysis” as it does not involve the dynamic execution of the software.

Various levels of software static analysis can be undertaken, from simple style checkers

through to proof of program correctness against a formal (mathematical) specification of

required behaviour. For high-assurance systems, an argument that the software is fit for

deployment is aided by the use of programming languages that allow the determination

that significant properties hold via automated static analysis.

SPARK is designed to facilitate a “correctness by construction” [132, 133] approach to

software development, in which each component in a product is shown to be ”well-

formed”. The definition of the well-formedness rules can vary, but they “guarantee a

certain consistency between the input and output of each step” within the software

development process [133]. SPARK is an annotated subset of Ada – all valid SPARK

programs are also valid Ada programs – and are compiled using standard Ada compilers.

However, SPARK differs from “full” Ada in two major ways: firstly, the parts of Ada that are

“problematic” or difficult to formalise (for example unrestricted tasking) are removed from

the language. Secondly, the language supports additional information in the form of

annotations, provided as stylised comments. (The Ada compiler ignores the annotations in

S

193 Appendix A – Development and Modelling of SPARK Programs

193 Trusted Product Lines – PhD Thesis S G Hutchesson

the compilation process as they form part of the code commentary.) The annotations can

be regarded as providing a more complete definition of the software component contract

than can be provided in the native Ada programming language. Annotations declare the

program intentions with increasing levels of rigour; from declaring the intended data-flow,

through information flow to providing a program specification in the form of pre and post-

conditions

Barnes [75] contains the following simple example of how SPARK provides additional useful

information regarding the intended behaviour of a program. Consider a simple Ada sub-

program specification:

Procedure Add (X: in Integer);

Whilst this is perfectly valid Ada, it provides little in the way of information regarding the

programmer’s intent for the procedure. SPARK allows the contract for this sub-program to

be strengthened with additional information, for example:

Procedure Add (X: in Integer);

--# global in out Total;

This simple addition of an annotation (as a stylised comment) provides significantly more

information than the original prototype. It states that the only global variable the

procedure is allowed to access is Total, plus the initial value of Total must be used (in) and a

new value of Total must be produced (out). We could be more explicit and provide

“derives” annotations that definitively state in the contract how the variables are used in

combination, for example:

Procedure Add (X: in Integer);

--# global in out Total;

--# derives Total from Total, X;

This type of annotation is of more value where the sub-program produces multiple out

variables. In addition, we can specify more formal, behavioural contracts that start to

specify the required functionality of the sub-program, such as:

Procedure Add (X: in Integer);

--# global in out Total;

--# post Total = Total~ + X;

Here the post condition states the expected value of Total following execution of the sub-

program (the out value) should be the in value of Total (denoted by the trailing ~) plus the

value of X

SPARK Examiner tool performs static analysis of SPARK programs to determine whether

certain properties hold. The properties analysed are dependent upon the depth of analysis

required and the extent of the annotations provided. Firstly, it determines the

conformance of the code to the SPARK Ada kernel, i.e. the Ada language subset. It then

checks consistency of the code to the provided annotations. This takes the form of an

analysis of control, data and information flow. The SPARK toolset can be used to perform

partial proof of correctness of a SPARK program against the pre- and post-condition

194 Appendix A – Development and Modelling of SPARK Programs

194 Trusted Product Lines – PhD Thesis S G Hutchesson

annotations. These typically would be created from a formal specification of the program

in a software development process following the full “correctness by construction”

method.

This type of analysis demonstrates conformance of a program implementation against a

more abstract contract that declares the intended properties of the program. This

approach to high-assurance software development may prove useful within a product-line

development process context. Of particular interest is the possibility of using static analysis

on instantiated product assets to determine that product is complete and correct with

respect to defined properties. For high-assurance software, it would be advantageous to

use SPARK and the SPARK Examiner to determine that, for example, information flow

contracts are met in the instantiated product software. This should provide a high degree

of confidence that the product asset has been composed correctly. However if the same

transformation is used to instantiate both the program contract AND the implementation,

then there is the possibility of common-mode error that may not be detected by the

analysis.

The majority of the work described within this thesis uses SPARK as the language of choice

for the implementation of the software components. This is for a number of reasons:

firstly, the research described here was motivated by the need to develop a product line

approach to the development of FADEC systems that currently used SPARK as the

implementation language of choice. Secondly, the ability to analyse a SPARK program for

conformance with predefined definition of behaviour (in the form of program annotations)

is a very useful property when combined with generative programming approaches, as we

describe later in the thesis. Finally, for the development of high-integrity software systems,

SPARK is natural choice for the principled programmer.

Modelling SPARK Programs with UML
Amey and White [77] describe an approach to augmenting the UML with a profile that

allows SPARK language concepts to be represented within class diagrams. This, combined

with a standard Ada 95 UML profile, also provides sufficient information in the model to

allow the template-driven code generation of SPARK programs from the model

representation. Their work is modelled and extended in this chapter to show how product

line architectures and components can be represented. Appendix B describes in detail how

product instances may be automatically generated from these models.

The UML meta-model can be extended to model task or domain specific concepts using

profiles [12]. UML profiles collect together sets of modelling extensions in the form of

stereotypes and associated attributes known as tag definitions.

In Figure 94 we can see how the UML concept of a Class containing 0 or more Operations

can be extended to represent a SPARK Class containing 0 or more SPARK Operations; the

«SPARK Operation» stereotype providing a definition of the operation’s contract as a set of

tag values. Figure 95 shows how the SPARK Contract tag is constructed from a set of UML

tag definitions that hold the abstract and concrete “global and derives annotations” for the

operation. (Note that we introduce a modelling convention «tag definition» that allows

195 Appendix A – Development and Modelling of SPARK Programs

195 Trusted Product Lines – PhD Thesis S G Hutchesson

their description as classes rather than attributes of the «stereotype» class. This allows a

richer description of their relationships, but has the disadvantage of not showing their

fundamental types.)

Abstract annotations are declared in the SPARK Specification (the public part of a SPARK

Package) and are therefore visible to users of those operations. Concrete annotations are

declared in the SPARK Body (the private part of a SPARK Package) and are hidden from

external users of the package. This ability to annotate separately the public and private

representations of a public operation allows the designer to hide the internals of the design

decomposition from the outside world. (Badly designed SPARK programs can break all

notions of information hiding by announcing the hidden parts of an object-based

decomposition to the outside world via information flow annotation.)

FIGURE 94 SPARK CLASS AND OPERATION

UML 2.0

«metaclass»

Class

«metaclass»

Operation

SPARK Profile

«stereotype»

SPARK Class

«stereotype»

SPARK Operation

«tag definition»

SPARK Contract
{Abstract}

*

0..1
class

ownedOperation

1

1

UML 2.0

«metaclass»

Class

«metaclass»

Operation

«metaclass»

Class

«metaclass»

Operation

«metaclass»

Class

«metaclass»

Operation

SPARK Profile

«stereotype»

SPARK Class

«stereotype»

SPARK Operation

«tag definition»

SPARK Contract
{Abstract}

«stereotype»

SPARK Class

«stereotype»

SPARK Operation

«tag definition»

SPARK Contract
{Abstract}

«stereotype»

SPARK Class

«stereotype»

SPARK Operation

«tag definition»

SPARK Contract
{Abstract}

*

0..1
class

ownedOperation

1

1

196 Appendix A – Development and Modelling of SPARK Programs

196 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 95 INFORMATION FLOW CONTRACT META-MODEL

In addition to «SPARK Class» and «SPARK Operation», the SPARK profile also contains

stereotypes to:

 include proof obligations to SPARK Operations («SPARK Proof»).

 construct “Abstract State” («SPARK Abstract State») which hides details of internal

state data in the SPARK class.

 identify “Refinement State” («SPARK Refinement State») which shows how

abstract state is expanded within a SPARK class.

Figure 96 illustrates the relationship between the SPARK Abstract and Refinement state.

FIGURE 96 SPARK ABSTRACT AND REFINEMENT STATE

Other stereotypes are used to control the form of the SPARK code generated at a detailed

level.

SPARK Profile

«tag definition»

SPARK Contract
{Abstract}

«tag definition»

Abstract Contract
{Abstract}

«tag definition»

Concrete Contract
{Abstract}

«tag definition»

Abstract Global

«tag definition»

Abstract Derives

«tag definition»

Concrete Global

«tag definition»

Concrete Derives

0..1

1

0..1

1

0..1 0..1

Refines

1

1

1

1

1

1

1

1

SPARK Profile

«tag definition»

SPARK Contract
{Abstract}

«tag definition»

Abstract Contract
{Abstract}

«tag definition»

Concrete Contract
{Abstract}

«tag definition»

Abstract Global

«tag definition»

Abstract Derives

«tag definition»

Concrete Global

«tag definition»

Concrete Derives

«tag definition»

SPARK Contract
{Abstract}

«tag definition»

Abstract Contract
{Abstract}

«tag definition»

Concrete Contract
{Abstract}

«tag definition»

Abstract Global

«tag definition»

Abstract Derives

«tag definition»

Concrete Global

«tag definition»

Concrete Derives

«tag definition»

SPARK Contract
{Abstract}

«tag definition»

Abstract Contract
{Abstract}

«tag definition»

Concrete Contract
{Abstract}

«tag definition»

Abstract Global

«tag definition»

Abstract Derives

«tag definition»

Concrete Global

«tag definition»

Concrete Derives

0..1

1

0..1

1

0..1 0..1

Refines

1

1

1

1

1

1

1

1

UML 2.0

«metaclass»

Attribute

SPARK Profile

«stereotype»

SPARK Abstract State

«stereotype»

SPARK Refinement State
1..*1

is Refined By

Strictly this is a "Property" in UML 2,

however in this context it only makes

sense when representing an Attribute

on a Class (i.e. "A Property related to

a classifier by ownedAttribute")

UML 2.0

«metaclass»

Attribute

«metaclass»

Attribute

«metaclass»

Attribute

SPARK Profile

«stereotype»

SPARK Abstract State

«stereotype»

SPARK Refinement State

«stereotype»

SPARK Abstract State

«stereotype»

SPARK Refinement State

«stereotype»

SPARK Abstract State

«stereotype»

SPARK Refinement State
1..*1

is Refined By

Strictly this is a "Property" in UML 2,

however in this context it only makes

sense when representing an Attribute

on a Class (i.e. "A Property related to

a classifier by ownedAttribute")

197 Appendix A – Development and Modelling of SPARK Programs

197 Trusted Product Lines – PhD Thesis S G Hutchesson

Using the SPARK UML profile (in conjunction with a more general Ada 95 profile to model

the SPARK Ada Kernel) , a UML class model can be used to define the structure of a SPARK

program to a level of abstraction that allows the package structure of a SPARK program to

be generated automatically.

FIGURE 97 SIMPLE EXAMPLE OF A SPARK PACKAGE MODELLED AS A UML CLASS

Figure 97 shows how the SPARK UML profile can be used to model a simple SPARK Class,

consisting of a single abstract State definition, two private attributes which refine that

state, and three operations, two private and one public. The class itself has a dependency

on another SPARK class called Base. This dependency is to be realised in the

implementation via an Ada “with” relationship. This is shown as a stereotype on the

dependency, with the tag value defining whether the relationship is from the specification

or body of the resulting Ada package.

This provides the basic structural information for the SPARK class. However, more

information is required to be able to model and generate valid SPARK source code from

this. This additional information is contained within the UML tags associated with the

stereotypes.

Figure 98 shows a screenshot of the “properties” pane in ARTiSAN Studio for the operation

publicOperation contained with SPARKPackage as shown in Figure 97. Here, it can be seen

that the application of the «SPARK Operation» stereotype to the UML operation has

resulted in an additional properties tab with the name of the stereotype. The values

associated with the stereotype tag definitions are shown in the property pane.

«SPARK Class»

SPARKPackage

«SPARK Abstract State» State+

«SPARK Refinement State» privateAttribute1-

«SPARK Refinement State» privateAttribute2-

«SPARK Operation» publicOperation (in p1, out p2)+

«SPARK Operation» privateOperation1 (in p1 : Real)-

«SPARK Operation» privateOperation2 (in p1 : Real) : Real-

«SPARK Class»

Base

«Ada Context» {Ada With = Specification}

«SPARK Class»

SPARKPackage

«SPARK Abstract State» State+

«SPARK Refinement State» privateAttribute1-

«SPARK Refinement State» privateAttribute2-

«SPARK Operation» publicOperation (in p1, out p2)+

«SPARK Operation» privateOperation1 (in p1 : Real)-

«SPARK Operation» privateOperation2 (in p1 : Real) : Real-

«SPARK Class»

Base

«Ada Context» {Ada With = Specification}

198 Appendix A – Development and Modelling of SPARK Programs

198 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 98 ART ISAN STUDIO V IEW OF THE SPARK OPERATION STEREOTYPE TAGS FOR PUBLICOPERATION

To simplify the development and annotation of the modelled SPARK program, the author

developed a SPARK editing tool called SPARK Explorer, which visualises the visible program

structure and annotation information from ARTiSAN Studio, and allows the user to

construct SPARK annotations by drag and drop of state data. The SPARK Explorer view of

the SPARKPackage example can be seen in Figure 99.

FIGURE 99 SPARKEXPLORER VIEW OF THE INITIAL CONTRACT OF SPARK PACKAGE PLUS STATE REFINEMENT

Figure 99 has a snapshot of the state of the SPARK annotations at a point where only the

abstract state refinement has been undertaken. It can be seen that the abstract variable

State is refined (realised) by two pieces of concrete state, the private attributes

privateAttribute1 and privateAttribute2. This relationship is stored within ARTiSAN Studio

as “hyperlinks” within the “Constituents” tag in the «SPARK Abstract State» stereotype

Packages made

visible via

dependency links

(Ada “Withs”)

SPARK Abstract State

Abstract State Refinement

Procedure Parameters

 Placeholders for

Information Flow

Annotation

This operation is a

Function so only needs

data-flow annotation (no

side-effects)

199 Appendix A – Development and Modelling of SPARK Programs

199 Trusted Product Lines – PhD Thesis S G Hutchesson

applied to the attribute State. This can be seen in the screen snapshot shown in Figure

100.

FIGURE 100 REFINEMENT STATE SHOWN AS HYPERLINKS IN ART ISAN STUDIO

A completed set of SPARK Explorer annotations of SPARKPackage can be seen in Figure

101. Here, we can see how the public operation publicOperation1 declares its visible

information flow contract (“Spec Derives”) in terms of its parameters and the abstract

state, and refines this in a more detailed private contract (“Body Derives”) in terms of the

parameters and the refinement state variables. In this way, the details of the package

internals need not be propagated to the users of the public operations.

Note that private procedures only need to have the private contract as these have no

public declarations in the package specification. Also, note that functions only need

dataflow annotations to identify the state data the function uses. SPARK does not allow

functions to have side effects, and therefore the form of the information flow for a function

is always that the return value is based upon the function parameters and any declared

state data.

200 Appendix A – Development and Modelling of SPARK Programs

200 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 101 FULLY ANNOTATED SPARKPACKAGE AS V IEWED IN SPARKEXPLORER

Now that we have defined the structure of the SPARK packages in a class model (shown in

Figure 97) and provided the information flow contracts for the identified operations, we

are in a position to generate SPARK-compliant code from the model. The code shown

below is the output from applying the model-to-text SPARK transformation on the model

described above.

201 Appendix A – Development and Modelling of SPARK Programs

201 Trusted Product Lines – PhD Thesis S G Hutchesson

with Base;

--# Inherit

--# Base

--# ;

package SPARKPackage

--# own State;

 is

 --

 -- public operation declarations

 --

 --

 -- publicOperation

 --

 -- Description:

 --

 procedure publicOperation(

 p1 : in Base.Real;

 p2 : out Base.Real);

 --# Global

 --# in out State

 --# ;

 --# Derives

 --# p2 from

 --# p1,

 --# State &

 --# State from

 --# p1

 --# ;

private

end SPARKPackage;

package body SPARKPackage

--# own State is

--# privateAttribute1,

--# privateAttribute2

--# ;

is

 --

 -- Private attributes

 --

 privateAttribute1 : Base.Real;

 privateAttribute2 : Base.Real;

 --

 -- Private operations

 --

 --

 -- privateOperation1

 --

 -- Description:

 --

 -- Implementation Notes:

202 Appendix A – Development and Modelling of SPARK Programs

202 Trusted Product Lines – PhD Thesis S G Hutchesson

 --

 procedure privateOperation1(

 p1 : in Base.Real)

 --# Global

 --# in privateAttribute1;

 --# out privateAttribute2

 --# ;

 --# Derives

 --# privateAttribute2 from

 --# p1,

 --# privateAttribute1

 --# ;

 is

 begin

 null;

 end privateOperation1;

 --

 -- privateOperation2

 --

 -- Description:

 --

 -- Implementation Notes:

 --

 function privateOperation2(

 p1 : in Base.Real) return Base.Real

 --# Global

 --# in privateAttribute2

 --# ;

 is

 begin

 null;

 end privateOperation2;

 --

 -- Public operations

 --

 --

 -- publicOperation

 --

 -- Implementation Notes:

 --

 procedure publicOperation(

 p1 : in Base.Real;

 p2 : out Base.Real)

 --# Global

 --# in out privateAttribute2,

 --# privateAttribute1

 --# ;

 --# Derives

 --# p2 from

 --# p1,

 --# privateAttribute2,

 --# privateAttribute1 &

 --# privateAttribute1 from

 --# p1 &

 --# privateAttribute2 from

 --# p1,

 --# privateAttribute1

 --# ;

 is

 begin

 null;

203 Appendix A – Development and Modelling of SPARK Programs

203 Trusted Product Lines – PhD Thesis S G Hutchesson

 end publicOperation;

end SPARKPackage;

The code generator used to produce this code was developed using the ARTiSAN Studio

OCS (On-demand Code Synchronisation) template-driven code generation technology. OCS

provides a simple model-to-text transformation using an interpreted template language

called SDL. A set of SDL templates define the transformation rules between UML Class

models (extended via Ada 95 and SPARK profiles) and the syntax of SPARK source code.

The templates are presented to the code generator as a set of related ASCII text files

defining the required transformation functions. Code is generated from a particular node

in the UML class model tree, the code generator using the OCS templates to guide the

transformation of the model fragment to SPARK source. OCS is a simple, interpreted

model-to-text transformation engine that suited the development of code from product

models, but it lacks the sophistication required for product-line developments.

204 Appendix B - Instantiating Products using Model Transformation

204 Trusted Product Lines – PhD Thesis S G Hutchesson

Appendix B - Instantiating Products using Model

Transformation
he technology chosen to develop the transformation for product line instantiation

was the ACS/TDK (Automatic Code Synchronisation/Template Development Kit) “4G”

technology from Atego (formerly ARTiSAN). The ACS/TDK toolset provides the

model-to-text code generation and round-trip model and code development extensions to

the ARTiSAN Studio UML environment. The “4G” version of ACS/TDK augmented this with

the ability to perform Model-to-Model transformation.

The decision to use ACS/TDK 4G (hereafter known as TDK) was primarily driven by the need

to develop an instantiation process that could be used on a large, multi-developer avionics

project. ARTiSAN Studio was the incumbent modelling tool; there was a substantial

investment in tool licenses, existing product models and user knowledge.

Previous projects used a UML to SPARK code generator that was implemented using OCS

(On-Demand Code Synchronisation). OCS is a simple template-based Model-To-Text code

generation engine. OCS scripts are developed in a language called SDL and are interpreted

by the Studio environment on-demand. As described in Appendix A, the customised OCS

SPARK generator makes use of Ada and SPARK profiles that extend the UML class models to

capture Ada and SPARK-specific concepts. This approach was used effectively on two large

avionics projects (approximately 250K SLOC each).

However, OCS was not suitable for development of the product line transformation and

code generation for a number of reasons. Firstly, the OCS product had been deprecated by

Atego and replaced by the ACS generator engine. Secondly, OCS had no model-to–model

transformation capabilities. However, legacy OCS generators can be ported to/hosted

within ACS-based generation schemes. This capability meant that it was easy to create the

back end model-to-text transformation from the OCS baseline and this had a degree of

provenance from previous project use. The effort could therefore be spent on developing

the product line transformation rather than replicating a pre-existing code generator.

In contrast to the interpreted-SDL approach of the OCS generator, ACS generators are

compiled to Win32 DLLs and executed either on demand or as part of a continuous

generation approach. ACS generators can run in the background during a modelling

session and continuously generate code in response to changes in the source model.

Round-tripping is also supported where model elements can be created in repose to

external changes to the source code. However, in the context of high-integrity software

development the generator is used exclusively in forward–engineering mode.

A specific ACS generator DLL is produced by designing a generator model using the Studio

UML tool (augmented with the TDK development kit). A special version of ACS is then used

on the generator model to auto-generate the specific generator code and DLL.

T

205 Appendix B - Instantiating Products using Model Transformation

205 Trusted Product Lines – PhD Thesis S G Hutchesson

Describing and Developing Model-To-Model Transformations in TDK

M2M transformations in TDK are described using a decorated form of class model. This

model is a declarative statement of the rules used to transform from the source to target

meta-models. As TDK is designed primarily to produce code generators, the transformed

model is typically transitory in memory; there is the facility to write the transformed model

elements back to the source model repository - however, this would be destructive of the

source model data. If the transformed model needed to be stored, it would be relatively

straightforward to provide a M2T back-end that serialised the model from memory to XMI

form, for example. For the purposes of the transformations described in this thesis, the

transitory model is perfectly acceptable as it is used purely to facilitate the instantiation

and generation of product-specific assets from a product lines model – the product-specific

model is never accessed interactively by a user.

To create a transformation and generator model, a special “TDK profile” is included with

the generator UML model. The TDK profile augments the UML meta-model as shown

partially in Figure 102 and Figure 103.

FIGURE 102 TDK M2M TRANSFORM EXTENSION

FIGURE 103 TDK M2M CLASS AND ASSOCIATION EXTENSIONS

«metaclass»

Package

«metaclass»

M2M Transform

«metaclass»

Package

«metaclass»

M2M Transform

«metaclass»

Class

«metaclass»

MSearch

«metaclass»

MCreate

«metaclass»

Association

«metaclass»

MFlood

«metaclass»

Class

«metaclass»

MSearch

«metaclass»

MCreate

«metaclass»

Association

«metaclass»

MFlood

206 Appendix B - Instantiating Products using Model Transformation

206 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 104 TDK MODEL STRUCTURE

As shown in Figure 104, a TDK generator model typically consists of a single Model-To-Text

(M2T) transformation, and optionally a number of Model-To-Model (M2M)

transformations. An M2M transform is a stereotyped UML package (Figure 102), which

contains a class model representing the transformation rules. If multiple M2M transforms

are specified within a TDK model, an order of application can be defined to ensure the

cumulative effects of the transformations is predictable.

The rules within a single M2M Transformation package are described in class model form.

This model describes a set of search-and-create operations that identify source meta-

model elements (via MSearch classes) and, in response, produce target meta-model

elements (via MCreate classes). In its simplest form, this could simply find meta-model

elements in the source model and duplicate them into the target model. However, much

more useful and sophisticated M2M transformations can be realised using this approach.

Consider a requirement to add a public accessor (read) operation for each private attribute

owned by a class representing an SPARK package (e.g. stereotyped by «SPARK Class»).

Figure 105 shows a TDK model describing the transform that attempts to realise this

requirement.

TDK Model

M2M Transform M2T Transform

MSearch MFlood MCreate

*

1

1

1

*

1

*

1

*

1

TDK Model

M2M Transform M2T Transform

MSearch MFlood MCreate

*

1

1

1

*

1

*

1

*

1

207 Appendix B - Instantiating Products using Model Transformation

207 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 105 TDK M2M TRANSFORMATION TO ADD ACCESSOR OPERATIONS

This transformation structure is typical of TDK M2M models. An initial «MSearch» class

MFindSPARKClasss collects model elements of a specific meta-type (identified by the

“MetaType=” tag), which, in this case, is the set of classes in the model. The set is further

reduced by a stereotype filter (“Stereo=” tag) which reduces the search set to those model

classes that are identified as “SPARK Class”. The MFindSPARKClass class is associated with

a second «MSearch» class MFindAttributes via an «MFlood» association. The «MFlood»

propagates a filtered search set from one search class to another and, importantly,

maintains a named model association between the elements of the search. In this

example, the constraint on the «MFlood» association of “Attribute” defines that all

attributes contained within the classes of the MFindSPARKClass search set propagate to

the MFindAttributes set, and the framework maintains a navigable Cls<->Attr relationship

between them.

We now have the set of attributes owned by SPARK classes within the MFindAttributes

search class. We can now use the «MCreate» TDK elements to create accessor operations

for them within the transformed model. «MCreate» associations link search classes to

«MCreate» classes and, like flood associations, they propagate search sets from one class

to another. However, «MCreate» elements, as the name suggests, create new model

elements in the target model in response to each element in the search set. The model

element created does not need to be of the same type as the element in the search set; the

element type created is dependent upon the specialisation of the «MCreate» class. As can

be seen in Figure 105, the «MCreate» class CreateAccessorOperation is a specialised

COperation class. The TDK framework provide a set of “factory” classes for each creatable

UML meta-model element type, from which «MCreate» classes can be derived. The

relationship of the newly created model element with the rest of the model is defined by

«M2MTransform»
Add Accessor Transform

«MSearch»
{MetaType = Class}

{Stereo = SPARK Class}

MFindSPARKClass

«MSearch»
{MetaType = Attribute}

MFindAttributes

isPrivate ()

«MCreate»

CreateAccessorOperation

COperation

*

1

«MFlood»

Cls

Attr

*1

«MCreate»

Name

{Self.Name}

RetType

{Self->DataType}

Owner

{Self->Cls}

{Attribute}

When

{isPrivate()}

Visibility

{"Public"}

«M2MTransform»
Add Accessor Transform

«MSearch»
{MetaType = Class}

{Stereo = SPARK Class}

MFindSPARKClass

«MSearch»
{MetaType = Attribute}

MFindAttributes

isPrivate ()

«MCreate»

CreateAccessorOperation

COperation

«MSearch»
{MetaType = Class}

{Stereo = SPARK Class}

MFindSPARKClass

«MSearch»
{MetaType = Attribute}

MFindAttributes

isPrivate ()

«MCreate»

CreateAccessorOperation

COperation

*

1

«MFlood»

Cls

Attr

*1

«MCreate»

Name

{Self.Name}

RetType

{Self->DataType}

Owner

{Self->Cls}

{Attribute}

When

{isPrivate()}

Visibility

{"Public"}

208 Appendix B - Instantiating Products using Model Transformation

208 Trusted Product Lines – PhD Thesis S G Hutchesson

the constraints on the «MCreate» association. The Owner constraint defines which model

element should own the newly created operation; here it is defined as Self->Cls.

Self is TDK keyword referring to the current object in the related search class, -> traverses

an association, and Cls is the class object at the end of the «MFlood» association. In simple

terms, the created operation is to be owned by the class that owns the associated

attribute. The Name and RetType constraints on the «MCreate» association define the

name of the created operation and return type respectively.

The requirements for this transformation asked for an accessor to be created for the

private operations only. There are a number of ways in which this down-selection could be

achieved. Operations can be added to search classes that allow procedural SDL code to

perform further processing of the search set. An operation could be added to

MFindSPARKClass that returns all the private attributes of an object, then this operation

used as the constraint on the «MFlood» association. Alternatively, an operation could be

added to the MFindAttributes class that returns true if the current attribute object is

private. This is the approach we take in this particular transformation; the isPrivate()

operation is used within a when constraint on the «MCreate» association. When

constraints provide a guard on element creation.

Another constraint on the «MCreate» association (RetType) ensures that the return type of

the created operation is set to the type of the attribute being accessed. Constraints on the

CreateAccessorOperation class can be used to set properties of the created operation, as

can be seen by the “Visibility” constraint.

Finally, whilst this transformation as designed ensures the correct number and type of

accessor operations will be created with Public visibility, they will not be functional, as no

implementation body has been provided. This again is a property of the created operation,

and can be set by adding a “Body” constraint on the CreateAccessorOperation class.

This section introduced the development of model-to-model transformations using TDK.

We use these techniques extensively to realise the product-line instantiation

transformation, described in detail in the following section.

209 Appendix B - Instantiating Products using Model Transformation

209 Trusted Product Lines – PhD Thesis S G Hutchesson

Realising Model Transformation for High-Integrity Product Lines
The overall model transformation process used to instantiate products from the product

line is illustrated in Figure 106. This process was summarised in Chapter 5 of this thesis; we

provide more detail on the design of the transformation here. Some of the text and

diagrams from Chapter 5 are repeated here to make this appendix understandable stand-

alone and avoid the need for the reader to continually cross-reference the information.

Once the reference architecture and product line components have been developed,

product instances can be created. Instantiation of products is achieved by the deployment

of the appropriate components in a copy of the reference architecture model and the

selection of the appropriate decision options for each component (either directly, or as the

result of a higher-level feature model selection). Once the components are deployed and

the decision options are resolved, then product-specific assets can be generated using

model transformation.

Model-to-Model Transformation 1 – Reductive Product Line to Product Model

Transform

We described earlier how the TDK 4G model transformation describes a transform as a

declarative class model. Here we describe the form of the class model that describes the

product line to product instance reductive transformation

Figure 107 shows the complete transform class model, however we will be describing

fragments of this model in a more readable form throughout this section. The instantiation

transformation essentially performs the following algorithm:

For each component included in the deployment model:

 Follow the bind link to the catalogue component;

 For each model element in the catalogue component:

 If it is a variation point then

 If selection expression evaluates True then

 duplicate into deployment model;

 end if;

 Else

 duplicate into deployment model;

 end if;

 end for;

end for;

The result of this transformation is a complete product specific model under the

deployment model “root” which can be passed to the downstream transformations.

The transformation model is built up from a network of associated «MSearch» classes to

isolate the meta-model elements that may exhibit variability. Once these elements are

isolated, the selection expressions that guard the inclusion of that element are evaluated

for the particular decision options selected for the particular product. Successful

evaluation of the expression triggers the duplication of that element into the product line

model. Common meta-model elements (i.e. those not stereotyped as variation points) are

always duplicated into the target model.

210 Appendix B - Instantiating Products using Model Transformation

210 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 106 PRODUCT INSTANCE SPARK CODE GENERATION FROM REFERENCE ARCHITECTURE AND PRODUCT LINE

COMPONENTS

FIGURE 107 STRUCTURE OF MODEL-TO-MODEL TRANSFORMATION 1 CLASS MODEL

This part of the

transformation selects

the classes in the

model to which the

transformation is

applied

This part of the

transformation deals

with the duplication of

common parts of the

model

This part of the

transformation deals

with the variable parts

of the model, duplicating

those parts whose

selection criteria meets

the selected options

212 Appendix B - Instantiating Products using Model Transformation

212 Trusted Product Lines – PhD Thesis S G Hutchesson

To understand the transformation performed we have to refer back to the decision

contract meta- model we introduced in chapter 5 (shown again here in Figure 108).

FIGURE 108 PRODUCT L INE META-MODEL USING DECISION CONTRACTS (FROM CHAPTER 5)

The UML is extended via a special product line UML profile to realise this meta-model.

Figure 109 shows a model of this profile.

FIGURE 109 PL PROFILE MAPPING TO UML META-MODEL ELEMENTS

We now describe each of the significant classes in the transformation model in detail

including their associations

Component Deployed Component

Contract
{Abstract}

Deployed Contract
{Abstract}

Modelling Element
{Abstract}

Variation Point

Selection Criterion

Decision

Option

Decision Resolution

Selection Option

*

1

*

1

1..*

1

1

1

*

1

*

1

*

1

1

1

1 *

Binds To

1 *

1 *

Resolves

1 *

Selects

* 1

1..*

1..*

0..1

1

Selects

*

0..1 * 0..1

Component Deployed Component

Contract
{Abstract}

Deployed Contract
{Abstract}

Modelling Element
{Abstract}

Variation Point

Selection Criterion

Decision

Option

Decision Resolution

Selection Option

*

1

*

1

1..*

1

1

1

*

1

*

1

*

1

1

1

1 *

Binds To

1 *

1 *

Resolves

1 *

Selects

* 1

1..*

1..*

0..1

1

Selects

*

0..1 * 0..1

«metaclass»

Category

«metaclass»
«stereotype»

PL Component

«metaclass»
«stereotype»

PL Deployed Component

«metaclass»

Typedef

«metaclass»
«stereotype»

PL Component Feature

«metaclass»
«stereotype»

PL Deployed Feature

«metaclass»

Enumerated Typedef

*1

Package

*1

*
1

Note this is not strictly enforced in

the profile - the PL "Feature"

stereotypes are associated with

Typedef model elements, due to the

way enumerated types are

modelled

This stereotype

models the "Decision

Resolution"

This stereotype models

the "Decision"

«metaclass»

Category

«metaclass»
«stereotype»

PL Component

«metaclass»
«stereotype»

PL Deployed Component

«metaclass»

Typedef

«metaclass»
«stereotype»

PL Component Feature

«metaclass»
«stereotype»

PL Deployed Feature

«metaclass»

Enumerated Typedef

*1

Package

*1

*
1

Note this is not strictly enforced in

the profile - the PL "Feature"

stereotypes are associated with

Typedef model elements, due to the

way enumerated types are

modelled

This stereotype

models the "Decision

Resolution"

This stereotype models

the "Decision"

213 Appendix B - Instantiating Products using Model Transformation

213 Trusted Product Lines – PhD Thesis S G Hutchesson

Collecting Deployed Components

FIGURE 110 MFINDDEPLOYEDCOMPONENTS CLASS D IAGRAM

MFindDeployedComponents is the initial class in the transformation network. It is

associated with the root of the transformation, and its purpose is to connect all instances

of deployed components in the model to be transformed. Deployed components are

modelled as UML Packages (Categories) stereotyped as «PL Deployed Component».

«
M

2
M

T
ra

n
s
fo

rm
»
 {

M
2
M

O
rd

e
r

=
 1

}
4
G

G
e
n
e
ra

to
r:

:M
2
M

::
0
1
 S

P
L
 T

ra
n
s
fo

rm

«
M

S
e
a
rc

h
»

{M
e
ta

T
y
p
e
 =

 T
y
p
e
d
e
f}

{S
te

re
o
 =

 P
L
 c

o
m

p
o
n
e
n
t
fe

a
tu

re
 |
 P

L
 d

e
p
lo

y
e
d
 f

e
a
tu

re
}

M
F

in
d

F
e
a
tu

re
s

«
M

S
e
a
rc

h
»

{M
e
ta

T
y
p
e
 =

 C
a
te

g
o
ry

}
{S

te
re

o
 =

 P
L
 D

e
p
lo

y
e
d
 C

o
m

p
o
n
e
n
t}

M
F

in
d

D
e
p

lo
y
e
d

C
o

m
p

o
n

e
n

ts

G
e
tC

a
ta

lo
g
C

la
s
s
e
s
 (

)
:
%

lis
t

is
C

la
s
s
N

e
e
d
e
d
 (

in
 t
h
e
C

la
s
s
 :
 %

o
b
je

c
t)

 :
 %

n
u
m

e
ri
c

G
e
tP

a
c
k
a
g
e
C

la
s
s
e
s
 (

in
 t
h
e
P

a
c
k
a
g
e
 :
 %

o
b
je

c
t)

 :
 %

lis
t

G
e
tT

e
m

p
la

te
P

a
ra

m
e
te

rs
 (

)
:
%

s
tr

in
g

is
T

e
m

p
la

te
 (

)
:
%

n
u
m

e
ri
c

G
e
tT

e
m

p
la

te
P

a
ra

m
C

o
d
e
F

o
rm

a
t
()

 :
 %

s
tr

in
g

«
M

S
e
a
rc

h
»

{M
e
ta

T
y
p
e
 =

 C
la

s
s
}

{S
te

re
o
 =

 S
P

A
R

K
 C

la
s
s
}

M
F

in
d

D
e
p

lo
y
e
d

S
p

a
rk

C
la

s
s
e
s

«
M

S
e
a
rc

h
»

{M
e
ta

T
y
p
e
 =

 C
la

s
s
}

M
F

il
te

rC
la

s
s
e
s

G
e
tA

c
ti
v
e
C

la
s
s
e
s
 (

)
:
%

lis
t

is
R

T
F

F
e
a
tu

re
S

e
le

c
te

d
 (

in
 t
h
e
V

P
 :
 %

o
b
je

c
t)

 :
 %

n
u
m

e
ri
c

g
e
tF

e
a
tu

re
S

e
tt
in

g
 (

in
 F

e
a
tu

re
N

a
m

e
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

g
e
tA

llF
e
a
tu

re
S

e
tt
in

g
s
 (

)
:
%

s
tr

in
g

g
e
tD

e
p
lo

y
e
d
P

a
c
k
a
g
e
 (

)
:
%

o
b
je

c
t

is
F

e
a
tu

re
S

e
le

c
te

d
 (

in
 t
h
e
V

P
 :
 %

o
b
je

c
t)

 :
 %

n
u
m

e
ri
c

*
1

«
M

F
lo

o
d
»

th
e
D

e
p
C

o
m

p
th

e
F

e
a
tu

re

*
1

«
M

F
lo

o
d
»

th
e
P

a
re

n
t

d
e
p
C

la
s
s

11

«
M

F
lo

o
d
»

th
e
P

a
re

n
t

th
e
C

la
s
s
S

e
t

{T
y

p
e

d
e

f}
{C

la
s

s
}

{G
e

tC
a

ta
lo

g
C

la
s

s
e

s
()

}

T
h
is

 f
in

d
s
 a

n
y
 "

S
P

A
R

K
 c

la
s
s
e
s
"

th
a
t

e
x
is

t
in

th
e
 d

e
p
lo

y
m

e
n
t.

T
h
is

 w
ill

 a
c
t

a
s
 a

 f
ilt

e
r

to
 s

to
p

th
e
s
e
 c

la
s
s
e
s
 b

e
in

g
 d

u
p
lic

a
te

d
.

«
M

2
M

T
ra

n
s
fo

rm
»
 {

M
2
M

O
rd

e
r

=
 1

}
4
G

G
e
n
e
ra

to
r:

:M
2
M

::
0
1
 S

P
L
 T

ra
n
s
fo

rm

«
M

S
e
a
rc

h
»

{M
e
ta

T
y
p
e
 =

 T
y
p
e
d
e
f}

{S
te

re
o
 =

 P
L
 c

o
m

p
o
n
e
n
t
fe

a
tu

re
 |
 P

L
 d

e
p
lo

y
e
d
 f

e
a
tu

re
}

M
F

in
d

F
e
a
tu

re
s

«
M

S
e
a
rc

h
»

{M
e
ta

T
y
p
e
 =

 C
a
te

g
o
ry

}
{S

te
re

o
 =

 P
L
 D

e
p
lo

y
e
d
 C

o
m

p
o
n
e
n
t}

M
F

in
d

D
e
p

lo
y
e
d

C
o

m
p

o
n

e
n

ts

G
e
tC

a
ta

lo
g
C

la
s
s
e
s
 (

)
:
%

lis
t

is
C

la
s
s
N

e
e
d
e
d
 (

in
 t
h
e
C

la
s
s
 :
 %

o
b
je

c
t)

 :
 %

n
u
m

e
ri
c

G
e
tP

a
c
k
a
g
e
C

la
s
s
e
s
 (

in
 t
h
e
P

a
c
k
a
g
e
 :
 %

o
b
je

c
t)

 :
 %

lis
t

G
e
tT

e
m

p
la

te
P

a
ra

m
e
te

rs
 (

)
:
%

s
tr

in
g

is
T

e
m

p
la

te
 (

)
:
%

n
u
m

e
ri
c

G
e
tT

e
m

p
la

te
P

a
ra

m
C

o
d
e
F

o
rm

a
t
()

 :
 %

s
tr

in
g

«
M

S
e
a
rc

h
»

{M
e
ta

T
y
p
e
 =

 C
la

s
s
}

{S
te

re
o
 =

 S
P

A
R

K
 C

la
s
s
}

M
F

in
d

D
e
p

lo
y
e
d

S
p

a
rk

C
la

s
s
e
s

«
M

S
e
a
rc

h
»

{M
e
ta

T
y
p
e
 =

 C
la

s
s
}

M
F

il
te

rC
la

s
s
e
s

G
e
tA

c
ti
v
e
C

la
s
s
e
s
 (

)
:
%

lis
t

is
R

T
F

F
e
a
tu

re
S

e
le

c
te

d
 (

in
 t
h
e
V

P
 :
 %

o
b
je

c
t)

 :
 %

n
u
m

e
ri
c

g
e
tF

e
a
tu

re
S

e
tt
in

g
 (

in
 F

e
a
tu

re
N

a
m

e
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

g
e
tA

llF
e
a
tu

re
S

e
tt
in

g
s
 (

)
:
%

s
tr

in
g

g
e
tD

e
p
lo

y
e
d
P

a
c
k
a
g
e
 (

)
:
%

o
b
je

c
t

is
F

e
a
tu

re
S

e
le

c
te

d
 (

in
 t
h
e
V

P
 :
 %

o
b
je

c
t)

 :
 %

n
u
m

e
ri
c

*
1

«
M

F
lo

o
d
»

th
e
D

e
p
C

o
m

p
th

e
F

e
a
tu

re

*
1

«
M

F
lo

o
d
»

th
e
P

a
re

n
t

d
e
p
C

la
s
s

11

«
M

F
lo

o
d
»

th
e
P

a
re

n
t

th
e
C

la
s
s
S

e
t

{T
y

p
e

d
e

f}
{C

la
s

s
}

{G
e

tC
a

ta
lo

g
C

la
s

s
e

s
()

}

T
h
is

 f
in

d
s
 a

n
y
 "

S
P

A
R

K
 c

la
s
s
e
s
"

th
a
t

e
x
is

t
in

th
e
 d

e
p
lo

y
m

e
n
t.

T
h
is

 w
ill

 a
c
t

a
s
 a

 f
ilt

e
r

to
 s

to
p

th
e
s
e
 c

la
s
s
e
s
 b

e
in

g
 d

u
p
lic

a
te

d
.

214 Appendix B - Instantiating Products using Model Transformation

214 Trusted Product Lines – PhD Thesis S G Hutchesson

A number of the elements owned by the deployed components found by

MFindDeployedComponents are routed (“flooded”) to supporting «MSearch» classes:

 Typedefs are flooded to MFindFeatures to collect the decision resolution for the

deployed component

 Classes are flooded to MFindDeployedSparkClasses to identify any pre-deployed

classes that override the catalogue component.

Note on the class diagram (Figure 110) the GetCatalogClasses() operation is used as the

flood constraint into MFilterClasses - operations that return object lists can be used in this

manner. The significant operations of the MFindDeployedComponents class are:

 GetCatalogClasses() : %list

GetCatalogClasses() traverses the «bind» link between the deployed and catalogue

(Product Line) components (as shown in the meta-model in Figure 59) and returns a list of

the classes contained by the catalogue component that require processing. It makes use of

the isClassNeeded() operation to determine if the class has already been deployed and

removes these from the returned list.

 isClassNeeded(in theClass : %object) : %numeric

isClassNeeded() attempts to locate the Class parameter within the set of classes in the

named association depClass (see class diagram Figure 110). If not found then theClass is

needed and the function returns 1. If found in the set the function returns 0.

MFindDeployedSparkClasses collects any flooded class that is stereotyped as «SPARK

Class». This is used to collect classes that already exist in the deployed model and

therefore do not need duplication as part of the transformation.

MFindFeatures collects any flooded typedef that is stereotyped as «PL Component

Feature» or «PL Deployed Feature». This is used to collect the decision settings in the

deployed component that used to guide the downstream reductive transformation.

215 Appendix B - Instantiating Products using Model Transformation

215 Trusted Product Lines – PhD Thesis S G Hutchesson

Identification and Duplication of Classes

FIGURE 111 MFILTERCLASSES CLASS D IAGRAM

MFilterClasses forms the point in the transformation network where the product

instantiation decisions start to be made. It forms a gateway that allows through classes

that are part of the common product model, or are variation points that have been

selected in this particular product instance.

The GetActiveClasses() operation is used to construct the list of common or selected classes

and this floods through to MFindSparkClass.

The significant operations are described below:

 GetActiveClasses() : %list

GetActiveClasses() filters the incoming class list, and passes on to the return list any class

that is a common element (i.e. is not stereotyped «PL Variation Point»)

«MSearch»
{MetaType = Class}

{DontHash}

MFilterClasses

GetActiveClasses () : %list

isRTFFeatureSelected (in theVP : %object) : %numeric

getFeatureSetting (in FeatureName : %string) : %string

getAllFeatureSettings () : %string

getDeployedPackage () : %object

isFeatureSelected (in theVP : %object) : %numeric

«MSearch»
{MetaType = Class}

{Stereo = SPARK Class | Ada Record}
{DontHash}

MFindSparkClass

getParent () : %object

getDeployedPackage () : %object

«MCreate»

DuplicateSPARKClass

0..1

1

«MCreate»

Cls

dupCls

*

1

«MFlood»

theParentClass

theChildClass

1

1

«MFlood»

theFilter

theFilteredClasses

This association

deals with

Contained Class

recursion

Source

{Self}

Owner

{getParent()}

{ContainedClass}

{GetActiveClasses()}

«MSearch»
{MetaType = Class}

{DontHash}

MFilterClasses

GetActiveClasses () : %list

isRTFFeatureSelected (in theVP : %object) : %numeric

getFeatureSetting (in FeatureName : %string) : %string

getAllFeatureSettings () : %string

getDeployedPackage () : %object

isFeatureSelected (in theVP : %object) : %numeric

«MSearch»
{MetaType = Class}

{Stereo = SPARK Class | Ada Record}
{DontHash}

MFindSparkClass

getParent () : %object

getDeployedPackage () : %object

«MCreate»

DuplicateSPARKClass

0..1

1

«MCreate»

Cls

dupCls

*

1

«MFlood»

theParentClass

theChildClass

1

1

«MFlood»

theFilter

theFilteredClasses

This association

deals with

Contained Class

recursion

Source

{Self}

Owner

{getParent()}

{ContainedClass}

{GetActiveClasses()}

216 Appendix B - Instantiating Products using Model Transformation

216 Trusted Product Lines – PhD Thesis S G Hutchesson

For any class that IS stereotyped «PL Variation Point», the operation isFeatureSelected() is

called. If this returns True, then the class is also inserted into the return list. Classes that

fail the isFeatureSelected() test are discarded.

 getFeatureSetting (in FeatureName : %string) : %string

This function returns the selected option for a given decision in the deployed component. It

calls getDeployedPackaget() to return the component being processed and then finds the

given decision (FeatureName) in the deployed component contract and returns the

selected value.

 getAllFeatureSettings () : %string

This operation returns a composite string containing the set of feature settings for the

deployed component. The returned string is of the form:

FeatureName1:FeatureValue1;FeatureName2:FeatureValue2; ...

 getDeployedPackage () : %object

This function traverses the model and returns the parent package (category) of the

topmost class in the class hierarchy. This represents the deployed component. (Note

function takes into account contained class hierarchies)

 isFeatureSelected(in theVP : %object) : %numeric

This function determines if a variation point has been selected in the current deployment.

Specifically it returns 1 (true) if the object passed has a “PL Select When” expression which

returns True when evaluated with the current Deployed component settings.

MFindSPARKClass collects the set of modelled classes that are to be replicated into the

deployed model. The flooding operation has performed the down-selection based upon

the product decision settings; the set of classes collected in MFindSPARKClass are the

result of that selection. Note the theParentClass-theChildClass association between

MFindSPARKClass and MFilterClasses. This ensure any child classes contained by a class

(representing Ada public or private children, or Ada records) are processed by the class

decision filter and are replicated as required.

The significant operations are described below:

 getParent() : %object

getParent() returns the parent object in the transformed model which will own the

replicated class.

 getDeployedPackage() : %object

getDeployedPackage() returns the UML Package (category) which represents the deployed

component. This is the parent in the transformed model for the replicated component

217 Appendix B - Instantiating Products using Model Transformation

217 Trusted Product Lines – PhD Thesis S G Hutchesson

classes. It also contains the decision settings for the product instantiation of this

component.

DuplicateSPARKClass is a «MCreate» class which instantiates the DClass factory class. The

DClass factory class duplicates UML classes into the target model. DClass requires a Source

class (to be duplicated) and an Owner object (to own the duplicated class). The

DuplicateSPARKClass instance is fed by the set of classes collected by MFindSPARKClass

(as Source) and the Owner object is the result of the getParent() operation on each of the

collected MFindSPARKClass classes.

We now have defined a transformation that will reduce a product-line class model and

replicate the selected classes into a target deployment model based upon the selected

decision options. The rest of the transformation concerns the duplication of the other

relevant elements of the UML meta-model used to model the SPARK Ada program (i.e.

Operations, Attributes, Typedefs and Dependencies.) For brevity’s sake, we only describe

the operation transformation in detail in this thesis.

Identification and Duplication of Class Contents

FIGURE 112 TRANSFORMATION RULE DUPLICATING NON-VARIANT OPERATIONS

218 Appendix B - Instantiating Products using Model Transformation

218 Trusted Product Lines – PhD Thesis S G Hutchesson

Figure 112 defines the transformation fragment concerned with the duplication of non-

variant (common) operations. This pattern repeats throughout the transformation for each

of the UML meta-model elements that are relevant in the product line models (i.e.

attributes, typedefs and dependencies).

The MFindOperations class receives the set of operations defined in the selected SPARK

classes (from MFindSPARKClasses). MFindOperations inherits a set of “helper” operations

from the utility class FeatureFilter, which are primarily used to determine when variation

has been selected; in this pattern only the “isNotVP()” operation is actually used. Any

operation that is NOT marked as a variation point is duplicated into the target deployment

model. The «MCreate» class DuplicateOperation inherits the DOperation factory class and

performs the duplication; this is guarded by a when constraint: isNotVP(“Self”).

The constraints on the DuplicateOperation class are interesting. Although the operation

itself is common (i.e. has no PL Variation Point stereotype), this does not necessarily imply

that the operation itself may not contain variability; it may be a common operation with a

variable implementation (i.e. variation with the body of the operation). The constraints on

the DuplicateOperation class perform the variation processing of the operation contents.

DuplicateOperation declares an operation “ParseMarkup()”. This is significant in the

overall transformation design. “ParseMarkup()” provides an interface to an ANTLR text

processor that removes variation from text fields within the model. A discussion of the

design of this processor and its implications is contained later in this chapter. The extent of

its use should be noted; the fields that are used within SPARK operations, and which may

contain mark-up are:

 Text – containing the Ada source code of the operation body

 Ada Declaration Text – any declarations local to the sub-program (local variables or

local sub-programs)

 Abstract Globals – SPARK Abstract Global annotations may contain variation

 Abstract Derives – SPARK Abstract Derives annotations may contain variation

 Concrete Globals – SPARK Concrete Global annotations may contain variation

 Concrete Derives – SPARK Concrete Derives annotations may contain variation

The transformation cannot process these fields using the provided TDK 4G mechanisms as

the text they contain does not correspond to any declared meta-model. The implications

of this were discussed in the main body of the thesis (Chapters 5 and 7).

Compare this transformation fragment to that shown in Figure 113. This shows the

transformation pattern for variant operations; again, this pattern is duplicated for all UML

meta-model elements relevant in modelling the SPARK program.

219 Appendix B - Instantiating Products using Model Transformation

219 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 113 TRANSFORMATION RULE DUPLICATING VARIANT OPERATIONS

The differences between this and the non-variant pattern are twofold; firstly the central

«MSearch» class collecting operations (MFindVariantOperations) is filtered on the «PL

Variation Point» stereotype – that is, only operations identified as variation points are

collected. Secondly, the «MCreate» association with DuplicateOperation is guarded by a

call to the “isFeatureSelected()” operation. This ensures only operations that valid in the

current product are duplicated into the deployment model.

220 Appendix B - Instantiating Products using Model Transformation

220 Trusted Product Lines – PhD Thesis S G Hutchesson

Transformation of Enumeration Literals

FIGURE 114 TRANSFORMATION RULE FOR DEPLOYMENT OF ENUMERATION L ITERALS

221 Appendix B - Instantiating Products using Model Transformation

221 Trusted Product Lines – PhD Thesis S G Hutchesson

The final UML meta-model element that requires transformation is the Enumeration

Literal. The designed transformation allows literals to be included or removed from type

definitions. The type definition itself may be common or a variation point. Figure 114

shows the transformation classes for dealing with enumeration literals.

The MFindTypedef and MFindVariantTypedef «MSearch» classes contain the set of

Typedefs collected during the Typedef transformations. These are collected together into a

single set in the MFindActiveTypedefs «MSearch» class. Typedef elements may contain

the declaration of sets of enumeration literals if the Typedef represents an enumerated

type. Two sets of enumeration literals are collected: MFindLiteral contains all enumeration

literals declared in the active Typedefs. MFindVarLiterals collects only those enumeration

literals that are stereotyped as PL Variation Point. All common literals are duplicated into

the target deployment model via the association between MFindLiteral and the

DuplicateLiteral MCreate class. This is guarded by the” isNotVP()” operation.

(Note that this illustrates a shortcoming in the 4G TDK semantics. The ability to collect a

set of elements and then divide this set into two collections, one set including elements

with a given stereotype, and a second containing the remaining elements NOT stereotyped

is used throughout the product line M2M transformation. However, whilst a collection can

be formed declaratively of elements with a given stereotype, the converse is NOT true (e.g.

“collect a set of classes NOT stereotyped «SPARK Class»”). This has to be performed by

using a procedural operation as a flood parameter, filtering out the stereotyped elements.

The ”isNotVP()” operation is an example of this.)

The enumeration literals that are marked as variation points and have been selected for

deployment in this product are duplicated into the target deployment model via the

association between MFindVarLiteral and the DuplicateLiteral MCreate class. This is

guarded by the ”isFeatureSelected()” operation.

At this point in the transformation process there now exists a model in memory which

represents the deployed component set with all variations points resolved. This now needs

to be transformed into a model from which SPARK Ada can be generated. This is achieved

by applying a set of design pattern transformations.

222 Appendix B - Instantiating Products using Model Transformation

222 Trusted Product Lines – PhD Thesis S G Hutchesson

Opaque Behaviour and Textual Transformation
We discussed the role of text transformations to support variability in “opaque behaviour”

regions in section 5.3.2. There we described how the M2M transform delegates these

regions of “opaque behaviour” to an ANTLR parser, and we have seen in this appendix how

the ParseMarkup operation is used at various points in the transformation. Here we show

how the simple mark-up language is defined using an ANTLR grammar that is shown in

Code Listing 3 below.

grammar VPMarkup;

options {

 language = C;

 output=AST;

 ASTLabelType=pANTLR3_BASE_TREE;

}

tokens {

INSERT;

CONDITION;

FEATURE;

FEATURENOT;

ANDOP;

OROP;

}

// Rules

markupFile : VP_BEGIN! (ifCommand|contentSkip)* VP_END!;

ifCommand : IF^ vpSpec theContent (elsifCommand)* (elseCommand)*

ENDIF! ;

elsifCommand : ELSIF^ vpSpec theContent;

elseCommand : ELSE^ theContent;

theContent : (ifCommand|contentSkip)*;

vpSpec : variationPoint (boolOp ^ vpSpec)?;

variationPoint : featureSetting -> ^(FEATURE featureSetting) |

 NOT featureSetting -> ^(FEATURENOT featureSetting);

featureSetting : theFeature '=' theValue -> ^(theFeature

theValue) ;

theFeature : NAME;

theValue : NAME;

boolOp : andOp -> ^(ANDOP)

 | orOp-> ^(OROP) ;

andOp : 'and' | 'AND' | 'And';

orOp : 'or' | 'OR' | 'Or';

223 Appendix B - Instantiating Products using Model Transformation

223 Trusted Product Lines – PhD Thesis S G Hutchesson

contentSkip : CONTENT -> ^(INSERT CONTENT);

// Tokens

VP_BEGIN : 'VPBegin' | 'VPBEGIN'|'VPbegin'|'vpbegin';

VP_END : 'VPEnd' | 'VPEND'| 'vpend' | 'VPend';

NOT : 'not'| 'NOT' | 'Not';

IF : 'VPIf'| 'VPIF'| 'VPif' | 'vpif';

ELSIF : 'VPElsIf'|'VPElsif' | 'VPelsif'| 'vpelsif'|

'VPELSIF';

ELSE : 'VPElse' | 'VPelse' | 'vpelse' | 'VPELSE';

ENDIF : 'VPEndIf'| 'VPENDIF' | 'vpendif' | 'VPendif' |

'VPEndif';

NAME: ('a' .. 'z' | 'A' .. 'Z' | '_')

 ('a' .. 'z' | 'A' .. 'Z' | '_' | '0' .. '9')*;

OPEN : '{';

CLOSE : '}';

CC : '//';

CONTENT : OPEN (options {greedy=false;} : .)* CLOSE;

COMMENT : CC (options {greedy=false;} : .)* '\n'

{$channel=HIDDEN;};

WS : (' '|'\r'|'\t'|'\n')+ {$channel=HIDDEN;};

CODE L ISTING 3 ANTLR GRAMMAR DEFINING MARK-UP LANGUAGE

This simple grammar allows regions of text to be surrounded by braces ({}). Each text

region can be either common (always passed through to the final product-specific variant)

or be guarded by an expression (in terms of the component decisions) that identifies

whether the region is included. As the main target language for this approach is SPARK

(based upon Ada 95), the brace characters were used to identify the text regions as braces

are not tokens in the SPARK language. This approach was taken to simplify the parser;

instead of having to include the complete grammar of any target language in the mark-up

parser, anything within braces is passed through to the output (this is the purpose of the

CONTENT : OPEN (options {greedy=false;} : .)* CLOSE;) ;

statement).

Template Components & Transformation
As discussed in section 5.3.3, template processing was a late addition to the

transformation; this additional functionality was included with the minimal impact on the

existing transform via the use of multiple inheritance. The majority of the template

handler behaviour was encapsulated in a helper class TemplateHandler, and then inherited

by the appropriate «MSearch» classes as shown in Figure 115.

224 Appendix B - Instantiating Products using Model Transformation

224 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 115 INHERITING TEMPLATE HANDLING CAPABILITIES

T
e
m

p
la

te
H

a
n

d
le

r

d
e
p
lo

y
e
d
P

a
ra

m
e
te

rs
 :
 %

s
tr

in
g

d
e
p
lo

y
e
d
P

a
ra

m
C

o
d
e
F

o
rm

a
t
:
%

s
tr

in
g

g
e
tN

a
m

e
 (

)
:
%

s
tr

in
g

p
ro

c
e
s
s
S

tr
in

g
 (

in
 s

o
u
rc

e
S

tr
in

g
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

p
u
tD

e
p
lo

y
e
d
P

a
ra

m
e
te

rs
 (

in
 d

e
p
lo

y
e
d
P

a
c
k
a
g
e
 :
 %

o
b
je

c
t)

g
e
tD

e
p
lo

y
e
d
P

a
ra

m
e
te

rs
 (

)
:
%

s
tr

in
g

p
u
tD

e
p
lo

y
e
d
P

a
ra

m
e
te

rS
tr

in
g
 (

in
 p

a
ra

m
S

tr
in

g
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

p
u
tD

e
p
lo

y
e
d
P

a
ra

m
C

F
S

tr
in

g
 (

in
 p

a
ra

m
S

tr
in

g
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

p
ro

c
e
s
s
S

tr
in

g
C

F
 (

in
 s

o
u
rc

e
S

tr
in

g
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

p
u
tD

e
p
lo

y
e
d
P

a
ra

m
e
te

rs
C

F
 (

in
 d

e
p
lo

y
e
d
P

a
c
k
a
g
e
 :
 %

o
b
je

c
t)

M
F

in
d

V
a
ri

a
n

tO
p

e
ra

ti
o

n
s

M
F

in
d

O
p

e
ra

ti
o

n
s

M
F

in
d

A
tt

ri
b

u
te

s

M
F

in
d

V
a
ri

a
n

tA
tt

ri
b

u
te

s

M
F

in
d

T
y
p

e
d

e
f

M
F

in
d

V
a
ri

a
n

tT
y
p

e
d

e
f

M
F

in
d

S
p

a
rk

C
la

s
s

M
F

in
d

D
e
p

lo
y
e
d

C
o

m
p

o
n

e
n

ts

G
e
tC

a
ta

lo
g
C

la
s
s
e
s
 (

)
:
%

lis
t

is
C

la
s
s
N

e
e
d
e
d
 (

in
 t
h
e
C

la
s
s
 :
 %

o
b
je

c
t)

 :
 %

n
u
m

e
ri
c

G
e
tP

a
c
k
a
g
e
C

la
s
s
e
s
 (

in
 t
h
e
P

a
c
k
a
g
e
 :
 %

o
b
je

c
t)

 :
 %

lis
t

G
e
tT

e
m

p
la

te
P

a
ra

m
e
te

rs
 (

)
:
%

s
tr

in
g

is
T

e
m

p
la

te
 (

)
:
%

n
u
m

e
ri
c

G
e
tT

e
m

p
la

te
P

a
ra

m
C

o
d
e
F

o
rm

a
t
()

 :
 %

s
tr

in
g

M
F

in
d

D
e
p

e
n

d
e
n

c
ie

s

M
F

in
d

V
a
ri

a
n

tD
e
p

e
n

d
e
n

c
ie

s

T
e
m

p
la

te
H

a
n

d
le

r

d
e
p
lo

y
e
d
P

a
ra

m
e
te

rs
 :
 %

s
tr

in
g

d
e
p
lo

y
e
d
P

a
ra

m
C

o
d
e
F

o
rm

a
t
:
%

s
tr

in
g

g
e
tN

a
m

e
 (

)
:
%

s
tr

in
g

p
ro

c
e
s
s
S

tr
in

g
 (

in
 s

o
u
rc

e
S

tr
in

g
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

p
u
tD

e
p
lo

y
e
d
P

a
ra

m
e
te

rs
 (

in
 d

e
p
lo

y
e
d
P

a
c
k
a
g
e
 :
 %

o
b
je

c
t)

g
e
tD

e
p
lo

y
e
d
P

a
ra

m
e
te

rs
 (

)
:
%

s
tr

in
g

p
u
tD

e
p
lo

y
e
d
P

a
ra

m
e
te

rS
tr

in
g
 (

in
 p

a
ra

m
S

tr
in

g
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

p
u
tD

e
p
lo

y
e
d
P

a
ra

m
C

F
S

tr
in

g
 (

in
 p

a
ra

m
S

tr
in

g
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

p
ro

c
e
s
s
S

tr
in

g
C

F
 (

in
 s

o
u
rc

e
S

tr
in

g
 :
 %

s
tr

in
g
)

:
%

s
tr

in
g

p
u
tD

e
p
lo

y
e
d
P

a
ra

m
e
te

rs
C

F
 (

in
 d

e
p
lo

y
e
d
P

a
c
k
a
g
e
 :
 %

o
b
je

c
t)

M
F

in
d

V
a
ri

a
n

tO
p

e
ra

ti
o

n
s

M
F

in
d

O
p

e
ra

ti
o

n
s

M
F

in
d

A
tt

ri
b

u
te

s

M
F

in
d

V
a
ri

a
n

tA
tt

ri
b

u
te

s

M
F

in
d

T
y
p

e
d

e
f

M
F

in
d

V
a
ri

a
n

tT
y
p

e
d

e
f

M
F

in
d

S
p

a
rk

C
la

s
s

M
F

in
d

D
e
p

lo
y
e
d

C
o

m
p

o
n

e
n

ts

G
e
tC

a
ta

lo
g
C

la
s
s
e
s
 (

)
:
%

lis
t

is
C

la
s
s
N

e
e
d
e
d
 (

in
 t
h
e
C

la
s
s
 :
 %

o
b
je

c
t)

 :
 %

n
u
m

e
ri
c

G
e
tP

a
c
k
a
g
e
C

la
s
s
e
s
 (

in
 t
h
e
P

a
c
k
a
g
e
 :
 %

o
b
je

c
t)

 :
 %

lis
t

G
e
tT

e
m

p
la

te
P

a
ra

m
e
te

rs
 (

)
:
%

s
tr

in
g

is
T

e
m

p
la

te
 (

)
:
%

n
u
m

e
ri
c

G
e
tT

e
m

p
la

te
P

a
ra

m
C

o
d
e
F

o
rm

a
t
()

 :
 %

s
tr

in
g

M
F

in
d

D
e
p

e
n

d
e
n

c
ie

s

M
F

in
d

V
a
ri

a
n

tD
e
p

e
n

d
e
n

c
ie

s

225 Appendix B - Instantiating Products using Model Transformation

225 Trusted Product Lines – PhD Thesis S G Hutchesson

Expanding Design Patterns
As discussed in section 5.3.4, the final part of the M2M transformation chain is the

expansion of design patterns. We identified that there are six design patterns to be

expanded; the transformations that support these are applied in a well-defined order:

1. Apply Development Variable (DV) Pattern

2. Apply Testpoint Pattern

3. Apply Interface Pattern

4. Apply OS Interface Pattern

5. Apply Testport Pattern

6. Apply Graphical Data Pattern

The following section describes the detail of the Development Variable transformation. We

omit the details of the other downstream transformations for brevity.

Development Variable Pattern

Development Variables (DVs) provide the means to alter nominally constant data in the

program (i.e. they can be regarded as “variable constants”). DVs are set to a default initial

value at program reset, but each read of the DV value will be made from RAM, allowing the

value to be “soft-trimmed” (i.e. changed at run-time via test equipment). The initial value

of the DV can also be altered via a process of “hard trimming” (i.e. downloading a new set

of default data values to the controller’s FLASH memory). From a design viewpoint, the

only required information for each DV is its name, data type and default value. However,

we need to cater for a number of language-level subtleties in the code generation (PSM)

model.

Each component that requires a set of Development Variables will contain a “calibration”

Ada package named <component>DV. The UML class representation will be stereotyped

«DV Class». Typically, the final code form of a DV Ada package containing a single DV will

look as follows:

with Base;

--# Inherit

--# Base

--# ;

package ComponentDV

--# own data : DVRecordType;

 is

 --

 -- public sequence types

 --

226 Appendix B - Instantiating Products using Model Transformation

226 Trusted Product Lines – PhD Thesis S G Hutchesson

 subtype myDVType is Base.Real range 0.0 .. 9999.0;

 --

 -- public operation declarations

 --

 function myDV return myDVType;

 pragma INLINE(myDV);

 --

 -- initialise

 --

 -- Description:

 --

 procedure initialise;

 --# Global

 --# out data

 --# ;

 --# Derives

 --# data from

 --# ;

 --

 -- testport

 --

 -- Description:

 --

 procedure testport;

 --# Derives

 --#

 --# ;

private

end ComponentDV;

CODE L ISTING 4 EXAMPLE COMPONENT DV PACKAGE SPECIFICATION

package body ComponentDV

is

 --

 -- Private record types

 --

 type DVRecordType is record

 myDV : myDVType;

 end record;

 --

227 Appendix B - Instantiating Products using Model Transformation

227 Trusted Product Lines – PhD Thesis S G Hutchesson

 -- Private typed constants

 --

 initial : constant DVRecordType := DVRecordType'(

 myDV => 0.5);

 --

 -- Private State

 --

 data : DVRecordType;

 --

 -- Public operations

 --

 function myDV return MyDVType

 is --# hide myDV

 --Hidden body accesses state outside SPARK boundary.

 begin

 return data.myDV;

 end myDV;

 --

 -- initialise

 --

 -- Implementation Notes:

 --

 --

 procedure initialise

 is

 begin

 data := initial;

 end initialise;

 --

 -- testport

 --

 -- Implementation Notes:

 --

 --

 procedure testport

 is separate;

end ComponentDV;

CODE L ISTING 5 EXAMPLE COMPONENT DV PACKAGE BODY

Prior to model transformation being available, each of the Ada language constructs visible

in the source code listing above would need to be explicitly modelled in UML to enable

syntactically correct code to be produced. However, the following parts of this pattern are

standard and their generation can be automated as part of the design pattern

transformation:

 Initialise operation

228 Appendix B - Instantiating Products using Model Transformation

228 Trusted Product Lines – PhD Thesis S G Hutchesson

 Testport operation

 DVRecordType definition

 Initial attribute declarations

 DV function body including SPARK hide

 Inline of DV function prototype

This leaves the following information to be included in the input model:

 DV Classname

 DV Names

 DV Types

 DV Default Values

Figure 116 shows the DV Pattern 4G TDK transformation.

The pattern firstly finds all the «DV Class» classes within the set of deployed components

(MGetDeployedComponentsForDV and MFindDVClass), then finds the set of operations

declared in this class. The set of required DVs are modelled as typed operations with the

following additional tag:

 InitialValue holds the default initial value for the development variable.

The relatively large number of «MCreate» factory class instantiations in the transform

indicates the level of automatically created entities in the final model, and is an indication

of the level of abstraction of the input model. All of these entities used to be modelled

explicitly by the designer prior to the transformation-based code generator; with the

consequential potential for error (e.g. a common mistake was to return the incorrect value

in a DV function body as the designer constructed the class contents by copy and paste).

The DV pattern defines a number of standard constructs that must exist in every DV class,

there are created for each class found via MFindDVClass :

 An Ada record typedef called “DVRecordType” whose element hold the individual

DV definitions is created by theDVRecord «MCreate» class.

 An “Initial” constant attribute to hold the initial values for the DVs is created by

theInitialAttr. Note the use of the “After” constraint on the «MCreate» association

here. The Initial attribute is of type “DVRecordType” which is also created via

transformation. The transformation must create the objects in the correct order to

allow them to be subsequently referred to. The “After” constraint ensures that all

required objects exist before a creation operation takes place.

 An attribute called “Data” to hold the in-memory values of the DVs is created by

theDataAttr. This is also of type “DVRecordType” and therefore has the “After”

constraint on the creation.

 An operation to initialise the Data attribute is created by theInitialiseOp. Note the

Text constraint on the factory class which provides the operation body “data :=

initial;”.

229 Appendix B - Instantiating Products using Model Transformation

229 Trusted Product Lines – PhD Thesis S G Hutchesson

 A data attribute is included in the DVRecordType definition for each identified DV

operation in the source model. These are created by theAtrribute in response to

the operations collected in MFindDVOperations.

The power of the use of transformations to hide target-dependent detail from the designer

is shown in the elements of the transformation that contain the word “dummy”.

These parts of the transformation exist to provide a work-around due to the behaviour of

the particular compiler used on the project. As described earlier, DVs are used to provide

“trimmable” constants, whose value may be altered post-compliation. The “hard-trim”

process changes the values of these constants in the FLASH memory of the controller. To

be able to do this, the DVs need to reside in separate memory regions as defined by the

linker process. However, the compiler used will attempt to optimise away any constant

value that is less than 16 bytes in size, preferring to locate those values in-line with the

program code. To force all DV declarations to be greater than 16 bytes in size, additional

“dummy” attributes are inserted into the DV record type declarations for any records that

would be otherwise less than 16 bytes. On previous projects, this dummy packing had to

be included by the component designers in the source UML model. This was unsatisfactory

for a number of reasons, including:

 If this was missed by the designers, the program would still compile, and the

problem would only be found when those particular values in the controller were

attempted to be trimmed – this could be at customer sites or during costly engine

tests.

 This is low-level detail due to specific compiler behaviour – it should not really in

the domain of the component designer to address.

The solution to this is to encode the creation of the dummy attributes in the expansion of

the design pattern. This makes the process both transparent to the design, and reliable in

its implementation.

FIGURE 116 APPLY DEVELOPMENT VARIABLE PATTERN TRANSFORM

231 Appendix B - Instantiating Products using Model Transformation

231 Trusted Product Lines – PhD Thesis S G Hutchesson

Code Generation (Model-to-Text Transformation)
The final transformation phase shown in Figure 106 is the Model-to-Text transformation

that produces the SPARK source code. An important property of this phased

transformation approach is that the transitory model presented to the M2T code generator

is of the same form as the single-project UML model that was used in previous, single-

system projects. Therefore, minimal changes are required to the M2T generator to enable

its use on a product line development.

The previous generator used ARTiSAN’s OCS (On-Demand Code Synchronisation)

technology to transform a decorated UML Class model to SPARK code. OCS uses a set of

code templates to transform a UML model to text “on demand”. The OCS SPARK generator

and associated SPARK UML profile was originally developed by Praxis High Integrity

Systems and subsequently modified by Rolls-Royce/AEC. This was used successfully on two

FADEC development projects, generating products in excess of 250KSLOC each. A detailed

description of the OCS generator is beyond the scope of this thesis (it was not generated as

part of this research). Given a UML-to SPARK generator with this level of pedigree,

however, it was felt that this should be the basis of the back-end of the product-line code

generator. It is possible to “host” OCS-based generators within an ACS generator; the OCS

templates are imported en-masse as operations in a generator package. To get this OCS-

style generator to transform a transitory in-memory model involved creation of a small

“visitor” transformation which traverses the in-memory model, visiting each UML category

(package) and class, and invoking the OCS M2T transformation on each class found (via the

call to doOCSGenerate() within QCLass). This visitor or mapping model is shown in Figure

117 below.

FIGURE 117 ACS "VISITOR" TRANSFORMATION WHICH INVOKES THE LEGACY OCS M2T CODE GENERATOR

Rules
Gen->genClass
{Contained Class.Gen};

genClass->doOCSGenerate;

QClass

When (in O : %object) : %numeric

doOCSGenerate () : %string

4GGenerator::4GStructure::Category

Name : %string
Rules

Gen ->
Classes
{ScopedPackage.Gen};

Classes->* {Class.Gen};

QPackage

When (in O : %object) : %numeric

4GGenerator::4GStructure::Class

Name : %string

*

0..1
Containing Class

Contained Class

*

0..1 Package

*

0..1

Parent Category

ScopedPackage

Rules
Gen->genClass
{Contained Class.Gen};

genClass->doOCSGenerate;

QClass

When (in O : %object) : %numeric

doOCSGenerate () : %string

4GGenerator::4GStructure::Category

Name : %string
Rules

Gen ->
Classes
{ScopedPackage.Gen};

Classes->* {Class.Gen};

QPackage

When (in O : %object) : %numeric

4GGenerator::4GStructure::Class

Name : %string

*

0..1
Containing Class

Contained Class

*

0..1 Package

*

0..1

Parent Category

ScopedPackage

232 Appendix C – Case Study

232 Trusted Product Lines – PhD Thesis S G Hutchesson

Appendix C – Case Study

n this appendix we work through an example to illustrate the use of our Trusted

Product Lines approach. We show how the reference software architecture and core

assets are deployed on a project and how components can be instantiated to meet the

requirements of that particular project.

Model Structure

FIGURE 118 MODEL PACKAGE STRUCTURE FOR A PRODUCT LINE PROJECT INSTANCE

Figure 118 shows the top levels of the package structure for a project that uses our product

line approach. The very top-level packages represent the following:

 01 Feature Model – This package provides a link to the high-level software

requirements/system requirements implemented by the software. In this case, the

contents of this package are simply requirement identification & traceability tags,

but this package can contain more complex models of variability, as required by the

system-level feature model. Its purpose in our example is to provide a home for

requirements identifiers for traceability linkage.

 02 Software Conceptual Model – This package provides a model of the overall

concept of the software, typically used to describe the “high-level” software

architecture. It is standardised across all projects that use this reference

architecture (it contains the reference architecture definition); specific peculiarities

of the project architecture are described in the project conceptual view in the

deployment model (see 04 later).

I

233 Appendix C – Case Study

233 Trusted Product Lines – PhD Thesis S G Hutchesson

 03 Software Component Catalogue – This package contains the definitions of all the

software components that are used in the project. This is split into two sub-

packages: Core Assets and Project. Core Assets contains the set of components

that are produced for and managed by the product line initiative. Project contains

the set of components produced specifically for the project instance itself.

However, both sets of components are produced to the same design standards and

are deployed in the same manner. This means that any components that need to

migrate (usually from Project into Core Assets when they are deemed applicable to

more than this product) can be moved with minimal technical effort.

 04 Software Deployment Model – This package contains the instantiation rules for

this project. It models the specific features of the target hardware for the project,

any changes or additions to the software architectural concept and, in the “03

Component View” sub-package, the deployment of the components onto the

target CPUs.

This appendix concentrates on the illustrating the relationship between the 03 Component

Catalogue and the 04 Deployment Model, and how they work together with the model

transformations to instantiate product source code.

Core Asset Components
In chapter 4, we described how the reference architecture for our products identifies a

number of layers in the software. These layers are reflected in the package structure

holding the component definition.

FIGURE 119 LAYER STRUCTURE REFLECTED IN THE CORE ASSETS COMPONENT CATALOGUE

We now look at the structure of a component within one these layers. This is a core asset

component that lives within the “System” layer, and the purpose of the component is to

validate an engine pressure signal. The component is named “Validate Engine Pressure”

and its location in the “Core Asset” package structure can be seen in Figure 120.

Here, our use of the ARTiSAN Studio ergonomic profiling can be seen. As described in

Chapter 4, special icons are provided to indicate that parts of the model have been

specially stereotyped. The Validate Engine Pressure component itself is a UML package

stereotyped as a «PL Component», which is associated with the blue/green 3-box icon.

234 Appendix C – Case Study

234 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 120 SYSTEM LAYER COMPONENT - VALIDATE ENGINE PRESSURE

We can also see in Figure 120 that, in addition to the component’s internal classes and

diagrams, the component published two features or “decisions”, denoted by the grey star

icons. These form the “decision contract” for that component, and these must be resolved

by any users of the component at deployment time. To illustrate the use of these, we need

to understand the requirements the component is designed to fulfil.

FIGURE 121 FEATURE MODEL FRAGMENT - ENGINE PRESSURE SIGNAL CORRECTION

Figure 121 shows a fragment of the requirements for this component in the form of a

feature model; this shows the requirements for the correction of the pressure signal. This

has a mandatory feature (the correction of the signal to remove the effect of the airspeed)

and an optional feature (to scale and convert the raw engine data). The references

provided in Figure 121 under the features are the requirement traceability references

(“tag”) for the required behaviour (the high-level software requirements). We do not need

«PL Component» icon

«PL Component Feature» icon

235 Appendix C – Case Study

235 Trusted Product Lines – PhD Thesis S G Hutchesson

to understand the technical detail of these requirements for the purposes of this case

study.

The optional feature in Figure 121 is represented in the Validate Engine Pressure

component by a simple true/false selection in the decision contract, as shown in Figure

122.

FIGURE 122 DECISION CONTRACT FOR SCALE & CONVERT OPTION

One advantage of implementing the decision contracts as stereotyped UML elements is the

ability to use the built-in model navigation features of the modelling tools. Within ARTiSAN

Studio there is the ability to report the usage of model elements – if we report on the

usage of the decision, the tool will provide a list of those parts of the model that are

affected by that decision (see Figure 123).

FIGURE 123 REPORTING USAGE OF DECISIONS IN ART ISAN STUDIO

236 Appendix C – Case Study

236 Trusted Product Lines – PhD Thesis S G Hutchesson

In fact, this decision only affects the body of the “run” operation inside the

ValidateEnginePressure class. Figure 124 and Figure 125 illustrate how the design text and

SPARK code body for the operation make use of the mark-up text facility to include/exclude

the correction code.

FIGURE 124 OPTIONAL TEXT IN COMPONENT DESIGN DESCRIPTION

FIGURE 125 OPTIONAL CODE IN COMPONENT BODY

We can also use the model reference search facility to follow traceability links, and see

where behavioural requirements related to features are implemented. Figure 126 shows

the menu selection to query the usage of the optional requirement SRS/P00/740 .

237 Appendix C – Case Study

237 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 126 REPORT->USAGE ON REQUIREMENT TAGS

The result of running this query is shown in Figure 127.

FIGURE 127 RESULT OF REQUIREMENT USAGE QUERY

Here we see that requirement P00/740 is traced in the implementing “run” operation and

in the decision option SCALE_AND_CONVERT = “True”. This is an example of the mapping

of decision options to the requirements they satisfy as described in section 4.8.1 of this

thesis. We can see how this is captured in the model in Figure 128, and how the alternative

“False” option has no traceability (in Figure 129), as this option results in a simple non-

inclusion of the functionality.

FIGURE 128 REQUIREMENTS TRACEABILITY IN DECISION SCALE_AND_CONVERT OPTION "TRUE"

238 Appendix C – Case Study

238 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 129 REQUIREMENTS TRACEABILITY IN DECISION SCALE_AND_CONVERT OPTION "FALSE"

We will see how this affects the final traceability reporting for the deployed component

later in this section. We now look at the other source of variability in this component.

FIGURE 130 FEATURE MODEL FRAGMENT - PRESSURE SIGNAL SELECTION

Figure 130 shows another feature model fragment for the engine pressure validation,

which requires variability in the signal selection logic. In essence, there are multiple

sources of the engine pressure signal, which need to be validated and then selected

between. Where there are multiple valid signals, a means of arbitrating between them is

required. One option is to select the lowest of the valid signals, and another is to select the

highest. This has been identified as a point of variability in the product line, so the core

asset component has to provide these options, and make the selection visible in the

component’s decision contract. Again, the text under the optional features is the

traceability reference for the associated high-level software requirements.

239 Appendix C – Case Study

239 Trusted Product Lines – PhD Thesis S G Hutchesson

The selection of this variability in the component is via a decision named

“SELECT_PREFERRED_SIGNAL_TYPE”, as can be seen in Figure 131.

FIGURE 131 SIGNAL SELECTION OPTIONS

(Note: the “nearest to model” part of the options shown in Figure 131 is there for

consistency with other validation components that have additional options related to

modelled (i.e. calculated) values as part of their selection scheme.)

Component Deployment
We have seen how core asset components can be designed and implemented to include

variability, and be traced to common and optional software requirements. We now look at

how these components can be deployed, instantiated and used on projects.

FIGURE 132 DEPLOYED COMPONENT IN PACKAGE STRUCTURE

Figure 132 shows the deployed component in the context of the deployment package

structure. The deployed component icon has blue, green and red elements as can be seen,

and contains a “bind diagram” which illustrates the model dependency between the

deployed component and the product line component, as can be seen in Figure 133.

«PL Deployed

Component»

icon

240 Appendix C – Case Study

240 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 133 DEPLOYED COMPONENT B IND D IAGRAM

This bind dependency provides a means of modelling the relationship between the

deployed and the catalogue components, compliant with the meta-model given in section

4.6. It is also a directive to the code generator to traverse the link and generate code from

the dependee component.

The deployed component is obliged to resolve all the decisions in the component contract.

Each decision in the catalogue component has equivalent in the deployed component,

stereotyped as «PL Deployed Feature». An associated tag in this stereotype “PL Feature

Value” contains the selected option for that feature, as can be seen in Figure 134.

FIGURE 134 RESOLUTION OF DECISION CONTRACTS - SELECTED OPTIONS

Here we see that this project has made the following selections for this deployment:

 SCALE _AND_CONVERT:=TRUE

 SELECT_PREFERRED_SIGNAL_TYPE:=SELECT_NEAREST_TO_MODEL_THEN_HIGHEST

«PL deployed component»
04 Software Deployment Model::Component View::Control CPU::System Layer::Validation::Validate Engine
Pressure

«PL component»
03 Software Component Catalogue::Core Assets::03 System Components::Validate Engine Pressure

«bind»

«PL deployed component»
04 Software Deployment Model::Component View::Control CPU::System Layer::Validation::Validate Engine
Pressure

«PL component»
03 Software Component Catalogue::Core Assets::03 System Components::Validate Engine Pressure

«bind»

241 Appendix C – Case Study

241 Trusted Product Lines – PhD Thesis S G Hutchesson

We are now in the position to instantiate the component for the project, by performing the

Model-to-Model and Model-to-Text transformations as described in Chapter 5 and

Appendix B of this thesis. The following listing shows the log file produced when the

Product Line code generator is run on the deployed Validate Engine Pressures component.

Starting ACS/TDK...

- Shadow ACS/TDK kit v. 7.0.36

- Loaded [M2M_SPL_SPARK_OCS.dll] code generator

- Root Object(s):

- 04 Software Deployment Model::Component View::Control CPU::System

Layer::Validation [Category]

- Forced Generate. Processing...

- Class Needed : ValidateEngPressure

- Class NOT Needed : ValidateEngPressureData

- Class NOT Needed : ValidateEngPressureDV

- Class Needed : ValidateEngPressureTP

- Class Needed : FaultTypes

- Class Needed : IAcSimulatedPressures

- Class Needed : IAircraftState

- Class Needed : IAirData

- Class Needed : IAirDataEngine

- Class Needed : IChannel

- Class Needed : IEngineState

- Class Needed : IInteractiveMaint

- Class Needed : IOSPressures

- Class Needed : IOtherOSPressures

- Class Needed : ISAV

- Duplicating Class ValidateEngPressure into Validate Engine Pressure

- Duplicating Operation initialise into Class ValidateEngPressure

- Duplicating Operation run into Class ValidateEngPressure

- Duplicating Operation conditionEngPressure into Class

ValidateEngPressure

- Duplicating Class ValidateEngPressureTP into Validate Engine Pressure

- Duplicating Operation engP0AutoFltReset into Class

ValidateEngPressureTP

- Duplicating Operation engP0Pref into Class ValidateEngPressureTP

- Duplicating Operation engP0Corr into Class ValidateEngPressureTP

- Duplicating Operation engP0CorrFactor into Class ValidateEngPressureTP

- Duplicating Operation engP0SelRawOwn into Class ValidateEngPressureTP

- Duplicating Operation engP0SelRawOth into Class ValidateEngPressureTP

- Duplicating Operation engP0SelRawFltOwn into Class

ValidateEngPressureTP

- Duplicating Operation engP0SelRawFltOth into Class

ValidateEngPressureTP

- Parsing attribute ValidateEngPressure.state

- ...parse complete

- Parsing attribute ValidateEngPressure.state

- ...parse complete

- Parsing attribute ValidateEngPressure.xcStatusData

- ...parse complete

- Parsing attribute ValidateEngPressure.autoFltResetTimer

- ...parse complete

- Parsing attribute ValidateEngPressure.selHistFltData

- ...parse complete

- Parsing attribute ValidateEngPressure.firstPass

- ...parse complete

- Parsing attribute ValidateEngPressure.engPressureCorrRawOwn

- ...parse complete

- Parsing attribute ValidateEngPressure.engPressureCorrRawOth

- ...parse complete

- Parsing operation...ValidateEngPressure.initialise

- ...parse complete

- Parsing operation...ValidateEngPressure.initialise

- ...parse complete

- Parsing operation...ValidateEngPressure.initialise

242 Appendix C – Case Study

242 Trusted Product Lines – PhD Thesis S G Hutchesson

- ...parse complete

- Parsing operation...ValidateEngPressure.initialise

- ...parse complete

- Parsing operation...ValidateEngPressure.initialise

- ...parse complete

- Parsing operation...ValidateEngPressure.initialise

- ...parse complete

- Parsing operation...ValidateEngPressure.run

- ...parse complete

- Parsing operation...ValidateEngPressure.run

- ...parse complete

- Parsing operation...ValidateEngPressure.run

- ...parse complete

- Parsing operation...ValidateEngPressure.run

- ...parse complete

- Parsing operation...ValidateEngPressure.run

- ...parse complete

- Parsing operation...ValidateEngPressure.run

- ...parse complete

- Parsing operation...ValidateEngPressure.conditionEngPressure

- ...parse complete

- Parsing operation...ValidateEngPressure.conditionEngPressure

- ...parse complete

- Parsing operation...ValidateEngPressure.conditionEngPressure

- ...parse complete

- Parsing operation...ValidateEngPressure.conditionEngPressure

- ...parse complete

- Parsing operation...ValidateEngPressure.conditionEngPressure

- ...parse complete

- Parsing operation...ValidateEngPressure.conditionEngPressure

... TRUNCATED LISTING ...

- Parsing operation...ValidateEngPressureTP.engP0SelRawFltOth

- ...parse complete

- Reordering Operations for ValidateEngPressure

- Reordering Operations for ValidateEngPressureTP

- Applying DV Pattern to ValidateEngPressureDV

- Applying Testpoint Pattern to ValidateEngPressureTP

- Applying Testport Pattern to ValidateEngPressure

- Applying Testport Pattern to ValidateEngPressureTP

- Applying Testport Pattern to ValidateEngPressureDV

- Applying Testport Pattern to ValidateEngPressureData

- Applying GData Pattern to ValidateEngPressureData

- Generation Start

- Standard Generation

- Generation End

- Generated.

We can see here the various states of the code generation process as described in Chapter

5 and Appendix B. We start with the selection and duplication of the required UML classes,

we then deal with the opaque behaviour by parsing the text regions of the operations, and

finally (for M2M) we apply the design patterns to those classes that identified as requiring

expansion. This transformed model is then passed onto the M2T transformation to

produce the matching source code files.

The following fragment of code from the generated version of ValidateEnginePressures.run

shows the result of selecting SCALE_AND_CONVERT=TRUE in the deployment model

(Compare to the mark-up core asset code in Figure 125).

243 Appendix C – Case Study

243 Trusted Product Lines – PhD Thesis S G Hutchesson

 ---------- ACQUIRE & CONDITION -----------------------------

 -- Condition engine pressure signals

 conditionEngPressure (selRawFltOwn => lclEngP0SelRawFltOwn,

 selRawFltOth => lclEngP0SelRawFltOth);

 -- JPF002/0054/0740

 lclRawVOwn := engPressureCorrRawOwn;

 lclRawVOth := engPressureCorrRawOth;

 -- JPF002/0054/524

 -- Detect if the auto fault reset is confirmed

 lclAutoReset := Timers.isConfirmed (data => autoFltResetTimer);

 -- Update auto fault reset testpoint

 ValidateEngPressureTP.engP0AutoFltReset (data => lclAutoReset);

Changing the SCALE_AND_CONVERT selected option to FALSE and re-running the code

generation results in the following code fragment for ValidateEnginePressures.run to be

produced:

 ---------- ACQUIRE & CONDITION -----------------------------

 -- Condition engine pressure signals

 conditionEngPressure (selRawFltOwn => lclEngP0SelRawFltOwn,

 selRawFltOth => lclEngP0SelRawFltOth);

 lclRawVOwn := IOSPressures.Get.p0Raw.data;

 lclRawVOth := IOtherOSPressures.Get.p0Raw.data;

 -- JPF002/0054/524

 -- Detect if the auto fault reset is confirmed

 lclAutoReset := Timers.isConfirmed (data => autoFltResetTimer);

 -- Update auto fault reset testpoint

 ValidateEngPressureTP.engP0AutoFltReset (data => lclAutoReset);

Comparing the two code fragments shows the effect of selecting/deselecting that option.

Traceability

We discussed the importance of traceability in section 4.8.1 of this thesis. The design and

implementation artefacts trace up to their parent requirements to demonstrate that all

requirements have been met and there is no unintended functionality.

The traceability provided in the product line components is a superset; each operation

traces to its full set of parent requirements. This is irrespective of whether they are

common or variable requirements. Figure 135 illustrates how this linkage is performed in

the ARTiSAN Studio tool via the “links editor”.

244 Appendix C – Case Study

244 Trusted Product Lines – PhD Thesis S G Hutchesson

FIGURE 135 LINKS EDITOR SHOWING SELECTION OF REQUIREMENT TRACEABILITY FOR RUN OPERATION

When a component is deployed, however, the traceability needs to reflect only those

requirements that are relevant to the particular product options selected. The traceability

data for a deployed component is reported by a special traceability extractor tool. This tool

implements the algorithm described in section 4.8.2, and constructs the requirement list

that is specific to the options selected in the component deployment.

If we look at the set of requirements represented by the feature model fragments in Figure

121 and Figure 130, we can see that the run operation for the product line component

must implement the following set of requirements:

 JPF002/P00/103

 JPF002/P00/226

 JPF002/P00/513

 JPF002/P00/519

 JPF002/P00/523

 JPF002/P00/524

 JPF002/P00/692

 JPF002/P00/523

 JPF002/P00/740

 JPF002/P00/807

The requirement tags in italics refer to requirements that are variation points in the high-

level requirements suite. However, this is not indicated in the operation traceability links.

Instead, as we saw in Figure 128 and Figure 129, the options in the component decision

contracts also trace (link) to the requirements satisfied by those options. Using this

information, the traceability extraction tools can report the correct set of traceability data

for the deployed component.

245 Appendix C – Case Study

245 Trusted Product Lines – PhD Thesis S G Hutchesson

TABLE 7 TRACEABILITY FOR SELECTED COMPONENT OPTIONS

PL Component

“Run” Operation

Traces to

(Set R)

SCALE_AND_CONVERT

Option Traces

(Set S)

SELECT_PREFFERED_SIGNAL_TYPE

Option Traces

(Set P)

 FALSE

(Set SF)

TRUE

(Set ST)

SELECT_NEAREST_TO_

MODEL_THEN_HIGHEST

(Set PH)

SELECT_NEAREST_TO_

MODEL_THEN_LOWEST

(Set PL)

JPF002/P00/103

JPF002/P00/226

JPF002/P00/513

JPF002/P00/519

JPF002/P00/523

JPF002/P00/524

JPF002/P00/692

JPF002/P00/523

JPF002/P00/740

JPF002/P00/807

 JPF002/P00/740

JPF002/P00/513

JPF002/P00/807

JPF002/P00/519

JPF002/P00/692

Given the set of traceability data in Table 7, we can see that the deployed traceability for

the selected options in the deployed component (SCALE_AND_CONVERT=TRUE,

SELECT_PREFERRED_SIGNAL_TYPE= SELECT_NEAREST_TO_MODEL_THEN_HIGHEST) is:

 JPF002/P00/103

 JPF002/P00/226

 JPF002/P00/513

 JPF002/P00/523

 JPF002/P00/524

 JPF002/P00/523

 JPF002/P00/740

 JPF002/P00/807

where the colours relate to the selected options, and the normal typeface set are the

common requirements.

As outlined in section 4.8.2, the traceability reporter tool constructs this list by firstly

creating the set of common requirements by subtracting the total set of option traces from

the set traced by the product line operation (with reference back to Table 7):

246 Appendix C – Case Study

246 Trusted Product Lines – PhD Thesis S G Hutchesson

Common Requirements for “run” {Set CR} = {Set R} – ({Set S}  {Set P})

This yields a set of common requirements “CR” for the “run” operation of:

 JPF002/P00/103

 JPF002/P00/226

 JPF002/P00/523

 JPF002/P00/524

 JPF002/P00/523

We then add in the selected optional requirements that are relevant to the run operation:

 Optional Requirements OR = {Set R}  ({Set ST}  {Set PH})

This yields a set of optional requirements “OR” for the “run” operation of

 JPF002/P00/513

 JPF002/P00/740

 JPF002/P00/807

The complete traceability for the deployed run operation is the combination of CR and OR

as listed earlier.

Whilst this may seem an overly complex approach for the simple example shown, it is

scalable to any level of complexity that is compliant with the decision contract meta-model,

in particular:

 Traceability that exists in more than one option, but not all options

 Traceability that links to part of a component only (i.e. not all operations)

This example has demonstrated the fundamental model structure for core asset

components and their deployment, using a very simple example component. We now

illustrate the development and deployment of more complex components within this

infrastructure.

Core Asset Component with UML Element Variability
 The previous example showed a very simple usage of our product lines approach; the

only variability in this component was text substitution in the code body. We now consider

a more complex component with a greater number of entries in the component decision

contract. The number of related variation points is also greater than in the previous

example, and the types of element affected cover both text and UML model elements. In

the interests of brevity, we will restrict the discussion in this section to the manipulation of

UML model elements, as the previous example adequately dealt with text substitution.

This example concerns the “scheduling” of the engine Variable Stator Vane (VSV) system.

Figure 136 shows the component structure for the “VSV Schedule” core asset component,

247 Appendix C – Case Study

247 Trusted Product Lines – PhD Thesis S G Hutchesson

with the set of decisions in the component decision contract expanded to show the

available options.

FIGURE 136 DECISION CONTRACT FOR VSV SCHEDULE COMPONENT

We can illustrate the increased complexity of this component compared to the previous

example by reporting the usage of the SHAFT_SPEED decision. Figure 137 shows the set of

UML model elements that are affected in some way by the SHAFT_SPEED decision. We can

see that, in addition to operations, there is an impact on class and dependency model

types.

FIGURE 137 REPORTING USAGE OF SHAFT_SPEED DECISION – CLASSES AND DEPENDENCIES HIGHLIGHTED

The relationship of the decision to the classes and dependencies are always

include/exclude relationships via a “select when” expression. The relationship to

operations may be either within mark-up text of operation bodies (as seen previously) or

248 Appendix C – Case Study

248 Trusted Product Lines – PhD Thesis S G Hutchesson

can also be include/exclude via “select when”. Figure 138 illustrates how an entire

operation is identified as a point of variation, and the text of the “select when” expression

contained within the variation point definition.

FIGURE 138 UML OPERATION VARIATION

Similarly, Figure 139 shows the definition of a UML dependency as a point of variation and

the associated “select when” expression.

FIGURE 139 UML DEPENDENCY VARIATION

Component Deployment & Code Generation
The project deployment of this component makes the following selections:

 NORMALISED_SPEED_SOURCE := NIRT26

 OVERCLOSURE_SELECTED := TRUE

 POSITION_DEMAND_RANGE_LIMIT := VARIABLE

 SHAFT_SPEED := NIV

The following log file is generated when running the product line code generation process

with the above set of options selected:

- Shadow ACS/TDK kit v. 7.0.36

 Saving model ProjectX... Saved.

 Model saved to model cache

- Forced Generate. Processing...

- Class Needed : VSVSchedule

- Class NOT Needed : VSVScheduleData

- Class NOT Needed : VSVScheduleDV

- Class Needed : VSVScheduleTP

- Class Needed : IAcThrustSettings

- Class Needed : IAircraftState

- Class Needed : ICompressorAir

- Class Needed : IEngineEvents

249 Appendix C – Case Study

249 Trusted Product Lines – PhD Thesis S G Hutchesson

- Class Needed : IEngineState

- Class Needed : IHPShaft

- Class Needed : IInteractiveMaint

- Class Needed : IIPShaft

- Class Needed : ILPShaft

- Class Needed : IThrustSettings

- Class Needed : IVSV

- Duplicating Class VSVSchedule into VSV Schedule

- VP Selected: Expression : OVERCLOSURE_SELECTED = TRUE Evaluated TRUE

: calcVSVPosnAltSel

- Duplicating Operation calcVSVPosnAltSel into Class VSVSchedule

- VP Selected: Expression : POSITION_DEMAND_RANGE_LIMIT = VARIABLE

Evaluated TRUE : calcVSVMaxSelVal

- Duplicating Operation calcVSVMaxSelVal into Class VSVSchedule

- VP Selected: Expression : OVERCLOSURE_SELECTED = TRUE Evaluated TRUE

: calcVSVPosnDemSel

- Duplicating Operation calcVSVPosnDemSel into Class VSVSchedule

- VP Selected: Expression : SHAFT_SPEED = NIV Evaluated TRUE :

Dependency

- VP NOT Selected: Expression : SHAFT_SPEED = NHV Evaluated FALSE :

Dependency

- Duplicating Operation calcPhaseAdvSpd into Class VSVSchedule

- Duplicating Operation calcShaftSpddotOverP30Filt into Class VSVSchedule

- Duplicating Operation calcVSVShaftSpdReset into Class VSVSchedule

- Duplicating Operation calcVSVSteadyStateDem into Class VSVSchedule

- Duplicating Operation calcVSVPosnResSumNLRT20 into Class VSVSchedule

- Duplicating Operation calcVSVSurgeReset into Class VSVSchedule

- Duplicating Operation calcVSVAccelResetMinVal into Class VSVSchedule

- Duplicating Operation calcVSVReverseReset into Class VSVSchedule

- Duplicating Operation calcVSVDecelReset into Class VSVSchedule

- Duplicating Operation calcVSVPosnDemLim into Class VSVSchedule

- Duplicating Operation calcVSVPosnDemDemDot into Class VSVSchedule

- Duplicating Operation calcVSVResetUnLim into Class VSVSchedule

- Duplicating Operation initialise into Class VSVSchedule

- Duplicating Operation run into Class VSVSchedule

- Duplicating Class VSVScheduleTP into VSV Schedule

- VP Selected: Expression : OVERCLOSURE_SELECTED = TRUE Evaluated TRUE

: engAtLoInFli

- Duplicating Operation engAtLoInFli into Class VSVScheduleTP

- VP Selected: Expression : OVERCLOSURE_SELECTED = TRUE Evaluated TRUE

: vsvAltBaseSched

- Duplicating Operation vsvAltBaseSched into Class VSVScheduleTP

- VP Selected: Expression : OVERCLOSURE_SELECTED = TRUE Evaluated TRUE

: vsvAltPosnMinVal

- Duplicating Operation vsvAltPosnMinVal into Class VSVScheduleTP

- VP Selected: Expression : POSITION_DEMAND_RANGE_LIMIT = VARIABLE

Evaluated TRUE : vsvMaxSel

- Duplicating Operation vsvMaxSel into Class VSVScheduleTP

- VP Selected: Expression : POSITION_DEMAND_RANGE_LIMIT = VARIABLE

Evaluated TRUE : vsvNormSpd

- Duplicating Operation vsvNormSpd into Class VSVScheduleTP

- VP Selected: Expression : OVERCLOSURE_SELECTED = TRUE Evaluated TRUE

: vsvOvClosureEnable

- Duplicating Operation vsvOvClosureEnable into Class VSVScheduleTP

- VP Selected: Expression : OVERCLOSURE_SELECTED = TRUE Evaluated TRUE

: vsvPosnAltSel

- Duplicating Operation vsvPosnAltSel into Class VSVScheduleTP

- VP Selected: Expression : OVERCLOSURE_SELECTED = TRUE Evaluated TRUE

: vsvPosnDemOvClosure

- Duplicating Operation vsvPosnDemOvClosure into Class VSVScheduleTP

- VP Selected: Expression : POSITION_DEMAND_RANGE_LIMIT = VARIABLE

Evaluated TRUE : vsvStdyStCond

- Duplicating Operation vsvStdyStCond into Class VSVScheduleTP

- Duplicating Operation accelTLShaft into Class VSVScheduleTP

- Duplicating Operation phaseAdvSpd into Class VSVScheduleTP

... TRUNCATED LISTING ...

250 Appendix C – Case Study

250 Trusted Product Lines – PhD Thesis S G Hutchesson

- Duplicating Operation vsvTransFtr into Class VSVScheduleTP

- Duplicating Operation vsvTransOffsetBasic into Class VSVScheduleTP

- Parsing operation...VSVSchedule.calcVSVPosnAltSel

- ...parse complete

... TRUNCATED LISTING ...

- Parsing operation...VSVScheduleTP.vsvTransOffsetBasic

- ...parse complete

- Reordering Operations for VSVSchedule

- Reordering Operations for VSVScheduleTP

- Applying DV Pattern to VSVScheduleDV

- Applying Testpoint Pattern to VSVScheduleTP

- Applying Testport Pattern to VSVSchedule

- Applying Testport Pattern to VSVScheduleTP

- Applying Testport Pattern to VSVScheduleDV

- Applying Testport Pattern to VSVScheduleData

- Applying GData Pattern to VSVScheduleData

- Generation Start

- Standard Generation

- Generation End

- Generated.

As with the previous example, we can see the phases of the model transformation process

taking place. This example, however, contains variability that results in the transformation

of model elements, not just the processing of marked-up text. This can be seen in the log

file above where the transformation process reports “VP Selected” and “VP NOT Selected”

and the results of the processing of the “select when” expressions. For example, consider

the following log file fragment

- VP Selected: Expression : SHAFT_SPEED = NIV Evaluated TRUE :

Dependency

- VP NOT Selected: Expression : SHAFT_SPEED = NHV Evaluated FALSE :

Dependency

This illustrates that the core asset contains two dependencies that are mutually exclusive.

The selection of the SHAFT_SPEED:=NIV in the deployed component resulted in the

inclusion of one dependency and the removal of the other.

Conclusions
In this appendix, we have provided practical examples of how our component construction

and deployment approach, and the associated code generation process, can be used to

develop real-world software. These examples necessarily provide just a small glimpse of

the full system, which contains the hundreds of core asset and project specific components

required to implement modern gas turbine engine control system software.

251 Glossary

251 Trusted Product Lines – PhD Thesis S G Hutchesson

Glossary

ACS Automatic Code Synchronisation

AOHE Air/Oil Heat Exchanger

AS Application Software

ATAM Architecture Trade-off Analysis Method

ATL Atlas Transformation Language

BAPO Business, Architecture, Process, Organisation

CAA Civil Aviation Authority

CVL Common Variability Language

DAL Development Assurance Level

DSL Domain Specific Language

EASA European Aviation Safety Agency

EEC Engine Electronic Controller

EIS Entry into Service

EUROCAE European Organisation for Civil Aviation Equipment

FAA Federal Aviation Administration

FADEC Full Authority Digital Engine Control

FOHE Fuel/Oil Heat Exchanger

FPGA Field Programmable Gate Array

FRAC Final Review and Comment

HAL Hardware Abstraction Layer

HP High Pressure

IDG Integrated Dedicated Generator

IP Intermediate Pressure

LP Low Pressure

MC/DC Modified Condition/Decision Coverage

252 Glossary

252 Trusted Product Lines – PhD Thesis S G Hutchesson

MOF Meta Object Facility

OCS On-Demand Code Synchronisation

OMG Object Management Group

OS Operating Software

PEL Process Engineering Language

PLUSS Product Line Use case modelling for Systems and Software engineering

PSAC Plan for Software Aspects of Certification

LRU Line-Replaceable Unit

LUCOL Lucas Control Language

RFP Request for Proposal

RTCA Radio Technical Commission for Aeronautics

RTOS Real-Time Operating System

SAS Software Accomplishment Summary

SCM Software Configuration Management

SCMP Software Configuration Management Plan

SDL Scripting language for Artisan Studio Model to Text code generation

SDP Software Development Plan

SOI Stages of Involvement

SoS Scope of Supply

SQA Software Quality Assurance

SQAP Software Quality Assurance Plan

SRS Software Requirements Specification

SVP Software Verification Plan

SEI Software Engineering Institute

SPL Software Product Line

SPLC Software Product Line Conference

TDK Template Development Kit

253 Glossary

253 Trusted Product Lines – PhD Thesis S G Hutchesson

TPL Trusted Product Line

T/R System Thrust Reverser System

TQP Tool Qualification Plan

UML Unified Modelling Language

VSV Variable Stator Vane

254 List of References

254 Trusted Product Lines – PhD Thesis S G Hutchesson

List of References
[1] J. Bosch, Design and use of software architectures: adopting and evolving a

product-line approach: Addison-Wesley Professional, 2000.
[2] K. Pohl, G. Bockle, and F. Van Der Linden, Software product line engineering:

foundations, principles, and techniques: Springer-Verlag New York Inc, 2005.
[3] P. Clements and L. Northrop, Software Product Lines: Addison-Wesley, 2001.
[4] "DO-178B/ED-12B, Software Considerations in Airborne Systems and Equipment

Certification," ed: Radio Technical Commission for Aeronautics / EUROCAE, 1992.
[5] F. Van Der Linden, K. Schmid, and E. Rommes, Software product lines in action: the

best industrial practice in product line engineering: Springer-Verlag New York Inc,
2007.

[6] P. Clements, "On the Importance of Product Line Scope" in Software Product-
Family Engineering, F. van der Linden, Ed., LNCS vol. 2290, Springer Berlin /
Heidelberg, 2002, pp. 102-113.

[7] J.-M. DeBaud and K. Schmid, "A systematic approach to derive the scope of
software product lines," presented at the Proceedings of the 21st international
conference on Software engineering, Los Angeles, California, United States, 1999.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, "Feature-
Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-21, ADA
235785). Pittsburgh, PA: Software Engineering Institute," Carnegie Mellon
University 1990.

[9] K. Czarnecki and U. W. Eisenecker, Generative Programming–Methods, Tools, and
Applications: Addison Wesley, 2000.

[10] K. Czarnecki, S. Helsen, and U. Eisenecker, "Staged configuration through
specialization and multilevel configuration of feature models", Software Process:
Improvement and Practice, vol. 10, pp. 143-169, 2005.

[11] Eclipse Modeling Project Last Accessed: 18th January 2013, Available:
http://www.eclipse.org/modeling/

[12] UML 2.0 Superstructure Specification. Available: http://www.omg.org/cgi-
bin/doc?formal/05-07-04

[13] A. H. Van de Ven, Engaged scholarship: A guide for organizational and social
research: Oxford University Press, USA, 2007.

[14] "SPARK 95 - The SPADE Ada 95 Kernel (including RavenSPARK) V4.6," Praxis HIS
2005.

[15] D. L. Parnas, "On the design and development of program families", IEEE
Transactions on Software Engineering, pp. 1-9, 1976.

[16] F. van der Linden, J. Bosch, E. Kamsties, K. Kansala, and H. Obbink, "Software
Product Family Evaluation," in Third Intenational Conference on Software Product
Lines, Boston MA, 2004, LNCS pp. 107-109.

[17] G. Halmans and K. Pohl, "Considering Product Family Assets when Defining
Customer Requirements", Proceedings of PLEES, vol. 1.

[18] F. Van der Linden, "Software product families in Europe: the Esaps & Cafe
projects", IEEE Software, pp. 41-49, 2002.

[19] J. Coplien, D. Hoffman, and D. Weiss, "Commonality and variability in software
engineering", Software, IEEE, vol. 15, pp. 37-45, 1998.

[20] J. van Gurp, J. Bosch, and M. Svahnberg, "On the notion of variability in software
product lines," in Software Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on, 2001, pp. 45-54.

[21] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, and F. van der Linden, "Hierarchical
Variability Modeling for Software Architectures," in 15th International Software
Product Lines Conference (SPLC), Munich, 2011.

http://www.eclipse.org/modeling/
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04

255 List of References

255 Trusted Product Lines – PhD Thesis S G Hutchesson

[22] J. Liebig, S. Apel, C. Lengauer, C. Kastner, and M. Schulze, "An analysis of the
variability in forty preprocessor-based software product lines," in Software
Engineering, 2010 ACM/IEEE 32nd International Conference on, 2010, pp. 105-114.

[23] D. Beuche, "Variants and Variability Management with pure:: variants," in 3rd
Software Product Line Conference (SPLC 2004), Workshop on Software Variability
Management for Product Derivation, Boston, MA, 2004.

[24] C. W. Krueger, "BigLever software gears and the 3-tiered SPL methodology,"
presented at the Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion, Montreal, Quebec,
Canada, 2007.

[25] C. Kästner, S. Trujillo, and S. Apel, "Visualizing software product line variabilities in
source code," in Proceedings of the SPLC Workshop on Visualization in Software
Product Line Engineering (ViSPLE), 2008, pp. 303-313.

[26] G. Botterweck, L. O'Brien, and S. Thiel, "Model-driven derivation of product
architectures," in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, Atlanta, Georgia, USA, 2007.

[27] T. Ziadi, L. Hélouët, and J. M. Jézéquel, "Towards a UML profile for software
product lines," presented at the PFE 2003 - 5th International Workshop on
Software Product-Family Engineering, Siena, Italy, 2003.

[28] H. Gomaa, Designing software product lines with UML: from use cases to pattern-
based software architectures: Addison Wesley Longman Publishing Co., Inc.
Redwood City, CA, USA, 2004.

[29] W. Pree, M. Fontoura, and B. Rumpe, "Product line annotations with UML-F" in
Software Product Lines, G. Chastek, Ed., LNCS vol. 2379, 2002, pp. 103-148.

[30] "Common Variability Language (CVL) Request For Proposal," Object Management
Group (OMG) ad/2009-12-03, 2009.

[31] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger, "XML-Based Feature
Modelling" in Software Reuse: Methods, Techniques, and Tools, J. Bosch and C.
Krueger, Eds., LNCS vol. 3107, Springer Berlin / Heidelberg, 2004, pp. 101-114.

[32] A. Polzer, S. Kowalewski, and G. Botterweck, "Applying software product line
techniques in model-based embedded systems engineering," in Model-Based
Methodologies for Pervasive and Embedded Software, 2009. MOMPES '09. ICSE
Workshop on, 2009, pp. 2-10.

[33] G. Muller and P. van de Laar, "Researching reference architectures and their
relationship with frameworks, methods, techniques, and tools," in Proceedings of
the 7th annual conference on systems engineering research (CSER), Loughborough,
UK, 2009.

[34] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, "FORM: A feature-;oriented
reuse method with domain-;specific reference architectures", Annals of Software
Engineering, vol. 5, pp. 143-168, 1998.

[35] H. Gomaa and M. E. Shin, "Multiple-view meta-modeling of software product
lines," in Eighth IEEE International Conference on Engineering of Complex Computer
Systems, 2002, pp. 238-246.

[36] H. Gomaa and M. Shin, "A Multiple-View Meta-modeling Approach for Variability
Management in Software Product Lines" in Software Reuse: Methods, Techniques,
and Tools, J. Bosch and C. Krueger, Eds., LNCS vol. 3107, Springer Berlin /
Heidelberg, 2004, pp. 274-285.

[37] O. Haugen, B. Moller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen, "Adding
Standardized Variability to Domain Specific Languages," in Software Product Line
Conference, 2008. SPLC '08. 12th International, 2008, pp. 139-148.

256 List of References

256 Trusted Product Lines – PhD Thesis S G Hutchesson

[38] OMG, Meta Object Facility (MOF) Core Specification 2.0,Last Accessed: 1 October
2011, Available: http://www.omg.org/spec/MOF/2.0

[39] C. Szyperski, D. Gruntz, and S. Murer, Component software: beyond object-oriented
programming: Addison-Wesley Professional, 2002.

[40] R. van Ommering and J. Bosch, "Widening the Scope of Software Product Lines —
From Variation to Composition" in Software Product Lines, G. Chastek, Ed., LNCS
vol. 2379, Springer Berlin / Heidelberg, 2002, pp. 31-52.

[41] R. van Ommering, "Software reuse in product populations", Software Engineering,
IEEE Transactions on, vol. 31, pp. 537-550, 2005.

[42] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, "The Koala
component model for consumer electronics software", Computer, vol. 33, pp. 78-
85, 2000.

[43] C. Atkinson, J. Bayer, and D. Muthig, "Component-based product line development:
The KobrA approach," in Software product lines: experience and research
directions: proceedings of the First Software Product Lines Conference (SPLC1),
August 28-31, 2000, Denver, Colorado, 2000, p. 289.

[44] H. Obbink, J. Müller, P. America, R. van Ommering, G. Muller, W. van der Sterren,
and J. G. Wijnstra, "COPA: a component-oriented platform architecting method for
families of software-intensive electronic products," in Tutorial for the First Software
Product Line Conference, Denver, Colorado, 2000.

[45] J. Wijnstra, "Critical factors for a successful platform-based product family
approach" in Software Product Lines, G. Chastek, Ed., LNCS vol. 2379, 2002, pp. 15-
35.

[46] K. Czarnecki and M. Antkiewicz, "Mapping Features to Models: A Template
Approach Based on Superimposed Variants" in Generative Programming and
Component Engineering, R. Glück and M. Lowry, Eds., LNCS vol. 3676, Springer
Berlin / Heidelberg, 2005, pp. 422-437.

[47] F. van der Linden, "Conversation at 15th International Software Product Line
Conference," S. Hutchesson, Ed., ed. Munich, 2011.

[48] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer, "Delta Modeling for Software
Architectures," in MBEES, 2011.

[49] U. Aflmann, Invasive software composition: Springer-Verlag New York Inc, 2003.
[50] S. Hutchesson and J. McDermid, "Development of High-Integrity Software Product

Lines Using Model Transformation," in SAFECOMP 2010 - Computer Safety,
Reliability, and Security, Vienna, 2010, pp. 389-401.

[51] J. Perez, J. Diaz, C. Costa-Soria, and J. Garbajosa, "Plastic Partial Components: A
solution to support variability in architectural components," in Software
Architecture, 2009 & European Conference on Software Architecture. WICSA/ECSA
2009. Joint Working IEEE/IFIP Conference on, 2009, pp. 221-230.

[52] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier, and J.
Irwin, "Aspect-oriented programming", ECOOP'97—Object-Oriented Programming,
pp. 220-242, 1997.

[53] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture: Foundations,
Theory, and Practice: Wiley, 2009.

[54] K. Czarnecki and S. Helsen, "Classification of model transformation approaches," in
2nd OOPSLA Workshop on Generative Techniques in the Context of the Model
Driven Architecture, 2003, pp. 1-17.

[55] T. Mens and P. Van Gorp, "A taxonomy of model transformation," in Proceedings of
the International Workshop on Graph and Model Transformation (GraMoT 2005)
2006, Electronic Notes in Theoretical Computer Science pp. 125-142.

http://www.omg.org/spec/MOF/2.0

257 List of References

257 Trusted Product Lines – PhD Thesis S G Hutchesson

[56] A. G. Kleppe, J. Warmer, and W. Bast, MDA explained: the model driven
architecture: practice and promise: Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 2003.

[57] M. Voelter and I. Groher, "Product line implementation using aspect-oriented and
model-driven software development," in 11th International Software Product Line
Conference 2007, pp. 233-242.

[58] M. Voelter, "Using domain specific languages for product line engineering,"
presented at the 13th International Software Product Line Conference, San
Francisco, California, 2009.

[59] Esterel, SCADE Suite,Last Accessed: 27th February 2011, Available:
http://www.esterel-technologies.com/products/scade-suite/

[60] "DO-178C/ED-12C, Software Considerations in Airborne Systems and Equipment
Certification," ed: Radio Technical Commission for Aeronautics / EUROCAE, 2011.

[61] "DO-278A/ED-109A, Guidelines for Communications, Navigation, Surveillance, and
Air Traffic Management (CNS/ATM) Systems Software Integrity Assurance," ed:
Radio Technical Commission for Aeronautics / EUROCAE, 2011.

[62] "DO-248C/ED-94C, Supporting Information for DO-178C and DO-278A," ed: Radio
Technical Commission for Aeronautics / EUROCAE, 2011.

[63] "DO-330/ED-215, Tool Qualification Supplement to DO-178C/ED-12C and DO-
1278C/ED-109A," ed: Radio Technical Commission for Aeronautics / EUROCAE,
2011.

[64] "DO-331/ED-218,Model-Based Development and Verification Supplement to DO-
178C/ED-12C and DO-278A/ED-109A," ed: Radio Technical Commission for
Aeronautics / EUROCAE, 2011.

[65] "DO-332/ED-217, Object-Oriented Technologies and Associated Techniques
Supplement to DO-178C/ED-12C and DO-1278C/ED-109A," ed: Radio Technical
Commission for Aeronautics / EUROCAE, 2011.

[66] "DO-333/ED-216, Formal Methods Supplement to DO-178C/ED-12C and DO-
1278C/ED-109A," ed: Radio Technical Commission for Aeronautics / EUROCAE,
2011.

[67] Mathworks, Matlab Simulink/Stateflow tools,Last Accessed: 1 October 2012,
Available: http://www.mathworks.co.uk/

[68] C. Moler, The Origins of Matlab,Last Accessed, Available:
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec
04.html

[69] Mathworks, Simulink - Simulation and Model-Based Design,Last Accessed: 18
January 2013, Available: http://www.mathworks.com/products/simulink/

[70] Mathworks, Stateflow,Last Accessed: 18 January 2013, Available:
http://www.mathworks.com/products/stateflow/

[71] B. Dion, "Correct-By-Construction Methods for the Development of Safety-Critical
Applications," in SAE 2004 World Congress & Exhibition, Session: Safety-Critical
Systems Detroit MI, 2004.

[72] Esterel, "Simulink Users Connect with Esterel’s SCADE Suite for Safe Embedded
Software", Esterel Technologies White Paper, 2003.

[73] ARP4754 Certification considerations for highly-integrated or complex aircraft
systems: Society of Automotive Engineers, 1996.

[74] J. F. Bergeretti and B. A. Carre, "Information-flow and data-flow analysis of while-
programs", ACM Transactions on Programming Languages and Systems, vol. 7, pp.
37-61, 1985.

[75] J. Barnes, High Integrity Software, The SPARK Approach to Safety and Security:
Addison-Wesley, London, England, 2003.

http://www.esterel-technologies.com/products/scade-suite/
http://www.mathworks.co.uk/
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec04.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec04.html
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/stateflow/

258 List of References

258 Trusted Product Lines – PhD Thesis S G Hutchesson

[76] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language user guide:
Addison-Wesley Reading Mass, 1999.

[77] P. Amey and N. White, "High-Integrity Ada in a UML and C World," in Reliable
Software Technologies-Ada-Europe 2004, 2004, pp. 225-236.

[78] P. Amey and D. Allen, "The INFORMED Design Method for SPARK," Praxis Critical
Systems 20011, 1999.

[79] X. Sautejeau, "Modeling SPARK systems with UML", ACM SIGAda Ada Letters, vol.
25, pp. 11-16, 2005.

[80] IBM, IBM Rational Rhapsody,Last Accessed: 29th October 2012, Available:
https://www.ibm.com/developerworks/rational/products/rhapsody/

[81] P. Amey and B. Dion, "Combining Model-Driven Design With Diverse Formal
Verification," presented at the ERTS 2006, Toulouse.

[82] S. Hutchesson, "An Architecture-Centric Approach To FADEC Software
Development," presented at the SPARK User Group 2006, Praxis High-Integrity
Systems, Bath, UK, 2006.

[83] www.omg.org. (2003). Response to the UML 2.0 OCL RfP-Revised Submission OCL
RfP (ad/2000-09-03). Available: http://www.omg.org/docs/ad/03-01-07.pdf

[84] D. Chiorean, M. Pasca, A. Cârcu, C. Botiza, and S. Moldovan, "Ensuring UML Models
Consistency Using the OCL Environment", Electronic Notes in Theoretical Computer
Science, vol. 102, pp. 99-110, 2004.

[85] M. Richters and M. Gogolla, "Validating UML Models and OCL Constraints", UML
2000--the Unified Modeling Language: Advancing the Standard: Third International
Conference, York, UK, October 2-6, 2000: Proceedings, 2000.

[86] B. Meyer, "Applying design by contract", Computer, vol. 25, pp. 40-51, 1992.
[87] H. E. Eriksson, UML 2 toolkit: Wiley, 2004.
[88] S. Flake and W. Mueller, "An OCL Extension for Real-Time Constraints", Object

Modeling with the OCL: The Rationale behind the Object Constraint Language, vol.
2263, pp. 150–171.

[89] N. G. Leveson and K. A. Weiss, "Making embedded software reuse practical and
safe," in SIGSOFT '04/FSE-12 - 12th ACM SIGSOFT Twelfth International Symposium
on Foundations of Software Engineering 2004, pp. 171-178.

[90] "AC20-148 Resuable Software Components," ed: Federal Aviation Administration,
2004.

[91] I. Habli, T. Kelly, and I. Hopkins, "Challenges of Establishing a Software Product Line
for an Aerospace Engine Monitoring System," in Software Product Line Conference,
2007. SPLC 2007. 11th International, 2007, pp. 193-202.

[92] F. Dordowsky and W. Hipp, "Adopting software product line principles to manage
software variants in a complex avionics system," in Proceedings of the 13th
International Software Product Line Conference, 2009, pp. 265-274.

[93] F. Dordowsky, R. Bridges, and H. Tschope, "Implementing a software product line
for a complex avionics system," in Software Product Line Conference (SPLC), 2011
15th International, 2011, pp. 241-250.

[94] D. C. Sharp, "Reducing avionics software cost through component based product
line development," in Digital Avionics Systems Conference, 1998. Proceedings., 17th
DASC. The AIAA/IEEE/SAE, 1998, pp. G32/1-G32/8 vol. 2.

[95] J. D. McGregor, "Testing a Software Product Line," Software Engineering Institute
CMU/SEI-2001-TR-022, 2001.

[96] R. Lutz, "Survey of product-line verification and validation techniques," NASA - JPL
2007.

http://www.ibm.com/developerworks/rational/products/rhapsody/
http://www.omg.org/
http://www.omg.org/docs/ad/03-01-07.pdf

259 List of References

259 Trusted Product Lines – PhD Thesis S G Hutchesson

[97] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, "Symbolic model checking
of software product lines," in Proceedings of the 33rd International Conference on
Software Engineering, Waikiki, Honolulu, HI, USA, 2011, pp. 321-330.

[98] S. Apel, H. Speidel, P. Wendler, A. v. Rhein, and D. Beyer, "Detection of feature
interactions using feature-aware verification," in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, 2011, pp.
372-375.

[99] S. Trujillo, A. Perez, D. Gonzalez, and B. Hamid, "Towards the integration of
advanced engineering paradigms into RCES: raising the issues for the safety-critical
model-driven product-line case," in Proceedings of the International Workshop on
Security and Dependability for Resource Constrained Embedded Systems, 2010, pp.
1-4.

[100] I. Habli, T. Kelly, and R. Paige, "Functional Hazard Assessment in Product-Lines–A
Model-Based Approach," in MDPLE'2009 1st International Workshop on Model-
Driven Product Line Engineering CTIT PROCEEDINGS, 2009, p. 26.

[101] I. M. Habli, "Model-based assurance of safety-critical product lines," Doctoral
Thesis, Department of Computer Science, University of York, 2009.

[102] B. Hamid, A. Radermacher, A. Lanusse, C. Jouvray, S. GÈrard, and F. Terrier,
"Designing fault-tolerant component based applications with a model driven
approach", Software Technologies for Embedded and Ubiquitous Systems, vol.
5287, pp. 9-20, 2008.

[103] J. Liu, J. Dehlinger, and R. Lutz, "Safety analysis of software product lines using
state-based modeling", Journal of Systems and Software, vol. 80, pp. 1879-1892,
2007.

[104] R. Braga, O. Trindade Junior, K. Castelo Branco, L. Neris, and J. Lee, "Adapting a
Software Product Line Engineering Process for Certifying Safety Critical Embedded
Systems" in Computer Safety, Reliability, and Security, F. Ortmeier and P. Daniel,
Eds., LNCS vol. 7612, Springer Berlin / Heidelberg, 2012, pp. 352-363.

[105] S. Hutchesson and J. McDermid, "Towards Cost-Effective High-Assurance Software
Product Lines: The Need for Property-Preserving Transformations," in Software
Product Line Conference (SPLC), 2011 15th International, 2011, pp. 55-64.

[106] VARIES Project,Last Accessed: 31 October 2012, Available: http://www.artemis-
ia.eu/project/index/view/?project=42

[107] The Jet Engine: Rolls Royce plc, 2005.
[108] FAA, Conducting Software Reviews Prior to Certification,Last Accessed: 18 January

2013, Available:
http://www.faa.gov/aircraft/air%5Fcert/design%5Fapprovals/air%5Fsoftware/med
ia/jobaid-r1.pdf

[109] J. MCNAMARA, C. LEGGE, and E. ROBERTS, "Experimental full-authority digital
engine control on Concorde", AGARD Advan. Control Systems for Aircraft
Powerplants 17 p(SEE N 80-26306 17-07), 1980.

[110] I. O'Neill, D. Clutterbuck, P. Farrow, P. Summers, and W. Dolman, "The formal
verification of safety-critical assembly code," in IFAC Symposium on Safety of
Computer Control Systems 1988, 1988, pp. 115-120.

[111] C. Fields, "Task force on defense software", Defense Science Board, 2000.
[112] W. Lam, J. McDermid, and A. Vickers, "Ten steps towards systematic requirements

reuse", Requirements Engineering, vol. 2, pp. 102-113, 1997.
[113] W. Lam, "A case-study of requirements reuse through product families", Annals of

Software Engineering, vol. 5, pp. 253-277, 1998.

http://www.artemis-ia.eu/project/index/view/?project=42
http://www.artemis-ia.eu/project/index/view/?project=42
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/jobaid-r1.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/jobaid-r1.pdf

260 List of References

260 Trusted Product Lines – PhD Thesis S G Hutchesson

[114] S. Hutchesson and N. Hayes, "Technology transfer and certification issues in safety
critical real time systems," in Real-Time Systems (Digest No. 1998/306), IEE
Colloquium on, 1998, pp. 2/1-2/4.

[115] A. R. Behbahani, "Advanced, Adaptive, Modular, Distributed, Generic Universal
FADEC Framework for Intelligent Propulsion Control Systems (Preprint)," DTIC
Document 2007.

[116] A. R. Behbahani, "Achieving AFRL Universal FADEC Vision With Open Architecture
Addressing Capability and Obsolescence for Military and Commercial Applications
(Preprint)," DTIC Document 2006.

[117] L. Bass, P. Clements, and R. Kazman, Software architecture in practice: Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1998.

[118] Foliage, "ATAM Assessment of Trent 1000 Software Architecture," Rolls-Royce plc.,
Internal Company Report 2009.

[119] M. Eriksson, J. Börstler, and K. Borg, "Managing requirements specifications for
product lines-An approach and industry case study", Journal of systems and
Software, vol. 82, pp. 435-447, 2009.

[120] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-oriented
software architecture: a system of patterns: Wiley, 1996.

[121] K. D. Muller-Glaser, G. Frick, E. Sax, and M. Kuhl, "Multiparadigm modeling in
embedded systems design", Control Systems Technology, IEEE Transactions on, vol.
12, pp. 279-292, 2004.

[122] K. Schmid and I. John, "A customizable approach to full lifecycle variability
management", Science of Computer Programming, vol. 53, pp. 259-284, 2004.

[123] EASA, "Software Aspects of Certification," EASA CM - SWCEH – 002 ed, 2011.
[124] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, "MDA Distilled: Principles of Model-

Driven Architecture," ed: Addison-Wesley, 2004.
[125] T. J. Parr and R. W. Quong, "ANTLR: A predicated‐LL (k) parser generator",

Software: Practice and Experience, vol. 25, pp. 789-810, 1995.
[126] A. L. Powell, "Right on time: Measuring, modelling and managing time-constrained

software development," PhD Thesis, Department of Computer Science, University
of York, 2001.

[127] "Trent XWB EEC Pre-SOI2 Audit Report," Internal Company Report, Aero Engine
Controls, 2010.

[128] "Trent XWB EEC Pre-SOI2 Follow-Up Audit Report," Internal Company Report, Aero
Engine Controls, 2010.

[129] E. Jackson, W. Schulte, D. Balasubramanian, and G. Karsai, "Reusing Model
Transformations While Preserving Properties," in Fundamental Approaches to
Software Engineering, 2010, pp. 44-58.

[130] T. E. Foundation, Xtext - Language Development Framework,Last Accessed: 27
February 2011, Available: http://www.eclipse.org/Xtext/

[131] R. Chapman, "Industrial experience with SPARK", ACM SigAda Ada Letters, vol.
20.4, pp. 64-68, 2000.

[132] P. Amey, "Correctness by Construction: Better Can Also Be Cheaper", CrossTalk: the
Journal of Defense Software Engineering, vol. March 2002, pp. 24–28, 2002.

[133] M. Croxford and J. Sutton, "Breaking through the V and V bottleneck" in Ada in
Europe, LNCS vol. 1031, Springer, 1996, pp. 344-354.

http://www.eclipse.org/Xtext/

	Abstract
	List of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Author's declaration
	1 Introduction
	1.1 Product Line Engineering
	1.2 High-Integrity Software Development
	1.3 Challenges of Trusted Product Lines
	1.3.1 PL Scoping is Possible
	1.3.2 PL Synthesis is Effective
	1.3.3 Verification Evidence Applies
	1.3.4 CM is Effective
	1.3.5 Plans, Processes and Procedures are Standardised

	1.4 Thesis Hypothesis
	1.4.1 Research Value and Relevance

	1.5 Mode of Research
	1.6 Thesis Model & Structure

	2 Literature Review
	2.1 Software Product Line Development
	2.2 BAPO
	2.2.1 Product Line Processes
	2.2.2 Commonality and Variability
	2.2.3 Features & Feature Modelling
	2.2.4 Commonality and Variability in the Solution-Space

	2.3 Model-Based Development of Product Lines
	2.3.1 Modelling Product Lines with UML
	2.3.2 Problem-Space Modelling with UML
	2.3.2.1 Solution-Space Modelling with UML
	2.3.2.2 Mapping Feature Models to Family Models

	2.3.3 Common Variability Language
	2.3.4 Component-Based Architecture and Variability
	2.3.4.1 MontiArcHV
	2.3.4.2 PlasticPartialComponents

	2.3.5 Product Instantiation Using Variability & Transformation
	2.3.5.1 Model Transformation Approaches for Product Line Instantiation
	2.3.5.2 Architectural Transformations

	2.4 High-Integrity Software System Development
	2.4.1 DO-178B/ED-12B
	2.4.2 DO-178C/ED-12C

	2.5 Model Based Development of High-Integrity Systems
	2.5.1 DO-331/ED-218 Model Based Development and Verification Supplement to DO-178C/ED-12C
	2.5.2 Model Environments
	2.5.2.1 Matlab, Simulink & Stateflow
	2.5.2.2 Esterel SCADE

	2.5.3 Model Analysis Techniques
	2.5.3.1 SPARK and UML
	2.5.3.2 SPARK and SCADE

	2.5.4 Using OCL for model analysis

	2.6 Product Line Development of High-Integrity Systems
	2.6.1 Are Reuse and Dependability Mutually Exclusive?
	2.6.2 Regulatory Constraints & Reusable Software
	2.6.3 Verification of Software Product Lines
	2.6.4 Formal Analysis of Product Lines

	2.7 Product Lines, Models and High-Integrity Systems
	2.8 Summary

	3 Trusted Product Lines in Context
	3.1 Full Authority Digital Engine Control (FADEC) Systems
	3.1.1 Role of a FADEC
	3.1.2 FADEC Software Development Programmes
	3.1.2.1 Engine & Aircraft Development
	3.1.2.2 Software Approval for Certification – Planning Documentation
	3.1.2.3 Software Approval for Certification - Stages of Involvement (SOI) Audits

	3.2 A History of Reuse in FADEC Systems
	3.2.1 Low Level Code Reuse
	3.2.2 Reuse Libraries
	3.2.3 Opportunistic Functional Reuse
	3.2.4 Family Analysis
	3.2.5 Product Families
	3.2.6 Product Lines

	3.3 Other FADECs & Reuse
	3.4 Summary

	4 Defining a High-Integrity Product Line Model
	4.1 Background
	4.2 From Single Systems to Product Lines
	4.3 Product Line Architectural Patterns and Reference Architecture
	4.3.1 Reference Architecture Concept
	4.3.2 Architectural Constraints
	4.3.2.1 Product Line Constraints
	4.3.2.2 Architecture Design Constraints

	4.4 Product Line Architecture Framework
	4.4.1 Architectural Pattern - Layered Architecture
	4.4.2 Generic Layered Architecture
	4.4.3 Allocation of Components to Layers
	4.4.4 Compatibility with Previous Projects
	4.4.5 Deploying Architecture and Components

	4.5 Designing Components
	4.6 Extending Component Contracts with Decisions
	4.6.1 Variability & Variation Points
	4.6.2 Encoding Variability

	4.7 Component Catalogue, Core Assets and Deployment
	4.8 Mapping to Requirements and Feature Models
	4.8.1 Requirements & Traceability in DO-178B/ED-12B Developments
	4.8.2 Variant Traceability & Feature Linkage

	4.9 Conclusions and Observations

	5 Instantiating Products using Model Transformation
	5.1 Research Challenge
	5.1.1 Essential Challenges
	5.1.2 Accidental Challenges

	5.2 Solution Strategy
	5.2.1 Transformation Technology

	5.3 Implementing SPL Transformations
	5.3.1 Realising Model Transformation for High-Integrity Product Lines
	5.3.1.1 Model-to-Model Transformation 1 – Reductive Product Line to Product Model Transform

	5.3.2 Opaque Behaviour and Textual Transformation
	5.3.2.1 Worked Example of Text Transformation

	5.3.3 Template Components & Transformation
	5.3.3.1 Use of Template Components
	5.3.3.2 Declaration and Transformation of Template Components
	5.3.3.3 Templates and Variability

	5.3.4 Expanding Design Patterns
	5.3.5 Source Code Generation (Model-to-Text Transformation)
	5.3.6 Lifecycle Data Generation (“Model-to-Document” Transformation)

	5.4 Conclusions and Observations
	5.4.1 Addressing the Challenges
	5.4.1.1 Accidental Challenges
	5.4.1.2 Essential Challenges

	5.4.2 Summary

	6 Evaluation and Validation
	6.1 Industrial Deployment of Trusted Product Lines
	6.2 Evaluation Methods
	6.2.1 Quantitative Evaluation Method
	6.2.2 Qualitative Evaluation Method

	6.3 Evaluation Results
	6.3.1 Quantitative Evaluation Results - Relative Process Performance
	6.3.1.1 Sample Data Set
	6.3.1.2 Analysis 1 - Total Hours per Process Area by Team
	6.3.1.3 Analysis 2 – Hours by “Scope of Supply”
	6.3.1.4 Analysis 3 – Hours By Variability

	6.3.2 Quantitative Evaluation Results - Absolute Cost Performance
	6.3.3 Cost Correlation

	6.4 Qualitative Evaluation Results
	6.4.1 Pre-SOI2 Audit Findings
	6.4.1.1 Initial Audit
	6.4.1.2 Follow-up Audit

	6.5 Trusted Product Lines Argument Framework
	6.5.1.1 PL Scoping is Possible
	6.5.1.2 PL Synthesis is Effective
	6.5.1.3 Verification Evidence Applies
	6.5.1.4 CM is Effective
	6.5.1.5 Plans, Processes and Procedures are Standardised
	6.5.1.6 Remaining High-Integrity Reuse Issues

	6.6 Conclusions

	7 Property-Preserving Transformations
	7.1 The Challenge of Property-Preserving Transformation
	7.1.1 Trusting Tools –The Role of Tool Qualification
	7.1.2 Static Verification of Transformation
	7.1.2.1 IgniterControl Component Example
	7.1.2.2 Detection of Ineffective Product Variants
	7.1.2.3 Detection of Mal-Transformed Product Variants

	7.2 Diverse Transformation, Contracts and Implementation
	7.2.1 Transformation of Behavioural Contracts

	7.3 Conclusions

	8 Summary & Conclusions
	8.1 Trusted Product Lines Revisited
	8.2 Research Hypothesis & Conclusions
	8.3 Further Work
	8.3.1 Heterogeneous Modelling Approaches for Product Lines
	8.3.2 Formal Approaches to Product Line Development
	8.3.3 Compositional Verification for Product Lines
	8.3.4 Legacy Support & Obsolescence Management

	8.4 Reflections and Coda

	Appendix A – Development and Modelling of SPARK Programs
	Static Analysis, SPARK and Correctness By Construction
	Modelling SPARK Programs with UML

	Appendix B - Instantiating Products using Model Transformation
	Describing and Developing Model-To-Model Transformations in TDK
	Realising Model Transformation for High-Integrity Product Lines
	Model-to-Model Transformation 1 – Reductive Product Line to Product Model Transform
	Collecting Deployed Components
	Identification and Duplication of Classes
	Identification and Duplication of Class Contents
	Transformation of Enumeration Literals

	Opaque Behaviour and Textual Transformation
	Template Components & Transformation
	Expanding Design Patterns
	Development Variable Pattern

	Code Generation (Model-to-Text Transformation)

	Appendix C – Case Study
	Model Structure
	Core Asset Components
	Component Deployment
	Traceability

	Core Asset Component with UML Element Variability
	Component Deployment & Code Generation
	Conclusions

	Glossary
	List of References

