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Abstract

The development and optimisation of programs through search is a growing application

area for computational intelligence techniques. Evolution-inspired search heuristics, such

as genetic programming, provide methods for autonomously generating programs within

the constraints of a program representation. Genetic programming is a machine learning

approach to producing programs represented using executable or interpreted structures.

However, despite theoretical advances, choosing a suitable representation remains a basic

concern for designers. Choice of representation affects search space size, structure and

accessible solutions, as well as engineering considerations such as ease of implementation.

Locality is a property of evolutionary search spaces derived from the representation and

search operators, that relates genotype and phenotype distances. The interaction be-

tween search space locality and search performance under different representations is not

well understood. The objective of this thesis is to broaden the present understanding of

locality to encompass more complex representations, for example graphs and grammars,

as well as non-traditional coevolutionary approaches.

This thesis presents four main original contributions. Firstly, a statistical approach to

measuring locality is defined that incorporates the Mantel test, a method adapted from

numerical ecology. The method is assessed empirically in a series of case studies over

two established forms of genetic programming, Grammatical Evolution and Cartesian

Genetic Programming. Secondly, a new approach to visualising locality is provided. The

technique uses force-layout algorithms derived from the field of graph-drawing to con-

struct fitness landscapes in genetic programming. The technique is applied to produce

visualisations that demonstrate structural characteristics across regions of the search

space. Thirdly, the effect of locality on performance is assessed in model coevolutionary

problems. A framework to analyse performance in a coevolutionary context is provided,

followed by an examination of the response to locality and coupled algorithm parame-

ters. The final contribution explores the interaction between locality and two ‘patholog-

ical’ dynamics in coevolutionary algorithms, disengagement and cycling. The analysis

demonstrates that locality can influence the likelihood of coevolutionary pathologies,

when using executable representations. Results are provided for new constructed prob-

lems and a coevolutionary pursuit and evasion task.

In the conclusions, directions for future analysis of the role of locality in evolution-

ary search are considered, as well as the relationship between these findings and other

outstanding general issues in the field of genetic programming.
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“In the physical universe the effect that one event has on another tends to decrease with

the distance in time or in space between them... Locality of action shows itself in the

finite speed of light, in the inverse square law of fields, and in macroscopic statistical

effects, such as rates of reaction and the speed of sound.

In computation, or at least in our old models of computation, an arbitrarily small event

can and often does cause an arbitrarily large effect. A tiny program can clear all of

memory. A single instruction can stop the machine. In computation there is no analog

of distance. One memory location is as easily influenced as another.”

The Connection Machine, Hillis (1985)
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Chapter 1

Introduction

Contents

1.1 Evolutionary Search in Programs . . . . . . . . . . . . . . . . 3

1.2 Program Representations and Locality . . . . . . . . . . . . 4

1.3 Coevolutionary Systems . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Research Questions and Hypotheses . . . . . . . . . . . . . . 6

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Major Related Work and Themes . . . . . . . . . . . . . . . 9

1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Evolutionary Search in Programs

The term heuristic is used in engineering to describe a guideline or rule of thumb, derived

from prior experience. Randomised search heuristics (RSH) refer to heuristic approaches

to finding solutions that are at least partly non-deterministic. Useful randomised search

heuristics may not be guaranteed to converge on an optimal solution, but are expected

to perform well in practice on certain classes of problems. Evolutionary Computation

(EC) concerns the study of RSH that are inspired by biological evolution to solve com-

putational problems. Numerous alternative classes of randomised search heuristic exist,

for example particle-swarm optimisation or simulated annealing, whose inspiration lies

in the observation of other natural search processes.

An application within Evolutionary Computation that has attracted much attention is

the optimisation or development of programs through search (Friedberg, 1958; Fogel

et al., 1966; Smith, 1980; Forsyth, 1981; Cramer, 1985; Koza, 1992). The use of EC

3
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approaches is motivated by the requirement to efficiently explore the large and complex

spaces typifying this domain. The field of Genetic Programming (GP) encompasses

a specialised collection of EC techniques designed for this task (Banzhaf et al., 1998;

Langdon and Poli, 2002; Poli et al., 2008). The approach can be considered to be a form

of automatic programming. GP techniques have been used to address a diverse range of

problems, including notable human competitive successes (Koza et al., 2003).

Despite the established applications of GP, theoretical progress explaining the perfor-

mance of the technique on particular classes of problem has been more limited (Poli

et al., 2010). A major contributing factor is uncertainty over the influence and role

of program representation in evolutionary search. In natural evolving systems, a map-

ping - the genotype to phenotype map (GPM) - exists between the biological structures

storing inherited or genetic information and the expressed traits of an organism. The

structure of GPMs and the breadth of changes required to exhibit new characteristics is

a basic concern in genetics and molecular biology. Analogously, the representation of a

program and the mapping between its stored form and executable behaviour also plays

a fundamental role in the performance of GP heuristics.

1.2 Program Representations and Locality

Designing an Evolutionary Algorithm (EA) to develop or optimise programs requires the

choice of an appropriate representation and associated mapping. Within this context,

a broad range of options are available to the practitioner. These vary from representa-

tions based on tree data structures (the original formulation of GP) to configurations

that use grammars, graphs or stacks. At present, there are few theoretical guidelines

available for GP to support the selection of a particular configuration. Typically, the

choices of users are motivated by empirical evidence, for example prior successes on

similar problems, or practical considerations, for example ease of implementation. How-

ever, a range of qualitative properties of the artificial GPMs used in program evolution

have been identified that have parallels with the GPM properties of natural systems.

Similarities between artificial and natural GPM may include many to many relation-

ships between represented programs and their characteristics, a modular composition,

redundant components with no explicit functionality and a disproportional response to

change. Establishing the significance of these characteristics can inform the decision

between different representations and search mechanisms when artificial evolution is

applied to a new problem.

Biological systems are remarkably resilient to mutations in genetic structure, but also

have the capacity to express large changes under small variations. Many human genetic
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disorders such as Haemophilia, Cystic Fibrosis and Sickle-cell disease are now known to

be closely tied to local variations in individual and well isolated genes (Antonarakis and

Beckmann, 2006). Conceptually, this is a familiar phenomenon for any user of modern

programming languages; under the wrong conditions, variation of a single instruction

can drastically alter the functionality of a program. In artificial GPM, the term locality

has been coined to describe a property that addresses the extent to which small vari-

ations in the evolving structure (local changes) correspond to small variations in the

expressed traits of that structure (Rothlauf, 2006). For the context of a heuristic search

on programs, locality describes whether neighbouring configurations under the search

are likely to have similar functional properties.

In recent years, it has been suggested that measures to preserve locality in artificial GPM

can provide performance gains in GP (Nguyen, 2011; Krawiec, 2011). These studies

have primarily focused on standard tree representations. However, the role of locality

in other classes of program representation designed by practitioners, for example more

general graph or grammar based structures, is largely not understood. A representation

independent view of locality for GP would therefore be highly desirable. This will require

the construction of novel analytical tools that are designed for a range of GP techniques

and which can subsequently be applied to the more complex methods currently in use.

1.3 Coevolutionary Systems

One emerging area of application for such tools is coevolutionary search. Evolution in

nature does not occur in isolation. Coevolution refers to the mutual influence of species

upon one another’s survival. The presence of one or more species affects the evolution

of another, which in turn affects the first (Janzen, 1980). Artificial evolutionary systems

have long sought to exploit coevolution, which enables the application of EC heuristics

to problem domains where the quality of evolving members are defined through their

interaction with others. Coevolutionary algorithms (CEA) have significantly different

properties when compared with evolutionary algorithms that have access to an objective

measure of solution quality. Designers have historically had to take into account these

distinctions, which include pathological modes of behaviour not observed in standard

EAs, that result in distinct forms of search (Ficici and Pollack, 1998; Watson and Pollack,

2001; Bucci and Pollack, 2003; Wiegand and Sarma, 2004).

Coevolutionary principles have been incorporated into GP techniques to provide meth-

ods of coevolutionary program development (Lichodzijewski and Heywood, 2007; Tay et

al., 2008; Schmidt and Lipson, 2008; McIntyre and Heywood, 2008; Sikulova and Sekan-

ina, 2012). An advantage of this class of algorithm is their application to cooperative
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or competitive scenarios, where programs are required to share resources, control con-

flicting agents or otherwise interact. As in traditional approaches, the requirement to

define a suitable representation during the design process remains. However, no dedi-

cated studies exist exploring locality in coevolutionary forms of GP. From the evidence

in traditional evolutionary artificial systems, it is reasonable to propose that it is a

contributing factor. Conversely, it is also possible that the effect of GPM properties

may differ from those observed in standard GP systems. There is therefore a strong

motivation to extend current analysis to include these methods.

1.4 Research Goals

The overarching aim of this research is to examine the effects of GPM locality in artifi-

cial evolutionary systems capable of developing programs. The intention is to broaden

the present understanding of locality in GP by addressing systems using non-traditional

program representations for EC, such as graphs and linear representations. The scope

of the following work will encompass methods including both evolutionary and coevolu-

tionary search mechanisms, with the objective of establishing a more unified framework

that incorporates the distinct properties of these approaches.

1.5 Research Questions and Hypotheses

To address this aim, I pose a series of four research questions that will be considered

sequentially. Questions A and B are by formulation engineering issues. Nonetheless,

they are necessary steps in the following analysis, against which demonstrable progress

can be shown. Questions C and D can be framed as falsifiable hypotheses.

A: “How can a statistical measure of genotype to phenotype locality be

developed for different genetic programming representations?”

Locality is a difficult property to characterise with a range of previously stated defi-

nitions (Rothlauf, 2006; Chiam et al., 2008; Galvan-Lopez et al., 2011a). Quantifiable

measurements of properties of the GPM are inherently challenging because of the size

of EC search spaces and ensuing statistical uncertainty under sampling. Designing a

statistically rigorous approach that can encompass non-traditional program representa-

tions carries additional complexity; the process of mapping to semantic behaviour may

be structurally very distinct between different methods of storing programs. To extract

useful general principles it is desirable to abstract methods of measurement away from

single forms of representation. The value of developing a general method for quantifying
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locality across different representations is that the property can be compared over the

variety of GPM that are used by GP practitioners and evaluated experimentally.

B: “How can locality be visualised over regions of the GPM?”

Qualitative techniques for examining GPM locality are a necessary complement to the

quantitative statistical approaches implied by Question A. Genotype to phenotype maps

are not generally homogeneous and regions of the search space can exhibit distinct con-

nectivity and neighbourhood structure. Visualising this structure in program represen-

tations requires suitable methods of multi-dimensional scaling. The goal of this question

is to consider techniques to examine locality directly, with the intention of providing a

more intuitive understanding of the property. As in A, the approaches developed should

be applicable to different representations.

C: “Does genotype to phenotype locality contribute to coevolutionary

algorithm performance?”

The significance of locality in evolutionary algorithm performance has been established

empirically (D’haseleer and Bluming, 1994; Raidl and Gottlieb, 2005; Nguyen, 2011).

However, as will be highlighted in this thesis, coevolutionary systems make several fun-

damentally different assumptions to traditional EAs. It is therefore not sufficient to

assume that GPM locality will have the same effect on search that has been observed

in standard techniques. The aim of this question is to verify whether coevolutionary al-

gorithms exhibit similar responses to changes in this property of the GPM and identify

contributing factors that may be unique to these systems.

D: “Does semantic locality interact with the occurrence of pathological

behaviours in program coevolution?”

Algorithms using coevolutionary techniques introduce behaviours that lead to game

theoretic states and interactions not seen in non-coevolutionary EAs. An example is cy-

cling, where an algorithm becomes ‘trapped’ in a sequence of intransitive configurations.

Dedicated studies have been carried out to investigate and mitigate these behaviours in

coevolutionary algorithms using traditional bit string representations (Cartlidge, 2004;

Wijngaarden and Jong, 2008). The factors that influence their occurrence in systems

using more complex representations are not well understood. This question proposes

that GPM locality is coupled to the occurrence of pathological behaviours in CEA. It

is posed to open the unexplored issue of whether, in genetic programming, relationships

can be drawn between coevolutionary pathologies and general properties of the GPM.
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1.6 Thesis Structure

The thesis is divided into three parts. Part I contains background material on Evolu-

tionary Computation, GP and the necessary foundations for the rest of the thesis. Part

II addresses research questions A and B, developing statistical and visualisation tools

that form an element of the main thesis contributions. Part III then tests hypotheses

C and D. The focus in the second part is on standard evolutionary forms of GP. The

third part introduces the more general subject of coevolutionary systems to extend the

analysis developed in the first two parts.

• Chapter 2 (Genetic Programming and the Genotype to Phenotype Map)

defines key terms, reviewing the literature concerning program representations in

Evolutionary Computation and properties of genotype to phenotype maps.

• Chapter 3 (Measuring Locality in GP Representations) builds on the quan-

titative definitions in Chapter 2, proposing a statistical approach. The chapter

explores the use of the Mantel test, a technique drawn from numerical ecology.

• Chapter 4 (Methods of Visualising Locality) develops a graph-drawing method

to display variations in locality across program search spaces. The chapter reviews

existing approaches, then describes the technique and provides examples of its

application under different GP representations.

• Chapter 5 (Coevolution and Representations) reviews the literature on co-

evolutionary algorithms, focusing on the fundamental distinctions between EA

and CEA. The chapter then addresses how the framework described in Chapter 2

applies to these systems.

• Chapter 6 (Locality in Test-based Coevolution) describes an empirical method-

ology for coevolutionary algorithms and presents experiments in bit string rep-

resentations. The experiments examine how locality is coupled with algorithm

parameters and its affect on performance over selected benchmarks.

• Chapter 7 (Locality in Coevolutionary Genetic Programming) extends the

work in Chapter 6 by considering locality in coevolutionary forms of GP. Exper-

iments are provided that investigate the relationship between locality and patho-

logical coevolutionary behaviours in GP systems.

• Chapter 8 (Conclusions) closes the thesis by re-examining the findings of the

previous chapters in relation to the proposed research questions. The remaining

sections then detail potential future directions and relate the work back to more

general open issues in the field of GP.
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1.7 Major Related Work and Themes

There exist several general studies concerning locality and properties of artificial geno-

type to phenotype maps in GPM closely related to this thesis. Within the field of Evo-

lutionary Computation, Rothlauf (2006) gives an introduction and overview of GPM

properties that forms the basis of the frameworks and methodology considered in Chap-

ters 2, 3 and 4. Nguyen (2011) and Galvan-Lopez et al. (2011a) have conducted em-

pirical work defining and analysing locality in genetic programming based on tree data

structures, which these chapters are also intended to complement. The framework for

coevolutionary algorithms reviewed in Chapter 5 is based on the principles described by

Ficici (2004) and Popovici et al. (2012). The concept of systematically analysing patho-

logical behaviours in coevolution follows a line of inquiry emerging from the studies of

Watson and Pollack (2001), which provides the starting point for Chapters 6 and 7.

Two further themes are explored in addition to the role of locality in evolutionary algo-

rithms. These include: benchmarking of coevolutionary systems and biological parallels.

In Chapters 6 and Chapter 7, we consider issues in measuring progress and designing

benchmarks for coevolutionary algorithms. Finally, Chapter 8 also briefly addresses how

the findings in Chapter 7 compare to observations of coevolution in natural systems.

1.8 Publications

Some of the material incorporated in this thesis has been presented in previous pub-

lications, primarily through conference proceedings. Use of the Mantel statistic as a

measure of program locality in Chapter 3 was published in Seaton et al. (2012a). The

visualisation method that is established in Chapter 4 was demonstrated in Seaton et

al. (2012b). Experiments given in Chapter 6 are an expanded version of those provided

in Seaton et al. (2011). The results in Chapter 7 have been reviewed and accepted for

publication in Seaton et al. (2013).
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2.1 Chapter Motivation

Combinatorial optimisation is the problem of minimising or maximising a target func-

tion f(x), where {x1, x2...xn} are elements in a set of feasible combinatorial solutions

X. Classical and highly successful approaches exist for many examples of combinatorial

optimisation problems. The methods of mathematical programming can be applied to

determine the local maximum or minimum of a convex target function, subject to con-

straints. However, in the more general global combinatorial optimisation situation the

objective is to find the globally optimal solution set, allowing that the target function

may be non-convex and possibly multi-modal. Global optimisation problems may there-

fore be hard and not necessarily solvable in polynomial time (given P 6= NP ). This

motivates the use of modern heuristic approaches such as Evolutionary Computation.

A significant body of Evolutionary Computation (EC) methods exist that have been

engineered to directly search a space of programs. The first motivation of this chapter is

to provide necessary background on EC, outlining the most prevalent search heuristics

and their application to the optimisation of programs. A short overview of the field of

genetic programming and its precursors will be provided. The emphasis of the review is

on distinguishing between the different methods of representing programs used in evolu-

tionary search. The second motivation is to define common EC terms, which enables a

more formal discussion of locality and the properties of the genotype to phenotype map

(GPM) referenced throughout this thesis.

2.2 Chapter Outline

In Section 2.3, we consider the context of EC in optimisation, making reference to

the No Free Lunch theorems. Section 2.4 then briefly summarises the principal areas

within EC and their historical differences. Section 2.5 contrasts established techniques

from four of the main paradigms within genetic programming which use tree, graph,

grammar and linearly structured representations. Basic definitions are given in Section

2.6. The concept of locality and the genotype to phenotype map is introduced in Section

2.7, alongside a brief qualitative description of representational characteristics such as

redundancy, robustness and modularity. Section 2.8 considers the current perspectives

on GP locality and presents conclusions.
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2.3 Evolutionary Computation as Stochastic Search

EC techniques can be seen as part of a wider collection of iterative random processes

that non-deterministically select elements from X to evaluate under the target function.

As such, the performance of EC techniques is stochastic, which permits solutions to

hard combinatorial optimisation problems to be found in less than exponential time, at

the expense of guaranteed convergence. The probability distribution used to select new

elements may be implicitly defined by some selection mechanism or explicitly specified.

A fundamental distinction between these methods is the procedure through which the

implicit or explicit probability distribution over X is determined at each timestep.

2.3.1 No Free Lunch Theorems

The No-Free Lunch (NFL) theorems are a seminal set of results in statistics and ma-

chine learning that have been applied to stochastic search (Wolpert, 1996; Wolpert and

Macready, 1996). Informally, within the context of optimisation, the no free lunch the-

orems imply that expected performance of an optimisation algorithm over all possible

function choices is equivalent. The performance of a given algorithm for a particular

problem is contingent on finding a good coupling between the selection procedure and

the function to be optimised. The term ‘Free Lunch’ is used to describe an exception to

the general No Free Lunch theorems for a specific subcase. For example, Free lunches

have been shown between function representations and for selected subsets of functions

(Droste and Wiesmann, 1998; Whitley, 1999). More recently, Poli and Graff (2009)

demonstrated that a Free Lunch exists when searching the space of optimal heuristic

algorithms; a context that can encompass Genetic Programming.

One consequence of the No Free Lunch theorems is that it is inappropriate to claim that

any optimisation algorithm conforming to the original definitions set out in (Wolpert,

1996) has inherently superior performance for a random choice of function. However,

in practice many randomly generated functions are of little interest. Therefore, com-

bined with the existence of free lunches, the No Free Lunch theorems do not greatly

restrict either the design of new EC optimisation algorithms or the engineering benefits

of understanding which stochastic optimisation algorithms are likely to perform better

on particular classes of problem.
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2.4 Classes of Evolutionary Computation

The field of Evolutionary Computation has been divided into several broad sub-areas,

which each encompass a common methodology or metaheuristic. As the field continues

to mature it should be noted that these historically significant classes are becoming

increasingly difficult to differentiate as particular techniques are hybridised or adopt

common concepts and terminology.

2.4.1 Genetic Algorithms

Genetic algorithms (GA) were originally introduced by Holland (1975) as a model of

natural evolutionary change and adaptation. The canonical genetic algorithm acts on

a population of binary strings initialised randomly. Members of the population are as-

signed a fitness value that is used to determine the members selected as parents for

subsequent generations. Operations analogous to mutation and crossover in biological

systems are applied to selected strings, to produce new strings (offspring) introducing

variation into the population. In the former, one or more bits are flipped with fixed

probability. In the latter, segments of each string are exchanged between selected mem-

bers of the population. Retaining fit members progressively improves the fitness of the

whole population over evolutionary time.

2.4.2 Evolution Strategies

Rechenberg (1973) and Schwefel (1977) invented Evolutionary Strategies (ES) as a

method of solving real vector numerical optimisation problems of the form f : Rn → R.

Evolutionary strategies define the selection mechanism by reference to a rank ordered

population. A (µ + λ) strategy generates λ new points from µ selected parent points.

Parents are selected by truncating the whole population to the best µ individuals by

fitness. In a (µ, λ) strategy selection of the new parents is carried out only from the

previous offspring. Offspring are produced by mutation, perturbing each point by a

value drawn from the multivariate normal distribution with standard deviation (‘step

size’) σ. The step size may be updated using a fixed rule or evolved simultaneously with

the population, controlling the distance traversed by the population of vectors. More

sophisticated ES adjust the direction of the distribution by updating the covariance

between components (Hansen and Ostermeier, 1996).
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2.4.3 Evolutionary Programming

Evolutionary Programming (EP) was proposed by Fogel et al. (1966) as a technique

acting on finite state machines capable of predicting changes in the future state of

their environment. Machines are assigned a fitness value based on the error in their

production of unobserved states (symbols) given an input set of previously known states.

Operations can be made to alter the structure of the finite state machine, such as the

addition or subtraction of state nodes or changes to the connections between states.

Parents are selected from a population of finite state machines based on their fitness.

Later variations of Evolutionary Programming were abstracted from the finite state

representation, though the emphasis was retained on reproduction through mutation

rather than recombination (Fogel, 1994). Canonical EP is also distinct from canonical

GP by including mutation as a distribution of possible operators.

2.4.4 Genetic Programming

Genetic Programming (GP) is a form of evolutionary computation popularised by Koza

(1992), combining concepts from genetic algorithms and evolutionary programming. The

basic premise of GP is to consider the evolution of executable program structures. The

technique can therefore be considered to be a method of automatic programming. In

its original formulation, genetic programming evolved a single population of tree-based

programs. Since this early work GP has been extended to consider many different vari-

ations - see for examples the surveys of Poli et al. (2008), Kouchakpour et al. (2008)

- amongst the most prominent of which are graph, grammar and linear systems. GP

carries out a heuristic search over a space of possible programs to achieve a program

which satisfies some set of objectives. An initial population of programs is generated

according to a particular initialisation scheme and members of that population are se-

lected according to a fitness function. Analogous search operators to those in GAs are

then applied to selected candidates to generate new programs over successive genera-

tions, which are constructed based on the old parents. The central assumption of GP

is that through the recombination of old, fit programs, progressively superior offspring

will be generated. Figure 2.1 gives an example of high-level pseudocode for canonical

genetic programming.

2.5 Genetic Programming: Paradigms

GP has many similarities with the older field of genetic algorithms (GA). The main

distinction between genetic algorithms and genetic programming is that GP explicitly



Chapter 2 16

1. Initialise a population of programs.

2. Evaluate fitness.

3. Select from amongst the best programs.

4. Apply search operators to selection to breed the next generation.

5. If termination criteria not reached, repeat from 2.

Figure 2.1: Generic GP pseudocode for evolution in a single population.

focuses on higher-level structures that can be parsed to generate executable programs.

As a consequence, GP is often less tractable to theoretical analysis, because differences

induced in the fitness of candidate solutions by the action of search operators are more

complex. The following sections describe how program representation has been handled

in GP, illustrated using examples from four standard approaches based on tree, graph,

grammatical and linear representations.

2.5.1 Tree-based Genetic Programming

Tree-based genetic programming methods are the oldest class of GP program represen-

tation. Programs are constructed as syntax trees from a set of primitive functions and

a set of terminals. Each interior node of the tree is associated with a function and the

leaves are associated with terminals. The arity of each interior node is the number of

arguments of the function (the number of inputs it admits). Figure 2.2 illustrates an

example tree program, which is executed by recursive evaluation from leaves to root

node. The initialisation method determines the structure of tree programs in the first

generation of the search (initial population). In canonical Tree GP, programs are ini-

tialised using the full, grow, or ramped half-and-half methods. In the full method, trees

are produced where all branches are the same length (equivalently, all terminals appear

at the same depth). In the grow method, terminals can appear at any depth, produc-

ing trees with variable length branches. The ramped half-and-half method attempts to

provide a greater diversity of structures in the initial population than either approach,

by generating trees using both methods with equal probability.

x2

1+x

x x x1

+

/

*

Figure 2.2: An example full tree program representing a simple algebraic expression
(parsed recursively from the left).
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At the end of each generation, programs are executed and a fitness function applied

(evaluation) that maps each candidate program onto a real value, according to its per-

formance on the particular problem. The population can then be ordered and some

probabilistic selection method used based on the fitness values. Tournament selection

methods chooses potential subsets of candidates randomly and compares their fitness to

determine winners for the next generation. Fitness proportionate methods select candi-

dates in proportion to their fitness compared to that of the whole population. A further,

important and frequently applied concept is that of elitism, where one or more of the

best candidates in the population are automatically selected.

A crossover operator, as commonly defined for Tree GP, accepts two selected parents

from a previous generation and interchanges elements between parents based around a

crossover point chosen in each tree. Depending on the specific strategy and location of

crossover, large sub-trees (sub-tree crossover) or single leaves may be exchanged. The

resulting offspring are compositions of each parent. The mutation operator accepts a

single parent. Mutation operators may be defined to act on a single primitive function

or terminal, randomly changing it (point mutation) or by replacing whole sub-trees with

new, randomly generated variants (sub-tree mutation). Crossover and mutation are

applied exclusively and at different rates, though the convention in canonical Tree GP

is to adopt a high rate of crossover and low rate of mutation. Selected parents which

undergo neither crossover nor mutation are copied directly into the next generation

(reproduction). The process repeats for each new generation until a threshold number of

generations is reached or a candidate emerges with the desired level of fitness. Typically,

a large number of runs are executed, each initialising a different population of program

trees and following a different trajectory through the space of possible programs.

The phenomenon of bloat is the tendency for the population of program trees to pro-

gressively increase in depth as the search continues without necessarily a corresponding

improvement in fitness. Numerous strategies have been proposed in Tree GP to combat

bloat; see the surveys of Luke and Panait (2006); Silva and Costa (2009). For example,

a common technique is to constrain the maximum tree depth to some fixed number of

nodes. Program trees that exceed this depth are then eliminated from the search.

2.5.2 Graph-based Genetic Programming

The concept of extending Tree GP to a graph based representation was proposed by Poli

(1996) and Miller et al. (1997) through the Parallel Distributed Genetic Programming

(PDGP) and Cartesian Genetic Programming (CGP) frameworks. In both frameworks,

the constraint restricting function nodes to connections between distinct sub-branches
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is relaxed. Edges can connect to nodes on other branches, enabling reuse of previously

defined structures.

Parallel Distributed Genetic Programming (PDGP) defines graphs using a link set which

directly specifies the connections between all function nodes. Each node in the graph is

located on a uniform 2D grid. Connections are constrained to be directed upwards on

the grid, in feed-forward fashion and between alternate rows. However, all nodes on the

grid are associated with functions. This introduces the important concept of redundancy

(see Section 2.7.2), where parts of the individual are not expressed in the resulting code.

The search operators applied to PDGP include crossover and mutation, as in classical

Tree GP. However, in order to preserve syntax under the new representation, several

different variations were implemented. These acted on subgraphs within the grid and

distinguished between ‘active’ and ‘inactive’ nodes.

Prior to PDGP, the PADO or Parallel Algorithm and Discovery Orchestration frame-

work was proposed by Teller and Veloso (1996) which was later classified as a graph-

based framework using an indexed memory. PADO was applied to the task of object

recognition. More recent examples of graph-based frameworks include Genetic Network

Programming (GNP) (Mabu et al., 2007) for the control of agents, which was hybridised

using a reinforcement learning technique, and GRAPE (Graph Structured Program Evo-

lution) (Shirakawa and Nagao, 2009). GRAPE focused on providing features such as

loops and handling of multiple data types.

Cartesian Genetic Programming (CGP) also represents programs as directed graphs,

but uses a compact indirect mapping onto an integer string (Miller, 2011). As in PDGP,

connections between nodes are labelled and defined with reference to rows and columns.

Functions may only connect to previous nodes on the same row, or to terminals. The

integer array representation that encodes this uses an integer representing the function

associated with each node and a set of integers corresponding to the connected inputs.

The canonical CGP approach uses a µ + λ truncation style of selection and applies a

mutation operator directly to the integer array. A list of nodes determines where the

outputs are selected from. An example CGP array representing the tree given in Figure

2.2 is shown below, where output is taken from the right most node (Figure 2.3).

The connectivity of the CGP array is specified by a set of constants - the number of

rows nr, number of columns nc and ‘levels-back’ parameter l. In the single row or

linear version of CGP, nr is set to 1 and nc to a total number of nodes (controlling the

maximum possible graph depth). The levels-back parameter constrains the maximum

number of previous rows which can be used as valid input connections for a node. In the

unconstrained feed-forward case, each node can freely connect to any previous column.

The action of the point mutation operator in CGP is to exchange one integer value
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x
1 * - * + \

(0 0 2) (1 1 1) (2 1 2) (1 0 0) (2 5 3)

0

1

2 3 4 5 6

0 :: +
1 :: -
2 :: *
3 :: \

Figure 2.3: Example Cartesian GP program that maps to the expression x2

1+x , encoding
a single row directed acyclic graph. Nodes 3 and 4 are redundant. Bold numbers in the

array indicate function choices.

in the array for an integer representing any other valid connection or function at a

single point on the string. The uniform mutation operator carries out point mutation

on each element of the array with a fixed (small) mutation probability. Notably CGP

incorporates a large number of redundant ‘junk’ or neutral coding elements in the form

of unused connections and functions. Studies of neutrality in CGP have suggested the

property may be advantageous on certain classes of problem (Vassilev, 2000; Yu and

Miller, 2006; Miller and Smith, 2006).

2.5.3 Genetic Programming using Grammars

A key issue in evolving executable programs is preserving the syntactic and semantic

constraints implied by the programming language and problem domain. Grammar-based

GP approaches (McKay et al., 2010) use grammars to define the constraints during

program evolution. As in Tree GP and graph-based representations, programs can be

generated directly, or indirectly. Amongst the earliest examples of directly generating

programs subject to grammatical constraints is the approach of Whigham (1995). Parse

Trees were generated directly with reference to the grammar’s production rules, derived

by applying the rules repeatedly until a maximum depth was reached. Crossover and

mutation operators were then applied to the stored trees. Whigham constrained these

operators to ensure syntactic compatibility, such that crossover between parse trees was

only permitted between nodes sharing the same non-terminal symbol.

By contrast, indirect approaches map the decisions required to evolve a parse tree. In

Grammatical Evolution a context-free grammar is defined in Backus-Naur Form (BNF)

that defines the possible relationships between each non-terminal and terminal symbol

in the evolved code (O’Neill and Ryan, 2003). The syntax of evolved programs conforms

to the grammar. An example of a constrained BNF grammar that could give rise to the

expression shown in Figure 2.2 using postfix notation is given in Figure 2.4
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<Tree> ::= <Terminal> | <Function> ( <Tree>,<Tree>)

<Function> ::= + | - | / | *

<Terminal> ::= x | 1

Figure 2.4: An example BNF grammar capable of representing bi-arity trees using
arithmetic operators.

This mapping is carried out by storing a sequence of values that provide information

on which decision should be taken as each non-terminal in the grammar is visited. Pro-

grams are therefore represented as a sequence of integers. To generate the program,

production rules are visited in turn beginning with the start symbol for the grammar.

When a choice between symbols in encountered, the next value in the sequence is looked

up. The modulus of that value indicates which subsequent symbol is visited in the gram-

mar. Conventional search operators can then be used to modify the decision sequence.1

Grammatical evolution generates programs deterministically using a variable number of

decisions, depending on the content of the decision sequence. If the end of a decision

sequence is reached, material is reused by ‘wrapping around’ to the start. An upper limit

is typically imposed to prevent too many cycles through the decision sequence, where

individuals that exceed the limit are discarded. The integer sequence in grammatical

evolution may be transcribed as a binary string, where each subset of transcribed bits

is referred to as a codon. This transcription can take place using a natural or Gray

encoding. Table 2.1 shows an example of how the left hand branch of the tree in Figure

2.2 can be mapped using this process.

String [0101] [1011] [1000] [0110] [1010] [0100]

Codon 5 11 8 6 10 4

Mapping 5%2=1 11%4=3 8%2=0 6%2=0 10%2=0 4%2=0

Decision Function × Terminal x Terminal x

Table 2.1: A GE configuration corresponding to a component of the tree program in
Figure 2.2. Substrings are mapped to an integer that determines the selection when a
production rule is visited. The production rule then generates the corresponding symbol.

2.5.4 Linear Genetic Programming

Encoding programs as trees, graphs or grammars requires some degree of interpreta-

tion on current processors. Reducing the interpretation required can provide gains in

execution time. Linear Genetic Programming (Brameier and Banzhaf, 2007) acts at a

1Stochastic variants on grammar GP representations exist, where information stored in the decision
sequence defines a probability that a particular symbol is selected. In the present work we will only
consider deterministic forms of GE encodings.



Chapter 2 21

lower level of abstraction, providing sequences of instructions to manipulate data within

registers or memory. These may include branching instructions which enables the rep-

resentation of graph or tree like flows of execution. Linear GP can be used to generate

machine code directly or produce byte code for interpreted execution (Nordin et al.,

1999a,b).

Constructing programs at this level requires several departures from the Koza tree-

based approach. Mutation operators are applied to introduce variation into elements of

individual instructions (for example the opcode or input/output registers). Crossover

operators exchange sets of instructions within the sequences comprising pairs of pro-

grams. Similarly to the higher level interpreted graph-based representations discussed

in Section 2.5.2, Linear GP also includes unused instructions that constitute redundant

material.

2.5.5 Other GP Variations

Another notable paradigm within GP includes systems designed such that the repre-

sentation enables programs to store some or all of the information required to generate

new programs. The identifying component of such a system is the capability of mod-

ifying its own mechanism for introducing variation; that is the genetic operators are

at least partially constructed through evolutionary processes. To permit this requires

a sufficiently flexible representation to describe programs that not only reproduce and

alter their own structure, but also the facility for introducing these changes. Spector

and Robinson (2002) termed these variations autoconstructive and provided an experi-

mental system Pushpop. Pushpop uses a representation which enables the construction

of complex evolutionary operators by the composition of primitive instructions within

its own Lisp-like programming language, Push. The core of Push is a set of stacks to

store different data types, which can be acted on by operators that push or pop their

arguments to the correct stack. Other stack-based representations for GP have been

constructed (Perkis, 1994).

2.5.6 Summary

This section has briefly described four of the canonical methods of representing programs

in GP. Each of these forms of GP is associated with a detailed set of heuristics for

searching the program space: a set of search operators, standard parameters such as

population size or maximum program length and methods of evaluating each generation

of output programs. To survey these comprehensively is outside the scope of this work;

instead this section has focused on highlighting the principal differences between the
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method of program representation used by each class. Tree-based genetic programming

stores programs in the form of parse trees generated from a fixed set of function and

terminal elements. Programs are executed by evaluating trees recursively. Graph-based

forms of GP apply a similar approach that enables the flow of execution to pass between

sub-branches. Grammar-based GP applies a set of semantic constraints to the search

space based on a chosen grammar. Linear GP generates programs at a lower level of

abstraction, as collections of linearly arrayed instructions.

2.6 Genetic Programming: Terminology

There is considerable variation in the interpretation of basic terms in common usage

between the different EC communities. The analogous biological definitions are also

far from standardised (Mahner and Kary, 1997). To avoid any ambiguity, this section

formally defines the interpretations used throughout this thesis. We will then review

some of the concepts used in the GA and GP literature to distinguish between different

classes of representation and address the subject of locality.

2.6.1 Basic Definitions

Definition 2.1 (Genotype Representation). A genotype g is a collection of primitive

data. The genotype representation R is the type of data structure used to store the

genotype. The set of all distinct genotypes that can be represented given R is GR.

Remark: We term GR to be the genotype space for that representation. For example,

in the simple GA, the representation R is a binary string of length n, which gives a

genotype space of cardinality 2n. We will generally omit the subscript R when it is

not necessary or is clear from context. Abstractly, the genotype space may be finite or

infinite (though in practice the latter is constrained by machine precision and available

memory.)

Definition 2.2 (Phenotype, Genotype to Phenotype Map). A phenotype p is the de-

coded expression of a genotype. For each genotype representation R there exists a

genotype to phenotype map m : GR → PR, which is a surjective function to the set of all

phenotypes PR supported by R. We term PR the phenotype space.

Remark: The term phenotype in EC is used diversely and can refer to multiple layers

situated between genotype and evaluation. The definition above applies to the concept

of a single intermediate layer between genotype and fitness. We will refer to this as a
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single layer GPM. This issue will be returned to in Chapter 3. In a single layer genotype

to phenotype map we say that two representations R and R′ are strictly equivalent if

they are equal in genotype space, phenotype space and genotype to phenotype mapping.

Formally, if R and R′ are equal then the set GR is equal to G′R, the set PR is equal to

P ′R and for each genotype g ∈ GR, the phenotype p = m(g) is equal to p′ = m′(g′).

We say that in a direct GPM, as exists in standard tree genetic programming, the map

is bijective, such that there is a one to one mapping between genotype and phenotype.

An indirect GPM has an associated genotype space which is not equal in size to its

phenotype space. The mapping is said to be fixed if the mapping function does not

change with evolutionary time.

Definition 2.3 (Fitness Function). A fitness function is a function f : PR → R which

specifies the objective quality of a phenotype for a given combinatorial optimisation

problem. The function may be static or time-dependent (with respect to evolutionary

time).

Remark: In the first part of this thesis, we will consider only static fitness functions.

The second part will consider coevolutionary systems where fitness cannot be framed as

a static objective measure, addressed in Chapter 5.

Definition 2.4 (Search Operator). A search operator s is a relation sµλ between Gµ

and Gλ, where Gµ = {g1, g2...gµ} ⊆ GR is a subset of parent genotypes and Gλ =

{g′1, g′2...g′λ} ⊆ GR is a subset of offspring genotypes.

Remark: For example, the point mutation search operator acting on a binary string

representation is a bit-flip acting on a single element of one genotype. The operator

transforms one genotype onto one other member of the set of genotypes at Hamming

distance of 1 from it.

Definition 2.5 (Population). A population is a finite collection of genotypes. A popu-

lation is said to be homogeneous if all genotypes in the population can be derived from

the same genotype representation.

Remark: By convention, populations of genotypes in EC are homogeneous. However,

it is common for populations which are separate but coevolving (see Chapter 5) to use

different genotype representations.
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2.7 Properties of Genotype to Phenotype Maps

Genotype to phenotype maps in biological systems describe complex, many-many rela-

tionships between genotype composition and the expressed traits in an organism. Estab-

lishing causal relationships in the map for a particular species is a difficult task, which

can require direct observation of accumulated genetic change amongst a population.

The aim of this section is to review, at a high level, the key common properties that

have historically been identified in artificial GPM. Many of the terms used in EC have

parallels in biological systems, but have been adapted by the Evolutionary Computation

field. Fortunately, the vastly greater simplicity of biologically-inspired heuristics means

that these concepts are easier to characterise.

Perhaps the most consolidated framework addressing the characteristics of genotype

to phenotype maps and representations in Evolutionary Computation is the work of

Rothlauf (2006). Rothlauf considered three qualities associated with GPM, locality,

redundancy and scaling. The concepts were initially defined within the context of binary

strings, but later extended to tree structures. The following sections summarise these

concepts, in addition to describing the related issues of robustness or genetic canalisation,

dimensionality and modularity.

2.7.1 Locality

Early Work

Informally, the locality of a genotype to phenotype map describes how the local neigh-

bourhood structure of the genotype space corresponds with that of the phenotype space.

In a strongly local genotype to phenotype map, genotypes that are defined as neighbours

also possess neighbouring phenotypes.2 Selecting a neighbouring genotype results in a

new phenotype that is similar to the old, according to chosen measures of distance in

each space. References to bias due to transformation of the local neighbourhood can

be found in the early GA literature (Goldberg, 1989). Attention to this issue arose

primarily out of the realisation that GA performance is significantly affected by the

selection of different bitstring encodings. The term ‘Hamming cliff’ was introduced to

describe the situation where, under a binary encoding, a small increase in the integer

value of a bitstring could require changes to many bits simultaneously. This was ad-

dressed by mapping GA strings using a Gray encoding, initially investigated empirically

2There has been some difference in the conventions for qualitative descriptions of locality (Rothlauf,
2006; Galvan-Lopez et al., 2011a). The terms strong and weak locality are used in this thesis, after
Sendhoff et al. (1997a).
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G
P

g

p

m : G → P

dG
-

adj(g)

adjm(g)

Figure 2.5: A genotype to phenotype map with weak locality. The relative distance of
neighbouring genotypes to g increases under the phenotype distance measure, such that

they are no longer local neighbours in the phenotype space.

(Caruana et al., 1998), leading to later theoretical analysis (Rowe et al., 2004). Droste

et al. (2002) used distance metrics on the genotype and phenotype space to preserve the

neighbourhood structure for EAs on Boolean functions. Efforts to formalise locality as

a general property of GPM appeared over the same period (Sendhoff et al., 1997a; Raidl

and Gottlieb, 2005).

Quantifying Locality in GA Representations

The interpretation of locality in Rothlauf (2006) considers a finite set of discrete geno-

types G and set of phenotypes P , with a surjective mapping function, over an arbitrary

representation. A discrete measure of distance is assumed to be paired with each set,

dG and dP . We write the shortest and largest non-zero distance in each space as d−G,

d−P , d
+
G and d+P respectively:

d−G = min dG(g, g′), ∀g, g′ ∈ G such that dG(g, g′) > 0 (2.1)

d−P = min dP (p, p′), ∀p, p′ ∈ P such that dP (p, p′) > 0

d+G = max dG(g, g′), ∀g, g′ ∈ G such that dG(g, g′) > 0

d+P = max dP (p, p′), ∀p, p′ ∈ P such that dP (p, p′) > 0

The local neighbourhood of a genotype g is then the subset of adjacent genotypes to

g, for which dG(g, g′) = d−G. The function adj(g) returns the local neighbourhood of

g. Equivalently, the function adj(p) returns the local neighbourhood of a phenotype

p. Let adjm(g) return the phenotypes that correspond to the local neighbourhood of g,

transformed into the phenotype space under the mapping function m. This function is

illustrated in Figure (2.5). Note that in general adjm(g) 6= adj(m(g)). Written using

these definitions, Rothlauf quantified locality as:
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Definition 2.6 (Locality). Rothlauf (2006)

L =
∑
g∈G

∑
p′∈adjm(g)

dP (m(g), p′)− d−P

where p = m(g). This summation provides information on the distance of neighbours

when mapped to the phenotype space. In a mapping function where all neighbouring

genotypes correspond to neighbouring phenotypes, L = 0. A mapping with this property

will be termed fully local. Weakly local mappings correspond to values L >> 0.

Rothlauf’s original expression is not normalised to the search space size. A variation of

Rothlauf’s definition was put forward by Chiam et al. (2006). Chiam noted that:

“Besides considering the mean genotype distance for all neighbouring pheno-

types as in Rothlauf’s locality measure, the converse which corresponds to the mean

phenotype distance of all neighbouring genotypes should be taken into account also.”

- Chiam et al. (2006)

This statement acknowledges that it is possible to define an ‘inverse’ measure of locality,

by considering the local neighbourhood in the phenotype space. Chiam introduced two

similar measures based on Rothlauf’s original definition of locality, which he termed

proximity preservation, to measure the locality of binary and Gray bitstring encodings.

For each g ∈ G and p ∈ P , these measures were defined as (our notation):

Definition 2.7 (Proximity Preservation). Chiam et al. (2008)

d̄P g =
1

|adjm(g)|
∑

p′∈adjm(g)

dP (m(g), p′)

d̄Gp =
1

|adj−1m (p)|

∑
g′∈adj−1

m (p)

dG(m−1(p), g′)

where adj−1m (p) gives adj(p), transformed back into the genotype space. The first defi-

nition d̄P g is just the average difference over adjacent genotypes to g, measured in the

phenotype space. The second definition d̄Gp is similarly calculated in the genotype space

for adjacent phenotypes to p. Chiam was able to compute the value of d̄Gp for this case

because the mapping function was assumed to be bijective (i.e. there exists a one-to-one

mapping between genotypes and phenotypes and |G| = |P |).
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Table 2.2: Previous aggregative definitions used to measure the locality between geno-
type and fitness spaces in GP (shown for discrete fitness values) From Galvan-Lopez et

al. (2011a), in the notation of this thesis.

Definition Note

L0 =
∑N

i=1 |dP (gi,s(gi))−d−P |
N

A direct extension of Rothlauf’s definition.

L1 =
∑N

i=1 |dP (gi,s(gi))|
N

Average fitness distance including neutral changes.

L2 =
∑N

i=1:dP (gi,s(gi))≥2 dP (gi,s(gi))

N
Only fitness changes greater or equal to unit 2.

Quantifying Locality in GP Representations

Recent studies of locality in GP have extended these concepts to define computable

measures of locality in program spaces (Galvan-Lopez et al., 2011a; McDermott et al.,

2011; Krawiec, 2011). Galvan-Lopez et al. (2011a) considered a set of three definitions,

similar to Definition 2.6. These are summarised in Table 2.2 (our notation). The def-

initions were presented for a direct tree GP map, where |G| = |P |. Measurements of

locality were defined with respect to the mapping to fitness values, such that phenotype

differences were measured as the absolute difference in phenotype fitness:

dp(p, p
′) = |f(p)− f(p′)| (2.2)

Each measure was computed over a number of samples N on the genotype space. The

measure dp(gi, s(gi)) is the difference in fitness between the indexed genotype gi ∈ GR
and that genotype following a mutation operator of the form s : GR → GR. Galvan-

Lopez et al. (2011a) defined the minimum phenotype distance d−P to be a small difference

in fitness. In first definition L0, Equation 2.6 was extended in a direct fashion. For inte-

ger fitness values, L0 assumed d−P = 1, such that mutations which did not change fitness

contributed to the summation. The second definition, L1, removed this contribution (in

this notation, assuming d−P = 0). The third definition, L2, considered only larger fitness

changes. For integer fitness values, differences of at least two were chosen. In problems

with real numbered fitness, these boundaries were parametrised to continuous values.

After comparison over a set of standard Tree GP benchmark problems and operators,

the authors concluded that the variant L0 closest to the original definition presented by

Rothlauf (2006) (Definition 2.6), gave a better overall correlation with performance.

Generally, we will refer to the methods of Rothlauf (2006); Chiam et al. (2006); Galvan-

Lopez et al. (2011a) as aggregative approaches to measuring locality. The common prop-

erty throughout these approaches is that they rely on an explicit summation over pairs

within a given distance interval, to characterise how the neighbourhood of genotypes is

preserved under transformation.
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2.7.2 Other Properties

Redundancy

Redundancy in representations is the concept that elements of a program’s represen-

tation may not be expressed in the output code. Such redundant material may be of

significance to the heuristic search, being reintroduced by operators as active code at

a later stage, but does not affect the fitness of a program at time of evaluation. A

redundant genotype to phenotype map possesses more possible distinct genotypes than

phenotypes, |G| > |P |. The redundancy of a representation R can be characterised by

the expression:

Definition 2.8 (Redundancy). Rothlauf (2006)

Υ =
∑
p∈P

1

2

∑
g∈Gp

∑
g′∈Gp

dG(g, g′)

where Gp ⊆ G is the subset of genotypes that correspond to the phenotype p (i.e.

m(g) = p for all g ∈ Gp). This corresponds to summing up all the distances between

genotypes which map to p, for all distinct phenotypes in the phenotype space.

The terms synonymous and non-synonymous were used by Rothlauf to label different

kinds of redundant mapping. Synonymous implies that for the majority of phenotypes,

the corresponding genotypes equivalent to that phenotype are close together in the

genotype space (Υ → 0). Conversely, in the non-synonymous case the set of equiva-

lent genotypes are far apart, giving a high total (Υ � 0). As for Definition 2.6, the

requirement is again to adequately define the measure dG, which in turn depends on the

particular data structure and search operators.

Scaling and Dimensionality

Scaling is a qualitative attribute which has been defined in linear representations to

describe the variation in response to changing the genotype with respect to different

positions within the data structure. Rothlauf divides representations as uniformly and

non-uniformly scaled. A uniformly scaled genome is one in which changes at any point

in the genome lead to equally significant changes in the phenotype. A binary genotype

that is encoded directly onto the corresponding set of integers is non-uniformly scaled,

because flipping a bit at the beginning of the genotype induces a greater change than

at the end. Scaling is not necessarily coupled to the mapping between phenotype and
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fitness. In general, trees, graphs and grammar-based GP all have the property that

they are non-uniformly scaled. Efforts to remove position dependency have been made,

for example by changing the order in which the genotype is interpreted. A method

of achieving this, ‘πGE’, was demonstrated for grammatical evolution with reported

performance gains (O’Neill et al., 2004). To the author’s knowledge, however, no general

quantitative definitions of scaling have been presented in GP.

A closely related issue to scaling is the concept of dimensionality in the genotype and

phenotype. Transforming a genotype to a phenotype can alter the number of components

able to vary throughout the structure. Mapping from an n bit binary string to an integer

value projects a vector of n components onto a single variable, reducing the number of

degrees of freedom from n to 1. A change in the number of degrees of freedom may occur

in any genotype to phenotype map where the genotype representation is different to the

representation of the phenotype. This is distinct from changing the cardinality (size) of

the space. In GP genotype to phenotype maps, the dimensionality of the genotype is

generally at least as large as that of the phenotype, because operations are applied at the

genotype level. Dimensionality is significant in GP because the degrees of freedom in the

phenotype are often associated with identifiable subcomponents (for example subtrees)

that define program fitness. A mapping in which the genotype space has a much higher

dimensionality than the corresponding phenotype space implies that the contribution

of many subcomponents of the genotype to fitness will be either coupled or redundant.

Conversely, if there are fewer degrees of freedom in the genotype, then variations to the

genotype may perturb the phenotype in several dimensions.

Modularity

From the inception of GP it has been recognised that the software engineering principle

of encapsulating code in common functional units (modules) is a key component in the

evolution of complex programs (Koza, 1992). A form of modularity may be introduced

into a genotype to phenotype map ‘internally’ through the use of a particular represen-

tation which reproduces common elements, such as a graph or grammar. Alternatively,

‘external’ mechanisms explicitly designed to capture and reuse complex components can

be constructed. Variations on current techniques to introduce modularity externally

have been described for all the classes of GP detailed in the previous section. Examples

include Koza’s automatically defined functions (Koza, 1992), modular Cartesian Genetic

Programming (Walker and Miller, 2008) and modular forms of Grammatical Evolution

(Swafford et al., 2011).
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Robustness and Neutrality

Robustness - analogous to genetic canalisation in a biological system - describes the

resilience of a phenotype to change, whether derived from genetic or environmental

factors (Waddington, 1942). The effect increases the stability of established phenotypic

traits, which may present an evolutionary edge. It has been claimed that similar qualities

in artificial evolutionary systems are advantageous in particular cases, for example Hu

et al. (2011). Given the highly simplified model of evolution used in genetic algorithms

or genetic programming, where the source of phenotypic change is solely ‘genetic’, there

is an implied link between robustness and phenotypic neutrality. The significance and

contribution of neutrality is a complex unresolved issue and has been the subject of

considerable debate (Yu and Miller, 2006; Collins, 2006; Wilson and Kaur, 2009; Galvan-

Lopez et al., 2011b). This thesis will not directly study the role of neutrality in the GPM.

For convenience, we will define neutral changes to the genotype to be those which have

no effect on the phenotype after mapping, m(g) = m(g′). A subset of genotypes will

be described as phenotypically neutral if they map onto the same phenotype. A pair of

genotypes will be said to be fitness neutral if they are distinct but map onto the same

fitness value.

2.8 Discussion and Concluding Remarks

Despite the relative simplicity of the relationship between genotype and phenotype con-

sidered in GP compared with biological systems, it can be seen from the previous section

that a range of different attributes have nonetheless been defined. Whilst each of these

elements has been investigated within GP systems, a unified view of their contribution

to search performance is yet to emerge for GP and EAs using executable program repre-

sentations. This has been due in part to historical divisions between the different classes

of EAs and the relatively recent migration of quantifiable measures of the different GPM

properties from the GA to the GP literature.

Defining locality in GP is more complex than for conventional genetic algorithms because

GP representations are likely to include multiple levels of mapping. Present studies of

locality in GP have been primarily concerned with introducing stronger locality into GP

genotype to phenotype maps (Krawiec, 2011). This view is driven by the understanding

that weak locality when mapping between genotype and phenotype reduces the causal

link between genotypic change and fitness (Sendhoff et al., 1997a), and the prediction

that this reduces performance on ‘easy’ problems in the present GP paradigms. Em-

pirical studies improving GP locality and testing this assumption have supported this



Chapter 2 31

hypothesis, for some problem cases. These studies are currently limited to direct, tree-

based representations (Galvan-Lopez et al., 2011a) and Grammatical Evolution (Roth-

lauf and Oetzel, 2006). A further consideration is the distinction between syntactic and

semantic levels of expression in GP (Nguyen et al., 2011a). We will return to this last

issue in the next chapter.

In addition, choice of a given GP representation cannot be isolated from the assumptions

that have been made regarding search operators. The mutation operator (in various

forms) is a ubiquitous component of GP techniques. Crossover, by contrast, is not

universal and its benefits are disputed (White and Poulding, 2009). Furthermore, the

definitions of locality reviewed in Section 2.7.1 do not naturally extend to crossover

using pairs of genotypes without some modification. For these reasons the analysis in

the following chapters will concentrate on the locality of GP representations when using

the mutation operator only.

A final consideration is to note that particular GP representations and GPM can over-

represent portions of the phenotype space in some cases. This leads to a bias that is less

transparent for GP than GAs. Therefore, to gain a more satisfactory understanding of

locality in GP in general, its effects should be examined over a range of different GP

paradigms and problem domains.

2.9 Chapter Summary

This chapter provided a foundational overview of the historical classes of evolutionary al-

gorithms, the principal GP paradigms and properties of artificial genotype to phenotype

maps. The review included:

• An outline of the representational differences between tree, graph, grammar and

linear GP algorithms.

• The concept of GPM locality, summarising previous aggregative definitions and

current assumptions regarding the role of locality in GP.

• A summary of other known GPM characteristics including redundancy, scaling,

dimensionality, modularity, robustness and neutrality.

The next chapter elaborates on the issues highlighted in the discussion and builds on

these concepts to develop a rigorous statistical measure of locality across different GP

paradigms.
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3.1 Chapter Motivation

The previous chapter provided an overview of the different paradigms used in current

genetic programming techniques. Moving away from the relatively transparent proper-

ties of bit string to tree, graph or grammar representations presents several challenges.

In Chapter 1, it was noted that the theoretical properties of different genotype to pheno-

type maps in genetic programming are poorly understood. We can consider four factors

that have contributed to this situation:

1. Ambiguity over what constitutes the genotype and phenotype for a problem.

2. Multiple levels of mapping.

3. Choice of appropriate metrics when using complex search operators.

4. Unknown contributions from correlated GPM properties.

The first and second points concern lack of clarity when assigning the terms genotype

and phenotype. Multi-level maps are common in the genetic programming paradigms;

note the number of intermediate steps mapping between genotype and phenotype in the

different classes of genetic programming described in Chapter 2. The third point de-

rives from the diversity of different representations, operators and reproduction methods

which have been applied in Evolutionary Computation. This situation is summarised

eloquently by Graff and Poli:

“Despite the simplicity of EAs, sound theoretical models of EAs and precise

mathematical results have been scarce and hard to obtain, often emerging many

years after the proposal of the original algorithm... A key reason for this is that

each algorithm, representation, set of genetic operators and, often, fitness function

requires a different theoretical model. In addition, the randomness, non-linearities

and immense number of degrees of freedom present in a typical EA make life very

hard for theoreticians.”

- Graff and Poli (2010)

Exact analysis of all of these heuristics is prohibitively time consuming. The problem is

also furthered by the issue that practitioners typically customise a particular set of oper-

ators and GPM to address individual problems, which leads to difficulty when gathering

evidence on general properties of representations. Finally, studies of GP genotype-

phenotype maps generally consider the effect of one property in isolation. No formal

understanding exists of the relationship between, for example, locality and modularity

(beyond strictly qualitative impressions).
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In order to make progress against this backdrop of uncertainty new approaches must be

developed and tested that bridge different GP representations. The direction pursued

here is to consider some standard examples of well established indirect GP maps that

have been proven empirically to be successful for a relatively wide range of problems.

Clearly, judgement regarding what has constituted a ‘successful’ GPM is highly subjec-

tive. This only reinforces the requirement for more comparative research and a better

understanding of the effects of different classes of mapping.

3.2 Chapter Outline

This chapter addresses the question: ‘How can a statistical measure of genotype to

phenotype locality be developed for different genetic programming represen-

tations?’. The aim is to develop a statistically rigorous method of measuring locality,

which can be applied to GP representations in general. Section 3.3 explores the ra-

tionale for adopting a statistical approach, directly correlating genotype and phenotype

distances. We then consider an underlying issue in the application of these approaches to

program evolution, which is the selection of appropriate distance metrics in the genotype

and phenotype space. In Section 3.4, an appropriate technique is identified and adapted,

the Mantel statistic, derived from numerical ecology. The extensions required to apply

it to artificial GPM are provided. Section 3.5 describes methods of biased sampling on

the genotype space that can be used in conjunction with the statistic. The technique

is then applied in Section 3.6 through a set of empirical case studies that demonstrate

the generality of the approach under three mappings: a test Weighted Integer encoding,

canonical Cartesian GP and Grammatical Evolution. The remaining sections analyse

the outcomes of our case studies and evaluate the advantages and limitations of this

method, relative to existing approaches.

3.3 Measuring Locality in Genetic Programming

In classical tree GP there is no explicit, intermediate state between genotype and pheno-

type. Operators act on the GP trees directly. One drawback of the general aggregative

methods of measuring locality described for GP in the previous chapter is that we may

lose insight into where in the mapping process the causal relationship between genotype

distances and phenotype distances is sustained and where it becomes more random. The

requirement for EAs to support such a relation is highlighted in McKay et al. (2010):
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“The underlying assumptions of all evolutionary applications about the search

space include... that there is sufficient correlation between fitness and semantics,

so that non-random search is useful... that there is sufficient correlation between

distance in the genotype and phenotype (semantic) spaces that evolutionary search

is able to take advantage of the first correlation... that these relationships are nev-

ertheless sufficiently uneven (that is the fitness landscape is sufficiently rough) that

deterministic search methods do not perform well”

- McKay et al. (2010)

Another consideration is that the currently proposed measures of GP locality address

all genotypes within a single mutation with equal priority. However, the probability of

producing two genotypes from a parent that are both structurally the same distance away

may differ significantly in some non-traditional representations. Caution is therefore

called for when extending this assumption to other forms of GP. The method presented in

this chapter considers an alternative to the previous aggregative approaches and explores

a technique to directly correlate primitive genotype distances and phenotype distances.

Statistical approaches to analysing GP based on distance metrics have been attempted

previously, particularly in the context of measuring the diversity of EA populations

(Vanneschi, 2004). There exists some commonality between the method described here

and fitness distance correlation (FDC), extensively addressed in both the GA and GP

literature (Jones and Forrest, 1995). Fitness distance correlation develops a measure

of problem difficulty by considering distances to the generally unknown optimum in

fitness space. Similarly, the family of techniques using autocorrelation (for example

on random walks) can provide measures of the overall ‘smoothness’ of a given fitness

space (Weinberger, 1990; Stadler, 1996). However, these methods are quite distinct

from approaches that analyse the relationship between genotype and phenotype prior to

fitness evaluation.

3.3.1 Metrics for Genotype and Phenotype Spaces

In developing a better understanding of locality at the syntactic and semantic levels,

metrics are required that capture the distance between phenotypes at each stage of the

mapping. Recall that a metric space is given by four criteria,

Definition 3.1 (Metric Space). A metric space is a pair Q = (X, d) consisting of a set,

X and metric function, d, satisfying the constraints:

1. d(x, y) ≥ 0

2. d(x, y) = 0 iff x = y

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y) where x, y, z ∈ X.
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The conventional term semimetric will be adopted when the triangle-inequality (condi-

tion 4) does not necessarily hold. In a pseudometric, the triangle inequality holds, but

the coincidence axiom (condition 2) is relaxed, such that there may exist some cases

d(x, y) = 0 when x 6= y.

When considering metrics on GP programs, a fundamental difficulty arises because the

closer a measurement of similarity is to the obtained fitness difference, the more problem

dependent it becomes. This is related to the statement that any realistic measure of

similarity needs to capture the difference in program behaviour within the context of

the problem domain. In phenotype spaces, this measure is determined by the program’s

semantics. By comparison, in the genotype space, selection of the metric is informed by

the particular representation and variation operators.

3.3.2 Genotype Metrics

Numerous proposals have been put forward for appropriate metric distance measures in

GA/GP spaces under different operators; see for example the reviews in Hien and Hoai

(2006). These can be divided into four broad classes, based on the measure used:

1. Edit distances e.g. Hamming, Levenstein in the case of strings and tree or graph

edit distances respectively (Payne and Stepney, 2009; Galvan-Lopez et al., 2011a)

2. Subtree distance e.g. Keijzer, Tree Alignment (Keijzer, 1996; Vanneschi, 2004)

3. Information compression e.g. Normalised Compression Distance (Galvan-Lopez

et al., 2011a)

4. Probabilistic measures e.g. the Subtree Crossover Operator (Gustafson S., 2008)

Although it is normal practice to define strict metrics for the genotype space under the

assumptions made in categories 1, 2 and 3, measures based directly on probabilities

usually violate one or more of the metric criteria.

Metrics under Mutation

For genotype spaces with discrete genotypes (as will be analysed in the following sections)

one convenient measure is the expected number of independent attempts that would be

required to generate a genotype from another through a single mutation. Assuming that

the two genotypes are mutually reachable (Definition 3.2), then this is just the inverse

of the probability of mutating between both genotypes. This semimetric will be referred
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to as the expected variation distance M̄ . The measure has the advantage that it defines

distance based on the actual transition probability.

Definition 3.2 (Mutually reachable genotypes). A genotype g′ is reachable from a

genotype g under some variation operator s, given that the probability of deriving g′ in

a single operation s(g) is greater than zero. The pair of genotypes (g, g′) are mutually

reachable if g is reachable from g′ and g′ is reachable from g.

Definition 3.3 (Expected variation distance). A semimetric M̄ : G×G→ Z, that acts

on pairs of mutually reachable genotypes (g, g′). M̄(g, g′, s) gives the expected number

of independent operations on g such that there is an instance s(g) = g′. If g = g′, we

define M̄(g, g, s) ≡ 0.

Similar, simple measures based on the expected number of mutations have appeared

previously in the evolutionary computation literature (Sendhoff et al., 1997a,b), though

have not to the author’s knowledge been employed as a metric to quantify locality.

Example A: Computing the Expected Variation Distance

To illustrate Definitions 3.2 and 3.3, first consider the case of a genotype space composed

of length n bitstrings, GBIT = {0, 1}n. Contrast the calculation of M̄ on genotypes in

GBIT for two operators i) uniform mutation and ii) point mutation:

i) The uniform mutation operator flips each bit with a fixed probability q. The proba-

bility of transforming g into g′ is qh(1−q)n−h, where h is the hamming distance between

g and g′. All pairs of genotypes, (g, g′) ∈ GBIT × GBIT , are mutually reachable, since

the action of the operator may transform any genotype into any other genotype and

back with non-zero probability. Therefore the expected variation distance is given by

the inverse of the mutation probability, M̄ = (qh(1 − q)n−h)−1. For example, for the

bit strings g = (0, 1, 0) and g′ = (1, 0, 0), we have n = 3 and h = 2. If q = 1
3 , this

gives M̄ = 13.5 (it takes on average between 13 and 14 independent operations on g to

produce g′.)

ii) The point mutation operator only a single bit each operation. Therefore only geno-

types at a distance of h = 1 are mutually reachable. The expected variation distance for

these cases is just M̄ = n, since there are n hamming neighbours. For all other cases,

the expected variation distance is not defined.

Now consider the expected variation distance between a pair of standard feed-forward

CGP genotypes (g, g′) ∈ GCGP × GCGP (details of the CGP genotype space are given

in Chapter 2). The derivation is as follows (Seaton et al., 2012a):
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Figure 3.1: The distribution of the number of transitions between CGP genotypes
(000, 022) and (002, 000) in 106 mutations (over 1000 trials)

Cartesian Genetic Programming with Uniform Mutation Operator

CGP genotypes are assumed to be equal sized integer strings of length n, which rep-

resent a single row with feed-forward connections, where output is derived from the

right-most node. Assume there are x matching integers and n− x = y different values.

The genotype is split into integers corresponding to connections and functions. From

the y different integer values, we have two subsets, one of size yF containing different

values corresponding to functions and one of size yC containing values corresponding to

connections. Assume a mutation operator that acts on all values with uniform proba-

bility q, where a mutation changes the integer to any other feasible value. Then, the

probability of x values remaining the same is (1−q)x. The probability of yF values from

g mutating to the same function as that in g′ is ( q
|F |−1)yF , where |F | is the size of the

function set. Let yC be the set of different integer values corresponding to connections.

Each connection i ∈ yC has ci − 1 possible alternatives (where ci is in general the total

number of inputs, plus all previous nodes). Thus the probability of obtaining the same

set of connections is qyC
∏
i∈yC

1

ci − 1
. The total probability of mutating from one CGP

genotype to another PCGP is therefore:

PCGP (g, g′) = (1− q)x · (
q

|F | − 1
)yF · qyC

∏
i∈yC

1

ci − 1
(3.1)

Taking the inverse and collecting terms gives the expected number of independent mu-

tations required, M̄ = 1
PCGP

:

M̄ =
(|F | − 1)yF

qy (1− q)x
∏
i∈yC

ci − 1 (3.2)

Equation 3.2 was verified experimentally using an example based on two simple CGP
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genotypes, (000,022) and (002,000). The associated function set is {+,−,×,÷} and

input set is {1,0}. The two genotypes therefore correspond to the expressions 1*(1+1)

and (1+1). The mutation probability between the two is 4.0501 × 10−5 to 5 sig. fig.

giving a distance M̄ ≈ 24690. Hence, for a set of 106 mutations we would expect

around 106/24690 ≈ 40.5 mutations from (000,022) to (002,000) on average. Figure 3.1

illustrates the corresponding distribution obtained over 1000 trials. The experimental

mean matches the predicted value.

3.3.3 Phenotype Metrics

Measurement of the distance between complex phenotypes, such as programs, can be

approached differently depending on the stage of the genotype to phenotype mapping

process under discussion (McDermott et al., 2011). To illustrate this, consider the classic

GP lawnmower problem proposed by Koza (1992). In the lawnmower problem, programs

are evolved that provide instructions to steer a ‘lawnmower’ agent on a n x m square

lawn. Visiting a square ‘mows’ the grass on that square. Fitness is assigned based on the

number of squares uncut at the end of a program, thus the goal is to ensure all squares

are visited at least once. Squares may be revisited freely and the lawn wraps around

such that when the agent moves off one side of the grid, it re-enters on the other. Thus a

program maps deterministically to a route through the grid. The term phenotype could

therefore encompass both syntactic and semantic states: the program, the route defined

by the program, the state of the lawn at program completion, or the corresponding

fitness value (sketched in Figure 3.2). Redundancy exists at each stage of this process -

multiple programs may define the same route, many routes may achieve the same lawn-

state and there are a number of permutations on the cut squares that give the same

fitness value. This process is complicated further when we consider that there may exist

additional layers of encoding and redundancy when mapping between the genotype and

executable structure, as described for CGP and Grammatical Evolution in Chapter 2.

General approaches in the GP literature to measuring differences at the phenotypic

level have concentrated either on the truth tables (Koza, 1992) or absolute differences

in program fitness, for example Galvan-Lopez et al. (2011a). Given that deriving the

output for all possible input states to a program is generally prohibitively expensive,

it can be necessary to approximate the differences by some suitable sampling process.

Examples of this method include the recently introduced approach of Nguyen (2011)

under the term sampling semantics and Krawiec (2011) in his description of semantic

embeddings. In this chapter we will concentrate on measuring differences at the syntactic

level. Specific examples of characterising differences at the fitness and semantic levels

will be considered in Chapters 4 and 7.
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Primitive Syntactic

Semantic

Genotype
(e.g. integer array)

Executable Structure
(e.g. tree, graph)

Executed Program
(e.g. route)

Program Action
(e.g. squares visited on lawn)

Fitness Values

(023)(231)(224)

IF(...)

FROG

MOW

LEFT
MOW 
FROG
RIGHT

F0, F1, F2...

Figure 3.2: Abstract genotype to fitness mapping for the classic GP lawnmower prob-
lem. GP genotype to fitness maps can exhibit several intermediate stages.

3.4 Correlating Genotype and Phenotype Distances

3.4.1 The Mantel Test

The Mantel test is a general, non-parametric statistical resampling technique, used to

explore the correlation between two triangular distance matrices (Mantel, 1967). His-

torically, the test was designed to address the analysis of spatial and temporal data

from disease clustering. It has seen considerable application in numerical ecology (Oden

and Sokal, 1986; Legendre and Fortin, 1989; Legendre et al., 1994; Lichstein, 2006) and

on genetic and linguistic data (Legendre and Fortin, 2010). In a mathematical sense,

the Mantel test provides a permutation-based method of determining the statistical sig-

nificance of linear or monotonic relationships between data. The test is applicable in

situations when it is desirable to determine whether a correlation exists in the distances

between elements sampled between two metric spaces. A key point is that standard,

parametric significance tests cannot be employed for this situation, because in general

distances derived from the same element in a space cannot be considered independent

of each other. The technique is applied between two square distance matrices of size k,

labelled X and Y. The matrices contain the pair-wise differences calculated between all
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elements of a sample under two measures of distance dX and dY . For example, in the

ecological context X might represent the geographical distances between samples of a

species at particular sites and Y corresponding measured genetic distances. The differ-

ences are assumed to adhere to the symmetry property of a metric, so both matrices are

symmetric with zeros along the diagonal. The original, ‘standardised mantel statistic’

is then given by the expression (Legendre and Legendre, 1998):

rM =
1

s− 1

k−1∑
i=1

k∑
j=i+1

(
Xi,j − X̄
σX

)(
Yi,j − Ȳ
σY

)
(3.3)

where rM is the linear correlation coefficient obtained, X̄, Ȳ and σX , σY are the mean

and standard deviation calculated for the elements of X and Y respectively and s = k(k−
1)/2. This is equivalent to calculating the Pearson-product moment (linear correlation)

over the upper-half of the matrix.

3.4.2 Significance Testing for Genotype to Phenotype Maps

For rM to be a useful statistic under sampling, significance testing should be carried

out against the null hypothesis, H0 that the distances in X and Y are uncorrelated.

This takes place each time the Mantel statistic is calculated. Recall that in classical

significance testing, a p-value is derived that denotes the probability of accepting the

null hypothesis. The principal realisation of the Mantel test is that, under the null

hypothesis, rows and columns of the matrix are exchangeable. That is we expect to

be able to freely rearrange the labels of each set of distances. By permuting the rows

(and corresponding columns) of X and recalculating rM , a permutation distribution can

be constructed from which the significance of correlations in the unpermuted data is

obtained. Given that the null hypothesis is true, we would expect that the unpermuted

data should lie somewhere in the centre of this range. The test proceeds by obtaining

the original unpermuted coefficient r0M and a set of coefficients under permutation of X,

denoted r = {r1M ...rNM}, where N is the total number of permutations. Let χ ⊆ r such

that x ∈ χ ≥ r0M . The probability of accepting the null hypothesis in the presence of an

apparent positive correlation is then given by the one sided test

p(H0|r) ≈
||χ||
N

(3.4)

that is the number of instances in which the recalculated coefficient equals or exceeds r0M ,

divided by the total number of permutations. A similar test can be carried out for the

case of negative correlation. The test does not necessarily have to support a linear model:

it may be appropriate to compute rM using an alternative statistic, such as Spearman
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rank-based correlation, using the permutation test in exactly the same fashion. The

result converges monotonically on the true significance at large N . The number of

permutations recommended in the literature varies, but a value in the range of 1000-

10000 permutations is typically suggested (Legendre and Fortin, 2010).1 In all statistics

quoted in this work, the minimum level assumed to be significant is p(H0|r) = 0.005.

Example B: Computing the Mantel statistic in a linear function

Consider the case of linear correlation between a square matrix of size 100 with elements

Xi,j = |i − j|, the absolute difference between indices, and a corresponding noisy ma-

trix Yi,j = Xi,j + G(µ = 0, σ) (Figures 3.3, top left and top right respectively). Figure

3.3, bottom left, shows the calculated correlation as a function of increasing noise. Fig-

ure 3.3, bottom right displays the convergence in significance value as the number of

permutations increase.

Xij

i j

Figure 3.3: Example B: Linear correlation calculated using the Mantel test between a
pair of 100 × 100 distance matrices. As the number of permutations on the distance

matrix is increased, the calculated significance converges on the true p-value.

1Standard methods for carrying out the Mantel test are supported in numerical ecology statistical
packages such as ecodist and vegan (Goslee and Urban, 2007), in R.
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3.4.3 Extension to Multiple Distance Classes

To apply the Mantel statistic to an artificial genotype to phenotype map, a method is

required to calculate it over particular distance intervals. This is to establish whether

a correlation exists only for closer, or more distant, genotypes. A similar situation

arises in numerical ecology, where correlations may be limited by time, or by geographic

distance. Previous derived techniques of the Mantel statistic have considered correlations

over particular ranges, such as the ‘Mantel correlogram’, which applies a model matrix

to examine correlations over particular distance classes (Oden and Sokal, 1986). A

simplified approach is used here, explicitly sub-dividing the distance matrix. Let XU be

the upper triangle of X. A set of distance classes are selected such that each distance

class Da,b is a subset of the elements of XU where a ≤ Xi,j < b. Hence, a distance class

contains the elements over which rM is computed which fall within the range (a, b).

The corresponding set of distances at the same index positions in YU are also found.

The coefficient rM is calculated separately for each distance class. Significance values

are derived as before for each calculated statistic, by permuting the original matrix and

recomputing rM over that interval.

Example C: Computing the Mantel statistic in a periodic function

This procedure was tested using a noisy, periodic function between two artificial distance

matrices. Matrix X was configured as before, Xi,j = |i − j|. Distance elements in Y

were mapped according to the expression

Yi,j = Xi,j + 10sin(
πXi,j

10
) + 5G(µ = 0, σ) (3.5)

A uniformly distributed set of distance classes of size 5 were selected (one quarter of the

period of Equation 3.5). Figure 3.4 illustrates Equation 2 and the correlation coefficients

determined over each distance class. Under linear correlation, we expect the sign of each

coefficient to reflect the overall change in gradient for each distance class, as observed.

All statistics were significant at p(H0|rM ) < 0.005, except the final distance category.

This correctly reflects the sparsity of data in the last interval, validating the process.

3.5 Sampling the Genotype to Phenotype Map

For realistic problems, there is generally no prior knowledge of the distribution of geno-

type distances under a given metric. To inform an accurate measure of locality, a

sufficiently representative sample is required across the genotype space. The effect of

sampling on locality measurements in GP is poorly understood, an issue highlighted in
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Figure 3.4: The Mantel statistic on a sinusoidal test function mapping between two
distance matrices. The matrices are subdivided over each distance interval such that
a separate correlation coefficient and p-value can be obtained for each class. All co-
efficients above except for the [95:100] class were determined to be significant under

permutation.

Galvan-Lopez et al. (2011a). The most basic sampling method applied throughout the

EC literature is to sample without bias across the whole genotype space (simple random

sampling). However, where the genotype space is large, the probability of sampling two

or more genotypes in close proximity at random is usually very small. Random sampling

will provide a very low sampling density over one or more distance intervals. Applica-

tion of the Mantel statistic to this problem requires that each distance interval must

be populated with a sufficiently large set of measurements. Therefore it is necessary to

explore methods of biased sampling.

3.5.1 Hamming Sampling

The most basic method of obtaining local samples is to enumerate all elements of a

space inside a fixed distance. This requires the specification of a metric, such as the

Hamming distance and a fixed point of interest in the search space, such as a global

optimum. However as noted earlier metrics based on the number of different positions

in a genotype such as the Hamming distance may not accurately reflect the distance

of genotypes under some evolutionary operators. Furthermore, sampling local regions

via the Hamming distance does not account for the scaling of the representation. By

way of example, consider the Cartesian GP transition probability derived in Equation

3.2. The transition probability between genotypes is derived from the number of possible

connections at each position, which scales with the genotype length. Transitions between

genotypes which differ at positions closer to the output node are less likely.
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3.5.2 Metropolis Sampling

The problem described above is related to the general question of sampling from a skewed

distribution. This was addressed for GP representations by Vanneschi (2004), who em-

ployed the Metropolis-Hastings algorithm from statistical physics. Metropolis-Hastings

is a generalisation of the Metropolis algorithm (Metropolis et al., 1953), which provides

a method of simulating a probability distribution when sampling from that distribution

directly is difficult to accomplish. The Metropolis algorithm is a Markov process, where

samples are drawn sequentially, only dependent on the previous sample. The probabil-

ity of drawing each new sample is dependent solely on the previously obtained value.2

Each newly drawn sample is accepted according to an acceptance ratio, defined as the

probability of the new sample under the desired distribution divided by the probability

of the old sample. In the limit, this converges on the distribution required.

Whilst the Metropolis family of algorithms can be applied to sample fitness values from

a genotype space in a particular distribution, they cannot be used in this case. This

limitation occurs because measurements under the Mantel statistic use pair-wise mea-

sures of distance. Given a set of sampled genotypes, distances are measured between

all pairs. Therefore, generating the target distribution in this fashion is inappropriate

because the derived distances cannot be obtained independently of each other.

3.5.3 Chain-Referral Sampling

One natural alternative to Hamming sampling that overcomes this issue is to construct

a sampling strategy based directly on the mutation operator. A useful technique can

be developed from the concept of chain-referral sampling, also referred to as ‘snowball’

sampling (Biernacki, 1981). Chain-referral sampling is used extensively in sociological

research to sample for human participants from minority groups. From an initial subset

of participants in a population each member is requested to recommend a collection of

individuals who share a similar background or skill-set to themselves. By iterating the

process, a network of individuals with the desired characteristics can be found. The

input is a root genotype chosen from the unbiased distribution. The output of is a

biarity tree which spans part of the neighbourhood under mutation for that genotype.

Each level of the tree is generated by applying the mutation operator a fixed number

of instances to the previous depth. This can be carried out recursively. The depth of

the search tree can be varied to permit sampling of genotypes which correspond to more

distant pairs under the mutation operator. Distance measurements are then derived

2The Metropolis-Hastings algorithm extends the Metropolis algorithm to the situation where the
Markov chain can be asymmetric, that is prob(stateX) → X ′ 6= prob(stateX ′) → X



Chapter 3 49

pair-wise between all genotypes in the sample tree. For convenience, we will refer to

samples obtained using this method as ‘ancestral-trees’.

3.6 Case Studies

This section details three experiments that explore the use of the Mantel statistic as

a measure of locality, summarised in Table 3.1. Locality in genetic programming is a

function of both the GPM and the search operators. The first experiment uses a simple,

artificial mapping between integer arrays (genotypes) and real numbers (phenotypes),

where the mapping is controlled using a fixed array of weights. The experiment con-

trasts a weakly local and strongly local mapping, by applying two different non-uniformly

scaled genotype to phenotype maps. The second experiment uses a graph-based, Carte-

sian Genetic Programming (CGP) configuration, mapping between integer genotypes

and the syntax of a derived program. Differences in syntax are measured using the

Normalised Compression Distance (NCD) (detailed in Section 3.6.2). Here locality is

varied by introducing a continuous mutation bias scaled using a sigmoid function, to

vary distances in the genotype space. The third experiment applies a similar bias, but

tests the approach using a basic Grammatical Evolution (GE) configuration.

3.6.1 Experiment 1: Weighted Integer Model

A simple model was first constructed based on a finite space of integer genotype vectors,

G = (0, 1...k)n. For a given (vector) genotype g ∈ G, the phenotype is a real num-

ber specified by the product w � g, where w is a fixed vector of positive real weights

w = (w1...wn). A non-uniform mutation operator is used that randomly varies the

components of g, where the probability of varying each component is q = (q1...qn).

Components can be mutated to any other valid integer value between 0 and k. Our ex-

pectation is therefore that by altering the components of q with respect to the weights

Table 3.1: A summary of experiment representations and metrics in each case study.
Genotype distances are measured using the expected variation distance. Phenotype dis-
tances are measured either as the absolute difference in fitness (weighted integer model),

or between program syntax (CGP and GE examples).

# Representation Mapping Genotype Metric Phenotype Metric

1. Zn Vector Product dG = M̄(g, g′) dP = |f(p)− f(p′)|

2. CGP Graph Encoding dG = M̄(g, g′) dP = NCD(p, p′)

3. GE Grammar Encoding dG = M̄(g, g′) dP = NCD(p, p′)
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(or geometrically, varying the angle between q and w), this models an artificial map

with scalable locality (Figure 3.5). The model is intentionally related to maps that have

been applied in other combinatorial optimisation problems of basic importance, such as

the Knapsack problem. The model is also qualitatively similar to the typical situation

found in GA or GP with linear genotypes, where particular genes produce a distinct

contribution to the overall phenotype.

q = (0.6,0.4)

w = (0.8,0.2)

g = (1,1)

g
1

g2

m(g) = w.g

= 1  0.8 + 1  0.2

= 1

Figure 3.5: Weighted integer model example for n = 2. The mapped phenotype m(g)
of each integer vector genotype g is given by the dot-product with the corresponding
weight vector w. A non-uniform mutation operator varies each component of g with
the corresponding probability q. Fitness values are directly mapped f(g) = m(g) = w �g

Consider an instance where n = 8 and k = 10. Fix a set of positive, linearly decreasing

weights w = (100, 87.5 ... 12.5, 0). Now define two vectors of mutation probabilities, qA

and qB, each scaling between a minimum value qMIN = 0.1 and a maximum qMAX =

0.2. For the strongly local case, let the mutation probabilities increase linearly, qA =

(0.1, 0.1125 ... 0.1875, 0.2). Using qA, components that make a large contribution to the

phenotype are mutated with low probability. Conversely, a weakly local map can be

introduced, qB = (0.2, 0.1875, ... 0.1125, 0.1), where the order of mutation probabilities

is reversed. These two instances are compared in Figure 3.6.

Vector Component

Normalised Weight

Mutation Probability

0

1

n1
Vector Component

Normalised Weight

Mutation Probability

0

1

n1

Strongly-Local Case Weakly-Local Case

Figure 3.6: Difference in scaling of mutation probabilities over the weighted-integer
vector components, which gives rise to the strongly local and weakly local cases.

Figure 3.7 illustrates the relationship between genotype and phenotype distances for this

instance, using sample trees generated under chain referral to a depth of nine mutations.

The distance between genotypes is measured under the expected mutation distance,

using a logarithmic scale. The distances between phenotypes are taken as the absolute
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difference in fitness. The images on the left show this for the strongly local mapping,

using qA. The images on the right show the weakly local mapping, using qB.

Figure 3.7: Genotype versus phenotype distances on a weighted integer test represen-
tation. Top left: A strongly local mapping using qA. Top Right: A weakly local mapping
using qB. Bottom left: Close up of an individual band from the strongly local mapping.

Bottom right: Close up of an invididual band from the weakly local mapping.

The top pair of images correspond to the whole range of genotype distances. The bottom

pair of images give an example of a band of distances between 7 ≤ log10(M̄) ≤ 8. The

discrete individual bands in the top pair of images correspond to the n − 1 possible

hamming distances between each pair of genotypes. In general, mutating multiple genes

will occur with a low probability and results in a larger net change to the phenotype

(large difference in dot product). Therefore, across the whole range, both images show

an overall positive correlation between genotype and phenotype. However, focusing in
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highlights the difference between the two mappings, which is observable over each band.

In each individual band, the relationship between genotype and phenotype distances is

positive for the strongly local mapping and negative for the weakly local mapping.

Figure 3.8 contrasts the corresponding Mantel correlation calculated for each distance

band. The statistic was derived for 50 sets of samples, shown for random (uniform) sam-

pling and chain-referral (snowball) sampling. Over all bands in the strongly local map, a

weakly positive correlation is correctly identified by the Mantel statistic. Over all bands

in the weakly local map, a negative correlation is identified, showing similar correlation

coefficients for both sampling techniques. Significance calculations were obtained under

permutation to test the hypothesis that a correlation exists in each distance interval.

The significant results, p(H0|rM ) < 0.005, are labelled with the (*) symbol.

Biased sampling using the chain-referral method increases the number of samples in the

first two classes (4.5 - 6.5, 6.5 - 8.0). This provides a sufficient sampling density to

give better significance levels than uniform sampling over these distances. The statistic

can then be used to discriminate between the strongly local case, where small weights

correspond to large mutation probabilities and the weakly local case.

Effect on Performance

Of particular interest is how this change in locality affects the resulting performance of

an evolutionary algorithm based on the different genotype to phenotype maps. Consider

a basic scenario where the phenotype vectors give a fitness proportional to their length.

Figure 3.9 contrasts the corresponding performance under the strongly local and weakly

local maps, for a simple 1+1 EA. Performance is measured as the probability of deriving

the fittest, maximal length vector g by 100 generations. The results are shown over a

range of settings for the minimum component of each mutation vector (in all instances,

qMAX = qMIN + 0.1). The weakly local case gives a reduced performance compared to

the strongly local case, for all settings of qMIN . However, this reduction is comparatively

small (the difference in probability of success is approximately 10-15% at the optimum).

Qualitatively, the change is a minor difference in performance and the base choice of

value for the mutation parameter dominates the effects of locality. It could be argued

that this is in line with our expectations, because the maps have introduced a relatively

subtle variation to the observed genotype to phenotype correlation.
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Figure 3.8: The calculated Mantel correlation coefficients in the weighted-integer test
case. The symbol (*) denotes a significant correlation under the Mantel test. The cor-
relation coefficient discriminates between the strongly local mapping (negatively scaled
mutation rates, positive correlation) and weakly local mapping (positively scaled muta-
tion rates, negative correlation). Results given for uniform and chain-referral sampling.

Result Summary

The weighted integer genotype to phenotype map provided a very controllable, if artifi-

cial, approach to observing the effects of locality. Changes to the locality of the mapping

were evident under the Mantel statistic, supporting this method of measurement. We

can therefore proceed to more realistic maps with greater confidence.

3.6.2 Experiment 2: Cartesian Genetic Programming

A variable locality mutation operator

In the weighted integer example, controlling locality was straightforward, because the

GPM is well-understood. To change the locality of the CGP representation, the mapping

is fixed and changes are made to the operator. A technique is used directly based on the
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Figure 3.9: Change in performance for local and non-local weighted integer maps.

approaches of Beadle (2009a,b) and Nguyen et al. (2011b) to control syntactic locality.

An intermediary bias uαβ was introduced to the uniform mutation operator:

uαβ(p, p′) =
(

1 + e−α(dP (p,p′)−β)
)−1

(3.6)

The bias uαβ is a standard sigmoid function and has the effect of changing the expected

mutation distance between each pair of genotypes. The parameters α and β specify

the slope and offset of the bias respectively such that α, β ∈ R and β ≥ 0. Pseu-

docode for this biased operator, SIGMUTATE, is provided in Algorithm 1. The function

phenotypeDistance() gives the distance between two phenotypes under a given pheno-

type metric. The function rand() returns a random number uniformly chosen between

zero and one and mutate(g) corresponds to a base mutation operator such as uniform

or point mutation. SIGMUTATE therefore returns a mutated genotype which is biased by

the selection probability given by α and β, where α = 0 corresponds to a uniform bias.

Offspring which are accepted will be close syntactic neighbors of the parent under the

phenotype metric when α� 0 and β ≈ 0. An upper bound on the number of iterations

was fixed, maxCount = 100.

The advantage of using this method of producing variable locality is that it provides a

tunable encoding, whilst also meeting the requirements for the application of the Mantel
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test, which can be used to validate this statistically. For each application of the mutation

operator to a genotype, uαβ defines the probability that a proposed set of mutations will

be accepted. The process is repeated until an acceptable mutation is found and returned

by the operator or maxCount is exceeded. To first order, this gives an adjusted expected

variation distance of

M̄αβ ≈ u−1αβ × M̄ (3.7)

which scales the locality of the mapping.

Application to CGP

It was contended in the previous section that the Weighted Integer genotype model

provides a good approximation to the scaling (Section 2.7.2) that is present in complex

GP encodings, such as Cartesian Genetic Programming, by controlling the contribution

made by each element of the genotype. Recall the standard CGP encoding, described

in Chapter 2. The encoding between the integer array genotype and program relates

closely to the simpler weighted integer map. A variable contribution is made to the

evaluated program by each integer, by changing the corresponding graph connectivity,

or function choice.

There is no priori knowledge of which syntactic distance measures are most appropri-

ate to describe differences between programs in CGP. To compute the Mantel statistic

requires a phenotype metric which is symmetric because of the requirement to obtain

pair-wise distances (Legendre and Legendre, 1998). Measurements of the syntactic dis-

tance between CGP phenotypes (dP ) were derived using the Normalised Compression

Data: Genotype g, α, β
Result: Mutated genotype g′

count ← 0;
found ← false;
g′ ← g;
while ¬ found ∧ c < maxCount do

g′ ← mutate(g);
dP ← phenotypeDistance(m(g),m(g′));
acceptChance← sigmoid(d, α, β);
if rand()< acceptChance then

found ← true;
end
count ← count+1;

end
return g’;

Algorithm 1: SIGMUTATE
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Distance (NCD) (Equation 3.8). The theoretical basis of the NCD is the similarity in

information contents between each object. Thus, the metric is a justifiable starting ap-

proach because it makes no assumptions regarding the importance of different syntactic

features in each program. These syntactic distances were obtained by the same proce-

dure used in the study of locality in tree-based GP by Galvan-Lopez et al. (2011a), such

that

dP (p, p′) =
C(pp′)−min(C(p), C(p′))

max(C(p), C(p′)
(3.8)

where C is a function giving the length in bits of the string representation (assuming

UTF8) of the argument for a particular compressor. Each phenotype was decoded into

the prefix string representing the corresponding encoded arithmetic expression. This

expression excludes neutral nodes (junk) that do not contribute to the phenotype. Pair-

wise application of the NCD gives a measure of similarity between phenotypes in the

range of {0.0 : 1.0} + ε, using the gzip algorithm (where ε ≈ 0.1, an error term

introduced because the compression is not ideal). For genotypes that map to very

similar string representations of that program, dP (p, p′)→ 0. Conversely, in phenotypes

that are proportionally more distinct and share fewer common schema, dP (p, p′)→ 1.

Fifty biarity tree samples were obtained from a representative CGP genotype space using

an arithmetic function set, including the protected division operator, using chain-referral

sampling. Table 3.2 summarises the parameters used to initialise each genotype. Sample

biarity trees were produced recursively under the SIGMUTATE operator to a depth of 7

mutations, containing 511 genotypes. The expected variation distance M̄ was obtained

pair-wise for all members of each sample. This method provided a set of 50 matrices

each containing ∼150000 genotype distances.

The threshold value assumed in the sigmoid function was set to an intermediate level

of similarity under the NCD, β = 0.2, shown in Figure 3.10. An example plot (for one

CGP sample) is given in Figure 3.11. The graphs are scatterplots, binned into hexagons,

illustrating qualitatively the distribution observed between the log-scaled expected vari-

ation distance M̄ and normalised compression distance dP . The result is shown between

two similar maps at low locality (α = 20, 10) and at high locality (α = −10,−20).

This directly compares the change in locality induced by the bias. Inspecting the scat-

Table 3.2: CGP search parameters.

Representation CGP Crossover No

Nodes 10 Selection Strategy (µ+ λ) = (4 + 6)

Structure Single row feed-forward Population Size 10

Function Set {+,-,*, ÷} Fitness Samples 10 ∈ {−2 : 2}
Terminal Set {0,1} Max Generations 2000

Mutation Rate 0.15 Runs 500
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Figure 3.10: Probability of accepting a new offspring via. uniform mutation operator.

ter graphs appears to indicate a weakly positive trend, apparent over short distances.

This follows from the decreasing likelihood of making larger syntactic changes to the

phenotype, under the uniform mutation operator. Relatively probable mutations, M̄ ∼
[0 - 20] correspond to smaller changes in compression distance, dP ∼ [0.1 − 0.3]. The

majority of distances observed in the region M̄ ∼ [20 - 40] (between genotypes on lower

branches of the sample) occur with lower probability and correspond to greater variation

in syntactic change.

Using the Mantel test, we can validate these qualitative observations. Figure 3.12 shows

the range of corresponding Mantel coefficients rM calculated over all samples, for linear

correlation, as a function of distance. It can be inferred that an overall weak positive

correlation exists in the CGP mapping, which falls off as a function of genotype dis-

tance. A set of 1000 permutations was then generated for each distance matrix to test

significance at P (H0) < 0.005, for a set of 8 distance classes from log10(M̄) = 0.0 : 40.0.

The correlations found to be significant under permutation are labelled (*). Inclusion

of the Mantel test therefore gives a firm basis from which to reject the null hypothesis

and accept the correlation. The effects of the mutation bias are also apparent (contrast

positive α with negative α).

Symbolic Regression Performance

To explore the relationship between syntactic locality and performance in CGP, a ran-

domly generated selection of 40 symbolic regression problems was produced. Symbolic

regression is an extensively employed benchmarking tool in GP, which has provided no-

tably successful applications. Although the use of symbolic regression as a benchmark

has been criticised in recent years problems from this class have nonetheless remained
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Figure 3.11: Illustration of the effect of the NCD mutation bias on genotype to phe-
notype correlation. Top left: Lowest locality. Bottom right: Highest locality

staples for initial tests of new GP systems and methods (McDermott et al., 2012). The

objective of a symbolic regression problem is to fit a model expression M that is as close

as possible to a hidden true function x, given a set of N samples points on x. A standard

approach in GP is to minimise the Euclidean norm d2 between the known samples of

the true function and the output of the model:

d2 = 2

√
ΣN
i=0(x(i)−M(i))2 (3.9)

Samples are obtained at uniform or randomly generated intervals. In this work, unless

otherwise stated uniform sampling over 20 points will be employed. The quality of

models will be tested over 100 unseen points against the true function.

The problem instances considered here were restricted in complexity to simple 5th

order polynomials with integer coefficients in the range of {-2:2}. These are basic

problems known to be solvable consistently using only the standard CGP represen-

tation. Five instances of each problem were considered, applying the mutation bias with

α = {−20,−10, 0, 10, 20} and β = 0.2. Fitness was evaluated by deriving the euclidean

distance over the set of uniformly distributed sample points. Other parameters (Table
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Figure 3.12: Measured Mantel correlation for CGP with different levels of mutation
bias. Top left: Lowest locality. Bottom right: Highest locality

3.2) were informed per common previous estimates in CGP (Miller, 2011). These pa-

rameters have not been optimised to account for interaction with the mutation bias,

therefore comparison can only be made in a relative fashion.

Tables 3.3 and 3.4 at the end of this section detail the corresponding probability of

success η at each locality level after 2000 generations, estimated in each instance from

the fraction of k = 500 runs that successfully recovered the expression. The measured

value of η is binomially distributed. Following the approach of Walker et al. (2007),

confidence intervals were assigned to each measurement based on Wilson’s score method

(Newcombe, 1998):

2kη + z2norm ± znorm
√
z2norm + 4kη(1− η)

2(k + z2norm)
(3.10)

where znorm = 1.96 is the conventional normal score for 95% confidence. For the 23

polynomial problems with an average success probability η̄ greater than 10% (denoted

with a †), a general tendency can be observed towards better performance at lower levels
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of locality. Of this subset, shown in Figure 3.13, in 21 of the 23 cases the probability

of success was higher for α = 20 than α = −20. In the remaining cases with success

probability below 10%, no measurable trend is observable outside of experimental error.

All problems were solved successfully over at least one set of runs.

Result Summary

The weak correlation observed between genotype and phenotype distances in Figures

3.11 and 3.12 is consistent with the variation in structure that small mutations can

impose in this representation. Altering a single node connection in CGP may cause a

large number of functions to be disconnected. Similarly, if the same node is connected

to many neighbours, then adjusting it will tend to produce a disproportionate change to

the syntax of a program. Because the mapping can support many neutral transitions,

there is a tendency towards parents producing syntactically similar offspring, but this

is offset by the potential for large structural change. The relatively small impact of

the α scaling parameter suggest this bias is difficult to adjust, given that it is a direct

consequence of using a graph-based structure.

The trend of the symbolic regression results under truncation selection implies that

higher levels of correlation between genotype and phenotype distance led to poorer

performance in CGP. We can consider three feasible explanations. Firstly, it is likely

that the constraints imposed by high locality have restricted the diversity of the search,

which may render intermediary schema difficult to reach (Pham et al., 2013). Secondly,

in Rothlauf’s model of locality, poorer performance under higher locality can be as-

sociated with fitness landscapes which are misleading or deceptive (such as GA ‘trap’

functions) (Rothlauf, 2006). Further investigation of the fitness landscapes for these

specific problem instances would be required to determine whether this is the case for

this representation. Thirdly, it is unclear how features of the CGP genotype to pheno-

type map not addressed here, such as high redundancy, or structural bias (Payne and

Stepney, 2009) contribute to the trend. To explore this counter-intuitive result, a com-

parison was made by running an identical experiment using a conventional tournament

selection strategy. Tournament selection was carried out in a binary fashion, choos-

ing parents through comparison between pairs of genotypes drawn uniformly from the

population. The highest fitness individual in each tournament was always selected and

the best individual between each generation was retained. In principle, because of the

random element in selecting competitors, the tournament selection strategy provides a

weaker selection pressure.
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Figure 3.13: CGP performance on Symbolic Regression problem set under
Truncation selection. Measured at bias α = {−20 : 20}

Figure 3.14: CGP performance on Symbolic Regression problem set under
Tournament selection. Measured at bias α = {−20 : 20}
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Table 3.3: CGP success probability η with respect to locality,
using truncation selection.

Polynomial Expression
α η̄ ≥ 0.1?

-20 -10 0 10 20
−1− 2x3 + x4 0.236 0.268 0.286 0.304 0.288 †
−2− 2x− x2 − x4 0.102 0.116 0.158 0.142 0.174 †

−2− x3 0.254 0.314 0.386 0.404 0.450 †
−2x2 + 2x4 + 2x5 0.152 0.196 0.226 0.196 0.244 †
−2x2 − 2x3 0.556 0.570 0.594 0.616 0.676 †
−2x3 + x4 0.646 0.758 0.792 0.814 0.790 †
−2x3 + x5 0.196 0.278 0.350 0.360 0.394 †
−x 1.00000 1.00000 1.00000 1.00000 1.00000 †

−x2 + x3 + 2x4 0.684 0.722 0.790 0.840 0.866 †
−x− x4 0.626 0.744 0.792 0.840 0.868 †

1− 2x2 − 2x3 0.556 0.570 0.594 0.616 0.676 †
1− x+ 2x3 + x4 0.290 0.324 0.370 0.322 0.326 †
1− x+ x2 − x3 0.766 0.840 0.878 0.894 0.924 †

1 + x3 + 2x5 0.170 0.214 0.198 0.198 0.216 †
2 + 2x− x2 − 2x3 0.228 0.226 0.260 0.248 0.272 †

2 + x2 − x3 0.422 0.486 0.516 0.516 0.572 †
2x2 − x3 + 2x4 0.382 0.446 0.492 0.524 0.522 †

2x2 − x3 + x4 − x5 0.198 0.256 0.232 0.290 0.282 †
2x2 + x3 − 2x4 − x5 0.504 0.592 0.540 0.536 0.524 †

2x+ x2 − 2x3 0.202 0.216 0.206 0.230 0.276 †
x+ 2x2 − 2x3 0.610 0.672 0.642 0.670 0.684 †
x+ 2x2 − 2x3 0.610 0.672 0.642 0.670 0.684 †
−2− 2x2 − 2x5 0.034 0.042 0.038 0.014 0.028 -
−x+ 2x+ x4 − 2x5 0.122 0.122 0.112 0.110 0.116 †

−2 + 2x− x2 − 2x3 + 2x5 0.002 0.006 0.000 0.000 0.000 -
−2 + x− x2 − 2x4 − 2x5 0.001 0.014 0.004 0.004 0.040 -
−2x5 − 2x3 − 2x2 − 2x− 1 0.016 0.016 0.004 0.040 0.008 -
−2x+ 2x3 + 2x4 + 2x5 0.064 0.050 0.040 0.048 0.040 -
−2x+ 2x3 + 2x4 + 2x5 0.064 0.050 0.040 0.048 0.040 -
−2x+ 2x3 + x4 − 2x5 0.006 0.020 0.006 0.006 0.006 -

−2x+ 2x− 2x2 − x4 − 2x5 0.002 0.002 0.000 0.000 0.002 -
−2x+ x2 − 2x3 + 2x4 − 2x5 0.006 0.010 0.004 0.006 0.008 -

1− 2x+ x2 − x3 − x5 0.120 0.098 0.092 0.084 0.046 -
1− x3 + 2x4 − 2x5 0.046 0.036 0.030 0.038 0.022 -

1 + 2x2 − x3 + 2x4 − 2x5 0.020 0.044 0.024 0.018 0.006 -
1 + 2x− x2 + 2x5 0.106 0.112 0.092 0.086 0.082 -

2− 1x− 2x2 + 2x3 − x4 − x5 0.008 0.002 0.002 0.002 0.002 -
2 + 2x2 + x3 − 2x4 − x5 0.070 0.068 0.050 0.048 0.042 -
2 + x− 2x2 − 2x3 + x5 0.038 0.034 0.030 0.030 0.042 -
2 + x− x2 − x4 − x5 0.052 0.024 0.032 0.032 0.028 -
2 + x− x2 + x4 − x5 0.052 0.024 0.032 0.032 0.028 -
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Table 3.4: CGP success probability η with respect to locality,
using tournament selection.

Polynomial Expression
α η̄ ≥ 0.1?

-20 -10 0 10 20
−1− 2x3 + x4 0.230 0.216 0.224 0.200 0.200 †
−2− 2x− x2 − x4 0.158 0.120 0.086 0.080 0.060 †

−2− x3 0.444 0.494 0.466 0.450 0.458 †
−2x2 + 2x4 + 2x5 0.194 0.144 0.100 0.104 0.076 †
−2x2 − 2x3 0.994 0.978 0.964 0.956 0.944 †
−2x3 + x4 0.777 0.806 0.802 0.778 0.756 †
−2x3 + x5 0.292 0.314 0.284 0.256 0.258 †
−x 1.00000 1.00000 1.00000 1.00000 1.00000 †

−x2 + x3 + 2x4 0.836 0.856 0.762 0.720 0.716 †
−x− x4 0.854 0.878 0.868 0.862 0.858 †

1− 2x2 − 2x3 0.656 0.642 0.606 0.616 0.596 †
1− x+ 2x3 + x4 0.368 0.338 0.326 0.270 0.258 †
1− x+ x2 − x3 0.956 0.952 0.938 0.922 0.932 †

1 + x3 + 2x5 0.184 0.146 0.118 0.136 0.124 †
2 + 2x− x2 − 2x3 0.028 0.012 0.002 0.006 0.006 -

2 + x2 − x3 0.690 0.654 0.630 0.588 0.602 †
2x2 − x3 + 2x4 0.534 0.512 0.454 0.442 0.398 †

2x2 − x3 + x4 − x5 0.272 0.206 0.172 0.140 0.156 †
2x2 + x3 − 2x4 − x5 0.650 0.530 0.386 0.288 0.286 †

2x+ x2 − 2x3 0.516 0.464 0.408 0.380 0.354 †
x+ 2x2 − 2x3 0.696 0.652 0.598 0.562 0.596 †
−2− 2x2 − 2x5 0.020 0.018 0.008 0.002 0.000 -

Figure 3.14 summarises the results over the first 21 problems. A qualitative similarity is

apparent in the success on individual problems, a general trend with respect to locality is

also evident - in the opposite direction to that shown in Figure 3.14. Under the relaxed

selection pressure increases in locality provide a small improvement in performance. The

result highlights an apparent trade-off between selection and variation for this problem

set. Reducing the locality of the mapping increases the likelihood of random variation

in phenotype distances, which in turn increases variation in the population as a whole.

Conversely, a higher selection pressure counter-acts this by selecting fitter individuals

more greedily. This suggests that to provide better performance for this representation

over this problem set, it is necessary to find a balance between the locality of the mapping

and strength of the selection procedure.

3.6.3 Experiment 3: Grammatical Evolution

The approach adopted in the previous section can in theory be extended to any GP

representation for which a satisfactory distance metric can be defined on the genotype

and phenotype space and genotypes are mutually reachable. Grammatical Evolution,

as discussed in Chapter 2, is a well-established GP technique using an indirect mapping

with a large body of existing analysis. Previous work has indicated that simple forms of
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<expr> ::= <expr> <op> <expr>

| ( <expr> <op> <expr> )

| <var>

<op> ::= +

| -

| *

| %

<var> ::= x

Figure 3.15: Simple arithmetic function BNF grammar

GE can exhibit weak locality (Rothlauf and Oetzel, 2006; Byrne et al., 2010; Hugosson

et al., 2010). However, it should be emphasised that the intention of this experiment is

not to provide a thorough, direct comparison between GE and Cartesian Genetic Pro-

gramming or apply the most recent innovations in both methods. To do so would require

a comprehensive, full-factorial analysis of all parameters in both representations, over a

more diverse problem and operator set. From an engineering standpoint, such an anal-

ysis would quickly be rendered obsolete, because both representations have been refined

significantly since their original inception. Therefore the selected parameters (detailed

in Table 3.5) are notional only. The purpose of this experiment is to demonstrate the

generality of the Mantel statistic as a method of measuring locality, by applying it to

another distinct GP paradigm.

Table 3.5: Grammatical Evolution search parameters.

Representation Grammatical Evolution Crossover No

Length 45 Selection Strategy (µ+ λ) = (50 + 450)

Structure Arithmetic BNF Grammar Population Size 500

Function Set {+,-,*, ÷} Fitness Samples 20 ∈ {−2 : 2}
Terminal Set {x} Max Generations 100

Mutation Rate 0.10 Runs 500

The configuration used here is based on seminal work in GE and uses a fixed length

vector of 45 integers in {0,1,2,3}, initialised uniformly at random. The BNF grammar

used is given in Figure 3.15, where % is the protected division operator, which is a more

constrained version of an example grammar from Ryan et al. (1998), including only the

basic arithmetic function set. Expression tree size was constrained to a maximum depth

of 10 nodes. Each tree was derived by sequentially parsing elements along the integer

vector, wrapping around the vector if further decisions were required, as described in

Section 2.5.3. A limit of at most one wrap around the vector was permitted (only

terminal values were selectable after that point).

Changes in performance over the symbolic regression problem set are presented in Fig-

ures 3.16 and 3.17. The results are summarised in Tables 3.6 and 3.7. Note that the
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Figure 3.16: Grammatical Evolution performance on Symbolic Regression problem set
under Truncation selection. Measured at bias α = {−20 : 20}

Figure 3.17: Grammatical Evolution performance on Symbolic Regression problem set
under Tournament selection. Measured at bias α = {−20 : 20}
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*
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*
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Figure 3.18: Measured Mantel correlation for Grammatical Evolution with different
levels of mutation bias. Top left: Lowest locality. Bottom right: Highest locality

problem set was downsized based on those randomly generated instances which were

useful in the CGP experiment (i.e. those which were solved with probabilities outside of

experimental error, the first 21 instances). Figure 3.18 shows the corresponding Mantel

statistics computed for each value of α.

Result Summary

Despite using a significantly different representation, under truncation selection a simi-

lar response to changes in syntactic locality is apparent for the GE case. Increasing the

locality of the representation reduced performance across all of the 21 instances. The

effects of the mutation bias on the calculated Mantel statistic are also consistent with

those observed in the CGP representation. However, the response evident in CGP when

switching between truncation and tournament selection was not observed in Grammat-

ical Evolution.
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Table 3.6: GE success probability η with respect to locality, using truncation selection.

Polynomial Expression
α η̄ ≥ 0.1?

-20 -10 0 10 20
−1− 2x3 + x4 0.112 0.164 0.184 0.218 0.334 †
−2− 2x− x2 − x4 0.062 0.070 0.082 0.104 0.174 †

−2− x3 0.398 0.412 0.522 0.626 0.722 †
−2x2 + 2x4 + 2x5 0.058 0.120 0.116 0.166 0.220 †
−2x2 − 2x3 0.854 0.884 0.888 0.942 0.956 †
−2x3 + x4 0.692 0.714 0.798 0.902 0.950 †
−2x3 + x5 0.042 0.088 0.122 0.204 0.208 †
−x 1.000 1.000 1.000 1.000 1.000 †

−x2 + x3 + 2x4 0.458 0.494 0.582 0.706 0.766 †
−x− x4 0.564 0.640 0.704 0.832 0.910 †

1− 2x2 − 2x3 0.366 0.358 0.382 0.500 0.572 †
1− x+ 2x3 + x4 0.130 0.156 0.206 0.262 0.394 †
1− x+ x2 − x3 0.552 0.572 0.692 0.798 0.850 †

1 + x3 + 2x5 0.064 0.102 0.092 0.154 0.186 †
2 + 2x− x2 − 2x3 0.02 0.02 0.03 0.03 0.054 †

2 + x2 − x3 0.372 0.450 0.502 0.582 0.686 †
2x2 − x3 + 2x4 0.256 0.264 0.305 0.404 0.522 †

2x2 − x3 + x4 − x5 0.024 0.020 0.028 0.046 0.052 †
2x2 + x3 − 2x4 − x5 0.394 0.388 0.502 0.546 0.672 †

2x+ x2 − 2x3 0.308 0.326 0.412 0.558 0.576 †
x+ 2x2 − 2x3 0.514 0.500 0.610 0.730 0.812 †

Table 3.7: GE success probability η with respect to locality, using tournament selection.

Polynomial Expression
α η̄ ≥ 0.1?

-20 -10 0 10 20
−1− 2x3 + x4 0.262 0.336 0.402 0.402 0.324 †
−2− 2x− x2 − x4 0.168 0.198 0.208 0.084 0.028 †

−2− x3 0.678 0.748 0.828 0.884 0.876 †
−2x2 + 2x4 + 2x5 0.146 0.234 0.358 0.462 0.298 †
−2x2 − 2x3 0.952 0.976 0.986 1.000 1.000 †
−2x3 + x4 0.914 0.948 0.998 1.000 1.000 †
−2x3 + x5 0.140 0.196 0.266 0.256 0.286 †
−x 1.000 1.000 1.000 1.000 1.000 †

−x2 + x3 + 2x4 0.696 0.762 0.936 0.962 0.926 †
−x− x4 0.830 0.916 0.980 1.000 1.000 †

1− 2x2 − 2x3 0.542 0.598 0.662 0.692 0.614 †
1− x+ 2x3 + x4 0.356 0.400 0.594 0.558 0.374 †
1− x+ x2 − x3 0.732 0.834 0.914 0.994 0.992 †

1 + x3 + 2x5 0.210 0.240 0.248 0.084 0.044 †
2 + 2x− x2 − 2x3 0.078 0.086 0.084 0.008 0.004 †

2 + x2 − x3 0.624 0.672 0.816 0.880 0.822 †
2x2 − x3 + 2x4 0.440 0.540 0.718 0.696 0.478 †

2x2 − x3 + x4 − x5 0.064 0.064 0.086 0.032 0.026 †
2x2 + x3 − 2x4 − x5 0.680 0.720 0.814 0.776 0.636 †

2x+ x2 − 2x3 0.502 0.580 0.744 0.850 0.820 †
x+ 2x2 − 2x3 0.734 0.786 0.924 0.976 0.978 †
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3.7 Discussion and Concluding Remarks

The occurrence of a similar, weak correlation between genotype and phenotype distances

in both CGP and Grammatical Evolution is an interesting consequence of general prop-

erties shared by both mappings. Application of the SIGMUTATE operator generated maps

with comparable syntactic locality when measured under the Mantel statistic. Further-

more, despite only a superficially similar choice of parameters, both representations

demonstrated a similar response to increases in locality under truncation selection. This

is suggestive about the relationship between selection pressure and mapping locality.

One possible explanation for the different response to switching to tournament selection

between the two populations is the relative change in selection pressure. In the GE

case, the larger population size implies a lower initial selection pressure than the CGP

case. This may contribute to the observation that no significant change occurs when

relaxing the selection pressure further. A more detailed study of the relationship between

selection pressure, locality and performance would be required to determine this.

Overall, the results appear to support the intuition that the good performance of both

mappings can be in part attributed to an intermediate balance between exploitation

and exploration in the program space. However, the relationship between locality and

other GPM properties theorised to influence performance (neutral networks, capacity

for large structural change, modality of the search space) has not been assessed in this

analysis. In addition, it remains open what contribution is made to performance by

mutations that take place over larger genotype distances. The probability of mutations

occurring between particular genotypes at large M̄ is very small for all the mappings

considered here. This is partly offset by the combinatorial increase in the number of

possible transitions, as can be observed in Figures 3.11.

From these experiments it is apparent that directly correlating genotype and phenotype

distances can provide detailed information concerning the locality of GP genotype to

phenotype maps. The approach is therefore a viable alternative to the aggregative

measures previously described. This can be validated statistically by the assignment of

significance levels using the Mantel test. However, the technique is currently limited

to representations which use unary (one-to-one) operators. Defining an exact distance

metric under crossover is problematic (see for example Moraglio (2007) for discussions

of crossover and metric spaces).

The Mantel statistic was demonstrated here for differences between phenotype measured

at the syntactic, rather than semantic level. The computational cost of computing the

phenotype metric (here, the normalised compression distance) between strings has not

been considered and is relatively high for these representations. Therefore, the benefit of
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adjusting indirect mappings using this form of syntactic bias is dependent on the cost of

a fitness evaluation for the domain of interest. In problems where the fitness evaluation is

comparatively cheap, the cost of obtaining genotype distances may outweigh the benefit.

Conversely, such an approach would be more appropriate in situations where fitness

evaluation is very expensive.

Using syntactic differences in phenotype either as a general performance predictor, or as

a method of tuning existing genotype to phenotype maps, remains a subtle issue when

applied to variants of GP employing indirect maps. A distinction can be drawn between

different sources of diversity in the population; diversity introduced by weak locality in

the genotype to phenotype map and diversity from the selection method. Despite these

outstanding problems, it has been shown that the technique described in this chapter is a

viable alternative to existing approaches and provides a method of determining whether

measures of GPM locality are statistically significant.
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3.8 Chapter Summary

This chapter proposed a statistical framework to measure locality in indirect genetic

programming genotype to phenotype maps.

• The Mantel test, a technique obtained from numerical ecology, was introduced and

a novel application given in artificial genotype to phenotype maps.

• The technique was validated using a constructed weighted integer representation.

• Case studies were carried out using two indirect GP encodings, Cartesian Genetic

Programming and Grammatical Evolution.

• Distance metrics on genotype and phenotype spaces were considered. A suitable

metric was defined and derived for CGP.

• It was established that a weak correlation between genotype and phenotype dis-

tances exists in both maps at the syntactic level, for arithmetic function sets and

uniform mutation.

• The effect of varying syntactic locality on performance was measured over a set of

randomly generated polynomial symbolic regression problems.

• Stronger syntactic locality was associated with a trend towards improved CGP

performance under weaker, tournament selection, and reduced performance under

truncation selection. The trade-off between selection pressure and locality in GP

representations was discussed.

Having examined mapping locality from a statistical perspective, the next chapter will

explore how visualisation techniques can be used to gain a more direct impression of

locality in different GPM.
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Methods of Visualising Locality
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4.1 Chapter Motivation

Visualisation is a significant consideration when exploring complex search spaces, such

as those of Genetic Programming. Graphical presentation is an essential component in

the development of randomised search heuristics, required to give a practitioner a more
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intuitive understanding of algorithm behaviour. Particular importance can be attached

to visualisation when insight is desired into the interaction between different elements

of the system. Therefore, to construct a coherent picture of the role of locality in

evolutionary and coevolutionary algorithms, this chapter will develop tools to visualise

the genotype to phenotype map.

A drawback of the quantitative measures of locality reviewed in Chapters 2 and 3 is that

information provided about a map’s quality is obtained over the whole search space, or

a large representative sample. The concept of locality is informally associated with a

search space possessing a topology that is in some sense locally smooth, at the pheno-

type or fitness level. By that rationale, it is possible for operators to induce a search

space that incorporates regions with strong and weak locality. Identifying these regions

in a mapping and understanding their contribution is therefore of practical importance.

From this perspective, it can be seen that whilst characterising the locality of a map-

ping with a single value provides a convenient overall view, it may obscure more subtle

distinctions between particular mappings. Hence, it is appropriate to consider meth-

ods of presenting the relationship between genotype and phenotype directly. This will

enable an examination of the changes in regional locality induced by choosing different

representations and the differences in algorithm behaviour that ensue.

4.2 Chapter Overview

The focus of this chapter is on identifying and providing tools to visualise the locality of

artificial genotype to phenotype maps. The intention is to address the question: ‘How

can locality in different regions of the search space be visualised?’. In Section 4.3 existing

methods are surveyed including, where relevant, approaches that have been applied to

visualise other properties of the genotype to phenotype map, such as neutrality. These

are captured in a taxonomy which sets the context of available techniques. Section 4.4

follows this discussion by presenting a new framework for graph-based visualisation of the

fitness landscapes of indirect GPM. A short review is provided of graph layout algorithms

and their utility is explored when examining the locality of genetic programming search

spaces. Section 4.5 then applies this approach in a set of experiments using simple

example problems, shown for basic versions of Cartesian Genetic Programming and

Grammatical Evolution. The final section summarises these observations and findings

across both representations.
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4.3 Visualising Structure in Genotype-Phenotype Maps

Extensive effort has been applied within the field of Evolutionary Computation to dis-

play data regarding the general state and progress of search. The subject matter is a

broad area and is the object of at least one dedicated international workshop series.1

However, when considered from first principles, tools to visualise information about an

evolutionary algorithm can be assigned amongst three categories: those applied prior

(before running a search) concurrently (displaying data whilst an algorithm is ongoing)

and post (retrospectively applied to understand what has occurred).

The first type (prior) addresses the provision of visual information that is used to pre-

dict expected behaviour when the algorithm is run. Examples include the visualisation

of data derived from approaches such as sampling the effect of search operators, selec-

tion mechanisms or models of the structure of the search space. The second category

(concurrent) presents relevant information about the current state. Examples include

how particular phenotypes interact with the system within which they are evaluated,

how that system is changing and derived properties of populations such as fitness. The

practitioner may be interested in whether a search has stagnated and no progress is

being made, or in the diversity of the current sample. By contrast, visualisations de-

rived after the algorithm has terminated (post) are typically concerned with providing a

picture of the changes obtained over the history of the search. These might include the

lineages of particular offspring, how particular building blocks are transmitted through-

out the search or a convergence diagram showing the quality of the best solution over

generational time.

As noted in Chapter 2, when genotype to phenotype maps are incorporated in evolu-

tionary algorithms they can be considered to be fixed or variable, dependent on whether

the mapping can be changed at run time. Recall that a fixed mapping was defined as

one where the relationship between genotype and fitness is independent of evolution-

ary time (Definition 2.2). An example is the standard polynomial symbolic regression

problem employed in genetic programming by Koza (1992). Here, where the target

function is static over generational time, fitness evaluations are determined according

to the same method for all instances. To clarify, whilst there may be variance or noise

in the assigned fitness values, the underlying function that is employed to map from

genotype to phenotype does not change. By contrast, in a variable mapping the target

function has a dependency on time, potentially mandating that visualisation be carried

out concurrently.

1The workshop ‘Visualisation Methods for Genetic and Evolutionary Computation’ has been held
annually at the Genetic and Evolutionary Computation Conference from 2010.
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A second consideration is the data type of the representation and the level of mapping

to which the visualisation approach may apply. Given that much of the underpinning

requirement for visualisation techniques in Evolutionary Computation originally grew

from the genetic algorithm literature, it is perhaps unsurprising that visualisation tech-

niques aimed at mappings based from fixed binary strings are most prevalent. The

comparatively recent context of evolution in more complex structures is therefore less

extensively populated. Similarly, visualisations may be applied to GPM at different lev-

els, ranging from genotype to fitness to intermediate states. We now review a number

of the existing approaches, before classifying them using these criteria.

4.3.1 Historical Techniques

A Remark on Scope

This section comments on previous visualisation techniques or mathematical methods

which have particular bearing on the issue of locality in genotype to phenotype maps.

The intention is not to provide general coverage of visualisation methods in Evolutionary

Computation; for broader reviews, the reader is referred to the work of (Collins, 1998b;

Hart and Ross, 2001; Pohlheim, 2006).

Fitness Landscapes

Perhaps the oldest and best known tool for visualising the genotype to phenotype map

is the concept of a fitness landscape. Fitness landscapes are a mainstay in evolutionary

computation and evolutionary biology, adapted from their original presentation in ge-

netics (Wright, 1988; Jones, 1995). Informally, fitness landscapes embed the topology

of a genotype search space and corresponding fitness evaluations onto a surface. The

placement of the fitness values on the surface is expected to be mapped such that that

the adjacent neighbours in genotype space are adjacent on the surface. This concept

of a neighbourhood is provided by a measure of distance on the genotype space, in-

formed by the choice of search operator. For example, in the context of a binary string

representation, as in classical genetic algorithms, the metric of choice is typically the

Hamming distance, such that adjacent points on the fitness landscape differ by one bit

(often termed a locus).

Adapting the definitions of Vassilev (2000), we state that:

Definition 4.1 (Hypergraph). A hypergraph is a finite set of vertices V = {v1, v2...vn}
and a family {Ei}i∈I of subsets of V , for which Ei 6= ∅ and

⋃
i∈I Ei = V. The couple

H = (V,E) is then called a hypergraph of order n.
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Definition 4.2 (Fitness Landscape). A fitness landscape is the tuple L = (HG, f, s).

HG is a hypergraph whose set of vertices correspond to the members of the genotype

space G. The fitness function f : G → R is used to label the vertices of H and s is

the applicable search operator acting on G. Each valid action of s on a subset of G

corresponds to an edge e ∈ HG.

Remark: Vassilev’s definitions use hypergraphs to express the concept of a fitness land-

scape. The definition may appear more complex than standard presentations, but has

the advantage that by generalising the concept of an edge using hypergraphs, it facili-

tates a very flexible concept of neighbourhood. The definitions are rephrased to fit the

notation used in this work.

Fitness landscapes provide both qualitative and quantitative information concerning

the properties of a search space. Examples include the presence of local minima, the

distance to optimal values or concepts such as smoothness or plateaus. Convention

differs concerning whether optimal values in the search space correspond to maximising

or minimising fitness. Therefore, if a fitness landscape is visualised on a two-dimensional

surface, these may be represented as peaks or troughs respectively. A search can be

informally seen as a set of points moving across this surface.

Despite their success and prevalence in the evolutionary computation literature, a num-

ber of drawbacks have been identified in the use of fitness landscapes when employed on

more complex representations. This will be returned to in section 4.4.

Multidimensional Scaling Approaches

Multi-dimensional scaling involves the transformation of multi-dimensional data down

to a smaller number of dimensions whilst preserving features or structure present in the

higher dimensional space. The process can enable the properties of complex functions

to be visualised more readily. Collins (1998a) and Hart and Ross (2001) give a more

comprehensive review of these techniques in the context of visualising a genotype to

phenotype mapping. However, for completeness, a short summary is provided here.

Most notably, within the framework of genetic algorithms and binary representations,

multidimensional scaling techniques have included Principal Component Analysis (PCA)

(Collins, 1999), Sammon Mapping (Dybowski et al., 1996; Pohlheim, 2006), Distance

Maps(Shine and Eick, 1997) , Search Space Matrices (Collins, 1998a) and Self-Organising

Maps (Romero et al., 2002). Each method has been applied to visualise the relation-

ship between genotype and phenotype across either the whole search space, or some

proportion of the searched area.
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Principal Component Analysis (PCA) has the advantage of being computationally straight-

forward and possesses a rigorous mathematical foundation. The PCA-based approach

applied by Collins (1999) was applied only to direct genotype to phenotype maps and

was derived from images of the state of the population at a particular time, rather than

the whole search space. However, it is not clear whether reduction to an orthogonal

basis is appropriate for more general genotype to phenotype maps.

By comparison with linear methods such as PCA, Sammon Mapping is a non-linear

method of dimensional reduction. The technique can be outlined as an optimisation

process, where the objective is to maintain a similar configuration of distances between

the elements of a higher dimensional space and the elements of the lower dimensional

space. Discrepancies between each set of distances are accumulated as an error func-

tion, giving the quality of a map. This is then minimised, typically through methods

such as gradient descent. In Evolutionary Computation, Sammon mapping was first

applied to binary genotypes generated during an evolutionary run (Dybowski et al.,

1996). A similar error minimisation approach is the Distance Map described by Shine

and Eick (1997), which explored the use of linear programming and GAs to derive a two

dimensional version of the genotype space.

Search Space Matrices (Collins, 1998a), visualise the genotype space on a two dimen-

sional lattice, using a fixed mapping specialised to bit string representations. This

approach is computationally fast, but is difficult to extend to other representations. A

potentially more flexible alternative is to consider learned embeddings. Self Organising

Maps are a well known machine learning method, consisting of a lattice of nodes with

associated weights, embedded onto a plane. This network is trained such that input

vectors from the training data (the higher dimensional space) are presented to it, classi-

cally at random. By iteratively adjusting the weights of the closest matching node and

nodes within a specified radius, the map is optimised to provide a form of unsupervised

classification, spatially clustering nodes with similar features. In Romero et al. (2002),

the map was trained directly, using a subset of the possible binary genotypes as the

input vectors. Later work by Amor (2005) integrated this into search, using the trained

map to improve diversity.

In summary, from these examples it can be observed that multi-dimensional scaling

approaches are a useful tool to address the size and complexity of genotype to phenotype

maps. Their application to more complex representations, rather than bit strings, is an

area of current research (McCandlish, 2011).
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Connection Maps and Frequency Maps

An alternative technique to address the density of information present in a genotype to

phenotype map is to present that data on a shaded grid or heat map. Murphy et al.

(2011) recently proposed two applications of heat maps, termed Connection Maps and

Frequency Maps, demonstrated in the context of grammar-based genetic programming.

Cells of each map correspond to pairs of distinct phenotypes. In Connection Maps, each

pair of phenotypes in the phenotype space is enumerated and it is determined whether

the distance between the associated genotypes is less than or equal to the smallest

feasible change (for example, in integer-based Grammatical Evolution, this is mutating

one integer value). The corresponding cell is coloured where genotypes are neighbours

in this sense. A Frequency Map enumerates phenotype pairs similarly, but colours cells

in proportion to the number of connected neighbours, thus visualising redundancy.

Heat maps are an interesting method of capturing large data sets and when arranged in

this fashion can potentially capture much of the variation in locality across a genotype

space. However, a modification to the above methods would be required to simulta-

neously represent genotypes at distances further apart than the local neighbourhood,

or for which the transition probability is position dependent (true in some graph-based

encodings such as CGP).

Quotient Graphs

Wilson and Kaur (2009) proposed an original approach to visualising properties of small

genotype to phenotype maps, as a tool to analyse neutrality in indirect mappings. The

method employed the mathematical notion of a Quotient Graph (derived from the defini-

tion of a quotient set) to visualise how mutational drift could be biased by the presence of

neutrality in integer string genotypes. The work was applied in a case study on Carte-

sian Genetic Programming and Grammatical Evolution, using the uniform mutation

operator.

Informally, a quotient graph can be defined from a partition on the vertices of an undi-

rected graph. Members of each partition share the same adjacency with respect to other

partitions. Wilson combined this concept with a carefully defined notion of search neu-

trality: genotypes which not only share the same phenotype, but that give rise to the

same distribution of phenotypes on the application of a search operator. Wilson’s visu-

alisations convey compactly how the genotype to phenotype map can give rise to a bias

in a search, over different neutral regions in the genotype space. Although the approach

was not established with the aim of investigating locality, it further demonstrates that

graph based visualisations can be used to effectively present complex GPM properties.
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Table 4.1: Techniques used to visualise the structure of genotype to phenotype maps.
Mapping refers to the representations employed in the original application. A distinction

is made between mappings that display fitness or an intermediate phenotype.

Visualisation Technique Mapping Originally Considered Point of Use

Fitness Landscape Genotype → Fitness Prior

Connection Maps Integer Genotype → Phenotype Prior

Frequency Maps Integer Genotype → Phenotype Prior

Quotient Graph Bit String, Integer Genotype → Phenotype Prior

PCA Bit String → Fitness Concurrent

Sammon Mapping Bit String → Fitness Concurrent

Self-Organising Maps Bit String → Fitness Concurrent

Distance Maps Bit String → Fitness Concurrent

Search Space Matrices Bit String → Fitness Prior

Summary

Table 4.1 summarises the techniques that have been outlined in this section. Multi-

dimensional scaling techniques have primarily been applied to binary strings, using di-

rect maps to fitness. Connection Maps, Frequency Maps and Quotient Graphs originate

in the genetic programming literature and are therefore applicable to more general no-

tions of genotype and phenotype. Fitness Landscapes are ubiquitous but by definition

do not conventionally display intermediate phenotypes between genotype and fitness.

Similarly, with the notable exception of Search Space Matrices, the multi-dimensional

scaling techniques described here have been used concurrently with the search process,

rather than as a tool applied before search to understand the structure of the search

space. The next section considers an alternative method of multi-dimensional scaling,

using graph-layout algorithms.
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4.4 Fitness Graphs

Section 4.3 considered a number of existing approaches to visualising the structure of

genotype to phenotype maps. However, it was observed that the majority of these

techniques are applicable to direct maps and binary string representations, rather than

indirect maps or program representations. Furthermore, even in the comparatively sim-

ple context of binary strings, displaying large numbers of bits and correspondingly large

neighbourhood spaces can present difficulties as the number of dimensions in the geno-

type increases. The problem is more acute when visualising GP data types, such as trees

or graphs.

As an example, Langdon and Poli (2002) criticise the application of fitness landscapes

to classical tree genetic programming. Key issues they highlight include the lack of

a natural neighbourhood relationship, the asymmetry in search operators and variation

in the transition probability between genotypes which are ostensibly neighbours. The

first point relates to the complexity of selecting distance metrics on tree or graph struc-

tures, which has been addressed in section 3.3.1. An example of operator asymmetry

is crossover, which typically produces a single offspring from two parents. The third

point notes that, dependent on the search operators, genotypes with apparently similar

structures may be distant when considering the actual transition probability.

To counter to these issues, they advocate visualising fitness landscapes in programs as

weighted graphs. This provides a more general structure on which to draw the search

space topology:

“The lack of natural ordering may prevent us from being able to plot the

landscape, even for one or two dimensional search spaces. However, we can

still visualise the landscape by representing it as a graph where the nodes

represent the points in the search space and the links indicate which points

are neighbours. In order to visualise the fitness of the points in the search

space, the nodes in the graph could be labelled or coloured on the basis of their

fitness.”

- Langdon and Poli (2002)

For convenience and to help distinguish references to the drawing from the abstract

mathematical object, we will term this drawing to be a fitness graph.



Chapter 4 80

4.4.1 Drawing Fitness Graphs using Graph Layout Algorithms

Langdon and Poli’s description gives a starting point from which to build an alternative

approach to visualising the locality of a mapping. Consider a drawing that contains

a vertex for each member of the genotype space G. Scale the radius of each vertex

according to the normalised fitness of the corresponding phenotype and relate edge

lengths to the distances between genotypes. Because landscapes drawn with geometric

distances exactly proportional to their edge-lengths do not in general embed onto a

plane in a simple fashion, a compromise must be sought. One approach is to seek a

useful embedding by employing graph-layout algorithms, which optimise the layout of

nodes given this constraint, as well as aesthetic considerations. The design of such an

algorithm falls within the extensive field of graph-drawing. Whilst a full introduction

to graph-drawing is outside the scope of this work, a brief discussion is worthwhile to

place our experimental choices in their proper context.

The review of Eades and Hong (2012) describes two principal classes of algorithm in

graph-drawing, Force Directed and Planarity approaches. In the former approach, a

graph is defined to have a total energy, under an ‘energy model’, which is given as

a function of the distances between vertices when these are assigned positions in a

drawing. Iteratively minimising this function by allowing vertices to move to a local

optimum improves the derived layout.2 This can be seen equivalently as converging on

an equilibrium, such that the total force applied to each vertex is zero. Forces comprise

a mixture of attractive and repulsive components, based on a selected physical model.

By contrast, Planarity layout algorithms construct drawings more directly, proceeding

by placing vertices explicitly within a planar embedding. The layout is accomplished

by geometric methods, such as triangulation of the faces of the graph. Fitness graphs

used to visualise genotype to phenotype maps are large and typically not planar, that is

they cannot be embedded directly onto a plane without crossing edges. Force Directed

approaches are therefore the most appropriate for this case, in order to generate a

qualitatively useful layout and expose the structure of the search space.

Force Directed Layout

In the experiments described in this chapter, three force directed algorithms were ex-

plored, applied using the Gephi (Jacomy et al., 2009) graph visualisation software:

Fruchterman-Reingold (Fruchterman and Reingold, 1991), Yifan-Hu (Hu, 2005) and

Force Atlas 2 (Jacomy et al., 2011). The former are well-established algorithms that

2The reader will note the similarity to techniques described in the previous section on multi-
dimensional scaling. Though the fields are usually regarded as distinct, graph-drawing could also be
classified as a kind of dimensional reduction, albeit one specialised to a particular structure.
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have been shown to be particularly effective for the analysis of large social networks (Car-

rington et al., 2005; Socievole and Marano, 2012). The latter is a state-of-the-art addi-

tion, a fast implementation which employs an approach similar to that of Fruchterman-

Reingold, the so-called ‘spring-electric’ model.

The original spring model derived attractive forces between vertices based on the ideal

behaviour of mechanical springs and therefore linearly proportional to distance (Hooke’s

law). The spring-electric model is a variation on this applying repulsive forces using a

heuristic analogous to that occurring between between electrically charged particles in

classical electromagnetism (the inverse square law). The Fruchterman-Reingold algo-

rithm modifies these relations to include different scaling relations with distance, based

on properties of the graph and layout area. More recent algorithms have altered these

relations further, to accommodate different computational requirements and aesthetic

factors. Notably, in the Force Atlas 2 algorithm the repulsive force is modified to in-

crease with the number of edges connecting to each vertex. Thus, vertices with a larger

number of edges connections will tend to be laid out further apart, which improves the

clarity of presentation.

Time Complexity

When visualising fitness-graphs that represent genotype spaces directly, efficient scaling

with respect to the search space size is necessary. Because edge numbers |E| increase

with the number of neighbouring genotypes (vertices |V |), this is the main criterion

that must be considered. Of the algorithms described, the basic Fructerman-Reingold

algorithm scales as θ(|V 2| + |E|) (Fruchterman and Reingold, 1991). The Yifan-Hu

algorithm has been shown to be O(|V |log|V |) in time per iteration (Hu, 2005). No

formal theoretical bounds on the efficiency of Force Atlas 2 have yet been provided, but

in the original submission the authors presented an empirical comparison across four

benchmark data sets that suggests it is highly competitive. These bounds refer to time

to update the position of all vertices. Table 4.2 summarises the force components and

theoretical performance of each algorithm.3

In practice, two further issues must be addressed when employing force directed layout

algorithms. Firstly, because the algorithms find a local minimum, they are sensitive to

the initial layout of the graph. It may therefore be necessary to randomise this and

apply the heuristic over a number of instances to derive a satisfactory graph drawing.

Secondly, it should be determined whether the algorithm incorporates the original edge

weights. The Fructerman-Reingold and Yifan-Hu algorithms optimise the layout to

3For conciseness, in the force component summary shown in Table 4.2 some constant tuning param-
eters are neglected. Full details are available in the cited papers for each algorithm.
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Table 4.2: Properties of the Force Layout Algorithms; where d is the distance between
each pair of vertices, k is a precalculated value giving the desired vertex separation (also
referred to as the natural spring length), j ≥ 1 an integer parametrising scaling of the

repulsive force and D1, D2 is the degree of each vertex respectively.

Force Layout Force Components Complexity Scaled by

Algorithm Attractive Repulsive (per iteration) edge weight?

Fructerman Reingold −d2
k

k2

d θ(|V 2|+ |E|) No

Yifan-Hu −d2
k

k1+j

dj
O(|V |log|V |) No

Force Atlas 2 −d (D1+1)(D2+1)
d Not disclosed Yes

give close to uniform edge lengths. This enables a useful view of the neighbourhood

structure of each vertex, but neglects variations in distance within the neighbourhood.

Force Atlas 2 addresses this by allowing an optional weighting parameter δ ∈ [0.0 : 1.0]

which modifies the attractive force (Fa) between vertices as

Fa = −w(e)δd(v1, v2) (4.1)

where d(v1, v2) is the geometric distance drawn between the pair of vertices v1 and v2,

w(e) is the weight assigned to the corresponding edge (Jacomy et al., 2011). From the

perspective of the current work, this permits the graph layout to more appropriately

reflect the distance metric used to set the length of the graph edges. Figure 4.1 illus-

trates this, showing the application of the force layout algorithms to a simple randomly

weighted network. The Fructerman-Reingold and Yifan-Hu algorithms result in a rela-

tively uniform placement of vertices across the drawing, regardless of their corresponding

edge weighting. In Force Atlas 2, the most strongly weighted edges (thicker lines) corre-

spond to a stronger attractive force and the source and target vertices are proportionally

closer.

Fructerman-Reingold Yifan-Hu Force Atlas 2

Figure 4.1: Examples of graph layout algorithms applied to a simple randomly gener-
ated weighted network with 7 vertices. Vertices in the Fructerman-Reingold and Yifan-
Hu algorithms achieve clarity of presentation, but are laid out independently of edge
weight. Vertices connected by strongly weighted edges are closer under Force Atlas 2.
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4.4.2 Displaying Locality in Fitness Graphs

Graph Preparation

Assume a genotype space where all genotypes are mutually reachable, using the expected

mutation distance metric. A complete fitness graph is formed from the genotype space

with |G| = |V |. As a complete graph, the space has |E| = |G|(|G|−1)
2 edges, which

is too dense to be practical even for highly constrained representations. Each edge

between the genotypes is assigned a weight scaled inversely proportional to the logged

expected mutation distance, w(e) = 1/log10(M̄) (Definition 3.3). This implies that large

probabilities of transition give a large attractive force.

To present a more convenient view of the local neighbourhood (the high probability

transitions), pruning can be carried out, starting with the edges with the highest weight,

which correspond to most distant genotype-pairs. At each stage the weight is reduced by

a constant ∆w, selected to remove the next equivalent set of edge weights. The graph

is reduced to the lowest weight such that it is still fully connected. This procedure

is described in the SimplePrune algorithm overleaf (Algorithm 2) and illustrated in

Figure 4.2. The significance of retaining a fully connected graph is to avoid separation

into multiple components, which will then be inappropriately aligned by the force layout

algorithm.4

Assigning Locality Values

Assigning an appropriate value to represent the locality of a vertex depends on the stage

of the mapping under consideration and the definition of locality that is accepted. For

the purpose of these visualisations, each vertex was assigned a value equivalent to the

mean phenotypic distance over the local neighbourhood:

d̄p =
∑

g′∈adj(g)

dp(g, g
′)

Ng
(4.2)

where Ng is the number of adjacent vertices for genotype g after pruning. This does

not exclude neutral or zero value changes to the genotype. The distance dp may be

derived from the differences at the intermediate stage, given for example by the metrics

in section 3.3.1. It may also refer to the change in fitness, in which case this becomes

4Experience with the Force Atlas 2 algorithm suggested that when laying out graphs with multiple
components, the distance between components increased such that drawing them on a scale that could
still display component detail became difficult. This is a consequence of the balance between attractive
and repulsive forces in the algorithm. An alternative approach would be to adjust the layout parameters
controlling these, but retaining a single component was simpler than this in practice.
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Data: A Weighted Graph G
Result: A Pruned Graph
w ← maximum weight of G;
while G is connected do

subtract all edges with weights of value greater than w from G;
w ← w - ∆ w;

end
return G

Algorithm 2: SimplePrune

Figure 4.2: Application of SimplePrune to (weighted) K5. Equivalent weight edge-
sets are successively removed, from the largest weight to the smallest, until the lowest
weight, fully connected graph is obtained. The drawing is then mapped using Force

Layout 2.

similar to the definitions of Galvan-Lopez et al. (2011a), described in Chapter 2. As

with any average, aggregating in this fashion can potentially be deceptive, depending on

the characteristics of the true distribution (it is not robust to outliers). Nonetheless it is

useful to generate a first impression of the locality of a mapping across different regions

of the search space.

A Note on Colour Mapping

Figure 4.3 above continues the example followed in the previous section, showing graphs

coloured by fitness and locality respectively. To assign colours to locality and fitness

values in the visualisation, both sets of values were first normalised to the range [0:1].5

For locality, the hue of each vertex was then mapped according to the equation:

H = 90− 90×
√

(1− (Lg − 1)2) (4.3)

which was found to be suitable after a process of trial and error. Saturation and bright-

ness were both set to 100. The expression given by Equation 4.3, then provides a

mapping such that HSB (90,100,100) corresponds to bright green, associated with the

lowest value of Lg (strongest locality) and (0,100,100) with a bright red, the highest

5For problems where the range of possible fitness values was continuous, such as symbolic regression,
normalisation was carried out with respect to minimum and maximum values generated across the
genotype space.
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Figure 4.3: Left: An example graph with the vector of normalised fitnesses (0.5, 0.2,
0.1, 0.1, 0.1). Vertices are labelled and coloured by fitness. Right: Graph re-labelled and
coloured by the corresponding locality of each vertex. Note that for reference the radius

of the vertex represents fitness in both cases.

value of Lg (weakest locality). Fitness was mapped in a similar fashion (we take the

convention of minimising fitness). The resulting colour maps are monotonic in both

the locality and fitness, whilst also providing a clear distinction between genotypes in

regions with different properties.

4.5 Application to Indirect Genotype Phenotype Maps

4.5.1 Selected Test Problems

Two simplified problem instances were selected to verify the technique described in

the previous section. Because GP search spaces scale rapidly with representations of

increasing length, the test problems were constrained to those solvable using a restricted

number of dimensions, terminals and functions. These instances are trivial in practice,

because the search space is small enough to be enumerated. However, studying them

can help to provide a better understanding of the variations in structure induced by

different kinds of GPM, with the intention of providing insight into the biases present

in larger problems.

MAX-GP

MAX is a basic analogy of the GA One-MAX problem, which has been employed in the

analysis of canonical Tree based GP and indirect representations (Langdon and Poli,

2002; Murphy et al., 2011). For clarity, since different classes of representation will

be addressed in this thesis, instances here will be referred to as MAX-GP. The goal of

MAX-GP is to generate a program that provides the largest possible real number output

given a fixed set of real valued terminals and arithmetic function set.
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MAX-GP is a suitable point to begin to assess this visualisation technique, because

solutions can be defined for relatively small search spaces, which it is possible to show

in their entirety. Another attraction of the problem is that (for some limited cases) it is

possible to calculate theoretical bounds on the performance of GP. An example of this

is provided for CGP in Appendix A.

Simple Binomial (x2 + x)

The second problem is a symbolic regression instance with the form x2 + x. Symbolic

regression problems of practical significance can require a large terminal and function

set and correspondingly large search space sizes. The simplicity of this function enables

the search space to be fully enumerated. The visualisation in the next section shows the

fitness of the model solutions and their corresponding neighbourhood.

4.5.2 Representation and Search Operator Details

Cartesian Genetic Programming with Bi-arity functions

Integer genotypes in Cartesian Genetic Programming have a position dependent range

of values. In Seaton et al. (2010), the scaling for the single row version of CGP with

bi-arity functions was derived as

|G| = |F |nΠn−1
i=0 (|T |+ i)2 = |F |n

(
(|T |+ n− 1)!

(|T | − 1)!

)2

(4.4)

where n is the number of nodes, |T | is the size of the terminal set, |F | the size of the

function set, assuming unconstrained feed-forward input to each node. The position de-

pendency results in a factorial increase in search space size with the number of terminals

and nodes.

Given this rate of increase, in the MAX-GP problem, a restricted function and terminal

set was adopted using only the addition operator + and a single constant input 1.0. Each

CGP node can therefore at most double the output of the previous node, such that the

maximum output at node n is 2n. This occurs when both inputs for each node connect

to the previous layer. The sign of the output is always positive. Individual genotypes

are therefore assigned a normalised fitness as f = k
2

n
where k is the value of the output.

There is a single optimal value at f = 1.0. From Equation 4.4, the search space size

for this case is 576 genotypes. In the Binomial problem, the function set was expanded

to {+, ∗}, over three nodes. This gives a search space with a single optimal phenotype,
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which can be mapped by 8 distinct genotypes, of size 288. A uniform mutation rate of

m = 0.15 was assumed in both cases.

Grammatical Evolution with Bi-arity Functions

In fixed length forms of Grammatical Evolution, where genotypes comprise a fixed num-

ber of z integers, 0 ≤ z < k, the search space scaling is simpler than for Cartesian GP,

given by zk. For the MAX-GP problem a highly constrained grammar (k = 2) was first

defined, to provide a comparable - though not equivalent - phenotype space to the CGP

representation (Figure 4.4). The genotype space represents members from the set of

possible trees up to a predetermined depth. The exact trees represented are dependent

on the maximum permitted genotype length. For the Binomial problem, the grammar

was modified to permit the multiplication operator (Figure 4.5).

<expr> ::= <term> | (0)

<func> (<expr>,<expr>) (1)

<func> ::= + (0)

<term> ::= 1 (0)

Figure 4.4: Simple constrained grammar for the MAX-GP problem.

<expr> ::= <term> | (0)

<func> (<expr>,<expr>) (1)

<func> ::= + | (0)

* (1)

<term> ::= x (0)

Figure 4.5: Simple constrained grammar for the Binomial problem.

4.5.3 Visualisations of CGP and GE Search Spaces

Figures 4.6 to 4.13 show the fitness graphs computed for each search space and laid out

using the Force Atlas 2 algorithm. In the first pair of graphs for each problem (Figures

4.6, 4.7, 4.10 and 4.11), colour is mapped to fitness. Edges are omitted in the drawing,

but their weight is accounted for in the layout algorithm per Equation 4.1. In the second

pair of graphs for each problem (Figures 4.8, 4.9, 4.12 and 4.13) colour is mapped to

mean fitness difference, calculated according to Equation 4.2. The radius of nodes is

proportional to the normalised fitness in both cases to permit a relative comparison

(though note that the overall dimensions of each image have been scaled). The largest

nodes are optimal solutions.
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0 1

Normalised Fitness

Figure 4.6: Genotype space for a four node bi-arity CGP representation, on the MAX-
GP problem. Red: Low fitness genotype. Green: High fitness genotype.

0 1

Normalised Fitness

Figure 4.7: Genotype space for a Grammatical Evolution representation using an
array of nine integers, on the MAX-GP problem. Red: Low fitness genotype. Green:

High fitness genotype.
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0 1

Normalised Locality

Figure 4.8: Genotype space of a four node bi-arity CGP representation on the MAX-
GP problem. Red: Weak locality genotype. Green: Strong locality genotype.

0 1

Normalised Locality

Figure 4.9: Genotype space of a Grammatical Evolution representation using an array
of nine integers, on the MAX-GP problem. Red: Weak locality genotype. Green: Strong

locality genotype.
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0 1

Normalised Fitness

Figure 4.10: Genotype space of a three node bi-arity CGP representation, on the
Binomial x2 + x problem. Red: Low fitness genotype. Green: High fitness genotype.

0 1

Normalised Fitness

Figure 4.11: Genotype space of a Grammatical Evolution representation using an
array of nine integers, on the Binomial x2 + x problem. Red: Low fitness genotype.

Green: High fitness genotype.
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0 1

Normalised Locality

Figure 4.12: Genotype space of a three node bi-arity CGP representation,on the Bi-
nomial x2 + x problem. Red: Weak locality genotype. Green: Strong locality genotype.

0 1

Normalised Locality

Figure 4.13: Genotype space of a Grammatical Evolution representation using an
array of nine integers, on the Binomial x2 + x problem. Red: Weak locality genotype.

Green: Strong locality genotype.
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4.6 Analysis of Obtained Visualisations

4.6.1 MAX-GP

The CGP search space shows a high degree of structural symmetry. In the MAX-GP

case considered, the genotype space is clustered into neighbourhoods of four individuals

(Figures 4.6, 4.8). This is intuitively correct, based on the constraints placed on the

CGP genotype representation. A node in the arity two CGP genotype used consists of

two integer connections and a function value. The latter value cannot change because

only one function is available. The node with the smallest number of connections is node

two (the left most node can only connect to the fixed input.) Each of the two input con-

nections has two possible alternatives. This gives three equidistant nearest neighbours.

These highest probability offspring are correctly shown as the closest neighbours in the

visualisation. The characteristically high neutrality of the GPM is also evident; many

genotypes have an equivalent output and hence equivalent fitness.

By contrast, the Grammatical Evolution mapping under MAX-GP shows no clearly

defined structural symmetry, but high fitness individuals are still closely connected.

One half of the search space is composed of terminal values. This is a consequence of

the constraints imposed on the specific grammar; when the grammars given in Figure 4.4

and Figure 4.5 are parsed, genotypes initialised with an odd value in their first position

will evaluate to x. An EA operating on such a grammar would first eliminate these

low fitness values from the population. The grammars used by GE in practice typically

feature a much more diverse terminal set, which would lead to a correspondingly higher

degree of diversity amongst these basic elements.

4.6.2 Simple Binomial

The properties observed in the Simple Binomial problem are similar to the MAX-GP

examples in both cases. For CGP, the fitness graph displays symmetry around each set

of nine clustered genotypes. The main distinction is the presence of multiple optimal

genotypes, twenty of which are displaced across the search space. In the grammar-based

representation, the optimal values are more tightly connected, but situated within a

region that has lower locality on average.

Of particular interest is that the CGP and GE representations, despite possessing a

superficially similar genotype structure and use of the same search operator, lead to

genotype to phenotype maps with quite distinct structural properties. Regions with
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strong and weak locality are visible in both cases, but the distribution of these is depen-

dent on quite specific aspects of each representation.

4.7 Visualisation of Large Fitness Graphs

The sampling approaches described in Section 3.5 can be applied to plot subgraphs

of larger genotype to phenotype maps. Fitness graphs were obtained for a standard

application of CGP, digital circuit synthesis using boolean functions (Miller, 2011). Two

basic example circuits were selected, a 1:4 demultiplexer and 2-bit multiplier. In both

cases, fitness is derived from the truth table for that circuit, accumulated from the total

number of correctly predicted outputs. The truth tables are given in Tables 4.3 and 4.4

below respectively.

Table 4.3: 1:4 Demultiplexer Truth Table

Inputs Outputs

X1 X2 X3 Y1 Y2 Y3 Y4

X1 0 0 X1 0 0 0

X1 0 1 0 X1 0 0

X1 1 0 0 0 X1 0

X1 1 1 0 0 0 X1

Table 4.4: 2-bit Multiplier Truth Table

Inputs Outputs

X1 X2 X3 X4 Y1 Y2 Y3 Y4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

Examples are presented for a linear-feed forward representation with 30 nodes and the

boolean function set {AND,OR,NOT, IF}. This number of inputs, functions and nodes
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implies the search space is far too great to enumerate. Figures 4.14 and Figure 4.15 illus-

trate fitness graphs obtained using the CGP representation for each problem, sampling

using the chain referral approach, shown without and without edges respectively.

The figures illustrate the fitness graphs of ancestral trees derived from a selected optimal

point. Regions of high and low fitness, as well as fitness neutral plateaus, are visible

in both instances. Because the graph represents only a sample of the whole space, the

symmetries evident when visualising a completely enumerated genotype space are not

evident. Each tree is plotted to a depth of 10 mutations from the optimal point. The

islands (separated components) visible correspond to branches that contain genotypes

at a larger expected mutation distance from the main clusters.

4.8 Discussion and Concluding Remarks

The intention of this chapter was to establish a technique to visualise the locality of

program representations, across different regions of the genotype to phenotype map.

Representing fitness landscapes as graphs is an appropriate method to accomplish this,

but projection onto a low-dimensional space is problematic. It has been shown that this

can be addressed through pre-processing of the graph and the application of force-layout

algorithms.

Choice of the expected variation distance as a measure of the difference between two

genotypes was prompted by a requirement to select metrics that are more representative

of the underlying search operator. A limitation of the metric is that it assumes a

transition between any pair of genotypes can be made in a single evolutionary step. It

is therefore most applicable to indirect representations that can use simple operations

on a linear genotype, such as CGP or GE, but could in principle be adapted to any EA

where this criterion will be met.

In both the Grammatical Evolution and CGP representations, a consistent observation

for these problems is that optimal solutions have several neighbours with significantly

poorer fitness. More generally it can be seen that, qualitatively, better fitness genotypes

were located in regions of the fitness landscape that are not smooth. This is because the

majority of genotypes have mediocre fitness and are therefore more likely to accumulate

smaller values under Equation 4.2.

Despite the low locality of both the CGP and GE mappings observed in the fitness

graphs, fit genotypes are still relatively tightly clustered and therefore in general con-

nected by high probability transitions. For these particular problems and configurations,

the optima in GE compose a larger portion of the search space and appear to be more
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Optimal Genotype

Low Fitness
Regions

High Fitness
Regions

Figure 4.14: Illustration of a fitness graph sampled for the 1 to 4 demultiplexer prob-
lem using a CGP representation. Edges not shown. Colour indicates fitness.

Optimal Genotype

High Fitness
Region

Low Fitness
Region

Figure 4.15: Illustration of a fitness graph sampled for the 2 bit multiplier problem
using a CGP representation. Edges shown. Colour indicates fitness.
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closely connected to low fitness genotypes than in CGP. These observations are some-

what in agreement with the traditional heuristics that have been established for each

technique. CGP typically uses a stronger selection pressure than GE. In principle, this

should prove advantageous on a smoother landscape; whilst a more relaxed selection

pressure may provide performance gains on a rougher, multi-modal surface.

Finally, the CGP digital circuit visualisations in Section 4.7 were provided as examples

to illustrate the technique on larger problems using sampling. As sampling density in

a region increases, one would expect structural symmetries similar to those observed in

the completely enumerated cases to become more evident.

4.9 Chapter Summary

This chapter put forward a novel method of visualising regions of strong and weak

locality in indirect genotype to phenotype maps, using graph-layout algorithms.

• Existing methods of visualising genotype to phenotype maps were summarised and

the scope of each technique considered. Specific issues related to the visualisation

of program representations were discussed.

• A brief introduction to graph-layout algorithms was given. It was proposed that

the force-layout class of algorithms can be used to draw fitness landscapes in GP.

• The approach was tested on two simple problems, MAX-GP and Binomial, using

basic forms of CGP and GE.

• The locality of each representation was examined using the resulting visualisations.

Strongly local and non-local regions could be identified in both cases. A high degree

of symmetry was observed in the CGP case.

• Examples were presented of the application of the force-layout approach to plot

larger scale fitness graphs in digital circuit evolution, for a 2-bit multiplier and 1:4

demultiplexer.

Chapters 3 and 4 have focused on providing statistical and visualisation tools to analyse

locality in standard evolutionary systems that consist of a single population of genotypes.

In the following part, we will move to consider a new context, coevolutionary systems.

The following chapters will extend the current approaches to locality to explore how the

property can be studied in multiple populations, in the absence of a method of objective

fitness evaluation. Chapter 5 will introduce this area, providing a general background

on coevolution in EAs.
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Coevolution and Representations
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5.1 Chapter Motivation

Coevolutionary algorithms (CEA) generalise evolutionary algorithms to problems where

the quality of candidate solutions can only be expressed as a relative property. Exam-

ples arise in interactive situations where the value of individual sub-components cannot

be objectively measured. One analogy is the scenario of ranking tennis players. It

might be assessed that an individual player serves accurately, or has excellent stamina.

However the outcome of a game will be determined by the worth of these abilities eval-

uated against a particular competitor. Furthermore, if the player is paired in a game

99
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of doubles, the outcome will not only depend on the player’s own capability, but will

include collaboration with a partner in a team. Standard single population evolutionary

algorithms carry out optimisation based on an objective measure of fitness that defines

the quality of a solution. In a coevolutionary algorithm, such objective evaluation can-

not be carried on a single individual and must instead incorporate two or more. This

distinction has ramifications for concepts such as progress and convergence, as will be

described throughout this chapter.

Studies of the genotype to phenotype map in the coevolutionary literature have primar-

ily been carried out in the context of adaptive representations - that is, on coevolving

the structure or parameters of a representation (Jong, 2003). Few analyses exist that

directly consider the effect of biases due to genotype to phenotype mapping in a coevo-

lutionary system (Wiegand et al., 2002). A feasible explanation for this situation is that,

as a relatively new technique, the majority of theoretical work on coevolutionary algo-

rithms has addressed biases in more established bit string and direct encodings rather

than complex representations such as trees and graphs. Coevolution is frequently applied

using complex representations, for example through neuroevolution (Moriarty and Mi-

ikkulainen, 1998; Stanley and Miikkulainen, 2004) and genetic programming (Angeline

and Pollack, 1993a; Haynes et al., 1995). However, from the perspective of the user of

evolutionary algorithms, there is little guidance to predict the behaviour that will occur

in such systems. To begin to address this gap, we now move to examine the role of

locality in artificial coevolution.

Because coevolutionary algorithms exhibit a number of fundamentally different be-

haviours to their evolutionary counterparts it is necessary to first provide some ad-

ditional background. This chapter will highlight these differences and provide a review

of previous work. The discussion is intentionally general, aiming to clarify concepts and

avoids all but high level references to the architecture or design of particular algorithms.

5.2 Chapter Outline

The purpose of this chapter is to introduce the subject of artificial coevolution, then to

discuss whether the ideas from Rothlauf’s framework for EC representations described

in Chapter 2 still apply. In the first section, an overview is provided of coevolutionary

algorithms, from their historical origins to the current perspective. The second section

summarises some of the key points of failure that have been identified in coevolutionary

systems: the so-called ‘coevolutionary pathologies’. The third part then provides rele-

vant mathematical definitions, referencing a recent theoretical framework by Popovici

et al. (2012), and addresses the topic of representation in coevolving programs.
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5.3 What are Coevolutionary Algorithms?

In common usage, coevolution in biology refers to evolution between strictly separate

populations, where the evolutionary change of individuals in one population affects an-

other, which in turn affects the first (Janzen, 1980). In standard artificial coevolution,

entities are divided amongst discrete populations in the same way. Figure 5.1 gives high

level pseudocode for the structure of a canonical coevolutionary algorithm in multiple

populations. In the example given, coevolution occurs simultaneously (all members are

evaluated concurrently).1 The interacting genotypes are drawn from separate popula-

tions and interactions with the same population are precluded. Coevolution then results

in a set of interactions, the outcomes of which determine those genotypes from which the

next generation is evolved.2 Thus, the aim of a well-designed coevolutionary algorithm

is to provide an efficient search, when the space of possible interactions is large.

1. Initialise a set of populations containing coevolving genotypes.

2. Interact a subset of genotypes drawn from the populations.

3. Assign fitness values from the interaction outcomes.

4. Select from amongst the best genotypes.

5. Apply search operators to selection to breed the next generation.

6. If termination criteria not reached, repeat from 2.

Figure 5.1: Pseudocode for a canonical coevolutionary algorithm.

5.3.1 Historical Development: Biological Origins

Formal algorithms to exploit the concept of coevolution for problem solving were not

widely popularised until the pioneering work of Hillis using a genetic algorithm on the

development of minimal sorting networks (Hillis, 1990). Hillis’s stated intent was to

increase the diversity of evolved solutions by including multiple coevolving populations,

deriving inspiration from Hamilton’s earlier work on parasitism in biology (Hamilton,

1980). As in biological systems, coevolving entities possess relations ranging between

diametric opposition, to contexts which are fully mutualistic. The two traditional view-

points in coevolution follow these extremes. In competitive coevolution, calculating fit-

ness conventionally involves defining the performance of an entity over one or more tasks,

relative to that of adversaries. In cooperative coevolution, entities collaborate such that

their fitness is formed by some collective performance over a problem.

1More generally asynchronous coevolution also exists where populations interact at different rates.
2It is important to recognise that this usage is conventional and should not limit our thinking of

what granularity in interactions are appropriate for a particular problem. An argument can be made for
usage of the term coevolution when internal to a population, or between sub-components of a particular
entity - in artificial coevolution, what matters is where and when partitioning and evaluations occur. In
this work, we will restrict our usage to coevolution across multiple populations.
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One of the most cited historical inspirations within the field of biological coevolution is

the work of Dawkins and Krebs (1979). The lecture, held at the Royal Institute, advo-

cates the role of arms races in the directional increase in complexity apparent between

species. In particular, the work provides a classification of arms races, addressing their

importance both between species, and internal to species between similar and dissimilar

members. The emphasis placed by biologists at this time on arms races leading to more

complex adaptations has been cited as justification for initial work on competitive coevo-

lutionary algorithms and is an argument still prevalent in the current literature, see for

example Cartlidge and Bullock (2004), Kim et al. (2004), Drezewski and Obrocki (2009).

By contrast, the design of cooperative coevolutionary algorithms can be suggested to

take its origins in the interface between evolutionary biology and game theory, in par-

ticular in the theory of evolutionary stable strategies and the evolution of cooperation

(Axelrod, 1987).

Other motivations for competitive coevolutionary algorithms were put forward in the

field of machine learning (Angeline and Pollack, 1993b). Foremost amongst these argu-

ments was the familiar difficulty of defining an objective fitness function in a complex

domain. CEA promised a method of circumventing this issue, by stipulating an evolu-

tionary framework that enabled problems to be solved purely through competitive learn-

ing. Flagship results at this time such as the neuro-evolution of a human-competitive

backgammon player, ‘Neurogammon’, illustrated the potential of self-play as an unsu-

pervised learning technique (Tesauro, 1989). Initial theoretical work was carried out by

Kauffman, in his treatment of coevolutionary algorithms as a dynamical system (Kauff-

man and Johnsen, 1991). Also of note are early developments by Paredis addressing

the issue of coevolutionary lifetime memory and learning, where individuals improve

over the course of a single generation (Paredis, 1994, 1996, 1997). Subsequently, the

first application of cooperative coevolution to function optimisation was established by

Potter and De Jong, using the idea of multiple co-evolving entities to separately develop

different variables (Potter and Jong, 1994). They assessed performance over four bench-

mark functions from standard GA optimisation, assigning function variables to distinct,

coevolving sub-populations. The fitness of these sub-components was then evaluated

collectively, considering their contribution as a whole to the complete solution.

It is apparent from this body of early work that the notions of competitive and co-

operative evolution are deeply-embedded in the literature. This has had a significant

impact on the direction taken by the field; competitive and cooperative coevolution

have historically been seen as distinct approaches. Authors typically presented qual-

itative arguments based on either the arms race effect (the initial motivation behind

competitive coevolution) or sub-dividing the problem domain (the initial motivation be-

hind cooperative coevolution). However, in practice the whole range of mixed ‘social’
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behaviours exists between these two problem solving approaches. Problems treated by

artificial systems may include interactions that are neither exclusively cooperative nor

competitive. The terms cooperative and competitive coevolution are therefore merely

convenient labels to describe the prevailing form of interaction that takes place in a

particular system.

5.4 Coevolutionary Pathologies

Historical applications of coevolutionary algorithms rapidly diversified beyond function

optimisation into areas such as competitive robotics (Floreano and Nolfi, 1997; Flore-

ano et al., 1998), strategy development (Lindgren and Johansson, 2001), artificial life

(Sims, 1994) and predator-prey pursuit simulations under GAs (Cliff and Miller, 1995b).

Interest in the effectiveness of cooperating agents subsequently led to studies on the de-

velopment of coordination strategies governing co-evolved behaviour (Nolfi and Floreano,

1998), gaining ground within the wider context of coordination problems in multi-agent

learning systems.

Despite this initial promise and some success stories, it became evident that coevolution-

ary algorithms exhibit complex dynamic behaviour and a number of ‘pathologies’ that

hamper their application in optimisation and problem solving. These difficulties parallel

the problems introduced by the ‘Red Queen Effect ’, derived from Valen’s hypothesis in

coevolutionary biology (Valen, 1973). Valen’s hypothesis implies that because fitness

in a biological species is a function of that of competing species, improvements to fit-

ness must necessarily come at the expense of others. This implies a ‘zero-sum’ type

interaction:

“We can think of the Red Queen’s Hypothesis in terms of an unorthodox game

theory. To a good approximation, each species is part of a zero-sum game against

other species. Which adversary is most important for a species may vary from time

to time, and for some or even most species no one adversary may ever be paramount.

Furthermore, no species can ever win, and new adversaries grinningly replace the

losers.”

- Valen (1973)

In coevolutionary algorithms, the interactive nature of the fitness function leads to

uncertainty over how to define a solution, how to measure progress and subsequently

how to design a consistently useful algorithm.

This difficulty in defining progress arises because the relationships between solution

quality are frequently intransitive. Informally, an intransitive relationship in this context
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can be illustrated as the idea that, given three potential solutions A, B and C, the

relations B>A and C>B do not imply C>A. Thus coevolutionary runs may break down

into cycling behavior. The result is populations that repeatedly revisit points on the

search space without reaching any fixed equilibrium point. One of the oldest approaches

to measuring this is that of Cliff and Miller, frequently cited for presenting metrics

and techniques to analyse the progress of a competitive coevolutionary algorithm with

respect to previous archived solutions. Notably, this includes the CIAO plot (Current

Individual versus Ancestral Opponents), a method of visualising performance against

all previous opponents (Cliff and Miller, 1995b). However, over many generations the

number of evaluations required to support this becomes impractical.

Further issues in coevolutionary performance were presented by Watson and Pollack,

defining the notions of loss of gradient and focusing (Watson and Pollack, 2001). Loss

of gradient refers to the issue that competitive coevolutionary algorithms stagnate when

candidates are presented with no challenging opponents. This stagnation, or disengage-

ment between populations, occurs where no new selection requirement is provided and

hence there is no pressure to improve. The term focusing was introduced to describe

an effect where adaptation is specialised against the known set of visited adversaries,

creating a ‘fragile’ solution-strategy unable to compete over the whole search space. The

problem is analogous to overfitting in machine learning and is a particular issue when

there are multiple (phenotypic) dimensions along which an algorithm must optimise.

Practical difficulties in coevolutionary computation continued with the identification of

issues such as relative overgeneralisation (Wiegand, 2003). The term relative overgener-

alisation refers to an effect that can occur in cooperative problems. Consider a ‘general

purpose’ candidate, which provides a small outcome when evaluated (paired) alongside

many others in the search space. The candidate can appear to outperform alterna-

tives that are more specialised, but that give a higher average outcome. Therefore, a

candidate that performs exceptionally alongside a small subset of partners may be out-

performed by a candidate with poorer average performance, but which has a wider range

of partners with which it cooperates acceptably well. Consequently, the general purpose

candidate is more survivable under selection than the specialised candidate, yet does

not yield the best outcome overall. Wiegand notes that, subject to the solution concept

desired, either property (robustness vs. specialisation) can be useful for the problem at

hand (Wiegand and Sarma, 2004).

In summary, we can see that coevolutionary algorithms were originally motivated by

two key advantages: to enable competitive learning for problem domains where objective

fitness function definitions are difficult or impossible, and to take advantage of structure

in problems by using a framework which decomposed them into coevolved sub-elements.
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Despite a wide range of potential applications, practical implementations have been

fraught with difficulties, the so-called coevolutionary pathologies:

• Cycling

• Loss of Gradient and Disengagement

• Focusing

• Mediocre Stable States

• Relative Overgeneralisation

These issues are known to arise because fitness is only derived relative to a particular

subset of individuals, giving no explicit ordering on what constitutes a good or bad

solution. The next section reviews the theoretical foundations and approaches developed

to address these pathologies.

5.5 Coevolutionary Algorithms and Solution Concepts

In order to resolve the pathologies that were observed in coevolutionary algorithms,

authors moved to consider a more robust range of solution concepts. In this context,

a solution concept is a partition on a discrete search space, that defines a subset of

solutions. Importantly, the solution subset is only defined ‘relative’ to the space to which

that concept is applied. For CEA, this search space is the space of possible interactions

between evolving genotypes. In the early days of CEA, it was observed that algorithms

converged on sub-optimal attractors, typically associated with solution concepts in game

theory such as Nash equilibria. Therefore, solution concepts have been historically linked

to the idea of ensuring monotonic solution progression, that is avoiding the problem of

revisiting and cycling between inferior solutions.

5.5.1 Types of Solution Concept

In the context of Evolutionary Computation, coevolutionary solution concepts are de-

fined with respect to the outcomes of interactions between the subset of genotypes that

comprise a solution. Popovici et al. (2012) recently drew together a list of the compet-

itive solution concepts that have been considered in EC, which we summarise in Table

5.1. These terms are closely related to those in formal game theory.
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Table 5.1: Solution concepts in competitive coevolutionary algorithms
(Popovici et al., 2012)

Solution Concept Description

Best Worse case Maximise minimum outcome over interactions
with all opponents.

Simultaneous Maximisation
of All Outcomes

Maximise outcome over all possible opponents
simultaneously.

Maximization of Expected
Utility

Maximize expected outcome against a randomly
selected opponent.

Nash Equilibrium Equilibrium such that neither mixed strategy
can change without receiving lower outcome.

Pareto Optimal Set Non-dominated front over all tests.

Pareto Optimal [Minimal]
Equivalence Set

As Pareto-Optimal Set, but reduced to discard
candidates which receive the same outcome over
all tests.

Simultaneous Maximisation of All Outcomes

The simplest competitive solution concept is referred to as Simultaneous Maximisation

of All Outcomes. In test-based coevolutionary algorithms3, candidate solutions coevolve

alongside one or more populations of ‘tests’. Simultaneous maximisation of outcomes

simply refers to the set of solutions where, over all possible tests the outcome of that test

is to be maximised. That is, moving to any other candidate will result in an explicitly

lower outcome on one or more tests. Popovici et. al. note that although this is an

intuitively useful idea, it has limited applicability. There exist many problems that

do not possess a solution, where a candidate cannot be found that achieves the best

outcome against all tests. The solution concept assumes the existence of a universally

‘best’ strategy.

Maximisation of Expected Utility

Maximisation of Expected Utility originates from the concept in competitive coevolu-

tion of maximising performance against a random strategy (an opponent). Members

of this set have the highest average outcome when considered against all other evolv-

able strategies. This idea is constrained by the assumption that all tests are equally

valuable (Ficici, 2004). In practice, for many situations we can say that a solution that

performs well on average against all tests is not the most valuable. It may provide a

high outcome against mediocre candidates, but fail against a smaller subset of more

competitive, specialised opponents. Algorithms have been designed with the intention

3Test based coevolutionary algorithms will be considered in more detail in Chapter 6
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of ensuring monotonic progress in these simple cases: Competitive Covering (Rosin,

1997) and MaxSolve (Jong, 2005). The covering competitive algorithm acts on two pop-

ulations of strategies. The algorithm includes new learned strategies only when they

beat or ‘cover’ all previous opponents in the other population. Similarly, the MaxSolve

algorithm was engineered to generate an archive of strategies which solve an increasing

number of tests from the opposing population.

Nash Equilibrium and Pareto-Optimality

More sophisticated concepts were introduced to work around these disadvantages. The

existence of a Nash Equilibrium for any finite game is guaranteed by John Nash’s famous

proof (Nash, 1950). Informally, a Nash Equilibrium is formed from a set of strategies,

when the strategy selected by each player is the best response given knowledge of all op-

posing strategies. Convergence on the Nash Equilibrium can be ensured in coevolution-

ary algorithms by the use of Nash memory, an archiving mechanism which increasingly

approximates the mixed Nash strategy (Ficici and Pollack, 2003). Ficici advocated the

use of Nash Equilibria as a monotonic solution concept in coevolutionary algorithms,

though drawbacks are apparent: Nash equilibrium may be strictly dominated by other

solutions and do not necessarily possess the highest objective outcome over any subset of

candidates in the solution space. One alternative is to ensure that solutions are Pareto-

Optimal. The Pareto-Optimal solution concept is defined in coevolutionary systems

relative to subsets of coevolved test candidates, where each equivalence solution set is

given by those candidates which exactly ‘solve’ the same subset of tests. Thus, a Pareto-

Optimal equivalence set contains those solutions which have an identical outcome over

all known tests. Archives have been introduced which populate the Pareto-Optimal front

of solutions and this concept has been shown to ensure a form of monotonic progres-

sion (Jong, 2007). De Jong also defines a separate solution concept, the Pareto-Optimal

Minimal Equivalence Set, where the constraint to contain all candidates solving a given

subset is relaxed. The equivalence set then contains a single instance from the ‘identical’

candidates which solve a particular set of tests.

Best Worse Case

A further, more recently introduced solution concept for coevolutionary algorithms is the

familiar game-theoretic idea of maximising minimum outcome. The minimum outcome

in the competitive case is the smallest outcome obtained by a candidate solution over an

associated set of coevolved tests. Finding candidates with the largest minimum outcome

can be considered important under situations where the impact of obtaining low values
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is high (Popovici et al., 2012). The less common inverse situation, or ‘maxmin’, is to

consider the set of solutions providing the lowest, maximum outcome (that is ensuring

a certain level of return is potentially possible).

5.5.2 Criticism of Solution Concepts and Coevolutionary Progress

The idea that it is necessary to ensure monotonic progress towards a particular solution

concept has been challenged. Miconi (2009) questions the lack of distinction drawn be-

tween ‘historical’ and ‘global’ progress in the application of coevolutionary algorithms

to problem solving. He defines historical progress as progress delivered solely relative

to past opponents (previous candidates visited in the search space) and global progress

as progress measured objectively to the solution concept. The argument is that past

historical progress, that is evolving strategies which are sequentially better against previ-

ous opponents, does not necessarily guarantee global progress. Miconi defines a globally

monotonic solution concept as a situation in which this condition does hold.

In more recent work, Popovici and Jong (2009) summarises several issues in striving

for global monotonic improvement. Firstly, Ficici has shown that globally monotonic

progress is only possible for a subset of the known solution concepts characterised in

coevolutionary computation (Ficici, 2004). For a problem with a fixed solution concept

(as is typically the case) monotonic progress may not be achievable. Secondly, even

for those solution concepts for which monotonic progress is theoretically possible, an

algorithm to achieve this may not be known. Finally, such an algorithm may not be

computationally useful, due to memory requirements or slow convergence.

It is also worth a brief aside to address the question of how the No Free Lunch theorem

for optimisation applies to these notions of coevolutionary solution concept. Wolpert

and Macready extended their seminal work to define a framework, generalisation optimi-

sation (GO), that demonstrates that coevolutionary free lunches exist between pairs of

algorithms (Wolpert and Macready, 2005). Their result did not extend to distinguishing

between free lunches over algorithms using particular solution concepts - more recent

work pursued by Travis and Tauritz describes this as an open question, identifying a

free lunch for the maximisation over all outcomes solution concept (Service and Tauritz,

2008) and Pareto-coevolution. For these solution concepts it was demonstrated that

there do exist algorithms which have, on average, better global coevolutionary progress

in terms of their number of fitness evaluations (Service, 2009). Theoretical work in this

area is still active.
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5.5.3 Summary

We have reviewed the notions of solution concepts, progress and monotonicity in co-

evolutionary algorithms. A solution concept is a partition that can be applied to any

subset of the whole search space. When that subset is not equal to the whole space,

progress towards the solution concept may be described as local progress, rather than

global. The solution concepts currently addressed within the coevolutionary literature

are:

• Best Worse Case

• Simultaneous Maximisation of all Outcomes

• Maximisation of Expected Utility

• Nash Equilibrium

• Pareto Optimal Set

• Pareto Optimal Minimal Equivalence Set

Properly specifiying which solution concept applies for a problem is one of the main

considerations when designing a coevolutionary algorithm.

5.6 Terminology and Mathematical Definitions

Attempts to classify coevolutionary algorithms in the context of this work are compli-

cated by differences in terminology. For example, the usage of the term representation

in coevolutionary algorithms often refers not only to the data structure used in genotype

to phenotype mapping, but can refer to how individuals are distributed throughout coe-

volved populations. In cooperative coevolutionary literature, the term has been applied

to mean ‘problem representation’, that is how sub-components (which may be separate

individuals) can be aggregated up to give a whole solution. The following definitions are

adapted from Popovici et al. (2012), using the notation set out in Chapter 2.

5.6.1 Coevolutionary Problems

Coevolutionary problems can be said to take place on an interactive domain. Diverse ex-

amples of such domains exist, such as classical board games, collaborative robot teaming,

auctions and bidding contests.
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Definition 5.1 (Interactive Domain). An interaction is a tuple of phenotypes (p1, p2...pn).

An interaction function is a function u : P1 × P2 × ... × Pn → R, where pi ∈ Pi.. The

outcome of an interaction is the value u(p1, p2...pn). An interactive domain is a set of

interaction functions that act on n phenotype sets, P1, P2...Pn.

Remark: The interaction function is similar in form to a payoff matrix in standard

game theory. Payoff matrices store the outcomes of interactions between strategies used

by the players of a game. Some coevolutionary algorithms use only a single interaction

function and one set of outcomes, but there is no formal restriction (for asymmetric

situations, more than one interaction function may be required).

Following from this, two classes of coevolutionary problem can be described, co-search

and co-optimisation:

Definition 5.2 (Co-search Problem). A co-search problem is a set of potential solutions

to an interactive domain S derived from the phenotypes p ∈ P , for which there is a

solution concept. The solution concept is a binary partition on S into solutions O and

non-solutions.

Remark: How solutions are obtained from the phenotypes depends on the problem. A

solution may comprise phenotypes across several different phenotype sets, or even mixed

combinations of phenotypes (a selection of phenotypes chosen at certain probabilities).

This enables the inclusion of more complex solution concepts, such as Nash Equilibrium.

Definition 5.3 (Co-optimisation Problem). A co-optimisation problem is a set of po-

tential solutions S derived from the phenotypes p ∈ P , for which there is a partial order

≤ on S

Remark: This definition is a specialisation of the co-search problem. Ordering the

potential solutions in S using ≤ implies that there exists a subset of maximal elements

in S. In Figure 5.2, an illustration is given to clarify Popovici’s definitions. The figure

shows a set of potential solutions constructed from a number of phenotype sets, accord-

ing to a set of interaction functions. For a co-search problem, potential solutions are

partitioned using a solution concept. For a co-optimisation problem, an ordering applies

that determines the desired solutions.

The usefulness of this framework in the context of the current work is that it gives a

robust description of the classes of problem that coevolutionary algorithms are designed

to solve. It also helps to clarify the main distinctions between evolutionary and coevolu-

tionary algorithms (interaction functions that can act over distinct sets of phenotypes).
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Solutions O

A Potential Solution

Non-solutions

Co-search

Co-optimisation

Interactive Domain

Phenotype Sets

P1 P2 P3

Interaction Functions
u:(P1,P2,P3) → R

Figure 5.2: A diagram of a generic coevolutionary problem. Illustrates the distinction
between co-search and the specialised case, co-optimisation.

5.7 Discussion and Concluding Remarks

What do these differences between evolution and coevolution imply for our understand-

ing of the GPM? Using the concepts cited in the previous section, it can be seen the

definitions given in Chapter 2 remain valid. This is the case because the definitions

in Chapter 2 make no assumptions about the mapping between phenotype and fitness.

Therefore concepts such as redundancy and locality can still be expressed when working

with coevolutionary algorithms, providing they use metrics defined before phenotypes

interact.

One limitation of this viewpoint is that representations used in co-search may possess an

extra level of complexity beyond classical evolutionary search, because of the potential

use of multiple representations simultaneously. Each representation used in a co-search

problem will have its own properties. For example, a strongly local genotype to pheno-

type map may coevolve together with a weakly local genotype to phenotype map, or vice

versa. In the following chapters, we will restrict our scope to symmetric representations,

where only a single class of genotype to phenotype map is present. Finally, although

similar properties of the genotype to phenotype map can be defined in coevolutionary

algorithms, there is no firm basis to believe that the responses observed in single popu-

lation systems can be inferred for coevolution. For example, in problems with a positive

fitness gradient to the optimum, weak locality may randomise a search (Rothlauf, 2006).

However, locality in this sense only occurs in a CEA if a small phenotypic change induces

a small change for all interactions. To the best of the author’s knowledge, there exists
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no work extending the notion of ‘smoothness’ in GP fitness landscapes to co-search. An

alternative framework for locality in CEA is discussed in Chapter 8.

5.8 Chapter Summary

This chapter has provided an overview of the subject of coevolutionary algorithms,

covering the notion of solution concepts, coevolutionary pathologies and the issues sur-

rounding progress in coevolutionary systems. Current definitions in artificial coevolution

(Popovici et al., 2012) were related to the concepts introduced in Chapter 1.

• Coevolutionary problems are defined over an interactive domain.

• Problems can be divided into two classes, co-search and co-optimisation.

• Potential solutions are aggregated from a collection of phenotype sets using a set

of interaction functions.

• Goal conditions are determined by selection of an appropriate solution concept for

the problem.

• Concepts from the theory of representations (locality, neutrality etc.) in single

population evolutionary systems can be described within this framework.

The ideas reviewed here may appear quite abstract, but form the basis of a necessary

context to analyse genotype to phenotype maps in artificial coevolution. In the follow-

ing chapters, we will make use of these definitions and more concrete examples will be

explored.
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6.1 Chapter Motivation

The previous chapter reviewed some of the fundamental distinctions that exist between

coevolutionary and evolutionary algorithms. Having provided tools to analyse locality

in evolutionary systems in Part I, it is now possible to extend our study of genotype

to phenotype locality to CEA. Because there is little theoretical evidence to indicate

directly how locality affects progress in CEA, it is necessary to first select a class of

coevolutionary problems in which the property can be examined empirically. One fre-

quently encountered form of co-search problem in engineering is the aim of optimising a

solution against a large collection of tests. For example, designing a novel system com-

ponent may require many tests in different environmental contexts, typically too many

to allow for an exhaustive set of trials. In the case of search-based software development,

tests might literally comprise unit tests for the functionality of a particular segment of

code (White et al., 2011). On a more abstract level, in a scientific experiment tests can

be presented with the aim of refuting a particular hypothesis. Tests act in opposition

to other elements, therefore test-based coevolution is a strictly competitive situation.

A more precise description of test-based problems can be stated using the co-search

framework described in the previous chapter. The interactive domain (Definition 5.1)

contains a set of candidates C and set of tests T . The goal in a test-based problem is to

attain a set of candidates that satisfy the specific solution concept appropriate to that

interactive domain. Candidates are evaluated using an interaction function against a

set of tests. We say that single outcome problems have an interaction function of the

form u : C × T → R. A binary outcome problem is a specialisation of this in which a

test evaluates only to a pass or failure u : C × T → {1, 0}.

Solving test-based co-optimisation problems using coevolutionary algorithms has been a

central focus for CEA practitioners and theorists (Rosin, 1997; Jong and Pollack, 2004;

Jaskowski and Krawiec, 2009). Analogous to competitive coevolution in nature, the in-

tention is to generate genotypes that represent successively more capable candidates and

more challenging tests. Test-based coevolution therefore captures much of the complex-

ity of the general problem of co-search and provides a set of appropriate problems. To

give proof of principle, this chapter will concentrate on locality in coevolutionary prob-

lems that use binary string representations. Representations suitable for the coevolution

of programs will be considered in Chapter 7.
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6.2 Chapter Outline

A hypothesis of this thesis is that the locality of artificial genotype to phenotype maps

will significantly influence the behaviour of coevolutionary algorithms. This chapter

tests this assumption in detail. The aim is to confirm whether representation locality

has an effect on performance in co-search problems and, if so, to what degree. This

is addressed by posing the question, “Does genotype to phenotype locality contribute to

coevolutionary algorithm performance?” The domain used to explore this question is test-

based competitive coevolution. Section 6.3 of this chapter addresses experimental design

considerations when analysing coevolutionary systems. Section 6.4 then describes two

test-based benchmark problems, the Compare-on-one and Greater-than number games.

Section 6.5 details the measures of progress and locality used for these problems. This

includes some necessary background on Pareto-optimality and archives. Sections 6.6 and

6.7 then use the games to analyse the interaction between mapping locality, performance

and a coevolutionary pathology, disengagement. The remaining sections discuss and

conclude.

6.3 On Experimental Design in Coevolutionary Algorithms

Empirical research on the contribution of any given factor in the performance of a

coevolutionary algorithm is complicated by several issues. These include:

1. Coevolutionary pathologies.

2. Selection of adequate benchmarks.

3. Measurement of objective progress.

Coevolutionary pathological behaviour, such as cycling, can occur even in simple coevo-

lutionary systems. From the review in Chapter 5, it can be seen that it is not clear from

the present literature how biases from representation affect pathological behaviours. To

ascertain how a given factor in a coevolutionary algorithm interacts with the pathologi-

cal behaviours shown by coevolutionary algorithms is a major challenge; see for example

the thesis of Cartlidge (2004) on coevolutionary disengagement. Some pathologies can

be mitigated by the addition of components intended to ensure progress towards a par-

ticular form of solution, such as archives; this consideration reinforces the need for

experiments to be conducted with reference to a clearly defined solution concept.

Isolating where poor performance can be attributed to a particular factor or pathology

requires carefully designed benchmarks. It is likely that the real response of a CEA’s
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performance to factors such as changes in redundancy, locality or scaling is coupled:

again, the extent to which factors are co-dependent is not clear apriori. Finally, it is

necessary to define how to objectively measure progress. By definition, problems in

coevolutionary algorithms lack a suitable objective external measure against which to

measure performance.

6.3.1 Proposed Empirical Framework

Three steps are necessary to measure how a factor such as the genotype to phenotype

mapping affects the performance of a coevolutionary algorithm:

1. A benchmark and algorithm are identified in which measurable progress under a

given solution concept is known to occur. A metric is defined that approximates

progress on the underlying objectives.

2. Observations are made of how approximate progress changes with respect to that

factor independently, in the absence of variation in any other contributing factors.

3. The sensitivity of progress under that factor is assessed relative to other explana-

tory factors and parameters.

Performance and Progress Metrics

The convention in Evolutionary Computation concerning monitoring progress is to mea-

sure performance with respect to fitness evaluations. The assumption in this measure

is that fitness evaluation is the dominating, most computationally expensive component

of the search algorithm. The analogous measurement in a coevolutionary system is the

number of evaluations required in computing the interaction function. Given these mea-

sures of performance, one can either consider the state of the population after a fixed

number of evaluations, or the number of evaluations required to converge on a solution

of particular quality.

Because coevolutionary algorithms may return to poorer states, performance will be

measured over fixed intervals. Overall performance can then be determined by consid-

ering the likelihood of the algorithm succeeding in reaching the desired state. This goal

state is defined by reference to the solution concept and tested after a known amount of

computational effort, over a sufficient number of independent runs to give statistically

significant results. Measuring the rate of improvement towards a solution concept can

be accomplished by defining a measure of distance to the solution set, if it is known.

If the solution set is not known, then comparison must be made against a collection of



Chapter 6 117

exemplary solutions or tests, for example in competition with a human expert. To avoid

the subjective component this introduces, the benchmarks considered in this thesis will

be restricted to those with known optimal solutions or where comparison can be made

against close to optimal solutions.

Choice of Benchmarks

Where possible, benchmarks will be selected from previous literature. Benchmarks in

CEAs are often associated with a particular class of representation, so variations may

be necessary to examine benchmarks within the context of different kinds of genotype

to phenotype map. Additionally, benchmark problems are usually associated (explicitly

or implicitly) with a particular kind of solution concept, as defined in Chapter 5. It will

made clear what alterations, if any, have been made to benchmarks when referenced and

which solution concept applies.

It should also be noted that there is an inherent trade-off in benchmark choice between

realism and transparency. Benchmarking using complex problems may help to ensure

techniques are tested on a domain ‘closer’ to those of practical interest. However, this

comes at the expense of our ability to interpret results and isolate how particular prop-

erties of the system have affected performance. Because the focus in this study is on the

latter this dictates a preference for simpler benchmarks, so that GPM properties can be

studied in detail.

6.4 Test-based Benchmarks: Number Games

Number games (Watson and Pollack, 2001) are constructed coevolutionary problems

that use a sufficiently simplified representation and interaction function so that detailed

analysis and comparison of different algorithms is practical. In the following test-based

problems, the coevolving entities are represented by n dimensional fixed length vectors

c = [c1...cn], t = [t1...tn] of binary, integer, or floating point values. There exists a

known target vector or set of vectors that comprises the solution set. The progress of

the search is therefore straightforward to interpret. By varying the interaction function

u that describes the outcome of interactions between candidates and tests, different

coevolutionary scenarios can be modelled. Candidate vectors receive a outcome of u(c, t)

and test vectors receive a outcome of 1 − u(c, t). The experiments in this chapter

use modified versions of two established numbers games, Compare on One (CO1) and

Greater Than (GT).
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6.4.1 Compare-on-one game (CO1)

Compare-on-one (CO1) is a binary outcome number game proposed by Jong (2007).

The objective of CO1 is to maximise all dimensions of the candidate vector, which is

guided by a binary interaction function. A candidate is awarded a score of 1 if it has a

greater value in the largest dimension (maxComponent) of the test vector:

u(c, t) =

{
1 ci > ti

0 ci ≤ ti
i = maxComponent(t) (6.1)

CO1 is known to be challenging for canonical coevolutionary algorithms because progress

must be achieved in all dimensions, but comparison is only permitted on single element of

a vector in each interaction. CO1 therefore models a property of larger scale problems,

where a test may only examine a particular aspect of a system’s performance. This

promotes overspecialisation on a sub-optimal set of candidates or tests.

The approach in this chapter uses a modified instance of the original CO1, that has

been altered to include an indirect genotype to phenotype map. Each genotype is rep-

resented as a 30 bit word. The word is divided into two parts and the corresponding

substrings mapped to a pair of 15 bit unsigned integers (the phenotype), by a binary to

integer encoding (the genotype to phenotype map). Therefore, each candidate or test

corresponds to a pair of integer values in the range 0 to 32767.

6.4.2 Greater-than game (GT)

The Greater-than game (GT) was originally introduced by Watson and Pollack (2001)

and later adapted by Cartlidge (2004) to explore the pathology of disengagement in

coevolutionary systems. In the original single outcome game, genotypes were fixed

length binary strings and the interaction function is given by

u(c, t) =


1.0 Σc > Σt

0.5 Σc = Σt

0.0 Σc < Σt

(6.2)

where Σc and Σt denote the sum of elements in the candidate and test vector respec-

tively. Cartlidge then applied a mutation bias to the test population that increased

the likelihood of generating larger values by mutation, by increasing the probability of

generating a one during each bit flip. In the presence of such a bias, tests increased
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in difficulty much faster than the candidate population can adapt (Cartlidge and Ait-

boudaoud, 2011). Disengagement then occurs when no distinction can be made between

the set of evolving candidates, because all candidates perform poorly across the test set.

GT was modified to include a bit-string to integer mapping identically to CO1 in Sec-

tion 6.4.1. However, using the same procedure to bias candidates as Cartlidge and

Ait-boudaoud (2011) is not feasible, because larger genotypes may not correspond to

larger phenotypes under the genotype to phenotype map. As an alternative method of

producing disengagement, a negative bias was introduced to the test population. Be-

fore evaluation, each member of the test population is updated with probability ν. The

updated tests are replaced by an equivalent test with both integer values reduced by a

fixed penalty of 1000. In the absence of a positive selection gradient, the quality of tests

will deteriorate over time, until disengagement occurs (the quality of candidates cannot

be distinguished). Larger penalties and values of ν correspond to a stronger asymmetric

bias.

6.5 Factors and Progress Metrics

6.5.1 Locality Measures for CO1 and GT

Measuring locality in CO1 and GT is more straightforward than is the case for the pro-

gram representations described in Chapter 3, because of the simplicity of the fixed length

binary to integer GPM. Recall that Rothlauf’s original definition of locality (Equation

2.6) is not normalised. A normalised aggregative measure of locality is used here, LN ,

based on Definition 2.7:

LN =
1

|G|
∑
g∈G

1

|adjm(g)|
∑

p′∈adjm(g)

d+P − dP (p, p′)

d+P − d
−
P

(6.3)

where d+G, d+P and d−G, d
−
P are the maximum and minimum distances in genotype space

and phenotype space respectively (Equation 2.2). The constant d+P − d
−
P is the largest

possible difference in the phenotype space minus the smallest possible difference. The

function adjm(g) returns the local neighbourhood of g, mapped into the phenotype space.

The sum given in Equation 6.3 is a more convenient metric for locality in these par-

ticular discrete phenotype spaces because it is normalised to assume the value 1 when

all neighbouring genotypes have neighbouring phenotypes and 0 when all neighbour-

ing genotypes give maximally different phenotypes. Values between 0 and 1 indicate

intermediate levels of locality in the mapping.
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Table 6.1: Inverse locality for a 3-bit binary, Gray and randomised encoding. Rows
show the partial sum of L−1N , for each phenotype.

p Binary Gray Random

0 000 1.00 000 1.00 010 0.00
1 001 0.75 001 1.00 101 0.25
2 010 0.75 011 1.00 000 0.50
3 011 0.50 010 1.00 011 0.25
4 100 0.50 110 1.00 100 0.50
5 101 0.75 111 1.00 110 0.50
6 110 0.75 101 1.00 001 0.25
7 111 1.00 100 1.00 111 0.50

L−1N 0.75 1.00 0.34

For this case, where m is a bijective function, it is also possible to define the correspond-

ing expression in phenotype space. We term this the inverse locality, L−1N :

L−1N =
1

|P |
∑
p∈P

1

|adj−1m (p)|

∑
g′∈adj−1

m (p)

d+G − dG(g, g′)

d+G − d
−
G

(6.4)

Equation 6.3 defines locality with respect to neighbours in the genotype space and

Equation 6.4 with respect to neighbours in the phenotype space. This reflects the

concept that it is possible to have a mapping that is strongly local in the inverse direction

(phenotype to genotype) but not in the forward direction (genotype to phenotype).

Example: Locality in Gray Codes

For small genotype spaces, the measures of locality given in Equations 6.3 and 6.4 can be

calculated directly. By way of example, consider the calculation for a reflected binary or

Gray code. Gray codes provide a useful test case, because by definition all phenotypes

(integers) have neighbouring genotypes. Under Equation 6.3, the inverse locality of a

Gray code (i.e. for integer to bit string) is equal to one, by definition. If we make a

change to the code the inverse locality may decrease accordingly. Table 6.1 contrasts L−1N

computed for a three bit word in binary, Gray and a random permutation. The distance

metric dG is the Hamming distance and dP is the absolute difference between integers.

The maximum and minimum distance d+G and d−G are 3 and 1 respectively. The partial

sums in Table 6.1 can be seen as mean ‘scaling factors’ for each local neighbourhood.

From the values of L−1N in Table 6.1, it can be seen that the Gray encoding preserves the

local neighbourhood structure when mapping from phenotype to genotype (i.e. L−1N ),

but the random and binary encodings disrupt it.
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6.5.2 Measuring Performance

Performance and Solution Concepts

The solution in the GT game is an example of simultaneously maximising all outcomes:

the aim is to find the candidate with maximum value in both dimensions (32768, 32768).

For CO1, the solution concept is Pareto-optimality. A Pareto-optimal solution can be

defined for test-based problems by considering each test as a separate objective.1 The

solution concept induces a strong dominance relation � between each pair of candidates

(c, c′) ∈ C × C, with respect to each subset of tests Ts ⊆ T :

c � c′ such that ∀t ∈ Ts, u(c, t) ≥ u(c′, t) (6.5)

and ∃t ∈ Ts, u(c, t) > u(c′, t)

Removing the second condition gives the corresponding weak relation:

c � c′ such that ∀t ∈ Ts, u(c, t) ≥ u(c′, t) (6.6)

When the whole test set T is referred to, Equation 6.6 induces a partial order on the

candidate set.2 The dominance relation orders candidates into layers or Pareto fronts.

Members of each Pareto-front are non-dominated c 6� c′ with respect to each other, over

all tests.

The performance of an algorithm over a run is assessed by considering the objectively

best set of candidates with respect to the solution concept. In these constructed prob-

lems, this is straightforward because the objective quality of candidates is known. As

constructed here, the objective performance of a candidate can be evaluated as the min-

imum value in the pair of integers to which that candidate corresponds (Jong, 2007).

6.5.3 Iterated Pareto Coevolutionary Archive

In the CO1 experiment, the Iterated Pareto Coevolutionary Archive (IPCA) described

by Jong (2007) was included. IPCA is an unbounded archive that maintains successive

1The situation can be compared with conventional multi-objective optimisation, where multiple ob-
jectives exist that must be satisfied. The distinction is that the number of tests is large, not necessarily
known priori and that evaluating against all tests simultaneously is infeasible.

2Bucchi (2007) examined order in test-based problems, ordering tests using an alternative, geometric
approach. Informally, a coordinate system was assembled that enables candidates and tests to be ordered
with respect to a set of underlying objectives. However extraction of this underlying coordinate system
is complex and has recently been shown to be NP-Hard (Jaskowski and Krawiec, 2011).
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Coevolutionary
Generator

Archive

Produces new candidates
and tests

Stores useful
candidates and tests.

Provides historically
useful individuals
(feedback).

Figure 6.1: A generic coevolutionary archive system.

layers of Pareto-optimal candidates, with respect to currently known tests. The justifi-

cation for including IPCA is that it ensures that monotonic progress will occur on this

test problem.

Conceptually, under De Jong’s model, the coevolving system has two coupled compo-

nents: a generator, which features two distinct populations of candidates and tests,

coupled to an archive for each population, which accumulates the Pareto-optimal front

of solutions. The purpose of the generator is to iteratively produce new samples of can-

didates and tests. The purpose of the archive is store dominating candidates, and tests

that are determined to be useful to establish this order.

Figure 6.1 gives a generic impression of this system. As more tests are accumulated, the

quality of individuals in the candidate and test archives improves. Stored candidates

converge on the objective best solution, which is the Pareto front of candidates defined

with respect to the whole test set. The test archive retains those tests that have been

required to distinguish the evolved candidates. The archive provides useful historical

candidates and tests back to the generator to incorporate as potential parents in future

iterations. This feedback mechanism is described in Section 6.6.3.

6.6 Experimental Setup

6.6.1 Mapping Construction

The effect of varying locality on progress in GT and CO1 was explored by generating

sample mappings with different inverse locality. Following from the example in section

(6.5.2), a simple greedy search was applied to generate sample encodings (Algorithm 3)

from the standard reflected binary Gray code. The algorithm’s input is a target locality

T and a maximum tolerance (error margin) tol on T . The algorithm begins with a local

Gray encoding and perturbs it until locality falls to the vicinity of the desired level.
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Data: Target locality T , maximum tolerence tol
Result: Encoding m
Generate a binary code m;
l← L−1(m);
while |T − l| > tol do

Swap a randomly selected pair of integer values in m to give m′;
if |T − L−1(m)| < |T − l| then

m← m′;
end

end
return m

Algorithm 3: GreedyPerturb

Sets of 5 sample encodings were considered between L−1N = (0.6 : 1.0), to a tolerance of

±0.01.

6.6.2 Algorithm Configuration

A µ + λ coevolutionary algorithm was used as the generator for each experiment. The

generator included a population of 20 candidates and a population of 20 tests, initialised

uniformly at random. The simplest method of cross-evaluation, complete mixing, was

applied to determine fitness. Fitness values were accumulated from the sum of evaluating

all members of both populations against each other:

f(c) =
∑
t∈T

u(c, t) (6.7)

f(t) =
∑
c∈C

1.0− u(c, t)

Truncation selection was applied to the µ fittest genotypes. Offspring were then gen-

erated using a uniform mutation operator, with mutation probability q, to produce the

remaining set of λ samples. The initial parameter choices, informed by Jong (2007);

Cartlidge and Ait-boudaoud (2011) are given in Table 6.2. Sensitivity of the experimen-

tal outcomes to these choices is assessed in Section 6.7.

6.6.3 Archive Feedback

In the CO1 problem, at each generation before selection or operators are applied, the

candidate and test populations are submitted to update the IPCA. Details of the archive

updating procedure can be found in Jong (2007). In the system studied here, feedback

was included by randomly selecting members of the archive to act as parents. Each new

sample has a chance to be produced from an archive member, rather than the current
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Table 6.2: Initial algorithm and parameter configuration for CO1 and GT.

Property CO1 GT

Population Size 2 × 20 2 × 20
Mutation Rate q 0.1 0.1

Selection (µ = 5) + (λ = 15) (µ = 5) + (λ = 15)
Generations 100 100

Runs 500 500
Archive IPCA N/A

Archive Feedback Linearly Increasing N/A
Test Bias ν N/A 0.5

population. The likelihood of this event is initially zero, but increases at a rate of 1%

each generation. This ensured that in the later stages of search new genotypes are likely

to be generated by the mutation of members of the archived Pareto front. The strategy

will be referred to as linearly increasing feedback.

6.6.4 Measuring Disengagement in GT

Cartlidge and Ait-boudaoud (2011) advocated that if no distinction can be made in

fitness between any members of the test set - the variance of fitness values is zero -

the candidate and test populations can be said to be disengaged. Disengagement oc-

curs when a population enters a state such that no search gradient can be determined

with respect to the other coevolving components. To analyse whether there is a re-

lationship between disengagement and locality, disengagement between the candidate

and test populations was monitored throughout the GT game. At each generation, the

likelihood of disengagement is estimated as the proportion of runs in a disengaged state

at that point. The probability of disengagement P (Disengaged) was estimated at each

generation by taking the fraction of the total set of runs for which the variance of the

candidate population fitness values was equal to zero at that point.

6.7 Results in Binary Number Games

6.7.1 Compare-on-one Results

Figure 6.2 illustrates the expected (arithmetic mean) performance in CO1 for two sample

encodings (L−1N = 0.51 and 0.76) at the initial fixed mutation rate of 0.1. A comparison

is shown against the performance using the reflected binary code, with and without

archive feedback. The expected performance of a control run using random selection

and no archive is also shown. Best performance was achieved by the Gray code and
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Figure 6.2: Example convergence plots for CO1, with and without archive feedback.

archive. Figure 6.3 then shows the response to varying encoding locality independently

of other parameters. Algorithm 3 was run 5 times, to generate 5 sample sets each

containing 11 encodings sampled at intervals from each run. The points shown represent

the performance of a distinct encoding, measured at 50 generations. The trend indicates

a strong correlation between locality and performance (Spearman coefficient ρ = 0.98,

p-value 0.005, exact) which was observable over all the sample encodings. This suggests

a nearly monotonic decrease in performance as the mappings were perturbed, for this

parameter configuration.

Of interest is whether this trend is preserved for different parameter configurations. As

noted in Section 6.3, the response to varying parameters is likely to be coupled. This was

addressed by the construction of a response surface showing the effect of varying pairs

of parameters simultaneously. Results are shown for locality with mutation rate and

locality with selection pressure. The response surface in Figure 6.4 (left) illustrates the

trend over mutation rates between 0.01 and 0.2. Both best and worst performance are

evident when using the most local (Gray) encoding (L−1N = 1). Best performance in the

candidate population occurred at the mutation rate q = 0.13. Performance decreased

to a minimum at q = 0.01. Decreasing the encoding locality resulted in a trend towards

higher performance in the limit of low mutation rates and poorer performance at higher

mutation rates. Figure 6.4 (right) shows the response to changing locality for different

selection pressures, µ, where µ is the number of individuals retained as parents from

each population. The surface is displayed for a mutation probability q = 0.1. The
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Figure 6.3: Response in CO1 to varying mapping locality using initial parameter
settings, repeated for 5 sets of sample encodings (symbols denote encodings from the

same sample set). Performance measured at 50 generations.
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Figure 6.4: Response surfaces for the CO1 game. Expected performance measured at
50 generations (500 runs/vertex). Left: Mutation rate. Right: Selection pressure.

trend towards higher performance in the stronger locality encodings is retained over all

settings of µ. The system was relatively insensitive to this parameter.

6.7.2 Greater-than game Results

The surfaces shown in Figure 6.5 give the results of a factorial experiment to investigate

the effect of varying locality on performance and disengagement in GT. Sample results

are shown at three mutation levels q = {0.01, 0.03125, 0.1} whilst simultaneously varying

the asymmetric bias ν in the coevolving test population. As in CO1, the best perfor-

mance occurs when using the Gray encoding with a moderate mutation rate, q = 0.1.
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Disengagement is not evident at this level. However, the probability of disengagement

increases up to a 98% likelihood at the 0.01 mutation rate, when using Gray codes.

At lower mutation rates, decreasing the encoding locality decreased the likelihood of

disengagement. A commensurate performance increase is also seen for that case.

6.8 Discussion and Concluding Remarks

The factor that most strongly affects performance in these simple constructed systems

is the probability of mutation. The response surfaces observed in CO1 suggest that the

use of stronger locality mappings is only of benefit in this problem at moderate to high

mutation rates. The trend reverses at lower mutation rates. A probable explanation

for this is loss of phenotypic diversity. If that explanation is correct, the problem is an

example of a situation where using a weaker locality mapping can increase performance

when search diversity is low. In contrast, selection pressure in the CEA had only a

marginal effect on performance. We note that a form of ‘implicit’ elitism is introduced

to the algorithm through use of the IPCA, which only retains dominating solutions.

This may account for the weak response to changes in selection pressure.

In GT, the test bias and disengagement pathology also significantly influenced perfor-

mance. Increasing the asymmetric bias ν led to disengagement. For large bias, the

objective fitness of the candidate population will still initially increase, but selection in

the test population does not overcome the applied penalty. Loss of diversity in the tests

then in turn halts the progress of candidates. At the q=0.1 mutation rate, disengage-

ment falls, which we suggest occurs because a sufficiently diverse set of tests has been

provided. The effects of changing mapping locality are then similar to those observed

in CO1. Weak locality encodings outperform higher locality encodings at small ν and

q, corresponding to a lower probability of disengagement.

The strong correlation between inverse (phenotypic) locality and performance measured

in both CO1 and GT therefore supports our hypothesis, verifying that mapping locality

is a factor in the performance of a coevolutionary algorithm on these problems. As

observed in the non-coevolutionary GP systems in Chapter 3, the contribution of strong

or weak locality encodings to performance is coupled with other algorithm properties. In

particular, these results suggest that a complex interplay exists for this coevolutionary

configuration between locality, mutation rate and disengagement. Locality was not the

most significant contributing factor. However, it was observed to have an effect on

performance in both problems throughout the parameter configurations. The effect of

locality on the disengagement pathology is interesting, because it raises the possibility

that certain mappings may be inherently more robust to pathological behaviours.
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6.9 Chapter Summary

This chapter addressed the question “Does genotype to phenotype locality contribute

to coevolutionary algorithm performance?”. Experimental design considerations were

discussed. Two constructed binary problems were then examined from the domain of

test-based competitive coevolution. In both cases, mapping locality was shown to be

strongly correlated with the performance of a canonical coevolutionary algorithm.

• The Compare-on-one (CO1) and Greater-than (GT) games were modified to in-

corporate a binary to integer mapping.

• A set of encodings were constructed by perturbation of Gray codes using a nor-

malised measure of locality.

• A factorial analysis was carried out to examine the sensitivity of performance in

CO1 and GT to changes in locality across the set of encodings.

• Encoding locality was observed to be a factor in performance under all parameter

configurations.

• A relationship was observed between mapping locality and the probability of dis-

engagement in GT.

The CO1 and GT binary number games are highly simplified coevolutionary systems,

albeit ones that use different solution concepts. The next chapter will study whether

these trends also hold in coevolutionary genetic programming and further investigate the

interaction that has been observed here between mapping locality and coevolutionary

pathologies.
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7.1 Chapter Motivation

An issue of increasing interest is the construction of programs designed for competitive

environments, where there exists a requirement to adapt to an adversary itself capable

of intelligent action. Synthesising the concepts introduced in coevolutionary algorithms

with genetic programming brings the technique into closer proximity with fields tradi-

tionally concerned with collective behaviour, such as multi-agent systems. However, co-

evolving the structures needed to support such applications, from simple state machines

to neural networks, requires the use of increasingly complex representations. Therefore

a better understanding is needed of how to design genotype to phenotype maps that are

effective in such systems.

The aim of this chapter is to take a step in this direction by analysing the effect of

semantic locality on the coevolution of programs. In the previous chapter we confirmed

that GPM locality can be a factor in the performance of simple binary coevolutionary

algorithms. A relationship was also suggested with a common pathological coevolu-

tionary behaviour, disengagement. It is a logical progression to examine whether these

findings generalise to coevolutionary algorithms when working with more complex in-

teractive GP domains. A similar empirical method will be used to that constructed for

binary representations in the previous chapter. The analysis will be supported using the

methods developed in Chapters 3 and 6.

7.2 Chapter Outline

This chapter considers the question: ‘Does semantic locality interact with the occurrence

of pathological behaviours in program coevolution?’. To address this, in Section 7.3 a

set of coevolutionary GP problems is outlined. In each case, the interactive domain,

measures of semantic difference and the relevant solution concepts are defined. Section

7.4 then uses these problems to continue the exploration of pathological behaviour and

locality commenced in the previous chapter, presenting empirical results on the rela-

tionship between semantic locality, disengagement and cycling in coevolutionary GP. To

complement this, Section 7.5 then analyses a more realistic historical GP problem, the

Game of Tag. Methods of measuring progress and changes in performance are addressed

for this case. The remainder of the chapter discusses these results and concludes.
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7.3 A Problem Set for Coevolutionary GP

Few established benchmarks exist for coevolutionary forms of GP. Historically, one nat-

ural source of problems has been competitive pursuit and evasion games, where the

objective is to develop strategies to intercept or escape an opponent. An example is the

Serengeti problem, first analysed in GP by Haynes et al. (1995), which presents a classic

predator-prey scenario. Strategies are developed for multiple predators (‘lions’) to cap-

ture a prey-agent (a ‘gazelle’) on a simulated grid-world. Serengeti is considered to be

difficult to solve without a degree of cooperation between predators (Luke and Spector,

1996). Pursuit and evasion is frequently used in the coevolutionary literature, but has

been criticised as a method of benchmarking (Cliff and Miller, 1995a), primarily due to

the complexity of interactions between different strategies and the ensuing difficulties

when defining measures of progress. However, given the breadth of practical applica-

tions, it remains an attractive area within which to analyse CEA provided a sufficiently

simplified problem instance can be defined.

Another commonly used class of coevolutionary GP problem is a ‘game versus envi-

ronment’, in which programs are coevolved to control an agent in conjunction with an

increasingly challenging structure, such as a maze or series of obstacles. The Tartarus

grid-world game proposed by Teller (1993) presents a situation in which an agent must

manoeuvre a series of blocks onto positions around the edges of the world. Notably the

Tarturus game requires that solutions must include a method of referencing previous

states (memory). A more recent example can be found in Cartlidge and Ait-boudaoud

(2011), in which a maze navigation problem was defined where strategies to control

robots to escape a maze are coevolved simultaneously with increasingly difficult maps.

Although the occurrence of coevolutionary pathologies when employing GP has been

reported (Lipson et al., 2005), to our knowledge no explicit studies of the effect of prop-

erties of the genotype to phenotype map have been carried out. Of the coevolutionary

pathologies described in Chapter 5, we postulate that disengagement and cycling have

particular significance for GP systems. Asymmetric situations are a frequent occurrence

in program coevolution. For example in the Tartarus problem evolving a solution such

as a better finite state machine is combinatorially a harder task than generating a more

challenging world. Cycling is also a particular concern because (in general) the evalu-

ation of GP structures is more expensive than their binary counterparts. Revisiting a

prior state has a larger associated cost.

Two drawbacks limit the utility of established problems such as Serengeti and Tartarus

when investigating coevolutionary pathologies. As observed in the previous chapter, to

measure progress or performance in a coevolutionary algorithm it should be possible to
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provide an approximate metric of solution quality. Serengeti and Tartarus both lack a

clearly defined notion of optimal behaviour or solution concept. In addition the mappings

required to solve these problems are considerably more involved than those that have

been analysed in previous chapters. The following sections therefore introduce two new

minimal interactive domains, the GP Greater Than Game (GP-GT) and the Simple

Cycler (SC), which are constructed specifically to explore disengagement and cycling in

a GP setting. The problems are generalised from the concept of number games analysed

within binary representations. To complement this a more realistic historical problem

the Game of Tag (GoT) is described, which will then be used to explore the effect of

locality on performance.

7.3.1 GP Greater-Than Game (GP-GT)

To investigate the pathology of disengagement in coevolutionary GP, a game was defined

based on the the GA Greater-Than (GT) game described in the previous chapter. The

GP-GT uses two symmetric populations of programs. Each program operates on real

values formed from a constrained function set {+,-} accepting a single terminal input

fixed at unity. Programs have a single output, derived by evaluating the expression at

the root node of the program1. The outcome of comparing a pair of programs (p, p′) is

given as a function of the program outputs u. The interaction function is:

u(p, p′) =


1.0 o(p) > o(p′)

0.5 o(p) = o(p′)

0.0 o(p) < o(p′)

(7.1)

where o(p) and o(p′) are the real valued outputs of each program. The expressions are

constrained to a maximum depth n, measured from root to terminal nodes. The game is

solved after a program is found from the subset of programs that maximises the output.2

7.3.2 Simple Cycler (SC)

Informally, we define cycling behaviour in coevolutionary GP as exiting and revisiting

the same phenotypic state in a program search space. Simple Cycler is an elementary

game that is designed to simulate measurable, irregular cycles in a coevolutionary GP

algorithm. Evolved programs operate on boolean values and are constructed from the

function set {AND,OR,NOT,IF}, where the IF function accepts three arguments: a

1In graph representations, such as CGP, we define the root as the last node in the integer genotype.
2GP-GT is superficially similar to the GP ‘MAX’ problem considered in Chapter 4. The key distinc-

tion is that programs are evaluated using only their relative rather objective fitness.
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condition, response if the condition is true and response if the condition is false. The

input is a fixed terminal with value TRUE. Programs are required to output a string of

n boolean values (for example, from n selected output nodes). This output is mapped

onto an unsigned integer o ∈ {1 : 2n}, using a binary encoding. The interaction function

is computed as:

u(p, p′) =



1.0 o(p) > o(p′) except o(p) = 2n and o(p′) = 1

1.0 o(p) = 1, o(p′) = 2n

0.5 o(p) = o(p′)

0.0 o(p) < o(p′) except o(p) = 1 and o(p′) = 2n

0.0 o(p) = 2n, o(p′) = 1

(7.2)

This expression states that the program corresponding to the greatest integer wins,

except for the cases where the maximum integer (2n) value is compared to the minimum

integer, 1. Therefore under this function all programs can be positioned on a single

intransitive cycle of length 2n.

For example, for n = 2, programs may output values in the range {1:4}. The cycle

implied is o(p) = 1 < o(p) = 2 < o(p) = 3 < o(p) = 4 < o(p) = 1. A program is said

to have traversed the cycle when it has changed from a structure corresponding to the

smallest integer to the largest and back, via the intermediate states. Cycling behaviour

is monitored by measuring the average period of these transitions over a fixed number

of generations.

7.3.3 The Game of Tag (GoT)

The Game of Tag is a conceptually straightforward two dimensional pursuit and evasion

game introduced by Reynolds (1994). Games consist of an idealised scenario in which

control programs are developed which provide pursuit and evasion strategies. Analogous

to the children’s game, the objective for each control program is to minimise the length

of time during which a program is designated as ‘it’ (the pursuer). Play occurs between

pairs of competitors, which are point objects able to move at a fixed speed over a

number of discrete timesteps. No account is made for momentum or limitations in change

of heading. If the competitor designated as ‘it’ enters a certain capture radius of its

opponent, the opponent is ‘tagged’ and the roles are exchanged. Consequently, successful

programs must simultaneously evolve pursuit and evasion behaviours, depending on their

role at that timestep. Effective algorithms should increase the capability of competitors

in both roles progressively over time. An example screenshot showing a simulation a

game in progress is given in Figure 7.1. At the start of a game, one competitor is

placed at the centre of the two dimensional play area. The other competitor is placed
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Pursuer

Evader

Figure 7.1: A simulation of the game of tag between two adversaries.

uniformly at random in a square region with width w centred on this position. Whilst

a competitor is in pursuit, it is set to move at twice the speed of the evader. Inputs to

each program are restricted to a vector in the local coordinate system of the competitor

and a boolean value, which specifies whether the competitor is in pursuit or not at that

timestep. Programs provide a single real number output, which is interpreted as an

updated heading. A score z is awarded to each competitor at the end of the game, equal

to the number of timesteps spent as the evader. During training, the subjective fitness of

each program is evaluated as the average score obtained over Z games against a subset

of coevolving adversaries. The interaction function between programs is given using the

mean score obtained over all games:

u(p, p′) =
1

Z

∑
i∈Z

zi(p, p
′) (7.3)

To ensure symmetry, for each set of games in the first half of the set the first competitor

begins as the evader and in the second half the roles are swapped.

7.3.4 Game Solutions and Conditions for Optimality

Table 7.1 summarises the solution and its corresponding class for each problem, follow-

ing the framework for coevolutionary algorithms described in Chapter 5. Details are

discussed in the following sections.
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Table 7.1: Selected coevolutionary GP problems and their solutions.

Problem Goal State Solution Concept

GP-GT Program p with o(p) = 2n. Maximisation of All Outcomes.
SC No fixed goal state. N/A, intransitive cycle.

GoT Maximised performance vs. PP and PN. Maximisation vs. Test Set.

Solutions in GP-GT and SC

In GP-GT, the game is considered to be solved when a program is found from the set

which maximises the possible output, o(p) = 2n. In the framework of Chapter 5, this

corresponds to the Simultaneous Maximisation of all Outcomes solution concept. By

contrast, the SC game does not have a globally optimal set of solutions. All programs

in the Simple Cycler lie on the same intransitive cycle and are therefore of equal merit

objectively.

Solutions in the Game of Tag

In the original description of the Game of Tag, it was noted that in the absence of

momentum a simple but effective strategy is to move directly towards the opponent

whilst the pursuer and directly away whilst the evader. This is a method referred to

as ‘pure pursuit’ (PP), in the language of pursuit and evasion games. The solution was

claimed informally to be optimal for the ideal situation described. A little consideration

shows that this is only partially correct. Given two competitors executing this strategy,

deviation by either to any other strategy (including mixed combinations) results in

poorer performance, because a route other than the shortest path must be traversed.

This solution can therefore be classified as a Nash equilibrium, under the definition

given in Chapter 5. However, it does not satisfy the Simultaneous Maximisation of all

Outcomes solution concept, because there exist cases where pure pursuit is less effective

than more sophisticated guidance laws.

As an example, to measure progress in this work an alternative strategy proportional

navigation (PN) will also be considered. Proportional navigation is a widely applied

guidance law used extensively in missile systems, backed by a large body of analysis

(Yuan, 1948; Shukla and Mahapatra, 1990). The strategy is based on the principle that

an interception between the trajectories of two objects travelling with fixed speed will

occur if the bearing between them is a non-zero constant (an example is sketched in

Figure 7.2). Intuitively, proportional navigation is more effective than pure pursuit in

situations where there is a requirement to ‘lead’ the target. In ‘pure’ proportional nav-

igation, the change in heading of a pursuer θ̇ is proportional to the change in line of
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Figure 7.2: Pure and proportional navigation pursuit strategies. The pursuer is shown
against a fixed trajectory evader over a discrete timestep t→ t+ 1.

sight to target γ̇, where N is a unitless quantity referred to as the proportional navi-

gation constant, which controls the magnitude of response (Equation 7.4). Real world

applications typically assume a value of N in the range 3 - 5. A value of N = 3 is as-

sumed in the present work, following from the analysis of Shukla and Mahapatra (1990).

θ̇ = Nγ̇ (7.4)

In addition to PP and PN, we will also evaluate solutions against intermediate quality

mixed opponents. Measuring progress exclusively against an optimal or near-optimal

adversary will not usefully indicate progress over the whole evolutionary period, because

the quality of mediocre players may not be distinguished. Therefore, mixed strategies

will be generated by introducing variation into the pure pursuit strategy. The mixed

strategies respond with a randomly selected angle with probability P (noise) and the

correct pure-pursuit response with probability 1 − P (noise) such that P (noise) = 1

corresponds to a strategy with random outputs. Testing strategies in this fashion pro-

vides an indication of the robustness of an evolved strategy against a broader range of

phenotypes, whilst also giving a scalable measure of quality.

7.3.5 Metrics for Semantic Difference

Given this problem set, we specify a metric for the semantic difference between programs,

defined for each interactive domain. The metrics are denoted as dGP−GT , dSC and dGoT

respectively:

dGP−GT = |o(p)− o(p′)| (7.5)

dSC = min

|o(p)− o(p′)|2n − |o(p)− o(p′)|.
(7.6)

dGoT =
∑
K

|θ(p)− θ(p′)| (7.7)
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For GT, Equation 7.5 uses the absolute difference in the output of each program. Because

the winner of an interaction in GT is determined solely by program output, this is the

natural measure for that problem. Similarly for SC, Equation 7.6 uses the smallest

difference in output between programs, but takes into account intransitivity by wrapping

around cycle. For example, in the n = 2 case, programs with output 1 and 4 are

considered to be adjacent (dSC = 1), because they are positioned next to each other on

the cycle.

The Game of Tag measure, Equation 7.7, is the absolute difference between output

headings, summed over a set of K x-y input vectors to both programs. The set of

vectors point to a grid of uniformly distributed fixed positions across the square playing

region in the Game of Tag. This approach is derived from the definition of semantic

sampling distance used in Nguyen (2011). An example of the procedure is given in

Figure 7.3.

p p'

Figure 7.3: Illustrates the calculation of semantic differences in the Game of Tag. The
program p′ differs from p at three sampled points. The metric dGoT sums the absolute

differences over each vector in the sampled region.

During initial experiments, several alternative semantic metrics were considered for the

Game of Tag (for example the Euclidean distance between outputs, the number of match-

ing output angles). These were tested by measuring distances between the pure pursuit

strategy and noisy variations. Equation 7.7 was accepted as the simplest approach that

ensures the differences in the metric are linearly proportional to changes to the output.

Each difference between samples contributes with equal weight to the total difference.

Potential limitations of this assumption are discussed in Section 7.6.

7.4 Mapping Locality and Pathological Behaviours

7.4.1 Algorithm Configuration

Reproduction and semantic bias were carried out by using the SIGMUTATE operator and

varying the parameter α, as described in Chapter 3. Recall that SIGMUTATE biases the
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Table 7.2: A summary of fixed algorithm parameters and game properties.

Parameter GP-GT SC GoT

Nodes 20 20 50

Function Set {+,-} {AND, OR, NOT, IF} Reynolds (1994)

Terminal Set {0,1} {TRUE} {x, y, isIt, [0.2:1.0]}
Mutation Rate 0.05 0.05 0.02

Selection 4+6 ES 1+1 ES 1+4 ES

Populations 2 × 10 2 × 1 2 × 5

Runs 500 100 500

Generations 500 1000 500

Offset β 1 1 0.05

Games/Opponent 1 1 Training: 5, Testing: 100

Game length N/A N/A 100 timesteps

Startbox Size w N/A N/A 7

Pursuer speed N/A N/A 2

Evader speed N/A N/A 1

Capture radius N/A N/A 1

locality of the mutation operator using a sigmoid function. A summary of the fixed

algorithm parameters used in each problem case is given in Table 7.2. In preliminary

experiments, each fixed parameter was tuned independently. A locally optimal set of

parameters was found for the CGP system on each problem, under no semantic bias

(α = 0). The range of values given in Miller (2011) was used as a basis. The Game of

Tag parameters are based on those originally fixed by Reynolds (1994).

Although a full-factorial analysis of all parameters is outside the feasible scope of this

work, in Section 7.4.3 the sensitivity of our experimental outcomes in SC are tested with

respect to mutation rate and length of CGP genotype. The offset β was fixed to the

minimum semantic difference in the constructed problems and a representative small

angular difference of 0.05 revolutions (18◦) in the GoT.

7.4.2 Disengagement in the GP Greater-Than Game

Figure 7.4 shows the mean value of the largest program output in each population over

the search period and the probability of disengagement at that generation, obtained

using 500 runs. Examples of the dependency on α are also shown in detail reported at

250 generations. Performance and disengagement were strongly correlated at this point

with the value of α (Spearman correlation, +0.99 and -0.95 respectively, using a p-value

of 0.005 under an exact test). A similar response is evident throughout the search.

Poorer performance and the highest probability of disengagement are measurable in the

stronger locality mappings (α → -1). Conversely, mappings with an unbiased or weak

locality corresponded to a lower probability of disengagement. The results are therefore
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Figure 7.4: The effect of locality on disengagement in GP-GT , using Cartesian GP.
Top left: Expected output of best program. Top right: Probability of disengagement.
Bottom left: Sensitivity of output to semantic locality. Bottom right: Sensitivity of

probability of disengagement to semantic locality (reported at 250 generations).

in agreement with the findings using the binary representation for GGT in Chapter

6. This supports the theory that higher locality mappings in which large changes in

phenotype are less probable are more prone to disengagement.

7.4.3 Periodicity in the Simple Cycler

Given the relatively small number of phenotype states in Simple Cycler, it is convenient

to examine the effect of changing the parameters of the operator directly by sampling.

Figure 7.5 shows the change in phenotype distribution produced by varying α, for β = 4.

Recall that β gives the offset of the sigmoid function in Equation 3.6, hence for the

dCY CLE metric a value equal to half the maximum, 2n−1, is appropriate. Each distribu-

tion is obtained by application of 1000 mutations to a randomly initialised population

of 100 genotypes. Characteristically for the CGP mapping, a high proportion (≈ 42%)

of the mutations are neutral. As α is increased, the distribution is skewed by the bias,

reducing the number of neutral mutations. Mutations at larger phenotype distances
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become more frequent. Conversely, negative values of α skew the distribution towards

neutral mutations and a greater frequency of small phenotype changes.

Figure 7.5: The effect of SIGMUTATE on the distribution of phenotypes generated
on mutation in the Simple Cycler problem. Results are shown using a uniform mutation

operator in CGP with mutation probability q = 0.1, for α ∈ {−2 : 2} and β = 0.5.

The average cycle period in SC can be characterised by measuring the mean number

of generations for each population to cycle between the maximum state 2n and back.

Equivalently, this is the average number of mutations before the state is revisited. Fig-

ure 7.6 (top left) shows the period obtained for transitive chains of increasing length.

Accordingly, as n is increased, the time to traverse the chain is larger. Figure 7.6 (top

right) shows an extract from an example run using an unbiased mutation operator, for

an intermediate value n = 4 (with mutation probability r = 0.1). Each genotype cycles

irregularly through the 16 states. The unbiased distribution (α = 0) shows a distribution

of phenotypes whose frequency is not strongly correlated with distance.
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Figure 7.6: Cycling in the Simple Cycler case. Top left: Scaling of unbiased cycle
period with problem size. Top right: Extract of a coevolutionary run, illustrating irregu-
lar cycling in both populations. Bottom left: Response to mutation rate. Bottom right:

Response to semantic bias.

Figure 7.6 also shows the effect on cycle rate of changing the mapping, with respect to

mutation rate (bottom left) and α (bottom right). At high mutation rates states are

revisited with greater frequency ∼ 1
2n . At low rates, the frequency tends to zero. Weak

locality (α ≥ 1) corresponds to longer periods, though no change is evident between the

stronger locality maps. The response to mutation rate can be explained by noting that

the algorithm tends towards random search at high values. At low rates, cycling slows

because neutral mutations are more prevalent and traversing the whole chain takes a

longer period of time. Fast cycling is also apparent at α < 0 because iterating through

the intermediate states can occur more quickly in a localised mapping. Finally, at high

values of α transitions to neighbouring states are more difficult, which decreases cycling

in the system. The distribution of cycle periods also broadens in weak locality maps

because phenotypes are fixed for longer periods, which gives rise to a larger number of

outlying values.
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7.5 Mapping Locality and Performance

7.5.1 CGP Implementation

Following the original work, the root node of all programs evolved in the Game of Tag

is seeded with the ‘IF-IT’ function to provide a separate flow of execution for pursuit

and evasion. In the CGP implementation, this was ensured by fixing the final integer

of the genotype to the value that denotes this function. With that exception, during

initialisation all other integer values were selected with equal probability. Because there

is no standardised approach to providing constants in CGP, the simplest technique is

adopted here: the introduction of a small array of fixed constants as terminal values

{0.2, 0.4, 0.6, 0.8, 1.0}.3 For convenience, Table 7.3 gives the original function set. The

largest function arity is 4, therefore each node in the CGP representation corresponds

to five integer values, such that the total genotype contains 250 integers.

Table 7.3: The Game of Tag function set (Reynolds, 1994)

Function Function

+ (a+b) if-it if-it then a else b
- (a-b) min if a ≤ b then a else b
* (a*b) max if a ≥ b then a else b
% protected division if-lte if a ≤ b then c else d

abs absolute value of a

7.5.2 Progress Metrics

Performance in the Game of Tag was measured by relative evaluation against four strate-

gies: pure pursuit (PP), proportional navigation (PN), a strategy which returned a ran-

dom heading (R) and a mixed strategy (PR). The mixed strategy substituted a random

response for pure pursuit 50% of the time. In addition vector field plots, as described

by Reynolds (1994), were used to gain a qualitative impression of progress. The plots

visualise the angular response of a program to different vector inputs. Examples are

given in Figure 7.7 for the pure-pursuit and proportional navigation strategies. Each

arrow in the plot shows the output angle of the program, with respect to a vector from

the origin to that point. Therefore, in the pure-pursuit case, pursuit corresponds to all

arrows pointing outwards from the origin and evasion to all arrows pointing inwards.

This is expressible using the quadrant arctan function. In the proportional navigation

3More general methods of evolving constants, such as ephemeral random values (Koza, 1992), were
considered in preliminary attempts to apply CGP to this problem. However, the inclusion of constants
generated at runtime greatly complicates this analysis, by implying a variable, rather than fixed, geno-
type to phenotype map. Additionally, it introduces asymmetry into the distances between genotypes,
which violates the assumptions made in Chapter 3.
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A B

C D

Figure 7.7: Vector-field plots for ideal pursuit and evasion strategies. A: Pure Pursuit
(evader). B: Pure Pursuit (pursuer). C: Proportional Navigation (N=3, pursuer). D:

Proportional Navigation (N=3, evader).

case, vectors show the direction adopted to intercept the expected path of the target,

based on the current rate of change in line of sight.

7.5.3 Performance in the Game of Tag

Figure 7.8 (top left) shows the expected progress of unbiased CGP against these met-

rics.4 Best performance was achieved against the randomised and proportional naviga-

tion strategies (evolved strategies are expected to win ≈ 90% of games versus random

opponents). Weakest performance is evident against the PP and PR strategies. A mod-

est expected performance (≈ 20%) was observed against the pure pursuit case, though

higher success rates were achieved in individual cases. A direct comparison with the

performance of Reynold’s implementation is not possible because only 5 individual runs

were reported in the original work. Figure 7.8 (bottom left, bottom right) shows an

example set of co-evolved vector field plots over the course of a run. The responses

exhibit similar characteristics to those described in the previous work and resemble the

pure-pursuit strategy, approximating the quadrant arctan function.

4An additional cost is associated with computing the difference between phenotypes in SIGMUTATE.
This is omitted in the results presented, because in practice it was found to be negligible relative to
the large number of evaluations required to assign a fitness value to each individual in this system (200
evaluations per game, 5 games per fitness computation).
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Figure 7.8: Game of Tag Performance. Top Left: Unbiased CGP performance. Top
Right: Sensitivity of performance to semantic bias. Bottom Left: Example coevolved

evasion strategy. Bottom Right: Example coevolved pursuit strategy.

The sensitivity of this result to semantic bias was examined. No significant change was

observed when measuring against the PP strategy. A weak response was measurable

against the PR, R and PN strategies. The measured Spearman correlation coefficients

in each case are (PP = -0.17, PR = -0.82, PN = -0.79, R = -0.62) where the correlations

in PR, PN and R are significant at p ≤ 0.005 (exact). Figure 7.8 (top right) shows the

change in expected performance at 250 generations for each of the significant results.

Best performance was observed at α = −50, which corresponds to a strong bias towards

small phenotypic changes. However, the net performance change is small (≈ 5 − 10%

difference in win ratio) and the overall effect of varying semantic locality in this case is

marginal.
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7.6 Discussion and Concluding Remarks

Evidence from the constructed problems we have examined confirms that semantic lo-

cality can be a factor in CEA performance, but as seen in the GA examples studied

in the previous chapter, this is complicated by interaction with coevolutionary patholo-

gies. The experiments have highlighted that performance is inter-dependent on each of

these issues and provided an initial quantitative analysis for disengagement and cycling.

The strong correlation between locality and disengagement in GP-GT supports the hy-

pothesis that disengagement can be related to mapping locality in program coevolution.

The probability of disengagement increases for small changes because programs are less

likely to be distinguished using the coevolving population. Although we must be wary

of generalising too far from this simplified example, the result suggests there may be

a tradeoff between the use of semantically local mappings and operators which permit

sufficient diversity to ensure populations of programs remain engaged.

An interesting result from the Simple Cycler example is the trend towards faster cycling

in both random (high mutation rate) and highly local search (small α). Inspection of

individual runs showed that this is a consequence of two distinct search behaviours.

Under random search, programs do not traverse the chain of states and instead revisit

each state with fixed probability. For small n this probability is high, therefore giving

a short period. However when mutations are constrained to programs with a small dif-

ference in output the search tends towards hillclimbing through the intermediate states,

also giving fast cycles. The result implies that because cycling in GP is a pathology

that occurs when an algorithm follows a transitive chain of programs, mappings biased

towards small semantic changes may worsen this behaviour.

Varying semantic bias in the Game of Tag problem introduced only a minor change to

performance. Two issues may contribute to this. Firstly, relative to the constructed

problems, the semantic mapping in the Game of Tag is significantly more complex.

The relationship between the outcome of a game and changes to program output is not

transparent. It is therefore not clear whether our metric for semantic difference is the

most suitable for this case. For example, given that agents begin positioned at the centre

of the space and spend a greater proportion of time in this area, it may be that different

program responses in that region are more likely to skew the outcome of a game. Other,

non-uniform weightings across the set of K samples may be more appropriate. Secondly,

the random component in the starting configuration introduces noise into each outcome.

Noise reduces the likelihood of disengagement under the definition given by Cartlidge

and Ait-boudaoud (2011), because of the increased variation in fitness values.
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At present, archiving techniques are the principal approach to providing monotonic

progress in CEA. Examining methods in GP that have achieved good results without

archives (Jaskowski and Krawiec, 2009) may provide an indication of how representations

inherently more robust to coevolutionary pathologies can be developed. Although this

result is sufficient to address our research question, future analysis could extend the scope

of these observations to other GP representations and problem sets, such as GE. This

analysis also motivates the study of other pathologies which have been characterised

in binary representations but have been neglected in GP, such as overgeneralisation

(Wiegand, 2003). In the next chapter, we will examine some of these issues and consider

other areas of future work.

7.7 Chapter Summary

The goal of this set of experiments was to examine the role of the semantic mapping

in coevolutionary GP. The chapter presented empirical work analysing the effects of

locality on pathological behaviours and performance.

• Two constructed problems were introduced, the GP Greater-Than-Game (GP-

GT) and the Simple Cycler (SC), to elicit quantifiable disengagement and cycling

in a coevolutionary GP system.

• Performance in the GP-GT was found to be strong correlated with mapping lo-

cality. Use of an operator biased towards small semantic changes led to a higher

probability of disengagement.

• Cycling was observed in the SC model and an analysis of the frequency response

to changes in mapping locality was presented.

• Additional results were provided for coevolutionary CGP on the Game of Tag, a

historical pursuit and evasion game. A weak response to mapping locality was

observed under a locally optimal parameter set.
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8.1 Thesis Summary

This thesis set out a series of research questions to investigate the role of genotype

to phenotype locality in evolution-inspired search heuristics. The work addresses the

optimisation of programs by evolutionary and coevolutionary search, focusing on the

techniques and paradigms of genetic programming. The first part laid the foundations

for this analysis, outlining the principal classes of genetic programming representation

149
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and defining the characteristics of the genotype to phenotype maps used in GP. The

second part focused on establishing statistical and visualisation tools to analyse locality

using this framework, for evolutionary systems. The third part then moved to empirically

examine locality in the context of coevolutionary systems.

The purpose of this chapter is to analyse the findings of this work in relation to my orig-

inal research questions and hypotheses. I will summarise the main thesis contributions,

then provide suggestions for future research. The final sections relate these outcomes

back to wider open research issues in genetic programming and program evolution.

8.1.1 Hypotheses and Research Questions Revisited

Measuring Locality in Genetic Programming

Q1: “How can a statistical measure of genotype to phenotype locality be

developed for different genetic programming representations?”

In Chapter 3, it was demonstrated that the Mantel statistic from numerical ecology

can be applied to determine the correlation between artificial genotype and phenotype

distances. The statistic can be used to guide understanding of how changes to evolution-

ary search operators or representation affect correlations in the mapping. Because the

technique is applied over different distance classes, this is extendible beyond the local

neighbourhood to consider the strength of the mapping between more distant genotypes.

The novel application of the technique to this context was validated in three case stud-

ies using different classes of representation. The experiments showed that the Mantel

statistic can distinguish between strong and weak locality mappings. For the example

problems and genetic operators selected, weak locality was shown at the syntactic level

using the Mantel statistic in two leading GP methods, Cartesian Genetic Programming

and Grammatical Evolution. Given a suitable choice of syntactic or semantic metrics,

the method can be applied flexibly over the GP paradigms.

Visualising Locality

Q2: “How can locality be visualised over regions of the GPM?”

Mapping locality is not uniform throughout the genotype space. Chapter 4 provided a

method of visualising locality across sampled regions of the mapping, by the application

of a force-directed graph layout algorithm. Examples were provided for fully-enumerated

GP search spaces under Cartesian Genetic Programming and Grammatical Evolution. It

was possible to observe regions of strong and weak locality using the projected graphs in
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both representations. The approach was found to be scalable to greater than 105 vertices

on a current desktop machine. In addition, the projected graph drawings captured

previously unseen features such as symmetry in the CGP genotype to phenotype map.

Graph drawings were also illustrated for samples from the landscapes of more complex

GP problems, such as search in digital circuits. These examples indicate that force-

directed layout algorithms are a viable approach to displaying mapping locality for the

complex multi-modal surfaces found in GP.

Locality and Coevolutionary Performance

Q3: “Does genotype to phenotype locality contribute to coevolutionary al-

gorithm performance?”

Chapter 6 defined an empirical framework to examine the extent to which changes in

mapping properties, such as semantic locality, affected progress in binary coevolutionary

systems. In a factorial experiment using competitive, test-based coevolution, locality

was shown to have small but significant effect on performance relative to other factors.

In the number game benchmark problems considered, Compare-on-one and Greater-

Than, the sign of the contribution of strong locality to performance was found to be

contingent on mutation rate. Systems with a low mutation rate benefited from weaker

locality mappings. The results confirm that locality measured at the semantic level

can contribute to the performance of CEA on co-optimisation problems, though the

magnitude of the effect varies dependent on where in the parameter space the algorithm

is situated.

The Effect of Locality on Pathological Coevolutionary Behaviours

Q4: “Does semantic locality interact with the occurrence of pathological

behaviours in program coevolution?”

Also in Chapter 6, it was then further shown in the Greater-Than experiment that the

likelihood of a pathological coevolutionary behaviour, disengagement, was dependent

on semantic locality. Strongly semantically local mappings were more prone to disen-

gagement throughout the evolutionary runs. In the less local mappings, disengagement

occurred at a reduced rate. To explore whether this effect was also evident in more

complex systems, in Chapter 7 the response of disengagement to locality was studied

using program representations. A strong coupling between disengagement and mapping

locality was observed in a GP generalisation of the GT problem.
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Chapter 7 then considered the effect of mapping locality on transitive cycling in coevo-

lutionary genetic programming. A constructed problem was presented, Simple Cycler,

that enabled the frequency of cycles to be monitored in a controlled fashion. It is evi-

dent that varying the mapping locality alters the cycling frequency for this problem. It

follows that semantic locality can affect the form of transitive cycling in coevolutionary

systems.

The contribution of locality to the performance of program coevolution was also ad-

dressed in Chapter 7 using a more complex pursuit and evasion problem, the Game

of Tag. A statistically significant response to mapping locality was observed, but the

overall magnitude of the change in performance was small.

Overall, the results from this sequence of experiments support the view that mapping

locality - whilst contributing to performance in coevolutionary algorithms - is not neces-

sarily the dominant factor. However, mapping locality does have bearing on the occur-

rence of coevolutionary pathologies such as disengagement and cycling, which can under

certain circumstances influence whether a coevolutionary algorithm succeeds or fails.

8.1.2 Main Contributions

In summary, the main original contributions presented during the course of this research

included:

1. A novel application of the Mantel statistic to measure locality in artificial genotype

to phenotype maps.

2. The application of a force-directed graph layout algorithm, Force Atlas 2, to visu-

alise GPM locality in GP search spaces.

3. An empirical framework to investigate performance factors in coevolutionary algo-

rithms. The application of this framework to coevolutionary genetic programming.

4. The observation of a relationship between genotype to phenotype locality and the

coevolutionary pathological behaviours disengagement and cycling.



Chapter 8 153

8.2 Extensions and Future Work

8.2.1 Relating Locality to other GPM Properties (Chapter 2)

Locality and GP using Modules

Many modern GP systems incorporate some form of explicit modularity. However,

modularity has not been addressed in this thesis. A useful goal of future work would

be to clarify how explicit modularity can be included in the geometric view of locality

outlined in Chapter 2. As an example, in Walker and Miller (2008), sections of a CGP

genotype were encapsulated into modules available in a list for reuse. The action of

forming a module using this type of mechanism, such that it is made available for reuse

by some subsequent operation, changes the topology of the genotype to phenotype map.

To see this, consider the effect of forming a module on the structure of the genotype

space. Forming a module increases the likelihood of transitioning to a genotype that

includes the common functional elements in that module. Under a probabilistic measure

of genotype distance, this decreases the distance to that genotype in the genotype space,

from any genotype that can accept the module. The distances between phenotypes

are unchanged. Therefore, if the genotypes that can accept the module have similar

phenotypes (under some metric) then it can be seen that the overall mapping locality

has been increased by this action. Conversely, if the phenotypes are dissimilar, then the

overall mapping locality must have decreased.

The concept naturally leads to the notion of imposing some form of phenotypic similarity

on module development. One method of accomplishing this might be to measure the

semantic distance to all stored modules. Operators could be biased to select modules

that had a small semantic effect on the code. In principle, this may provide a method

of maintaining strong semantic locality when the reuse of modules is required.

Locality and GPM Neutrality

This thesis has drawn a distinction between mapping locality and mappings which per-

mit neutral changes in phenotype. One view of locality is as a measure of the relationship

between changes in structure at different levels in the mapping process. From that per-

spective, an event that produces no change is not indicative of strong or weak locality.

However, the issue is complicated by the different forms of neutrality that occur in indi-

rect maps. Phenotypically neutral changes can be derived through different mechanisms

across the GP paradigms, whether by changes to a redundant part of the genotype or

by a change which leads to a semantically or fitness equivalent program.
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An empirical approach to this problem would be to consider a range of model mappings

that contain quantified levels of (one form of) neutrality. A factorial investigation of the

effects on performance could be carried out by varying the locality due to ‘non-neutral’

changes across the mappings simultaneously. Such a study might offer insights into

the relationship between these properties, though it would probably be most practical

initially to investigate this in simplified situations (for example the weighted integer

model described in Chapter 3).

8.2.2 Refinements to the use of the Mantel Statistic (Chapter 3)

Experiments with the Mantel statistic in Chapter 3 suggested that it is a robust measure

of locality in the GPM at the syntactic level. The statistic can also be applied to generate

measurements of locality at other levels in GP maps, for example between phenotype

and fitness. This requires the selection of semantic metrics, such as those in Chapter 7.

The technique could be improved by developing a better understanding of the sensitivity

to these decisions. Additional comparisons could be made with locality measured under

this statistic in other classes of GP representations, such as linear GP, or alternative

operators. Further validation of the technique on other problem domains would also be

appropriate.

From an implementation perspective, testing the significance of the Mantel statistic

is a relatively expensive task, because it is carried out by permutation. A serial im-

plementation was used in this work. Because permutations are applied over separate

distance classes, calculating the test statistic lends itself well to parallel execution. Fast

calculations of other permutation-based test statistics have been achieved using GPU

implementations (Eklund et al., 2011). Combined with efficient management of the

stored distance matrices, such an implementation could enable evaluation of represen-

tation locality using the Mantel statistic over the course of an evolutionary run. This

would be advantageous in situations where the GPM is time-dependent.

8.2.3 Graph-based Visualisation Methods (Chapter 4)

Graph-layout algorithms are a powerful tool when visualising high dimensional data,

which have not been well-explored within this context in the GP literature. This may

be in part because software to analyse networks on the scale required to illustrate GP

search spaces has only become readily available relatively recently. The explosion in

growth of network analysis tools can be seen as an opportunity to provide methods of

inspecting and comparing the characteristics of different representations more directly.

This work has only considered only force-directed algorithms, whose performance (as a
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form of metaheuristic search) carries uncertainty. An avenue for further work would be

to consider deterministic methods, closer to classical multidimensional scaling, such as

spectral layout algorithms. Spectral layout uses the eigenvectors of the graph adjacency

matrix or Laplacian matrix to provide fast methods of optimal layout (Brandes et al.,

2004).

Selecting samples for fitness graphs in such a way that they are most representative

of an evolutionary run is an open question. The emphasis as proposed in this chapter

has been to analyse existing GPM, rather than those developed concurrently with an

evolutionary run and to consider the whole genotype space of simple problems. One

natural extension appropriate for novel GPM would be to construct a graph of the

mapping based on the regions explored at runtime. Repeated runs would focus on the

graph-drawings on regions of the GPM that are active in the search.

8.2.4 Solution Concepts and Progress in CEA (Chapter 5)

It is an interesting aside to note that, whilst providing a much stronger theoretical

foundation for coevolutionary algorithms, the coevolutionary solution concepts reviewed

in this chapter represent only a small proportion of this extensive field of study in game

theory and multi-agent systems. For example, it is well known in game theory that the

concept of a Nash Equilibrium can be extended to the idea of a Correlated equilibrium

(Aumann, 1974). Hybrid concepts, such as the fuzzy-nash-pareto equilibrium also exist

(Dumitrescu et al., 2010). Algorithms associated with these more general notions do

not appear to have been investigated in the main body of coevolutionary literature.

To obtain theoretically robust forms of coevolution using GP representations, it will

be necessary to understand how properties of the genotype to phenotype map can be

related to the CEA solution concepts. Are some GP paradigms more apt for different

solution concepts? It would seem stronger ties are required between the CEA and GP

literature before these questions can be satisfactorily answered.

8.2.5 Extending Locality to Interaction Functions (Chapter 6)

Coevolutionary algorithms explore a space of interactions between genotypes. This

poses the question, is there an analogous form of locality in this space? The definition of

locality used in Chapter 6 is based directly on the aggregative measures used by Rothlauf

(2006) and Chiam et al. (2008). The framework was designed for evolutionary algorithms

and therefore focuses on changes in individual genotypes. For CEA, it is possible to

extend these concepts to construct measures between collections of genotypes.
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S = C x T

(c,t)

(c',t')
MS

U

1.4

3.2

7.1

Δu

5.8

u : S → U 

Figure 8.1: Locality in a CEA interaction function for a test-based problem, mapping
between pairs of candidate and test genotypes and interaction outcomes.

In test based coevolution, search is carried out in the product space of potential solutions

S = C × T . Therefore, a neighbourhood structure exists for S that considers the

probability of search operators transitioning between the interactions (c, t) ∈ S. Assume

two pairs (c, t) and (c′, t′). For an independently applied mutation operator s, this implies

that the expected variation distance (Definition 3.3) can be extended to S as:

M̄S(c, t, c′, t′) =
2

Pr(c′ = s(c))× Pr(t′ = s(t))
(8.1)

where c 6= c′, t 6= t′. The value M̄S is then the expected number of mutation operations

required when the mutation operator is applied simultaneously to a candidate and test

genotype. The minimum of M̄S is two, because the operator must be applied at least

once to each individual. Assume a single outcome interaction function u : (c, t) → R.

Let U ⊆ R denote the set of values over all (c, t) ∈ S. The natural measure for U is the

absolute difference in outcome ∆u = |u(c, t) − u(c′, t′)|. This gives a distance measure

in both spaces.

If small M̄S implies small ∆u, then the mapping given by the interaction function

between S and U could be described as having strong locality. The concept is illustrated

in Figure 8.1. Future work would investigate whether characterising the interaction

function in this fashion (in the ‘landscape of interactions’) provides a clearer relation

with search performance.

8.2.6 CEA and Pathological Behaviours (Chapter 7)

Parallels in Natural Systems

The observations concerning disengagement and GPM locality in Chapter 7 bear some

similarity to the reciprocal interactions observed in natural coevolving systems. Hanifin

et al. (2008) report an example of a system where arms races on selected traits persist
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until large phenotypic adaptations take place. The work studied the coevolutionary re-

lationship between Garter snakes and their prey, species of toxic newt, examining newt

toxicity against the resistance of snakes across regions of North America. An ‘escala-

tion zone’ was characterised, within which traits in predator and prey are sufficiently

competitive to increase both values:

“Initial increases in toxicity might be promoted by selection from interactions

with other species as in other systems, including predators on early life stages. Some

localities (e.g., Benton, Oregon) seem to persist in this escalation zone, while others

(e.g., Omo, California) escape from the arms race due to rapid evolution of extreme

resistance through simple genetic mechanisms. Such adaptive changes suspend re-

ciprocal selection, and no counter escalation follows.”

- Hanifin et al. (2008)

Disengagement observed in the GT variations has some parallels with this example.

In the strongly local system, the probability of an objectively poor program adapting

to an objectively good, faster adapting adversary (one with large output) was very

low. Conversely, a weakly local GPM permitted some semantic transitions of sufficient

magnitude such that adaptation was possible. The extent to which these tendencies

are also true for biological systems (albeit acknowledging their far greater complexity)

would be an original next step.

Metrics for Disengagement

A further open question concerning disengagement is whether the metric of Cartlidge

and Ait-boudaoud (2011) (zero variance in fitness) is satisfactory for all situations. In

problems where fitness has a noisy component, as given for example in the Game of

Tag, an alternative might be to define disengagement as when fitness variance across

the population falls below a certain threshold. The threshold value would distinguish

between fitness gradients induced by the objective quality of opponents and gradients

due to error in the interaction function.

Given the relationships observed between cycling, disengagement and mapping locality,

it is reasonable to expect that properties of the genotype to phenotype map will also have

an effect on the occurrence of other pathologies. For example, it can be conjectured that

mapping locality will contribute to the likelihood of focusing in coevolutionary systems.

Focusing is a consequence of overspecialisation on one or more phenotypic traits. In a

strongly local mapping, changes to the phenotype are more likely to be incremental. This

suggests a situation where the prevailing change is a small improvement to existing good
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traits, which it can be inferred may lead to specialisation. The focusing number game

is designed to analyse focusing in coevolutionary systems (Bucci and Pollack, 2003).

The game could be adapted to examine algorithms using GPM to test this hypothesis,

following similar principles to the experiments in this work.

8.3 Relationships with Open Issues in GP

Material covered in this thesis has partially contributed to a number of acknowledged

outstanding issues in the field of genetic programming (O’Neill et al., 2010).

8.3.1 Choice of Representation

Understanding the role of GPM locality in evolutionary search can directly inform choice

of representation by a practitioner. The new methods of measuring and visualising

locality described in this thesis are intended to assist GP practitioners with this process.

Selecting a representation is as much an engineering issue as it is a theoretical one;

algorithmic loss of performance due to a sub-optimal but simple GPM should be offset

against the time to implement a more complex mapping. However, providing tools and

theoretical guidelines will help to speed up this process. An emerging focus in GP is the

distinction between syntactic/semantic levels of the mapping process and how to ensure

indirect GP mappings retain locality given their greater complexity. The techniques

set out here (the Mantel statistic and the application of Force-layout algorithms) have

intentionally been constructed such that they can be applied flexibly to this problem

using syntactic or semantic metrics.

Choosing representations in CEA is a largely unexplored area. The evidence from Chap-

ters 6 and 7 suggests that, as is the case for non-coevolutionary forms of GP, mapping

locality contributes to performance. Some recommendations can be inferred from the

results in CO1, GT, GT-GP, Simple Cycler and the Game of Tag. Firstly, it has been

seen that using a strongly local mapping can increase the likelihood of disengagement.

Therefore, switching to a less local mapping whose properties are otherwise similar may

improve performance when this pathology occurs. Secondly, in Simple Cycler it was

noted that decreasing locality reduced cycling frequency. A possible explanation is that

less local encodings can allow coevolutionary algorithms to escape intransitive cycles.

Further experiments are required to determine whether this hypothesis is correct and

the extent to which it may hold over other GP representations and problems.
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8.3.2 Benchmarking

It has recently been acknowledged by the GP community that new benchmarks are re-

quired to progress the field (McDermott et al., 2012). Two new constructed problems

have been provided, the GP Greater-than-game and the Simple Cycler. The problems

are scalable and designed to transparently test the occurrence of disengagement and

cycling in coevolutionary GP. In addition, a framework for benchmarking in coevolu-

tionary algorithms was set out in Chapter 6, that stressed the importance of measuring

coevolutionary progress relative to a clearly defined solution concept. This is intended to

help address the problem of making fair empirical comparisons between coevolutionary

forms of GP.

Several further sources are available to generate additional coevolutionary GP bench-

marks. One option is generalising existing GP evolutionary problems, such as symbolic

regression, to a coevolutionary form. An alternative is to adapt existing coevolutionary

GA benchmarks to GP (the approach used in Chapter 7). Both the MAX-GP and GT-

GP problems are based on the concept of maximising program output; however GT-GP

introduces coevolution by deriving fitness from the relative comparison of programs,

rather than objectively.

8.3.3 Complexity Analysis

Introducing proofs of the time complexity for different GP paradigms on particular

problem classes is a major goal of GP theory. In Appendix A, a proof is given for the

expected time complexity of a simplified form of Cartesian Genetic Programming on the

MAX-GP problem. Although this is a very constrained example, it is the first result of

its kind for the CGP representation. Generalising the proof to a more realistic problem,

such as a case from digital circuit evolution, could go some way to strengthening the

theoretical basis of the technique.

As a longer term ambition, time complexity results could be related back to the proper-

ties of the GPM. It has been shown in genetic algorithms that for other factors such as

mutation rate there exist critical boundaries between time complexity classes in response

to changing parameters (Lehre and Yao, 2012). That such boundaries also exist for GPM

properties seems probable. Mapping out how varying quantifiable GPM properties like

locality change the complexity class of simple problems in a given GP algorithm, al-

though a very challenging proposition, would be a significant contribution in this area.
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8.4 Final Words

The tools for analysing locality presented in this thesis are intended to provide a foun-

dation for the investigation and comparison of different evolutionary representations. In

the field of genetic programming, these tools could be exploited to help assess newly

proposed representations and search operators, particularly in conjunction with a com-

munally maintained set of benchmarks. Locality is only one property of artificial GPM

and no single set of tools is likely to provide a clear indicator of a maps suitability.

However, by constructing a portfolio of methods to examine the range of possible GPM

characteristics, a more principled approach to representation design could be achieved.

Presently, single population evolution is the most prevalent approach in genetic pro-

gramming. As programs are required to incorporate further interactive, competitive

and collaborative features, more extensive use of coevolution is likely to become a nec-

essary advancement for the field. An understanding of the effects of GP representations

on coevolutionary behaviours, as initiated here, will greatly help to realise this.
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Performance of Cartesian GP on

the Single Arity MAX problem

The MAX test case, used in Section 4.5.1 is the problem of maximising the output

of a program given a fixed GP representation, function set and inputs. This appendix

records calculations that show how the theoretical behaviour of a CGP representation on

MAX can be bounded from above to expected polynomial performance in the problem

size, for a simplified example. We will use the method of artificial fitness levels, as

described in Lehre (2011). The basic concept of the method is to partition the search

space into equivalent fitness levels consisting of subsets of genotypes whose phenotype’s

discrete fitness falls within the bounds of that level. The proof proceeds by bounding the

expected number of levels and the number of evaluations required to transition between

them. This work is based on theoretical approaches previously applied to the One MAX

problem, the GA analogy of MAX (see for example the review of Oliveto et al. (2007)).

A.1 Assumptions

1) Assume a single row CGP genotype g with n nodes, with a terminal set containing

a single input T ∈ N and function set F = {+1}. The function +1 is a single arity

operation that adds one to its argument. With this simplification, the genotype can be

written as a tuple of indexed nodes, g = (g1, g2...gn), where each node gi is represented

as a pair of integers (j, 0) giving the index of the node input and function choice. The

first integer j indicates a connection to any previous node or the input, 0 ≤ j ≤ gi.

Given the single function choice, the second integer value is fixed at zero.

161
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Remark: As an example, in the 4 node genotype (0 0)(0 0)(1 0)(1 0), nodes 1 and 2

are connected to the input, nodes 3 and 4 are connected to node 1. Given an input of

0, the corresponding outputs at each node are (1, 1, 2, 2) respectively. Each connected

function adds one to the output along the encoded graph.

2) The phenotype p = m(g) can be written as an ordered list of connected nodes

p = (p1, p2...pl). In this representation, the MAX problem has a fitness function such

that f(p) = |p| ≤ l.

Definition A.1 (Fitness Level). A fitness level is a subset Fk ⊆ G such that for all

x, y ∈ Fk, genotypes have equal fitness f(x) = f(y) = k, k ∈ Z. Let F be the set of

fitness levels F = {F1 ∪ F2... ∪ Fn} in G.

Remark: The fitness of a genotype is given by the number of connected nodes. Each

fitness level contains the subset of genotypes with equivalent, integer valued fitness.

3) Assume a mutation operator that operates on the genotype with a uniform probability

of mutation q = 1
n . Denote the probability that g mutates to g′ under the uniform

mutation operator s to be Prob(s(g) = g′) = Qg,g′ . Then let Qkg =
⋃

∀g′∈Fk

Qg,g′ .

Remark: The set Qkg contains those probabilities that correspond to all transitions

between g and the genotypes in the fitness level Fk.

4) Assume a 1+1 EA using this configuration and mutation operator.

A.2 Proof for Single Arity MAX

Lemma A.2. For all genotypes g ∈ Fk, 1 ≤ k < n, there exists a probability Q ∈ Qk+1
g ,

such that Q ≥ 1
en4 .

Proof. Let g ∈ Fk and p be the corresponding phenotype. There exists at least one

unconnected node in g, because k < n. Label two nodes ga and gb, where

ga is the lowest index node in g, not in p.

gb is the lowest index node in g, in p.

Consider the smallest number of edits to g required give a genotype g′ ∈ Fk+1. This

transition can always be made by editing connections to insert ga. There are two cases

Case 1. Connect ga to gb, at the beginning of the phenotype, (a < b).

Case 2. Connect ga to gn, in the middle of the phenotype, (a > b).
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T
+1 +1 +1 +1

Case 1 - node can be connected at the beginning

T
+1 +1 +1 +1

Case 2 - node can be connected in the middle

Output

Output

Case 1 requires at least one connection to change.
Case 2 requires at least two connections to change.

ga

ga

gb

gb

Figure A.1: An illustration of the edits required to connect a redundant CGP node.

At best one connection is changed in the first case, at best two connections are changed

in the second case (see Figure A.1).

The probability of changing x nodes in g and keeping n − x connections the same is

qx(1− q)n−x, which given q = 1
n is smaller for x = 2 than x = 1. The probability of the

x altered values mutating to the particular connections is bounded from below by 1
nx ,

which holds because the maximum number of potential connections for any node in g is

n. Hence, for x = 2, combining these probabilities gives

Qg,g′ ≥
( q
n

)2
(1− q)n−2

≥ 1

n4
(1− 1

n
)n−2

≥ 1

en4

Because Qg,g′ ∈ Qk+1
g , this proves Lemma A.2.

Theorem A.3. The expected number of evaluations to optimise the single arity MAX

problem using 1+1 CGP with a function set F and T has an upper bound O(n5).

Proof. The proof follows directly from Lemma A.2. Let Qk be the probability of tran-

sitioning from Fk to Fk+1, for all g ∈ Fk. From Lemma A.2, we have

Qk ≥ min(Qkg) ≥
1

en4
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Figure A.2: Scaling of the number of expected fitness evaluations for CGP on the
single arity MAX-GP problem.

Let the expected number of evaluations to transition in the 1+1 EA between levels Fk

and Fk + 1 be E(k). Then since E(k) = 1
Qk ≤ en4, we can sum to give

E(n) ≤
k≤n∑
k=1

E(k)

≤ n× en4

≤ en5

where E(n) is expected number of evaluations to connect all n CGP nodes (the optimal

fitness configuration). Therefore E(n) can be bounded as O(n5).

A.3 Experimental Comparison

Theorem A.3 can be validated experimentally. A 1+1 EA with the CGP representation

as described was configured and run from a random starting configuration 500 times

between n = 1 and n = 20. Figure A.2 shows the scaling of the expected number of

evaluations to obtain the solution with respect to the number of nodes (problem size).

Fitting by non-linear least squares gives the model E(n) = (0.182± 0.0047)× n4, which

supports Theorem A.3 as an upper bound for the expected performance on MAX-GP.



Abbreviations

BNF Backus-Naur Form

CIAO Current Individual vs. Ancestral Opponent

CEA Coevolutionary Algorithm

CO1 Compare On One

CGP Cartesian Genetic Programming

EC Evolutionary Computing

EP Evolutionary Programming

FDC Fitness Distance Correlation

GA Genetic Algorithm

GE Grammatical Evolution

GoT Game of Tag

GO Generalisation Optimisation

GP Genetic Programming

GPM Genotype to Phenotype Map

GT Greater Than

HSB Hue Saturation Brightness

IPCA Iterated Pareto Coevolutionary Archive

NCD Normalised Compression Distance

NFL No Free Lunch

PP Pure Pursuit

PN Proportional Navigation

RSH Randomised Search Heuristic

SC Simple Cycler
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